
Abstract

Agarwal, Prasheen Kumar. Bootstrapping of Spatially Correlated Data. (Under the

direction of Professor Montserrat Fuentes and Professor Margery Overton)

The application of the bootstrap to spatially correlated data has not been studied

as widely as its application to time series data. This is a challenging problem since

it is difficult to preserve the correlation structure of the data while implementing the

bootstrap method. Kunsch (Kunsch 1989) , Politis and Romano (Politis & Romano

1993), Liu and Singh (Liu & Singh 1992) have suggested bootstrapping methods for

higher dimensional data. We are proposing a new bootstrapping method for spatial

data and are studying the properties of the estimators for the mean and the semi-

variogram under our method. We demonstrate the performance and usefulness of this

method by a simulation study. We will also show consistency and derive asymptotic

distributional properties of the estimators. As an application we are studying the

problem of modeling shoreline erosion along the coast of North Carolina and we

apply our method in an effort to model the underlying covariance structure and build

a complete model for the shoreline erosion process.



Bootstrapping of Spatially Correlated Data

by

Prasheen Agarwal

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

STATISTICS

in the

GRADUATE SCHOOL

at

NC STATE UNIVERSITY

2003

Professor Montserrat Fuentes Professor Margery Overton
Chair of Advisory Committee Co-Chair of Advisory Committee

Professor Dennis Boos Professor B.B. Bhattacharya

Professor David Dickey



ii

Biography

Prasheen K. Agarwal was born in Kharagpur, India on the 20th of September,

1974. He got his Masters of Science degree in Mathematics from the Indian Insti-

tute of Technology, Kharagpur in May, 1997. He was accepted for graduate studies

in Statistics by the Department of Statistics at North Carolina State University in

August, 1997. He finished his Masters in Statistics from North Carolina State Uni-

versity in May 1999. He met his wife, Parul Shah, at North Carolina State University

while she was a student of the Masters program in the Department of Parks Recre-

ation and Tourism Management. He got married to Parul on August 17, 2001. He

is now finishing work on his dissertation for the doctoral degree in Statistics. He has

been accepted by the Bristol-Myers Squibb Pharmaceutical Research Institute as a

Research Biostatistician.



iii

Acknowledgements

I would like to thank the members of my advisory committee for their kind support,

encouragement and advice during the preparation of my thesis. I am extremely

grateful to Dr. Montserrat Fuentes, my advisor, for her enthusiasm and her support

and encouragement during every aspect of my education. She has taught me how to

think independently. I am also very grateful to her for her advice and help on non

thesis related issues. I am extremely grateful to Dr. Margery Overton for her patience

and her encouragement during my work on my thesis. I am very thankful to her for

her careful reading of my thesis and for her helpful comments and questions that

have helped me understand the material better. Dr. Bhattacharya has been a father

figure to me during my stay here and he has not only been very helpful in answering

my many questions but has also helped me with his kindness and encouragement in

overcoming the many personal challenges that I have faced. I am very grateful to

Dr. Dickey for giving me his valuable time and help in answering my questions about

the thesis and also for his advice and encouragement on other matters. His thorough

reading of my thesis and his invaluable comments have helped me iron out the bumps

in my thesis. I am very grateful for having had the opportunity to learn from Dr.

Boos and interact with him. Dr. Pantula’s support and caring attitude have helped

me immensely all along, and I am very grateful to him. I am also very thankful to

Dr. Swallow for all his help. I would like to thank all my professors here at NC State

for all their help, encouragement and guidance over these past 5 years. I would not

have achieved my goal without their constant encouragement.

My wife, Parul Agarwal, has been my ”happy haven” ever since I met her. She

has encouraged and supported me unwaveringly in my goal to complete my graduate

studies. I am very appreciative of her patience while I have worked on my dissertation.

Jimmy Doi, to whom I owe perhaps many a lunches, has given me some of the

best advice that I have received. I am very grateful that I had the good fortune to

have his friendship.

I am very grateful to my parents for having had the foresight to make the decisions

they did, because of which I was able to attend this prestigious university.



iv

My sister, Shamita Martin has always lent me her ear, and I am very grateful

to her for listening attentively (I think) to my, sometimes, incessant groaning and

complaining.

I am very thankful to Janice Gaddy for never saying “yes” in answer to my

question “am I bothering you?”, when I have gone to her for help, and for all her help

throughout these 5 years. I am also grateful to Terry Byron for never poking fun of me

and for always helping me with all my, though sometimes inane, computer requests!

I am also thankful to him and the Statistics Department for making available to us

such excellent computing facilities and resources.



v

Contents

List of Tables vii

List of Figures viii

1 Introduction 1

2 Proposed Method 13
2.1 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Results on Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Definitions and Notation . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Variogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Definitions and Notation . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Simulation Study 54
3.1 The objectives of the Simulation Study . . . . . . . . . . . . . . . . . 54
3.2 Simulation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Conclusions and discussion of results . . . . . . . . . . . . . . . . . . 56
3.4 The objectives of the numerical study . . . . . . . . . . . . . . . . . . 65
3.5 Conclusions and discussion of results . . . . . . . . . . . . . . . . . . 66

4 Analysis of Coastal Data 84
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 Median Polish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3 Modeling the mean structure . . . . . . . . . . . . . . . . . . . . . . . 88
4.4 Modeling the underlying covariance structure . . . . . . . . . . . . . 97
4.5 Forecasting the distance of the shoreline to the baseline . . . . . . . . 105



vi

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Bibliography 119



vii

List of Tables

4.1 Regression Coefficient estimates for Northern region . . . . . . . . . . 93
4.2 Regression coefficient estimates for Central region . . . . . . . . . . . 94
4.2 (Continued...)Regression Coefficient Estimates for Central region . . . 95
4.3 Regression Coefficient Estimates for Southern region . . . . . . . . . 96
4.4 Northern region: Parameter estimates for spherical covariance model 99
4.5 Central region: Parameter Estimates for spherical covariance model . 102
4.6 Southern region: Parameter estimates for spherical covariance model 104



viii

List of Figures

1.1 Pea Island . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Original surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Construction of blocks . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Reconstructed surface . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Simulation set 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Continuation of results from Simulation set 1. . . . . . . . . . . . . . 58
3.3 Simulation set 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4 Continuation of results from Simulation set 2 . . . . . . . . . . . . . . 60
3.5 Simulation set 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.6 Continuation of results from Simulation set 3. . . . . . . . . . . . . . 62
3.7 Simulation set 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.8 Continuation of results from Simulation set 4. . . . . . . . . . . . . . 64
3.9 Results for MSE for lag distance=1 for specified settings of the range,

partial sill, nugget and sample size . . . . . . . . . . . . . . . . . . . 68
3.10 Results for MSE for lag distance=1 for specified settings of the range,

partial sill, nugget and sample size . . . . . . . . . . . . . . . . . . . 69
3.11 Results for MSE for lag distance=1 for specified settings of the range,

partial sill, nugget and sample size . . . . . . . . . . . . . . . . . . . 70
3.12 Results for MSE for lag distance=1 for specified settings of the range,

partial sill, nugget and sample size . . . . . . . . . . . . . . . . . . . 71
3.13 Results for MSE for lag distance=1 for specified settings of the range,

partial sill, nugget and sample size . . . . . . . . . . . . . . . . . . . 72
3.14 Results for MSE for lag distance=1 for specified settings of the range,

partial sill, nugget and sample size . . . . . . . . . . . . . . . . . . . 73
3.15 Results for MSE for lag distance=1 for specified settings of the range,

partial sill, nugget and sample size . . . . . . . . . . . . . . . . . . . 74



ix

3.16 Results for MSE for lag distance=1 for specified settings of the range,
partial sill, nugget and sample size . . . . . . . . . . . . . . . . . . . 75

3.17 Results for MSE for lag distance=1 for specified settings of the range,
partial sill, nugget and sample size . . . . . . . . . . . . . . . . . . . 76

3.18 Results for MSE for lag distance=1.4 for specified settings of the range,
partial sill, nugget and sample size . . . . . . . . . . . . . . . . . . . 77

3.19 Results for MSE for lag distance=1.4 for specified settings of the range,
partial sill, nugget and sample size . . . . . . . . . . . . . . . . . . . 78

3.20 Results for MSE for lag distance=1.4 for specified settings of the range,
partial sill, nugget and sample size . . . . . . . . . . . . . . . . . . . 79

3.21 Results for MSE for lag distance=1.4 for specified settings of the range,
partial sill, nugget and sample size . . . . . . . . . . . . . . . . . . . 80

3.22 Results for MSE for lag distance=1.4 for specified settings of the range,
partial sill, nugget and sample size . . . . . . . . . . . . . . . . . . . 81

3.23 Results for MSE for lag distance=1.4 for specified settings of the range,
partial sill, nugget and sample size . . . . . . . . . . . . . . . . . . . 82

3.24 Results for MSE for lag distance=1.4 for specified settings of the range,
partial sill, nugget and sample size . . . . . . . . . . . . . . . . . . . 83

4.1 Northern Region Temporal Effect . . . . . . . . . . . . . . . . . . . . 90
4.2 Central Region Temporal Effect . . . . . . . . . . . . . . . . . . . . . 90
4.3 Southern Region Temporal Effect . . . . . . . . . . . . . . . . . . . . 91
4.4 Northern Region Spatial Effect . . . . . . . . . . . . . . . . . . . . . 91
4.5 Central Region Spatial Effect . . . . . . . . . . . . . . . . . . . . . . 92
4.6 Southern Region Spatial Effect . . . . . . . . . . . . . . . . . . . . . 92
4.7 Northern Region Variogram in spatial direction . . . . . . . . . . . . 100
4.8 Northern Region Variogram in temporal direction . . . . . . . . . . . 100
4.9 Central Region Variogram in spatial direction . . . . . . . . . . . . . 101
4.10 Central Region Variogram in temporal direction . . . . . . . . . . . . 101
4.11 Southern Region Variogram in spatial direction . . . . . . . . . . . . 103
4.12 Southern Region Variogram in temporal direction . . . . . . . . . . . 103
4.13 Northern Region: Predicted Distance of shoreline to baseline . . . . . 106
4.14 Central Region: Predicted Distance of shoreline to baseline . . . . . . 107
4.15 Southern Region: Predicted Distance of shoreline to baseline . . . . . 107
4.16 Northern Region: Simulated Distance of shoreline to baseline . . . . . 110
4.17 Central Region: Simulated Distance of shoreline to baseline . . . . . . 110
4.18 Southern Region: Simulated Distance of shoreline to baseline . . . . . 111
4.19 Northern Region: Comparison of Our approach and EST . . . . . . . 112
4.20 Central Region: Comparison of Our approach and EST . . . . . . . . 112
4.21 Southern Region: Comparison of Our approach and EST . . . . . . . 113
4.22 Northern Region: Comparison of Our approach and EST . . . . . . . 113
4.23 Central Region: Comparison of Our approach and EST . . . . . . . . 114



x

4.24 Southern Region: Comparison of Our approach and EST . . . . . . . 114
4.25 Northern Region: Comparison of Our approach and simple linear re-

gression on time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.26 Central Region: Comparison of Our approach and simple linear regres-

sion on time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.27 Southern Region: Comparison of Our approach and simple linear re-

gression on time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



1

Chapter 1

Introduction

The motivation for this research stems from the study of the changes in the shore-

line along the coast of Pea Island, North Carolina. Development along the coastal

United States has increased over the last few decades. Most of the coastal states

have initiated programs to control coastal development. This usually takes the form

of coastal construction setbacks. The setbacks are usually based on the amount of

erosion anticipated to occur several years into the future. Therefore, accurate deter-

mination of erosion is a critical factor in determining the setbacks. Accurate forecasts

of coastal erosion are critical for coastal managers and agencies responsible for pro-

tecting the coast. Crowell et al. (Crowell, Douglas & Leatherman 1997) compare the

“end-point-rate method”, linear regression and the MDL criterion method to evaluate

the shoreline prediction. The most common approach taken by researchers to calcu-

late the rate of erosion is the end-point-rate method. The rate is calculated as the

shoreline movement between the earliest and the most recent positions of the shore-

line divided by the time elapsed between the two measurements. This technique is

simple to implement and only two shoreline positions suffice for the calculation of the

rate. However, this could result in misleading results as there could be aberrations in

the measurements of the two end points and this is a big disadvantage of this method.

Another technique used is the simple linear regression on time where a best fitting

straight line is fitted to the observed data. This technique is simple to implement

and has the advantage over the end-point-rate method of using all the available data
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and not just the end points.

The technique known as the minimum description length(MDL) criterion was

proposed by Fenster (Fenster, Dolan & Elder 1993). This method fits a polynomial

in time up to the third degree, by determining whether an increase in the complexity

of the model is justified by an increase in the model precision. The results of a study

conducted by Crowell et al. indicate that the linear regression technique performs as

well as or better than the MDL criterion technique when the forecast date lies well

beyond the temporal bounds of the data set. The MDL criterion involves a penalty

term that depends upon the number of parameters of the model, that is added to the

MSE to give the value for the criterion.

A further generalization of this technique was given by Douglas and Crowell (Dou-

glas & Crowell 2000). They propose fitting a nth degree polynomial in time instead

of stopping at the cubic polynomial.

There is a long standing and ongoing debate on the pros and cons of using storm

affected erosion data for modeling purposes. Stated in other words: Should storm in-

fluenced shorelines be considered as a outliers in shoreline change data sets or do these

data contribute to understanding the long term shoreline migration process? Fenster,

Dolan and Morton (Fenster, Dolan & Morton 2001) show that storm influenced data

points are not outliers and thus they oppose the idea proposed by Honeycutt, Crow-

ell and Douglas (Honeycutt, Crowell & Douglas 2001), that the exclusion of storm

influenced data points reduces prediction variability. Honeycutt et al. conclude that

under the constraints of the limited data available, the best erosion forecasts will

be those derived from linear regression rates using non-storm data. As pointed out

by Douglas et al. (Douglas, Crowell & Honeycutt 2002) there are some pertinent

issues that render the use of the simple linear regression on time a little tenuous, like

the presence of seasonal cycles along with an underlying long term trend, and, the

higher variability of winter shoreline positions compared to summer shoreline posi-

tions. They further conclude that shoreline positions affected by great storms are

very inconsistent with a linear trend model of shoreline retreat for an extended time

but, the linear trend model may hold over the long term in many cases, even though

it is seriously violated in the short term following a storm.
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A significant disadvantage of the simple linear regression technique is that it as-

sumes the rate of erosion to be constant. Large scale changes result from severe

tropical and extra tropical storms. During these storms, beach width changes within

a short time interval(hours to days) can be much larger than the accumulated ero-

sion over many previous decades. Following a severe storm of long duration, beach

recovery can go on for many years. Douglas and Crowell (Douglas & Crowell 2000)

warn that it is very important not to consider intervals of a few decades as adequate

to characterize shoreline behavior at a site except during that time and perhaps a

few years into the future. Long term forecasts in which the underlying trend will

dominate must be made using as much high quality and long term data as possible to

obtain the best possible estimate of the the underlying trend. Most of the examples

in the literature are for very sparse data sets.

Most of the current methods for forecasting and modeling erosion rates use time

as the only covariate. None of them use any information available on storms and

storm related parameters to model the erosion. In this work we try to incorporate the

knowledge of storm related parameters to build a sufficiently detailed model to explain

the behaviour of the erosion and further to use this model with other techniques to

forecast the erosion. We primarily focus on the coastline along Pea Island, however,

this method can be easily applied to other shorelines and other data sets.

Shore line constructions like jetties and groins can fundamentally alter the flow

of water and sediment supply and thus affect the erosion/accretion process of the

shoreline. A groin was built on the Southern side of Oregon Inlet, NC to stabilize

the Northern end of Pea Island and as a direct consequence also protect the Southern

end of Herbert C. Bonner bridge.

A groin is a dam like structure, usually a few feet high and about a hundred feet

long that is constructed perpendicular to the shoreline. Its objective is to slow down

the loss of a beach, widening it by trapping the passing sand. Groins may be made

of timber, sheet-steel pilings, stone or concrete and they may be built solid or they

could be permeable to sand flow.

The North Carolina Department of Transportation has collected data using aerial

photography and field surveys to determine the changes along the Northern end of
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Pea Island, after the construction of the groin. This is an effort to model and predict

the nature of the shoreline erosion. Our ultimate goal is to forecast the amount of

erosion and thus the position of the shoreline.

The data is in the form of distance from the shoreline to an imaginary baseline.

The distance is being measured every 150 ft along the monitored length of the coast-

line (approximately 7 miles, see Figure 1.1). This baseline is an imaginary line going

through the ocean and all distances are measured perpendicular to the baseline. The

measurements have been made every 2 months since August, 1991. The shoreline is

defined as the boundary between dry sand and wet sand along the beach visible on

the aerial photographs. Previous studies have indicated that erosion is mostly caused

by storms such as tropical storms or hurricanes. A separate data set containing storm

parameters such as wave height, wave time period, tide height etc is also available

from the Field Research Facility. This data has been collected at an offshore buoy a

few miles into the sea.

The erosion of the shoreline is determined by an increase in the distance of the

shoreline to the baseline and a decrease in this distance implies accretion. Here we

refer to the two processes of erosion and accretion as shoreline change. Shoreline

change could be thought of as being a function of the location on the shoreline and

time. We first need to model the spatial and temporal effects and the underlying

covariance structure, to be able to forecast the change in the position of the shoreline.

We use the non-parametric bootstrap method to obtain estimates and standard errors

of the parameters of the covariance structure of the process.

Bootstrap is a data based simulation method for statistical inference, which can be

used to compute measures of accuracy of statistical estimators. The basic idea involves

sampling with replacement from the original data to produce random samples. Each

of these samples is known as a bootstrap sample. From each bootstrap sample an

estimate of the parameter of interest is calculated. By repeating this process several

times information on the variability of the estimator can be obtained. In this thesis

we study resampling methods and propose a new bootstrapping method for spatial

data. This is a challenging problem for spatial data as it is difficult to resample and

preserve the correlation structure of the data, at the same time. We are also studying
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Figure 1.1: Pea Island
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the properties of the estimators for the mean and the semi-variogram. We also derive

asymptotic distributional properties of these estimators.

The Bootstrapping procedure as proposed by Efron is well established as a non-

parametric estimator of the variance of a statistic. This method assumes that the

observations are independent and identically distributed. This method has been ex-

tended by Efron and Tibshirani (Efron & Tibshirani 1993), to observations that are

no longer independent but, they require the fitting of a parametric model to the data

prior to the application of the bootstrap method. Since, fitting a model may not

always be possible this approach would break down for complicated data structures.

To demonstrate the inconsistency of the bootstrap Singh(1981) considered the

sample mean X̄n of X1, . . . , Xn, . Let E(X1) = µ and V ar(X1) = σ2 exist and

V ar(X̄n) =
σ2

n
+

2

n

m∑
t=1

Cov(X1, X1+t) (1.1)

then

(X̄n − µ)/[V ar(X̄n)]1/2 → N(0, 1) (1.2)

If X̄∗
n is the sample mean of the bootstrap sample X∗

1 , . . . , X
∗
n that are independent

and identically distributed under the empirical distribution function of X1, . . . , Xn

then

V ar∗(X̄∗
n) =

1

n2

n∑
i=1

(Xi − X̄n)2 (1.3)

and

(X̄∗
n − X̄n)/[V ar∗(X̄∗

n)]1/2 → N(0, 1) (1.4)

By the Strong Law of Large numbers for m-dependent data it can be shown that

1

n

n∑
t=1

(Xi − X̄n)2 → σ2 (1.5)

Therefore, the bootstrap variance estimator, V ar∗(X̄∗
n), of X̄n is inconsistent un-

less
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m∑
t=1

cov(X1, X1+t) = 0 (1.6)

An estimator is consistent when the bias and variance of the estimator tend to 0

as the sample size, n, tends to infinity.

To solve this problem of inconsistency several methods have been proposed and

some of them are discussed here in brief.

Carlstein (Carlstein 1986) proposed the use of sub-series of the data and calculat-

ing the statistic on each sub-series. Let, there be n data points and the sub- series

length be m then it is possible to have k =
[ n

m

]
− 1 non-overlapping sub-series or

blocks, that preserve the correlation structure of the data. Here,
[ n

m

]
is the greatest

integer not greater than
n

m
. Using these replicates of the estimate of the statistic

the bootstrap distribution function can be computed. The size of the sub-series and

the number of replicates play an important role in the bias and the variance of the

estimator. He showed that the variance increases with the number of replicates and

the size of the sub-series whereas, the bias decreases with the increasing sub-series

size. He concluded that this interaction of the variance and bias should yield an op-

timal sub-series length for a given n. For the case of a stationary AR(1) sequence he

showed that the optimal sub-series length is of the order of n
1
3 .

Kunsch (Kunsch 1989) and Liu and Singh (Liu & Singh 1992) proposed the moving

block bootstrap. Kunsch defined the moving block bootstrap as follows. Let there

be a sequence X1, . . . , XN of observations from a stationary process. Define blocks

of observations taken m at a time as Yi = (Xi, . . . , Xi+m−1), i = 1 . . . N − m + 1.

Construct the bootstrap sample by randomly selecting k blocks from Yi, i = 1 . . . N −
m+1. Now, the bootstrap statistic is constructed based on the empirical distribution

function obtained from the bootstrap sample. He also applied a similar procedure to

the Jackknife where blocks of m-tuples are down weighted or deleted, such that the

down weighted block is of length l. For the Jackknife he showed that the variance of

the jackknife estimator of the variance of the sample mean is significantly reduced by

using the moving block approach in comparison to using disjoint blocks.
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The first few observations and the last few observations have a lesser chance of

being selected in the moving block bootstrap procedure. To counter that Politis

and Romano (Politis & Romano 1992) suggested the circular block bootstrap. The

observations X1, . . . , XN are wrapped on a circle and then blocks are constructed by

choosing consecutive observations. Let, Yi = (Xi, . . . , Xi+m−1), i = 1 . . . N and define

Xi+m−1 ≡ X
(i+m−1)mod N .

Politis and Romano (Politis & Romano 1993) extended Kunsch’s approach by sug-

gesting the blocks of blocks resampling approach and it is briefly described as follows.

Consider, the sequence X1, . . . , XN . Let Bi,M,L be the sequence of M consecutive ob-

servations starting from (i−1)L+1: X(i−1)L+1, . . . , X(i−1)L+M where, M , L are integer

functions of N . Define, Ti,M,L = φ(Bi,M,L) where φ(.) is a function from RM → R.

For example, φ(Bi,M,L) =
(X(i−1)L+1+...+X(i−1)L+M )

M
.We now have the sequence Ti,M,L,

i = 1 . . . Q, where, Q =

[
N −M

L

]
+ 1. Now define Bj to be the block of b con-

secutive Ti,M,L’s starting from T(j−1)h+1,M,L i.e. Bj = T(j−1)h+1,M,L, . . . , T(j−1)h+b,M,L,

j = 1 . . . q, where, q =

[
Q− b

h

]
+ 1. This is effectively resampling whole blocks (of

size b) of blocks (of size M) of the original observations. Equivalently, this can be

thought of as resampling bigger blocks of size (b − 1)L + M of the observations Xi.

They further generalized this procedure from one dimension to n dimensions.

Hall (Hall 1985) suggested resampling methods for spatial patterns that are similar

to those described for the single dimension. Here the sampling elements are going to

be tiles that contain the pattern observed on a certain area. To construct a bootstrap

sample the domain is divided into regions, which could ideally be of any shape but

here we will take them to be rectangles of equal area. The pattern to be placed on

these sub-regions is selected randomly from a set of possible patterns. There are three

ways of doing this- Fixed tiles, Moving tiles and an extension to the moving tiles. For

the fixed tile approach the domain is divided into non-overlapping rectangular tiles

of equal area such that the area of a tile is equal to the area of a sub-region. The

patterns to be placed on the sub-regions are chosen randomly with replacement from

this set of tiles. In the moving tile approach instead of partitioning the domain into

non-overlapping regions the set of tiles is the set of all possible tiles of a specified area
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that can be constructed from the domain. Thus, this set of possible patterns is much

larger. If the domain were regarded as being a torus and the tiles chosen using the

moving tiles approach keeping this in mind then this would be similar to the circular

block bootstrap approach.

Another recent approach was given by Brieman (Brieman 1996) as a means for

improving the accuracy of estimators of functions θ(x) of data x = x1, x2, . . . , xN ,

θ̂(x) = arg min
θ(x)∈Θ

L(θ(x)).

The procedure is called “bootstrap aggregating” and is referred to using the acronym

”bagging”. Bagging predictors is a method for generating multiple versions of a

predictor and using these to get an aggregated predictor. The multiple versions are

formed by obtaining bootstrap replicates of the data and using these to calculate

the bagged estimator. The bagged estimator is calculated by either optimizing the

value of L(θ(x)) averaged over the resamples or averaging the resampled values of

θ̂. The bagged estimator would be either θ̂bagg(x) = arg min
θ(x)∈Θ

1

B

B∑

b=1

L(θ(xb)) or

θ̂bagg(x) =
1

B

B∑

b=1

θ̂(xb), where θ̂(xb) is the version of θ̂(x) computed from the bth

bootstrap sample. The objective function L(θ(x)) is a data based estimate of the

expected value of some functional such as the negative log-likelihood or some other

loss function. The stability of the procedure that is used to construct L(θ(x)) is a

critical factor in deciding whether bagging will improve accuracy. Improvements will

occur for unstable procedures when a small change in the bootstrap replicate results

in a large change in L(θ(x)).

In the bootstrapping procedures outlined earlier it is conceivable that additional

bias and variance were introduced into the samples because of placing dissimilar

blocks beside each other. To reduce the effect of the boundary between blocks we

are smoothing the observations on the boundary of each sub-region. The smoothing

is done by recomputing the value of the observations on the boundary as a weighted

average of neighbouring observations.

In chapter 2 we present a method to get a better estimate of the semi-variogram

using a bootstrap method with smoothing and we study the properties of the proposed
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estimators for the mean and semi-variogram. We also study asymptotic properties of

these estimators.

In chapter 3 results from Monte Carlo simulation studies to study the behaviour

of the estimator of the variogram in small samples are presented. Also results from a

numerical study conducted to study the behaviour of the mean squared error of the

proposed variogram estimator are presented.

In chapter 4 we present an analysis of the erosion data. Here we present a regres-

sion analysis, where we model the shoreline change by covariates that are functions

of storm parameters and other covariates like the sine and cosine functions to model

the periodicity (if present). We also include appropriate terms to model the AR

component if present. We analyze the residuals and model them using a parametric

model. Analysis of the residuals is important as this gives us valuable information

about the underlying covariance structure of the process. For instance if the errors

were assumed to be independent and identically distributed when they were actu-

ally correlated then this would affect computations of the variance and confidence

intervals. The method developed in chapter 2 is used to obtain empirical confidence

intervals for the empirical semi-variogram. We then fit a parametric model to the

empirical semi-variograms and obtain estimates for the parameters of the fitted para-

metric model. We compare predictions of the distance of shoreline to baseline from

our model, to observed data, and we also simulate the value of the process for time

points in the future and compare with results from other techniques in the literature.

To clearly explain the need for studying the residuals and understanding the un-

derlying covariance structure let us consider a simple example that is given by Cressie

(Cressie 1993). Let Z(1), . . . , Z(n) be independent and identically distributed (iid)

random variables from the Gaussian distribution with unknown mean µ and known

variance σ2. Then a two sided 95% confidence interval for µ is given by:(
Z̄ − 1.96σ/

√
n, Z̄ + 1.96σ/

√
n
)
. Now, instead of independent data suppose the data

are positively correlated with a correlation that decreases as the separation between

the data increases i.e. Cov(Z(i), Z(j)) = σ2ρ|i−j|, i, j = 1, . . . , n, 0 < ρ < 1. Based
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on this the variance of Z̄ can be calculated and is given by the following expression.

V ar(Z̄) = n−2

{
n∑

i=1

n∑
j=1

Cov(Z(i), Z(j))

}

=
σ2

n

[
1 + 2 {ρ/(1− ρ)} {1− (1/n)} − 2 {ρ/(1− ρ)}2 (1− ρ(n− 1))/n

]

Based on this variance a two sided 95% confidence interval for µ can be calcu-

lated. If for examples’ sake, we consider the following values for the parameters,

n = 10, ρ = 0.26 then we can easily see that this confidence interval for µ would

be
(
Z̄ − 2.485σ/

√
10, Z̄ + 2.485σ/

√
10

)
and the confidence interval based on the iid

assumption would be
(
Z̄ − 1.96σ/

√
10, Z̄ + 1.96σ/

√
10

)
. Thus the iid assumption

leads to a confidence interval that is too narrow.

Figure 1.2 gives a overview of the work.
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Objective: Model shoreline erosion
 and forecast erosion

Decompose erosion process into two additive
components: mean structure and errors

Model the
Mean Structure

Analyse residuals and
 model covariance structure

Model the effect of time and of
location along the coastline.

Use various covariates, some that
depend on the storm parameters and
others like sine and cosine functions.

Use the proposed bootstrap 
method to obtain estimates for 

empirical semi-variogram

Fit a parametric model to estimates
of empirical semi-variogram and get
estimates of parameters of model

Combine the two parts and
get a model for the process.
Use this model to forecast.

Figure 1.2: Overview
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Chapter 2

Proposed Method

2.1 Proposed Method

The method we are proposing is outlined below. Let the area of the region be A

and let the number of sub-regions be K, each of area A
K

. Construct blocks of area

A
K

from the region and sample K blocks with replacement from the set of all possible

blocks that can be constructed. Placing these K blocks on the K sub-regions would

give us a manifestation of the bootstrap surface. Now, we smooth the observations

by considering a neighbourhood around each observation and computing a weighted

average of the observations in this neighbourhood. Figures 2.1 through 2.4 explain

the method pictorially. Figure 2.2 shows the construction of blocks. The points

referenced by the two arrows indicate the two centers around which the blocks 1 and 2

are constructed. Figure 2.3 shows the construction of the surface using the resampled

blocks. Finally, Figure 2.4 shows the smoothing of observations by considering a

neighbourhood. The location being smoothed is labeled ‘s’ and its neighbourhood is

given by the square labeled nbd(s).
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Figure 2.1: Original surface
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Figure 2.2: Construction of blocks
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Figure 2.3: Reconstructed surface
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Figure 2.4: Smoothing

The amount of smoothing controls the behaviour of the estimators of statistics

along with the size of the sub-regions and the number of sub-regions. We are interested
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in obtaining the optimal amount of smoothing such that the mean squared error of

the estimator is minimized. In the limiting case each neighbourhood contains only

one observation and this corresponds to the traditional moving block bootstrap.

Let, Z(s) be the process defined over the domain D with area A where, s ∈ D.

Divide the domain into K sub-regions Di, i = 1 . . . K with area A
K

such that D =
K⋃

i=1

Di. Select points in D by random sampling with replacement that will serve as the

generating centers for the tiles. That is, using these points as the center we construct

the tiles of the specified size. In other words we are randomly sampling from the

set of all possible tiles that can be constructed from the domain, to maintain the

correlation structure of the data. Let there be Q possible tiles of area A
K

available

from the data.

Let {Bi : i = 1 . . . Q} be the set of all possible tiles.

Denote the value of the process Z(s) in tile Bj by Zj(s) when s ∈ Bj i.e.,

Z(s) = Zj(φj(s)), s ∈ Bj, j = 1 . . . Q (2.1)

where, φj(s) is a one-one transformation of the position coordinates of s to a frame

of reference local to the tile Bj.

Let Z∗(s), s ∈ D denote the process in the bootstrap sample.

Therefore,

Z∗(s) = Z∗
j (φj(s)) in the bootstrap sample in sub-region j

= Zm(φm(Fm(s))) for some m in the original sample

= Z(Fm(s))

Here, Fm(.) is a function that maps the location s in the bootstrap sample to the

location Fm(s) in the original sample, i.e., the value of the process that is observed

at the location s in the bootstrap sample is in reality observed at location Fm(s) in

the original sample.

Define,

Q?
j(s

′) =

{
Z∗

j (φj(s
′)) s′ ∈ Dj

0 otherwise
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Q?
j(s

′) =

{
Zm(φm(Fm(s′))) s′ ∈ Dj

0 otherwise
(2.2)

W ?
j (s′, s) =

{
w?

j (φj(s
′), φj(s)) s′ ∈ {Dj ∩ nbd(s)}
0 otherwise

(2.3)

where, w?
j (φj(s

′), φj(s)) is a weighting function that depends upon the relative dis-

tance of s′ from s. For example, the weighting function could be of the simple form:

w?
j (φj(s

′), φj(s)) = 1
φj(s′)−φj(s)

Further, we also also impose the condition

∑

s′∈D

K∑
j=1

W ?
j (s′, s) = 1 (2.4)

where, nbd(s) is defined as a square with s as the centroid and side of length r.

Suppose s is a location in sub-region m then, r = r(φm(s)) for some m, 1 ≤ m ≤ K.

Here, r could be an increasing function of the distance of s from the center of the

sub-region m, i.e., as the location s becomes closer to the boundary of the sub-region

m, the size of the neighbourhood of s becomes larger.

Thus, the smoothed process given by Z?(s), at a particular location s can be

expressed as a convolution of Q∗
j(s) and W ∗

j (s′, s)

Z?(s) =
∑

s′∈D

K∑
j=1

W ?
j (s′, s)×Q?

j(s
′) (2.5)

2.2 Results on Mean

In this section we present some properties of the proposed estimator of the sample

mean. Propositions 2.2.1 and 2.2.2 deal with the first two moments of the proposed

estimator of the sample mean. In proposition 2.2.3 we provide the bootstrap approx-

imation to the sampling distribution of the sample mean.
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2.2.1 Definitions and Notation

Here we provide some definitions and the notation that we will be using in the

rest of this section.

Let Z(s) be a process defined on a two dimensional regular lattice of size n×n. Let

Ei,M,L be the square consisting of the points s = (t1, t2) such that, (ik−1)lk+1 ≤ tk ≤
(ik − 1)lk + mk, k=1,2. Here i, M and L are vectors where, i = (i1, i2), M = (m1,m2)

and L = (l1, l2). Here, i1, i2, m1, m2, a, l1, l2, t1, t2 and n can take only integer values.

Let lk = 1 and mk = a for k=1,2 then ik ≤ tk ≤ ik + a− 1, k=1,2 and, if tk ≥ n then

tk = tk(mod)n. This means that each block has a×a points, and ik = 1 . . . Qk where,

Qk = n, k=1,2. Now, let Bi,M,L = {Z(s) : s ∈ Ei,M,L}={Zi,M,L(s), s ∈ Ei,M,L}. Once

we have the Bi,M,L which, is a square shaped tile, then, we can denote by s
(i,M,L)
uv ,

u = 1 . . . a, v = 1 . . . a the location characterized by (u,v) in the tile Ei,M,L. The

total number of the Bi,m,L blocks available from the data is Q1 × Q2 = n2 = N .

The weights, w∗
j (., .), are a function only of the locations and the distance between

them and not of the observed data values at those locations. The weights are being

calculated as if the surface were a torus, as this allows us to maintain the symmetry in

the weights. K blocks (or tiles) are selected randomly with replacement from the set

of all possible blocks {Bi,M,L, i = (i1, i2), i1 = 1 . . . n, , i2 = 1 . . . n} and then placed

on the K sub-regions, Dj, j = 1 . . . K.

Define,

Ti,M,L = b11Zi,M,L(s
(i,M,L)
11 ) + b12Zi,M,L(s

(i,M,L)
12 ) + . . . + baaZi,M,L(s(i,M,L)

aa ) (2.6)

Ti,M,L is a function of observations just in the block Bi,M,L.

Now,

bij =
1

a2

∑
s∈D

w∗
p(s

p
ij, s)I(nbd(s) contains sp

ij and sp
ij ∈ Dp) (2.7)

and

∑
s∈D

∑

sp
ij

K∑
p=1

w∗
p(s

p
ij, s)I(sp

ij ∈ nbd(s) ∩Dp) = N (2.8)
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The bij’s are the weights at a location sp
ij in sub-region p. The summation is taken

over all the locations s whose neighbourhoods contain sp
ij. Due to the regularity of

the lattice and the symmetry and regularity of the tiles the bij’s do not depend on

which sub-region is considered, and, so if Ti,M,L is viewed as a transformation of the

block Bi,M,L then this transformation is independent of i and the sub-region. Any

sub-region p has a2 locations characterized by sp
ij = (i, j) and the superscript is used

to denote the sub-region.

Define, blocks of Ti,M,L as Bj={Ti,M,L, i ∈ Ej,b,h}, where, Ej,b,h is the rectangle

consisting of the points (jk − 1)hk + 1 ≤ ik ≤ (jk − 1)hk + bk, jk = 1 . . . qk, k=1,2 and

j = (j1, j2), b = (b1, b2) and h = (h1, h2). Let h1 = h2 = 1 then jk ≤ ik ≤ jk +(bk−1),

jk = 1 . . . qk, k=1,2. Let T̄ ∗ be the average of all the Ti,M,L’s found in the resampled

blocks. Therefore, T̄ ∗ is the average of K ′(= lb), Ti,M,L’s, where, l=number of blocks

of Ti,M,L and b = b1b2 is the number of Ti,M,L in each block.

Define,

T ∗
i = b11Z

∗
i (s

(i)
11 ) + b12Z

∗
i (s

(i)
12 ) + . . . + baaZ

∗
i (s(i)

aa) (2.9)

,i = 1 . . . K ′.

then,

T̄ ∗ =
1

K ′

K′∑
i=1

T ∗
i (2.10)

Definition 2.2.1.1 (m-dependence) The random variables in the family {Z(s), s ∈
D} are said to be m-dependent if for all subsets C1 and C2 of D for which d(C1, C2) >

m, {Z(a), a ∈ C1} and {Z(b), b ∈ C2} are independent families. Here, d(C1, C2)=inf{||a−
b||, a ∈ C1, b ∈ C2} and ||a|| = max{|a1|, |a2|}

Definition 2.2.1.2 (Second order stationarity) A random process Z(s),s ∈ D is

said to be second order stationary(weakly stationary or stationary in the wide sense)

if

a) E(Z(s)) = µ, for all s ∈ D

b) Cov(Z(s), Z(t)) = C(s− t), for all s, t ∈ D.

The function C is known as the stationary covariance function.
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2.2.2 Assumptions

In the following section we make frequent use of these assumptions. We state the

assumptions here for quick reference and we justify the need of these assumptions as

needed in the following results.

A0 : Z(s) is a Gaussian, second order stationary and m-dependent process. E [Z(s)] =

µ and V ar [Z(s)] = σ2.

A1 : b →∞

The assumption [A0] simplifies all calculations involved. Assumption [A1] simply

stated implies that the number of Ti,M,L’s in a resampled block goes to infinity.

2.2.3 Main Results

In this section the main results are outlined and the proofs are presented in the

appendix. The main results presented in this section are the bootstrap approximation

of the sampling distribution of the sample mean and also results regarding the variance

of the bootstrap estimator.

Lemma 2.2.1 Under the assumption A0 E [Ti,M,L] = µ and E
[

1
N

∑
i Ti,M,L

]
= µ.

The next two results are useful when showing the result on the bootstrap approx-

imation of the sampling distribution of the sample mean that is given later in this

section.

Lemma 2.2.2 Assuming A0 and if p, δ, C are constants such that p is an integer

greater than 2, 0 < δ ≤ 2 and C > 0 then for any M

E
[|Ti,M,L|2p+δ

]
< C.

Lemma 2.2.3 Under the assumption A0, and using lemma 2.2.1 and 2.2.2 we have

that

√
N

(
T̄ − E

[
T̄

]) d→ N (0, σ2
∞) (2.11)

where, lim
N→∞

V ar
(
N

1
2 T̄

)
= σ2

∞.
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The following is a result regarding the variance of the sample mean for m-dependent

data that was established by Rosén(Rosén 1968).

Lemma 2.2.4 Under the assumption A0, Rosén(Rosén 1968) showed that

V ar
[
Z̄

]
=

1

N

∑

t=(t1,t2)
|t1|≤m,|t2|≤m

σ(t)

(
1− |t1|

n

)+ (
1− |t2|

n

)+

(2.12)

where, σ(t) = Cov(Z(s), Z(s + t)) and for i=1,2

(
1− ti

n

)+

=





0,
(
1− ti

n

)
< 0,

(
1− ti

n

)
, otherwise

Proposition 2.2.1 Under the assumption A0 it can be shown that E [Z?(s)] = µ

and E
[
Z̄?

]
= µ

Proposition 2.2.2 It can be shown that

V ar
[
Z̄?

]
= O

((
1− 1

K ′

)
V ar

[
Z̄

])
(2.13)

Using the previously proven results and using the results proven by Politis and Ro-

mano we give here a result regarding the bootstrap approximation of the sampling

distribution of the sample mean. To be able to use Politis and Romanos result we

need to make two additional assumptions: [A2]: b = o(N
2
3 ) and [A3]: b = o(K ′)

Proposition 2.2.3 Under the assumptions A0-A3 and using lemma2.2.1 - lemma2.2.3

the following result holds. Here, E∗ and V ar∗ are the expectation and variance under

the resampling probability P ∗.

sup
x

∣∣∣∣∣∣∣∣
P ∗



√

K ′ T̄ ∗ − E∗T̄ ∗
√

V ar∗
(√

K ′T̄ ∗
) ≤ x


− P

(√
N

Z̄ − µ

σ∞
≤ x

)
∣∣∣∣∣∣∣∣

p→ 0 (2.14)
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2.3 Variogram

In this section we present some properties of the proposed estimator of the semi-

variogram. We begin with some basic results that we will use later to prove other

results. The main results that we establish in this section are the order of the first

two moments of the proposed estimator of the variogram. We use these to calculate

the mean squared error of the proposed variogram estimator. We want to be able to

identify the optimal amount of smoothing so as to minimize the mean squared error

of the estimator, and in this connection we present results of a numerical study to

numerically find the optimal values for the smoothing parameter that minimize the

mean squared error in chapter 4. Here we also establish some results for the traditional

bootstrap estimator for the variogram. We make use of the results already proved by

Politis and Romano in their 1993 paper.

2.3.1 Definitions and Notation

Let Ei,M,L be the rectangular lattice consisting of the points s = (t1, t2) such that,

(ik − 1)lk + 1 ≤ tk ≤ (ik − 1)lk + mk, k=1,2. Let lk = 1 and mk = hk + 1 for k=1,2

then ik ≤ tk ≤ ik + hk, k=1,2. This means that each block has (h1 + 1) × (h2 + 1)

points, and ik = 1 . . . Qk where, Qk = n− hk, k=1,2. Note here that i, M ,L and h

are vectors where, M = (m1,m2), h=(h1, h2), L = (l1, l2) = (1, 1) and i = (i1, i2). So,

Bi,M,L = {Z(s) : s ∈ Ei,M,L}={Zi,M,L(s), s ∈ Ei,M,L}. The total number of the Bi,m,L

blocks available from the data is Q1×Q2 = |N(h)|, where |N(h)| is the number of pairs

in the set N(h)={(s, t) : s− t = h}. Define, blocks of Ti,M,L as Bj={Ti,M,L, i ∈ Ej,b,g},
where, Ej,b,g is the rectangle consisting of the points (jk−1)gk+1 ≤ ik ≤ (jk−1)gk+bk,

ik = ik(mod)Qk, k=1,2 and j = (j1, j2), b = (b1, b2) and g = (g1, g2). Let g1 = g2 = 1

then jk ≤ ik ≤ jk + (bk − 1), ik = ik(mod)Qk, k=1,2. The blocks of Ti,M,L, Bj, are

constructed by wrapping the Ti,M,L’s on a torus and then constructing rectangles of

size b1 by b2. Each block Bj has b=b1b2, Ti,M,L’s.

Let, Ti,M,L = (Zi,M,L(s)− Zi,M,L(s + h))2, where, s and s+h both are in Ei,M,L.Then

T̄ =sample variogram for lag h=(h1, h2).
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2.3.2 Assumptions

In the following section we make frequent use of these assumptions. The as-

sumptions are stated here for easy reference however, we justify the need for these

assumptions as we go along.

B0 : Z(s) is a Gaussian, second order stationary and m-dependent process. E [Z(s)] =

µ and V ar [Z(s)] = σ2.

B1 : b →∞

B2 : bK≈ |N(h)|

The assumption [B0] simplifies calculations. Further if a process is from a normal

distribution and is weakly stationary then together these imply that it is strongly

stationary. Strong stationarity is needed for some of the results that are presented in

the following section. The assumption [B1] implies that the number of Ti,M,L’s in the

resampled blocks goes to infinity, i.e. the block size goes to infinity.

2.3.3 Main Results

The first two results are properties of jointly normally distributed random variables

that come in handy when calculating higher order moments. The first result follows

easily from the second as can be seen in the proof of the results.

Lemma 2.3.1 Let X and Y be jointly normally distributed random variables with

zero means then, Cov [X2, Y 2] = 2 {Cov (X,Y )}2

Lemma 2.3.2 Let X1, X2, X3 and X4 be jointly normally distributed random vari-

ables with zero means then,

E [X1X2X3X4] = E [X1X2] E [X3X4] + E [X1X3] E [X2X4] + E [X1X4] E [X2X3]

Lemma 2.3.3 Assuming B0 and if p, δ, C are constants such that p is an integer

greater than 2, 0 < δ ≤ 2 and C > 0 then for any M

E
[|Ti,M,L|2p+δ

]
< C.
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The following result is similar to a result that was shown for the sample mean in

the previous section. This result is useful in establishing the bootstrap approximation

to the sampling distribution of the traditional block bootstrap variogram estimator,

that is given later in this section.

Lemma 2.3.4 Under the assumption B0, and using lemma 2.3.3 we have that

√
|N(h)| (T̄ − E

[
T̄

]) d→ N (0, σ2
∞) (2.15)

where, lim
|N(h)|→∞

V ar
(
|N(h)| 12 T̄

)
= σ2

∞.

Sample with replacement from the set {Bj} and get K blocks Bj. Then let T̄ ∗ be

the average of all the l = Kb observations Ti,M,L’s found in the resampled blocks. Let

E∗ and V ar∗ denote the expectation and variance under the resampling probability

P ∗. We know that

2 ̂γ∗ns(h) =
1

|N(h)|
∑

N(h)

(Z∗(s)− Z∗(t))

=
1

|N(h)|


∑

N(h)

K∑
i=1

(Z∗
i (s)− Z∗

i (t))2 I(s,t)∈Di

+
∑

N(h)

K∑
i=1,i

K∑

6=j=1

(
Z∗

i (s)− Z∗
j (t)

)2
I
(s∈Di) and t∈Dj)


 (2.16)

where, N(h)≡ {(s, t) : s− t = h }. The data are on a regular lattice and all the tiles

and the sub-regions have the same shape and size and b=number of pairs (s,t) in a

sub-region Di such that s − t = h (for a fixed lag h )=number of Ti,M,L’s in the

resampled block Bj . Then,

2 ̂γ∗ns(h) =
1

|N(h)|


bKT̄ ∗ +

∑

N(h)

K∑
i=1,i

K∑

6=j=1

(
Z∗

i (s)− Z∗
j (t)

)2
I
(s∈Di) and (t∈Dj)




(2.17)

Now, if we let h be small in comparison to the size of the block such that the number

of terms where s ∈ Di and t ∈ Dj for some i,j and i 6= j is negligible compared to
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|N(h)|, that is, in other words, bK≈ |N(h)| then we can say that

2 ̂γ∗ns(h) ≈ T̄ ∗ (2.18)

For the result of the following proposition to hold we need to make two additional

assumptions: [B3]: b = o(|N(h)| 23 ) and [B4]: b = o(l). These two assumptions are

needed to satisfy the requirements of a result proved by Politis and Romano (Politis

& Romano 1993), that we use in showing the following result.

Proposition 2.3.1 Under the assumptions B0-B4 and using lemmas 2.3.3 and 2.3.4

sup
x

∣∣∣∣P ∗
{√

l
T̄ ∗ − E∗T̄ ∗

V ar∗(
√

lT̄ ∗)
≤ x

}
− P

{√
|N(h)| T̄ − 2γ(h)

σ∞
≤ x

}∣∣∣∣
p→ 0 (2.19)

Proposition 2.3.2 Under the assumption B0

O

(
V ar( ̂γ∗s (h))

V ar( ̂γ∗ns(h))

)
= 1 (2.20)

With the intent of finding an optimal value for the smoothing parameter we now

study the mean squared error of the proposed variogram estimator. We are inter-

ested in finding an expression for the mean squared error for our proposed variogram

estimator. To do this we calculate the bias and the variance.

Construct the rectangle E i;M;L consisting of the points s = (s1, s2) such that

(ik − 1)lk + 1 ≤ sk ≤ (ik − 1)lk + mk, and if sk > n then sk = sk(mod)n, k=1,2. This

means that each rectangular tile has p = m1 ×m2 points and ik = 1 . . . Qk, Qk = n.

Here, M=(m1,m2), and L=(l1, l2) = (1, 1). The total number of rectangular tiles

that can be constructed are N = n× n. We sample with replacement from these N

tiles and select K tiles to place on the K sub-regions and reconstruct the surface. We

make some assumptions to simplify the calculations and they are stated below.

[B5]: We are considering pairs of locations (s, t) ∈ N(h) such that the same

sub-regions contain the neighbourhoods of s and t and further the neighbourhoods
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are contained in two sub-regions. That is we are ignoring those pairs of location

(s, t) where s and t belong to two different sub-regions or if the total number of sub-

regions spanned by the neighbourhoods of s and of t is greater than 2. If we let b

be the number of pairs (s, t) that belong to N(h) and are in some sub-region i then,

bK ≈ |N(h)|. Since, all the sub-regions are of the same size they contain the same

number of pairs (s, t).

[B6]: Z(s) is a gaussian process with mean 0 and variance σ2, Z(s) is m-dependent

and second order stationary.

[B7]: The number of tiles, N = n× n, that can be constructed from the domain,

goes to infinity.

[B8]: The sub-regions are of regular shape and size. The data is on a regular

lattice.

Assumption [B5] is a tenable assumption since we are interested in short lags. If

the lag is assumed to be small compared to the dimension of the sub-regions then

this assumption would be ok. For short lags the number of pairs that we are ignoring

is going to be negligible compared to the total number of pairs |N(h)|.
Assumptions [B6] and [B8] help in reducing the complexity of the calculations.

The total number of points in the domain is N = n×n and this is equal to Kp, where

K is the number of sub-regions that the domain can be sub-divided into and p is the

number of points in a sub-region.

Proposition 2.3.3 Using the set up described above and the assumptions [B5]-[B8]

we have the following results for the bias and the variance of the proposed estimator

of the variogram.

Bias =
1

|N(h)|
∑

(s,t)∈N(h)

(
σ2

1(s, t) + σ2
2(s, t)

)− 2γ(h) + o(
1

Kp
)

(2.21)
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V ar(2γ̂s(h)) =
2

|N(h)|2
∑

(s,t)∈N(h)

(
σ2

1(s, t) + σ2
2(s, t)

)2
+

1

|N(h)|2
∑

(s,t)6=(u,v)
(s,t)∈N(h)
(u,v)∈N(h)

H(s, t, u, v) + o(
1

K2p2
) + o(

1

K3p3
) (2.22)

where, σ2
1(s, t), σ2

2(s, t) are given in equations (2.84) and (2.88) respectively, and

H(s, t, u, v) is given by equations (2.110) or (2.111).

The bias expression in (2.21) can be written as :

Bias =
1

|N(h)|
∑

(s,t)∈N(h)

(
σ2

1(s, t)− 2γ(h)
)

+
1

|N(h)|
∑

(s,t)∈N(h)

σ2
2(s, t) + o(

1

Kp
)

σ2
2(s, t) is non-zero only for those pairs (s, t) ∈ N(h) for which either s or t or both

are on the boundary and are smoothed. If we let ρ be the percentage of smoothing

and let a(ρ)(⊂ N(h)) denote this set of pairs then,

Bias =
1

|N(h)|
∑

(s,t)∈N(h)

(
σ2

1(s, t)− 2γ(h)
)

+
1

|N(h)|
∑

(s,t)∈a(ρ)

σ2
2(s, t) + o(

1

Kp
)

The above bias is of the order of O(1) + O (ρ) + o
(

1
Kp

)
.

Consider, the jth sub-region in the bootstrap sample. For a location s in this sub-

region the value of the process at s is given by Z?
j (s) =

∑

s′∈D

K∑
i=1

Z∗
i (s′)w?

i (s
′, s)Ii(s

′, s),

where,

Ij(s
′, s) =





1, s′ ∈ nbd(s) ∩Dj,

0, otherwise

Z∗
j (s) can be expressed as being equal to

∑

s′∈D

Z∗
j (s′)w?

j (s
′, s)Ij(s

′, s) +
∑

s′∈D

K∑
i=1
i6=j

Z∗
i (s′)w?

i (s
′, s)Ii(s

′, s).

Let, |n(h)| be the number of pairs (s, t) ∈ N(h) that lie in the jth sub-region.

Considering, only those locations that are in the jth sub-region we suggest a correction

term for the bias as follows.
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Denote, the sum
∑

s′∈D

Z∗
j (s′)w?

j (s
′, s)Ij(s

′, s) by Z†
j (s). We propose the correction

term E





1

|n(h)|
∑

(s,t)∈n(h)

[
Z†

j (s)− Z†
j (t)

]2



 − 2γ(h) and this term depends only on

the value of the process in sub-region j. Since, the sub-regions are symmetrical and

identical and K|n(h)| = |N(h)| the above correction term is equivalent to

E





1

|N(h)|
∑

(s,t)∈N(h)

[
Z†

j (s)− Z†
j (t)

]2



− 2γ(h).

This correction term is subtracted from the bias to obtain the adjusted bias.

The need for a correction term to adjust the bias arises as the bias of the proposed

variogram estimator dominates the variance and thus controls the behaviour of the

mean squared error. We shall study the behaviour of the mean squared error as a

function of the amount of smoothing using a numerical study, to further illustrate

this, and we present the results of the numerical study in the following chapter.

Using this correction term the adjusted bias is easily calculated as follows.

Bias =
1

|N(h)|E




∑

(s,t)∈N(h)

[
(Z?(s)− Z?(t))2

]


−

1

|N(h)|E




∑

(s,t)∈N(h)

[
Z†

j (s)− Z†
j (t)

]2





(2.23)

The second term E

{[
Z†

j (s)− Z†
j (t)

]2
}

is equal to σ2
1(s, t) or σ2

2(s, t) depending

upon whether the pair (s,t) is in the sub-region j1 or j2. If we assume as before that

the sub-region j1 contains the locations s and t then the above expectation is equal

to σ2
1(s, t) where, σ2

1(s, t) is given in equation (2.84).

Therefore, the adjusted bias becomes equal to

1

|N(h)|
∑

(s,t)∈N(h)

σ2
2(s, t) + o

(
1

Kp

)
(2.24)

The adjusted bias given in (2.24) is of the order of O(ρ) + o
(

1
N

)
. So as the

smoothing increases the bias increases, and for no smoothing the bias is zero. This is
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in agreement with our understanding of the process as the existing estimator of the

variogram is an unbiased estimator. The variance given by the expression in (2.22)

can be written as:

2

|N(h)|2
∑

(s,t)∈N(h)−a(ρ)

(
σ2

1(s, t) + σ2
2(s, t)

)2
+

2

|N(h)|2
∑

(s,t)∈a(ρ)

(
σ2

1(s, t) + σ2
2(s, t)

)2

+
1

|N(h)|2
∑

(s,t) 6=(u,v)
(s,t)∈N(h)
(u,v)inN(h)

H(s, t, u, v) + o

(
1

K2p2

)
+ o

(
1

K3p3

)
(2.25)

The variance decreases as the smoothing increases. If we look at the expression in

(2.25) we see that as smoothing increases the number of terms in the set N(h)− a(ρ)

decrease and the number of terms in the set a(ρ) increase. When (s, t) ∈ N(h)−a(ρ)

then σ2
1(s, t)+σ2

2(s, t) = 2C(0)−2C(h) and when (s, t) ∈ a(ρ) then σ2
1(s, t)+σ2

2(s, t) <

2C(0)− 2C(h) . This implies that the variance decreases as the smoothing increases.

Using the expressions for the adjusted bias and the variance we can compute the

mean squared error.

MSE = Bias2 + Variance

=





1

|N(h)|
∑

(s,t)∈N(h)

σ2
2(s, t)





2

+ V ar(2γ̂s(h)) (2.26)

where, the expression for V ar(2γ̂s(h)) is given in equation (2.22).
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2.4 Appendix

Proof of lemma 2.2.1:

bij =
1

a2

∑
s∈D

w∗
p(s

p
ij, s)I(nbd(s) contains sp

ij and sp
ij ∈ Dp) (2.27)

We know that the sum of the weights over all locations in a neighbourhood equals 1.

Thus the sum of the weights over all the locations in the domain equals the number

of locations. We can write this as follows:

∑
s∈D

∑

sp
ij

K∑
p=1

w∗
p(s

p
ij, s)I(sp

ij ∈ nbd(s) ∩Dp) = N (2.28)

Now,

I(sp
ij ∈ nbd(s) ∩Dp) = I(sp

ij ∈ nbd(s))I(sp
ij ∈ Dp)

= I(nbd(s) contains sp
ij)I(sp

ij ∈ Dp) (2.29)

Using equations 2.28 and 2.29 we can work through the algebra as shown in the

following steps Then,

N =
∑
s∈D

∑

sp
ij

K∑
p=1

w∗
p(s

p
ij, s)I(sp

ij ∈ nbd(s) ∩Dp)

=
∑
s∈D

∑

sp
ij

K∑
p=1

w∗
p(s

p
ij, s)I(nbd(s) contains sp

ij)I(sp
ij ∈ Dp)

=
∑

sp
ij

K∑
p=1

I(sp
ij ∈ Dp)

∑
s∈D

w∗
p(s

p
ij, s)I(nbd(s) contains sp

ij)

=
∑

sp
ij

K∑
p=1

I(sp
ij ∈ Dp)bija

2

= Ka2[b11 + b12 + b13 + · · ·+ baa] (2.30)

to obtain

[b11 + b12 + b13 + · · ·+ baa] = N/(Ka2) = 1 (2.31)
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Using the above result we can show that
1

N

∑
i

Ti,M,L = Z̄ as shown in the fol-

lowing steps.

1

N

∑
i

Ti,M,L =
1

N

∑
i

[
b11Zi,M,L(s

(i,M,L)
11 ) + b12Zi,M,L(s

(i,M,L)
12 ) + · · ·

+baaZi,M,L(s(i,M,L)
aa )

]

=
1

N

[
b11

∑
i

Zi,M,L(s
(i,M,L)
11 ) + b12

∑
i

Zi,M,L(s
(i,M,L)
12 ) + · · ·

+baa

∑
i

Zi,M,L(s(i,M,L)
aa )

]

=
[
b11Z̄ + b12Z̄ + · · ·+ baaZ̄

]

= Z̄ (2.32)

Using the above results it is easy to show that E[Ti,M,L] = µ

E[Ti,M,L] = E
[
b11Zi,M,L(si,M,L

11 ) + b12Zi,M,L(si,M,L
12 ) + · · ·

+baaZi,M,L(si,M,L
aa )

]

= b11µ + b12µ + · · ·+ baaµ

= µ (2.33)

Proof of lemma 2.2.2:

V ar [Ti,M,L] =
a∑

i=1

b2
iiσ

2 +
∑

i,j 6=c,d

bijbcdCov
[
Zi,M,L(si,M,L

ij ), Zi,M,L(si,M,L
cd )

]

= σ2

a∑
i=1

b2
ii +

∑

i,j 6=c,d

bijbcdC
(
si,M,L

ij − si,M,L
cd

)

(2.34)

and using the fact that
a∑

i,j=1

bij = 1 and bij > 0 we can show that

V ar [Ti,M,L] = V ≤ σ2

(2.35)
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Therefore, Ti,M,L ∼ N(µ, V ), where, V is given by the expression in 2.34.

Now consider E
[|Ti,M,L|2p+δ

]
. For simplicity of notations sake denote Ti,M,L by

X.

Then,

E
[|X|2p+δ

]
=

∫ ∞

−∞
|x|2p+δfX(x) dx (2.36)

where, fX(x) is the density function of X.

Now,

|x|2p+δ ≤
{
|x|2p+2 |x| ≥ 1

1 |x| ≤ 1
(2.37)

Then,

E
[|X|2p+δ

]
=

∫ ∞

−∞
|x|2p+δfX(x) dx

=

∫ −1

−∞
|x|2p+δfX(x) dx +

∫ 1

−1

|x|2p+δfX(x) dx +

∫ ∞

1

|x|2p+δfX(x) dx

<

∫ ∞

−∞
|x|2p+2fX(x) dx + 1

= 1 + E
[|X|2p+2

]

(2.38)

Now, E [|X|2p+2] can be expressed as a function of µ and V and since, V < σ2 it

is easy to show that E [|X|2p+2] is less than some constant, C > 0.

Proof of lemma 2.2.3:

From lemma 2.2.4 we have the result for the variance of Z̄.

V ar
(
T̄
√

N
)

= V ar
(
Z̄
√

N
)

=
∑

t=(t1,t2)
|t1|≤m,|t2|≤m

σ(t)

(
1− |t1|

n

)+ (
1− |t2|

n

)+

(2.39)

Let lim
N→∞

V ar
(
T̄
√

N
)

= σ2. Sufficient conditions for the result of this lemma to

hold are the result of lemma 2.2.2, m-dependence and the variance condition that we
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discussed above. Using a result proved by Tikhomirov(Tikhomirov 1980) about the

central limit theorem for dependent data we can easily show that the conditions of

the result are satisfied and that the desired result follows.

Proof of lemma 2.2.4:

This result has been proved by Rosén(Rosén 1968).

Proof of proposition 2.2.1: Using conditional probabilities we first show that

E [Z∗(s)] = µ

E [Z∗(s)] = E
[
Z∗

j (φj(s))
]

= E
[
E

[
Z∗

j (φj(s)|Z(t), t ∈ D
]]

= E

[
E

[
N∑

i=1

Zi(φj(s))I(ith tile is chosen to be in the jth sub-region)

]]

= E

[
1

N

∑
s∈D

Z(s)

]

=
1

N
Nµ

= µ (2.40)

Using the above result we show that E
[
Z̄?

]
= µ

E
[
Z̄?

]
=

1

N
E

[∑
s∈D

∑

s′∈D

K∑
j=1

Z∗
j (s′)w∗

j (s, s
′)I(s′ ∈ nbd(s) ∩Dj)

]

=
µ

N

∑
s∈D

∑

s′∈D

K∑
j=1

w∗
j (s, s

′)I(s′ ∈ nbd(s) ∩Dj)

= µ (2.41)

Proof of Proposition 2.2.2:

V ar
[
Z̄?

]
= E

[
V ar

[
Z̄?|Z(s), s ∈ D

]]
+ V ar

[
E

[
Z̄?|Z(s), s ∈ D

]]
(2.42)

V ar
[
Z̄?|Z(s), s ∈ D

]
= V ar

[
T̄ ∗|Z(s), s ∈ D

]

=
1

K ′2V ar

[
K′∑
i=1

T ∗
i |Z(s), s ∈ D

]

(2.43)
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Since, the T ∗
i are independent and identical we can write

V ar
[
Z̄?|Z(s), s ∈ D

]
=

1

K ′V ar [T ∗
1 |Z(s), s ∈ D]

=
1

NK ′
∑

i=(i1,i2)
i1=1···n
i2=1···n

[
T i,M,L − T̄

]2

=
1

NK ′
∑

i=(i1,i2)
i1=1···n
i2=1···n

[
T i,M,L − Z̄

]2
(2.44)

So,

V ar
[
Z̄?

]
= V ar

[
Z̄

]
+ E




1

NK ′
∑

i=(i1,i2)
i1=1···n
i2=1···n

[
T i,M,L − Z̄

]2




(2.45)

E




1

NK ′
∑

i=(i1,i2)
i1=1···n
i2=1···n

[
T i,M,L − Z̄

]2




= E
1

NK ′




∑

i=(i1,i2)
i1=1···n
i2=1···n

(
T 2
i,M,L

)



− E

1

NK ′
[
N(Z̄)2

]

=
1

K ′E
[
T 2

1,M,L

]− 1

K ′a4
E

[
(Z̄)2

]
(2.46)

E
[
T 2

1,M,L

]
= V ar [T1,M,L] + µ2

= µ2 +
∑

(p,q)

b2
pqσ

2 +
∑

(p,q)6=(r,s)

bpqbrsC(s1,M,L
pq − s1,M,L

rs ) (2.47)

where, 1 ≤ p,q,r,s ≤ a.

E
[
Z̄2

]
= V ar

[
Z̄

]
+

(
EZ̄

)2

= V ar
[
Z̄

]
+ µ2 (2.48)
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Therefore,

V ar
[
Z̄?

]
= V ar

[
Z̄

]
+

1

K ′


µ2 +

∑

(p,q)

b2
pqσ

2 +
∑

(p,q)6=(r,s)

bpqbrsC(s1,M,L
pq − s1,M,L

rs )




− 1

K ′
[
V ar

[
Z̄

]
+ µ2

]

= (1− 1

K ′ )V ar
[
Z̄

]
+

1

K ′


∑

(p,q)

b2
pqσ

2 +
∑

(p,q)6=(r,s)

bpqbrsC(s1,M,L
pq − s1,M,L

rs )




(2.49)

The second term of the above sum goes to 0 as K ′ → ∞. Thus, from here we can

say that V ar
[
Z̄?

]
= O

(
(1− 1

K′ )V ar
[
Z̄

])
.

Proof of Proposition 2.2.3:

This result can be proved by using assumptions [A0] through [A3], lemmas 2.2.1,

2.2.2 and 2.2.3 and using Theorem 4 of Politis and Romano’s (Politis & Romano

1993) paper.

Proof of lemma 2.3.1 and 2.3.2:

To prove lemma 2.3.1 we first need to prove lemma 2.3.2.

E [X1X2X3X4] =
∂4

∂u1∂u2∂u3∂u4

ϕX1,X2,X3,X4(0, 0, 0, 0) (2.50)

where, ϕX1,X2,X3,X4(0, 0, 0, 0) is the joint characteristic function of X1, X2, X3 and

X4.

ϕX1,X2,X3,X4(u1, u2, u3, u4) = exp{−1

2

4∑
i,j=1

u1u2E [XiXj]} (2.51)

Let ϕ denote the right hand side of equation 2.50 and define Li =
∑4

j=1 ujE [XiXj]
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then

∂ϕ

∂u1

= −ϕL1

∂2ϕ

∂u1∂u2

= {L1L2 − E [X1X2]}ϕ
∂3ϕ

∂u1∂u2∂u3

= {−L1L2L3 + L3E [X1X2] + L2E [X1X3] + L1E [X2X3]}ϕ
∂4ϕ

∂u1∂u2∂u3∂u4

= {L1L2L3L4 − L1L2E [X3X4]− L1L3E [X2X4]

−L1L4E [X2X3]− L2L3E [X1X4]− L2L4E [X1X3]

−L3L4E [X1X2] + E [X1X2] E [X3X4] + E [X1X3] E [X2X4]

+E [X1X4] E [X2X3]}ϕ
(2.52)

From equations 2.50 and 2.52 we get the desired result given in lemma 2.3.2.

Now,

Cov [X1X2, X3X4] = E [X1X2X3X4]− E [X1X2] E [X3X4] (2.53)

Using the result of lemma 2.3.2 in the above equation we get that

Cov [X1X2, X3X4] = E [X1X3] E [X2X4] + E [X1X4] E [X2X3]

= Cov [X1, X3] Cov [X2, X4] + Cov [X1, X4] Cov [X2, X3]

(2.54)

Now using the above equation if we let X1 = X2 and X3 = X4, we can easily see that

Cov
[
X2

1 , X2
3

]
= 2{Cov [X1, X3]}2 (2.55)

thus proving lemma 2.3.1.

Proof of lemma 2.3.3:

Let X denote the quantity Zi,M,L(s)−Zi,M,L(s + h). Then it is easy to show that

X ∼ N(0, 2σ2 − 2C(h)).

Now consider E
[|Ti,M,L|2p+δ

]
.
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E
[|Ti,M,L|2p+δ

]
= E

[|X|2(2p+δ)
]

= E
[
X2(2p+δ)

]

(2.56)

and as in the proof of lemma 2.2.2 we can show that this expectation is less than a

constant quantity, since, σ2 − C(h) < σ2.

Proof of lemma 2.3.4: Davis and Borgman(Davis & Borgman 1982) have shown

that the Ti,M,L are m + |h|-dependent, where |h| denotes the length of h. Also Ti,M,L

are stationary since, Z(s) are stationary(since, Z(s) are weakly stationary and are

normally distributed).

Further, they also showed that under the assumptions [B0] and [B5],

V ar(
T̄

2
) = V ar(γ̂(h)) =

1

|N(h)|
∑

i=(i1,i2)
|i1|,|i2|≤(m+|h|)

σ(i)

(
1− |i1|

Q1

)+ (
1− |i2|

Q2

)+

(2.57)

where, σ(i) = Cov(T1,M,L, T1+i,M,L)

Then

V ar(

√
|N(h)|
2

T̄ ) =
∑

i=(i1,i2)
|i1|,|i2|≤(m+|h|)

σ(i)

(
1− |i1|

Q1

)+ (
1− |i2|

Q2

)+

(2.58)

E
[
T

]
= 2γ(h) by the definition of γ(h). Let lim

|N(h)|→∞
V ar(

√
N(h)T̄ ) = σ2

∞ then

using the same method as outlined in the proof of lemma 2.2.3 we can show that

√
|N(h)| (T − E

[
T

]) d→ N (0, σ2
∞) (2.59)

Proof of Proposition 2.3.1:

Using the result of lemma 2.3.3 and lemma 2.3.4 and assumptions [B0] - [B4] the

result of this proposition follows directly from an application of theorem 4 of Politis

and Romano (Politis & Romano 1993).

Proof of Proposition 2.3.2:
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Consider the difference of the variograms, 2 ̂γ∗ns(h)− 2 ̂γ∗s (h)

2 ̂γ∗ns(h)− 2 ̂γ∗s (h)

=
1

|N(h)|
∑

N(h)

(Z∗(s)− Z∗(t))2

− 1

|N(h)|
∑

N(h)

[∑

s′∈D

K∑
j=1

Z∗
j (s)w∗

j (s
′, s)I(s′,nbd(s)∩Dj) −

∑

t′∈D

K∑
j=1

Z∗
j (t)w∗

j (t
′, t)I(t′,nbd(t)∩Dj)

]2

(2.60)

For ease of notation let us define

I1 = I(s′,nbd(s)∩Dj) =





1, s′ ∈ nbd(s) ∩Dj,

0, otherwise

and

I2 = I(t′,nbd(t)∩Dj) =





1, s′ ∈ nbd(t) ∩Dj,

0, otherwise

Then we can write the above equation as

2 ̂γ∗ns(h)− 2 ̂γ∗s (h)

=
1

|N(h)|
∑

N(h)[
Z∗(s)− Z∗(t)−

∑

s′∈D

K∑
j=1

Z∗
j (s′)w∗

j (s
′, s)I1 +

∑

t′∈D

K∑
j=1

Z∗
j (t′)w∗

j (t
′, t)I2

]

×
[
Z∗(s)− Z∗(t) +

∑

s′∈D

K∑
j=1

Z∗
j (s)w∗

j (s
′, s)I1 −

∑

t′∈D

K∑
j=1

Z∗
j (t′)w∗

j (t
′, t)I2

]

(2.61)

Now, consider

∣∣∣∣∣Z
∗(s)− Z∗(t)−

∑

s′∈D

K∑
j=1

Z∗
j (s′)w∗

j (s
′, s)I1 +

∑

t′∈D

K∑
j=1

Z∗
j (t′)w∗

j (t
′, t)I2

∣∣∣∣∣
(2.62)
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Here,

Z∗(s), Z∗(t), Z∗
j (t′), Z∗

j (s′) and Z∗
j (t′) ≤ maxs∈D |Z(s)|,

0 ≤ w∗
j (s

′, s), w∗
j (t

′, t) ≤ 1

Therefore,
∣∣∣∣∣Z

∗(s)− Z∗(t)−
∑

s′∈D

K∑
j=1

Z∗
j (s′)w∗

j (s
′, s)I1 +

∑

t′∈D

K∑
j=1

Z∗
j (t′)w∗

j (t
′, t)I2

∣∣∣∣∣

≤ |Z∗(s)|+ |Z∗(t)|+
∣∣∣∣∣
∑

s′∈D

K∑
j=1

Z∗
j (s′)w∗

j (s
′, s)I1

∣∣∣∣∣ +

∣∣∣∣∣
∑

t′∈D

K∑
j=1

Z∗
j (t′)w∗

j (t
′, t)I2

∣∣∣∣∣
≤ 2(r + 1) max

s∈D
|Z(s)| (2.63)

Similarly,
∣∣∣∣∣Z

∗(s)− Z∗(t) +
∑

s′∈D

K∑
j=1

Z∗
j (s′)w∗

j (s
′, s)I1 −

∑

t′∈D

K∑
j=1

Z∗
j (t′)w∗

j (t
′, t)I2

∣∣∣∣∣

≤ |Z∗(s)|+ |Z∗(t)|+
∣∣∣∣∣
∑

s′∈D

K∑
j=1

Z∗
j (s′)w∗

j (s
′, s)I1

∣∣∣∣∣ +

∣∣∣∣∣
∑

t′∈D

K∑
j=1

Z∗
j (t′)w∗

j (t
′, t)I2

∣∣∣∣∣
≤ 2(r + 1) max

s∈D
|Z(s)| (2.64)

Here, r is the number of points in the neighbourhood of s.

Therefore,

∣∣∣2 ̂γ∗ns(h)− 2 ̂γ∗s (h)
∣∣∣ ≤ 4(r + 1)2

(
max
s∈D

|Z(s)|
)2

(2.65)

From this we get that

̂γ∗ns(h)− 2(r + 1)2

(
max
s∈D

|Z(s)|
)2

≤ ̂γ∗s (h) ≤ ̂γ∗ns(h) + 2(r + 1)2

(
max
s∈D

|Z(s)|
)2

(2.66)

V ar

[
̂γ∗ns(h)− 2(r + 1)2

(
max
s∈D

|Z(s)|
)2

]
≤ V ar

[ ̂γ∗s (h)
]

≤ V ar

[
̂γ∗ns(h) + 2(r + 1)2

(
max
s∈D

|Z(s)|
)2

]

(2.67)
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⇒

V ar
[ ̂γ∗ns(h)

]
+ V ar

[
2(r + 1)2

(
max
s∈D

|Z(s)|
)2

]

− 2Cov

(
̂γ∗ns(h), 2(r + 1)2

(
max
s∈D

|Z(s)|
))

≤ V ar
[ ̂γ∗s (h)

]
≤ V ar

[ ̂γ∗ns(h)
]
+

V ar

[
2(r + 1)2

(
max
s∈D

|Z(s)|
)2

]
+ 2Cov

(
̂γ∗ns(h), 2(r + 1)2

(
max
s∈D

|Z(s)|
))

(2.68)

∣∣∣∣Cov

(
̂γ∗ns(h), 2(r + 1)2

(
max
s∈D

|Z(s)|
))∣∣∣∣ ≤

√√√√V ar
[ ̂γ∗ns(h)

]
V ar

[
2(r + 1)2

(
max
s∈D

|Z(s)|
)2

]
(2.69)

It is not difficult to show that if MN = max
s∈D

|Z(s)| then under the assumption

[B0]

P (aN(MN − bN) ≤ x) → e−e−x

for some constants aN and bN (2.70)

Therefore, O


 V ar

[ ̂γ∗s (h)
]

V ar
[ ̂γ∗ns(h)

]

 = 1.

Proof of proposition 2.3.3:

We first calculate the variance of the estimator.

V ar(2γ̂?
s (h)) = V ar


 1

|N(h)|
∑

(s,t)∈N(h)

(Z?(s)− Z?(t))2




=
1

N(h)2

∑

(s,t)∈N(h)

V ar
(
(Z?(s)− Z?(t))2)

+
1

N(h)2

∑

(s,t)6=(u,v)
(s,t)∈N(h)
(u,v)∈N(h)

Cov
[
(Z?(s)− Z?(t))2 , (Z?(u)− Z?(v))2]

(2.71)
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Here, N(h) = {(s, t) : s ∈ D, t ∈ D and |s− t| = h} and |N(h)| is the number of

pairs in the set N(h). Consider the variance term V ar
[
(Z?(s)− Z?(t))2].

V ar
(
(Z?(s)− Z?(t))2) = E

[
(Z?(s)− Z?(t))4]− {

E
[
(Z?(s)− Z?(t))2]}2

(2.72)

Conditioning on the data the first expectation can be written as follows:

E
[
(Z?(s)− Z?(t))4

]

= E

{
E

[
(Z?(s)− Z?(t))4|Z(s)

]}

= E



E




(∑

s′∈D

K∑
j=1

Z∗
j (s′)w∗

j (s
′, s)Ij(s

′, s)−
∑

t′∈D

K∑
j=1

Z∗
j (t′)w∗

j (t
′, t)Ij(t

′, t)

)4 |Z(s)








(2.73)

where,

Ij(s
′, s) =





1, s′ ∈ nbd(s) ∩Dj,

0, otherwise

and

Ij(t
′, t) =





1, t′ ∈ nbd(t) ∩Dj,

0, otherwise

Using [B5] we can rewrite the quantity whose expected value we seek in the fol-

lowing manner. Let j1 and j2 be the two sub-regions that contain the neighbourhoods

of s and t. Without any loss of generality we assume that j1 is the sub-region that

contains the two locations s and t as well.
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(∑

s′∈D

K∑
j=1

Z∗
j (s′)w∗

j (s
′, s)Ij(s

′, s)−
∑

t′∈D

K∑
j=1

Z∗
j (t′)w∗

j (t
′, t)Ij(t

′, t)

)4

=

[(∑

s′∈D

Z∗
j1

(s′)w∗
j1

(s′, s)Ij1(s
′, s)−

∑

t′∈D

Z∗
j1

(t′)w∗
j1

(t′, t)Ij1(t
′, t)

)

+

( ∑

s′′′∈D

Z∗
j2

(s′′′)w∗
j2

(s′′′, s)Ij2(s
′′′, s)−

∑

t′′′∈D

Z∗
j2

(t′′′)w∗
j2

(t′′′, t)Ij2(t
′′′, t)

)]4

= (A∗(s′, s, j1)− A∗(t′, t, j1))
4
+ (A∗(s′′′, s, j2)− A∗(t′′′, t, j2))

4

+ 6 (A∗(s′, s, j1)− A∗(t′, t, j1))
2 (

A∗(s′′′, s, j2)
∗ − A∗(t′′′, t, j2)

)2

+ 4 (A∗(s′, s, j1)− A∗(t′, t, j1))
3
(A∗(s′′′, s, j2)− A∗(t′′′, t, j2))

+ 4 (A∗(s′, s, j1)− A∗(t′, t, j1)) (A∗(s′′′, s, j2)− A∗(t′′′, t, j2))
3

(2.74)

where,

A∗(s′, s, j1) =

(∑

s′∈D

Z∗
j1

(s′)w∗
j1

(s′, s)Ij1(s
′, s)

)
(2.75)

Using the expanded from given in equation (2.74) the conditional expectation can

be written as

E



E




(∑

s′∈D

K∑
j=1

Z∗
j (s′)w∗

j (s
′, s)Ij(s

′, s)−
∑

t′∈D

K∑
j=1

Z∗
j (t′)w∗

j (t
′, t)Ij(t

′, t)

)4 |Z(s)








= E
{

E
[[

(A∗(s′, s, j1)− A∗(t′, t, j1))
4
+ (A∗(s′′′, s, j2)− A∗(t′′′, t, j2))

4
(2.76)

+ 6 (A∗(s′, s, j1)− A∗(t′, t, j1))
2
(A∗(s′′′, s, j2)− A∗(t′′′, t, j2))

2

+ 4 (A∗(s′, s, j1)− A∗(t′, t, j1))
3
(A∗(s′′′, s, j2)− A∗(t′′′, t, j2)) (2.77)

+ 4 (A∗(s′, s, j1)− A∗(t′, t, j1)) (A∗(s′′′, s, j2)− A∗(t′′′, t, j2))
3
]|Z(s)

]}

(2.78)

Utilizing the fact that there are N tiles to choose from the above expectation can

be evaluated as shown below. We will evaluate the expectation term by term.
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E

{
E

[
(A∗(s′, s, j1)− A∗(t′, t, j1))

4 |Z(s)

]}
= E

{
1

N

N∑
i1=1

[A(s′, s, i1)− A(t′, t, i1)]
4

}

(2.79)

where,

A(s′, s, i1) =
∑

s′∈D

Zi1(s
′)w∗

j1
(s′, s)Ij1(s

′, s)

(2.80)

Using [B6] we can easily see that (A(s′, s, i1)− A(t′, t, i1)) ∼ Normal with 0 mean

and variance given by the following expression.

V ar [A(s′, s, i1)− A(t′, t, i1)] = V ar [A(s′, s, i1)] + V ar [A(t′, t, i1)]

−2Cov (A(s′, s, i1), A(t′, t, i1)) (2.81)

V ar (A(s′, s, i1)) =
∑

s′∈D

V ar
(
Zi1(s

′)w∗
j1

(s′, s)Ij1(s
′, s)

)
+

∑

s′ 6=s′′
s′∈D
s′′∈D

Cov
(
Zi1(s

′)w∗
j1

(s′, s)Ij1(s
′, s), Zi1(s

′′)w∗
j1

(s′′, s)Ij1(s
′′, s)

)

(2.82)

Similarly,

V ar (A(t′, t, i1)) =
∑

t′∈D

V ar
(
Zi1(t

′)w∗
j1

(t′, t)Ij1(t
′, t)

)
+

∑

t′ 6=t′′
t′∈D
t′′∈D

Cov
(
Zi1(t

′)w∗
j1

(t′, t)Ij1(t
′, t), Zi1(t

′′)w∗
j1

(t′′, t)Ij1(t
′′, t)

)

(2.83)

and now combining these we get the variance of (A(s′, s, i1)− A(t′, t, i1)) which we
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denote by σ2
1(s, t)

σ2
1(s, t) = σ2

[∑

s′∈D

(
w∗

j1
(s′, s)

)2
Ij1(s

′, s) +
∑

t′∈D

(
w∗

j1
(t′, t)

)2
Ij1(t

′, t)

]
+

∑

s′ 6=s′′
s′∈D
s′′∈D

C (s′ − s′′) w∗
j1

(s′, s)w∗
j1

(s′′, s)Ij1(s
′, s)Ij1(s

′′, s) +

∑

t′ 6=t′′
t′∈D
t′′∈D

C (t′ − t′′) w∗
j1

(t′, t)w∗
j1

(t′′, t)Ij1(t
′, t)Ij1(t

′′, t)−

∑

s′∈D
t′∈D

2C (s′ − t′) w∗
j1

(s′, s)w∗
j1

(t′, t)Ij1(s
′, s)Ij1(t

′, t) (2.84)

Using Stein’s lemma it is easy to show that

E
[
(A(s′, s, i1)− A(t′, t, i1))

4
]

= 3σ4
1(s, t) (2.85)

Note that this variance doesn’t depend upon the tile index i1 . Using this expres-

sion and equation (2.79) we can now say that

E

{
E

[
(A∗(s′, s, j1)− A∗(t′, t, j1))

4 |Z(s)

]}
= 3σ4

1(s, t) (2.86)

Similarly we can show that

E

{
E

[
(A∗(s′, s, j2)− A∗(t′, t, j2))

4 |Z(s)

]}
= 3σ4

2(s, t) (2.87)

where,

σ2
2(s, t) = σ2

[ ∑

s′′′∈D

(
w∗

j2
(s′′′, s)

)2
Ij2(s

′′′, s) +
∑

t′′′∈D

(
w∗

j2
(t′′′, t)

)2
Ij2(t

′′′, t)

]
+

∑

s′′′ 6=s′′′′
s′′′∈D
s′′′′∈D

C (s′′′ − s′′′′) w∗
j2

(s′′′, s)w∗
j2

(s′′′′, s)Ij2(s
′′′, s)Ij2(s

′′′′, s) +

∑

t′′′ 6=t′′′′
t′′′∈D
t′′′′∈D

C (t′′′ − t′′′′) w∗
j2

(t′′′, t)w∗
j2

(t′′′′, t)Ij2(t
′′′, t)Ij2(t

′′′′, t)−

∑

s′′′∈D
t′′′∈D

2C (s′′′ − t′′′) w∗
j2

(s′′′, s)w∗
j2

(t′′′, t)Ij2(s
′′′, s)Ij2(t

′′′, t) (2.88)
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Now let us find an expression for

E
[
(A∗(s′, s, j1)− A∗(t′, t, j1))

2
(A∗(s′′′, s, j2)− A∗(t′′′, t, j2))

2
]

E

{
E

[
(A∗(s′, s, j1)− A∗(t′, t, j1))

2
(A∗(s′′′, s, j2)− A∗(t′′′, t, j2))

2 |Z(s)

]}

= E

{
1

N2

[
N∑

i1=1

(A(s′, s, i1)− A(t′, t, i1))
2

][
N∑

i2=1

(A(s′′′, s, i2)− A(t′′′, t, i2))
2

]}

=
1

N2

N∑
i1=1

N∑
i2=1

E
[
(A(s′, s, i1)− A(t′, t, i1))

2
(A(s′′′, s, i2)− A(t′′′, t, i2))

2
]

=
1

N2

N∑
i1=1

N∑
i2=1

{
Cov

(
(A(s′, s, i1)− A(t′, t, i1))

2
, (A(s′′′, s, i2)− A(t′′′, t, i2))

2
)

+E (A(s′, s, i1)− A(t′, t, i1))
2
E (A(s′′′, s, i2)− A(t′′′, t, i2))

2
}

=
1

N2

N∑
i1=1

N∑
i2=1

{
2 [Cov ((A(s′, s, i1)− A(t′, t, i1)) , (A(s′′′, s, i2)− A(t′′′, t, i2)))]

2

+E (A(s′, s, i1)− A(t′, t, i1))
2
E (A(s′′′, s, i2)− A(t′′′, t, i2))

2
}

(2.89)

It is easy to show that the term

1

N2

N∑
i1=1

N∑
i2=1

{
2 [Cov ((A(s′, s, i1)− A(t′, t, i1)) , (A(s′′′, s, i2)− A(t′′′, t, i2)))]

2
}

is o( 1
N

).

If we fix i1 then let there be N1 terms (A(s′′′, s, i2)− A(t′′′, t, i2)) such that the above

covariance is non-zero. Then we can bound this sum of covariances by
2

N2
NN1V ar ((A(s′, s, i1)− A(t′, t, i1))) V ar ((A(s′′′, s, i2)− A(t′′′, t, i2))). Since, the

variances are finite and N1 is finite this bound goes to 0 as N →∞.

The term
1

N2

N∑
i1=1

N∑
i2=1

{
E (A(s′, s, i1)− A(t′, t, i1))

2
E (A(s′′′, s, i2)− A(t′′′, t, i2))

2
}

is equal to the quantity σ2
1(s, t)σ

2
2(s, t).

Therefore,

E
[
6 (A∗(s′, s, j1)− A∗(t′, t, j1))

2
(A∗(s′′′, s, j2)− A∗(t′′′, t, j2))

2
]

= 6σ2
1(s, t)σ

2
2(s, t)

(2.90)
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Let us now consider the term

E

{
E

[
(A∗(s′, s, j1)− A∗(t′, t, j1))

3
(A∗(s′′′, s, j2)− A∗(t′′′, t, j2))|Z(s)

]}
.

E

{
E

[
(A∗(s′, s, j1)− A∗(t′, t, j1))

3
(A∗(s′′′, s, j2)− A∗(t′′′, t, j2))|Z(s)

]}

=
1

N2
E

{[
N∑

i1=1

(A(s′, s, i1)− A(t′, t, i1))
3

][
N∑

i2=1

(A(s′′′, s, i2)− A(t′′′, t, i2))

]}

=
1

N2

N∑
i1=1

N∑
i2=1

E
[
(A(s′, s, i1)− A(t′, t, i1))

3
(A(s′′′, s, i2)− A(t′′′, t, i2))

]

(2.91)

Using lemma 2.3.2 here since, A(s′, s, i1)−A(t′, t, i1) and A(s′′′, s, i2)−A(t′′′, t, i2) are

jointly normally distributed we can write the last line of the above equation as

=
1

N2

N∑
i1=1

N∑
i2=1

{
3E

[(
A(s′, s, i1)− A(t′, t, i1)

)2
]
×

E
[
(A(s′, s, i1)− A(t′, t, i1)) (A(s′′′, s, i2)− A(t′′′, t, i2))

]}

=
1

N2

N∑
i1=1

N∑
i2=1

{
3E

[(
A(s′, s, i1)− A(t′, t, i1)

)2
]
×

Cov

((
A∗(s′, s, i1)− A∗(t′, t, i1)

)
,
(
A∗(s′′′, s, i2)− A∗(t′′′, t, i2)

))}

(2.92)

By a similar argument as that used for the previous term, we can show that this

quantity is o

(
1

N

)
.

So,

E

{
E

[
4
(
A∗(s′, s, j1)− A∗(t′, t, j1)

)3(
A∗(s′′′, s, j2)− A∗(t′′′, t, j2)

)|Z(s)

]}

is o

(
1

N

)
(2.93)
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And similarly for the remaining term, we can show that

E

{
E

[
4
(
A∗(s′, s, j1)− A∗(t′, t, j1)

)(
A∗(s′′′, s, j2)− A∗(t′′′, t, j2)

)3|Z(s)

]}

is o

(
1

N

)
(2.94)

Combining everything from equations (2.86), (2.87), (2.90) ,(2.93) and (2.94) we

get that

E




(∑

s′∈D

K∑
j=1

Z∗
j (s′)w∗

j (s
′, s)Ij(s

′, s)−
∑

t′∈D

K∑
j=1

Z∗
j (t′)w∗

j (t
′, t)Ij(t

′, t)

)4



= 3σ4
1(s, t) + 3σ4

2(s, t) + 6σ2
1(s, t)σ

2
2(s, t) + o

(
1

N

)

(2.95)

Next let us consider the second term in the expression in (2.72).

E




(∑

s′∈D

K∑
j=1

Z∗
j (s′)w∗

j (s
′, s)Ij(s

′, s)−
∑

t′∈D

K∑
j=1

Z∗
j (t′)w∗

j (t
′, t)Ij(t

′, t)

)2



= E



E




(∑

s′∈D

K∑
j=1

Z∗
j (s′)w∗

j (s
′, s)Ij(s

′, s)−
∑

t′∈D

K∑
j=1

Z∗
j (t′)w∗

j (t
′, t)Ij(t

′, t)

)2 |Z(s)








= E
{

E
[
(A∗(s′, s, j1)− A∗(t′, t, j1))

2
+ (A∗(s′′′, s, j2)− A∗(t′′′, t, j2))

2

+2 (A∗(s′, s, j1)− A∗(t′, t, j1)) (A∗(s′′′, s, j2)− A∗(t′′′, t, j2))|Z(s)

]}

(2.96)

E

{
E

[
(A∗(s′, s, j1)− A∗(t′, t, j1))

2 |Z(s)

]}
= E

{
1

N

N∑
i1=1

(A(s′, s, i1)− A(t′, t, i1))
2

}

=
1

N

N∑
i1=1

V ar [(A(s′, s, i1)− A(t′, t, i1))]

= σ2
1(s, t) (2.97)
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and

E

{
E

[
(A∗(s′′′, s, j2)− A∗(t′′′, t, j2))

2 |Z(s)

]}
= E

{
1

N

N∑
i2=1

(A(s′′′, s, i2)− A(t′′′, t, i2))
2

}

=
1

N

N∑
i2=1

V ar [(A(s′′′, s, i2)− A(t′′′, t, i2))]

= σ2
2(s, t) (2.98)

and

E

{[
(A∗(s′, s, j1)− A∗(t′, t, j1)) (A∗(s′′′, s, j2)− A∗(t′′′, t, j2))|Z(s)

]}

=
1

N2
E

{
N∑

i1=1

N∑
i2=1

(A(s′, s, i1)− A(t′, t, i1)) (A(s′′′, s, i2)− A(t′′′, t, i2))

}

=
1

N2

N∑
i1=1

N∑
i2=1

Cov ((A(s′, s, i1)− A(t′, t, i1)) , (A(s′′′, s, i2)− A(t′′′, t, i2)))

(2.99)

and we can show that this is o

(
1

N

)
. So,

E




(∑

s′∈D

K∑
j=1

Z∗
j (s′)w∗

j (s
′, s)Ij(s

′, s)−
∑

t′∈D

K∑
j=1

Z∗
j (t′)w∗

j (t
′, t)Ij(t

′, t)

)2



=
(
σ2

1(s, t) + σ2
2(s, t)

)
+ o

(
1

N

)

Using the equations (2.95) and (2.100) and substituting in (2.72)

V ar
[
(Z?(s)− Z?(t))2

]
= 2

(
σ2

1(s, t) + σ2
2(s, t)

)2
+ o

(
1

N

)
+ o

(
1

N2

)

(2.100)

Now let us consider the covariance terms in the right hand side of the equation

(2.71)

Consider the covariance term
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Cov
[
(B∗(s′, s, j)−B∗(t′, t, j))2

, (B∗(u′, u, k)−B∗(v′, v, k))
2
]

where, B∗(s′, s, j) =
∑

s′∈D

K∑
j=1

Z∗
j (s′)w∗

j (s
′, s)Ij(s

′, s), (s, t) 6= (u, v) and (s, t) ∈ N(h)

and (u, v) ∈ N(h) .

Cov
[
(B∗(s′, s, j)−B∗(t′, t, j))2

, (B∗(u′, u, k)−B∗(v′, v, k))
2
]

= Cov

[(
A∗(s′, s, j1)− A∗(t′, t, j1) + A∗(s′′′, s, j2)− A∗(t′′′, t, j2)

)2

,

(
A∗(u′, u, k1)− A∗(v′, v, k1) + A∗(u′′′, u, k2)− A∗(v′′′, v, k2)

)2
]

= Cov

{(
A∗(s′, s, j1)− A∗(t′, t, j1)

)2

+
(
A∗(s′′′, s, j2)− A∗(t′′′, t, j2)

)2

+

2
(
A∗(s′, s, j1)− A∗(t′, t, j1)

)(
A∗(s′′′, s, j2)− A∗(t′′′, t, j2)

)
,

(
A∗(u′, u, j1)− A∗(v′, v, j1)

)2

+
(
A∗(u′′′, u, j2)− A∗(v′′′, v, j2)

)2

+

2
(
A∗(u′, u, j1)− A∗(v′, v, j1)

)(
A∗(u′′′, u, j2)− A∗(v′′′, v, j2)

)}

(2.101)

Now let us consider two cases:

Case 1: j1 = k1 and j2 = k2, that is the two pairs (s,t) and (u,v) belong to the

same sub-region and have neighbourhoods contained by the same two sub-regions.

Case 2: j1 = k1 but j2 6= k2, that is the two pairs belong to the same sub-region

and one of the two sub-regions that contains the neighbourhoods is the same for both

the pairs.

Most of the pairs of locations will fall in one of these two cases.

Let us evaluate the covariance under the scenario outlined in Case 1.

It is easy to show that the only non-negligible terms in the covariance expression

given in (2.101) are

Cov
[(

A∗(s′, s, j1)− A∗(t′, t, j1)
)2

,
(
A∗(u′, u, j1)− A∗(v′, v, j1)

)2]
,

Cov
[(

A∗(s′′′, s, j2)− A∗(t′′′, t, j2)
)2

,
(
A∗(u′′′, u, j2)− A∗(v′′′, v, j2)

)2]
and

4Cov
[(

A∗(s′, s, j1)− A∗(t′, t, j1)
)(

A∗(s′′′, s, j2)− A∗(t′′′, t, j2)
)
,



49

(
A∗(u′, u, j1)− A∗(v′, v, j1)

)(
A∗(u′′′, u, j2)− A∗(v′′′, v, j2)

)]
.

We evaluate these three covariances and the derivations are shown below.

Cov

[(
A∗(s′, s, j1)− A∗(t′, t, j1)

)2

,
(
A∗(u′, u, j1)− A∗(v′, v, j1)

)2
]

= Cov

[(
A(s′, s, i1)− A(t′, t, i1)

)2

,
(
A(u′, u, i1)− A(v′, v, i1)

)2
]

= 2
{

Cov
[
(A(s′, s, i1)− A(t′, t, i1)) , (A(u′, u, i1)− A(v′, v, i1))

]}2

= 2

{∑

s′∈D

∑

u′∈D

w∗
j1

(s′, s)w∗
j1

(u′, u)C(s′ − u′)−
∑

s′∈D

∑

v′∈D

w∗
j1

(s′, s)w∗
j1

(v′, v)C(s′ − v′)

−
∑

t′∈D

∑

u′∈D

w∗
j1

(t′, t)w∗
j1

(u′, u)C(t′ − u′) +
∑

t′∈D

∑

v′∈D

w∗
j1

(t′, t)w∗
j1

(v′, v)C(t′ − v′)

}2

(2.102)

and similarly,

Cov
[(

A∗(s′′′, s, j2)− A∗(t′′′, t, j2)
)2

,
(
A∗(u′′′, u, j2)− A∗(v′′′, v, j2)

)2]
=

2

{ ∑

s′′′∈D

∑

u′′′∈D

w∗
j2

(s′′′, s)w∗
j2

(u′′′, u)C(s′′′ − u′′′)−
∑

s′′′∈D

∑

v′′′∈D

w∗
j2

(s′′′, s)w∗
j2

(v′′′, v)C(s′′′ − v′′′)

−
∑

t′′′∈D

∑

u′′′∈D

w∗
j2

(t′′′, t)w∗
j2

(u′′′, u)C(t′′′ − u′′′) +
∑

t′′′∈D

∑

v′′′∈D

w∗
j2

(t′′′, t)w∗
j2

(v′′′, v)C(t′′′ − v′′′)

}2

(2.103)

Cov
[(

A∗(s′, s, j1)− A∗(t′, t, j1)
)(

A∗(s′′′, s, j2)− A∗(t′′′, t, j2)
)
,

(
A∗(u′, u, j1)− A∗(v′, v, j1)

)(
A∗(u′′′, u, j2)− A∗(v′′′, v, j2)

)]

= E
[
(A∗(s′, s, j1)− A∗(t′, t, j1)) (A∗(s′′′, s, j2)− A∗(t′′′, t, j2))

(A∗(u′, u, j1)− A∗(v′, v, j1)) (A∗(u′′′, u, j2)− A∗(v′′′, v, j2))
]
−

{
E

[
(A∗(s′, s, j1)− A∗(t′, t, j1)) (A∗(s′′′, s, j2)− A∗(t′′′, t, j2))

]

E
[
(A∗(u′, u, j1)− A∗(v′, v, j1)) (A∗(u′′′, u, j2)− A∗(v′′′, v, j2))

]}

(2.104)
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It is easy to show that

E
[
(A∗(s′, s, j1)− A∗(t′, t, j1)) (A∗(s′′′, s, j2)− A∗(t′′′, t, j2))

]

is o

(
1

N

)
(2.105)

and

E
[
(A∗(u′, u, j1)− A∗(v′, v, j1)) (A∗(u′′′, u, j2)− A∗(v′′′, v, j2))

]

is o

(
1

N

)
(2.106)

E

[(
A∗(s′, s, j1)− A∗(t′, t, j1)

)(
A∗(s′′′, s, j2)− A∗(t′′′, t, j2)

)

(
A∗(u′, u, j1)− A∗(v′, v, j1)

)(
A∗(u′′′, u, j2)− A∗(v′′′, v, j2)

)]

= E

{
E

[
(A∗(s′, s, j1)− A∗(t′, t, j1)) (A∗(s′′′, s, j2)− A∗(t′′′, t, j2))

(A∗(u′, u, j1)− A∗(v′, v, j1)) (A∗(u′′′, u, j2)− A∗(v′′′, v, j2))|Z(s)
]}

=
1

N2

N∑
i1=1

N∑
i2=1

E
[
(A(s′, s, i1)− A(t′, t, i1)) (A(s′′′, s, i2)− A(t′′′, t, i2))

(A(u′, u, i1)− A(v′, v, i1)) (A(u′′′, u, i2)− A(v′′′, v, i2))
]

(2.107)
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and this can be written as the sum of the product of second moments as shown below

1

N2

N∑
i1=1

N∑
i2=1

{
E

[(
A(s′, s, i1)− A(t′, t, i1)

)(
A(s′′′, s, i2)− A(t′′′, t, i2)

)]

E

[(
A(u′, u, i1)− A(v′, v, i1)

)(
A(u′′′, u, i2)− A(v′′′, v, i2)

)]

+ E

[
(A(s′, s, i1)− A(t′, t, i1)) (A(u′, u, i1)− A(v′, v, i1))

]

E

[(
A(s′′′, s, i2)− A(t′′′, t, i2)

)(
A(u′′′, u, i2)− A(v′′′, v, i2)

)]

+ E

[(
A(s′, s, i1)− A(t′, t, i1)

)(
A(u′′′, u, i2)− A(v′′′, v, i2)

)]

E

[(
A(u′, u, i1)− A(v′, v, i1)

)(
A(s′′′, s, i2)− A(t′′′, t, i2)

)]}

(2.108)

and this can be easily shown to be equal to (as the other two terms tend to 0 as

N →∞)

1

N2

N∑
i1=1

N∑
i2=1

{
E

[(
A(s′, s, i1)− A(t′, t, i1)

)(
A(u′, u, i1)− A(v′, v, i1)

)]

E

[(
A(s′′′, s, i2)− A(t′′′, t, i2)

)(
A(u′′′, u, i2)− A(v′′′, v, i2)

)]}

=

{∑

s′∈D

∑

u′∈D

w∗
j1

(s′, s)w∗
j1

(u′, u))C(s′ − u′)−
∑

s′∈D

∑

v′∈D

w∗
j1

(s′, s)w∗
j1

(v′, v)C(s′ − v′)

−
∑

t′∈D

∑

u′∈D

w∗
j1

(t′, t)w∗
j1

(u′, u)C(t′ − u′) +
∑

t′∈D

∑

v′∈D

w∗
j1

(t′, t)w∗
j1

(v′, v)C(t′ − v′)

}
×

{ ∑

s′′′∈D

∑

u′′′∈D

w∗
j2

(s′′′, s)w∗
j2

(u′′′, u)C(s′′′ − u′′′)−
∑

s′′′∈D

∑

v′′′∈D

w∗
j2

(s′′′, s)w∗
j2

(v′′′, v))C(s′′′ − v′′′)−

∑

t′′′∈D

∑

u′′′∈D

w∗
j2

(t′′′, t)w∗
j2

(u′′′, u)C(t′′′ − u′′′) +
∑

t′′′∈D

∑

v′′′∈D

w∗
j2

(t′′′, t)w∗
j2

(v′′′, v))C(t′′′ − v′′′)

}

(2.109)

Combining the expressions in (2.102), (2.103) and (2.109) we get the complete form

of the covariance under case 1 as :
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= 2

{∑

s′∈D

∑

u′∈D

w∗
j1

(s′, s)w∗
j1

(u′, u)C(s′ − u′)−
∑

s′∈D

∑

v′∈D

w∗
j1

(s′, s)w∗
j1

(v′, v)C(s′ − v′)

−
∑

t′∈D

∑

u′∈D

w∗
j1

(t′, t)w∗
j1

(u′, u)C(t′ − u′) +
∑

t′∈D

∑

v′∈D

w∗
j1

(t′, t)w∗
j1

(v′, v)C(t′ − v′)

}2

+

2

{ ∑

s′′′∈D

∑

u′′′∈D

w∗
j2

(s′′′, s)w∗
j2

(u′′′, u)C(s′′′ − u′′′)−
∑

s′′′∈D

∑

v′′′∈D

w∗
j2

(s′′′, s)w∗
j2

(v′′′, v)C(s′′′ − v′′′)

−
∑

t′′′∈D

∑

u′′′∈D

w∗
j2

(t′′′, t)w∗
j2

(u′′′, u)C(t′′′ − u′′′) +
∑

t′′′∈D

∑

v′′′∈D

w∗
j2

(t′′′, t)w∗
j2

(v′′′, v)C(t′′′ − v′′′)

}2

+

{∑

s′∈D

∑

u′∈D

w∗
j1

(s′, s)w∗
j1

(u′, u)C(s′ − u′)−
∑

s′∈D

∑

v′∈D

w∗
j1

(s′, s)w∗
j1

(v′, v)C(s′ − v′)

−
∑

t′∈D

∑

u′∈D

w∗
j1

(t′, t)w∗
j1

(u′, u)C(t′ − u′) +
∑

t′∈D

∑

v′∈D

w∗
j1

(t′, t)w∗
j1

(v′, v)C(t′ − v′)

}
×

{ ∑

s′′′∈D

∑

u′′′∈D

w∗
j2

(s′′′, s)w∗
j2

(u′′′, u))C(s′′′ − u′′′)−
∑

s′′′∈D

∑

v′′′∈D

w∗
j2

(s′′′, s)w∗
j2

(v′′′, v))C(s′′′ − v′′′)

−
∑

t′′′∈D

∑

u′′′∈D

w∗
j2

(t′′′, t)w∗
j2

(u′′′, u)C(t′′′ − u′′′) +
∑

t′′′∈D

∑

v′′′∈D

w∗
j2

(t′′′, t)w∗
j2

(v′′′, v)C(t′′′ − v′′′)

}

(2.110)

The covariance under case 2 can be similarly calculated using the expression given

in (2.101) and is given by the expression below:

2

{∑

s′∈D

∑

u′∈D

w∗
j1

(s′, s)w∗
j1

(u′, u)C(s′ − u′)−
∑

s′∈D

∑

v′∈D

w∗
j1

(s′, s)w∗
j1

(v′, v)C(s′ − v′)

−
∑

t′∈D

∑

u′∈D

w∗
j1

(t′, t)w∗
j1

(u′, u)C(t′ − u′) +
∑

t′∈D

∑

v′∈D

w∗
j1

(t′, t)w∗
j1

(v′, v)C(t′ − v′)

}2

(2.111)

Combining the variances (2.100) and the covariances (2.110) or (2.111) we get the

variance of our proposed estimator.
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(2.112)

where, H(s, t, u, v) takes the value given in expression (2.110) or in expression (2.111)

and the expressions for σ2
1(s, t) and σ2

2(s, t) are given in (2.84) and (2.88) respectively.

Bias =
1

|N(h)|E




∑

(s,t)∈N(h)

[(
Z?(s)− Z?(t)

)2
]

− 2γ(h)

=
1

|N(h)|
∑

(s,t)∈N(h)

E

[(
Z?(s)− Z?(t)

)2
]
− 2γ(h)

(2.113)

We calculated the above expected value in equation (2.100) and using that expression

here we get

Bias =
1

|N(h)|
∑

(s,t)∈N(h)

(
σ2

1(s, t) + σ2
2(s, t)

)
− 2γ(h) + o

(
1

N

)

=
1

|N(h)|
∑

(s,t)∈N(h)

(
σ2

1(s, t) + σ2
2(s, t)

)
− 2γ(h) + o

(
1

Kp

)
(2.114)

The expressions for σ2
1(s, t) and σ2

2(s, t) are given in equations (2.84) and (2.88) re-

spectively.
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Chapter 3

Simulation Study

3.1 The objectives of the Simulation Study

The main objective of the simulation study is to compare bootstrap percentile

confidence intervals for the traditional and proposed bootstrap methods. To con-

duct this study we calculate the coverage for the true semi-variogram using empirical

confidence intervals of the sample semi-variograms generated using the two methods.

We are interested in investigating how the coverage changes as the settings of the

range, sill and nugget of the covariance model are changed. We are also interested in

the performance of the proposed method based upon different amounts of smoothing

and different sizes of the neighbourhood for locations on the boundary.

3.2 Simulation Procedure

The following steps outline the simulation procedure :

Step 1 : A sample of 400 values is generated on an irregular grid of
dimensions 35 units by 35 units. The data are generated from the
normal distribution with an underlying covariance structure given by
the matern covariance model (3.1).

Step 2 : The proposed method and the existing method are applied to
this sample to give us a bootstrap surface from each of the two meth-
ods.
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Step 3 : For each of the two surfaces the empirical semi-variogram is
calculated.

Step 4 : Steps 2 and 3 are repeated 100 times to give us 100 estimates
of the empirical semi-variogram from each method.

Step 5 : Using the 100 estimates from Step 4 empirical 95% confidence
intervals are calculated for each method.

Step 6 : Steps 1 through 5 are repeated a hundred times to give us 100
95% confidence intervals for each method.

Step 7 : Coverage is calculated using the 100 confidence intervals gener-
ated in Step 6 for both the methods.

For the proposed method the two factors - the amount of smoothing and the size of

the neighbourhood of the locations on the boundary are held at the following levels:

a) Smoothing - 5%, 15%, 80%

b) Size of the neighbourhood - 4 sq. units, 16 sq. units.

Steps 1 though 7 are repeated for the following settings of the parameters of the

matern covariance model and the 6 combinations of the amount of smoothing and

the size of the neighbourhood specified above.

Simulation set 1 : Range=3, partial sill=4, nugget=0.2, shape=0.5

Simulation set 2 : Range=9, partial sill=4, nugget=0.2, shape=0.5

Simulation set 3 : Range=3, partial sill=8, nugget=0.2, shape=0.5

Simulation set 4 : Range=3, partial sill=4, nugget=2, shape=0.5

The block size is kept fixed at 7 units by 7 units.

The matern class was originally given by Matern and is best defined in terms of

its isotropic covariance: C(h) = C0(‖h‖) where, C0(0) = 1 and

C0(t) =
1

2θ2−1Γ(θ2)

(
2
√

θ2t

θ1

)θ2

Kθ2

(
2
√

θ2t

θ1

)
(3.1)

The function Γ(.) is the usual gamma function and Kθ2 is the modified bessel function

of the third kind of order θ2. As special cases of this class, θ2 = 1
2

corresponds to

the exponential form of the semi-variogram and the limit θ2 →∞ corresponds to the

Gaussian form.
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3.3 Conclusions and discussion of results

The plots of coverage versus the lag number are shown in figures 3.1, 3.2, 3.3, 3.4,

3.5, 3.6, 3.7 and 3.8.

• At shorter lags the coverage obtained using the proposed method is better

than the coverage obtained using the traditional method. The behaviour of

the spatial processes at shorter lag distances is the most important factor for

prediction purposes (Stein 1995).

• If we over smooth we lose too much information and we get worse coverage using

the proposed method. This is because, by increasing the amount of smoothing

the variability in the data is reduced. Also by over smoothing we lose important

information about the spatial structure of the process.

• When the range of the process is larger than the block size, the coverage ob-

tained from the proposed method is better than that obtained from the tradi-

tional method. This is because we force some discontinuity that is not real with

the traditional method and this is more apparent for larger values of the range.

This suggests that the amount of smoothing and the size of the block together

affect the coverage. However, both methods gave coverage less than 95%.

• The coverage does not seem to be affected by changing the value of the partial

sill.

• When the nugget of the process is large compared to the sill of the process

then the coverage from the proposed method is very sensitive to the amount of

smoothing. The nugget measures the measurement error and when we increase

the amount of smoothing we lose this information.
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Figure 3.1: Simulation set 1
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Figure 3.2: Continuation of results from Simulation set 1.
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Figure 3.3: Simulation set 2.
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Figure 3.4: Continuation of results from Simulation set 2
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Figure 3.5: Simulation set 3
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Figure 3.6: Continuation of results from Simulation set 3.
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Figure 3.7: Simulation set 4
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Figure 3.8: Continuation of results from Simulation set 4.
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3.4 The objectives of the numerical study

The objective of this numerical study is to obtain the values for the smoothing

parameters that minimize the mean squared error of the proposed variogram estima-

tor. As mentioned before, the smoothing parameters are implicitly involved in the

expression for the mean squared error and it is difficult to solve and obtain explicit

expressions for the smoothing parameters. Thus we resort to this numerical technique

to obtain a solution.

We are interested in studying the behaviour of the mean squared error as the

smoothing parameter is varied for different settings of the range, sill and nugget

parameters. The underlying covariance structure for the data was assumed to be

given by the matern covariance model. We set the shape parameter of the matern

model (3.1) at 0.5 for all the results.

Working under the assumptions [B5]-[B8] used in the derivation of the expression

for the mean squared error we calculate the value of the mean squared error for

different settings of the various parameters and variables involved. The parameters

and variables that we vary are the : sample size, range, partial sill, nugget and the

two smoothing parameters. Results are in the form of plots of the value of the mse

vs the smoothing , for the various settings of the sample size, range, partial sill and

nugget. Along with the mean squared error we also give plots of the variance and the

adjusted bias vs the smoothing .

The following settings were considered for the various parameters.

• grid size: 24 by 24 and 30 by 30.

• range: 1.5, 2, 2.5,3.5

• partial sill: 4, 8

• nugget: 0, 0.1, 0.5

We present the results for the mse for the first two lags in the following figures.

It is important to remember that it is most important to understand the behaviour
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of a spatial process at short lags and thus in our study we have been focusing on the

performance of the proposed variogram estimator at short lags.

3.5 Conclusions and discussion of results

The results are presented in figures 3.9 through 3.24.

• The traditional block bootstrap estimator for the variogram is an unbiased

estimator and thus when we introduce smoothing we observe an increase in the

bias. The bias increases as the smoothing increases. However, smoothing also

affects the variance of the estimator, which decreases as smoothing increases.

This suggests that it must be possible to find the optimal amount of smoothing

that would minimize the mean squared error. Our estimator reduces to the

existing estimator when there is no smoothing and we see from the figures that

for no smoothing the bias is almost zero.

• We observe that for higher values of the partial sill and thus, the sill, that larger

amount of smoothing is needed to minimize the mse.

• The mse is very sensitive to the nugget. Smoothing reduces the mean squared

error and the variance dominates the bias to the extent that we are unable to

observe the minima for the mse for the case when lag distance is equal to 0.

However, for lag distance is equal to 1.4 we do observe that higher value of the

nugget results in more smoothing being needed to minimize the mse.

• We observe a clear minima of the mse for about 10% smoothing in most cases

when the sill of the process is not very large.

• The variance of the process is of the same order of magnitude as the bias and

thus, the mse is affected more by the value of the variance. This can be seen in

cases when the sill is large as the decreasing variance controls the behaviour of

the mse and we see that the mse decreases with increasing smoothing too.
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• The mse is sensitive to changes in the range of the process. When the range

is too small then we do not observe the minimum of the mse as the mse keeps

decreasing with smoothing. This could perhaps be due to the fact that we are

over smoothing the process. When the range is large then this means that the

process is smoother and thus the variance of the estimator decreases and is

dominated by the bias.

• The minimization of the mse is more obvious for the lag distance of 1.4 as we

observe that the mse is minimized for about 10% of smoothing in most cases.

• The size of the neighborhood does not appear to play a big role. Although from

the graphs for lag distance equal to 1.4 we do see that when the neighbourhood

is larger the amount of smoothing needed to minimize the mse is lesser.

Based on these results we would suggest a smoothing of about 10% of the points

on the boundary with at least 2 points in the neighbourhood of each point on the

boundary.
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Figure 3.9: Results for MSE for lag distance=1 for specified settings of the range,
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Figure 3.10: Results for MSE for lag distance=1 for specified settings of the range,
partial sill, nugget and sample size
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Figure 3.11: Results for MSE for lag distance=1 for specified settings of the range,
partial sill, nugget and sample size
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Figure 3.12: Results for MSE for lag distance=1 for specified settings of the range,
partial sill, nugget and sample size
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Figure 3.13: Results for MSE for lag distance=1 for specified settings of the range,
partial sill, nugget and sample size
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Figure 3.14: Results for MSE for lag distance=1 for specified settings of the range,
partial sill, nugget and sample size
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Figure 3.15: Results for MSE for lag distance=1 for specified settings of the range,
partial sill, nugget and sample size
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Figure 3.16: Results for MSE for lag distance=1 for specified settings of the range,
partial sill, nugget and sample size
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Figure 3.17: Results for MSE for lag distance=1 for specified settings of the range,
partial sill, nugget and sample size
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Figure 3.18: Results for MSE for lag distance=1.4 for specified settings of the range,
partial sill, nugget and sample size



78

0 10 20 30 40

0.
01

84
0.

01
88

0.
01

92

Plot of the Variance

%smoothing

V
ar

ia
nc

e

0 10 20 30 40

0.
00

5
0.

01
5

0.
02

5
0.

03
5

Plot of the Bias

% smoothing

B
ia

s
0 10 20 30 40

0.
01

93
5

0.
01

94
5

0.
01

95
5

Plot of the MSE

% smoothing

M
S

E

Lag Distance=1.4

Lag distance=1.4

Range=2

Partial Sill=4

Nugget=0

Tile size: 10 by 10

No. of tiles= 9

Grid size=30 by 30

No of points in neighbourhood=2

0 10 20 30 40

0.
01

70
0.

01
80

0.
01

90

Plot of the Variance

%smoothing

V
ar

ia
nc

e

0 10 20 30 40

0.
01

0.
02

0.
03

0.
04

0.
05

Plot of the Bias

% smoothing

B
ia

s

0 10 20 30 40

0.
01

90
0.

01
94

Plot of the MSE

% smoothing

M
S

E

Lag Distance=1.4

Lag distance=1.4

Range=2

Partial Sill=4

Nugget=0

Tile size: 10 by 10

No. of tiles= 9

Grid size=30 by 30

No of points in neighbourhood=4

Figure 3.19: Results for MSE for lag distance=1.4 for specified settings of the range,
partial sill, nugget and sample size
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Figure 3.20: Results for MSE for lag distance=1.4 for specified settings of the range,
partial sill, nugget and sample size
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Figure 3.21: Results for MSE for lag distance=1.4 for specified settings of the range,
partial sill, nugget and sample size
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Figure 3.22: Results for MSE for lag distance=1.4 for specified settings of the range,
partial sill, nugget and sample size
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Figure 3.23: Results for MSE for lag distance=1.4 for specified settings of the range,
partial sill, nugget and sample size
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Figure 3.24: Results for MSE for lag distance=1.4 for specified settings of the range,
partial sill, nugget and sample size
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Chapter 4

Analysis of Coastal Data

4.1 Background

The North Carolina Department of Transportation (NC DOT) finished construc-

tion of the terminal groin on the south side of Oregon Inlet, NC in March 1991. To

determine the changes along the northern end of Pea Island after the construction of

the groin, a monitoring program was initiated. The data has been collected by the

NC DOT and is in the form of distance of the shoreline to the baseline at different

locations along the 6.5 mile long coastline. The locations at which the measurements

are made are regularly spaced, 150 feet apart and are referred to as transects. The

distance is measured perpendicular to the baseline. Further, these measurements

have been made at two month intervals starting in August of 1991 continuing up till

the present time. Thus the data can be presented in the form of a two dimensional

table with one axis representing time and the other representing the transect. For a

particular transect an increase in the distance implies erosion and a decrease implies

accretion. We refer to this erosion/accretion process as shoreline change.

Several basic criteria must be met for a given physical feature to be considered a

satisfactory shoreline indicator. The shoreline is a line on a map where the land and

water meet. For the purpose of this study the shoreline was defined as the edge of

wet sand visible on the aerial photographs. The accuracy of our data depends heavily

on the accuracy of the shoreline mapping. The shoreline position is digitized directly
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from the aerial photographs by the Photogrammetry Unit of NC DOT. The digitized

data are then transferred to North Carolina State University and computer processed

to determine the distance from the baseline at the 150 foot intervals.

4.1.1 Definitions

Definitions of some terms that are related to coastal engineering and are relevant

to this work are given below.

• Storm surge is simply water that is pushed toward the shore by the force of the

winds swirling around the storm. It can be calculated as the difference between

the actual tide height and the predicted tide height.

• SEPI is an acronym for the Storm Erosion Potential Index that was proposed by

Zhang et al. (Zhang, Douglas & Leatherman 2001) as measure of the intensity

of a storm. It is given by SEPI =

tD∑
t=0

S2SD(t)HMHHW (t)δ(t), where, tD is

the integer number of hours of storm duration, S2SD is the hourly value of

storm surge that is greater than 2 standard deviations of the annual surge level,

HMHHW (t) is the water level greater than MHHW and δ(t) is taken to be an

hour.

• RHIGH (Sallenger 2000) is an empirical index and is defined as follows: RHIGH =

H0(0.83ζ0 + 0.2), where, H0 is the deep water significant wave height, ζ0 is the

Irribarren number. The Irribarren number is given by β/(H0/L0)
0.5, where β

is the beach slope and L0 is the deep water wave length.

• Kriebel’s index (Kriebel, Dalrymple, Pratt & Sakovich 1996) measures the storm

intensity and is defined as follows. If S is the local storm surge height(maximum

storm surge+ maximum tidal height) at a given coastal location, H is the

offshore significant wave height and t is the duration of the storm event then

Kriebel’s Index= SH(t/12)0.3.

The Field Research Facility (FRF) , which is a part of the Civil Engineering branch

of the US Army, has made publicly available, through their web site an enormous
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amount of data on parameters such as wave height, wave time period, tide height,

surge etc.

In our analysis we modeled the shoreline change process using the information

available on storms and related parameters. Let us denote the shoreline change

process by Y (s, t), where, s represents the spatial location along the coastline and t

represents the temporal location of the observation. This process can be expressed

as a sum of two components

Y (s, t) = µ(s, t) + ε(s, t) , ε ∼ (0, Σε) (4.1)

Here, µ(s, t) represents the mean structure and ε(s, t) represents the error. Now, the

mean structure can be decomposed into additive components c, f(t), g(s). All the

three components c, f(t) and g(t) have the same units of distance as the process

Y (s, t). Our analysis has three distinct steps:

• De-trend (decompose) the data.

• Model the components f(t) and g(s).

• Model the underlying covariance structure Σε.

We investigated for interaction between time and space and found that there was

not any significant interaction. Preliminary analysis indicated that the underlying

covariance process was non-stationary. However, the covariance process was found to

be locally stationary over sections of the island. So we divided the island into three

regions that we shall refer to as the Northern (≈ 2.2 km), Central (≈ 1.8 km) and

Southern (≈ 4.6 km) regions from here on. The analysis is now done for each of the

three regions separately and we present the results over the next few sections. As the

first step in our analysis we need to detrend our data. Median polish is a technique

that is used to remove trend in gridded data and in the following section we discuss

this technique.
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4.2 Median Polish

Median Polish is a method for removing trend in gridded data. Here we use it

to extract the trend due to the location of the transect and the time of observation.

The decomposition of the data is additive: data=all+row+col+residual.

The algorithm successively sweeps medians out of rows , then columns, then rows,

then columns, and so on, accumulating them in “row”, “column” and “all” registers

and leaves behind the table of residuals, where, “all” is the global mean effect, “row”

and “col” are the row and column effects respectively.

Below we describe an iterative approach to obtain the median polish for a spatial

process Z.
1. Assume data to be on a p × q rectangular grid {(xl, yk) : k = 1, · · · , p; l =

1, · · · , q}. Regard the grid nodes as cells in a 2-way table.

2. Operate iteratively on the data. Alternately subtracting row medians and
column medians and accumulating these medians in an extra column and
row of cells.

3. Repeat this procedure until another iteration produces virtually no change.

4. Final entries in the extra cells are the median polish estimates or row effects
r1, · · · , rp, column effects c1, · · · , cq and an overall effect a.

5. The final entries in the body of the table are residuals, êkl, such that
Z(xl, yk) = â + r̂k + ĉl + êkl

The main effects - row effects and the column effects, are the quantities that

minimize

q∑

l=1

p∑

k=1

|Zlk − a− rk − cl|.
We choose to use this technique over ordinary least squares as medians have the

property of being resistant to outliers and also it has been shown by Cressie that the

residuals are less biased in their estimation of the second order spatial dependence

structure as compared to the residuals from ordinary least squares.

Putting this in context of the decomposition that was given in (4.1) we can express

the shoreline change process as follows:

Y (s, t) = C + f(t) + g(s) + ε(s, t) , ε ∼ (0, Σε) (4.2)



88

where, f(t) gives the main effect of time, g(s) gives the main effect of the spatial

location (location on the coastline) and C is a constant overall mean. In our data

if we let time be along the y-axis and the spatial location along the x-axis then the

row effect obtained from the median polish would correspond to the main effect of

time and the column effect would correspond to the main effect of spatial location.

We denote the row effect (main effect of time) by f(t) and the column effect (main

effect of spatial location) by g(s). We have 48 values for f(t), t = 1, . . . , 48 and for

g(s) we have 48 values for the northern region, 40 values for the central region and

100 values for the southern region. The number of values for g(s) is equal to the

number of transects that lie within a region. The next section discusses the modeling

of the main effects of time and of the spatial location obtained from the application

of median polish to the data. In section 5.4 we discuss the analysis of the residuals.

4.3 Modeling the mean structure

Figures 4.1, 4.2 and 4.3 show plots of the temporal effect for the three regions

along with the 95% confidence intervals, and Figures 4.4, 4.5 and 4.6 shows plots of

the spatial effect for the three regions. To illustrate the calculation of the variance

and the confidence intervals consider the following example:

Let Y (t) be a stationary, AR(1) process given by Y (t) = αX(t)+βY (t − 1) + e(t),

where X(t) is a vector of covariates. The errors e(t) are iid and come from a Gaus-

sian distribution with mean 0 and variance σ2. Given data that corresponds to this

process we can obtain estimates for the parameters α and β and for the variance

σ2. Denote the estimates by α̂, β̂ and σ̂2. Using these estimates for α and β we

can obtain estimates for the process Y (t). Ŷ (t) = α̂X(t)+β̂Y (t − 1) for t = 2, · · ·n
and Ŷ (1) = Y (1). Then the variance of these estimates Ŷ (t) can be approximated

by V ar(Y (t) − Ŷ (t)) = σ2. This approximation is valid if we make the assumption

that the estimates for the parameters are consistent. Since the errors are normally

distributed the confidence intervals would be given by (Ŷ (t) − 1.96σ, Ŷ (t) + 1.96σ).

For predicting at one period in the future we have the linear predictor given by

Ŷn+1 = α̂Xn+1 + β̂Yn. In general we can build predictors for s periods ahead by sub-
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stituting the predictors for earlier periods. Therefore, for predicting at some period, s,

in the future we have the predictor given by Ŷn+s = α̂Xn+s+ β̂Ŷn+s−1. The variance

of the prediction error is approximately given by σ̂2
(
1 + β̂2 + β̂4 + · · ·+ β̂2(s−1)

)
.

Here again we need to make the assumption that the estimates for the parameters

are consistent. This variance is an approximation because it ignores the estimation

error.

The curvature of the island is reflected in the spatial effect. The distance of the

shoreline to the baseline decreases as we approach the central part of the island and

then increases as we go away from the central part in either direction. We modeled

the temporal effect using some covariates, defined below, based on the wave and tide

data amongst others. We investigated several covariates that could possibly help in

explaining the process. However, only those that are relevant to the model are given

in the following tables. Some covariates that we considered but that are not a part of

our model are: the Storm Erosion Potential Index(SEPI), Irribarren number, RHIGH

and lag(1) values of some of the covariates.

For the Northern region the linear regression models used to model the temporal

effect and the spatial effect are given in table 4.1. The spatial effect was modeled

using a polynomial in distance along the coastline

f(t) = β0 + β1X1(t) + β2X2(t) + β3X3(t) + β4X(t) + δ(t) (4.3)
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Figure 4.1: Northern Region Temporal Effect
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Figure 4.2: Central Region Temporal Effect
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Figure 4.3: Southern Region Temporal Effect

0 500 1000 1500 2000

−2
00

−1
00

0
10

0
20

0

Predicted spatial effect and actual spatial effect for Northern region

s (Distance along the shoreline in meters)

g(
s)

 ( 
m

et
er

s 
)

Predicted
Actual

Figure 4.4: Northern Region Spatial Effect
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Figure 4.5: Central Region Spatial Effect
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X1(t) : Maximum surge over one hour immediately prior to the time of photog-
raphy for the observation at time t.

X2(t) : Maximum surge over one hour immediately prior to the time of photog-
raphy for the observation at time t− 1.

X3(t) : f(t− 1).
X4(t) : The total number of waves with wave height > 2 meters in the time

period between the tth and t− 1th observations.

Parameter Estimates for temporal effect

Regression Coeff. Estimate Std. Error of Estimate

β0 -25.5 8.7
β1 184.0 39.2
β2 -100.3 45.7
β3 0.8 0.09
β4 0.13 0.04

Parameter Estimates for spatial effect

Regression Coeff. Estimate(×10−4) Std. Error of Estimate(×10−4)

Intercept 840.75 8.97
distance -12435.97 1010.57
distance2 157712.42 36355.36
distance3 -1905799.81 574116.51
distance4 10903473.27 4434461.77
distance5 -27621746.56 16446784.89
distance6 24600604.35 23418803.24

Table 4.1: Regression Coefficient estimates for Northern region
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The model for the central region is given below. The spatial effect was modeled

using a 5th degree polynomial in distance along the coastline.

f(t) = β0 + β1X1(t) + β2X2(t) + β3X3(t) + β4X4(t) + β5X5(t) +

β6X6(t) + β7X7(t) + δ(t) (4.4)

X1(t) : Mean surge over one hour immediately prior to the the time of photog-
raphy for the observation at time t.

X2(t) : Maximum water level over 6 hours immediately prior to the time of
photography for the observation at time t.

X3(t) : Total mean hourly surge in the time period between the tth and t − 1th

observations.
X4(t) : f(t− 1).
X5(t) : Kriebel’s index at time t− 1.
X6(t) : Sine term to model an yearly cycle.
X7(t) : Cosine term to model an yearly cycle.

Parameter Estimates

Regression Coeff. Estimate Std. Error of Estimate

β0 -29.7 15.3
β1 72.9 36.7
β2 48.9 25.1
β3 0.2 0.07
β4 0.3 0.1
β5 -4.5 2.2
β6 -16.6 5.4
β7 0.9 5.3

Table 4.2: Regression coefficient estimates for Central region
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Parameter Estimates

Regression Coeff. Estimate(×10−4) Std. Error of Estimate(×10−4)

Intercept -4854.95 6681.79
distance 116320.36 107072.23
distance2 -924783.85 680425.15
distance3 3361563.77 2143706.47
distance4 -5791436.86 3348923.94
distance5 3845985.19 2075780.19

Table 4.2: (Continued...)Regression Coefficient Estimates for Central region

Given below is the model for the southern region and the parameter estimates.

The spatial effect was modeled using a 5th degree polynomial in distance along the

coastline.

f(t) = β0 + β1X1(t) + β2X2(t) + β3X3(t) + β4X4(t) + β5X5(t) +

β6X6(t) + β7X7(t) + β8X8(t) + β9X9(t) + β10X10(t) + δ(t) (4.5)

X1(t) : Mean water level over one hour immediately prior to the time of photog-
raphy for the observation at time t− 1.

X2(t) : Maximum water level over one hour immediately prior to the time of
photography for the observation at time t− 1.

X3(t) : Maximum water level over six hours immediately prior to the time of
photography for the observation at time t.

X4(t) : The total number of waves with wave height > 2 meters in the time
period between the tth and t− 1th observations.

X5(t) : Kriebel’s index at time t− 1.
X6(t) : Energy of waves with heights between 3 and 4 meters.
X7(t) : Energy of waves with heights greater than 4.5 meters.
X8(t) : f(t− 1).
X9(t) : Sine term to model an yearly cycle.
X10(t) : Cosine term to model an yearly cycle.



96

Parameter Estimates

Regression Coeff. Estimate Std. Error of estimate

β0 -87.6 19.7
β1 -509.8 116.8
β2 603.2 145.8
β3 105.3 14.1
β4 0.13 0.03
β5 -4.1 1.9
β6 -8.3 2.9
β7 8.4 3.9
β8 0.33 0.1
β9 -29.3 5.4
β10 1.4 6.4

Parameter Estimates

Regression Coeff. Estimate(×10−4) Std. Error of Estimate(×10−4)

Intercept 322.27 3413.18
distance -13222.63 27242.09
distance2 69889.69 85580.96
distance3 -147747.59 132331.59
distance4 138439.29 100773.78
distance5 -46586.04 30255.96

Table 4.3: Regression Coefficient Estimates for Southern region
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4.4 Modeling the underlying covariance structure

We analyzed the table of residuals left behind by median polish to understand

the covariance structure of the process. For the Northern region we had a table in

two dimensions with 48 rows and 48 columns. Using a simple test we were able

to show that the covariance structure is separable. A spatial temporal covariance

model is said to be separable when it can be expressed as the product of functions

of space and time. The function of space is a stationary spatial covariance model

and the function of time is a stationary temporal covariance model. Applying our

proposed method to this data by constructing blocks of size 16 rows and 16 columns

we obtained estimates for the empirical semi-variogram in the spatial direction as well

as the temporal direction. Similarly, for the central region we had a table with 48 rows

and 40 columns and we constructed blocks of size 16 rows and 20 columns, and for

the southern region we had a table with 48 rows and 100 columns and we constructed

blocks of size 16 rows and 25 columns. Using the estimates for the empirical semi-

variograms we obtained the median and the empirical 95% confidence intervals. The

confidence intervals were calculated using the percentile method. To these estimates

we fit the spherical parametric model and the parameter estimates are given in the

following tables. The “nlin” procedure in SAS was used to obtain the estimates for

the parameters and using this procedure it is possible to obtain negative values for the

estimates for the nugget parameter. Since, the nugget is a measure of the variance of

the micro-scale process and the measurement error it is not possible for the true value

to be negative. Thus, we set the estimated value for the nugget effect to zero when

the estimate was negative and correspondingly there is no estimate for the standard

error in this situation.

The spherical variogram model is defined as follows:

γ(h, θ ) =





0, h = 0,

c0 + cs{3‖h‖
2a

− ‖h‖3
2a3 }, 0 < ‖h‖ ≤ a,

c0 + cs, ‖h‖ ≥ a
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where, θ = (c0, cs, a); c0 is the nugget , cs is the partial sill and a is the range of

the process and c0 ≥ 0, cs ≥ 0 and a ≥ 0. The following tables 4.4, 4.5 and 4.6 give

the results of the fit using weighted least squares.
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Parameter Estimates for Variogram in Northern region

For Lower bound of 95 % CI

Spatial direction Temporal direction

Parameter Estimate Std. Error Estimate Std. Error
Nugget 0.0 . 40.6 5.9

Partial Sill 168.8 5.5 132.3 7.3
Range 386.4 23.0 18.6 2.0

For Median

Spatial direction Temporal direction

Parameter Estimate Std. Error Estimate Std. Error
Nugget 0.0 . 70.6 6.1

Partial Sill 256.6 3.1 189.1 7.8
Range 469.2 9.2 19.8 1.6

For Upper bound of 95 % CI

Spatial direction Temporal direction

Parameter Estimate Std. Error Estimate Std. Error
Nugget 0.0 . 91.8 7.9

Partial Sill 367.1 4.9 275.5 10.7
Range 529.0 13.8 22.8 1.8

Table 4.4: Northern region: Parameter estimates for spherical covariance model
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Figure 4.7: Northern Region Variogram in spatial direction
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Figure 4.8: Northern Region Variogram in temporal direction
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Figure 4.9: Central Region Variogram in spatial direction
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Figure 4.10: Central Region Variogram in temporal direction
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Parameter Estimates for Variogram in Central region

For Lower bound of 95 % CI

Spatial direction Temporal direction

Parameter Estimate Std. Error Estimate Std. Error
Nugget 0.0 . 17.4 2.5

Partial Sill 44.1 2.1 21.8 2.5
Range 386.4 36.8 7.4 1.0

For Median

Spatial direction Temporal direction

Parameter Estimate Std. Error Estimate Std. Error
Nugget 0.0 . 12.8 3.3

Partial Sill 65.9 0.6 44.5 3.3
Range 432.4 9.2 7.6 0.8

For Upper bound of 95 % CI

Spatial direction Temporal direction

Parameter Estimate Std. Error Estimate Std. Error
Nugget 0.0 . 10.5 4.3

Partial Sill 90.8 2.0 69.4 4.4
Range 464.6 18.4 8.0 0.6

Table 4.5: Central region: Parameter Estimates for spherical covariance model
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Figure 4.11: Southern Region Variogram in spatial direction
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Figure 4.12: Southern Region Variogram in temporal direction
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Parameter Estimates for Variogram in Southern region

For Lower bound of 95 % CI

Spatial direction Temporal direction

Parameter Estimate Std. Error Estimate Std. Error
Nugget 0.0 . 14.9 1.4

Partial Sill 50.8 0.5 36.3 1.7
Range 446.2 9.2 18.8 1.8

For Median

Spatial direction Temporal direction

Parameter Estimate Std. Error Estimate Std. Error
Nugget 0.0 . 18.3 1.3

Partial Sill 68.5 0.6 48.6 1.8
Range 478.4 9.2 23.4 1.8

For Upper bound of 95 % CI

Spatial direction Temporal direction

Parameter Estimate Std. Error Estimate Std. Error
Nugget 0.0 . 22.3 1.6

Partial Sill 99.4 1.4 71.8 2.5
Range 469.2 13.8 28.0 1.8

Table 4.6: Southern region: Parameter estimates for spherical covariance model
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4.5 Forecasting the distance of the shoreline to the

baseline

Using the model (4.2) we obtained predictions for the distance of the shoreline to

the baseline for a period of time for which we had observed values for the covariates

as well as observed values for the distance of the shoreline to the baseline. We used

the observed values of the covariates to obtain predicted values for the distance of the

shoreline to the baseline using our model to compare with the actual distance of the

shoreline to the baseline. The variance of the predicted values was calculated using

an additive model for the errors in (4.2). For each of the three regions, the most

conservative estimate for the sill of the empirical variogram was used as an estimate

for the variance of the underlying spatial-temporal covariance process. We present

the results for three representative transects in the three regions in the figures 4.13,

4.14 and 4.15. The vertical line at time=48 in the three figures is indicative of the

time after which we used our model to forecast and compare with the observed values

for the distance of the shoreline to the baseline.

The interpretation of 95% confidence here is that 95% of the prediction interval-

future value combinations in the population will be successful. In other words 95% of

the times the confidence interval for the prediction at a particular period will contain

the actual future value.



106

0 10 20 30 40 50 60

25
0

30
0

35
0

40
0

45
0

Predicted distance of shoreline to baseline for transect 190 and confidence bounds

Time (1 unit=2 months)

D
is

ta
nc

e 
( 

m
et

er
s)

Predicted
Actual
Lower95
Upper95

Figure 4.13: Northern Region: Predicted Distance of shoreline to baseline
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Figure 4.14: Central Region: Predicted Distance of shoreline to baseline
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Figure 4.15: Southern Region: Predicted Distance of shoreline to baseline
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To be able to forecast the distance of the shoreline to the baseline at any particular

transect we need to be able to model the covariates. We simulated values for the

covariates using an empirical approach since we did not want to assume a particular

distribution structure or time series behaviour for the covariates. First, the residuals

were obtained by subtracting the observed value of the distance of shoreline to baseline

from the predicted distance of shoreline to baseline using the model given in (4.2).

We treated the given observed values of the covariates as one block and reused this

block to give us the values of the covariates at future time points. This assumes

that the covariates have the same behaviour in the future as that was observed in

the past. Next, we constructed blocks of size b from the series of residuals of length

n, and we sampled with replacement from this set of blocks. We had values of

the residuals for n equal to 48 time points and we sampled with replacement from

the set of all blocks of size b equal to 6 rows that could be constructed from the

series of residuals, for a particular transect. The number of blocks that we resample

using the resampling technique depends upon the length of the series that we need

to construct. To obtain the simulated value of the distance of the shoreline to the

baseline we used the appropriate regression model developed earlier (depending upon

the region that the transect that we are considering, lies in) and added to it the series

of residuals that we constructed using the resampling technique. Using this method

we simulated values for the distance of the shoreline to the baseline for 120 consecutive

time points and constructed empirical 95% confidence intervals using the percentile

method. Figures 4.16, 4.17 and 4.18 give plots of the simulated values and confidence

intervals for the distance of the shoreline to the baseline using this approach.

Another approach used currently by scientists to obtain forecasts is the Empirical

Simulation Technique. This was proposed by Borgman and Scheffner (Scheffner,

Clausner, Militello, Borgman, Edge & Grace 1999). The EST is a procedure based

on a resampling with replacement, nearest neighbour interpolation technique in which

random sampling of a finite length database is used to generate a larger database. It

assumes that future events will be statistically similar in magnitude and frequency to

past events. The EST begins with the development of a database of storm parameters,

then uses these parameters as a basis for simulating multiple repetitions of multiple
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years of storm activity.

To compare the results from our approach and the EST we present the yearly mean

of the distance of the shoreline to the baseline per year and also the yearly maximum

distance of the shoreline to the baseline per year. Figures 4.19, 4.20 and 4.21 give plots

of the median of the yearly mean of the simulated values and empirical confidence

intervals using our approach and the EST. Overlayed on the above three plots are

also the yearly mean of the observed values for the distance of the shoreline to the

baseline. Figures 4.22, 4.23 and 4.24 give plots of the median of the yearly maximum

of the simulated values and empirical confidence intervals using our approach and the

EST. The yearly maximum of the observed values for the distance of the shoreline

to the baseline are also given. The confidence intervals were calculated using the

percentile method.
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Figure 4.16: Northern Region: Simulated Distance of shoreline to baseline
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Figure 4.17: Central Region: Simulated Distance of shoreline to baseline
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Figure 4.18: Southern Region: Simulated Distance of shoreline to baseline
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Figure 4.19: Northern Region: Comparison of Our approach and EST
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Figure 4.20: Central Region: Comparison of Our approach and EST
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Figure 4.21: Southern Region: Comparison of Our approach and EST
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Figure 4.22: Northern Region: Comparison of Our approach and EST
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Figure 4.23: Central Region: Comparison of Our approach and EST
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Figure 4.24: Southern Region: Comparison of Our approach and EST
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4.6 Discussion

Our method performs better than the EST as it is able to capture the behaviour

of the series over time. This can be seen by looking at Figures 4.19 through 4.24. Our

approach has some advantages over the EST as we are able to model the behaviour

over time. We are also able to model the covariance structure of the process which is

not an option using the Empirical Simulation Technique.

To obtain predictions using our model it would be beneficial to model the covari-

ates and thus forecast them at time points in the future. This would enable us to

provide predictions that would take into account the behaviour of the storms with-

out having to assume that future storms would be similar to those that have been

observed in the past.

A simple method of modeling the shoreline change process would be to use a sim-

ple linear regression model with time as the only explanatory variable. However, this

approach has some significant disadvantages. This model can only capture the linear

trend over time and can not model any cyclical effects that might be present in the

data. Further, it ignores the presence of any covariance structure in the residuals and

assumes that the residuals are independent and identically distributed. As illustrated

in chapter 1, not taking correlation into consideration would lead to narrower con-

fidence intervals. Using our approach we are able to model the periodicities in the

data and also take into account any correlation that may be present in the residuals.

This enables our model to capture short term behaviour and makes our model more

informative.

In the table below we give the simulated values for the distance of the shoreline to

the baseline using our approach and also using the simple linear regression on time,

for time 50 years in the future. Figures 4.25, 4.26 and 4.27 give plots of the simulated

distance of the shoreline to the baseline using our approach and also using the simple

linear regression on time as well as the corresponding 95% confidence intervals for the

predictions for 10 years in the future.
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Our approach Simple Linear Regression

Transect No. Distance Empirical 95 % CI Distance 95 % CI
Lower Upper Lower Upper

190 367 313 410 593 467 719
250 136 105 165 241 177 305
300 172 137 204 324 259 390

The underlying covariance structure for the Northern region is significantly dif-

ferent from that for the Central and Southern regions. We fit a spherical model to

the empirical estimates of the variograms to all three regions. The estimate for the

sill of the process in the Northern region is significantly greater than the sill of the

process in the other two regions. The sill, which measures the variance of the process,

indicates that there is a lot of variability in the Northern region. The range of the

process does not vary much across the three regions.

An important thing to remember is that the decomposition in 4.1 is not unique.

Cressie talks about this issue in section 3.1 of his book (Cressie 1993). This decompo-

sition is largely operational in nature. It is possible that different scientists may reach

different conclusions on the same set of data, depending on how much variation they

attribute to the different components. One person’s mean structure may be another

person’s correlated error structure.
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Figure 4.25: Northern Region: Comparison of Our approach and simple linear regres-
sion on time
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Figure 4.26: Central Region: Comparison of Our approach and simple linear regres-
sion on time
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Figure 4.27: Southern Region: Comparison of Our approach and simple linear regres-
sion on time
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