
Abstract

RAMACHANDRA, GIRISH A. Optimal Dynamic Resource Allocation in Activity Networks.
(Under the direction of Professor Salah E. Elmaghraby).

We treat the problem of optimally allocating resources of limited availability under un-

certainty to the various activities of a project to minimize a certain economic objective

composed of resource cost and tardiness cost. Traditional project scheduling methods as-

sume that the uncertainty resides in the duration of the activities. Our research assumes

that the work content (or “effort”) of an activity is the source of uncertainty and the dura-

tion is the result of the amount of resource allocated to the activity, which then becomes the

decision variable. The functional relationship between the work content (w), the resource

allocation (x), and the duration of the activity (y) is arbitrary, though we assume that the

relationship obeys the “power law.” In other words, y = f(w, xγ), where the exponent γ is

some constant.

As preliminary, we first treat the problem assuming that the work content is known de-

terministically. We develop two new models, a nonlinear programming model, which can

be used when resource availabilities are continuous, and an integer program that handles

the case when resource availabilities are discrete. When the work content is known only

in probability, we first treat the special case when the work content is exponentially dis-

tributed. This results in a continuous-time Markov chain with a single absorbing state. We

establish convexity of the cost function and develop a Policy Iteration–like approach that

achieves the optimum in a finite number of steps. In case of arbitrary probability distribution

of the work content, we develop a simulation-cum optimization method that incorporates

sampling optimization and variance reduction techniques, and which can be used for the

purposes of estimation of total project cost, resource consumption levels, etc.

OPTIMAL DYNAMIC RESOURCE ALLOCATION
IN ACTIVITY NETWORKS

BY

GIRISH A. RAMACHANDRA

A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY OF

NORTH CAROLINA STATE UNIVERSITY

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

INDUSTRIAL ENGINEERING

RALEIGH

MAY 2006

APPROVED BY:

DR. SUBHASHIS GHOSAL DR. MATTHIAS F. STALLMANN

DR. ABDELHAKIM ARTIBA DR. JAMES R. WILSON

EXTERNAL COMMITTEE MEMBER

DR. SALAH E. ELMAGHRABY

CHAIR OF ADVISORY COMMITTEE

To my parents, Dr. R. N. Bhat and Smt. Shantha R. Bhat.

ii

Biography

Girish Ramachandra was born on February 2nd, 1974 in Bangalore, India. He earned his

Bachelors degree in Mechanical Engineering in 1995 from National Institute of Technology

(formerly known as Karnataka Regional Engineering College) at Suratkal, India.

He then joined Larsen & Toubro group of companies, Mumbai, India, where he worked

in their earth moving equipment manufacturing division for four years in production plan-

ning and materials control.

In 1999, he joined North Carolina State University to pursue his graduate studies in

Industrial Engineering, where he received his Masters degree in Industrial Engineering in

2002. During the period August 2001 to May 2002, he worked as a student research as-

sociate with Logistics Management Institute, McLean, VA USA, in their Resource Analysis

Group.

In 2002, he enrolled in the doctoral program in Industrial Engineering in the IE depart-

ment (now known as Edward P. Fitts Department of Industrial and Systems Engineering) at

NCSU, where he will earn a Ph.D. degree in August 2006. During the period May 2004–May

2006 he worked part-time as a technical student in the Operations Research group at SAS

Institute, Cary, NC USA.

iii

Acknowledgements

First and foremost, I thank Dr. Elmaghraby for his help, guidance, and support — financial,

intellectual, and moral — during the course of my graduate study at NCSU. I consider

myself very fortunate to have had the opportunity to work with him. I thank my committee

members, Dr. Jim Wilson, Dr. Matt Stallmann, Dr. Ghosal, and Dr. Artiba for their insightful

comments and for carefully reviewing my dissertation. I thank Dr. Lunardi for attending my

preliminary and final exams as the graduate school representative. I am grateful to Dr. Fang

and Dr. Nuttle for providing me with financial support at critical times during my graduate

study. Thanks also to Cecilia for being such a wonderful graduate assistant.

I feel fortunate to have met a lot of nice people since arriving in Raleigh. Special thanks

goes to Shashi Adiga, who made life a lot easier for me during the first few months. I will

always appreciate his unflinching willingness to offer help and support. Thanks to Narahari

for being such a fantastic person to live with. The last four years were memorable and I

will definitely miss all the good times. Thanks to Abhinand and Shrini for their friendship

and the wonderful times I spent hanging out with them. Thanks to all my friends — Harish,

Gautam, Srivatsan, Bhavin, Srikant Nalatwad, Vinay, Rajasimhan, Raghuram, and many

others — for making ‘Apt. 2512-201’ such a lively and entertaining place!

Thanks to my office mates Xiaoli, Sean, Yong, and others for their friendship and help.

Special thanks to Burcu Özçam for being such a wonderful friend, and for all the help

and support she provided during my stay at NCSU. Thanks also to Girish Kulkarni, Jawad,

Sriram, Sridhar Dasu, Parikshit, and Akhil for being such good friends and peers — I enjoyed

spending time with you guys!

Thanks to Naveen, Anjali, and Tanay for being like family to me — I always enjoyed

your company (and the food, of course!) and I will definitely miss you folks. Thanks also

iv

to Vijay and Vaidehi for their friendship and wonderful hospitality.

I am extremely grateful to SAS Institute, Cary NC USA, for providing me financial sup-

port through the last two years of my doctoral study. Special thanks to Radhika and Gehan

for providing me the opportunity to work with them. I learned a lot during that time,

and also made some good friends. Lindsey, Emily, Nilesh, Richard, Laura, Bengt, Balaji,

and the rest of the SAS ORD group — thanks for the numerous enjoyable lunch-time (and

office-time!) discussions.

I am extremely thankful to my parents for their constant support and encouragement. I

salute their patience and their unconditional faith in my abilities over the years. I am also

thankful to my cousins and their families for their support during my stay in the USA. They

have always been there whenever I needed them. Lastly, I like to thank my fiancee, Smita,

for her support and patience during the last six months of my doctoral study.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Background . 1
1.2 Underlying Hypothesis . 1
1.3 Problem Statement . 2
1.4 Scope and Objectives of Research . 3
1.5 Organization of the Dissertation . 3

2 Literature Review 5
2.1 Introduction and Classification of RCPSP . 5
2.2 Unimodal and Multimodal RCPSP . 6
2.3 Optimal Resource Allocation . 11

3 Optimal Resource Allocation – Deterministic Case 13
3.1 Nonlinear Programming Model . 14

3.1.1 Unconstrained Activities . 14
3.1.2 Individually Constrained Activities 19
3.1.3 Aggregate Resource Constraints . 22
3.1.4 Limitations of the NLP Model . 28

3.2 Integer Programming Formulation . 29
3.3 Setup of Computational Experiments for the IP Formulation 31

3.3.1 Computational Results: Category 1 32
3.3.2 Computational Results: Category 2 35
3.3.3 Observations from Computational Experiments 35

4 Optimal Resource Allocation – Stochastic Case 36
4.1 Problem Statement and Assumptions . 36
4.2 Policy Iteration–like Approach . 37

4.2.1 Continuous-Time Markov Chain . 38

vi

4.2.2 Phase Type Distribution . 39
4.2.3 Details of the Policy Iteration–like Procedure 41

4.2.3.1 Illustrative example . 41
4.2.4 Limitations of the PI-like Approach 47

4.3 Overview of Stochastic Programming . 48
4.3.1 Application of Stochastic Programming in Stochastic Project Scheduling 50
4.3.2 Inapplicability of Stochastic Programming to Our Problem 51

4.4 Approach Via Simulation-Cum Optimization 54
4.4.1 Variance Reduction Techniques . 54

4.4.1.1 Latin Hypercube Sampling (LHS) 55
4.4.2 Numerical Example . 57

5 Conclusions and Future Research 63
5.1 Main Conclusions of the Research . 63
5.2 Directions for Future Research . 65

A Generation of Test Networks 71
A.1 Initial Framework . 72
A.2 The Generation of the Network . 72

B Listing of AMPL Code 74
B.1 Nonlinear Programming Model . 74
B.2 Integer Programming Model . 77

B.2.1 AMPL model file . 77
B.2.2 AMPL data file . 78

vii

List of Tables

2.1 Unimodal RCPSP Classification . 7
2.2 Multimodal RCPSP Classification . 8

3.1 Parameters of the Example Project. 18
3.2 Optimal solution—No Resource Constraints; Fixed Deadline. 20
3.3 Optimal Node Realization Times—No Resource Constraints. 20
3.4 Optimal Solution — Individual Resource Constraints. 21
3.5 Optimal Node Realization Times — Individual Resource Constraints. 21
3.6 Cutsets in the Example Project. 23
3.7 Optimal solution — Aggregate Resource Constraints. 27
3.8 Optimal Node Realization Times — Aggregate Resource Constraints. 27
3.9 Resource Allocation across the udc’s. 27

4.1 Values of Expected Total Cost for Fixed Allocations (x1, x2) and Varying x3 . 45
4.2 Sample Output of LHS . 56
4.3 Data for Example Network 3 . 57
4.4 Summary of Results for Project Completion Costs from Monte Carlo (MC)

and LHS Runs . 59
4.5 P -deciles for the Resource Allocation Vector (Uniform (LHS) Case) 59
4.6 Lower and Upper Bounds forWj . 62
4.7 P -deciles of Total Cost for Varying Values of R (R = 5, 6, 7, 8,∞) 62

viii

List of Figures

3.1 Tardiness Cost Function. 17
3.2 Example Network 1. 19
3.3 Project with udc’s marked. 24
3.4 Comparison of Computation Times: R = 5, n = 20, T = 20, 40, 60, 80. . . 33
3.5 Comparison of Computation Times: R = 5, n = 30, T = 20, 40, 60, 80. . . 33
3.6 Comparison of Computation Times: R = 7, n = 40, T = 20, 40, 60, 80. . . 34
3.7 Comparison of Computation Times: R = 7, n = 50, T = 40, 60, 80. 34
3.8 Comparison of Computation Times: T = 40, n = 40, R = 7, 8, 9, 10. . . . 35

4.1 Example Network 2 and its State Space . 42
4.2 Surface Plot of Resource Allocations versus Total Cost 46
4.3 Example Network 3. 52
4.4 Hierarchy of Cutsets (not a complete tree). 53
4.5 Example Network 4 (AoA). 61

ix

Chapter 1

Introduction

1.1 Background

An important issue that looms high in the management of real life projects is that of risk

and uncertainty. Concerns about risk are everyday worries of project managers. They rec-

ognize the uncertainty in their estimates of resources, cost, and time. The issue is not about

recognition, but about measurement (how does one measure the risk involved in a particular

action), and about coping with uncertainty, especially in relation to resource allocation.

We are concerned with the concrete actions (decision making) relative to resource allo-

cation to mitigate the deleterious effects of deviations, most of them unanticipated (known

only in probability), in the progress of the project. In other words, suppose that the risk

of a particular activity (or subset of activities) defaulting on its completion time (or cost

estimate, or resource needs) is unacceptable, what can be done to reduce the risk, if not

completely eliminate it?

1.2 Underlying Hypothesis

It is the thesis of this proposal that uncertainty resides in two domains. The first is “exter-

nal” to the activity, such as the weather conditions, worker absenteeism, equipment failure,

etc. The second is “internal” to the activity and resides in estimates of its work content

(or “effort”). Traditionally the focus has been on the former aspect (external) with little

attention to the latter (internal). And yet there are many projects, especially those with

1

CHAPTER 1. INTRODUCTION

appreciable research and development content, in which the internal factors play the dom-

inant role. Most importantly, even those studies that concerned themselves with the issues

of resource allocation are marked by strict adherence to deterministic estimates of the var-

ious parameters, ignoring (or skirting) the issue of uncertainty in the estimates of these

parameters.

Uncertainty in the work content of an activity then is typically expressed by the manager

in the form “it requires between l and u man-weeks” (where l is the lower bound and u is

the upper bound), with or without knowledge of the probability distribution of the work

content. In the face of such uncertainty in the work content the manager still has to decide

on the resources to be devoted to the activity. The duration of the activity then becomes the

consequence of the resources allocated to the activity, not the source of the uncertainty.

This perspective changes the view of risk management in a radical fashion because now

the decision is concerned with the optimal resource allocation (with its concomitant cost) in

order to achieve the desired objective; namely complete the project within the prescribed

due date (in order to avoid any penalty of tardiness) and with minimal cost of resources.

We do not suggest that one ignore the external factors; indeed, they must be taken into

consideration, sooner or later. But we wish to focus on the internal factors because the

uncertainty stemming from them is the form of uncertainty that can be managed via proper

allocation of resources dynamically.

Thus our research has two pivotal elements that distinguish it from prior studies in this

field. The first is that we consider uncertainty explicitly. And the second is that our take-off

point is the work content of the activity, not its duration.

1.3 Problem Statement

We are given a project network of n activities defined by a graph G = (N,A), in which A is

the set of arcs defining the activities and the precedence relations among them (AoA mode

of representation). Let wj(r) denote the work content of activity j relative to resource r and

xj(r) be the allocation of resource r to activity j. Define cr to be the per-unit cost of usage

of resource r, and ct to be the cost of tardiness per unit time of delay. Furthermore, let Ts

2

CHAPTER 1. INTRODUCTION

be the project due date, so that if the project completes at time tm1, then the total cost of

tardiness would be ct ·max{0, tm − Ts}. Our objective is to optimally allocate resources to

the activities such that the overall cost of resource allocation and tardiness is minimized.

1.4 Scope and Objectives of Research

The primary objective of this research is to address the problem of optimally allocating

resources, that are limited in availability, to a project while minimizing a certain economic

objective. the specific objectives can be summarized as follows:

1. Develop a mathematical model to solve the deterministic resource allocation problem

when there are (a) unlimited resources, (b) resource availability constraints on indi-

vidual resources, and (c) additional aggregate resource availability constraints across

activities that can be performed in parallel.

2. Develop mathematical models that can address the stochastic version of the problem.

Ideally, models that can be easily extended from the deterministic version.

3. Validate the mathematical models for correctness and robustness.

1.5 Organization of the Dissertation

The rest of this dissertation is organized as follows. The first part of Chapter 2 is a brief

review of literature that describes the Resource-Constrained Project Scheduling Problem

(RCPSP) and its variants, followed by some discussion on different methods used to solve

them. It also draws attention to certain classes of problems that are similar to the problem

addressed by our research. Chapter 3 discusses in detail the deterministic version of the

resource allocation problem together with the two mathematical formulations — a non-

linear programming (NLP) approach, based on the concept of uniformly directed cutsets

(udc), and an integer programming (IP) model that is time-based. In Chapter 4 we address

the stochastic version of the problem. We first discuss the Continuous-Time Markov Chain
1If the project completion time is a random variable, then we denote it by Υ.

3

CHAPTER 1. INTRODUCTION

(CTMC) approach when the work content of all activities are independent exponential ran-

dom variables. We briefly outline the solution strategy and discuss the limitations of the

approach in practice. The latter half of Chapter 4 is devoted to the case where the work

content of activities follow a general probability distribution (i.e., not necessarily exponen-

tial). The limitations of standard stochastic programming approach are discussed followed

by details of the alternate approach of simulation-cum optimization. Efficient sampling

methods to reduce sample size and sample variance are also described. Finally conclusions

and recommendations for future research are outlined in Chapter 5.

Appendix A describes the methodology used in generating the test cases for applying

and validating the proposed mathematical models. Appendix B includes (i) AMPL model

file used to solve the example in Chapter 3, and (ii) AMPL model and data files that illustrate

the IP formulation.

4

Chapter 2

Literature Review

This review is organized into three sections. In Section 2.1 we describe the Resource-

Constrained Project Scheduling Problem (RCPSP) and its classification. In Section 2.2 we

survey the work done on the unimodal and multimodal RCPSP. We are particularly inter-

ested in the multimodal problem mainly because it relates closely the concept of work con-

tent advocated here. We provide a review of the work done in the the variants of the RCPSP,

including a brief discussion of the stochastic instance of the problem. Finally in Section 2.3

we give an outline of the recent work done on the problem of optimal resource allocation

in activity networks (Tereso et al. [2001, 2003b]).

2.1 Introduction and Classification of RCPSP

Resource-constrained Project Scheduling Problems (RCPSPs) involve scheduling the activ-

ities to satisfy constraints on the availability of resources or with limited capacity in order

to meet some predefined objective related to the due date. As we shall see there are many

different objectives, and these depend on the goals of the decision maker. The most com-

mon objective seems to be minimization of makespan, i.e., minimum time to complete the

entire project. We shall discuss several variants of the RCPCP, beginning with the unimodal

one and moving on to the multimodal problem. Unimodal, or single-mode problems, imply

that each activity has a single execution mode. In other words both the activity duration

and its requirement for a set of resources are fixed and known in advance. In multimodal

problems, on the other hand, each activity can be processed in one of several modes (levels

5

CHAPTER 2. LITERATURE REVIEW

of resource application, or several “substitutable" resources). Each mode implies a different

option in terms of cost and/or duration. We broadly classify the RCPSP into the following

six categories:

1. Unimodal RCPSP (SM–RCPSP)

2. Multimodal RCPSP (MM–RCPSP)

3. RCPSP with nonregular objective functions

4. Stochastic RCPSP

5. Multi–resource constrained Project Scheduling Problem (MRCPSP)

We focus on the first four items in our review. See Garey et al. [1976] for more on the

relationship between RCPSP and the bin packing problem.

2.2 Unimodal and Multimodal RCPSP

Unimodal RCPSPs are classified into four general categories Herroelen et al. [1998a]. Through-

out our discussion we shall assume that a project is represented as a graph G = (N,A)

where the arcs represent the activities and nodes represent the start or completion of the

activities (AoA mode of representation). When we refer to precedence relations we consider

two main types—one where an activity can start any time after the completion of its pre-

decessor(s), and the other where the successor(s) can start only after the passage of some

specified time after the finish of the activity. We denote the former type by ‘S’ (for simple

succession) and the latter by ‘FSL’ (for finish-to-start lag). We also classify the problems

based on the resource availability and requirement. Resource availability may be the same

for all periods, or it may vary from period to period. Resource requirements for an activity

may also be constant throughout its duration, or it may vary over time. We distinguish

problems based on whether preemption of activities is allowed or not. Finally we classify

problems based on the objective function. As mentioned earlier, the most common objective

is to minimize makespan. However, there are other objectives that we refer to as ‘Regular,’

such as:

6

CHAPTER 2. LITERATURE REVIEW

1. minimization of weighted activity tardiness.

2. minimization of the total number of tardy activities.

3. minimization of weighted mean flow time.

Table 2.1 summarizes our classification of unimodal RCPSPs. The Basic SM-RCPSP has

been studied extensively in the literature. Typical solution strategies for this class of prob-

lems are through mathematical programming techniques: integer programming and LP

relaxation, combined with implicit enumeration (branch-and-bound), and dynamic pro-

gramming.

Table 2.1: Unimodal RCPSP Classification

Basic SM-RCPSP General General

SM-RCPSP with Precedence RCPSP

Preemption SM-RCPSP

Objective Min makespan Min makespan Min makespan Regular

Precedence S S S FSL

Resource Constant Constant Constant or Constant or

availability Time-varying Time-varying

per period

Resource Constant Constant Constant or Constant or

requirement Time-varying Time-varying

per period

Preemption No Yes No No

A variety of branch-and-bound algorithms have been developed for this problem. Most

use partial feasible schedules as a starting point and then extend them in the branching

process until a complete schedule is found. Owing to the computational complexity of

the RCPSP, several priority-rule-based heuristics have been proposed. For more details on

the various branching and pruning strategies and heuristic approaches see Herroelen et al.

[1998a].

Resources can be classified as renewable or non-renewable. Non-renewable resources get

depleted with consumption while renewable resources have the same amount of availability

7

CHAPTER 2. LITERATURE REVIEW

Table 2.2: Multimodal RCPSP Classification

Non-renewable Renewable General

resource resource MM-RCPSP

MM-RCPSP MM-RCPSP

Objective Min makespan Min makespan Regular

Precedence S S FSL

Resource Constant Constant Constant

availability within mode within mode within mode

per period

Resource Constant Constant Constant

requirement within mode within mode within mode

per period

Preemption No No No

Trade-off Time/Resource Time/Resource Time/Resource

Time/Cost

Resource/Resource

throughout the duration of the project.

In the multimodal RCPSP problem, a set of allowable execution modes can be specified

based on the estimation of work content of the activity. Each mode is characterized by a

processing time and an amount of resource of a particular type needed for completion of

the activity. A summary of classification of the multimodal RCPSP problems is shown in

Table 2.2. In the non-renewable–resource RCPSP, tasks are associated with non-renewable

resources. A cost of resource r while processing task i, ci (r), is associated with this mode.

If the set of modes for every task can be represented as a closed interval and ci (r) is an

affine and decreasing function of processing time pi, we have a linear time-cost trade-off

problem. If the set has discrete values of ci (r) then we have a discrete time-cost trade-off

(DTCT) problem.

There are two related problems — the budget problem (minimize makespan subject to

budget constraints), and the due-date problem (minimize total cost, given a due date for

each task). For the linear time-cost trade-off, Fulkerson [1961] developed an algorithm

8

CHAPTER 2. LITERATURE REVIEW

that iteratively calculates a sequence of cuts in the AoA (Activity-on-Arc) network to com-

pute the project cost curve. For the discrete case, the best known algorithms still rely on

dynamic programming (DP), but additionally exploit the decomposition structure of the

underlying network. All the reported algorithms for solving the DTCT problem exhibit ex-

ponential worst-case complexity. A notable exception is the dynamic program by Hindelang

and Muth [1997], which claimed to execute in pseudo-polynomial time. However De et al.

[1997] demonstrate that the DP is flawed, and offer a simple correction. They further

prove that the DTCT decision problem is strongly NP–complete by reduction from the 3–

SAT problem (see Garey and Johnson [1979]). Based on this result they imply that the

DTCT optimization problem is strongly NP–hard. As mentioned earlier, this class of mul-

timodal RCPSP relates very closely to the problem of concern to us in this thesis, and we

shall revisit it in Chapter 3.

The renewable-resource RCPSP has been studied in some detail with respect to makespan

minimization objective. Demeulemeester et al. [1997] present a branch-and-bound proce-

dure based on the concept of maximal acivity-mode combination. An activity-mode combi-

nation is a subset of activities executed in a specific mode; it is maximal if no other activity

can be added without causing a resource conflict. Sprecher and Drexl [1998] developed

a branch-and-bound procedure that relies on an enumeration scheme based on the “prece-

dence tree" concept. Several heuristics have been developed as well; the recent genetic

algorithm (GA) approach by Hartmann [1998] being worthy of note.

In the stochastic RCPSP, the processing time of any activity is a random variable (r.v.)

that follows some probability distribution. This problem class, while more realistic, leads

to much greater complexity in analysis. The commonly pursued objective is the minimiza-

tion of the expected makespan. Since a project contains many interdependent activities,

thereby leading to interdependent activity completion times, the probability distribution

of the project completion time is extremely difficult to determine. Often it prompts the

assumptions of independence for tractability of analysis. Such assumptions, however, can

lead to extremely misleading results in practice.

The literature on the stochastic version of DTCT is virtually void. Wollmer [1985] dis-

cussed a stochastic version of the linear time/cost trade-off problem. He discussed exten-

sions to the problem of minimizing the expected project completion time subject to a budget

9

CHAPTER 2. LITERATURE REVIEW

constraint and the problem of achieving a feasible fixed expected project completion time at

minimum cost as well as generation of the project curve. Gutjahr et al. [2000] describe a

stochastic branch-and-bound procedure for solving a specific version of the stochastic DTCT

where so-called measures (like the use of manpower, the assignment of skilled labor, etc.)

may be used to increase the probability of meeting the project due date, thereby avoid-

ing penalty costs. Stork [2001] provides an excellent insight into the stochastic resource

scheduling problem. He addresses the objective of makespan minimization and provides

branch-and-bound algorithms. He uses the classical critical path lower bound and imple-

ments some clever sorting rules, preselective policies, and dominance rules to prune the

search tree. See the handbook by Demeulemeester et al. [1997] for more details.

In a recent publication, Golenko-Ginzburg and Gonik [1997] developed a heuristic pro-

cedure for the RCPSP with stochastic activity times, with the objective of minimizing ex-

pected project duration. The procedure operates in stages where a decision is made to

schedule the next activity based on the precedence constraints and current resource avail-

ability. If several activities are fighting for limited resources, a multiple knapsack problem is

solved to select the next activities to be scheduled. The objective function of the knapsack

formulation represents the maximum total contribution of the selected activities towards

the expected project duration. The individual contribution is calculated as the product of

the average activity duration and the probability of being in the critical path during the

course of the project. The probability values are approximated by frequency values found

via simulation. The rationale for the design is to give priorities to critical activities because

of their significant impact on the expected project duration. Another recent publication

dealing with the RCPSP with stochastic activity times is due to Fernandez and Armacost

[1996]. This article warns users of off-the-shelf scheduling software of the danger of omit-

ting constraints that are nonanticipatory. Specifically, they mention that Monte Carlo based

approaches, such as those in Operar and @RISK for Project, do not incorporate nonantic-

ipatory constraints and therefore the output may be misleading. The primary output for

these software packages generally is the empirical distribution of project duration. Since

the procedures in these packages solve each scenario separately without enforcing nonan-

ticipatory constraints, they arrive to non-implementable solutions (i.e., solutions that are

based on information that is not available to the decision-maker at the time the decision

10

CHAPTER 2. LITERATURE REVIEW

was made). The work of Valls et al. [1998] provides a good example of application of

stochastic programming to stochastic project scheduling under resource constraints. They

deal with the problem of resource-constrained project scheduling with stochastic activity

interruptions, where they minimize the total expected value of weighted tardiness. We

discuss their problem in detail in section 4.3.1 of Chapter 4.

2.3 Optimal Resource Allocation

The literature has been of little help on the problem of resource allocation in project net-

works. Tereso et al. [2001, 2003a,b, 2004] deal with resource allocation in multimodal

activity networks. They address the stochastic version of the problem and assume exponen-

tial distribution for the work content of activities.

In the first paper (Tereso et al. [2001]), they present a dynamic programming approach,

in which the definition of the stage depends on a special subset of activities that are to be

“conditioned.” We further elaborate their algorithm as follows. Consider a directed acyclic

graph, G = (N,A), where the set A denotes the set of activities. The special set of activities

(denote it by F) comprises activities for which the resource allocation is “fixed” — that is,

they are no longer decision variables. The stage of the dynamic program (DP) is defined

as the epoch of decision on the value of xj for an activity j in the set of decision variables,

denoted by D, and defined as D ≡ A − F . At each stage of the DP iteration, one decision

variable is optimized. Thus there are as many stages as the size of the set D. The state

of the DP is defined as the vector of realization times of a subset of nodes that enable

the decision xj , j ∈ D to be made and the stage “reward” be evaluated. The stages are

numbered backwards, so ‘stage k’ means ‘k stages to go’ to complete the project. Let x[k]
denote the decision variable in stage k, for k = 1, . . . ,K. Further, ‘stage 1’ is the stage

containing the terminal node m and has the decision variable x[1]. The state in stage k is

denoted by s[k]. For all stages except stage 1, the stage reward (denoted by C[k](x[k], sk))

is simply the resource cost, a random variable, defined by x[k]W[k], whereW[k] refers to the

work content in stage k. In stage 1, the stage reward is the sum of the resource cost and

the tardiness cost, if any; (= ct ·max{ 0, tm − Ts }), where ct is the tardiness cost per unit

time delay, tm is the time of realization of the terminal node, and Ts is the due date. Let

11

CHAPTER 2. LITERATURE REVIEW

fk(sk| F) denote the minimal cost at stage k when the state is sk, and conditioned on the

allocation in F . The DP functional equation is defined as

fk(sk|F) = min
x[k]∈D

E
{
C[k](x[k], sk) + E [fk−1(Sk−1| F)]

}
,

where Sk−1, a r.v., represents the realization time of state sk−1, k = 2, . . . ,K.

The optimum is secured by removing the conditioning, and the final solution is achieved by

evaluating the following:

f(sK = 0) = min
F
fK(sK | F).

The solution obtained via dynamic programming yields a policy that prescribes the optimal

resource allocation under every conceivable state of the project as it progresses over time.

The DP model just discussed is computationally very intensive. Just to get an idea, if

there are q different allocation values of an activity in set F , and accordingly q|F| possible

allocations from which the optimum is selected. Tereso et al. [2003b] present some basic

approximations to the DP model such as (i) replacing the work content of activities in the set

F with their respective mean values, (ii) replacing the work content of all activities by their

respective mean values, and (iii) using a nonlinear programming (NLP) model. They also

report the performance of the stochastic global optimization technique, Electromagnetism-

like Approach of Birbil and Fang [2003], when applied to their problem.

12

Chapter 3

Optimal Resource Allocation – Deterministic Case

In this chapter we discuss the scenario where the work content of each activity is determin-

istic. We analyze three possible cases, namely

1. Unconstrained activities — Unlimited resources available

2. Individual resource constraints on activities — Resource usage for each activity is

constrained between upper and lower bounds.

3. Aggregate resource constraints — In addition to individual resource constraints, the

resource usage across different activities running in parallel at the same time is con-

strained between upper and lower bounds. Resource(s) availability may be constant

over time, or it may vary from period to period.

In the first part of the chapter we develop a nonlinear programming (NLP) model as we

progress from the simple unconstrained case to the more complex aggregate-constrained

case. We use an example project as an aid to explain the various features and intricacies

of the model. We then explain the limitations of the NLP model and conclude the dis-

cussion with the presentation of some computational results. Next we develop an integer

programming (IP) formulation to address the limitation of the NLP model. The need for

two mathematical models is to be able to handle continuous and discrete allocation of re-

sources. The NLP model handles the former and the IP model, the latter. At the end of the

chapter we present computational results of the IP model and comment on its performance.

Before we proceed with the mathematical program formulation, we wish to clarify some

notation that will be often used. We use the term path to refer to a set of activities in series

13

CHAPTER 3. OPTIMAL RESOURCE ALLOCATION – DETERMINISTIC CASE

that lead from one node to another. We define the terms cutset and uniformly directed cutset

(udc) as follows:

Assume we have a graph G = (N,A), where N is the set of nodes and A is the set of

arcs defining the activities and the precedence relations among them. Let B ⊂ N and B̄ =

N −B. Let i and i′ denote the start and end nodes of activity j, respectively. Furthermore,

define
(
B, B̄

)
=
{
j ∈ A : i ∈ B, i′ ∈ B̄

}
.

Definition 3.1. The set of edges
(
B, B̄

)
is called an (s, t)-cut (or cutset) if s ∈ B and t ∈ B̄.

Definition 3.2. An (s, t)-cut S ≡
(
B, B̄

)
is called a uniformly directed cutset (udc) if

(
B̄, B

)

is empty. In other words, an (s, t)-cut is a udc if and only if no two arcs in the cut belong to the

same path in the network.

3.1 Nonlinear Programming Model

We consider a very general model with more than one type of renewable resource. We

incorporate general (nonlinear) functions for activity duration, resource usage cost and

tardiness cost. For the sake of convenience we state the notation used as follows:

wj(r) : work content of activity j relative to resource type r; work content is typically

expressed in units such as man-hours, man-days, machine-hours, etc.

xj(r) : amount of resource type r (men, machines, etc.) allocated to activity j

yj(r) : duration of activity j corresponding to allocation xj(r)

Cj(R) : total cost of resource usage for activity j

CR : total cost of resource usage for all activities

CT : total cost of tardiness

Note: If only one type of renewable resource is available, one can simply use the nota-

tions wj , xj , and yj to refer to work content, resource allocation, and activity duration,

respectively.

3.1.1 Unconstrained Activities

We start with the simplest scenario. There is more than one critical resource, and for the

sake of illustration we shall assume that there are two, referred to generically as r, both

14

CHAPTER 3. OPTIMAL RESOURCE ALLOCATION – DETERMINISTIC CASE

of abundant availability, at a price, of course. The duration of the activity, yj(r) can be

modeled as a function of the resources allocated to it as

yj (r) =
wj (r)

x
γ
j (r)

, (3.1)

where the exponent γ is constrained to be γ ∈ [0.5, 1.0] . For instance, if γ = 0.5, then

doubling the resource allocation will decrease the duration by only about 30%,

y2

y1
=

(
w/
√
2x
)

(w/
√
x)
=
1√
2
= 0.707.

On the other hand, if γ = 0.75, then

y2

y1
=
1

20.75
=
1

1.68
= 0.59,

which means that the duration is reduced by about 41%, etc. Typically one would encounter

such functional relationship between resource allocation and resulting duration in software

development projects. Observe that if γ > 1 (representing synergism) then one can achieve

super-linear improvement in duration by increased resource allocation.

The duration of the activity, denoted by yj , is the maximum of the individual durations

secured from each resource,

yj = max {yj (r)}r=1,2 .

Since it does not make sense to incur cost unnecessarily due to excessive resource allocation,

it must be true that (taking note of (3.1)),

yj (r1) =
wj (r1)

x
γ1
j (r1)

=
wj (r2)

x
γ2
j (r2)

= yj (r2) ,

and hence,

xj (r2) =

(
wj (r2)

wj (r1)

) 1
γ2

x
γ1
γ2
j (r1) . (3.2)

One may perform a data pre-processing step to calculate the ratios
(
wj (r2)

wj (r1)

) 1
γ2

and
γ1
γ2
,

which are denoted by φj and γ1,2, respectively. In other words,

φj =

(
wj (r2)

wj (r1)

) 1
γ2

(3.3)

γ1,2 =
γ1
γ2

(3.4)

15

CHAPTER 3. OPTIMAL RESOURCE ALLOCATION – DETERMINISTIC CASE

Henceforth one may speak of xj (r2) in terms of xj (r1) to yield the same duration,

xj (r2) = φjx
γ1,2
j (r1) . (3.5)

Likewise, yj can be expressed in terms of resource r1 only,

yj = wj (r1) · x−γ1j (r1) . (3.6)

The activity’s cost of resources usage, Cj,R assumes the following form:

Cj(R) =
∑

r=1,2

kj (r)x
2
j (r) · yj (3.7)

in which kj (r) is a constant of proportionality which may vary with the activity j and the

resource r. Note that we also assume the resource usage cost (for both types of resources)

to be quadratic in the duration of the activity, hence the exponent 2 for xj(r). It is possible

that it could vary with resource r and activity j. Substituting for yj from (3.6) and for

xj (r2) from (3.5) into (3.7) we get,

Cj(R) = kj (r1) · x2j (r1) · yj + kj (r2) · x2j (r2) · yj

= yj

[
kj (r1) · x2j (r1) + kj (r2) ·

(
φjx

γ1,2
j (r1)

)2]
, (3.8)

a function of only xj (r1) .

The total cost of both resources (recall that we are assuming only two resources) is

simply the sum of Cj(R) over all the activities

CR =
∑

j∈A
Cj(R). (3.9)

We are now ready to deal with the cost of tardiness. To this end we assume that the

project has a specified due date Ts, and that the cost of tardiness is piecewise linear and con-

vex in the tardiness1, with slopes p1 < p2 < · · · . (This can be used to closely approximate

any convex nonlinear function of tardiness.) Assuming that the project is completed at time

tm, the total cost of tardiness is given by,

CT =






p1 (tm − Ts) , if Ts ≤ tm ≤ b1,
p1 (b1 − Ts) + p2 (tm − b1) , if b1 ≤ tm ≤ b2,

etc.

(3.10)

1 An incentive for completing the project before the specified time Ts can be easily incorporated into the
model. We forfeit such generalization for the sake of simplicity.

16

CHAPTER 3. OPTIMAL RESOURCE ALLOCATION – DETERMINISTIC CASE

ΤΤΤΤs b1 b2

slope p3
slope p2

slope p1
tnTa

rd
in
es
s C

os
t,
 C

T

Due date

Figure 3.1: Tardiness Cost Function.

The costing of tardiness would appear as shown in Fig. 3.1.

Based on these assumptions it is easy to see that the objective is to determine the allo-

cation vector X∗ that achieves:

min
X
z (X) = CR + CT (3.11)

The only “structural" constraints we have to deal with are the precedence constraints.

Let ti denote the time of realization of node i, with the assumption that t1 = 0 (the project

starts at time 0) and the nodes in the AoA representation of the project are numbered

topologically so that an arrow always leads from a smaller number to a larger one. Then

the realization of node m signals the completion of the project. We have,

ti′ ≥ ti + yj , ∀j ≡
(
i, i′
)
∈ A. (3.12)

Total tardiness is defined as v = max {0, (tm − Ts)}, which is replaced by the constraint

v ≥ tm − Ts, (3.13)

together with the requirement that v ≥ 0.
Finally we have the nonnegativity constraints,

xj ≥ 0, ∀ j ∈ A. (3.14)

17

CHAPTER 3. OPTIMAL RESOURCE ALLOCATION – DETERMINISTIC CASE

We now consider the “logical" constraints imposed by the nature of the problem, which

stem from the desire to equate the durations of paths in parallel. Consider an example

network shown in Figure 3.2. We have,

Activities 4 & 5 are in parallel : y4 = y5 (3.15)

Activities 6 & 7 are in parallel : y6 = y7 (3.16)

2 parallel paths† from node 2 to node 5 : y2 + y4 = y3 + y6 (3.17)

Activities 8 & 9 are in parallel : y8 = y9 (3.18)

† A path is identified by the activities on it.

The mathematical program defined by the objective of Equation (3.11) with its variables

defined in Equations (3.5)–(3.10), and constraints (3.12)–(3.18) is the desired model for

this problem.

Consider the project network shown in Figure 3.2 with values of the various parameters

as given in Table 3.1. The work content is measured in man-days. The due date Ts =

36, with tardiness cost cut-off points b1 = 5, b2 = ∞, and slopes p1 = 200, p2 = 800. The

interpretation of the pair (b2 = ∞, p2 = 800) is that beyond the cut-off point b1 = 5, the

tardiness is penalized at the rate of 800. The resource usage coefficients (exponents for

xj(r) in (3.7)) are 1.5 for resource 1 and 2 for resource 2. The resource coefficients are

γj(1) = 0.90, γj(2) = 0.95, the same for all activities. The resource cost coefficients are

also the same for all activities, with kj(1) = 6, kj(2) = 8.

Table 3.1: Parameters of the Example Project.

Activity 1 2 3 4 5 6 7 8 9 10

wj(1) 25 31 38 16 23 16 15 29 8 14

wj(2) 34 42 17 24 26 21 11 33 12 18

The optimal solution (obtained using AMPL/MINLP-BB2 on NEOS3 optimization server)

to this set of parameters is as shown in Table 3.2. The corresponding node realization times
2See Fletcher and Leyffer [1998] and Leyffer [2001] for details on the MINLP-BB algorithm.
3See Czyzyk et al. [1998], Gropp and Moré [1997], Dolan [2001] for details on the NEOS Optimization

Server.

18

CHAPTER 3. OPTIMAL RESOURCE ALLOCATION – DETERMINISTIC CASE

765

4

3

21
101

2

3

4

5

6

7

8

9

AoN representation.
The graph is s/p.

10

9

7

6

5

4

3

2 8

1

AoA representation.

Figure 3.2: Example Network 1.

are shown in Table 3.3. Observe that the optimal solution reached, but did not exceed, the

cut-off value of b1 = 5, mainly due to the very high cost of tardiness beyond b1 = 5.

3.1.2 Individually Constrained Activities

We continue to assume that we know deterministically the work content wj for each activity

in the project, that we have only two resources to contend with, and that the work content

of activity j relative to the two resources are denoted by wj (r), r = 1, 2. The definition of

the the variables remains as before, together with the costing relative to resource usage and

tardiness.

But now we assume that the amount of each resource allocated to the activity is indi-

vidually constrained,

0 < lj (r) ≤ xj (r) ≤ uj (r) <∞, r = 1, 2 (3.19)

19

CHAPTER 3. OPTIMAL RESOURCE ALLOCATION – DETERMINISTIC CASE

Table 3.2: Optimal solution—No Resource Constraints; Fixed Deadline.

j xj (1) xj (2) yj Cj(R)

1 3.64 4.69 7.82 1,705.14

2 3.18 3.98 11.30 1,856.92

3 4.05 1.61 10.80 751.82

4 1.74 2.59 9.71 656.11

5 2.61 2.82 9.71 863.24

6 1.65 2.14 10.21 502.45

7 1.53 1.08 10.21 211.92

8 4.18 4.44 8.00 1,674.72

9 1.00 1.53 8.00 198.28

10 3.84 4.67 4.17 914.09

Resource Cost 9, 334.68

Tardiness Cost 1000.00

Total Cost 10, 334.68

Table 3.3: Optimal Node Realization Times—No Resource Constraints.

Node, i 1 2 3 4 5 6 7

Time, ti 0 8 19 19 29 37 41

The rationale for such bounds may run as follows. The lower bound may represent the

least amount of resource needed to “get the activity going," or the least amount of resource

acquisition possible (e.g., you cannot rent a truck for less than half a day), and the upper

bound may represent the maximal allocation that the activity can bear, or the maximal

availability of the resource in the marketplace, etc.

We now have two types of constraints: precedence constraints and resource constraints.

The precedence constraints are the same as discussed earlier and shall not be repeated, see

(3.12). The resource constraints are as defined in (3.19). Equation (3.13) defines tardiness.

Finally, we have the nonnegativity constraints (3.14). The mathematical program is the

same as in Section 3.1.1, but with the addition of constraints (3.19).

To exemplify, we have implemented the model on the same project network shown in

20

CHAPTER 3. OPTIMAL RESOURCE ALLOCATION – DETERMINISTIC CASE

Table 3.4: Optimal Solution — Individual Resource Constraints.

j xj (1) xj (2) yj Cj(R)

1 2.27 3.00 11.97 1,107.10

2 2.36 3.00 14.79 1414.05

3 2.96 1.20 14.29 602.38

4 1.86 2.76 9.16 696.27

5 2.78 3.00 9.16 914.22

6 1.75 2.27 9.65 530.92

7 1.63 1.15 9.65 222.35

8 2.76 3.00 11.62 1,156.81

9 1.00 1.53 11.62 198.28

10 2.41 3.00 6.34 598.84

Resource Cost 7, 441.22

Tardiness Cost 11, 400.00

Total Cost 18, 841.22

Table 3.5: Optimal Node Realization Times — Individual Resource Constraints.

Node, i 1 2 3 4 5 6 7

Time, ti 0 12 27 27 36 48 54

Figure 3.2. The parameters are the same as in Table 3.1 with the following modification —

each activity j has bounds [lj(r), uj(r)] on the amount of resource r that can be allocated

to it. For simplicity of exposition we assumed [lj(r), uj(r)] = [1, 3] for all activities j ∈ A,

and for both resources, r = 1, 2. The optimal solution to this set of parameters is shown in

Table 3.4.

We make the following observations on this result — As expected, imposing resource

allocation bounds on individual activities increased the overall project cost. The values for

the bounds on resources were chosen in such a way that they would actually be constraining.

This is evident from Table 3.4 where one can notice that there are indeed activities with

resource allocations at the upper bound of three units. Notice that there has also been an

increase in duration in each of the path segments, thereby pushing the project duration to

21

CHAPTER 3. OPTIMAL RESOURCE ALLOCATION – DETERMINISTIC CASE

54 time units.

Whenever the resource allocation for an activity is between its bounds it corresponds to

the optimal allocation either absolutely (relative to its resource cost) or conditional upon

minimizing the tardiness cost. For instance, consider activity 1. Its resource cost is

C1(R) = y1
(
6x1.51 (1) + 8x

2
1 (2)
)

=

[
6x1.51 + 8

(
(w1(2)/w1(1))

(1/γ2) × xγ1/γ21 (1)
)2]
×
(
w1 (1)

x
γ1
1 (1)

)

= 150x0.601 (1) + 382.09x0.99471 (1) ,

a function of only x1 (1) , which is minimized at x1 (1) = 1, its lower bound. However, this

would prolong the duration of activity 1 from its current value of 11.97 to ≈ 25. This, in

turn, would prolong the completion time of the project by 13 units, assuming that other

activities remain the same(= 25− 11.97), costing an additional 13× 800 ≈ 10, 400.

3.1.3 Aggregate Resource Constraints

We now address the most general model of this genre of problems in which, in addition

to the bounds on individual resource usage for each activity, there is also an aggregate

constraint on the total resource usage at any time. This constraint is present whenever

the resource availability is limited. This scenario is akin, but not identical, to the RCPSP.

The most important distinction is the concept of work content and the focus on obtaining

optimal specification of the resource allocation to the activities. We submit that this is

a more realistic scenario which reflects the managerial discretion in resource allocation.

Further, our scenario can easily accommodate the classical RCPSP scenario by defining

discrete values of possible resource allocations and its variants.

The variables, parameters, and constraints of the model in Section 3.1.2 remain intact

in the model proposed here. But the introduction of the condition that at any time no more

than the available capacity of each resource is utilized gives rise to the consideration of two

aggregate capacities R1 and R2 (recall that we are still assuming that there are only two

resources) so that the total resource allocated to any concurrent activities at any time t is at

most Rr. This may be written generically as,
∑

concurrent

xj (r) ≤ Rr, r = 1, 2. (3.20)

22

CHAPTER 3. OPTIMAL RESOURCE ALLOCATION – DETERMINISTIC CASE

There remains the definition of “concurrent" activities, for which we must appeal to the

concept of uniformly directed cutset (udc), which has a long and venerable history (see Her-

roelen et al. [1998a] for a summary review).

It is intuitively clear that at any time, progress in the project must be along activities

that lie on a udc. The first reaction to this realization is to enumerate all udc’s and constrain

the total resource usage in each one. But slight reflection reveals that such blanket cover-

age may result in an over-constrained model, mainly due to the possibility that an activity,

or several activities, may have already completed their processing and they are no longer

involved in the “current" udc. In which case, including the completed activities in the con-

straint for the new udc would then limit the resources available to the newly introduced

activities, possibly resulting in a higher cost.

To fully comprehend the impact of such over-constraining, consider the example net-

work of Figure 3.2, re-drawn in Figure 3.3 with all the udc’s displayed. In all, there are 7

udc’s, as shown in Table 3.6 below. We use the notation S() to denote a udc. When we use

the prefix cutset with S(), we are actually referring to the udc.

Table 3.6: Cutsets in the Example Project.

UDC S(1) S(2) S(3) S(4) S(5) S(6) S(7)

Activities {1} {2, 3} {2, 6, 7} {3, 4, 5} {4, 5, 6, 7} {8, 9} {10}

Suppose that progress is on-going on activities 2 and 3 in S(2) (referred to as activities

2 and 3 being “active"), and suppose activity 2 finishes first. Then activities 4 and 5 can be

initiated and “control" moves to cutset S(4). To be sure, the total resource usage was first

constrained by
∑

j∈S(2)
xj (r) ≤ Rr, r = 1, 2,

and then by
∑

j∈S(4)
xj (r) ≤ Rr, r = 1, 2.

When activity 3 is completed we can initiate activities 6 and 7, and “control" moves to cutset

23

CHAPTER 3. OPTIMAL RESOURCE ALLOCATION – DETERMINISTIC CASE

765

4

3

21 101

2

3

4

5

6

7

8

9
S(1) S(2)

S(3)

S(4) S(5)

S(6)

S(7)

Figure 3.3: Project with udc’s marked.

S(5), which gives rise to the constraint,
∑

j∈S(5)
xj (r) ≤ Rr, r = 1, 2.

Observe that cutset S(3) = {2, 6, 7} never appeared, and its corresponding constraint
∑

j∈S(3)
xj (r) ≤ Rr, r = 1, 2

did not play any role in the definition of the resources allocated to any of the 6 activities

2,3,4,5,6,7! Taking such constraint into account would have “over-constrained" the allo-

cation because the allocation to activity 2 may have been high, which would drastically

confine the allocation to activities 6 and 7. A similar analysis can be made for the case in

which activity 3 finishes first, or when both activities finish “almost at the same time."

In order to avoid such over-constraining the allocations, we proceed as follows. It is

evident that either cutset S(3), S(4), or S(5) will come into existence after “control" escapes

24

CHAPTER 3. OPTIMAL RESOURCE ALLOCATION – DETERMINISTIC CASE

cutset S(2), and that cutset S(3) will be the “controlling" cutset if activity 3 finishes first;

cutset S(4) will be the “controlling" cutset if activity 2 finishes first; and cutset S(5) will be

the “controlling" cutset if activities 2 and 3 finish “at the same time," or almost so. This

translates into the following condition:

if t4 ≤ t3 − ε : S(2) → S(3)

else if, t3 ≤ t4 − ε : S(2) → S(4)

else, |t3 − t4| < ε : S(2) → S(5)
(3.21)

In the above condition ε is some minimal spacing in time between the realization of the two

nodes to be considered having been realized at different times.

This logic translates into the following set of constraints in which δ(·) and ρ(·) are binary

0,1 variables, andM is a large number.

t3 − t4 ≤ −ε+Mδ(3,4) (3.22)

t4 − t3 ≤ −ε+Mρ(3,4) (3.23)

t3 − t4 ≤ −ε+M
(
1− δ(3,4) + ρ(3,4)

)
(3.24)

t4 − t3 ≤ −ε+M
(
1 + δ(3,4) − ρ(3,4)

)
(3.25)

t3 − t4 ≤ ε+M
(
2− δ(3,4) − ρ(3,4)

)
(3.26)

t4 − t3 ≤ ε+M
(
2− δ(3,4) − ρ(3,4)

)
(3.27)

∑

j=3,4,5

xj (r) ≤ Rr +M
(
1− δ(3,4) + ρ(3,4)

)
, r = 1, 2 (3.28)

∑

j=2,6,7

xj (r) ≤ Rr +M
(
1 + δ(3,4) − ρ(3,4)

)
, r = 1, 2 (3.29)

∑

j=4,5,6,7

xj (r) ≤ Rr +M
(
2− δ(3,4) − ρ(3,4)

)
, r = 1, 2 (3.30)

That this set of constraints represents the logic in (3.21) can be ascertained from the fol-

lowing tabulation:

25

CHAPTER 3. OPTIMAL RESOURCE ALLOCATION – DETERMINISTIC CASE

δ(3,4) ρ(3,4) Consequences

0 0 cannot be realized

0 1 (3.25), (3.29) are constraining

1 0 (3.24), (3.28) are constraining

1 1 either (3.26) or (3.27), and (3.30) are constraining

The reason why the (0,0) eventuality cannot be realized is that having both variables

equal to 0 would cause inequality (3.22) to impose the constraint

t3 ≤ t4 − ε

which would contradict inequality (3.24), which says that

t3 ≥ t4 + ε.

Therefore one of the three conditions specified in (3.21) must be realized. The condition

t3 < t4−ε is satisfied by the pair (1, 0) and constraint (3.24), and the condition t4 < t3−ε is

satisfied by the pair (0, 1) and constraint (3.25); finally the condition |t3 − t4| < ε is satisfied

by the pair (1, 1) and constraints (3.26) and (3.27). The respective resource constraints of

(3.28)–(3.30) perform the desired restrictions on the resource allocation accordingly.

The above analysis reveals the difficulty in the implementation of this model. A set of

nine constraints similar to (3.22)–(3.30), involving the definition of two binary variables,

must be written for every pair of parallel nodes. The illustrative example of Figure 3.2 was

selected advisedly because it manifests all the characteristics of larger projects and yet is

small enough that it can be solved to optimality.

For illustrative purposes the model was solved to optimality assuming total availability

of R1 = 8, R2 = 8, and ε = 0.50. The aggregate resource constraints, R1 and R2 were

chosen in such a way that at least one of the constraints (3.20) is binding. Table 3.7 has the

solution.

Activity 2 actually finishes at t3 = 26.76, and activity 3 finishes at t4 = 26.26; both are

rounded off to 27 in Table 3.8. Since we assumed the minimal spacing ε = 0.5 for which

the activities are considered to have completed at different times, and since the difference

|t3 − t4| = 0.5 exactly, we consider that the two activities have completed at the same

26

CHAPTER 3. OPTIMAL RESOURCE ALLOCATION – DETERMINISTIC CASE

Table 3.7: Optimal solution — Aggregate Resource Constraints.

j xj (1) xj (2) yj Cj(R)

1 2.27 3.00 11.97 1,107.10

2 2.36 3.00 14.79 1,414.05

3 2.96 1.20 14.29 602.38

4 1.61 2.40 10.45 608.84

5 2.40 2.61 10.45 803.15

6 1.52 1.98 10.95 468.69

7 1.41 1.00 10.95 199.46

8 2.76 3.00 11.62 1,156.81

9 1.00 1.53 11.62 198.28

10 2.41 3.00 6.34 598.84

Resource Cost 7, 157.60

Tardiness Cost 13, 000.00

Total Cost 20, 157.60

Table 3.8: Optimal Node Realization Times — Aggregate Resource Constraints.

Node, i 1 2 3 4 5 6 7

Time, ti 0 12 27 27 38 49 56

Table 3.9: Resource Allocation across the udc’s.

UDC Resource 1 Resource 2

S(2) 5.32 4.2

S(3) 6.73 5.2

S(4) 6.97 6.21

S(5) 6.94 7.99

S(6) 3.76 4.53

27

CHAPTER 3. OPTIMAL RESOURCE ALLOCATION – DETERMINISTIC CASE

time, for all practical purposes. This is verified by the fact that both δ(3,4) and ρ(3,4) are

equal to 1. Therefore the controlling cutset (see Fig. 3.3) is S(5) = {4, 5, 6, 7} , and the

constraining equations are (3.26), (3.27), and (3.30). The above table indicates that the

total requirements for this cutset of resource 1 is ≈ 6.94 and for resource 2 is ≈ 7.99. This is

in line with our assertion earlier.

3.1.4 Limitations of the NLP Model

As seen in the case of aggregate constraints, one needs to identify nodes that are in “parallel”

and then impose a set of 9 constraints similar to (3.22)–(3.30) for each pair. But in general,

if there are p paths in parallel, each containing k nodes, there shall be 9k
(
p
2

)
= 9kp (p− 1) /2

such constraints involving the definition of kp (p− 1) integer-valued variables. Of course

this is in addition to the constraints of the model specified in Section 3.1.2, some of which

are nonlinear.

Another major drawback of the NLP model is the additional complexity that arises when

the network is not series/parallel. In order to be able to apply the set of constraints (3.22)–

(3.30) one needs to first “condition” on some arcs (i.e., activities) and then proceed with

optimization. These arcs later need to be “unconditioned” in order to reflect the original

scenario, and this process is of exponential complexity.

28

CHAPTER 3. OPTIMAL RESOURCE ALLOCATION – DETERMINISTIC CASE

3.2 Integer Programming Formulation

The biggest drawback of the NLP formulation, as alluded to earlier, is that it cannot be used

when the underlying project network is not series/parallel. We therefore shift our focus to

“time interval-based” monitoring of resources as opposed to “cutset-based” approach in the

NLP model. In other words, we have an integer program which incorporates discrete-time

indexing of variables that correspond to resource usage.

We now restate our problem in the context of a single-type renewable resource availabil-

ity. We are given a project G = (N,A), where N = (1, 2, . . . ,m) nodes and A = (1, 2, . . . , n)

activities. Each activity j ∈ A has a work content wj . Denote by xk, the amount of resource

in mode k allocated to an activity, and c · xk, the resulting resource utilization cost. Note

that c is just a coefficient. The duration of of an activity is defined as yjk = wj/xk. Let Ts be

the overall project due date, and let ct be the cost of tardiness per unit of delay. The total

cost of tardiness is defined as ct ·max{ 0, tm − Ts }, where tm is the completion time of the

project. Finally, let Rt denote the availability of resource in period t.

We now proceed with the formulation of the integer program. Define two binary vari-

ables, βjt and δjt, corresponding to every (i, i′) ∈ A. Also define the following binary

variables:

αjkt =





1 : if activity j is active in mode k in period t

0 : otherwise

zjk =





1 : if activity j is executed in mode k

0 : otherwise

Define integer-valued variables as follows:

• sj: start time of activity j

• fj: finish time of activity j

• ti: time of realization of node i

Let T be an upper bound on the project duration. Finally, let the set T = {1, 2, . . . , T}. The

complete IP formulation can be stated as follows:

29

CHAPTER 3. OPTIMAL RESOURCE ALLOCATION – DETERMINISTIC CASE

min
∑

j

∑

k

zjk(c · xk · wj) + ct ·max{ 0, tm − Ts } (3.31)

subject to

sj ≥ ti, ∀j ≡ (i, i′) ∈ A (3.32)

fj ≥ sj +
K∑

k=1

zjk

(
wj

xk

)
, ∀j (3.33)

ti′ ≥ fj , ∀j ≡ (i, i′) ∈ A (3.34)
K∑

k=1

zjk = 1, ∀j ∈ A (3.35)

αjkt ≤ zjk, ∀j ∈ A, ∀t ∈ T , ∀k (3.36)
∑

j

∑

k

αjkt xk ≤ Rt, ∀t ∈ T (3.37)

∑

k

αjkt ≤
t− sj
T
+ 1, ∀j ∈ A, ∀t ∈ T (3.38)

∑

k

αjkt ≤
fj − t
T
+ 1, ∀j ∈ A, ∀t ∈ T (3.39)

βjt ≥
t− sj
T
, ∀j ∈ A, ∀t ∈ T (3.40)

δjt ≥
fj − t+ 1
T

, ∀j ∈ A, ∀t ∈ T (3.41)
∑

k

αjkt ≥ βjt + δjt − 1, ∀j ∈ A, ∀t ∈ T (3.42)

s, t ≥ 0, integer (3.43)

αjkt, βjt, δjt ∈ {0, 1} (3.44)

The objective function (3.31) is composed of total resource cost and tardiness cost4.

Constraint (3.32) and (3.33) define the start and finish times of activity j, respectively.

Constraint (3.34) defines the realization time of node i′, ∀ (i, i′) ∈ A. Constraint (3.35)

ensures each activity j uses exactly one mode of the resource. Constraint (3.36) maintains

consistency between variables αjkt and zjk in terms of resource mode chosen. Finally,

Constraint (3.37) enforces resource constraints for every period t.
4The term ct ·max{ 0, tm − Ts } is treated as a piecewise-linear function in the model.

30

CHAPTER 3. OPTIMAL RESOURCE ALLOCATION – DETERMINISTIC CASE

Consider the constraints (3.38)–(3.42), which are defined for each combination of time

t and activity j. By definition of T , both
t− sj
T

and
fj − t
T

lie in the interval [-1, 1]. Now

consider the following three cases:

1. If t ≤ sj − 1, then

• LHS of (3.38) < 1, forcing αjkt to be 0

• (3.39) and (3.40) are non-binding

• (3.41) forces δjt to be 1

• (3.42), along with αjkt = 0, forces βjt to be 0

2. If t ≥ fj + 1, then

• LHS of (3.39) < 1, forcing αjkt to be 0

• (3.38) and (3.41) are non-binding

• (3.40) forces βjt to be 1

• (3.42), along with αjkt = 0, forces δjt to be 0

3. If sj ≤ t ≤ fj , then

• (3.38) and (3.39) are non-binding

• (3.40) and (3.41) force both βjt and δjt to be 1

• (3.42) now forces αjkt to be 1

3.3 Setup of Computational Experiments for the IP Formulation

In this section we discuss the performance of the IP formulation. We generated the test net-

works using DAGEN, a software program developed by Agrawal et al. [1996]. DAGEN gen-

erates networks according to the desired “complexity index” (CI), which Bein et al. [1992]

established as a measure of non-conformity of a graph to the series/parallel topology. For

our experiments we generated networks with CI = 2, 3, 4, and 5. For each value of CI,

we generated networks with 20, 30, 40, and 50 activities. The integer program was mod-

eled in AMPL and solved using ILOG CPLEX 9.0 on Sun Microsystems Sun Enterprise 220R

(UltraSPARC-II 360MHz) with system clock frequency of 120 MHz and 2048 megabytes of

RAM. The AMPL code for the IP is included in Appendix B.

31

CHAPTER 3. OPTIMAL RESOURCE ALLOCATION – DETERMINISTIC CASE

We classify the computational experiments into the following categories:

Category 1: Fix the work content of all activities, the value of resource availability

(R), and the available modes to choose from. For each value of n — that is, the

number of activities — repeat the experiment for

(a) different values of complexity index (CI) of the network, and

(b) different values of the upper bound on the project completion time(T).

Category 2: Fix the upper bound on the project completion time (T) and the number

of activities (n). Repeat the experiment for

(a) different values of resource availability (R), and

(b) different values of complexity index (CI) of the network.

The results in Category 1 shed light on how the performance of the optimization of the

IP is affected with the increase in the size and complexity of the project network. The results

in Category 2 help us in learning how the performance of the IP optimization is affected

with the restrictiveness of the resource availability. The computational results are reported

in the following sections.

3.3.1 Computational Results: Category 1

We report the computation times for the following problem parameters:

(i) R = 5, resource modes = { 1, 2, 3 }, n = 20, 30

(ii) R = 7, resource modes = { 1, 2, 3 }, n = 40, 50

The resource availability was increased from 5 to 7 for n = 40 and n = 50 for the following

reason: the restrictiveness of the resource availability coupled with the increase in number

of activities renders the IP infeasible. We have to either reduce the work content of the

activities or increase the upper bound T .

It is clear from Figs. 3.4–3.7 that as the upper bound on project completion T increases,

the computation times increase significantly. A steeper increase in computation times is

evident when the CI changes from 3 to 4 than when the CI changes from 2 to 3.

32

CHAPTER 3. OPTIMAL RESOURCE ALLOCATION – DETERMINISTIC CASE

0100200300400500600
20 40 60 80Upper Bound on Completion Time (T)

Time (sec)
CI = 2 CI = 3 CI = 4 CI = 5

Figure 3.4: Comparison of Computation Times: R = 5, n = 20, T = 20, 40, 60, 80.

0100200300400500600700800
20 40 60 80Upper Bound on Completion Time (T)

Time (sec)
CI = 2 CI = 3 CI = 4 CI = 5

Figure 3.5: Comparison of Computation Times: R = 5, n = 30, T = 20, 40, 60, 80.

33

CHAPTER 3. OPTIMAL RESOURCE ALLOCATION – DETERMINISTIC CASE

0100200300400500600700800
20 40 60 80Upper Bound on Completion Time (T)

Time (sec)
C=2 C=3 C=4 C=5

Figure 3.6: Comparison of Computation Times: R = 7, n = 40, T = 20, 40, 60, 80.

0200400600800100012001400
40 60 80Upper Bound on Completion Time (T)

Time (sec)
CI = 2 CI = 3 CI = 4 CI = 5

Figure 3.7: Comparison of Computation Times: R = 7, n = 50, T = 40, 60, 80.

34

CHAPTER 3. OPTIMAL RESOURCE ALLOCATION – DETERMINISTIC CASE

3.3.2 Computational Results: Category 2

In order to observe the performance of the IP with relaxing the resource availability, we

chose n = 40, T = 40 and varied the resource level R from 7 to 10 in increments of 1. As

seen from Fig. 3.8, the computation time drop drastically as R increases. The decrease is

steeper in networks with higher CI (4 and 5) mainly because of more parallel paths in the

network.

0100200300400

6 7 8 9 10 11resource availability (R)
Time (sec)

CI = 2 CI = 3 CI = 4 CI = 5
Figure 3.8: Comparison of Computation Times: T = 40, n = 40, R = 7, 8, 9, 10.

3.3.3 Observations from Computational Experiments

From the Category 2 computational experiments, it is clear that resource availability plays

an important role in the computation effort needed to solve the IP. This is because of the

following reason: when there is scarcity of resources, it limits the number of activities

that can be processed in parallel. This means that, some activities that could have been

processed in parallel now will be processed sequentially, thereby prolonging the project.

Since the cardinality of the set T depends on the upper bound on the project completion

time T , it is natural that with increase in T , the problem size increases accordingly.

35

Chapter 4

Optimal Resource Allocation – Stochastic Case

In this chapter we study the optimal resource allocation to the activities of a project in or-

der to optimize an economic objective in the face of uncertainty. In Section 4.1 we state

our problem along with the assumptions. In Section 4.2 we outline a Policy Iteration–like

procedure for solving such networks. We model it as a Continuous-Time Markov Chain on

the lines of the work by Kulkarni and Adlakha [1986] and we proceed to introduce the

phase type distribution that plays an important role in the policy evaluation. In Section 4.3

we outline the technique of stochastic programming (SP), which is also known as mathe-

matical programming under uncertainty. We discuss a recent research effort that applies

the concept of SP to a stochastic resource-constrained project scheduling problem. Follow-

ing that discussion, we demonstrate the inapplicability of standard SP techniques to our

problem. Finally in Section 4.4 we describe a simulation-cum optimization technique that

implements variance reduction techniques (VRT) in order to reduce the sample size and the

sample variance. We illustrate the effectiveness of the VRT implemented with the help of

an example, and also briefly describe how the output data of the simulation experiment can

be used to address related problems of interest.

4.1 Problem Statement and Assumptions

We are given a project network of n activities defined by a graph G = (N,A), in which

A is the set of arcs defining the activities and the precedence relations among them (AoA

mode of representation). LetWj denote the work content of activity j. We consider a single

36

CHAPTER 4. OPTIMAL RESOURCE ALLOCATION – STOCHASTIC CASE

renewable resource and let xj be the allocation of the resource to activity j. Assume R as

the total availability of the renewable resource in any period. Define cr to be the per-unit

cost of usage of resource per unit time. We further assume that the project has a specified

due date Ts, a constant, and let ct (max { 0,Υ− Ts }) be the cost of tardiness when the

project completes at time Υ, a random variable. Our objective is to determine the resource

allocation vector,X to the activities such that the overall expected cost of resource allocation

and tardiness is minimized.

4.2 Policy Iteration–like Approach

For the sake of tractability in analysis, assume that the activity’s work content,Wj , a random

variable, follows an exponential distribution

Wj ∼ Exp(λj), ∀j ∈ A.

Assume that the resource allocation xj is bounded from above and below as:

0 ≤ lj ≤ xj ≤ uj <∞, ∀j ∈ A.

Let the resulting duration of activity j,

Yj =
Wj

xj
,

It is clear that Yj is also exponentially distributed, but with parameter xjλj , henceforth

denoted by µj .

Assume the total cost of resource allocation to activity j is quadratic in the allocation

over the duration of the activity; i.e.,

Cj = cr x
2
j Yj = cr xjWj .

In this section we analyze the problem from the perspective of “managerial flexibility.” This

represents the main departure from the work of Tereso et al. [2001, 2003a,b]. Assume

further that it is possible to change the resource allocation to the same activity according to

the changes in the state of the project. To be more precise, consider the scenario where more

than one activity are in progress. Eventually one of them finishes first. Now the manager

37

CHAPTER 4. OPTIMAL RESOURCE ALLOCATION – STOCHASTIC CASE

is allowed to change the allocation of the resource(s) to the still ongoing activities. This

perspective requires the definition of the “state" of the project and the corresponding “state

space” of the project network. This is basically the model treated by Kulkarni and Adlakha

[1986], which is based on the realization that we are in fact dealing with a Continuous-

Time Markov Chain (CTMC). The main distinction between this analysis and that reported

in their work is that we are interested in optimization of resource allocation, while they

dealt only with the analysis of the resulting CTMC.

4.2.1 Continuous-Time Markov Chain

In order to be able to transform our problem into a CTMC, we introduce some notation

from Kulkarni and Adlakha [1986].

We now have G = (N,A) to be a PERT network. We assume it starts at time zero and

ends at time Υ, a random variable. During the course of project execution, each activity

can be in one and only one of the following three states:

(i) active: an activity a is active at time t if it is being executed at time t.

(ii) dormant: an activity a is dormant at time t if it has finished but there is at least one

unfinished activity that ends at the same node as a.

(iii) idle: an activity a is called idle at time t if it is neither active nor dormant at time t. In

other words, the activity is either completed or is yet to be started.

For t ≥ 0, define the sets

A(t) = {j ∈ A : j is active at time t},

D(t) = {j ∈ A : j is dormant at time t},

P(t) = (A(t),D(t)) : the state at time t.

We also have the following assumption:

A1. All activity work content, and hence the durations, are mutually independent positive

exponential random variables.

38

CHAPTER 4. OPTIMAL RESOURCE ALLOCATION – STOCHASTIC CASE

Let S denote the set of all P(t), and let S = S ∪ {(∅, ∅)}. Note that P(t) = (∅, ∅) implies

that all activities are idle at time t and hence the project is completed1.

Under the assumption A1, {P(t), t ≥ 0} is a CTMC on S. Furthermore we make the

following observations:

1. The state (∅, ∅) is absorbing. This means that, once the project is completed, it remains

completed.

2. {P(t), t ≥ 0} visits any state in S at most once, i.e. each activity is executed exactly

once. This implies that all states in S are transient.

Finally, since we have a project with finite number of activities, and correspondingly a finite

state space, {P(t), t ≥ 0} is a finite-state, absorbing CTMC with a single absorbing state

(∅, ∅).
We are now ready to introduce the phase type distribution and its properties.

4.2.2 Phase Type Distribution

The name “phase type” distribution stems from the fact that an Erlang distribution is derived

as the sum of “stages” or “phases”, all exponentially distributed with the same parameter

λ. The generalized Erlang distribution of order r has r phases (stages) each is exponentially

distributed but with possibly different parameters λ1, · · · , λr.

Definition 4.1. A continuous probability distribution F (·) is of the phase type (PH-distribution)

if it is the distribution of the time until absorption in a finite-state Markov process with a sin-

gle absorbing state; that is, there exists a probability vector (α, αr+1) and an infinitesimal

generator matrix of the form

Q =



 Tr×r T
0
r×1

01×r 01×1



 =



 T −Te
0 0



 (4.1)

where e is a r × 1 vector of ones, Ti,i < 0 for 1 ≤ i ≤ r, and Ti,j ≥ 0 for i 6= j.
1Note that at t = 0, i.e., when the project is not yet started, we have P(t) = (∅, ∅).

39

CHAPTER 4. OPTIMAL RESOURCE ALLOCATION – STOCHASTIC CASE

Also,

Te+T0 = 0,

and the initial probability vector (the so-called ‘counting probability’) of Q is given by the

vector (α, αr+1) , with

α · e+ αr+1 = 1.

The pair (α,T) is called ‘representation’ of F (·) . In our case, the process starts in state 1

with probability 1. States 1, . . . , r are transient so that absorption into state r + 1 from any

initial state is certain.

The first result quoted by Neuts [1989] is that the matrix T is nonsingular (a necessary

and sufficient condition for the states 1, . . . , r to be transient). Observe that

Tk −→ 0 as k −→∞.

Assuming an initial probability vector (α, αr+1) , the c.d.f. of the time to absorption in

state r + 1 corresponding to the initial probability vector (α, αr+1) is given by

F (z) = 1−α · eTz · e, for z ≥ 0 (4.2)

We make the following observations about the properties of the distribution F (·) :

(a) It has a jump of height αr+1 at z = 0. Evidently this is the probability that the process

starts in the absorbing state. This case is of no concern to us since it implies that the

project is complete at its start, which would imply that there is no project.

(b) Its density portion f (z) = F ′ (z) on (0,∞)— i.e., excluding the 0 point — is given by

f (z) = F ′ (z) = α · eTz ·T0 (4.3)

In our case the “portion” of the domain of x is the whole real line including the point

at the origin because αr+1 = 0.

(c) The Laplace-Stieltjes transform F (s) of F (·) is given by

F (s) = αr+1 +α (sI−T)−1T0, for Re (s) ≥ 0 (4.4)

The first term is the multiplier of e−sz|z=0 , which in our case does not exist.

(d) The noncentral moments (about the origin) φ′i of F (·) are all finite and given by

φ′i = (−1)
i × i!

(
αT−ie

)
, for i ≥ 0 (4.5)

40

CHAPTER 4. OPTIMAL RESOURCE ALLOCATION – STOCHASTIC CASE

4.2.3 Details of the Policy Iteration–like Procedure

The procedure we outline is an approximation in the sense that we are considering the

cost of tardiness of the expected project completion time, which we know is not equal to the

expected cost of tardiness of the project completion time.

We wish to discuss this procedure for the following reason — we know that the expo-

nential distribution is an over-estimate of all NBUE2-distributions, which constitute the class

of distributions we encounter in the field of project networks. We also know (from Jensen’s

inequality) that the cost of the expected tardiness is an under-estimate of the expected cost

of tardiness. In other words, let g(·) be a convex function representing tardiness cost. We

know that the tardiness value depends on the project completion time, which is a random

variable, Υ. For the sake of convenience, let g(·) = ct max{0,Υ− Ts}. Then, from Jensen’s

inequality, we have the following:

ct ·max(0,E[Υ− Ts]) ≤ E[g(·)].

4.2.3.1 Illustrative example

Consider a simple activity network comprising three activities as shown in Fig. 4.1. The

actual network is at the top left corner and the corresponding state transition diagram is

displayed at the bottom.

Assume the unit cost of resource usage (cr) is normalized at 1.0 and the cost of tardiness

(ct) is 3.0. Let the work content of the activities 1, 2, and 3 be exponentially distributed

with parameters 0.2, 0.1, and 0.07, respectively. Let the lower and upper bounds on re-

source availabilities be 1 and 4, respectively, for all activities;i.e., 1 ≤ xj ≤ 4, for j = 1, 2, 3.

Finally let the due date Ts be 8.

Initialization:

Assume we start at the initial resource allocation vector x0 = [1, 1, 1]. The corresponding

2NBUE refers to New Better than Used in Expectation

41

CHAPTER 4. OPTIMAL RESOURCE ALLOCATION – STOCHASTIC CASE

6

4

5

3

2

1
(1a,3a)

∅

(2a,3d)

(2d,3a)(2a,3a)

(1a,3d)

1

2

3

1

3

2

Actual project network
(AoA representation)

State space of the actual network

Activity

Legend
a - active
d - dormant

λλλλ = [0.2, 0.1, 0.07]

Figure 4.1: Example Network 2 and its State Space

infinitesimal generator matrix,

Q0 =





−0.27 0.2 0.07 0 0 0

0 −0.17 0 0.07 0.10 0

0 0 −0.2 0.2 0 0

0 0 0 −0.10 0 0.10

0 0 0 0 −0.07 0.07
0 0 0 0 0 0





The expected project completion time and various costs are computed as follows:

E (Υ3) = 21.22 (obtained using Eqn. 4.5)

resource cost = 1×
(
1

0.2
+
1

0.1
+
1

0.07

)
= $29.29

tardiness cost = 3× (21.22− 8) = $39.67

total cost = $68.96

Achieving Cost Reduction:

We can seek improvement in the total cost by one of the following two methods.

42

CHAPTER 4. OPTIMAL RESOURCE ALLOCATION – STOCHASTIC CASE

(a) Increase the allocation x1 in small increments ∆ (say ∆ = 0.1) until no further im-

provement in the objective value is achieved. We know that an increment ∆ in the

resource allocation to activity 1 changes the rate matrix Q0 to

Q1 =





−0.27−∆ 0.20 + ∆ 0.07 0 0 0

0 −0.17 0 0.07 0.10 0

0 0 −0.20−∆ 0.20 + ∆ 0 0

0 0 0 −0.10 0 0.10

0 0 0 0 −0.07 0.07
0 0 0 0 0 0





from which we can obtain the expected project duration using Eqn. (4.5) and compute

the other costs.

Using this functional evaluation one can adopt a suitable iterative scheme incorporat-

ing a steepest-descent search over possible values of resource allocations for all activi-

ties. In other words,

“Best” policy, xbest = argmin
x

cr




∑

j∈A
xjE [Wj]



+ ct (max{ 0, E[Υ]− Ts })

(b) Because of the symmetry between the two paths in the (original) project network

(π1 = 1, 2 and π2 = 3), suppose we augment the resource allocation to activity 1 so

that the expected lengths of the two paths are equal; i.e., we seek the solution to the

equation

1

0.2x1
+
1

0.1
=

1

0.07

i.e.,
5

x1
=

1

0.07
− 10 = 4.2857

which ⇒ x1 =
5

4.2857
= 1.1667 (4.6)

Now, select a value the x1 large enough to make the cost larger than at x1 = 1.1667,

then use dichotomous search to find the optimal value. Say for instance, we select

43

CHAPTER 4. OPTIMAL RESOURCE ALLOCATION – STOCHASTIC CASE

x1 = 1.5. The new allocation vector x1 = [1.5, 1, 1] results in the following infinitesi-

mal generator matrix:

Q′1 =





−0.37 0.3 0.07 0 0 0

0 −0.17 0 0.07 0.10 0

0 0 −0.3 0.3 0 0

0 0 0 −0.10 0 0.10

0 0 0 0 −0.07 0.07
0 0 0 0 0 0





The corresponding expected project completion time and the relevant costs are com-

puted as follows.

E (Υ) = 20.15 (obtained using Eqn. 4.5)

resource cost = 1×
(
1.5× 1

0.2
+
1

0.1
+
1

0.07

)
= $31.79

tardiness cost = 3× (20.15− 8) = $36.44

total cost = $68.23

Notice that the total cost has decreased. Let us now continue to increase the allocation

to activity 1 further, say to 1.75. The updated completion time and the relevant costs

corresponding to the allocation x2 = [1.75, 1, 1] are:

E (Υ) = 19.86 (obtained using Eqn. 4.5)

resource cost = 1×
(
1.75× 1

0.2
+
1

0.1
+
1

0.07

)
= $33.04

tardiness cost = 3× (19.86− 8) = $35.58

total cost = $68.62

Notice that the total cost is larger than the total cost obtained using x1. Although

the tardiness cost has been reduced, the reduction has been more than offset by the

increase in the resource cost. Therefore we know that the maximal gain in cost is

for some x1 in the interval [1.50, 1.75] . Depending on the desired accuracy, one may

either enumerate the values of x1 in this interval, or use dichotomous search, or even

use Fibonacci search to determine the optimum.

44

CHAPTER 4. OPTIMAL RESOURCE ALLOCATION – STOCHASTIC CASE

Having secured the most improvement from activity 1, we now try changing the alloca-

tion to activity 2 (or 3). If successful, we follow the same procedure with activity 3 (or 2),

and so on until no further improvement is possible. Note that subsequent reduction in cost

due to changes in the allocation to either activities 2 or 3 may induce further improvement

in cost in activity 1.

Following through with the iterations, the “best policy” for the example network is

x∗ = [1.5, 1.5, 1.5] with an associated cost of 62.38. Coincidentally, this is also seen in

the Table 4.1 below, which actually summarizes a part of the solution search process. The

table displays values of total cost as the allocation for activity 3, x3, is varied while keeping

the allocations for activities 1 and 2, (x1, x2), fixed. The surface plot in Fig. 4.2 summarizes

the table graphically.

Table 4.1: Values of Expected Total Cost for Fixed Allocations (x1, x2) and Varying x3

x3

1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

(x
1
,x
2
)

(1, 1) 68.96 66.58 66.57 67.83 69.82 72.28 75.04 78 81.11

(1.25,1.25) 66.5 63.55 63.11 64.05 65.8 68.06 70.67 73.5 76.5

(1.5,1.5) 66.48 63.12 62.38 63.07 64.63 66.74 69.21 71.94 74.86

(1.75,1.75) 67.76 64.11 63.13 63.64 65.04 67.02 69.39 72.04 74.88

(2,2) 69.8 65.93 64.77 65.13 66.41 68.29 70.57 73.15 75.93

(2.25,2.25) 72.32 68.27 66.97 67.21 68.4 70.19 72.41 74.92 77.65

(2.5,2.5) 75.16 70.97 69.56 69.7 70.8 72.53 74.68 77.14 80.36

(2.75,2.75) 78.2 73.91 72.4 72.47 73.5 75.17 77.28 80.54 84.11

(3,3) 81.4 77.02 75.44 75.44 76.42 78.04 80.71 84.29 87.86

In proposing any sequential search procedure one must establish two important proper-

ties:

(a) the process terminates finitely (for any desired accuracy) at the desired optimum.

(b) at termination, the policy obtained and its corresponding value are independent of the

sequence in which the activities were selected. (For instance in the above example,

had we selected activity 2 at the start then proceeded from there, would we still have

45

CHAPTER 4. OPTIMAL RESOURCE ALLOCATION – STOCHASTIC CASE

1

1.5

2

2.5

3

1

1.5

2

2.5

3
60

65

70

75

80

85

90

T
o
t
a
l

C
o
s
t

(x1,x2)

x3

Figure 4.2: Surface Plot of Resource Allocations versus Total Cost

reached the same conclusion?)

These two propositions would be easily established if one can demonstrate that the

reward function

z
(
{xj}|A|j=1

)
= E




∑

j∈A
crxjWj + ct ·max {0,Υ− Ts}





= cr
∑

j∈A
xjE [Wj] + ct · E [max {0,Υ− Ts}] (4.7)

is convex in the ensemble of decision variables {xj}. The first term in (4.7) is linear in xj ,

and therefore convex. It is the second term that is not straightforward because the impact

of changes in xj , lj ≤ xj ≤ uj , on the project completion time Υ is intertwined with other

allocations through the inverse of the matrix T (in Eqn. 4.1).

However, one thing is definitely clear: the function max {0,Υ− Ts} is monotone non-

increasing in each xj . In other words, under strict precedence relations as dealt with in our

thesis, an increase in xj from its lower bound can lead only to a shift in the distribution of

Υ towards 0, or stay unchanged. Therefore the function ct · E [max {0,Υ− Ts}] of Eqn. 4.7

is monotonically non-increasing in its argument up to a point (or ridge, or surface), beyond

which it is monotonically non-decreasing due to increase in resource cost with tardiness

staying constant at 0 (see Fig. 4.2). If the increment ∆j is chosen “small enough” then the

46

CHAPTER 4. OPTIMAL RESOURCE ALLOCATION – STOCHASTIC CASE

unique minimal value of z (·) must be achieved. Observe that there may be a large number

of alternate optimal policies {xj} that yield the same value. Finally the fact that the decision

variables are bounded on both sides ensures the finiteness of the procedure.

The above argument establishes the validity of the following proposition.

Proposition 4.1. For the choice of the increment ∆j sufficiently small, the iterative scheme of

Policy Iteration achieves the optimal value and an optimal policy in a finite number of steps.

4.2.4 Limitations of the PI-like Approach

We summarize some of the limitations of the “Policy Iteration” procedure described previ-

ously.

• In the worst case scenario, if G is a completely directed acyclic network (DAG)

with n nodes and n(n− 1)/2 arcs, then the state space for G is given by N(n) =

Jn − Jn−1, where

Jn =

n∑

k=0

2k(n−k)

• The solution search space increases exponentially. Assume we have 10 activities,

and if we intend to discretize the resource availability interval into 5 points. We

are now potentially looking at 510 points!

• The functional evaluation applies only to the case when all activity work con-

tents are independent exponential random variables, in which case we are able

to

• secure a CTMC, and

• change resource allocation in mid-stream for any activity without any

change in distribution of the “remaining” work content.

• We cannot implicitly incorporate the aggregate resource constraints; they have

to be done explicitly as part of a search procedure.

47

CHAPTER 4. OPTIMAL RESOURCE ALLOCATION – STOCHASTIC CASE

4.3 Overview of Stochastic Programming

Stochastic programming is a framework for modeling optimization problems that involve

uncertainty. The most widely applied and studied stochastic programming models are two-

stage linear programs. Here the decision maker takes some action in the first stage, after

which a random event occurs affecting the outcome of the first stage. A recourse decision

can then be made in the second stage that compensates for any bad effects that might have

been experienced as a result of the first-stage decision. The optimal policy from such a

model is a single first-stage policy and a collection of recourse decisions (a decision rule)

defining which second-stage action should be taken in response to each random outcome.

Mathematically, this can be stated as:





min cTx + Eω[Q(x, ω)]

s.t. Ax = b

l ≤ x ≤ u





(4.8)

where





Q(x, ω) = min d(ω)Ty

s.t. T (ω)x + W (ω)y = h

y ≥ 0





(4.9)

The first linear program of (4.8) minimizes the first-stage direct costs, cTx plus the

expected recourse cost Eω[Q(x, ω)], over all of the possible scenarios of the second stage

while meeting the first-stage constraints, Ax = b. The recourse cost Q depends both on

x, the first-stage decision, and on the random event ω. The second LP of (4.9) describes

how to choose y(ω) (a different decision for each random scenario). It minimizes the cost

dTy subject to some recourse function, Tx + Wy = h. One important thing to notice in

stochastic programs is that the first-stage decision, x, is independent of which second-stage

scenario actually occurs. This is called the nonanticipatory property.

Solution approaches to stochastic programming models are driven by the type of prob-

ability distributions governing the random parameters. A common approach to handling

uncertainty is to define a small number of scenarios to represent the future. In this case

it is possible to compute a solution to the stochastic programming problem by solving a

48

CHAPTER 4. OPTIMAL RESOURCE ALLOCATION – STOCHASTIC CASE

deterministic equivalent linear program represented by (4.10) by introducing a different

second-period y variable for each scenario.





min cTx +
L∑

i=1

pid
T
i yi

s.t. Ax = b

Tix + Wiyi = hi, ∀ i = 1, . . . , L
x ≥ 0

yi ≥ 0 ∀ i = 1, . . . , L






(4.10)

where pi is the probability of occurrence of scenario i and L represents the total number

of scenarios chosen. Notice that the nonanticipatory constraint is met in Ax = b. There is

only one first-stage decision, x, whereas there are L second-stage decisions, one for each

scenario. The first-period decision cannot prefer one scenario over another and must be

feasible for each scenario — that is, Ax = b and Tix+Wiyi = hi for i = 1, . . . , L. Since we

solve for all the decisions, x and yi simultaneously, we are choosing x to be (in some sense)

optimal over all the scenarios.

These problems are typically very large scale LP problems, and so, much research effort

in the stochastic programming community has been devoted to developing algorithms that

exploit the problem structure, in particular in the hope of decomposing large problems into

smaller more tractable components. Here convexity is a key property.

When the probability distributions of the random parameters are continuous, or there

are many random parameters, one is faced with the problem of constructing appropriate

scenarios to approximate the uncertainty. One approach to this problem constructs two

different deterministic equivalent problems, the optimal solutions of which provide upper

and lower bounds on the optimal value of the original problem.

An alternative solution methodology replaces each of the random variables by a finite

random sample and solves the resulting (deterministic) mathematical programming prob-

lem as one would do for the finite scenario case. This is often called an external sampling

method. Under fairly mild conditions one can obtain a statistical estimate of the optimal

solution value that converges to the optimal solution as the sample size increases.

Stochastic integer programming models arise when the decision variables are required

to take on integer values. In most practical situations this entails a loss of convexity

49

CHAPTER 4. OPTIMAL RESOURCE ALLOCATION – STOCHASTIC CASE

and makes the application of decomposition methods problematic. Techniques for solving

stochastic integer programming models are an active research area.

4.3.1 Application of Stochastic Programming in Stochastic Project Scheduling

Stochastic programming techniques have been applied to projects with probabilistic activity

durations. However, the literature is very sparse for project scheduling under resource

constraints, in which case the focus is on minimizing an economic objective. A notable

mention is the work by Valls et al. [1998]. We briefly discuss their model because it provides

a good understanding of the requirements for stochastic programming to be valid.

They deal with the problem of resource-constrained project scheduling with stochastic

activity interruptions, where they minimize the total expected value of weighted tardiness.

Further details of the problem are summarized as follows:

• The project, represented by a directed graph G = (A,E), where A is the set of

activities and E is the set of precedence relationships.

• The set of activities, A = DA ∪ SA, where

- DA: set of deterministic activities

- SA: set of stochastic activities, i.e., those that are interrupted for an

uncertain amount of time (initial processing time is known; length of

the interruption and the final processing time are uncertain).

• There are |R| renewable resource types. The availability of each resource type

k in each time period is Rk units, for k = 1, . . . , |R|.
• Each activity i requires rij units of resource j for its completion.

• The two parts of the stochastic activities in SA, namely before and after the

interruption, require the same number of units of each resource.

• The processing time of the second part (after the interruption) of a stochastic

activity is independent of the length of the interruption.

From the scheduling perspective, three different situations define a new decision stage,

namely

(a) beginning of the project,

(b) completion of an activity ∈ DA or completion of first part of activity ∈ SA, and

50

CHAPTER 4. OPTIMAL RESOURCE ALLOCATION – STOCHASTIC CASE

(c) end of an interruption.

At each of the three above stages, one must consider the available resources, the activities

yet to be scheduled, and the precedence relationships in order to make scheduling decisions.

Valls et al. [1998] transform this problem into a two-stage decision problem, where, in the

first stage they assign a priority to each activity and in the second stage, upon resolution

of the uncertainties of the interruptions, they construct a schedule using these priorities.

Therefore a valid solution representation is any topological ordering of G.

Their objective can be stated mathematically as

min ET (π) =
∑

s∈L
psTw(π)

where ps is the probability associated with scenario s and Tw represents the total weighted

tardiness for scenario s – that is,

Tw(π) =
∑

j∈A
λimax{cjs − dj , 0},

where dj is the due date of activity j and cjs is the completion time of activity j under

scenario s. Since the completion time of each activity depends on the ordering π, both Tw

and expected tardiness ET also depend on π.

The solution procedure implemented by Valls et al. [1998] is a hybrid algorithm based

on scatter search techniques. The procedure searches for improved solutions by generating

priority orderings and evaluating the quality of the ordering by scheduling the activities

under each scenario.

4.3.2 Inapplicability of Stochastic Programming to Our Problem

As seen from the previous section, the procedure of Valls et al. [1998] essentially mimics a

two-stage decision making process. In the first stage the priorities are set and in the second

stage there is a recourse available for adjusting the schedule according to the resolution of

the uncertainties. The nonanticipatory property is retained at all times because the priorities

set in the first stage are not disturbed.

We now present a brief discussion to illustrate why a stochastic programming approach,

similar to the one just presented, cannot be applied to our problem. Consider a simple

network (AoA representation) as shown in Fig. 4.3.

51

CHAPTER 4. OPTIMAL RESOURCE ALLOCATION – STOCHASTIC CASE

1

2

3

5

4 6

7

1

2

3

4

5

6

7

8

9

Figure 4.3: Example Network 3.

We can enumerate the udc’s and depict them in a hierarchial form as shown in Fig. 4.4.

The numbers within the node represent the activities in a udc and the number on the arc

indicates the completed activity. An explanation on how to interpret the “tree” in Fig. 4.4

follows: consider the nodes (in the “tree”) {1, 2} and {2, 3, 4} joined by an arrow with the

number 1 on it. This means that when activity 1 in udc {1, 2} is completed, the “active” udc

now becomes {2, 3, 4}. On the other hand if activity 2 finishes first, then activities in {3,

4} have to wait until the preceding activity, namely activity 1, is completed.

The first problem encountered is the identification of a “stage.” A stage can be thought

of as an epoch in time when one event has completed and the next event can start. In our

case, a logical possibility would be to consider activities processed in a udc as a stage. In

other words, “processing” one udc after another would translate into proceeding stage-wise.

As one can see, this itself presents a very daunting challenge — currently, most stochastic

programs are modeled as two-stage programs. Modeling and solving multi-stage stochastic

programs is very hard and is an active area of research.

Besides the modeling difficulty, there is another issue that needs to be considered — the

nonanticipatory property. In other words, the first-stage decision; namely the assignment of

the priority π, is independent of which scenarios occur in the subsequent stages. Defining

and interpreting what a decision is in a given period corresponds to is unclear, thereby

making it even more difficult to try and ensure the nonanticipatory property. In order

to understand the intricacy of the problem, consider a particular scenario related to the

example project in Fig. 4.3. Assume there is an algorithm designed for adaptive resource

52

CHAPTER 4. OPTIMAL RESOURCE ALLOCATION – STOCHASTIC CASE

allocation — that is, it proceeds stage-by-stage, while performing some sort of “look ahead”

action in allocation of resources. The tree shown in Fig. (4.4) reveals an interesting problem

that arises in this scheme of adaptive resource allocation. Assume that, in the first “stage”,

we have obtained (x∗1, x
∗
2) that minimizes the expected total cost. We now “fix” the allocation

of these 2 activities and proceed to obtain the optimal values for (x3, x4). Now, when we

sample the work content for activities {1, 2, 3, 4}, we know, based on (x∗1, x
∗
2) obtained

in the previous step, whether node 2 is realized first or node 3. If node 2 is realized first

we have to optimize (x3, x4) over the updated resource availability, namely R− x2. On the

other hand, if node 3 is realized first we have to wait until activity 1 finishes, then optimize

(x3, x4) over the original resource availability R.

Here comes the dilemma — we have optimized (x3, x4) over 2 different values of re-

source availabilities. How do we reconcile them? This will be the case whenever we have

two arcs terminating at any given node in the cutset hierarchy tree.

1,2

2,3,4 3,4

4,5 2,3,6,7

4 5,6,7 2,3,7,8 2,3,6,9

5,6,9

5,7,8

5,8,92,3,9 2,3,8

2,3,8,9 2,3,62,3,7

1 2

2,3 4

5 4 2,3
6

7

7
6 2,3

8
7

2,3

9

8 9 2,3

Figure 4.4: Hierarchy of Cutsets (not a complete tree).

The preceding illustration demonstrates the inapplicability of SP techniques to our prob-

lem when the udc’s represent the stages. While this might be the intuitive way to identify

a “stage” in our problem, there could very well be other ways to model the problem and

apply SP to solve it. We however conjecture that enforcing nonanticipatory constraints in a

sequential decision process such as ours is not possible.

53

CHAPTER 4. OPTIMAL RESOURCE ALLOCATION – STOCHASTIC CASE

4.4 Approach Via Simulation-Cum Optimization

As seen from the discussion in the preceding section, our problem is not amenable to

stochastic programming techniques. Therefore there is need to develop a mathematical

framework that can provide some useful information for project planning. One concept

that comes to the forefront is obtaining a “good” estimate of project metrics such as (a)

time to completion, (b) total cost to completion, and (c) probability of meeting a given

due date. We attempt to address these three problems using a simulation-cum optimization

approach.

Our model essentially solves an integer program (described in Section 3.2 on page 29)

corresponding to each realization in a replication. This leads us to two pertinent issues,

namely:

• Minimize the number of samples required to represent the joint distribution of

the random variables as accurately as possible,

• Minimize the variance of the desired sample mean response (total project cost,

project completion time).

4.4.1 Variance Reduction Techniques

In order to estimate the expected response of a single simulated system one often uses

correlation-induction methods such as antithetic variates (AV) and Latin hypercube sam-

pling (LHS) to obtain negatively correlated replications of the response, thereby reducing

the variance of the sample mean response.

A useful condition that often guarantees negative induced correlation is based on the

notion of negative quadrant dependence defined by Lehmann [1966]. A bivariate random

vector (A1, A2)T is negatively quadrant dependent if

Pr{A1 ≤ a1, A2 ≤ a2} ≤ Pr{A1 ≤ a1} · Pr{A2 ≤ a2}, ∀ a1, a2

Avramidis and Wilson [1996] have conducted a detailed study on the implementation

of integrated variance reduction techniques to simulation of stochastic activity networks.

For the sake of demonstrating the effectiveness of these techniques, they consider a project

represented as a directed acyclic graph, G = (N,A), with the objective of estimating the

54

CHAPTER 4. OPTIMAL RESOURCE ALLOCATION – STOCHASTIC CASE

distribution of the time to realize the sink node — that is, the time to complete the project

while respecting all precedence constraints.

In our problem, the system input comprises the work content realizations, and the sys-

tem response is the output from an optimization process. We are primarily concerned with

estimating the total project cost and the time to completion. Of secondary interest is the

distribution of resource consumption per period.

We now outline the Latin hypercube sampling method and its properties. This method

is due to McKay et al. [1979].

4.4.1.1 Latin Hypercube Sampling (LHS)

Consider for example our problem, where the random vectorW = (W1, . . . ,Wn) represents

the work content of the n activities in the project that need to be sampled from a given

distribution F (·). Assume further that we need to conduct k replications. We can generate

these k correlated replications via Latin hypercube sampling as follows:

• Let P = (pij) be a k × n matrix, where each column of P is an independent

random permutation of the integers {1, 2, . . . , k}.
• Let ξij (i = 1, . . . , k; j = 1, . . . , n) be nk independent and identically distributed

(iid) U(0, 1) random variables independent of P .

• The input random numbers are generated according to the following relation:

U
(j)
i =

pij − 1 + ξij
k

(4.11)

Now, let Wij be the ith simulated value. We can transform the probability values sam-

pled into the valueWij using the inverse of the distribution

Wij = F
−1
j (U

(j)
i)

To get an idea of the stratification that occurs in LHS, consider a simple example — say

we have three variables (n = 3) and we generate five random samples (k = 5) of each

using LHS. In simple terms, the LHS method would “draw” a random number from each of

the following 5 subintervals: (0, 0.2], (0.2, 0.4], (0.4, 0.6], (0.6, 0.8], and (0.8, 1.0). This

can be verified from the resulting output shown in Table 4.2.

We now outline some key properties of LHS.

55

CHAPTER 4. OPTIMAL RESOURCE ALLOCATION – STOCHASTIC CASE

Table 4.2: Sample Output of LHS: n = 3, k = 5 (left); Random permutation vectors (right)

Variable

1 2 3

R
ep

lic
at

io
n

1 0.1709 0.9835 0.3812

2 0.6814 0.5657 0.6384

3 0.5980 0.1431 0.4738

4 0.3004 0.2921 0.1886

5 0.8725 0.7123 0.8913

Variable

1 2 3

Pe
rm

ut
at

io
n 1 5 2

4 3 4

3 1 3

2 2 1

5 4 5

(a) Let G(k)LH denote the distribution of each k-dimensional column vector of input random

numbers generated in this way, so that

Uj ∼ G(k)LH = [U
(1)
j , . . . , U

(k)
j]
T

is generated according to (4.11).

(b) For each j (j = 1, . . . , n), the components of the column vector Uj form a stratified

sample of size k from the uniform distribution on the interval (0, 1) such that there

is a single observation in each stratum and the observations within the sample are

negatively quadrant dependent. Morover, the different stratified samples of size k are

independent.

(c) Since each column of P is a random permutation of the integers {1, . . . , k}, the fol-

lowing hold:

• Each element pij for i = 1, . . . , k has the discrete uniform distribution on the

set {1, 2, . . . , k}. Therefore, by definition of (4.11) the variate pij randomly

indexes a subinterval of the form ((l − 1)/k, l/k] for some l ∈ {1, . . . , k}.
• Every subinterval of the form ((l−1)/k, l/k] for l = 1, . . . , k contains exactly

one of the negatively quadrant dependent random numbers {U (j)i : i =

1, . . . , k}, implying that the components of Uj constitute a stratified sample

of the uniform distribution on (0, 1).

(d) Since ξij is a random number sampled independently of pij , U
(j)
i is uniformly dis-

tributed in the subinterval indexed by pij; and in turn U (j)i is uniformly distributed in

56

CHAPTER 4. OPTIMAL RESOURCE ALLOCATION – STOCHASTIC CASE

(0, 1).

(e) Finally the column vectors U1, . . . ,Un are independent because the random permuta-

tions that constitute the columns ofP and the random numbers {ξij : i = 1, . . . , k; j =
1, . . . , n} are all generated independently.

4.4.2 Numerical Example

Consider the project defined by the graph in Fig. 4.3. The PERT estimates of the activity work

contents are defined in Table 4.3. The corresponding parameters of the Beta distribution

are also indicated in the last two columns.

Table 4.3: Data for Example Network 3

PERT Estimates Beta dist.

min (a) mode (m) max (b) α β

2 5 8 4 4

1 4 25 1.48 4.36

4 10 16 4 4

1 4 13 2.2 4.6

3 9 15 4 4

2 5 14 2.2 4.6

1 4 13 2.2 4.6

1 2.5 7 2.2 4.6

2.5 4 11.5 1.69 4.46

The parameters for the Beta distribution can be derived (Law and Kelton [2000]) as

follows:

α =
4 + 3

(
b−m
m−a

)
+
(
b−m
m−a

)2

1 +
(
b−m
m−a

)2 (4.12)

β =
1 + 3

(
b−m
m−a

)
+ 4
(
b−m
m−a

)2

1 +
(
b−m
m−a

)2 (4.13)

57

CHAPTER 4. OPTIMAL RESOURCE ALLOCATION – STOCHASTIC CASE

Other project data are as follows: upper limit on resource availability R = 4, project due

date Ts = 25, cost of tardiness = 10, and resource modes {0.5, 1, 2}.

In addition to the beta distribution, two alternative distributions were considered for

the activity work content,Wj , j = 1, . . . , 7:

• Wj has a uniform distribution in the interval (aj , bj).

• Wj has a normal distribution in the interval (aj , bj), and with mean µj =

0.5(aj + bj) and variance σ2 = [(bj − aj)/6]2.
The random numbers and the corresponding random variables (uniform, normal, and

beta) under Monte Carlo and LHS methods are generated using MATLAB 6.5. These data

are then read in into the AMPL modeling language to be used for the simulation runs.

The optimization model is solved using ILOG CPLEX 9.0. For each distribution, 5 runs of

100 replications each were conducted and the following statistical information for the total

project cost (averaged over 5 runs) are tabulated in Table 4.4:

• p-deciles D(p) for p = 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1

• sample mean and standard deviation (denoted by ‘Std Dev’ in the table), stan-

dard error of the mean (denoted by ‘Std Err’), and coefficient of variation (de-

noted by ‘CoV’)

58

CHAPTER 4. OPTIMAL RESOURCE ALLOCATION – STOCHASTIC CASE

Table 4.4: Summary of Results for Project Completion Cost from Monte Carlo (MC) and
LHS runs

Distribution (MC) Distribution (LHS)

p-deciles Uniform Normal Beta p-deciles Uniform Normal Beta

D(0.9) 350 326 223 D(0.9) 366 308 234

D(0.8) 329.4 287 226 D(0.8) 330 290 219

D(0.7) 306 273 210 D(0.7) 312 281.5 209

D(0.6) 289.7 264 200 D(0.6) 292.7 274 197

D(0.5) 277 260 193.5 D(0.5) 275 266 187.5

D(0.4) 264 254 175 D(0.4) 257.3 255.5 182

D(0.3) 251 245.5 166 D(0.3) 228 243.5 172

D(0.2) 228 232 157 D(0.2) 208 207 163

D(0.1) 201.4 220 148 D(0.1) 185 213 144

Mean 274 263.41 190.29 Mean 278 262.52 190.57

Std Dev 69.11 42.21 35.12 Std Dev 59.75 35.82 34.27

Std Err 7.01 4.22 3.51 Std Err 6.00 3.78 3.42

CoV 25.20 16.02 18.45 CoV 21.45 14.40 17.98

Table 4.5: P -deciles for the Resource Allocation Vector (Uniform (LHS) Case)

Activity

p-deciles 1 2 3 4 5 6 7 8 9

D(0.9) 2 1 1 2 2 1 1.5 1 1.5

D(0.8) 2 1 1 2 2 1 1 1 1

D(0.7) 2 1 1 2 2 1 1 1 1

D(0.6) 2 1 1 2 1 1 1 1 1

D(0.5) 2 1 1 2 1 1 1 1 1

D(0.4) 2 1 1 1 1 1 1 0.5 1

D(0.3) 1 0.5 1 1 1 1 1 0.5 1

D(0.2) 1 0.5 0.5 1 1 0.5 0.5 0.5 0.75

D(0.1) 1 0.5 0.5 1 1 0.5 0.5 0.5 0.5

59

CHAPTER 4. OPTIMAL RESOURCE ALLOCATION – STOCHASTIC CASE

Observe that in case of uniform and normal distributions, the reduction in variance

achieved by using LHS over simple Monte Carlo sampling is approximately 25% and 28%,

respectively. In the case of beta distribution, however, the reduction is only 5%.

Note that the output from the simulation run does not provide the user with an “optimal

resource allocation vector.” Instead what one would find useful are the p-deciles of resource

allocation for each activity as displayed in Table 4.5. This would in some sense provide a

measure of utilization of resources for each activity. Similar tabulation can be made for the

total resource usage of resources across all activities per period.

Based on the data available in Table 4.4 we are now in a position to address the follow-

ing related problems of interest.

Problem 1. Given resource limit value R and confidence probability p, determine the value

of the total project cost that has a probability of at least p.

The solution to this problem can be obtained from the statistical data in Table 4.4 as

follows:

(a) Determine integers q and q + 1, 0 ≤ q ≤ 9, satisfying q/10 ≤ p ≤ (q + 1)/10.

(b) Calculate the value of total cost

zp = D(q/10) + {D((q + 1)/10)−D(q/10)}(10p− q)

Say for example, one needs to solve the problem for values of R = 4 and confidence proba-

bility p = 0.75. The solution for the case where the work content of activities are indepen-

dent and uniformly distributed within the specified ranges (and generated via LHS) can be

obtained as follows:

z0.75 = D(0.7) + {D(0.8)−D(0.7)} · (7.5− 7) = 312 + {330− 312} · 0.5 = 321

Problem 2. Given resource limit value R and available budget, determine the confidence

probability p of not exceeding the budget.

The solution to this problem is similar to that of Problem 1 and is based on using linear

interpolation techniques. Say for example, one needs to solve the problem for R = 4 and

60

CHAPTER 4. OPTIMAL RESOURCE ALLOCATION – STOCHASTIC CASE

an available budget of 300. The solution for the case where the work content of activities

are independent and uniformly distributed within the specified ranges (and generated via

LHS) can be obtained by solving the following:

300 = D(0.6) + {D(0.7)−D(0.6)} · (10p− 6)

The desired confidence probability p = 0.64.

Problem 3. Determine the minimal value R that ensures that the available budget is not

exceeded with confidence probability p.

In order to illustrate the solution of this problem, consider the network displayed in

Fig. 4.5.

1

2

3

4

8

7

6

5

9

1

2

3

4

5
6

7

8

9

10

11

12

13

Figure 4.5: Example Network 4 (AoA).

We use this network because it has more activities that can be executed in parallel than

the example used in the previous two cases, thereby enabling us to easily observe the benefit

of increasing resource availability. The work content of the activities is defined as

Wj ∼ Uniform[aj , bj], for j = 1, . . . , 13.

where {aj , bj} are defined in Table 4.6.

61

CHAPTER 4. OPTIMAL RESOURCE ALLOCATION – STOCHASTIC CASE

Table 4.6: Lower and Upper Bounds forWj

j 1 2 3 4 5 6 7 8 9 10 11 12 13

aj 2 1 4 1 3 2 1 1 2.5 3 5 2 4

bj 8 25 16 13 15 14 13 7 11.5 8 12 15 8

They are generated using LHS. Other problem data are: resource cost cr = 1, tardiness

cost ct = 10, due date Ts = 10. After conducting the simulation experiments for varying

values of R, we tabulate the p-decile information corresponding to the total project cost

in Table 4.7. Depending on the budget availability and the resource modes available, one

can expand the table to include p-deciles for more values of R. From such a table, one

can obtain the minimum value of R needed to stay within the budget with the desired

confidence probability.

Table 4.7: P -deciles of Total Cost for Varying Values of R (R = 5, 6, 7, 8,∞)

R = 5 R = 6 R = 7 R = 8 R =∞
D(0.9) 325.25 314.75 314.75 304 304

D(0.8) 305.25 293 293 287.75 287.75

D(0.7) 292.5 278.25 278.25 274.75 274.25

D(0.6) 280.25 268 268 262.5 262.25

D(0.5) 269.5 259 259 252.75 252

D(0.4) 254.25 251.25 251.25 245.25 244.75

D(0.3) 243.25 234 234 226.25 226.25

D(0.2) 232 222 222 217.75 217.75

D(0.1) 206.25 202.5 202.5 194.5 193

62

Chapter 5

Conclusions and Future Research

The objective of this research is to provide a formal and rigorous treatment to the problem of

optimally allocating resources in project networks under both deterministic and stochastic

conditions. We introduce the concept of work content of an activity, and develop mathe-

matical models to solve the problem when the work content is deterministically known, or

known only in probability. This chapter summarizes the work done so far and proposes the

directions for future research.

5.1 Main Conclusions of the Research

The classical Resource-Constrained Project Scheduling Problem (RCPSP) deals with the

scheduling of precedence- and resource-constrained activities in order to minimize the

project completion time. Our problem focusses on how to optimally allocate resources that

are limited in availability to the precedence-constrained activities such that the total cost

of resources and tardiness is minimized. Our approach to the problem is fundamentally

different in perspective from previous treatments of the “classical" RCPSP. In our model,

“internal" uncertainty resides in the estimate of work content, the decision is the resource

allocated to each activity, and the duration of an activity is derived from its work content

and the amount of resource allocated to it. In Chapter 2 we reviewed the literature on

the RCPSP and its many variants. We observe that the best known approaches to solve the

RCPSP still rely on dynamic programming or branch-and-bound. For the stochastic case,

63

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH

there has been very little literature published so far. Those available focus on schedul-

ing and deal with either minimization of expected makespan, or minimization of weighted

tardiness, or estimation of the probability of meeting a specific project due date.

In Chapter 3, as a prelude to the analysis under stochastic conditions, we address the

problem assuming deterministic knowledge of the activity’s work content. We develop a

nonlinear programming (NLP) model to handle the commonly encountered situations in

practice. We start with the simplest scenario where unlimited resources are available and

then consider individual resource constraints on activities before proceeding to include ad-

ditional aggregate resource constraints on activities in parallel. The NLP model in the case

of aggregate constraints on resource availability is actually an integer-NLP which expands

in size dramatically as the number of parallel paths increase, and consequently its solution

becomes more and more intractable, given the fact that nonlinear programming solvers are

not as advanced in integer-variables-handling capabilities as their linear counterparts. We

also alert the reader to another major limitation of the NLP model — currently our for-

mulation cannot handle aggregate constraints when applied to non–series/parallel graphs.

We also develop an integer programming (IP) model to overcome the limitations of the

NLP model regarding inapplicability to non-series/parallel graphs. While it does have the

usual limitations in terms of nonlinear growth in problem size with increase in problem

parameters (recall that integer linear programming (ILP) is NP-complete), computational

experiments show that it tends to perform well on problems with up to 50 activities.

In Chapter 4 we treat the problem assuming uncertainty in activity work content. We first

assume the work content of activities to be independent exponential random variables. The

problem as it is currently addressed by Tereso et al. [2001], assumes the resource allocation

to an activity, once made, remains invariant and cannot be changed for the duration of the

activity. Recognizing that this is at variance with common practice where the manager does

indeed change the resource allocation dynamically according to changes in the state of the

project, we model our problem as a Continuous-Time Markov Chain (CTMC) and propose

a policy iteration-like approach based on the state space of the CTMC. Its drawback is the

vast increase in the state space with increase in the size of the project network coupled with

the exponential increase in the solution space.

64

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH

We then provide an overview of stochastic programming (SP) and investigate its ap-

plicability to our problem. To aid the understanding of the intricacy of our problem, we

discuss a recently researched stochastic project scheduling problem that uses the concept of

stochastic programming. We provide a simple example to illustrate the fact that standard

stochastic programming formulation cannot be applied to our problem. Finally we outline

a simulation-based optimization approach. This approach incorporates efficient sampling

techniques such as Latin hypercube sampling (LHS) to achieve variance reduction with

smaller sample sizes. The optimization model used is the IP model developed in Chapter 3.

We wish to emphasize that this approach should be used only for estimation purposes —

that is, as a tool to aid budgeting, bidding, etc. Unlike in the deterministic case, the output

from the simulation does not provide a one-to-one mapping of the solution to the objective

value. Instead, what one obtains is a set of objective function values from which one can

obtain the mean, variance, percentiles, etc.

As alluded to earlier, the formulation enables us to answer three relevant problems:

(1) Given resource limit value R and confidence probability p, determine the value of the

total project cost that has a probability of at least p. (2) Given resource limit value R and

available budget, determine the confidence probability p of not exceeding the budget. (3)

Given the available budget and confidence probability p, determine the minimal value R

that is needed to meet the deadline.

5.2 Directions for Future Research

We now outline the challenges ahead in the future course of research:

• Develop a mathematical model to handle the case of general precedence. One

needs to carefully study the currently available method by Kamburowski et al.

[2000] that has the following features: (i) it is applicable only to the AoA mode

of representation (note that this need not necessarily be the mode in which

the project is presented), and, most importantly, (ii) it relies on node reduction

,i.e., elimination of arcs (or activities in our context). One needs to develop a

methodology that is able to transform a non–series/parallel graph to a series/-

parallel one and subsequently reconcile the optimal solution of the transformed

65

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH

graph with that of the original graph.

• The IP model developed in this thesis can be easily extended to the case where

more than one type of renewable resource is available. However, it can pose a

computational burden very easily. From a practical standpoint, there is strong

motivation for developing clever bounding methods and their use in conjunction

with heuristics such as Tabu search.

• A more detailed study of variance reduction techniques is needed from the per-

spective of application to cases where the input random variables need to be

generated using acceptance-rejection techniques.

• Investigate the possibility of stochastic global optimization via meta-heuristics,

especially the Electromagnetism-like algorithm, and its validation via Monte Carlo

based simulation.

66

Bibliography

M. K. Agrawal, S. E. Elmaghraby, and W. S. Herroelen. DAGEN: A generator of testsets for

project activity nets. Euro. J. Operl Res., 90:376–382, 1996.

A. N. Avramidis and J. R. Wilson. Integrated variance reduction strategies for simulation.

Operations Research, 44(2):327–346, 1996.

W.W. Bein, J. Kamburowski, and M.F.M. Stallmann. Optimal reduction of two-terminal

directed acyclic graphs. SIAM J. Computing, 21:1112–1129, 1992.

S. I. Birbil and S-C. Fang. An electromagnetism-like mechanism for global optimization.

Journal of Global Optimization, 25:263–282, 2003.

J. Czyzyk, M. Mesnier, and J. Moré. The NEOS Server. IEEE Journal on Computational

Science and Engineering, 5:68–75, 1998.

P. De, E. J. Dunne, J. B. Ghosh, and C. E. Wells. Complexity of the discrete time-cost tradeoff

problem for project networks. Operations Research, 45:302–306, 1997.

E. Demeulemeester, B. DeReyck, and W. Herroelen. The discrete time/resource trade-off

problem in project networks - a branch-and-bound approach. Technical report, No. 9717,

Department of Applied Economics, K. U. Leuven., 1997.

B. DeReyck and W.S. Herroelen. On the use of the complexity index as a measure of com-

plexity in activity networks, res. report no. 9332. Technical report, Department of Applied

Economics, Katholieke Universiteit Leuven, Debériotstraat 36, B-3000 Leuven, Belgium,

1993.

67

BIBLIOGRAPHY

E. Dolan. The NEOS Server 4.0 administrative guide, technical memorandum anl/mcs-tm-

250. Technical report, Mathematics and Computer Science Division, Argonne National

Laboratory, 2001.

S. E. Elmaghraby. Resource allocation via dynamic programming in activity networks. Eu-

ropean Journal of Operational Research, 64:199–215, 1993.

A. A. Fernandez and R. L. Armacost. The role of the nonanticipativity constraints in commer-

cial software for the stochastic project scheduling. Computer and Industrial Engineering,

31(1/2):233–236, 1996.

R. Fletcher and S. Leyffer. Numerical experience with lower bounds for miqp branch-and-

bound. SIAM J. Optimization, 8(2):604–616, 1998.

D. R. Fulkerson. A network flow computation for project curves. Management science, 7:

167–178, 1961.

M. R Garey and D. S. Johnson. Computers and Intractibility - A Guide to the Theory of

NP-Completeness. W. H. Freeman & Company, San Fransisco, 1979.

M. R. Garey, R. L. Graham, R. L. Johnson, and C. Yao. Resource–constrained scheduling as

genaralized bin packing. Journal of Combinatorial Theory, (A)21:257–298, 1976.

D. Golenko-Ginzburg and A. Gonik. Stochastic network project scheduling with non-

consummable limited resources. International Journal of Production Economics, 48:29–37,

1997.

W. Gropp and J. Moré. Optimization environments and the NEOS Server. Approximation

Theory and Optimization, M. D. Buhmann and A. Iserles, eds., Cambridge University Press,

pages 167–182, 1997.

W. J. Gutjahr, C. Strauss, and E. Wagner. A stochastic branch-and-bound approach to activity

crashing in project management. INFORMS Journal on Computing, 12(2):125–135, 2000.

S. Hartmann. A competitive genetic algorithm for resource-constrained project scheduling.

Naval Research Logistics, 45:733–750, 1998.

68

BIBLIOGRAPHY

W. Herroelen, B. DeReyck, and E. Demeulemeester. Resource–constrained project schedul-

ing: A survey of recent developments. Computers and Operations Research, 25(4):279–

302, 1998a.

T. J. Hindelang and J. F. Muth. A dynamic programming algorithm for decision CPM net-

works. Operations Research, 27:225–241, 1997.

J. Kamburowski, D. J. Michael, and M. F. M. Stallmann. Minimizing the complexity of an

activity network. Networks, 36(1):47–52, 2000.

R. Kolisch, A. Sprecher, and A. Drexl. Characterization and generation of a general class of

resource-constrained project scheduling problems. Management Science, 41:1693–1703,

1995.

V. G. Kulkarni and V. G. Adlakha. Markov and Markov-Regenerative PERT networks. Oper-

ations Research, 34:769–781, 1986.

A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. McGraw-Hill, Boston, Third

edition, 2000.

E. L. Lehmann. Some concepts of dependence. Anns. Math Statist., 37:1137–1153, 1966.

S. Leyffer. Integrating sqp and branch-and-bound for mixed integer nonlinear programming.

Computational Optimization and Applications, 18:295–309, 2001.

M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods for selecting

values of input variables in the analysis of output from a computer code. Technometrics,

21:239–245, 1979.

M. F. Neuts. Structured Stochastic Matrices of M/G/1 type and their Applications. Probabil-

ity:Pure and Applied - A Series of Testbooks and Reference Books, 1989.

J. H. Patterson. Exact and heuristic solution procedures for the constrained resource project

scheduling problem, vol.i-iii. Technical report, School of Bus. Adm., Indiana University,

Bloomington, IN 47401, 1982.

69

BIBLIOGRAPHY

A. Sprecher and A. Drexl. Solving multi-mode resource-constrained project scheduling by

a simple, general and powerful sequencing algorithm. European Journal of Operational

Research, 107:431–450, 1998.

F. Stork. Stochastic Resource-Constrained Project Scheduling. PhD thesis, Technical University

of Berlin , School of Mathematics and Natural Sciences, 2001.

A. P. Tereso, M. M. Araújo, and S. E. Elmaghraby. Adaptive resource allocation in multi-

modal activity networks. IJPE, 92:1–10, 2001.

A. P. Tereso, M. M. Araújo, and S. E. Elmaghraby. Experimental results of an adaptive

resource allocation technique to stochastic multimodal projects. Technical report, Uni-

versidade do Minho, Guimarães, Portugal., 2003a.

A. P. Tereso, M. M. Araújo, and S. E. Elmaghraby. Basic approximations to an adaptive

resource allocation technique to stochastic multimodal projects. Technical report, Uni-

versidade do Minho, Guimarães, Portugal., 2003b.

A. P. Tereso, M. M. Araújo, and S. E. Elmaghraby. The optimal resource allocation in stochas-

tic activity networks via the electromagnetism approach. In Ninth International Workshop

on Project Management and Scheduling(PMS ’04), Nancy, France, 2004.

V. Valls, M. Laguna, P. Lino, A. Perez, and S. Quintanilla. Project scheduling with stochastic

activity interruptions. Project Scheduling: Recent Models, Algorithms and Applications,

Kluwer Academic Publishers, pages 333–353, 1998.

R. D. Wollmer. Critical path planning under uncertainty. Mathematical Programming Study,

25:164–171, 1985.

70

Appendix A

Generation of Test Networks

The need for a standard set of test problems has been recognized quite early by both prac-

titioners and researchers. None was available until November 1982 when Patterson [1982]

assembled 110 problems of varying degrees of “difficulty”. This set became the de facto

standard testset among researchers in the field. Approximately ten years passed before a

group of researchers at Kiel University, led by Kolisch et al. [1995], offered a software that

generates nets of varying degrees of “difficulty”.

For our computational experiments however, we use the software DAGEN, developed

by Agrawal et al. [1996]. This is because their motivation to generate networks was driven

by the fact that neither of these prior testsets took cognizance of the more recent result

of Bein et al. [1992]. Briefly, Bein et al. [1992] established the “reduction complexity” or

“complexity index” (CI), as a measure of non-conformity of a graph to the series/parallel

topology. The CI is an important parameter that adds one more dimension to the measure

of a graph’s “difficulty,” and has been confirmed by the work of Elmaghraby [1993] and

DeReyck and Herroelen [1993].

We now briefly describe the methodology used in DAGEN to generate source-terminal

directed acyclic graphs of given complexity index (CI). The method is based on a three-step

approach. The first step generates the so-called “skeleton network” of the specified CI. In the

second step, modules of extra nodes and arcs are inserted sequentially in either the skeleton

or the current network such that the complexity index of the resulting network remains

unaltered. Finally, the values of the various parameters (duration, renewable resource(s),

and the non-renewable resource) are added.

71

APPENDIX A. GENERATION OF TEST NETWORKS

For our requirement, we just use the data available after the first two steps of the proce-

dure, that is — a graph with the desired number of nodes, activities, and complexity index.

The details of these two steps are discussed in the following sections.

A.1 Initial Framework

A skeleton is a network of given complexity that employs a minimal number of nodes and

arcs. The skeleton can be generated in many ways. In this program we propose a simple

linear structure for the skeleton. The generation of a skeleton proceeds as follows.

Given the complexity index (CI) = c, a skeleton with the minimum number of nodes

and arcs is a chain of c+ 3 nodes (and c+ 2 arcs). The nodes are numbered 1 to n (where

n = c+ 3). Node 1 is treated as the source node and node n as the terminal node.

To obtain the skeleton, node 1 is connected to nodes 2 to n − 1; nodes 2 to n − 2 are

connected to node n and also to the node with the immediate higher number (i.e., 2 to 3, 3

to 4, etc.). Finally node n− 1 is connected to node n.

A.2 The Generation of the Network

In the second step of the procedure, modules consisting of at most one node and at most

three arcs are inserted into the current network such that the CI of the resulting network

remains unaltered. The modules represent the basic building blocks of the network. A total

of five modules were considered for this purpose, as described next:

(a) Series Expansion: If an arc (i, j) already exists between two randomly selected nodes

i and j, and i ≺ j, then a node k can be inserted between nodes i and j such that the

original arc (i, j) is replaced by two arcs (i, k) and (k, j). This results in a net addition

of one node and one arc.

(b) Parallel Expansion: If an arc (i, j) exists between two randomly selected nodes i and

j, and i ≺ j, then a node k can be inserted by adding two arcs (i, k) and (k, j). This

results in a net addition of one node and two arcs.

Note: Arc (i, j) is not deleted here.

72

APPENDIX A. GENERATION OF TEST NETWORKS

(c) Transitive Direct Expansion: If the randomly selected nodes i and j are not con-

nected by a direct arc then an arc may be inserted between nodes i and j. The

insertion of such an arc is permissible if i ≺ j and the complexity of the resulting

network — that is, after inserting the arc — remains unaltered. This results in a net

addition of one arc and zero nodes.

(d) Transitive Series Expansion: If the randomly selected nodes i and j are not con-

nected by a direct arc then a node k and two arcs (i, k) and (k, j) may be inserted

between nodes i and j. The insertion of this module is permissible if i ≺ j and

the complexity of the resulting network — that is, after inserting the arc — remains

unaltered. This results in a net addition of one node and two arcs.

(e) Transitive Parallel Expansion: If the randomly selected nodes i and j are not con-

nected by a direct arc then a node k and three arcs (i, j), (i, k), and (k, j) may be

inserted between nodes i and j. The insertion of this module is permissible if i ≺ j
and the complexity of the resulting network — that is, after inserting the arc — re-

mains unaltered. This results in a net addition of one node and three arcs.

73

Appendix B

Listing of AMPL Code

B.1 Nonlinear Programming Model

#Example project in Chapter 3

#Aggregate constraints

param m := 10; # Number of activities

param n := 7 ; # Number of nodes

param k := 2 ; # Number of resources

param eps := 0.5;

param due := 36;

param bigM := 100;

param R1 := 8;

param R2 := 8;

set M := 1..m;

set N := 1..n;

set K := 1..k;

set NxN := {N cross N};

set MxK := {M cross K};

param w_res1{M}>=0;

param w_res2{M}>=0;

var v >=0;

var x2{M} >=1,<=3;

var x{M} >=1, <=3; # Amount of resource allocated to activity m

var t{N} >=0; # Realization of node n

var y{M} >=0;

var y2{M} >=0;

var delta {NxN} binary;

var gamma {NxN} binary;

Objective function

74

APPENDIX B. LISTING OF AMPL CODE

minimize total_cost:

150*(x[1]^0.6) + 382.09*(x[1]^0.9947) +

186*(x[2]^0.6) + 470.01*(x[2]^0.9947) +

228*(x[3]^0.6) + 55.90*(x[3]^0.9947) +

96*(x[4]^0.6) + 300.56*(x[4]^0.9947) +

138*(x[5]^0.6) + 238.18*(x[5]^0.9947) +

96*(x[6]^0.6) + 226.90*(x[6]^0.9947) +

90*(x[7]^0.6) + 62.46*(x[7]^0.9947) +

174*(x[8]^0.6) + 304.53*(x[8]^0.9947) +

48*(x[9]^0.6) + 150.28*(x[9]^0.9947) +

84*(x[10]^0.6) + 190.11*(x[10]^0.9947) +

<<due,(due+5);0,200,800>>t[7];

subject to

ind_dur1{j in M}: y[j] >= w_res1[j]/x[j]^0.9;

res2{j in M}:x2[j] = (w_res2[j]/w_res1[j])^(1/0.95)*(x[j]^(0.9/0.95));

ind_dur2{j in M}:y2[j] = w_res2[j]/x2[j]^0.95;

General project completion constraints

con24:t[1] = 0;

con13a:t[2] = t[1] + y[1];

con14a:t[3] = t[2] + y[2];

con15:t[4] >= t[2] + y[3];

con16:t[5] >= t[3] + y[4];

con16a:t[5] >= t[3] + y[5];

con17:t[5] >= t[4] + y[6];

con17a:t[5] >= t[4] + y[7];

con18:t[6] >= t[5] + y[8];

con18a:t[6] >= t[5] + y[9];

con19:t[7] >= t[6] + y[10];

Set of 9 constraints to handle aggregate resource constraints

conZ:x[2] + x[3] <=R1;

conZ1:x2[2] + x2[3] <=R2;

conY:x[8]+x[9] <=R1;

conY1:x2[8]+x2[9] <= R2;

con1:t[3] - t[4] <= -eps + bigM*delta[3,4];

con2:t[4] - t[3] <= -eps + bigM*gamma[3,4];

con3:t[3] - t[4] <= -eps + bigM*(1-delta[3,4]+gamma[3,4]);

con4:t[4] - t[3] <= -eps + bigM*(1+delta[3,4]-gamma[3,4]);

con5:t[3] - t[4] <= eps + bigM*(2-delta[3,4]-gamma[3,4]);

con6:t[4] - t[3] <= eps + bigM*(2-delta[3,4]-gamma[3,4]);

con7:x[3] + x[4] + x[5] <= R1 + bigM*(1 - delta[3,4] + gamma[3,4]);

con8:0.4288*x[3]^0.9474 + 1.5324*x[4]^0.9474 + 1.1378*x[5]^0.9474 <=

R2 + bigM*(1 - delta[3,4] + gamma[3,4]);

con9:x[2] + x[6] + x[7] <= R1 + bigM*(1 + delta[3,4] - gamma[3,4]);

75

APPENDIX B. LISTING OF AMPL CODE

con10:1.3767*x[2]^0.9474 + 1.3314*x[6]^0.9474 + 0.7215*x[7]^0.9474 <=

R2 + bigM*(1 + delta[3,4] - gamma[3,4]);

con11:x[4] + x[5] + x[6] + x[7] <= R1 + bigM*(2 - delta[3,4] - gamma[3,4]);

con12:1.5324*x[4]^0.9474 + 1.1378*x[5]^0.9474 + 1.3314*x[6]^0.9474 +

0.7215*x[7]^0.9474 <= R2 + bigM*(2 - delta[3,4] - gamma[3,4]);

Problem data

data;

param : w_res1 w_res2:=

1 25 34

2 32 42

3 38 17

4 16 24

5 23 26

6 16 21

7 15 11

8 29 33

9 8 12

10 14 18;

76

APPENDIX B. LISTING OF AMPL CODE

B.2 Integer Programming Model

B.2.1 AMPL model file

param due >= 0;

param C_T >= 0;

param T >= 0;

param R{1..T} >= 0;

set NODE;

set ARC within (NODE cross NODE);

set ACTIVITY;

param nModes integer > 0;

param x {1..nModes} >= 0;

param cost {ACTIVITY} >= 0;

param ac {ARC} in ACTIVITY;

param Work {ACTIVITY} >= 0;

var v >= 0;

var st {ACTIVITY} >= 0 integer;

var fi {ACTIVITY} >= 0 integer;

var tr {NODE} >= 0 integer;

var z {ACTIVITY, 1..nModes} binary;

var alfa {ACTIVITY, 1..nModes,1..T} binary;

var beta {ACTIVITY, 1..T} binary;

var delta {ACTIVITY, 1..T} binary;

Obj function - Minimize sum of resource costs & tardiness cost

minimize TCost:

sum {(i,j) in ARC, k in 1..nModes} z[ac[i,j],k]*x[k]*cost[ac[i,j]] + <<due;0,C_T>>v;

s.t. C1 {(i,j) in ARC}:

st[ac[i,j]] >= tr[i];

Define finish time of activity (i,j)

s.t. C2 {(i, j) in ARC}:

fi[ac[i,j]] >= st[ac[i,j]] + sum {k in 1..nModes} z[ac[i,j],k]*(Work[ac[i,j]]/x[k]);

Realization of node j is the max of all activities terminating at that node#

s.t. C3{(i,j) in ARC}:

tr[j] >= fi[ac[i,j]];

Each activity is executed exactly in 1 mode

s.t. C4 {(i,j) in ARC}:

sum{k in 1..nModes}z[ac[i,j],k] = 1;

Project completion time

77

APPENDIX B. LISTING OF AMPL CODE

s.t. C5{(i,j) in ARC}:

v >= fi[ac[i,j]] ;

********** Constraints for indicator variable, a[j,k,t] ********

s.t. C6{(i,j) in ARC, t in 1..T}:

sum{k in 1..nModes}alfa[ac[i,j],k,t] <= 1 + (t - st[ac[i,j]])/T;

s.t. C7{(i,j) in ARC, t in 1..T}:

sum{k in 1..nModes}alfa[ac[i,j],k,t] <= 1 + (fi[ac[i,j]] - t)/T;

s.t. C8{(i,j) in ARC, t in 1..T}:

beta[ac[i,j],t] >= (t - st[ac[i,j]])/T;

s.t. C9{(i,j) in ARC, t in 1..T}:

delta[ac[i,j],t] >= (fi[ac[i,j]] - t + 1)/T;

s.t. C10{(i,j) in ARC, t in 1..T}:

sum{k in 1..nModes}alfa[ac[i,j],k,t] >= beta[ac[i,j],t] + delta[ac[i,j],t] - 1;

s.t. C11{(i,j) in ARC, k in 1..nModes,t in 1..T}:

alfa[ac[i,j],k,t] <= z[ac[i,j],k];

Resource constraints

s.t. C12{t in 1..T}:

sum{(i,j) in ARC, k in 1..nModes}alfa[ac[i,j],k,t]*x[k] <= R[t];

B.2.2 AMPL data file

AMPL data file for 20 activities

set NODE := 1 2 3 4 5 6 7 8 9 10;

set ACTIVITY := 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20;

param R default 5;

param T := 30;

param nModes := 3;

param x := 1 1 2 2 3 3;

78

APPENDIX B. LISTING OF AMPL CODE

param due := 10;

param C_T := 10;

set ARC :=

1 2

1 4

1 5

1 6

1 7

1 9

2 3

3 4

3 10

4 5

4 10

5 6

5 10

6 7

6 10

7 8

7 9

7 10

8 9

9 10 ;

param ac :=

1 2 1

1 4 2

1 5 3

1 6 4

1 7 5

1 9 6

2 3 7

3 4 8

3 10 9

4 5 10

4 10 11

5 6 12

5 10 13

6 7 14

6 10 15

7 8 16

7 9 17

7 10 18

8 9 19

9 10 20 ;

79

	List of Tables
	List of Figures
	Introduction
	Background
	Underlying Hypothesis
	Problem Statement
	Scope and Objectives of Research
	Organization of the Dissertation

	Literature Review
	Introduction and Classification of RCPSP
	Unimodal and Multimodal RCPSP
	Optimal Resource Allocation

	Optimal Resource Allocation -- Deterministic Case
	Nonlinear Programming Model
	Unconstrained Activities
	Individually Constrained Activities
	Aggregate Resource Constraints
	Limitations of the NLP Model

	Integer Programming Formulation
	Setup of Computational Experiments for the IP Formulation
	Computational Results: Category 1
	Computational Results: Category 2
	Observations from Computational Experiments

	Optimal Resource Allocation -- Stochastic Case
	Problem Statement and Assumptions
	Policy Iteration--like Approach
	Continuous-Time Markov Chain
	Phase Type Distribution
	Details of the Policy Iteration--like Procedure
	Illustrative example

	Limitations of the PI-like Approach

	Overview of Stochastic Programming
	Application of Stochastic Programming in Stochastic Project Scheduling
	Inapplicability of Stochastic Programming to Our Problem

	Approach Via Simulation-Cum Optimization
	Variance Reduction Techniques
	Latin Hypercube Sampling (LHS)

	Numerical Example

	Conclusions and Future Research
	Main Conclusions of the Research
	Directions for Future Research

	Generation of Test Networks
	Initial Framework
	The Generation of the Network

	Listing of AMPL Code
	Nonlinear Programming Model
	Integer Programming Model
	AMPL model file
	AMPL data file

