
ABSTRACT

SUN, KUN. Trustworthy and Resilient Time Synchronization in Wireless Sensor Networks.

(Under the direction of Dr. Peng Ning and Dr. Cliff Wang.)

Wireless sensor networks have received a lot of attention recently due to its wide applica-

tions. Accurate and synchronized time is crucial in many sensor network applications. A number

of time synchronization schemes have been proposed recently to address the resource constraints in

sensor networks. However, all these techniques cannot survive malicious attacks in hostile environ-

ments.

This dissertation includes three techniques to achieve secure time synchronization in dif-

ferent scopes of sensor networks. First, we develop a securesingle-hop pair-wise time synchroniza-

tion technique that provides time difference between two neighbor nodes using hardware-assisted,

authenticated medium access control (MAC) layer timestamping. This technique can effectively

defeat external attacks that attempt to mislead single-hoppair-wise time synchronization.

Second, we propose a fault-tolerant cluster-wise time synchronization scheme to provide

a common clock among a cluster of nodes, where the nodes in thecluster can communicate through

broadcast. This scheme guarantees an upper bound of time difference between normal nodes in a

cluster, provided that the malicious nodes are no more than one third of the cluster. Unlike the tra-

ditional fault-tolerant time synchronization approaches, the proposed technique does not introduce

collisions between synchronization messages, nor does it require costly digital signatures.

Third, we propose two secure and resilient global time synchronization schemes:level-

based time synchronizationanddiffusion-based time synchronization. The basic idea of both schemes

is to provide redundant ways for one node to synchronize its clock with another far-away node, so

that it can tolerate partially missing or false synchronization information provided by compromised

nodes. The level-based scheme builds a level hierarchy in the sensor network, and then synchro-

nizes the whole network level by level. The diffusion-basedscheme allows each node to diffuse its

clock to its neighbor nodes after it has been synchronized. Both schemes are secure against exter-

nal attacks and resilient against compromised nodes. We implement a secure and resilient global

time synchronization protocol,TinySeRSync, on MICAz motes running TinyOS. The experimental

results indicate that TinySeRSync is a practical system forsecure and resilient global time synchro-

nization in wireless sensor networks.

Trustworthy and Resilient Time Synchronization in Wireless Sensor Networks

by

Kun Sun

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Computer Science

Raleigh

2006

Approved By:

Dr. Douglas S. Reeves Dr. Mladen A. Vouk

Dr. Wenye Wang Dr. Peng Ning
Chair of Advisory Committee

Dr. Cliff Wang
Co-chair of Advisory Committee

ii

To my wife Jing, my parents and brother for their endless love.

iii

Biography

Kun Sun received his B.S. degree and M.E. degree in Computer Sciencefrom Nankai University,

Tianjin, China, in 1997 and 2000. From 2000 to 2001, he workedas a Member of Technical Staff in

Bell Labs Asia Pacific and China, Lucent Technology, China. In August 2001, he started his Ph.D.

study at North Carolina State University in the Department of Computer Science. His research

focuses on developing systems and techniques to enhance security of networks and distributed sys-

tems, especially the security of wireless ad-hoc and sensornetworks.

iv

Acknowledgements

This endeavor was truly a learning experience. I would like to thank all those who have

supported and encouraged me during my five years Ph.D. study.

First, I would like to thank my adviser, Dr. Peng Ning, and my co-adviser, Dr. Cliff Wang.

I have benefited so much from their insight, wisdom, suggestion, and constructive criticism of my

work. I owe them a lot for their guidance, patience, encouragement, and financial support. I would

like to thank my committee members, Dr. Douglas S. Reeves, Dr. Mladen A. Vouk, and Dr. Wenye

Wang, for their valuable feedback and comments on my research.

Second, I would like to thank National Science Foundation (NSF) and Army Research

Office (ARO) for their funding support.

Third, I would like to give my thanks to all my friends for their help in my Ph.D study:

Fang Feng, Yiquan Hu, An Liu, Donggang Liu, Pai Peng, Julia M.Star, Pan Wang, Dingbang Xu,

Yan Zhai, Qing Zhang, Qinghua Zhang, Yi Zhang, and Yuzheng Zhou.

Finally, I would like to give my special thanks to my wife Jing, my parents and my brother

for their endless encouragement and support during my Ph.D.study.

v

Contents

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 Motivation .. 3

1.1.1 Secure Single-hop Pair-wise Time Synchronization 3
1.1.2 Fault-tolerant Cluster-wise Time Synchronization 5
1.1.3 Secure and Resilient Global Time Synchronization 6

1.2 Summary of Contributions 7
1.3 Organization of the Dissertation 9

2 Background 10
2.1 Clock Model . 10
2.2 Traditional Time Synchronization 12
2.3 Time Synchronization in Wireless Sensor Networks 14
2.4 Evaluation Metrics for Secure Time Synchronization 18

3 Secure Single-Hop Pair-Wise Time Synchronization 20
3.1 Attacks in Single-Hop Pair-Wise Time Synchronization 21
3.2 Secure Single-Hop Pair-Wise Time Synchronization 22

3.2.1 Authenticated MAC Layer Timestamping 22
3.2.2 Secure Single-Hop Pair-Wise Synchronization 26
3.2.3 Security Analysis .. 29

3.3 Implementation Details 29
3.3.1 Exploiting Hardware Security Support in CC2420 30
3.3.2 Handling Timers . 31

3.4 Summary . 31

4 Fault-Tolerant Cluster-Wise Time Synchronization 33
4.1 Cluster-Wise Time Synchronization Model 34
4.2 Fault-Tolerant Cluster-Wise Time Synchronization 36

vi

4.2.1 Overview . 36
4.2.2 Local Broadcast Authentication 38
4.2.3 Fault-Tolerant Cluster-Wise Time Synchronization Algorithm 39
4.2.4 Discussion . 46
4.2.5 Comparison with Previous Techniques 48

4.3 Secure Distributed Cluster Formation 50
4.3.1 Problem Statement .51
4.3.2 The Secure Distributed Cluster Formation Algorithm 52
4.3.3 Security Analysis .. 60
4.3.4 Performance Analysis .. 64
4.3.5 Experimental Results .. . 66

4.4 Summary . 67

5 Secure and Resilient Global Time Synchronization with Unicast Authentication 69
5.1 Global Time Synchronization Model 70

5.1.1 A Motivating Example .70
5.1.2 Our Model . 71

5.2 Secure and Resilient Global Time Synchronization 73
5.2.1 Level-Based Time Synchronization 74
5.2.2 Diffusion-Based Time Synchronization 77
5.2.3 Security Analysis .. 78
5.2.4 Performance Analysis .. 80

5.3 Secure and Resilient Global Time Synchronization with Multiple Source Nodes . . 82
5.3.1 Extended Model . 83
5.3.2 Estimation of Hop-Count Threshold 83
5.3.3 Time Synchronization with Multiple Source Nodes 85

5.4 Simulation Results 88
5.4.1 Single Source Node .89
5.4.2 Multiple Source Nodes .. 93

5.5 Summary . 97

6 Secure and Resilient Global Time Synchronization with Broadcast Authentication 98
6.1 TinySeRSync: Secure and Resilient Global Time Synchronization 98

6.1.1 Basic Approach . 99
6.1.2 Authentication of Local Broadcast Synchronization Messages 100

6.2 Analysis .104
6.2.1 Security Analysis .. 104
6.2.2 Performance Analysis .. 105

6.3 Experiment Results 106
6.3.1 Configuration . 107
6.3.2 Performance in Static Deployment 108
6.3.3 Incremental Deployment .. . 111

6.4 Summary . 111

7 Conclusions 114

vii

Bibliography 116

viii

List of Figures

3.1 Packet sending and receiving process in pair-wise time synchronization 24
3.2 Revised secure single-hop pair-wise synchronization 26
3.3 Distribution of synchronization error in pair-wise synchronization (1 tick = 8.68µs.) 27
3.4 Delay uncertainty. 28

4.1 Maximum clock difference in cluster-wise time synchronization. 45
4.2 Theoretical v.s. average maximum clock differences in simulations. 46
4.3 Communication overhead with the same guarantee of maximum clock difference . 49
4.4 An example of cluster formation 53
4.5 Comparison of cluster metrics 65

5.1 A mesh network between nodesS andD . 71
5.2 Estimation of Hop-count threshold 84
5.3 Partial malicious source nodes 87
5.4 Topology of multiple source nodes in simulation 89
5.5 Convergence time of level discovery phase 90
5.6 Synchronization rate using unicast 91
5.7 One round communication overhead using unicast 91
5.8 Maximum synchronization time using unicast 92
5.9 Average synchronization time using unicast 92
5.10 Maximum synchronization error using unicast 93
5.11 Average synchronization error using unicast 93
5.12 Maximum distance from 2s+1 source nodes 94
5.13 Experimental results with multiple source nodes 95

6.1 µTESLA protocol . 102
6.2 Short delayedµTESLA protocol . 103
6.3 Deployment of network test-bed. 107
6.4 Synchronization error and synchronization rate using broadcast 109
6.5 Synchronization level and communication overhead using broadcast 110
6.6 Average synchronization error (left Y-axis) and coverage (right Y-axis) during in-

cremental deployment .. 112

ix

List of Tables

1.1 Characteristics of MICAz and MICA2 motes. 2

4.1 Notations in fault-tolerant cluster-wise time synchronization 34
4.2 Performance comparison with traditional fault-tolerant schemes. 49
4.3 Node 1’s neighbor matrix in cluster formation process 54

5.1 Simulation parameters in level-based and diffusion-based schemes 88
5.2 Hop-count thresholds when n=200, S=9. 94

6.1 Code size of TinySeRSync on MICAz motes 108

1

Chapter 1

Introduction

Wireless sensor networks have received a lot of attention recently due to their wide ap-

plications, such as target tracking, monitoring of critical infrastructures, and scientific exploration

in dangerous environments. Wireless sensor networks typically consist of a large number of small

sensor nodes and possibly a few powerful control nodes. The sensor nodes sense the environmental

changes and report them to the control nodes over a flexible network architecture. A sensor node

is usually composed of one or a few sensing components, whichare able to sense conditions (e.g.

light, sound, temperature, pressure) from its surroundings, a processing component, which is able

to carry out simple computation, and a communication component, which is capable of short-range

wireless communication. The control nodes may further process the data collected from sensor

nodes, disseminate control commands to sensor nodes, and connect the network to a traditional

wired network. The control nodes can have workstation/laptop class processors, enough memory,

energy, and computational power to perform their tasks.

The main challenge of designing wireless sensor networks come from the resource con-

straint of the sensor nodes. For example, a typical MICAz mote has a 8-bit Atmel ATmega128L

processor, 7.3728MHz clock, 4K bytes RAM, 128K bytes of flashfor program memory, and 250

kbps radio date rate. Moreover, the MICAz mote is powered by 2AA batteries, which is difficult

to replace when consumed in some hostile environments. Table 1.1 shows the basic characteristics

of typical MICAz and MICA2 motes [20], which are widely used in current generation of wireless

sensor networks.

Time synchronization is an important component of a wireless sensor network to provide

2

Table 1.1: Characteristics of MICAz and MICA2 motes.

MICAz MICA2

Processor ATMega128L, 8-bit ATMega128L, 8-bit
Clock 7.3728 MHz 7.3728 MHz
RAM 4K bytes 4K bytes

Program Flash Memory 128K bytes 128K bytes
RF Transceiver CC2420 CC1000

RF Transceiver Frequency 2.4 GHz 315-916 MHz
Radio Data Rate 250 kbps 38.4 kbps
Power Supply 2 AA Battery 2 AA Battery

Hardware Security 128 bit AES No

a common clock in sensor nodes. Most wireless sensor networkapplications, such as data fusion

[60, 103], target tracking [15, 95], and power saving [100],require a synchronized local clocks in

sensor nodes. The ability of the wireless sensor network to aggregate the data collected can greatly

reduce the number of messages that need to be transmitted across the network. Many data-fusion

algorithms [60, 103] have to process the sensor readings ordered by the time of occurrence (e.g., the

time when a forest fire was sensed). In target tracking applications [15, 95], sensor nodes need both

the location and the time when the target is sensed in order tocorrectly determine the target moving

direction and speed. Several approaches intend to improve the energy efficiency by frequently

switching sensor nodes into power-saving sleep mode [100].A group of nodes needs a common

synchronized clock to synchronize their behaviors on switching between wake-up and sleep modes

at the same time. The time slotted MAC protocols (e.g., [66])achieve the multiple access to the

shared communication medium by assigning time slots to a group of nodes. Thus, sensor nodes

need to have a synchronized clock to access their time slots without colliding with other nodes.

The small sensor nodes usually contain inexpensive oscillators with typical clock drift

rates at about tens of microseconds per second [81], and the clock drift (almost 1 second apart per

day) is intolerable for the above wireless sensor network applications. Therefore, time synchroniza-

tion becomes indispensable for many wireless sensor network applications. However, due to the

resource constraints on sensor nodes, traditional time synchronization protocols (e.g., NTP [65])

cannot be directly applied in sensor networks. Recently, several time synchronization protocols

(e.g., [26, 31, 63, 55, 67, 87, 72, 42]) have been proposed forwireless sensor networks in benign

environments. However, without addressing security, all the time synchronization techniques in

wireless sensor networks cannot survive the malicious attacks in hostile environments. As many

3

other techniques, security is not the top priority when designing time synchronization protocols for

wireless sensor networks. This dissertation focuses on developing secure and resilient time syn-

chronization techniques for wireless sensor networks to work in hostile environments.

1.1 Motivation

In hostile environments, an adversary may certainly attackthe time synchronization pro-

tocol due to its importance. Note that all time synchronization protocols rely ontime-sensitive

message exchanges. To mislead these protocols, the adversary may forge or modify time synchro-

nization messages, jam the communication channel to launchDenial of Service (DoS) attacks, and

launch pulse-delay attacks [29] by first jamming the receiptof time synchronization messages and

then later replaying buffered copies of these messages. Theadversary may also launch wormhole

attacks [43] by creating low latency and high bandwidth communication channels between different

locations in the network, and (selectively) delay or drop time synchronization messages transmitted

through the wormholes. The adversary may use Sybil attacks [24, 69], where one node presents

multiple identities, to defeat typical fault tolerant mechanisms. Though message authentication can

be used to validate message sources and contents, it cannot validate thetimelinessof messages, and

thus is unable to defend against all of these attacks.

Moreover, the adversary may compromise some nodes, and exploit the compromised

nodes in arbitrary ways to attack time synchronization. Forexample, the adversary may instruct

the compromised nodes to (selectively) delay or drop time synchronization messages, and launch

Sybil attacks [69] using the identities and keying materials of compromised nodes if message au-

thentication is enabled. The compromised nodes may colludewith each other to cause the worst

damage to the network.

In this dissertation, we propose a suite of secure time synchronization techniques to

achieve secure time synchronization between two neighbor nodes, among a group of sensor nodes,

and in a whole sensor network, respectively.

1.1.1 Secure Single-hop Pair-wise Time Synchronization

Single-hop pair-wise time synchronization aims at obtaining a high-precision time syn-

chronization between pairs of sensor nodes. Researchers have proposed two approaches to achieve

4

single-hop pair-wise time synchronization:receiver-receiver synchronization(e.g., RBS [26]), in

which a reference node broadcasts a reference packet to helppairs of receivers to identify the clock

differences, orsender-receiver synchronization(e.g., TPSN [31], FTSP [63]), where a sender com-

municates with a receiver to estimate the clock difference.

In receiver-receiver synchronization (e.g., RBS [26]), a compromised reference node may

provide different non-compromised nodes different time values about the receipt of the reference

packet. Moreover, an adversary can compromise it by simply launching a pulse-delay attack [29]

or wormhole attack [44] against one of the nodes to manipulate the packet transmission delay,

so that the two nodes receive the reference packet at different times. In FTSP [63], a sender-

receiver synchronization, one node passes its own time to the other by directly sending a MAC

layer timestamped packet to the latter. This works well in benign environments, as demonstrated

in [63]. However, in hostile environments, it suffers from the same problems mentioned above.

TPSN uses a sender-receiver approach (through one request and one reply message) to help the

sender obtain its clock difference from the receiver [31]. Amalicious node may distort the pair-

wise time synchronization by jamming the signal between twonormal nodes and then replaying the

delayed signal to introduce synchronization error [29]. Even an external attacker can launch this

attack. TPSN was later improved with security in Secure Pair-Wise Synchronization (SPS) [29] to

deal with pulse-delay and wormhole attacks. Specifically, it authenticates the messages being ex-

changes, and uses the timestamp information to estimate both the clock difference and the message

transmission delay. Pulse-delay and wormhole attacks thatmanipulate packet transmission delay

will introduce extra delay in message transmission, and will be detected.

Medium Access Control (MAC) layer timestamping has been widely accepted as an ef-

fective way to reduce the synchronization error during the message exchanges since it was proposed

in [31]. To ensure the integrity of pair-wise time synchronization, we may authenticate a synchro-

nization message by adding a Message Integrity Code (MIC) once the MAC layer timestamp is

added. This, however, introduces a potential problem due tothe extra delay required by the MIC

generation: It is necessary to have a MAC layer timestamp that marks the exact transmission time of

a certain bit in the message at the sender’s side, but the MIC generation and insertion require extra

delay and have to be done after the timestamp is inserted intothe message.

The delay introduced by MIC generation using software (e.g., TinySec [49]) can be tol-

erated for sensor platforms with low data rate radio components, such as MICA2 motes (38.4 kbps

data rate). However, with the increased data rate on recent sensor platforms with IEEE 802.15.4

compliant radio components (250 kbps data rate [46]), such as MICAz and TelosB motes, there is

5

not enough time to generate and insert the MIC before the transmission of the MIC bytes due to the

delay introduced by the MIC calculation [29].

In Chapter 3, we develop a secure single-hop pair-wise time synchronization technique

by adopting the SPS approach [29]. Due to the long delay on generating the message integrity code

by using software, SPS approach [29] can only work on low datarate motes such as MICA2, while

it does not support high data rate motes such as MICAz and TelosB. Unlike the SPS approach,

our approach uses ahardware-assisted, authenticated MAC layer timestampingtechnique to handle

high data rate such as those produced by MICAz and TelosB motes (in contrast to those by MICA2

motes).

1.1.2 Fault-tolerant Cluster-wise Time Synchronization

In wireless sensor networks, it is usually necessary to havea cluster of nodes share a com-

mon view of a local clock time, so that the nodes can coordinate their actions. For example, in time

slotted MAC protocols, the multiple access to the shared communication medium is achieved by

assigning time slots to a group of nodes. Therefore, the sensor nodes require a synchronized clock

to access their time slots without colliding with other nodes. As another example, to increase the

energy efficiency, a cluster of sensor nodes may frequently switch into power-saving sleep mode at

the same time [100]. They also require a common clock to coordinate their sleep/listen periods. In

benign environments, such a local common clock can be easilyachieved by having all the nodes

synchronize to a given node. However, in hostile environments where some nodes may be com-

promised, it is quite challenging to synchronize the clocksamong a cluster of nodes. Indeed, none

of the aforementioned time synchronization protocols can survive malicious actions by compro-

mised nodes. A compromised node may disrupt the time synchronization by sending different time

values to non-compromised nodes. For example, when RBS [26]is used for pair-wise time synchro-

nization, a compromised node may provide different non-compromised nodes different time values

about the receipt of the reference packet.

To provide secure and resilient cluster-wise time synchronization, it is natural to consider

fault-tolerant time synchronization techniques, which have been studied extensively in the context

of distributed systems (e.g. [78, 53, 39, 22, 58, 59, 89, 84, 85, 71, 13, 50, 86, 96]). However,

traditional fault-tolerant time synchronization techniques are not directly applicable to wireless sen-

sor networks. These techniques were developed for distributed systems that do not have the same

resource constraints as wireless sensor networks. All of these techniques involve heavy communica-

6

tion among the nodes, and sometimes heavy computation as well. This is because these techniques

either use digital signatures (e.g., HSSD [22], CSM [53]) ormultiple copies of messages (e.g.,

COM, CNV [53]) to prevent a malicious node from modifying or destroying clock information sent

by nonfaulty nodes without being detected. Digital signature is usually not practical in resource con-

strained wireless sensor networks. Even when digital signature is used, for example, in HSSD [22],

each node still needs to send a message to every other node in each synchronization round, resulting

in at leastO(n2) communication complexity, wheren is the number of nodes. Some schemes (e.g.,

HSSD [22], ST [89]) require that all nodes that receive certain messages process and forward these

messages to all the other nodes immediately, resulting in a high probability of message collisions if

used in wireless sensor networks.

In Chapter 4, we present a novel fault-tolerant cluster-wise time synchronization scheme

for clusters of nodes in wireless sensor networks, where thenodes in each cluster can communicate

through broadcast. The proposed scheme guarantees an upperbound of clock difference between

any nonfaulty nodes in a cluster, provided that the malicious nodes are no more than one third

of the cluster. Unlike the traditional fault-tolerant timesynchronization approaches, the proposed

technique does not introduce collisions between synchronization messages, nor does it require costly

digital signatures.

1.1.3 Secure and Resilient Global Time Synchronization

A number of time synchronization protocols (e.g., [26, 31, 63, 55, 79, 67, 87, 72, 42, 21,

35, 90]) have been proposed for wireless sensor networks to achieveglobal time synchronization.

Most of the global time synchronization protocols (e.g., [26, 31, 87]) establish multi-hop paths in a

wireless sensor network, so that the other nodes can synchronize their clocks to the source based on

these paths and the single-hop pair-wise clock differencesbetween adjacent nodes in these paths.

Alternatively, diffusion based global synchronization protocols [55] achieve global synchronization

by spreading local synchronization information to the entire network.

All these techniques assume benign environments. Though itis possible to use au-

thentication to defend against external attacks, an attacker may still attack time synchronization

through compromised nodes. When a pair of nodes are synchronized through a multi-hop path

(e.g., [26, 31, 87]), a compromised node in the path can introduce an arbitrary error. This im-

plies global time synchronization using multi-hop paths isvulnerable to compromised nodes. When

the diffusion based global time synchronization techniques [55] are used, compromised nodes may

7

fluctuate their clock information periodically to prevent the convergence of the clocks. Therefore, a

secure and resilient global time synchronization is necessary for wireless sensor networks to work

in hostile environments.

In Chapter 5, we propose two secure and resilient time synchronization schemes,level-

based time synchronizationanddiffusion-based time synchronization. The basic idea of both schemes

is to provide redundant ways for one node to synchronize its clock with another far-away node, so

that it can tolerate partially missing or false synchronization information provided by compromised

nodes. The level-based scheme builds a level hierarchy in the sensor network, and then synchro-

nizes the whole network level by level. The diffusion-basedscheme allows each node to diffuse its

clock to its neighbor nodes after it has been synchronized. Both schemes are secure against external

attacks and resilient against compromised nodes.

To achieve global time synchronization, we first choose to propagate the global synchro-

nization information using authenticated unicast messages, provided each pair of nodes share a

secure key. However, through the simulation results, we found out that in each round of global time

synchronization, the communication overhead as well as themessage collisions is quite huge. Thus,

it can hardly be extended for large sensor networks. To solvethis problem, in Chapter 6, we develop

a secure and resilient global time synchronization using broadcast authentication based on a novel

use of theµTESLA [76] broadcast authentication protocol forlocal authenticated broadcast. In

each round of global time synchronization, each node only broadcasts one message. Thus, both the

message overhead and the message collisions are reduced dramatically.

1.2 Summary of Contributions

In this dissertation, we present three techniques to provide secure and resilient time syn-

chronization to work in different scopes of wireless sensornetworks. The summary of these tech-

niques are as follows:

• Secure Single-hop Pair-wise Time Synchronization:We develop a secure single-hop pair-

wise time synchronization technique by adopting the SPS approach [29]. SPS uses a random

nonce to prevent replay of a previously transmitted reply message. In our case, we simply use

the sender’s timestamp in the reply message to prevent replay attack, so that we can further

reduce the message size. SPS approach uses software security (e.g., TinySec [49]) to authen-

ticate the MAC layer timestamping in synchronization messages. The message integrity code

8

using software can be available before the radio component sends the corresponding bytes in

the message for sensor platforms with low data rate. However, with the increased data rate on

recent sensor platforms, such as MICAz and TelosB motes, there is not enough time to gener-

ate and insert the MIC before the transmission of the MIC bytes due to the delay introduced

by the MIC calculation [29].

Unlike SPS approach, we propose ahardware-assisted, authenticated MAC layer timestamp-

ing technique to handle high data rate such as those produced by MICAz and TelosB motes (in

contrast to those by MICA2 motes) with the hardware securitysupport in their radio compo-

nents. We implement the proposed technique on MICAz motes [20] running TinyOS [41].

The secure single-hop pair-wise time synchronization willserve as the building block to

achieve the secure and resilient global time synchronization.

• Fault-tolerant Cluster-Wise Time Synchronization:This technique provides a novel fault-

tolerant cluster-wise clock synchronization for a clusterof sensor nodes, where the nodes in

each cluster can communicate with each other directly through broadcast. In each round of

time synchronization, only one node serves as thesynchronizer, and only one authenticated

synchronization message is broadcast. Thus, our scheme canavoid the message collision

problem. The proposed scheme exploits a recently proposed local broadcast authentication

technique for sensor networks, which is purely based on symmetric cryptography [104], thus

avoiding the costly digital signature for message authentication. Our analysis shows that the

proposed scheme guarantees an upper bound on the clock difference between nonfaulty nodes

when no more than1/3 of the nodes are compromised and collude with each other.

• Secure and Resilient Global Time Synchronization:This research resulted in two secure and

resilient time synchronization schemes: level-based and diffusion-based time synchroniza-

tion. The level-based scheme builds a level hierarchy in thewireless sensor network, and then

synchronizes the whole network level by level. The diffusion-based scheme allows each node

to diffuse its clock to its neighbor nodes after it has synchronized to the source node. Our ba-

sic idea is to provide redundant ways for each node to synchronize its clock with the common

source, so that it can tolerate partially missing or false synchronization information provided

by the malicious nodes. To improve the performance and the resilience of our techniques, we

propose to deploy multiple source nodes in the network.

We first propose to use authenticated unicast messages to distribute the synchronization infor-

9

mation by assuming that each two neighbor nodes can share a secret pair-wise key. However,

because each node needs to send one message to each neighbor node in each round of time

synchronization, the communication overhead is quite high, and it may cause potential huge

message collisions, especially when neighboring nodes intend to send several messages at the

same time. Therefore, the technique using unicast authentication can hardly be extended for

large sensor networks.

To solve this problem, we later develop a secure and resilient global time synchronization

protocol,TinySeRSync, using broadcast authentication based on a novel use of theµTESLA

broadcast authentication protocol forlocal authenticated broadcast. We resolve the conflict

between the goal of achieving time synchronization withµTESLA-based broadcast authen-

tication and the fact thatµTESLA requires loose time synchronization. We implement the

proposed TinySeRSync protocol on MICAz motes running TinyOS and perform a thorough

evaluation through field experiments in a network of 60 MICAzmotes. The evaluation results

indicate that TinySeRSync is a practical system for secure and resilient global time synchro-

nization in wireless sensor networks.

1.3 Organization of the Dissertation

The rest of this dissertation is organized as follows. Chapter 2 presents a general clock

model and discusses the related work on time synchronization. Chapter 3 presents the secure single-

hop pair-wise time synchronization scheme. Chapter 4 givesout our fault-tolerant cluster-wise time

synchronization technique. We present the secure and resilient global time synchronization schemes

using unicast authentication in Chapter 5, and the schemes using broadcast authentication in Chapter

6. Chapter 7 concludes this dissertation and points out somefuture research directions.

10

Chapter 2

Background

In this chapter, we first introduce a typical clock model usedin distributed systems. Then,

we present several traditional time synchronization techniques. Next, we discuss the time synchro-

nization schemes proposed for wireless sensor networks. Finally, we give out a number of perfor-

mance metrics that can be used to evaluate and compare securetime synchronization techniques in

wireless sensor networks.

2.1 Clock Model

We introduce a typical clock model used in distributed systems, which is adapted from

[22]. The wireless sensor networks usually use the same clock model. A clock is an instrument

for measuring time. We first make a distinction betweenreal timeandclock time. Real time is an

assumed Newtonian time frame that may not be directly observable, and clock time is the time that

can be observed on the clocks. We use lowercase letters to denote the variables and constants about

real time, and uppercase letters to denote those about clocktime.

A local clockC can be considered a mapping from real time to clock time, i.e., T = C(t)

is the clock time at the real timet. When we speak of “a clock drifting from real time”, we mean

that the difference between a clock and real time may gradually increase. A clockC is considered

well-behavedif its rate of drift from the real time is bounded by a constantρ > 0 for all the real

11

time pointst1 andt2, wheret1 < t2:

t2 − t1
1 + ρ

< C(t2)− C(t1) < (1 + ρ)(t2 − t1). (2.1)

The rate of drift between any two well-behaved clocks is bounded byλ = ρ(2 + ρ)/(1 + ρ), which

is less than2ρ. The drift rate of a clock may fluctuate over time due to aging,changes in the

environment, and by other factors external to the oscillator.

When it is difficult to directly discipline a local clock, a node may construct a software

clock. A software clock can be considered a mapping from a local clock time to a software clock

time, which can provide a synchronized clock time by adjusting the parameters of the software

clock.

In all the synchronization schemes that depend on exchanging messages, due to the delay

uncertainty, the synchronization error consists of the following basic components [26]:

• send time: It is the time spent to construct a message at the sender. It includes the oper-

ating system overhead (e.g., context switches) and the timeto send the message to network

interface.

• access time: It is the time delay for accessing the physical channel. It is specific to the MAC

layer protocol in use. Contention-based MAC layer protocols must wait for the channel to

be clear before transmitting, and retransmit in case of collision. TDMA-based MAC layer

protocols require the sender to wait for its slot before transmitting.

• propagation time: It is the time for a message to propagate from the sender to the receiver.

• receive time: It is the time for the receiver to receive and transfer the message for the host.

Existing time synchronization techniques vary primarily in their methods for estimating

and eliminating the above sources of error.

Another thing that affect the precision of a synchronization algorithm is the clock drift

between two synchronization points. Due to the clock drift,a clock may drift from the real time

before the next round of time synchronization. To decrease the maximum clock difference from the

real time, a clock may run time synchronization process morefrequently, or estimate and correct

the clock drift if the clock has a long-term stable drift rate.

12

2.2 Traditional Time Synchronization

Time synchronization problem has been investigated thoroughly in Internet and distrib-

uted computer systems. Next, we discuss some representative time synchronization mechanisms.

Global Positioning System (GPS)GPS [3, 98] is a constellation of satellites operated

by the U.S. Department of Defense. GPS is originally intended to be used for precise positioning

through the determination of pseudo-ranges from the satellites to the ground based receiver. The

key idea is that by measuring the time of flight of a radio signal from 4 or more satellites to the

receiver, the position of the receiver may be accurately determined. In addition, the time difference

of the receiver from the GPS clock time may be calculated. Therefore, the velocity of the receiver

and the time frequency offset of the receiver may be ascertained. GPS can provide a time accuracy

of several nanoseconds.

NTP In Internet, computers can obtain a synchronized Internet time by using Network

Time Protocol (NTP) [65] protocol. NTP organizes all the computers in a client/server structure.

Primary servers synchronize to national reference clock sources via radio, satellite and modem.

Then, secondary servers and clients synchronize to primaryservers via hierarchical subnet. The

reliability is assured by redundant servers and diverse network paths. Several engineered algorithms

have been proposed to reduce jitter, select from multiple sources and avoid improperly operating

servers. The system clock of a computer is disciplined in time and frequency using an adaptive

algorithm responsive to network time jitter and clock oscillator frequency wander. NTP provides

accuracies of low tens of milliseconds on WANs, sub-milliseconds on LANs, and sub-microseconds

using a precision time source such as a cesium oscillator or GPS receiver.

Probabilistic-based Synchronization Cristian [19] proposed a probabilistic method to

read remote clocks in distributed systems that are subject to unbounded random communication

delays. When a process wants to synchronize to a remote process, it sends a time request to the

remote process, and calculates the request’s round-trip time as the difference between the time

when it initiates the request and the time when it receives the reply from the remote process. The

reply contains the time when the remote process sends the reply. Then, the process adjusts its

clock time to the sum of the time contained in the reply and half the round-trip time. Due to the

non-deterministic message delay, to reduce the synchronization error, a process needs to perform

multiple such trails and chooses the trial with the mininum round-trip time to synchronize its clock.

Cristian’s method is probabilistic because it does not guarantee a processor can always synchronize

to a remote process with an a priori specified precision. Therefore, to increase the probability of

13

success to achieve a given precision, a process needs to increase the number of trials on estimating

the remote process’s clock time.

TEMPO Gusella and Zatti [38] proposed a centralized time synchronization service for

the Ethernet local area network. A master node first measuresthe time differences between its local

clock and those of other slave nodes. The master node computes the network time as the average of

the times provided by normal clocks, and then sends to each slave node the correction that should be

performed on its clock. This process is repeated periodically. It assumes the master node is always

trusted. The similar idea can be used in sensor networks to achieve time synchronization in a group

of nodes that can directly communicate with a sink node or a normal sensor node.

Fault-tolerant Time Synchronization In distributed systems, fault-tolerant time syn-

chronization has undergone substantial research (e.g. [52, 78, 53, 39, 22, 58, 59, 89, 84, 85, 71,

13, 50, 86, 96]). These techniques take either asoftwareor ahardwareapproach [78]. Hardware-

based techniques require a synchronization circuitry continuously monitor all the clocks [78], and

thus cannot be used in sensor networks. Software-based techniques can be further classified into

convergence-averaging (e.g., CNV [53], LL [58, 59]), convergence-non-averaging (e.g., HSSD [22],

ST [89]), or consistency algorithms (e.g., COM, CSM [53]). Some software-based (or hardware-

assisted, hybrid) techniques [77] use hardware to generatetimestamps, and thus can reduce the

uncertainty involved in time synchronization. A common theme of these techniques is to use redun-

dant messages to deal with malicious participants that may behave arbitrarily.

All the traditional time synchronization techniques cannot be directly applied into sensor

networks, mainly due to the resource constraints of sensor nodes. For example, the GPS receiver

is too large, expensive, and power-hungry for small, cheap,and power constrained sensor nodes.

Moreover, GPS requires a clear sky view, which is not always available in some areas, such as

inside of buildings or underwater. Because NTP does not consider the energy and computation

limitations of sensor nodes [27], it is infeasible to implement NTP in sensor networks. NTP uses

several engineered algorithms (i.e., data-filtering algorithm, peer-selection algorithm and combining

algorithm) to reduce jitter, increase the robustness and avoid improperly operating servers. Such

algorithms are computationally intensive and assumes the CPU is always available to frequently

discipline the oscillator. However, the CPU cycles in sensor nodes are also a scarce resource, and

the sensor nodes cannot spend all the CPU cycles on the time synchronization. Consider Cristian’s

probabilistic method. It requires a large number of messageexchanges, which introduces a high

communication overhead for resource constrained sensor nodes. Moreover, it can only provide a

probabilistic time synchronization with a given precision. When TEMPO is deployed to achieve a

14

network-wide time synchronization, the bounds on the synchronization accuracy will increase a lot

due to the delay uncertainty in multi-hop message communication.

The traditional fault-tolerant time synchronization schemes in wired networks usually

assume there is unlimited computing resource and network bandwidth, and thus are not suitable for

sensor networks. These schemes usually have very high communication overhead (especially the

consistency-based approaches such as COM and CSM). Moreover, to prevent malicious participants

from forging messages, these schemes use either digital signatures (e.g., CSM [53], HSSD [22]), or

a broadcast primitive that requires simultaneous broadcast from multiple nodes, which will result in

message collisions in wireless sensor networks.

2.3 Time Synchronization in Wireless Sensor Networks

Recently, several time synchronization protocols (e.g., [26, 27, 21, 31, 63, 72, 87, 55, 90,

67, 35, 42, 79, 64]) have been proposed for sensor networks toachievepair-wiseand/orglobal time

synchronization. Pair-wise time synchronization aims to obtain a high-precision time synchroniza-

tion between pairs of sensor nodes, while global time synchronization aims to provide network-wide

time synchronization in a sensor network.

Reference BroadcastingElson et al. developed the Reference Broadcast Synchroniza-

tion (RBS) scheme for pair-wise as well as multi-domain timesynchronization [26], which elimi-

nates the uncertainty of send time and access time from the clock reading error by using a reference

broadcast node. In RBS, one sender broadcasts a single pulse, two receivers can calculate their

relative clock difference by exchanging the receiving timeof the pulse from the sender. In addition,

the sender can broadcast a number of pulses to improve the precision between the receivers. They

also propose to use the least square linear regression technique to estimate the clock frequency

difference. RBS can provide an average synchronization error of 11µs by using 30 broadcasts.

Based on RBS, Palchaudhuri et al. [72] proposed a probabilistic time synchronization which can

reduce the communication overhead; however, it can only probabilistically guarantee the required

time precision.

Timing-sync Protocol Generiwal et al. proposed a hierarchical time synchronization

scheme named TPSN for sensor networks [31], assuming time synchronization messages are timestamped

at MAC layer. In the pair-wise time synchronization, one sender synchronizes itself to a receiver by

exchanging one pair of messages. If the two exchange messages can be timestamped at MAC layer

15

right before being sent out, TPSN can provide a higher time precision than RBS. TPSN can provide

a global time synchronization in two phases: level discovery and synchronization. The goal of level

discovery phase is to build a spanning tree topology in the network, where each node is assigned a

level. The tree topology is rooted at one source node, which is assigned level 0. In the synchroniza-

tion phase, a leveli node synchronizes to a neighbor node at leveli−1. In the end, all the nodes are

synchronized to the source node, and the global time synchronization is achieved. Generiwal et al.

[30] also proposed a synchronization scheme to estimate thelong-term clock changes and to reduce

the energy consumption in duty-cycling MAC layer in sensor networks.

Flooding Time Synchronization Maróti et al. [63] proposed a flooding time-synchronization

protocol to synchronize a whole network. The node with the lowest node ID is elected as the leader

that serves as the reference node. The leader periodically floods the network with a synchronization

message that contains the leader’s current time. Nodes thathave not received this message record the

time stamp in the message and the receiving time of the message, and broadcast the message to their

neighbors. It uses MAC layer time stamping to minimize the delay uncertainty. Each node collects

eight messages and uses the linear regression to estimate the offset and the frequency difference to

the leader.

Global Time Synchronization Li and Rus proposed a global time synchronization tech-

nique based on local diffusion of clock information [55]. Nodes achieve global synchronization by

flooding their neighbors with information about its local clock value. After each node have received

the clock values of all its neighbors, the node can use a derived consensus value to adjust its clock.

They presented two protocols for both synchronous and asynchronous situations. In the synchro-

nous protocol, all the nodes can execute each round of synchronization at the same time. Each node

adjusts its clock value by a factor proportional to the clockdifference from each neighbor node.

The factor indicates the weight of a neighbor on the node’s clock adjustment. In the asynchronous

protocol, a node starts one round of synchronization by requesting local clock values from all its

neighbors. Then, it updates its clock to the average of its clock value and the clock values from all

the neighbors. All the nodes may start the time synchronization process at different times. Both

protocols can converges to the average value of the clock readings in the network, within a certain

error range. By using their protocols, dense networks converge faster, and with lower variation in

convergence time, than sparse networks.

Time Diffusion Synchronization Su and Akyildiz proposed a time diffusion synchro-

nization (TDP) protocol to support a network-wide time synchronization [90]. Initially, a set of

master nodes are elected based on its remaining power energy. Then, each master node establishes

16

a tree hierarchy. After obtaining the round-trip time to each neighbor node, a master node calculates

and broadcasts the average and standard deviation of the message delay to all neighbors. A neigh-

bor node becomes a diffused node based on its remaining powerenergy and its clock property, and

repeat the procedure as the master nodes. The average delay and standard deviation are summed up

along the path from the master nodes. The diffusion procedure stops at a given number of hops from

the master nodes. One node may appear in multiple master nodes’s trees, so it adjusts its clock ac-

cording to the clock differences from all these master nodes. To achieve load balance, all the master

nodes are reelected in a given interval. The diffused nodes are reelected in a smaller time interval.

This protocol contains many algorithms on electing master nodes and synchronizing sensor nodes;

however, these complex algorithms may be too heavy for resource-constrained sensor nodes.

Tiny-sync and Mini-sync Sichitiu et al. [87] developed two lightweight pair-wise syn-

chronization schemes, Tiny-Sync and Mini-Sync, to deterministically estimate the bounds on both

the relative clock drift and offset between two sensor nodes. Both schemes use multiple round-trip

measurements and a line-fitting technique to obtain the clock offset and the relative clock drift of

two nodes. Tiny-Sync uses a heuristic to keep only two measurements in storage, but only achieves

a suboptimal solution. Mini-Sync can provide an optimal solution with increased computation and

storage overhead.

Lightweight Tree-Based Synchronization Greunen and Rabaey claimed that the maxi-

mum time accuracy required in sensor networks is relativelylow (within a fraction of one second),

and proposed two lightweight global time synchronization schemes in sensor networks [35]. Both

schemes synchronize all the sensor nodes to some reference node(s) in the sensor network. The

first scheme is centralized and needs to construct a spanningtree rooted at the reference node. The

reference node is responsible for initializing the synchronization process with a time interval which

is decided by the depth of the tree and the required precision. The second scheme performs in a

distributed fashion. When a node needs to synchronize its clock, it sends a synchronization request

to the reference node by using any available routing protocol. Then all the nodes along the path

from the reference node to the requesting node must be synchronized before the requesting node.

To reduce the synchronization overhead, the authors proposed to aggregate several requests along

the same path into one request.

TSync Dai and Han [21] proposed two time synchronization schemes:the Hierarchy Ref-

erence Time Synchronization protocol (HRTS) for proactivesynchronization of the whole network,

and the Individual-based Time Request protocol (ITR) for reactive synchronization of individual

nodes. Both protocols need an independent radio channel forsynchronization messages to avoid the

17

inaccuracies due to the variable delay introduced by message collisions. In HRTS, a spanning tree

rooted at a reference node is constructed. Then, the reference node use the reference broadcasting

techniques [26] to synchronize the network. The ITR protocol differs from the HRTS protocol in

that synchronization is initiated by any node as opposed to adesignated reference node.

Time Synchronization for Ad-hoc Networks Römer proposed a time synchronization

scheme for wireless ad-hoc networks [79]. The basic idea is not to synchronize the local clocks

of nodes, but instead generate time stamps using unsynchronized local clocks. When a message

containing a time stamp is transmitted between two nodes, the time stamp is first transformed from

the sender’s local time to the standard Coordinated Universal Time (UTC), and then to the receiver’s

local time. The final timestamp is expressed as an interval with a lower bound and an upper bound.

Meier et al. [64] improved R̈omer’s protocol by providing a tight bound on the transformedtime

interval on the receiving node.

Time Synchronization in IEEE 802.11 The IEEE 802.11 standard [9] requires time

synchronization in wireless networks for keeping hopping synchronized and other functions like

power saving. In an infrastructure BSS (Basic Service Set),a simple master/slave protocol is used

to synchronize the stations to an access point (AP). The AP transmits periodic beacon frames to the

stations, which adjust their clocks to the clock value in theframes from the AP. In an independent

BSS (IBSS), time is divided into beacon intervals. At the beginning of each interval, each station

calculates a random delay and is scheduled to transmit a beacon when the delay timer expires.

If a beacon arrives before the random delay timer has expired, the station cancels the pending

beacon transmission and the remaining random delay. Upon receiving a beacon, a station sets its

clock to the timestamp of the beacon if the value of the timestamp is later than the stations clock

time. It guarantees that clocks only move forward and never backward. However, this approach

has scalability problem that the fastest station will be outof synchronization when the number of

stations increases. ATSP was proposed in [45] to solve the scalability problem. The basic idea is to

let the fastest station to compete for beacon transmission every beacon interval and let other stations

to compete only occasionally.

All of the above techniques assume benign environments, butcannot survive malicious

attacks from compromised nodes. There have been several recent studies for secure time synchro-

nization in sensor networks [29, 93, 62, 88]. Manzo et al. discussed a few attacks against existing

time synchronization protocols and several countermeasures to protect time synchronization [62].

However, there was no mechanism to authenticate the timeliness of synchronization messages, and

thus no protection against, for example, pulse-delay attacks [29] and worm-hole attacks [44], in

18

which the adversary may delay authenticated synchronization messages.

Song et al. investigated countermeasures against attacks that mislead sensor network time

synchronization by delaying synchronization messages [88]. They proposed two methods for de-

tecting and tolerating delay attacks: one transforms attack detection into statistical outliers detec-

tion, and the other detects attacks by deriving the bound of the time difference between two nodes

through message exchanges. Unfortunately, [88] only addresses synchronization of neighbor nodes,

but does not support global time synchronization in multi-hop sensor networks.

Ganeriwal et al. proposed a secure single-hop pair-wise synchronization (SPS) technique [29],

which provides authentication for medium access control (MAC) layer timestamping by adding

timestamp and message integrity code (MIC) as the messages being transmitted. This approach

works for low data rate sensor radios (e.g., CC1000 on MICA2 motes with 38.4Kbps data rate);

however, it cannot keep up with recent IEEE 802.15.4 [46] compliant sensor radios such as CC2420

on MICAz and TelosB, whose data rate is 250Kbps.

Though it is possible to use authentication to defend against external attacks, an attacker

may still attack time synchronization through compromisednodes. These compromised nodes may

drop, modify, forge, or replay the synchronization messages. We don’t consider the physical layer

attacks, such as signal jamming attacks.

2.4 Evaluation Metrics for Secure Time Synchronization

Given a secure time synchronization protocol, which targets at preventing or mitigating

the attacks in time synchronization, we can use the following metrics to evaluate its performance in

both benign and hostile environments.

• synchronization precision:It is the maximum clock difference between any two sensor nodes

in a whole network. It is a metric closely related to thesynchronization error, which is

about the clock offset of a single node [81]. In hostile environments, we only care about the

synchronization precision between normal nodes.

• synchronization rate: It is the percentage of sensor nodes in a sensor network that can cor-

rectly obtain a synchronized clock time.

• memory overhead: It is the size of memory allocated for storing the messages related to

time synchronization in each sensor node. Currently, memory is still critical for resource

19

constrained sensor nodes.

• convergence time:It has different meanings for external synchronization andinternal syn-

chronization.

– external synchronizationWhen all the clocks in the network are synchronized to an

external clock source, the convergence time is the time interval between the start point

of the synchronization process and the time point when the last sensor node that can be

synchronized synchronizes its clock.

– internal synchronizationWhen all the nodes in a network need to agree on a consistent

clock time without the help from an external clock source, the convergence time is the

time interval between the start point of the synchronization process and the time point

when the predetermined synchronization precision is achieved.

• communication overhead:It is the number of messages sent for time synchronization. The

synchronization information may be piggy-backed in the messages for other applications, or

sent by dedicated synchronization messages. The “piggy-back” method can avoid additional

messages for synchronization, but it may not provide a synchronized clock on demand, since

it depends on the other applications. The communication overhead is related to the synchro-

nization precision achieved.

In the following chapters, we will use the above metrics to study the performance of the

proposed secure time synchronization techniques.

20

Chapter 3

Secure Single-Hop Pair-Wise Time

Synchronization

In wireless sensor networks, existing pair-wise or global time synchronization techniques

are all based onsingle-hoppair-wise time synchronization, which discovers the clockdifference

between two neighbor nodes that can communicate with each other directly. In single-hop pair-

wise time synchronization, Medium Access Control (MAC) layer timestamping has been widely

accepted as an effective way to reduce the synchronization error during the message exchanges

since it was proposed in [31].

To ensure the integrity of pair-wise time synchronization,we may authenticate a synchro-

nization message by adding a Message Integrity Code (MIC) once the MAC layer timestamp is

added. This, however, introduces a potential problem due tothe extra delay required by the MIC

generation: It is necessary to have a MAC layer timestamp to mark the exact transmission time of

a certain bit in the message at the sender’s side, but the MIC generation and insertion require extra

delay and have to be done after the timestamp is inserted intothe message.

The delay introduced by MIC generation using software (e.g., TinySec [49]) can be tol-

erated for sensor platforms with low data rate radio components, such as MICA2 motes (38.4 kbps

data rate). However, with the increased data rate on recent sensor platforms with IEEE 802.15.4

compliant radio components (250 kbps data rate [46]), such as MICAz and TelosB motes, there is

21

not enough time to generate and insert the MIC before the transmission of the MIC bytes due to the

delay introduced by the MIC calculation [29].

In this chapter, we present a secure single-hop pair-wise time synchronization technique

[94] by adopting a Secure Pair-Wise Synchronization (SPS) [29] technique, which provides a soft-

ware based, MAC layer timestamp authentication for low datarate radio components. We propose

a hardware-assisted, authenticated MAC layer timestampingtechnique to handle high data rate in

a specific target of the IEEE 802.15.4 compliant radio component ChipCon CC2420 [6], which is

commonly used in recent sensor platforms such as MICAz and TelosB motes. CC2420 features

hardware security support for data encryption and data authentication. We implement the proposed

technique on MICAz motes running TinyOS [41].

3.1 Attacks in Single-Hop Pair-Wise Time Synchronization

Most of the single-hop pair-wise time synchronization schemes suffer the following at-

tacks in hostile environments.

• pulse-delay attack:A malicious node may distort the pair-wise time synchronization by jam-

ming the signal between two normal nodes and then replaying the delayed signal to introduce

synchronization error [29]. Even an external attacker can launch this attack.

• malicious reference:This attack is specific to receiver-receiver synchronization (e.g., RBS

[26]). A compromised reference node may provide different non-compromised nodes differ-

ent time values about the receipt of the reference packet.

• replay attack: A malicious node may launch replay attacks by recording the current syn-

chronization messages from other nodes and impersonating these nodes to send the buffered

messages later. This type of attack can usually be defeated through the use of freshness token

such as a sequence number.

• Sybil attack: A malicious node may attempt to forge multiple identities bylaunching Sybil

attacks [69]. If colluding malicious nodes can exchange their keying materials, one malicious

node may impersonate other remote malicious nodes in its local network [73].

• wormhole attack: In sensor networks, remote malicious nodes may pretend to bein normal

nodes’ local area through wormholes [44]. Thus, time synchronization messages at a remote

22

area may be tunneled to local area to interrupt the local timesynchronization process.

An attacker can also launch signal jamming attacks, which can block normal nodes for re-

ceiving any synchronization messages. Because no scheme that requires inter-node communication

can survive such attacks, we did not consider such attacks inour model.

In the following, we describe our secure single-hop pair-wise time synchronization tech-

nique that can achieve correct time difference between two normal neighbor nodes.

3.2 Secure Single-Hop Pair-Wise Time Synchronization

The goal of secure single-hop pair-wise time synchronization is to ensure two neighbor

nodes can obtain their clock difference through message exchanges in a secure way. This requires

the authentication of the source, the content (i.e., the timing information), and the timeliness of each

message used for such synchronization.

In the following, we first discuss how we provide authentication of the source and the

timing information in synchronization messages, and then describe a secure two-way pair-wise

time synchronization protocol for a node to obtain the clockdifference from a neighbor node.

3.2.1 Authenticated MAC Layer Timestamping

MAC layer timestamping has been widely accepted as an effective way to reduce the

synchronization error during the message exchanges since it was proposed in [31]. By adding (on

the sender’s side) and retrieving (on the receiver’s side) timestamps in the MAC layer, this approach

avoids the uncertain delays introduced by application programs and medium access, and thus has

more accurate synchronization precision.

To ensure the integrity of pair-wise time synchronization,we may authenticate a synchro-

nization message by adding a MIC once the MAC layer timestampis added, assuming the two nodes

performing pair-wise synchronization share a secret pair-wise key through, for example, TinyKey-

Man [57]. This, however, introduces a potential problem dueto the extra delay required by the MIC

generation: It is necessary to have a MAC layer timestamp that marks the exact transmission time of

a certain bit in the message at the sender’s side, but the MIC generation and insertion require extra

delay and have to be done after the timestamp is inserted intothe message.

23

The delay introduced by MIC generation and insertion can be tolerated for sensor plat-

forms with low data rate radio components, such as MICA2 motes. In an earlier study [29], Ganeri-

wal et al. attempted to provide authenticated MAC layer timestamping for MICA2 motes (38.4 kbps

data rate) by generating MIC on the fly. Specifically, when theradio component of a sensor node

begins to transmit the first byte of a synchronization message, it appends the current timestamp into

the message, calculates the MIC, and appends the MIC into themessage being transmitted. Due to

the low data rate (38.4 kbps), the MAC layer timestamp and theMIC can be added into the packet

before the corresponding bytes are transmitted [29]. However, with the increased data rate on recent

sensor platforms with IEEE 802.15.4 compliant radio components (250 kbps data rate [46]), there

is not enough time to generate and insert the MIC before the transmission of the MIC bytes due to

the delay introduced by the MIC calculation [29].

We propose a prediction-based approach to address the aboveproblem. In the following,

we describe our approach, with a specific target of the IEEE 802.15.4 compliant radio component

ChipCon CC2420 [6], which is commonly used in recent sensor platforms such as MICAz and

TelosB motes. We also assume the sensor nodes use TinyOS [41], the open source operating system

for networked sensor nodes.

Prediction-Based MAC Layer Timestamping and Hardware-Assisted Authentication

We observe that the code for generating a MIC is deterministic, and the time required for

a MIC generation for messages with a given length (or, more precisely, a given number of blocks)

is fixed. In addition, the process to transmit a packet (starting from observing the channel vacancy

to the actual transmission of data payload) in CC2420 is alsodeterministic. Thus, when we put a

timestamp into a synchronization message to be authenticated in the MAC layer, we may predict

the time required by MIC generation and at the same time predict the delay between the start of

transmission and the transmission a given bit in the packet.

Let us review how a sensor node (such as a MICAz mote) equippedwith a CC2420 radio

component handles packet transmission on TinyOS. Figure 3.1 shows the transmission and receiving

process. When a node has a message to send, its micro-controller first transmits the message to the

RAM (TXFIFO buffer) of the CC2420 radio component. After thebuffering is done, CC2420 sends

a signal to the micro-controller. At this time, if the radio channel is clear, the micro-controller signals

CC2420 to send out the packet with a STXON strobe. Otherwise,it will backoff randomly and then

test the channel again. After receiving a STXON signal, CC2420 first sends 12 symbol periods, with

24

� �� � � � �� � � 	
 � � �
 � � � � � ��
 � � � � 	 �
 � � � �
 �� � 	 � �
�� � � � � � � � � � � � � � � � � � � � � ! "# $ # %

 & � � ' � ()* � + ,(- �

. / 0 1 .2 3 4 5 6 7 8 9: /
. ; < 7 8 = 0 6 > ?7 7 / 1 @

= 6 7
A B < C

D � E � +F � � -� � # # & � & G

H 1 1 A HI 2 ?> / 6 7 = > J ? 0 K

$ # $ L % M N - - + $ +F ' � O F �)(F -

� �� � � � �� � � 	
 � � �
 � � � � � ��
 � � � � 	 �
 � � � �
 �� � 	 � �
�� � � � � � � � � � � � � � � � � � � � � ! "# $ # %

. ; < 1 / 7 / P 7 / 1 Q @
= 6 7

A B < C

R � S T ,+�U � + ,V ,W F � ,(E

H 1 1 A HI 2 ? > / 67 = > J ? 0 K

$ # $ L % M N - - + $ +F ' � O F �)(F -

@ / 0 K7 X Y / P/ ?Z / 1

O +(* F [F � ,(EL �)F �

\] ^ _ ` a b ` c

\ d ^ e ` f ` gh ` c

Figure 3.1: Packet sending and receiving process in pair-wise time synchronization

4 bits in each symbol, and then sends 4 byte preamble and 1 byteof Start of Frame Delimiter (SFD)

field, followed by 1 byte length field and the MAC Protocol DataUnit (MPDU). The sequence of

events follows strict timing, and the delays introduced by all of them are predictable.

We use the last bit of the SFD byte as the reference point for time synchronization. In

other words, the sender takes the transmission (completion) time of the last bit of SFD as the MAC

layer transmission timestamp, and the receiver marks the receiving time of the same bit as the

receiving timestamp. To allow the sender to perform MAC layer timestamping and authentication,

as mentioned earlier, we can predict the time when the last bit of SFD will be transmitted.

Sender Side:Now let us describe our proposed sending process in detail. Assume the sender has

started sending a synchronization message to the RAM (TXFIFO buffer) of CC2420. At this time,

the timestamp field in the message has not been filled. Upon completion of the transfer, CC2420

sends a signal to the micro-controller, which then starts handling the signal in the MAC layer. If

the radio channel is clear, the micro-controller generatesa timestamp by adding the current time

with a constant offset∆. This constant offset∆ is the time delay from checking the current time

to the transmission of the last bit of SFD. The micro-controller then writes the timestamp directly

to the corresponding bytes in CC2420’s TXFIFO. Next, if the radio channel is still clear, it signals

CC2420 to send out the message with a STXON strobe. Otherwise, it backs off for a random period

25

of time and then repeats the above process. (Note that this backoff will force the micro-controller

to write the MAC layer timestamp again when the same message is to be re-transmitted.) Upon

receiving the STXON signal, as described earlier, CC2420 starts transmitting the symbol periods,

the preamble, the SFD, and the MPDU. In the case when CC2420 can successfully transmit the

packet, the execution and the data transmission are both deterministic, and the delay∆ is a constant.

The delay∆ we obtained on MICAz motes is 399.28µs. This includes the total transmission time

for the 12 symbol periods, preamble and SFD ((12∗4+(4+1)∗8)/250, 000 = 0.000352 s = 352 µs)

and the execution time between checking the timestamp and starting the transmission (47.28 µs).

In our implementation, we have CC2420 start the in-line authentication to generate the

MIC of the message at the time when it begins to transmit the symbol periods. According to the

manual of CC2420 [6], the in-line authentication componentin CC2420 can generate a 12-byte

MIC on a 98-byte message in 99µs. Thus, we can easily see the MIC generation can be completed

before it is transmitted. Besides the MIC, CC2420 also generates a 2-byte Frame Check Sequence

(FCS) using Cyclic Redundancy Check (CRC).

Receiver Side:After an approximately 2µs propagation delay [6], the radio component CC2420

on the receiver node will receive the preamble of an incomingmessage. Once the SFD field is

completely received by CC2420, the SFD pin will go high to signal the micro-controller, which

then records the current time as the receiving timestamp. When the FIFOP pin goes low, the micro-

controller will be signaled to read the data from CC2420’s RXFIFO buffer, in which the first byte

indicates the length of the message. During the receiving process, CC2420 performs in-line verifi-

cation of the MIC (and the CRC) in the message, using the pair-wise key shared between the sender

and the receiver. The micro-controller examines the verification result, and copies the whole packet

if the packet is authenticated. All these operations are performed in the MAC layer, and transparent

to the application layer.

Unlike the deterministic delay on the sender’s side, the delay affecting the receiving

timestamps on the receiver’s side is not entirely deterministic. When interrupt is disabled, the

micro-controller will not be able to get the SFD signal immediately, and the resulting delay will be

uncertain.

26

i j k lm n o n p j n q r s n i t u v w x y z { m n o n p j n q r s | }
~ �

� �

� �

� �
� �

� �� �

� � � � � �� �� � �� � �� � � � � � � � � � � � � � �� �� � �� � �� � � � �

Figure 3.2: Revised secure single-hop pair-wise synchronization

3.2.2 Secure Single-Hop Pair-Wise Synchronization

Given the authenticated MAC layer timestamping capability, we can now describe how

two neighbor nodes can perform secure pair-wise time synchronization.

Let us take a look at our options. RBS uses a receiver-receiver approach to synchronize

nodes [26], in which a reference node broadcasts a referencepacket to help pairs of receivers to

identify their clock difference. However, an adversary cancompromise it by simply launching a

pulse-delay attack [29] or wormhole attack against one of the nodes to manipulate the packet trans-

mission delay [44], so that the two nodes receive the reference packet at different times. In some

protocols such as FTSP [63], one node passes its own time to the other by directly sending a MAC

layer timestamped packet to the latter. This works well in benign environments, as demonstrated

in [63]. However, in hostile environments, it suffers from the same problems mentioned above.

TPSN uses a sender-receiver approach (through one request and one reply message) to help the

sender obtain its clock difference from the receiver [31]. This approach was later improved with

security in Secure Pair-Wise Synchronization (SPS) [29] todeal with pulse-delay and wormhole

attacks. Specifically, it authenticates the messages beingexchanged, and uses the timestamp infor-

mation to estimate both the clock difference and the transmission delay. Pulse-delay and wormhole

attacks that manipulate packet transmission delay will introduce extra delay in message transmis-

sion, and will be detected.

We adopt the SPS approach [29] with a slight modification. SPSuses a random nonce to

prevent replay of a previously transmitted reply message. In our case, we simply use the sender’s

timestamp in the reply message to prevent replay attack, so that we can further reduce the message

27

‘

0.00% 0.01% 0.71%

8.43%

67.76%

19.84%

3.15%
0.09% 0.01%

0%

10%

20%

30%

40%

50%

60%

70%

80%

-4 -3 -2 -1 0 1 2 3 4
Synchronization Error (tick)

P
er

ce
n

ta
g

e

Figure 3.3: Distribution of synchronization error in pair-wise synchronization (1 tick = 8.68µs.)

size.

Figure 3.2 shows the revised SPS protocol, in which all messages are timestamped and

authenticated with the keyKAB shared by nodes A and B, as described in Section 3.2.1. Node A

initiates the synchronization by sending messageM1. The message containsM1’s sending time

t1. NodeB receives the message att2. After verifying the message, at timet3, node B sends

a messageM2 that includest2, t3 to node A. When node A receives the message att4, it can

calculate the clock difference∆A,B = (t2−t1)−(t4−t3)
2 , and the estimated one-way transmission

delaydA = t2−t1+t4−t3
2 . Since all messages are authenticated, any modification to any message

will be detected. To prevent the pulse-delay attacks [29] and wormhole attacks [44], node A verifies

that the one-way transmission delay is less than the maximumexpected delay. As a result, the

sender A can easily detect attempts to affect the timelinessof the synchronization messages. Thus,

our revised SPS achieves the same degree of security as the original one with smaller messages.

Note that the revised SPS protocol only enables the sender (A) to obtain the clock dif-

ference with the receiver (B). If the receiver (B) also needsthis information, it has to initiate this

protocol with the sender (A) as well. An alternative is to perform a three-way message exchange

so that both nodes will get the clock difference at the end of the protocol execution. However, in

28

‘

� ¡
¢ £ ¤ ¥¦

§ ¨ © ª ¨ ¨ £

§ � � ª « « ¥¨ ¬ © ¥­ ª « © £ ­ § ¤ ¤ ¥¨ ¬ © ¥­ ª « © £ ­
® ¨ � ¦ ¤ ¥¨ ¬

� ¡
¢ £ ¤ ¥¦

§ ¨ © ª ¨ ¨ £
¯ ª � ¦ ¤ ¥¨ ¬

°¨ © ª ± ± ¡ © ² £ ¨ ¤ ³ ¥¨ ¬

´ ±¦ £ ¬ £ © ¥¦ ¨

§ � � ª « « ¥¨ ¬ © ¥­ ª « © £ ­

µ ¥­ ª

¶ ª ¨ ¤ ª ±

¢ ª � ª ¥· ª ±

© ¸

© ¹

§ ¤ ¤ ¥¨ ¬ © ¥­ ª « © £ ­ § � � ª « « ¥¨ ¬ © ¥­ ª « © £ ­
© º

® ¨ � ¦ ¤ ¥¨ ¬

´ ±¦ £ ¬ £ © ¥¦ ¨
¯ ª � ¦ ¤ ¥¨ ¬

°¨ © ª ± ± ¡ © ² £ ¨ ¤ ³¥¨ ¬
§ � � ª « « ¥¨ ¬ © ¥­ ª « © £ ­
©»

Figure 3.4: Delay uncertainty.

such a three-way protocol, both the sender and the receiver have to maintain their states at the in-

termediate protocol steps, and each node has to carefully maintain its states to avoid interference

when it is involved in multiple concurrent synchronizations with different neighbors. The additional

space requirement and the increased software complexity donot strictly justify the possibly reduced

communication overhead.

We tested 30 pairs of nodes in our lab to obtain the synchronization precision. After two

nodes finish a pair-wise time synchronization, a third reference node broadcasts a query to them.

Each of the node records the MAC layer receiving time of the broadcast message and sends the

receiving time to the reference node. This allows the reference node to calculate the synchronization

error. Figure 3.3 shows the distribution of the pair-wise synchronization error. We present the

sources of the message delivery delays in Figure 3.4. The time for the CPU to access current time

is deterministic and less than 1 tick. The CPU can add the current time stamp into the buffered

message in less than 2 ticks. The time for adding timestamp isdeterministic too. The propagation

time depends on the distance between the sender and the receiver, and it is highly deterministic. The

uncertainty is mainly because of encoding/decoding times and the jitter of the interrupt handling.

The encoding time is for the radio to encode and transform a part of the message to electromagnetic

waves; the decoding time is for the radio to transform and decode the message from electromagnetic

29

waves to binary data. Note, the encoding and decoding times may not be the same on the sender

and the receiver. When encoding, each byte is divided into two symbols, 4 bits each. Then, each

symbol is mapped to one out of 16 pseudo-random sequences, 32chips each. The chip sequence

is transmitted at 2 MChips/s, with the least significant chiptransmitted first for each symbol. The

receiver performs the reverse process when decoding. The jitter of interrupt handling is caused

by the disabled interrupt on the message receiving side. Theerror span can be further reduced by

having a smaller tick size; however, this will also increasethe overhead in maintaining the clock

ticks through interrupt handling.

3.2.3 Security Analysis

The secure single-hop pair-wise time synchronization useshardware-assisted in-line authentication,

providing authentication of the source and the content of synchronization messages. Moreover, it

uses a two-way message exchange to estimate both the clock difference between direct neighbors

and the transmission delay, and can detect attacks that attempt to mislead time synchronization by

introducing extra message delays. Thus, it provides protection of the source, the content, and the

timeliness of single-hop pair-wise synchronization messages. Specifically, this technique effectively

defeats external attacks that attempt to mislead single-hop pair-wise time synchronization, includ-

ing forged and modified messages, pulse-delay attacks, and wormhole attacks that introduce extra

delays. This technique cannot handle DoS attacks that completely jam the communication channel.

Nevertheless, no existing protocol can survive such extreme DoS attacks.

3.3 Implementation Details

Our implementation is targeted at MICAz motes [4]. (However, our implementation can

be used with slight modification for other sensor platforms that also use CC2420 radio components,

such as TelosB [7] and Tmote Sky [8].) MICAz has an 8-bit micro-controller ATMega128L[1],

which has 128 kB program memory and 4 kB SRAM. As discussed earlier, MICAz is equipped with

the ChipCon CC2420 radio component [6], which works at 2.4GHz radio frequency and provides up

to 250 kbps data rate. CC2420 is an IEEE 802.15.4 compliant RFtransceiver that features hardware

security support.

In the following, we give a few details that are critical for repeating our implementation.

30

3.3.1 Exploiting Hardware Security Support in CC2420

The hardware security support featured by CC2420 provides two types of security opera-

tions: stand-alone encryption operationandin-line security operation. The stand-alone encryption

operation provides a plain AES encryption, with 128 bit plain-text and 128 bit keys. To encrypt a

plain-text, a node first writes the plain-text to the stand-alone bufferSABUF, and then issues a SAES

command to initiate the encryption operation. When the encryption is complete, the cipher-text is

written back to the stand-alone buffer, overwriting the plain-text.

The in-line security operation can provide encryption, decryption, and authentication on

frames within the receive buffer (RXFIFO) and the transmit buffer (TXFIFO) of CC2420 on a frame

basis. It supports three modes of security:counter mode (CTR), CBC-MIC, andCCM. CTR mode

performs encryption on the outgoing MAC frames in the TXFIFObuffer, and performs decryption

on the incoming MAC frames in the RXFIFO buffer. CBC-MIC modecan generate and verify

the message integrity code (MIC) of the messages. The lengthof MIC can be adjusted. CCM

mode combines CTR mode encryption and CBC-MIC authentication in one operation. All the three

security modes are based on AES encryption/decryption using 128 bit keys.

We use the CBC-MIC mode to authenticate both pair-wise and global synchronization

messages. A sender can use in-line CBC-MIC mode to generate the MIC for both pair-wise and

global synchronization messages in the MAC layer after the message has been written to the TX-

FIFO buffer.

The receiver side, however, is slightly different. When a receiver receives a pair-wise

synchronization message, since it already knows the secrete key shared with the sender, it can

use the in-line CBC-MIC mode to verify the MIC before the message is read from the RXFIFO

buffer. However, for the global synchronization messages,before receiving the disclosed key, the

receiver cannot use in-line authentication to verify the MIC in the message. Because the receiver still

needs the RXFIFO buffer to receive other messages, it cannotbuffer the message in the RXFIFO

buffer while waiting for the disclosed key. Thus, we have thereceiver read the message from

RXFIFO and buffer it in its local memory. When the key is received, the receive uses the stand-

alone mode to authenticate the buffered global synchronization messages. Since the stand-alone

mode only provides single-block encryption functionality, we implemented the CBC mode based

on the hardware support.

31

3.3.2 Handling Timers

Using timers on MICAz is a tricky issue; improper uses usually lead to unexpected re-

sults. The micro-controller ATMega128 provides two 8-bit timers (Timer0, Timer2) and two 16-bit

timers (Timer1, Timer3) [1]. In TinyOS, Timer 0 is mainly used as one-shot or repeat timers for

applications. For MICAz, Timer 2 is used by CC2420 as a high precision timer (32µs per tick) to

backoff the sending packets for a short period of time. Timer1 is used by CC2420 for capturing

radio packet transmit and receive events. In our implementation, we use the remaining 16-bit Timer

3 to maintain the local clock and schedule the message transmission.

ATMega128L uses a 7.3728 MHz crystal oscillator as I/O clocksource, whose accuracy

is ±40ppm [6]. In our implementation, we divide the I/O clock by 64 as the source of Timer 3,

thereby achieving a 115.2 kHz Timer 3, with a 8.68µs time resolution. Timer3 provides three

compare match registers (OCR3A/B/C), each connected with an interrupt vector. If the compare

match interrupt is enabled, whenever the value of Timer3 (TCNT3) equals to the value of one

compare match register, it will trigger an interrupt to handle the event. Each node uses compare

match register A to maintain a 48-bit logical clock. The value of Timer3 (TCNT3) is 16 bits, and it

will overflow every 568.8 ms. We add another 32 bits to have a logical clock that will not overflow

for over 77 years Each node sets compare match register B to launch pair-wise synchronization

with its neighbors periodically. The source node will use compare match register B to initiate the

global synchronization periodically. Each node uses compare match register C to send its global

synchronization message in its nearest shortµTESLA interval and disclose the key in the adjacent

longµTESLA interval.

3.4 Summary

In this chapter, we presented a secure single-hop pair-wisetime synchronization tech-

nique based on hardware-assisted, authenticated MAC layertimestamping. This technique exceeds

the capability of previous solutions. In particular, unlike the previous attempts, our technique can

handle high data rate such as those produced by MICAz motes (in contrast to those by MICA2

motes). This technique provides protection of the source, the content, and the timeliness of single-

hop pair-wise synchronization messages. It can effectively defeat external attacks that attempt to

mislead single-hop pair-wise time synchronization. We implement the proposed techniques on MI-

CAz motes running TinyOS. The secure single-hop pair-wise time synchronization serves as the

32

building block to achieve the secure and resilient global time synchronization in Chapter 5 and

Chapter 6.

33

Chapter 4

Fault-Tolerant Cluster-Wise Time

Synchronization

In wireless sensor networks, it is usually necessary to havea cluster of nodes share a

common view of a local clock time, so that the nodes can coordinate their actions. For example, in

time slotted MAC protocols, the multiple access to the shared communication medium is achieved

by assigning time slots to a group of nodes. Sensor nodes needto have a synchronized clock to

access their time slots without colliding with other nodes.As another example, to increase the en-

ergy efficiency, a cluster of sensor nodes may frequently switch into power-saving sleep mode at

the same time [100]. They also need a common clock to coordinate their sleep/listen periods. In

benign environments, such a local common clock can be easilyachieved by having all the nodes

synchronize to a given node. However, in hostile environments where some nodes may be compro-

mised, it is quite challenging to synchronize the clocks among a cluster of nodes. Indeed, none of

the aforementioned time synchronization protocols can survive malicious actions by compromised

nodes. A compromised node may disrupt the time synchronization by sending different time to

non-compromised nodes. For example, when RBS [26] is used for pair-wise synchronization, a

compromised node may provide different non-compromised nodes different time values about the

receipt of the reference packet.

We develop a novel fault-tolerant cluster-wise clock synchronization scheme for clusters

34

of sensor nodes, where the nodes in each cluster can communicate with each other directly through

broadcast [92]. In each round of time synchronization, onlyone node serves as thesynchronizer,

and only one authenticated synchronization message is broadcast. Thus, our scheme can avoid

the message collision problem in the previous schemes. The proposed scheme exploits a recently

proposed local broadcast authentication technique for sensor networks, which is purely based on

symmetric cryptography [104], thus avoiding the costly digital signature for message authentication.

Our analysis shows that the proposed scheme guarantees an upper bound on the clock difference

between nonfaulty nodes when no more than1/3 of the nodes are compromised and collude with

each other. In Section 4.3, we propose a secure distributed cluster formation algorithm which can

divide a whole sensor network into multiple mutual disjointcliques [91]. Then, we can run our

fault-tolerant cluster-wise clock synchronization scheme in each clique.

4.1 Cluster-Wise Time Synchronization Model

In this section, we describe our model for fault-tolerant clock synchronization in sensor

networks, which is adapted from [22]. For readers’ convenience, Table 4.1 lists the notations used

in this chapter.

Table 4.1: Notations in fault-tolerant cluster-wise time synchronization

n The number of nodes in a cluster
m The number of colluding malicious nodes in a cluster
Ci(t) Clock time at nodei when the real time is t
ρ Maximum drift rate of all well-behaved clocks
ψ Maximum message transmission delay between two neighboring nodes
ε Maximum clock reading error
R Synchronization interval
begf The real time at which the first nonfaulty node starts itsf -th logical clock
endf The real time at which the last nonfaulty node starts itsf -th logical clock
δ Maximum clock drift over[endf , endf+1] for anyf

Sensor nodes usually contain inexpensive crystal oscillators, and the typical clock drift

rate is tens of microseconds [81]. A clockC is consideredwell-behavedif its rate of drift from the

real time is bounded by a constantρ > 0 for all the real time pointst1 andt2, wheret1 < t2. The

rate of drift between any two well-behaved clocks is boundedby λ = ρ(2 + ρ)/(1 + ρ), which is

less than2ρ.

35

A sensor node isnonfaultyif it correctly executes a given time synchronization algorithm

and its clock is well-behaved; otherwise, it is a faulty node. We assume that clocks are synchronized

in rounds, each of which consists ofR time units. We denote the real time point at which the

first (or the last) nonfaulty node starts itsf -th round asbegf (or endf). Over the time interval

[endf , endf+1] for any f , there exists a maximum clock driftδ between any two well-behaved

clocks, i.e.,

δ = 2ρ(endf+1 − endf). (4.1)

Suppose a node makes a clock adjustment at timet. We useC(t) andC+(t) to represent

the clock time before and after the clock adjustment, respectively. Suppose there is an upper bound

ψ for a message to be sent by a node, transmitted, and processedby the recipients of the message.

Suppose nodei sends a message atCi(t1), nodej receives the message atCj(t2), where0 <

t2 − t1 < ψ, and nodej adjusts its clock toC+
j (t2) = Ci(t1). Then,

Ci(t2)− C+
j (t2) = Ci(t2)− Ci(t1) < ε, (4.2)

whereε = (1 + ρ)ψ is the upper bound for the clock reading error, which includes the maximum

transmission delay and the clock drift during this delay. Weassume at the “starting time”t0, the

clock difference between two nonfaulty nodesi andj is less thanδ0, i.e.,

|Ci(t0)− Cj(t0)| < δ0. (4.3)

In the next section, we develop a new fault-tolerant cluster-wise time synchronization

scheme for sensor networks. Suppose there exist up tom < n
3 malicious nodes in a cluster ofn

nodes that can communicate with each other through broadcast. With k =
n−m ε

(δ+ε)

n−3m and∆ =

δ + ε(1 + 4ρ), our algorithm satisfies the following two conditions:

• CS1: For any two nonfaulty nodesi andj, there exists an upper bound on the clock difference

between them for any real time point. That is, for allf ≥ 1, andt ∈ [begf , begf+1], |Ci(t)−
Cj(t)| ≤ (2km+ 1)∆ +mδ + 2ρε;

• CS2: If a node makes an adjustment to its clock at timet, there is an upper bound on the

clock adjustment. That is,|C+(t)− C(t)| ≤ k∆.

36

4.2 Fault-Tolerant Cluster-Wise Time Synchronization

4.2.1 Overview

In this chapter, we focus on providing fault-tolerant clocksynchronization within a cluster

of nodes, where a message broadcast by one node can reach all the other nodes in the cluster. We

assume that each node has a unique ID, and every two nodes in the cluster share a unique pair-

wise key. (Such pair-wise keys can be provided by several keypredistribution schemes proposed

recently [56, 17, 25].) One node can obtain a unique ID by manual assignment, or derive it from

its physical characteristics. One node can identify another node using the unique pair-wise key

they share. A potential threat against this assumption is Sybil attacks [24], where a malicious node

impersonates multiple nodes by claiming multiple IDs. Fortunately, recent studies [69] show that the

aforementioned key predistribution schemes can reduce theprobability that an attacker can fabricate

new IDs close to zero even if a fair number of nodes are compromised. An attacker may certainly

increase this probability by compromising a large number ofnodes. However, in such cases, the

whole key predistribution scheme is also compromised, and as a result, there is no security in such

networks.

Our fault-tolerant time synchronization scheme executes once for everyR time units. For

convenience, we call such aR time unit period around. In each round, one node in the cluster

serves as thesynchronizer, which broadcasts asynchronization messageto the other nodes; all the

other nodes then synchronize their clocks accordingly.

We assume the clocks of the sensor nodes are synchronized initially. Moreover, we as-

sume the nodes in a cluster agree on the order in which they serve as the synchronizer. We refer to

this order as thesynchronizer order. There are several ways to meet these two assumptions. For ex-

ample, we may use the approach in [59] to achieve initial timesynchronization, and adapt algorithm

OM [54] to decide the synchronizer order in a cluster1.

A practical method to meet the aforementioned assumptions is to add a bootstrapping

phase during the deployment of a sensor network. We may use one or multiple trusted external

1Algorithm OM guarantees a group ofn − 1 nodes agree on a value sent from another node when there are atmost
m <

n
3

malicious nodes [54]. A cluster ofn nodes may execute algorithmOM n times to guarantee that all the nonfaulty
nodes obtain one value from each node. Each node can then use,for example, the XOR of all the values as a seed to
generate the synchronizer order. To prevent malicious nodes from manipulating the synchronizer order, we may use
algorithm OMn times to first distribute a set of commitments (e.g., hash images) of these values, and then execute it for
anothern times to distribute the original values. Though this approach can be used to decide the synchronizer order in a
cluster in a fault tolerant way, it is not scalable and thus not preferred in practice.

37

devices, which maintain well synchronized clocks (e.g., through GPS receivers), to facilitate the

bootstrap of the sensor network. It is normally reasonable to assume that the sensor nodes are not

compromised during the deployment of the network. Thus, theexternal devices can distribute syn-

chronized initial clock values to all the sensor nodes. At the same time, the external devices can

collect neighbor information from the sensor nodes, form clusters among them, and distribute the

synchronizer order in each cluster. If security is of concern during the bootstrapping phase, a sym-

metric key may be shared between each sensor node and trusteddevice. The entire bootstrapping

phase can be fully automated, and performed while a sensor network is being deployed. There are

certainly other feasible ways to meet the same assumptions.

In the proposed algorithm, each node maintains a counterf , initialized as 1 and incre-

mented by 1 in each round. Suppose a node’s clock time reachesf × R time units, whereR is

the number of time units in each round. If this node is the synchronizer, it immediately broadcasts

an authenticated message to all the other nodes. When a non-synchronizer node receives such a

synchronization message, it examines the message. If the message is invalid or the sender is not

the designated synchronizer, the receiver simply drops themessage. Otherwise, the receiver adjusts

its clock according to the time when the synchronization message is received. (Note that the re-

ceiver can determine that the synchronizer’s clock must bef × R time units after the start of time

synchronization.)

Our scheme works under thearbitrary attack model[28], in which malicious nodes can

arbitrarily deviate from the protocol (e.g., sending conflicting messages to different nodes with

directional antenna) and collude with each other. Because communication failures can be considered

as sending node failures, we do not consider it separately. We assume an attacker may replace a

compromised sensor node with a resourceful node (e.g., a laptop with directional antenna), thus

gaining advantage over the regular nodes. Since we only careabout the clock difference between

nonfaulty nodes, for brevity, we will use “the maximum clockdifference” to mean “the maximum

clock difference between any two nonfaulty nodes”.

In the following, we first discuss the authentication of the broadcast synchronization mes-

sages, then describe and analyze the proposed scheme, and finally compare the proposed scheme

with several traditional fault-tolerant time synchronization schemes.

38

4.2.2 Local Broadcast Authentication

In each round of time synchronization, only one node serves as the synchronizer and

broadcasts a synchronization message. To prevent malicious nodes from impersonating nonfaulty

synchronizers, each synchronization message must be authenticated.

The proposed scheme does not require a clock value be sent in asynchronization message.

After receiving a synchronization message from the synchronizer, a node knows how to adjust

its clock. Thus, a receiving node only needs to verify that a message is sent from the correct

synchronizer and the message is not replayed by malicious nodes.

We adapt a recently proposed local broadcast authentication scheme for sensor networks

[104] to authenticate the broadcast synchronization messages. At the beginning, each node gener-

ates a one-way key chain{K(0),K(1), ...,K(l)} in the following way:K(i−1) = F (K(i)), (1 ≤
i ≤ l), whereK(l) is a random number, andF is a one-way function. Each node sendsK(0)

as thecommitmentof its key chain to other nodes, authenticated with the shared pair-wise keys

with those nodes. The keys in the key chain are disclosed in the reverse order to their generation.

When a node serves as the synchronizer, it appends the next undisclosed key in the key chain to the

broadcast message. When the other nodes receive the message, they verify that the message is sent

from the claimed node using the commitment or the recently disclosed key of the node. Note that

K(i) = F i−j(K(j)) wheni > j. Thus, even if a node fails to receive all the keys betweenK(j) and

K(i) from a given synchronizer, it still can verify the keyK(i) with K(j). Due to the property of

one-way function, a malicious node cannot know an undisclosed key belonging to a nonfaulty node.

Each node only accepts the first copy of a broadcast message, and drops the duplicated ones. There-

fore, a malicious node cannot forge or reuse nonfaulty nodes’ broadcast messages. An attacker may

certainly shield some victim nodes from receiving the first copy of the synchronization message, or

create a wormhole [44] between nonfaulty nodes. As a result,the victim node may accept a delayed

synchronization message. Such attacks are equivalent to having a malicious node as the synchro-

nizer, and can be handled when the total number of malicious or shielded nonfaulty synchronizers is

no more thanm < n
3 . This broadcast authentication scheme needsn2 unicast messages to exchange

the commitments of all the nodes’ key chains during the initialization phase.

39

4.2.3 Fault-Tolerant Cluster-Wise Time Synchronization Algorithm

The proposed scheme executes one round of time synchronization everyR time units. For

simplicity, we assume the “starting time” isbeg0 = end0 = 0. For any two nonfaulty nodesi and

j, |Ci(0) − Cj(0)| < ε(1 + 4ρ). Each node maintains a counterf by increasing it by one in each

round of time synchronization. Initiallyf = 1. We assume each nodei has generated a one-way

key chain, and exchanged the commitmentK
(0)
i with the other nodes.

The algorithm consists of two tasks that run continuously oneach nonfaulty sensor node.

In the first task, if nodei is the synchronizer for thef -th round of synchronization, when its clock

time reachesC = f×R, it immediately broadcasts a synchronization message “Ni|K(df/ne)
i ” to all

the other nodes, whereNi is nodei’s ID andK(df/ne)
i is the key in nodei’s key chain that is used

for authentication in thef -th round.

In the second task, when a node receives a synchronization message at its clock time

T in the f -th round of time synchronization, ifT < f × R − x or T > f × R + x, the node

drops the message. In our algorithm,x = (2km + 1)∆ + mδ is the maximum clock difference

between any nonfaulty node and a nonfaulty synchronizer, wherem is the number of malicious

nodes,k =
n−m ε

δ+ε

n−3m , and∆ = δ+ε(1+4ρ) is the maximum clock difference between any two nodes

if all the nodes are nonfaulty. Otherwise, it verifies that nodeNi is the correct synchronizer and it

is the first time to receive theK(df/ne)
i andF (K

(df/ne)
i) = K

(df/ne−1)
i , whereF is the one-way

function andK(df/ne−1)
i is the key received from nodei in the(f −n)-th round or the commitment.

If the message cannot pass these verifications, the node drops the message. Otherwise, the node

calculates the clock differencē∆ = f × R − T and performs the following clock adjustment: if

|∆̄| < k∆, the node adjusts its clock time by addinḡ∆; if k∆ ≤ ∆̄ ≤ x, it increases its clock

time by k∆; if −x ≤ ∆̄ ≤ −k∆, it decreases its clock time byk∆. The node also increments

the counterf by 1. If the node does not receive an authenticated synchronization message for the

current round by the timef × R + x, it increments the counterf by 1 and enters the next round.

Our algorithm guarantees that the synchronized nodes maintain the same counterf after each round

of time synchronization.

A node may lose synchronization from a cluster, for example,due to long-term commu-

nication failures. If this failure node is able to re-establish direct and secure communication with

the other nodes in the same cluster, it may attempt to recoverfrom such a failure. One possible

approach is to request the current clock values from all the other nodes and then determine the local

clock value by choosing the median. (Note that this node can easily determine the counter valuef

40

using the recovered clock value and the synchronization intervalR.) If the majority of these nodes

are non-faulty and have been maintaining synchronized clocks, then there must exist two non-faulty

nodesn1 andn2 whose clock values areT1 andT2, respectively, such that the above median clock

value is betweenT1 andT2. In other words, the failure node can successfully set its local clock to a

value in the acceptable range. However, in other cases, the failure node is not guaranteed to recover.

Algorithm 4.1 shows the pseudo code. Because all the nodes serve as the synchronizer in

a round robin fashion, we refer to our scheme asSynchronizer Ring (SR)algorithm. To ensure that

clocks are never set back, we may further adapt the techniqueproposed in [53], which spreads each

synchronization adjustment over the next synchronizationperiod. Due to the space limit, we omit

the details. In the following, we first examine the proposed technique when there is no malicious

participant, and then investigate it when there are colluding attacks from compromised nodes.

Lemma 4.2.1 After a nonfaulty nodei adjusts its clock to a nonfaulty synchronizers’s clock attfi ,

wherebegf ≤ tfi ≤ endf , for anyt ∈ [tfi , end
f],−2ρε < Cs(t)− Ci(t) < ε(1 + 2ρ).

Proof: For the right part, by inequality 4.2, we haveCs(t)−Ci(t) < |Cs(t
f
i)−C+

i (tfi)|+ 2ρ(t−
tfi) < ε+2ρ(endf−begf) < ε(1+2ρ). For the left part, by inequality 2.1, we have(Ci(t)−Cs(t))−
(C+

i (tfi)− Cs(t
f
i)) ≤ |(Ci(t)− C+

i (tfi)) − (Cs(t)− Cs(t
f
i))| < 2ρ(t− tfi) < 2ρε. By inequality

4.2, we have−ε < C+
i (tfi)−Cs(t

f
i) < 0. Thus,Ci(t)−Cs(t) < 2ρε+(C+

i (tfi)−Cs(t
f
i)) < 2ρε.

Together, we have−2ρε < Cs(t)− Ci(t) < ε(1 + 2ρ).

Theorem 4.2.2 Suppose for any two nodesi andj, |Ci(end
0)−Cj(end

0)| < ε(1+4ρ). If all nodes

are nonfaulty, Algorithm SR is executed, and there is no communication failure,|Ci(t) − Cj(t)| <

δ + ε(1 + 6ρ) for all t > end0.

Proof: First, we prove by induction that for allf ≥ 0, |Ci(end
f) − Cj(end

f)| < ε(1 + 4ρ).

From the assumption, we have|Ci(end
0) − Cj(end

0)| < ε(1 + 4ρ). Suppose at time pointendf ,

|Ci(end
f) − Cj(end

f)| < ε(1 + 4ρ), we need to prove that at time pointendf+1, |Ci(end
f+1)−

Cj(end
f+1)| < ε(1 + 4ρ).

Suppose the(f + 1)-th synchronizer iss. Since there is no communication failure, fur-

ther assume nodesi andj adjust their clock times attf+1
i andtf+1

j , respectively, wherebegf+1 ≤
tf+1
i ≤ tf+1

j ≤ endf+1. We consider three time intervals separated bytf+1
i andtf+1

j in [endf , endf+1].

41

Algorithm 4.1 Synchronizer Ring
Initialization

f ← 1; k ← n−m ε

δ+ε

n−3m ; ∆ = δ + ε(1 + 4ρ); x← (2km+ 1)∆ +mδ;

Task 1: Send

if (C = f ×R) and (Order(Ni) = f mod n) then

Broadcast a message “Ni|K(df/ne)
i ”;

end if

Task 2: Receive

if (Receive a message “Ni|K(df/ne)
i ” at T) then

if (f × R − x ≤ T ≤ f × R + x) and (F (K
(df/ne)
i) = K

(df/ne−1)
i) and (Order(Ni) = f mod n)

then

∆̄← f ×R− T ;

if k∆ ≤ ∆̄ ≤ x then

∆̄← k∆;

else if−x ≤ ∆̄ ≤ −k∆ then

∆̄← −k∆;

end if

C ← C + ∆̄; f ← f + 1;

else

Drop the message;

end if

end if

if Has not received a correct synchronization message byf × R + x (Note that this may be implemented

as a timer.)then

f ← f + 1;

end if

42

For anyt ∈ [endf , tf+1
i), by inequalities 2.1 and 4.1, we have|Ci(t)−Cj(t)| < |Ci(end

f)−
Cj(end

f)|+ 2ρ(t− endf) < ε(1 + 4ρ) + δ.

For anyt ∈ [tf+1
i , tf+1

j), by Lemma 4.2.1, we have−2ρε < Cs(t)− Ci(t) < ε(1 + 2ρ).

For nodej, if Cs(t) > Cj(t), we have0 < Cs(t) − Cj(t) < |Cs(end
f) − Cj(end

f)| + 2ρ(t −
endf) < ε(1+ 4ρ)+ δ. Thus, we have|Ci(t)−Cj(t)| < δ+ ε(1+ 6ρ). If Cs(t) < Cj(t), we have

0 < Cj(t)− Cs(t) < δ + 2ρε, and then|Ci(t)− Cj(t)| < δ + ε(1 + 4ρ). Considering both cases,

we have|Ci(t)− Cj(t)| < δ + ε(1 + 6ρ).

For anyt ∈ [tf+1
j , endf+1], by Lemma 4.2.1, we have−2ρε < Cs(t)−Cj(t) < ε(1+2ρ),

and−2ρε < Cs(t) − Ci(t) < ε(1 + 2ρ). Therefore, we have|Ci(t) − Cj(t)| < ε(1 + 4ρ). In

particular,|Ci(end
f+1) − Cj(end

f+1)| < ε(1 + 4ρ). Thus,|Ci(end
f) − Cj(end

f)| < ε(1 + 4ρ)

for all f ≥ 0.

According to the above proof, we can see that for allf ≥ 0 and anyt ∈ [endf , endf+1],

|Ci(t)−Cj(t)| < δ+ε(1+6ρ). Thus, the inequality holds for anyt > end0 as long as the algorithm

is executed.

The maximum clock differenceδ + ε(1 + 6ρ) can only be reached between two non-

synchronizer nodesi andj during [begf+1, endf+1]. During [endf , endf+1], the clock difference

between nodei (or nodej) and the synchronizers is at most∆ = δ + ε(1 + 4ρ), which is the

allowable maximum clock adjustment when all nodes are nonfaulty.

Now let us consider the cases where there are colluding malicious synchronizers.

Lemma 4.2.3 If the f -th (f ≥ 1) synchronizer is malicious, it can increase the maximum clock

difference by at most2k∆ + δ during [begf , begf+1].

Proof: According to Algorithm 4.1, a nonfaulty node adjusts its clock by at mostk∆ in one round.

Thus, over[begf , endf], a malicious synchronizer can increase one nonfaulty node’s clock time by

at mostk∆, while decrease another nonfaulty node’s clock time by at most k∆. (The malicious

synchronizer may use directional antenna to launch such attacks.) Moreover, over the time interval

[begf , begf+1], the maximum clock drift isδ. In total, one malicious synchronizer can increase the

maximum clock difference by at most2k∆ + δ.

Lemma 4.2.4 Suppose two nonfaulty nodesi andj synchronize to a nonfaulty synchronizers at tfi

and tfj , respectively, wherebegf ≤ tfi ≤ tfj ≤ endf . If |Cs(t
f
i) − Ci(t

f
i)| < k∆ and |Cs(t

f
j) −

43

Cj(t
f
j)| < k∆, then|Ci(end

f)− Cj(end
f)| < ε(1 + 4ρ).

Proof: According to Algorithm 4.1, because|Cs(t
f
i) − Ci(t

f
i)| < k∆, nodesi adjust their clocks

to the synchronizer’s clock attfi . By Lemma 4.2.1, whent = endf , we have−2ρε < Cs(end
f)−

Ci(end
f) < ε(1 +2ρ). For nodej, we have a similar result, i.e.,−2ρε < Cs(end

f)−Cj(end
f) <

ε(1 + 2ρ). Thus, we have|Ci(end
f)− Cj(end

f)| < ε(1 + 4ρ).

Lemma 4.2.5 Suppose during[begf+1, endf+1], the maximum clock differencē∆ is between node

i and nodej. If ∆̄ ≤ (2km + 1)∆ + mδ and the(f + 1)-th synchronizer is nonfaulty, for any

t ∈ [endf+1, begf+2], |Ci(t)− Cj(t)| ≤MAX(∆̄ − (k − 1)∆,∆).

Proof: Suppose nodei andj adjust clocks at timeti and tj. If ∆̄ < k∆, by Lemma 4.2.4, for

any t ∈ [endf+1, begf+2], |Ci(t) − Cj(t)| < |Ci(end
f+1) − Cj(end

f+1)| + 2ρ(t − endf+1) <

ε(1 + 4ρ) + δ = ∆.

Whenk∆ ≤ ∆̄ ≤ (2km + 1)∆ + mδ, if node i is the synchronizer, according to our

algorithm, nodej adjusts its clock withk∆ attj . We have|Ci(end
f+1)−Cj(end

f+1)| < |Ci(tj)−
C+

j (tj)|+2ρ(endf+1−tj) < (∆̄−k∆+ε)+2ρε. So for anyt ∈ [endf+1, begf+2], by inequality 4.1,

we have|Ci(t)−Cj(t)| < |Ci(end
f+1)−Cj(end

f+1)|+2ρ(t−endf+1) < ∆̄−k∆+ε(1+2ρ)+δ <

∆̄− (k − 1)∆. When nodej serves as the synchronizer, we have the same result.

If neither nodei nor nodej is the synchronizer, because the maximum clock difference is

betweeni andj, the nonfaulty synchronizers’s clock time must be between these two nodes’ clock

times. If |Ci(ti) − Cs(ti)| ≥ k∆ or |Cj(tj) − Cs(tj)| ≥ k∆, nodei or j adjust clocks byk∆, for

anyt ∈ [endf+1, begf+2], we have|Ci(t)−Cj(t)| < ∆̄− (k−1)∆. If |Ci(ti)−Cs(ti)| < k∆ and

|Cj(tj)−Cs(tj)| < k∆, by Lemma 4.2.4, for anyt ∈ [endf+1, begf+2], we have|Ci(t)−Cj(t)| <
δ + ε(1 + 4ρ) = ∆.

So for anyt ∈ [endf+1, begf+2], |Ci(t)− Cj(t)| ≤MAX(∆̄ − (k − 1)∆,∆).

Lemma 4.2.6 Whenn > 3m, Algorithm 4.1 satisfies the following conditions: (1) For all f ≥ 1

and t ∈ [begf , begf+1], given any two nonfaulty nodesi andj, |Ci(t) − Cj(t)| ≤ (2km + 1)∆ +

mδ + 2ρε; (2) If a node makes an adjustment to its clock at timet, then|C+(t)− C(t)| ≤ k∆.

Proof: Condition 2 is easy to prove, sincē∆ is no greater thank∆ according to Algorithm 4.1.

Now we prove Condition 1 by induction.

44

By inequalities 4.1 and 4.3, fort ∈ [beg0, beg1], |Ci(t) − Cj(t)| < δ + ε(1 + 4ρ) = ∆.

Suppose for0 ≤ h < f , andt ∈ [begh, begh+1], |Ci(t)− Cj(t)| ≤ (2km+ 1)∆ +mδ + 2ρε. We

need to prove that fort ∈ [begf , begf+1], |Ci(t)−Cj(t)| ≤ (2km+ 1)∆ +mδ+ 2ρε. We prove it

by contradiction.

We assume that fort ∈ [begf , begf+1], |Ci(t)− Cj(t)| > (2km+ 1)∆ +mδ + 2ρε. By

Theorem 4.2.2,δ+ε(1+6ρ) is the maximum clock difference if all the synchronizers arenonfaulty.

By Lemma 4.2.3, one malicious synchronizer can increase themaximum clock difference by at most

2k∆ + δ, so the maximum clock difference that is greater thanm(2k∆ + δ) + δ + (1 + 6ρ)ε can

only be accumulated by at leastm + 1 malicious nodes. However, since there exists at mostm

malicious nodes, at least one malicious node has served as the synchronizer twice, and increase the

maximum clock difference by more than2k∆+δ. Suppose it served asr1-th andr2-th synchronizer,

wherer2 = r1 + n ≤ f . According to our hypothesis, fort ∈ [begr1 , begr1+1], |Ci(t) − Cj(t)| ≤
(2km + 1)∆ + mδ + 2ρε. Within [begr1 , begr2], all then − m nonfaulty nodes have served as

the synchronizer at least once. By Lemma 4.2.5, one nonfaulty node can reduce the maximum

clock difference by at least(k − 1)∆ if the maximum clock difference is greater thank∆. Because

k =
n−m ε

(δ+ε)

n−3m , we have(n −m)(k − 1)∆ = 2km∆ +mδ, which meansn −m nonfaulty nodes

can eliminate the clock difference accumulated bym malicious nodes. Thus, one malicious node

can contribute at most2k∆+δ into the maximum clock difference, contradicting to the assumption.

Thus, we have proved that fort ∈ [begf , begf+1], |Ci(t)− Cj(t)| ≤ (2km+ 1)∆ +mδ + 2ρε.

Based on Lemma 4.2.6 and Algorithm 4.1, we can see the thresholds on the maximum

clock difference and the maximum allowable adjustment are based on the following parameters:δ,

ε, ρ, n, andm. All the parameters except forδ are either system parameters or measured from the

physical characteristics of well-behaved clocks, and thusare bounded. Ifδ is also bounded, both

thresholds will be bounded. As a result, Algorithm 4.1 is a fault-tolerant clock synchronization

algorithm whenn > 3m. Next we show this is indeed the case.

Lemma 4.2.7 The synchronization interval is bounded. That is, for allf ≥ 1, begf+1 − begf < y,

andendf+1 − endf < y, wherey = ((4km+ 2)∆ + 2mδ +R)(1 + ρ).

Proof: A nonfaulty node may start itsf -th round no earlier thanf ×R− ((2km+1)∆+mδ), and

no later thanf ×R+ (2km+ 1)∆ +mδ even if it receives no synchronization message.

Suppose nodei is the first one to start itsf -th clock, we haveCf
i (begf) > f × R −

((2km+1)∆+mδ). If nodei is also the first one to start its(f+1)-th clock, we haveCf
i (begf+1) <

45

(f+1)×R+(2km+1)∆+mδ. Then, we haveCf
i (begf+1)−Cf

i (begf) < (4km+2)∆+2mδ+R.

By inequality 2.1,begf+1 − begf < ((4km+ 2)∆ + 2mδ +R)(1 + ρ). If nodej (instead of node

i) starts its(f + 1)-th clock first, suppose nodei starts its(f + 1)-th round atbegf+1
i , where

begf+1 < begf+1
i . According toCf

i (begf+1
i) − Cf

i (begf) < (4km + 2)∆ + 2mδ + R, we

havebegf+1
i − begf < ((4km + 2)∆ + 2mδ + R)(1 + ρ). Becausebegf+1 < begf+1

i , we get

begf+1− begf < ((4km+2)∆+2mδ+R)(1+ρ) = y. Similarly, we can prove that for allf ≥ 1,

endf+1 − endf < y.

Lemma 4.2.8 For all f ≥ 1, over the time interval[begf , begf+1], δ ≤ 2ρR
1−4ρ(2nm

n−3m
+m+1)

.

Proof: By inequality 4.1, over the bounded synchronization interval provided by Lemma 4.2.7, the

clock drift is at mostδ ≤ 2ρ((4km + 2)∆ + 2mδ + R)(1 + ρ), where∆ = δ + ε(1 + 4ρ). By

a little algebraic calculation, we getδ ≤ 2ρ(R+(4km+2)ε)
1−4ρ(2km+m+1) . BecauseR � ε, by dropping the higher

order term2ρ(4km + 2)ε compared to2ρR, we haveδ ≤ 2ρR
1−4ρ(2km+m+1) . Fromk >

n−m ε
ε+δ

n−3m ,

when usingk > n
n−3m , we getδ ≤ 2ρR

1−4ρ(2nm
n−3m

+m+1)
.

Theorem 4.2.9 Whenn > 3m, Algorithm 4.1 is a fault-tolerant clock synchronization algorithm

with (2km+1)∆+mδ+2ρε as the upper bound of the clock difference andk∆ as the upper bound

of clock adjustment, wherek =
n−m ε

(δ+ε)

n−3m and∆ = δ + ε(1 + 4ρ).

Proof: Trivial based on Lemmas 4.2.6 and 4.2.8.

¼ ½ ¾¿ À Á Â ¼ ½ ¾¿ À Á Â

Ã

Ä Å Ã ¿ Ã

Ä Å Ã ¿ Ã ¿ Æ

À Å Ã ¿ Ã ¿ Æ

À Å Ã ¿ Ã ¿ Ä Æ

Ç Å Ã ¿ Ä Ã ¿ Æ

Ç Å Ã ¿ Ä Ã ¿ Ä Æ

Ä Å Ã ¿ Ç Ã ¿ Æ

È É Ê Ë Ì Í Î ÏÐ Ñ Ð Ê Ò Ó Ô É Ê ÕÖ × ÔØ Ì Î Õ Ò Õ É Í Ù Ñ Ð Ê Ò Ó Ô É Ê ÕÖ × Ô

Ú × Û Ü Ú × Û Ý Ú × Û Þ Ú × Û ß Ú × Û à
Ú × Û á â × Ê ã á

Ã
× Ê ã Ü × Ê ã Ý × Ê ã Þ × Ê ã ß × Ê ã à

Ã ä Æ ¿ ¼ ½ ¾¿ À Á Â

Figure 4.1: Maximum clock difference in cluster-wise time synchronization.

Figure 4.1 shows an example of the changes on the maximum clock difference. The

first synchronizer is nonfaulty. During[beg1, beg2], the maximum clock difference is less than

∆ = δ + ε(1 + 4ρ). The second and the third synchronizers are both malicious,and they collude

to increase the maximum clock difference to4k∆ + ∆ + 2δ. The fourth synchronizer is nonfaulty,

46

0.000

0.001

0.010

0.100

1.000

0 2 4 6 8 10 12 14 16
Number of Malicious Nodes

M
ax

im
u

m
 C

lo
ck

 D
iff

er
en

ce
s

(u
n

it=
se

co
n

d
) Theoretical (n=10) Theoretical (n=25) Theoretical (n=50)

Average (n=10) Average (n=25) Average (n=50)

Figure 4.2: Theoretical v.s. average maximum clock differences in simulations.

and decreases the maximum clock difference to at most3k∆ + 2∆ + 2δ. We can see that all the

malicious nodes can introduce the same amount of maximum clock error into the maximum clock

difference, and their order serving as the synchronizer makes no difference.

4.2.4 Discussion

Theoretical v.s. Average Maximum Clock Differences.Theorem 4.2.9 gives an upper

bound of the maximum clock difference between nonfaulty nodes when no more thanm < n
3 nodes

are compromised and collude with each other. However, the maximum clock difference is reached

only when them colluding malicious nodes serve as the synchronizer in a row, and the probability

that this happens is onlyPm = (n−m)!m!
(n−1)! .

To understand the maximum clock difference that is generally reached in practice, we

performed a series of simulation experiments. Figure 4.2 shows the theoretical maximum clock

difference and the average maximum clock difference reached in the simulations. We pickedn to be

10, 25, and 50, respectively. For each data point, we used 1,000,000 different random synchronizer

orders. The nodes are synchronized once every 2 minutes, theclock drift rateρ is 10−6, andε is

0.0001 seconds. Our results indicate that whenm is greater than 5, the maximum clock difference

achieved in the simulations is on average less than half of the theoretical bound.

Combining with MAC Protocols. In a time slotted sensor network, the sensor nodes are

divided into clusters, and at any time, only one node in each cluster is allowed to access the wireless

communication medium. Time slotted MAC protocols require alocal clock synchronization in each

47

cluster to assign time slots to sensor nodes, and our scheme can be used to provide such local clock

synchronization. For example, when the time slot size ists seconds and each cluster hasn nodes,

we can set the synchronization interval asR = k×n× ts, wherek is an integer andk ≥ 1. Suppose

nodeni is assigned thei-th slot for everyn time slots. Nodeni can broadcast a synchronization

message atf × R + i × ts instead off × R. It is easy to see that our algorithm can be slightly

modified to accommodate this change.

In a CSMA-based sensor network, because all the sensor nodescompete for the wireless

communication medium, the assumption that the transmission delay is bounded may not hold. By

[31], the transmission delay mainly consists of send time, access time, propagation time, and receive

time. Since the send time and receive time can be estimated according to the length of the message,

and the propagation time is very small and can be ignored, we only need to deal with the uncertain

access time. Thus, we can bound the access time by reserving the wireless channel for the synchro-

nizer to broadcast synchronization messages in a short timeinterval. It can be achieved by making

all the other nodes listen to the channel during the time interval [f ×R− x, f ×R+ x], wheref is

the round number,R is the synchronization interval, andx is the maximum clock difference.

To improve the energy efficiency of sensor networks, severalapproaches have been pro-

posed to frequently switch sensor nodes into power-saving sleep mode (e.g., [100]). In such ap-

proaches, sensor nodes are divided into clusters, and the nodes in the same cluster agree to sleep

(or listen) at the same time. When combining our scheme with such power-saving approaches, the

only two requirements are (1) that the nodes transmit and listen to others during the live periods and

(2) that each round of synchronization can finish during eachnonfaulty node’s live period. All the

nonfaulty nodes satisfy the first requirement in power-saving mode. The second requirement can be

satisfied if the maximum clock differencex in our scheme is less than half of the listen time defined

in the power-saving approach. Suppose all the nonfaulty nodes are alive during[f×R−x, f×R+x].

When a nonfaulty synchronizer broadcasts a message atC(t) = f × R, the other nodes are alive

since at any timet, |Cj(t) − Ci(t)| ≤ x between any two nonfaulty nodesi andj. For example,

in [100], the listen time is set to 300ms, and the sleep time is set to 1 second. According to our

simulation result in Figure 4.3, our scheme can guarantee that the maximum clock difference is less

than 150ms. Hence, our scheme can be combined with [100] to provide timesynchronization.

Cluster Formation In a large sensor network, it is usually not possible to groupall the

nodes in the same cluster due to physical constraints such asthe communication range. We need

to divide the nodes into a number of clusters. Both the numberof clusters and the cluster size

depend on the node density of the network, the communicationrange of the sensor nodes, and

48

the requirements of different applications. After the nodes are divided into clusters in which the

nodes can communicate with each other through broadcast, our scheme can be used to provide a

fault-tolerant cluster-wise time synchronization in eachcluster.

In Section 4.3, we propose a secure distributed cluster formation algorithm which can

divide a whole sensor network into multiple mutual disjointcliques even in hostile environments.

4.2.5 Comparison with Previous Techniques

In our proposed algorithm, in each round of time synchronization, only one node serves

as the synchronizer, and no other nodes need to respond to themessage from the synchronizer. As a

result, there will be no collision between the messages involved in time synchronization (when there

is no malicious attack). In contrast, almost all of the existing fault-tolerant time synchronization

schemes (e.g., CNV [53], HSSD [22]) require the participants send or forward synchronization

messages around the same time. Thus, it is very likely to havemessage collisions in such schemes

if they are used in wireless sensor networks.

Moreover, the proposed scheme takes advantage of the broadcast medium as well as a

recently proposed authentication technique for sensor networks [104], and thus does not have to

use costly digital signatures for broadcast authentication. In comparison, several of the traditional

fault-tolerant techniques (e.g., CSM [53], HSSD [22]) require digital signatures, which make them

undesirable for resource constrained sensor networks. Note that these schemes cannot use this recent

authentication technique [104]. One reason is that they require forwarding of received messages. A

malicious node may manipulate a message before forwarding it to other nodes. Another reason is

message collision. In a CSMA-based sensor network, all the nodes share the wireless communica-

tion channel. In CSM and HSSD, to reduce the synchronizationerror, after receiving a message, a

node will forward the message to other nodes as soon as possible. Therefore, after a node broadcasts

a message, since the transmission time is very small, all of its neighbors may receive the message

at almost the same time. Suppose all the nodes have the same internal structure, they have a great

chance to broadcast messages at the same time, and cause the message collisions.

Table 4.2 compares our scheme with existing fault-toleranttime synchronization algo-

rithms when they are used to synchronize a cluster ofn fully connected nodes.

We refer to the maximum number of malicious nodes that one algorithm can tolerate as

its degree of fault-tolerance. In a cluster ofn nodes, our scheme’s degree of fault-tolerance isn−1
3 ,

which is the same as AlgorithmsCNV andCOM . However, AlgorithmsCSM andHSSD can

49

Table 4.2: Performance comparison with traditional fault-tolerant schemes.

Algorithm Degree of Comm. Overhead Maximum Clock
Fault-Tolerance (# msgs/round) Difference

CNV [53] n−1
3 n2 (unicast) n

n−3m(2ε+ 2ρR)

COM [53] n−1
3 nm+1 (unicast) (6m+ 4)ε+ 2ρR

CSM [53] n−1
2 nm+1 (unicast) (m+ 6)ε+ 2ρR

HSSD [22] n− 1 n2 (unicast) ε+ 2ρR

SR n−1
3 1 (broadcast) (2mn

n−3m + 1)ε+
(2nm

n−3m
+m+1)

1−4ρ(2nm
n−3m

+m+1)
2ρR

1

10

100

1000

10000

0 2 4 6 8 10 12 14 16
number of colluding malicious nodes (total node n=50)

o

f
m

sg
s

p
er

 r
o

u
n

d

HSSD (unicast) HSSD (broadcast) CNV SR

Figure 4.3: Communication overhead with the same guaranteeof maximum clock difference

provide better tolerance against colluding attacks.

Now we compare the communication overhead of the proposed scheme with the existing

fault-tolerant schemes. To be conservative, we make the assumption that the existing schemes

listed in Table 4.2 may use broadcast instead of unicast to send the synchronization messages. This

reduces the number of messages per round fromn2 to n for CNV and HSSD, and fromnm+1 to nm

for COM and CSM. We then set the same bound for the maximum clock difference, and compare

the communication overhead in all these schemes. To illustrate clearly the difference, we calculate

the communication overhead in these schemes withn = 50 and the other parameters the same as

those in the simulation experiments (see section 4.2.4).

Figure 4.3 shows the communication overhead in CNV, HSSD, and the proposed scheme

for various maximum number of colluding malicious nodes to be tolerated, under the conserva-

tive (but unrealistic) assumption that HSSD and CNV can alsouse authenticated broadcast to send

50

synchronization messages. This figure indicates that the proposed scheme always has less commu-

nication overhead than CNV (as well as CSM and COM, which havesubstantially larger overhead

and are omitted from Figure 4.3). Compared with HSSD, the proposed scheme has less communi-

cation overhead when the number of colluding malicious nodes to be tolerated is small, but larger

communication overhead when the number of colluding nodes grows. However, HSSD has to be

modified to reach this performance, because using broadcastin HSSD will cause substantial mes-

sage collisions. Moreover, the digital signatures required by HSSD make it undesirable for sensor

networks, as discussed earlier.

4.3 Secure Distributed Cluster Formation

For a large sensor network, it is not applicable to include all the nodes in one clique,

considering the limited wireless transmission range of thesensor nodes. Thus, we need to divide

a large network into multiple cliques, in which we can run ourfault-tolerant cluster-wise time syn-

chronization scheme. A number of cluster formation protocols have been proposed for wireless

sensor networks (e.g., [11, 18, 14, 10, 48, 33, 102, 40, 12, 99, 51, 47, 16]). However, most existing

protocols assume benign environments, and are vulnerable to attacks from malicious nodes.

In this section, we propose a secure and distributed clusterformation protocol. By ex-

changing information with 1-hop neighbors, normal sensor nodes are divided into mutually disjoint

cliques, in which all the nodes can directly communicate with each other. Our protocol guarantees

that all the normal nodes in each clique agree on the same clique membership even under the at-

tacks from both external and internal malicious nodes. We use the protocol semantics to distinguish

malicious behaviors from normal ones, and identify and remove inside attackers that deviate from

the protocol.

Our secure cluster formation protocol is different from theauthenticated Byzantine Agree-

ment algorithms (e.g., [23, 80, 34]), which can successfully solve the traditional Byzantine General

problem [54]. These authenticated Byzantine Agreement algorithms can guarantee all the normal

nodes in one group agree on a single or a set of value(s) by using the signature-based authentication.

Our protocol aims to divide a sensor network (one large group) into multiple small groups (cliques)

and guarantee all the normal nodes in each small group agree on the same group membership. All

the normal nodes have to figure out consistently how to partition the network, and the normal nodes

in different groups have different group membership.

51

4.3.1 Problem Statement

Objective: The objective of our clique formation protocol is to divide the normal nodes in a sensor

network into mutually disjoint cliques so that all the nodesin the same cliques can directly com-

municate with each other. Each node should individually compute itsview of cliquebased on the

information exchanged with its 1-hop neighbors. We denote the view of clique for nodei asCi. For

brevity, we callCi as thecliqueof nodei. We call a node anormal nodeif it follows our protocol.

Otherwise, it is amalicious node. We would like to guarantee that all normal nodes have consistent

cliques, as reflected by the following clique agreement property. Clique agreementfor a normal

nodei is defined as:

Definition 1 (Clique Agreement) For each nodej ∈ Ci, Cj = Ci.

Definition 1 implies that for each normal nodej /∈ Ci, i /∈ Cj must hold. That is, each

normal node belongs to only one clique. Clique agreement is broken if Clique Inconsistencyis

detected. For nodei, clique inconsistency is defined as:

Definition 2 (Clique Inconsistency) There exists a nodej ∈ Ci such thatCj 6= Ci.

It is desirable that each node can find as large a clique as possible. We do not consider

trivial solutions with which each node forms a clique that only includes itself.

Threat Model: We assume an adversary may launch arbitrary attacks againstthe cluster formation

protocol except for completely jamming the communication channel. An external attacker may

eavesdrop, inject, and replay packets to disrupt the cluster formation protocol. However, these

attacks can be easily defeated with message authentication.

An attacker may generate more severe impact by participating in the clustering formation

process using malicious nodes (e.g., those compromised by the adversary). The malicious nodes

may arbitrarily deviate from the protocol in order to introduce clique inconsistency. In particular, a

malicious node may use directional antenna to send different messages to different neighbor nodes.

Moreover, it can communicate with some normal nodes while intentionally keep silence to others.

(We call thissilence attack.) The malicious nodes may launch Sybil attacks [24] or Wormhole

attacks [43]. However, we assume these two kinds of attacks can be detected by using the techniques

proposed in [73] and [44], respectively.

52

Assumptions: We assume each node knows its 1-hop neighbors. A message sentby a normal

node can be received correctly by all its (1-hop) neighbors in a finite amount of time. We assume

each sensor node has a unique ID, and each node can be uniquelyidentified due to its keying mate-

rials (e.g., unique pair-wise keys shared with other nodes,private keys used for digital signatures).

All unicast messages exchanged between nodes are authenticated with the key shared between the

two nodes.

We assume the sensor nodes can perform public key based digital signature operations. It

has been shown in recent investigations [61, 36] that low-end sensor nodes (e.g., MICA2 motes with

8-bit processors) can perform public key cryptographic operations. Moreover, recent development

of sensor platforms such as Intel motes2 uses more advanced hardware, and can perform public key

cryptographic operations efficiently.

We use a combination ofµTESLA [76] and digital signature to authenticate broadcast

messages. We use digital signatures when non-repudiation is necessary, andµTESLA for efficient

broadcast authentication in other cases. We assume the clocks of the normal nodes are loosely

synchronized, as required byµTESLA. We also assume the public keys used by the sensor nodes

are properly authenticated. One approach to ensure this is to issue to each node a certificate for its

public key so that other nodes can validate the node’s publickey by verifying the certificate.

In this section, we first present the details of our protocol,and then analyze its properties in

normal situation and hostile environments, including clique consistency property and performance

overheads.

4.3.2 The Secure Distributed Cluster Formation Algorithm

Our secure distributed cluster formation protocol consists of five steps. When all the

nodes are normal, the cluster formation process terminatesafter the first four steps. In hostile

environments, when clique inconsistency is detected, the protocol provides an extra Step 5 to remove

the identified malicious nodes from the network and restart the protocol from Step 1.

The protocol is summarized below:

• Step 1: Each node exchanges its neighbor lists with its neighbors, and computes itslocal

maximum clique.

• Step 2: Each node exchanges its local maximum clique with its neighbors, and updates its

2http://www.intel.com/research/exploratory/motes.htm

53

maximum clique according to its neighbor nodes’ local maximum cliques.

• Step 3: Each node exchanges the updated clique with its neighbors, and derives its final

clique.

• Step 4:Each node exchanges the final clique with its neighbors. If noclique inconsistency is

detected, it terminates successfully. Otherwise, it enters Step 5.

• Step 5:Each node performs conformity checking. If it identifies malicious (neighbor) nodes,

it removes them from the network, and restarts the protocol from Step 1. Otherwise, it en-

forces the clique agreement and terminates.

In the following, we will explain these steps in detail. To facilitate the discussion, we will

use the simple example shown in Figure 4.4. Figure 4.4(a) shows a sensor network consisting of 8

sensor nodes. A directional edge from nodei to nodej represents nodej can receive messages from

nodei. Considering asymmetric communication, we assume node 0 can hear from node 3, while

node 3 cannot hear from node 0. Figure 4.4(b) shows the results of our clique formation protocol

when all the 8 nodes are normal.

å

æ

ç

è

é
ê

ë

ì

(a) A network with 8 nodes

í

î

ï

ð

ñ
ò

ó

ô

(b) Cluster formation

Figure 4.4: An example of cluster formation

Step 1: Calculating Local Maximum Clique

Based on our assumptions, each nodei can obtain a neighbor listLi that contains the IDs

of its 1-hop neighbor nodes. In the first step, all the nodes exchange their neighbor lists with all

54

their neighbors. As discussed earlier, such messages should be authenticated with the pair-wise key

shared between neighbors.

After receiving its neighbors’ neighbor lists, each nodei can build aneighbor matrixMi

that records the connectivity between its neighbor nodes. Each element in a neighbor matrix is either

1 or 0. The element in theith row andjth column of the neighbor matrix is 1 if nodei contains node

j in its neighbor list, or 0 otherwise. If nodei fails to receive the neighbor list from a (previous)

neighbor nodej, it removesj from its neighbor list.

Each node then symmetrizes its neighbor matrix by considering unidirectional links as no

links at all. For example, in Figure 4.4, node1 considers that node 0 and node3 are not connected,

since node 0 is not in node 3’s neighbor list. The neighbor matrix of node1 in Figure 4.4(a) is

shown in Table 4.3.

Table 4.3: Node 1’s neighbor matrix in cluster formation process

0 1 2 3 4 7
0 1 1 1 1⇒ 0 0 0
1 1 1 1 1 1 1
2 1 1 1 1 0 0
3 0 1 1 1 1 0
4 0 1 0 1 1 0
7 0 1 0 0 0 0

Based on the neighbor matrix, each nodei individually computes a local maximum clique

that includes itself. Based on nodei’s neighbor matrix, we can construct a graphGi = {Vi, Ei},
whereVi consists of nodei and its neighbors, andEi consists of the bidirectional edges between

nodes inVi. It is well known that finding the maximum clique in a random graph is an NP-complete

problem [32]. For nodei, it is also NP-complete [101] to find the maximum clique containing node

i in Gi. To reduce the computation complexity, we propose a heuristic algorithm for nodei to

compute its local maximum clique, as shown in Algorithm 4.2.

The heuristic algorithm runs in rounds.Li includes nodei’s 1-hop neighbor nodes that

are eligible to be in the same clique as nodei. In each round, nodei chooses one neighbor node and

adds it into its local maximum cliqueCi. Nodei maintains a setSi containing its neighbor nodes

that are eligible to be chosen in the next round. Initially, all the neighbors of nodei are included in

Si, andCi only contains nodei itself. In the first round, nodei computes the number of common

neighbors between itself and each neighbor, and finds a neighbor k with the maximum common

neighbors|Li∩Lk|. We use node ID to break the tie. Then nodei removes nodek fromSi and adds

55

Algorithm 4.2 Heuristic algorithm to find the local maximum clique

INPUT: Gi = {Vi, Ei}, i ∈ Vi

OUTPUT: Ci

STEPS:

Si = {j|(i, j) ∈ Ei}; Ci = {i};

while (Si 6= ∅) do

Findk ∈ Si with maximum|Li ∩ Lk|

Li ← Li ∩ Lk

Ci ← Ci ∪ {k}

Si ← Si − {k} − {j|(j, k) /∈ Ei, j ∈ Si}

end while

it into Ci. Nodei also removes the nodes that are not directly connected withk from setSi. In the

second round, from the updatedSi, nodei finds the neighbor node that has the maximum number

of common neighbors with all the nodes inCi (i.e., nodesi andk). Nodei then removes this node

from Si and adds it intoCi. Those nodes that are not directly connected with this node will then be

removed from setSi. Nodei continues doing so until the setSi is empty.

After this algorithm finishes, nodei sorts the nodes inCi ascendingly by node IDs and

gets its local maximum cliqueC1
i . In our protocol, we useCk

i to denote the clique derived by node

i in thekth step (1 ≤ k ≤ 4). Our heuristic algorithm cannot guarantee to find the optimal clique;

however, it provides a sub-optimal solution with less computation overhead. We show it through

the simulation result in Section 4.3.5

Let us see how this algorithm works on node1 in Figure 4.4. Initially, node1 hasC1 =

{1},L1 = {0, 2, 3, 4, 7}, andS1 = {0, 2, 3, 4, 7}. In the first round, node 2 has 2 common neighbors

L1 ∩ L2 = {0, 3} with node 1; node 3 also has 2 common neighborsL1 ∩ L3 = {2, 4} with node

1. Because node2 and node3 have the same maximum number of common neighbors with node

1, we prefer the smaller ID to break the tie. Thus, node1 adds node2 into C1, andC1 = {1, 2}.
Then, node1 removes node2 from S1, i.e., S1 = {0, 3, 4, 7}. Because nodes4 and 7 cannot

directly communicate with node2, node1 also removes nodes4 and7 from S1 andS1 = {0, 3}.
In the second round, node0 and node3 have the same number of common neighbors with both

56

node1 and node2. Node1 chooses node0 that has a smaller ID intoC1. Then,C1
1 = {0, 1, 2},

andS1 = ∅ after removing node0 and node3. Node3 is removed fromS1 since node3 is not

connected with node0. Finally, node1’s local maximum clique isC1
1 = {0, 1, 2}. Similarly, we

haveC1
0 = C1

2 = {0, 1, 2}, C1
3 = C1

4 = C1
5 = C1

6 = {3, 4, 5, 6}, andC1
7 = {1, 7}.

Step 2: Ordering and Updating Maximum Cliques

The local maximum clique computed in step 1 at different nodes are likely to be different.

In step 2, each node looks at the local maximum cliques derived by its neighbors, and updates its

local maximum clique to prepare for final clique agreement.

In this step, each nodei broadcasts its local maximum cliqueC1
i to all its neighbors. For

efficiency, such broadcast messages can be authenticated with µTESLA. Because nodei calculates

its local maximum cliqueC1
i by a heuristic algorithm based on its local neighbor information, it

is possible for nodei to receive a larger local maximum cliqueC1
j that containsi from a neighbor

j. Therefore, after receiving the local maximum cliques fromits neighbors, nodei checks if there

exists any cliqueC1
j which is “better” than its cliqueC1

i . To compare cliques computed by different

nodes, we define a relation “
i≺” on cliques as follows:

Definition 3 Cj
i≺ Ck if and only if

1. i ∈ Cj, i ∈ Ck, and

2. a). |Cj | < |Ck|, or

b). |Cj | = |Ck|, but cj < ck, wherecj = min{ai|ai ∈ Cj ∧ ai /∈ Ck} and ck =

min{bi|bi ∈ Ck ∧ bi /∈ Cj}, or

c). Cj = Ck, butj < k.

The relation
i≺ gives a total order for the local maximum cliques received bynodei. We

can compare two cliquesCj andCk by relation
i≺ only if both cliques contain nodei. We have

Cj
i≺ Ck if the number of nodes inCk is greater than that inCj; or both cliques contain the same

number of nodes, but for the first two different IDscj ∈ Cj andck ∈ Ck we havecj < ck; or Cj

contains the same nodes asCk, but j < k. In two ascendingly ordered local maximum cliques, the

57

first two different IDs are also the smallest two different IDs. For example, ifCj = {1, 2, 3} and

Ck = {1, 3, 4}, thencj = 2 andck = 3, andCj
1≺ Ck.

Suppose nodei receivesn cliques that contain nodei. Nodei orders these cliques as

C1
α1

i≺ . . .
i≺ C1

i

i≺ . . .
i≺ C1

αn
, and updates its clique to the “best” cliqueC1

αn
. After Step 2, node

i has an updated cliqueC2
i = C1

αn
. We callC2

i as nodei’s updated clique.

Let us illustrate this step with the example in Figure 4.4. After receiving the local maxi-

mum cliques from neighbor nodes, node1 hasC1
0 = C1

1 = C1
2 = {0, 1, 2}, C1

3 = C1
4 = {3, 4, 5, 6},

andC1
7 = {1, 7}. Node 1 can immediately drop the cliques from nodes3 and4, since they do not

contain node1. Because|C1
7 | < |C1

0 |, node1 hasC1
7

1≺ C1
0 . BecauseC1

0 = C1
1 = C1

2 but node IDs

0 < 1 < 2, we haveC1
0

1≺ C1
1

1≺ C1
2 . Therefore, node1 orders the cliques from node0, 1, 2 and7

asC1
7

1≺ C1
0

1≺ C1
1

1≺ C1
2 , and updates its clique toC2

1 = C1
2 = {0, 1, 2}. Consider node7. It will

keep its clique unchanged since node1’s cliqueC1
1 = {0, 1, 2} does not contain node7. After Step

2, we haveC2
0 = C2

1 = C2
2 = {0, 1, 2}, C2

3 = C2
4 = C2

5 = C2
6 = {3, 4, 5, 6}, andC2

7 = {1, 7}. We

can see that node7 still has clique inconsistency with node1.

Step 3: Obtaining Final Clique

In this step, each nodei broadcasts its updated cliqueC2
i to its neighbors. Similarly to

the broadcast messages in step 2, these messages should alsobe authenticated withµTESLA. For

every nodej in C2
i , nodei checks if it is included inj’s cliqueC2

j . If not, nodei removesj from

its cliqueC2
i . After this step, each nodei obtains its final cliqueC3

i . If nodei does not receive node

j’s updated clique, nodei simply keeps nodej in its clique.

For our example in Figure 4.4, becauseC2
1 = {0, 1, 2} does not contain node7, node7

removes node1 from C2
7 = {1, 7}, and obtain its final cliqueC3

7 = {7}. Finally, all the nodes are

grouped into 3 cliques, which areC3
0 = C3

1 = C3
2 = {0, 1, 2}, C3

3 = C3
4 = C3

5 = C3
6 = {3, 4, 5, 6}

andC3
7 = {7}.

If all the nodes are normal, after the first three steps, we canguarantee the clique agree-

ment. We prove this in Section 4.3.3. However, in hostile environments, since compromised nodes

may deviate from the protocol, we need extra steps to detect the potential clique inconsistency and

identify the malicious nodes.

58

Step 4: Checking Clique Agreement

All the nodes broadcast their final cliques to their neighbors. Each nodei also calculates

a secure hash over all the four messages sent in the first four steps, sign this hash value, and append

it into the message that contains the final clique. When a normal nodei receives the first copy of a

final cliqueC3
j from its neighborj or forwarded by another neighbor, ifj ∈ C3

i , nodei rebroadcasts

the cliqueC3
j . The goal of this rebroadcast is to prevent silence attacks.

Each nodei verifies the clique agreement. That is, nodei verifies for allj ∈ C3
i , whether

C3
j = C3

i holds. When clique inconsistency is detected, nodei enters Step 5; otherwise, it terminates

the clique formation process.

Step 5: Identifying Insider or Enforcing Clique Agreement

This step consists of two stages. In Stage I, nodei performsconformity checkingto

identify malicious nodes that send inconsistent messages in the previous four steps. The basic idea is

to use the protocol semantics to distinguish malicious behaviors from normal ones. When malicious

nodes are identified, nodei sends an alert to other nodes, using the malicious nodes’ signatures as

proofs. After removing the malicious nodes from the network, all the remaining nodes restart the

protocol from Step 1 again. The malicious nodes that have been identified will be removed from

normal nodes’ neighbor list and thus cannot launch further attacks.

A malicious node may send messages to some normal neighbor nodes, but keep silence

to others. According our assumptions, the messages sent from normal nodes can be received in a

finite amount of time. Thus, a normal node may detect a malicious node if certain messages are not

received from the malicious node. However, the normal node does not have any proof to convince

other normal nodes who do receive the messages from the malicious node. A normal node cannot

distinguish a normal node who really detects a malicious node from a malicious node who forges a

false alert on a normal node. In such cases, nodei enters Stage II to enforce the clique agreement,

and finish the clique formation protocol.

We describe these two stages in detail below.

Stage I: Conformity Checking.

Suppose a normal nodei detects a clique inconsistency with nodej. Nodei requests nodej to

forward the messages that nodej received in the first four steps. Because nodej has received node

i’s authenticated final cliqueC3
i in Step 4, only ifC3

i 6= C3
j , nodej will provide its previously

59

received messages to nodei. Nodej need sign these messages to prove that these messages are

forwarded by nodej. For efficient signing, nodej may calculate a secure hash over all the messages,

and simply sign and send this hash value in one message. Afterverifying nodej’s signature, nodei

performs the following conformity checking for nodej.

Conformity Checking 1 Nodej follows the clique formation protocol correctly in the firstfour

steps.

In the above checking, nodei re-computes the first three steps of the cluster formation

protocol for nodej. If the derived final clique is not the same as what nodei received from nodej

in Step 4, nodej is a malicious node. Nodei can use nodej’s signatures as a proof to notify other

normal nodes in the network. If nodej passes checking 1, nodei performs the following checking

on all the common neighbors of nodesi andj.

Conformity Checking 2 For any nodek ∈ Li ∩Lj, k sends the same messages toi andj in every

step.

Because nodei has messages directly received from nodek and the message from nodek

received and forwarded by nodej, if nodek sends different messages to nodesi andj in any step,

nodei can detect the malicious nodek and use the conflicting messages from nodek as proofs to

convince all the other nodes.

Conformity Checking 1 and 2 guarantee to detect the malicious nodes if clique inconsis-

tency is caused by malicious nodes sending inconsistent messages. It is proved by Theorem 4.3.5

in Section 4.3.3. Nodei enters Stage II when no malicious node is identified.

Stage II: Consistency Enforcement

When a malicious node launches silence attacks, a normal node may detect the malicious node if

certain messages are not received from the malicious node. However, the normal node does not

have any proof to convince other normal nodes who do receive the messages from the malicious

node. Moreover, a normal node cannot distinguish a normal node who really detects a malicious

node from a malicious node who forges a false alert on a normalnode.

In such cases, our protocol can ensure that all the normal nodes achieve clique agreement

by performing the following consistency enforcement. Suppose two normal nodesi and j find

60

inconsistency, i.e.,j ∈ C3
i , i ∈ C3

j (which is proved in Lemma 4.3.4) andC3
i 6= C3

j . Without loss

of generality, we assumek ∈ C3
i andk /∈ C3

j .

Consistency Enforcement 1If k ∈ C2
i , k /∈ C2

j , nodei receivesC1
k , and nodej does not receive

C1
k , then nodei removesj fromC3

i , nodej removesi fromC3
j .

Consistency Enforcement 1 deals with the silence attack in Step 2, when a malicious node

k sends its local maximum clique to nodei and keep silence to nodej. However, simply removing

k from C3
i is not a good option, because nodej may be malicious and lie about the receipt ofC1

k .

As a result, a normal nodek may become isolated. Thus, the safest way is to split nodesi andj into

different cliques.

Consistency Enforcement 2If k ∈ C2
i ∩ C2

j , nodej receivesC2
k and j /∈ C2

k , nodei does not

receiveC2
k , then nodei removesk fromC3

i .

Consistency Enforcement 2 deals with the silence attack in Step 3, when a malicious node

k sends its updated clique to nodej, but does not send it to nodei. Since nodek is the only possible

malicious node (among nodesi, j, andk), nodei simply removes it fromC3
i .

After performing the above two enforcements, we name the newcliques asC∗
i andC∗

j for

i andj, respectively. In Section 4.3.3, we prove that our protocolcan guarantee clique agreement

through these enforcements.

4.3.3 Security Analysis

Effectiveness in Benign Environments

When all the nodes are normal, our protocol guarantees all the nodes in one clique agree

on the same clique membership by following the first three steps.

Lemma 4.3.1 For two nodesi andj, if i ∈ C2
j andj ∈ C2

i , thenC2
i = C2

j .

Proof: In Step 2 of our protocol, after nodei receives cliques from all its neighbors, it orders these

cliques asC1
α1

i≺ . . .
i≺ C1

i

i≺ . . .
i≺ C1

αn
, and updates its clique to the “best” cliqueC2

i = C1
αn

.

Similarly, nodej can have an updated cliqueC2
j = C1

βn

61

From i ∈ C2
j = C1

βn
, nodei can compareC1

βn
with C1

αn
. Nodei hasC1

βn

i≺ C1
αn

since

C1
αn

is the best clique among from the cliques from all the neighbors. Becausej ∈ C2
i = C1

αn
, node

i can also deriveC1
βn

j≺ C1
αn

. However, fromj ∈ C2
i , nodej hasC1

αn

j≺ C1
βn

. This can happens

only if αn = βn, so we can proveC2
i = C2

j .

Lemma 4.3.1 guarantees that if nodei and nodej contain each other in their updated

cliques at the end of Step 2, then their updated cliques must contain the same clique membership.

Lemma 4.3.2 Consider nodesi, j andk, wherek ∈ C2
i = C2

j . If i /∈ C2
k , thenj /∈ C2

k .

Proof: We prove it by contradiction. Supposej ∈ C2
k . Becausei /∈ C2

k andi ∈ C2
i = C2

j , we have

C2
k 6= C2

j . Becausek ∈ C2
i = C2

j , by Lemma 4.3.1, we haveC2
j = C2

k . SinceC2
k = C2

j = C2
i , it

contradicts toi /∈ C2
k .

From Lemma 4.3.1, when nodek is included in both nodei and nodei’s updated cliques

at the end of Step 2, if nodei is not included in nodek’s updated clique, nodej will not be included

either. Based on Lemmas 4.3.1 and 4.3.2, we have the following clique agreement theorem that

guarantees all the normal nodes in each clique agree on the same clique membership.

Theorem 4.3.3 For nodei and any nodej ∈ C3
i , if all the nodes are normal, we must haveC3

i =

C3
j .

Proof: For any nodej ∈ C3
i , j ∈ C2

i must hold. We also havei ∈ C2
j , otherwisej should be

removed fromC3
i . By Lemma 4.3.1, we haveC2

i = C2
j . For any nodek thatk ∈ C2

i but k /∈ C3
i ,

we knowi /∈ C2
k . Then by Lemma 4.3.2, we havej /∈ C2

k . Thenk will not appear inC3
j . It means

for every node that is removed fromC3
i , it must also be removed fromC3

j . Therefore, we can prove

thatC3
i = C3

j .

Security Analysis in Hostile Environments

Malicious nodes may employ different methods to compromiseclique agreement among

normal nodes. Our protocol can prevent external attacks by using (unicast and broadcast) message

authentication. Thus, a malicious node cannot use a fake identity in our protocol without grasping

the keying materials. In the following, we focus on the insider attacks in which some participating

nodes are malicious.

62

If malicious nodes broadcast the same false messages or keepsilence to all the normal

neighbors, they cannot introduce clique inconsistency. Malicious nodes may send inconsistent mes-

sages in different steps, so that the cliques are not correctly derived. However, since such attacks

generate the same impact on all the normal neighbors, they cannot introduce clique inconsistency

either. Therefore, clique inconsistency can only result from sending different messages to different

normal nodes, or launching silence attacks from malicious nodes.

In Section 4.3.3, we prove that malicious nodes will be detected and identified if clique

inconsistency is caused by sending inconsistent messages.In Section 4.3.3, we prove that our pro-

tocol can tolerate silence attacks and clique agreement canbe enforced by removing the conflicting

nodes.

Identifying Malicious Nodes

We first introduce Lemma 4.3.4, and then use it to prove Theorem 4.3.5.

Lemma 4.3.4 For two normal nodesi andj, if j ∈ C3
i , then we must havei ∈ C3

j .

Proof: We prove it by contradiction. Supposei /∈ C3
j . Sincej ∈ C3

i , we must havej ∈ C2
i . We

consider two cases. Ifi /∈ C2
j , j will sendC2

j to i, theni should removej from C3
i in Step 3. It is

contrary to our condition thatj ∈ C3
i . Otherwise, ifi ∈ C2

j but i /∈ C3
j , it meansj has removed

i from C2
j . The only reason is thati’s cliqueC2

i does not includej, i.e., j /∈ C2
i . It contradicts to

j ∈ C2
i .

Lemma 4.3.4 guarantees that if nodej is included in nodei’s final clique, then nodej

must include nodei in its final clique, even in hostile environments.

Theorem 4.3.5 If clique inconsistency is caused by malicious nodes sending inconsistent messages

to different normal nodes, our protocol can identify the malicious nodes.

Proof: Suppose a normal nodei detects clique inconsistency with nodej in Step 4, i.e.,j ∈ C3
i

butC3
i 6= C3

j . To detect the malicious nodes, nodei asks nodej to provide its previously received

messages and performs Conformity Checking 1 onj. If j passes this checking, it meansj follows

the protocol correctly, and the inconsistency must come from other nodes. Otherwise,j is malicious.

63

Consider the case whenj performs normally. By Lemma 4.3.4, if normal nodej ∈ C3
i ,

we must havei ∈ C3
j . So any nodek that is not a common neighbor of both nodei andj cannot

appear in eitherC3
i andC3

j . Therefore the inconsistency must come from common neighbors of

nodesi andj. By performing Conformity Checking 2 on all the common neighbors ofi andj, we

will find the different messages sent toi andj, and identify the malicious nodes.

If node j is malicious, nodei can detect the conflicts between the messages received

from nodej in Step 4 and the messages received from nodej in Step 5. Because nodej provides

signatures on these messages, other nodes cannot impersonate it to send fake messages. Thus, node

i can use these messages from nodej as proofs to inform other nodes in the network. The malicious

nodej will be removed from the network. Similarly, if a common neighbor nodek of node i

and nodej is malicious, nodei can use the messages directly received from nodek and nodek’s

messages received and forwarded by nodej as proof to remove nodek from the network.

Enforcing Clique Agreement

We observe that silence attacks can introduce clique inconsistency only in Steps 2 and 3.

In Step 1, a malicious node may send its neighbor list to some neighbor nodes, but withhold it from

other neighbor nodes. However, in Step 2, our protocol allows a normal nodei update its clique to

a “better” clique, even if the better clique contains some nodes that did not send their neighbor lists

to nodei in Step 1. Thus, the silence attack in Step 1 will not cause clique inconsistency.

In Step 2, clique inconsistency can only come from the “better” cliques sent by malicious

nodes, since a normal node will update its clique to a “better” clique. Suppose nodesi andj are

normal. A malicious nodek may sendi a “better” cliqueC1
k that includesi andj, but withhold the

message from nodej. Then nodei updates its clique toC1
k . If nodej receives the “better” clique

from nodei, it updates its clique toC1
i . Therefore, nodei andj include each other in their cliques

that are inconsistent. However, Consistency Enforcement 1can remove such clique inconsistency.

In Step 3, clique inconsistency can only be introduced by removing nodes from cliques.

Supposek ∈ C2
i ∩ C2

j . In Step 3, nodek can send a clique to remove itself fromi’s clique, while

keeping silence toj. Then the final clique ofj containsk, which is not in nodei’s final clique.

In Step 4, after a normal nodei receives a final cliqueC3
k from nodek, nodei rebroadcasts

C3
k if k ∈ C3

i . Because we assume the messages from a normal node can be received correctly by

its normal neighbors, this rebroadcast can guarantee that if one normal node receivesC3
k from node

k, all the other normal nodes in the same clique can receiveC3
k . Thus, it can prevent silence attacks

64

in Step 4.

In the following Theorem 4.3.6, we prove that by removing theinconsistent nodes from

cliques through the consistency enforcement, all the normal nodes can achieve clique agreement

even if malicious nodes intentionally keep silence to certain normal nodes.

Theorem 4.3.6 For any two normal nodesi andj, after Step 5, ifj ∈ C∗
i , we haveC∗

i = C∗
j .

Proof: We prove it by contradiction. SupposeC∗
i 6= C∗

j . Since our protocol can only remove

nodes from cliques when inconsistency is detected,C3
i must contain all the nodes inC∗

i . Therefore

j ∈ C3
i . By lemma 4.3.4, we havei ∈ C3

j . We consider two cases.

First, supposeC3
i 6= C3

j andC∗
i 6= C∗

j . Without loss of generality, we assume node

k ∈ C3
i but k /∈ C3

j . Nodesi andj find inconsistency after exchangingC3
i andC3

j . By Consis-

tency Enforcement 1, nodei removesj from its clique, and nodej also removesi from its clique.

Therefore we havej /∈ C∗
i . It is contrary to the conditionj ∈ C∗

i .

Second, we assumeC3
i = C3

j , butC∗
i 6= C∗

j . Without loss of generality, suppose node

k ∈ C∗
i but k /∈ C∗

j . Because nodes can only be removed to enforce clique agreement in Step 5,

k cannot be added toC∗
i , but removed fromC∗

j . This meansC3
k is inconsistent withC3

j . Since

C3
i = C3

j , C3
k is also inconsistent withC3

i . Because nodej re-broadcasts the cliqueC3
k received

from k, nodei will receiveC3
k even if nodek keeps silence toi. Thus,i should removek fromC∗

i .

We find contradiction.

In our protocol, the clique consistency checking is only performed in Step 4, though it

can be executed in each step. The reason is to reduce the computation overhead by decreasing the

number of signature generation/verification. Each node need not verify the signatures from other

nodes unless it detects clique inconsistency. Even if clique inconsistency is detected, each node only

generates and verifies the signatures of the messages exchanged in Step 4 and Step 5. If the protocol

checks the consistency in every step, malicious nodes may bedetected in an earlier step. However,

the computation overhead will be increased a lot.

4.3.4 Performance Analysis

Computation Overhead: We make several efforts to lower the computation overhead inour proto-

col. In all the five steps, each nodei usesµTESLA to authenticate its broadcast messages. Because

µTESLA uses secure key cryptography that has much less computation overhead than public key

cryptography, we only analyze the computation overhead on public key operations.

65

0
5

10
15
20
25
30
35
40
45

100 200 300 400 500
Number of Nodes

A
ve

ra
g

e
C

lu
st

er
 S

iz
e

LCA
Centrilized Clique Formation
Our Protocol

(a) Average Cluster Size

0

10

20

30

40

50

60

100 200 300 400 500
Number of Nodes

C
o

ef
fi

ci
en

t
o

f
V

ar
ia

n
ce

 (
%

)

LCA
Centrilized Clique Formation
Our Protocol

(b) CV (%) on Cluster Size

0

10

20

30

40

50

60

70

100 200 300 400 500
Number of Nodes

S
iz

e
o

f
M

ax
im

u
m

 C
lu

st
er LCA

Centrilized Clique Formation
Our Protocol

(c) Size of the Maximum Cluster

0
1
2
3
4
5
6
7
8
9

10

100 200 300 400 500
Number of Nodes

o

f
S

in
g

le
 N

o
d

e
C

lu
st

er
s LCA

Centrilized Clique Formation
Our Protocol

(d) # of Single-Node Clusters

Figure 4.5: Comparison of cluster metrics

In Step 4, each nodei signs the secure hash of its local messages sent in the first four

steps, instead of signing each message individually. Each node need not verify the signatures from

other nodes unless it detects clique inconsistency with them. Therefore, in benign environments, no

signature verification is necessary. In hostile environments, after detecting a clique inconsistency

with nodej, nodei verifies the signature from nodej. In Step 5, after receiving nodei’s request,

nodej generates a signature on the secure hash over the previous received messages from its neigh-

bors. Then, nodei needs to verify nodej’s signature on the forwarded messages. If nodej passes

Conformity Checking 1, nodei needs to verify|Li ∩Lj| signatures from the common neighbors of

i andj.

Because a node may verify more messages than those it signs, we propose to choose

public key cryptosystems with a fast decryption speed, suchas RSA, which can verify one signature

in 0.43s on ATmega128 [36]. Since the clique formation process will not be performed frequently,

the computation overhead is acceptable for sensor nodes.

Communication Overhead: Each nodei broadcasts one message in each of the first three steps. In

66

Step 4, besides broadcasting its final clique, nodei also rebroadcasts the first copy of the final clique

message about a neighbor in nodei’s final cliqueC3
i . In total, nodei sends|C3

i |+ 3 messages.

Suppose nodej has |Lj | neighbors. When nodei detects a clique inconsistency and

requests nodej to forward its previously received messages in Step 5, nodej needs to forward

4|Lj | messages received in the first four steps, plus one message including the signature for the

secure hash over all the forwarded messages.

Storage Overhead: According to the analysis of the computation overhead, eachnodei should

store all the4|Li| messages received in the four steps, where|Li| is the neighbor number of nodei.

When nodei detects a clique inconsistency with nodej, nodei needs to store4|Lj | + 1 messages

from nodej. Nodei can release the memory after verifying these messages.

4.3.5 Experimental Results

Through simulation, we show that our protocol can provide secure cluster formation with-

out sacrificing the performance of the clusters. We use the following metrics to evaluate the cluster

characteristics:average cluster size, maximum size of clusters, variance of the cluster size, and

number of single-node clusters.

The average cluster size depends on the density of the networks and the transmission

range of the sensor nodes. The average cluster size should not be too small. In sensor networks, it

is not desirable to include too many nodes in a large cluster due to the increasing message collisions

and transmission delay in a large cluster. We use Coefficientof Variance (CV) = 100*(Standard

Deviation)/(mean value of set) to evaluate the variance of the cluster size. We expect to divide

nodes into clusters with a low coefficient of variance. A cluster formation protocol should minimize

the clusters with a single node.

In our simulation, we uniformly deploy 100, 200, 300, 400 and500 sensor nodes in a 100

× 100 (m2) simulation area, respectively. The transmission range ofall the sensor nodes is fixed to

20 meters. Each point in the result figures is the average result of 1000 experiments.

We compare the cluster characteristics of our distributed protocol to LCA [11], one typical

Leader-First based cluster formation protocol, and a centralized clique formation protocol. In LCA,

from the lowest ID node to the highest ID node, a node declaresitself to be a cluster-head if it

has the lowest ID among the non-covered neighbor nodes. A node is covered if it is in the 1-

hop neighborhood of a node who has declared itself to be a cluster-head. In the centralized clique

formation protocol, we assume a sink node has obtained the topology graphG of the whole network.

67

The sink node first finds the maximum cliqueC1 in G, and updatesG by removingC1 from G.

Then, it finds the maximum cliqueC2 in the remainingG, and then removesC2 from currentG.

The algorithm completes whenG becomes empty. We borrow the C implementation (dfmax) from

[2] to find a maximum clique in a random graph.

Figure 4.5 compares the cluster characteristics of three protocols. As Figure 4.5(a) shows,

the average cluster sizes of the three protocols increase with the node density of the network. Our

protocol has a smaller average cluster size than the other two protocols. The reason is that our

protocol requires all the nodes in a clique be able to directly communicate with each other. While,

in LCA, the maximum distance between any two nodes in one cluster is two hops. Compared to the

centralized clique formation protocol, our heuristic protocol in Step 1 may not find the maximum

local clique. Thus, the average cluster number is a little smaller.

Figure 4.5(b) shows the variance of the cluster sizes. Our protocol has a smaller coefficient

of variance than the other two protocols, which means our protocol generates more uniform clusters.

Figure 4.5(c) presents the maximum cluster sizes in three protocols. Our protocol has a moderate

maximum cluster size. As Figure 4.5(d) shows, our protocol has fewer single-node clusters than the

other two protocols. The reason is that LCA and the centralized clique formation protocol attempt

to form the largest cluster first, and thus leave some nodes into small clusters. While in our protocol,

because all the nodes choose their clusters in a distributedand parallel way, it decreases the chances

to form large clusters and single-node clusters.

4.4 Summary

In this chapter, we developed a fault-tolerant cluster-wise time synchronization scheme

that can guarantee an upper bound of clock difference between any nonfaulty nodes in a cluster,

provided that the malicious nodes are no more than one third of the cluster. Compared with the ex-

isting fault-tolerant clock synchronization techniques,the proposed scheme can avoid the message

collision problem in these techniques, and does not requirecostly digital signatures. The proposed

scheme also has some limitations. First, it requires that the nodes in a cluster maintain initial syn-

chronization. Thus, it has to rely on other means, for example, a bootstrapping phase with trusted

external devices (see Section 4.2.1), or a fault-tolerant initial clock synchronization method (e.g.,

[59]). Second, it requires that each node be able to reach allthe other nodes in a cluster, thus

reducing the geographical coverage of each cluster.

68

We also proposed a secure and distributed clique formation protocol for sensor networks

to divide sensor nodes into mutually disjoint cliques, in which we can run the fault-tolerant cluster-

wise time synchronization to achieve a consistent group clock time. The protocol is fully distributed,

and guaranteed to terminate. Currently, our clique formation scheme is only suitable for static sensor

networks. It requires to use digital signatures to identifythe possible malicious nodes; however,

digital signatures are still quite heavy for computation restrained sensor nodes.

69

Chapter 5

Secure and Resilient Global Time

Synchronization with Unicast

Authentication

With the secure single-hop pair-wise time synchronizationin Chapter 3, a compromised

node has limited impact on single-hop time synchronizationbetween neighbor nodes. It can only

affect the clock difference between itself and a normal node(rather than between normal nodes).

However, when a pair of nodes are synchronized through a multi-hop path (e.g., [26, 31, 87]), a com-

promised node in the path can introduce an arbitrary error. This implies global time synchronization

using multi-hop paths is vulnerable to compromised nodes.

In this chapter, we develop two secure time synchronizationschemes,level-based time

synchronizationanddiffusion-based clock synchronization, to provide secure multi-hop pair-wise

and secure global time synchronization. The basic idea of both schemes is to provide redundant

ways for one node to synchronize to a far-away node, so that itcan tolerate partially missing or

false synchronization information provided by the malicious nodes. To achieve global clock syn-

chronization, we adopt a model where all the sensor nodes synchronize their clocks to a common

source, which is assumed to be well synchronized to an external clock. The level-based scheme

70

builds a level hierarchy in the sensor network, and then synchronizes the whole network level by

level. The diffusion-based scheme allows each node to diffuse its clock to its neighbor nodes after it

has synchronized to the source node. Our analysis and simulation results indicate that these two ap-

proaches are complementary. The level-based approach is suitable for static sensor networks, while

the diffusion-based approach is suitable for dynamic sensor networks. The level-based approach has

less overhead and higher precision than the diffusion-based approach, but has less coverage than the

diffusion-based approach.

To improve the synchronization precision and reduce communication overhead in large

sensor networks, we propose to deploy multiple source nodesin the network, so that the sensor

nodes can synchronize to the nearest source node. Moreover,we extend this approach to increase

the resilience of such time synchronization. As a result, a sensor node can obtain the correct clock

time even if up to the half of the source nodes to which it can synchronize are compromised.

We assume each pair of nodes communicate through unicast forboth pair-wise and global

time synchronization, and any two nodes that need to communicate with each other share a unique

pair-wise key, so that the messages between them are authenticated. One node can also identify the

other node based on the unique pair-wise key. Such pair-wisekeys can be provided by several key

predistribution schemes proposed for sensor networks recently (e.g., [56, 17, 25]).

5.1 Global Time Synchronization Model

5.1.1 A Motivating Example

Consider Figure 5.1, in which there are multiple, interleaved paths between nodeS and

nodeD. Assume nodeD needs to estimate the clock difference between itself and nodeS. Suppose

that each pair of nodes connected by an edge in the network areneighbors, and have synchronized

with each other using the single-hop pair-wise time synchronization scheme in Chapter 3. For con-

venience, we denote the pair-wise clock difference betweenany two nodesi andj asδi,j . Specifi-

cally, δi,j = Cj − Ci, whereCi andCj are the local clock of nodei and nodej, respectively. We

assume some nodes may have been compromised, and thus may lieabout any information needed

by other nodes.

We first estimate the clock differences betweenS and the nodes close toS (in a fault-

tolerant way), then gradually use these clock differences to estimate those betweenS and the nodes

71

S

1

2

3

5

6

4 7

8

9

D

Figure 5.1: A mesh network between nodesS andD

farther away fromS, and eventually derive the clock difference betweenS andD. According to the

assumption, nodes 1, 2, and 3 have obtainedδ1,S , δ2,S , andδ3,S , respectively. Now consider node

4. Node4 may estimateδ4,S through 1, 2, or 3. To deal with potentially malicious nodes,node

4 can estimateδ4,S through all three nodes. When node 1 is chosen, node 4 can easily compute

δ
(1)
4,S = δ4,1 + δ1,S . Similarly, node 4 can computeδ(2)4,S andδ(3)4,S through nodes 2 and 3, respectively.

Then node4 chooses the median of the three values asδ4,S . As a result, if only one of nodes 1, 2,

and 3 is malicious and attempts to attack time synchronization, its effect will be removed.

This process may continue for nodes 7, 8, and 9, assuming 4, 5,and 6 have obtainedδ4,S ,

δ5,S , andδ6,S , respectively. Eventually, nodeD can obtain the correct clock differenceδD,S if there

is at most one malicious node in each level in the mesh networkbetweenS andD. In general,

if there are2t + 1 nodes in each level of the mesh network between nodesS andD and all the

neighboring nodes can communicate with each other, this approach can tolerate up tot colluding

malicious nodes in each level.

5.1.2 Our Model

We develop our secure time synchronization techniques by generalizing the above moti-

vating example. We assume there is asource nodeS that is well synchronized to the external clock,

for example, through a GPS receiver. We would like to synchronize the clocks of all the sensor

nodes in the network to that of the source node. We assume the source node is trusted, and all the

other nodes know the identity of the source node.

We adopt the following model for secure and resilient globaltime synchronization:

1. Each nodei maintains alocal clockCi. The local clock of the source node (i.e.,CS) is the

desired global clock.

72

2. For each neighbor nodej, each nodeimaintains asingle-hop pair-wise clock differenceδi,j =

Cj − Ci with the secure single-hop pair-wise time synchronizationtechnique in Chapter 3.

3. Each nodei also maintains asource clock differenceδi,S between its local clock and the clock

of the source nodeS. Nodei can directly obtain it if it is a neighbor node ofS. Otherwise,

nodei needs to estimateδi,S.

4. To tolerate up tot malicious neighbor nodes, each nodei needs to compute at least2t + 1

candidatesource clock differences through different neighbor nodes. Specifically, the candi-

date source clock difference obtained through neighbor node j is δ(j)i,S = δi,j + δj,S. Node

i then chooses the median of the candidate source clock differences asδi,S. We assume the

sensor network of concern is dense so that each node has enough number of neighbor nodes

to obtain2t+ 1 candidate source clock differences.

5. Each nodei can estimate theglobal clockCS by using its local clock and its source clock

difference (i.e.,CS = Ci + δi,S).

We assume there are malicious nodes (e.g., compromised nodes that possess valid cryp-

tographic keys) in the network, which may collude together to disrupt time synchronization. A

malicious nodei may affect a normal nodej by affecting nodej’s measurement ofδi,j and/or ly-

ing aboutδi,S . Our goal is to provide secure time synchronization so that even if a certain number

of malicious nodes collude together to disrupt clock synchronization, each normal nodei can still

synchronize its local clock to the source node.

We give the following recursive definition to further clarify the correctness of secure and

resilient time synchronization.

Definition 4 With a unique source nodeS, a source clock differenceδi,S obtained by nodei is

correctif

• nodei is a neighbor node of nodeS, or

• δi,S is computed asδi,S = δi,j + δj,S , where nodej is a neighbor of nodei, and either (1)

nodej is a normal node andδj,S is correct, or (2) nodei has two other normal neighbor

nodesm andn such thatδm,S andδn,S are correct andδi,m + δm,S ≤ δi,S ≤ δi,n + δn,S .

73

It is easy to see that if nodei has a correct source clock difference, it can estimate the

global clockCS “correctly”.

We assume each pair of nodes communicate through unicast forboth pair-wise and global

time synchronization, and any two nodes that need to communicate with each other share a unique

pair-wise key, so that the messages between them are authenticated. One node can also identify the

other node based on the unique pair-wise key. Such pair-wisekeys can be provided by several key

predistribution schemes proposed for sensor networks recently (e.g., [56, 17, 25]). For brevity, we

assume all pair-wise clock differenceδi,j between two neighbor nodesi andj is obtained with our

secure single-hop pair-wise time synchronization technique in Chapter 3 without explicit statement.

Thus, the single-hop pair-wise clock difference between two normal nodes is always trusted, though

it may be impaired when one of the nodes is malicious.

It is natural for sensor nodes to communicate through broadcast, but in hostile environ-

ments, it requires local broadcast authentication. Recentresearch (e.g. TinyPK [97]) shows that it

is applicable to apply asymmetric cryptographic technology in sensor network. However, due to

the resource constraint of sensor nodes, those techniques are vulnerable to DoS attacks. In our later

research, we develop a secure and resilient global time synchronization using broadcast authentica-

tion based on a novel use of theµTESLA broadcast authentication protocol forlocal authenticated

broadcast, resolving the conflict between the goal of achieving time synchronization withµTESLA-

based broadcast authentication and the fact thatµTESLA requires loose time synchronization. We

will discuss the detail in Chapter 6.

5.2 Secure and Resilient Global Time Synchronization

We develop two secure and resilient time synchronization schemes for sensor networks:

the level-based scheme and the diffusion-based scheme. In the level-based scheme, a level hierarchy

is established in the sensor network, and each node obtains the clock differences from its parent

nodes in the level hierarchy. In the diffusion-based scheme, a node can obtain the clock differences

from any neighbor nodes. The level-based scheme is suitablefor static sensor networks, where

sensor nodes stay in the same places after deployment; whereas the diffusion-based scheme is more

suitable for dynamic sensor networks, where sensor nodes may move frequently.

74

5.2.1 Level-Based Time Synchronization

Level-based time synchronization aims at static sensor networks, where the network topol-

ogy does not change frequently. Level-based time synchronization consists of two phases:level

discovery phaseandsynchronization phase. The level discovery phase is to organize the legitimate

sensor nodes into a hierarchy rooted at the source nodeS so that two nodes connected in the hier-

archy are neighbors. Each node except for the root has a set ofparent nodes in the hierarchy, and

each node except for the leaf nodes has a set of children nodes. Each node is also associated with

a level, which is the number of hops in the longest path from the root to this node. We refer to this

hierarchy as the level hierarchy. In the synchronization phase, all the sensor nodes obtain the source

clock differences through their parent nodes, estimate their own source clock differences, and then

help their children nodes to synchronize their clocks.

Level Discovery Phase

To establish the level hierarchy, each node maintains threevariables:level, parents,

andchildren. The variablelevel records the level of the node.Parents andchildren

record the parents and the children of the node in the level hierarchy, respectively. After the level

hierarchy is established, a nodei can obtain the candidate source clock differences from the nodes

in its parent set, and may help the nodes recorded in its children set to obtain their source clock

differences.

We assume all the sensor nodes have discovered their neighbors before the level discovery

phase. Consider the source nodeS. Initially, S.level = 0, S.parents = ∅, andS.children

= {x|x is a neighbor ofS}. The variables of all the other nodes are unknown. The sourcenodeS

initiates the level discovery phase by unicasting alevel discovery messageto each of its neighbor

nodes. A level discovery message contains the sender’s identity and its level number, authenticated

(and optionally encrypted) with the pair-wise key shared between the sender and the receiver. After

receiving an authenticated level discovery message fromS, each neighbori of S setsi.level as

1, andi.parents as{S}. It then unicasts a level discovery message to each of its neighbor nodes

except forS.

The nodes that are more than one hop away from the source node may receive more

than one level discovery messages from their neighbor nodes. To tolerate up tot malicious parent

nodes in the synchronization phase, a node needs to record3t + 1 parent nodes that will send

75

synchronization message to it. When a normal node has3t+ 1 parent nodes in the level hierarchy,

even if up totmalicious parent nodes keep silent during the synchronization phase, the node still can

receive2t + 1 candidate source clock differences and synchronize its clock. We have two options

for a sensor node to obtain its level and parent set. In the first option, after receiving authenticated

level discovery messages from the first3t+ 1 different neighbor nodes, nodei chooses these nodes

as its parent nodes. In the second option, nodei may wait for a period ofτ time units after getting

the first3t+ 1 candidate parent nodes, and then choose the3t+ 1 nodes with the least levels as the

parent nodes. When using the second option, the convergencetime of the level discovery phase is

longer than that by using the first option, but the average level of the sensor nodes is smaller than

that by using the first option. Because the source node runs level discovery process infrequently,

we adopt the second option in our level-based scheme. Assuming the maximum level of the parent

nodes isl, nodei then setsi.level asl + 1.

After determining its level, a nodei unicasts level discovery messages to its neighbor

nodes from which it has not received any authenticated leveldiscovery message. Nodei also uni-

casts messages to its parent nodes to add itself as one of their children nodes. Nodei will drop

subsequent level discovery messages.

The level hierarchy needs to be maintained when there are slight changes in the network

(e.g., node joins, failures). The maintenance may be performed locally without re-executing the

level discovery phase. When a new node joins the network, it needs to determine its level and find

its parent nodes in the level hierarchy. To do it, it unicastslevel query messagesto all its neighbor

nodes. A neighbor node will send back alevel reply message, containing its identity and its level.

All the messages are authenticated by the shared pair-wise key. The new node can determine its

level and parent nodes by the receiving level reply messages. In the synchronization phase, when a

node fails to receive from at least2t + 1 parent nodes in several rounds of synchronization, it will

send level query messages to its neighbor nodes that are not its parent or children nodes, and recruits

new parent nodes according to the level reply messages.

Synchronization Phase

Due to the clock drift of sensor nodes, the source nodeS periodically initiates the synchro-

nization phase by unicastingsynchronization messagesto its neighbor nodes. A synchronization

message contains the sender’s identity, a sequence number,and the sender’s source clock differ-

ence. Each node maintains a sequence number, and increases it in each round of synchronization.

76

These nodes then further send synchronization messages to their children nodes. All the relevant

messages are authenticated with a key shared between the communicating nodes.

After receiving a synchronization message from nodeS, level one nodes start the single-

hop pair-wise time synchronization with the source node. Then, they unicast synchronization mes-

sages to their children nodes. Consider a nodei at a level greater than 1. When it receives a

synchronization message from a parent nodej, after obtaining the single-hop pair-wise clock dif-

ference from nodej, nodei calculates a candidate source clock difference byδ
(j)
i,S = δi,j + δj,S.

To tolerate up tot malicious nodes in its parent nodes, it has to collect at least 2t + 1 candidate

source clock differences through its parent nodes. Nodei sets the source clock differenceδi,S as

the median of the2t+ 1 candidate source clock differences. Then, nodei unicasts its source clock

difference to its children nodes.

Effectiveness

We first introduce Lemma 5.2.1 to facilitate the analysis.

Lemma 5.2.1 Assume a normal nodei has at least2t+1 neighbor nodes, among which there are at

mostt colluding malicious nodes. Nodei can obtain a correct source clock difference if it receives

from each neighbor node the source clock difference and all the normal neighbor nodes provide

their correct source clock differences.

Proof: According to our model, nodei computes a candidate source clock difference with the

source clock difference provided by each neighbor node, andthen chooses the median as its source

clock differenceδi,S . Suppose the source clock difference is obtained through node j, that is,

δi,S = δi,j + δj,S. There are two cases. (1) If nodej is a normal node, bothδj,S andδi,j must

be correct according to the assumption, andδi,S = δi,j + δj,S is correct according to Definition 4.

(2) Suppose nodej is malicious. Because there are at mostt malicious nodes,δi,S , which is the

median of the2t + 1 candidate source clock differences, must be between two candidate source

clock differences obtained through two normal nodes. Thus,the source clock differenceδi,S is still

correct, according to Definition 4.

Based on Lemma 5.2.1, we have the following results on the effectiveness of level-based

time synchronization.

77

Lemma 5.2.2 The level-based time synchronization can synchronize all the normal nodes correctly,

if each normal node at levell (l > 1) receives at least2t+ 1 source clock differences from distinct

parent nodes and at mostt out of these parent nodes are colluding malicious nodes.

Proof: This is equivalent to proving that each normal nodei can obtain the correct source clock

differenceδi,S if the given conditions are satisfied. We prove it by induction.

Each nodei at level one can obtain the correct source clock differenceδi,S, which is the

single-hop pair-wise clock difference. Now suppose each normal node at a level less than or equal

to level k (k ≥ 1) has obtained the correct source clock difference. Consider a normal nodej at

level k + 1. All parents of nodej have levels less than or equal tok. If node j receives source

clock differences from at least2t + 1 distinct parent nodes and at mostt out of them are colluding

malicious nodes, then by Lemma 5.2.1, nodej can obtain its correct source clock differenceδj,S .

5.2.2 Diffusion-Based Time Synchronization

With level-based time synchronization, all the sensor nodes synchronize to the source

node by using the level hierarchy. The following diffusion-based time synchronization scheme

allows sensor nodes to obtain source clock differences through any neighbor nodes without requiring

any level hierarchy.

In the diffusion-based scheme, the source nodeS initiates the synchronization process

periodically by unicasting synchronization messages to its neighbor nodes. After obtaining a source

clock difference from the source node, the neighbor nodes ofS update their source clock differences,

and then unicast synchronization messages to their neighbors except forS. To tolerate up tot

colluding malicious nodes among its neighbor node, a node more than one hop away from the

source node needs to receive at least2t + 1 candidate source clock differences through different

neighbor nodes, and updates its source clock difference as the median of the2t + 1 source clock

differences. The node then sends synchronization messagesto its neighbors from which it has not

received synchronization messages.

We have the following results on the effectiveness of diffusion-based time synchroniza-

tion.

Lemma 5.2.3 The diffusion-based time synchronization scheme can synchronize all the normal

78

nodes correctly, if each normal node that is more than one hopaway from the source node re-

ceives the source clock differences (of the neighbor nodes)from at least2t + 1 distinct neighbor

nodes among which at mostt nodes are colluding malicious nodes.

Proof: This is equivalent to proving that each nodei can obtain the correct source clock difference

δi,S if the given conditions are satisfied. We prove it by induction.

Each neighbor nodei of the source node can obtain the correct source clock difference

δi,S , which is the single-hop pair-wise clock difference. Thus,all normal nodes have correct source

clock differences right afterS’s neighbor nodes obtain their source clock differences. Assume at

a certain time, all the normal nodes that have been synchronized have correct source clock differ-

ences. Consider a normal nodej that is more than one hop away from the source node. From

the assumption, if it can receive the source clock differences (of the neighbor nodes) from at least

2t + 1 distinct neighbor nodes, among which at mostt nodes are colluding malicious nodes, then

by Lemma 5.2.1, nodej can obtain its own correct source clock difference.

The benefit of the diffusion-based scheme is that all communication is localized without

depending on a distributed level hierarchy. However, a nodehas to send synchronization messages

to all its neighbor nodes from which it has not received synchronization messages. The diffusion-

based scheme potentially has higher communication overhead than the level-based ones, but it is

more applicable for dynamic sensor networks, where the network topology changes frequently.

5.2.3 Security Analysis

By using unique shared pair-wise keys for message authentication, our scheme can pre-

vent external malicious nodes from inserting or modifying messages and impersonating other nodes,

and internal malicious nodes from pretending to be other nodes. Next we analyze other possible at-

tacks against the proposed schemes, and show how our schemescan prevent or tolerate these attacks.

Attacks against Level NumbersThis attack is unique to the level-based scheme. During

level discovery, a malicious node may lie about its level to normal nodes. Because a node sets its

level as the maximum level of the parent nodes plus one, when amalicious node sends a level

discovery message with a large fake level, the normal node will assign itself a large level if it

chooses the malicious node as one of its parent nodes. This problem can be mitigated if the normal

node waits for a period of time, since there may be other normal candidate parent nodes at lower

79

levels. However, there is in general no guarantee that this will happen. Alternatively, we can set a

level threshold to the maximum level in the level hierarchy.When a node receives from a parent

node whose level is greater than the level threshold, it drops the message.

Silence Attacks A malicious node may delay or refuse to provide source clock differ-

ences to its children nodes in the synchronization phase. Inthe level-based scheme, we can tolerate

such attack by record3t + 1 parent nodes in the parent set, so that even if up tot malicious nodes

keep silence, a normal node can still receive2t + 1 source clock differences. This attack has little

effect on diffusion-based scheme when a normal node can obtain source clock differences from any

2t+ 1 neighbor nodes, though the malicious nodes keep silience.

Replay Attacks A malicious node may launch replay attacks during the synchronization

process. Specifically, a malicious node may record a synchronization message in one round of time

synchronization, and replay it to normal nodes in later rounds. As a result, the normal nodes may

accept the replayed message, and derive a false source clockdifference.

This attack can be prevented by including a per-node sequence number in the synchro-

nization messages. Specifically, each node maintains a sequence number for itself, and keeps a

copy of the most recent sequence number received fromeachof its parent nodes. In a new round of

time synchronization, each node increments its sequence number and includes it in all the messages

sent to its neighbor nodes. Accordingly, a node only acceptsa message from a neighbor node (and

update the recorded sequence number of this neighbor node) if the sequence number in the message

is greater than the recorded one.

Note that we cannot use a global sequence number to prevent replay attacks. Otherwise,

a malicious node that has the right keying materials may launch Denial of Service (DoS) attacks.

Resource Consumption AttacksAn attacker may attempt to launch resource consump-

tion attacks. In level discovery phase, a malicious node maymake itself the children node of all its

neighbors. In the synchronization phase, all its neighbor nodes will have to unicast synchronization

messages to this malicious node, which is a waste of their battery power. However, such a malicious

node can only force each of its neighbor nodes to transmit a few messages in each synchronization

round, and thus has limited impact.

There is a potentially more serious resource consumption attack. In the synchronization

phase, a malicious node may unicast synchronization messages to its neighbor nodes at any time,

without receiving any synchronization message. In other words, the malicious nodes intend to start

one round of synchronization without being triggered by thesource node. Fortunately, a normal

node sends synchronization messages only after receiving at least2t+ 1 synchronization messages

80

from distinct neighbors. As a result, the malicious nodes may convince its normal children nodes

to request synchronization messages from other parent nodes, but will not convince them to further

send synchronization messages, as long as the victim normalnode has less than2t + 1 malicious

neighbor nodes.

Wormhole Attacks Wormhole attacks are a serious threat to multi-hop wirelessnet-

works. In a wormhole attack, an attacker tunnels packets received in one part of the network over

a low latency link and replays them in a different part [44]. Attackers may tunnel level discovery

messages or synchronization messages through wormholes. However, such wormhole attacks do not

help much in disrupting time synchronization. An attacker may try to impair the single-hop pair-

wise clock difference between two nodes by introducing delays when forwarding the related mes-

sages. Fortunately, with a sender-receiver pair-wise timesynchronization technique (e.g., SPS [29]),

two communicating nodes can measure the message transmission time at the same time when they

measure their clock difference, and thus will be able to detect the wormhole if the wormhole intro-

duces noticeable delay. An attacker may also establish somewormholes in level discovery phase

but stop them in the synchronization phase. Such attacks aresubsumed by normal node failures,

and can be addressed with the maintenance of the level hierarchy.

Sybil Attacks A malicious node may forge multiple identities to send messages. How-

ever, this attack can be prevented if the two communicating nodes share a unique pair-wise key and

use it to authenticate the communication messages. If colluding malicious nodes can exchange their

keying materials, one malicious node may impersonate otherfar-away malicious nodes in its local

network. Such colluding malicious nodes may be detected andremoved by using the techniques

proposed in [73].

5.2.4 Performance Analysis

We discuss the performance of our schemes on metrics such as communication overhead,

synchronization precision, and memory requirement.

Communication Overhead When considering a sensor network as a graph, in which

each vertex stands for a node in the network, and each edge represents that the two vertices of the

edge are neighbor nodes, we getG = {V,E} where|V | is the number of sensor nodes and|E| is
the number of connections between the nodes.

In the level discovery phase of level-based approach, aftera node determines its level, it

unicasts level discovery messages to the neighbors that have not sent level discovery messages to it.

81

Assuming there is no communication failures and all the nodes are included in the level hierarchy,

all the edges in the graph will be covered exactly once by one level discovery message in both

approaches. Thus, the overhead isO(|E|). In the synchronization phase, we assume that there is no

communication failures and all the nodes in the network can synchronize their clocks. Suppose there

aren1 nodes in level one. Since the nodes at levels more than1 will receive2t+ 1 synchronization

messages, the total number of messages transmitted in one round of clock synchronization can be

estimated as

n1 + (|V | − n1 − 1)(2t + 1). (5.1)

In the diffusion-based scheme, the number of messages transmitted in one round of time

synchronization is the same as that in the level discovery phase of the level-based schemes, that is

O(|E|). Suppose each node hask neighbor nodes in average in a large dense sensor network. We

have|E| = |V | · k/2. Compared with the level-based schemes, the diffusion-based scheme has a

higher communication overhead whenk ≥ 2(2t + 1). In real sensor networks, due to the message

collision, the overhead in both schemes will be higher.

Synchronization Precision The synchronization precision at a nodei can be measured

by the clock error between nodei’s estimated global clock and the actual global clock (i.e.,the clock

of the source node) when nodei adjusts its local clock. Specifically,Errori = |Ci + δi,S − CS |,
whereCi andCS are the nodei and the source nodeS’s local clock times, respectively, andδi,S is

the estimated source clock difference.

In our scheme, the major clock error is mostly caused by the clock drift between the time

when the source node starts one round of time synchronization and the time when a node obtains its

source clock difference. Suppose the source nodeS initiates one round of synchronization at time

ts and nodei adjusts its clock at timeti, whereti > tS. We denote the maximum time duration

ti−tS of all the nodes as thesynchronization time. By [22], when the maximum clock drift of all the

clocks isρ, the maximum clock drift duringti−ts between nodeS and nodei is up to2ρ(ti−ts). It

seems that a sensor node may receive2t+ 1 messages sooner in the diffusion-based scheme than in

the level-based scheme, since it can receive from any neighbor node in the diffusion-based scheme.

However, due to the higher communication overhead in the diffusion-based scheme, there is more

message collision and message retransmission. Hence, the diffusion-based scheme has a longer

synchronization time and a worse synchronization precision than the level-based scheme.

Given the required precision and maximum clock drift rate, we can decide thesynchro-

nization interval, which is about how often the source node initiates one roundof time synchroniza-

82

tion. Suppose the maximum clock drift rate of all the sensor nodes isρ. Given the synchronization

precisionδ and the required precision∆ of an application, the synchronization intervalR must

satisfy thatR ≤ (∆− δ)/ρ.

Memory Usage Memory usage is a critical issue for resource constrained sensor nodes.

In the level discovery phase, the level-based approach requires memory to record a node’s level,

its parent nodes, and its children nodes. To tolerate up tot malicious node among its neighbor

nodes, a normal node has to have a certain amount of memory setaside for children node so that the

malicious nodes cannot prevent it from having normal children nodes by consuming this memory.

In the synchronization phase of both level-based and diffusion-based approaches, each node only

needs to record2t + 1 single-hop pair-wise clock differences and2t + 1 source clock differences

from its neighbor nodes.

5.3 Secure and Resilient Global Time Synchronization with Multiple

Source Nodes

In our initial experiments, we observe that it took a long time to synchronize a large

sensor network, and some nodes are usually not synchronized. Our investigation revealed that this

is mostly due to message propagation and increased occurrences of message collsions. Moreover,

the nodes far away from the source node may not be synchronized with a high precision due to the

clock drift during the synchronization process. To reduce the synchronization time and improve the

synchronization rate and the synchronization precision, we propose to deploy multiple source nodes

into the network, and make sensor nodes synchronize to the nearest source node. This approach is

in essence similar to the typical techniques (e.g., [82, 83,70, 68]) for location estimation in sensor

networks, where multiple anchor nodes that know their locations are deployed to help the other

nodes to estimate their locations.

The multiple source nodes can also increase the robustness of the time synchronization,

so that sensor nodes can get synchronized from other source nodes even if the nearest source node

fails. In hostile environments, it is possible for malicious attackers to compromise a small portion

of the source nodes, though the source nodes are typically better protected from attacks than the

normal ones. Thus, we also extend our techniques to toleratea certain number of malicious source

nodes.

83

5.3.1 Extended Model

We assume all the normal source nodes are well synchronized to an external clock, for

example, through GPS receivers. Suppose the IDs of the source nodes are known to all the sensor

nodes. We extend the time synchronization model in Section 5.1.2 to accommodate synchronization

with multiple source nodes:

1. Each nodei maintains alocal clockCi.

2. Each nodei may obtain a source clock differenceδi,Sj
between its local clock and the clock

of a source nodeSj following the model in Section 5.1.2.

3. To tolerate up tos malicious source nodes, each nodei needs to obtain at least2s+ 1 source

clock differences from distinct source nodes. Nodei then chooses the median of the source

clock differences as its global clock differenceδi,S .

4. Each nodei can estimate theglobal clockCS by using its local clock and its source clock

difference (i.e.,CS = Ci + δi,S).

When all the source nodes are normal (i.e.,s = 0), sensor nodes may synchronize to any

source node.

5.3.2 Estimation of Hop-Count Threshold

When multiple source nodes are used for time synchronization, each node only need syn-

chronize to the nearest2s + 1 source nodes. Thus, it is unnecessary to propagate the time syn-

chronization messages for each source node to the entire network. As a result, we can significantly

reduce the message propagation time and the chances of message collisions. Therefore, we propose

to limit the coverage area of each source node. Specifically,we set a suitable hop-count threshold

on the maximum hop count that a synchronization message can be forwarded. We certainly still

need to guarantee that each sensor node can synchronize to2s+ 1 source nodes.

In the level-based scheme, we can set the hop-count threshold by limiting the maximum

level in each source node’s level hierarchy. In the level discovery phase, a sensor node only chooses

the neighbor nodes whose level are less than the hop-count threshold as its parent nodes. If a

sensor node’s level equals to the hop-count threshold, it will not send level discovery messages to

its neighbor nodes. In the synchronization phase, a sensor node may send synchronization messages

only if its level is less than the hop-count threshold.

84

In the diffusion-based scheme, we set an uppper bound threshold on the maximum hop

count for the synchronization messages. We add a hop count field in the synchronization messages.

When a source node initiates one round of synchronization, it sets the hop count in the messages

to 0. Each sensor node only accepts a sychronization messagewhose hop count field is less than

the threshold, and records the hop count in the message. To tolerate up tot malicious neighbor

nodes, a sensor node needs to receive2t + 1 messages from neighbor nodes. If the maximum hop

count of the2t+ 1 messages is less than the hop-count threshold minus one, thesensor node sends

synchronization messages to its neighbors from whom it did not receive a synchronization message.

Otherwise, it does not send any synchronization message.

õö ÷

ø
ù

ú

û üý þ ýÿ

û
õ�÷

úÿ

ú �

�� ��

Figure 5.2: Estimation of Hop-count threshold

In the following, we present a method to derive a suitable hop-count threshold for a source

node. Suppose all the nodes have the same transmission range. In Figure 5.2(a), we assume thatn

sensor nodes are uniformly distributed in a rectangle field of areaA. Two circlesC1 andC2 have

radiiR andr, respectively. The distance between the centers of the two circles isd, we can calculate

the shadow areaAi of the circle intersection by:

Ai = r2 cos−1(
d2 + r2 −R2

2dr
) +R2 cos−1(

d2 +R2 − r2
2dR

)

−1

2

√

(r +R− d)(d+ r −R)(d+R− r)(d+ r +R). (5.2)

Suppose a source node locates at pointC1. The sensor nodes in the circleC1 have obtained

their levels, and the maximum level of these sensor nodes isl. Consider a sensor nodei that locates

at pointC2 with transmission ranger. In the level-based scheme, nodei needs to receive from3t+1

85

neighbor nodes with less than or equal tol levels to obtain its level. This condition can be satisfied

only if

Ai ·
n

A
> 3t+ 1. (5.3)

Given the node density of the networknA , node transmission ranger, and the number

of malicious neighbor nodest, by equation 5.3, we can calculate the maximum distanced from

the levell + 1 nodes to the source node. Figure 5.2(b) shows the procedure to obtain the level

threshold, given a maximum distanceD from the source node. We assume that the source node

locates at the center of the circleC1, and its transmission range isr. All the level one nodes are in

the transmission range of the source node, and the maximum distance from level one node to the

source node isd1 = r. For level two nodes, by usingR = d1 = r into equation 5.2, we can get the

maximum distanced2 from the level two nodes to the source nodes. For level three nodes, by using

R = d2 andr = r into equation 5.2, we get the maximum distanced3 from level three nodes to the

source node, and so on. Because the shadow areaAi in Figure 5.2(a) increases along withR, we

havedi+2 − di+1 > di+1 − di wheni ≥ 1, which means the bands in Figure 5.2(b) will become

wider and wider. Now given the maximum distanceD from the farthest node to the source node,

we can calculate the a level thresholdL by finding the minimumL that satisfiesdL ≥ D. In the

level-based scheme, the level threshold functions as the hop-count threshold.

In the diffusion-based approach, we can perform a similar calculation. But we should

use inequation 5.4 instead of inequation 5.3, since a node needs to receive2t + 1 synchronization

messages from neighbor nodes.

Ai ·
n

A
> 2t+ 1. (5.4)

5.3.3 Time Synchronization with Multiple Source Nodes

All source nodes are normal. When all the source nodes are normal, since a sensor node

can synchronize to any source node, we can improve the synchronization performance. First, multi-

ple source nodes make sensor nodes receive from a source nodein shorter hops, so the accumulated

synchronization error on the nodes along the path can be reduced. Second, multiple source nodes

can reduce the message collision and shorten the synchronization time, so they can improve the

synchronization precision. Moreover, the multiple sourcenodes may increase the synchronization

rate in a randomly distributed sensor network.

86

In the level-based scheme, each source node builds a level hierarchy rooted by itself. For

the neighbors of a source node, they choose the source node asthe unique parent node. For a node

more than one hop away from any source node, to tolerate up tot malicious neighbor nodes, it can

choose either (1) a set of3t+ 1 parent nodes that synchronize to the same source node, or (2)a set

of 3t+1 parent nodes that may synchronize to different source nodes. In the synchronization phase,

a node may obtain a source clock difference after receiving synchronization messages from2t+ 1

parent nodes.

In the diffusion-based scheme, the neighbors of the source nodes can synchronize their

clocks after receiving from a source node. For a node more than one hop away from any source

node, a node can synchronize its clock after receiving synchronization messages from any2t + 1

neighbor nodes.

Partial source nodes are malicious.To tolerate up tosmalicious source nodes, a normal

sensor node has to receive at least2s+ 1 source clock differences from distinct source nodes.

When some source nodes are malicious, the sensor node shouldobtain each source clock

difference from a set of parent nodes that synchronize to thesame source node. Note that the sensor

nodes cannot use the source clock difference obtained from aset of parent nodes that synchronize to

different source nodes. Consider Figure 5.3, in which circles stand for source nodes, and triangles

stand for sensor nodes. Suppose the shadow nodes are malicious. For the bottom sensor node, one

of the three neighbor sensor nodes is malicious, one of the three source node is malicious, and the

malicious nodes may collude with each other. In each subgraph, the bottom node obtains a source

clock difference by choosing the median value of the three candidate source clock differences re-

ceived from the three neighbor nodes, which synchronize to three different source nodes. Similarly,

each parent node synchronizes to different source node in each subgraph. The bottom node can

obtain three source clock differences from the neighbor nodes that synchronize to different source

nodes, but the two source clock differences in (a) and (b) arecontrolled by the colluding malicious

nodes. When the bottom node uses the median of the three source clock differences to synchronize

its clock, it cannot correctly synchronize its clock.

In both level-based and diffusion-based schemes, the source node adds its identity into

the messages that it initiates. In the level-based scheme, each source node independently builds a

level hierarchy rooted at itself. When a sensor node’s levelin a source node’s level hierarchy is no

more than the level threshold, the sensor node records parent/children sets for the source node. Note

that a sensor node may record parent/children sets for more than2s + 1 distinct source nodes. In

the synchronization phase, after one sensor node obtains a source clock difference from one source

87

�� � �	 ��
 �

Figure 5.3: Partial malicious source nodes

node, it sends synchronization messages to the set of children nodes that synchronize to the same

source node. After obtaining2s+1 source clock differences from different source nodes, the sensor

node uses the median of the2s + 1 source clock differences to adjust its clock. Similarly, inthe

diffusion-based scheme, to tolerates malicious source node, a sensor node synchronizes its clock

after obtaining2s + 1 source clock differences.

When all the source nodes are normal, we can improve the performance on communica-

tion overhead and synchronization precision. When some source nodes may be malicious, we can

tolerate the attacks from malicious source nodes by synchronizing sensor nodes to multiple source

nodes. However, we sacrifice the performance of our schemes to achieve the robustness. To tol-

erates malicious source nodes, a normal node has to obtain2s + 1 source clock differences from

different source nodes. For each source clock difference, the node needs to receive from2t + 1

neighbor nodes to tolerate up tot malicious neighbor nodes. Thus, the communication overhead is

increased along withs andt. To guarantee that each node can receive from2s + 1 source nodes,

each source node has to increase its coverage area, in which message collisions increase. Due to the

increased occurrences of message collisions, both the communication overhead and the synchro-

nization time increase a lot. In the level-based scheme, each node allocates more memory to record

the parent/children sets for multiple source nodes. In bothlevel-based and diffusion-based schemes,

each node needs to allocate more memory to record the candidate source clock differences from

different neighbor nodes and different source nodes.

88

5.4 Simulation Results

We studied both level-based and diffusion-based time synchronization through simulation

in ns2 [5]. Our goal is to gain a better understanding of the performance issues of the proposed

techniques, which cannot be obtained through theoretical analysis. We implemented a new agent in

ns2 to provide global time synchronization for sensor nodes. We used a simple “Hello” protocol for

nodes to discover their neighbor nodes.

Table 5.1: Simulation parameters in level-based and diffusion-based schemes

Number of Nodes 50, 100, 150, 200
Simulation Area 60m× 60m

Transmission Range 20m
Physical Link Bandwidth 250 kbps

MAC layer 802.11 with DATA/ACK
Clock Drift Rate (µs/s) uniformly distributed

in [0, 10]
Malicious Neighbors t = 0, 1, 3
Total Source Nodes S = 1, 9

Malicious Source Nodes s = 0 when S=1
s=0, 1, 3 when S=9

Table 5.1 shows the parameters used in our experiments. The numbers of nodesn in a

sensor network is 50, 100, 150, and 200, respectively, and they do not include the source nodes.

All the sensor nodes remain static after being randomly deployed in a 60 m× 60 m simulation

area. Suppose all the nodes have the same transmission range, which is 20 m. The bandwidth of

each physical link is 250 kbps, as provided by MICAz motes [20]. Our simulation uses 802.11

with DATA/ACK as the MAC layer, in which an ACK message is sentback for a unicast DATA

message, and no ACK message for broadcast DATA message. In our simulation, we did not enable

the RTS/CTS/DATA/ACK pattern in the 802.11 protocol, sincethe control messages will introduce

a large extra latency into the synchronization time and havea high collision rate on themselves. We

simulate a nodei’s local clock asCi = (1 + ρi) · CS , whereCS is the clock of the source nodeS

andρi is nodei’s clock drift rate. Eachρi is randomly generated according to a uniform distribution

between 0 and 10µs/s.

First, we deploy a single source node in the center of the simulation area, and assume

the unique source node is always trusted. For each sensor node, the number of malicious neighbor

nodest can be 0, 1, and 3, respectively. Whent = 0, our scheme degenerates into an existing time

89

synchronization scheme (e.g., [31], [63]), depending on the single-hop pair-wise clock synchroniza-

tion scheme adopted in our scheme. Next, we deploy 9 source nodes in the simulation area as Figure

5.4 shows. The number of malicious source nodes can be 0, 1, and 3, respectively.

� �
 ��
� � � � �

�

�

�

�

�

�

�

��

�
�
 !"

Figure 5.4: Topology of multiple source nodes in simulation

Our simulation adopts a simple single-hop pair-wise clock synchronization scheme: one-

way pair-wise time synchronization [67]. Specifically, with a single source nodeS, a nodej sends

its current global clock timeC(j)
S in the synchronization messages. After receiving this message,

nodei can calculate its source clock difference byδi,S = δi,j + δj,S = Cj − Ci + δj,S = C
(j)
S −

Ci. The advantage of this scheme is that a node can obtain the pair-wise clock difference from

a neighbor and the neighbor’s source clock difference in onesynchronization message, so it can

decrease the possibility of message collision and shorten the synchronization time. Note that if we

use TPSN [31] to obtain the single-hop pair-wise clock difference, we may get a higher precision on

the pair-wise clock difference than this simple approach. However, since a node needs to exchange

at least 2 messages with each parent node, the message collision will increase more than twice, the

synchronization time is longer, and the synchronization precision becomes worse.

5.4.1 Single Source Node

When deploying a single source node in the network, we study the performance of our

schemes when they can tolerate up totmalicious sensor nodes. We compare the level-based scheme

and the diffusion-based scheme on synchronization rate, communication overhead, synchronization

time, and synchronization precision. Each data point in theresult figures is an average of 10 simu-

lation runs with identical configuration but different randomly generated node deployments. The Y

90

axis error bars show confidence interval at 95% confidence.

0

5

10

15

20

25

30

35

40

50 100 150 200
Number of Nodes

C
o

n
ve

rg
en

ce
 T

im
e

(s
ec

o
n

d
)

t=0 t=1 t=3

Figure 5.5: Convergence time of level discovery phase

Convergence Time of Level Discovery The convergence time of the level discovery

phase is shown in Figure 5.5. Whenn = 50 andt = 3, the level hierarchy cannot include all the

sensor nodes. In our simulation, to reduce a node’s level in the level hierarchy, after obtaining its

level, each sensor node delays 1 second before it sends leveldiscovery messages to its neighbor

nodes.

Synchronization Rate Figure 5.6 shows the percentage of sensor nodes that can be

synchronized. Whent = 3 andn = 50, due to the relatively low density of the network, the level-

based scheme can synchronize only 40% nodes, while diffusion-based scheme can synchronize

60% nodes. When n increases to 150, both schemes can synchronizealmost all the sensor nodes.

The diffusion-based scheme can synchronize more sensor nodes than the level-based scheme in the

sparse sensor networks. Whent = 3 andn = 200, due to the increased message collision, several

sensor nodes may not be synchronized in the level-based scheme.

Communication overhead In both schemes, the neighbors of the source node require

only one synchronization message from the source node, and the nodes more than one hop away

from the source node need to receive at least2t+ 1 messages from neighbor nodes.

Figure 5.7 shows the number of synchronization message sentin one round of time syn-

chronization. One message can be retransmitted at most 4 times in our simulation. The diffusion-

based approach has a higher communication overhead than thelevel-based approach. The com-

munication overheads increase along with the number of the sensor nodes in both schemes. In the

91

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200
Number of Nodes

S
yn

ch
ro

n
iz

at
io

n
 R

at
e

lvl t=0 lvl t=1 lvl t=3 diff t=0 diff t=1 diff t=3

Figure 5.6: Synchronization rate using unicast

level-based scheme, the overhead also increases along witht, since nodes need to receive from more

parent nodes. In the diffusion-based scheme, whent is smaller, a node will send to more neighbor

nodes from whom it has not received the message. It may receive from a neighbor node before

it sends out the buffered message to the neighbor node, but itwill resume to send the message in

our simulation. Thus, in the diffusion-based scheme, the communication overhead decreases a little

whent increases.

10

100

1000

10000

100000

50 100 150 200
Number of Nodes

N
u

m
b

er
 o

f
S

yn
c

M
es

sa
g

es

lvl t=0 lvl t=1 lvl t=3 diff t=0 diff t=1 diff t=3

Figure 5.7: One round communication overhead using unicast

Synchronization Time Before measuring the synchronization precision, we first exam-

ine the synchronization time, which has a major effect on thesynchronization precision.

92

0

5

10

15

20

25

50 100 150 200
Number of Nodes

M
ax

 S
yn

c
T

im
e

(s
ec

o
n

d
)

lvl t=0 lvl t=1 lvl t=3 diff t=0 diff t=1 diff t=3

Figure 5.8: Maximum synchronization time using unicast

Figure 5.8 and 5.9 show the maximum and average synchronization times to finish one

round of global time synchronization. The synchronizationtime increases along witht in both

schemes. The level-based scheme can finish sooner than the diffusion-based scheme. The level-

based scheme can finish one round of synchronization in 4 seconds whent = 3; while in the

diffusion-based scheme, the maximum synchronization timeis near 16 seconds whent = 3.

0

1

2

3

4

5

6

7

50 100 150 200
Number of Nodes

A
vg

 S
yn

c
T

im
e

(s
ec

o
n

d
)

lvl t=0 lvl t=1 lvl t=3 diff t=0 diff t=1 diff t=3

Figure 5.9: Average synchronization time using unicast

Synchronization Precision Now we examine the synchronization precision of the pro-

posed schemes. To reduce the impact of the nondeterministicdelays caused by the MAC layer, we

follow [31] to use MAC layer timestamp. We modify the 802.11 MAC layer in ns2 to record the

exact timestamp when a message is transmitted or received physically.

93

Figure 5.10 and 5.11 show the maximum and average clock errors of all the nodes imme-

diately after synchronizing their local clocks. The level-based scheme can provide a much better

clock precision than the diffusion-based scheme. The majorreason is that the clock drift during the

synchronization time is greater in the diffusion-based scheme than that in the level-based scheme.

0.00E+00

2.00E-05

4.00E-05

6.00E-05

8.00E-05

1.00E-04

1.20E-04

50 100 150 200
Number of Nodes

M
ax

 S
yn

c
E

rr
o

r
(s

ec
o

n
d

)

lvl t=0 lvl t=1 lvl t=3 diff t=0 diff t=1 diff t=3

Figure 5.10: Maximum synchronization error using unicast

0.00E+00

2.00E-06

4.00E-06

6.00E-06

8.00E-06

1.00E-05

1.20E-05

1.40E-05

1.60E-05

1.80E-05

2.00E-05

50 100 150 200
Number of Nodes

A
vg

 S
yn

c
E

rr
o

r
(s

ec
o

n
d

)

lvl t=0 lvl t=1 lvl t=3 diff t=0 diff t=1 diff t=3

Figure 5.11: Average synchronization error using unicast

5.4.2 Multiple Source Nodes

We deploy 9 source nodes in the network, as Figure 5.4 shows. When up tos source nodes

may be compromised, a sensor node has to obtain source clock differences from2s+1 source nodes.

94

In our simulation, we fix the number of sensor nodes to 200, andbotht ands can take values from

0, 1, and 3.

Hop-count Threshold First, we need to decide the hop-count threshold to allow allthe

sensor nodes receive from2s + 1 source nodes. Whens = 0, all the source nodes are normal.

Since the multiple source nodes can guarantee that all the sensor nodes can directly receive from

at least one source node, the hop-count threshold is set to 1.When s = 1, each sensor node

needs to receive source clock differences from at least 3 source nodes. As Figure 5.12(a) shows,

the maximum distance for all the sensor nodes to receive fromthe nearest 3 source nodes isD =

15 ∗
√

5 = 33.54m. Whens = 3, each node needs to receive from 7 source nodes. Figure 5.12(b)

shows that the maximum distance for a sensor node to receive from the nearest 7 source nodes is

D = 30 ∗
√

5 = 67.08m. Table 5.2 shows the hop-count thresholds whenn = 200, calculated by

following Section 5.3.2.

#$%%&'()

*+ , - . /

#$01&23)

*4, - . 5

6 . 5 7 8 6 . 5 7 8

Figure 5.12: Maximum distance from 2s+1 source nodes

Table 5.2: Hop-count thresholds when n=200, S=9.

Scheme s=0 s=1, t=1 s=1, t=3 s=3, t=3
Level-based 1 2 3 6

Diffusion-based 1 2 3 5

In the level-based scenarios, the source nodes can build their level hierarchies at different

times to prevent the message collision caused by messages from other source nodes.

Synchronization Rate In all the scenarios, all the 200 sensor nodes can be synchronized.

Synchronization Time From our simulation results, whens = 0 and s = 1, all the

source nodes may initiate the synchronization process at the same time. Due to the small hop-

count thresholds, the message collision is under control. However, whens = 3, if all the source

95

0

50

100

150

200

250

(s=0) (s=1,t=1) (s=1,t=3) (s=3,t=3)

M
ax

 S
yn

c
T

im
e

(s
) Level

Diff

(a) Maximum Synchronization Time

0

0.0005

0.001

0.0015

0.002

(s=0) (s=1,t=1) (s=1,t=3) (s=3,t=3)

M
ax

 S
yn

c
E

rr
o

r
(s

) Level

Diff

(b) Maximum Synchronization Error

0

50000

100000

150000

200000

(s=0) (s=1,t=1) (s=1,t=3) (s=3,t=3)

N
u

m
b

er
 o

f
S

yn
c

M
es

sa
g

es

Level

Diff

(c) Communication Overhead

Figure 5.13: Experimental results with multiple source nodes

96

nodes synchronize at the same time, due to the high hop-countthresholds, there is a huge message

collision which makes it impossible to synchronize the sensor nodes. To reduce the collision, we

divide the 9 source nodes in to 5 groups, that is,{1, 8}, {2, 6}, {3, 7}, {4, 5} and{0}. The source

nodes in the same group can initiate synchronization at the same time, since they are relatively

far from each other and have less message collision. In our simulation, each group initiates the

synchronization process in an interval of 20 seconds in the level-based scheme, and an interval of

30 seconds in diffusion-based scheme. This arrangement will increase the synchronization time and

the synchronization error, but maximizes the synchronization rate. There may exist better ways to

arrange the order for source nodes to initiate the time synchronization, and we consider it as our

future work.

Figure 5.13(a) shows the maximum synchronization time in different scenarios. We can

see that the synchronization time increases along with the tand s. Whens = 0, the whole network

can be synchronized in one second, no matter the value oft, since all the sensor nodes can be

directly synchronized.

When s = 1 and t = 1, the synchronization time is around 16 seconds in the level-

based scheme, and around 57 seconds in the diffusion-based scheme. Whens = 1 and t = 3,

because a node far away from a source node needs to receive 7 clock differences before sending its

synchronization messages, the time increases to around 29 seconds in the level-based scheme, and

around 75 seconds in the diffusion-based scheme. Whens = 3 andt = 3, the level-based scheme

needs around 2.5 minutes to finish one round of synchronization, while the diffusion-based scheme

needs almost 4 minutes. In order to decrease the synchronization time, we may distributed more

source nodes into the network.

Synchronization Error Figure 5.13(b) shows the maximum synchronization error. When

s = 0, the maximum synchronization error is less than 10µs. Whens = 1 andt = 3, the maximum

synchronization error is less than 0.23 ms in the level-based scheme, and 0.6 ms in the diffusion-

based scheme. Whens = 3 and t = 3, the maximum synchronization error increases almost 3

times.

Communication Overhead Whens = 0, the message overheads in both schemes are

less than 400. The communication overhead in the level-based scheme is moderate for sensor nodes.

Whens = 3 andt = 3, in average, each sensor node sends nearly 100 messages in one round of

synchronization. The communication overhead of the diffusion-based scheme is much higher than

the level-based scheme. Whens = 1 and t = 1, each node has to send nearly 200 messages.

Whens = 3 andt = 3, each node sends around 850 messages. Considering the resource constraint

97

in sensor nodes, it makes the diffusion-based scheme inscalable to tolerate more malicious source

nodes.

5.5 Summary

In this chapter, we presented two secure and resilient global time synchronization schemes

for sensor networks. We adopted a model where all the sensor nodes synchronize their clocks to

a common source, which is assumed to be well synchronized to an external clock. We propose to

increase the performance by deploying multiple source nodes, and extend our schemes to tolerate

malicious source nodes.

When we developed these two schemes, we believed that the broadcast authentication is

not applicable in wireless sensor networks. Therefore, we chose to provide unicast authentication by

using the secret pair-wise key shared between two communicating nodes, and we can guarantee the

security of our schemes. However, because each node needs tosend one message to each neighbor

node in each round of time synchronization, the communication overhead is quite high, and it may

cause potential huge message collisions. Therefore, our schemes are difficult to be used in large

sensor networks.

In our consecutive research, we developed a secure and resilient global time synchroniza-

tion using broadcast authentication based on a novel use of theµTESLA broadcast authentication

protocol forlocal authenticated broadcast, resolving the conflict between the goal of achieving time

synchronization withµTESLA-based broadcast authentication and the fact thatµTESLA requires

loose time synchronization. In each round of global synchronization, each node only broadcasts one

synchronization message. We will discuss the detail in nextchapter.

98

Chapter 6

Secure and Resilient Global Time

Synchronization with Broadcast

Authentication

In this chapter, we describe the design ofTinySeRSync[94], a secure and resilient global

time synchronization using broadcast authentication. Theprotocol is based on a novel way to in-

tegrate broadcast authentication into time synchronization, which successfully provides authentica-

tion of the source, the content, and the timeliness of synchronization messages.

We implement TinySeRSync on MICAz motes running TinyOS and perform a thorough

evaluation through field experiments in a network of 60 MICAzmotes. The evaluation results

indicate that TinySeRSync is a practical system for secure and resilient time synchronization in

wireless sensor networks.

6.1 TinySeRSync: Secure and Resilient Global Time Synchronization

In this section, we propose a secure and resilient global time synchronization protocol,

TinySeRSync, which is integrated with local broadcast authentication. We adopt the same global

99

time synchronization model in Section 5.1. The source node broadcasts synchronization messages

periodically to adjust the clocks of all sensor nodes. The synchronization messages are propagated

throughout the network to reach nodes that cannot communicate with the source node directly.

The timely transmission of all these messages are authenticated. Moreover, each node obtains

synchronization information from multiple neighbor nodes, so that it can tolerate compromised

nodes to a certain extent.

6.1.1 Basic Approach

To deal with the ad hoc deployments of sensor networks and thelack of initial synchro-

nization among sensor nodes, TinySeRSync consists of twoasynchronousphases:Phase I–secure

single-hop pair-wise synchronization, andPhase II–secure and resilient global synchronization. In

Phase I, pairs of neighbor nodes exchange messages with eachother to obtain single-hop pair-wise

time synchronization. Phase I uses authenticated MAC layertimestamping and a two message ex-

change to ensure the authentication of the source, the content, and the timeliness of synchronization

messages. Nodes run Phase I periodically to compensate (continuous) clock drifts and maintain cer-

tain pair-wise synchronization precision, providing the foundation for global time synchronization

as well as theµTESLA-based local broadcast authentication in Phase II.

Phase II usesauthenticated local (re)broadcastto achieve global time synchronization,

starting with a broadcast synchronization message from thesource node. Phase II adaptsµTESLA

to ensure the timeliness and the authenticity of the local broadcast synchronization messages. To

be resilient against potential compromised nodes, each node estimates multiple candidates of the

global clock using synchronization messages received frommultiple neighbor nodes, and chooses

the median. Nodes that are synchronized to the source node further rebroadcast the synchronization

messages locally. This process continues until all the nodes are synchronized. Phase II also runs

periodically to maintain certain global time synchronization precision.

We would like to emphasize that the two phases areasynchronous. In other words, secure

single-hop pair-wise synchronization (Phase I) is executed by nodes individually and independently,

while secure and resilient global synchronization (Phase II) is controlled by the source node and

propagated throughout the network. The only requirement isthat a node finishes Phase I before

entering Phase II. Also note that both Phase I and Phase II areexecuted periodically. Though a node

that has not performed Phase I synchronization with its neighbor nodes cannot participate in a global

synchronization, it may join the next round of global synchronization once it finishes Phase I. Thus,

100

our approach supports incremental deployment of sensor nodes, which is an important property

required by many sensor network applications.

TinySeRSync has a critical difference from the schemes proposed in Chapter 5: it uses

authenticated local broadcastto propagate global synchronization messages, while the schemes in

Chapter 5 uses authenticated unicast that leads to substantial communication overhead as well as

message collisions. This difference represents a key step that enables practical secure and resilient

time synchronization in sensor networks.

The ability to authenticate local broadcast messages is thecornerstone of the proposed

protocol. In the following, we describe in detail how this isdone in TinySeRSync.

6.1.2 Authentication of Local Broadcast Synchronization Messages

As discussed earlier, the signaling messages for global time synchronization are broadcast

in nature, and must be transmitted in a timely and authenticated way. There are two general solutions

for authenticating broadcast messages in sensor networks:digital signatures andµTESLA [74, 76].

Though it is possible to verify digital signatures on sensorplatforms, as shown in [37], digital

signature operations are still multiple order of magnitudemore expensive than secret key based

solutions such asµTESLA. Using digital signatures for time synchronization may quickly exhaust

the battery power of sensor nodes. Moreover, it is also an attractive target of Denial of Service

(DoS) attacks: An attacker may broadcast synchronization messages with false digital signatures to

force sensor nodes to perform expensive signature verifications.

µTESLA [76] relies on symmetric cryptography, and thus does not suffer from the above

problems. However,µTESLA requires loose time synchronization between the broadcast sender

and the receivers. Considering the goal of having the sourcenode synchronize the clocks of all

the sensor nodes, there seems to be a conflict in usingµTESLA for authenticating broadcast time

synchronization messages.

We can indeed avoid the above conflict. We observe that two neighbor nodes may securely

perform single-hop pair-wise time synchronization using the techniques in Chapter 3. Consider an

arbitrary node A. Assume node A have synchronized with all its neighbor nodes so that node A and

any of its neighbor nodes know the clock difference between them. As a result, if node A needs

to broadcast a synchronization message to all its neighbor nodes, it may certainly useµTESLA

for broadcast authentication, since the “loose synchronization” requirement needed byµTESLA is

already satisfied. In other words, we only useµTESLA locally to avoid the above conflict.

101

Specifically, we adaptµTESLA for local broadcast authentication to protect the broad-

cast messages from a node to its neighbors, assuming the Phase I neighbor synchronization has

completed. In the following, we first give a brief introduction toµTESLA, and then discuss the

adaptation ofµTESLA in TinySeRSync.

Overview of µTESLA Protocol

An asymmetric mechanism such as public key cryptography is generally required for

broadcast authentication [74]. Otherwise, a malicious receiver can easily forge any message from

the sender, as discussed earlier.µTESLA introduces asymmetry by delaying the disclosure of sym-

metric keys [76]. A sender broadcasts a message with a MIC generated with a secret keyK, which

is disclosed after a certain period of time. When a receiver gets this message, if it can ensure that

the message was sent before the key was disclosed, the receiver buffers this message and authenti-

cates the message when it later receives the disclosed key. To continuously authenticate broadcast

messages,µTESLA divides the time period for broadcast into multiple intervals, assigning different

keys to different time intervals. All messages broadcast ina particular time interval are authenticated

with the key assigned to that time interval.

To authenticate the broadcast messages, a receiver first authenticates the disclosed keys.

µTESLA uses a one-way key chain for this purpose. The sender selects a random valueKn as the

last key in the key chain and repeatedly performs a (cryptographic) hash functionF to compute all

the other keys:Ki = F (Ki+1), 0 ≤ i ≤ n− 1, where the secret keyKi (except forK0) is assigned

to the i-th time interval. Because of the one-way property of the hash function, givenKj in the

key chain, anybody can compute all the previous keysKi, 0 ≤ i ≤ j, but nobody can compute

any of the later onesKi, j + 1 ≤ i ≤ n. Thus, with the knowledge of the initial keyK0, which

is called thecommitmentof the key chain, a receiver can authenticate any key in the key chain by

merely performing hash function operations. When a broadcast message is available in thei-th time

interval, the sender generates a MIC for this message with a key derived fromKi, broadcasts this

message along with its MIC, and discloses the keyKi−d for time intervalIi−d in the broadcast

message (whered is the disclosure lag of the authentication keys). Figure 6.1 illustrates the division

of the time line and the assignment of authentication keys inµTESLA.

Each key in the key chain will be disclosed after some delay. As a result, the attacker

can forge a broadcast message by using the disclosed key.µTESLA uses a security condition to

prevent such situations. When a receiver receives an incoming broadcast message in time interval

102

Time...I1 In-1 In

T1T0 T2 Tn-2 Tn-1 Tn

I2

KnKn-1K1K0 ...F F FFF
K2

Figure 6.1:µTESLA protocol

Ii, it checks the security conditionb(Tc + ∆ − T1)/Tintc < i + d − 1, whereTc is the local time

when the message is received,T1 is the start time of the time interval1, Tint is the duration of

each time interval, and∆ is the maximum clock difference between the sender and itself. If the

security condition is satisfied, i.e., the sender has not disclosed the keyKi yet, the receiver accepts

this message. Otherwise, the receiver simply drops it.

Short DelayedµTESLA: Adapting µTESLA for Global Time Synchronization

Distribution of µTESLA Parameters: In order to useµTESLA, the sender needs to transmit a

number of parameters to all the receivers before the actual broadcast messages. These include the

key chain ID, the key chain commitment, the duration of each time interval, and the starting time

of the first time interval. We can fix the duration of time intervals and the length of each key chain

as network wide parameters. However, the other parameters have to be communicated from each

node to its neighbors. To reduce communication cost, we piggy-back the transmission of these

µTESLA parameters with the single-hop pair-wise synchronization between neighbors. In other

words, each node sends the parameters of its ownµTESLA key chain to a neighbor node during

secure single-hop pair-wise synchronization. When one keychain is about to expire, each node

needs to communicate with each neighbor node again to transmit the parameters for the next key

chain.

Balancing Key Chain Size and Authentication Delay:A direct application ofµTESLA to au-

thenticate the local broadcast synchronization messages faces a risk.µTESLA is subject to DoS

attacks [75], in which an attacker overhearing a valid broadcast message may use the disclosed

key in the message to forge broadcast synchronization messages. A receiver has to buffer all such

(forged) messages claimed to be from some neighbor until it receives the disclosed key. As a result,

the receiver may not have enough memory to buffer synchronization messages from other neighbor

103

Mi Ki

TimeSender A

Receiver B
ti

r rR Rr rR R

Time

Figure 6.2: Short delayedµTESLA protocol

nodes. The immediate authentication mechanism proposed in[75] cannot be applied here, because

it requires that the sender know the next message to be transmitted before sending the current mes-

sage.

One possible way to mitigate the threat of DoS attacks in global synchronization is to

exploit the tight time synchronization established duringPhase I. Specifically, when usingµTESLA

for local broadcast authentication, we may use very short time intervals to limit the duration vulner-

able to DoS attacks. Because the neighbor nodes have been tightly synchronized with each other

during phase I, the broadcast sender can use very short time intervals and disclose an authentication

key right after the corresponding interval is over. When thetime interval is short enough, it does not

give enough time to an attacker to forge broadcast messages using the disclosed key it just learns

from the valid broadcast message. A short enough interval duration also offers authentication of the

timelinessof the synchronization messages; it disallows a replayed message to be transmitted in the

valid time interval, and thus enables receivers to detect and remove them.

However, this approach comes with a significant cost: To cover a certain period of time

(e.g., 30 minutes), the sender needs to generate a fairly long key chain due to the short time intervals,

and most of the keys will be wasted. Reducing the key chain length will force all the neighbor nodes

to exchange the key chain commitments frequently, leading to heavy communication overhead.

We propose to adaptµTESLA to address the above conflict. Specifically, we proposed

to use two different intervals in oneµTESLA instance, a short intervalr and a long intervalR.

The short intervals and the long intervals are interleaved,as shown in Figure 6.2. As in the orig-

inal µTESLA, each time interval is still associated with an authentication key, which is used to

authenticate messages sent in this time interval. Each nodebroadcasts a message authenticated with

µTESLA only during the short intervals, while broadcasting the disclosed key in the following long

interval (possibly multiple times to tolerate message losses).

Upon receiving a broadcast message, a receiver first checks the security condition using

the (MAC layer) message receipt time. Because each receiverand the sender have synchronized

104

tightly with each other, the receiver can easily transform the receipt time into the time point in the

sender’s clock, and verify if the corresponding authentication key has been disclosed when the re-

ceiver receives the message. Consider Figure 6.2. Suppose the receiver B receives a synchronization

messageMi from the sender A at its local timeti (taken in the MAC layer), and the start time of

A’s µTESLA instance isT0 in A’s clock. B may calculatei = b ti−T0+∆B,A

r+R c and checks the fol-

lowing security condition:ti − T0 + ∆B,A + δmax < i ∗ (R+ r) + r, where∆B,A is the pair-wise

clock difference between A and B, andδmax maximum synchronization error between two neighbor

nodes. B stores the message and the numberi only if this check is successful. Otherwise, B simply

drops the message. After nodeB obtains the disclosed keyKi, it verifiesF i−j(Ki) = Kj with a

previously received key or commitmentKj wherej < i. If the key is valid, B then usesKi to verify

the MIC included in the broadcast synchronization messageMi.

6.2 Analysis

6.2.1 Security Analysis

Phase I. Phase I provides authentication of the source and the content of synchronization mes-

sages. Moreover, Phase I uses a two-way message exchange to estimate both the clock difference

between direct neighbors and the transmission delay, and can detect attacks that attempt to mis-

lead time synchronization by introducing extra message delays. Thus, Phase I provides protection

of the source, the content, and the timeliness of single-hoppair-wise synchronization messages.

Specifically, Phase I effectively defeats external attacksthat attempt to mislead single-hop pair-wise

time synchronization, including forged and modified messages, pulse-delay attacks, and wormhole

attacks that introduce extra delays. Phase I protocol cannot handle DoS attacks that completely

jam the communication channel. Nevertheless, no existing protocol can survive such extreme DoS

attacks.

Phase II. Given the secure single-hop pair-wise synchronization protocol in Phase I, the remaining

threats to global time synchronization are two-fold. First, an external attacker may fake or replay

(local) broadcast messages used for global synchronization to mislead the regular nodes. To defend

against this threat, Phase II adaptsµTESLA to provide local broadcast authentication. The security

of this variation ofµTESLA follows directly from the original scheme [74]. Besides local broadcast

authentication, another benefit of usingµTESLA is the authentication of the timeliness of local

105

broadcast synchronization messages, since a delayed message will be automatically discarded due

to the violation of the security condition. Thus, similar toPhase I, by authenticating the source, the

content, and the timeliness of local broadcast synchronization messages, Phase II can successfully

defeat all the external attacks that are intended to misleadthe time synchronization.

Second, a compromised node may provide misleading synchronization information to

disrupt the global time synchronization. Thus, our global time synchronization protocol must be

resilient to compromised nodes. Since the source node is trusted, in Phase II, each direct neighbor

node of the source node can directly estimate the global clock securely. However, the other nodes

may receive false synchronization information from compromised nodes. The solution used by

Phase II is to have each node use the source clock differencesreceived from2t+ 1 neighbor nodes

to estimate2t + 1 candidate source clock differences, and select the median one as its own source

clock difference. It is easy to see that if every node has no more thant compromised neighbor nodes,

Phase II can successfully synchronize all the normal nodes as long as they have enough number of

neighbor nodes. Similar to Phase I, Phase II cannot handle DoS attacks that completely jam the

communication channel.

In conclusion, TinySeRSync provides a practical solution to provide secure and resilient

global time synchronization in wireless sensor networks. It can successfully defeat all non-DoS

external attacks against time synchronization, and is resilient to compromised nodes.

6.2.2 Performance Analysis

Synchronization Precision and Coverage. TinySeRSync uses predication-based MAC layer

timestamping in Phase I, avoiding many places that could introduce uncertainty during time syn-

chronization. In Phase II, TinySeRSync tries to estimate the global clock through the estimation of

source clock differences, and thus greatly reduces the impact generated by the propagation delays

of synchronization messages. Thus, TinySeRSync can provide high precision time synchronization.

Moreover, TinySeRSync employs flooding-based propagationof global synchronization messages;

this allows all the nodes that have enough number of neighbornodes to be synchronized.

Communication, Computation, and Storage Overheads.TinySeRSync uses message exchanges

between direct neighbor nodes for Phase I synchronization.All these message exchanges are local,

and do not introduce wide area interference. In Phase II, TinySeRSync adopts local broadcast for

the propagation of global synchronization messages, effectively harnessing the broadcast nature of

wireless communication. Thus, TinySeRSync is efficient in terms of communication.

106

TinySeRSync uses efficient symmetric cryptography for message authentication. In par-

ticular, it exploits the hardware cryptographic support provided by the CC2420 radio component.

Thus, TinySeRSync introduces very light computation overhead for cryptographic operations.

TinySeRSync does increase the storage overhead on sensor nodes due to the need to main-

tain cryptographic keys, buffer the local broadcast messages, and store the source clock differences

received from2t+ 1 neighbor nodes. A critical issue is the maintenance of theµTESLA key chain

required for authenticating outgoing synchronization messages. Our adaptation ofµTESLA greatly

reduces the number of keys in each key chain. In addition, we use another approach to further reduce

the memory requirement and the delay: After generating a keychain, each node only saves some

select keys calledkey anchors(e.g., 1 of every 10 keys), and also caches the keys before thenext

key anchor to be used (e.g., the first 10 keys). When aµTESLA key is required for authentication,

if the key is available in the cache, the node can directly useit. Otherwise, the node can regenerate

and fill the key cache using the next key anchor.

Incremental Deployment. As discussed earlier, TinySeRSync uses two asynchronous phases, both

of which are executed periodically. Thus, TinySeRSync works well with incremental deployment

of sensor nodes. The newly deployed nodes first obtain the pair-wise time differences and the

commitments of the key chains from its neighbor nodes in Phase I, and then join the Phase II global

time synchronization. Our experimental results in Section6.3 will show the performance when

there are incrementally deployed sensor nodes.

6.3 Experiment Results

Our implementation of TinySeRSync is targeted at MICAz motes [4]. However, our im-

plementation can be used with slight modification for other sensor platforms that also use CC2420

radio components, such as TelosB [7] and Tmote Sky [8]. MICAzhas an 8-bit micro-controller

ATMega128L[1], which has 128k Byte program memory and 4k Byte SRAM. As discussed earlier,

MICAz is equipped with the ChipCon CC2420 radio component [6], which works at 2.4 GHz ra-

dio frequency and provides up to 250 kbps data rate. CC2420 isan IEEE 802.15.4 compliant RF

transceiver that features hardware security support.

We performed a series of experiments in a network of 60 MICAz motes to evaluate the

performance of TinySeRSync in real deployment. We focused on the performance metrics in normal

situations, while relying on the analysis in Section 6.2 forthe security properties.

107

6.3.1 Configuration

Figure 6.3 shows the sensor network test-bed used in our experiments. The different node

shapes represent nodes deployed at different times during incremental deployment, which will be

explained in Section 6.3.3. The test-bed consists of 60 nodes, among which node 1 (with the solid

circle) is configured as the source node.

9: ;<

;;

:; == => ?@ A?

> :@ =? ?< ?B AA=

:< :B =A ?: ?9 A;?

:: :9 =; ?= ?> A@A

:= :> =@ ?? A< AB;

:? =< =B ?A A: A9@

:A =: =9 ?; A= A>B

;:

;=

;?

;A

;@

;B

;9

;>

@<

CDEFGH IDJH KLFMN FDEOJPJJ LN LDOPQ ODJH
CHGDOJ FDEOJPJJ LN LDOP Q ODJHCLOR IDJH

Figure 6.3: Deployment of network test-bed.

We use a number of parameters in our evaluation. Each node performs a secure single-hop

pair-wise synchronization with its neighbor nodes for every d1 = 4 seconds. During this synchro-

nization, the node informs its neighbor nodes itsµTESLA parameters. The source node starts a

global synchronization everyd2 seconds. In our experiments, we used2 = 5 or 10 seconds. The

degree of tolerance (against compromised neighbor nodes) is represented ast, as used throughout

this dissertation. In our experiments, we uset = 0, 1, 2, 3, 4 to examine the various performance

metrics.

We use a sink node to help collecting data from each sensor node. Periodically, the sink

node broadcasts an anchor message with the highest power to all the nodes. Upon receiving this

message, each node marks the receiving time and converts it to the global time using its source

108

Table 6.1: Code size of TinySeRSync on MICAz motes

Memory Size (bytes)

RAM 1961
ROM 24814

clock difference. The sink node then queries each node individually to get the receiving time (in the

estimated global clock) along with other auxiliary information. This allows us to discover the syn-

chronization error on each individual sensor node, the synchronization rate, as well as the number

of synchronization levels each node has to go through.

Let us first look at the code size of TinySeRSync on TinyOS [41]before presenting the

performance results. The code size is related to the maximumnumber of neighbor nodes each

node may have. For each neighbor node, a node will spend 46 bytes to save the pair-wise key,

current key in key chain, and clock differences, etc. In our experiments, each node saves 10 keys

for a key chain with 100 keys. Each node reserves a buffer to store at most 6 unauthenticated

global synchronization messages, which increase the size of RAM. Table 6.1 shows the code size

of TinySeRSync when each node may have at most 8 neighbor nodes. The RAM size will increase

to 3137 bytes to accommodate 36 neighbor nodes.

6.3.2 Performance in Static Deployment

Let us first look at the performance of TinySeRSync in static deployments. In our experi-

ments, we use the following metrics to evaluate the performance and the overhead of TinySeRSync:

the average and the maximum synchronization errors, the synchronization rate (i.e., the percentage

of nodes that can be synchronized), the synchronization level (i.e., the maximum number of hops

that global synchronization messages have to go through before a sensor node can be synchronized.

Average and Maximum Synchronization Error: Figure 6.4(a) shows the maximum and the

average synchronization error with different global synchronization intervals and different degrees

of tolerance against compromised neighbor nodes. In all thecases, the maximum synchronization

error is below 14 ticks (121.52µs), and the average synchronization error is below 6 ticks (52.08

µs). Figure 6.4(a) also indicates that as the global synchronization interval increases, the maximum

and the average synchronization errors both increase.

Synchronization Rate: Figure 6.4(b) shows the synchronization rate (i.e., the percentage of nodes

that can be synchronized by TinySeRSync) after one, two, andthree rounds of global synchro-

109

0

2

4

6

8

10

12

14

16

0 1 2 3 4
Tolerance (t)

S
yn

ch
ro

n
iz

at
io

n
 E

rr
o

r
(t

ic
k)

Avg 5s Avg 10s

Max 5s Max 10s

(a) Maximum and average synchronization error

60

65

70

75

80

85

90

95

100

0 1 2 3 4
Tolerance (t)

P
er

ce
n

ta
g

e

One Round

Two Rounds

Three Round

(b) Synchronization rate

Figure 6.4: Synchronization error and synchronization rate using broadcast

nization. When the tolerance against compromised neighbornodes increases, as we expected, the

synchronization rate decreases. However, after three rounds of global synchronization, even in the

worst case, about 95% of the nodes can be synchronized to the source node.

Synchronization Level: Figure 6.5(a) shows the maximum and the average number of hops the

global synchronization messages have to traverse before all the nodes are synchronized. In our

test-bed, in all cases, the average synchronization level is around 3. An interesting issue is that

110

0

1

2

3

4

5

6

7

8

9

10

11

12

0 1 2 3 4
Tolerance (t)

L
ev

el
s

Average Level

Maximum Level

(a) Maximum and average synchronization level

10440

9720

9200

9400

9600

9800

10000

10200

10400

10600

5 10
Global synchronization interval (seconds)

N
u

m
b

er
 o

f
m

es
sa

g
es

(b) Communication overhead (# messages each node sends per hour)

Figure 6.5: Synchronization level and communication overhead using broadcast

the maximum synchronization level initially decreases as the tolerancet increases, but then goes

up ast is greater than 2. This is because whent is very small (i.e.,t = 0, 1), a node can broad-

cast the synchronization message almost immediately afterit is synchronized. The synchronization

triggered by these fast nodes may be propagated to many nodesthat have not been synchronized.

However, whent is large enough, synchronizing a node with increasedt requires receiving synchro-

nization messages from more neighbor nodes, thus resultingin an increasing trend for maximum

111

synchronization levels.

Communication Overhead: We measure the communication overhead by assessing the number of

messages each node has to transmit per time unit. For each neighbor node, a node sends one message

to obtain the pair-wise time difference. In one round of global time synchronization, each node at

most broadcasts one synchronization message and one key disclosure message. Suppose each node

hasn neighbor nodes, the pair-wise synchronization interval isd1, and the global synchronization

interval isd2. In a given long time intervalT , each node sends at mostn · T
d1

+ 2T
d2

messages.

Figure 6.5(b) shows the communication overhead per hour fora configuration where each node has

10 neighbor nodes, the pair-wise time synchronization interval is 4 seconds, and the global time

synchronization interval is 10 seconds.

6.3.3 Incremental Deployment

We evaluated the performance of TinySeRSync when there wereincremental deploy-

ments. Consider Figure 6.3. At the beginning of the experiment, we deployed the 49 nodes marked

as circles. We then added 5 new nodes into the network about 10minutes later, and added another

6 new nodes about 1 minute later. In this experiment, we set the global synchronization interval

as 10s. Figure 6.6 shows the history of the average synchronization error and the coverage in this

experiment, when t=0, 2, and 4. As shown in the figure, when thenew nodes were just added into

the network, they could not be synchronized immediately, and the average synchronization error

was large and the synchronization rate dropped to around 90%. However, after a few rounds of

global synchronization, all these new nodes were correctlysynchronized, resulting in a low average

synchronization error and 100% synchronization coverage.

6.4 Summary

In this chapter, we develop a secure and resilient time synchronization protocol called

TinySeRSyncfor wireless sensor networks, targeting common sensor platforms such as MICAz and

TelosB running TinyOS [41]. Our protocol offers a novel way to integrate (broadcast) authentication

into time synchronization, which successfully provides authentication of the source, the content, and

the timeliness of synchronization messages. Our novel use of µTESLA in secure global time syn-

chronization successfully resolved the conflict between the goal of achieving time synchronization

112

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

0:09:00

0:09:10

0:09:20

0:09:30

0:09:40

0:09:50

0:10:00

0:10:10

0:10:20

0:10:30

0:10:40

0:10:50

0:11:00

0:11:10

0:11:20

0:11:30

0:11:40

0:11:50

0:12:00
time (hh:mm:ss)

m
ic

ro
se

co
n

d
s

0

10

20

30

40

50

60

70

80

90

100

p
er

ce
n

ta
g

e

Avg Sync Error
Sync Rate

(a) t=0

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

0:09:00

0:09:10

0:09:20

0:09:30

0:09:40

0:09:50

0:10:00

0:10:10

0:10:20

0:10:30

0:10:40

0:10:50

0:11:00

0:11:10

0:11:20

0:11:30

0:11:40

0:11:50

0:12:00
time (hh:mm:ss)

m
ic

ro
se

co
n

d
s

0

10

20

30

40

50

60

70

80

90

100

p
er

ce
n

ta
g

e

Avg Sync Error

Sync Rate

(b) t=2

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

0:09:00

0:09:10

0:09:20

0:09:30

0:09:40

0:09:50

0:10:00

0:10:10

0:10:20

0:10:30

0:10:40

0:10:50

0:11:00

0:11:10

0:11:20

0:11:30

0:11:40

0:11:50

0:12:00

time (hh:mm:ss)

m
ic

ro
se

co
n

d
s

0

10

20

30

40

50

60

70

80

90

100
p

er
ce

n
ta

g
e

Avg Sync Error

Sync Rate

(c) t=4

Figure 6.6: Average synchronization error (left Y-axis) and coverage (right Y-axis) during incre-
mental deployment

113

and the fact thatµTESLA requires loose time synchronization. The resulting protocol is secure

against external attacks and resilient against compromised nodes.

We provide an implementation of the proposed techniques on TinyOS and a thorough

evaluation through field experiments in a network of 60 MICAzmotes. The evaluation results

indicate that TinySeRSync is a practical system for secure and resilient global time synchronization

in wireless sensor networks.

114

Chapter 7

Conclusions

This dissertation contains a suite of techniques to achievesecure time synchronization

between two neighbor nodes, among a group of sensor nodes, and in a whole sensor network,

respectively.

• Secure Single-hop Pair-wise Time Synchronization:We develop a secure single-hop pair-

wise time synchronization protocol by using ahardware-assisted, authenticated MAC layer

timestampingtechnique to handle high data rate such as those produced by MICAz and

TelosB motes. With the hardware security support in radio components, we implement the

proposed technique on MICAz motes [20] running TinyOS [41].The secure single-hop pair-

wise time synchronization serves as the building block to achieve the secure and resilient

global time synchronization.

• Fault-tolerant Cluster-Wise Time Synchronization:This technique provides a novel fault-

tolerant cluster-wise clock synchronization for a clusterof sensor nodes, where the nodes in

each cluster can communicate with each other directly through broadcast. In each round of

time synchronization, only one node serves as thesynchronizer, and only one authenticated

synchronization message is broadcast. Thus, our scheme canavoid the message collision

problem. The proposed scheme exploits a recently proposed local broadcast authentication

technique for sensor networks, which is purely based on symmetric cryptography [104], thus

avoiding the costly digital signature for message authentication. Our analysis shows that the

proposed scheme guarantees an upper bound on the clock difference between nonfaulty nodes

115

when no more than1/3 of the nodes are compromised and collude with each other. We pro-

pose a secure distributed cluster formation algorithm to divide the sensor networks into mutual

disjoint cliques, which are required by the fault-tolerantcluster-wise time synchronization.

• Secure and Resilient Global Time Synchronization:This research resulted in two secure and

resilient time synchronization schemes: level-based and diffusion-based time synchroniza-

tion. The level-based scheme builds a level hierarchy in thewireless sensor network, and

then synchronizes the whole network level by level. The diffusion-based scheme allows each

node to diffuse its clock to its neighbor nodes after it has synchronized to the source node. To

improve the performance and the resilience of our techniques, we propose to deploy multiple

source nodes in the network.

We first propose to use authenticated unicast messages to distribute the synchronization infor-

mation by using secure key shared between each two neighbor nodes. However, due to high

communication overhead and huge message collisions, it canhardly be used in large sensor

networks. To solve this problem, we develop a secure and resilient global time synchroniza-

tion, TinySeRSync, based on a novel use of theµTESLA broadcast authentication protocol

for local authenticated broadcast, resolving the conflict between the goal of achieving time

synchronization withµTESLA-based broadcast authentication and the fact thatµTESLA re-

quires loose time synchronization. We implement TinySeRSync on TinyOS and a thorough

evaluation through field experiments in a network of 60 MICAzmotes. The evaluation results

indicate that TinySeRSync is a practical system for secure and resilient global time synchro-

nization in wireless sensor networks.

In my future work, I plan to investigate additional techniques that can improve the syn-

chronization precision in our time synchronization techniques. For example, we can adapt the linear

regression technique proposed in [63] to compensate the constant clock drifts. Because linear re-

gression technique requires each node store a time vector inits RAM for each neighbor node, we

must allocate the RAM memory carefully. TinySeRSync is the first secure and resilient global time

synchronization implemented in real wireless sensor networks. We will look into the integration of

TinySeRSync in sensor network applications, such as targettracking, data fusion, and power saving.

116

Bibliography

[1] ATmega128(L) Complete Technical Documents.http://www.atmel.com/dyn/

resources/prod documents/doc2467.pdf.

[2] dfmax.c.ftp://dimacs.rutgers.edu/pub/challenge/graph/solvers/.

[3] GPS time transfer.http://tf.nist.gov/timefreq/time/gps.htm.

[4] Micaz: Wireless measurement system. http://www.xbow.com/Products/

Product pdf files/Wireless pdf/MICAz Datasheet.pdf.

[5] The network simulator – ns-2.http://www.isi.edu/nsnam/ns/.

[6] SmartRF CC2420 Datasheet (rev 1.3), 2005-10-03.http://www.chipcon.com/

files/CC2420 Data Sheet 1 3.pdf.

[7] Telosb mote platform.http://www.xbow.com/Products/Product pdf files/

Wireless pdf/TelosB Datasheet.pdf.

[8] Tmote sky: Reliable low-power wireless sensor networking eases development and deploy-

ment.http://www.moteiv.com/products-tmotesky.php.

[9] IEEE standard 802.11. wireless lan medium access control (MAC) and physical layer (PHY)

specification, 1999.

[10] A.D. Amis, R. Prakash, T.H.P. Vuong, and D. T. Huynh. Max-Min D-cluster formation in

wireless ad hoc networks. InProceedings of IEEE INFOCOM, March 1999.

[11] D.J. Baker, A. Ephremides, and J.A. Flynn. The design and simulation of a mobile radio

networkwith distributed control.IEEE Journal on Selected Areas in Communications, SAC-

2(1):226–237, 1984.

117

[12] S. Bandyopadhyay and E. Coyle. An energy efficient hierarchical clustering algorithm for

wireless sensor networks. InProceedings of IEEE INFOCOM, 2003.

[13] B. Barak, S. Halevi, A. Herzberg, and D. Naor. Clock synchronization with faults and re-

coveries. InProceedings of the 19th Annual ACM Symposium on Principles of Distributed

Computing, pages 133–142, 2000.

[14] S. Basagni. Distributed clustering for ad hoc networks. In Proceedings of the 1999 Interna-

tional Symposium on Parallel Architectures, Algorithms and Networks (ISPAN ’99), 1999.

[15] K. Chakrabarty, S. S. Iyengar, H. Qi, and E. Cho. Grid coverage for surveillance and target

location in distributed sensor networks.IEEE Transactions on Computers, 51:1448–1453,

2002.

[16] H. Chan and A. Perrig. ACE: An emergent algorithm for highly uniform cluster formation.

In European Workshop on Wireless Sensor Networks (EWSN 2004), Jan 2004.

[17] H. Chan, A. Perrig, and D. Song. Random key predistribution schemes for sensor networks.

In IEEE Symposium on Research in Security and Privacy, pages 197–213, 2003.

[18] M. Chatterjee, S.K. Das, and D. Turgut. WCA: A weighted clustering algorithm for mobile

ad hoc networks.Journal of Cluster Computing (Special Issue on Mobile Ad hocNetworks),

5(2):193–204, 2002.

[19] F. Cristian. Probabilistic clock synchronization.Distributed Computing, 3(3):146–158, 1989.

[20] Crossbow Technology Inc. Wireless sensor networks.http://www.xbow.com/

Products/Wireless Sensor Networks.htm.

[21] H. Dai and R. Han. Tsync: a lightweight bidirectional time synchronization service for wire-

less sensor networks.ACM SIGMOBILE Mobile Computing and Communications Review,

8(1):125–139, 2004.

[22] D. Dolev, J. Y. Halpern, B. Simons, and R. Strong. Dynamic fault-tolerant clock synchro-

nization. Journal of the ACM, 42(1):143–185, 1995.

[23] D. Dolev and H.R. Strong. Authenticated algorithms forbyzantine agreement.SIAM Journal

of Computing, 12(4):656–665, 1983.

118

[24] J. R. Douceur. The sybil attack. InFirst International Workshop on Peer-to-Peer Systems

(IPTPS’02), Mar 2002.

[25] W. Du, J. Deng, Y. S. Han, and P. Varshney. A pairwise key pre-distribution scheme for

wireless sensor networks. InProceedings of 10th ACM Conference on Computer and Com-

munications Security (CCS’03), pages 42–51, October 2003.

[26] J. Elson, L. Girod, and D. Estrin. Fine-grained networktime synchronization using reference

broadcasts.ACM SIGOPS Operating Systems Review, 36:147–163, 2002.

[27] J. Elson and K. R̈omer. Wireless sensor networks: A new regime for time synchronization. In

Proceedings of the First Workshop on Hot Topics in Networks (HotNets-I), pages 149–154,

October 2002.

[28] A. Galleni and D. Powell. Consensus and membership in synchronous and asynchronous

distributed systems. Technical Report 96104, LAAS, April 1996.

[29] S. Ganeriwal, S. Capkun, C. Han, and M. B. Srivastava. Secure time synchronization service

for sensor networks. InProceedings of 2005 ACM Workshop on Wireless Security (WiSe

2005), pages 97–106, September 2005.

[30] S. Ganeriwal, D. Ganesan, H. Shim, V. Tsiatsis, and M. B.Srivastava. Estimating clock un-

certainty for efficient duty-cycling in sensor networks. InProceedings of the 3rd international

conference on Embedded networked sensor systems (SenSys), pages 130–141, 2005.

[31] S. Ganeriwal, R. Kumar, and M. B. Srivastava. Timing-sync protocol for sensor networks. In

Proceedings of the First International Conference on Embedded Networked Sensor Systems

(SenSys), pages 138–149, 2003.

[32] M. R. Garey and D.S. Johnson.Computers and Intractability: A Guide to the Theory of

NP-Completeness. W.H. Freeman And Company, 1979.

[33] M. Gerla and J. T. Tsai. Multicluster, mobile, multimedia radio network.Wireless Networks,

1(3):255–265, 1995.

[34] L. Gong, P. Lincoln, and J. Rushby. Byzantine agreementwith authentication: Observations

and applications in tolerating hybrid and link faults. InDependable Computing for Critical

Applications–5, volume 10 ofDependable Computing and Fault Tolerant Systems, pages

139–157, Champaign, IL, sep 1995.

119

[35] J. Greunen and J. Rabaey. Lightweight time synchronization for sensor networks. InPro-

ceedings of the Second ACM International Workshop on Wireless Sensor Networks and Ap-

plications (WSNA), pages 11–19, September 2003.

[36] N. Gura, A. Patel, and A. Wander. Comparing elliptic curve cryptography and RSA on 8-bit

CPUs. InProceedings of the 2004 Workshop on Cryptographic Hardwareand Embedded

Systems (CHES 2004), pages 119–132, August 2004.

[37] N. Gura, A. Patel, A. Wander, H. Eberle, and S.C. Shantz.Comparing elliptic curve cryp-

tography and RSA on 8-bit CPUs. InProceedings of Workshop on Cryptographic Hardware

and Embedded Systems (CHES 2004), August 2004.

[38] R. Gusella and S. Zatti. The accuracy of the clock synchronization achieved by tempo in

berkeley unix 4.3bsd.IEEE Transactions on Software Engineering, 15(7):847–853, 1989.

[39] J.Y. Halpern, B.B. Simons, H.R. Strong, and D. Dolev. Fault-tolerant clock synchronization.

In Proceedings of Third Annual ACM Symposium on Principles of Distributed Computing,

pages 89–102, 1984.

[40] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient communication

protocol for wireless microsensor networks. InProceedings of the Hawaii International

Conference on System Sciences HICSS, 2000.

[41] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D.E. Culler, andK. S. J. Pister. System architecture

directions for networked sensors. InArchitectural Support for Programming Languages and

Operating Systems, pages 93–104, 2000.

[42] A. Hu and S. D. Servetto. Asymptotically optimal time synchronization in dense sensor

networks. InProceedings of the Second ACM International Workshop on Wireless Sensor

Networks and Applications (WSNA), pages 1–10, September 2003.

[43] Y. Hu, A. Perrig, and D. B. Johnson. Wormhole detection in wireless ad hoc networks.

Technical Report TR01-384, Department of Computer Science, Rice University, Dec 2001.

[44] Y.C. Hu, A. Perrig, and D.B. Johnson. Packet leashes: A defense against wormhole attacks

in wireless ad hoc networks. InProceedings of INFOCOM 2003, April 2003.

120

[45] L. Huang and T. H. Lai. On the scalability of ieee 802.11 ad hoc networks. InProceedings of

the 3th ACM international symposium on Mobile ad hoc networking and computing MobiHoc

’02, 2002.

[46] IEEE Computer Society. IEEE 802.15.4: Ieee standard for information technology –

telecommunications and information exchange between systems local and metropolitan

area networks – specific requirements part 15.4: Wireless medium access control (MAC)

and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-

WPANs). http://standards.ieee.org/getieee802/download/802.15.

4-2003.pdf, October 2003.

[47] H. Ishii and H Kakugawan. A self-stabilizing algorithmfor finding cliques in distributed

systems. In21st IEEE Symposium on Reliable Distributed Systems (SRDS’02), Oct 2002.

[48] L. Jia, R. Rajaraman, and T. Suel. An efficient distributed algorithm for constructing small

dominating sets. InProceedings of the Annual ACM Symposium on Principles of Distributed

Computing, pages 33–42, August 2001.

[49] C. Karlof, N. Sastry, and D. Wagner. TinySec: A link layer security architecture for wire-

less sensor networks. InProceedings of the 2nd ACM Conference on Embedded Networked

Sensor Systems (SensSys 2004), November 2004.

[50] C.M. Krishna, K.G. Shin, and R.W. Butler. Ensuring fault tolerance of phase-locked clocks.

IEEE Transactions on Computers, 34(8):752–756, 1985.

[51] P. Krishna, N. H. Vaidya, M. Chatterjee, and D. K. Pradhan. A cluster-based approach for

routing in dynamic networks.SIGCOMM Computer Communication Review, 27(2), 1997.

[52] L. Lamport. Time, clocks, and the ordering of events in adistributed system.Communica-

tions of the ACM, 21(7):558–565, 1978.

[53] L. Lamport and P.M. Melliar-Smith. Synchronizing clocks in the presence of faults.Journal

of the ACM, 32(1):52–78, 1985.

[54] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem.ACM Transactions

on Programming Languages and Systems (TOPLAS), 4(3):382–401, 1982.

[55] Q. Li and D. Rus. Global clock synchronization in sensornetworks. InProceedings of IEEE

INFOCOM 2004, pages 214–226, March 2004.

121

[56] D. Liu and P. Ning. Establishing pairwise keys in distributed sensor networks. InProceedings

of 10th ACM Conference on Computer and Communications Security (CCS’03), pages 52–

61, October 2003.

[57] D. Liu, P. Ning, and R. Li. TinyKeyMan: Key management for sensor networks.http:

//discovery.csc.ncsu.edu/software/TinyKeyMan/.

[58] J. Lundelius and N. Lynch. A new fault-tolerant algorithm for clock synchronization. In

Proceedings of the Third Annual ACM Symposium on Principlesof Distributed Computing,

pages 75–88, 1984.

[59] J. Lundelius-Welch and N. Lynch. A new fault-tolerant algorithm for clock synchronization.

Information and Computation, 77(1):1–36, 1988.

[60] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG:a tiny aggregation service

for ad-hoc sensor networks. InProceedings of the 5th Annual Symposium on Operating

Systems Design and Implementation (OSDI), December 2002.

[61] D. J. Malan, M. Welsh, and M. D. Smith. A public-key infrastructure for key distribution in

tinyos based on elliptic curve cryptography. InProceedings of IEEE Conference on Sensor

and Ad hoc Communications and Networks SECON, October 2004.

[62] M. Manzo, T. Roosta, and S. Sastry. Time synchronization attacks in sensor networks. In

Proceedings of the 3rd ACM workshop on Security of ad hoc and sensor networks, pages

107–116, 2005.

[63] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The floodingtime synchronization protocol.

In Proceedings of the Second ACM Conference on Embedded Networked Sensor Systems

(SenSys’04), pages 39–49, Nov 2004.

[64] L. Meier, P. Blum, and L. Thiele. Internal synchronization of drift-constraint clocks in ad-hoc

sensor networks. InProceedings of the 5th ACM international symposium on Mobile ad hoc

networking and computing MobiHoc ’04, 2004.

[65] D.L. Mills. Internet time synchronization: The network time protocol. IEEE Transactions

on Communications, 39(10):1482–1493, 1991.

122

[66] S. Mishra and A. Nasipuri. An adaptive low power reservation based mac protocol for wire-

less sensor. InProceedings of the IEEE International Conference on Performance Computing

and Communications, pages 713–736, 2004.

[67] M. Mock, R. Frings, E. Nett, and S. Trikaliotis. Clock synchronization for wireless local

area networks. InProceedings of the 12th Euromicro Conference on Real-Time Systems

(Euromicro-RTS 2000), June 2000.

[68] A. Nasipuri and K. Li. A directionality based location discovery scheme for wireless sensor

networks. InProceedings of ACM WSNA’02, pages 105–111, September 2002.

[69] J. Newsome, R. Shi, D. Song, and A. Perrig. The sybil attack in sensor networks: Analysis

and defenses. InProceedings of IEEE International Conference on Information Processing

in Sensor Networks (IPSN 2004), April 2004.

[70] D. Niculescu and B. Nath. Ad hoc positioning system (APS) using AoA. InProceedings of

IEEE INFOCOM 2003, pages 1734–1743, April 2003.

[71] A. Olson and K.G. Shin. Fault-tolerant clock synchronization in large multicomputer sys-

tems.IEEE Transactions on Parallel and Distributed Systems, 5(9):912–923, 1994.

[72] S. PalChaudhuri, A.K. Saha, and D.B. Johnson. Adaptiveclock synchronization in sensor

networks. InInformation Processing in Sensor Networks (IPSN), pages 340–348, April 2004.

[73] B. Parno, A. Perrig, and V. Gligor. Distributed detection of node replication attacks in sensor

networks. InIEEE Symposium on Security and Privacy, May 2005.

[74] A. Perrig, R. Canetti, D. Song, and D. Tygar. Efficient authentication and signing of multicast

streams over lossy channels. InProceedings of the 2000 IEEE Symposium on Security and

Privacy, May 2000.

[75] A. Perrig, R. Canetti, D. Song, and D. Tygar. Efficient and secure source authentication for

multicast. InProceedings of Network and Distributed System Security Symposium, February

2001.

[76] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and D. Tygar. SPINS: Security protocols for

sensor networks. InProceedings of Seventh Annual International Conference onMobile

Computing and Networks, pages 521–534, July 2001.

123

[77] P. Ramanathan, D.D. Kandlur, and K.G. Shin. Hardware-assisted software clock synchro-

nization for homogeneous distributed systems.IEEE Transactions on Computers, 39(4):514–

524, 1990.

[78] P. Ramanathan, K.G. Shin, and R.W. Butler. Fault-tolerant clock synchronization in distrib-

uted systems.IEEE Computer, 23(10):33–42, 1990.

[79] K. Römer. Time synchronization in ad hoc networks. InProceedings of the 2nd ACM inter-

national symposium on Mobile ad hoc networking & computing, pages 173–182, 2001.

[80] M. K. Reiter. A secure group membership protocol.IEEE Transactions on Software Engi-

neering, 22(1), 1996.

[81] K. Römer, P. Blum, and L. Meier. Time synchronization and calibration in wireless sensor

networks. In Ivan Stojmenovic, editor,Wireless Sensor Networks. John Wiley Sons, 2005.

To appear.

[82] A. Savvides, C. Han, and M. Srivastava. Dynamic fine-grained localization in ad-hoc net-

works of sensors. InProceedings of ACM MobiCom ’01, pages 166–179, July 2001.

[83] A. Savvides, H. Park, and M. Srivastava. The bits and flops of the n-hop multilateration

primitive for node localization problems. InProceedings of ACM WSNA ’02, pages 112–

121, September 2002.

[84] F.B. Schneider. A paradigm for reliable clock synchronization. Technical Report TR 86–735,

Cornell University, Department of Computer Science, 1986.

[85] F.B. Schneider. Understanding protocols for Byzantine clock synchronization. Technical

Report TR 87–859, Cornell University, Department of Computer Science, 1987.

[86] K.G. Shin and P. Ramanathan. Clock synchronization of alarge multiprocessor system in the

presence of malicious faults.IEEE Transactions on Computers, 36(1):2–12, 1987.

[87] M.L. Sichitiu and C. Veerarittiphan. Simple, accuratetime synchronization for wireless sen-

sor networks. InIEEE Wireless Communications and Networking Conference WCNC03,

2003.

124

[88] H. Song, S. Zhu, and G. Cao. Attack-resilient time synchronization for wireless sensor net-

works. In Proceedings of IEEE International Conference on Mobile Ad-hoc and Sensor

Systems (MASS’05), 2005.

[89] T. K. Srikanth and S. Toueg. Optimal clock synchronization. Journal of the ACM, 34(3):626–

645, 1987.

[90] W. Su and I. F. Akyildiz. Time-diffusion synchronization protocol for wireless sensor net-

works. IEEE/ACM Transactions on Networking (TON), 13(2), 2005.

[91] K. Sun, , P. Peng, P. Ning, and C. Wang. Secure distributed cluster formation in wireless sen-

sor networks. InProceedings of the 22nd Annual Computer Security Applications Conference

(ACSAC 22), December 2006.

[92] K. Sun, P. Ning, and C. Wang. Fault-tolerant cluster-wise clock synchronization for wire-

less sensor networks.IEEE Transactions on Dependable and Secure Computing (TDSC),

2(3):177–189, July–September 2005.

[93] K. Sun, P. Ning, and C. Wang. Secure and resilient clock synchronization in wireless sensor

networks.IEEE Journal on Selected Areas in Communications, 24(2), February 2006.

[94] K. Sun, P. Ning, C. Wang, A. liu, and Y. Zhou. Tinysersync: Secure and resilient time

synchronization in wireless sensor networks. InProceedings of 13th ACM Conference on

Computer and Communications Security (CCS’06), pages 42–51, November 2006.

[95] D. Tian and N. D. Georganas. A coverage-preserving nodescheduling scheme for large

wireless sensor networks. InFirst ACM International Workshop on Wireless Sensor Networks

and Applications WSNA02, pages 32–41, September 2002.

[96] N. Vasanthavada and P.N. Marinos. Synchronization of fault-tolerant clocks in the presence

of malicious failures.IEEE Transactions on Computers, 37(4):440–448, 1988.

[97] R. Watro, D. Kong, S. Cuti, C. Gardiner, C. Lynn, and P. Kruus. TinyPK: Securing sensor

networks with public key technology. InProceedings of the 2nd ACM Workshop on Security

of Ad Hoc and Sensor Networks (SASN ’04), October 2004.

[98] B. H. Wellenhoff, H. Lichtenegger, and J. Collins.Global Positions System: Theory and

Practice. Springer Verlag, 4th edition, 1997.

125

[99] Y. Xu, J. Heidemann, and D. Estrin. Geography-informedenergy conservation for ad hoc

routing. InMobiCom ’01: Proceedings of the 7th annual international conference on Mobile

computing and networking, 2001.

[100] W. Ye, J. Heidemann, and D. Estrin. An energy-efficientmac protocol for wireless sensor

networks. InProceedings of IEEE INFOCOM 2002, June 2002.

[101] C.D. Young and J. A. Stevens. Clique activation multiple access (cama): A distributed heuris-

tic for building wireless datagram networks. InProceedings of Military Communications

Conference MILCOM, 1998.

[102] O. Younis and S. Fahmy. Distributed clustering in ad-hoc sensor networks: A hybrid, energy-

efficient approach. InProceedings of IEEE INFOCOM, March 2004.

[103] J. Zhao, R. Govindan, and D. Estrin. Computing aggregates for monitoring wireless sensor

networks. InProceedings of the 1st International Workshop on Sensor Network Protocols

and Applications, May 2003.

[104] S. Zhu, S. Setia, and S. Jajodia. LEAP: Efficient security mechanisms for large-scale distrib-

uted sensor networks. InProceedings of 10th ACM Conference on Computer and Communi-

cations Security (CCS’03), pages 62–72, October 2003.

