
Abstract

MCINTYRE, JULIE PILAR. Density Deconvolution with Replicate Measurements

and Auxiliary Data. (Under the supervision of Dr. Leonard A. Stefanski)

We present two deconvolution estimators for the density function of a random

variable X that is measured with error. The first estimates the density of X from

the set of independent replicate measurements {Wr,j}n, mr

r=1,j=1, where Wr,j = Xr +

Ur,j. We derive an estimator assuming that {Ur,j}n, mr

r=1,j=1 are normally distributed

measurement errors having unknown and possibly nonconstant variances σ2
r . The

estimator generalizes the deconvolution estimator of Stefanski and Carroll (1990),

with the measurement error variances estimated from replicate observations. We

derive the integrated mean squared error and examine the rate of convergence as

n → ∞ and the number of replicates is fixed. The finite-sample performance of the

estimator is illustrated through a simulation study and an example.

The second is a semi-parametric deconvolution estimator that assumes the avail-

ability of a covariate vector Z statistically related to X, but independent of the

error in measuring X, and such that the regression error X − E(X|Z) is normally

distributed. The estimator combines parametric modeling of the regression residuals

with nonparametric estimation of the mean function. The asymptotic properties of

the estimator are discussed. The reliance of the estimator on assumptions of the

regression model and normality of model errors is examined via simulation, and an

application to real data is presented.
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Chapter 1

Introduction

1.1 Introduction

This thesis presents strategies for estimating the density function of a random

variable that is measured with error. A variable X is said to be measured with error

when its true value is obscured by random noise. If W denotes an observation of X,

then W contains characteristics of both X and the error in its measurement. The

assumption that certain variables are error-free is implicit in most data analysis pro-

cedures, and naively replacing them with their observed values can lead to imprecise

or even incorrect inferences.

This is true when the objective of an analysis is estimation of fx(x), the density

function of X. Traditional estimators of fx(x) suppose a random sample, X1, . . . , Xn,

is available from this density, and substituting the observed sample W1, . . . ,Wn results

in an inconsistent estimate.
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The need for methods that consistently estimate fx(x) from such an observed sam-

ple arises in numerous applications. Density estimates of pollutant levels in automo-

bile exhaust help researchers at the U.S. EPA develop effective regulatory strategies.

Pollutant levels are measured from the exhaust of travelling cars, and are known to

contain a considerable amount of error. Density estimates of nutrient consumptions

are used by scientists at the USDA to produce nutritional guidelines. Food-recall

surveys, often used to measure nutrient consumption, are subject to error from the

inability of respondents to accurately recall the types and amounts of foods they ate

on a given day. Wildlife biologists interested in the size of animal populations esti-

mate the density function of the distance at which animals are sighted from a transect

line. Because distances cannot be measured accurately without disturbing animals,

they are roughly estimated by eye.

This chapter contains an overview of measurement error problems. To provide

background, we first discuss measurement error in the context of some familiar sta-

tistical procedures. This provides a foundation for considering the effects of measure-

ment error in density estimation, and we discuss this problem in detail and review

relevant research. The chapter concludes with a statement of the specific density

estimation problems that are the focus of this dissertation.
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1.2 Measurement Error and Statistical Inference

Many important concepts in the analysis of data that are measured with error

can be illustrated with simple examples. As we will show, measurement error prob-

lems have several common features. Ignoring measurement error can induce bias

and increase variance in estimated parameters. In this section, we examine the con-

sequences of ignoring measurement error on certain summary statistics and linear

regression models. We compare inferences made from the observed data, W1, . . . ,Wn,

to those made were the true data, X1, . . . , Xn, available. Although more complicated

error structures can be considered, it is common to assume that the error in measuring

X is additive, unbiased, and independent, and we suppose that for r = 1, . . . , n,

Wr = Xr + Ur, (1.2.1)

where Ur is a measurement error that has mean 0, variance σ2
u, and is independent

of Xr. This is known as the classical error model in the measurement error modeling

literature.

As our discussion will make clear, correcting for the effects of measurement error

requires additional information about the error variable. At a minimum, the mea-

surement error variance, σ2
u, must be known or estimable. Replicate measurements

of the true data, for instance, can provide a means of estimating σ2
u.

3



1.2.1 The Effects of Measurement Error on Some Summary

Statistics

First, consider estimating µx, the mean of X. The true-data estimator,

X =
1

n

n∑
r=1

Xr,

is an unbiased estimator of µx. Naively replacing the true data with observed values

in this estimator produces the estimate W ,

W =
1

n

n∑
r=1

Wr =
1

n

n∑
r=1

(Xr + Ur) = X + U.

W is also an unbiased estimator of µx. However, consider the variances of these two

statistics,

Var(X) =
σ2

x

n
,

while

Var(W ) =
σ2

x

n
+

σ2
u

n
.

Thus, when estimating a mean, ignoring measurement error does not affect bias but

does increase variability.

Now consider estimating the variance of X. The true-data estimator is the sample

variance,

s2
x =

1

n− 1

n∑
r=1

(Xr −X)2,

and is unbiased for σ2
x. The estimator constructed with the observed-data sample is

s2
w =

1

n− 1

n∑
r=1

(Wr −W )2 = s2
x + s2

u + 2sxu,

4



where sxu is the sample covariance between X and U . When X and U are indepen-

dent,

E(s2
w) = σ2

x + σ2
u. (1.2.2)

Thus, s2
w is a biased estimator of σ2

x. It also has a larger variance, because

Var(s2
w) = Var{E(s2

w| X1, . . . , Xn)}+ E{Var(s2
w| X1, . . . , Xn)}

= Var(s2
x + σ2

u) + E{Var(s2
w| X1, . . . , Xn)}

= Var(s2
x) + E{Var(s2

w| X1, . . . , Xn)},

and so provided E{Var(s2
w| X1, . . . , Xn)} > 0, Var(s2

w) > Var(s2
x).

Notice that measurement error induces bias in the sample estimate of the variance,

s2
w, but not in the sample estimate of the mean, W . In general, measurement error

induces bias in estimators that are nonlinear functions of the data. The sample mean

W is linear in W1, . . . ,Wn, while s2
w is not.

Given knowledge of the measurement error variance, an unbiased estimator of σ2
x

can be constructed from the observed data. Let

s∗2w = s2
w − σ2

u.

It follows from equation (1.2.2) that E(s∗2w ) = σ2
x. Note that replacing σ2

u by a

consistent estimator of the measurement error variance does not affect the consistency

of s∗2w .

These examples illustrate some fundamental problems with basing statistical infer-

ences on data that contain measurement error. Biases result in inconsistent parameter

5



estimates, and increased variance leads to wider confidence intervals and less powerful

hypothesis tests. These ideas are illustrated further in the next section, through an

examination of linear regression models.

1.2.2 Measurement Error in Linear Regression Models

Linear regression analysis assumes that model covariates are measured precisely,

and in this section we discuss the consequences of ignoring measurement error in these

variables. Covariate measurement error introduces bias and increases variability in

the estimates of model coefficients, which in turn adversely affect the performance

(size and power) of hypothesis tests. The effects of measurement error on parameter

estimation in linear regression models is complicated when a model contains multiple

predictors. We concentrate our discussion on simple linear regression, and describe

selected results for multiple linear regression. A comprehensive examination of the

effects of covariate measurement error in linear models is given by Fuller (1987).

The complexity of the problem is magnified even more when models are nonlinear in

their regression parameters, and we do not discuss this subject here. An extensive

treatment of the effects of covariate measurement error in nonlinear models is given

by Carroll, Ruppert, and Stefanski (1995).
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Simple Linear Regression

Consider the model where for r = 1, . . . , n,

Yr = β0 + βxXr + εr,

and the model errors, ε1, . . . , εn are independent and identically distributed random

variables with mean 0 and variance σ2
ε . Given the true-data sample, X1, . . . , Xn, the

least squares estimator of βx is

β̂x =
sxy

s2
x

, (1.2.3)

and because

sxy

s2
x

P−→ σxy

σ2
x

= βx,

β̂x is a consistent estimator of the true slope.

We now consider the consequences of naively estimating βx with the observed-data

sample, W1, . . . ,Wn. Suppose that data are observed according to equation (1.2.1),

where for r = 1, . . . , n, Ur has mean 0, variance σ2
u, and is independent of both Xr

and εr.

Calculating equation (1.2.3) with the observed data results in the naive estimate

of βx,

β̂w =
swy

s2
w

. (1.2.4)

The sample covariance, swy, is a linear function of W1, . . . ,Wn, and is an unbiased

estimator of σxy. With equation (1.2.2), it follows that

β̂w
P−→ σxy

(σ2
x + σ2

u)
= ξβx,

7
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Figure 1.1: Attenuation in the slope of a simple linear regression model caused by
measurement error. Circle, solid line: True data and estimated regression line; Star,
dashed line: Observed data and estimated regression line; Reliability ratio is 1/2.

where

ξ =
σ2

x

(σ2
x + σ2

u)
(1.2.5)

is known as the reliability ratio. Because ξ < 1, naively replacing the true data

by observed data results in an estimate of the slope that is is attenuated, or biased

toward 0. The attenuation in the naive estimate is illustrated in Figure 1.1.

Inferences about the slope are affected by measurement error. In general, mea-

surement error results in a loss of power for testing the null hypothesis that βx = 0.

This is straightforward to see when Y , X, and W are jointly normally distributed.

In this case, the noncentrality parameter for the test of H0 : βx = 0 is

κx =
nβ2

xσ
2
x

σ2
ε

8



given the true data, and

κw =
nβ2

xσ
2
xρ

2
xw

{σ2
ε + β2

xσ
2
x(1− ρ2

xw)}

given the observed data, where ρxw denotes the correlation between X and W . When

ρxw < 1, κw < κx, and thus the power of the observed-data hypothesis test is dimin-

ished.

Given knowledge of the measurement error variance, σ2
u, the bias in the naive

estimate can be corrected. Let

β̂∗w =

(
s2

w

s2
w − σ2

u

)
β̂w.

Then it follows from equation (1.2.4) that β̂∗w
P−→ βx. The same result holds when

σ2
u is replaced by a consistent estimate.

Multiple Linear Regression

Consideration of the effects of measurement error on parameter estimation is com-

plicated when a model has multiple covariates, some or all of which may contain

measurement error. When ignored, measurement error in a single covariate can com-

promise inferences about all model parameters. The analysis in these models quickly

becomes complex, and most results require strong distributional assumptions on the

model components. Still, a few general conclusions can be drawn, and we illustrate

these by considering a multiple linear regression model where a single covariate is

measured with error. Let

Yr = β0 + βxXr + βT
z Zr + εr,

9



where ε1, . . . , εn are independent model errors with mean 0 and variance σ2
ε . We adopt

the notation of Carroll, Ruppert, and Stefanski (1995) and assume that the covariate

X is measured with error, but the covariates in the vector Z are error free.

Suppose that the random sample X1, . . . , Xn is observed as W1, . . . ,Wn according

to equation (1.2.1). We impose the same conditions on the measurement errors as

for the case of simple linear regression, i.e., for r = 1, . . . , n, Ur has mean 0, variance

σ2
u, and is independent of Xr and εr, and we add the additional assumption that Ur

is independent of Zr.

In this setting, when true data are replaced by their observed values, not only is

the estimate of βx biased, but when X and Z are correlated, so is the estimate of βz.

First consider estimating βx. Calculated with the observed data, the least squares

estimate of βx is β̂w where

β̂w
P−→

(
σ2

x|z
σ2

x|z + σ2
u

)
βx = ξ1βx,

and σ2
x|z is the conditional variance of X given Z (Carroll, Ruppert & Stefanski 1995).

Note that ξ1 and the reliability ratio, ξ in equation (1.2.5), are equal only if X and

Z are uncorrelated. However, because σ2
x|z ≤ σ2

x, it follows that ξ1 ≤ ξ, and so

correlation between X and Z actually increases the attenuation in β̂w, and therefore

exaggerates the consequences for inference about βx.

When X and Z are correlated, replacing X1, . . . , Xn by W1, . . . ,Wn also leads to

bias in the least squares estimate of βz,

β̂z
P−→ βz + βx(1− ξ1)Γz, (1.2.6)

10



where ΓT
z is the coefficient on Z from its regression on X (Carroll et al. 1995). As

can be seen from equation (1.2.6), the direction and magnitude of the bias in this

estimate depends on the parameters βz and ΓT
z , and the quantity ξ1. Thus, ignoring

measurement error in X can create either positive or negative biases in the coefficients

of covariates that are error-free.

1.3 The Effects of Measurement Error on Density

Estimation

In this section, we give a detailed description of the problem of estimating the

density function of a variable that is measured with error. Because they are nonlinear

functions of the observed data, density estimates are biased when calculated from data

measured with error.

The problem of correcting for the effects of measurement in density estimation has

received considerable attention, and most proposed methods require strong assump-

tions on the distribution of the measurement error variable. We review a number of

these methods in this section.

Difficulties in estimating the density function of an error-prone variable stem from

the following. Let X be a random variable with unknown density function fx(x).

Suppose that a random sample from this density, X1, . . . , Xn, is observed only as

W1, . . . ,Wn according to equation (1.2.1), so that for r = 1, . . . , n, Wr = Xr + Ur.
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In addition, suppose that Ur has density function fu(u) and is independent of Xr.

Traditional density estimators constructed from the true-data sample consistently

estimate fx(x). Naively computed with the observed-data sample, however, they

estimate not fx(x), but rather fw(w) = fx ∗ fu(w), where ∗ denotes convolution, i.e.,

fw(w) =

∫ ∞

−∞
fx(x)fu(w − x)dx.

Typically, the observed-data density, fw(w), is flatter, more spread out, and

smoother than the true-data density. Some examples are plotted in Figure 1.2 for the

case where fu(u) is the N(0, 1/2) density. Figure 2a shows the case where fx(x) is

the standard normal density, so that fw(w) is the N(0, 3/2) density. Relative to the

true-data density, the observed-data density has a shorter peak and thicker tails. A

case where fx(x) is bimodal is shown in Figure 2b. Here, fx(x) is an equal mixture of

normals having means ±1/2 and common variances 1/2. It follows that fw(w) is an

equal mixture of normals with means ±1/2 and common variances 1. The observed-

data density shows none of the bimodal features seen in the true-data density. Figure

2c illustrates the effect of measurement error on a skewed density function. Here,

fx(x) is the Chi-square(4) density, standardized to have mean 0 and variance 1. The

observed-data density is the convolution of fx(x) with the N(0, 1/2) density, and,

unlike the first two examples, does not have a familiar form. Skewness is much less

apparent in fw(w) than in fx(x), and a particularly large difference is seen in the left

tails of the two densities, due to the fact that the support of fx(x) is bounded below,

while fw(w) has support on the whole real line.
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These examples illustrate some of the dangers of making inferences from den-

sity estimates that are based on error-prone data. Important characteristics such

as bimodality and skewness are often obscured. The thicker tails associated with

observed-data densities can result in overestimates of tail probabilities, implying a

loss of power for certain hypothesis tests when p-values are estimated from observed

data.

Methods that seek to recover fx(x) from the observed data are known as deconvo-

lution methods. Although a variety of approaches to the deconvolution problem have

been proposed, our research focuses on kernel-based estimators of fx(x). Next, we

give a brief overview of kernel density estimation, followed by a review of kernel-based

deconvolution estimators that have appeared in the literature.

1.3.1 Kernel Density Estimation

The kernel density estimator of fx(x) is

f̂x(x) =
1

nλ

n∑
r=1

Q

(
x−Xr

λ

)
, (1.3.7)

where λ is the bandwidth, controlling the smoothness of the estimate, and Q(x) is a

kernel function. Typically, Q(x) is assumed to be a symmetric function that satisfies

∫
Q(x)dx = 1,

∫
xQ(x)dx = 0, and

∫
x2Q(x)dx = µq,2 > 0.

These conditions are satisfied when Q(x) is a symmetric probability density function.

The estimator in equation (1.3.7) is a consistent estimator of fx(x) for certain
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Figure 1.2: True-data and observed-data density functions. Solid line: True-data
density; Dashed line: Observed-data density, the convolution of the true-data density
with a N(0, 1/2) measurement error density. 2a: True-data density is N(0, 1); 2b:
True-data density is a normal mixture with means ±1 and common variances 1/2;
2c: True-data density is a standardized Chi-squared(4).
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sequences λ converging to zero as n → ∞. A popular measure of the overall perfor-

mance of f̂x(x) is the mean integrated squared error (MISE), defined as

MISE{f̂x(x)} = E

[∫
{f̂x(x)− fx(x)}2dx

]
=

∫
E{f̂x(x)− fx(x)}2dx.

The MISE admits the decomposition

MISE{f̂x(x)} =

∫
Var{f̂x(x)}dx +

∫
Bias2{f̂x(x)}dx.

Asymptotic analysis of the MISE provides insight into the behavior of f̂x(x).

Assuming that fx(x) is twice-differentiable, as n → ∞ and λ → 0, the MISE of the

kernel density estimator in equation (1.3.7) can be approximated by (Silverman 1986)

MISE{f̂x(x)} ∼ 1

nλ

∫
Q(x)2dx +

λ4

4
µ2

Q,2

∫
{f ′′x (x)}2dx. (1.3.8)

The familiar trade-off between variance and bias is evident in this expression.

Large values of λ reduce the variance, but increase the bias. Conversely, small values

of λ reduce the bias at the expense of the variance. A challenging problem in den-

sity estimation is to find a sequence, {λn}, that minimizes the approximate MISE.

The bandwidth defined by such a sequence is referred to as the optimal bandwidth,

and as can be seen from equation (1.3.8), will depend upon the unknown functional∫ {f ′′x (x)}2dx. Parzen (1962) showed that the optimal bandwidth is given by

λopt = µ
−2/5
q,2

{∫
Q(x)2dx

}1/5 {∫
{f ′′x (x)}2dx

}−1/5

n−1/5.

Substitution into equation (1.3.8) shows that when the bandwidth is chosen optimally,

the approximate MISE is (Silverman 1986)

MISE{f̂x(x)} ≈ 5

4
µ

2/5
q,2

{∫
Q(x)2dx

}4/5 {∫
{f ′′x (x)}2dx

}1/5

n−4/5. (1.3.9)
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It follows from equation (1.3.9) that the MISE of the kernel density estimator con-

verges to 0 at the optimal rate of n−4/5.

1.3.2 Density Deconvolution

Calculated with the observed-data sample, the kernel density estimator in equa-

tion (1.3.7) is inconsistent for fx(x). In this section we discuss deconvolution methods

that consistently estimate fx(x) from the observed-data sample. In particular, we re-

strict our attention to those methods that derive from the kernel density estimator

discussed in the previous section.

Deconvolution estimators require assumptions about the distribution of the mea-

surement error variable, and are differentiated by the restrictiveness of the assump-

tions they make. Most methods assume that measurement errors are independent and

identically distributed, and have a known density function, fu(u). Fewer methods ex-

ist that allow fu(u) to be unknown, or allow measurement errors to be non-identically

distributed.

Deconvolution with Measurement Error Density Known

Stefanski and Carroll (1990) developed deconvoluting kernel density estimators for

a large class of error distributions. These estimators assume that the measurement

errors in equation (1.2.1) are independent and identically distributed and have a

known density function.

Let Φw(t), Φx(t), and Φu(t) denote the characteristic functions of W , X, and
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U respectively. When measurement errors are additive and independent, Φw(t) =

Φx(t)Φu(t). It follows that the characteristic function of X is

Φx(t) = Φw(t)Φ−1
u (t).

An expression for fx(x) follows from substitution into the Fourier inversion formula,

fx(x) =
1

2π

∫
e−itxΦx(t)dt =

1

2π

∫
e−itxΦw(t)Φ−1

u (t)dt. (1.3.10)

Because fu(u) is known, Φ−1
u (t) is known. Consider the kernel density estimator

of fw(w), calculated from the observed-data sample,

f̂w(w) =
1

nλ

n∑
r=1

Q

(
w −Wr

λ

)
.

f̂w(w) has characteristic function

Φf̂ (t) =

∫
eitw 1

nλ

n∑
r=1

Q

(
w −Wr

λ

)
dw.

For general kernel functions, when Φf̂ (t) is substituted for Φw(t) in equation (1.3.10),

the resulting integral is undefined. Stefanski and Carroll (1990) found kernel functions

for which equation (1.3.10) is satisfied. Let Q(x) be a bounded, even probability

density function with characteristic function ΦQ(t) that satisfies

sup t |ΦQ(t)/Φu(t/λ)| < ∞ and

∫
|ΦQ(t)/Φu(t/λ)|dt < ∞

for each λ > 0. The deconvoluting kernel density estimator of fx(x) is given by

f̂x(x) =
1

2π

∫
e−itxΦf̂ (t)Φ

−1
u (t)dt.
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This can be rewritten as

f̂x(x) =
1

nλ

n∑
r=1

Qd

(
x−Wr

λ

)
,

where

Qd(x) =
1

2π

∫
e−itxΦQ(t)Φ−1

u (t/λ)dt.

Qd(x) is called the deconvoluting kernel, and has the property that conditional on

the true data,

E{Qd((x−Wr)/λ)|Xr} = Q((x−Xr)/λ).

From this it follows that f̂x(x) is a conditionally unbiased estimator of the true-data

kernel density estimator,

E{f̂x(x)|X1, . . . , Xn} =
1

nλ

n∑
r=1

Q

(
x−Xr

λ

)
.

Therefore unconditionally, f̂x(x) has the same expectation and same bias as the true-

data kernel density estimator.

Stefanski and Carroll (1990) showed that f̂x(x) is pointwise consistent for fx(x)

and derived the following approximation to its integrated mean squared error,

MISE{f̂x(x)} ∼ (2πnλ)−1

∫
Φ2

Q(t)|Φu(t/λ)|−2dt + (λ4/4)µ2
q,2

∫
{f ′′x (x)}2dx

where µq,2 =
∫

x2Q(x)dx < ∞.

The asymptotic properties of deconvoluting kernel density estimators have been

studied extensively. Stefanski and Carroll (1990) derived bounds on the integrated

variance of f̂x(x) for several error distributions. Stefanski (1989) found optimal se-

quences of bandwidths and derived rates of convergence for the estimator. It was
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shown by Carroll and Hall (1988) that the rates achieved by deconvoluting kernel

density estimators are optimal among all deconvolution estimators. For more dis-

cussion of the properties of deconvoluting kernel estimators see Wand (1998), Fan

(1991a, 1991b, 1992), Devroye (1989), and Liu and Taylor (1989).

Deconvolution when measurement errors are normally distributed is particularly

important in practice. This case will be discussed in detail in Chapter 2.

Deconvolution with Measurement Error Density Unknown

Fewer methods exist for density deconvolution when the measurement error dis-

tribution is unknown. Diggle and Hall (1993) presented an estimator for fx(x) given

independent observations of both W and U . Let W1, . . . ,Wnw and U1, . . . , Unu be

independent samples from fw(w) and fu(u). Define their respective empirical char-

acteristic functions as

Φ̂w(t) =
1

nw

nw∑
r=1

eitWr and Φ̂u(t) =
1

nu

nu∑
r=1

eitUr .

The following estimator is defined based on the Fourier inversion formula,

f̂x(x) =
1

2π

∫ ∞

−∞
eitxd(x)Φ̂w(x)Φ̂u(x)dx, (1.3.11)

where d(x) is a damping function and controls the smoothness of the estimate. A

special case of (1.3.11) is the truncated estimator,

f̂x(x) =
1

2π

∫ p

−p

eitxΦ̂w(x)Φ̂u(x)dx. (1.3.12)

The authors discuss selection of the truncation parameter, p, and derive asymptotic

properties of (1.3.12).
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Patil (1996) considered the case where independent replicate measurements are

observed of each X1, . . . , Xn. For r = 1, . . . , n and j = 1, . . . ,m suppose that Xr is

measured as

Wr,j = Xr + Ur,j,

where Ur,j has constant variance σ2.

Patil (1996) suggested substituting the means of the replicate measurements,

W 1, . . . ,W n for the true data in the usual kernel density estimator,

f̂x(x) =
1

nλ

n∑
r=1

Q

(
x−W r

λ

)
. (1.3.13)

He derived asymptotic properties of this estimator, letting both n →∞ and m →∞.

Under these conditions, the estimator in (1.3.13) converges pointwise to fx(x) at the

rate of n−4/5, the same rate as the true-data kernel density estimator.

1.4 Problem Description

In this dissertation, we present two new deconvolution estimators of fx(x). The

first is developed for the case where measurement errors are known to be normally

distributed, but have unknown and possibly nonconstant variances. Similar to Patil

(1996), we consider the case where replicate measurements are observed of each

X1, . . . , Xn. For r = 1, . . . , n and j = 1, . . . ,mr, we suppose that Xr is observed

as

Wr,j = Xr + Ur,j,
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where Ur,j is a N(0, σ2
r) measurement error. Replicate measurements are used to

estimate the set of measurement error variances, σ2
1, . . . , σ

2
n, and the estimator that

follows is a generalization of the Stefanski-Carroll deconvoluting kernel density esti-

mator for normally distributed measurement error. We assume that the number of

replicates, mr, is fixed for all r, and derive asymptotic properties of the estimator as

n →∞.

The second is a parametric deconvolution estimator. We assume a known func-

tional relationship between X and a set of covariates, Z. Estimates of the true-data

values are derived from the regression of the observed data on the covariates, and are

substituted into a kernel density estimator. We examine the asymptotic properties of

the estimator under the assumption that both the regression errors and measurement

errors are normally distributed, and that the measurement error variance is constant

and known.

21



Chapter 2

Density Estimation with Replicate

Measurements

2.1 Introduction

We consider the problem of estimating fx(x), the density function of a random

variable X, from a set of replicate measurements. Suppose that a random sample from

this density, X1, . . . , Xn, is measured independently and repeatedly as {Wr,j}n, mr

r=1,j=1,

where Wr,j = Xr +Ur,j. We present an estimator for fx(x) under the assumption that

for each r = 1, . . . , n and j = 1, . . . ,mr, Ur,j is a normally distributed measurement

error having mean 0 and variance σ2
r , and is independent of Xr.

Several authors have considered estimation of fx(x) when measurement errors are

identically distributed with a known density function. Stefanski and Carroll (1990)

presented deconvoluting kernel density estimators appropriate for a wide class of error
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distributions. The properties of deconvoluting estimators have been studied in detail

(see, for example, Wand, 1998; Carroll and Hall 1988; Devroye, 1989; Stefanski, 1990;

Fan, 1991a, 1991b, 1992).

The problem of estimating fx(x) when errors are identically distributed with an

unknown density function also has received some attention. Diggle and Hall (1993)

developed an estimator of fx(x) given independent observations of both W and U .

Patil (1996) replaced the true data in the usual kernel density estimator with the

sample means of replicate measurements. When both the sample size and the number

of replicates increase to infinity, he showed that the rate of convergence for this

estimator is n−4/5, the usual rate for kernel density estimators in the absence of

measurement error.

We assume a fixed number of replicate measurements, and approach the problem

through the conditional distributions of the sample means and sample variances of

these measurements. An estimator arises naturally from the results of Stefanski et

al. (2003). It can be viewed as a generalization of the deconvoluting estimator

of Stefanski and Carroll (1990). Although measurement errors must be assumed

normal, they need not be identically distributed. The estimator accommodates both

heteroscedastic and homoscedastic measurement errors.

This chapter is organized as follows. In Section 2.2, we define our estimator and

show its connection to the Stefanski-Carroll deconvoluting estimator. We derive and

examine the estimator’s asymptotic mean integrated squared error in Section 2.3, and

in Section 2.4 we investigate its finite-sample properties via simulation. We take up
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the problem of bandwidth estimation in Section 2.5, describing a bootstrap method

to select a bandwidth for the estimator. In Section 2.6 we present an application to

real data.

2.1.1 Background

Our estimator for the density function of X follows from the results of Stefanski

et al. (2003). They presented a method for constructing unbiased estimators of g(µ)

where µ is the mean of a normally distributed random variable and g() is an entire

function over the complex plane. For reference, we present the following theorem,

without proof, from Stefanski et. al (2003).

Theorem 2.1.1.1 Suppose µ̂ and σ̂2 are independent random variables such that µ̂ ∼

N (µ, τσ2) and (dσ̂2/σ2) ∼ Chi-Squared(d). Define T = Z1/
√

Z2
1 + · · ·+ Z2

d , where

Z1, . . . , Zd are independent and identically distributed N(0, 1) random variables, and

let i =
√−1. Let g() be an entire function, so that g() has a series expansion defined

at each point in the complex plane, and suppose that the interchange of expectation

and summation in this expansion is justified. Then the estimator,

θ̂ = E

{
g

(
µ̂ + i(τd)1/2σ̂T

) ∣∣∣∣∣ µ̂, σ̂2

}
(2.1.1)

is the uniformly minimum variance unbiased estimator of g(µ) provided it has finite

variance.

A few comments are necessary about the estimator θ̂. Detailed proofs and discus-

sion may be found in Stefanski et al. (2003) and Stefanski (1989). Although g() is a
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complex-valued function, θ̂ is real-valued. Under the given conditions, the imaginary

part of g() has expectation 0. For most functions g(), however, finding a closed-form

expression for the estimator in equation (2.1.1) remains difficult. A Monte Carlo

approximation to θ̂ is given by

θ̂B =
1

B

B∑
b=1

Re
{
g

(
µ̂ + i(τd)1/2σ̂Tb

)}
, (2.1.2)

where T1, . . . , TB are independent replicates of the variable T .

The variance of θ̂ in equation (2.1.1) is

Var(θ̂) = E[θ̂2 − E{g2(µ̂ + i(τd)1/2σ̂T | µ̂, σ̂2)}].

Because g() is an entire function, g2() is an entire function. It follows that both θ̂

and E{g2(µ̂ + i(τd)1/2σ̂T | µ̂, σ̂2)} are real-valued.

The variance of the Monte-Carlo estimator in equation (2.1.2) is

Var(θ̂B) = Var(θ̂) + E{Var(θ̂B| µ̂, σ̂2)}

In general, Var(θ̂) and Var(θ̂B) will not have closed-form expressions. However, Monte

Carlo methods can be used to approximate both quantities, and are described in

Stefanski et. al (2003).
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2.2 The Deconvolution Estimator

2.2.1 Estimation of fx(x) when Measurement Errors are Het-

eroscedastic

We now show how the estimator in Section 2.1.1 can be used to estimate the

density function of a random variable X that is measured with normally distributed

error having unknown, nonconstant variance. We assume that each value of X is

measured repeatedly, and that the measurement error variance is constant among

replicates but may differ between replicates. First, suppose that m independent,

replicate measurements of a particular value of X are observed as {Wj}m
j=1 where

Wj = X+Uj. Further assume that U1, . . . , Um are independent of X and are normally

distributed with mean 0 and unknown variance σ2.

Let W and σ̂2 be the sample mean and sample variance of the m measurements

of X. Then conditional on X, the following are true: 1) W and σ̂2 are independent

random variables, 2) W follows a N (X, σ2/m) distribution, and 3) (m − 1)σ̂2/σ2

follows a Chi-squared(m−1) distribution. Let Q(x) be a probability density function

that is entire over the complex plane, and define T = Z1/
√

Z2
1 + · · ·+ Z2

m , where

Z1, . . . , Zm are independent and identically distributed N(0, 1) random variables. It

follows from Theorem 2.1.1.1 that

θ̂ = E

{
1

λ
Q

(
x− {

W + i(m−1
m

)1/2σ̂T
}

λ

)∣∣∣∣∣ W, σ̂2

}
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is, conditional on X, an unbiased estimator of λ−1Q{(x−X)/λ}, i.e.,

E(θ̂ |X) =
1

λ
Q

(
x−X

λ

)
.

From here it is straightforward to construct the estimator of fx(x). Suppose that

the variables X1, . . . , Xn are measured independently and repeatedly as {Wr,j}n, mr

r=1,j=1

where Wr,j = Xr + Ur,j. For each r = 1, . . . , n, let the measurement errors Ur,j, j =

1, . . . ,mr, be independent of Xr and normally distributed with mean 0 and possi-

bly unequal variances σ2
r . Then conditional on X1, . . . , Xn, the sample estimates

W 1, . . . ,W n, σ̂2
1, . . . , σ̂

2
n are mutually independent with W r ∼ N (Xr, σ2

r/mr) and

((mr − 1)σ̂2
r/σ

2
r) ∼ Chi-squared(mr − 1). For each r = 1, . . . , n define Tr,mr−1 =

Zr,1/
√

Z2
r,1 + · · ·+ Z2

r,mr−1 where the Zr,j are independent N(0, 1) random variables.

Then the estimator

f̂x(x) =
1

nλ

n∑
r=1

E

Q

x−
{

W r + i(mr−1
mr

)1/2σ̂rTr,mr−1

}
λ

∣∣∣∣∣ W r, σ̂
2
r

 (2.2.3)

is such that

E
{

f̂x(x)|X1, · · · , Xn

}
=

1

nλ

n∑
r=1

Q

(
x−Xr

λ

)
. (2.2.4)

The quantity in equation (2.2.4) is the familiar kernel density estimator of fx(x).

From this it follows that unconditionally, f̂x(x) has the same expectation and same

bias as the kernel density estimator constructed from the true, unobserved data.

Connection to the Deconvoluting Kernel Density Estimator

The estimator in equation (2.2.3) generalizes the deconvoluting kernel density

estimator proposed by Stefanski and Carroll (1990). They considered the case where
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observations {Wr}n
r=1 are such that Wr = Xr + Ur, and {Ur}n

r=1 are independent and

identically distributed random variables with known characteristic function Φu(t) =

E(eitu), and are independent of {Xr}n
r=1. Let Q(x) be a probability density function

whose extension to the complex plane is entire throughout the complex plane, and

denote the characteristic function of Q(x) by ΦQ(t). Define

Φf̂ (t) =

∫
eitw 1

nλ

n∑
r=1

Q

(
w −Wr

λ

)
dw.

Φf̂ (t) is the characteristic function of the kernel density estimate of the density of W .

The deconvoluting kernel density estimator of fx(x) is given by

ĝx(x) =
1

2π

∫
e−itxΦf̂ (t)Φ

−1
u (t)dt. (2.2.5)

This may be rewritten as

ĝx(x) =
1

nλ

n∑
r=1

Qd

(
x−Wr

λ
, λ

)
, (2.2.6)

where

Qd(z, λ) =
1

2π

∫
e−itzΦQ(t)Φ−1

u (t/λ)dt. (2.2.7)

Qd(z, λ) is called the deconvoluting kernel.

For the case where measurement errors are independent and identically distributed

N (0, σ2) random variables, we write the expression in (2.2.7) as

Qd(z, λ, σ) =
1

2π

∫
e−itzet2σ2/2λ2

ΦQ(t)dt. (2.2.8)

Now consider again f̂x(x) in equation (2.2.3). Define the function

Q∗
r (z, λ,mr, σ̂r) = E

{
Q

(
z − i(mr−1

mr
)1/2σ̂rTr,mr−1

λ

)∣∣∣∣∣ W r, σ̂
2
r

}
, (2.2.9)
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and note that under the stated assumptions, Q∗
r (z, λ,mr, σ̂r) is real-valued. With

this definition we write

f̂x(x) =
1

nλ

n∑
r=1

Q∗
r

(
x−W r

λ
, λ,mr, σ̂r

)
. (2.2.10)

The connection between the estimator f̂x(x) in equation (2.2.10) and the Stefanski-

Carrol estimator in equation (2.2.6) is made clear through examination of the func-

tions Q∗
r() and Qd(). For each r = 1, . . . , n, the sample mean W r measures Xr with a

normally distributed measurement error that has variance σ2
r/mr. The deconvoluting

kernel in equation (2.2.8) relies upon knowledge of the inverse of the characteristic

function of this measurement error, Φ−1
ur

(t) = et2σ2
r/2mrλ2

. However, when σ2
r is un-

known, so too is this function. As we show next, for each r = 1, . . . , n, Q∗
r(z, λ,mr, σ̂r)

unbiasedly estimates Qd(z, λ, σ2
r/mr) through unbiased estimation of Φ−1

ur
(t), i.e.,

E{Q∗
r(z, λ,mr, σ̂r)} =

1

2π

∫
e−itzet2σ2

r/2mrλ2

ΦQ(t)dt.

It will follow from this that evaluated with W r,

E

{
Q∗

r

(
x−W r

λ
, λ,mr, σ̂r

)}
= E

{
Qd

(
x−W r

λ
, λ,

σ2
r

mr

)}
,

for each r = 1, . . . , n. With equations (2.2.6) and (2.2.10), it will follow that ĝx(x)

and f̂x(x) have the same expectation, which from the key property in equation (2.2.4)

is the expectation of the true-data kernel density estimator.

First, applying the Fourier inversion formula and interchanging the operations of
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integration and expectation in equation (2.2.9) yields

Q∗
r (z, λ,mr, σ̂r) =

1

2π

∫
e−itzE

{
exp

(
−t

λ

(
mr − 1

mr

)1/2

σ̂rTr,mr−1

)∣∣∣∣∣ W r, σ̂
2
r

}
ΦQ(t)dt.

(2.2.11)

Because Tr,mr−1 is independent of the data, the conditional expectation in (2.2.11)

is the characteristic function of Tr,mr−1 evaluated at the argument θ(t) = it{(mr −

1)/mr}1/2σ̂r/λ. By construction, Tr,mr−1 = T T e1, where T T is a random vector

uniformly distributed on the (mr−1) dimensional unit sphere, and e1 is the (mr−1)×1

dimensional unit vector having a one in the first position. The characteristic function

of T T e1 is given by (Watson, 1983)

ΦT (θ(t)) = Γ

(
mr − 1

2

)
Jmr−1

2
−1(θ(t))

(
θ(t)

2

)1−mr−1
2

. (2.2.12)

Here Jν(z) denotes a Bessel function of the first kind,

Jν(z) =
∞∑

k=0

(−1)k

k! Γ (ν + k + 1)

(z

2

)ν+2k

. (2.2.13)

Substituting equation (2.2.12) into equation (2.2.11) yields

Q∗
r (z, λ,mr, σ̂r) =

1

2π

∫
e−itzΓ

(
mr − 1

2

)
Jmr−1

2
−1 (θ(t))

{
θ(t)

2

}1−mr−1
2

ΦQ(t)dt

=
1

2π

∫
e−itzΦQ(t)Φ̂−1

ur
(t/λ)dt, (2.2.14)

where

Φ̂−1
ur

(t/λ) = Γ

(
mr − 1

2

)
Jmr−1

2
−1 (θ(t))

{
θ(t)

2

}1−mr−1
2

=
∞∑

k=0

(
t2

4λ2
mr−1

mr
σ̂2

r

)k

Γ
(

mr−1
2

)
k! Γ

(
k + mr−1

2

) . (2.2.15)
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The only random quantity in Q∗
r(z, λ,mr, σ̂r) is the sample variance, σ̂2

r , which appears

in Φ̂−1
ur

(t/λ). Finding the expectation of Q∗
r(z, λ,mr, σ̂r) only requires finding the

expectation of Φ̂−1
ur

(t/λ). From the relationship

E{σ̂2k
r } =

Γ
(
k + mr−1

2

) (
2σ2

r

mr−1

)k

Γ
(

mr−1
2

) , (2.2.16)

it follows that

E
{

Φ̂−1
ur

(t/λ)
}

= et2σ2
r/2mrλ2

,

the inverse of the characteristic function of a N (0, σ2
r/mr) random variable evaluated

at t/λ. Substituting this expression into equation (2.2.14) yields

E{Q∗
r(z, λ,mr, σ̂r)} =

1

2π

∫
e−itzet2σ2

r/2mrλ2

ΦQ(t)dt.

Comparison with equation (2.2.8) reveals that Q∗
r(z, λ,mr, σ̂r) is an unbiased estima-

tor of Qd(z, λ, σ2/mr). Finally, noting that the expectation in equation (2.2.11) is con-

ditional on W r, it follows that Q∗
r((x−W r)/λ, λ,mr, σ̂r) and Qd((x−W r)/λ, λ, σ2/mr)

have the same expectation. Therefore, from equations (2.2.6), (2.2.10), and (2.2.4),

E{ĝx(x)} = E{f̂x(x)} = E

{
1

nλ

n∑
r=1

Q

(
x−Xr

λ

)}
.

2.2.2 Estimation of fx(x) when Measurement Errors are Ho-

moscedastic

The results of the previous section also apply to the case where the measurement

error variance is constant, σ2
1 = · · · = σ2

n = σ2, and data are pooled to estimate the
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common variance σ2. Next, we present an estimator for fx(x) under this assumption

and show that it, too, generalizes the Stefanski-Carroll estimator.

Let {Ur,j}n, mr

r=1,j=1 be independent and identically distributed N (0, σ2) random vari-

ables, independent of {Xr}n
r=1, and let σ̂2 be the pooled estimator of the measurement

error variance based on d =
∑n

r=1(mr − 1) degrees of freedom,

σ̂2 =
1

d

n∑
r=1

(mr − 1)σ̂2
r . (2.2.17)

Given X1, . . . , Xn, the sample means W 1, . . . ,W n are distributed as indepen-

dent N (Xr, σ2/mr) random variables, and dσ̂2/σ2 is distributed as a Chi-squared(d)

random variable, independently of W 1, . . . ,W n. Let Tr,d = Zr,1/
√

Z2
r,1 + · · ·+ Z2

r,d

where the Zr,j are independent N(0, 1) random variables. It follows from Theorem

2.1.1.1 that the estimator

θ̂ = E

1

λ
Q

x−
{

W + i( d
mr

)1/2σ̂Tr,d

}
λ

 ∣∣∣∣∣ W, σ̂2


is conditionally unbiased for λ−1Q{(x−Xr)/λ}, i.e.,

E(θ̂ |Xr) =
1

λ
Q

(
x−Xr

λ

)
.

Thus the estimator defined as

f̂x(x) =
1

nλ

n∑
r=1

E

Q

x−
{

W r + i( d
mr

)1/2σ̂Tr,d

}
λ

 ∣∣∣∣∣ W r, σ̂
2

 (2.2.18)

has the key property in equation (2.2.4), that conditional on the true data, it is an

unbiased estimator of the true-data kernel density estimator, just as in the case of

heteroscedastic measurement errors.
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To see that this estimator is also a generalization of the Stefanski-Carrol decon-

voluting kernel density estimator, ĝx(x) in equation (2.2.6), first define the function

Q†
r (z, λ, d,mr, σ̂) = E

{
Q

(
z − i( d

mr
)1/2σ̂Tr,d

λ

)∣∣∣∣∣ W r, σ̂
2

}
,

so that equation (2.2.18) can be written as

f̂x(x) =
1

nλ

n∑
r=1

Q†
r

(
x−W r

λ
, λ, d,mr, σ̂

)
. (2.2.19)

The functions Q†
r (z, λ, d,mr, σ̂) and Q∗

r (z, λ,mr, σ̂r) in equation (2.2.9) are related

via

Q∗
r (z, λ,mr, σ̂r) = Q†

r (z, λ,mr − 1,mr, σ̂r) .

We use the arguments of the previous section to show that Q†
r (z, λ, d,mr, σ̂) is an

unbiased estimator of Qd(z, λ, σ2/mr). As in equation (2.2.11) we have the alternative

expression for Q†
r (z, λ, d,mr, σ̂),

Q†
r (z, λ, d,mr, σ̂) =

1

2π

∫
e−itzE

{
exp

(
−t

λ

(
d

mr

)1/2

σ̂Tr,d

)∣∣∣∣∣ W r, σ̂
2

}
ΦQ(t)dt.

(2.2.20)

The expectation in equation (2.2.20) is the characteristic function of Tr,d. Here,

Tr,d = T T e1, where T T is a random vector uniformly distributed on the d-dimensional

unit sphere, and e1 is the d × 1 dimensional unit vector having a one in the first

position. Substituting this characteristic function, defined analogous to equation

(2.2.12), into equation (2.2.20) and simplifying leaves

Q†
r (z, λ, d,mr, σ̂) =

1

2π

∫
e−itzΦQ(t)Φ̂−1

ur
(t/λ)dt,
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where

Φ̂−1
ur

(t/λ) =
∞∑

k=0

(
t2

4λ2
d

mr
σ̂2

)k

Γ
(

d
2

)
k! Γ

(
k + d

2

) .

To evaluate the expectation of Q†
r (z, λ, d,mr, σ̂) note that

E{σ̂2k} =
Γ

(
k + d

2

) (
2σ2

d

)k

Γ
(

d
2

) ,

and so

E
{

Φ̂−1
u (t/λ)

}
= et2σ2/2mrλ2

.

Thus,

E{Q†
r (z, λ, d,mr, σ̂)} =

1

2π

∫
e−itzet2σ2/2mrλ2

ΦQ(t)dt. (2.2.21)

Because

Qd(z, λ, σ2/mr) =
1

2π

∫
e−itzet2σ2/2mrλ2

ΦQ(t)dt, (2.2.22)

the quantity on the right-hand side of equation (2.2.21) is the Stefanski-Carroll de-

convoluting kernel defined for the case of N(0, σ2/mr) measurement errors. Again it

follows that

E

{
Q†

r

(
x−W r

λ
, λ, d,mr, σ̂

)}
= E

{
Qd

(
x−W r

λ
, λ,

σ2

mr

)}
,

so that from equations (2.2.6) and (2.2.19), f̂x(x) is seen to have the same expectation

as the Stefanski-Carroll deconvoluting estimator.

2.2.3 Monte Carlo Estimation

In most cases, the estimators in equations (2.2.3) and (2.2.18) do not have sim-

ple closed-form expressions. However, a Monte Carlo approximation to the condi-

34



tional expectations in equations (2.2.3) and (2.2.18) follows directly from equation

(2.1.2). Consider equation (2.2.3), the expression for f̂x under the assumption of het-

eroscedastic measurement errors. For each r = 1, . . . , n, generating Tr,1, . . . , Tr,B as

independent replicates of Tr = Zr,1/
√

Z2
r,1 + · · ·+ Z2

r,mr−1 yields an approximation

to f̂x(x),

f̂B(x) =
1

nλ

n∑
r=1

1

B

B∑
b=1

Re

Q

x−
{

W r + i(mr−1
mr

)1/2σ̂rTr,b

}
λ

 .

Note that when mr = 2, Tr,b is equal to either 1 or -1. Thus in the special case

of two replicate measurements, the conditional expectation in f̂x may be evaluated

directly, and

f̂x(x) =
1

2nλ

n∑
r=1

2∑
b=1

Re

{
Q

(
x− {

W r + (−1)bi|Wr,1 −Wr,2|/2
}

λ

)}
.

In the case of homoscedastic measurement error, the Monte Carlo version of

(2.2.18) is

f̂B(x) =
1

nλ

n∑
r=1

1

B

B∑
b=1

Re

Q

x−
{

W r + i( d
mr

)1/2σ̂Tr,b

}
λ

 ,

where Tr,1, . . . , Tr,B are independent replicates of Tr = Zr,1/
√

Z2
r,1 + · · ·+ Z2

r,d for

each r = 1, . . . , n.

2.3 Mean Integrated Squared Error

In this section, we derive expressions for the mean integrated squared error (MISE)

of the estimators in equations (2.2.3) and (2.2.18). A main objective is to compare
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the asymptotic properties of these estimators to those of the known-variance decon-

volution estimator. It was shown by Carroll and Hall (1988) that when measurement

errors are normally distributed with constant variance, the optimal rate at which any

deconvolution estimator can converge to fx(x) is {log(n)}−2. The Stefanski-Carroll

deconvoluting kernel density estimator in equation (2.2.5) achieves this rate of con-

vergence (Stefanski & Carroll 1990), and does so with the optimal bandwidth of

λ = σ{log(n)}−1/2 (Stefanski 1990).

We begin by examining the estimator in equation (2.2.3) for the case of het-

eroscedastic measurement errors. For each Xr, r = 1, . . . , n, we assume that a fixed

number of replicate measurements, mr ≥ 2, are observed and used to estimate σ2
r .

For this case, the independence of the summands in equation (2.2.3) simplifies the

derivation of the MISE and results in closed-form expressions for special cases of mr.

In practice, when replicate measurements are available, it is likely that the number

of replicates is small. We examine in detail the case of two replicate measurements,

i.e., mr = 2 for all r. We also present a weighted version of this estimator, a natural

extension in the case of nonconstant variances, where weights are selected to minimize

the asymptotic integrated variance.

Finally, we discuss the asymptotic analysis of the estimator in equation (2.2.18)

for the case of homoscedastic measurement errors. Here measurements are pooled

to estimate the common measurement error variance σ2, and so the summands in

equation (2.2.18) are not independent. We use an approximation to this estimator in

the examination of its asymptotic properties.
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2.3.1 Heteroscedastic Measurement Errors: Estimation of

the Sequence of Variances σ2
1, . . . , σ

2
n

Consider the heteroscedastic-variance estimator, f̂x(x) in equation (2.2.3). The

mean integrated squared error of f̂x(x) has the representation

MISE{f̂x(x)} =

∫
Var{f̂x(x)}dx +

∫
Bias2{f̂x(x)}dx. (2.3.23)

From the key property in equation (2.2.4), f̂x(x) has the same expectation as the true-

data kernel density estimator. Therefore it has the same bias and same integrated

squared bias as the true-data kernel density estimator, and as λ → 0,

∫
Bias2{f̂x(x)}dx ∼ λ4

4
µ2

Q,2

∫
{f ′′x (x)}2dx, (2.3.24)

where µ2
Q,2 =

∫
z2Q(z)dz. The integrated variance of f̂x(x) can be partitioned as

∫
Var{f̂x(x)}dx =

∫
E{f̂ 2

x(x)}dx−
∫
{E(f̂x(x))}2dx.

Determination of the latter term in the partition also follows from results for the

true-data kernel density estimator,

∫
{E(f̂x(x))}2dx =

1

2π

∫
|Φf (t)|2Φ2

Q(λt)dt,

where Φf (t) is the characteristic function of fx(x).

Determination of the former term is more involved as direct evaluation of E{f̂ 2
x(x)}

is difficult. Instead, we approach the problem of finding an expression for
∫

Var{f̂x(x)}dx

through the alternative expression for f̂x(x) in equation (2.2.10). Using this repre-
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sentation, the integrated variance is

∫
Var{f̂x(x)}dx =

1

n2λ2

n∑
r=1

∫
Var

{
Q∗

(
x−W r

λ
, λ,mr, σ̂r

)}
dx,

which can be partitioned as V1 − V2 where

V1 =
1

n2λ2

n∑
r=1

∫
E

{[
Q∗

(
x−W r

λ
, λ,mr, σ̂r

)]2
}

dx, (2.3.25)

and

V2 =
1

n2λ2

n∑
r=1

∫ {
E

[
Q∗

(
x−W r

λ
, λ,mr, σ̂r

)]}2

dx. (2.3.26)

Evaluation of V2 is straightforward. Because

E

[
Q∗

(
x−W r

λ
, λ,mr, σ̂r

)]
= E

{
Q

(
x−Xr

λ

)}
= λ

∫
Q(z)fx(x− λz)dz,

it follows from substitution into equation (2.3.26) and an application of Parseval’s

Identity that

V2 =
1

n

∫ {∫
Q(z)fx(x− λz)dz

}2

dx

=
1

2πn

∫
|Φf (t)|2Φ2

Q(λt)dt. (2.3.27)

Now consider the expression for V1. After making a change of variables with

z = (x−W r)/λ and interchanging the operations of expectation and integration, V1

becomes

V1 =
1

n2λ

n∑
r=1

E

∫
{Q∗ (z, λ,mr, σ̂r)}2 dz.

From equation (2.2.14) and Parseval’s Identity,

∫
{Q∗ (z, λ,mr, σ̂r)}2 dx =

1

2π

∫
Φ2

Q(t)Φ̂−2
ur

(t/λ)dt. (2.3.28)
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ΦQ(t) is the known characteristic function of the density Q(x) and does not depend

on any random quantities. Thus, evaluating the expectation in equation (2.3.25) only

requires finding the expectation of Φ̂−2
ur

(t/λ). From equation (2.2.15),

Φ̂−2
ur

(t/λ) =


∞∑

k=0

Γ
(

mr−1
2

) (
t2

4λ2
mr−1

mr
σ̂2

r

)k

Γ
(
k + mr−1

2

)
k!


2

.

The following notation will be useful. Define

(a)k =
Γ(a + k)

Γ(a)
, (2.3.29)

and denote the generalized hypergeometric series by (Erdelyi 1953)

pFq(a1, . . . , ap; b1, . . . , bq; x) =
∞∑

k=0

(a1)k(a2)k . . . (ap)k

(b1)k(b2)k . . . (bq)k

xk

k!
.

We also make use of the relationships

{0F1(b; x)}2 = 2F3(b, b− 1

2
; b, b, 2b− 1; 4x) = 1F2(b− 1

2
; b, 2b− 1; 4x). (2.3.31)

A proof of the first equality appears in Bailey (1928); the second follows upon sim-

plification after substitution into equation (2.3.30).

Using this notation we write equation (2.2.15) as

Φ̂−1
ur

(t/λ) = 0F1

(
(mr − 1)

2
;
t2σ̂2

r(mr − 1)

4mrλ2

)
,

and so it follows from equation (2.3.31) that

Φ̂−2
ur

(t/λ) = 1F2

(
(mr − 2)

2
;
(mr − 1)

2
,mr − 2;

t2σ̂2
r(mr − 1)

mrλ2

)

=
∞∑

k=0

(
mr−2

2

)
k

(
t2σ̂2

r(mr−1)
mrλ2

)k

(
mr−1

2

)
k
(mr − 2)k k!

. (2.3.32)
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Similarly we write equation (2.2.16) as

E{σ̂2k
r } =

(
mr − 1

2

)
k

(
2σ2

r

mr − 1

)k

,

and evaluate the expectation of Φ̂−2
ur

(t/λ) in equation (2.3.32),

E
{

Φ̂−2
ur

(t/λ)
}

=
∞∑

k=0

(
mr−2

2

)
k

(
2t2σ2

r

mrλ2

)k

(mr − 2)k k!
. (2.3.33)

Thus, after evaluating the expectation of equation (2.3.28), equation (2.3.25) becomes,

V1 =
1

2πn2λ

n∑
r=1

∫
Φ2

Q(t)


∞∑

k=0

(
mr−2

2

)
k

(
2t2σ2

r

mrλ2

)k

(mr − 2)k k!

 dt. (2.3.34)

For λ → 0 as n → ∞ it is apparent from equations (2.3.27) and (2.3.34) that V2

is negligible compared to V1. Thus keeping the leading variance term and the bias

term in (2.3.23) we have that for n →∞ and λ → 0,

MISE{f̂x(x)} ∼ 1

2πn2λ

n∑
r=1

∫
Φ2

Q(t)


∞∑

k=0

(
mr−2

2

)
k

(
2t2σ2

r

mrλ2

)k

(mr − 2)k k!

 dt

+
λ4

4
µ2

Q,2

∫
{f ′′x (x)}2dx.

The infinite sum makes the asymptotic behavior of this expression difficult to examine

for general sequences mr, r = 1, 2, . . .. By the ratio test, this sum converges for mr ≥ 2

because

lim
k→∞


(

mr−2
2

)
k+1

(
2t2σ2

r

mrλ2

)k+1

(mr − 2)k+1 (k + 1)!




(
mr−2

2

)
k

(
2t2σ2

r

mrλ2

)k

(mr − 2)k k!


−1

= lim
k→∞

(
mr−2

2
+ k

) (
2t2σ2

r

mrλ2

)
(mr − 2 + k)(k + 1)

,

which is equal to 0. Closed-form expressions of the sum can be obtained for special

cases of mr. We focus the remainder of our analysis on the important case of two

replicate measurements, i.e., mr = 2 for all r.
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Heteroscedastic Measurement Errors with Variances Estimated from Two

Replicate Measurements

When two replicate measurements are observed for each Xr, r = 1, . . . , n, the

expression for V1 in equation (2.3.34) simplifies greatly, as a result of the following

lemma.

Lemma 2.3.1.1 Let m = 2 and let u be any real number. Then

∞∑
k=0

(
m−2

2

)
k
uk

(m− 2)k k!
=

1

2
(1 + eu).

Proof. Let m > 0 and let k be an integer greater than 0. Then (m)0 = 1 and

(m + 1)k = (m)k−1 from equation (2.3.29). Then,

(
m−2

2

)
k

(m− 2)k

=
1
2

(
m
2

)
k−1

(m− 1)k−1

.

Therefore,

∞∑
k=0

(
m−2

2

)
k
uk

(m− 2)k k!
= 1 +

∞∑
k=1

(
m−2

2

)
k
uk

(m− 2)k k!

= 1 +
1

2

∞∑
k=1

(
m
2

)
k−1

uk

(m− 1)k−1 k!

which, substituting m = 2, becomes

1 +
1

2

∞∑
k=1

uk

k!
=

1

2
(1 + eu).

¤
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Thus when mr = 2 for all r, the expectation in equation (2.3.33) simplifies to

E
{

Φ̂−2
ur

(t/λ)
}

=
1

2
et2σ2

r/λ2

+
1

2
,

and V1 in equation (2.3.34) becomes

V1 =
1

4πn2λ

n∑
r=1

∫
Φ2

Q(t)et2σ2
r/λ2

dt +
1

4πnλ

∫
Φ2

Q(t)dt

=
1

4πn2λ

n∑
r=1

∫
Φ2

Q(t)et2σ2
r/λ2

dt + o({nλ2}−1),

so that as n → and λ → 0,

MISE{f̂x(x)} ∼ 1

4πn2λ

n∑
r=1

∫
Φ2

Q(t)et2σ2
r/λ2

dt +
λ4

4
µ2

Q,2

∫
{f ′′x (x)}2dx. (2.3.35)

Asymptotic analysis of the MISE (n → ∞, λ → 0) in equation (2.3.35) is diffi-

cult because of the dependence of the MISE on the particular sequence of variances

σ2
1, , σ

2
2, . . .. Useful insights can be gained under the assumption that the empirical

distribution function of σ2
1, . . . , σ

2
n converges to an absolutely continuous distribu-

tion. This is equivalent to assuming that σ2
1, . . . , σ

2
n are independent and identically

distributed with common density fσ2(s), independent of X1, . . . , Xn. Under this as-

sumption,

1

n

n∑
r=1

∫
Φ2

Q(t)et2σ2
r/λ2

dt →
∫ ∫

Φ2
Q(t)et2v/λ2

dtfσ2(v)dv (2.3.36)

=

∫
Φ2

Q(t)Mσ2(t2/λ2)dt, (2.3.37)

where Mσ2(s) is the moment generating function, E(esσ2
), assumed to exist for all

real s. Substituting (2.3.37) for (2.3.36) in (2.3.35) results in the approximation

MISEn(λ) =
1

4πnλ

∫
Φ2

Q(t)Mσ2(t2/λ2)dt + bλ4, (2.3.38)
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where b = µ2
Q,2

∫ {f ′′x (x)}2dx/4. The expression in equation (2.3.38) is more amenable

to asymptotic analysis. We now consider an interesting and informative special case.

Suppose that σ2
1, . . . , σ

2
n are independent, identically distributed Uniform (c, d)

random variables where 0 ≤ c < d. Then fσ2(s) has moment generating function

Mσ2(t) = (edt − ect)/{(d − c)t}. Let Q(x) be a kernel function such that Q(x) ∝

{sin(x)/x}2k for some k ≥ 2. Kernels of this form are entire functions and satisfy

the regularity conditions stated in Theorem 2.1.1.1. Moreover, appropriately scaled,

Q(x) is an even probability density function whose characteristic function vanishes

outside the finite interval, [−A, A] where A = 2k.

Now consider f̂x(x) in equation (2.2.3), calculated with this kernel. Setting x =

t/λ, equation (2.3.38) becomes

MISEn(λ) =
1

2nπ(d− c)

∫ A/λ

0

Φ2
Q(λx)(edx2 − ecx2

)x−2dx + bλ4. (2.3.39)

First, let {λn} be a sequence of bandwidths such that λn → 0 as n → ∞. We

seek the optimal sequence of bandwidths, i.e., the sequence for which MISEn(λn)

converges to 0 at the fastest possible rate. A general form for the optimal sequence of

bandwidths is suggested by the results for the known-variance deconvoluting kernel

density estimator, and we examine sequences {λn} where λn ∝ {log(n)}−1/2. We

show next that MISEn(λn) converges most quickly when λn = A{d/ log(n)}1/2.

Let γ ≥ dA2 and consider the bandwidth λn = {γ/ log(n)}1/2. It is clear that for

any 0 < γ < ∞, as n increases, the bias term in equation (2.3.39) converges to 0.

We now examine the asymptotic behavior of the variance term in equation (2.3.39).
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Define

In =
1

2nπ(d− c)

∫ A{log(n)/γ}1/2

0

Φ2
Q(x{γ/ log(n)}1/2)(edx2 − ecx2

)x−2dx, (2.3.40)

and note that because ΦQ(t) ≤ 1 for all t,

In ≤ 1

2nπ(d− c)

∫ A{log(n)/γ}1/2

0

(edx2 − ecx2

)x−2dx.

It follows from l’Hopital’s rule that

lim
n→∞

In ∝ lim
n→∞

e(dA2 log(n)/γ) − e(cA2 log(n)/γ)

n{log(n)}3/2

≤ lim
n→∞

n(dA2/γ−1) − n(cA2/γ−1)

{log(n)}3/2

≤ lim
n→∞

n(dA2/γ−1)

{log(n)}3/2
.

When dA2/γ − 1 ≤ 0, n(dA2/γ−1) ≤ 1. Hence MISEn(λ) converges to 0 whenever

γ ≥ dA2, or equivalently, whenever λn > A{d/ log(n)}1/2.

Next let γ < dA2. We consider the behavior of MISEn(λn) for the sequence of

bandwidths {λn} where λn = {γ/ log(n)}1/2. Let ε > 0 and set γ = d(A − ε)2.

Substitution into equation (2.3.40) yields

In =
1

2nπ(d− c)

∫ A{log(n)/(A−ε)2d}1/2

0

Φ2
Q(x{(A− ε)2d/ log(n)}1/2)(edx2 − ecx2

)x−2dx,

which, letting y = x{log(n)}−1/2 and simplifying, becomes

In =
1

2π(d− c)

∫ A/(A−ε)d1/2

0

Φ2
Q(y(A− ε)d1/2)y−2(n(dy2−1) − n(cy2−1)){log(n)}−1/2dy.

(2.3.41)

Define

D =
n(dy2−1) − n(cy2−1)

y2{log(n)}1/2
,
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and consider the point y = δA/{(A − ε)d1/2} where (A − ε)/A < δ < 1. This point

lies inside the range of integration in equation (2.3.41). Then,

lim
n→∞

D ∝ lim
n→∞

n{δA/(A−ε)}2 − n{c
1/2δA/d1/2(A−ε)}2

{log(n)}1/2
= ∞

because {δA/(A−ε)}2 > 1. Therefore for sequences {λn} where λn < A{d/ log(n)}1/2,

In in equation (2.3.41) diverges, and thus MISEn(λn) diverges. The smallest band-

width sequence for which the integrated variance converges to 0, λn = A{d/ log(n)}1/2,

minimizes the bias term in equation (2.3.38), and thus is the optimal sequence of band-

widths. It can be seen from equation (2.3.39) that with this bandwidth, the variance

term in MISEn(λn) decreases at an exponential rate, much more rapidly than the

polynomial rate of the bias term. Therefore, the rate at which MISEn(λn) converges

to 0 is dictated by the bias term and is A4{d/ log(n)}2.

For the special case just analyzed the measurement error variances were assumed

to be Uniform(c, d), 0 < c < d. The rate of convergence of our estimator is propor-

tional to {log(n)}−2, which is the same rate found by Stefanski and Carroll (1990) for

the deconvoluting estimator when measurement errors are normally distributed with

known, constant variance. Furthermore, both the optimal bandwidth and the optimal

rate of convergence depend on d, the upper support boundary of the variance distri-

bution. The indicated conclusions are that estimating heteroscedastic error variances

from just two replicates has no effect on the asymptotic rates of convergence, and

that the rate of convergence is driven by the larger error variances when the latter

are heteroscedastic. The asymptotic results are interesting, but their relevance in
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finite samples is limited, because of the very large samples needed for the asymptotic

approximations to be valid as indicated by the {log(n)}−2 rate.

2.3.2 A Weighted Estimator for the Case of Heteroscedastic

Measurement Errors

A commonly-used strategy to reduce variability in an estimator whose components

have unequal variances is to weight each component by a factor that is proportional

to the inverse of its variance. In this section we investigate this strategy to reduce

the variability of f̂x(x) in equation (2.2.3). As f̂x(x) is the sum of independent

components that have a common mean but different variances, it is reasonable to

expect that weighting will reduce its overall variability.

We present a weighted estimator, f̃x(x). Optimal weights, w1, . . . , wn, are de-

rived under the assumption that the measurement error variances are known, and are

selected to minimize the asymptotic integrated variance of f̂x(x). We examine the

asymptotic properties of the estimator calculated with these optimal weights, which

we denote by f̃opt(x). The results of this analysis provide intuition for the properties

of the weighted estimator f̃x(x), which uses the set of estimated weights ŵ1, . . . , ŵn

calculated with the unknown measurement error variances replaced by their sample

estimates. Because we are substituting estimated weights for true weights, and these

estimated weights are not consistent for the true weights, the resulting estimator is

not guaranteed to perform as well as the true-weight estimator asymptotically. Nev-

46



ertheless the simulation studies reported in Section 2.4 indicate that the approximate

weighting has a significant effect in finite samples.

The optimal weighted estimator has the general form

f̃opt(x) =
1

λ

n∑
r=1

wrE

Q

x−
{

W r + i(mr−1
mr

)1/2σ̂rTr

}
λ

 ∣∣∣∣∣ W r, σ̂
2
r

 , (2.3.42)

where w1, . . . , wn are known constants, wr ≥ 0 for all r and
∑n

r=1 wr = 1. The

integrated variance of f̃x(x) is
∫

Var{f̃x(x)}dx = Ṽ1 − Ṽ2 where

Ṽ1 =
1

λ2

n∑
r=1

w2
r

∫
E

{[
Q∗

(
x−W r

λ
, λ,mr, σ̂r

)]2
}

dx, (2.3.43)

and

Ṽ2 =
1

λ2

n∑
r=1

w2
r

∫ {
E

[
Q∗

(
x−W r

λ
, λ,mr, σ̂r

)]}2

dx,

and Q∗(z, λ,mr, σ̂r) is defined as in equation (2.2.9).

Let 0 < B < ∞ and suppose that wr ≤ B/n for r = 1, . . . , n. It follows from

equation (2.3.27) that Ṽ2 = o{(nλ)−1}. Thus asymptotically, Ṽ1 is the dominant term

in the integrated variance, and we select weights to minimize this quantity. Let

hr(σ
2
r ,mr, λ) =

∫
Φ2

Q(t)


∞∑

k=0

(
mr−2

2

)
k

(
2t2σ2

r

mrλ2

)k

(mr − 2)k k!

 dt (2.3.44)

and note from equation (2.3.34) that hr(σ
2
r ,mr, λ) represents the contribution to the

asymptotic integrated variance from the rth component of f̂x(x). Define the set of

weights,

wr =
{hr(σ

2
r ,mr, λ)}−1∑n

r=1{hr(σ2
r ,mr, λ)}−1

(2.3.45)
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for r = 1, . . . , n. We now show that these weights minimize equation (2.3.43). Using

equations (2.3.28), (2.3.33) and (2.3.44), we write V1 as

Ṽ1 =
1

2πλ

n∑
r=1

w2
rhr(σ

2
r ,mr, λ), (2.3.46)

which after substituting the weights defined in equation (2.3.45) becomes

Ṽ1,w =
1

2πλ

{
n∑

r=1

{
hr(σ

2
r ,mr, λ)

}−1

}−1

. (2.3.47)

Now let ur, r = 1, . . . , n be any other set of weights such that ur ≥ 0 for all r and∑n
r=1 ur = 1. Substituting these weights into equation (2.3.46) gives

Ṽ1,u =
1

2πλ

n∑
r=1

u2
rhr(σ

2
r ,mr, λ).

Using the facts that {∑n
r=1 ur}2 = 1 and{

n∑
r=1

ur

}2

≤
{

n∑
r=1

u2
rhr(σ

2
r ,mr, λ)

}{
n∑

r=1

{
hr(σ

2
r ,mr, λ)

}−1

}
,

by the Cauchy-Schwartz inequality, it follows that Ṽ1,w ≤ Ṽ1,u. Thus Ṽ1 in equation

(2.3.43) is minimized for the set of weights defined in equation (2.3.45), and combining

equations (2.3.44) and (2.3.47) is

Ṽ1 =

2πλ

n∑
r=1


∫

Φ2
Q(t)


∞∑

k=0

(
mr−2

2

)
k

(mr − 2)k

(
2t2σ2

r

mrλ2

)k

k!

 dt


−1

−1

. (2.3.48)

Substituting the sample variances, σ̂2
1, . . . , σ̂

2
n for the true variances in equation

(2.3.45) forms the set of estimated weights, ŵ1, . . . , ŵn, and the estimator

f̃x(x) =
1

λ

n∑
r=1

ŵrE

Q

x−
{

W r + i(mr−1
mr

)1/2σ̂rTr

}
λ

 ∣∣∣∣∣ W r, σ̂
2
r

 . (2.3.49)
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Mean Integrated Squared Error of f̃opt(x)

We now consider the asymptotic properties of the weighted estimator, f̃opt(x),

calculated with the optimal weights in equation (2.3.45). We derive an expression for

the MISE of f̃opt(x) under the assumption that the sequence of measurement error

variances, σ2
1, . . . , σ

2
n, is known. This analysis provides guidelines for the asymptotic

behavior of f̃x(x) in equation (2.3.49). The estimated variances in f̃x(x) complicate a

direct examination of its asymptotic properties. Instead, we evaluate this estimator

via simulation in Section 2.4.

The estimator f̃opt(x) has the same key property in equation (2.2.4) as the heteroscedastic-

variance estimator, and so has the same integrated squared bias as the kernel density

estimator of fx(x) based on the true data. Combining equations (2.3.24) and (2.3.48),

we have that as n →∞ and λ → 0,

MISE{f̃opt(x)} ∼

2πλ
n∑

r=1


∫

Φ2
Q(t)


∞∑

k=0

(
mr−2

2

)
k

(mr − 2)k

(
2t2σ2

r

mrλ2

)k

k!

 dt


−1

−1

+
λ4

4
µ2

Q,2

∫
{f ′′x (x)}2dx.

The asymptotic properties of this expression are difficult to examine in full gen-

erality. The expression simplifies in the case of two replicate measurements and we

continue our analysis under this assumption.

From Lemma 2.3.1.1 and equation (2.3.48), when mr = 2 for all r, as n →∞ and

λ → 0,

Ṽ1 ∼
{

4πλ

n∑
r=1

{∫
Φ2

Q(t)et2σ2
r/λ2

dt

}−1
}−1

,
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and the MISE becomes

MISE{f̃opt(x)} ∼
{

4πλ
n∑

r=1

{∫
Φ2

Q(t)et2σ2
r/λ2

dt

}−1
}−1

+
λ4

4
µ2

Q,2

∫
{f ′′x (x)}2dx.

(2.3.50)

The asymptotic behavior of the MISE depends on the sequence of variances

σ2
1, . . . , σ

2
n. As in Section 2.3.1, we make the assumption that these variances are

independent and identically distributed with density function fσ2(s), and are inde-

pendent of X1, . . . , Xn. From the relationship

n∑
r=1

{∫
Φ2

Q(t)et2σ2
r/λ2

dt

}−1

∼ n

∫ {∫
Φ2

Q(t)et2v/λ2

dt

}−1

fσ2(s)ds,

it follows that the MISE in equation (2.3.50) can be approximated by

MISEn(λ) =

{
4πnλ

∫ {∫
Φ2

Q(t)et2v/λ2

dt

}−1

fσ2(s)ds

}−1

+ bλ4, (2.3.51)

where b = µ2
Q,2

∫ {f ′′x (x)}2dx/4. In Section 2.3.1, we showed that when fσ2(s) is the

Uniform(c, d) density and Q(x) ∝ {sin(x)/x}2k for some k ≥ 2, the MISE of the

estimator for the case of heteroscedastic measurement errors converges to 0 at a rate

proportional to {log(n)}−2 We now reconsider this case and show that the MISE in

equation (2.3.50) converges to 0 at the same rate.

Let σ2
1, . . . , σ

2
n be independent, identically distributed Uniform (c, d) random vari-

ables where 0 ≤ c < d, and let Q(x) ∝ {sin(x)/x}2k for some k = 2, 3, . . .. Note that

the characteristic function ΦQ(t) vanishes outside the interval [−A, A] where A = 2k.

Under these assumptions, equation (2.3.51) becomes

MISEn(λ) =

{
2πnλ(d− c)

∫ d

c

{∫ A

0

Φ2
Q(t)et2s/λ2

dt

}−1

ds

}−1

+ bλ4. (2.3.52)
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We again consider the sequence of bandwidths {λn} where λn ∝ {log(n)}−1/2, and

show that the optimal sequence is given by λn = A{d/ log(n)}1/2. It is clear that for

bandwidths of this form, the bias term in equation (2.3.52) converges to 0. We now

investigate the asymptotic behavior of the variance term in equation (2.3.52), which

we write as

Ṽn(λ) =

{
2πnλ(d− c)

∫ d

c

{∫ A

0

Φ2
Q(t)et2s/λ2

dt

}−1

ds

}−1

. (2.3.53)

Consider the innermost integral in this expression. Define

In =
1

n

∫ A

0

Φ2
Q(t)et2s/λ2

dt, (2.3.54)

which letting y = ts1/2/λ becomes

In =
1

n

∫ As1/2/λ

0

Φ2
Q(yλs−1/2)ey2

dy.

It is seen from equation (2.3.53) that if In → 0, then Ṽn(λ) → 0. Consider the

bandwidth λn = {γ/ log(n)}1/2 where γ ≥ dA2. Using the fact that Φ2
Q(t) ≤ 1 for all

t and applying l’Hopital’s rule and simplifying gives

lim
n→∞

In ≤ lim
n→∞

1

n

∫ A{s log(n)/γ}1/2

0

ey2

dy

= lim
n→∞

As1/2eA2s log(n)/γ

2n{log(n)}1/2

∝ lim
n→∞

s1/2n(A2s/γ−1)

{log(n)}1/2
.

Because γ ≥ A2d, it follows that A2s/γ − 1 ≤ s/d − 1 ≤ 0 for all s in the interval

(c, d), and so limn→∞ In = 0. Therefore, Ṽn(λn) converges to 0 for all sequences of

bandwidths λn ≥ A{d/ log(n)}1/2.
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We now consider Ṽn(λn) for bandwidths λn = {γ/ log(n)}1/2 where γ ≤ dA2. For

ε > 0, let γ = d(A − ε)2. After a change of variables with x = {t2s/λ log(n)}1/2

equation (2.3.54) becomes

In =
s1/2

nλ{log(n)}1/2

∫ {A2s/λ2 log(n)}1/2

0

Φ2
Q{xλ{log(n)/s}−1/2}ex2 log(n)dy,

which upon substituting λn = {d(A− ε)2/ log(n)}1/2 and simplifying, is

In = s1/2

∫ {A2s/((A−ε)2d)}1/2

0

Φ2
Q{x(A− ε)(d/s)1/2}{log(n)}1/2n(x2−1)dx. (2.3.55)

Whenever x > 1, {log(n)}1/2n(x2−1) → ∞. But for each s in the interval (d(A −

ε)2/A2, d), the upper limit of integration in equation (2.3.55) exceeds one, and so

In →∞.

Thus, Ṽn diverges for bandwidths λn < A{d/ log(n)}1/2. We conclude, then,

that the MISE of the estimator f̃opt(x) converges to 0 most quickly with the se-

quence of bandwidths given by λn = A{d/ log(n)}1/2, and converges at the rate of

A4{d/ log(n)}2. Comparing these results with the results of Section 2.3.1 reveals that

when measurement error variances are known and uniformly distributed, there is no

advantage to weighting in terms of the rate of convergence of the MISE. However, it

is reasonable to expect that in finite samples, weighting will reduce the variance of

the estimator, and we investigate this via simulation in Section 2.4.
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2.3.3 Homoscedastic Measurement Error: Pooled Estima-

tion of σ2

We now consider the case of homoscedastic measurement error, σ2
1 = . . . , = σ2

n =

σ2, and the common variance σ2 is estimated by the pooled estimator of variance

defined in equation (2.2.17), based on d =
∑n

r=1(mr−1) degrees of freedom. Because

we are assuming that mr ≥ 2 for all r, it follows that d ≥ n.

Recall that the estimator in equation (2.2.18) for the case of homoscedastic mea-

surement errors has the key property in equation (2.2.4), that conditional on the true

data it is an unbiased estimator of the true-data kernel density estimator. Conse-

quently, f̂x(x) has the same bias and same integrated squared bias as the true-data

kernel density estimator.

Because the summands in equation (2.2.18) share the common variance estimator

σ̂2, they are not independent. This complicates direct calculation of Var{f̂x(x)} and

the integrated variance. However, we now argue that under certain smoothness and

regularity conditions the homoscedastic-variance estimator has the same integrated

variance as the estimator with σ̂2 replaced by the true variance σ2. This result is

intuitively plausible in light of the fact that the known-variance estimator of fx(x)

converges at the rate of {log(n)}−2 and the pooled estimator of variance converges

at the much faster rate of n−1/2. This is the essence of the argument that we now

sketch.

Because the conditional expectation in f̂x(x) is real-valued, we need only consider
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the real part of the function Q(). For notational convenience we denote Re[Q()] by

QRe. We have,

f̂x(x) =
1

nλ

n∑
r=1

E

Q

x−
{

W r + i( d
mr

)1/2σ̂Tr,d

}
λ

 ∣∣∣∣∣ W r, σ̂
2


=

1

nλ

n∑
r=1

E

QRe

x−
{

W r + i( d
mr

)1/2σ̂Tr,d

}
λ

 ∣∣∣∣∣ W r, σ̂
2


= E

 1

nλ

n∑
r=1

QRe

x−
{

W r + i( d
mr

)1/2σ̂Tr,d

}
λ

 ∣∣∣∣∣ W 1, . . . ,W n, σ̂2


(2.3.56)

where Tr,d = Zr,1/
√

Z2
r,1 + · · ·+ Z2

r,d .

Our argument is based on a Taylor Series expansion. Recall that d ≥ n, and thus

as n →∞,

√
d Tr,d =

Zr,1√
1
d
(Z2

r,1 + · · ·+ Z2
r,d)

→ Zr,1

and

σ̂2 → σ2

almost surely by the Strong Law of Large Numbers. The fact that for large n, σ̂d1/2Tr,d

is close to σZ1,r suggests the suitability of the one-term Taylor Series approximation

1

nλ

n∑
r=1

QRe

x−
{

W r + i( d
mr

)1/2σ̂Tr

}
λ

 ≈ 1

nλ

n∑
r=1

QRe

x−
{

W r + im
−1/2
r σZr,1

}
λ



+
1

nλ

n∑
r=1

(σ̂d1/2Tr,d − σZr,1)Q
′
Re

x−
{

W r + im
−1/2
r αr

}
λ

 , (2.3.57)

where αr is an interior point on the line segment that joins d1/2σ̂Tr and σZr,1.
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At best, the MISE of f̂x(x) converges to 0 at the rate of {log(n)}−2 (Carroll & Hall

1988), and achieves this rate with the bandwidth λ = σ{log(n)}−1/2 (Stefanski 1990).

We now show that relative to the first term, the contribution to the MISE from the

second term on the right-hand side of equation (2.3.57) is minor. We use an applica-

tion of the Cauchy-Schwartz inequality to show that the second term is Op({nλ2}−1),

and so is asymptotically negligible for bandwidths on the order of {log(n)}−1/2.

It follows from the Cauchy-Schwartz inequality that

∣∣∣∣∣ 1

nλ

n∑
r=1

(σ̂d1/2Tr,d − σZr,1)Q
′

x−
{

W r + im
−1/2
r σZr,1

}
λ

∣∣∣∣∣
2

≤ A1A2

where

A1 =
1

nλ

n∑
r=1

(σ̂d1/2Tr − σZr,1)
2 (2.3.58)

and

A2 =
1

nλ

n∑
r=1

Q′

x−
{

W r + im
−1/2
r α

}
λ


2

. (2.3.59)

Consider A1 in equation (2.3.58). Because Tr,d = Zr,1/
√

Z2
r,1 + · · ·+ Z2

r,d and d/n >

1,

A1 =
1

nλ

 σ̂√
(Z2

r,1 + . . . + Z2
r,d)/d

− σ

2
n∑

r=1

Z2
r,1

≤ 1

nλ

d1/2

 σ̂√
(Z2

r,1 + . . . + Z2
r,d)/d

− σ

2 1

n

n∑
r=1

Z2
r,1.

From the facts that
√

(Z2
r,1 + . . . + Z2

r,d)/d = op(1), d1/2(σ̂−σ) = Op(1) and 1
n

∑n
r=1 Z2

r,1 =

Op(1), it follows that A1 = Op({nλ}−1).
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Now consider A2 in equation (2.3.59). Provided that Q′
Re(·) is bounded, A2 =

Op(λ
−1). Therefore, A1A2 = O({nλ2}−1), so that A1A2

P−→ 0 for any λ such that

nλ2 →∞.

Thus, from equation (2.3.56),

f̂x(x) ≈ 1

nλ

n∑
r=1

E

QRe

x−
{

W r + im
−1/2
r σZr,1

}
λ

 ∣∣∣∣∣W r

 , (2.3.60)

and we use this expression to approximate the MISE of f̂x(x). First define the function

Q‡
r (z, λ,mr, σ) = E

{
QRe

(
z − iσZr,1

m
1/2
r λ

) ∣∣∣∣∣ W r,

}
, (2.3.61)

so that f̂x(x) in equation (2.3.60) can be written as

f̂x(x) ≈ 1

nλ

n∑
r=1

Q‡
r

(
x−W r

λ
, λ,mr, σ

)
.

Applying the Fourier inversion formula and interchanging the operations of inte-

gration and expectation in equation (2.3.61) yields

Q‡
r (z, λ,mr, σ) =

1

2π

∫
e−itzE

{
exp

(−tσZr,1

λm
1/2
r

) ∣∣∣∣∣ W r,

}
ΦQ(t)dt. (2.3.62)

Because Zr,1 is a standard normal random variable,

E{e−tσZr,1/m
1/2
r λ} = et2σ2/2mrλ2

,

so that

Q‡
r (z, λ,mr, σ) =

1

2π

∫
e−itzet2σ2/2mrλ2

ΦQ(t)dt. (2.3.63)

Comparison with equation (2.2.22) shows that Q‡
r (z, λ,mr, σ) is the same function

as the Stefanski-Carroll deconvoluting kernel defined for the case of N(0, σ2/mr)
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measurement errors. Therefore it has the same expectation and same bias as the

true-data kernel density estimator. The approximate integrated variance of f̂x(x) is∫
Var{f̂x(x)}dx ≈ V1 − V2 where

V1 =
1

n2λ2

n∑
r=1

∫
E

{[
Q‡

(
x−W r

λ
, λ,mr, σ

)]2
}

dx, (2.3.64)

and

V2 =
1

n2λ2

n∑
r=1

∫ {
E

[
Q‡

(
x−W r

λ
, λ,mr, σr

)]}2

dx. (2.3.65)

First consider V2. Because

E

{
Q‡

(
x−W r

λ
, λ,mr, σ̂r

)}
= E

{
Q

(
x−Xr

λ

)}
= λ

∫
Q(z)fx(x− λz)dz,

it follows from substitution into equation (2.3.65) and Parseval’s Identity that

V2 =
1

n

∫ {∫
Q(z)fx(x− λz)dz

}2

dx

=
1

2πn

∫
|Φf (t)|2Φ2

Q(λt)dt. (2.3.66)

Now consider V1. From equation (2.3.63) and Parseval’s Identity,∫ {
Q‡

(
x−W r

λ
, λ,mr, σ

)}2

=
1

2π

∫
et2σ2/mrλ2

ΦQ(t)dt,

which upon substitution into equation (2.3.64) gives

V1 =
1

2πn2λ

n∑
r=1

∫
ΦQ(t)2et2σ2/mrλ2

dt. (2.3.67)

Combining equations (2.3.24), (2.3.66), and (2.3.67) yields an approximation to

the IMSE for the case of homoscedastic measurement errors, and as n → ∞ and

λ → 0,

MISE{f̂x(x)} ∼ 1

2πn2λ

n∑
r=1

∫
ΦQ(t)2et2σ2/mrλ2

dt +
λ4

4
µ2

Q,2

∫
{f ′′x (x)}2dx. (2.3.68)
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Finally, we note that for equal numbers of replicate measurements, i.e., mr = m for

all r, this approximation is equivalent to the MISE of the Stefanski-Carroll estimator.

For each r = 1, . . . , n, W r measures Xr with a N(0, σ2/m) measurement error, and so

measurement errors are identically distributed with variance that is assumed known.

The approximation in equation (2.3.68) simplifies to

MISE{f̂x(x)} ∼ 1

2πnλ

∫
ΦQ(t)2et2σ2/mλ2

dt +
λ4

4
µ2

Q,2

∫
{f ′′x (x)}2dx,

which is the MISE of the Stefanski-Carroll estimator for the case of N(0, σ2/m)

measurement errors.

2.4 Simulation Study

We performed a simulation study to investigate the performance of the proposed

measurement error-corrected estimators. We included in the study the so-called naive

estimator computed from the observed data and ignoring the presence of measurement

error. Specifically, we took the naive estimator to be the kernel density estimator

calculated with the sample means of the replicate measurements,

f̂naive(x) =
1

λ

n∑
r=1

φ

(
x−W r

λ

)
,

where φ(x) is the standard normal density. The measurement error-corrected esti-

mators in equations (2.2.3), (2.3.42), and (2.2.18) were calculated with the kernel

Q(x) ∝ {sin(x)/x}4, where Q(x) was scaled to have mean 0 and variance 1.
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Estimator performance was evaluated with the integrated squared error (ISE),

defined in general for an estimator f̂(x) as

ISE{f̂(x)} =

∫
{f̂(x)− fx(x)}2dx. (2.4.69)

For each simulated data set, estimators were calculated at their optimal bandwidths,

found by minimizing equation (2.4.69) in λ. As this requires knowledge of the un-

known density fx(x), the estimators in this study are not true estimators. However

our results provide insight into their relative optimal performances, independent of

the problem of estimating a bandwidth. We defer a discussion of bandwidth estima-

tion to Section 2.5. For additional comparison, however, we also calculated the naive

estimator using the popular plug-in bandwidth selection method,

τ̂ = 1.06 σ̂2
W

n−1/5, (2.4.70)

where σ̂2
W

is the sample variance of the means W 1, . . . ,W n (Silverman 1986).

We considered three factors in this study. First, we investigated the effect of

sample size on the relative performance of the estimators. The logarithmic rates of

convergence of our estimators suggest that very large sample sizes will be required be-

fore realizing a benefit from a correction for normal measurement error. To determine

when the extra effort becomes worthwhile, we considered six different sample sizes,

n = 100, 500, 1000, 2000 and 2500. Second, we examined the effect of the true-data

density. The shape of the true-data density will influence the success with which it

can be separated from the measurement error density. True data, X1, . . . , Xn, were

generated from two densities, the N(0, 1) density and the Chi-squared(4) density,
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standardized to have mean 0 and variance 1. Finally, we examined the effect of

the homogeneity of measurement error variances on the performance of each estima-

tor. Observed data were generated with normal measurement errors having variances

σ2
1 = · · · = σ2

n = 1 for the case of constant variances, and σ2
1, . . . , σ

2
n chosen uniformly

over the interval (0, 2) for the case of nonconstant variances. All estimators were com-

puted on each set of observed data, and we used the results to gain an understanding

of their robustness to assumptions on the measurement error variances.

In practice, generally only a small number of replicate measurements is observed,

with two replicates being the most common. In these simulations, we considered only

the case of mr = 2 replicate measurements for each r = 1, . . . , n. For notational

convenience, in the following discussion of our results, we refer to the estimator for

heteroscedastic errors in equation (2.2.3) as f̂het(x), the weighted estimator in equa-

tion (2.3.42) as f̂wt(x), and the estimator for homoscedastic errors in equation (2.2.18)

as f̂hom(x). All results are based on fifty simulated data sets.

Average integrated squared errors are plotted by sample size in Figure 2.1 for

Xr ∼ N(0, 1) and Figure 2.2 for Xr ∼ Chi-squared(4). In each case, the average inte-

grated squared error was most variable for the sample size of 100. Although f̂hom(x)

consistently had a smaller integrated squared error than f̂naive(x) at this sample size,

paired t-tests of the differences were not significant at the 0.05 level. For the simula-

tions that considered heteroscedastic measurement errors, f̂het(x) had a significantly

higher average integrated squared error than all other estimators for sample sizes of

n ≥ 500. It was also much more variable, its standard error pooled across these
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sample sizes was 0.0007 for Xr ∼ N(0, 1) and 0.0022 for Xr ∼ Chi-squared(4). By

contrast, the standard error pooled across both the remaining estimators and sample

sizes of n ≥ 500 was 0.0003 for Xr ∼ N(0, 1) and 0.0008 for Xr ∼ Chi-squared(4).

In both sets of simulations, the estimators f̂hom(x) and f̂wt(x) had significantly lower

average integrated squared errors than all other estimators for n ≥ 500. However

differences between the two estimators were generally not significant. The variability

of the average integrated squared error was more consistent among estimators when

measurement errors were homoscedastic. Pooled across estimators and sample sizes

of n ≥ 500, the standard error was 0.0004 for Xr ∼ N(0, 1) and 0.0012 for Xr ∼

Chi-squared(4). In both cases, when n ≥ 500, the average integrated squared error

of f̂hom(x) was significantly less than that of all other estimators.

It is clear from these simulations that weighting is effective in reducing the inte-

grated squared error of f̂het(x). In almost every case, the average integrated squared

error of f̂wt(x) was significantly less than that of f̂het(x). However, the weighted esti-

mator performed relatively poorly when measurement error variances were constant.

This is not surprising, considering that f̂wt(x) relies on estimates of this constant

variance from only two replicate measurements. The estimator for homoscedastic

errors performed well for both types of measurement errors, suggesting it as a good

choice when there is doubt about the homogeneity of the error variances. Finally, a

particularly encouraging conclusion that can be drawn from these simulations is that

even for reasonable sample sizes, the measurement error-corrected estimators can out-

perform the naive estimator. This suggests that given a reliable rule for selecting a
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bandwidth, correcting for measurement errors will be worthwhile in many situations.

2.5 A Bootstrap Method for Bandwidth Selection

For practical implementation of the measurement error-corrected estimators, a

bandwidth selection rule is required. In this section we describe a bootstrap procedure

for selecting a bandwidth. We illustrate its application with a real-data example in

Section 2.6. The bootstrap has been used for bandwidth selection in traditional

density estimation (see Marron, 1992; Faraway and Jhun, 1990; Taylor, 1989). We

briefly outline this method, then describe its extension to the measurement error

problem.

A kernel density estimator based on the random sample X1, . . . , Xn, has the form

f̂(x; h) =
1

nh

n∑
r=1

K

(
x−Xr

h

)
,

where K(x) is a standardized probability density function and h is the bandwidth.

Let ĥ0 be a bandwidth estimator calculated from the random sample. The initial

estimator of the density fx(x) is f̂(x; ĥ0), and plays the role of the true density in

the bootstrap world. A bootstrap sample from this density, X∗
1 , . . . , X

∗
n, is generated

as follows. For r = 1, . . . , n, let Xπr be randomly drawn with replacement from

X1, . . . , Xn, and let Yr be a random variable with density K(x). The random variable

X∗
r , where

X∗
r = Xπr + ĥ0Yr,
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Figure 2.1: Average ISE by sample size for X ∼ N(0, 1). Top panel: homoscedastic
measurement errors, N(0, 1). Bottom panel: heteroscedastic measurement errors,

N(0, σ2
r) with σ2

r uniform on (0, 2). Open triangle: f̂nv with plug-in bandwidth;

Closed triangle: f̂nv with optimal bandwidth; Closed square: f̂het; Open square: f̂wt;
Closed circle: f̂hom.
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Figure 2.2: Average ISE by sample size for X ∼ χ2
4. Top panel: homoscedastic

measurement errors, N(0, 1). Bottom panel: heteroscedastic measurement errors,

N(0, σ2
r) with σ2

r uniform on (0, 2). Open triangle: f̂nv with plug-in bandwidth;

Closed triangle: f̂nv with optimal bandwidth; Closed square: f̂het; Open square: f̂wt;
Closed circle: f̂hom.
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has density function f̂(x; ĥ0). The bootstrap sample, X∗
1 , . . . , X

∗
n is used to calculate

f̂ ∗(x; h) =
1

nh

n∑
r=1

K

(
x−X∗

r

h

)
.

Bootstrap samples are used to calculate the bootstrap mean integrated squared

error

MISE∗(h) = EBS

[∫ {
f̂ ∗(x; h)− f̂(x; ĥ0)

}2

dx

]
(2.5.71)

where EBS denotes expectation with respect to the bootstrap distribution.

The final bootstrap estimator of the bandwidth is found by minimizing MISE∗(h).

The minimization problem can be solved empirically by computing a large number

of bootstrap density estimates, f̂ ∗1 (x; h), . . . , f̂ ∗n(x; h), for a dense grid of bandwidths

h, averaging to approximate the bootstrap expectation, and then choosing that h

which achieves the smallest average integrated squared error. An appealing feature

of this method, however, is that h can be estimated directly, without any resampling.

We present the details of this feature below in the context of the measurement error

problem.

We now describe how this method can be extended to estimate bandwidths for our

measurement error-corrected estimators. The situation is different in that observed

data, because they contain measurement error, are not distributed with the density

fx(x). Thus, given an initial estimate of fx(x), bootstrap data sets must be generated

with measurement errors that are similar to those present in the observed data.

Given the original data {Wr,j}n, mr

r=1,j=1, the naive estimator,

f̂naive(x; τ̂) =
1

τ̂

n∑
r=1

φ

(
x−W r

τ̂

)
,
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where τ̂ is the plug-in bandwidth in equation (2.4.70), provides a reasonable, though

overly smoothed, estimate of fx(x). We use this as our initial estimate of fx(x), and

it plays the role of the true density in the bootstrap world.

A bootstrap sample of true data is generated first. For each r = 1, . . . , n, let W πr

be randomly drawn with replacement from the set of sample means, and let Zr be a

N(0, 1) random variable. The variable X∗
r where

X∗
r = W πr + τ̂Zr

has density function f̂naive(x; τ̂). The random variables X∗
1 , . . . , X

∗
n form the bootstrap

sample of true values.

The bootstrap true values are used as follows to construct a bootstrap sample of

observed values. Consider first the case where measurement errors are heteroscedastic

and σ̂2
1, . . . , σ̂

2
n are the estimates of the measurement error variances from the original

data. For r = 1, . . . , n and j = 1, . . . ,mr, let Zr,j be a N(0, 1) random variable, and

define

W ∗
r,j = X∗

r + σ̂rZr,j. (2.5.72)

The random variables {W ∗
r,j}n, mr

r=1,j=1 form the bootstrap observed-data sample, and

are used to calculate the bootstrap sample estimates W
∗
1, . . . ,W

∗
n and σ̂2∗

1 , . . . , σ̂2∗
n .

It follows that for each r = 1, . . . , n, conditional on X∗
r and the original data, W

∗
r ∼

N(X∗
r , σ̂2

r/mr) and (mr − 1)σ̂2∗
r /σ̂2

r ∼ Chi-squared(mr − 1).

When measurement errors are homoscedastic, a bootstrap observed-data sam-

ple is generated by replacing σ̂r in equation (2.5.72) with σ̂, the pooled estimate
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of measurement error variance from the original data, based on d degrees of free-

dom. The bootstrap observed data, {W ∗
r,j}n, mr

r=1,j=1, are used to calculate the sample

estimates W
∗
1, . . . ,W

∗
n and σ̂2∗. Conditional on X∗

1 , . . . , X
∗
n and the original data,

W
∗
r ∼ N(X∗

r , σ̂2
r/mr) and dσ̂2∗/σ̂2 ∼ Chi-squared(d).

From the key property in equation (2.2.4), it follows that the measurement error-

corrected estimators computed from the bootstrap samples of observed values have

the same expectation and bias as the kernel density estimator computed from the

bootstrap sample of true values. For notational convenience, we refer to the mea-

surement error-corrected estimators computed from a bootstrap sample as f̂ ∗het(x; h),

f̂∗wt(x; h), and f̂ ∗hom(x; h). We also adopt the general notation f̂ ∗· (x; h) to represent

any of the three estimators.

The bootstrap estimate of the optimal bandwidth for a measurement error-corrected

estimator is the value h that minimizes the mean integrated squared error between

f̂∗· (x; h) and f̂naive(x, τ̂),

MISE∗(h) = EBS

[∫ {
f̂ ∗· (x; h)− f̂naive(x; τ̂)

}2

dx

]
.

The optimal bandwidth can be determined empirically by computing a large num-

ber of bootstrap estimates, f̂ ∗·,1(x; h), . . . , f̂ ∗·,B(x; h), over a dense grid of bandwidths h,

calculating the integrated squared error for each one, and selecting the value of h that

achieves the smallest average integrated squared error. However the optimal band-

width can also be determined analytically, as we show next. We present expressions

for MISE∗(h) for each of the measurement error-corrected estimators. The optimal
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bandwidth is found by numerically evaluating MISE∗(h) over a grid of bandwidths

h, and choosing the one for which MISE∗(h) is smallest.

Analytical determination of the optimal bandwidth is possible due to the fact that

in the bootstrap world, the true density of the data is known. The expectation of

f̂∗· (x, h) is given by

E∗{f̂ ∗· (x; h)} =

∫
Q(z)f̂naive(x− hz; τ̂)dz, (2.5.73)

where Q(x) is the kernel used to calculate f ∗· (x; h). The bootstrap MISE in equation

(2.5.71) has the representation

MISE∗(h) =

∫
Var*{f̂ ∗· (x; h)}dx +

∫
Bias∗2{f̂ ∗· (x; h)}dx.

It follows from equation (2.5.73) that the integrated squared bias of f ∗· (x; h) is∫
Bias∗2{f̂ ∗· (x; h)}dx =

∫ {∫
Q(z)f̂naive(x− hz; τ̂)dz − f̂naive(x; τ̂)

}2

dx. (2.5.74)

The bootstrap integrated variance can be partitioned as∫
Var*{f̂·(x; h)}dx = V ∗

1 − V ∗
2 ,

where

V ∗
1 =

∫
E[{f̂·(x; h)}2]dx

and

V ∗
2 =

∫
[E{f̂·(x; h)}]2dx

V ∗
2 is the same for each of the measurement error-corrected estimators, and from

equation (2.5.73),

V ∗
2 =

1

n

∫ {∫
Q(z)f̂naive(x− hz)dz

}2

dx. (2.5.75)
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V ∗
1 depends on the estimator used. Consider first the case of heteroscedastic measure-

ment errors and the estimator f̂ ∗het(x; h). In Section 2.3.1, we derived an expression for

the term V1 in the integrated variance of the estimator f̂het(x; h) calculated from the

original data. Nothing in that derivation depends on the true density fx(x). The only

difference is the conditional variance of the the sample means, which in the bootstrap

world are given by σ̂∗r/mr for r = 1, . . . , n. It follows from equation (2.3.34) that for

the estimator f̂ ∗het(x; h),

V ∗
1 =

1

2πn2h

n∑
r=1

∫
Φ2

Q(t)


∞∑

k=0

(
mr−2

2

)
k

(mr − 2)k

(
2t2σ̂2

r

mrh2

)k

k!

 dt. (2.5.76)

Combining this term with equations (2.5.74) and (2.5.75) yields the bootstrap MISE

of the estimator f̂ ∗het(x; h).

Similarly, for the case of heteroscedastic errors and the weighted estimator, f̂ ∗wt(x; h),

it follows from equation (2.3.48) that

V ∗
1 =

2πh
n∑

r=1


∫

Φ2
Q(t)


∞∑

k=0

(
mr−2

2

)
k

(mr − 2)k

(
2t2σ̂2

r

mrh2

)k

k!

 dt


−1

−1

, (2.5.77)

which, with equations (2.5.74) and (2.5.75), yields the bootstrap MISE of the estima-

tor f̂∗wt(x; h). Note in the bootstrap world, because σ̂2
1, . . . , σ̂

2
n are known, the optimal

weights for f̂∗wt(x) are known. Also note that the infinite sums in equations (2.5.76)

and (2.5.77) simplify in the case of two replicates according to Lemma 2.3.1.1.

Finally, in Section 2.3.3 we derived an approximation to the integrated variance

of f̂hom(x; h). We use this same approximation to estimate the bootstrap integrated
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variance of f̂ ∗hom(x; h), which from from the MISE in equation (2.3.68) is given by∫
Var*{f̂ ∗hom(x; h)}dx ∼ 1

2πn2h

n∑
r=1

∫
ΦQ(t)2et2σ̂2/mrh2

dt.

Combining this with the bootstrap integrated bias in equation (2.5.74) yields the

bootstrap MISE of f̂∗hom(x; h).

These computations are involved, but are less time-consuming than is resampling

for empirical estimation of the bandwidth. Both approaches have potential drawbacks

that stem from the deconvoluting kernel’s sensitivity to too-small bandwidths. In

the empirical averages, a single bootstrap sample that results in a highly variable

density estimate can inflate the average integrated squared error of smaller candidate

bandwidths, resulting in overestimation of the optimal bandwidth. An alternative is

to choose the optimal bandwidth according to the median integrated squared error.

Conversely, the analytical approach can lead to underestimation of the bandwidth,

likely due to numerical instability in the computation of integrals.

2.6 An Application

We illustrate the bootstrap bandwidth procedure described in Section 2.5 with

data from a study of automobile emissions. Measurements of carbon monoxide (CO)

in automobile emissions were collected with a U.S. EPA remote sensing device, a

device that is stationed along a roadway and measures compounds in the exhaust of

automobiles as they pass by. For each passing automobile, the CO level in its exhaust

was measured and its license plate was photographed. This allowed measurements
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Figure 2.3: Relationship between sample means and sample standard deviations of
log(CO) measurements. Solid line: simple linear regression; Dashed line: loess fit.

to be identified to individual automobiles. All measurements were taken at a single

location, a highway entrance ramp in North Carolina, over several different dates,

so that replicate measurements were available from cars that passed this location

multiple times. Of a total of 3002 automobiles observed, 1233 were measured replicate

times, 946 twice and 287 three times.

One objective of this study was to characterize CO emissions among the popula-

tion of automobiles in use in North Carolina. The shape of the density function of

CO emissions contains information about the subset of automobiles that are heavy

polluters. This subset is of special interest to managers who set regulatory guide-

lines. The target variable in this study was the average CO emission of a car in use.
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Measurements of CO taken from a stationary point on the roadway are subject to

error from several sources. First, measurements are subject to variability from en-

vironmental conditions such as wind, temperature, and humidity. Second, any car’s

CO emission is not constant, but depends on factors such as acceleration and engine

temperature. Thus, each single observation contains variability as a measurement

of the car’s long-term average CO emission. Finally, measurements are subject to

error from the instrument itself. The observed data in this study, therefore, have

multiple sources of error. These errors are compounded in every measurement, and

are expected to exhibit more multiplicative than additive behavior. We performed

our analysis on the logarithm of the measurements. This transforms the assumed

multiplicative error structure into the additive structure for which our method is

appropriate.

We estimated the density function of the log-transformed CO measurements from

the 1233 automobiles that were measured replicate times. Data showed convincing

evidence of heteroscedastic measurement errors. A simple linear regression of the

sample standard deviations on the sample means of the transformed data resulted in

a significant slope of 0.0936 (p < .0001), and a loess fit to the same data indicated

a more complex, nonlinear relationship. Data and both fitted models are shown in

Figure 3.

For comparison, we fit both the weighted estimator for heteroscedastic errors and

the estimator for homoscedastic errors to the log-transformed CO data. Bandwidths

for the estimators were selected using both analytical and empirical calculation of the

72



0.45 0.5 0.55 0.6 0.65
0

0.01

0.02

0.03

0.04

λ

M
ea

n 
an

d 
M

ed
ia

n 
IS

E

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

log(CO)

D
en

si
ty

 E
st

im
at

es

0 0.2 0.4 0.6 0.8
0

0.01

0.02

0.03

0.04

λ

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

log(CO)
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ISE of bootstrap density estimates as a function of bandwidth. Left: Homoscedastic
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Table 2.1: Percentiles of the distribution of log(CO) from five density estimates:
Naive kernel density estimate, Homoscedastic error estimator with bootstrap band-
widths minimizing analytical MISE and empirical median ISE, Weighted estimator
with bootstrap bandwidths minimizing analytical MISE and empirical median ISE.

P (x < X) X

f̂naive(x) f̂hom(x) f̂wt(x)

Analytical Empirical Analytical Empirical

0.5 -1.4646 -1.4646 -1.4646 -1.7677 -1.6667

0.75 -0.8586 -0.9596 -0.9596 -1.1616 -1.1616

0.9 -0.2525 -0.3535 -0.2525 -0.3535 -0.3535

0.95 0.2525 0.2525 0.2525 0.3535 0.3535

0.99 1.3636 1.2626 1.2626 1.6667 1.6667

bootstrap bandwidth estimate as described in Section 2.5. MISE∗(λ) was evaluated

along the grid λ = 0.25, 0.26, . . . , 0.66 for the homoscedastic-error estimator and

λ = 0.01, 0.02, . . . , 0.75 for the weighted estimator. Each empirical estimate was

based on 100 bootstrap data sets and the bandwidth was selected as the value that

minimized the median integrated squared error.

Results are shown in Figure 2.4. Also shown is the naive estimate, calculated

using the sample means of replicate observations and the plug-in bandwidth estimate

from equation (2.4.70). Bandwidths estimated to minimize the analytical MISE were

λ = 0.53 for the homoscedastic estimator and λ = 0.29 for the weighted estimator.

Bandwidths estimated to minimize the empirical median ISE were λ = 0.56 for the

homoscedastic estimator and λ = 0.35 for the weighted estimator. All measurement
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error-corrected estimators show a higher peak and slightly thinner tails than the naive

estimator. This is expected when the effects of measurement error are removed the

observed-data estimate. Particular interest in this application is in the upper tail of

the density function. For instance, researchers might want to estimate the proportion

automobiles whose average emission of CO falls above the legal limit for licensed

vehicles. Table 2.6 gives percentiles from the density estimates computed from the

data. Upper-tail critical values are largest for the weighted estimator.
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Chapter 3

Regression-Assisted Deconvolution

3.1 Introduction

In this chapter, we present a semi-parametric deconvolution estimator for the

density function of a random variable X that is measured as W , where W = X+σuU .

The method assumes the availability of a covariate vector Z statistically related to

X, but independent of the error in measuring X, and such that the regression error

X − E(X|Z) is normally distributed.

Traditionally deconvolution has been studied in a univariate context in the sense

that modeling assumptions are made only about the distribution of the true X and

the measurement W given X. For many important cases even the best convergence

rates for nonparametric estimation of fx(x) are slow. For example, when U is known

to be normally distributed non-parametric deconvolution estimators achieve at best

a logarithmic rate of convergence (Carroll & Hall 1988). The large sample size re-
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quirements make these estimators impractical in many applications.

Although interest is often focused on the density of a particular variate X, in

practice, most data sets are multivariate and thus contain covariates that are corre-

lated with the error-prone variable. The method we present uses information in the

covariate Z. The idea is to exploit information in the covariates Z to obtain improved

deconvolution estimators. The potential improvement is great. Our research is the

first to investigate the use of covariate information in deconvolution problems. There

are many variations to the basic strategy. We describe the approach in general, but

we study only one particular version in this paper, concluding with recommendations

for future research along these lines.

3.2 The General Method

We first describe the approach in general terms and then specialize to the partic-

ular version studied in this paper.

Let X be the random variable of interest with unknown density function fx(x).

Suppose that X is observed only as W where W = X + σuU , U is a N(0, 1) random

variable that is independent of X, and where σu is known. Let Z be a p × 1 vector

of covariates and suppose that the conditional mean and variance of X given Z are

given by

E(X| Z) = µx(Z, β) and Var(X| Z) = σ2
x(µx(Z, β), θ) (3.2.1)

respectively, where µx() and σ2
x() are known functions and β and θ are unknown
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parameters. Note that apart from existence of the specified moments, the only re-

strictive modeling assumption is that the conditional variance of X given Z is a

function of the conditional mean, i.e., depends on Z only through µx(Z, β). The

practical utility of such models in applications is well documented (see, for example,

Carroll & Ruppert 1998).

We now add the assumption that the conditional distribution of X given Z is

normal, leading to the regression model,

Xj = µx(Zj, β) + εj σx(µx(Zj, β), θ), j = 1, . . . , n,

where the model errors, ε1, . . . , εn, are N(0, 1) random variables independent of

Z1, . . . ,Zn. Under the stated assumptions the density function of X is,

fx(x) =

∫ ∞

−∞

1

σx(t, θ)
φ

(
x− t

σx(t, θ)

)
fµ(t)dt, (3.2.2)

where fµ(t) is the density function of µx(Z, β) and φ(t) is the standard normal den-

sity. We are implicitly assuming that the covariates are random, not fixed, and that

(Xj, ZT
j )T are independent and identically distributed for j = 1, . . . , n.

Assuming that the measurement error U is independent of Z, it follows that the

conditional mean and variance of W given Z are

E(W | Z) = E(X| Z) and Var(W | Z) = Var(X| Z) + σ2
u,

and so from equation (3.2.1) we have that

E(W | Z) = µx(Z, β)
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and

Var(W | Z) = σ2
w(Z, β, θ) = σ2

x(µx(Z, β), θ) + σ2
u. (3.2.3)

Similarly we have the regression model for W given Z,

Wj = µx(Z, β) + εj

√
σ2

u + σ2
x(µx(Z, β), θ), j = 1, . . . , n,

and the density function of W is,

fw(w) =

∫ ∞

−∞

1√
σ2

x(t, θ) + σ2
u

φ

(
w − t√

σ2
x(t, θ) + σ2

u

)
fµ(t)dt, (3.2.4)

We exploit the relationships in equations (3.2.1)-(3.2.4) to construct an estimator of

fx(x) that is parametric in the error models (the regression error, X − µx(Z, β), and

the measurement error, U) and nonparametric in the distribution of T = µx(Z, β).

The estimator requires regression modeling of W given Z, and nonparametric density

estimation using the fitted values from the regression model.

Consider a random sample of the observed data, (Wj, ZT
j )T for j = 1, . . . , n. In

the first stage of the analysis, mean and variance function models are fit to the data

resulting in estimated mean and variance functions µ̂(Z, β̂) and σ̂2
w(µ̂(Z, β̂), θ̂). In

principle, any reasonable method of estimation could be employed at this stage. The

key is that the variance is modeled as a function of the mean.

Next the regression model predicted values, µ̂(Zj, β̂), j = 1, . . . , n, are used

in the estimation of fµ. This nonparametric step could be accomplished using any

reasonable method of density estimation. For example, a kernel density estimator of
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fµ is given by

f̂µ(t) =
1

nλ

n∑
j=1

φ

(
t− µ̂x(Zj, β̂)

λ

)
, (3.2.5)

where λ is the kernel bandwidth. Provided the model assumptions are valid and that

the regression mean function is consistently estimated, the empirical distribution of

the predicted values will converge to the distribution of T . It follows that for appropri-

ate bandwidth sequences the kernel density estimator will converge to the density of

T . The kernel density estimator estimates one component in the convolution formula

for fx(x) in equation (3.2.2).

The other component in equation (3.2.2) is Gaussian and requires estimation of

only the variance function of X given Z. This stage is essentially components of

variance estimation. In light of (3.2.3) an estimate of σ2
x(t, θ) is given by

σ̂2
x(t, θ̂) = σ̂2

w(t, θ̂)− σ2
u. (3.2.6)

Finally, substituting the variance estimator (3.2.6) and the kernel estimator (3.2.5)

into equation (3.2.2) results in the estimator

f̂x(x) =
1

nλ

n∑
j=1

∫ ∞

−∞

1

σ̂x(t, θ̂)
φ

(
x− t

σ̂x(t, θ̂)

)
φ

(
t− µ̂x(Zj, β̂)

λ

)
dt, (3.2.7)

which we refer to as a regression-assisted deconvolution estimator of fx(x).

The regression-assisted deconvolution estimator is appealing for its reliance on

regression methods that are familiar to statisticians. Modeling the conditional mean

and variance of X given Z is critical. However the estimator does not rely on any

particular technique for fitting these models. Indeed, models may be fit using any
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appropriate regression method, including linear, nonlinear, semi-parametric and non-

parametric methods. Equally important is the assumption that regression errors are

normally distributed. Fortunately, violations of this assumption can be detected with

a variety of techniques, and model transformations can often be employed to yield

normally distributed regression errors.

In general, computing the regression-assisted deconvolution estimator requires nu-

merical integration of the expression in equation (3.2.7). However, when the condi-

tional variance of X given Z is constant, i.e., Var(X| Z) = σ2
x, equation (3.2.7)

simplifies to

f̂x(x) =
1

n
√

σ̂2
x + λ2

n∑
j=1

φ

(
x− µ̂x(Zj, β̂)√

σ̂2
x + λ2

)
. (3.2.8)

This form of the estimator also shows that the bandwidth parameter in equation

(3.2.8) is superfluous whenever σ̂2
x is estimated well enough to avoid instability caused

by σ̂2
x too close to, or less than, 0. For small to moderate sample sizes, when σ2

w is

close to σ2
u, it is possible σ̂2

x will be negative. However, when σ̂2
x is well-estimated,

setting λ = 0 in equation (3.2.8) yields

f̂x(x) =
1

n

n∑
j=1

1

σ̂x

φ

(
x− µ̂x(Zj, β̂)

σ̂x

)
. (3.2.9)

This form of the estimator is appealing because it avoids the need to estimate a

bandwidth.

The scope of this paper is limited to exploring the feasibility of regression-assisted

deconvolution via simulation and examples. However, a few general comments about

the properties of the estimators are in order.
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First suppose that finite-parameter, parametric models and estimation methods

(e.g. least squares) are used to estimate the mean and variance functions µx(Z, β)

and σ2
x(µx(Z, β), θ). In this case the mean and variance functions will converge

pointwise at the n1/2 rate. The simple estimator in equation (3.2.9) is a mean with

summands that are continuous functions of
√

n -consistent parameter estimates, and

thus would be expected to converge pointwise at the
√

n rate. So in this case the

regression-assisted estimator is expected to converge at the usual parametric rate of

n1/2, a substantial improvement over the logarithmic rates typically associated with

deconvolution of normal measurement error. The estimator in equation (3.2.8) differs

from that in equation (3.2.9) only because of the nonzero bandwidth λ. Note that the

variance of the estimator in equation (3.2.8) does not diverge as λ → 0, and thus there

is no variance penalty asymptotically for letting the bandwidth shrink to 0 as n →∞.

This suggests that for certain bandwidth sequences converging to 0 with increasing

n, the estimator in equation (3.2.8) will also converge at a parametric rate. The same

is expected to be true of the estimator in equation (3.2.7). The indicated conjecture

is that for parametric regression modeling the deconvolution estimator converges at

the
√

n parametric rate. This assumes of course that the assumed parametric mean

and variance function models, and the assumption of normal regression errors, are

correct.

If the mean and variance functions are estimated nonparametrically (thereby elim-

inating the problem of model misspecification), then we speculate that the regression-

assisted estimator will inherit the minimum of the convergence rates of the mean and
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variance function estimates. These rates are typically much faster than logarithmic

and thus there would still be a substantial improvement over standard deconvolu-

tion estimators. Nonparametric mean and variance function modeling eliminates one

source of model misspecification, but the issue of normal regression errors remains.

In summary, the key components of this approach that determine the properties

of the regression-assisted estimator are the mean and variance function estimates

and normality of the regression errors. Fortunately, these are two areas that have

been extensively studied in both the theoretical and applied statistics literature. The

amount of “off-the-shelf” statistical technology that can be brought to bear on mean

and variance function estimation and residual analysis is overwhelming. Thus in

any particular application it should be possible to get very good mean and variance

function estimates (assuming sufficient data), and also to get a fair assessment of

normality of the residuals. Thus the potential for application is great, as is the

likelihood of determining when the method is not applicable (nonnormal regression

errors).

The remainder of this paper presents simulation results designed to explore the

sensitivity of the method to certain key assumptions. The simulation results are

followed by an illustrative application of the method to real data.
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3.3 Simulations

The regression-assisted deconvolution estimator relies heavily on the regression

model assumptions and normality of the regression errors. We performed a simula-

tion study to determine how the success of the method is influenced by three key

factors: first, the correct specification of the mean and variance functions, µx(Z, β)

and σ2
x(µ(Z, β), θ), second, the precision of the estimated functions, µ̂x(Z, β̂) and

σ̂2
w(µ̂(Z, β̂), θ̂), and third, the normality of the regression errors. As this study repre-

sents a first look at the feasibility of using covariate information in deconvolution, we

restricted our attention to relatively simple cases. All simulations considered multiple

linear regression models with constant residual variance.

Simulations investigated how well the regression-assisted deconvolution estimator

uncovers features such as bimodality and skewness in the true-data density. Three

sets of simulations were performed, each considering a different density for X: 1) the

standard normal, 2) a mixture of normals, and 3) a Chi-squared density.

Our interest is in small to moderate sample sizes (at least relative to the sample

sizes needed for nonparametric deconvolution). We compared the naive kernel density

estimator,

f̂naive(x) =
1

nλ

n∑
j=1

φ

(
x−Wj

λ

)
, (3.3.10)

the true-data kernel density estimator,

f̂true(x) =
1

nλ

n∑
j=1

φ

(
x−Xj

λ

)
,
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and the regression-assisted deconvolution estimator in equation (3.2.8). In all cases,

the bandwidth parameter λ was calculated using the plug-in method,

λ = 1.06σ̂2
∗n

−1/5, (3.3.11)

where σ̂2
∗ is the sample variance of the data used to compute the estimator (Silverman

1986). All simulated data sets contained n = 100 observations. The regression-

assisted deconvolution estimator in equation (3.2.8) requires an estimate of the model

error variance, σ2
x. This was estimated as σ̂2

x = MSE−σ2
u, where MSE is the estimate

of mean squared error from the regression of W on Z. With the sample size n = 100,

the mean squared error is not estimated well enough to avoid occasional negative

values of σ̂2
x. In such cases, σ̂2

x was set to 0.

Estimators were compared on the basis of their integrated squared error (ISE),

averaged over 200 simulated data sets. The integrated squared error is defined in

general for an estimator f̂(x) as

ISE{f̂(x)} =

∫ ∞

−∞
{f̂(x)− fx(x)}2dx.

3.3.1 Simulation 1: Estimation When fx(x) is the Standard

Normal Density

This simulation examined the performance of the regression-assisted deconvolution

estimator when fx(x) is the N(0, 1) density and the conditional mean and variance

of X given Z are

E(X| Z) = βT Z and Var(X| Z) = σ2
x. (3.3.12)
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We considered the linear model where for j = 1, . . . , n,

Xj = βT Zj + σxεj, (3.3.13)

Zj is a p × 1, N(0, Ip) random vector, and εj is a N(0, 1) random variable that is

independent of Zj. It follows that X1, . . . , Xn is a random sample from the normal

distribution with mean 0 and variance βT β + σ2
x. Adding the constraint

βT β + σ2
x = 1 (3.3.14)

results in the sample X1, . . . , Xn of independent N(0, 1) random variables.

The addition of normally distributed measurement error to equation (3.3.13) yields

the observed-data model,

Wi = βT Zj + σxεj + σuUj, (3.3.15)

where for j = 1, . . . , n, Uj is a N(0, 1) measurement error, independent of both Zj

and εj. W1, . . . ,Wn is a random sample from the normal distribution with mean 0

and variance βT β + σ2
x + σ2

u = 1 + σ2
u.

Several factors were controlled in the study to allow examination of the regression-

assisted deconvolution estimator’s dependence on key components of the regression

model. We discuss these factors next in detail. Factors and their levels are summa-

rized in Table 3.3.1. To a large extent, these factors determined the way data were

generated for the simulation. Our discussion of the study factors is followed by a

description of the methods we used to generate data. The section concludes with a

presentation and discussion of the simulation results.
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Two factors in the study examined how the estimator’s performance is affected by

the precision with which the true data can be predicted from the regression of W on Z.

The strength of the relationship between X and Z affects the precision of the predicted

values and was controlled through the theoretical coefficient of determination of the

regression of X on Z,

R2 =
Var(βT Z)

Var(X)
=

βT β

βT β + σ2
x

. (3.3.16)

R2 was varied at five levels, 0.1, 0.3, 0.5, 0.7 and 0.9. Note that under the constraint

in equation (3.3.14),

R2 = βT β = 1− σ2
x. (3.3.17)

The measurement error variance also influences the precision of the predicted

values. The reliability ratio, ξ, describes the ratio of the variance in the true data to

the variance in the observed data,

ξ =
Var(X)

Var(W )
=

1

1 + σ2
u

. (3.3.18)

The reliability ratio was also included as a factor in the study and was varied at two

levels, 0.7 and 0.9.

A third factor was comprised of the type of estimator used to estimate fx(x).

This factor was designed to investigate the effects of model misspecification on the

performance of the regression-assisted deconvolution estimator. Five different estima-

tors made up the levels of this factor. Among these were the naive kernel estimator,

f̂naive(x), the true-data kernel estimator, f̂true(x), and the regression-assisted decon-

volution estimator, f̂x(x). As defined, f̂x(x) is computed with estimates derived
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from the observed-data regression where the mean and variance functions in equation

(3.3.12) are known. For the case considered here, this implies that f̂x(x) is computed

with estimates from the linear regression of W on Z, where Z is the vector of p

covariates that are correlated with X. Two additional estimators were computed to

investigate the effects of misspecifying the mean function by incorrectly identifying p.

The regression-assisted deconvolution estimator was computed with estimates from

two incorrectly specified models, one an under-fit model with pu < p covariates and

the other an over-fit model with po > p covariates. Covariates for the misspecified

models were determined as follows. Each simulated data set contained a total of

twelve covariates, p = 4 of which were correlated with X according to the linear

model in equation (3.3.13). The remaining 8 covariates were uncorrelated with X.

An under-fit model was constructed by regressing observed data on the entire set of

covariates and choosing those pu = 2 covariates whose estimated coefficients had the

largest absolute t-statistics. An over-fit model was constructed similarly, choosing the

po = 8 covariates whose estimated coefficients had the largest absolute t-statistics.

Predicted values and estimated variances from the under-fit and over-fit models were

used to compute the regression-assisted deconvolution estimator, and we denote these

estimators by f̂und(x) and f̂ovr(x) respectively.

A fourth factor in the study influenced the likelihood that models would be mis-

specified. This likelihood is determined in part by the strength of the correlations

between X and the p true covariates. The strength of these correlations was controlled

through assignment of regression coefficients in the parameter vector β. Recall that Z
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Table 3.1: Factors and levels included in Simulation 1.

Factor Levels

R2 0.1 0.3 0.5 0.7 0.9

ξ 0.7 0.9

Estimator f̂x(x) f̂und(x) f̂ovr(x) f̂naive(x) f̂true(x)

Coefficient Pattern [1, 1, 1, 1]T [1, 1, 1/2, 1/2]T [1, 3/4, 1/2, 1/4]T

fε(ε) N(0, 1) Chi-squared(16) Chi-squared(4)

is a N(0, Ip) random vector. Thus, the covariates in Z are mutually independent and

have equal variances, so that the relative magnitudes of their individual coefficients

determines the relative strengths of their correlations with X. A coefficient pattern

vector was used to appropriately scale β and control these relative correlations. From

equation (3.3.17) it follows that each value of the factor R2 determines βT β. The

parameter vector β was calculated as

β = β∗
√

R2/(βT∗ β∗), (3.3.19)

where the components of β∗ determine the relative magnitudes of the correlations

between X and the covariates in Z. With p = 4, β∗ is a 4× 1 vector. Three different

values of β∗ were used, [1, 1, 1, 1]T , [1, 1, 1/2, 1/2]T , and [1, 3/4, 1/2, 1/4]T . Thus,

our simulations considered three correlation patterns between the true data and the

covariates, constant correlations, two levels of correlations, and linearly decreasing

correlations.

Finally, perhaps most critical to the performance of the regression-assisted de-
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Figure 3.1: Average ISE by R2 for Simulation 1 with normal model errors. Left:
ξ=0.7. Right: ξ=0.9. Circle: f̂true(x); Triangle: f̂naive(x); Star, solid line: f̂x(x);

Star, dotted line: f̂und(x); Star, dashed line: f̂ovr(x). Pooled standard error of mean
ISE is 0.00017.

convolution estimator is the assumption that the density of the model errors, fε(ε),

is normal. Errors that are skewed are commonly seen in practice, and we investi-

gated the estimator’s robustness to this departure from normality. In addition to the

normal density, model errors were generated from the standardized Chi-squared(16)

density and the standardized Chi-squared(4) density. Note from equation (3.3.13)

that in general, when model errors are standardized Chi-square(d) random variables,

the density function of X is the convolution of a normal density and the Chi-square(d)

density, centered at 0 and scaled to have variance σ2
x. From equation (3.3.17) it is seen

that in the simulations where model errors are Chi-square distributed, fx(x) changes

with R2, its skewness increasing as R2 decreases.

The assumption of normal regression errors plays an important role in the regression-
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assisted estimator and departures from this assumption will negatively affect the es-

timator. As part of our simulation we included a study of the power of a common

test for detecting nonnormality of residuals. Our intent was to determine whether it

would be possible to detect nonnormal regression residuals in those cases where the

extent of nonnormality adversely affects the performance of the regression-assisted

estimator. In practice, regression residuals can be tested for normality with a va-

riety of available methods. The regression errors from the fit of the observed-data

model in equation (3.3.15) have density function defined by the convolution of fε(ε)

and the N(0, σ2
u) density. Residuals from the correctly-specified regression model

were tested for normality with the D’Agostino-Pearson K2 statistic (D’Agostino, Be-

langer & D’Agostino 1990), which has higher power than many others for detecting

non-normal skewness and kurtosis in data.

For every combination of factor levels, 200 data sets with n = 100 observations

were generated as follows. Covariate vectors were generated first. For all data sets, the

number of covariates that had nonzero correlations with X was p = 4. Z1, . . . ,Zn

were generated as N(0, I4) random vectors. Second, the parameter β was deter-

mined. For given levels of the factors R2 and the coefficient pattern, β was calculated

from equation (3.3.19). Third, model errors, ε1, . . . , εn were generated from their

standardized density, fε(ε), and were scaled to have variance σ2
x = 1 − R2. These

three components were combined according to the true-data linear model in equa-

tion (3.3.13), resulting in the true-data sample, X1, . . . , Xn. Next, an observed-data

sample was generated according to equation (3.3.15) by adding normal measurement
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Table 3.2: Power of the D’Agostino-Pearson K2 test in Simulation 1 to detect non-
normality in observed-data regression residuals from the correct model fit, when true
model errors are standardized Chi-square(4) and Chi-square(16) random variables.

Chi-square(4) Chi-square(16)

R2 ξ = 0.7 ξ = 0.9 ξ = 0.7 ξ = 0.9

0.1 0.54 0.87 0.24 0.40

0.3 0.47 0.82 0.18 0.36

0.5 0.36 0.75 0.15 0.33

0.7 0.26 0.63 0.10 0.27

0.9 0.10 0.31 0.06 0.14

errors to the true data. Given ξ, the measurement error variance was calculated from

equation (3.3.18) as σ2
u = ξ−1− 1. Standard normal errors, U1, . . . , Un were scaled by

σ2
u and added to the true data to form the sample of observations, W1, . . . ,Wn. In a

final step, extra covariates were generated as 8× 1, N(0, I8) vectors, independent of

X1, . . . , Xn and Z1, . . . ,Zn, for computing under-fit and over-fit regression models.

An under-fit model was computed with pu = 2 of the twelve total covariates, and an

over-fit model was computed with po = 8 of the twelve covariates.

We discuss the simulation results first for the case of normally distributed model

errors. An analysis of variance (ANOVA) calculated with the factors, R2, ξ, Estima-

tor, and Coefficient Pattern showed that 99% of the variation in integrated squared

error that was explained by these factors could be attributed to the main-effects,

two-way interactions, and three-way interaction of R2, ξ, and Estimator. The effect

of the coefficient pattern vector was not significant, and reported results are pooled
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over this factor.

Average integrated squared errors are plotted in Figure 3.1 and reveal that in all

cases considered, the regression-assisted deconvolution estimator yields a significantly

smaller integrated squared error than the naive estimator. It is even superior to the

true-data estimator for small values of R2. This seemingly anomalous finding is

explained by the fact that the true-data kernel density estimator does not make use

of any assumptions about the distribution of X. Underlying the construction of the

regression-assisted estimator is the implicit assumption that the density of X has a

normal component. The regression-assisted estimator exploits this assumption and

thus it is not surprising that it can beat the true-data estimator when the assumption

is true, as it is in the case under consideration.

The regression-assisted deconvolution estimator calculated from the under-fit model

performs significantly better when R2 is large than does the estimator calculated from

either the correctly-specified or over-fit models. This is explained by the fact that

both the data and errors in the regression of W on Z are normally distributed. In

this case, the additional error from fitting a model with too few covariates is nor-

mally distributed, and is incorporated into the regression errors with no violation of

assumptions. Thus, apart from the effect of selecting the best two predictors, the

under-fit model is not truly misspecified. The fact that it is sometimes better is likely

due to the fewer number of parameters that are estimated in the under-fit model.

That the regression-assisted deconvolution estimator performs well when the as-

sumption of normal model errors is met is not surprising. We now discuss the results
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Figure 3.2: Average ISE by R2 for Simulation 1 with standardized Chi-square model
errors. Top row: Standardized Chi-square(4) errors; Left: ξ = 0.7; Right: ξ = 0.9.
Bottom row: Standardized Chi-square(16) errors; Left: ξ = 0.7; Right: ξ = 0.9.

Circle: f̂true(x); Triangle: f̂naive(x); Star, solid line: f̂x(x); Star, dotted line: f̂und(x);

Star, dashed line: f̂ovr(x). Standard error of mean ISE is 0.00027 for Chisquare(4)
errors and 0.00021 for Chisquare(16) errors.
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of simulations that considered standardized Chi-squared(16) and standardized Chi-

squared(4) model errors. In both sets of simulations, the main-effects and interactions

among the factors R2, ξ, and Estimator accounted for over 99% of the explained

variability in the integrated squared error, and results were again pooled over the

coefficient-pattern factor. Figure (3.2) shows average integrated squared errors for

these simulations and suggests that the regression-assisted deconvolution estimator

should be used cautiously when regression errors are believed to be non-normal. The

integrated squared error is most strongly influenced by non-normality when R2 is

small and the distribution of the regression errors is highly skewed. However, non-

normality was detected consistently in these cases with the D’Agostino-Pearson K2

test. The power of this test for detecting non-normality in the residuals from the

correct model fit is summarized in Table 3.3.1. There was little or no effect on the

performance of the regression-assisted deconvolution estimator from under-fitting or

over-fitting the regression model.

3.3.2 Simulation 2: Estimation When fx(x) is a Normal Mix-

ture Density

The aim of this simulation was to develop an understanding of how well the

regression-assisted deconvolution estimator uncovers bimodal features in the true-

data density. We investigated the case where fx(x) is a normal mixture density and

the conditional mean and variance of X given Z are given by equation (3.3.12), the
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same as in Simulation 1. We considered the true-data model

Xj = −bα + bYj + βT Zj + σxεj, j = 1, . . . , n, (3.3.20)

where Yj is a Bernoulli(α) random variable, Zj is a p × 1, N(0, Ip) random vector,

εj is a N(0, 1) random variable, and Yj, Zj, and εj are mutually independent. It

follows that X1, . . . , Xn is a random sample from an {α : (1−α)} mixture of normals

having means b(1−α) and −bα respectively, and common variances βT β + σ2
x. From

equation (3.3.20), it is seen that E(X) = 0 and Var(X) = b2α(1−α)+βT β +σ2
x. We

standardized X by constraining this variance to equal one, i.e.

b2α(1− α) + βT β + σ2
x = 1. (3.3.21)

Adding normal measurement error to equation (3.3.20) results in the observed-

data model,

Wj = −bα + bYj + βT Zj + σxεj + σuUj,

where Uj is a N(0, 1) random variable that is independent of Yj, Zj, and εj for

j = 1, . . . , n. The observed data form a random sample from an {α : (1−α)} mixture

of normals with means b(1−α) and−bα, and common variances βT β+σ2
x+σ2

u = 1+σ2
u.

The same factors were considered in this simulation as were considered in Simu-

lation 1. Factors and their levels are summarized in Table 3.3.2. Note that for the

model in equation (3.3.20), the theoretical coefficient of determination is

R2 =
Var(bYj + βT Z)

Var(X)
=

b2α(1− α) + βT β

b2α(1− α) + βT β + σ2
x

.
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Table 3.3: Factors and levels included in the Simulation 2.

Factor Levels

R2 0.1 0.3 0.5 0.7 0.9

ξ 0.7 0.9

Estimator f̂x(x) f̂und(x) f̂ovr(x) f̂naive(x) f̂true(x)

Coefficient Pattern [1, 1, 1]T [1, 1/2, 1/2]T [1, 2/3, 1/3]T

fε(ε) N(0, 1) Chi-squared(16) Chi-squared(4)

R2 was varied at the five levels, 0.1, 0.3, 0.5, 0.7 and 0.9. From equation (3.3.21),

R2 = b2α(1− α) + βT β. (3.3.22)

This induces the constraint that R2 ≥ b2α(1−α). The parameters b and α determine

the appearance of distinct modes in fx(x), and for small values of R2, the modes of

densities that satisfy this constraint are obscured. In this simulation, we allowed the

true-data density to vary with R2. We fixed α = 0.7 and chose b close to its maximum

value for each R2, resulting in the variety of shapes for the true-data density displayed

in Figure 3.3. Although this complicates comparisons of estimators among levels of

R2, comparisons within levels of R2 are straightforward.

The reliability ratio, ξ in equation (3.3.18), was also included as a factor in this

simulation and was varied at the two levels 0.7 and 0.9.

To investigate the effects of model misspecification, we again generated extra

covariates for computing under-fit and over-fit regression models. The covariates Y

and a 3×1 vector Z were related to X by the model in equation (3.3.20). These were
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Figure 3.3: 70-30 normal mixture densities with means ±b for different values of R2.
A: R2 = 0.1, b = 0.6; B: R2 = 0.3, b = 1.1; C: R2 = 0.5, b = 1.5; D: R2 = 0.7, b = 1.8;
E: R2 = 0.9, b = 1.9.

used to fit the correctly-specified model and compute the estimator f̂x(x). Additional

8×1 vectors of covariates were generated and were with X, and were used to construct

under-fit and over-fit regression models for computing the estimators f̂und(x) and

f̂ovr(x). Observed data were regressed on all twelve covariates. The under-fit model

was computed with the covariates corresponding to the largest pu = 2 absolute t-

statistics, and the over-fit model with the covariates corresponding to the largest

po = 8 absolute t-statistics.

Also considered was the pattern of correlations between X and Z. In this simu-

lation, the 3× 1 vector β is determined by R2, b, and α, and from equation (3.3.22),

βT β = R2 − b2α(1− α).

The pattern of the regression coefficients was controlled by scaling β with the coeffi-
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Figure 3.4: Average ISE by R2 for Simulation 2 with normal model errors. Left:
ξ = 0.7. Right: ξ = 0.9. Circle: f̂true(x); Triangle: f̂naive(x); Star, solid line: f̂x(x);

Star, dotted line: f̂und(x); Star, dashed line: f̂ovr(x). Pooled standard error of mean
ISE is 0.00025.

cient pattern vector β∗,

β = β∗
√
{R2 − b2p(1− p)}/(βT∗ β∗). (3.3.23)

Three different patterns were considered by assigning to β∗ the values [1, 1, 1]T ,

[1, 1/2, 1/2]T and [1, 2/3, 1/3]T .

The robustness of the regression-assisted deconvolution estimator to skewed model

errors was investigated by generating model errors from standardized Chi-squared(16)

and Chi-squared(4) densities. Note that in general, when model errors follow a stan-

dardized Chi-squared(d) density, fx(x) is the convolution of a normal mixture density

and the Chi-squared(d) density centered at 0 and scaled to have variance σ2
x. The

likelihood that these departures from normality would be detected in the residuals

from the regression of W on (Y, Z) was investigated for the correctly-specified model.
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As in Simulation 1, regression residuals from each simulated data set were tested with

the D’Agostino-Pearson K2 statistic.

A total of 200 data sets with n = 100 observations were generated for each combi-

nation of the factor levels. Each data set was generated as follows. First, Y1, . . . , Yn

were generated as independent Bernoulli(0.7) random variables, and Z1, . . . ,Zn were

generated as independent N(0, I3) random vectors. Second, given levels of R2 and

the coefficient pattern factor, β was calculated from equation (3.3.23). Third, model

errors, ε1, . . . , εn, were generated from fε(ε) and scaled by σ2
x = 1 − R2. With b de-

termined by the level of R2, these components were combined according to equation

(3.3.20) to form the true-data sample, X1, . . . , Xn. Next the observed-data sample

was generated. Given ξ, N(0, 1) measurement errors, U1, . . . , Un were generated

and scaled to have variance σ2
u = ξ−1 − 1. Adding these errors to the true data

produced the observed-data sample W1, . . . ,Wn. Finally, for computing the over-fit

and under-fit regression models, additional N(0, I8) random variables were generated

independently of X1, . . . , Xn and (Y1,Z1), . . . , (Yn,Zn).

Average integrated squared errors are displayed in Figure 3.4 for normal model

errors and Figure 3.5 for Chi-square model errors. In all cases, an analysis of vari-

ance model computed with the factors R2, ξ, and Estimator and Coefficient Pattern

showed that at least 99% of the explained variation in the integrated squared error

could be attributed to the main-effects, two-way interactions, and three-way interac-

tion of R2, ξ, Estimator, and their interactions. Results are pooled over the factor

Coefficient Pattern. When model errors are normally distributed, the regression-
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Figure 3.5: Average ISE by R2 for Simulation 2 with standardized Chi-square model
errors. Top row: Standardized Chi-square(4) errors; Left: ξ = 0.7; Right: ξ = 0.9.
Bottom row: Standardized Chi-square(16) errors; Left: ξ = 0.7; Right: ξ = 0.9.

Circle: f̂true(x); Triangle: f̂naive(x); Star, solid line: f̂x(x); Star, dotted line: f̂und(x);

Star, dashed line: f̂ovr(x). Standard error of mean ISE is 0.00048 for Chisquare(4)
errors and 0.00036 for Chisquare(16) errors.
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Table 3.4: Power of the D’Agostino-Pearson K2 test in Simulation 2 to detect non-
normality in observed-data regression residuals from the correct model fit, when true
model errors are standardized Chi-square(4) and Chi-square(16) random variables.

Chi-square(4) Chi-square(16)

R2 ξ = 0.7 ξ = 0.9 ξ = 0.7 ξ = 0.9

0.1 0.64 0.90 0.23 0.43

0.3 0.56 0.87 0.25 0.39

0.5 0.41 0.83 0.16 0.33

0.7 0.26 0.70 0.09 0.25

0.9 0.09 0.33 0.07 0.11

assisted deconvolution estimator is superior to the naive estimator for all values of R2

and ξ, and performs at least as well as the true-data estimator. The effects of model

misspecification were generally not significant.

The regression-assisted deconvolution estimator is less effective when model errors

are Chi-squared distributed, particularly when errors are highly skewed and R2 is

small. Our estimator performed significantly worse than the naive estimator when

errors were Chi-squared(4) distributed, R2 was equal to 0.1, and ξ was equal to

0.9. In general, the D’Agostino-Pearson K2 statistic was effective in detecting non-

normality in the residuals from the regression of W on Z in the situations where the

regression-assisted deconvolution estimator performed weakly. The power of this test

is summarized in Table 3.3.2 for residuals from the correctly specified model.
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3.3.3 Simulation 3: Estimation When fx(x) is the Standard-

ized Chi-squared(9) Density

In this simulation, we investigated the regression-assisted deconvolution estima-

tor’s ability to uncover skewness in the true-data density. We examined the case

where fx(x) is the Chi-square(9) density, standardized to have mean 0 and variance

1. Our objective was to consider the model where for j = 1, . . . , n,

Xj = βT Zj + σxεj,

Zj is a p×1 vector of covariates and εj is a N(0, 1) random variable that is independent

of Zj.

In Simulations 1 and 2, we specified appropriate distributions for the covariates

and the model errors to yield a random sample of true data from the desired density,

fx(x). However with ε normally distributed, it is not possible to specify Z so that the

density of X in equation (3.3.28) is Chi-squared. Instead, we specified distributions

for the true data and model errors first, and used these to determine the covariate

vector. Let c = [c1, c2, . . . , cp]
T be a vector of constants, and set

Z = cX + σxε, (3.3.24)

where the components of ε = [ε1, ε2, . . . , εp]
T are independent N(0, 1) random vari-

ables, and are independent of X. We define the parameter vector γ as the theoretical

least squares estimate of c, i.e.,

γ = {E(ZZT )}−1E(XZ). (3.3.25)

103



Evaluating equation (3.3.25) yields

γ = c(||c||2 + σ2
x)
−1, (3.3.26)

and so γT X is the best linear approximation to the regression of X on Z.

Structuring our simulation in this fashion introduces both nonlinearity and non-

normality into the regression of X on Z. Denote the conditional mean and variance

of X given Z by

E(X| Z) = µx(Z, γ) and Var(X| Z) = σ2
x(Z, γ, θ), (3.3.27)

and note that here, the conditional variance of X given Z is not a function of µx(Z, γ).

The true-data regression model is

Xj = µx(Zj, γ) + εjσx(Zj, γ, θ), j = 1, . . . , n, (3.3.28)

and X1, . . . , Xn is a random sample from the standardized Chi-square(9) density. The

mean and variance functions in equation (3.3.28) are nonlinear in γ. Moreover, the

regression residuals, ε1, . . . , εn are both non-normal and are nonlinear in γ. The exact

form and extent of the nonlinearity and non-normality in the true-data model are

difficult to understand.

An observed-data regression model follows by adding N(0, 1) measurement errors

to equation (3.3.28),

Wj = µx(Zj, γ) + εjσx(Zj, γ, θ) + σuUj, j = 1, . . . , n. (3.3.29)

As in Simulations 1 and 2, a variety of factors were controlled to understand

104



Table 3.5: Factors and levels included in Simulation 3.

Factor Levels

R2 0.1 0.3 0.5 0.7 0.9

ξ 0.7 0.9

Estimator f̂x(x) f̂und(x) f̂ovr(x) f̂naive(x) f̂true(x)

Coefficient Pattern [1, 1, 1, 1]T [1, 1, 1/2, 1/2]T [1, 3/4, 1/2, 1/4]T

the performance of the regression-assisted deconvolution estimator to several key

modeling components. These are described next and summarized in Table 3.3.3.

The coefficient of determination R2 for the regression of X on Z affects the pre-

cision of the predicted values from the regression of W on Z. A definition for R2

follows by noting that from equation (3.3.24), the residual variance for the regression

of X on Z can be expressed as

τ 2 = E{(X − γT Z)2}. (3.3.30)

Because Var(X) = 1, R2 = 1 − τ 2 describes the proportion of variation in X ex-

plained by regression on Z. Substituting the expression for γ in equation (3.3.26)

into equation (3.3.30) and simplifying gives

R2 =
||c||2

||c||2 + σ2
x

. (3.3.31)

R2 was varied at the five levels 0.1, 0.3, 0.5, 0.7, and 0.9. Note that as σ2
x increases, R2

decreases, implying that the non-normality of the model errors will be most apparent

for small values of R2.
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The reliability ratio was also included as a factor in this simulation and was varied

at the two levels, 0.7 and 0.9.

The effects of model misspecification were investigated in several ways. The func-

tions µx() and σ2
x() in equation (3.3.29) are unknown and cannot be modeled directly.

Using a multiple linear regression model with constant variance to approximate the

true-data model in equation (3.3.28) leads to the approximate observed-data model,

Wj ≈ βT Zj + σxεj + σuUj (3.3.32)

for j = 1, . . . , n. Estimates from this model were used to compute the regression-

assisted deconvolution estimator. Thus, these simulations indicate the estimator’s

sensitivity to overlooking nonlinearity in the mean and variance functions. In addi-

tion, because the true variance of X given Z in equation (3.3.27) is not a function of

the mean, this approximation further misspecifies the variance function by modeling

it as though it were.

The effects of over-fitting and under-fitting the linear regression model in equation

(3.3.32) were investigated as well. We set p = 4, so that Z in equation (3.3.24) was a

4× 1 vector of covariates. Eight additional covariates were generated as independent

N(0, 1) random variables, and were uncorrelated with X. These were used to com-

pute the under-fit model with pu = 2 covariates and the over-fit model with po = 8

covariates. Covariates with the largest absolute t-statistics from the linear regres-

sion of W on all twelve covariates were selected for the under-fit and over-fit models.

Predicted values and estimated variances from the correctly-specified, under-fit, and
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Figure 3.6: Average ISE by R2 for Simulation 3. Left: reliability ratio=0.7. Right:
reliability ratio=0.9. Circle: f̂true; Triangle: f̂naive; Star, solid line: f̂x for correct
model fit; Star, dashed line: f̂x for over-fit model; Star, dotted line: f̂x for under-fit
model. Pooled standard error of mean ISE is 0.00030.

over-fit models were used to compute the estimators f̂x(x), f̂und(x), and f̂ovr(x).

A coefficient pattern factor was also included in this simulation. From equation

(3.3.26), it is seen that the components of the vector c control the relative strengths of

the correlations between X and the p = 4 true covariates. Patterns for the magnitudes

of the correlations between X and the covariates in Z were determined by specifying

c. Three patterns were considered for these correlations, [1, 1, 1, 1]T , [1, 1, 1/2, 1/2]T ,

and [1, 3/4, 1/2, 1/4]T .

Because non-normality is induced in the model errors, ε1, . . . , εn, through the

structure of this simulation, we did not consider the density fε(ε) as a factor.

A total of 200 data sets with n = 100 observations were generated for each com-

bination of the factor levels. Data sets for the simulation were generated as follows.
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First, true data X1, . . . , Xn were generated as standardized Chi-square(9) random

variables. Next, given levels of R2 and the coefficient pattern factor, the residual

variance σ2
x was determined from equation (3.3.31). Model errors, ε1, . . . , εn were

generated as independent N(0, 1) random variables and were scaled to have variance

σ2
x. The covariate vectors, Z1, . . . ,Zn, were then constructed with equation (3.3.24).

The sample of observed data was generated next. Given a level of ξ, normal measure-

ment errors U1, . . . , Un were generated and scaled to have variance σ2
u = 1−ξ−1. These

were added to the true data to produce the sample of observed data, W1, . . . ,Wn.

An analysis of variance was computed with the simulation factors and showed that

the main-effect and all interactions of the factor Coefficient Pattern explained less

than 1% of the variation in the integrated squared error. Average integrated squared

errors are plotted in Figure (3.6), with results pooled over the factor Coefficient

Pattern. It is evident that the regression-assisted deconvolution estimator performs

poorly for small to moderate values of R2 when the reliability ratio is large. In these

cases, the residuals from the regression of W on Z are most affected by the non-normal

model errors. Discouragingly, the D’Agostino-Pearson K2 test was only marginally

effective at detecting non-normality in these cases. The power of this test to detect

non-normality in the regression residuals from the correct model fit is summarized in

Table 3.3.3. The results of this simulation emphasize that if our estimator is to be

used, careful thought must be given to the correct model for the conditional mean

and variance of X given Z.
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Table 3.6: Power of the D’Agostino-Pearson K2 test in Simulation 3 to detect non-
normality in observed-data regression residuals from the correct model fit.

R2 ξ = 0.7 ξ = 0.9

0.1 0.30 0.54

0.3 0.14 0.27

0.5 0.08 0.14

0.7 0.06 0.07

0.9 0.07 0.05

3.4 An Application

In this section, we illustrate the regression-assisted deconvolution estimator with

a real-data example. Data are measurements of carbon monoxide (CO) in automobile

emissions, collected with a U.S. EPA remote sensing device. This device is stationed

along a roadway and measures the levels of various compounds in the exhaust of

passing automobiles. Researchers at the U.S. EPA use density estimates of the levels

of various pollutants in automobile exhaust to gain an understanding of the charac-

teristics of the subpopulation of automobiles that are heavy polluters and may be out

of compliance with regulations. However, remotely measured concentrations of com-

pounds such as CO are subject to error from several sources including environmental

conditions, the automobile’s acceleration and engine temperature, and instrument

error.

Measurements of CO were recorded over several days at a single location in North
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Figure 3.7: Histogram of regression residuals from the linear regression model fit to
the observed log-transformed CO measurements.

Carolina. In addition to the CO measurements, the license plate of each passing car

was photographed, allowing measurements to be identified to individual automobiles.

Covariates describing various characteristics of the automobiles were obtained through

the license plate information. These included the date of manufacture, as well as

engine features that affect emissions. Because of the multiple sources of error in the

measurements, we assumed that the measurement error structure of the original data

was multiplicative. We log-transformed data to achieve an additive error structure,

and estimated the density function of the log-transformed CO levels. For comparison,

we present results from both the regression-assisted deconvolution estimator and the

naive estimator that ignores measurement error.

Data represent measurements from a total of 8576 automobiles. Multiple mea-

surements were taken of automobiles that passed the study location more than once,
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and these were used to estimate the measurement error variance. Of the 8576 auto-

mobiles in the data set, 6933 were measured once, 1478 were measured twice, 165 were

measured three or more times. Using the replicate measurements from the m = 1478

twice-observed automobiles, we estimated the measurement error variance by

σ̂2
u =

1

2m

m∑
j=1

(W1 −W2)
2,

which resulted in the estimate σ̂2
u = 2.1420.

Both the regression-assisted deconvolution estimator in equation (3.2.8) and the

naive estimator in equation (3.3.10) were computed using data from the 6933 automo-

biles that were observed only once. With the estimate of measurement error variance,

the reliability ratio for these data was estimated to be 0.65.

We used multiple linear regression to model the log-transformed CO measurements

with the available covariates, and our model resulted in a coefficient of determination

of only R2 = 0.16. The hypothesis that the regression residuals from this model were

normally distributed was rejected by the D’Agostino-Pearson K2 test (p < 0.005).

This is not too surprising, however, considering the large number of observations in

the data set. A histogram of the regression residuals is shown in Figure 3.7, and

shows that the residuals appear close to normally distributed.

The estimated variance from the observed-data regression was MSE=2.819, so

that the model error variance from the true-data regression was estimated as σ̂2
x =

2.819 − 2.142 = 0.677. This estimated variance and the predicted values from the

observed-data regression were used to compute the regression-assisted deconvolution
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Figure 3.8: Estimates of the density function of log-transformed CO levels in auto-
mobile exhaust. Solid line: Regression-assisted deconvolution estimate; Dashed line:
Naive estimate.

estimator in equation (3.2.8), with the bandwidth λ set to 0. The naive estimator in

equation (3.3.10) was computed directly from the observed measurements, with the

plug-in bandwidth λ = 0.329 estimated with equation (3.3.11).

Density estimates are presented in Figure 3.8. Measurement error, when uncor-

rected, generally results in a density estimate that is overly flat and smooth. The

regression-assisted deconvolution estimate in Figure 3.8 is distinctly higher-peaked

and thinner-tailed than the naive estimate, as is typical when the effects of measure-

ment error are corrected. It is clear from the figure that tail probabilities estimated

from the regression-assisted deconvolution estimate will be much smaller than those

estimated from the naive kernel density estimate. However, the presence of distinct
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modes in the naive estimate suggests that our estimator is over-compensating for the

effects of measurement error. The three modes might indicate distinct populations

in the data. More complicated regression models could be explored and might better

address these characteristics, and perhaps increase the model R2.

3.5 Summary

This chapter introduced a regression-assisted deconvolution estimator for the den-

sity function of an error-prone variable X. The estimator assumes that the conditional

mean and variance of X given Z can be estimated by the regression of the observed

data on Z. The estimator also assumes that both regression errors and measurement

errors are normally distributed. It was argued in Section 2 that when these assump-

tions are met, the rate of convergence of the estimator is determined by the minimum

rate of convergence of the estimated mean and variance functions.

Results of a simulation study suggested that when the assumptions of the re-

gression model and the normality of regression errors are met, the density of X is

well estimated by the regression-assisted deconvolution estimator. In many cases, it is

competitive with the true-data kernel density estimator in terms of integrated squared

error. The performance of the estimator was seen to depend on the strength of the

relationship between X and Z (R2) and the relative variances of W and X (ξ). Cor-

rectly specifying the form of the mean and variance functions (linear, nonlinear) was

seen to be critical to the estimator’s performance. However model misspecification in
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terms of under-fitting and over-fitting the regression model generally was less impor-

tant. The assumption of normal regression errors was also seen to be very important.

Even when not met, however, in many of the cases considered the regression-assisted

deconvolution estimator continued to outperform the naive kernel density estimator

in terms of integrated squared error.

Our results, both theoretical and empirical, indicate that the regression-assisted

deconvolution estimator is a potentially powerful tool for deconvolution. Further

research is needed, however, to fully appreciate the estimator’s potential.

First, a more rigorous examination of the estimator’s asymptotic properties is

needed to confirm the heuristic arguments presented in this chapter. Besides lending

further credibility to the method, this would provide a framework in which further

modifications to the estimator could be easily examined.

Second, our simulation results suggested that the estimator is very sensitive to cer-

tain types of model misspecifications. However, our simulations considered only fully

parametric regression models. Modeling approaches that make fewer parametric as-

sumptions should be less sensitive to incorrect model specification. The performance

of the estimator when models are fit using semi-parametric and nonparametric meth-

ods should be investigated. A comparison among methods that rely on a varying

degree of parametric assumptions would provide important guidelines for the estima-

tor’s use in practice. Understanding the possible drawbacks and gains from imposing

increasingly restrictive assumptions would help users decide on the best modeling

approach for a given situation.
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Finally, to a large extent, the assumption of normal model errors drives the success

of the regression-assisted deconvolution estimator, and increases its rate of conver-

gence relative to nonparametric deconvolution estimators. However, it was seen that

the estimator can perform poorly when the normality assumption is not met. An al-

ternative approach is to estimate the density of the model errors using nonparametric

deconvolution on the observed-data regression residuals. This estimated density, in

place of the standard normal density, would then be recombined with the kernel esti-

mate of the predicted values. Additional research is needed to determine whether this

approach would offer any advantages over traditional nonparametric deconvolution

estimators.
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