
Abstract

RAYE, JULIE KNOWLES. An electromagnetic interrogation technique utilizing

pressure-dependent polarization. (Under the direction of H. T. Banks.)

This dissertation focuses on an interrogation technique that uses traveling acoustic

wavefronts as a virtual reflector for an oncoming electromagnetic wave. Electromag-

netic interrogation techniques in general have the potential for wide applicability in

practical problems and this technique in particular enjoys that potential.

We begin by developing a viable model for pressure-dependent orientational (De-

bye) polarization. We then incorporate it into a one-dimensional Maxwell system to

describe the electromagnetic/acoustic interaction.

This system may be generalized to include a wider class of electromagnetic behavior;

we establish well-posedness, enhanced regularity, and convergence results for this

general system.

Under the framework provided by the mathematical theory, we obtain computational

results for sample forward and inverse problems relating to the interrogation tech-

nique. Our numerical algorithms for the forward problem involve finite difference

approximations in time and finite element approximations with piecewise linear basis

elements in space. Solving the inverse problem entails least squares minimization

using a gradient-free Nelder Mead optimization routine.

Finally, as a first step in developing a model in which the pressure wave may be



modulated by the electromagnetic wave (unlike the one-way coupling in the model

presented here), we consider the system describing an acoustic wave propagating

through a layered medium. We derive a weak formulation for this system and present

computational findings.
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Chapter 1

Introduction

Electromagnetic interrogation techniques have many potentially useful applications,

especially in the fields of military and medicine. It might be possible to detect under-

gound mines and bunkers from the surface. Tanks and planes on the ground may be

able to be “seen” from the air despite the presence of foliage. Tumorous tissue might

be identifiable without surgery.

In [7], the authors focus on two different electromagnetic interrogation techniques.

The first method relies on the assumption that the object of interrogation has a

perfectly conductive (metal) backing. This backing can be an original part of the

object, or it can be added for the purpose of interrogation. For example, in using the

composition of an airplane’s paint to determine its country of origin, the paint is the

subject of interrogation and the plane shell acts as the metal backing. Alternatively,

in the instance of tumor detection, a metal-tipped catheter could be inserted to serve

as the perfect conductor. This perfectly conductive backing acts as a reflector for

the interrogating electromagnetic waves. An electromagnetic wave pulse is launched

through the object under interrogation. When the wave pulse makes contact with

the perfectly conductive backing, the wave is reflected and travels back toward the

point of initiation. Data is collected from the reflected waves and is used to identify

1



Chapter 1. Introduction 2

dielectric and geometric characteristics of the interrogated object.

Often it is not practical, or even possible, for a perfect conductor to be situated

behind the interrogated object. In these cases another approach is needed. In this

technique, the second described in [7], one requires that a standing acoustic wave

(one that varies only in time) is present behind the object. This wave can occur

naturally, such as a pressure wave in the human body, or can be introduced as part

of the method, for example by creating a subsurface explosion in the context of

underground interrogation. Experimental observation has shown that this standing

wave can act as a virtual reflector for the electromagnetic wave pulse. Thus this

approach is similar to the previous one; here the acoustic wave replaces the backing.

The assumption that the standing wave is confined to one spatial position at the

back boundary of the object limits this method. To overcome this limitation, one

can use a traveling acoustic wave that varies both temporally and spatially. This

is advantageous because the reflecting interface can be moved back and forth in the

material. The variable positioning facilitates the assessment of material uniformity

[7].

This thesis treats an electromagnetic interrogation technique that uses a traveling

acoustic wave as a virtual reflector for the interrogating electromagnetic wave pulse.

We begin with the basic electromagnetic model formulated in [7] and incorporate a

model that describes the electromagnetic/acoustic interaction. In the development of

the model, we discuss interaction models found in the literature, including those found

in [39] and [22]; we then proffer a new model for the interaction of the electromagnetic

and acoustic waves. This model features modulation of the material polarization by

the pressure wave and thus the behavior of the electromagnetic pulse. This assump-

tion is based on ideas found in [2], [42], and [23] among others, and incorporated into

our system via a pressure-dependent Debye model for orientational polarization. The

model for the pressure-dependent electromagnetic system is motivated and described
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in Chapter 2.

Once a model has been formulated to describe the physical dynamics of the sys-

tem, it must be investigated from a mathematical perspective, both theoretically

and computationally. In Chapter 4, we detail the numerical methods used to com-

pute approximate solutions for the system, present sample numerical solutions, and

discuss the behavior of the solutions relative to the pressure-dependent polarization

parameters. In order to trust these numerical approximations, we need to know that

the underlying mathematical system is well-posed. That is, a unique solution to the

system exists and depends continuously on initial data. These issues are addressed

in Chapter 3.

For the electromagnetic interrogation technique to be successful, we must be able

to identify dielectric properties of the interrogated material from the observed wave

reflections. In Chapter 5, we discuss a proof of concept parameter estimation problem

in which we estimate model parameters from simulated data. Eventually, we will

attempt to approximate the values of these parameters from actual experimental data.

As a first step, we use data consisting of numerical simulations from the mathematical

model with added random noise. If we have excessive difficulties estimating the

parameter values from this data directly related to our model, we do not expect to

be able to estimate them from experimental data.

Since the work presented in this thesis relies on the electromagenetic/acoustic inter-

action, it is imperative that the pressure-dependence of our model be significant. In

Chapter 6, we examine the significance of the pressure-dependent terms in our model

from a statistical perspective.

The work presented in Chapters 2-6 assumes that the acoustic pressure wave is spec-

ified a priori. In some contexts, especially if we were to assume modification of the

pressure wave by the electromagnetic field, it may be useful to solve the acoustic wave

equation to obtain the pressure dynamics. Solutions of these type are discussed in
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Chapter 7.

Finally we offer some concluding remarks and directions for future work in Chapter 8.



Chapter 2

The model

2.1 Problem formulation

In this section, we specify the electromagnetic interrogation problem under consider-

ation. The geometry of the problem is shown in Figure 2.1. We consider a region Ω̃

divided in two by an interface Γ; one region Ω0 is comprised of air and the other Ω

is comprised of a dielectric material (mud or living tissue, for example). We launch

a right-traveling electromagnetic wave pulse into the air at the boundary Γ0. As it

travels, the pulse crosses the interface Γ and passes into the dielectric medium in the

region Ω. At the air/dielectric interface some of the pulse may be reflected back into

the region Ω0, but most of the wave is transmitted into the dielectric. Meanwhile,

an acoustic pressure wave is traveling toward the electromagnetic wave in Ω but in

the opposite direction. We note that the pressure wave travels at a much slower

speed than the electromagnetic wave. In the dielectric material Ω, the two oncoming

waves meet. This wave interaction causes some electromagnetic waves to be reflected

back to the left, but the majority continue to travel toward the right boundary Γ1.

We assume that the effect of the interaction on the pressure wave is negligible (page

810, [39]). The right-traveling electromagnetic waves pass through the dielectric until

5



Chapter 2. The model 6

they reach the boundary Γ1 which is assumed to be perfectly conductive. At the same

time, the electromagnetic waves traveling in the opposite direction propagate through

the dielectric, cross the air/dielectric interface Γ (where again some of the energy is

transmitted and some is reflected), and passes through the air in the region Ω0 until

they are absorbed at the boundary Γ0. We infer information about the dielectric and

its properties from these wave reflections that reach Γ0.

Figure 2.1: Schematic diagram of general geometry

In order to formulate this problem mathematically, we must make some further as-

sumptions. We assume that the electromagnetic fields within the entire region Ω̃ are

governed by Maxwell’s equations. For a vector ~x ∈ Ω̃, we have
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∇× ~E = − ∂
∂t

~B

∇× ~H = ∂
∂t

~D + ~J

∇ · ~D = 0

∇ · ~B = 0

~D = ε0
~E + ~P

~B = µ0
~H + µ0

~M

~J = ~Jc + ~Js.

In these equations, ~E and ~H denote the electric and magnetic field strengths, while

the electric and magnetic flux densities are denoted by ~D and ~B, and the electric and

magnetic polarizations are denoted by ~P and ~M. The function ~J represents the total

current, comprised of both the conduction current ~Jc and the source current ~Js.

The polarizations and the conduction current describe the material response to the

electromagnetic fields; thus the quantities ~P , ~M, and ~Jc depend on ~E and ~H. These

relationships are defined by constitutive laws. We assume that the region containing

air, Ω0, has zero conductivity and polarization, i.e., ~Jc = 0, ~M = 0, and ~P = 0 in Ω0,

and that the source current ~Js is zero in this region as well. Meanwhile, we suppose

that the dielectric material in Ω is such that we can ignore any magnetic effects and

assume Ohmic conductivity. That is, for ~x ∈ Ω

~M(~x) = 0

~Jc(~x) = σ ~E(~x).

One way [26] to model the electric polarization ~P is with a general integral equation

so that the polarization is precisely dependent on the past behavior of the electric

field. This type of equation can be used to model such behavior as orientational polar-

ization, atomic polarization, and electronic polarization, as well as other polarization

mechanisms that depend on frequency [7]. The equation is given by
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~P (t, ~x) =

∫ t

0

g(t − s, ~x) ~E(s, ~x) ds, (2.1)

where the function g is the polarization susceptibility kernel. The kernel function g

may take many forms depending on the type of polarization modeled. We discuss the

kernel in more detail, as well as its relation to the electromagnetic/acoustic interac-

tion, in Section 2.3. We note that the general model automatically yields the initial

condition ~P (0, ~x) = 0. To account for instantaneous polarization which depends on

the immediate strength of the electric field, the kernel g must include a delta function.

To avoid the resulting mathematical complications, we instead use an equivalent for-

mulation. We assume that the polarization has two components, the instantaneous

component ~Pi and the history-dependent component ~P . We let the history-dependent

component be as given in (2.1), and we assume that the instantaneous component is

proportional to the electric field

~Pi = ε0χ~E,

where χ is a constant of proportionality. Thus

~D = ε0
~E + ε0χ~E + ~P

~D = ε0(1 + χ) ~E + ~P

~D = ε0εr
~E + ~P

(2.2)

where εr = 1 + χ is the relative permittivity and ~P is given by (2.1). We point out

that εr can vary spatially to account for different instantaneous polarization effects

in different locations.

It is worthwhile to note that not all polarization models can be written in the form

of equation (2.1). In Section 2.3, we introduce some polarization models that cannot
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be expressed in this form.

2.2 The electromagnetic wave

In this section, we state additional assumptions about the system and discuss the

implications.

In the description of the problem in Section 2.1, we do not discuss the source current

~Js in detail. However, the choice of source current can have significant impact on

the problem formulation. For this problem, we choose to use a windowed microwave

pulse emitted from an exterior attenna in Ω0. We specify that this pulse consists

of a polarized plane wave so that the signal produced has nontrivial components of

~E and ~H in only one dimension in Ω0. Moreover, we assume that the entire region

Ω̃ is infinite and homogeneous in the planes orthogonal to the direction of wave

propogation. In particular, we suppose that the signal is normally incident to faces

in the xy-plane and that an infinite (in the x and y directions) slab of air lies between

z = 0 and z = z1 and an infinite slab of dielectric material lies between z = z1 and

z = 1. Under these assumptions, we may conclude that the electric and magnetic

fields are parallel to the î and ĵ axes respectively at all points in Ω0, and both fields

are homogeneous in x and y in Ω0. For this problem, these properties of the electric

field apply to ~P and ~D via their dependence on ~E. Moreover, the uniformity of the

dielectric material in x and y implies that these conclusions hold throughout Ω̃. So

for any ~x ∈ Ω̃, the notation
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~E(t, ~x) = îE(t, z)

~H(t, ~x) = ĵH(t, z)

~P (t, ~x) = îP (t, z)

~D(t, ~x) = îD(t, z).

(2.3)

applies.

Figure 2.2: Schematic diagram of simplified geometry

These assumptions allow us to profoundly simplify the Maxwell’s equations given in

Section 2.1. For a vector function dependent only on z, i.e., ~F (~x) = ~F (z), we have
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∇× ~F = − ∂

∂z
Fy î +

∂

∂z
Fxĵ.

Using this simplification as well as the aforementioned assumptions, the first two of

Maxwell’s equations become

∂

∂z
E = −µ0

∂

∂t
H (2.4)

− ∂

∂z
H =

∂

∂t
D + σE + Js. (2.5)

Moreover, we note that the functions D and B = µ0H, written in the form (2.3),

automatically satisfy the final two Maxwell’s two equations. By taking a spatial

derivative of (2.4) and a time derivative of (2.5), we can remove the magnetic field

from the equations. In addition, we can use the relationship

D = ε0(1 + (εr − 1)IΩ)E + P = ε0ε̃rE + P,

with ε̃r ≡ 1 + (εr − 1)IΩ where IS is the indicator function for a set S. We note

that this expression for D agrees with (2.2) for points in Ω. These steps lead to the

equation

µ0ε0ε̃rË + µ0P̈ + µ0σĖ − E ′′ = −µ0J̇s, (2.6)

which will be our primary focus. Here and throughout, we use Ė to denote ∂
∂t

E and

E ′ to denote ∂
∂z

E.

We assume that initially the system is at rest, i.e.,

E(0, z) = 0

Ė(0, z) = 0

P (0, z) = 0

Ṗ (0, z) = 0.
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We next formulate our boundary conditions. No reflections occur at z = 0; we express

this with the equation

Ė(t, 0) − cE ′(t, 0) = 0

where c2 ≡ 1
ε0µ0

. At the boundary z = 1, we assume there is a perfectly conductive

backing. This assumption is made primarily to facilitate computations; the physical

implication of such a boundary condition will not be exploited. In three dimensions,

a perfectly conductive boundary is modeled by the two equations

~E × n̂|~x∈Γ1 = 0

~B · n̂|~x∈Γ1 = 0.

With the simplified geometry of our problem, these boundary conditions simplify as

well. The unit normal is given by n̂ = k̂, so that ~B·n̂ = B(t, z)ĵ ·k̂ = 0 is automatically

satisfied. Moreover, ~E × n̂ = E(t, z)̂i × k̂ = −E(t, z)ĵ, so that ~E × n̂ = 0 at z = 1

becomes E(t, 1) = 0.

Finally we again consider the source current. We assume previously that the source

current is a windowed microwave pulse consisting of a polarized plane wave and that

the emitted signal is incident normal to the xy plane. As in [7], we choose a windowed

sine wave that is launched at z = 0. The form of this wave is given by

Js(t, z) = δ(z)gs(t)I(0,tf ) = δ(z) sin(ωt)I(0,tf ),

where ω is the frequency of the input signal and δ(z) is the usual Dirac delta function

centered at z = 0. To guarantee continuity in t of Js, we choose tf so that gs(tf ) =

sin(ωtf ) = 0. If more smoothness is desired in Js, the windowing indicator function

I(0,tf ) can be replaced by a smoother function.
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By choosing a windowed sine wave, we ensure that the pulse has a finite duration. This

allows us to distinguish between reflections from the air/dielectric interface z = z1,

reflections from the pressure wave, and reflections from the back boundary.

2.3 The electromagnetic/acoustic interaction

The previous two sections deal with the electromagnetic wave and the acoustic pres-

sure wave individually as separate entities. However, our electromagnetic interro-

gation technique relies on the assumption that the two systems interact – and that

the interaction results in the reflection of the electromagnetic wave. In this section,

we develop a model for the electromagnetic/acoustic wave interaction. We begin by

discussing several interaction models found in the literature. We then discuss the

polarization model on which our interaction model is based and finally present our

model.

2.3.1 A survey of interaction models found in the literature

We begin our survey of electromagnetic/acoustic interaction models found in the

literature by noting that there are various ways to address this issue and not all

are equivalent. We use interchangeably the notation used by the original authors

(e. g., Ë and ∂2E
∂t2

are the same) to facilitate cross-referencing. We first consider the

model in [7]. The authors assume that the dielectric material obeys the generalized

pressure-dependent polarization rule

1

ε0

∂2P

∂t2
= f0(p)E + f1(p)

δE

δt
+ f2(t)

δ2E

δt2

and make the simplification
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f0(p) = 0, f1(p) = 0, f2(p) = χ0 + κp(t, z).

This reduces the model to

1

ε0

∂2P

δt2
= (χ0 + κp(t, z))

∂2E

δt2
(2.7)

which is used with standing acoustic waves in both [7] and [13].

We point out that this model is a model of instantaneous polarization, and not of the

form of (2.1) described in Section 2.1. Nonetheless, the model (2.7) can be used to

replace P̈ in (2.6) to create a pressure-dependent electromagnetic system.

Next, we look at an alternate approach to modeling the electromagnetic/acoustic

interaction. The authors of [39] begin with the electromagnetic wave equation

∇2 ~E − 1

c2

∂2

∂t2
~E = 0.

We note that in one dimension this is equivalent to (2.6) with ε̃r = 1, and no polar-

ization, conduction, or source terms. They then suggest that a change in pressure

will produce a change in the index of refraction; they describe this perturbation in

the refraction index in terms of a variation in the dielectric constant δε/ε0. This leads

to the following equation

∇2 ~E − 1

c2

∂2

∂t2
~E =

δε/ε0

c2

∂2

∂t2
~E. (2.8)

Reducing equation (2.8) to one dimension, we see that it can also be written in the

form of (2.6), this time with ε̃r = 1, no conduction or source terms and

µ0P̈ =
δε

ε0

Ë.

The dielectric constant ε can be thought of as a function of the pressure and entropy

of the system, P̃ and S respectively. Thus
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δε =
∂ε

∂P̃
δP̃ +

∂ε

∂S
δS.

If the system is assumed to be at constant entropy, this reduces to

δε =
∂ε

∂P̃
δP̃ .

which can then be used in (2.8) to obtain

∇2 ~E − 1

c2

∂2

∂t2
~E =

1

c2

1

ε0

∂ε

∂P̃
p

∂2

∂t2
~E, (2.9)

where p = δP̃ is the pressure variation. We note that if ∂ε
∂P̃

is constant, the polarization

model in (2.9) is of the same form as (2.7) with χ0 = 0. This implies that this too is

a model of instantaneous polarization.

An approach similar to that in [39] is found in [22]. The author considers the case

where light is scattered due to fluctuations in the dielectric constant and assumes that

these fluctuations are the result of fluctuations in thermodynamic variables, such as

pressure, within the system. We follow his arguments to present a macroscopic view of

the problem. This begins with the assumption that the scattered field ~E is described

by the equation (after conversion from gaussian to MKS units)

∇2 ~E − n2

c2
~̈E =

ε0

c2
~̈P , (2.10)

where n is the index of refraction. We note that in one dimension this can be written

as

n2

c2
Ë − E ′′ = −ε0

c2
P̈ , (2.11)

which is equivalent to equation (2.6) with ε̃r = n2 and no conduction or source terms.

We then let ∆ε be a fluctuation in the dielectric constant and ∆χ be a fluctuation in

electric susceptibility. Since
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ε = ε0(1 + χ),

it follows that

∆χ =
1

ε0

∆ε.

We next suppose that the polarization due to the fluctuation is given by

~P = ∆χ~E0 =
1

ε0

∆ε ~E0, (2.12)

where ~E0 is the incident optical field.

We further assume that density and temperature, ρ and T , are the independent

thermodynamic variables in order to represent the dielectric constant fluctuation as

∆ε =

(
∂ε

∂ρ

)
∆ρ +

(
∂ε

∂T

)
∆T.

Under assumption that the dielectric constant has a stronger dependence on density

than on temperature [22], we can approximate this relationship by

∆ε =

(
∂ε

∂ρ

)
∆ρ. (2.13)

If we then treat the density as dependent on pressure and entropy, p and s (which

are now the independent thermodynamic variables), we find that the fluctuation in

density can be written

∆ρ =

(
∂ρ

∂p

)
∆p +

(
∂ρ

∂s

)
∆s.

Finally since our main interest is the scattering due to variations in acoustic pressure,

as opposed to entropy, we neglect the second term and consider the relationship
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∆ρ =

(
∂ρ

∂p

)
∆p. (2.14)

Using relations (2.13) and (2.14) in equation (2.12), we obtain

~P =
1

ε0

∂ε

∂ρ

∂ρ

∂p
∆p ~E0,

which can then be used in equations (2.10) or (2.11). We note that this results in an

equation very similar to (2.9).

2.3.2 Our pressure-dependent polarization model

Before we introduce our model for pressure-dependent polarization, we provide the

motivation behind it. We begin by discussing polarization in general and then explain

how it pertains to our problem.

Mechanisms of polarization

Electric polarization is by definition the electric dipole moment per unit volume. The

formation of these electric dipoles can be caused by several mechanisms [2], [4] which

we briefly summarize here.

Electronic polarization/ Optical polarization/ Induced polarization An

applied field displaces the electron cloud center of an atom with respect to its

nucleus. This induces a dipole moment. Electronic polarization is found in both

materials that possess molecules with large dipole moments (polar materials)

and those that do not (nonpolar materials).

Atomic polarization/ Ionic polarization/ Molecular polarization An

applied electric field may displace the atoms in the molecules, changing the
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distance between the atoms, and thus changing the dipole moment. Atomic

polarization only occurs in polar materials.

Orientational polarization/ Dipole polarization Without an applied field, a

polar material possesses permanent dipole moments that are randomly oriented.

When a field is applied, these dipoles align themselves with the field. Since orien-

tational polarization is reliant upon the existence of permanent dipole moments,

it only is found in polar materials.

Interfacial polarization The impurities and defects in crystal can impede the flow

of charge created by an applied field. The resulting charge accumulation can

result in a dipole moment. This type of polarization is found only in crystals.

The multiple names for each type of polarization can be confusing, especially when

comparing the research of different contributors. We attempt to refer to each mecha-

nism by the first name given above. We point out that in addition to this terminology

both atomic and electronic polarization are sometimes referred to as distortional po-

larization [2].

In a given material, polarization can be the result of one or more of these four mech-

anisms. We are primarily interested in materials that contain a high water-content,

such as living tissue or mud, so here we focus on polar liquids. The polarization in this

class of liquids tends to depend mostly on the orientation of permanent electric dipoles

in the molecules (orientational polarization) and the distortion of the molecules by

an applied electric field (electronic and atomic polarization) [29]. With this in mind,

we focus on these polarization mechanisms in the remainder of our discussions.

In the presence of most applied electric fields, the polarization of a high water-content

liquid is both distortional and orientational. At high (optical) frequencies however,

the electric field oscillates so rapidly that it does not hold any orientation long enough
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for the dipoles to align with it. Thus, the orientational polarization is virtually in-

significant [42]. This implies that at sufficiently high frequencies, the only contribution

to the dielectric constant or optical index of refraction is from electrical distortion

[29].

Since the polarization of a polar liquid has multiple mechanisms, we expect that a

complete model must incorporate them all. Orientational polarization is suggestive of

a mechanism with an exponential decay factor, such as the one in the model proposed

by Debye [2]. However, a system rarely conforms exactly to the model described by

the Debye dispersion equations due to the fact that the polarizational decay may

not be represented accurately by a mechanism with one relaxation time [30]. On

the other hand, distortional polarization causes charges to behave somewhat like

linear harmonic oscillators; thus it is reasonable to model them as such (the Lorentz

model is an example). Neither of these types of models alone will be sufficient to

completely describe the polarization of a polar liquid. Nonetheless as a first step

and to illustrate our ideas, we base our model on the Debye model for orientational

polarization. Future modeling attempts will require systems of more complexity.

The Debye model

The Debye model [7] can be represented by the first order ordinary differential equa-

tion

τ Ṗ + P = ε0(εs − ε∞)E, (2.15)

or by

P (t, z) =

∫ t

0

g(t − s, z)E(s, z) ds

with kernel
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g(t) = exp

(
−t

τ

)
ε0(εs − ε∞)

τ
.

In these equations, εs is the static relative permitivitty and ε∞ is the value of permit-

tivity for an extremely high (≈ infinite) frequency field. In this model, the value of

the relative permittivity εr of (2.2) in the dielectric is given by ε∞; that is, εr = 1 in

[0, z1] and εr = ε∞ in (z1, 1]. The variable τ is the relaxation time of the dielectric.

In [2], Anderson describes a potential double well formulation for an atomic model

that leads to the Debye polarization model. In this model, the dielectric is made up

of independent noninteracting particles; each particle has two equilibrium positions

separated by a barrier of high potential. One considers a charged particle with two

equilibrium positions A and B located a distance d from each other. Between them is

a potential barrier W such that W À kBT where kB is the Boltzmann constant and

T is the temperature. (See Figure 2.3.) If there is no electromagnetic field present,

one assumes that the particle oscillates about either equilibrium, and on occassion,

obtains enough energy to cross the potential barrier and jump into the other well.

Over time, for constant temperature, the particle is near A as often as near B and

the probability of finding the particle near a given well is 1
2
.

W
BA

d

V

eEd

A
W

B

d

E
V

Figure 2.3: Potential double well model with and without an applied field
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When an electric field E is applied in the direction from A to B, the potentials at

each equilibrium are no longer equal, for instance VA > VB, and

VA − VB = edE,

where e is the charge of the particle. (See Figure 2.3.) A result from Boltzmann

statistics implies that the probability that a particle has potential V is proportional

to exp(− V
kBT

), so that now it is more likely to find the particle near equilibrium B.

As before, a particle can jump from one equilibrium to the other if it acquires enough

energy. For a potential barrier W , the probability that a particle can cross this barrier

in the direction from B to A is proportional to exp(− W
kBT

), with proportionality

constant w0

2π
, the assumed frequency of oscillation due to thermal agitation of the

particle about the equilibrium. Likewise, the probability that the particle can cross

the barrier in the direction from A to B is given by w0

2π
exp(−W−edE

kBT
). Using these

probabilities and the fact that the total number N = NA+NB of particles is constant,

one can derive [2] (see also page 387 of [26]) a linear first order differential equation

to describe the difference NB(t)−NA(t) in the number of particles in wells B and A

at any time t

d
dt

(NB(t) − NA(t)) =

w0

π
exp

(
− W

kBT

) (
−(NB(t) − NA(t)) + ed

2kBT
NE

)
.

The polarization P (t) due to the applied electromagnetic field is proportional to

NB(t) − NA(t). By relating τ with w0

π
exp

(
− W

kBT

)
and εs − ε∞ with

w0

π
exp

(
− W

kBT

)
ed

2kBT
N , one thus arrives at the Debye model (2.15) from atomic con-

siderations.

There is substantial reason to believe that the behavior described by the Debye model

is pressure-dependent. One approach to understand this pressure-dependence is to
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extend the above arguments and consider the polarization from a non-equilibrium

thermodynamics perspective. A discussion of this nature is given in [35].

We however take a different approach to incorporating pressure-dependence into the

Debye model. We present the model here and provide motivation in Section 2.3.2.

We begin by assuming that the material-dependent parameters in the differential

equation (2.15) depend on pressure, i.e.,

τ(p)Ṗ + P = ε0(εs(p) − ε∞(p))E = ε0(γ(p) − ζ(p))E.

We suppose as a first approximation that each of the pressure-dependent parameters

can be represented as a mean value plus a perturbation that is proportional to the

pressure

τ(p) = τ0 + τ̃ = τ0 + κτp

γ(p) = γ0 + γ̃ = γ0 + κγp

ζ(p) = ζ0 + ζ̃ = ζ0 + κζp.

Then the equation

τ(p)Ṗ + P = ε0(γ(p) − ζ(p))E

can be written

(τ0 + κτp) Ṗ + P = ε0 (γ0 − ζ0 + (κγ − κζ)p) E. (2.16)

We recall that the polarization term in (2.6) involves second-order time derivatives.

To express (2.16) in a compatible form, we take the time derivative of both sides to

obtain
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P̈ = − (1 + κτ ṗ)

(τ0 + κτp)
Ṗ +

ε0 (γ0 − ζ0 + (κγ − κζ)p)

(τ0 + κτp)
Ė +

ε0 (κγ − κζ) ṗ

(τ0 + κτp)
E (2.17)

with

Ṗ = − 1

(τ0 + κτp)
P +

ε0 (γ0 − ζ0 + (κγ − κζ)p)

(τ0 + κτp)
E. (2.18)

From here, we can use (2.18) in (2.17) and then replace P̈ in (2.6) with the expression

given by (2.17).

Additionally, we should note that the relation εr = ε∞ in (z1, 1] becomes εr = ε∞(p) =

ζ0 + κζp in (z1, 1].

Motivation for pressure-dependence of polarization

The polarization described by both the original and pressure-dependent Debye models

is due to the alignment of permanent dipole moments with the applied field. This

tendency to align is inhibited by the presence of centrifugal or gyroscopic forces.

These forces are caused by molecular rotations and collisions [42]. The pressure in a

polarizable medium influences and is influenced by the short range particle interaction

in the medium, including these molecular rotations and collisions. This interaction

between particles may serve to inhibit or facilitate the alignment of dipole moments

with the applied field, resulting in the modification of the orientational polarization

[23]. Figure 2.4 depicts this schematically.
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Figure 2.4: Pressure-dependence of orientational polarization

This interaction makes sense intuitively; however, we want to better understand the

interaction mechanism. Specifically, we want to consider each polarization parameter

individually and address its possible pressure-dependence.

We begin with the static permittivity εs, which is the electric permittivity of a dielec-

tric in the presence of a constant applied electric field. In 1850 and 1879 respectively,

Clausius and Mossitti independently discovered that for any given material, the quan-

tity

(εs

ε0

− 1
)
/
(εs

ε0

+ 2
)

is proportional to the material density (page 155, [32]; page 140, [41]). Pressure

variations in the material cause changes in its density. These changes are reflected

in the static permittivity of the material due to the law of Clausius and Mossitti. So

the static permittivity can be expected to depend on pressure.
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The pressure-dependence of εs does not necessarily suggest the pressure-dependence of

ε∞, the permittivity of a material under a very high frequency electric field. However

in the interest of generality, we allow for the possibility that ε∞ is pressure-dependent.

Pressure-independent behavior of ε∞ is just a special case of our model (see Section

2.1) with κζ = 0 so that ε∞(p) = ζ0.

Lastly we examine the feasibility of the pressure-dependence of the relaxation param-

eter τ . To do so we consider a dipolar liquid which consists of freely moving molecules.

If an individual dipole changes its orientation, the nearby dipoles shift to compensate

and produce a new equilibrium position. Their collective motion can be viewed as a

viscous frictional damping force that acts on the original dipole. When an electric

field is applied, its force causes the dipole to align itself with the field. The rate of

alignment depends on the amount of friction. However since the dipole is subject

to the effects of Brownian motion, this rate also depends on thermal fluctuations.

Taking this into account Debye derived the following expression for the relaxation

(page 73, [2])

τ =
ξ

2kBT
,

where ξ is the frictional constant. Dipoles arranged in smaller groups are less apt

to resist reorientation [21]. This leads to diminished frictional effects. Variations in

pressure likely alter the cohesion of dipole groupings and thus affect the friction. A

specific example of this relationship is given in (page 63, [38]) for hard sphere fluids.

In this case, the frictional viscosity constant is given by

ξ =
kBT

mD
,

where m is the particle mass and D is the self-diffusion coefficient. The self-diffusion

coefficient is pressure-dependent; that is
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D =
1

2
R

(πkBT

m

) 1
2
( p

ρkBT
− 1

)−1

,

where R is the hard sphere diameter, p is the pressure, and ρ is the liquid density.

Clearly in this example the relaxation parameter τ is pressure-dependent.
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Theoretical results

The main purpose of this chapter is to provide a general theoretical foundation for a

class of electromagnetic/acoustic interaction problems. This class includes the electro-

magnetic interrogation techniques described in [7] as well as the technique presented

in this thesis. Specifically, in Section 3.1 we consider the well-posedness of a general

variational form of the model. As in Chapter 2, we consider the equation in the

domain 0 ≤ z ≤ 1 and assume that the boundary conditions are absorbing on the

left (z = 0) and perfectly conductive on the right (z = 1). We use general initial

conditions for the electric field, but without loss of generality we assume that the

polarization, present in the dielectric material region (z1, 1] with 0 < z1 < 1, and

its first time derivative are initially zero. In Section 3.2, we show that with some

additional asssumptions, our solutions have enhanced regularity. Finally, we use the

results of the first two sections to establish a framework for the parameter estimation

problem in Section 3.3. In each of these sections, we verify that the results in ques-

tion are satisfied by the systems incorporating pressure-dependent Debye and Lorentz

polarization.

27
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3.1 Well-posedness

We begin by formulating the Gelfand triple V ↪→ H ↪→ V ∗, where H = L2(0, 1) and

V = H1
R(0, 1) ≡ {φ ∈ H1(0, 1) : φ(1) = 0}. Specifically, we note that there is a value

k > 0 such that for all φ ∈ V , we have

|φ|H ≤ k|φ|V .

The usual duality product is denoted by < ·, · >V ∗,V ; it is the extension by continuity

of the H inner product from H × V to V ∗ × V . Both inner products < ·, · > and

norms | · | denoted without subscripts are assumed to be in H. A variational form of

Maxwell’s equation in second order form for a general polarization term is given in

[7], Chapter 2, by

< aË, φ >V ∗,V + < bĖ, φ > + < eP̈ , φ >

+cĖ(t, 0)φ(0) + σ1(E, φ) =< F, φ >V ∗,V

(3.1)

for all φ ∈ V . Here the sesquilinear form σ1 is defined by

σ1(φ, ψ) = c2 < φ′, ψ′ >, (3.2)

where c2 = 1
ε0µ0

is a positive constant and the parameter functions a, b, and e depend

on geometry as well as conductivity and the instantaneous polarization of the dielec-

tric medium. The absorbing boundary condition Ė − cE ′ = 0 at z = 0 is a natural

condition and is thus incorporated into this variational formulation of the equation,

but the superconductive boundary condition at z = 1 is an essential boundary con-

dition and is imposed in the definition of V .

We note that σ1 is V -continuous and V -elliptic, i.e., there exist positive constants

c1, c2 such that



Chapter 3. Theoretical results 29

σ1(φ, ψ) = c2 < φ′, ψ′ > ≤ c2|φ′|H |ψ′|H ≤ c1|φ|V |ψ|V (3.3)

σ1(φ, φ) = c2 < φ′, φ′ >= c2|φ′|2H ≥ c2|φ|2V , (3.4)

since |φ|2V is equivalent to |φ′|2H + |φ(1)|2 = |φ′|2H .

The model (3.1) is a very general Maxwell system that can be used with numerous

polarization models. As an example, we show that (3.1) can be specialized to in-

clude a Debye polarization model with pressure-dependent coefficients. The pressure-

dependent Debye polarization model we consider (see [16] and [2] for physics-based

discussions) is given by

Ṗ = − 1

(τ0 + κτp)
P +

ε0 (γ0 − ζ0 + (κγ − κζ)p)

(τ0 + κτp)
E. (3.5)

where τ = τ(p) = τ0 + κτp is the pressure-dependent decay parameter, εs = γ(p) =

γ0 + κγp and ε∞ = ζ(p) = ζ0 + κζp are pressure-dependent dielectric parameters, and

p = p(t, z) is the acoustic pressure in the Debye material.

The solution to (3.5), for P (0, z) = 0, can be written

P (t, z) =

∫ t

0

exp

(∫ t

s

−dξ

τ0 + κτp(ξ, z)

)
ε0 (γ0 − ζ0 + (κγ − κζ)p(s, z))

(τ0 + κτp(s, z))
E(s, z) ds.

We may use (3.5), its derivative, and its solution to replace P̈ in (3.1). These substi-

tutions lead to the following variational form of the system

< aË, φ >V ∗,V + < bĖ, φ > + < hE, φ > + <
∫ t

0
G(t, s, ·)E(s, ·) ds, φ >

+cĖ(t, 0)φ(0) + σ1(E, φ) =< F, φ >V ∗,V

E(0, z) = E0(z) Ė(0, z) = E1(z) P (0, z) = Ṗ (0, z) = 0

(3.6)
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where E0 ∈ V and E1 ∈ H with coefficients, kernel and forcing functions, and

sesquilinear form defined by

a(t, z) = 1 + (ε∞ − 1)I(z1,1) = 1 + (ζ0 + κζp(t, z) − 1)I(z1,1)

b(t, z) =

(
σ

ε0

+
1

ε0

ε0 (γ0 − ζ0 + (κγ − κζ)p(t, z))

(τ0 + κτp(t, z))

)
I(z1,1)

h(t, z) =
1

ε0

(ε0(κγ − κζ)ṗ(t, z)

(τ0 + κτp(t, z))

−(1 + κτ ṗ(t, z)) ε0 (γ0 − ζ0 + (κγ − κζ)p(t, z))

(τ0 + κτp(t, z))2

)
I(z1,1)

G(t, s, z) =
1

ε0

(1 + κτ ṗ(t, z)) ε0 (γ0 − ζ0 + (κγ − κζ)p(s, z))

(τ0 + κτp(t, z))2 (τ0 + κτp(s, z))

× exp

(∫ t

s

−dξ

τ0 + κτp(ξ, z)

)
I(z1,1)

c2 = 1
ε0µ0

F (t, z) = − 1
ε0

J̇s(t)

σ1(φ, ψ) = c2 < φ′, ψ′ > .

(3.7)

(Here IΩ is the indicator or characteristic function for a set Ω.)

Moreover, we may consider the Lorentz model for polarization

P̈ +
1

τ
Ṗ + ω2

0P = ε0ω
2
0(εs − ε∞)E

as the pressure-dependent equation

P̈ +
1

τ0 + κτp
Ṗ + (α0 + καp)P = ε0(α0 + καp)(γ0 − ζ0 + (κγ − κζ)p)E.
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Coupling this polarization model with the Maxwell system formulated above leads to

equation (3.6), where again E0 ∈ V and E1 ∈ H. For this model, the coefficients,

kernel and forcing functions, and sesquilinear form are given by

a(t, z) = 1 + (ε∞ − 1)I(z1,1) = 1 + (ζ0 + κζp(t, z) − 1)I(z1,1)

b(t, z) = σ
ε0

I(z1,1)

h(t, z) = 1
ε0

(ε0(α0 + καp(t, z))(γ0 − ζ0 + (κγ − κζ)p(t, z))) I(z1,1)

G(t, s, z) =
−1

ε0

( 1

τ0 + κτp(t, z)
Φ21(t, s) + (α0 + καp(t, z))Φ11(t, s)

)
×

(
ε0(α0 + καp(s, z))(γ0 − ζ0 + (κγ − κζ)p(s, z))

)
I(z1,1)

c2 = 1
ε0µ0

F (t, z) = − 1
ε0

J̇s(t)

σ1(φ, ψ) = c2 < φ′, ψ′ > .

(3.8)

Here the Φij are the components of the state transition matrix corresponding to the

system

d

dt


 P

Ṗ


 =


 0 1

−(γ0 + κγp) −1
τ0+κτ p





 P

Ṗ


 ;


 P

Ṗ


 (0) = 0. (3.9)

Provided that p ∈ C(0, T ; C[0, 1]), the above stiffness matrix is continuous in each

of the variables, t,γ0,κγ,τ0, and κτ . We may then conclude that the solutions P and

Ṗ and the components of the state transition matrix are continuous in each of the

variables, t, γ0,κγ,τ0, and κτ , as well [3].

We assume here, and throughout the entire thesis, that the material parameters

may only be chosen from an admissible set Q (for the Debye model Q ⊂ R
7, for
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the Lorentz model Q ⊂ R
9). This insures that our Debye and Lorentz coefficients

are well-defined. First, because of the physical meaning of these parameters, the

values of σ, γ0, ζ0, τ0,and α0 must be positive. Then for a given pressure wave p with

dk

dtk
p ∈ L∞(0, T ; L∞(0, 1)) for k = 0, 1, 2, 3 and a fixed δ > 0, we admit only values of

κγ, κζ , κτ , and κα such that γ0+κγp(t, z), ζ0+κζp(t, z), τ0+κτp(t, z), and α0+καp(t, z)

are greater than δ for all z ∈ [0, 1] and t ∈ [0, T ]. In addition to these requirements,

we assume that the admissible parameter sets are closed and bounded in R
7 and R

9.

As we shall see, under appropriate assumptions on the coefficients, kernels, and forcing

functions in (3.7) and (3.8), we can give general arguments that establish the well-

posedness of the Debye- and Lorentz-based systems, as well as any other system that

satisfies the general assumptions listed in the next section for the generalized system

(3.10) below. We remark that other models based on more general polarization models

can also be shown to be special cases of (3.10).

3.1.1 Well-posedness of solutions to the general variational

form

Motivated by the Debye and Lorentz examples and a wide range of applications, we

consider the general variational form

< aË, φ >V ∗,V + < bĖ, φ > + < hE, φ >

+ <
∫ t

0
G(t, s, ·)E(s, ·) ds, φ >

+cĖ(t, 0)φ(0) + c2 < E ′, φ′ >=< F, φ >V ∗,V , φ ∈ V

E(0, z) = E0(z) Ė(0, z) = E1(z) P (0, z) = Ṗ (0, z) = 0,

(3.10)

where E0 ∈ V and E1 ∈ H. As introduced previously, we take H = L2(0, 1) and

V = H1
R(0, 1) ≡ {φ ∈ H1(0, 1) : φ(1) = 0} which, with V ∗, are Hilbert spaces that
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form a Gelfand triple V ↪→ H ↪→ V ∗. We again note that there is a value k > 0 such

that for all φ ∈ V , we have

|φ|H ≤ k|φ|V .

The usual duality product is denoted by < ·, · >V ∗,V and both inner products < ·, · >

and norms | · | denoted without subscripts are assumed to be in H. In addition,

motivated by (3.7), we make the following assumptions:

A1) The coefficient a along with its derivatives ȧ and ä are in L∞(0, T ; L∞[0, 1]), and

for all z ∈ [0, 1], a(z) ≥ a0, for some 1 ≥ a0 > 0.

A2) The coefficient b and its time derivative ḃ are in L∞(0, T ; L∞[0, 1]) and b(t, z) ≥ 0

for all (t, z) ∈ [0, T ] × [0, 1].

A3) The coefficient h is in L∞(0, T ; L∞[0, 1]).

A4) The kernel function G is in L∞([0, T ] × [0, T ]; L∞[0, 1]).

A5) The sequilinear form σ1 is given by σ1(φ, ψ) = c2 < φ′, ψ′ > for φ, ψ ∈ V with

c > 0.

A6) The forcing function F is in H1(0, T, V ∗).

We recall that the sesquilinear form σ1 : V × V → R is V -continuous and V -elliptic,

so that (3.3) and (3.4) are satisfied.

Under the above hypotheses, we seek solutions t → E(t) where E(t) ∈ V and (3.10) is

satisfied in the L2(0, T ) sense for all φ ∈ V . We begin by showing that such solutions

exist.

To this end, we follow the arguments in [19], [7]. We choose a linearly independent

subset {wi}∞i=0 that spans V which is dense in H. We let V m ≡ span{w0, w1, . . . , wm}
and choose E0m, E1m ∈ V m such that as m → ∞, E0m → E0 in V , and E1m → E1

in H. Then we let Em =
∑m

i=0 ηi(t)wi(z) be the unique solution on 0 < t < T to the

integrodifferential equation system (for existence we will use Theorems 1 and 2 of [5]
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combined with the arguments below)

< aËm(t), wj >V ∗,V + < bĖm(t), wj > + < hEm(t), wj >

+ <
∫ t

0
G(t, s, ·)Em(s, ·) ds, wj > +cĖm(t, 0)wj(0)

+σ1(Em(t), wj) =< F (t), wj >V ∗,V

Em(0) = E0m Ėm(0) = E1m,

(3.11)

where j = 0, 1, . . . , m.

We note here that for any i = 0, 1, . . . , m, wi ∈ V = H1
R(0, 1), and thus wi is

absolutely continuous. From this we also have that wiwj ∈ C(0, 1). Thus, all

products involving Em and its time derivatives are spatially continuous functions

on the interval [0, 1]. Moreover, inner product terms containing coefficients in L∞,

e.g., < b(t, ·)Ėm(t, ·), wj >, are well-defined.

We may write (3.11) in the form

M1(t)η̈(t) + M2(t)η̇(t) + M3(t)η(t) + G1(t, η(·)) = D1(t),

where

η(t) = [η0(t) η1(t) . . . ηm(t)]T

[G1(t, η(·))]j =
∑m

i=1 <
∫ t

0
G(t, s, ·)ηi(s) ds wi, wj >

[D1(t)]j = < F (t), wj >

[M1(t)]ij = < a(t)wj, wi >

[M2(t)]ij = < b(t)wj, wi > +cwi(0)wj(0)

[M3(t)]ij = < h(t)wj, wi > +c2 < w′
i, w

′
j > .
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Since the wi are linearly-independent and a satisfies the lower bound of A1), M1(t)

is positive definite for each t, hence invertible. Then the above linear system may be

written

Ẏ(t) = M(t) (A(t)Y(t) + G(t,Y(·)) + D(t))

= F(t,Y(·)) + M(t)D(t)

(3.12)

with

Y(t) =


 η(t)

η̇(t)




M(t) =


 I 0

0 M1(t)



−1

A(t) =


 0 I

−M3(t) −M2(t)




[G(t,Y(·))]j =


 0, j = 0, . . . ,m

− [G(t, η(·))]j , j = m + 1, . . . , 2m + 1

[D(t)]j =


 0, j = 0, . . . ,m

[D1(t)]j , j = m + 1, . . . , 2m + 1.

We point out that the notation F(t,Y(·)) implies that for each t ∈ [0, T ], F depends

on t and on the past history of Y in an interval [0, t]. We now want to argue that

(3.12) does, in fact, have a unique solution that is continuous in t in [0, T ]. To this

end, we argue that (3.12) satisfies the following conditions:

Y1) For a fixed Y , F is measurable in t.

Y2) For almost every fixed t ∈ [0, T ], F is continuous in Y .
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Y3) There is an L1(0, T ) function mF such that

|F(t,Y(·))| ≤ mF (t) sup
s∈[0,T ]

|Y(s)| (t,Y) ∈ [0, T ] × C[0, T ]. (3.13)

Y4) There is an L1(0, T ) function k such that

|F(t,Y(·)) −F(t,X (·))| ≤ k(t) sups∈[0,T ] |Y(s) −X (s)|

for (t,Y), (t,X ) ∈ [0, T ] × C[0, T ].

(3.14)

Y5) The function D is in L1(0, T ).

Since the components of M,A and G(·,Y(·)) are in L∞(0, T ), we have that F(·,Y(·))
is measurable in t for a fixed Y and Y1) holds.

In order to verify Y2), we must show that both M(t)A(t)Y and M(t)G(t,Y) are

continuous in Y . It is clear that this is true for M(t)A(t)Y , but we now give a more

formal argument to show the continuity of G(t,Y).

Let ε > 0 be given. Choose δ > 0 such that

δ2 = ε2/


|G|2L∞T 2

m∑
j=0

(
m∑

i=0

∫ 1

0

|wi||wj| dz

)2

 .

Since wi, wj ∈ V , the integral
∫ 1

0
|wi||wj| dz is finite.

Then

|Y − X | < δ ⇒
m∑

i=0

(ηi − xi)
2 < δ2 ⇒ |ηi − xi| < δ for any i = 0, . . . ,m.

Thus we have, for all Y ,X with |Y − X | < δ,
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|G(t,Y) − G(t,X )|2

=
∑m

j=0

(∑m
i=0

∫ 1

0

∫ t

0
G(t, s, z)(ηi − xi) ds wiwj dz

)2

≤
∑m

j=0

(∫ 1

0

∫ t

0
|G(t, s, z)|

∑m
i=0 |ηi − xi||wi||wj| ds dz

)2

≤ |G|2L∞δ2T 2
∑m

j=0

(∑m
i=0

∫ 1

0
|wi||wj| dz

)2

= ε2.

Hence, G(t,Y) is continuous in Y , and M(t)G(t,Y) is continuous in Y .

Thus we have that Y2) holds.

We next show that there is an L1(0, T ) function mF such that (3.13) holds. For this,

we choose an arbitrary (t,Y) ∈ [0, T ] × C[0, T ]. We let

w̄ = max
i,j=0,...,m

| < wi, wj > |2.

Then we note that

|F(t,Y(·))| ≤ |M(t)||A(t)| sup
s∈[0,T ]

|Y(s)| + |M(t)||G(t,Y(·))|.

Since the components of M and A are in L∞(0, T ) and hence

|M| ≤ M̄ and |A(t)| ≤ Ā

for any t ∈ [0, T ], we need only show that there is a function mG ∈ L1(0, T ) such that

|G(t,Y(·))| ≤ mG(t) sup
s∈[0,T ]

|Y(s)|.

We have
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|G(t,Y(·))|2 ≤
∑m

j=0

(∑m
i=0 <

∫ t

0
G(t, s, ·)ηi(s) dswi, wj >

)2

≤ |G|2L∞
∑m

j=0

(∑m
i=0 <

∫ t

0
ηi(s) dswi, wj >

)2

≤ |G|2L∞w̄
∑m

j=0

(∑m
i=0

∫ t

0
ηi(s) ds

)2

≤ |G|2L∞w̄m
(∫ t

0

∑m
i=0 |ηi(s)| ds

)2

≤ |G|2L∞w̄m2T 2 sups∈[0,T ] |Y(s)|2.

If we let

mG(t) = |G|L∞
√

w̄mT,

we have

|G(t,Y(·))| ≤ mG(t) sup
s∈[0,T ]

|Y(s)|.

Therefore, equation (3.13), and thus Y3), hold.

In order to verify Y4), we note that the mapping Y → F(t,Y(·)) is linear. Then the

verification of Y4) follows immediately from Y3).

In verifying Y5), we need only note that the components of D are in H1(0, T ).

Having argued that assumptions Y1)-Y5) hold, we may use Theorem 2 in [5] to

conclude that (3.12) and hence (3.11) has a unique, continuous solution Em for which

we next derive a priori bounds.

We then multiply (3.11) by η̇j(t) and sum over j to obtain
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< aËm, Ėm >V ∗,V + < bĖm, Ėm > + < hEm, Ėm >

+ <
∫ t

0
G(t, s, ·)Em(s, ·) ds, Ėm >

+cĖm(t, 0)Ėm(t, 0) + σ1(Em, Ėm) =< F, Ėm >V ∗,V

Em(0) = E0m Ėm(0) = E1m.

(3.15)

We note that

2 < aËm, Ėm >V ∗,V = d
dt

< aĖm, Ėm > − < ȧĖm, Ėm >

= d
dt
|√aĖm|2H− < ȧĖm, Ėm >

and

d

dt
σ1(Em, Em) = 2σ1(Em, Ėm),

so that (3.15) becomes

d
dt

(
|√aĖm|2H + σ1(Em, Em)

)
+ < (2b − ȧ)Ėm, Ėm > +2 < hEm, Ėm >

+2 <
∫ t

0
GEm(s, ·) ds, Ėm > +2c|Ėm(t, 0)|2 = 2 < F, Ėm >V ∗,V .

Then

|√aĖm(t)|2H + σ1(Em(t), Em(t)) +
∫ t

0
< (2b − ȧ)Ėm, Ėm > dξ

+
∫ t

0
2 < hEm, Ėm > dξ +

∫ t

0
2 <

∫ ξ

0
GEm(s, ·) ds, Ėm(ξ, ·) > dξ

+
∫ t

0
2c|Ėm(ξ, 0)|2 dξ

= |√a(0)Ėm(0)|2H + σ1(Em(0), Em(0)) +
∫ t

0
2 < F, Ėm >V ∗,V dξ.

(3.16)
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Using the V -continuity and V -ellipticity of σ1 and the fact that 2ab ≤ a2 + b2, we

have

|√aĖm(t)|2H + c2|Em(t)|2V +
∫ t

0
2c|Ėm(ξ, 0)|2 dξ

≤
∫ t

0
2 < −hEm, Ėm > dξ +

∫ t

0
< (ȧ − 2b)Ėm, Ėm > dξ

+
∫ t

0
2 < −

∫ ξ

0
GEm(s, ·) ds, Ėm(ξ, ·) > dξ

+|√aĖm(0)|2H + σ1(Em(0), Em(0)) +
∫ t

0
2 < F, Ėm >V ∗,V dξ

≤
∫ t

0

{
|hEm|2H + |Ėm|2H

}
dξ +

∫ t

0

{
1
2
|Ėm|2H + 1

2
|(ȧ − 2b)Ėm|2H

}
dξ

+
∫ t

0

{
|
∫ ξ

0
GEm(s, ·) ds|2H + |Ėm|2H

}
dξ

+|√a(0)Ėm(0)|2H + c1|Em(0)|2V + |
∫ t

0
2 < F, Ėm >V ∗,V dξ|.

For F ∈ H1(0, T ; V ∗), we find

|
∫ t

0
2 < F, Ėm >V ∗,V dξ|

= |
∫ t

0

(
2 d

dξ
< F,Em >V ∗,V −2 < Ḟ ,Em >V ∗,V

)
dξ|

= |2 < F (t), Em(t) >V ∗,V −2 < F (0), Em(0) >V ∗,V −
∫ t

0
2 < Ḟ ,Em >V ∗,V dξ|

≤ 2| < F (t), Em(t) >V ∗,V | + 2| < F (0), Em(0) >V ∗,V |

+
∫ t

0
2| < Ḟ ,Em >V ∗,V | dξ

≤ 1
ε
|F (t)|2V ∗ + ε|Em(t)|2V + |F (0)|2V ∗ + |Em(0)|2V +

∫ t

0

{
|Ḟ |2V ∗ + |Em|2V

}
dξ.

Thus, from (3.16) we find
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|√aĖm(t)|2H + c2|Em(t)|2V +
∫ t

0
2c|Ėm(ξ, 0)|2 dξ

≤
∫ t

0

{
|hEm|2H + |Ėm|2H

}
dξ +

∫ t

0

{
1
2
|Ėm|2H + 1

2
|(ȧ − 2b)Ėm|2H

}
dξ

+
∫ t

0

{
|
∫ ξ

0
GEm(s, ·) ds|2H + |Ėm|2H

}
dξ

+|√a(0)Ėm(0)|2H + c1|Em(0)|2V + 1
ε
|F (t)|2V ∗ + ε|Em(t)|2V + |F (0)|2V ∗ + |Em(0)|2V

+
∫ t

0

{
|Ḟ |2V ∗ + |Em|2V

}
dξ.

Using the fact that Em(0) = E0m and Ėm(0) = E1m and combining like terms, we

have finally

|√aĖm(t)|2H + (c2 − ε)|Em(t)|2V +
∫ t

0
2c|Ėm(ξ, 0)|2 dξ

≤
∫ t

0

{
|hEm|2H +

5

2
|Ėm|2H +

1

2
|(ȧ − 2b)Ėm|2H

+|
∫ ξ

0

GEm(s, ·) ds|2H + |Ḟ |2V ∗ + |Em|2V
}

dξ

+|√a(0)E1m|2H + (c1 + 1)|E0m|2V + 1
ε
|F (t)|2V ∗ + |F (0)|2V ∗.

We next use the assumptions on the coefficients and kernel function to establish some

bounds.

Hypothesis A1) implies that there exists ā > 1 such that

|
√

a(0, ·)E1m(·)|2H ≤ ā|E1m(·)|2H .

Moreover, there exists a0 > 0 such that

a0|Ėm(t, ·)|2H ≤ |
√

a(·)Ėm(t, ·)|2H .
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Hypotheses A1) and A2) allow us to show that there exists b̄ > 0 such that

∫ t

0
1
2
|(ȧ(ξ, ·) − 2b(ξ, ·))Ėm(ξ, ·)|2H dξ

≤ 1
2

∫ t

0

∫ 1

0
|ȧ(ξ, z) − 2b(ξ, z)|2|Ėm(ξ, z)|2 dz dξ

≤ 1
2
|ȧ − 2b|2L∞

∫ t

0

∫ 1

0
|Ėm(ξ, z)|2 dz dξ

≤ b̄
∫ t

0
|Ėm(ξ, ·)|2H dξ.

We use hypothesis A3) to claim that there exists h̄ ≥ 0 such that

∫ t

0
|h(ξ, ·)Em(ξ, ·)|2H dξ ≤

∫ t

0

∫ 1

0
|h(ξ, z)|2|Em(ξ, z)|2 dz dξ

= |h|2L∞
∫ t

0
|Em(ξ, ·)|2H dξ

≤ h̄
∫ t

0
|Em(ξ, ·)|2H dξ.

Using A4), we have that there exists Ḡ ≥ 0 such that

∫ t

0
|
∫ ξ

0
G(ξ, s, ·)Em(s, ·) ds|2H dξ

=
∫ t

0

∫ 1

0
|
∫ ξ

0
G(ξ, s, z)Em(s, z) ds|2 dz dξ

= |G|2L∞
∫ t

0

∫ 1

0

(∫ ξ

0
|Em(s, z)| ds

)2

dz dξ

≤ |G|2L∞
∫ t

0

∫ 1

0

(
T

1
2 |Em(z)|L2(0,ξ)

)2

dz dξ

≤ T |G|2L∞
∫ t

0

∫ 1

0

∫ t

0
|Em(s, z)|2 ds dz dξ

= T 2Ḡ
∫ t

0
|Em(ξ, ·)|2H dξ.

Using these bounds, we have
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a0|Ėm(t)|2H + (c2 − ε)|Em(t)|2V + 2c
∫ t

0
|Ėm(ξ, 0)|2 dξ

≤
∫ t

0

{
(h̄ + T 2Ḡ)|Em|2H + (5

2
+ b̄)|Ėm|2H + |Ḟ |2V ∗ + |Em|2V

}
dξ

+ā|E1m|2H + (c1 + 1)|E0m|2V + 1
ε
|F (t)|2V ∗ + |F (0)|2V ∗.

Letting

H(t) = ā|E1m|2H + (c1 + 1)|E0m|2V +
1

ε
|F (t)|2V ∗ + |F (0)|2V ∗ +

∫ t

0

|Ḟ |2V ∗ dξ,

and using the definitions of the V and H norms to obtain

|Em|2V ≥ |Em|2H ,

we find

a0|Ėm(t)|2H + (c2 − ε)|Em(t)|2V + 2c
∫ t

0
|Ėm(ξ, 0)|2 dξ

≤ H(t) +
∫ t

0

{
(1 + h̄ + T 2Ḡ)|Em|2V + (5

2
+ b̄)|Ėm|2H

}
dξ.

We note that
(
1 + h̄ + T 2Ḡ

)
≥ 1. Moreover, we can choose ε such that 0 < c2−ε ≤ 1,

and

1 + h̄ + T 2Ḡ

c2 − ε
≥ 1.

Similarly, 5
2

+ b̄ > 1 and a0 ≤ 1 so that

5
2

+ b̄

a0

> 1.

Then,
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a0|Ėm(t)|2H + (c2 − ε)|Em(t)|2V + 2c
∫ t

0
|Ėm(ξ, 0)|2 dξ

≤ H(t) +
∫ t

0

(
1 + h̄ + T 2Ḡ

)
|Em|2V + (5

2
+ b̄)|Ėm|2H dξ

≤ H(t) +
∫ t

0

5
2
+b̄

a0

(
1 + h̄ + T 2Ḡ

)
|Em|2V +

(
1+h̄+T 2Ḡ

c2−ε

)
(5

2
+ b̄)|Ėm|2H dξ

≤ H(t) +
∫ t

0

( 5
2
+b̄)(1+h̄+T 2Ḡ)

a0(c2−ε)

(
(c2 − ε) |Em|2V + a0|Ėm|2H

)
dξ.

(3.17)

We recall that the convergence of E0m in V and the convergence of E1m in H imply the

boundedness of the sequences in their respective spaces. This, along with A6), yields

that H(t) is bounded. Hence we can use Gronwall’s inequality to show that {Em} is

bounded in C(0, T ; V ) and {Ėm} is bounded in C(0, T ; H). We can thus conclude that

{Ėm(·, 0)} is bounded in L2(0, T ). It follows that there exist a subsequence {Emk
}

and limits E ∈ L2(0, T ; V ), Ẽ ∈ L2(0, T ; H), and EL ∈ L2(0, T ) such that

Emk
→ E weakly in L2(0, T ; V )

Ėmk
→ Ẽ weakly in L2(0, T ; H)

Ėmk
(·, 0) → EL weakly in L2(0, T ).

Since Emk
∈ C(0, T ; V ) and Ėmk

∈ C(0, T ; V ), we have

Emk
(t) − Emk

(0) −
∫ t

0

Ėmk
(ξ) dξ = 0

in the V norm for all t ∈ [0, T ), and we note that this, of course, holds in the H norm

as well.

We also have

Emk
(0) = E0mk

→ E0
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in the V sense, and

∫ t

0

Ėmk
(ξ) dξ →

∫ t

0

Ẽ(ξ) dξ

weakly in H for each t ∈ [0, T ).

We take weak limits in H to obtain

E(t) = E0 +
∫ t

0
Ẽ(ξ) dξ

E(t, 0) = E0(0) +
∫ t

0
EL(ξ) dξ

in the H sense. Thus Ė(t) exists almost everywhere in H with Ė = Ẽ ∈ L2(0, T ; H),

while E(0) = E0 and Ė(t, 0) = EL(t) almost everywhere.

We must show that E is in fact a solution to our weak equation. We let ψ ∈ C1(0, T )

with ψ(T ) = 0 be arbitrary and let ψj = ψ(t)wj where the {wi}∞i=0 are selected as

before. For a fixed j, we have

∫ T

0

{
< aËm, ψj >V ∗,V + < bĖm, ψj > + < hE,ψj >

+ <
∫ t

0
G(t, s, ·)Em(s, ·) ds, ψj > +cĖm(t, 0)ψj(0) + σ1(Em, ψj)

}
dt

=
∫ T

0
< F,ψj >V ∗,V dt.

Then we integrate by parts in the first term to obtain

∫ T

0

{
− < Ėm, aψ̇j + ȧψj >V ∗,V + < bĖm, ψj > + < hEm, ψj >

+ <
∫ t

0
G(t, s, ·)Em(s, ·) ds, ψj > +cĖm(t, 0)ψj(0) + σ1(Em, ψj)

}
dt

=
∫ T

0
< F,ψj >V ∗,V dt+ < a(0)E1m, ψj(0) >

for each ψj.
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We would like to be able to take weak limits as m → ∞ in the previous equation,

but first we must verify that this is possible, particularly in the integral term. We

know that Em → E weakly in L2(0, T ; V ) and ψ ∈ C1(0, T ). Then for a function

g ∈ L∞(0, T ; L∞(0, 1)) and any function w ∈ V , we have g(s, ·)w(·) ∈ H ⊂ V and

g(·, z) ∈ L2(0, T ). So we may conclude that for each t

∫ T

0

< g(s, ·)Em(s), ψ(t)w > ds →
∫ T

0

< g(s, ·)E(s), ψ(t)w > ds.

We next consider G ∈ L∞([0, T ] × [0, T ]; L∞[0, 1]). Since Em → E weakly in

L2(0, T ; V ), we have that for any t ∈ [0, T ]

∫ T

0
< G(t, s, ·)I(0,t)(s)Em(s), ψ(t)w > ds →

∫ T

0
< G(t, s, ·)I(0,t)(s)E(s), ψ(t)w > ds.

This implies

<
∫ t

0
G(t, s, ·)Em(s) ds, ψ(t)w > =

∫ t

0
< G(t, s, ·)Em(s), ψ(t)w > ds

=
∫ T

0
< G(t, s, ·)I(0,t)(s)Em(s), ψ(t)w > ds

→
∫ T

0
< G(t, s, ·)I(0,t)(s)E(s), ψ(t)w > ds

= <
∫ t

0
G(t, s, ·)E(s) ds, ψ(t)w >

for each t ∈ [0, T ] and thus by boundedness we have convergence in L1(0, T ).

This convergence, as well as the fact that σ1(·, ψj(t)) ∈ V ∗, show that we are indeed

able to take weak limits in the previous equation. As m → ∞, we have for each j
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∫ T

0
{− < Ė, aψ̇j + ȧψj >V ∗,V + < bĖ, ψj > + < hE,ψj >

+ <
∫ t

0
G(t, s, ·)E(s, ·) ds, ψj > +cĖm(t, 0)ψj(0)

+σ1(E,ψj)} dt =
∫ T

0
< F,ψj >V ∗,V dt + < a(0)E1, ψj(0) > .

(3.18)

We restrict ψ to lie in C∞
0 (0, T ) and write

∫ T

0
−ψ̇ < aĖ, wj >V ∗,V −ψ < ȧĖ, wj > dt +

∫ T

0

{
< bĖ, wj > + < hE,wj >

+ <
∫ t

0
G(t, s, ·)E(s, ·) ds, wj >

+cĖ(t, 0)wj(0) + σ1(E,wj)
}

ψ dt =
∫ T

0
< F,wj >V ∗,V ψ dt

for each wj.

Then we can interpret the first term in the sense of distributions as follows

∫ T

0
ψ d

dt
< aĖ, wj > dt +

∫ T

0

{
− < ȧĖ, wj > + < bĖ, wj > + < hE,wj >

+ <
∫ t

0
G(t, s, ·)E(s, ·) ds, wj >

+cĖ(t, 0)wj(0) + σ1(E,wj)
}

ψ dt =
∫ T

0
< F,wj >V ∗,V ψ dt

for each wj.

Thus for each j, the equation

d
dt

< aĖ, wj > − < ȧĖ, wj > + < bĖ, wj > + < hE,wj >

+ <
∫ t

0
G(t, s, ·)E(s, ·) ds, wj > +cĖ(t, 0)wj(0) + σ1(E,wj)

=< F,wj >V ∗,V

(3.19)
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holds in the L2(0, T ) sense.

Since {wj} is total in V , this implies that Ë ∈ L2(0, T ; V ∗). Furthermore, upon

observing that

< aË, φ >=
d

dt
< aĖ, φ > − < ȧĖ, φ >,

we have for all φ ∈ V

< aË, φ >V ∗,V + < bĖ, φ > + < hE, φ > + <
∫ t

0
G(t, s, ·)E(s, ·) ds, φ >

+cĖ(t, 0)φ(0) + σ1(E, φ) =< F, φ >V ∗,V

which is our original equation (3.10).

Now we have that E(0, z) = E0(z), but we need to show Ė(0, z) = E1(z). We recall

that (3.18) holds for all ψj = ψwj with ψ ∈ C1(0, T ) and ψ(T ) = 0. Then if we

integrate by parts in the first term, we have

∫ T

0
< aË, ψj > dt− < aĖ, ψj > |t=T

t=0 +
∫ T

0

{
< bĖ, ψj > + < hE,ψj >

+ <
∫ t

0
G(t, s, ·)E(s, ·) ds, ψj > +cĖ(t, 0)φj(0) + σ1(E,ψj)

}
dt

=
∫ T

0
< F,ψj >V ∗,V dt+ < a(0)E1, ψj(0) > .

Recalling (3.19), we can thus conclude that

− < aĖ, ψj > |t=T
t=0 =< a(0)E1, ψj(0) >,

or, since a(z) ≥ a0 > 0 and ψj(T ) = 0,

< Ė(0), ψj(0) > = < E1, ψj(0) > or

< Ė(0), wj > ψ(0) = < E1, wj(0) > ψ(0).



Chapter 3. Theoretical results 49

Since this holds for all j and ψ(0) is arbitrary, we have Ė(0) = E1, and E is in fact

a solution of the system (3.10).

The next step is to show that our solution is unique. It suffices to show that E = 0

is the only solution that corresponds to the zero initial conditions E0 = E1 = 0 and

zero forcing function F = 0. We begin by assuming E is a solution corresponding to

zero initial data and zero forcing function. For all φ ∈ V , this solution E satisfies

< aË, φ >V ∗,V + < bĖ, φ > + < hE, φ >

+ <
∫ t

0
G(t, s, ·)E(s, ·) ds, φ > +cĖ(t, 0)φ(0) + σ1(E, φ) = 0.

We define ψs(t) for t, s ∈ [0, T ] by

ψs(t) =


 −

∫ s

t
E(ξ) dξ, t < s

0, t ≥ s

and note that ψ̇s(t) = E(t) and ψs(T ) = ψs(s) = 0. Since ψs(t) ∈ V , we can choose

φ = ψs(t) to obtain

< aË, ψs >V ∗,V + < bĖ, ψs > + < hE,ψs >

+ <
∫ t

0
G(t, ξ, ·)E(ξ, ·) dξ, ψs > +cĖ(t, 0)ψs(t)(0) + σ1(E,ψs) = 0.

(3.20)

Integrating this equation and considering some of the terms separately, we find
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2
∫ s

0
< aË, ψs > dt = −2

∫ s

0

(
< aĖ,E > + < ȧĖ, ψs >

)
dt

=
∫ s

0

(
− d

dt
|√aE|2H+ < ȧE,E > −2 < ȧĖ, ψs >

)
dt

= −|√a(s)E(s)|2H +
∫ s

0

(
< ȧE,E > +2 < E, d

dt
(ȧψs) >

)
dt

= −|√a(s)E(s)|2H

+
∫ s

0
(< ȧE,E > +2 < äE, ψs > +2 < ȧE,E >) dt

= −|√a(s)E(s)|2H +
∫ s

0
(3 < ȧE,E > +2 < äE, ψs >) dt,

2

∫ s

0

σ1(E,ψs) dt =

∫ s

0

d

dt
σ1(ψs, ψs) dt = −σ1(ψs(0), ψs(0)),

∫ s

0

(
Ė(t, 0)ψs(t)(0) + |E(t, 0)|2

)
dt =

∫ s

0

d

dt
(E(t, 0)ψs(t)(0)) = 0,

and

∫ s

0
d
dt

< bE, ψs > dt =
∫ s

0

(
< bĖ, ψs > + < ḃE, ψs > + < bE,E >

)
dt

=
∫ s

0

(
< bĖ, ψs > + < ḃE, ψs > +|

√
bE|2H

)
dt

= 0.

Using these relationships, we obtain from the integrated form of (3.20)

|√aE(s)|2H + σ1(ψs(0), ψs(0)) +
∫ s

0
2c|E(t, 0)|2 dt =

∫ s

0

(
3 < ȧE,E > +2 < äE, ψs > +2 < −ḃE, ψs > −2|

√
bE|2H

+2 < hE,ψs > +2 <
∫ t

0
G(t, ξ, ·)E(ξ, ·) dξ, ψs >

)
dt.

(3.21)
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We may next use some of the previous assumptions on our coefficients to make the

following estimates.

We note that

∫ s

0

3 < ȧE,E > dt ≤ 3|ȧ|L∞

∫ s

0

|E|2H dt

and

∫ s

0

2 < äE, ψs > dt ≤ |ä|2L∞

∫ s

0

|E|2H dt +

∫ s

0

|ψs|2H dt.

Thus from Hypothesis A1), we have that there exists an α > 0 such that for s < T

∫ s

0

3 < ȧE,E > +2 < äE, ψs > dt ≤
∫ s

0

{
α|E|2H + |ψs|2H

}
dt.

Moreover, we note that

∫ s

0

−2|
√

b(t, ·)E(t, ·)|2H dt ≤ 2|b|L∞

∫ s

0

|E(t, ·)|2H dt

and

∫ s

0

2 < −ḃE, ψs > dt ≤ |ḃ|2L∞

∫ s

0

|E(t, ·)|2H dt +

∫ s

0

|ψs|2H dt.

Then, as a consequence of A2), there exists a β > 0 such that for s ≤ T we have

∫ s

0

{
−2|

√
b(t, ·)E(t, ·)|2H + 2 < −ḃE, ψs >

}
dt ≤

∫ s

0

β|E(t, ·)|2H + |ψs|2H dt.

We next substitute these bounds, as well as some of those established previously, into

(3.21) to obtain the inequality

|
√

aE(s)|2H + σ1(ψs(0), ψs(0)) ≤
∫ s

0

{
(α + β + h̄ + T 2Ḡ)|E|2H + 4|ψs|2H

}
dt.
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Furthermore, we note that

∫ s

0
|ψs|2H dt =

∫ s

0

∫ 1

0

(∫ s

t
E(ξ, z) dξ

)2
dz dt

≤
∫ s

0

∫ 1

0

(
T

1
2 |E(·, z)|L2(t,s)

)2

dz dt

≤ T
∫ s

0

∫ 1

0

∫ s

0
|E(ξ, z)|2 dξ dz dt

≤ T 2
∫ s

0
|E(t)|2H dt.

Then, we have

|
√

aE(s)|2H + σ1(ψs(0), ψs(0)) ≤
∫ s

0

(α + β + h̄ + T 2Ḡ + 4T 2)|E(t)|2H dt,

from which it follows that

a0|E(s)|2H ≤
∫ s

0

(α + β + h̄ + T 2Ḡ + 4T 2)|E(t)|2H dt.

Finally, using Gronwall’s inequality, we have |E(s)|2H = 0 for all s ∈ [0, T ].

This establishes uniqueness of solutions.

The final step is to establish that the solution depends continuously on the initial

conditions and forcing function. To begin, we let

Hm = ā|E1m|2H + (c1 + 1)|E0m|2V +
1

ε
|F |2L∞(0,T ;V ∗) + |F (0)|2V ∗ + |Ḟ |2L2(0,T ;V ∗).

Then from (3.17) we have

a0|Ėm(t)|2H + (c2 − ε)|Em(t)|2V

≤ Hm +
( 5
2
+b̄)(1+h̄+T 2Ḡ)

a0(c2−ε)

∫ t

0

(
(c2 − ε) |Em|2V + a0|Ėm|2H

)
dξ.

By use of Gronwall’s inequality, we have
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a0|Ėm(t)|2H + (c2 − ε)|Em(t)|2V ≤ Hm exp

(
(5

2
+ b̄)

(
1 + h̄ + T 2Ḡ

)
a0 (c2 − ε)

T

)
= HmK1.

If we integrate over the interval (0, T ), we have

a0|Ėm|2L2(0,T ;H) + (c2 − ε)|Em|2L2(0,T ;V ) ≤ HmK2.

We next use the fact that as m → ∞, E0m → E0 and E1m → E1, the weak conver-

gences established previously, and the weak lower semicontinuity of norms to conclude

that

a0|Ė|2L2(0,T ;H) + (c2 − ε)|E|2L2(0,T ;V )

≤
(
ā|E1|2H + (c1 + 1)|E0|2V + (1 + 1

ε
)|F |2L∞(0,T ;V ∗) + |Ḟ |2L2(0,T ;V ∗)

)
K2.

Since the mapping (E0, E1, F, Ḟ ) → (E, Ė) is linear, we thus have continuous de-

pendence on the initial data and forcing function. Summarizing, we have proven the

result:

Theorem 1: Under assumptions A1)-A6), the system (3.10) possesses a unique

solution and (E, Ė) depends continuously on initial data (E0, E1) and forcing function

F from

(E0, E1, F ) ∈ V × H × H1(0, T ; V ∗) to (E, Ė) ∈ L2(0, T ; V ) × L2(0, T ; H).

Remark: If we restrict the form of the forcing function F so that F (t, z) = δ(z)g(t)

(see Chapter 2), where δ(z) is the usual Dirac delta function, we may relax the

smoothness condition on F from F ∈ H1(0, T ; V ∗) to F ∈ L2(0, T ; V ∗). That is, if we

replace A6) with the assumption

A6′) The forcing functions F is of the form F (t, z) = δ(z)g(t), where δ(z) is the usual

Dirac delta function and g ∈ L2(0, T ).
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we may prove the following result:

Theorem 1(a): Under assumptions A1)-A6′), the system (3.10) possesses a unique

solution and (E, Ė) depends continuously on initial data (E0, E1) and forcing function

F from

(E0, E1, F ) ∈ V × H × L2(0, T ; V ∗) to (E, Ė) ∈ L2(0, T ; V ) × L2(0, T ; H).

3.1.2 Well-posedness of solutions to the system with

pressure-dependent Debye polarization

In this section we apply the results of Section 3.1 to establish the well-posedness of

the Debye polarization model with pressure-dependent coefficients. We consider (3.6)

and (3.7) using the definitions of V, H, V ∗ and σ1 given in Section 1. We recall that

V,H, and V ∗ form a Gelfand triple as described in Section 2. Moreover, we note

that σ1 as defined in (3.2) is V -continuous and V -elliptic. The following discussion

establishes the validity of hypotheses A1)-A6).

We first outline some assumptions about our pressure wave.

P1) The pressure wave p in (3.5) is in H1(0, T ; V ) so that p is in the space

C(0, T ; C[0, 1]) and hence in L∞(0, T ; L∞[0, 1]).

P2) The derivatives of the pressure wave, ṗ and p̈, are in L∞(0, T ; L∞[0, 1]). (See [18]

and [17] for details regarding the regularity of p.)

We use these assumptions and the conditions on the admissible parameter set Q to

verify that A1)-A6) hold for the Debye example.

A1) The coefficient a is in L∞(0, T ; L∞[0, 1]), as are its derivatives ȧ and ä, and for

all (t, z) ∈ [0, T ] × [0, 1], a(t, z) ≥ a0, for some a0 > 0.

Proof: Recall that

a(t, z) = 1 + (ε∞ − 1)I(z1,1) = 1 + (ζ0 + κζp(t, z) − 1)I(z1,1).
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We note that p, ṗ, and p̈ are all assumed to be L∞(0, T ; L∞[0, 1]) functions. From

the form of a, we therefore have a, ȧ, and ä in L∞(0, T ; L∞[0, 1]).

We also have for (t, z) ∈ [0, T ] × [0, z1), a(t, z) = 1 > 0. Moreover, for (t, z) ∈
[0, T ] × [z1, 1], a(t, z) = ζ0 + κζp(t, z) > δ > 0.

A2) The coefficient b is in L∞(0, T ; L∞[0, 1]) and b(t, z) ≥ 0 for all (t, z) ∈ [0, T ]×[0, 1].

Additionally, the time derivative of b, ḃ, exists and is in L∞(0, T ; L∞[0, 1]).

Proof: Again recall

b(t, z) =

(
σ

ε0

+
(γ0 − ζ0 + (κγ − κζ)p(t, z))

(τ0 + κτp(t, z))

)
I(z1,1).

We recall the restrictions placed on κγ, κζ , and κτ and conclude that b is strictly

positive in [0, T ] × (z1, 1]. Thus, b(t, z) ≥ 0 for all (t, z) ∈ [0, T ] × [0, 1].

Since p ∈ L∞(0, T ; L∞[0, 1]), we have that γ0 − ζ0 + (κγ − κζ)p ∈ L∞(0, T ; L∞[0, 1]).

Moreover, since τ0 + κτp > δ for all (t, z) ∈ [0, T ] × [0, 1], we know (τ0 + κτp)−1 ∈
L∞(0, T ; L∞[0, 1]).

Hence b is bounded, and b ∈ L∞(0, T ; L∞[0, 1]).

Next, we have

ḃ(t, z) =

(
((κγ − κζ)ṗ(t, z)) (τ0 + κτp(t, z)) − (γ0 − ζ0 + (κγ − κζ)p(t, z)) (κτ ṗ(t, z))

(τ0 + κτp(t, z))2

)
I(z1,1)

Since (τ0 + κτp)−2 , τ0 + κτp, γ0 − ζ0 + (κγ − κζ)p, (κγ − κζ)ṗ, and κτ ṗ are all in

L∞(0, T ; L∞[0, 1]), we can conclude that ḃ ∈ L∞(0, T ; L∞[0, 1]).

A3) The coefficient h is in L∞(0, T ; L∞[0, 1]).

Proof: From the definition

h(t, z) =

(
(κγ − κζ)ṗ(t, z)

(τ0 + κτp(t, z))
− (1 + κτ ṗ(t, z)) (γ0 − ζ0 + (κγ − κζ)p(t, z))

(τ0 + κτp(t, z))2

)
I(z1,1).
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Since (τ0 + κτp)−1 and (κγ − κζ)ṗ are in L∞(0, T ; L∞[0, 1]), we have

(κγ − κζ)ṗ (τ0 + κτp)−1 is in L∞(0, T ; L∞[0, 1]).

In the same way, since γ0 − ζ0 + (κγ − κζ)p and κτ ṗ are in L∞(0, T ; L∞[0, 1]),

and (τ0 + κτp)−2 < δ−2, we have (1 + κτ ṗ) (γ0 − ζ0 + (κγ − κζ)p) (τ0 + κτp)−2 is in

L∞(0, T ; L∞[0, 1]). Therefore, we have h in L∞(0, T ; L∞[0, 1]).

A4) The kernel function G is in L∞([0, T ] × [0, T ]; L∞[0, 1]).

Proof: The Debye kernel is given by

G(t, s, z) =

(1 + κτ ṗ(t, z)) (γ0 − ζ0 + (κγ − κζ)p(s, z))

(τ0 + κτp(t, z))2 (τ0 + κτp(s, z))
exp

(∫ t

s

−dξ

τ0 + κτp(ξ, z)

)
I(z1,1).

First, we note that

(1 + κτ ṗ(t, z)) (γ0 − ζ0 + (κγ − κζ)p(s, z))

(τ0 + κτp(t, z))2 (τ0 + κτp(s, z))
∈ L∞([0, T ] × [0, T ]; L∞[0, 1]).

Since (τ0 + κτp(·, z))−1 ∈ C(0, T ), we know that

∫ t

s

−dξ

τ0 + κτp(ξ, z)

is absolutely continuous in t and in s, hence

exp

(∫ t

s

−dξ

τ0 + κτp(ξ, z)

)
is in L∞([0, T ] × [0, T ]).

Hence we may conclude that G ∈ L∞([0, T ] × [0, T ]; L∞[0, 1]).

It is clear from the definition c2 = 1/ε0µ0 that c2 satisfies A5). Furthermore, by an

appropriate choice of the source current Js, we may guarantee that A6) holds and the

forcing function defined by F (t, z) = − 1
ε0

J̇s(t) is in H1(0, T, V ∗).



Chapter 3. Theoretical results 57

With A1)-A6) satisfied by the pressure-dependent Debye polarization model, we may

apply the theory in Section 3.1 and conclude that the system is well-posed.

3.1.3 Well-posedness of solutions to the system with

pressure-dependent Lorentz polarization

In this section, we address the assumptions outlined in Section 3.1 in the context of the

well-posedness of the Lorentz polarization model with pressure-dependent coefficients.

Here we consider (3.6) with the functions given in (3.7). Again, we use the definitions

of V, H, V ∗, which form a Gelfand triple, and the V -continuous and V -elliptic σ1

given in Section 3.1. We assume that assumptions P1)-P2) in Section 3.1.2 hold and

our admissible parameter set Q is as defined previously.

We verify that A1)-A6) hold for the Lorentz example under these assumptions.

A1) The coefficient a is in L∞(0, T ; L∞[0, 1]), as are its derivatives ȧ and ä, and for

all (t, z) ∈ [0, T ] × [0, 1], a(t, z) ≥ a0, for some a0 > 0.

Proof: Since the coefficient a is the same in (3.7) and (3.8), we know that A1) holds.

A2) The coefficient b is in L∞(0, T ; L∞[0, 1]) and b(t, z) ≥ 0 for all (t, z) ∈ [0, T ]×[0, 1].

Additionally, the time derivative of b, ḃ, exists and is in L∞(0, T ; L∞[0, 1]).

Proof: Since

b(t, z) =
σ

ε0

I(z1,1)

is piecewise constant, it is clear that b and ḃ are L∞(0, T ; L∞[0, 1]) functions.

A3) The coefficient h is in L∞(0, T ; L∞[0, 1]).

Proof: We recall that

h(t, z) =
1

ε0

(ε0(α0 + καp(t, z))(γ0 − ζ0 + (κγ − κζ)p(t, z))) I(z1,1).
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Since α0 + καp and γ0 − ζ0 + (κγ − κζ)p are in L∞(0, T ; L∞[0, 1]), we know that

h ∈ L∞(0, T ; L∞[0, 1]).

A4) The kernel function G is in L∞([0, T ] × [0, T ]; L∞[0, 1]).

Proof: The Lorentz kernel is given by

G(t, s, z) =
−1

ε0

( 1

τ0 + κτp(t, z)
Φ21(t, s) + (α0 + καp(t, z))Φ11(t, s)

)

×
(
ε0(α0 + καp(s, z))(γ0 − ζ0 + (κγ − κζ)p(s, z))

)
I(z1,1).

We recall that ordinary differential equations theory coupled with the continuity of p

guarantees the continuity of Φ11 and Φ21. Moreover we have that (τ0 + κτp)−1 < δ−1

and (α0 +καp) and (γ0 − ζ0 +(κγ −κζ)p) are continuous functions. We may conclude

from this that G is a L∞([0, T ] × [0, T ]; L∞[0, 1]) function.

We note that the definitions of c2 and F (t, z) are unchanged from Section 3.1.2, so

we may conclude that A5)-A6) are satisfied.

We now know that A1)-A6) are satisfied by the pressure-dependent Lorentz polariza-

tion model; thus we may conclude that the system is well-posed based on the theory

in Section 3.1.

3.2 Enhanced regularity of solutions

In Section 3.1, we show that unique solutions E ∈ L2(0, T ; V ) and Ė ∈ L2(0, T ; H)

exist for the variational form
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< aË(t), φ >V ∗,V + < bĖ(t), φ > + < hE(t), φ >

+ <
∫ t

0
G(t, s, ·)E(s, ·) ds, φ >

+cĖ(t, 0)φ(0) + σ1(E(t), φ) =< F (t), φ >V ∗,V ,

E(0, z) = E0(z) Ė(0, z) = E1(z)

(3.22)

for all φ ∈ V where V = H1
R(0, 1) ≡ {φ ∈ H1(0, 1) : φ(1) = 0} and H = L2(0, 1). This

existence holds provided that E0 ∈ V and E1 ∈ H, Assumptions A1)-A6) given in

Section 3.1 are satisfied, and the sesquilinear form σ1 is V -elliptic and V -continuous.

This theory not only establishes well-posedness for a class of partial differential equa-

tions, but it provides a foundation for the parameter estimation problem described in

Chapter 5. The ability to estimate parameters is critical to the success of interrogation

techniques. As we shall see in Section 3.3 however, the theoretical results on which

the parameter estimation problem is based rely on the assumption that the solution

to (3.22) has enhanced regularity, namely that Ë ∈ L2(0, T ; H) or E ∈ H2(0, T ; H).

This improved regularity can be readily established under some additional assump-

tions.

In this section, we develop arguments for the enhanced regularity of the system (3.22).

We begin by describing the additional assumptions required. We then proceed to use

these assumptions and those detailed in Section 3.1 to demonstrate the enhanced

regularity of the solution. Finally, we discuss the additional assumptions in the

context of the Debye and Lorentz-based systems in Sections 3.2.2-3.2.3.
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3.2.1 Enhanced regularity of solutions to general variational

form

The arguments presented in this section follow those given in [7] and [20]. As in

Section 3.1, we take H = L2(0, 1) and V = H1
R(0, 1) ≡ {φ ∈ H1(0, 1) : φ(1) = 0}

to be Hilbert spaces that form a Gelfand triple V ↪→ H ↪→ V ∗ with the dual space

V ∗. We denote the usual duality product by < ·, · >V ∗,V . Inner products < ·, · > and

norms | · | written without subscripts are assumed to be in H. Moreover, we assume

that A1)-A6) hold and that the sesquilinear form σ1 is V -continuous and V -elliptic.

In addition to Assumptions A1)-A6) we make some further assumptions about the

coefficients:

A7) The second time derivative, b̈, of b is in L∞(0, T ; L∞[0, 1]).

A8) The first and second time derivatives, ḣ and ḧ, of h are in L∞(0, T ; L∞[0, 1]).

A9) The first and second derivatives with respect to the first temporal variable, d
dt

G

and d2

dt2
G, of the kernel function G are in L∞((0, T ) × (0, T ); L∞[0, 1]).

A10) The forcing function F is in H2(0, T, V ∗) and is of the form F (t, z) = g̃(t)δ(z)

with g̃(t) ∈ H2(0, T ) and g̃(0) = ˙̃g(0) = 0. (This assumption may replace A6).)

In addition, we assume that E0 ∈ H3
R(0, 1) and E1 ∈ H2

R(0, 1), with the consistency

conditions E1(0) = cE ′
0(0) and E ′

1(0) = cE ′′
0 (0). (We note that these conditions are

satisfied trivially by the initial conditions used in our computations, E0 = E1 = 0.)

In order to show that the solutions to (3.22) have enhanced regularity under the

additional assumptions and restrictions, we smooth the given data, E0, E1, and F,

and argue that the solutions corresponding to the new system possess the desired

regularity. We then show that as the smoothing parameter tends to zero, the solutions

corresponding to the smoothed system tend to the solutions of the original system.

We let our smoothing parameter ∆ be arbitrary in (0, z1). Using the previous assump-

tions for E0, E1 and g̃, we may define functions g̃∆ ∈ H3(0, T ), E∆0 ∈ H3
R(0, 1), and
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E∆1 ∈ H2
R(0, 1) such that

g̃∆(0) = g̃(0), E∆1(0) = E1(0), E∆0(0) = E0(0),

˙̃g∆(0) = ˙̃g(0), E ′
∆1(0) = E ′

1(0), E ′
∆0(0) = E ′

0(0),

with

|g̃∆ − g̃|H2(0,T ) ≤ ∆, |E∆0 − E0|H2(0,1) ≤ ∆, |E∆1 − E1|H1(0,1) ≤ ∆.

We approximate the forcing function by

F∆(t, z) =




2(∆−z)
∆2 g̃∆(t), z ∈ [0, ∆]

0, z ∈ (∆, 1],

and note that

|F − F∆|H2(0,T ;V ∗) → 0 as ∆ → 0.

We now consider the resulting smoothed problem, which is analogous to equation

(3.22). From the theory in Section 3.1, we know that there exists a unique solution

E∆ ∈ H2(0, T ; V ∗) ∩ H1(0, T ; H) ∩ L2(0, T ; V ) such that

< aË∆(t), φ >V ∗,V + < bĖ∆(t), φ > + < hE∆(t), φ >

+ <
∫ t

0
G(t, s, ·)E∆(s, ·) ds, φ > +cĖ∆(t, 0)φ(0) + σ1(E∆(t), φ)

=< F∆(t), φ >V ∗,V

(3.23)

holds for all φ ∈ V and almost every t ∈ (0, T ). Moreover the initial conditions

E∆(0, z) = E∆0(z) Ė∆(0, z) = E∆1(z) (3.24)
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are satisfied for z in (0, 1).

We now show that this solution has the additional smoothness

E∆ ∈ H3(0, T ; V ∗) ∩ H2(0, T ; H) ∩ H1(0, T ; V ).

We first differentiate (3.23) with respect to t. We express the new equation in terms

of u∆, where u∆ = Ė∆. Subsequently

E∆(t) = E∆0 +

∫ t

0

u∆(s) ds.

The resulting equation is

< aü∆(t), φ > + < (ȧ + b)u̇∆(t), φ > + < (ḃ + h)u∆(t), φ >

+ < (ḣ + G(t, t))
∫ t

0
u∆(s) ds, φ >

+ <
∫ t

0
d
dt

G(t, s, ·)
∫ s

0
u∆(ξ, ·) dξ ds, φ >

+ <
(
ḣ + G(t, t) +

∫ t

0
d
dt

G(t, s, ·) ds
)

E∆0, φ > +cu̇∆(t, 0)φ(0)

+σ1(u∆(t), φ) =< Ḟ∆(t), φ >

(3.25)

with the corresponding initial conditions
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u∆(0, z) = E∆1(z)

u̇∆(0, z) =
1

a(0, z)

(
− b(0, z)Ė∆(0, z) − h(0, z)E∆(0, z) − cĖ∆(0, 0)

+c2E ′′
∆(0, z) − c2E ′

∆(0, z)|z=1
z=0

)

=
1

a(0, z)

(
− b(0, z)E∆1(z) − h(0, z)E∆0(z) − cE∆1(0)

+c2E ′′
∆0(z) − c2E ′

∆0(1) + c2E ′
∆0(0)

)

=
1

a(0, z)

(
− b(0, z)E∆1(z) − h(0, z)E∆0(z) − c2E ′

∆0(0)

+c2E ′′
∆0(z) + c2E ′

∆0(0)
)

=
1

a(0, z)

(
− b(0, z)E∆1(z) − h(0, z)E∆0(z) + c2E ′′

∆0(z)
)

≡ Z∆(z).

(3.26)

We note that these conditions are derived using the consistency conditions and the

fact that a(0, z) > 0 and F∆(0, z) = 0.

We mention that, except for the term

<

∫ t

0

d

dt
G(t, s, ·)

∫ s

0

u∆(ξ, ·) dξ ds, φ >, (3.27)

equation (3.25) is in the same form as (3.22), for which we have well-posedness results.

Using Assumptions A1)-A9) and arguments similar to those behind Theorem 1 in

Section 3.1 one can show that (3.25)-(3.26) is well-posed despite the inclusion of the

term (3.27). Thus there exists a unique solution u∆ ∈ H2(0, T ; V ∗) ∩ H1(0, T ; H) ∩
L2(0, T ; V ) such that equations (3.25)-(3.26) are satisfied.
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We now must verify that the solution u∆ to (3.25)-(3.26) is, in fact, Ė∆. We first

integrate (3.25) with respect to t to obtain

<
∫ t

0
aü∆(s) ds, φ > + <

∫ t

0
(ȧ + b)u̇∆(s) ds, φ >

+ <
∫ t

0
(ḃ + h)u∆(s) ds, φ > + <

∫ t

0
(ḣ + G(s, s))

∫ s

0
u∆(ξ) dξ ds, φ >

+ <
∫ t

0

∫ s

0
d
ds

G(s, ξ, ·)
∫ ξ

0
u∆(r, ·) dr dξ ds, φ >

+ <
∫ t

0

(
ḣ + G(s, s) +

∫ s

0
d
ds

G(s, ξ, ·) dξ
)

ds E∆0, φ >

+c
∫ t

0
u̇∆(s, 0) ds φ(0) + σ1(

∫ t

0
u∆(s) ds, φ) =< F∆(t), φ > .

(3.28)

We define a function v∆ by

v∆(t) = E∆0 +
∫ t

0
u∆(s) ds

v̇∆(t) = d
dt

∫ t

0
u∆(s) ds = u∆(t)

v̈∆(t) = u̇∆(t)

v∆(0) = E∆0

v̇∆(0) = E∆1

(3.29)

so that we may write equation (3.28) in the form
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< av̈∆(t), φ > + < bv̇∆(t), φ > + < hv∆(t), φ >

+ <
∫ t

0
G(s, s)v∆(s) ds, φ > + <

∫ t

0

∫ s

0
d
ds

G(s, ξ, ·)v∆(ξ) dξ ds, φ >

+cv̇∆(t, 0) φ(0) + σ1(v∆, φ)

− < a(0)v̈∆(0), φ > − < b(0)E∆1, φ > − < h(0)E∆0, φ >

−cE∆1(0) φ(0) − σ1(E∆0, φ) =< F∆(t), φ > .

(3.30)

We note that (3.26) and the definitions of σ1 and v∆ imply

− < a(0, z)v̈∆(0, z), φ > − < b(0, z)E∆1(z), φ > − < h(0, z)E∆0(z), φ >

−cE∆1(0)φ(0) − σ1(E∆0, φ) =

− < a(0, z)v̈∆(0, z), φ > − < b(0, z)E∆1(z), φ > − < h(0, z)E∆0(z), φ >

−cE∆1(0)φ(0)+ < c2E ′′
∆0(z), φ > +c2E ′

∆0(0)φ(0) =

− < a(0, z)v̈∆(0, z), φ > + < a(0, z)Z∆, φ >

−cE∆1(0)φ(0) + c2E ′
∆0(0)φ(0) =

− < a(0, z)u̇∆(0, z), φ > + < a(0, z)Z∆, φ >

−cE∆1(0)φ(0) + c2E ′
∆0(0)φ(0) =

−cE∆1(0)φ(0) + c2E ′
∆0(0)φ(0) = 0.

Thus equation (3.30) is equivalent to
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< av̈∆(t), φ > + < bv̇∆(t), φ > + < hv∆(t), φ >

+ <
∫ t

0
G(s, s)v∆(s) ds, φ > + <

∫ t

0

∫ s

0
d
ds

G(s, ξ, ·)v∆(ξ) dξ ds, φ >

+cv̇∆(t, 0) φ(0) + σ1(v∆, φ) =< F∆(t), φ > .

(3.31)

If we compare equations (3.29),(3.31) with equations (3.24)-(3.23), we see that

v∆(t) = E∆(t) and u∆(t) = Ė∆(t).

We may then conclude that Ė∆ has the same regularity as u∆; that is, Ė∆ ∈
H2(0, T ; V ∗) ∩ H1(0, T ; H) ∩ L2(0, T ; V ).

We next want to establish the regularity Ë∆ ∈ H2(0, T ; V ∗)∩H1(0, T ; H)∩L2(0, T ; V ).

In order to do this, we differentiate (3.25) with respect to t and introduce the variable

w∆ = u̇∆. This results in the equation

< aẅ∆, φ > + < (2ȧ + b)ẇ∆, φ > + < (ä + 2ḃ + h)w∆, φ >

+ < (b̈ + 2ḣ + G(t, t))
∫ t

0
w∆(s) ds, φ >

+ < (ḧ + 2 d
dt

G(t, t))
∫ t

0

∫ s

0
w∆(ξ) dξ ds, φ >

+ <
∫ t

0
d2

dt2
G(t, s)

∫ s

0

∫ ξ

0
w∆(r) dr dξ ds, φ >

+ < (b̈ + 2ḣ + G(t, t))E∆1, φ >

+ < (ḧ + 2 d
dt

G(t, t))
∫ t

0
E∆1 ds, φ > + <

∫ t

0
d2

dt2
G(t, s)

∫ s

0
E∆1 dξ ds, φ >

+ < (ḧ +
∫ t

0
d2

dt2
G(t, s) ds + 2 d

dt
G(t, t))E∆0, φ >

+cẇ∆(t, 0)φ(0) + σ1(w∆, φ) =< F̈∆, φ >

(3.32)
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with initial conditions

w∆(0, z) = Z∆(z)

ẇ∆(0, z) = 1
a(0,z)

(
−(ȧ(0, z) + b(0, z))Z∆(z) − (ḃ(0, z) + h(0, z))E∆1(z)

−(ḣ(0, z) + G(0, 0, z))E∆0(z) + c2E ′′
∆1(z)

)
.

(3.33)

Although (3.32) is not quite of the same form as (3.22) for which Theorem 1 guarantees

well-posedness, its well-posedness may be established using the same methodology and

the additional Assumptions A8) and A9). We thus assume the existence of a unique

solution w∆ to (3.32)-(3.33), with w∆ ∈ H2(0, T ; V ∗) ∩ H1(0, T ; H) ∩ L2(0, T ; V ).

We now argue that the solution w∆ to (3.32)-(3.33) is u̇∆. We use the technique

employed previously and begin by integrating (3.32) over t to obtain

<
∫ t

0
aẅ∆ ds, φ > + <

∫ t

0
(2ȧ + b)ẇ∆ ds, φ > + <

∫ t

0
(ä + 2ḃ + h)w∆ ds, φ >

+ <
∫ t

0
(b̈ + 2ḣ + G(s, s))

∫ s

0
w∆(ξ) dξ ds, φ >

+ <
∫ t

0
(ḧ + 2 d

ds
G(s, s))

∫ s

0

∫ ξ

0
w∆(r) dr dξ ds, φ >

+ <
∫ t

0

∫ s

0
d2

ds2 G(s, ξ)
∫ ξ

0

∫ r

0
w∆(x) dx dr dξ ds, φ >

+ <
∫ t

0
(b̈ + 2ḣ + G(s, s)) dsE∆1, φ >

+ <
∫ t

0
(ḧ + 2 d

ds
G(s, s))

∫ s

0
E∆1 dξ ds, φ >

+ <
∫ t

0

∫ s

0
d2

ds2 G(s, ξ)
∫ ξ

0
E∆1 dr dξ ds, φ >

+ <
∫ t

0
(ḧ +

∫ s

0
d2

ds2 G(s, ξ) dξ + 2 d
ds

G(s, s)) ds E∆0, φ >

+c
∫ t

0
ẇ∆(s, 0) dsφ(0) + σ1(

∫ t

0
w∆ ds, φ) =< Ḟ∆, φ > .
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We define a new variable

y∆ = E∆1 +

∫ t

0

w∆ ds,

and rewrite the above equation, using integration by parts and Leibnitz’ rule, as

< a(t)ÿ∆(t), φ > − < a(0)ÿ∆(0), φ >

+ < (ȧ(t) + b(t))ẏ∆(t), φ > − < (ȧ(0) + b(0))ẏ∆(0), φ >

+ < (ḃ(t) + h(t))y∆(t), φ > + < (ḣ(t) + G(t, t))
∫ t

0
y∆ ds, φ >

+ <
∫ t

0
d
dt

G(t, s)
∫ s

0
y∆ dξ ds, φ >

< (ḣ(t) − ḣ(0) + G(t, t) − G(0, 0))E∆0, φ > + <
∫ t

0
d
dt

G(t, s) dsE∆0, φ >

< (−ḃ(0) − h(0))E∆1, φ >

+cẏ∆(t, 0)φ(0) − cE∆1(0)φ(0) + σ1(y∆, φ) − σ1(E∆1, φ)

=< Ḟ∆, φ > .

Finally, the initial and consistency conditions yield

< aÿ∆(t), φ > + < (ȧ + b)ẏ∆(t), φ > + < (ḃ(t) + h(t))y∆(t), φ >

+ < (ḣ(t) + G(t, t))
∫ t

0
y∆ ds, φ > + <

∫ t

0
d
dt

G(t, s)
∫ s

0
y∆ dξ ds, φ >

< (ḣ(t) + G(t, t))E∆0, φ > + <
∫ t

0
d
dt

G(t, s) dsE∆0, φ >

+cẏ∆(t, 0)φ(0) + σ1(y∆, φ) =< Ḟ∆, φ > .

(3.34)

If we compare equation (3.34) with (3.25), we see that y∆ = u∆ = Ė∆ and Ë∆ =

u̇∆ = w∆. We may then conclude that Ë∆ ∈ H2(0, T ; V ∗)∩H1(0, T ; H)∩L2(0, T ; V ).
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The next step is to bound the solutions E∆, Ė∆, and Ë∆ with respect to ∆ so that

we may argue the convergence of these solutions to E, Ė, and Ë as ∆ tends to zero.

To construct these bounds, we make judicious choices for the test function φ in

equations (3.23) and (3.25) and establish appropriate inequalities. We give the details

for obtaining the desired result from (3.25) and remark that the process is analagous

for (3.23). We begin by considering (3.25) with the choice of test function φ = u̇∆ ∈ V

< aü∆(t), u̇∆(t) > + < (ȧ + b)u̇∆(t), u̇∆(t) > + < (ḃ + h)u∆(t), u̇∆(t) >

+ < (ḣ + G(t, t))
∫ t

0
u∆(s) ds, u̇∆(t) >

+ <
∫ t

0
d
dt

G(t, s, ·)
∫ s

0
u∆(ξ, ·) dξ ds, u̇∆(t) >

+ <
(
ḣ + G(t, t) +

∫ t

0
d
dt

G(t, s, ·) ds
)

E∆0, u̇∆(t) >

+cu̇2
∆(t, 0) + σ1(u∆(t), u̇∆(t)) =< Ḟ∆(t), u̇∆(t) > .

(3.35)

We next integrate (3.35) with respect to t to obtain

< a(t)u̇∆(t), u̇∆(t) > +σ1(u∆(t), u∆(t)) + 2
∫ t

0
cu̇2

∆(s, 0) ds

=
∫ t

0

{
− < (ȧ + 2b)u̇∆(s), u̇∆(s) > −2 < (ḃ + h)u∆(s), u̇∆(s) >

−2 < (ḣ + G(s, s))
∫ s

0
u∆(ξ) dξ, u̇∆(s) >

−2 <
∫ s

0
d
ds

G(s, ξ, ·)
∫ ξ

0
u∆(r, ·) dr dξ, u̇∆(s) >

−2 <
(
ḣ + G(s, s) +

∫ s

0
d
ds

G(s, ξ, ·) dξ
)

E∆0, u̇∆(s) > +2 < Ḟ∆(s), u̇∆(s) >
}

ds

+ < a(0)u̇∆(0), u̇∆(0) > +σ1(u∆(0), u∆(0)).

Using the Hölder inequality and the fact that 2ab < a2 + b2, we may establish the
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inequality

< a(t)u̇∆(t), u̇∆(t) > +σ1(u∆(t), u∆(t)) + 2
∫ t

0
cu̇2

∆(s, 0) ds

≤
∫ t

0

{
|(1

2
ȧ + b)u̇∆(s)|2 + |(ḃ + h)u∆(s)|2 + |(ḣ + G(s, s))

∫ s

0
u∆(ξ) dξ|2

+|
∫ s

0
d
ds

G(s, ξ, ·)
∫ ξ

0
u∆(r, ·) dr dξ|2

+|
(
ḣ + G(s, s) +

∫ s

0
d
ds

G(s, ξ, ·) dξ
)

E∆0|2 + 5|u̇∆(s)|2

+2 < Ḟ∆(s), u̇∆(s) >
}

ds+ < au̇∆(0), u̇∆(0) > +σ1(u∆(0), u∆(0)).

(3.36)

We note that

∫ t

0
2 < Ḟ∆(s), u̇∆(s) > ds =

−
∫ t

0
2 < F̈∆(s), u∆(s) > ds + 2 < Ḟ∆(t), u∆(t) > ≤

∫ t

0
2
c2
|F̈∆(s)|2V ∗ + c2

2
|u∆(s)|2V ds + 2

c2
|Ḟ∆(t)|2V ∗ + c2

2
|u∆(t)|2V ≤

K1|F∆|2H2(0,T ;V ∗) +
∫ t

0
c2
2
|u∆(s)|2V ds + c2

2
|u∆(t)|2V .

We use this inequality and the properties of σ1 to write (3.36) as
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|
√

a(t)u̇∆(t)|2 + c2
2
|u∆(t)|2V + 2

∫ t

0
cu̇2

∆(s, 0) ds

≤
∫ t

0

{
|(1

2
ȧ + b)u̇∆(s)|2 + |(ḃ + h)u∆(s)|2 + |(ḣ + G(s, s))

∫ s

0
u∆(ξ) dξ|2

+|
∫ s

0
d
ds

G(s, ξ, ·)
∫ ξ

0
u∆(r, ·) dr dξ|2

+|
(
ḣ + G(s, s) +

∫ s

0
d
ds

G(s, ξ, ·) dξ
)

E∆0|2

+5|u̇∆(s)|2 + c2
2
|u∆(s)|2V ds

}
ds

+K1|F∆|2H2(0,T ;V ∗) + |
√

a(0)Z∆|2 + c1|E∆1|2H1(0,1).

(3.37)

We may write (3.37) in the simplified form

a0|u̇∆(t)|2 + c2
2
|u∆(t)|2V + 2

∫ t

0
cu̇2

∆(s, 0) ds

≤
∫ t

0
{K2|u̇∆(s)|2 + K3|u∆(s)|2V ds} ds

+K1|F∆|2H2(0,T ;V ∗) + K4|E∆1|2H1(0,1) + K5|E∆0|2H2(0,1)

(3.38)

with the use of Assumptions A1)-A10), the definition of Z∆, and norm properties.

The convergence of the sequences {F∆}, {E∆1}, and {E∆0} implies boundedness and

thus

a0|u̇∆(t)|2 + c2
2
|u∆(t)|2V + 2

∫ t

0
cu̇2

∆(s, 0) ds

≤ K6 +
∫ t

0
{K2|u̇∆(s)|2 + K3|u∆(s)|2V ds} ds.

(3.39)

(We note that the constants K2, K3, and K6 are all independent of ∆ and t.) We may

now use Gronwall’s inequality to conclude that u∆ = Ė∆ is bounded in C(0, T ; V ),

u̇∆ = Ë∆ is bounded in C(0, T ; H), and u̇∆(·, 0) = Ë∆(·, 0) is bounded in L2(0, T ).

In order to claim that E∆ is bounded in C(0, T ; V ) we assert that similar arguments

can be used to establish the inequality



Chapter 3. Theoretical results 72

|Ė∆(t)|2H + c2
2
|E∆(t)|2V + 2

∫ t

0
cĖ2

∆(s, 0) ds ≤

C1 +
∫ t

0

{
C2|Ė∆|2H + C3|E∆|2V

}
ds

(3.40)

from equation (3.23). (Again, the constants C1, C2, and C3 are independent of ∆ and

t.) The desired boundedness follows from Gronwall’s inequality.

These results imply that there exist subsequences (also denoted by the subscript ∆)

such that as ∆ tends to zero

E∆ →weakly Ea in L2(0, T ; V )

Ė∆ →weakly Eb in L2(0, T ; V )

Ë∆ →weakly Ec in L2(0, T ; H)

Ë∆(·, 0) →weakly Ed in L2(0, T ).

With repeated applications of the Fundamental Theorem of Calculus, we may argue

that Eb = Ėa, Ec = Ëa, and Ed = Ëa(·, 0).

Lastly, we take weak limits as ∆ → 0 in (3.23) and conclude that Ea is a solution to

(3.22), i.e., Ea = E. The theory outlined in Section 3.1 guarantees that this solution

is unique and depends continuously on the initial data and forcing function. The

results are summarized in the following theorem.

Theorem 2: We assume that Assumptions A1)-A10) hold and the initial conditions

E0 ∈ H3
R(0, 1), E1 ∈ H2

R(0, 1) satisfy the consistency requirements E1(0) = cE ′
0(0) and

E ′
1(0) = cE ′′

0 (0). Then the unique solution E to (3.22) has the enhanced regularity

E ∈ H3(0, T ; V ∗) ∩ H2(0, T ; H) ∩ H1(0, T ; V ).
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3.2.2 Enhanced regularity of solutions to the Debye-based

system

In this section, we want to show that the enhanced regularity results established in

Section 3.2.1 can be applied to the solutions of the system with Debye-based pressure-

dependent polarization (3.7). We have already shown that, under the conditions P1)-

P2) and the assumptions on our admissible parameter set Q, Theorem 1 guarantees

the well-posedness of the Debye solutions. Now we wish to use Theorem 2 to show

that these solutions have additional smoothness, E ∈ H3(0, T ; V ∗) ∩ H2(0, T ; H) ∩
H1(0, T ; V ), by demonstrating that the Debye coefficients satisfy Assumptions A7)-

A10). First we must replace the condition P2) with a more restrictive condition

P2′):

P2′) The derivatives of the pressure wave, ṗ, p̈, and d3

dt3
p are in L∞(0, T ; L∞[0, 1]). (See

[18] and [17] and Chapter 7 for details regarding the regularity of p.)

Then we verify that A7)-A10) are satisfied by (3.7) provided that the conditions P1)-

P2′) hold and that our admissible set of parameters Q is as described in Section 3.1.

A7) The second time derivative of b, b̈, is in L∞(0, T ; L∞[0, 1]).

Proof: The first derivative of b is given by

ḃ(t, z) =

(
(κγ − κζ)ṗ(t, z) (τ0 + κτp(t, z)) − (γ0 − ζ0 + (κγ − κζ)p(t, z)) κτ ṗ(t, z)

(τ0 + κτp(t, z))2

)
I(z1,1).

This can be written equivalently as



Chapter 3. Theoretical results 74

ḃ(t, z) =




(
γ̇(p(t, z)) − ζ̇(p(t, z))

)
τ(p(t, z)) −

(
γ(p(t, z)) − ζ(p(t, z))

)
τ̇(p(t, z))

τ(p(t, z))2


 I(z1,1),

where, for example, τ̇(p(t, z)) denotes the time derivative of τ(p(t, z)) which must be

computed using the chain rule, i.e., τ̇(p(t, z)) = d
dp

τ(p)ṗ(t, z).

Thus

b̈(t, z) =
{ 1

τ(p(t, z))
(γ̈(p(t, z)) − ζ̈(p(t, z))) − 2τ̇(p(t, z))

τ(p(t, z))2
(γ̇(p(t, z)) − ζ̇(p(t, z)))

+
2τ̇(p(t, z))2

τ(p(t, z))3
(γ(p(t, z)) − ζ(p(t, z)))

}
I(z1,1).

The restrictions on our admissible parameter set imply that τ(p)−k bounded by δ−k.

Moreover, since τ, γ, and ζ are linear functions of p, and p, ṗ, and p̈ are L∞ functions

from Assumptions P1)-P2′), the functions τ̇(p), γ(p), ζ(p), γ̇(p), ζ̇(p), γ̈(p), and ζ̈(p)

are in L∞. We may then conclude that b̈ itself is in L∞.

A8) The first and second time derivatives, ḣ and ḧ, of h are in L∞(0, T ; L∞[0, 1]).

Proof: The coefficient h can be written

h(t, z) =

(
(γ̇(p(t, z)) − ζ̇(p(t, z))

τ(p(t, z))
− (1 + τ̇(p(t, z))) (γ(p(t, z)) − ζ(p(t, z)))

τ(p(t, z))2

)
I(z1,1).

Its derivatives are given by
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ḣ(t, z) =
{ 1

τ(p(t, z))

(
γ̈(p(t, z)) − ζ̈(p(t, z))

)
− τ̈(p(t, z))

τ(p(t, z))2
×

(
(γ(p(t, z)) − ζ(p(t, z))) + 2τ̇(p(t, z))(γ̇(p(t, z)) − ζ̇(p(t, z)))

)

+
2τ̇(p(t, z))

τ(p(t, z))3

(
1 + τ̇(p(t, z)))(γ(p(t, z)) − ζ(p(t, z))

)}
I(z1,1)

and

ḧ(t, z) =
{ 1

τ(p(t, z))

( d3

dt3
γ(p(t, z)) − d3

dt3
ζ(p(t, z))

)
−

d3

dt3
τ(p(t, z))

τ(p(t, z))2
×

(
(γ(p(t, z)) − ζ(p(t, z))) + 3τ̈(p(t, z))(γ̇(p(t, z)) − ζ̇(p(t, z)))

+2τ̇(p(t, z))(γ̈(p(t, z)) − ζ̈(p(t, z)))
)

+
2τ̇(p(t, z))

τ(p(t, z))3

(
2τ̈(p(t, z))(γ(p(t, z)) − ζ(p(t, z)))

+3τ̇(p(t, z)(γ̇(p(t, z)) − ζ̇(p(t, z))) + (γ̇(p(t, z)) − ζ̇(p(t, z)))
)

− 1

τ(p(t, z))4
6τ̇(p(t, z)2(1 + τ̇(p(t, z)))(γ(p(t, z)) − ζ(p(t, z)))

}
I(z1,1).

We use condition P2′) and the assumptions on our admissible parameter set to show

that the fractional terms in ḣ and ḧ are in L∞. Then we apply P1) and P2′) to verify

that the remaining terms are also in L∞. Combining these results, we have that ḣ

and ḧ are L∞ functions.

A9) The first and second derivatives with respect to the first temporal variable, d
dt

G

and d2

dt2
G, of the kernel function G are in L∞([0, T ] × [0, T ]; L∞[0, 1]).

Proof: The kernel of the Debye function is given by
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G(t, s, z) =

(1 + κτ ṗ(t, z)) (γ0 − ζ0 + (κγ − κζ)p(s, z))

(τ0 + κτp(t, z))2 (τ0 + κτp(s, z))
exp

(∫ t

s

−dξ

τ0 + κτp(ξ, z)

)
I(z1,1)

which can be written

G(t, s, z) =

(γ(p(t, z)) − ζ(p(s, z))

τ(p(s, z))

)(1 + τ̇(p(t, z))

τ(p(t, z))2

)
exp

( ∫ t

s

−dξ

τ(p(ξ, z))

)
I(z1,1).

Taking the first derivative with respect to t, we have

d

dt
G(t, s, z) =

(γ(p(t, z)) − ζ(p(s, z))

τ(p(s, z))

)
exp

(∫ t

s

−dξ

τ(p(ξ, z))

)
×

( τ̈(p(t, z))

τ(p(t, z))2
+

−2τ̇(p(t, z))(1 + τ̇(p(t, z)))

τ(p(t, z))3
− 1 + τ̇(p(t, z))

τ(p(t, z))3

)
I(z1,1).

The second derivative with respect to t is

d2

dt2
G(t, s, z) =

(γ(p(t, z)) − ζ(p(s, z))

τ(p(s, z))

)
exp

( ∫ t

s

−dξ

τ(p(ξ, z))

)
×

( d3

dt3
τ(p(t, z))

τ(p(t, z))2
− 2τ̇(p(t, z))τ̈(p(t, z))

τ(p(t, z))3

−2(τ̈(p(t, z)(1 + τ̇(p(t, z))) + τ̇(p(t, z))τ̈(p(t, z)))

τ(p(t, z))3

+
6τ̇(p(t, z))2(1 + τ̇(p(t, z)))

τ(p(t, z))4
− τ̈(p(t, z))

τ(p(t, z))3
+

3τ̇(p(t, z))(1 + τ̇(p(t, z)))

τ(p(t, z))4

− τ̈(p(t, z))

τ(p(t, z))3
+

2τ̇(p(t, z))(1 + τ̇(p(t, z)))

τ(p(t, z))4
+

1 + τ̇(p(t, z))

τ(p(t, z))4

)
I(z1,1).
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In Section 3.1.2 we establish that

exp

(∫ t

s

−dξ

τ(p(ξ, z))

)

is in L∞([0, T ] × [0, T ]; L∞[0, 1]). Moreover with the linearity in p of τ, γ, and ζ and

the use of P2′) and the assumptions on our admissible parameters, it is easy to show

that the remaining terms in d
dt

G(t, s, z) and d2

dt2
G(t, s, z) are in L∞. We may then

conclude that the kernel derivatives d
dt

G and d2

dt2
G are L∞ functions.

If we choose the function Js appropriately, we may guarantee that A10) holds. In

other words, we must select Js so that the forcing function F (t, z) = 1
ε0

J̇s(t) is in

H2(0, T, V ∗) and is of the form F (t, z) = g̃(t)δ(z) with g̃(t) ∈ H2(0, T ) and g̃(0) =

˙̃g(0) = 0.

We have thus shown that the system corresponding to pressure-dependent Debye po-

larization satisfies Assumptions A7)-A10). We now may conclude that the enhanced

regularity results presented in Section 3.2.1 may be applied.

3.2.3 Enhanced regularity of solutions to the Lorentz-based

system

In a manner analogous to that of the previous section, we show here that solutions

to the system with Lorentz-based pressure-dependent polarization (3.8) have the en-

hanced regularity guaranteed by Theorem 2. (We have already shown in Section 3.1.3

that solutions to this system are well-posed.) We verify that Assumptions A7)-A10)

hold for the coefficients under conditions P1)-P2) (The Lorentz coefficients (3.8), un-

like the Debye coefficients, satisfy A7)-A10) without the stronger condition P2′.) and

the assumptions on our admissible parameter set Q.

A7) The second time derivative, b̈, of b is in L∞(0, T ; L∞[0, 1]).
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Proof: We recall that b = σ
ε0

I(z1,1) is constant in time; thus b̈ ≡ 0 and is in

L∞(0, T ; L∞[0, 1]).

A8) The first and second time derivatives, ḣ and ḧ, of h are in L∞(0, T ; L∞[0, 1]).

Proof: We have that

ḣ(t, z) =
(
α̇(p(t, z))(γ(p(t, z)) − ζ(p(t, z))) + α(p(t, z))(γ̇(p(t, z)) − ζ̇(p(t, z)))

)
I(z1,1)

and

ḧ(t, z) =
(
α̈(p(t, z))(γ(p(t, z)) − ζ(p(t, z))) + α(p(t, z))(γ̈(p(t, z)) − ζ̈(p(t, z)))

+2α̇(p(t, z))(γ̇(p(t, z)) − ζ̇(p(t, z)))
)
I(z1,1).

Since α, γ, and ζ are linear functions of p and p, ṗ and p̈ are in L∞, each of the terms

in ḣ and ḧ are in L∞. Thus, A8) holds.

A9) The first and second derivatives with respect to the first temporal variable, d
dt

G

and d2

dt2
G, of the kernel function G are in L∞((0, T ) × (0, T ); L∞[0, 1]).

Proof: The appropriate derivatives of G are given by

d

dt
G(t, s, z) =

−
(
−τ̇(p(t, z))

τ(p(t, z))2
Φ21(t, s) +

Φ̇21(t, s)

τ(p(t, z))
+ α̇(p(t, z))Φ11(t, s) + α(p(t, z))Φ̇(t, s)

)
×

(
α(p(s, z))(γ(p(s, z)) − ζ(p(s, z)))

)
I(z1,1)

and
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d2

dt2
G(t, s, z) =

−
((−τ̈(p(t, z))

τ(p(t, z))2
+

2τ̇(p(t, z))2

τ(p(t, z))3

)
Φ21(t, s) +

Φ̈21(t, s)

τ(p(t, z))
+

−2τ̇(p(t, z))

τ(p(t, z))2
Φ̇21(t, s)

+α̈(p(t, z))Φ11(t, s) + 2α̇(p(t, z))Φ̇(t, s) + α(p(t, z))Φ̈(t, s)

)
×

(
α(p(s, z))(γ(p(s, z)) − ζ(p(s, z)))

)
I(z1,1).

As the above expressions involve the derivatives Φ̇i1 and Φ̈i1, we want to consider their

smoothness. We recall that Φij are the components of the state transition matrix for

equation (3.9). Then V1(t) = [Φ11(t)Φ21(t)]
T and V2(t) = [Φ12(t)Φ12(t)]

T are linearly

independent solutions to (3.9). Since the stiffness matrix in (3.9) is continuous under

P1) and the assumptions on our admissible parameters, V1 and V2 are continuous as

well. We want to establish the continuity of V̇1 and V̈1. Since V1 is a solution to (3.9),

V̇1 is the product of the continuous stiffness matrix and the continuous V1. Hence V̇1

itself is continuous. Taking derivatives, we see that

V̈1 =


 0 1

−κγ ṗ
κτ ṗ

(τ0+κτ p)2


V1 +


 0 1

−(γ0 + κγp) −1
τ0+κτ p


 V̇1.

Conditions P1)-P2) and the restrictions on our admissible parameter set imply that

the components of both matrices are L∞-functions. Moreover V1 and V̇1 are contin-

uous. Thus the components of V̈1 are in L∞ and we may conclude that Φ̇i1 and Φ̈i1

are L∞-functions.

With this knowlege, we return to consider d
dt

G and d2

dt2
G. If we examine d

dt
G and d2

dt2
G

term by term in light of conditions P1)-P2) and the assumptions on our admissible

parameters, we see each is a combination of sums and products of L∞-functions. Thus

d
dt

G and d2

dt2
G are in L∞ and A9) holds.
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As in Section 3.2.2, we may choose the source current Js such that A10) holds.

Since we have verified Assumptions A7)-A10) for the system with Lorentz-based po-

larization, we may conclude that the system has the enhanced regularity described in

Theorem 2.

3.3 Estimation of parameters

3.3.1 Estimation of parameters in the general

variational form

The well-posedness result in Section 3.1 provides a framework in which to formulate

parameter estimation problems. As mentioned previously, the general Maxwell system

treated by this result arises from a class electromagnetic interrogation problems. The

crux of these problems is the estimation of certain parameter values, namely dielectric

constants and conductivity coefficients, for the material under interrogation. The

estimation problem typically involves finding the parameter values that provide the

best fit between the model and data collected from the actual system, using, for

example, a least squares criterion. These parameter estimates may then be used to

characterize the material.

In practice, the experimental data is compared with finite dimensional numerical

approximations to the model. In this section, we examine the relationship between the

parameter estimation problems for the original system (3.10) and for a corresponding

finite dimensional system. We suppose that the coefficients and sesquilinear form in

both (3.10) and its finite dimensional approximation depend on a parameter q in a

set Q. If the exact solution to the original system (3.10) were accessible, we would

consider the problem of minimizing the least squares cost functional
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J(q, w) =
Nt∑
i=1

|OE(ti; q) − wi|2 (3.41)

over q ∈ Q where w = {wi}Nt
i=1 is a set of observations taken at times ti, Q is a set of

admissible parameters, and O is an observation operator. The form of O depends on

the particular application and set of observations. For example, if wi is a measurement

of the electric field taken at a spatial point z at time ti, then the operator O entails

evaluations of the function E(ti, ·; q) at a point in space. Since we cannot obtain a

closed form solution to (3.10), we use the solution EN(t; q) to the finite dimensional

approximating system. The solution EN(t; q) lies in V N , a finite dimesional subset of

V , and satisfies

< a(q)ËN(t), φ >V ∗,V + < b(q)ĖN(t), φ > + < h(q)EN(t), φ >

+ <
∫ t

0
G(t, s, ·; q)EN(s, ·) ds, φ >

+cĖN(t, 0)φ(0) + σ1(q)(E
N(t), φ) =< F (t), φ >V ∗,V

EN(0, z) = PNE0(z) ĖN(0, z) = PNE1(z)

(3.42)

for all φ ∈ V N . In particular, we define the piecewise linear basis elements {φN
j }N−1

j=0

with nodal values φN
j (k/N) = δkj, k = 0, 1, . . . , N, and let

V N = span {φN
0 , φN

1 , . . . , φN
N−1} ⊂ V. Then we define PN to be the quasi-L2(0, 1)

projection (see [40], [7], [20]) of V ∗ onto V N defined by

< PNv∗, vN >N=< v∗, vN >V ∗,V for v∗ ∈ V ∗ and for all vN ∈ V N

where

< wN , vN >N≡
∫ 1

0

IN(wNvN)(z) dz
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and IN is the nodal value linear interpolation operator for V N . It is shown in [40]

that the operator PN is well-defined and satisfies

|PNφ|H ≤ K ′
1|φ|H for φ ∈ H

|PNφ|V ≤ K ′
2|φ|V for φ ∈ V.

(3.43)

As expected, the corresponding cost functional for the finite dimensional system is

JN(q, w) =
Nt∑
i=1

∣∣OEN(ti; q) − wi

∣∣2 . (3.44)

Again the form of the operator O is chosen to correspond to the type of data collected.

In Section 3.1, we established the well-posedness of (3.10) with solutions E in

L2(0, T ; V ) and Ė ∈ L2(0, T ; H), where V = H1
R(0, 1) and H = L2(0, 1), and we also

verified that a unique solution to (3.42) exists. These results hold provided that,

for each q ∈ Q, Assumptions A1)-A6) are satisfied and the sesquilinear form σ1 is

V -continuous and V -elliptic. Moreover in Section 3.2, we show that the solution E

of (3.10) has the enhanced regularity E ∈ H3(0, T ; V ∗) ∩ H2(0, T ; H) ∩ H1(0, T ; V )

under consistency conditions for the initial conditions and the assumptions A7)-A10).

We now make the following assumptions about the set of admissible parameters Q,

the state space V N , and the projection operator PN .

B1) The finite dimensional set Q lies in a metric space Q̃ with a metric d̃ and is

compact with respect to this metric.

B2) The finite dimensional subspaces V N are subsets of V .

B3) For each φ ∈ V , |φ − PNφ|V → 0 as N → ∞.

B4) For each φ ∈ H, |φ − PNφ|H → 0 as N → ∞.

Verifications of B3) and B4) for our particular PN are given in [40]. We now make a

further assumption on the sesquilinear form σ1. We assume that σ1 = σ1(q) is defined

on Q and satisfies
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H1)

|σ1(q1)(φ, ψ) − σ1(q2)(φ, ψ)| ≤ γd̃(q1, q2)|φ|V |ψ|V

for q1, q2 ∈ Q where γ depends only on Q.

For the electromagnetic system in consideration in this thesis, Assumption H1) is

unnecessary since σ1 is independent of q. However for the purpose of establishing a

more general result, we do not assume here that our sesquilinear form is parameter

independent.

Furthermore we make the following assumption about our coefficients.

A11) The coefficients depend continuously on q so that as d̃(q, qN) → 0, we have

i) |a(q) − a(qN)|L∞ → 0

ii) |b(q) − b(qN)|L∞ → 0

iii) |h(q) − h(qN)|L∞ → 0

iv) |G(q) − G(qN)|L∞ → 0.

The above continuity along with the compactness of Q implies that the images a(Q),

b(Q), h(Q), and G(Q) are compact. Thus each coefficient can be bounded indepen-

dently of q. We assume throughout that all bounds on our coefficients do not depend

on q.

By solving the parameter estimation problems related to (3.42), (3.44) we obtain a

sequence of estimates {q̄N}. We wish to demonstrate that under certain conditions

this sequence (or a subsequence) converges to the estimate corresponding to the prob-

lem related to (3.10), (3.41). In order to do this, we state the following claim, which

can be found (along with a proof) as Theorem 5.1 in [19].

Theorem 3: To obtain convergence of at least a subsequence of {q̄N} to a solution

q̄ of minimizing (3.41) subject to (3.10), it suffices, under assumption B1), to argue
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that for arbitrary sequences {qN} in Q with qN → q in Q, we have

OEN(t; qN) → OE(t; q).

In [19], the operator O is general enough to include functions that map functions f

such that f : T → V to the space of observations W , where T is an appropriately

chosen (see [19] and [14]) subset of [0, T ] that contains the times of observation and

V is a space containing E(t, ·). In the numerical examples presented in this paper,

the observations correspond to the values of the electric field at the point z = 0 at

various times, i.e., {E(ti, 0)}; thus the operator O involves pointwise evaluation of E

at many points in time and one specific point in space.

We suppose that V N and PN satisfy B2)-B4), the sesquilinear form σ1 satisfies H1),

the coefficients satisfy assumptions A1)-A11), and we let qN ∈ Q be arbitary such

that qN → q in Q. Our primary goal is to show that as N → ∞

EN(t, 0; qN) → E(t, 0; q) (3.45)

for each t ∈ [0, T ]. However, here we verify a more general result. We show that for

each t ∈ [0, T ]

EN(t; qN) → E(t; q) in the V norm

ĖN(t; qN) → Ė(t; q) in the H norm

(3.46)

as N → ∞, where EN , ĖN are the solutions to (3.42) and E, Ė are the solutions

to (3.10). We note that we may evaluate these functions pointwise in t due to the

enhanced regularity of solutions. Moveover, using the equivalence of norms, we see

that (3.46) implies (3.45) and we have the result we need for our computations.

We point out that for a sequence qN = q for all N, the desired result implies conver-

gence of the finite dimensional approximation to the true solution. This is important
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when considering numerical approximations to the solution.

We have established previously that the solution of (3.10) satisfies E(t) ∈ V and

Ė(t) ∈ H for each t. Since

|EN(t; qN) − E(t; q)|V ≤ |EN(t; qN) − PNE(t; q)|V + |PNE(t; q) − E(t; q)|V

and B3) guarantees |PNE(t; q) − E(t; q)|V → 0 as N → ∞, we need only show that

|EN(t; qN) − PNE(t; q)|V → 0 as N → ∞

for each t ∈ [0, T ]. In the same way, it suffices to show that

|ĖN(t; qN) − PN Ė(t; q)|H → 0 as N → ∞

for each t ∈ [0, T ] to obtain the second result.

We let EN = EN(t; qN), E = E(t; q), and ∆N ≡ EN(t; qN) − PNE(t; q).

Subtracting (3.10) from (3.42), we have for φ ∈ V N

< a(qN)ËN − a(q)Ë, φ > + < b(qN)ĖN − b(q)Ė, φ >

+ < h(qN)EN − h(q)E, φ >

+ <
∫ t

0
(G(qN)EN − G(q)E) ds, φ > +c(ĖN(t, 0) − Ė(t, 0))φ(0)

+σ1(q
N)(EN , φ) − σ1(q)(E, φ) = 0.

We add and subtract PNE and its derivatives and rearrange terms to obtain
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< a(qN)(ËN − PN Ë), φ > +σ1(q
N)(EN − PNE, φ)

+c(ĖN(t, 0) − PN Ė(t, 0))φ(0)

=< a(q)Ë, φ > − < a(qN)PN Ë, φ > +σ1(q)(E, φ) − σ1(q
N)(PNE, φ)

+c(Ė(t, 0) − PN Ė(t, 0))φ(0)+ < b(q)Ė − b(qN)ĖN , φ >

+ < h(q)E − h(qN)EN , φ > + <
∫ t

0
G(q)E − G(qN)EN ds, φ > .

We choose the test function φ = ∆̇N ∈ V N so that

< a(qN)(ËN − PN Ë), ∆̇N > +σ1(q
N)(EN − PNE, ∆̇N)

+c(ĖN(t, 0) − PN Ė(t, 0))∆̇N(t, 0) =

< a(q)Ë, ∆̇N > − < a(qN)PN Ë, ∆̇N > +σ1(q)(E, ∆̇N) − σ1(q
N)(PNE, ∆̇N)

+c(Ė(t, 0) − PN Ė(t, 0))∆̇N(t, 0)+ < b(q)Ė − b(qN)ĖN , ∆̇N >

+ < h(q)E − h(qN)EN , ∆̇N > + <
∫ t

0
(G(q)E − G(qN)EN) ds, ∆̇N > .

We note that

2 < a(qN)(ËN − PN Ë), ∆̇N > +2σ1(q
N)(EN − PNE, ∆̇N)

= d
dt

(
< a(qN)∆̇N , ∆̇N > +σ1(q

N)(∆N , ∆N)
)
− < ȧ(qN)∆̇N , ∆̇N > .

Then we have
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1
2

d
dt

(
< a(qN)∆̇N , ∆̇N > +σ1(q

N)(∆N , ∆N)
)

+ c(∆̇N(t, 0))2 =

< a(q)Ë, ∆̇N > − < a(qN)PN Ë, ∆̇N > + < ȧ(qN)∆̇N , ∆̇N >

+σ1(q)(E, ∆̇N) − σ1(q
N)(PNE, ∆̇N)

+c(Ė(t, 0) − PN Ė(t, 0))∆̇N(t, 0)+ < b(q)Ė − b(qN)ĖN , ∆̇N >

+ < h(q)E − h(qN)EN , ∆̇N > + <
∫ t

0
(G(q)E − G(qN)EN) ds, ∆̇N > .

Integration with respect to t yields

< a(qN)∆̇N(t), ∆̇N(t) > +σ1(q
N)(∆N(t), ∆N(t))

+2
∫ t

0
c(∆̇N(ξ, 0))2 dξ =

2
∫ t

0

{
< a(q)Ë, ∆̇N > − < a(qN)PN Ë, ∆̇N > + < ȧ(qN)∆̇N , ∆̇N >

+σ1(q)(E, ∆̇N) − σ1(q
N)(PNE, ∆̇N)

+c(Ė(ξ, 0) − PN Ė(ξ, 0))∆̇N(ξ, 0)+ < b(q)Ė − b(qN)ĖN , ∆̇N >

+ < h(q)E − h(qN)EN , ∆̇N > + <
∫ ξ

0
G(q)E − G(qN)EN ds, ∆̇N >

}
dξ

+ < a(qN)∆̇N(0), ∆̇N(0) > +σ1(q
N)(∆N(0), ∆N(0)).

We now use the definition of ∆N to obtain

∆N(0) = EN(0) − PNE(0) = EN(0) − PNE0 = 0

∆̇N(0) = ĖN(0) − PN Ė(0) = ĖN(0) − PNE1 = 0.

We may then write
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< a(qN)∆̇N(t), ∆̇N(t) > +σ1(q
N)(∆N(t), ∆N(t))

+2
∫ t

0
c(∆̇N(ξ, 0))2 dξ =

2
∫ t

0

{
< a(q)Ë, ∆̇N > − < a(qN)PN Ë, ∆̇N > + < ȧ(qN)∆̇N , ∆̇N >

+σ1(q)(E, ∆̇N) − σ1(q
N)(PNE, ∆̇N)

+c(Ė(ξ, 0) − PN Ė(ξ, 0))∆̇N(ξ, 0)+ < b(q)Ė − b(qN)ĖN , ∆̇N >

+ < h(q)E − h(qN)EN , ∆̇N > + <
∫ ξ

0
G(q)E − G(qN)EN ds, ∆̇N >

}
dξ.

(3.47)

In order to bound the right side of (3.47), we derive the following estimates:

Estimate 1:

∫ t

0

(
2 < a(q)Ë, ∆̇N > −2 < a(qN)PN Ë, ∆̇N > + < ȧ(qN)∆̇N , ∆̇N >

)
dξ

=
∫ t

0

(
2 < (a(q) − a(qN))Ë, ∆̇N > +2 < a(qN)(Ë − PN Ë), ∆̇N >

+ < ȧ(qN)∆̇N , ∆̇N >
)

dξ

≤
∫ t

0
|(a(q) − a(qN))Ë|2H + |a(qN)(Ë − PN Ë)|2H + 1

2
(5 + |ȧ(qN)|2H)|∆̇N |2H dξ

≤ |a(q) − a(qN)|2L∞
∫ t

0
|Ë|2H dξ + |a(qN)|2L∞

∫ t

0
|Ë − PN Ë|2H dξ

+1
2
(5 + |ȧ(qN)|2L∞)

∫ t

0
|∆̇N |2H dξ.

Estimate 2:

2
∫ t

0
σ1(q)(E, ∆̇N) − σ1(q

N)(PNE, ∆̇N) dξ

= 2
∫ t

0
σ1(q

N)(PN Ė, ∆N) − σ1(q)(Ė, ∆N) dξ + 2(σ1(q)(E(t), ∆N(t))

−σ1(q
N)(PNE(t), ∆N(t)))
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= 2
∫ t

0
σ1(q

N)(PN Ė − Ė, ∆N) + σ1(q
N)(Ė, ∆N) − σ1(q)(Ė, ∆N) dξ

+2
(
σ1(q)(E(t), ∆N(t)) − σ1(q

N)(E(t), ∆N(t))

+σ1(q
N)(E(t) − PNE(t), ∆N(t))

)

≤
∫ t

0
c2
1|PN Ė − Ė|2V + γ2(d̃(q, qN))2|Ė|2V + 2|∆N |2V dξ

+
c21
ε
|PNE(t) − E(t)|2V + γ2

ε
(d̃(q, qN))2|E(t)|2V + 2ε|∆N(t)|2V ,

where ε > 0 is arbitrary.

Estimate 3:

2c(Ė(ξ, 0) − PN Ė(ξ, 0))∆̇N(ξ, 0)

≤ c2|Ė(ξ, 0) − PN Ė(ξ, 0)|2 + |∆̇N(ξ, 0)|2

≤ c2K1|Ė − PN Ė|2V + |∆̇N(ξ, 0)|2.

(Here we use the fact that |φ|2V is equivalent to |φ′|2H +|φ(0)|2 so that |φ|2V ≥ K̃(|φ′|2H +

|φ(0)|2) ≥ K̃|φ(0)|2.)
Estimate 4:

2
∫ t

0
< b(q)Ė − b(qN)ĖN , ∆̇N > dξ

= 2
∫ t

0
{< b(q)(Ė − PN Ė), ∆̇N > + < (b(q) − b(qN))PN Ė, ∆̇N >

+ < b(qN)∆̇N , ∆̇N >} dξ

≤
∫ t

0
|b(q)(Ė − PN Ė)|2H + |b(qN)∆̇N |2H + |(b(q) − b(qN))PN Ė|2H + 3|∆̇N |2H dξ

≤ |b(q)|2L∞
∫ t

0
|Ė − PN Ė|2H dξ + (|b(qN)|2L∞ + 3)

∫ t

0
|∆̇N |2H dξ

+|b(q) − b(qN)|2L∞
∫ t

0
|PN Ė|2H dξ.
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Estimate 5:

2
∫ t

0
< h(q)E − h(qN)EN , ∆̇N > dξ

= 2
∫ t

0
{< h(q)(E − PNE), ∆̇N > + < (h(q) − h(qN))PNE, ∆̇N >

+ < h(qN)∆N , ∆̇N >} dξ

≤
∫ t

0

(
|h(q)(E − PNE)|2H + |h(qN)∆N |2H + 3|∆̇N |2H

+|(h(q) − h(qN))PNE|2H
)

dξ

≤ |h(q)|2L∞
∫ t

0
|E − PNE|2H dξ + |h(qN)|2L∞

∫ t

0
|∆N |2H dξ + 3

∫ t

0
|∆̇N |2H dξ

+|h(q) − h(qN)|2L∞
∫ t

0
|PNE|2H dξ.

Estimate 6:

2
∫ t

0
<

∫ ξ

0
(G(q)E − G(qN)EN) ds, ∆̇N > dξ

= 2
∫ t

0
<

∫ ξ

0
G(q)(E − PNE) ds, ∆̇N > + <

∫ ξ

0
(G(q) − G(qN))PNE ds, ∆̇N >

+ <
∫ ξ

0
G(qN)∆N ds, ∆̇N > dξ

≤
∫ t

0
{|

∫ ξ

0
G(q)(E − PNE) ds|2H + |

∫ ξ

0
(G(q) − G(qN))PNE ds|2H

+|
∫ ξ

0
G(qN)∆N ds|2H + 3|∆̇N |2H} dξ

=
∫ t

0

∫ 1

0
|
∫ ξ

0
G(q)(E − PNE) ds|2 dz dξ

+
∫ t

0

∫ 1

0
|
∫ ξ

0
(G(q) − G(qN))PNE ds|2 dz dξ

+
∫ t

0

∫ 1

0
|
∫ ξ

0
G(qN)∆N ds|2 dz dξ + 3

∫ t

0
|∆̇N |2H dξ
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≤ |G(q)|2L∞
∫ t

0

∫ 1

0
|
∫ ξ

0
(E − PNE) ds|2 dz dξ

+|G(q) − G(qN)|2L∞
∫ t

0

∫ 1

0
|
∫ ξ

0
PNE ds|2 dz dξ

+|G(qN)|2L∞
∫ t

0

∫ 1

0
|
∫ ξ

0
∆N ds|2 dz dξ + 3

∫ t

0
|∆̇N |2H dξ

≤ |G(q)|2L∞T
∫ t

0

∫ 1

0
|E − PNE|2L2(0,ξ) dz dξ

+|G(q) − G(qN)|2L∞T
∫ t

0

∫ 1

0
|PNE|2L2(0,ξ) dz dξ

+|G(qN)|2L∞T
∫ t

0

∫ 1

0
|∆N |2L2(0,ξ) dz dξ + 3

∫ t

0
|∆̇N |2H dξ

≤ |G(q)|2L∞T 2
∫ t

0
|E − PNE|2H dξ + |G(q) − G(qN)|2L∞T 2

∫ t

0
|PNE|2H dξ

+|G(qN)|2L∞T 2
∫ t

0
|∆N |2H dξ + 3

∫ t

0
|∆̇N |2H dξ.

Using these estimates, Assumption H1), the V -continuity and V -ellipticity of σ1, and

the fact that |φ|2H ≤ |φ|2V , we may rewrite (3.47) as

|
√

a(qN)∆̇N(t)|2H + c2|∆N(t)|2V + 2
∫ t

0
c|∆̇N(ξ, 0)|2 dξ

≤ δN
1 (t) + δN

2 (t) + 2ε|∆N(t)|2V

+
∫ t

0

{
|∆̇N(ξ, 0)|2 + (23

2
+ |b(qN)|2L∞ + 1

2
|ȧ(qN)|2L∞)|∆̇N |2H

+
(
2 + |h(qN)|2L∞ + T 2|G(qN)|2L∞

)
|∆N |2V

}
dξ,

where
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δN
1 (t) =

∫ t

0

{
|a(qN)|2L∞ |Ë − PN Ë|2H

+(c2
1 + c2K1)|Ė − PN Ė|2V + |b(q)|2L∞|Ė − PN Ė|2H

+
(
|h(q)|2L∞ + T 2|G(q)|2L∞

)
|E − PNE|2H

}
dξ

+
c2
1

ε
|PNE(t) − E(t)|2V

δN
2 (t) = |a(q) − a(qN)|2L∞

∫ t

0

|Ë|2H dξ

+γ2d̃(q, qN)

∫ t

0

|Ė|2V dξ + |b(q) − b(qN)|2L∞

∫ t

0

|PN Ė|2H dξ

+
(
|h(q) − h(qN)|2L∞ + T 2|G(q) − G(qN)|2L∞

)
×

∫ t

0

|PNE|2H dξ +
γ2

ε
d̃(q, qN)|E(t)|2V .

Since ε > 0 is arbitrary, we may choose it to be such that 1 > c2−2ε > 0. Furthermore,

the wave speed c satisfies 2c >> 1. We then use Assumptions A1)-A4) to claim that

there exist constants ν1, ν2 > 1 and 1 ≥ a0 > 0, independent of q, such that

a0|∆̇N(t)|2H + (c2 − 2ε)|∆N(t)|2V +
∫ t

0
(2c − 1)|∆̇N(ξ, 0)|2 dξ

≤ δN
1 (t) + δN

2 (t) +
∫ t

0
ν1|∆̇N |2H + ν2|∆N |2V dξ.

Finally recalling the bounds on ν1, ν2, a0, and c2 − 2ε, we may rewrite the inequality

as
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a0|∆̇N(t)|2H + (c2 − 2ε)|∆N(t)|2V

≤ δN
1 (t) + δN

2 (t) +

∫ t

0

(
ν2

c2 − 2ε

)
ν1|∆̇N |2H +

ν1ν2

a0

|∆N |2V dξ

≤ δN
1 (t) + δN

2 (t) +

(
ν1ν2

a0(c2 − 2ε)

) ∫ t

0

a0|∆̇N |2H + (c2 − 2ε)|∆N |2V dξ.

In order to apply Gronwall’s inequality to obtain uniform convergence of ∆N and ∆̇N

in t as N → ∞, we must establish the uniform convergence of δN
1 and δN

2 . We have

from B3) and B4) that |Ë(t) −PN Ë(t)|H , |Ė(t) −PN Ė(t)|V , and |E(t) −PNE(t)|V
converge to zero as N → ∞ for each t. Since this convergence is dominated and

{E(t)}t∈[0,T ] is compact in V , we have that

δN
1 → 0 uniformly in t as N → ∞.

Moreover, the boundedness of E, Ė, and Ë given by the enhanced regularity results

and the assumption A8) imply that

δN
2 → 0 uniformly in t as N → ∞ and qN → q in Q̃.

Then we may apply Gronwall’s inequality to conclude that

supt∈[0,T ] |∆N(t)|2V → 0 as N → ∞

supt∈[0,T ] |∆̇N(t)|2H → 0 as N → ∞

which is sufficient to prove the desired result.
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3.3.2 Estimation of parameters in the system with

pressure-dependent Debye polarization

The general system (3.10) is formulated to accomodate systems arising from a variety

of electromagnetic interrogation problems. We are concerned here with a particular

system that incorporates a pressure-dependent model for Debye polarization. We

demonstrate that this system satisfies Assumptions A11), B1)-B3) and H1) and thus

that the results of the previous section apply. (We note that verifications of Assump-

tions A1)-A10) are given in Section 3.1.2 and Section 3.2.2.)

The system we wish to consider is given by (3.10) with the parameter-dependent

coefficients, kernel and forcing functions, and sesquilinear form (3.7).

For this system, the set of admissible parameters Q is a subset of R
7, where seven

is the number of parameters to be estimated (in addition to the six polarization

parameters from Section 2.3.2, one is often interested in estimating the conductivity

coefficient σ). Here we consider q ∈ Q ⊂ R
7, where q = (σ, γ0, ζ0, τ0, κγ, κζ , κτ ). We

choose the admissible set Q as described in Section 3.1 to insure that our Debye

coefficients are well-defined.

We recall that qN → q in the standard Euclidean metric is equivalent to the con-

vergence of each component of qN . Moreover, any closed and bounded sets Q in R
7

are compact and satisfy the conditions of B1). The conditions B2)-B4) are satisfied

by V N , which is in this case the set of finite dimensional linear piecewise basis ele-

ments, and the projection operator PN . To verify H1), we note that σ1(q)(φ, ψ) =

c2 < φ′, ψ′ > is independent of q and |σ1(q1)(φ, ψ) − σ1(q2)(φ, ψ)| = 0 for any

q1, q2 ∈ Q.

We next verify A11)i)-iv) for the coefficients in our model. We note that as qN → q

we have, for a given p, ṗ ∈ L∞,
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|σN − σ| → 0 (3.48)

∣∣∣∣ζN
0 + κN

ζ p −
(
ζ0 + κζp

)∣∣∣∣
L∞

→ 0 (3.49)

∣∣∣∣γN
0 − ζN

0 + (κN
γ − κN

ζ )p −
(
γ0 − ζ0 + (κγ − κζ)p

)∣∣∣∣
L∞

→ 0 (3.50)

∣∣∣∣τN
0 + κN

τ p −
(
τ0 − κτp

)∣∣∣∣
L∞

→ 0 (3.51)

∣∣∣∣(κN
γ − κN

ζ )ṗ −
(
(κγ − κζ)ṗ

)∣∣∣∣
L∞

→ 0 (3.52)

and

∣∣∣∣κN
τ ṗ −

(
κτ ṗ

)∣∣∣∣
L∞

→ 0. (3.53)

We use (3.49) directly to claim that |a(qN) − a(q)|L∞ → 0 whenever qN → q; thus

A11)i) holds.

In demonstrating that A11)ii) holds, we observe that

|b(qN) − b(q)|L∞ ≤ 1

ε0

∣∣∣σN − σ
∣∣∣

+ sup
t∈[0,T ]

sup
z∈[z1,1]

∣∣∣∣
(

γN
0 − ζN

0 + (κN
γ − κN

ζ )p(t, z)

τN
0 + κN

τ p(t, z)

)
−

(
γ0 − ζ0 + (κγ − κζ)p(t, z)

τ0 + κτp(t, z)

) ∣∣∣∣.
Then we may apply equations (3.48), (3.50), and (3.51) and the quotient rule of limits

to conclude that |b(qN) − b(q)|L∞ → 0 as qN → q and A11)ii) is satisfied.

From the definition of h, we have
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|h(qN) − h(q)|L∞ ≤ sup
t∈[0,T ]

sup
z∈[z1,1]

{∣∣∣∣(κN
γ − κN

ζ )ṗ(t, z)

τN
0 + κN

τ p(t, z)
− (κγ − κζ)ṗ(t, z)

τ0 + κτp(t, z)

∣∣∣∣
+

∣∣∣∣(1 + κτ ṗ(t, z))(γ0 − ζ0 + (κγ − κζ)p(t, z))

(τ0 + κτp(t, z))2

−
(1 + κN

τ ṗ(t, z))(γN
0 − ζN

0 + (κN
γ − κN

ζ )p(t, z))

(τN
0 + κN

τ p(t, z))2

∣∣∣∣
}

.

From equations (3.52), (3.51), (3.53), and (3.50) and the product and quotient rules

of limits, we may conclude that A11)iii) holds.

To show that A11)iv) holds, we argue that

|G(qN) − G(q)|L∞ ≤ sup
(t,s)∈[0,T ]×[0,T ]

sup
z∈[z1,1]

∣∣∣∣ exp

(∫ t

s

−dξ

τN
0 + κN

τ p(ξ, z)

)
×

(
(1 + κN

τ ṗ(s, z))(γN
0 − ζN

0 + (κN
γ − κN

ζ )p(s, z))

(τN
0 + κN

τ p(t, z))2(τN
0 + κN

τ p(s, z))2

)
− exp

(∫ t

s

−dξ

τ0 + κτp(ξ, z)

)
×

(
(1 + κτ ṗ(s, z))(γ0 − ζ0 + (κγ − κζ)p(s, z))

(τ0 + κτp(t, z))2(τ0 + κτp(s, z))2

)∣∣∣∣.
We note that equation (3.51) coupled with the quotient rule for limits allows us to

assert that

exp

(∫ t

s

−dξ

τN
0 + κN

τ p(ξ, z)

)
→ exp

(∫ t

s

−dξ

τ0 + κτp(ξ, z)

)
(3.54)

as qN → q. Thus, we may use equations (3.53), (3.50), (3.51), and (3.54) with the

quotient and product rules for limits to verify that

|G(qN) − G(q)|L∞ → 0

as qN → q.
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We have thus verified that the theory established in Section 3.3.1 can be applied to

the system corresponding to pressure-dependent Debye polarization described by the

coefficients (3.7).

3.3.3 Estimation of parameters in the system with

pressure-dependent Lorentz polarization

Here we show that the results of Section 3.3.1 hold for a Maxwell system with Lorentz-

based pressure-dependent polarization. As in Section 3.3.2, we do this by verify-

ing that Assumptions A11), B1)-B3) and H1) hold for the system (3.22) with the

parameter-dependent coefficients, kernel and forcing functions, and sesquilinear form

(3.8).

For this system, the set of admissible parameters Q is a subset of R
9; the Lorentz

system includes all of the same parameters as the Debye as well as the parameters α0

and κα. So we consider q ∈ Q ⊂ R
9 where q = (σ, γ0, ζ0, τ0, α0, κγ , κζ , κτ , κα). As with

the Debye coefficients, we choose the admissible set Q as described in Section 3.1 to

insure that the Lorentz coefficients are well-defined.

Since the set of admissible parameters Q is a compact and bounded subset of R
9, B1) is

satisfied. Moreover, the space V N , the projection operator PN , and the sesquilinear

form σ1 are the same as those in Section 3.2.2, we may assume that Assumptions

B2)-B4) and H1) are satisfied. We then have that equations (3.48)- (3.53), as well as

∣∣∣∣αN
0 + κN

α p −
(
α0 − καp

)∣∣∣∣
L∞

→ 0, (3.55)

hold.

Since the coefficient a is the same as that of the Debye-based system, we may use the

result of Section 3.3.2 and claim that A11)i) holds.

We may then use (3.48) directly to claim that
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|b(q) − b(qN)|L∞ =
1

ε0

|σ − σN | → 0

as N → ∞, and A11)ii) holds.

To verify A11)iii) we note that

|h(q) − h(qN)|L∞ =

|(α0 + καp)(γ0 − ζ0 + (κγ − κζ)p) − (αN
0 + κN

α p)(γN
0 − ζN

0 + (κN
γ − κN

ζ )p)|L∞ .

Then we use (3.50) and (3.55) in conjunction with the limit rule for products to claim

that |h(q) − h(qN)|L∞ → 0 as qN → q. Thus A11)iii) holds.

Demonstrating that A11)iv) holds is more complicated. We let

g1(t, s, z; q) = (α0 + καp(t, z))(α0 + καp(s, z))×

(γ0 − ζ0 + (κγ − κζ)p(s, z))

g2(t, s, z; q) =
1

τ0 + κτp(t, z)
(α0 + καp(s, z))(γ0 − ζ0 + (κγ − κζ)p(s, z))

and note that

G(t, s, z; q) = −
( 1

τ0 + κτp(t, z)
Φ21(t, s) + (α0 + καp(t, z))Φ11(t, s)

)

×
(
(α0 + καp(s, z))(γ0 − ζ0 + (κγ − κζ)p(s, z))

)
I(z1,1)

= −
(
g1(t, s, z; q)Φ11(t, s) − g2(t, s, z; q)Φ21(t, s)

)
I(z1,1).

We recall that the Φi1 are components of the state transition matrix for a q-dependent

ordinary differential equation, so they depend on q. However as we mention in Sec-

tion 3.1, this dependence is continuous.
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Then

|G(q) − G(qN)|L∞ =

∣∣∣g1(q)Φ11(q) − g2(q)Φ21(q) − g1(q
N)Φ11(q

N) + g2(q
N)Φ21(q

N)
∣∣∣
L∞

=

∣∣∣g1(q)Φ11(q) − g1(q
N)Φ11(q) + g1(q

N)Φ11(q) − g1(q
N)Φ11(q

N)

+g2(q
N)Φ21(q

N) − g2(q
N)Φ21(q) + g2(q

N)Φ21(q) − g2(q)Φ21(q)
∣∣∣
L∞

≤
∣∣∣g1(q) − g1(q

N)
∣∣∣
L∞

∣∣∣Φ11(q)
∣∣∣
L∞

+
∣∣∣g1(q

N)
∣∣∣
L∞

∣∣∣Φ11(q) − Φ11(q
N)

∣∣∣
L∞

+
∣∣∣g2(q

N)
∣∣∣
L∞

|Φ21(q
N) − Φ21(q)

∣∣∣
L∞

+
∣∣∣g2(q

N) − g2(q)
∣∣∣
L∞

∣∣∣Φ21(q)
∣∣∣
L∞

.

The product and quotient rules for limits and (3.50), (3.51), and (3.55) imply that

|g1(q) − g1(q
N)|L∞ → 0

|g2(q) − g2(q
N)|L∞ → 0

as qN → q. This and the continuity of the Φi1 allow us to conclude that |G(q) −
G(qN)|L∞ → 0 as qN → q and A11)iv) holds.

We now may apply the theory developed in Section 3.3.1 to the system corresponding

to pressure-dependent Lorentz polarization given by (3.8).



Chapter 4

Model simulations

In this chapter, we present numerical methods and solutions for a forward problem

related to the model systems presented previously. We describe the numerical ap-

proximation methods used, consider the parameter dependence of the models, and

give computational results.

4.1 Numerical methods for the model with Debye

polarization

In this section, we discuss the numerical methods used to compute forward simulations

of the electromagnetic model. Here we only consider the pressure-dependent Debye

polarization model. We may then write the model as

a(t, z)Ë + b(t, z)Ė + h(t, z)E + e(t, z)P = c2E ′′ + F (t, z), (4.1)

where

100
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a(t, z) = 1 + (ζ0 + κζp − 1)I(z1,1)

b(t, z) =

(
σ

ε0

+
1

ε0

ε0 (γ0 − ζ0 + (κγ − κζ)p)

(τ0 + κτp)

)
I(z1,1)

h(t, z) =
1

ε0

(
ε0(κγ − κζ)ṗ

(τ0 + κτp)
− ε0 (γ0 − ζ0 + (κγ − κζ)p) (1 + κτ ṗ)

(τ0 + κτp)2

)
I(z1,1)

e(t, z) =
1

ε0

(1 + κτ ṗ)

(τ0 + κτp)2 I(z1,1)

c2 = 1
ε0µ0

F (t, z) = − 1
ε0

J̇s

with

Ṗ = − 1

(τ0 + κτp)
P +

ε0 (γ0 − ζ0 + (κγ − κζ)p)

(τ0 + κτp)
E in [z1, 1]

and the boundary and initial conditions

Ė(t, 0) − cE ′(t, 0) = 0

E(t, 1) = 0

E(0, z) = Ė(0, z) = P (0, z) = 0.

To solve this problem numerically, we use the methodology originally developed for

a similar problem which had a standing (as opposed to traveling) pressure wave

interface. This problem is discussed in detail in [7]. We look for approximations in

V N ⊂ H1
R(0, 1), the standard linear finite element space defined on a partition of the

interval (0, 1) with a set of basis functions {wi}N
i=0. We use a finite difference scheme in

time to approximate the solution at discrete time points 0 = t0 < t1 < . . . < tM = T ;

we let ∆t = ti − ti−1, i = 1, . . . ,M.
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We start with the weak form of equation (4.1)

< aË, φ >V ∗,V + < bĖ, φ > + < hE, φ > + < eP, φ > +cĖ(t, 0)φ(0)

+c2 < E ′, φ′ >=< F, φ >V ∗,V

which holds for all φ ∈ H1
R(0, 1). We define the finite element approximations

En(z) =
N−1∑
i=0

ηn
i wi(z) ≈ E(tn, z)

P n(z) =
N−1∑
i=0

νn
i wi(z) ≈ P (tn, z),

and use the following finite difference notation and quotients

Un,θ ≡ θ(Un+1 + 2Un + Un−1)

δttU
n ≡ 1

∆t2
(Un+1 − 2Un + Un−1)

δtU
n ≡ 1

2∆t
(Un+1 − Un−1).

The finite difference scheme is selected based on ideas in [25]. The author of [25]

discusses Galerkin methods for second order hyperbolic systems. For these problems,

the difference scheme has second order accuracy in time. Moreover, the choice of

θ = 1/4 in Un,θ leads to stability independent of δt and N .

Our discretized weak form is then

< aδttE
n, φi >V ∗,V + < bδtE

n, φi > + < hEn, 1
4 , φi >

+ < eP n, φi > +cδtE
n(0)φi(0) + c2 < (En, 1

4 )′, φ′
i >

=< F (tn, ·), φi >V ∗,V .

(4.2)
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We note that our notation should indicate the number of spatial elements used, i.e.,

we should write En,N , P n,N . However since we fix N, we supress this notation for

simplification.

This formulation yields a linear system of equations that can be solved for En+1

in terms of En, En−1, and P n. Generating the components of the system involves

computing the values of various inner products at each time step; this is done using

Gaussian integration. If we assume that P n is given exactly and the solution has

enough smoothness, the scheme corresponding to the discretization (4.2) to compute

En+1 has accuracy [7]

|En − E(tn, ·)|L2 ≤ C

(
1

M2
+ ∆t2

)
.

We want a stable scheme with the same accuracy to compute P n at each time step.

Here we use the A-stable Adams Moulton method to write

P n =
1

1 + ∆t
2(τ0+κτ pn)

{
P n−1 +

∆t

2

(
ε0 (γ0 − ζ0 + (κγ − κζ)p

n)

τ0 + κτpn
En

+
ε0 (γ0 − ζ0 + (κγ − κζ)p

n−1)

τ0 + κτpn−1
En−1 − 1

τ0 + κτpn−1
P n−1

)}
.

(4.3)

where pn = p(tn, ·) is the acoustic pressure at time tn.

The initial condtions E(0, z) = P (0, z) = 0 give the approximations E0 = P 0 = 0

at t0 = 0. We then use a Taylor series expansion, the model equations, and initial

conditions to obtain E1 ≈ E(t1, z)

E(t1, z) = E(0, z) + ∆tĖ(0, z) + ∆t2

2
Ë(0, z) + 0(∆t3)

≈ ∆t2

2
Ë(0, z)

≈ ∆t2

2a
F (0, z).

(4.4)
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Using (4.2)-(4.4), we prescribe the following algorithm to approximate E and P .

First, we use the initial conditions to obtain E0, P 0. Then we compute E1 from (4.4).

With E0, E1, and P 0, in hand, we can compute P 1 from (4.3). Finally we use (4.2)

to obtain E2. The last two steps are then generalized and repeated at each time step

to compute En+1 and P n.

4.2 Numerical simulations

We now use the methods described in Section 4.1 to compute numerical solutions to

(4.1). We consider a windowed sine wave pressure input (See Figure 4.1.) Although

the pressure wave is traveling to the left, its speed is extremely slow relative to that

of the electromagnetic wave. Thus, Figure 4.1 can be thought of as the time snaphot

of the pressure wave corresponding to each of the snapshots in Figure 4.2.

Figures 4.2(a)-(k) are time snapshots of the electromagnetic wave pulse traveling

through a layered medium. (The geometry is as described in Chapter 2, Section 2.1).

The solid line at z = 0.25 indicates the interface between the air and the dielectric and

the dashed lines at z = 0.5 and z = 0.54 indicate the area occupied by the pressure

wave. Each snapshot is shown on the same set of axes so that decreases in wave

amplitude can be detected. The pulse is initiated at z = 0 and travels to the right.

Passing through the medium, it interacts with the air/dielectric interface at z = z1 and

an oncoming pressure wave (depicted in Figure 4.1) traveling through the dielectric.

As a result of each of these interactions, some of the electromagnetic wave energy is

reflected, and wave reflections travel back toward z = 0. It is these reflections which

return to z = 0 that would be observed and used as data in a parameter estimation

problem. Figure 4.2(c) illustrates both the air/dielectric reflection which is returning

to z = 0 and the original wave pulse traveling to the right; in Figure 4.2(d) one can see

the air/dielectric reflection being absorbed at the boundary. Likewise, Figure 4.2(g)
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clearly shows the reflection from the pressure wave and the original pulse propagating

in opposite directions; Figure 4.2(j) depicts the absorption of the electromagnetic

reflection from the pressure wave at the boundary. It is interesting to note that

when this reflection traveling toward z = 0 crosses the air/dielectric interface, some

of its energy is again reflected; this phenomena can be seen by looking closely at

Figures 4.2(j) and (k).

Unless otherwise stated, the parameter values used in the previous simulations are

given in Table 4.1.
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ε0 = 8.85 × 10−12 Coulombs2/Newton meters2

µ0 = 4.0π × 10−7 Newton seconds 2/Coulombs2

ε∞ = 5.5

εs = 78.2

τ = τ0 = 3.162277660168379 × 10−8 seconds

ζ0 = 5.5

γ0 = 78.2

σ = 1.0 × 10−5 mhos/meter

κτ = 0.05 τ0 meters2 seconds/Newtons

κζ = 0.3 ζ0 meters2/Newtons

κγ = 0.6 γ0 meters2/Newtons

ωjs = 1.0 × 1010π radians/second

J̇s = µ0 ωjs cos(ωjst) Coulombs/meters2 seconds2

ωp = 4.0 × 104π radians/second

cp = 1.5 × 10−3 meters/second

∆z = 1
900

meters

∆t = 4.0×10−10

1600
seconds

z1 = 0.25 meters

Table 4.1: Parameter values for computations
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Figure 4.1: Pressure vs depth
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Figure 4.2(a): E field vs depth – t=5.0025e-10
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Figure 4.2(b): E field vs depth – t=1.00025e-9
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Figure 4.2(c): E field vs depth – t=1.50025e-9
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Figure 4.2(d): E field vs depth – t=2.00025e-9
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Figure 4.2(e): E field vs depth – t=3.00025e-9
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Figure 4.2(f): E field vs depth – t=3.50025e-9
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Figure 4.2(g): E field vs depth – t=4.00025e-9
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Figure 4.2(h): E field vs depth – t=5.00025e-9
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Figure 4.2(i): E field vs depth – t=5.50025e-9
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Figure 4.2(j): E field vs depth – t=6.00025e-9
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Figure 4.2(k):E field vs depth – t=6.50025e-9

As a test of our numerical methods, we examine the convergence of our simulations

as we increase the number of basis elements. Figures 4.3(a)-(e) show time snapshots

of the E field versus depth for N = 900, 1800, 3600 elements, denoted by “− −”,

“− · −”, and “–” respectively . To focus on the region where numerical error is most
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significant, we restrict the axis of each plot to a small spatial interval. This interval

includes the leading edge of the E&M pulse, since we expect that our methods would

have difficulty capturing this lack of smoothness.
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Figure 4.3(a): E field vs depth – t=5.0025e-10
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Figure 4.3(b): E field vs depth – t=1.00025e-9
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Figure 4.3(c): E field vs depth – t=1.50025e-9
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Figure 4.3(d): E field vs depth – t=2.00025e-9
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Figure: 4.3(e) E field vs depth – t=2.50025e-9

In addition to the qualitative convergence shown in Figure 4.3, it is useful to measure

convergence quantitatively. To this end, we consider the `∞ and `2
N norms for each

of the snapshots above. We define the norms as follows

|f(t) − g(t)|`∞ = supk|f(t, zk) − g(t, zk)|

|f(t) − g(t)|`2N =
1

N

(∑
k

(f(t, zk) − g(t, zk))
2

) 1
2

.

We consider the difference in norm values as we increase N from 900 to 1800 and from

1800 to 3600. Two incremental increases in N is not enough to make any conclusive

statements about rate of convergence, but the results in Table 4.2 indicate that as

the number of basis elements double, the `∞ norm values decrease by a third and the

`2
N decrease by a half.
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Snapshot `∞ Norm Value `2
N Norm Value

t=5.0025e-10 |E900(t) − E1800(t)| 13.07166 |E900(t) − E1800(t)| 3.48134e-2

|E1800(t) − E3600(t)| 8.48205 |E1800(t) − E3600(t)| 1.17122e-2

t=1.00025e-9 |E900(t) − E1800(t)| 15.71388 |E900(t) − E1800(t)| 5.07030e-2

|E1800(t) − E3600(t)| 10.58776 |E1800(t) − E3600(t)| 1.60562e-2

t=1.50025e-9 |E900(t) − E1800(t)| 15.64256 |E900(t) − E1800(t)| 5.90167e-2

|E1800(t) − E3600(t)| 9.01038 |E1800(t) − E3600(t)| 1.80095e-2

t=2.00025e-9 |E900(t) − E1800(t)| 18.95285 |E900(t) − E1800(t)| 7.20012e-2

|E1800(t) − E3600(t)| 10.70232 |E1800(t) − E3600(t)| 2.06295e-2

t=2.50025e-9 |E900(t) − E1800(t)| 19.42156 |E900(t) − E1800(t)| 8.11445e-2

|E1800(t) − E3600(t)| 11.37242 |E1800(t) − E3600(t)| 2.17530e-2

Table 4.2 Convergence in norm

4.3 Sensitivity to parameter variation

While we have looked at the behavior of the system as time progresses for a fixed set

of parameters, it is also important to examine the system dynamics as the parameters

vary. There are many parameters in the model, most of which are material dependent.

However the parameters with which we are most concerned are the coefficients of

pressure in the polarization model, κγ, κζ , and κτ .

Figures 4.4-4.7 illustrate the effect of letting each of these coefficients be zero. This is

equivalent to assuming that the polarization parameters τ, εs, and ε∞ are not pressure-

dependent. The first three figures show the magnitude of the difference between the

boundary data corresponding to the nonzero parameter values κγ = 0.6γ0, κζ = 0.3ζ0,

and κτ = 0.05τ0 and the data corresponding to one identically zero parameter.
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Figure 4.4: Difference in magnitude of E field measured at boundary

for κγ = 0.6γ0 and κγ = 0.0
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Figure 4.5: Difference in magnitude of E field measured at boundary

for κζ = 0.3ζ0 and κζ = 0.0
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Figure 4.6: Difference in magnitude of E field measured at boundary

for κτ = 0.05τ0 and κτ = 0.0

From Figures 4.4 and 4.6 we see that the difference between the data corresponding to

κγ = 0.6γ0 and κγ = 0 and the difference between data corresponding to κτ = 0.05τ0

and κτ = 0 are almost neglible. This suggests that the electromagnetic/acoustic

interaction does not depend heavily on the pressure-dependence of γ and τ . The

amplitude of the peaks in Figure 4.5 however is much larger than those in Figures 4.4

and 4.6. This suggests that ζ may have a more significant impact on the interaction.

In order to better observe this impact, we directly compare the boundary data cor-

responding to κζ = 0.3ζ0, denoted with a solid line, with the boundary data cor-

responding to κζ = 0.0, denoted with a dashed line. (Due to the small amplitude

peaks in Figures 4.4 and 4.6, comparisons of this type for κγ and κτ are superflu-

ous.) The comparison is shown in Figure 4.7. The axes are restricted to show only

the interval where the data sets are different. In this plot, we clearly see that the

electromagnetic reflections from the pressure wave interaction are nearly nonexistent

when κζ = 0.0. Again this implies that ζ, and hence ε∞, has the most effect on the
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electromagnetic/acoustic interaction.
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Figure 4.7: E field measured at boundary for κζ = 0.3ζ0 and κζ = 0.0

We have observed the effects of completely removing pressure-dependence from each

parameter. Now we want to examine gradiations within the supposition of pressure-

dependence. To this end, we assume that κγ, κζ , and κτ are all non-zero and vary

their magnitudes. Figures 4.8-11 show that there is little difference as we raise or

lower the magnitudes of κγ and κτ . On the other hand, a noticeable increase in

the amplitude of the pressure wave reflection with an increase in κζ can be seen in

Figure 4.12; κζ = 0.4ζ0 is denoted by “− · −,” κζ = 0.3ζ0 is denoted by “− −,” and

κζ = 0.2ζ0 is denoted by “–.” This again supports the hypothesis that ζ(p) = ε∞(p)

is the most influential in the wave interaction.
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Figure 4.8: Difference in magnitude of E field measured at boundary

for κγ = 0.6γ0 and κγ = 0.5γ0
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Figure 4.9: Difference in magnitude of E field measured at boundary

for κγ = 0.7γ0 and κγ = 0.6γ0
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Figure 4.10: Difference in magnitude of E field measured at boundary

for κτ = 0.1τ0 and κτ = 0.05τ0
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Figure 4.11: Difference in magnitude of E field measured at boundary

for κτ = 0.15τ0 and κτ = 0.1τ0
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Figure 4.12: E field measured at boundary

for κζ = 0.4ζ0, κζ = 0.3ζ0, and κζ = 0.2ζ0

Finally, we are interested in studying the effect of the acoustic pressure wave speed

on the electromagnetic/acoustic interaction. We recall that the acoustic wave speed

is very small relative to the speed of the E&M pulse. In the time snapshots shown in

Figure 4.2, the spatial movement of the pressure wave is indiscernible. We wonder if

this slowly varying acoustic pressure wave is essentially a standing wave. To evaluate

the effect of a traveling wave, we look at the boundary data corresponding to different

acoustic wave speeds. Figure 4.13 shows the boundary data corresponding to wave

speeds cp = 2.5 denoted by “− · −,” cp = 2.0 denoted by “− −,” and cp = 1.5

denoted by “−.” We restrict the axes to show just the pressure wave reflection data.

We see that as we increase wave speed we increase the amplitude of the reflection.

This suggests that the spatial dependence of the pressure wave is not a superfluous

characteristic of the model.
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Figure 4.13: E field measured at boundary for different acoustic wave speeds

We can obtain a similar increase in amplitude of reflections by fixing the acoustic wave

speed and increasing the acoustic frequency. This is illustrated in Figure 4.14 where

cp = 1.5 is fixed and “−·−” denotes an acoustic frequency of 6.5πe04, “− −”denotes

an acoustic frequency of 5.5πe04, and “−.” denotes a frequency of 4πe04. Again, the

axes are restricted to show just the pressure wave reflection data. We note how alike

Figures 4.13 and Figures 4.14 are.
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Figure 4.14: E field measured at boundary for different acoustic frequencies

These increases in amplitude are due to constructive interference of the electromag-

netic wave reflections. The Bragg condition for optimal interference effects for light

is given by (page 817, [39]; page 311, [22])

sin θ =
Λ

2λ
,

where θ is the angle of incidence of the electromagnetic waves, Λ is the wavelength of

the incident light, and λ is the wavelength of the acoustic wave. Since the wavelength

is the wave velocity divided by the frequency of the wave, both of these parameters,

speed and frequency, may have an effect on the level of constructive interference and

hence the amplitude of the electromagnetic wave reflections.

The similarities between Figure 4.13, where we increase acoustic wave speed, and

Figure 4.14, where we increase acoustic frequency, can also be explained through the

Doppler effect. To understand this effect, we think of the dielectric as a stationary

medium through which the acoustic wave travels at a speed cp and the electromagnetic
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wave as an observer moving at speed c. From its frame of reference, the electromag-

netic wave “sees” the acoustic wave speed as cp − c and hence its frequency as cp−c

λ

where λ is the wavelength of the acoustic wave (page 699, [39]). If we change the

acoustic wave speed to c̃p, we change the frequency “seen” by the electromagnetic

wave to c̃p−c

λ
since the wavelength remains the same. Thus, a modification of the

acouctic wave speed results in an change of the acoustic wave frequency as “seen” by

the electromagnetic wave.



Chapter 5

Parameter estimation

As we mention throughout, the crux of any electromagnetic interrogation problem

is the identification of material parameters. The identification process generally in-

volves comparing experimental data to observations from a mathematical model to

determine which parameter values minimize the difference between the two.

In Chapter 3, we demonstrated that a (sub)sequence of minimizers {q̄N} of the cost

functionals (3.44) converges to a minimizer q̄ of (3.41). In this chapter, we present

computational results for the problem of finding q̄N for a fixed N . (We attempt to

choose N large so that q̄N is close to q̄.)

This problem is equivalent to our main objective, estimating the polarization and

conductivity parameters of a dielectric by comparing numerical solutions of the model

with experimental data. We recall from Chapter 2 that our polarization model has

six material-dependent parameters, τ0, ζ0, γ0, κτ , κζ , and κγ in the equation

(τ0 + κτp) Ṗ + P = ε0 (γ0 − ζ0 + (κγ − κζ)p) E,

and the conductivity coefficient σ.

We want to test the feasibilty of estimating them from experimental data. At this

time, we do not yet have data from experiments (an experimental device to obtain

126
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such data is currently being constructed); instead we create simulated data from our

computations. The simulated data consists of the boundary data from a numerical

approximation to the solution of the system with added noise. (See Chapter 4 for

sample numerical solutions to the forward problem.) We compute this approximate

solution with fixed parameters values. These values are then thought of as our “un-

known” true material parameters. The goal is to estimate these values. We appraise

our ability to solve the problem by comparing the estimates with the true fixed values.

If we cannot accurately approximate the parameter values in this context, we cannot

expect to be able to estimate them in an experimental setting.

We let q generically denote the set of parameters we wish to estimate in the examples

presented below; these may include the mean values in the polarization model, τ0, γ0,

and ζ0, the coefficients of pressure in the polarization model, κτ , κγ, and κζ , and/or

the conductivity coefficient σ. We let q∗ denote the true values of the corrsponding

“unknown” parameters. We leave the values of all other parameters fixed.

There are two sets of electromagnetic reflections that reach the boundary. The first,

after the initial signal, are the reflections from the air/dielectric interface and the sec-

ond are from the virtual interface produced by the acoustic pressure wave. (Figure 5.1

depicts each set of reflections separately.) In some scenarios, using data that contains

only one set of reflections may be advantageous. For example, one may use the data

from the initial signal and the reflections from the air/dielectric interface (i.e., the

first section of data in Figure 5.1) to refine the initial parameter estimates and then

use these refinements with the data from the acoustic interface reflections to obtain

final estimates. In another approach, one may use just the data from the acoustic

interface reflections to estimate the parameters. In any case, the cost functional for

the examples given here is of the form
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J(q) =
∑
i∈I

(Ei
data − E(ti, 0; q))2.

where I corresponds to an appropriately chosen data set. (Since here we consider

exclusively the finite dimensional system for a fixed N , we drop the N for ease of

notation.)
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Figure 5.1: The two sets of reflections that reach the boundary
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We used a Nelder Mead optimization routine [33] to find the parameter values that

minimize the cost function. This optimization method is a gradient-free, simplex

search method. The use of a gradient-based method to solve this problem is im-

practical due to computational time. The particular routine used requires an initial

simplex of estimates and a termination tolerance for the difference between subse-

quent function evaluations. We choose the initial estimates to have varying levels of

error in relation to the true parameter values. For these computations, we set the

termination tolerance at 1e-09.

As already noted, we created simulated data to test our algorithms. The data set

without noise is simply observations at the boundary taken from a forward simulation

of the model using the parameter set q∗. The data sets with error were created by

adding an appropriate amount of normally distributed relative random noise to the

original data set. The random noise was generated by the MATLAB command randn

which creates normally distributed noise with mean 0 and variance 1 and was scaled

and shifted appropriately. Because the noise is relative, the magnitude of noise is

greater in the intervals of data that contain the initial interrogating impulse and the

reflections.

We next present sample results for specific parameter estimation problems. We first

consider the problem of estimating q∗ = [γ∗
0 , ζ

∗
0 , λ

∗ = 1√
µ0ε0τ∗

0
]

= [78.2, 5.5, 0.10545728042059] from data with varying levels of noise. Here τ ∗
0 is so

small that it is advantageous to estimate λ∗, a scaled function of τ ∗
0 ; an estimated

value of τ ∗
0 may be computed from an estimation of λ∗. We use the data containing the

initial signal and the reflections from the air/dielectric interface to refine the initial

parameter estimates q0 and the data containing the reflections from the acoustic

interface to obtain final estimates. We present the results in the following table.
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Initial estimate q0 Final estimate for data without noise q̄

q0 = 1.0q∗ [78.2, 5.5, 0.10545728042059]

q0 = 0.95q∗ [78.190631, 5.499999, 0.105462]

q0 = 1.05q∗ [78.197841, 5.500000, 0.105458]

q0 = 0.9q∗ [77.128609, 5.499937, 0.107040]

q0 = 1.1q∗ [70.763992, 5.499504, 0.117540]

Final estimate for data with 1% noise

q0 = 0.95q∗ [78.210472, 5.499997, 0.105444]

q0 = 1.05q∗ [77.260485, 5.499940, 0.106852]

q0 = 0.9q∗ [78.198944, 5.499998, 0.105461]

q0 = 1.1q∗ [78.482467, 5.500010, 0.105052]

Final estimate for data with 5% noise

q0 = 0.95q∗ [74.876211, 5.499764, 0.110559]

q0 = 1.05q∗ [77.975797, 5.499939, 0.105722]

q0 = 0.9q∗ [78.337467, 5.500010, 0.105186]

q0 = 1.1q∗ [78.405972, 5.499987, 0.105175]

Table 5.1: Parameter estimation results for

q∗ = [γ∗
0 , ζ

∗
0 , λ

∗ = 1√
µ0ε0τ∗

0
] = [78.2, 5.5, 0.10545728042059]

These results illustrate that it is possible to recover accurate approximations of γ∗
0 , ζ

∗
0 ,

and λ∗ in the presence of noise and with error up to 10% in the initial estimates. A

few of the results are unexpected, for instance the ability to approximate the values

better in the presence of 5% noise with an initial guess with -10% error than with

an initial guess with -5% error. We suspect these anomalies are due to the simplex

search nature of the optimization routine.

The results in the table clearly indicate that we can recover q∗ without much error.
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However it is often illustrative to compare the solutions calculated with the estimates

with the solutions calculated with q∗. To do this, we plot the absolute value of the

error for the solutions computed at the boundary, i.e.,

|E(ti, 0; q̄) − E(ti, 0; q∗)|,

where q̄ is the final estimate (given in the table). As an example, Figure 5.2 depicts

this error for the estimation problem with 5% noise and an initial guess with -10%

error. We see that overall the magnitude of error is small and that, as expected, the

most error occurs in approximating the material and acoustic interface reflections.
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Figure 5.2: |E(ti, 0; q̄) − E(ti, 0; q∗)| vs ti –

Absolute error for the parameter estimation problem

with 5% noise and an initial guess with -10% error

We next consider the estimation of q∗ = [κ∗
γ, κ

∗
ζ , κ

∗
τ ] = [46.92, 1.65, 1.581139e − 09]

from the previous data sets. Since these parameters are the coefficients of pressure,

they are irrelevant and undeterminable until the electromagnetic/acoustic interaction
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occurs. Thus we include only the second section of data in the cost functional. We

present the results below.

Initial estimate q0 Final estimate for data without noise q̄

q0 = 0.99q∗ [46.450800, 1.633500, 3.16174e-09]

q0 = 1.01q∗ [46.92, 1.65, 1.58114e-09]

q0 = 0.95q∗ [ 44.574000, 1.567500, 5.52700e-09]

q0 = 1.05q∗ [49.266000, 1.732500, 0]

q0 = 0.9q∗ [42.228000, 1.485000, 0]

q0 = 1.1q∗ [51.61200, 1.815000, 0]

Final estimate for data with 1% noise

q0 = 0.99q∗ [46.450800, 1.633500, 3.17078e-09]

q0 = 1.01q∗ [47.389200, 1.666500, -7.2435e-10]

q0 = 0.95q∗ [44.574000, 1.567500, 5.53493e-09]

q0 = 1.05q∗ [49.266000, 1.732500, -1.064074e-08]

q0 = 0.9q∗ [42.228000, 1.485000, 6.01095e-09]

q0 = 1.1q∗ [51.612000, 1.814500, -1.712928e-08]

Final estimate for data with 5% noise

q0 = 0.99q∗ [46.450800, 1.633500, 3.22126e-09]

q0 = 1.01q∗ [47.389200, 1.666500, -6.6658e-10]

q0 = 0.95q∗ [44.574000, 1.567500, 5.56261e-09]

q0 = 1.05q∗ [49.266000, 1.732500, -1.061871e-08]

q0 = 0.9q∗ [42.228000, 1.485000, 6.02759e-09]

q0 = 1.1q∗ [51.612000, 1.815000, -1.712024e-08]

Table 5.2: Parameter estimation results for

q∗ = [κ∗
γ, κ

∗
ζ , κ

∗
τ ] = [46.92, 1.65, 1.581139e − 09]

We are able to obtain reasonable estimates for the parameters, especially κ∗
γ and κ∗

ζ .
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We have difficulty estimating the value of κ∗
τ , most likely because the value is small.

In general, the estimation error increases with the error in the initial guess. How-

ever, increasing the noise level in the data does not significantly effect the estimation

accuracy.

We note that we obtain better estimates for the mean values (γ∗
0 , ζ

∗
0 , and τ ∗

0 ) than

for the pressure coefficients (κ∗
γ, κ

∗
ζ , and κ∗

τ ). This is understandable, as the mean

values are more influential in the system dynamics. They are also more important in

identifying and characterizing the material.

In an electromagnetic interrogation parameter estimation problem, an estimate is

sufficient if it can be used to classify the material. We consider the results for esti-

mating q∗ = [κ∗
γ, κ

∗
ζ , κ

∗
τ ] = [46.92, 1.65, 1.581139e − 09] using data with 5% relative

normal noise and an initial guess with -10% error. After solving the parameter es-

timation problem, we obtain the result q̄ = [42.228000, 1.485000, 6.02759e − 09]. If

parameter values within the hypothetical range, 40 < κγ < 50, 1.4 < κζ < 1.8, and

1e − 09 < κτ < 9e − 09 are characteristic of the material under interrogation, we are

successful in our attempt to solve the estimation problem. On the other hand, if the

characteristic material parameters fall within the (hypothetical) range 45 < κγ < 47,

1.6 < κζ < 1.7, and 1e − 09 < κτ < 2e − 09, we are unable to characterize the mate-

rial with our estimates and our attempt is unsuccessful. Ranges of these parameter

values for different materials have not been experimentally determined, so we have

no concrete measure as yet to assess our ability to solve the problem.

We now turn our attention to estimating the conductivity coefficient σ. We recall

that the material conductivity is described by Ohm’s law, Jc = σE.

Knowing the value of the conductivity coefficient can be very useful in characterizing

a material. Therefore we also want to assess our ability to estimate σ with the process

described above. Since our model does not specify pressure-dependent conductivity,

we do not expect the acoustic interaction to modulate the value of σ. Thus we use
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all of the data simultaneously in the estimation process. The results are presented in

Table 5.3.

Initial iterate Final estimate for data without noise

0.99 σ∗ 0.990000e-05

1.01 σ∗ 1.010000e-05

0.95 σ∗ 0.950000e-05

1.05 σ∗ 1.050000e-05

0.9σ∗ 0.900000e-05

1.1 σ∗ 1.100000e-04

Final estimate for data with 1% noise

0.99 σ∗ 0.990000e-05

1.01 σ∗ 1.010000e-05

0.95 σ∗ 1.180000e-05

1.05 σ∗ 1.050000e-05

0.9 σ∗ 1.280000e-05

1.1 σ∗ 1.100000e-05

Final estimate for data with 5% noise

0.99 σ∗ 2.140000e-05

1.01 σ∗ 2.120000e-05

0.95σ∗ 2.140000e-05

1.05 σ∗ 2.160000e-05

0.9 σ∗ 2.160000e-05

1.1 σ∗ 2.130000e-05

Table 5.3: Parameter estimation results for σ∗ = 1.0e − 05

Although our final estimates for σ∗ are reasonable, we see that often, especially when

the data is without noise, our initial estimate, even with inherent error, is deemed
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sufficient by the optimization routine. This indicates that small changes in the value

of σ do not significantly affect the system behavior. This makes finding the true value

of the conduction coefficient more difficult because many values of σ nearly minimize

the cost functional.

The results in this chapter indicate that we can successfully estimate material pa-

rameters from noisy simulated data. We obtain the most accurate estimates for the

mean values in the pressure-dependent polarization model. Because in practice these

values (the mean relaxation time and permittivities) are known for various materials

and can be compared with the estimated values for identification purposes, this is a

satisfying result.



Chapter 6

Hypothesis testing

The foundation of our electromagnetic interrogation technique rests on the idea that

the system polarization is pressure-dependent and the parameters characterizing this

dependence can be identified. We base our polarization model on the systemic physics

and dynamics and believe the pressure is significant. We wish to investigate the

significance of the pressure-dependent terms from a statistical perspective.

To do this, we follow [9] and compare the cost functional values obtained by mini-

mizing over two different sets of admissible parameters. One set is the admissible set

described in Chapter 5; the other is restricted to omit the pressure-dependence from

the model. We minimize the cost functional over both parameter sets using data

from a pressure-dependent model and using data from a pressure-independent model

to test the significance of the pressure-dependence.

Specifically, if we consider the problem of estimating the parameters in the polariza-

tion relaxation function τ(p) = τ0 + κτp, we want to study the significance of the κτp

term. We let Q be the set of admissible values of (τ0, κτ ) (see Chapter 5) and Q0

be the set of admissible values of (τ0, 0). We note that the values in Q0 have a fixed

value κτ = 0 and thus the parameter estimation problem has less freedom. We solve

the parameter estimation problem over Q and Q0 and compare the resulting values

136
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of the cost functional. We use pressure-dependent and pressure-independent data to

test the significance of the pressure terms in each. (In the case where the model is

fitted to pressure-independent data, the coefficients of pressure not being estimated,

κγ and κζ , are set to zero.) We consider the problems of estimating the parameters

in the permittivity functions γ(p) = γ0 + κγp and ζ(p) = ζ0 + κζp in an analogous

manner.

We compare the cost function values via the test statistic

UN
n = n

JN
n (q̂N

n ) − JN
n (q̄N

n )

JN
n (q̄N

n )
(6.1)

where q̂N
n is the minimizer of JN

n over Q0 and q̄N
n is the minimizer of JN

n over Q.

Here n is the number of observations in the data and N is the number of spatial

basis elements in the numerical approximation. The theory detailed in [9] states that

under certain assumptions we have consistency of estimators

q̄N
n → q∗

as N and n tend to infinity, where q∗ is the parameter value used to generate the

data. Moreover the theory establishes the convergence

UN
n → χ2(1)

for q∗ ∈ Q0 where χ2(1) is a chi-squared distributed random variable with one degree

of freedom. The first result assures us that as the number of observations increases

and the approximate solutions approach the true solution our parameter estimate

approaches the true value. As theoretically important as this result is, the second is

more useful. It says that as the number of observations and level of approximation

increase, the behavior of our test statistic UN
n approaches that of a χ2(1) distributed

random variable.
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We employ this result in the following way. If q∗ /∈ Q0, we expect JN
n (q̂N

n ) to be

larger than JN
n (q̄N

n ), with a greater difference giving more weight to the assumption

q∗ /∈ Q0. Thus, in order to reject the hypothesis q∗ ∈ Q0 we need to be confident

that UN
n is sufficiently large. Since the limiting value of UN

n is a random variable

with a χ2(1) distribution, we use the χ2(1) distribution to define what it means for

UN
n to be “large”. For example, there is a probability of 0.9 that a randomly χ2(1)

distributed variable X is less than 2.70554, so we may choose to say that UN
n is “large”

if UN
n > 2.70554. In this case, we would say that we reject the the hypothesis q∗ ∈ Q0

with ninety percent certainty.

The following results were obtained using the test statistic (6.1). In these examples,

the number of observations is n = 26002 and the number of basis elements is N = 900.

We use the two-step process mentioned in Chapter 5 in the minimization process; thus

the values of JN
n shown here are weighted sums of the cost functional values from each

minimization. The simulated data has 1% normally distributed relative noise added

to it, and we start our minimization processes with ±5% error in the initial guess.

The first example involves testing the hypothesis H0 : κτ = 0 for simulated data from

the pressure-dependent model. As in our hypothetical example, we want to compare

the test statistic UN
n with the χ2(1) distribution. The rejection criteria with 99.5%

certainty for the χ2(1) distribution is 7.87944. As we see in Table 6.1 both of the

test statistic values for this first example are greater than the rejection criteria. Thus

we reject the hypothesis. This indicates that one should use a pressure-dependent

relaxation term to successfully model pressure-dependent data.

The natural example to consider next is testing the hypothesis H0 : κτ = 0 for sim-

ulated data from the model without pressure-dependence. However due to limitations

in our optimization routine we are unable to find minimizers (τ0, κτ ) when the data

is pressure-independent (see Table 6.2). We suspect that this is due to the fact that

κ∗
τ is nearly zero.
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Degrees of Initial iterate Intermediate costs Final total cost Test statistic

freedom

1 0.95τ ∗
0 3.940324e-02 1.015872 2.789816e+02

1.533029

2 0.95τ ∗
0 3.940324e-02 1.005088

0.95κ∗
τ 1.516533

1 1.05τ ∗
0 3.940324e-02 1.015872 2.650209e+02

1.533029

2 1.05τ ∗
0 3.940324e-02 1.005622

1.05κ∗
τ 1.517351

Table 6.1: Results for testing the hypothesis H0 : κτ = 0 for simulated

data from the pressure-dependent model

Degrees of Initial iterate Intermediate costs

freedom

1 0.95τ ∗
0 3.940324e-02

1.538113

2 0.95τ ∗
0 3.153384e-08

0.05κ∗
τ minimization failure

1 1.05τ ∗
0 3.940324e-02

1.538113

2 1.05τ ∗
0 3.940324e-02

0.05κ∗
τ minimization failure

Table 6.2: Results for testing the hypothesis H0 : κτ = 0 for simulated

data from the model without pressure-dependence
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We now turn our attention to the function describing permittivity at infinite frequen-

cies ε∞ = ζ(p) = ζ0 + κζp and test the hypothesis H0 : κζ = 0 for simulated data

from the pressure-dependent model. Since we are again comparing our test statistics

with the χ2(1) distribution, we use the same rejection criteria. The test statistic val-

ues given in Table 6.3 are greater than the rejection criteria, so we may again reject

the hypothesis. This is further evidence that pressure-dependence is necessary to fit

pressure-dependent data.

For this permittivity function, we are successful in our attempts to test the hypothesis

H0 : κζ = 0 for simulated data from the model without pressure-dependence. (The

difference here is attributed to the fact that κ∗
ζ >> κ∗

τ .) The test statistics for

this problem, given in Table 6.4, are greater than the rejection criteria, so we must

reject the hypothesis. We know that κ∗
ζ = 0 for pressure-independent data, so this

is contrary to our expectation. We suspect that this contradiction to our expected

results is due to the noise in our data.

Degrees of Initial iterate Intermediate costs Final total cost Test statistic

freedom

1 0.95 ζ∗
0 3.940135e-02 1.031888 3.450000e02

1.557529

2 0.95ζ∗
0 3.940135e-02 1.018376

0.95κ∗
ζ 1.536861

1 1.05ζ∗
0 3.940135e-02 1.031889 3.450000e02

1.557529

2 1.05ζ∗
0 3.940135e-02 1.018376

1.05κ∗
ζ 1.536861

Table 6.3: Results for testing the hypothesis H0 : κζ = 0 for simulated

data from the pressure-dependent model
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Degrees of Initial iterate Intermediate costs Final total cost Test statistic

freedom

1 0.95 ζ∗
0 3.940135e-02 1.019195 2.470169e02

1.538114

2 0.95 ζ∗
0 3.940135e-02 1.009604

0.05 κ∗
ζ 1.523442

1 1.05 ζ∗
0 3.940135e-02 1.019195 2.470169e02

1.538114

2 1.05 ζ∗
0 3.940135e-02 1.009604

0.05 κ∗
ζ 1.523442

Table 6.4: Results for testing the hypothesis H0 : κζ = 0 for simulated

data from the model without pressure-dependence

Lastly we consider the significance of the pressure-dependent term in the static per-

mittivity εs = γ(p) = γ0 + κγp. We begin by testing the hypothesis H0 : κγ = 0 for

simulated data from the pressure-dependent model. Comparing the test statistics in

Table 6.5 with the rejection criteria used previously, we reject this hypothesis. This

indicates that the pressure-dependence of the static permittivity is significant.

We now test the final hypothesis H0 : κγ = 0 for simulated data from the model

without pressure-dependence. The resulting test statistics given in Table 6.6 exceed

the rejection criteria, so we reject the hypothesis H0. This again contradicts our

expectation but may be an unavoidable artifact of the noise in our data.
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Degrees of Initial iterate Intermediate costs Final total cost Test statistic

freedom

1 0.95γ∗
0 3.940323e-02 1.006721 2.923008e02

1.5190312 0.995530

2 0.95γ∗
0 3.940323e-02

0.95κ∗
γ 1.501913

1 1.05γ∗
0 3.940323e-02 1.006721 2.923008e02

1.519031

2 1.05γ∗
0 3.940323e-02 0.995530

1.05κ∗
γ 1.501913

Table 6.5: Results for testing the hypothesis H0 : κγ = 0 for simulated

data from the pressure-dependent model

Degrees of Initial iterate Intermediate costs Final total cost Test statistic

freedom

1 0.95γ∗
0 3.940323e-02 1.019196 5.189145e02

1.538113

2 0.95γ∗
0 3.940323e-02 0.999254

0.95κ∗
γ 1.507610

1 1.05γ∗
0 3.940323e-02 1.019196 5.189145e02

1.538113

2 1.05γ∗
0 3.940323e-02 0.9992542

1.05κ∗
γ 1.507610

Table 6.6: Results for testing the hypothesis H0 : κγ = 0 for simulated

data from the model without pressure-dependence

The previous results suggest that the pressure-dependent terms are in fact significant
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when developing a model to describe data with inherent pressure-dependent polariza-

tion. This provides additional justification for our use of pressure-dependent terms

in the polarization model. If there is pressure-dependence in the system polariza-

tion, a model that omits pressure-dependent terms will not adequately represent the

dynamics.

The results also indicate that when the pressure-dependence is not present in the

data, hypothesis testing does not necessarily validate the assumption that the pressure

coefficients are zero. We believe this is due to the noise in the data; although the

pressure-induced system dynamics are significant, they are small and may not be

easily detected in the presence of noise.



Chapter 7

The acoustic system

7.1 Introduction and problem motivation

In all of our work until this point, we let the acoustic pressure be a given function, de-

pendent on space and time but independent of electric field and polarization. In other

words, we tacitly assume that the effect of the electromagnetic fields and polarization

on the pressure wave is negligible. This assumption is reasonable (page 810, [39]),

but perhaps not completely physical. Thus in future work we may want to model the

behavior of the pressure wave and its modulation as a result of electromagnetic fields.

In this chapter, we make a step in this direction by first solving the acoustic wave

equation in the absense of any electromagnetic fields. We investigate impulse gen-

erated pressure waves in a heterogeneous medium. In particular, we consider an

acoustic pressure wave initiated by a windowed sine wave impulse traveling through

a layered medium and formulate the equations and boundary conditions describing

the system. We explore several approaches to solving the problem with the finite

element method and settle on a (somewhat nonstandard) fully Galerkin scheme. We

then present solutions obtained with this method.

144
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7.2 Problem formulation

In this section, we present the system under consideration. First, we write the equa-

tions that describe the behavior of the traveling acoustic wave in strong form. Then

we develop a variational formulation for the system and discuss difficulties that arise

while doing so.

We consider the wave equation for acoustic pressure in a material consisting of three

homogeneous layers. We assume that in the left and right layers of the material the

wave propagates with the same wave speed, but that the wave travels at a different

speed in the middle layer. The boundary conditions are given by the input of win-

dowed sine wave at z = 1 and a no reflection, or total absorbing, condition at z = 0.

A schematic of the geometry is given in Figure 7.1. We suppose that the system is

initially at rest. Then the equations that govern this system are given by

¨̃p − c2(z)p̃′′ = 0 (7.1)

p̃(0, z) = 0 p̃(t, 1) = f(t)

˙̃p(0, z) = 0 ˙̃p(t, 0) − c(0)p̃′(t, 0) = 0

where

c(z) =




c1 0 ≤ z < z1

c2 z1 ≤ z ≤ z2

c1 z2 < z ≤ 1,

f(t) =


 0 0 ≤ t ≤ τ, t ≥ 2τ

sin(2π
τ

(t − τ)) τ < t < 2τ.

for 0 ≤ z1 ≤ z2 < 1 and 0 < τ .
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Figure 7.1: Schematic diagram of geometry

Since finding a solution to the wave equation is normally an easy exercise in solving

partial differential equations, computing a numerical solution to this system would

appear to be a simple chore. However, unique characteristics of this system make

solving it a somewhat more challenging task.

To treat the nonhomogeneous time dependent Dirichlet boundary condition at z = 1,

we make a change of variables which facilitates finite element solutions. To obtain a

new equation with a homogeneous boundary condition at z = 1, we introduce a new

state variable p defined by

p(t, z) = p̃(t, z) − zf(t). (7.2)

In this new state our system is
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p̈ − c2(z)p′′ + zf̈(t) = 0 (7.3)

p(0, z) = 0 p(t, 1) = 0

ṗ(0, z) = 0 ṗ(t, 0) − c1p
′(t, 0) − c1f(t) = 0

(7.4)

p(t, z1−) = p(t, z1+) c2(z1−)p′(t, z1−) = c2(z1+)p′(t, z1+)

p(t, z2−) = p(t, z2+) c2(z2−)p′(t, z2−) = c2(z2+)p′(t, z2+)
(7.5)

where c(z) and f(t) are as defined above. We observe that this change of variable does

provide the desired boundary condition at z = 1. Since discontinuities (at z1 and z2)

are present in the propagating medium, we also must introduce interface conditions.

We do this by requiring continuity of p(t, ·) and c2p′(t, ·) at z = z1 and z = z2. (We

note that these conditions should be applied to the original equation for p̃, but to

simplify the computations we require the conditions of p after changing variables.)

The continuity on p will be an essential condition while the continuity of c2p′ will be

a natural condition in our weak formulation below.

Since c(z) is only piecewise continuous in z, we do not expect solutions to the above

equation in strong form in space (i.e., C2 or even only H2 in z). Therefore, for both

theoretical and computational purposes, it is useful to write the system in weak or

variational form in the spatial variable. This approach is standard. However, we

note that in our change of variables, we have introduced the term f̈(t) into the wave

equation. If we recall that the function f is a windowed sine wave, we realize that

its second derivative f̈(t) includes a delta impulse in time (see Figure 7.2). One thus

observes that we also may not be able to expect solutions in strong form in time.

Thus, we may expect distributional derivatives in both time and space.
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Figure 7.2(c): Second derivative of f(t)

We tried two different approaches to deal with potential difficulties due to lack of

smoothness of solutions. First, we ignored the lack of smoothness of f̈ and proceeded

with a standard semi-Galerkin finite element method. Since we know that our solution

should be a traveling sine wave (at least if we assume c1 = c2), it was clear from

the resulting simulations that this solution technique was not adequate. For our

second approach, we used mollifiers to smooth the “windowing” of the function f

and again continued in the traditional way using a standard semi-Galerkin finite

element method. However, this approach led to solutions that failed to converge to
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the known solution. We concluded that an appropriate way to solve the problem

might be to use a fully Galerkin finite element scheme. For further discussion of fully

Galerkin methods, see, for example, [28], [36].

We let < ·, · > denote the usual L2 inner product on (0, 1), i.e.,

< f, g >=
∫ 1

0
f(z)g(z) dz, and we let < ·, · >(a,b) denote the L2 inner product on the

specified interval (a, b). We define the spaces H1
R(a, b) = {φ ∈ H1(a, b)|φ(b) = 0} and

H1
L(a, b) = {φ ∈ H1(a, b)|φ(a) = 0}. Moreover, we use the notation f ∈ H(X) where

X = (a, b) ∪ (b, c) ∪ (c, d) to denote that f restricted to each of the open intervals is

H2 on that interval.

We suppose that p satisfies (7.3), (7.4) and the following hold:

p ∈ H1
L(0, T ; H1

R(0, 1))

p(·, z) ∈ H2(0, T ) almost everywhere in (0, 1)

p(t, ·) ∈ H̃ ≡ {φ ∈ C(0, 1) : φ ∈ H2(Ω̃)} almost everywhere in (0, T ),

where Ω̃ ≡ (0, z1) ∪ (z1, z2) ∪ (z2, 1).

(7.6)

Then

∫ T

0

< p̈, φ > ψ dt −
∫ T

0

< c2(z)p′′, φ > ψ dt +

∫ T

0

f̈ψ dt < z, φ >= 0

holds for all φ ∈ H1
R(0, 1) and for all ψ ∈ H1

R(0, T ).

Integrating by parts, we have
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−
∫ T

0
< ṗ, φ > ψ̇ dt

+
∫ T

0

(
c2
1 < p′, φ′ >(0,z1) +c2

2 < p′, φ′ >(z1,z2) +c2
1 < p′, φ′ >(z2,1)

)
ψ dt

−
∫ T

0
ḟ ψ̇ dt < z, φ > + < ṗ, φ > ψ|T0 −

∫ T

0

(
c2
1p

′φ|z1−
0 + c2

2p
′φ|z2−

z1+ + c2
1p

′φ|1z2+

)
ψ dt

+ < z, φ > ḟψ|T0 = 0.

We may then substitute our boundary, interface, and initial conditions (7.4), as well

as the conditions on φ and ψ, into the above equation to obtain

−
∫ T

0
< ṗ, φ > ψ̇ dt

+
∫ T

0

(
c2
1 < p′, φ′ >(0,z1) +c2

2 < p′, φ′ >(z1,z2) +c2
1 < p′, φ′ >(z2,1)

)
ψ dt

−
∫ T

0
ḟ ψ̇ dt < z, φ > +c1

∫ T

0
ṗ(·, 0)φ(0)ψ dt − c2

1

∫ T

0
f(·)φ(0)ψ dt = 0.

This implies

−
∫ T

0
< ṗ, φ > ψ̇ dt +

∫ T

0
< c2(z)p′, φ′ > ψ dt −

∫ T

0
ḟ ψ̇ dt < z, φ >

+c1

∫ T

0
ṗ(·, 0)φ(0)ψ dt − c2

1

∫ T

0
f(·)φ(0)ψ dt = 0.

This suggests that our weak solution with p(0, z) = 0 and p(t, 1) = 0 should satisfy

−
∫ T

0
< ṗ, φ > ψ̇ dt +

∫ T

0
< c2(z)p′, φ′ > ψ dt −

∫ T

0
ḟ ψ̇ dt < z, φ >

+c1

∫ T

0
ṗ(·, 0)φ(0)ψ dt − c2

1

∫ T

0
f(·)φ(0)ψ dt = 0

for all φ ∈ H1
R(0, 1) and for all ψ ∈ H1

R(0, T ).

Thus, we seek solutions p ∈ H1
L(0, T ; V ), where V ≡ H1

R(0, 1), that satisfy
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−
∫ T

0
< ṗ, φ > ψ̇ dt +

∫ T

0
< c2(z)p′, φ′ > ψ dt −

∫ T

0
ḟ ψ̇ dt < z, φ >

+c1

∫ T

0
ṗ(·, 0)φ(0)ψ dt − c2

1

∫ T

0
f(·)φ(0)ψ dt = 0

(7.7)

for all φ ∈ H1
R(0, 1) and for all ψ ∈ H1

R(0, T ).

If we assume that our solutions have enough smoothness, i.e., p(t, ·) ∈ H̃ and p(·, z) ∈
H2(0, T ), we can verify that this is, in fact, a desired weak form of our equation.

Assuming this smoothness and integrating the weak form by parts, we find

∫ T

0
< p̈, φ > ψ dt

−
∫ T

0

(
c2
1 < p′′, φ >(0,z1) +c2

2 < p′′, φ >(z1,z2) +c2
1 < p′′, φ >(z2,1)

)
ψ dt

+ < z, φ >
∫ T

0
f̈ψ dt + c1

∫ T

0
ṗ(·, 0)φ(0)ψ dt − c2

1

∫ T

0
f(·)φ(0)ψ dt

− < ṗ, φ > ψ|T0 − < z, φ > ḟψ|T0

+
∫ T

0

(
c2
1p

′φ|z1−
0 + c2

2p
′φ|z2−

z1+ + c2
1p

′φ|1z2+

)
ψ dt = 0

for all φ ∈ H1
R(0, 1) and for all ψ ∈ H1

R(0, T ) with p(0, z) = 0 and p(t, 1) = 0.

Then
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∫ T

0
< p̈, φ > ψ dt −

∫ T

0
< c2(z)p′′, φ > ψ dt+ < z, φ >

∫ T

0
f̈ψ dt

+c1

∫ T

0
ṗ(·, 0)φ(0)ψ dt − c2

1

∫ T

0
f(·)φ(0)ψ dt+ < ṗ(0, ·), φ > ψ(0)

−
∫ T

0
c2
1p

′(·, 0)φ(0)ψ dt

+
∫ T

0
[φ(z1) (c2

1p
′(·, z1−) − c2

2p
′(·, z1+))

−φ(z2) (c2
1p

′(·, z2+) − c2
2p

′(·, z2−))] ψ dt

= 0

(7.8)

for all φ ∈ H1
R(0, 1) and for all ψ ∈ H1

R(0, T ) with p(0, z) = 0 and p(t, 1) = 0.

If we choose φ ∈ H1
I (0, 1) = {φ ∈ H1(0, 1)|φ(0) = φ(1) = 0, φ(z1) = φ(z2) = 0} ⊂

H1
R(0, 1) and ψ ∈ H1

0 (0, T ) = {ψ ∈ H1(0, T )|ψ(0) = ψ(T ) = 0} ⊂ H1
R(0, T ), then we

have

∫ T

0

< p̈, φ > ψ dt −
∫ T

0

< c2(z)p′′, φ > ψ dt+ < z, φ >

∫ T

0

f̈ψ dt = 0

for all φ ∈ H1
I (0, 1) and for all ψ ∈ H1

0 (0, T ).

Since ψ ∈ H1
0 (0, T ) is arbitrary, this implies that

< p̈, φ > − < c2(z)p′′, φ > +f̈ < z, φ >= 0

for all φ ∈ H1
I (0, 1).

Hence, since H1
I (0, 1) is dense in L2(0, 1),

p̈ − c2(z)p′′ + f̈ z = 0

in the L2 sense and hence almost everywhere.

We thus have that (7.8) reduces to
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c1

∫ T

0
ṗ(·, 0)φ(0)ψ dt − c2

1

∫ T

0
f(·)φ(0)ψ dt+ < ṗ(0, ·), φ > ψ(0)

−
∫ T

0
c2
1p

′(·, 0)φ(0)ψ dt

+
∫ T

0
[φ(z1) (c2

1p
′(·, z1−) − c2

2p
′(·, z1+))

−φ(z2) (c2
1p

′(·, z2+) − c2
2p

′(·, z2−))] ψ dt

= 0

(7.9)

for all φ ∈ H1
R(0, 1) and for all ψ ∈ H1

R(0, T ).

Using standard arguments, we obtain from (7.9) the initial and boundary conditions

ṗ(0, z) = 0

ṗ(t, 0) − c1p
′(t, 0) − c1f(t) = 0,

as well as the interface conditions

c2
1p

′(t, z1−) = c2
2p

′(t, z1+)

c2
1p

′(t, z2+) = c2
2p

′(t, z2−)

almost everywhere.

Hence, we have shown that if p ∈ H1(0, T ; V ) (which implies p(t, ·) is continuous at

z1 and z2) satisfies the weak form (7.7) and p possesses the additional smoothness

p(t, ·) ∈ H̃ and p(·, z) ∈ H2(0, T ), then

p̈ − c2(z)p′′ + zf̈(t) = 0 almost everywhere
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p(0, z) = 0 ṗ(0, z) = 0 almost everywhere

p(t, 1) = 0 ṗ(t, 0) − c1p
′(t, 0) − c1f(t) = 0 almost everywhere

p(t, z1−) = p(t, z1+) c2(z1−)p′(t, z1−) = c2(z1+)p′(t, z1+) almost everywhere

p(t, z2−) = p(t, z2+) c2(z2−)p′(t, z2−) = c2(z2+)p′(t, z2+) almost everywhere.

Thus the variational form (7.7) has been verified with the pointwise interface condi-

tions at z = z1 and z = z2 being weakly satisfied whenever p is a solution of (7.7).

7.3 An approximate system with computational

examples

In view of the weak formulation of the previous section for the system, we develop a

dual finite element approximation to the solution. Since we have written the equations

weakly in both time and space, it is natural to use a fully (time and space) Galerkin

scheme.

Since we seek solutions p ∈ H1
L(0, T ; V ) with V ≡ H1

R(0, 1) that satisfy the weak

form, it is also natural to approximate p by a linear combination of piecewise linear

basis elements in both time and space. That is,

p(t, z) ≈ pMN(t, z) =
M∑
i=1

N−1∑
j=0

aijψi(t)φj(z), (7.10)

where ψi ∈ H1
L(0, T ) and φj ∈ H1

R(0, 1) are the standard piecewise linear spline

functions.

We may substitute this approximation into our weak form to obtain defining equations

for the coefficients aij given by
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M∑
i=1

N−1∑
j=0

aij

{
−

∫ T

0

ψ̇iψ̇ dt < φj, φ > +

∫ T

0

ψiψ dt < c2(z)φ′
j, φ

′ >

+c1

∫ T

0

ψ̇iψ dt φj(0)φ(0)

}
−

{
< z, φ >

∫ T

0

ḟ ψ̇ dt + c2
1

∫ T

0

fψ dt φ(0)

}
= 0

for all φ ∈ H1
R(0, 1) and for all ψ ∈ H1

R(0, T ). However this results in too many

equations, but as usual, one restricts the families of φ and ψ for which we require the

system to hold. In particular, we require it for φ = φl ∈ H1
R(0, 1), l = 0, 1, . . . , N − 1

and for ψ = ψm(t) ∈ H1
R(0, T ),m = 0, . . . ,M − 1, where φl and ψm are piecewise

linear spline functions. This yields the reduced system of equations

M∑
i=1

N−1∑
j=0

aij

{
−

∫ T

0

ψ̇iψ̇m dt < φj, φl > +

∫ T

0

ψiψm dt < c2(z)φ′
j, φ

′
l >

+c1

∫ T

0

ψ̇iψm dt φj(0)φl(0)

}
−

{
< z, φl >

∫ T

0

ḟ ψ̇m dt + c2
1

∫ T

0

fψm dt φl(0)

}

= 0

for each l = 0, . . . , N − 1, and for each m = 0, . . . ,M − 1.

For each j = 0, . . . , N − 1, for each i = 1, . . . ,M , for each l = 0, . . . , N − 1, and for

each m = 0, . . . ,M − 1, we define

Gij
lm = −

∫ T

0
ψ̇iψ̇m dt < φj, φl > +

∫ T

0
ψiψm dt < c2(z)φ′

j, φ
′
l >

+c1

∫ T

0
ψ̇iψm dt φj(0)φl(0)

and for each l = 0, . . . , N − 1, and m = 0, . . . ,M − 1, we define

Hlm =< z, φl >

∫ T

0

ḟ ψ̇m dt + c2
1

∫ T

0

fψm dt φl(0).
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Thus, we can write our algebraic system of defining equations as

M∑
i=1

N−1∑
j=0

aijG
ij
lm = Hlm

for each l = 0, . . . , N − 1, m = 0, . . . ,M − 1.

Next, for all i = 1, . . . ,M , we let

~ai = [ai0 ai1 · · · aiN−1],

and for all i = 1, . . . ,M ; l = 0, . . . , N − 1; and m = 0, . . . ,M − 1, we let

~Gi
lm =




Gi0
lm

Gi1
lm

...

GiN−1
lm




.

Then for all i = 1, . . . ,M ; l = 0, . . . , N − 1; and m = 0, . . . ,M − 1,

N−1∑
j=0

aijG
ij
lm = ~ai

~Gi
lm.

So, for all l = 0, . . . , N − 1 and m = 0, . . . , M − 1,

M∑
i=1

N−1∑
j=0

aijG
ij
lm =

M∑
i=1

~ai
~Gi

lm

= ~a1
~G1

lm + ~a2
~G2

lm + . . . + ~aM
~GM

lm

= Hlm.

Furthermore, we define

α = [~a1 ~a2 · · · ~aM−1]
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G =




~G1
00 · · · ~G1

N−10
~G1

01 · · · ~G1
N−11 · · · ~G1

0M−1 · · · ~G1
N−1M−1

~G2
00 · · · ~G2

N−10
~G2

01 · · · ~G2
N−11 · · · ~G2

0M−1 · · · ~G2
N−1M−1

...

~GM
00 · · · ~GM

N−10
~GM

01 · · · ~GM
N−11 · · · ~GM

0M−1 · · · ~GM
N−1M−1




and

H = [H00 · · ·HN−10 H01 · · ·HN−11 · · · H0M−1 · · ·HN−1M−1] .

Thus we find that our finite element scheme can be written

αG = H (7.11)

and hence

α = HG−1.

As usual in finite element approximations, if we choose N,M sufficiently large, we

expect that by computing α from (7.11), we can obtain coefficients aij such that

pMN(t, z) =
M∑
i=1

N−1∑
j=0

aijψi(t)φj(z)

is a good approximation for p on the time interval [0, T ]. Thus the corresponding

p̃ defined via (7.2) sufficiently approximates the behavior of the solution to (7.1).

However, we find that in practice it is difficult to accurately approximate p over a

given interval [0, TF ] in one step due to the conditioning of the system (7.11) whenever

TF is large. (We discuss the details of the implementation later in this section.)

Instead we first approximate p over a shorter interval [0, t1], where t1 < TF and the

windowed sine wave is entirely within the material by the time t = t1. Note that we

can change the time T in the weak form to accommodate any interval over which
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we wish to solve. Then, since we can find a sufficient approximation for p over this

smaller interval, we are able to accurately approximate p̃ and describe the pressure

over the interval [0, t1].

In order to determine the behavior of the pressure on the entire given interval [0, TF ],

we need to describe the pressure on the interval (t1, TF ]. This is equivalent to con-

sidering the original wave equation for pressure with boundary conditions given by a

zero input at z = 1 and a no reflection condition at z = 0 but now initially there is

a windowed sine wave already propagating through the material. The equations that

govern this system are given by
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¨̃y − c2(z)ỹ′′ = 0

ỹ(0, z) = g(z) ỹ(t, 1) = 0

˙̃y(0, z) = h(z) ˙̃y(t, 0) − c1ỹ
′(t, 0) = 0

ỹ(t, z1−) = ỹ(t, z1+) c2(z1−)ỹ′(t, z1−) = c2(z1+)ỹ′(t, z1+)

ỹ(t, z2−) = ỹ(t, z2+) c2(z2−)ỹ′(t, z2−) = c2(z2+)ỹ′(t, z2+),

where

g(z) = p̃(t, z)|t=t1 , h(z) = ˙̃p(t, z)|t=t1 .

Observe that we have a nonhomogeneous initial condition at t = 0. When using a

semi-Galerkin finite element scheme, nonhomogeneous initial conditions are of little

consequence, but this is not the case for fully Galerkin schemes. To treat this case,

it is desirable to make another change of variables. To this end, we let

y(t, z) = ỹ(t, z) + (t − 1)g(z),

and the resulting equations for y are

ÿ − c2(z)y′′ + c2(z)(t − 1)g′′(z) = 0

y(0, z) = 0 y(t, 1) = 0

ẏ(0, z) = h(z) + g(z) ẏ(t, 0) − c1y
′(t, 0) = 0

with the appropriate interface conditions and where c(z), g(z), and h(z) are as defined

previously, and we use that fact that g′(0) = g(1) = g(0) = 0 due to the location of

the pressure impulse entirely within the material at t = t1.
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Using similar notation and techniques as before, we find that the weak form of our

equation is

−
∫ T

0
< ẏ, φ > ψ̇ dt +

∫ T

0
< c2(z)y′, φ′ > ψ dt

−
∫ T

0
(t − 1)ψ dt < c2(z)g′, φ′ > − < h + g, φ > ψ(0)

+
∫ T

0
c1ẏ(·, 0)φ(0)ψ dt = 0

(7.12)

for all φ ∈ H1
R(0, 1) and for all ψ ∈ H1

R(0, T ) where T = TF − t1 with y(0, z) = 0 and

y(t, 1) = 0.

Thus, we seek solutions y ∈ H1
L(0, T ; V ), where V ≡ H1

R(0, 1), that satisfy (7.12).

Given the weak form (7.12) of our equation, we can again approximate y by a linear

combination of basis elements in time and space

y(t, z) ≈ yMN(t, z) =
M∑
i=1

N−1∑
j=0

γijψi(t)φj(z),

where ψi ∈ H1
L(0, T ) and φj ∈ H1

R(0, 1) are piecewise linear spline functions. We note

that in our computations M,N need not be the same as those for the approximation of

p on the interval [0, t1], although we use the same notation here for ease of exposition.

Following the same procedure as before, we substitute the approximation into the

weak form of our equation, finding that

M∑
i=1

N−1∑
j=0

γij

{
− < φj, φl >

∫ T

0

ψ̇iψ̇m dt

+ < c2(z)φ′
j, φ

′
l >

∫ T

0

ψiψm dt + c1φj(0)φl(0)

∫ T

0

ψ̇iψm dt

}

=

∫ T

0

(t − 1)ψm dt < c2(z)g′, φ′
l > + < h + g, φl > ψm(0)
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holds for the piecewise linear spline functions ψm ∈ H1
R(0, T ), m = 0, . . . ,M − 1, and

φl ∈ H1
R(0, 1), l = 0, . . . , N − 1. Then, as before, we can write these equations as a

system

ΓG = K

where Γ contains the coefficients γij, G is as defined previously, and K is analogous

to the previously defined H. This equation can be solved for the coefficient vector Γ,

and the coefficients can in turn be used to determine approximations for y and ỹ.

Summarizing, we use

p(t, z) ≈ pMpNp(t, z) =

Mp∑
i=1

Np−1∑
j=0

aijψi(t)φj(z) for z ∈ [0, 1], t ∈ [0, t1]

y(t, z) ≈ yMyNy(t, z) =

My∑
i=1

Ny−1∑
j=0

γijψi(t)φj(z) for z ∈ [0, 1], t ∈ [0, TF − t1]

and

p̃MpNp(t, z) = pMpNp(t, z) + zf(t) for z ∈ [0, 1], t ∈ [0, t1]

ỹMyNy(t, z) = yMyNy(t, z) − (t − 1)g(z) for z ∈ [0, 1], t ∈ [0, TF − t1]

p̃MpNp(t, z) = ỹMyNy(t − t1, z) for z ∈ [0, 1], t ∈ [t1, TF ]

to define an appropriate approximation to the behavior of the wave on the spatial

interval [0, 1] and the entire given time interval [0, TF ].

Prior to presenting some solutions obtained from this approximation, we discuss

briefly the implementation of these approximation techniques. The calculations were

performed using code written in MATLAB, version 5.3 (The MathWorks, Inc., Natick,

MA), and the computations were carried out on a Sun Sparc Ultra 10 workstation.
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The coefficient vectors α and Γ were computed with MATLAB’s slash command,

which finds solutions by Gaussian elimination. We recall that the elements in K are

∫ T

0

(t − 1)ψm dt < c2(z)g′, φ′
l > + < h + g, φl > ψm(0).

Here, g represents p̃MpNp(t, ·) at a specified time t1. As a result, we only have access

to values of g at the nodal points, zk. Furthermore, h(z) represents ˙̃p
MpNp

(t, z) at t1,

but these values must be approximated at the appropriate spatial nodes. So, in order

to compute the terms in K, we must first numerically approximate ġ (which is the

same as h) and g′ from the known data points and then calculate the inner products.

We use a centered difference method to approximate g′ at the nodal points and a

backward difference method to approximate ġ at the same points. Then we use linear

interpolation via the MATLAB command interp1 to obtain values for g(z), g′(z), and

ġ(z) at intermediate values z between the nodes. With these “enhanced” data sets,

we can use the trapezoidal method, via MATLAB’s trapz command, to compute the

inner products.

Finally, we show plots to illustrate the behavior of the wave as it passes through

the layered medium. Each of the plots in Figure 7.3 is a snapshot in time of the

pressure in the medium for the parameters given in Table 7.1 with M = N = 256

basis elements. Looking at the snapshots sequentially, we can see the pressure wave

move through the layers. The noise in front of and behind the wave is a result of

approximation error and should not have significant impact on the electromagnetic

interrogation process when used in the applications described in this thesis.
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Pressure vs depth – t=0 Pressure vs depth – t=0.375
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Figure 7.3(c): Figure 7.3(d):

Pressure vs depth – t=0.5 Pressure vs depth – t=0.625
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Figure 7.3(e): Figure 7.3(f):

Pressure vs depth – t=0.75 Pressure vs depth – t=0.875
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Pressure vs depth – t=1.0 Pressure vs depth – t=1.125
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Figure 7.3(i): Figure 7.3(j):

Pressure vs depth – t=1.25 Pressure vs depth – t=1.375
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Pressure vs depth – t=1.5
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Parameter Value

c1 1.5

c2 1.485

z1 0.5605

z2 0.7012

τ 0.25

t1 0.5

TF 1.5

Table 7.1: Parameter values for computations in Figure 7.3

To address approximation error, we compare solutions as the number of basis elements

increases. In Figure 7.4, we see the solutions of pressure versus depth for a fixed time

computed with varying number of basis elements. We see that as the number of basis

elements increases from N = M = 64 (denoted by ◦) to N = M = 128 (denoted by

×) to N = M = 256 (denoted by ∗), the solutions appear to converge. Figure 7.5

gives the corresponding plots for solutions of pressure versus time at a fixed depth.

Again, we see apparent convergence as the number of basis elements increases. This

suggests that any error in the approximate solution is due to approximation error.

The values of parameters used in these computations are given in Table 7.2. Moreover,

Table 7.3 illustrates the convergence in norm we see as we increase the number of

basis elements. The norms used to obtain the results given in the table are defined

as follows

|f − g|l∞ = sup
k

sup
l

|f(tk, zl) − g(tk, zl)|

|f − g|l2 =

(
1

NkNl

∑
k

∑
l

(f(tk, zl) − g(tk, zl))
2

) 1
2

,

where (tk, zl) are the nodal points of the piecewise linear elements {ψi}, {φj} of the
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approximation (7.10) and Nk, Nl are the number of nodal points.
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Parameter Value

c1 1.5

c2 1.485

z1 0.5605

z2 0.7480

τ 0.25

t1 0.5

TF 0.5

Table 7.2: Parameter values for computations in Figures 7.4 and 7.5

Norm Value Norm Value

|p̃32,32 − p̃16,16|l∞ 0.119126 |p̃32,32 − p̃16,16|l2 0.048853

|p̃64,64 − p̃32,32|l∞ 0.080170 |p̃64,64 − p̃32,32|l2 0.032970

|p̃128,128 − p̃64,64|l∞ 0.069472 |p̃128,128 − p̃64,64|l2 0.025776

|p̃256,256 − p̃128,128|l∞ 0.048119 |p̃256,256 − p̃128,128|l2 0.021199

Table 7.3: Convergence in norm
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Concluding remarks and future directions

8.1 Concluding remarks

The focus of this thesis is an electromagnetic interrogation technique in which an

acoustic pressure wave traveling within a target material acts as a virtual reflector

for the interrogating microwave pulse. We consider this interrogation technique from

several different perspectives, including physical, analytical, computational, and sta-

tistical, in an attempt to better understand its capabilities and limitations.

We first develop a physics-based mathematical model to describe the behavior of the

electromagnetic/acoustic system underlying the interrogation technique. We use a

one-dimensional form of Maxwell’s equations to model the general electromagnetic

dynamics and couple to it a polarization model which incorporates the electromag-

netic/acoustic interaction. In the process of formulating this interaction model, we

give a brief survey of some of the many models for electromagnetic/acoustic inter-

action found in the literature. In addition, we give an abbreviated discussion of the

mechanisms behind electric polarization. We then present our choice of models, a De-

bye model for orientational polarization modified to incorporate pressure-dependence,

and provide the rationale for this choice.

169
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The resulting mathematical system can be generalized to include a wider class of

electromagnetic systems. We examine this general system from a theoretical point of

view and prove results regarding the well-posedness of the system and the convergence

of approximating solutions to the system. These results are critical in developing

a framework for the inverse problem related to the interrogation technique and in

establishing confidence for the numerical simulations for the system with pressure-

dependent Debye polarization.

With the theoretical results as a foundation, we construct numerical approximations

to the solutions for the pressure-dependent Debye system. They provide a visual

understanding of the systemic behavior over time, the sensitivity of the system to

the polarization parameters, and the nature of the “data” that would be collected

in an experiment. This newfound understanding is then applied to the problem of

estimating the dielectric parameters from simulated data from the model (because

true experimental data is not yet available). We find that we are able to successfully

estimate many of the characteristic parameters from the dielectric, in particular the

mean polarization parameters, from noisy data and with error in our initial guesses.

Finally, we use statistical methods to verify that the pressure-dependence in the

polarization model we have developed is in fact significant to the model. We test

the null hypothesis that the model is pressure-independent using pressure-dependent

data and pressure-independent data. In the case where the data does depend on

pressure, we find that we cannot accept the null hypothesis. That is, we must reject

the hypothesis that pressure-dependent data can be adequately predicted by a model

without pressure-dependence. Our results using pressure-independent data, however,

are less conclusive.
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8.2 Future directions

There are numerous and varied directions in which the research presented here can be

taken in the future. In this section, we propose some of the most feasibile, necessary,

and, in our opinion, interesting.

8.2.1 Experimental design

The most imminent and eminant next step related to this research involves the con-

struction of a laboratory experiment designed to demonstrate the scattering of electro-

magnetic waves by acoustic disturbances. The experimental configuration includes a

guiding wave structure, or transmission line, within which electromagnetic waves will

propagate. These waves will be launched at one end by a fast-rise-time pulse genera-

tor; meanwhile acoustic waves will be launched at the opposite end by an ultrasonic

source. The proposed medium through which the waves will travel is an agar-agar

gel, chosen due to its properties for electromagnetic and acoustic wave propagation

as well as its commonalities with living tissue (as some potential applications involve

biological imaging). Funds have already been procured to build this experiment, and

the construction should commence shortly.

8.2.2 Acoustic pressure system

In Chapter 7, we present a system describing the dynamics of an acoustic pressure

wave as it propagates through a layered medium. We derive a weak formulation for

the system, suggest a computational approach to obtaining numerical solutions, and

display results. We believe this system is well-posed, but these issues still need to be

addressed.
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8.2.3 A coupled electromagnetic/acoustic interaction model

For the electromagnetic system with pressure-dependent Debye polarization discussed

in this paper, the polarization, and hence the electromagnetic field, depends on acous-

tic pressure. The pressure wave is given here a priori and is assumed to be invariant

in the presence of the electric field. We believe that this assumption is reasonable

in a first step in model development (such as is presented here). However, this as-

sumption may not accurately describe the physics of the system; the pressure wave is

likely modulated by the electromagnetic field and the polarization, and these effects

should be taken into account. Thus it would be useful to develop a model for coupled

electromagnetic/acoustic interaction. Not only would the development of a model

for mutual interaction be an interesting and challenging task in understanding the

physics of the system, but the coupled model would pose new analytical and compu-

tational issues as well (Is the coupled system well-posed? What is the best way to

compute the electric field, the polarization, and the pressure wave simultaneously?).

8.2.4 Extension to higher dimensions

The problem presented here is one-dimensional. In order to formulate the problem

in only one dimension, we must make several simplifying assumptions including as-

suming the homogeneity of the material in two directions. Since this is not a very

practical supposition, the problem is more realistic when formulated in two or three

dimensions. In our 1-D problem, we enforce an aborbing condition Ė − cE ′ = 0

at the boundary z = 0 to prevent wave reflections from traveling back through the

domain of interest. Boundary conditions of this type are not as easily implemented

in more than one dimension. In [6], the authors solve a similar problem, one in which

the electromagnetic waves are reflected from a perfectly-conductive backing, in two

dimensions using perfectly-matched layers (PML) to absorb wave reflections from the
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boundaries. A similar approach may be applicable to the electromagnetic/acoustic

problem if one wanted to solve it in higher dimensions.

8.2.5 Reduced order models

Adding to the dimension or complexity of the current model will undoubtably result

in an increase in computational time and storage. Thus it may be advantageous to

explore methods of increasing computational efficiency. A possible approach is to use

ideas from the Karhunan-Loeve or Proper Orthogonal Decomposition reduced order

methodology. This methodology involves approximating the solution using only the

basis functions that are most important in describing the system dynamics; thus

it requires less basis functions than traditional methods. Approximations using this

methodology have been successful in eddy current based electromagnetic interrogation

techniques [12], [11], [10], and control design [8], [24], [34], [37].
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