ABSTRACT

SUN, KUN. Trustworthy and Resilient Time Synchronization in Wireless Sensor Networks.
(Under the direction of Dr. Peng Ning and Dr. Cliff Wang.)

Wireless sensor networks have received a lot of attentioentéy due to its wide applica-
tions. Accurate and synchronized time is crucial in manyseenetwork applications. A number
of time synchronization schemes have been proposed rgt¢ertidress the resource constraints in
sensor networks. However, all these techniques cannaveunalicious attacks in hostile environ-
ments.

This dissertation includes three techniques to achiewarsditme synchronization in dif-
ferent scopes of sensor networks. First, we develop a semgke-hop pair-wise time synchroniza-
tion technique that provides time difference between twighi®r nodes using hardware-assisted,
authenticated medium access control (MAC) layer timestagipThis technique can effectively
defeat external attacks that attempt to mislead singleplaipwise time synchronization.

Second, we propose a fault-tolerant cluster-wise timetsymization scheme to provide
a common clock among a cluster of nodes, where the nodes aluster can communicate through
broadcast. This scheme guarantees an upper bound of tifaeedife between normal nodes in a
cluster, provided that the malicious nodes are no more thartlard of the cluster. Unlike the tra-
ditional fault-tolerant time synchronization approachée proposed technique does not introduce
collisions between synchronization messages, nor doegquine costly digital signatures.

Third, we propose two secure and resilient global time sgorhation schemedevel-
based time synchronizati@anddiffusion-based time synchronizatiohhe basic idea of both schemes
is to provide redundant ways for one node to synchronizdatskownith another far-away node, so
that it can tolerate partially missing or false synchrotiainformation provided by compromised
nodes. The level-based scheme builds a level hierarchyeisahsor network, and then synchro-
nizes the whole network level by level. The diffusion-basedleme allows each node to diffuse its
clock to its neighbor nodes after it has been synchronizeath Bchemes are secure against exter-
nal attacks and resilient against compromised nodes. Wkeingmt a secure and resilient global
time synchronization protocolinySeRSynon MICAz motes running TinyOS. The experimental
results indicate that TinySeRSync is a practical systersdoure and resilient global time synchro-

nization in wireless sensor networks.
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Chapter 1

Introduction

Wireless sensor networks have received a lot of attentioentyy due to their wide ap-
plications, such as target tracking, monitoring of criticdrastructures, and scientific exploration
in dangerous environments. Wireless sensor networksalpiconsist of a large number of small
sensor nodes and possibly a few powerful control nodes. digos nodes sense the environmental
changes and report them to the control nodes over a flexilbheorie architecture. A sensor node
is usually composed of one or a few sensing components, venehble to sense conditions (e.g.
light, sound, temperature, pressure) from its surrourgjiagprocessing component, which is able
to carry out simple computation, and a communication corepgrwhich is capable of short-range
wireless communication. The control nodes may further ggedhe data collected from sensor
nodes, disseminate control commands to sensor nodes, andatadhe network to a traditional
wired network. The control nodes can have workstationdjamiass processors, enough memory,
energy, and computational power to perform their tasks.

The main challenge of designing wireless sensor networksedoom the resource con-
straint of the sensor nodes. For example, a typical MICAzeniats a 8-bit Atmel ATmegal28L
processor, 7.3728MHz clock, 4K bytes RAM, 128K bytes of flamhprogram memory, and 250
kbps radio date rate. Moreover, the MICAz mote is powered ByAZatteries, which is difficult
to replace when consumed in some hostile environmentse Tablshows the basic characteristics
of typical MICAz and MICA2 motes [20], which are widely usadgurrent generation of wireless
sensor networks.

Time synchronization is an important component of a wirekEnsor network to provide



Table 1.1: Characteristics of MICAz and MICA2 motes.

| MICAZ \ MICA2 \
Processor ATMegal28L, 8-bit| ATMegal28L, 8-bit
Clock 7.3728 MHz 7.3728 MHz
RAM 4K bytes 4K bytes
Program Flash Memory 128K hytes 128K bytes
RF Transceiver CC2420 CC1000
RF Transceiver Frequenay 2.4 GHz 315-916 MHz
Radio Data Rate 250 kbps 38.4 kbps
Power Supply 2 AA Battery 2 AA Battery
Hardware Security 128 bit AES No

a common clock in sensor nodes. Most wireless sensor netsplications, such as data fusion
[60, 103], target tracking [15, 95], and power saving [108fuire a synchronized local clocks in
sensor nodes. The ability of the wireless sensor networgdgoegate the data collected can greatly
reduce the number of messages that need to be transmittesk dbe network. Many data-fusion
algorithms [60, 103] have to process the sensor readingseaxdy the time of occurrence (e.g., the
time when a forest fire was sensed). In target tracking agudies [15, 95], sensor nodes need both
the location and the time when the target is sensed in ordmntectly determine the target moving
direction and speed. Several approaches intend to imptevenergy efficiency by frequently
switching sensor nodes into power-saving sleep mode [18Gjroup of nodes needs a common
synchronized clock to synchronize their behaviors on $witg between wake-up and sleep modes
at the same time. The time slotted MAC protocols (e.g., [@8hieve the multiple access to the
shared communication medium by assigning time slots to apgof nodes. Thus, sensor nodes
need to have a synchronized clock to access their time sitisut colliding with other nodes.

The small sensor nodes usually contain inexpensive aseslavith typical clock drift
rates at about tens of microseconds per second [81], anddtiedrift (almost 1 second apart per
day) is intolerable for the above wireless sensor netwopkiegtions. Therefore, time synchroniza-
tion becomes indispensable for many wireless sensor netagpglications. However, due to the
resource constraints on sensor nodes, traditional timehsgnization protocols (e.g., NTP [65])
cannot be directly applied in sensor networks. Recentlyersé time synchronization protocols
(e.g., [26, 31, 63, 55, 67, 87, 72, 42]) have been proposedifetess sensor networks in benign
environments. However, without addressing security, bl ime synchronization techniques in

wireless sensor networks cannot survive the maliciougksta hostile environments. As many



other techniques, security is not the top priority whengl@isig time synchronization protocols for
wireless sensor networks. This dissertation focuses oala@wng secure and resilient time syn-

chronization techniques for wireless sensor networks tkivohostile environments.

1.1 Motivation

In hostile environments, an adversary may certainly atthekime synchronization pro-
tocol due to its importance. Note that all time synchrommatprotocols rely ortime-sensitive
message exchanges. To mislead these protocols, the agveraaforge or modify time synchro-
nization messages, jam the communication channel to laDedlel of Service (DoS) attacks, and
launch pulse-delay attacks [29] by first jamming the recefgime synchronization messages and
then later replaying buffered copies of these messagesadversary may also launch wormhole
attacks [43] by creating low latency and high bandwidth camitation channels between different
locations in the network, and (selectively) delay or dropetisynchronization messages transmitted
through the wormholes. The adversary may use Sybil attebksg9], where one node presents
multiple identities, to defeat typical fault tolerant madisms. Though message authentication can
be used to validate message sources and contents, it catlidate theimelinessof messages, and
thus is unable to defend against all of these attacks.

Moreover, the adversary may compromise some nodes, andieipm compromised
nodes in arbitrary ways to attack time synchronization. &ample, the adversary may instruct
the compromised nodes to (selectively) delay or drop timelsgonization messages, and launch
Sybil attacks [69] using the identities and keying material compromised nodes if message au-
thentication is enabled. The compromised nodes may colkitteeach other to cause the worst
damage to the network.

In this dissertation, we propose a suite of secure time sgnctation techniques to
achieve secure time synchronization between two neighbdes) among a group of sensor nodes,

and in a whole sensor network, respectively.

1.1.1 Secure Single-hop Pair-wise Time Synchronization

Single-hop pair-wise time synchronization aims at obtajna high-precision time syn-

chronization between pairs of sensor nodes. Researchexgphaposed two approaches to achieve



single-hop pair-wise time synchronizatioreceiver-receiver synchronizatiagi.g., RBS [26]), in
which a reference node broadcasts a reference packet tpdiedpof receivers to identify the clock
differences, osender-receiver synchronizatig¢a.g., TPSN [31], FTSP [63]), where a sender com-
municates with a receiver to estimate the clock difference.

In receiver-receiver synchronization (e.g., RBS [26])pmpromised reference node may
provide different non-compromised nodes different timkiga about the receipt of the reference
packet. Moreover, an adversary can compromise it by singalpdhing a pulse-delay attack [29]
or wormhole attack [44] against one of the nodes to manipulla¢ packet transmission delay,
so that the two nodes receive the reference packet at diff¢irmes. In FTSP [63], a sender-
receiver synchronization, one node passes its own timeetwtiher by directly sending a MAC
layer timestamped packet to the latter. This works well inipe environments, as demonstrated
in [63]. However, in hostile environments, it suffers froetsame problems mentioned above.
TPSN uses a sender-receiver approach (through one requbsine reply message) to help the
sender obtain its clock difference from the receiver [31]malicious node may distort the pair-
wise time synchronization by jamming the signal betweennwmanal nodes and then replaying the
delayed signal to introduce synchronization error [29].ef@an external attacker can launch this
attack. TPSN was later improved with security in Secure-Rége Synchronization (SPS) [29] to
deal with pulse-delay and wormhole attacks. Specificallguthenticates the messages being ex-
changes, and uses the timestamp information to estimatett®tlock difference and the message
transmission delay. Pulse-delay and wormhole attacksntlaaipulate packet transmission delay
will introduce extra delay in message transmission, antb&idetected.

Medium Access Control (MAC) layer timestamping has beenelyiciccepted as an ef-
fective way to reduce the synchronization error during tlessage exchanges since it was proposed
in [31]. To ensure the integrity of pair-wise time synchmation, we may authenticate a synchro-
nization message by adding a Message Integrity Code (MICg dne MAC layer timestamp is
added. This, however, introduces a potential problem dukemxtra delay required by the MIC
generation: Itis necessary to have a MAC layer timestamptlasks the exact transmission time of
a certain bit in the message at the sender’s side, but the Mih@rgtion and insertion require extra
delay and have to be done after the timestamp is insertedhietmessage.

The delay introduced by MIC generation using software (&iqySec [49]) can be tol-
erated for sensor platforms with low data rate radio comptmeuch as MICA2 motes (38.4 kbps
data rate). However, with the increased data rate on reemsos platforms with IEEE 802.15.4
compliant radio components (250 kbps data rate [46]), sedMI€Az and TelosB motes, there is



not enough time to generate and insert the MIC before thermasion of the MIC bytes due to the
delay introduced by the MIC calculation [29].

In Chapter 3, we develop a secure single-hop pair-wise tynetsonization technique
by adopting the SPS approach [29]. Due to the long delay oargéing the message integrity code
by using software, SPS approach [29] can only work on low da&motes such as MICAZ2, while
it does not support high data rate motes such as MICAz andsBelonlike the SPS approach,
our approach usestardware-assisted, authenticated MAC layer timestamtsobnique to handle
high data rate such as those produced by MICAz and TelosBsnioteontrast to those by MICA2

motes).

1.1.2 Fault-tolerant Cluster-wise Time Synchronization

In wireless sensor networks, it is usually necessary to hahester of nodes share a com-
mon view of a local clock time, so that the nodes can coorditfair actions. For example, in time
slotted MAC protocols, the multiple access to the sharednsonication medium is achieved by
assigning time slots to a group of nodes. Therefore, theosengles require a synchronized clock
to access their time slots without colliding with other nedés another example, to increase the
energy efficiency, a cluster of sensor nodes may frequewilgls into power-saving sleep mode at
the same time [100]. They also require a common clock to é¢oatel their sleep/listen periods. In
benign environments, such a local common clock can be easflieved by having all the nodes
synchronize to a given node. However, in hostile envirorisiehere some nodes may be com-
promised, it is quite challenging to synchronize the clogk®wng a cluster of nodes. Indeed, none
of the aforementioned time synchronization protocols aawige malicious actions by compro-
mised nodes. A compromised node may disrupt the time synation by sending different time
values to non-compromised nodes. For example, when RBSJR6Ed for pair-wise time synchro-
nization, a compromised node may provide different nonjmmmised nodes different time values
about the receipt of the reference packet.

To provide secure and resilient cluster-wise time syndbaetion, it is natural to consider
fault-tolerant time synchronization techniques, whickihbeen studied extensively in the context
of distributed systems (e.g. [78, 53, 39, 22, 58, 59, 89, 84,78, 13, 50, 86, 96]). However,
traditional fault-tolerant time synchronization techudg are not directly applicable to wireless sen-
sor networks. These techniques were developed for diggdbsystems that do not have the same

resource constraints as wireless sensor networks. Alesilechniques involve heavy communica-



tion among the nodes, and sometimes heavy computation &she is because these techniques
either use digital signatures (e.g., HSSD [22], CSM [53])arltiple copies of messages (e.g.,
COM, CNV [53]) to prevent a malicious node from modifying astiroying clock information sent
by nonfaulty nodes without being detected. Digital signais usually not practical in resource con-
strained wireless sensor networks. Even when digital tigeas used, for example, in HSSD [22],
each node still needs to send a message to every other naatghisysmchronization round, resulting
in at leastO(n?) communication complexity, whereis the number of nodes. Some schemes (e.g.,
HSSD [22], ST [89]) require that all nodes that receive ¢enmaessages process and forward these
messages to all the other nodes immediately, resulting igragrobability of message collisions if
used in wireless sensor networks.

In Chapter 4, we present a novel fault-tolerant clusteewiimie synchronization scheme
for clusters of nodes in wireless sensor networks, wheraddes in each cluster can communicate
through broadcast. The proposed scheme guarantees anbaupet of clock difference between
any nonfaulty nodes in a cluster, provided that the mal&ioodes are no more than one third
of the cluster. Unlike the traditional fault-tolerant tirsgnchronization approaches, the proposed
technique does not introduce collisions between synchabion messages, nor does it require costly
digital signatures.

1.1.3 Secure and Resilient Global Time Synchronization

A number of time synchronization protocols (e.g., [26, 3,, 86, 79, 67, 87, 72, 42, 21,
35, 90]) have been proposed for wireless sensor networkshieveeglobal time synchronization.
Most of the global time synchronization protocols (e.g6,[21, 87]) establish multi-hop paths in a
wireless sensor network, so that the other nodes can symzhrtheir clocks to the source based on
these paths and the single-hop pair-wise clock differebedseen adjacent nodes in these paths.
Alternatively, diffusion based global synchronizatiomfarcols [55] achieve global synchronization
by spreading local synchronization information to the rentietwork.

All these techniques assume benign environments. Thoughpgbssible to use au-
thentication to defend against external attacks, an ataciay still attack time synchronization
through compromised nodes. When a pair of nodes are synghtbthrough a multi-hop path
(e.g., [26, 31, 87]), a compromised node in the path candote an arbitrary error. This im-
plies global time synchronization using multi-hop pathglerable to compromised nodes. When

the diffusion based global time synchronization technég#®] are used, compromised nodes may



fluctuate their clock information periodically to prevehetconvergence of the clocks. Therefore, a
secure and resilient global time synchronization is nesgd®r wireless sensor networks to work
in hostile environments.

In Chapter 5, we propose two secure and resilient time spntation schemedevel-
based time synchronizati@nddiffusion-based time synchronizatiohhe basic idea of both schemes
is to provide redundant ways for one node to synchronizdatskownith another far-away node, so
that it can tolerate partially missing or false synchrotimainformation provided by compromised
nodes. The level-based scheme builds a level hierarchyeisehsor network, and then synchro-
nizes the whole network level by level. The diffusion-basedeme allows each node to diffuse its
clock to its neighbor nodes after it has been synchronizeth Bchemes are secure against external
attacks and resilient against compromised nodes.

To achieve global time synchronization, we first choose apagate the global synchro-
nization information using authenticated unicast messagevided each pair of nodes share a
secure key. However, through the simulation results, wadaut that in each round of global time
synchronization, the communication overhead as well am@msage collisions is quite huge. Thus,
it can hardly be extended for large sensor networks. To gblggroblem, in Chapter 6, we develop
a secure and resilient global time synchronization usingdicast authentication based on a novel
use of theuTESLA [76] broadcast authentication protocol focal authenticated broadcastin
each round of global time synchronization, each node ordgditasts one message. Thus, both the

message overhead and the message collisions are reduneatidedly.

1.2 Summary of Contributions

In this dissertation, we present three techniques to peos@ture and resilient time syn-
chronization to work in different scopes of wireless senmsgtworks. The summary of these tech-

niques are as follows:

e Secure Single-hop Pair-wise Time Synchronizatioe develop a secure single-hop pair-
wise time synchronization technique by adopting the SP%oagh [29]. SPS uses a random
nonce to prevent replay of a previously transmitted replgsage. In our case, we simply use
the sender’s timestamp in the reply message to preventyrefiiack, so that we can further
reduce the message size. SPS approach uses softwareysgcgritTinySec [49]) to authen-

ticate the MAC layer timestamping in synchronization mgssa The message integrity code



using software can be available before the radio compomenissthe corresponding bytes in
the message for sensor platforms with low data rate. Howeitr the increased data rate on
recent sensor platforms, such as MICAz and TelosB motes th@ot enough time to gener-
ate and insert the MIC before the transmission of the MIC $yiige to the delay introduced
by the MIC calculation [29].

Unlike SPS approach, we proposbadware-assisted, authenticated MAC layer timestamp-
ing technique to handle high data rate such as those produced@®¥2&nd TelosB motes (in
contrast to those by MICA2 motes) with the hardware secsutyport in their radio compo-
nents. We implement the proposed technique on MICAz mot@sr[ihning TinyOS [41].
The secure single-hop pair-wise time synchronization séltve as the building block to

achieve the secure and resilient global time synchrowizati

Fault-tolerant Cluster-Wise Time SynchronizatiorThis technique provides a novel fault-
tolerant cluster-wise clock synchronization for a clugtesensor nodes, where the nodes in
each cluster can communicate with each other directly tiirdaroadcast. In each round of
time synchronization, only one node serves assiyrechronizerand only one authenticated
synchronization message is broadcast. Thus, our schemavoahthe message collision
problem. The proposed scheme exploits a recently propaszd broadcast authentication
technique for sensor networks, which is purely based on stnicrcryptography [104], thus
avoiding the costly digital signature for message autbatibn. Our analysis shows that the
proposed scheme guarantees an upper bound on the clockliffebetween nonfaulty nodes

when no more tham/3 of the nodes are compromised and collude with each other.

Secure and Resilient Global Time Synchronizatidrnis research resulted in two secure and
resilient time synchronization schemes: level-based dffisbn-based time synchroniza-
tion. The level-based scheme builds a level hierarchy inihgless sensor network, and then
synchronizes the whole network level by level. The diffasimsed scheme allows each node
to diffuse its clock to its neighbor nodes after it has synalred to the source node. Our ba-
sic idea is to provide redundant ways for each node to syncteats clock with the common
source, so that it can tolerate partially missing or falgechyonization information provided
by the malicious nodes. To improve the performance and gikarce of our techniques, we
propose to deploy multiple source nodes in the network.

We first propose to use authenticated unicast messagesrtbudisthe synchronization infor-



mation by assuming that each two neighbor nodes can shaceed pair-wise key. However,
because each node needs to send one message to each neaglghor @ach round of time
synchronization, the communication overhead is quite,ragld it may cause potential huge
message collisions, especially when neighboring nodeadhio send several messages at the
same time. Therefore, the technique using unicast autaioin can hardly be extended for

large sensor networks.

To solve this problem, we later develop a secure and resifjibal time synchronization
protocol, TinySeRSynaising broadcast authentication based on a novel use gitBSLA
broadcast authentication protocol focal authenticated broadcasiVe resolve the conflict
between the goal of achieving time synchronization wilrfESLA-based broadcast authen-
tication and the fact that TESLA requires loose time synchronization. We implemest th
proposed TinySeRSync protocol on MICAz motes running Ti8y&nd perform a thorough
evaluation through field experiments in a network of 60 MIGAates. The evaluation results
indicate that TinySeRSync is a practical system for secnderesilient global time synchro-
nization in wireless sensor networks.

1.3 Organization of the Dissertation

The rest of this dissertation is organized as follows. Céraptpresents a general clock
model and discusses the related work on time synchroniza@ibapter 3 presents the secure single-
hop pair-wise time synchronization scheme. Chapter 4 giuesur fault-tolerant cluster-wise time
synchronization technigue. We present the secure anderggjlobal time synchronization schemes
using unicast authentication in Chapter 5, and the schesmeg roadcast authentication in Chapter
6. Chapter 7 concludes this dissertation and points out ot research directions.
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Chapter 2

Background

In this chapter, we first introduce a typical clock model usedistributed systems. Then,
we present several traditional time synchronization tepkes. Next, we discuss the time synchro-
nization schemes proposed for wireless sensor networksillyiwe give out a number of perfor-
mance metrics that can be used to evaluate and compare siewei®/nchronization techniques in

wireless sensor networks.

2.1 Clock Model

We introduce a typical clock model used in distributed systewhich is adapted from
[22]. The wireless sensor networks usually use the samd ctamdel. A clock is an instrument
for measuring time. We first make a distinction betweeal timeandclock time Real time is an
assumed Newtonian time frame that may not be directly obbéryand clock time is the time that
can be observed on the clocks. We use lowercase letters dteditie variables and constants about
real time, and uppercase letters to denote those about ioek

A local clockC can be considered a mapping from real time to clock time,f.e= C(t)
is the clock time at the real time When we speak of “a clock drifting from real time”, we mean
that the difference between a clock and real time may grdumrease. A clockC is considered
well-behavedf its rate of drift from the real time is bounded by a constant 0 for all the real
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time pointst; andts, wheret; < to:

ti;? < C(t2) = C(t1) < (1+p)(t2 — ). (2.1)

The rate of drift between any two well-behaved clocks is llmehby\ = p(2 + p)/(1 + p), which
is less thar2p. The drift rate of a clock may fluctuate over time due to agiciganges in the
environment, and by other factors external to the oscillato

When it is difficult to directly discipline a local clock, a de may construct a software
clock. A software clock can be considered a mapping from alloock time to a software clock
time, which can provide a synchronized clock time by adjgstihe parameters of the software
clock.

In all the synchronization schemes that depend on exchgmgessages, due to the delay
uncertainty, the synchronization error consists of thio¥ahg basic components [26]:

e send time: It is the time spent to construct a message at tideselt includes the oper-
ating system overhead (e.g., context switches) and thettrsend the message to network

interface.

e access time: Itis the time delay for accessing the physkaahigel. It is specific to the MAC
layer protocol in use. Contention-based MAC layer protecalst wait for the channel to
be clear before transmitting, and retransmit in case ofsioi. TDMA-based MAC layer

protocols require the sender to wait for its slot beforegmaitting.
e propagation time: It is the time for a message to propagata the sender to the receiver.
e receive time: Itis the time for the receiver to receive aamsfer the message for the host.

Existing time synchronization techniques vary primariitheir methods for estimating
and eliminating the above sources of error.

Another thing that affect the precision of a synchronizatagorithm is the clock drift
between two synchronization points. Due to the clock daftlock may drift from the real time
before the next round of time synchronization. To decrelasertaximum clock difference from the
real time, a clock may run time synchronization process nfreguently, or estimate and correct

the clock drift if the clock has a long-term stable drift rate
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2.2 Traditional Time Synchronization

Time synchronization problem has been investigated thghriguin Internet and distrib-
uted computer systems. Next, we discuss some represertiati synchronization mechanisms.

Global Positioning System (GPS)GPS [3, 98] is a constellation of satellites operated
by the U.S. Department of Defense. GPS is originally intentbebe used for precise positioning
through the determination of pseudo-ranges from the #etelio the ground based receiver. The
key idea is that by measuring the time of flight of a radio sigrnam 4 or more satellites to the
receiver, the position of the receiver may be accuratelgrdghed. In addition, the time difference
of the receiver from the GPS clock time may be calculated.rdfthee, the velocity of the receiver
and the time frequency offset of the receiver may be asoedaiGPS can provide a time accuracy
of several nanoseconds.

NTP In Internet, computers can obtain a synchronized Inteinet by using Network
Time Protocol (NTP) [65] protocol. NTP organizes all the gurters in a client/server structure.
Primary servers synchronize to national reference clockcss via radio, satellite and modem.
Then, secondary servers and clients synchronize to prisemyers via hierarchical subnet. The
reliability is assured by redundant servers and diversgar&tpaths. Several engineered algorithms
have been proposed to reduce jitter, select from multipleces and avoid improperly operating
servers. The system clock of a computer is disciplined iretand frequency using an adaptive
algorithm responsive to network time jitter and clock datdr frequency wander. NTP provides
accuracies of low tens of milliseconds on WANSs, sub-mitimeds on LANS, and sub-microseconds
using a precision time source such as a cesium oscillatoP& @ceiver.

Probabilistic-based Synchronization Cristian [19] proposed a probabilistic method to
read remote clocks in distributed systems that are suljeahbounded random communication
delays. When a process wants to synchronize to a remotegsrotesends a time request to the
remote process, and calculates the request’'s round-inip &éis the difference between the time
when it initiates the request and the time when it receiveséiply from the remote process. The
reply contains the time when the remote process sends the répen, the process adjusts its
clock time to the sum of the time contained in the reply and the round-trip time. Due to the
non-deterministic message delay, to reduce the synclatmizerror, a process needs to perform
multiple such trails and chooses the trial with the mininwurmd-trip time to synchronize its clock.
Cristian’s method is probabilistic because it does not guigie a processor can always synchronize

to a remote process with an a priori specified precision. &fbes, to increase the probability of
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success to achieve a given precision, a process needs¢asecthe number of trials on estimating
the remote process’s clock time.

TEMPO Gusella and Zatti [38] proposed a centralized time syndhation service for
the Ethernet local area network. A master node first measiiedsme differences between its local
clock and those of other slave nodes. The master node cost@etwork time as the average of
the times provided by normal clocks, and then sends to eaeh sbde the correction that should be
performed on its clock. This process is repeated peridglicklassumes the master node is always
trusted. The similar idea can be used in sensor networkshievactime synchronization in a group
of nodes that can directly communicate with a sink node orrenabsensor node.

Fault-tolerant Time Synchronization In distributed systems, fault-tolerant time syn-
chronization has undergone substantial research (e.q.78%3, 39, 22, 58, 59, 89, 84, 85, 71,
13, 50, 86, 96]). These techniques take eitheoffwareor a hardwareapproach [78]. Hardware-
based techniques require a synchronization circuitryicoatisly monitor all the clocks [78], and
thus cannot be used in sensor networks. Software-basenidqaels can be further classified into
convergence-averaging (e.g., CNV [53], LL [58, 59]), cagexnce-non-averaging (e.g., HSSD [22],
ST [89]), or consistency algorithms (e.g., COM, CSM [53]pn%: software-based (or hardware-
assisted, hybrid) techniques [77] use hardware to genéragstamps, and thus can reduce the
uncertainty involved in time synchronization. A commonrtteeof these techniques is to use redun-
dant messages to deal with malicious participants that rebge arbitrarily.

All the traditional time synchronization techniques canipe directly applied into sensor
networks, mainly due to the resource constraints of sensdesr For example, the GPS receiver
is too large, expensive, and power-hungry for small, cheag, power constrained sensor nodes.
Moreover, GPS requires a clear sky view, which is not alwaxslable in some areas, such as
inside of buildings or underwater. Because NTP does notidenshe energy and computation
limitations of sensor nodes [27], it is infeasible to impEmM NTP in sensor networks. NTP uses
several engineered algorithms (i.e., data-filtering aligor, peer-selection algorithm and combining
algorithm) to reduce jitter, increase the robustness andldmproperly operating servers. Such
algorithms are computationally intensive and assumes #id {S always available to frequently
discipline the oscillator. However, the CPU cycles in sensmles are also a scarce resource, and
the sensor nodes cannot spend all the CPU cycles on the tmahrgyization. Consider Cristian’s
probabilistic method. It requires a large number of messaghanges, which introduces a high
communication overhead for resource constrained senst@sndVoreover, it can only provide a

probabilistic time synchronization with a given precisiolhen TEMPO is deployed to achieve a
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network-wide time synchronization, the bounds on the sgorakation accuracy will increase a lot
due to the delay uncertainty in multi-hop message commtiaita

The traditional fault-tolerant time synchronization soies in wired networks usually
assume there is unlimited computing resource and netwarivindth, and thus are not suitable for
sensor networks. These schemes usually have very high coitation overhead (especially the
consistency-based approaches such as COM and CSM). Morampesvent malicious participants
from forging messages, these schemes use either digiteltaigs (e.g., CSM [53], HSSD [22]), or
a broadcast primitive that requires simultaneous broadicas multiple nodes, which will result in

message collisions in wireless sensor networks.

2.3 Time Synchronization in Wireless Sensor Networks

Recently, several time synchronization protocols (ea§, 27, 21, 31, 63, 72, 87, 55, 90,
67, 35, 42, 79, 64]) have been proposed for sensor netwoeshievepair-wiseand/orglobal time
synchronization. Pair-wise time synchronization aimshtam a high-precision time synchroniza-
tion between pairs of sensor nodes, while global time syorghation aims to provide network-wide
time synchronization in a sensor network.

Reference Broadcasting Elson et al. developed the Reference Broadcast Synchroniza
tion (RBS) scheme for pair-wise as well as multi-domain tesgachronization [26], which elimi-
nates the uncertainty of send time and access time fromdkk cbading error by using a reference
broadcast node. In RBS, one sender broadcasts a single pumtseeceivers can calculate their
relative clock difference by exchanging the receiving tohéhe pulse from the sender. In addition,
the sender can broadcast a number of pulses to improve thisiprebetween the receivers. They
also propose to use the least square linear regressionigaehto estimate the clock frequency
difference. RBS can provide an average synchronizatioor efr 11 s by using 30 broadcasts.
Based on RBS, Palchaudhuri et al. [72] proposed a probtditime synchronization which can
reduce the communication overhead; however, it can onligahitistically guarantee the required
time precision.

Timing-sync Protocol Generiwal et al. proposed a hierarchical time synchroitizat
scheme named TPSN for sensor networks [31], assuming tinohigynization messages are timestamped
at MAC layer. In the pair-wise time synchronization, onedsrsynchronizes itself to a receiver by
exchanging one pair of messages. If the two exchange messagéde timestamped at MAC layer



15

right before being sent out, TPSN can provide a higher tingeipion than RBS. TPSN can provide
a global time synchronization in two phases: level discp@grd synchronization. The goal of level
discovery phase is to build a spanning tree topology in theaoré, where each node is assigned a
level. The tree topology is rooted at one source node, whielssigned level 0. In the synchroniza-
tion phase, a levelnode synchronizes to a neighbor node at lével. In the end, all the nodes are
synchronized to the source node, and the global time synization is achieved. Generiwal et al.
[30] also proposed a synchronization scheme to estimatenigeterm clock changes and to reduce
the energy consumption in duty-cycling MAC layer in sensetworks.

Flooding Time Synchronization Maréti et al. [63] proposed a flooding time-synchronization
protocol to synchronize a whole network. The node with threekst node ID is elected as the leader
that serves as the reference node. The leader periodicadg<ithe network with a synchronization
message that contains the leader’s current time. Nodekakamnot received this message record the
time stamp in the message and the receiving time of the mesaad broadcast the message to their
neighbors. It uses MAC layer time stamping to minimize thiaglencertainty. Each node collects
eight messages and uses the linear regression to estireatéfidbt and the frequency difference to
the leader.

Global Time Synchronization Li and Rus proposed a global time synchronization tech-
nique based on local diffusion of clock information [55]. dds achieve global synchronization by
flooding their neighbors with information about its locabvck value. After each node have received
the clock values of all its neighbors, the node can use aeltdonsensus value to adjust its clock.
They presented two protocols for both synchronous and asynous situations. In the synchro-
nous protocol, all the nodes can execute each round of symichation at the same time. Each node
adjusts its clock value by a factor proportional to the clodference from each neighbor node.
The factor indicates the weight of a neighbor on the node@skchdjustment. In the asynchronous
protocol, a node starts one round of synchronization byesiijng local clock values from all its
neighbors. Then, it updates its clock to the average of dskclalue and the clock values from all
the neighbors. All the nodes may start the time synchroioizgtrocess at different times. Both
protocols can converges to the average value of the clodimgsin the network, within a certain
error range. By using their protocols, dense networks agevéaster, and with lower variation in
convergence time, than sparse networks.

Time Diffusion Synchronization Su and Akyildiz proposed a time diffusion synchro-
nization (TDP) protocol to support a network-wide time dymmization [90]. Initially, a set of

master nodes are elected based on its remaining power effdrgy, each master node establishes
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a tree hierarchy. After obtaining the round-trip time toleaeighbor node, a master node calculates
and broadcasts the average and standard deviation of treageedelay to all neighbors. A neigh-
bor node becomes a diffused node based on its remaining meegy and its clock property, and
repeat the procedure as the master nodes. The average délstaadard deviation are summed up
along the path from the master nodes. The diffusion proeeshaps at a given number of hops from
the master nodes. One node may appear in multiple mastes'ad®es, so it adjusts its clock ac-
cording to the clock differences from all these master nodieschieve load balance, all the master
nodes are reelected in a given interval. The diffused nodeseglected in a smaller time interval.
This protocol contains many algorithms on electing masteles and synchronizing sensor nodes;
however, these complex algorithms may be too heavy for reseconstrained sensor nodes.

Tiny-sync and Mini-sync Sichitiu et al. [87] developed two lightweight pair-wisensy
chronization schemes, Tiny-Sync and Mini-Sync, to deteistically estimate the bounds on both
the relative clock drift and offset between two sensor no@egh schemes use multiple round-trip
measurements and a line-fitting technique to obtain thekaddfset and the relative clock drift of
two nodes. Tiny-Sync uses a heuristic to keep only two measents in storage, but only achieves
a suboptimal solution. Mini-Sync can provide an optimalisoh with increased computation and
storage overhead.

Lightweight Tree-Based Synchronization Greunen and Rabaey claimed that the maxi-
mum time accuracy required in sensor networks is relatik@iy(within a fraction of one second),
and proposed two lightweight global time synchronizatiohesnes in sensor networks [35]. Both
schemes synchronize all the sensor nodes to some referedeéshin the sensor network. The
first scheme is centralized and needs to construct a spatiemgooted at the reference node. The
reference node is responsible for initializing the synoiration process with a time interval which
is decided by the depth of the tree and the required precisitre second scheme performs in a
distributed fashion. When a node needs to synchronizedtkclt sends a synchronization request
to the reference node by using any available routing préto€ben all the nodes along the path
from the reference node to the requesting node must be symebd before the requesting node.
To reduce the synchronization overhead, the authors pedptmsaggregate several requests along
the same path into one request.

TSync Dai and Han [21] proposed two time synchronization scheithestdierarchy Ref-
erence Time Synchronization protocol (HRTS) for proaciyechronization of the whole network,
and the Individual-based Time Request protocol (ITR) factie synchronization of individual
nodes. Both protocols need an independent radio channgfichronization messages to avoid the
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inaccuracies due to the variable delay introduced by messalfjsions. In HRTS, a spanning tree
rooted at a reference node is constructed. Then, the referade use the reference broadcasting
techniques [26] to synchronize the network. The ITR protaliffers from the HRTS protocol in
that synchronization is initiated by any node as opposedigsggynated reference node.

Time Synchronization for Ad-hoc Networks Romer proposed a time synchronization
scheme for wireless ad-hoc networks [79]. The basic ideatidmsynchronize the local clocks
of nodes, but instead generate time stamps using unsynzbédolocal clocks. When a message
containing a time stamp is transmitted between two nodedjriie stamp is first transformed from
the sender’s local time to the standard Coordinated Urav@ise (UTC), and then to the receiver’s
local time. The final timestamp is expressed as an intervial aviower bound and an upper bound.
Meier et al. [64] improved BRmer’s protocol by providing a tight bound on the transforntieae
interval on the receiving node.

Time Synchronization in IEEE 802.11 The IEEE 802.11 standard [9] requires time
synchronization in wireless networks for keeping hoppiggctronized and other functions like
power saving. In an infrastructure BSS (Basic Service $ef)mple master/slave protocol is used
to synchronize the stations to an access point (AP). The &#inits periodic beacon frames to the
stations, which adjust their clocks to the clock value inftlaenes from the AP. In an independent
BSS (IBSS), time is divided into beacon intervals. At theibeipg of each interval, each station
calculates a random delay and is scheduled to transmit aobesben the delay timer expires.
If a beacon arrives before the random delay timer has expthtex station cancels the pending
beacon transmission and the remaining random delay. Upmivieg a beacon, a station sets its
clock to the timestamp of the beacon if the value of the tiamagt is later than the stations clock
time. It guarantees that clocks only move forward and neagklard. However, this approach
has scalability problem that the fastest station will be @futynchronization when the number of
stations increases. ATSP was proposed in [45] to solve tialstity problem. The basic idea is to
let the fastest station to compete for beacon transmissietry &eacon interval and let other stations
to compete only occasionally.

All of the above techniques assume benign environments¢diutot survive malicious
attacks from compromised nodes. There have been seveeal igtadies for secure time synchro-
nization in sensor networks [29, 93, 62, 88]. Manzo et akuised a few attacks against existing
time synchronization protocols and several countermeastar protect time synchronization [62].
However, there was no mechanism to authenticate the tigsdiof synchronization messages, and

thus no protection against, for example, pulse-delay l&t§29] and worm-hole attacks [44], in
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which the adversary may delay authenticated synchronizatiessages.

Song et al. investigated countermeasures against attaaisislead sensor network time
synchronization by delaying synchronization messagel [8Bey proposed two methods for de-
tecting and tolerating delay attacks: one transforms lattietection into statistical outliers detec-
tion, and the other detects attacks by deriving the bountiefitne difference between two nodes
through message exchanges. Unfortunately, [88] only addeesynchronization of neighbor nodes,
but does not support global time synchronization in muliplsensor networks.

Ganeriwal et al. proposed a secure single-hop pair-wisghsgnization (SPS) technique [29],
which provides authentication for medium access controh@Yl layer timestamping by adding
timestamp and message integrity code (MIC) as the messageg transmitted. This approach
works for low data rate sensor radios (e.g., CC1000 on MICARes with 38.4Kbps data rate);
however, it cannot keep up with recent IEEE 802.15.4 [46]pitant sensor radios such as CC2420
on MICAz and TelosB, whose data rate is 250Kbps.

Though it is possible to use authentication to defend agaiiernal attacks, an attacker
may still attack time synchronization through compromisedes. These compromised nodes may
drop, modify, forge, or replay the synchronization messad®e don't consider the physical layer
attacks, such as signal jamming attacks.

2.4 Evaluation Metrics for Secure Time Synchronization

Given a secure time synchronization protocol, which targeétpreventing or mitigating
the attacks in time synchronization, we can use the follgwiretrics to evaluate its performance in

both benign and hostile environments.

e synchronization precisionit is the maximum clock difference between any two sensoesod
in a whole network. It is a metric closely related to thynchronization errgrwhich is
about the clock offset of a single node [81]. In hostile emwinents, we only care about the

synchronization precision between normal nodes.

e synchronization rate:lt is the percentage of sensor nodes in a sensor network dhatar-

rectly obtain a synchronized clock time.

e memory overhead: It is the size of memory allocated for storing the messagkdee to

time synchronization in each sensor node. Currently, mgrsostill critical for resource
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constrained sensor nodes.

e convergence time:lt has different meanings for external synchronization emtelrnal syn-

chronization.

— external synchronizationWhen all the clocks in the network are synchronized to an
external clock source, the convergence time is the timevakdetween the start point
of the synchronization process and the time point when tieskensor node that can be

synchronized synchronizes its clock.

— internal synchronizationWhen all the nodes in a network need to agree on a consistent
clock time without the help from an external clock source, tbnvergence time is the
time interval between the start point of the synchronizapoocess and the time point

when the predetermined synchronization precision is aelie

e communication overheadit is the number of messages sent for time synchronizatisgne T
synchronization information may be piggy-backed in the sages for other applications, or
sent by dedicated synchronization messages. The “piggy-lmaethod can avoid additional
messages for synchronization, but it may not provide a sgmited clock on demand, since
it depends on the other applications. The communicationheaal is related to the synchro-

nization precision achieved.

In the following chapters, we will use the above metrics tagtthe performance of the

proposed secure time synchronization techniques.
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Chapter 3

Secure Single-Hop Pair-Wise Time
Synchronization

In wireless sensor networks, existing pair-wise or glolmaktsynchronization techniques
are all based osingle-hoppair-wise time synchronization, which discovers the cldifkerence
between two neighbor nodes that can communicate with edwdr directly. In single-hop pair-
wise time synchronization, Medium Access Control (MAC)dayimestamping has been widely
accepted as an effective way to reduce the synchronizatimm éuring the message exchanges
since it was proposed in [31].

To ensure the integrity of pair-wise time synchronizatiwe, may authenticate a synchro-
nization message by adding a Message Integrity Code (MICg dne MAC layer timestamp is
added. This, however, introduces a potential problem dukdextra delay required by the MIC
generation: It is necessary to have a MAC layer timestampaikihe exact transmission time of
a certain bit in the message at the sender’s side, but the Mih@rgtion and insertion require extra
delay and have to be done after the timestamp is insertedhnetmessage.

The delay introduced by MIC generation using software (&iqySec [49]) can be tol-
erated for sensor platforms with low data rate radio comptmeuch as MICA2 motes (38.4 kbps
data rate). However, with the increased data rate on reesmsos platforms with IEEE 802.15.4

compliant radio components (250 kbps data rate [46]), sedflI€Az and TelosB motes, there is
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not enough time to generate and insert the MIC before thermasion of the MIC bytes due to the
delay introduced by the MIC calculation [29].

In this chapter, we present a secure single-hop pair-wise siynchronization technique
[94] by adopting a Secure Pair-Wise Synchronization (SRS) technique, which provides a soft-
ware based, MAC layer timestamp authentication for low data radio components. We propose
a hardware-assisted, authenticated MAC layer timestamg@efnique to handle high data rate in
a specific target of the IEEE 802.15.4 compliant radio conepbi@hipCon CC2420 [6], which is
commonly used in recent sensor platforms such as MICAz atmkBemotes. CC2420 features
hardware security support for data encryption and dateeatittation. We implement the proposed

technique on MICAz motes running TinyOS [41].

3.1 Attacks in Single-Hop Pair-Wise Time Synchronization

Most of the single-hop pair-wise time synchronization sohe suffer the following at-

tacks in hostile environments.

e pulse-delay attack:A malicious node may distort the pair-wise time synchrotiizaby jam-
ming the signal between two normal nodes and then replahimgelayed signal to introduce

synchronization error [29]. Even an external attacker eandh this attack.

e malicious reference: This attack is specific to receiver-receiver synchronirafe.g., RBS
[26]). A compromised reference node may provide differat-nompromised nodes differ-

ent time values about the receipt of the reference packet.

e replay attack: A malicious node may launch replay attacks by recording tiveeat syn-
chronization messages from other nodes and impersonasg hodes to send the buffered
messages later. This type of attack can usually be defdateaigh the use of freshness token

such as a sequence number.

e Sybil attack: A malicious node may attempt to forge multiple identitiesldynching Sybil
attacks [69]. If colluding malicious nodes can exchangé #teying materials, one malicious

node may impersonate other remote malicious nodes in i fatwork [73].

e wormhole attack: In sensor networks, remote malicious nodes may pretend it thi@mal

nodes’ local area through wormholes [44]. Thus, time symization messages at a remote
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area may be tunneled to local area to interrupt the local $ymehronization process.

An attacker can also launch signal jamming attacks, whiahéeck normal nodes for re-
ceiving any synchronization messages. Because no schatmedfuires inter-node communication
can survive such attacks, we did not consider such attaaksrimodel.

In the following, we describe our secure single-hop pasesime synchronization tech-

nique that can achieve correct time difference between twmal neighbor nodes.

3.2 Secure Single-Hop Pair-Wise Time Synchronization

The goal of secure single-hop pair-wise time synchroromats to ensure two neighbor
nodes can obtain their clock difference through messageagges in a secure way. This requires
the authentication of the source, the content (i.e., thimgrimformation), and the timeliness of each
message used for such synchronization.

In the following, we first discuss how we provide authentmatof the source and the
timing information in synchronization messages, and thescdbe a secure two-way pair-wise

time synchronization protocol for a node to obtain the cldifference from a neighbor node.

3.2.1 Authenticated MAC Layer Timestamping

MAC layer timestamping has been widely accepted as an effewtay to reduce the
synchronization error during the message exchanges sim@siproposed in [31]. By adding (on
the sender’s side) and retrieving (on the receiver’s sidgdtamps in the MAC layer, this approach
avoids the uncertain delays introduced by application @mg and medium access, and thus has
more accurate synchronization precision.

To ensure the integrity of pair-wise time synchronizatiwe, may authenticate a synchro-
nization message by adding a MIC once the MAC layer timestaragded, assuming the two nodes
performing pair-wise synchronization share a secret\pae key through, for example, TinyKey-
Man [57]. This, however, introduces a potential problem whuthe extra delay required by the MIC
generation: Itis necessary to have a MAC layer timestamptlasks the exact transmission time of
a certain bit in the message at the sender’s side, but the Mih@rgtion and insertion require extra

delay and have to be done after the timestamp is insertedhietmessage.
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The delay introduced by MIC generation and insertion canoberdted for sensor plat-
forms with low data rate radio components, such as MICA2 sidtean earlier study [29], Ganeri-
wal et al. attempted to provide authenticated MAC layer sitamping for MICA2 motes (38.4 kbps
data rate) by generating MIC on the fly. Specifically, whenrtdio component of a sensor node
begins to transmit the first byte of a synchronization messiagppends the current timestamp into
the message, calculates the MIC, and appends the MIC intmélssage being transmitted. Due to
the low data rate (38.4 kbps), the MAC layer timestamp andvtt@ can be added into the packet
before the corresponding bytes are transmitted [29]. Hewsanith the increased data rate on recent
sensor platforms with IEEE 802.15.4 compliant radio congms (250 kbps data rate [46]), there
is not enough time to generate and insert the MIC before #restnission of the MIC bytes due to
the delay introduced by the MIC calculation [29].

We propose a prediction-based approach to address the pimhtem. In the following,
we describe our approach, with a specific target of the IEEEI®4 compliant radio component
ChipCon CC2420 [6], which is commonly used in recent sensatfggms such as MICAz and
TelosB motes. We also assume the sensor nodes use TinyQ8gtbpen source operating system

for networked sensor nodes.

Prediction-Based MAC Layer Timestamping and Hardware-Asssted Authentication

We observe that the code for generating a MIC is determiniatid the time required for
a MIC generation for messages with a given length (or, moeeipely, a given number of blocks)
is fixed. In addition, the process to transmit a packet (sftom observing the channel vacancy
to the actual transmission of data payload) in CC2420 is @dgerministic. Thus, when we put a
timestamp into a synchronization message to be authezdiéatthe MAC layer, we may predict
the time required by MIC generation and at the same time ¢irélge delay between the start of
transmission and the transmission a given bit in the packet.

Let us review how a sensor node (such as a MICAz mote) equipfibch CC2420 radio
component handles packet transmission on TinyOS. Figliretdws the transmission and receiving
process. When a node has a message to send, its micro-tmrfirst transmits the message to the
RAM (TXFIFO buffer) of the CC2420 radio component. After thaffering is done, CC2420 sends
a signal to the micro-controller. Atthis time, if the radizemnel is clear, the micro-controller signals
CC2420 to send out the packet with a STXON strobe. Othenitigdl] backoff randomly and then
test the channel again. After receiving a STXON signal, 0% st sends 12 symbol periods, with
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Figure 3.1: Packet sending and receiving process in paie-tiine synchronization

4 bits in each symbol, and then sends 4 byte preamble and bb$tart of Frame Delimiter (SFD)
field, followed by 1 byte length field and the MAC Protocol Déatait (MPDU). The sequence of
events follows strict timing, and the delays introduced bpfathem are predictable.

We use the last bit of the SFD byte as the reference point e 8ynchronization. In
other words, the sender takes the transmission (comp)dtine of the last bit of SFD as the MAC
layer transmission timestamp, and the receiver marks tbeivieag time of the same bit as the
receiving timestamp. To allow the sender to perform MAC taymestamping and authentication,
as mentioned earlier, we can predict the time when the lasf I8§FD will be transmitted.

Sender Side:Now let us describe our proposed sending process in detagurie the sender has
started sending a synchronization message to the RAM (T@Hlkfer) of CC2420. At this time,
the timestamp field in the message has not been filled. Upomletion of the transfer, CC2420
sends a signal to the micro-controller, which then startglhiag the signal in the MAC layer. If
the radio channel is clear, the micro-controller generatésmestamp by adding the current time
with a constant offsef\. This constant offsef\ is the time delay from checking the current time
to the transmission of the last bit of SFD. The micro-comgérolhen writes the timestamp directly
to the corresponding bytes in CC2420’'s TXFIFO. Next, if tadio channel is still clear, it signals
CC2420 to send out the message with a STXON strobe. Otheriseks off for a random period
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of time and then repeats the above process. (Note that toietbavill force the micro-controller
to write the MAC layer timestamp again when the same messagebe re-transmitted.) Upon
receiving the STXON signal, as described earlier, CC24@fisstransmitting the symbol periods,
the preamble, the SFD, and the MPDU. In the case when CC2428uxxessfully transmit the
packet, the execution and the data transmission are batmdetstic, and the delag is a constant.
The delayA we obtained on MICAz motes is 399.28. This includes the total transmission time
for the 12 symbol periods, preamble and SF2(4+(44-1)+8)/250,000 = 0.000352 s = 352 us)
and the execution time between checking the timestamp anithgtthe transmissiont{.28 us).

In our implementation, we have CC2420 start the in-line entilcation to generate the
MIC of the message at the time when it begins to transmit timebsy periods. According to the
manual of CC2420 [6], the in-line authentication componenCC2420 can generate a 12-byte
MIC on a 98-byte message in 3. Thus, we can easily see the MIC generation can be completed
before it is transmitted. Besides the MIC, CC2420 also geaera 2-byte Frame Check Sequence
(FCS) using Cyclic Redundancy Check (CRC).

Receiver Side:After an approximately 2:s propagation delay [6], the radio component CC2420
on the receiver node will receive the preamble of an inconmmagssage. Once the SFD field is
completely received by CC2420, the SFD pin will go high tonsigthe micro-controller, which
then records the current time as the receiving timestamgertte FIFOP pin goes low, the micro-
controller will be signaled to read the data from CC2420'sHR>O buffer, in which the first byte
indicates the length of the message. During the receivinggss, CC2420 performs in-line verifi-
cation of the MIC (and the CRC) in the message, using thewiai-key shared between the sender
and the receiver. The micro-controller examines the vatifio result, and copies the whole packet
if the packet is authenticated. All these operations arfopeed in the MAC layer, and transparent
to the application layer.

Unlike the deterministic delay on the sender’s side, theydelffecting the receiving
timestamps on the receiver’s side is not entirely detestimi When interrupt is disabled, the
micro-controller will not be able to get the SFD signal imrizgelly, and the resulting delay will be

uncertain.
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Figure 3.2: Revised secure single-hop pair-wise synchabioin

3.2.2 Secure Single-Hop Pair-Wise Synchronization

Given the authenticated MAC layer timestamping capabilitg can now describe how
two neighbor nodes can perform secure pair-wise time spmctation.

Let us take a look at our options. RBS uses a receiver-racajygroach to synchronize
nodes [26], in which a reference node broadcasts a refeianeet to help pairs of receivers to
identify their clock difference. However, an adversary campromise it by simply launching a
pulse-delay attack [29] or wormhole attack against one @hibdes to manipulate the packet trans-
mission delay [44], so that the two nodes receive the refer@acket at different times. In some
protocols such as FTSP [63], one node passes its own time twthler by directly sending a MAC
layer timestamped packet to the latter. This works well inifpe environments, as demonstrated
in [63]. However, in hostile environments, it suffers froetsame problems mentioned above.
TPSN uses a sender-receiver approach (through one requbsinea reply message) to help the
sender obtain its clock difference from the receiver [31hisTapproach was later improved with
security in Secure Pair-Wise Synchronization (SPS) [29eal with pulse-delay and wormhole
attacks. Specifically, it authenticates the messages legicltanged, and uses the timestamp infor-
mation to estimate both the clock difference and the trassion delay. Pulse-delay and wormhole
attacks that manipulate packet transmission delay wilbdhice extra delay in message transmis-
sion, and will be detected.

We adopt the SPS approach [29] with a slight modification. 863 a random nonce to
prevent replay of a previously transmitted reply messageur case, we simply use the sender’s
timestamp in the reply message to prevent replay attackatate can further reduce the message
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size.

Figure 3.2 shows the revised SPS protocol, in which all mgssare timestamped and
authenticated with the kel 45 shared by nodes A and B, as described in Section 3.2.1. Node A
initiates the synchronization by sending messagie The message contaidg;’s sending time
t1. Node B receives the message tat After verifying the message, at timg, node B sends
a messagel/, that includests, ts to node A. When node A receives the message att can

calculate the clock differenca 4 p = %2“4_“)

, and the estimated one-way transmission
delayds = % Since all messages are authenticated, any modificationytongssage
will be detected. To prevent the pulse-delay attacks [28vaormhole attacks [44], node A verifies
that the one-way transmission delay is less than the maxiexmacted delay. As a result, the
sender A can easily detect attempts to affect the timeliaEse synchronization messages. Thus,
our revised SPS achieves the same degree of security asghmbone with smaller messages.
Note that the revised SPS protocol only enables the sendetio(dbtain the clock dif-
ference with the receiver (B). If the receiver (B) also nettuls information, it has to initiate this
protocol with the sender (A) as well. An alternative is tofpen a three-way message exchange

so that both nodes will get the clock difference at the endhefgrotocol execution. However, in
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such a three-way protocol, both the sender and the receiwer to maintain their states at the in-
termediate protocol steps, and each node has to carefullytaimaits states to avoid interference
when it is involved in multiple concurrent synchronizasonith different neighbors. The additional
space requirement and the increased software complexitgtstrictly justify the possibly reduced
communication overhead.

We tested 30 pairs of nodes in our lab to obtain the synchatiniz precision. After two
nodes finish a pair-wise time synchronization, a third eziee node broadcasts a query to them.
Each of the node records the MAC layer receiving time of thealicast message and sends the
receiving time to the reference node. This allows the refeanode to calculate the synchronization
error. Figure 3.3 shows the distribution of the pair-wisacyonization error. We present the
sources of the message delivery delays in Figure 3.4. Thefomthe CPU to access current time
is deterministic and less than 1 tick. The CPU can add theentitime stamp into the buffered
message in less than 2 ticks. The time for adding timestardptesministic too. The propagation
time depends on the distance between the sender and theereeed it is highly deterministic. The
uncertainty is mainly because of encoding/decoding tinmekthe jitter of the interrupt handling.
The encoding time is for the radio to encode and transfornrtzopthe message to electromagnetic
waves; the decoding time is for the radio to transform anddethe message from electromagnetic
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waves to binary data. Note, the encoding and decoding tinegsnat be the same on the sender
and the receiver. When encoding, each byte is divided intosywmbols, 4 bits each. Then, each
symbol is mapped to one out of 16 pseudo-random sequencehjB2each. The chip sequence
is transmitted at 2 MChips/s, with the least significant dngmsmitted first for each symbol. The

receiver performs the reverse process when decoding. The gif interrupt handling is caused

by the disabled interrupt on the message receiving side.efioe span can be further reduced by
having a smaller tick size; however, this will also increffse overhead in maintaining the clock

ticks through interrupt handling.

3.2.3 Security Analysis

The secure single-hop pair-wise time synchronization haedware-assisted in-line authentication,
providing authentication of the source and the content nEkkonization messages. Moreover, it
uses a two-way message exchange to estimate both the cféalendce between direct neighbors
and the transmission delay, and can detect attacks thaigtte mislead time synchronization by

introducing extra message delays. Thus, it provides piioteof the source, the content, and the
timeliness of single-hop pair-wise synchronization mgesa Specifically, this technique effectively
defeats external attacks that attempt to mislead singbepladr-wise time synchronization, includ-

ing forged and modified messages, pulse-delay attacks, amdhele attacks that introduce extra
delays. This technique cannot handle DoS attacks that etempjam the communication channel.

Nevertheless, no existing protocol can survive such exdrBoS attacks.

3.3 Implementation Details

Our implementation is targeted at MICAz motes [4]. (Howewer implementation can
be used with slight modification for other sensor platfortret tilso use CC2420 radio components,
such as TelosB [7] and Tmote Sky [8].) MICAz has an 8-bit micomtroller ATMegal28L[1],
which has 128 kB program memory and 4 kB SRAM. As discussdibeavICAz is equipped with
the ChipCon CC2420 radio component [6], which works at 2.2@&dlio frequency and provides up
to 250 kbps data rate. CC2420 is an IEEE 802.15.4 compliaritdRBceiver that features hardware
security support.

In the following, we give a few details that are critical f@peating our implementation.
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3.3.1 Exploiting Hardware Security Support in CC2420

The hardware security support featured by CC2420 providedypes of security opera-
tions: stand-alone encryption operati@ndin-line security operationThe stand-alone encryption
operation provides a plain AES encryption, with 128 bit plaéxt and 128 bit keys. To encrypt a
plain-text, a node first writes the plain-text to the stataha bufferSABUF, and then issues a SAES
command to initiate the encryption operation. When theygtmn is complete, the cipher-text is
written back to the stand-alone buffer, overwriting thampizxt.

The in-line security operation can provide encryption,rgption, and authentication on
frames within the receive buffer (RXFIFO) and the transraitdr (TXFIFO) of CC2420 on a frame
basis. It supports three modes of securigunter mode (CTREBC-MIC, andCCM. CTR mode
performs encryption on the outgoing MAC frames in the TXFIbi@¥er, and performs decryption
on the incoming MAC frames in the RXFIFO buffer. CBC-MIC modan generate and verify
the message integrity code (MIC) of the messages. The laesfgihiC can be adjusted. CCM
mode combines CTR mode encryption and CBC-MIC authenticati one operation. All the three
security modes are based on AES encryption/decryptiorgusi8 bit keys.

We use the CBC-MIC mode to authenticate both pair-wise aobajlsynchronization
messages. A sender can use in-line CBC-MIC mode to gendrat®IiC for both pair-wise and
global synchronization messages in the MAC layer after thesage has been written to the TX-
FIFO buffer.

The receiver side, however, is slightly different. When eereer receives a pair-wise
synchronization message, since it already knows the sekest shared with the sender, it can
use the in-line CBC-MIC mode to verify the MIC before the naggs is read from the RXFIFO
buffer. However, for the global synchronization message$ore receiving the disclosed key, the
receiver cannot use in-line authentication to verify th&ht the message. Because the receiver still
needs the RXFIFO buffer to receive other messages, it candfatr the message in the RXFIFO
buffer while waiting for the disclosed key. Thus, we have theeiver read the message from
RXFIFO and buffer it in its local memory. When the key is reegl, the receive uses the stand-
alone mode to authenticate the buffered global synchrboizanessages. Since the stand-alone
mode only provides single-block encryption functionalitye implemented the CBC mode based

on the hardware support.
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3.3.2 Handling Timers

Using timers on MICAz is a tricky issue; improper uses ugukdhd to unexpected re-
sults. The micro-controller ATMegal28 provides two 8-bitérs (Timer0, Timer2) and two 16-bit
timers (Timerl, Timer3) [1]. In TinyOS, Timer 0 is mainly usas one-shot or repeat timers for
applications. For MICAz, Timer 2 is used by CC2420 as a higdtision timer (32us per tick) to
backoff the sending packets for a short period of time. Tiheés used by CC2420 for capturing
radio packet transmit and receive events. In our implentientave use the remaining 16-bit Timer
3 to maintain the local clock and schedule the message tissism

ATMegal28L uses a 7.3728 MHz crystal oscillator as 1/O clsclrce, whose accuracy
is +40ppm [6]. In our implementation, we divide the 1/O clock by 64 ag tbource of Timer 3,
thereby achieving a 115.2 kHz Timer 3, with a 8.68 time resolution. Timer3 provides three
compare match registersCR3A/B/Q, each connected with an interrupt vector. If the compare
match interrupt is enabled, whenever the value of TimerSNT8) equals to the value of one
compare match register, it will trigger an interrupt to hignthe event. Each node uses compare
match register A to maintain a 48-bit logical clock. The waaf Timer3 (TCNT3) is 16 bits, and it
will overflow every 568.8 ms. We add another 32 bits to havegachd clock that will not overflow
for over 77 years Each node sets compare match register BimgHapair-wise synchronization
with its neighbors periodically. The source node will usenpare match register B to initiate the
global synchronization periodically. Each node uses compaatch register C to send its global
synchronization message in its nearest spOESLA interval and disclose the key in the adjacent
long uTESLA interval.

3.4 Summary

In this chapter, we presented a secure single-hop pair-iivise synchronization tech-
nique based on hardware-assisted, authenticated MAC tiayestamping. This technique exceeds
the capability of previous solutions. In particular, uslithe previous attempts, our technique can
handle high data rate such as those produced by MICAz matexofitrast to those by MICA2
motes). This technique provides protection of the soufeecbntent, and the timeliness of single-
hop pair-wise synchronization messages. It can effegtiglefeat external attacks that attempt to
mislead single-hop pair-wise time synchronization. Welamngent the proposed techniques on MI-
CAz motes running TinyOS. The secure single-hop pair-wiise synchronization serves as the
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building block to achieve the secure and resilient globaletisynchronization in Chapter 5 and
Chapter 6.
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Chapter 4

Fault-Tolerant Cluster-Wise Time

Synchronization

In wireless sensor networks, it is usually necessary to laaghuster of nodes share a
common view of a local clock time, so that the nodes can coatditheir actions. For example, in
time slotted MAC protocols, the multiple access to the sthammmunication medium is achieved
by assigning time slots to a group of nodes. Sensor nodestodmale a synchronized clock to
access their time slots without colliding with other nodas.another example, to increase the en-
ergy efficiency, a cluster of sensor nodes may frequentlyckminto power-saving sleep mode at
the same time [100]. They also need a common clock to codediheir sleep/listen periods. In
benign environments, such a local common clock can be easllieved by having all the nodes
synchronize to a given node. However, in hostile envirorisiamere some nodes may be compro-
mised, it is quite challenging to synchronize the clocks agna cluster of nodes. Indeed, none of
the aforementioned time synchronization protocols camgimalicious actions by compromised
nodes. A compromised node may disrupt the time synchrooizdity sending different time to
non-compromised nodes. For example, when RBS [26] is usefddio-wise synchronization, a
compromised node may provide different non-compromiseteadlifferent time values about the
receipt of the reference packet.

We develop a novel fault-tolerant cluster-wise clock syoafzation scheme for clusters
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of sensor nodes, where the nodes in each cluster can comateumiith each other directly through
broadcast [92]. In each round of time synchronization, arlg node serves as thgnchronizer
and only one authenticated synchronization message isltmea Thus, our scheme can avoid
the message collision problem in the previous schemes. fdpmped scheme exploits a recently
proposed local broadcast authentication technique fasasemetworks, which is purely based on
symmetric cryptography [104], thus avoiding the costhitdigsignature for message authentication.
Our analysis shows that the proposed scheme guarantees@nhgund on the clock difference
between nonfaulty nodes when no more thga of the nodes are compromised and collude with
each other. In Section 4.3, we propose a secure distriblistec formation algorithm which can
divide a whole sensor network into multiple mutual disjosfijues [91]. Then, we can run our
fault-tolerant cluster-wise clock synchronization sclkkameach clique.

4.1 Cluster-Wise Time Synchronization Model

In this section, we describe our model for fault-toleramic&l synchronization in sensor
networks, which is adapted from [22]. For readers’ convergg Table 4.1 lists the notations used

in this chapter.

Table 4.1: Notations in fault-tolerant cluster-wise tinyachronization

n The number of nodes in a cluster
m  The number of colluding malicious nodes in a cluster
C;(t) Clock time at node when the real time is t
P Maximum drift rate of all well-behaved clocks
P Maximum message transmission delay between two neighipandes
€ Maximum clock reading error
Synchronization interval
beg!  The real time at which the first nonfaulty node startsfitth logical clock
end!  The real time at which the last nonfaulty node startg'its logical clock
§  Maximum clock drift oveffend/, end’+1] for any f

~

=

Sensor nodes usually contain inexpensive crystal osmiiatand the typical clock drift
rate is tens of microseconds [81]. A clo€kis consideredvell-behavedf its rate of drift from the
real time is bounded by a constant> 0 for all the real time point¢; andty, wheret; < t,. The
rate of drift between any two well-behaved clocks is bounigd = p(2 + p)/(1 + p), which is
less tharkp.
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A sensor node isonfaultyif it correctly executes a given time synchronization aiton
and its clock is well-behaved; otherwise, it is a faulty nodée assume that clocks are synchronized
in rounds, each of which consists &f time units. We denote the real time point at which the
first (or the last) nonfaulty node starts ifsth round asbeg’ (or end/). Over the time interval
[end/, end’*1] for any f, there exists a maximum clock drift between any two well-behaved
clocks, i.e.,

6 = 2p(end’ 1 — end”). 4.1)

Suppose a node makes a clock adjustment attiriée useC'(t) andC'* (¢) to represent
the clock time before and after the clock adjustment, rasfdy. Suppose there is an upper bound
1 for a message to be sent by a node, transmitted, and prodagsled recipients of the message.
Suppose nodeé sends a message @%(t;), node; receives the message @j(t2), where0 <
to — t1 < 1, and nodej adjusts its clock taﬁj(h) = C;i(t1). Then,

Ci(tz) — Cf (t2) = Ci(ta) — Ci(t1) <e, (4.2)

wheree = (1 + p)v is the upper bound for the clock reading error, which inctutlee maximum
transmission delay and the clock drift during this delay. &sume at the “starting time}, the
clock difference between two nonfaulty nodeandj is less tharyy, i.e.,

|Ci(to) — Cj(to)| < do. (4.3)

In the next section, we develop a new fault-tolerant clustise time synchronization
scheme for sensor networks. Suppose there exist up to 7 malicious nodes in a cluster of
nodes that can communicate with each other through broadidsh & = % andA =

d + €(1 + 4p), our algorithm satisfies the following two conditions:

e CS1: For any two nonfaulty nodesandj, there exists an upper bound on the clock difference
between them for any real time point. That is, for gl 1, andt € [beg”, beg/*1], |C;(t) —
Ci(t)] < (2km + 1)A + md + 2pe;

e CS2: If a node makes an adjustment to its clock at titnéhere is an upper bound on the
clock adjustment. That i$C'* (t) — C(t)| < kA.
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4.2 Fault-Tolerant Cluster-Wise Time Synchronization

421 Overview

In this chapter, we focus on providing fault-tolerant cl@gkchronization within a cluster
of nodes, where a message broadcast by one node can reduh @thér nodes in the cluster. We
assume that each node has a unigue ID, and every two nodes a@luiier share a unique pair-
wise key. (Such pair-wise keys can be provided by severalpkeglistribution schemes proposed
recently [56, 17, 25].) One node can obtain a unique ID by rahassignment, or derive it from
its physical characteristics. One node can identify arrotioele using the unique pair-wise key
they share. A potential threat against this assumption ligl itacks [24], where a malicious node
impersonates multiple nodes by claiming multiple IDs. Eoately, recent studies [69] show that the
aforementioned key predistribution schemes can redugardioability that an attacker can fabricate
new IDs close to zero even if a fair number of nodes are comisexin An attacker may certainly
increase this probability by compromising a large numbenaifes. However, in such cases, the
whole key predistribution scheme is also compromised, aralrasult, there is no security in such
networks.

Our fault-tolerant time synchronization scheme execute dor everyR time units. For
convenience, we call suchfa time unit period aound In each round, one node in the cluster
serves as theynchronizerwhich broadcasts synchronization message the other nodes; all the
other nodes then synchronize their clocks accordingly.

We assume the clocks of the sensor nodes are synchroniziedlyiniMoreover, we as-
sume the nodes in a cluster agree on the order in which theg asrthe synchronizer. We refer to
this order as theynchronizer orderThere are several ways to meet these two assumptions. +or ex
ample, we may use the approach in [59] to achieve initial 8ymehronization, and adapt algorithm
OM [54] to decide the synchronizer order in a cluster

A practical method to meet the aforementioned assumptierie add a bootstrapping

phase during the deployment of a sensor network. We may usewomultiple trusted external

! Algorithm OM guarantees a group of — 1 nodes agree on a value sent from another node when there rastt
m < 3 malicious nodes [54]. A cluster ef nodes may execute algorithth\/ n times to guarantee that all the nonfaulty
nodes obtain one value from each node. Each node can thefousgample, the XOR of all the values as a seed to
generate the synchronizer order. To prevent malicious s\éiden manipulating the synchronizer order, we may use
algorithm OMmn times to first distribute a set of commitments (e.g., hastg@saof these values, and then execute it for
anothem times to distribute the original values. Though this apphogan be used to decide the synchronizer order in a
cluster in a fault tolerant way, it is not scalable and thuspneferred in practice.
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devices, which maintain well synchronized clocks (e.gioulgh GPS receivers), to facilitate the
bootstrap of the sensor network. It is normally reasonabkessume that the sensor nodes are not
compromised during the deployment of the network. Thusettiernal devices can distribute syn-
chronized initial clock values to all the sensor nodes. A&tthame time, the external devices can
collect neighbor information from the sensor nodes, forostedrs among them, and distribute the
synchronizer order in each cluster. If security is of conadurring the bootstrapping phase, a sym-
metric key may be shared between each sensor node and tdested. The entire bootstrapping
phase can be fully automated, and performed while a sensworieis being deployed. There are
certainly other feasible ways to meet the same assumptions.

In the proposed algorithm, each node maintains a coyfytaritialized as 1 and incre-
mented by 1 in each round. Suppose a node’s clock time regthe® time units, whereR is
the number of time units in each round. If this node is the Byouizer, it immediately broadcasts
an authenticated message to all the other nodes. When aynonrsnizer node receives such a
synchronization message, it examines the message. If tasage is invalid or the sender is not
the designated synchronizer, the receiver simply dropméesage. Otherwise, the receiver adjusts
its clock according to the time when the synchronization sagse is received. (Note that the re-
ceiver can determine that the synchronizer's clock must eR time units after the start of time
synchronization.)

Our scheme works under tlabitrary attack mode[28], in which malicious nodes can
arbitrarily deviate from the protocol (e.g., sending catifig messages to different nodes with
directional antenna) and collude with each other. Becamsgrainication failures can be considered
as sending node failures, we do not consider it separatey.a¥®¥ume an attacker may replace a
compromised sensor node with a resourceful node (e.g.taplapith directional antenna), thus
gaining advantage over the regular nodes. Since we onlyataret the clock difference between
nonfaulty nodes, for brevity, we will use “the maximum cladiference” to mean “the maximum
clock difference between any two nonfaulty nodes”.

In the following, we first discuss the authentication of thedulcast synchronization mes-
sages, then describe and analyze the proposed scheme, alyddompare the proposed scheme

with several traditional fault-tolerant time synchroti@a schemes.
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4.2.2 Local Broadcast Authentication

In each round of time synchronization, only one node sergeth@ synchronizer and
broadcasts a synchronization message. To prevent maiciodes from impersonating nonfaulty
synchronizers, each synchronization message must bensiatited.

The proposed scheme does not require a clock value be sesymtlaronization message.
After receiving a synchronization message from the syrmibes, a node knows how to adjust
its clock. Thus, a receiving node only needs to verify that essage is sent from the correct
synchronizer and the message is not replayed by maliciogssno

We adapt a recently proposed local broadcast authenticatioeme for sensor networks
[104] to authenticate the broadcast synchronization ngessaAt the beginning, each node gener-
ates a one-way key chaifix (0, KM . K"} in the following way: K(—1) = F(K®) (1 <
i < 1), where K is a random number, an8l is a one-way function. Each node senki$”)
as thecommitmenbf its key chain to other nodes, authenticated with the shpgedr-wise keys
with those nodes. The keys in the key chain are discloseceimetierse order to their generation.
When a node serves as the synchronizer, it appends the riigtiosed key in the key chain to the
broadcast message. When the other nodes receive the mabsggeerify that the message is sent
from the claimed node using the commitment or the recentgldsed key of the node. Note that
K® = Fi=i(KU)) wheni > j. Thus, even if a node fails to receive all the keys betw&éh and
K@ from a given synchronizer, it still can verify the kéy(? with K9). Due to the property of
one-way function, a malicious node cannot know an undiscd®y belonging to a nonfaulty node.
Each node only accepts the first copy of a broadcast messadjdr@ps the duplicated ones. There-
fore, a malicious node cannot forge or reuse nonfaulty riditeadcast messages. An attacker may
certainly shield some victim nodes from receiving the fighcof the synchronization message, or
create a wormhole [44] between nonfaulty nodes. As a rabeltyictim node may accept a delayed
synchronization message. Such attacks are equivalenviogha malicious node as the synchro-
nizer, and can be handled when the total number of maliciogkielded nonfaulty synchronizers is
no more thann < 7. This broadcast authentication scheme ne€dsnicast messages to exchange
the commitments of all the nodes’ key chains during thedhiation phase.
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4.2.3 Fault-Tolerant Cluster-Wise Time Synchronization Agorithm

The proposed scheme executes one round of time synchrionizaeryR time units. For
simplicity, we assume the “starting time” b8¢° = end” = 0. For any two nonfaulty nodesand
J, |Ci(0) — C;(0)| < €(1 + 4p). Each node maintains a countéby increasing it by one in each
round of time synchronization. Initiallf = 1. We assume each noddas generated a one-way
key chain, and exchanged the commitmﬁ’rﬁ?) with the other nodes.

The algorithm consists of two tasks that run continuouslgach nonfaulty sensor node.
In the first task, if nodé is the synchronizer for thé-th round of synchronization, when its clock
time reache¢’ = f x R, itimmediately broadcasts a synchronization messageffi(”/"n" to all
the other nodes, whem; is nodei’s ID and KZ.(W”D is the key in nodé’s key chain that is used
for authentication in the¢'-th round.

In the second task, when a node receives a synchronizatiesage at its clock time
T in the f-th round of time synchronization, if < f x R—xz orT > f x R+ z, the node
drops the message. In our algorithm~= (2km + 1)A + mJ is the maximum clock difference
between any nonfaulty node and a nonfaulty synchronizeersvtv is the number of malicious
nodesj = ";ﬁ;ﬁ ,andA = §+¢(1+4p) is the maximum clock difference between any two nodes
if all the nodes are nonfaulty. Otherwise, it verifies thatl@dv; is the correct synchronizer and it
is the first time to receive th&!//"V and F(k(//"D)y = k{[7/"1=D \whereF is the one-way
function andKZ.([fM_l) is the key received from noden the (f — n)-th round or the commitment.

If the message cannot pass these verifications, the nods trepnessage. Otherwise, the node
calculates the clock differencd = f x R — T and performs the following clock adjustment: if
|A| < kA, the node adjusts its clock time by addifg if kA < A < z, it increases its clock
time by kA; if —x < A < —kA, it decreases its clock time byA. The node also increments
the counterf by 1. If the node does not receive an authenticated synctatioin message for the
current round by the tim¢ x R + x, it increments the countef by 1 and enters the next round.
Our algorithm guarantees that the synchronized nodes anaitte same countgrafter each round
of time synchronization.

A node may lose synchronization from a cluster, for examghle, to long-term commu-
nication failures. If this failure node is able to re-esisibldirect and secure communication with
the other nodes in the same cluster, it may attempt to redomer such a failure. One possible
approach is to request the current clock values from all theronodes and then determine the local

clock value by choosing the median. (Note that this node eailyedetermine the counter valife
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using the recovered clock value and the synchronizatiervat R.) If the majority of these nodes
are non-faulty and have been maintaining synchronizeds|dben there must exist two non-faulty
nodesn; andns, whose clock values arg, andTs, respectively, such that the above median clock
value is betweefi} andT5;. In other words, the failure node can successfully set @allolock to a
value in the acceptable range. However, in other casesailiesf node is not guaranteed to recover.
Algorithm 4.1 shows the pseudo code. Because all the nodes ag the synchronizer in
a round robin fashion, we refer to our schemesgachronizer Ring (SRJgorithm. To ensure that
clocks are never set back, we may further adapt the techpiguymsed in [53], which spreads each
synchronization adjustment over the next synchronizgemod. Due to the space limit, we omit
the details. In the following, we first examine the proposethhique when there is no malicious
participant, and then investigate it when there are catigdittacks from compromised nodes.

Lemma 4.2.1 After a nonfaulty node adjusts its clock to a nonfaulty synchronizes clock att{,
wherebeg! < t! < end/, foranyt e [t/ end’], —2pe < C,(t) — Ci(t) < e(1 + 2p).

Proof: For the right part, by inequality 4.2, we hagg(t) — C;(t) < \Cs(tlf) — Ci*(tlf)! +2p(t —
t1) < e+2p(endf —beg!) < e(142p). For the left part, by inequality 2.1, we hai@;(t)—Ci(t)) —
(CF ) = Co(#]) < 1(Cult) = CF(t]) = (Cs(t) = C(t])] < 20(t — t]) < 2pe. By inequality
4.2, we have-e < C;r(tlf) — Cs(tlf) < 0. Thus,C;(t) — Cs(t) < 2pe + (C;r(tlf) - C’S(t{)) < 2pe.
Together, we have-2pe < Cs(t) — C;(t) < e(1 4 2p).

Theorem 4.2.2 Suppose for any two nodéand, |C;(end®) —Cj(end®)| < e(1+4p). If all nodes

are nonfaulty, Algorithm SR is executed, and there is no aamwation failure,|C;(t) — C;(t)| <

§ + e(1+ 6p) for all t > end®.

Proof: First, we prove by induction that for aff > 0,

Ci(end’) — C;(end”)| < €(1 + 4p).
From the assumption, we ha\@;(end") — Cj(end®)| < €(1 + 4p). Suppose at time poirtnd/,
|C;(end’) — Cj(end”)| < €(1 + 4p), we need to prove that at time pointd’ !, |C;(end/ 1) —
Cj(end’ )| < e(1 + 4p).

Suppose théf + 1)-th synchronizer is. Since there is no communication failure, fur-
ther assume nodésand; adjust their clock times et{“ andtf“, respectively, wheréeg/+1 <
t[*1 < t/*! < end/*'. We consider three time intervals separated/By andt/*" in [end, end/*+1].
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Algorithm 4.1 Synchronizer Ring

Initialization
feolik e T05e A= 4 (14 4p); & — (2km + 1)A + md;
Task 1: Send

if (C = f x R)and QOrder(N;) = f modn) then
Broadcast a messag@’;| K| f [/ ””";

end if

Task 2: Receive
if (Receive a messag@JHKi( [F/mD)» gt T) then
if (fx R—2 <T < fxR+az)and (F(K /"y = kK/"=Yy and Order(N;) = f mod n)
then
A—fxR-T,
if kA <A <z then
A — kA:;
elseif—x < A < —kA then
A — —EkA;
end if
Ce—C+A fe—f+1;
else
Drop the message;
end if
end if
if Has not received a correct synchronization messaggé by + x (Note that this may be implemented
as a timer.then
f—=r+1

end if
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Foranyt € [end/, /™), by inequalities 2.1 and 4.1, we hal@ (t)—C;(t)| < |Ci(end/)—
Ci(end”)| + 2p(t — end’) < e(1 + 4p) + 6.

Foranyt € [t/*',t/*), by Lemma 4.2.1, we have2pe < Cy(t) — Ci(t) < e(1 + 2p).
For nodej, if Cs(t) > C;(t), we haved < Cs(t) — Cj(t) < |Cs(end’) — Cj(end’)| + 2p(t —
end’) < e(1+4p) + 6. Thus, we haveC;(t) — C;(t)| < §+€(1+6p). If Cs(t) < C;(t), we have
0 < Cj(t) — Cs(t) < 0 + 2pe, and thenC;(t) — C;(t)| < 0 + €(1 + 4p). Considering both cases,
we have|C;(t) — C;(t)| < § + e(1 + 6p).

Foranyt € [tf“, end/*1], by Lemma4.2.1, we have2pe < Cs(t)—C;(t) < €(1+2p),
and —2pe < Cy(t) — Ci(t) < €(1 + 2p). Therefore, we haveC;(t) — C;(t)| < e(1+ 4p). In
Ci(end’*1) — Cj(end/*1)| < e(1 + 4p). Thus,|C;(end’) — Cj(end”)| < e(1 + 4p)
forall f > 0.

According to the above proof, we can see that forfalt 0 and anyt € [end/, end/*1],

particular,

|C;(t)—C;(t)| < §+€(1+6p). Thus, the inequality holds for ary> end® as long as the algorithm
is executed.

The maximum clock differencé + ¢(1 + 6p) can only be reached between two non-
synchronizer nodesandj during [beg/ ™!, end/*1]. During [end/, end/+1], the clock difference
between nodé (or nodej) and the synchronizes is at mostA = § + ¢(1 + 4p), which is the
allowable maximum clock adjustment when all nodes are nityfa

Now let us consider the cases where there are colluding imadicynchronizers.

Lemma 4.2.3 If the f-th (f > 1) synchronizer is malicious, it can increase the maximunckclo

difference by at motkA + 6 during [beg” , beg/+1].

Proof: According to Algorithm 4.1, a nonfaulty node adjusts itsolidoy at most:A in one round.
Thus, overlbeg’, end’], a malicious synchronizer can increase one nonfaulty sadeck time by

at mostkA, while decrease another nonfaulty node’s clock time by astrhd. (The malicious
synchronizer may use directional antenna to launch suahlat) Moreover, over the time interval
[beg! , beg/ 1], the maximum clock drift i$. In total, one malicious synchronizer can increase the
maximum clock difference by at mo2kA + 4.

Lemma 4.2.4 Suppose two nonfaulty nodeandj synchronize to a nonfaulty synchronizeat tlf

and t;.c, respectively, whereg/ < t/ < tf < end’. 1f |Cy(t]) — C;(t])] < kA and ]Cs(tf) -
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C(t))] < kA, then|Cj(end”) — Cj(end”)| < e(1 + 4p).

Proof: According to Algorithm 4.1, becausé€’,(t/) — Ci(t/)| < kA, nodesi adjust their clocks
to the synchronizer’s clock af By Lemma 4.2.1, when = end/, we have—2pe < C,(end’) —
C;(end”) < €(1+2p). For nodej, we have a similar result, i.e52pe < Cs(end’) — Cj(end’) <
(1 + 2p). Thus, we havéC;(end’) — Cj(end’)| < e(1 + 4p).

Lemma 4.2.5 Suppose duringpeg’*1, end/*1], the maximum clock differenc® is between node
i and nodej. If A < (2km + 1)A + md and the(f + 1)-th synchronizer is nonfaulty, for any
t € [end/ ™ beg!™2), |Ci(t) — Cj(t)| < MAX (A — (k— 1)A, A).

Proof: Suppose nodé andj adjust clocks at time; and¢;. If A < kA, by Lemma 4.2.4, for
anyt € [end/ 1 beg/t2), |Ci(t) — C;(t)| < |Ci(end' 1) — Cj(end’ )| + 2p(t — end’*1t) <
e(1+4p) +0=A.

WhenkA < A < (2km + 1)A + mé, if nodei is the synchronizer, according to our
algorithm, nodej adjusts its clock wittk A att;. We have C;(end/ 1) — C;(end/™1)| < |Cy(t;) —

CiF (tj)|+2p(end™™ —t;) < (A—kA+e)+2pe. Soforanyt € [end/t!, beg/+2], by inequality 4.1,
we have C;(t)—C; ()| < |Ci(end/T1)—Cj(end/T1)|+2p(t—end*1) < A—kA+e(1+2p)+6 <
A — (k —1)A. When nodgj serves as the synchronizer, we have the same result.

If neither node nor nodej is the synchronizer, because the maximum clock differesice i
betweeni andj, the nonfaulty synchronizer's clock time must be between these two nodes’ clock
times. If|C;(t;) — Cs(ti)| > kA or |C;(t;) — Cs(t5)] > kA, node: or j adjust clocks by:A, for
anyt € [end’*1, beg/*?], we havelC;(t) — C;(t)| < A — (k—1)A. If |C;(t;) — Cs(t;)| < kA and
|C;(t;) — Cs(t;)| < kA, by Lemma 4.2.4, for any € [end/ ™1, beg/ 2], we have C;(t) — C;(t)| <
d+€(1+4p) = A.

So for anyt € [end/*1, beg/*2), |Ci(t) — C;(t)] < MAX(A — (k — 1)A, A).

Lemma 4.2.6 Whenn > 3m, Algorithm 4.1 satisfies the following conditions: (1) Fdk & > 1
andt € [beg/,beg/*1], given any two nonfaulty nodesindj, |C;(t) — C;(t)| < (2km + 1)A +
md + 2pe; (2) If a node makes an adjustment to its clock at tinaen|C ™ (¢) — C(t)| < kA.

Proof: Condition 2 is easy to prove, sing® is no greater thaiA according to Algorithm 4.1.

Now we prove Condition 1 by induction.
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By inequalities 4.1 and 4.3, fdre [beg®, begt], |Ci(t) — C;(t)] < & + €(1 +4p) = A.
Suppose fof) < h < f, andt € [beg", beg" 1], |C;(t) — C;(t)| < (2km + 1)A + m§ + 2pe. We
need to prove that far € [beg”, beg/ 1], |C;(t) — C;(t)| < (2km + 1)A +mé + 2pe. We prove it
by contradiction.

We assume that fare [beg’, beg/ T1], |Ci(t) — C;(t)| > (2km + 1)A + m§ + 2pe. By
Theorem 4.2.2)+¢(1+6p) is the maximum clock difference if all the synchronizers moafaulty.

By Lemma 4.2.3, one malicious synchronizer can increasmthemum clock difference by at most
2kA + 4, so the maximum clock difference that is greater thai2kA + §) + 6 + (1 + 6p)e can
only be accumulated by at least + 1 malicious nodes. However, since there exists at most
malicious nodes, at least one malicious node has serve@ agiichronizer twice, and increase the
maximum clock difference by more thakA+§. Suppose it served as-th andr,-th synchronizer,
wherery = r1 +n < f. According to our hypothesis, farc [beg™, beg™+1], |Ci(t) — C;(t)| <
(2km + 1)A + mod + 2pe. Within [beg™, beg™], all then — m nonfaulty nodes have served as
the synchronizer at least once. By Lemma 4.2.5, one nogfaugtle can reduce the maximum
clock difference by at leagk — 1)A if the maximum clock difference is greater tha. Because

n

k= % we have(n — m)(k — 1)A = 2kmA + md, which means:, — m nonfaulty nodes
can eliminate the clock difference accumulatedrbymalicious nodes. Thus, one malicious node
can contribute at mogtkA + § into the maximum clock difference, contradicting to theussption.
Thus, we have proved that forc [beg/, beg/ 1], |Ci(t) — C;(t)| < (2km + 1)A + mé + 2pe.

Based on Lemma 4.2.6 and Algorithm 4.1, we can see the tHdssba the maximum
clock difference and the maximum allowable adjustment aset on the following parameters:
€, p, n, andm. All the parameters except férare either system parameters or measured from the
physical characteristics of well-behaved clocks, and timesbounded. 19 is also bounded, both
thresholds will be bounded. As a result, Algorithm 4.1 is altféolerant clock synchronization

algorithm whem > 3m. Next we show this is indeed the case.

Lemma 4.2.7 The synchronization interval is bounded. That is, forfatt 1, beg/ ™' — beg/ < y,

andend™! — end’ < y, wherey = ((4km + 2)A + 2mé + R)(1 + p).

Proof: A nonfaulty node may start it§-th round no earlier thaii x R — ((2km + 1)A +md), and

no later thanf x R + (2km + 1)A 4+ mJd even if it receives no synchronization message.
Suppose node is the first one to start itg-th clock, we haveCf(begf) > fxR-—

((2km~+1)A+md). If nodei is also the first one to start itg +1)-th clock, we havce?{(begf“) <
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(f+1)x R+(2km+1)A+mé. Then, we have! (beg/+1)—C/ (beg?) < (4km+2)A+2mé+R.
By inequality 2.1peg/ ! — beg! < ((4km +2)A 4+ 2mé + R)(1 + p). If nodej (instead of node
1) starts its(f + 1)-th clock first, suppose nodestarts its(f + 1)-th round atbeglf+1, where
beg/t1 < beg/ . According toC/ (beg! ™) — Cf (beg?) < (4km + 2)A + 2mé + R, we
havebeg! ™' — beg! < ((4km + 2)A + 2ms + R)(1 + p). Becausebeg/t! < beg/ !, we get
beg/ t1 —beg! < ((4km+2)A+2md+ R)(1+ p) = y. Similarly, we can prove that for aff > 1,
end’ ! —end! < y.

Lemma 4.2.8 For all f > 1, over the time intervalbeg”, beg/+1], 6 < = 2ol
n—3m

+m+1)"

Proof: By inequality 4.1, over the bounded synchronization irdéprovided by Lemma 4.2.7, the

clock drift is at most < 2p((4km + 2)A + 2md + R)(1 + p), whereA = ¢ + ¢(1 + 4p). By

2p(R+(4km+2)e)

T dphmtmt )" BecauseR > ¢, by dropping the higher

a little algebraic calculation, we gét<

order term2p(4km + 2)e compared t@2pR, we haves < %. Fromk > = 0cis
2pR

1—dp( 2R tm 1)

when usingt > —%—, we gety <

n—3m’

Theorem 4.2.9 Whenn > 3m, Algorithm 4.1 is a fault-tolerant clock synchronizatiolgarithm

with (2km + 1) A +md + 2pe as the upper bound of the clock difference &ndas the upper bound

n—m

of clock adjustment, whelfe= ——*< and A = § + €(1 + 4p).

Proof: Trivial based on Lemmas 4.2.6 and 4.2.8.

e(1+4p) &(1+4p) 2KA+A AKA+A+S 3kA+2A+6  2KA+3A+E
/ begl _/ beg? _/ beg3 / beg“ / beg’ /
beg°=::nd° /' end! /- end? end? end* end’
A 2kA+A+S 4kA+A+28  3kA+2A+28

= Malicious Synchronizer e  Nonfaulty Synchronizer A=5+g(1+4p)

Figure 4.1: Maximum clock difference in cluster-wise tinymshronization.

Figure 4.1 shows an example of the changes on the maximurk difference. The
first synchronizer is nonfaulty. Durinfbeg!, beg?], the maximum clock difference is less than
A =0+ €(1 + 4p). The second and the third synchronizers are both malicemu they collude
to increase the maximum clock differencedfeA + A + 25. The fourth synchronizer is nonfaulty,
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Figure 4.2: Theoretical v.s. average maximum clock difiees in simulations.

and decreases the maximum clock difference to at oAt + 2A + 2. We can see that all the
malicious nodes can introduce the same amount of maximueok &oor into the maximum clock

difference, and their order serving as the synchronizeramak difference.

4.2.4 Discussion

Theoretical v.s. Average Maximum Clock Differences. Theorem 4.2.9 gives an upper
bound of the maximum clock difference between nonfaultyasosthen no more than < 3 nodes
are compromised and collude with each other. However, thémuen clock difference is reached
only when them colluding malicious nodes serve as the synchronizer in aaad the probability
that this happens is onlf,, = %

To understand the maximum clock difference that is generathched in practice, we
performed a series of simulation experiments. Figure 4d®vshthe theoretical maximum clock
difference and the average maximum clock difference rehthe simulations. We pickedto be
10, 25, and 50, respectively. For each data point, we us@&®,000 different random synchronizer
orders. The nodes are synchronized once every 2 minutes|dtle drift ratep is 1079, ande is
0.0001 seconds. Our results indicate that wheis greater than 5, the maximum clock difference
achieved in the simulations is on average less than halfeafhioretical bound.

Combining with MAC Protocols. In atime slotted sensor network, the sensor nodes are
divided into clusters, and at any time, only one node in eaadter is allowed to access the wireless

communication medium. Time slotted MAC protocols requitecal clock synchronization in each
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cluster to assign time slots to sensor nodes, and our schemi@eased to provide such local clock
synchronization. For example, when the time slot size meconds and each cluster hasodes,
we can set the synchronization intervalls= k x n x tg, wherek is an integer ané > 1. Suppose
noden; is assigned theé-th slot for everyn time slots. Node:; can broadcast a synchronization
message af x R + i x t, instead off x R. Itis easy to see that our algorithm can be slightly
modified to accommodate this change.

In a CSMA-based sensor network, because all the sensor nodgsete for the wireless
communication medium, the assumption that the transnmisigtay is bounded may not hold. By
[31], the transmission delay mainly consists of send timeess time, propagation time, and receive
time. Since the send time and receive time can be estimateddicg to the length of the message,
and the propagation time is very small and can be ignored,nlyen@ed to deal with the uncertain
access time. Thus, we can bound the access time by resdneingreless channel for the synchro-
nizer to broadcast synchronization messages in a shorinteral. It can be achieved by making
all the other nodes listen to the channel during the timenmatéf x R — =, f x R+ x], wheref is
the round numberR is the synchronization interval, ands the maximum clock difference.

To improve the energy efficiency of sensor networks, se\agptoaches have been pro-
posed to frequently switch sensor nodes into power-savggpanode (e.g., [100]). In such ap-
proaches, sensor nodes are divided into clusters, and thesro the same cluster agree to sleep
(or listen) at the same time. When combining our scheme with power-saving approaches, the
only two requirements are (1) that the nodes transmit atehli® others during the live periods and
(2) that each round of synchronization can finish during eamtfaulty node’s live period. All the
nonfaulty nodes satisfy the first requirement in powertggvnode. The second requirement can be
satisfied if the maximum clock differenaein our scheme is less than half of the listen time defined
in the power-saving approach. Suppose all the nonfaultesiade alive duringf x R—x, f x R+x].
When a nonfaulty synchronizer broadcasts a messagétat= f x R, the other nodes are alive
since at any time, |C;(t) — C;(t)| < x between any two nonfaulty nodesndj. For example,
in [100], the listen time is set to 30@.s, and the sleep time is set to 1 second. According to our
simulation result in Figure 4.3, our scheme can guarantgetie maximum clock difference is less
than 150ms. Hence, our scheme can be combined with [100] to provide siypnehronization.

Cluster Formation In a large sensor network, it is usually not possible to gralliphe
nodes in the same cluster due to physical constraints suttteasommunication range. We need
to divide the nodes into a number of clusters. Both the nunabelusters and the cluster size

depend on the node density of the network, the communicatioge of the sensor nodes, and
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the requirements of different applications. After the reodee divided into clusters in which the
nodes can communicate with each other through broadcasscbheme can be used to provide a
fault-tolerant cluster-wise time synchronization in eatirster.

In Section 4.3, we propose a secure distributed clusterdbom algorithm which can
divide a whole sensor network into multiple mutual disjahtjues even in hostile environments.

4.2.5 Comparison with Previous Techniques

In our proposed algorithm, in each round of time synchrdioza only one node serves
as the synchronizer, and no other nodes need to respondriessage from the synchronizer. As a
result, there will be no collision between the messagedvadan time synchronization (when there
is no malicious attack). In contrast, almost all of the emgstfault-tolerant time synchronization
schemes (e.g., CNV [53], HSSD [22]) require the participasgnd or forward synchronization
messages around the same time. Thus, it is very likely to hessage collisions in such schemes
if they are used in wireless sensor networks.

Moreover, the proposed scheme takes advantage of the bsiadedium as well as a
recently proposed authentication technique for sensavarks [104], and thus does not have to
use costly digital signatures for broadcast authentioatio comparison, several of the traditional
fault-tolerant techniques (e.g., CSM [53], HSSD [22]) rieguligital signatures, which make them
undesirable for resource constrained sensor network® tNat these schemes cannot use this recent
authentication technique [104]. One reason is that theyiredorwarding of received messages. A
malicious node may manipulate a message before forwartiogother nodes. Another reason is
message collision. In a CSMA-based sensor network, all tidlesi share the wireless communica-
tion channel. In CSM and HSSD, to reduce the synchronizaroor, after receiving a message, a
node will forward the message to other nodes as soon as [gosEiterefore, after a node broadcasts
a message, since the transmission time is very small, aé ofsighbors may receive the message
at almost the same time. Suppose all the nodes have the semalrstructure, they have a great
chance to broadcast messages at the same time, and causssagencollisions.

Table 4.2 compares our scheme with existing fault-toletem¢ synchronization algo-
rithms when they are used to synchronize a cluster foflly connected nodes.

We refer to the maximum number of malicious nodes that onerititign can tolerate as
its degree of fault-tolerancdn a cluster ofn nodes, our scheme’s degree of fault-toleranc%gi%,
which is the same as AlgorithmSNV andCOM . However, AlgorithmsCSM and HSSD can
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Table 4.2: Performance comparison with traditional faolérant schemes.

Algorithm Degree of Comm. Overhead Maximum Clock
Fault-Tolerance (# msgs/round) Difference

CNYV [53] = n? (unicast) ——(2¢ + 2pR)

COM [53] = n™+! (unicast) (6m +4)e + 2pR

CSM [53] ol n™+1 (unicast) (m +6)e+ 2pR
HSSD [22] n—1 n? (unicast) €+ 2pR
2nm

SR nd 1 (broadcast) | (2L 4+ 1)e+ 1_(4’/? :%gnﬁ:;-)i-l)sz

10000 ‘ —a—HSSD (unicasty —e—HSSD (broadcast)y —=—CNV ~ —%—SR ‘

1000 -

100 4

# of msgs per round

10 A

7

. . . . . . )
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number of colluding malicious nodes (total node n=50)

Figure 4.3: Communication overhead with the same guararitesmximum clock difference

provide better tolerance against colluding attacks.

Now we compare the communication overhead of the propodeshse with the existing
fault-tolerant schemes. To be conservative, we make thargxsn that the existing schemes
listed in Table 4.2 may use broadcast instead of unicastnio & synchronization messages. This
reduces the number of messages per round ftdto » for CNV and HSSD, and from™*! to n™
for COM and CSM. We then set the same bound for the maximunk ddference, and compare
the communication overhead in all these schemes. To #iiestiiearly the difference, we calculate
the communication overhead in these schemes with 50 and the other parameters the same as
those in the simulation experiments (see section 4.2.4).

Figure 4.3 shows the communication overhead in CNV, HSSD tla@ proposed scheme
for various maximum number of colluding malicious nodes #otblerated, under the conserva-

tive (but unrealistic) assumption that HSSD and CNV can atsmauthenticated broadcast to send
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synchronization messages. This figure indicates that thigoged scheme always has less commu-
nication overhead than CNV (as well as CSM and COM, which saNsstantially larger overhead
and are omitted from Figure 4.3). Compared with HSSD, th@@sed scheme has less communi-
cation overhead when the number of colluding malicious addée tolerated is small, but larger
communication overhead when the number of colluding nodessy However, HSSD has to be
modified to reach this performance, because using broanicek®SD will cause substantial mes-
sage collisions. Moreover, the digital signatures requibg HSSD make it undesirable for sensor
networks, as discussed earlier.

4.3 Secure Distributed Cluster Formation

For a large sensor network, it is not applicable to includehd nodes in one clique,
considering the limited wireless transmission range ofsimgsor nodes. Thus, we need to divide
a large network into multiple cliques, in which we can run tault-tolerant cluster-wise time syn-
chronization scheme. A number of cluster formation pro®dmve been proposed for wireless
sensor networks (e.g., [11, 18, 14, 10, 48, 33, 102, 40, 15837, 16]). However, most existing
protocols assume benign environments, and are vulnembligsicks from malicious nodes.

In this section, we propose a secure and distributed clfistaration protocol. By ex-
changing information with 1-hop neighbors, normal sensatas are divided into mutually disjoint
cliques, in which all the nodes can directly communicatéeich other. Our protocol guarantees
that all the normal nodes in each clique agree on the sameectitembership even under the at-
tacks from both external and internal malicious nodes. Veéghis protocol semantics to distinguish
malicious behaviors from normal ones, and identify and nesrinside attackers that deviate from
the protocol.

Our secure cluster formation protocol is different fromalughenticated Byzantine Agree-
ment algorithms (e.g., [23, 80, 34]), which can successkdlve the traditional Byzantine General
problem [54]. These authenticated Byzantine Agreemenmtritfgns can guarantee all the normal
nodes in one group agree on a single or a set of value(s) by tiersignature-based authentication.
Our protocol aims to divide a sensor network (one large grintp multiple small groups (cliques)
and guarantee all the normal nodes in each small group agréfe®same group membership. All
the normal nodes have to figure out consistently how to partthe network, and the normal nodes

in different groups have different group membership.
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4.3.1 Problem Statement

Objective: The objective of our clique formation protocol is to divideethormal nodes in a sensor
network into mutually disjoint cliques so that all the nodeshe same cliques can directly com-
municate with each other. Each node should individually pot® itsview of cliquebased on the
information exchanged with its 1-hop neighbors. We denwestew of clique for nodeé asC;. For
brevity, we callC; as theclique of nodei. We call a node aormal nodeif it follows our protocol.
Otherwise, it is analicious nodeWe would like to guarantee that all normal nodes have cterdis
cliques, as reflected by the following cligue agreement @riyp Clique agreementor a normal
node; is defined as:

Definition 1 (Clique Agreement) For each nodg € C;, C; = C.

Definition 1 implies that for each normal nodez C;, i ¢ C; must hold. That is, each
normal node belongs to only one cligue. Cliqgue agreementdkem if Clique Inconsistencys
detected. For nodg clique inconsistency is defined as:

Definition 2 (Clique Inconsistency) There exists a nodg¢ € C; such thatC; # C;.

It is desirable that each node can find as large a clique asbfms¥Ve do not consider

trivial solutions with which each node forms a clique thalyancludes itself.

Threat Model: We assume an adversary may launch arbitrary attacks agandtister formation
protocol except for completely jamming the communicatibrarmel. An external attacker may
eavesdrop, inject, and replay packets to disrupt the cldstenation protocol. However, these
attacks can be easily defeated with message authentication

An attacker may generate more severe impact by particgatithe clustering formation
process using malicious nodes (e.g., those compromisetebgdversary). The malicious nodes
may arbitrarily deviate from the protocol in order to intume clique inconsistency. In particular, a
malicious node may use directional antenna to send diffenessages to different neighbor nodes.
Moreover, it can communicate with some normal nodes whikenitionally keep silence to others.
(We call thissilence attack The malicious nodes may launch Sybil attacks [24] or Wailah
attacks [43]. However, we assume these two kinds of attaarkde detected by using the techniques
proposed in [73] and [44], respectively.
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Assumptions: We assume each node knows its 1-hop neighbors. A messagbysarniormal
node can be received correctly by all its (1-hop) neighbora finite amount of time. We assume
each sensor node has a unique ID, and each node can be undagrdlfied due to its keying mate-
rials (e.g., unique pair-wise keys shared with other nogegate keys used for digital signatures).
All unicast messages exchanged between nodes are audttentigith the key shared between the
two nodes.

We assume the sensor nodes can perform public key baseal digitature operations. It
has been shown in recent investigations [61, 36] that lodvsemsor nodes (e.g., MICA2 motes with
8-bit processors) can perform public key cryptographicraens. Moreover, recent development
of sensor platforms such as Intel méteses more advanced hardware, and can perform public key
cryptographic operations efficiently.

We use a combination Qi TESLA [76] and digital signature to authenticate broadcast
messages. We use digital signatures when non-repudiagtioacessary, andTESLA for efficient
broadcast authentication in other cases. We assume thiesabddhe normal nodes are loosely
synchronized, as required WTESLA. We also assume the public keys used by the sensor nodes
are properly authenticated. One approach to ensure tlosssue to each node a certificate for its
public key so that other nodes can validate the node’s pubiidy verifying the certificate.

In this section, we first present the details of our protoant] then analyze its properties in
normal situation and hostile environments, including wigconsistency property and performance

overheads.

4.3.2 The Secure Distributed Cluster Formation Algorithm

Our secure distributed cluster formation protocol cosst five steps. When all the
nodes are normal, the cluster formation process termiraftes the first four steps. In hostile
environments, when clique inconsistency is detected, ihi@ol provides an extra Step 5 to remove
the identified malicious nodes from the network and reskeriprotocol from Step 1.

The protocol is summarized below:

e Step 1: Each node exchanges its neighbor lists with its neighbard, camputes itdocal

maximum clique

e Step 2: Each node exchanges its local maximum clique with its neghband updates its

Zhttp://ww. i ntel.conlresearch/ expl oratory/ notes. htm
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maximum clique according to its neighbor nodes’ local maximcliques.

e Step 3: Each node exchanges the updated clique with its neighbodsderives its final

clique.

e Step 4: Each node exchanges the final clique with its neighbors. Higoie inconsistency is

detected, it terminates successfully. Otherwise, it erfiéep 5.

e Step 5:Each node performs conformity checking. If it identifies irialus (neighbor) nodes,
it removes them from the network, and restarts the protaoohfStep 1. Otherwise, it en-

forces the cligue agreement and terminates.

In the following, we will explain these steps in detail. Taifdate the discussion, we will
use the simple example shown in Figure 4.4. Figure 4.4(ayslosensor network consisting of 8
sensor nodes. A directional edge from nadie nodej represents nodgcan receive messages from
nodei. Considering asymmetric communication, we assume nod& Giear from node 3, while
node 3 cannot hear from node 0. Figure 4.4(b) shows the sesutiur clique formation protocol

when all the 8 nodes are normal.

(a) A network with 8 nodes (b) Cluster formation

Figure 4.4: An example of cluster formation

Step 1: Calculating Local Maximum Clique

Based on our assumptions, each nodan obtain a neighbor ligt; that contains the IDs
of its 1-hop neighbor nodes. In the first step, all the nodehaxge their neighbor lists with all
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their neighbors. As discussed earlier, such messagesisheauthenticated with the pair-wise key
shared between neighbors.

After receiving its neighbors’ neighbor lists, each ned=an build aneighbor matrixM;
that records the connectivity between its neighbor nodashElement in a neighbor matrix is either
1 or 0. The element in th&h row andjth column of the neighbor matrix is 1 if nodeontains node
4 in its neighbor list, or O otherwise. If nodefails to receive the neighbor list from a (previous)
neighbor nodeg, it removes; from its neighbor list.

Each node then symmetrizes its neighbor matrix by consigamidirectional links as no
links at all. For example, in Figure 4.4, notl€onsiders that node 0 and noglare not connected,
since node 0 is not in node 3’s neighbor list. The neighborimat node 1 in Figure 4.4(a) is
shown in Table 4.3.

Table 4.3: Node 1's neighbor matrix in cluster formationqass

0|1|2 3 4.7
0/1|1|1|1=0(0]|0
1111 1 111
21111 1 0|0
3/0]1|1 1 10
4,0|1]0 1 10
7/0|1]0 0 0|0

Based on the neighbor matrix, each nededividually computes a local maximum clique
that includes itself. Based on node neighbor matrix, we can construct a gragh = {V;, E;},
whereV; consists of nodé and its neighbors, anél; consists of the bidirectional edges between
nodes inV;. It is well known that finding the maximum clique in a randorajgjn is an NP-complete
problem [32]. For node, it is also NP-complete [101] to find the maximum clique camitay node
7 in G;. To reduce the computation complexity, we propose a haudgorithm for nodei to
compute its local maximum clique, as shown in Algorithm 4.2.

The heuristic algorithm runs in roundg.; includes node’s 1-hop neighbor nodes that
are eligible to be in the same clique as nedim each round, hodechooses one neighbor node and
adds it into its local maximum cliqu€’;. Nodei maintains a sef; containing its neighbor nodes
that are eligible to be chosen in the next round. Initiallittee neighbors of nodéare included in
S;, andC; only contains node itself. In the first round, nodécomputes the number of common
neighbors between itself and each neighbor, and finds alm@ighwith the maximum common

neighborg L; N Ly |. We use node ID to break the tie. Then nedemoves nodé from S; and adds
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Algorithm 4.2 Heuristic algorithm to find the local maximum clique
INPUT: G; = {V;,E;},i €V,

OUTPUT: C;
STEPS:
Si = {jl(i,j) € Ei}; Ci = {i};
while (S; # 0) do
Find & € S; with maximum|L; N L]
L; — L;N Ly
C; — C; U{k}
Si  Si = {k} = {44, k) ¢ Ei,j € Si}

end while

it into C;. Nodei also removes the nodes that are not directly connectedifitm setS;. In the
second round, from the updatég, node: finds the neighbor node that has the maximum number
of common neighbors with all the nodesdn (i.e., nodes andk). Nodei then removes this node
from S; and adds it inta’’;. Those nodes that are not directly connected with this nati¢hen be
removed from sef;. Node: continues doing so until the s8f is empty.

After this algorithm finishes, nodésorts the nodes i¥; ascendingly by node IDs and
gets its local maximum cliqué’. In our protocol, we usé?i’f to denote the clique derived by node
i in the kth step { < k£ < 4). Our heuristic algorithm cannot guarantee to find the oglticique;
however, it provides a sub-optimal solution with less cotapjan overhead. We show it through
the simulation result in Section 4.3.5

Let us see how this algorithm works on notden Figure 4.4. Initially, nodd hasC; =
{1}, L1 = {0,2,3,4,7}, andS; = {0, 2, 3,4, 7}. Inthe first round, node 2 has 2 common neighbors
L; N Ly = {0, 3} with node 1; node 3 also has 2 common neighblors) L = {2, 4} with node
1. Because nod2 and node3 have the same maximum number of common neighbors with node
1, we prefer the smaller ID to break the tie. Thus, noédelds node into Cy, andCy = {1, 2}.
Then, nodel removes node from Sy, i.e., S; = {0,3,4,7}. Because node$ and7 cannot
directly communicate with nod2, nodel also removes nodesand7 from S; andS; = {0, 3}.
In the second round, nodeand node3 have the same number of common neighbors with both
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nodel and node2. Node1l chooses nod8 that has a smaller ID int¢’;. Then,C} = {0,1,2},
andS; = () after removing nod® and node3. Node3 is removed fromS; since node3 is not
connected with nod8. Finally, nodel’s local maximum clique i€0} = {0,1,2}. Similarly, we
haveCi = C3 = {0,1,2}, C1 = C} = C} = C} = {3,4,5,6}, andC = {1,7}.

Step 2: Ordering and Updating Maximum Cliques

The local maximum clique computed in step 1 at different saate likely to be different.
In step 2, each node looks at the local maximum cliques dityeits neighbors, and updates its
local maximum clique to prepare for final cligue agreement.

In this step, each nodiebroadcasts its local maximum cliqa&' to all its neighbors. For
efficiency, such broadcast messages can be authenticated MESLA. Because nodéecalculates
its local maximum clique”} by a heuristic algorithm based on its local neighbor infdiorg it
is possible for node to receive a larger local maximum cliqlagl that containg from a neighbor
j. Therefore, after receiving the local maximum cliques fritsmeighbors, node checks if there
exists any cquue’J} which is “better” than its cliqu&’}. To compare cliques computed by different

nodes, we define a relatior® on cliques as follows:
Definition 3 C; < C}, if and only if
1l.ieCj, i€ Cyand

2. a). |Cj] < |Cyl,or

b). |C;| = |Cy

, butc; < ¢, wherec; = min{a;la; € Cj Na; ¢ Cp} ande, =
mm{bl\bz € Cr Ab; §7§ Cj}, or
c). C; = Cy, butj < k.

The relation gives a total order for the local maximum cliques receivechbgiei. We
can compare two cliqueS’; and Cj, by relation < only if both cliques contain nodé We have
C; X Cy, if the number of nodes i, is greater than that in';; or both cliques contain the same
number of nodes, but for the first two different IDsc C; andc;, € C), we havec; < ¢; or C}
contains the same nodes@sg, butj < k. In two ascendingly ordered local maximum cliques, the
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first two different IDs are also the smallest two differensiCOFor example, it”; = {1,2,3} and
Cr ={1,3,4}, thenc; = 2 and¢;, = 3, andC; = Cy.

Suppose node receivesn cliques that contain node Nodei orders these cliques as
Cl X...%C}X... XL, andupdates its clique to the “best” cliqa8 . After Step 2, node
i has an updated cliqué? = C} . We callC? as node’s updated clique

Let us illustrate this step with the example in Figure 4.4teAfeceiving the local maxi-
mum cliques from neighbor nodes, nadeasCi = Cf = C3 = {0,1,2}, Ci = C} = {3,4,5,6},
andC? = {1,7}. Node 1 can immediately drop the cliques from nodesd4, since they do not
contain nodel. BecauseéC}| < |C}|, nodel hasC2 < C{. Becaus&C} = €} = C} but node IDs
0 < 1< 2,we haveC! < C! < CL. Therefore, node orders the cliques from nodg 1, 2 and7
asCl < C} < ¢! < ¢4, and updates its clique 162 = C2 = {0, 1,2}. Consider nodé. It will
keep its clique unchanged since nddeclique C1 = {0, 1,2} does not contain node After Step
2,we haveC? = C? = C3 = {0,1,2}, C3 = C} = C2 = CZ = {3,4,5,6}, andC? = {1,7}. We
can see that nodestill has clique inconsistency with node

Step 3: Obtaining Final Clique

In this step, each nodebroadcasts its updated cliqd# to its neighbors. Similarly to
the broadcast messages in step 2, these messages shouidd alghenticated withTESLA. For
every nodej in C?, nodei checks if it is included iry’s clique C7. If not, nodei removes;j from
its clique C?2. After this step, each nodeobtains its final clique”?. If nodei does not receive node
j’s updated clique, nodéesimply keeps nodg in its clique.

For our example in Figure 4.4, becauSé = {0, 1,2} does not contain nodg node7
removes node from C2 = {1, 7}, and obtain its final cliquée’? = {7}. Finally, all the nodes are
grouped into 3 cliques, which at&8 = C} = C3 = {0,1,2}, C5 = C} = C3 = CF = {3,4,5,6}
andCs = {7}.

If all the nodes are normal, after the first three steps, wegcamantee the clique agree-
ment. We prove this in Section 4.3.3. However, in hostileéremments, since compromised nodes
may deviate from the protocol, we need extra steps to ddtegidtential clique inconsistency and
identify the malicious nodes.
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Step 4: Checking Cliqgue Agreement

All the nodes broadcast their final cliques to their neigbb&ach node also calculates
a secure hash over all the four messages sent in the firsttépg, sign this hash value, and append
it into the message that contains the final cligue. When a abnwde: receives the first copy of a
final cquueCj‘f” from its neighbor;j or forwarded by another neighbor,jife C2, nodei rebroadcasts
the cquueCj:.”. The goal of this rebroadcast is to prevent silence attacks.

Each node verifies the clique agreement. That is, naderifies for allj € C3, whether
C‘f = C? holds. When clique inconsistency is detected, nicgteters Step 5; otherwise, it terminates
the clique formation process.

Step 5: Identifying Insider or Enforcing Clique Agreement

This step consists of two stages. In Stage |, nogerformsconformity checkingo
identify malicious nodes that send inconsistent messagée iprevious four steps. The basic idea is
to use the protocol semantics to distinguish malicious Werafrom normal ones. When malicious
nodes are identified, nodesends an alert to other nodes, using the malicious nodestsiges as
proofs. After removing the malicious nodes from the netwalkthe remaining nodes restart the
protocol from Step 1 again. The malicious nodes that hava mmtified will be removed from
normal nodes’ neighbor list and thus cannot launch furttiecks.

A malicious node may send messages to some normal neightdesnbut keep silence
to others. According our assumptions, the messages sentrfoomal nodes can be received in a
finite amount of time. Thus, a normal node may detect a mal&cimde if certain messages are not
received from the malicious node. However, the normal namkes achot have any proof to convince
other normal nodes who do receive the messages from theioualinode. A normal node cannot
distinguish a normal node who really detects a maliciouserfamm a malicious node who forges a
false alert on a normal node. In such cases, ricetgers Stage Il to enforce the clique agreement,
and finish the clique formation protocol.

We describe these two stages in detail below.

Stage I: Conformity Checking.

Suppose a normal nodedetects a clique inconsistency with nogle Nodei requests nodg to
forward the messages that nogdeeceived in the first four steps. Because ngdias received node
i's authenticated final clique’} in Step 4, only ifC7 # C?, nodej will provide its previously
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received messages to noileNodej need sign these messages to prove that these messages are
forwarded by nodg. For efficient signing, nodg¢ may calculate a secure hash over all the messages,
and simply sign and send this hash value in one message.w&fi&ring nodej’s signature, nodeé

performs the following conformity checking for noge

Conformity Checking 1 Nodej follows the clique formation protocol correctly in the firfstur

steps.

In the above checking, nodere-computes the first three steps of the cluster formation
protocol for nodej. If the derived final clique is not the same as what nodeceived from nodg
in Step 4, nodg is a malicious node. Nodecan use nodg’s sighatures as a proof to notify other
normal nodes in the network. If nogepasses checking 1, nod@erforms the following checking

on all the common neighbors of nodeand;.

Conformity Checking 2 For any nodek € L; N L;, k sends the same messagesandj in every

step.

Because nodehas messages directly received from nédmd the message from nole
received and forwarded by nogeif node k& sends different messages to nodesd; in any step,
nodei can detect the malicious nodeand use the conflicting messages from nédes proofs to
convince all the other nodes.

Conformity Checking 1 and 2 guarantee to detect the makcimdes if clique inconsis-
tency is caused by malicious nodes sending inconsisterdages. It is proved by Theorem 4.3.5

in Section 4.3.3. Nodéenters Stage Il when no malicious node is identified.

Stage Il: Consistency Enforcement

When a malicious node launches silence attacks, a normal mag detect the malicious node if
certain messages are not received from the malicious nodeever, the normal node does not
have any proof to convince other normal nodes who do recéwertessages from the malicious
node. Moreover, a normal node cannot distinguish a normaé neho really detects a malicious
node from a malicious node who forges a false alert on a nanodg.

In such cases, our protocol can ensure that all the normasnachieve clique agreement

by performing the following consistency enforcement. Siggptwo normal nodes and j find
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inconsistency, i.ej € C?,i € C; (which is proved in Lemma 4.3.4) and’ # C;. Without loss
of generality, we assumec C} andk ¢ C.

Consistency Enforcement 1If k € C? k ¢ C?, nodei receivesC}, and nodej does not receive
Cp, then node removesj from C7’, node;j removes from C?.

Consistency Enforcement 1 deals with the silence attackep & when a malicious node
k sends its local maximum clique to nofland keep silence to noge However, simply removing
k from C3 is not a good option, because noiemay be malicious and lie about the receipi(yf.
As aresult, a normal nodemay become isolated. Thus, the safest way is to split nbded; into
different cliques.

Consistency Enforcement 2If k € C7 N C7, node; receivesCy and j ¢ C7, nodei does not
receiveC?, then node removesk from C3.

Consistency Enforcement 2 deals with the silence attackep 8 when a malicious node
k sends its updated clique to noglébut does not send it to nodeSince node: is the only possible
malicious node (among nodés;j, andk), nodei simply removes it fronC.

After performing the above two enforcements, we name theatigwes as”” andC}k for
i andj, respectively. In Section 4.3.3, we prove that our prot@esl guarantee clique agreement

through these enforcements.

4.3.3 Security Analysis

Effectiveness in Benign Environments

When all the nodes are normal, our protocol guaranteeseatdles in one clique agree

on the same clique membership by following the first threpsste

Lemma 4.3.1 For two nodes andj, if i € C7 and;j € C7, thenC} = C7.

Proof: In Step 2 of our protocol, after nodeeceives cliques from all its neighbors, it orders these
cliques asC! Lo kor kX C} . and updates its clique to the “best” cliqa& = C_ .
Similarly, nodej can have an updated cliqd& = Cj
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Fromi € C7 = C} , nodei can compare’}; with C, . Nodei hasCj < C! since
01 is the best clique among from the cliques from all the nelgﬂbBecausg €C?= (71 node
i can also derive’} % C! . However, fromj € C?, nodej hasC! X Cj,- This can happens
only if o, = 3,, SO we can prove;; = C7.

Lemma 4.3.1 guarantees that if nodand nodej contain each other in their updated

cligues at the end of Step 2, then their updated cliques nomsain the same clique membership.

Lemma 4.3.2 Consider nodes, j andk, wherek € C} = C3. If i ¢ CZ, thenj ¢ C}.

Proof: We prove it by contradiction. Suppoge= C}.. Because ¢ C} andi € C7 = C7, we have
Cp # C3. Because: € Cf = C7, by Lemma 4.3.1, we hav€} = C}. SinceC} = C7 = C7, it
contradicts ta ¢ C?.

From Lemma 4.3.1, when nodeis included in both nodéand node’s updated cliques
at the end of Step 2, if nodds not included in nodé’s updated clique, nodgwill not be included
either. Based on Lemmas 4.3.1 and 4.3.2, we have the folipelique agreement theorem that
guarantees all the normal nodes in each clique agree onneedimue membership.

Theorem 4.3.3 For nodei and any nodg € C3, if all the nodes are normal, we must havg =

3
cs.

Proof: For any nodej € C?, j € C} must hold. We also have ¢ C7, otherwisej should be
removed fromC;’. By Lemma 4.3.1, we hav€} = C?. For any nodé: thatk € C7 butk ¢ C?,
we knowi ¢ C7. Then by Lemma 4.3.2, we haye¢ C?. Thenk will not appear inC. It means
for every node that is removed froﬁ‘f, it must also be removed frotﬁ;.”. Therefore, we can prove
thatC} = C?.

Security Analysis in Hostile Environments

Malicious nodes may employ different methods to comprormisgie agreement among
normal nodes. Our protocol can prevent external attackssimguunicast and broadcast) message
authentication. Thus, a malicious node cannot use a fakditglén our protocol without grasping
the keying materials. In the following, we focus on the imsidttacks in which some participating

nodes are malicious.
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If malicious nodes broadcast the same false messages oiskerge to all the normal
neighbors, they cannot introduce clique inconsistencylidibas nodes may send inconsistent mes-
sages in different steps, so that the cliques are not ctyréetived. However, since such attacks
generate the same impact on all the normal neighbors, theytantroduce clique inconsistency
either. Therefore, clique inconsistency can only resuoltnfisending different messages to different
normal nodes, or launching silence attacks from maliciades.

In Section 4.3.3, we prove that malicious nodes will be dettand identified if clique
inconsistency is caused by sending inconsistent messhyg8ection 4.3.3, we prove that our pro-
tocol can tolerate silence attacks and clique agreemerti@anforced by removing the conflicting

nodes.

Identifying Malicious Nodes

We first introduce Lemma 4.3.4, and then use it to prove TheerS.5.

Lemma 4.3.4 For two normal nodes and j, if j € C3, then we must haviec Cj.”.

Proof: We prove it by contradiction. Supposet C?. Sincej € C, we must havg € C7. We
consider two cases. if¢ C?, j will send C? to i, theni should removg from C7 in Step 3. Itis
contrary to our condition that € C7. Otherwise, ifi € C7 buti ¢ C?, it meansj has removed
i from C?. The only reason is thats clique C} does not include, i.e.,j ¢ C7. It contradicts to
j€C3

Lemma 4.3.4 guarantees that if noglés included in node’s final clique, then nodég

must include nodein its final clique, even in hostile environments.

Theorem 4.3.5If clique inconsistency is caused by malicious nodes sgridoonsistent messages

to different normal nodes, our protocol can identify the igzialis nodes.

Proof: Suppose a normal nodedetects clique inconsistency with noglén Step 4, i.e.;j € C?
but C3 # Cj.”. To detect the malicious nodes, nadasks nodg to provide its previously received
messages and performs Conformity Checking J.oli j passes this checking, it meanfollows

the protocol correctly, and the inconsistency must conma other nodes. Otherwisgjs malicious.
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Consider the case whenperforms normally. By Lemma 4.3.4, if normal nogles C?,
we must have € Cj:.”. So any nodé: that is not a common neighbor of both nodand; cannot
appear in eitheC? andC3. Therefore the inconsistency must come from common neighbb
nodes: andj. By performing Conformity Checking 2 on all the common néigts ofi andj, we
will find the different messages sentitand;j, and identify the malicious nodes.

If node j is malicious, node can detect the conflicts between the messages received
from nodej in Step 4 and the messages received from noiteStep 5. Because nodeprovides
signatures on these messages, other nodes cannot impgersénagend fake messages. Thus, node
1 can use these messages from npds proofs to inform other nodes in the network. The malicious
node j will be removed from the network. Similarly, if a common nieligpr nodek of node+
and nodej is malicious, nodé can use the messages directly received from riodad nodek’s

messages received and forwarded by npde proof to remove nodefrom the network.

Enforcing Clique Agreement

We observe that silence attacks can introduce clique instemgy only in Steps 2 and 3.
In Step 1, a malicious node may send its neighbor list to sagighbor nodes, but withhold it from
other neighbor nodes. However, in Step 2, our protocol alamormal node update its clique to
a “better” clique, even if the better clique contains somédasothat did not send their neighbor lists
to nodei in Step 1. Thus, the silence attack in Step 1 will not causpielinconsistency.

In Step 2, clique inconsistency can only come from the “bettques sent by malicious
nodes, since a normal node will update its clique to a "bettgue. Suppose nodessand j are
normal. A malicious nodé may send a “better” cquueC,i that includes andj, but withhold the
message from nodg Then node updates its clique t@*,i. If node j receives the “better” clique
from nodei, it updates its clique t@’}. Therefore, nodé and; include each other in their cliques
that are inconsistent. However, Consistency Enforcemeanlemove such clique inconsistency.

In Step 3, cligue inconsistency can only be introduced byorény nodes from cliques.
Supposé: € C? N Cj?. In Step 3, nodé can send a clique to remove itself frara clique, while
keeping silence tg. Then the final clique of containsk, which is not in nodé’s final clique.

In Step 4, after a normal nodeeceives a final cquué?,ij from nodek, node; rebroadcasts
C‘;Z’ if K € C3. Because we assume the messages from a normal node canibedecerectly by
its normal neighbors, this rebroadcast can guaranteeftia¢ inormal node receivef%,f from node

k, all the other normal nodes in the same clique can reagjveThus, it can prevent silence attacks
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in Step 4.
In the following Theorem 4.3.6, we prove that by removing itheonsistent nodes from
cligues through the consistency enforcement, all the nbnodes can achieve clique agreement

even if malicious nodes intentionally keep silence to ¢en@rmal nodes.

Theorem 4.3.6 For any two normal nodesand j, after Step 5, ifi € C}, we haveC; = C7.

Proof: We prove it by contradiction. Supposg” # C7. Since our protocol can only remove
nodes from cliques when inconsistency is deteaf&étimust contain all the nodes ;. Therefore
j € C}. By lemma 4.3.4, we havee C?. We consider two cases.

First, suppose’? +# C;’ andC? # C7. Without loss of generality, we assume node
k € C} butk ¢ C3. Nodesi andj find inconsistency after exchangittgf andC?. By Consis-
tency Enforcement 1, noderemoves; from its clique, and nodg¢ also removes from its clique.
Therefore we havg ¢ C7. Itis contrary to the condition € C}.

Second, we assung’ = Cf, butC; # C7. Without loss of generality, suppose node

k € C; butk ¢ C7. Because nodes can only be removed to enforce clique agnéémtep 5,
k cannot be added t6'7, but removed fronmC7. This mean<C? is inconsistent Witf’C?. Since
C} = C3, C} is also inconsistent witk’}. Because nodg re-broadcasts the cliqué;’ received
from k, node: will receive C,Z’ even if nodek keeps silence ta Thus,: should removeé: from C7.
We find contradiction.

In our protocol, the clique consistency checking is onlyf@ened in Step 4, though it
can be executed in each step. The reason is to reduce the tatimpwverhead by decreasing the
number of signature generation/verification. Each nodel me¢ verify the signatures from other
nodes unless it detects clique inconsistency. Even if eliquonsistency is detected, each node only
generates and verifies the signatures of the messages gecdharStep 4 and Step 5. If the protocol
checks the consistency in every step, malicious nodes mdgteeted in an earlier step. However,

the computation overhead will be increased a lot.

4.3.4 Performance Analysis

Computation Overhead: We make several efforts to lower the computation overheadiiproto-

col. In all the five steps, each nodasesu TESLA to authenticate its broadcast messages. Because
uTESLA uses secure key cryptography that has much less catigpubverhead than public key
cryptography, we only analyze the computation overheaduttippkey operations.



65

45 60
——LCA

"| - Centrilized Clique Formation
| —&—Our Protocol

a
o

‘ [
4
>

Coefficient of Variance (%)
AT
o o
i1
- & -- S

N
o
I

——LCA
————————————————— —- Centrilized Clique Formation
—&— Our Protocol

=
o
I

o

100 200 300 400 500

100 200 300 400 500
Number of Nodes Number of Nodes
(a) Average Cluster Size (b) CV (%) on Cluster Size
70 o prmmmmsmm o 10 T--
5 ——LCA o g | |—e-LCA |
5 60 +-| - Centrilized Clique Formation |- 2 g || " Centrilized Clique Formation
) —— Our Protocol 3 —&— Our Protocol
0580 - o7 :
§ 40 | g8
; 5
= i b4
%30 o T e o 4
= =
s 20 £ 3
o 22
~N 10 G
@ a1
0 1 1 1 ‘ 0
100 200 300 400 500 100 200 300 400 500
Number of Nodes Number of Nodes
(c) Size of the Maximum Cluster (d) # of Single-Node Clusters

Figure 4.5: Comparison of cluster metrics

In Step 4, each nodésigns the secure hash of its local messages sent in the finst fo
steps, instead of signing each message individually. Eadk need not verify the signatures from
other nodes unless it detects clique inconsistency witmthéherefore, in benign environments, no
signature verification is necessary. In hostile environseafter detecting a clique inconsistency
with nodej, node: verifies the signature from node In Step 5, after receiving nodés request,
nodej generates a signature on the secure hash over the previgigeemessages from its neigh-
bors. Then, nodeé needs to verify nodg’s signature on the forwarded messages. If nppasses
Conformity Checking 1, nodéneeds to verifyL; N L;| signatures from the common neighbors of
iandj.

Because a node may verify more messages than those it signpropose to choose
public key cryptosystems with a fast decryption speed, sisdRSA, which can verify one signature
in 0.43 on ATmegal28 [36]. Since the clique formation process vatllme performed frequently,
the computation overhead is acceptable for sensor nodes.

Communication Overhead: Each node broadcasts one message in each of the first three steps. In
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Step 4, besides broadcasting its final clique, noaleo rebroadcasts the first copy of the final clique
message about a neighbor in natsfinal cliqueC3. In total, nodei sendsC?| + 3 messages.
Suppose nodg has|L;| neighbors. When nodg detects a clique inconsistency and
requests nodeg to forward its previously received messages in Step 5, jodeeds to forward
4|L;| messages received in the first four steps, plus one messelgdiiy the signature for the
secure hash over all the forwarded messages.
Storage Overhead: According to the analysis of the computation overhead, eacte: should
store all thet|L;| messages received in the four steps, wigrgis the neighbor number of node
When nodei detects a clique inconsistency with noflenodei needs to storé|L;| + 1 messages

from nodej. Nodei can release the memory after verifying these messages.

4.3.5 Experimental Results

Through simulation, we show that our protocol can providaise cluster formation with-
out sacrificing the performance of the clusters. We use thefing metrics to evaluate the cluster
characteristics:average cluster sizeanaximum size of clustersariance of the cluster sizeand
number of single-node clusters

The average cluster size depends on the density of the rietvamid the transmission
range of the sensor nodes. The average cluster size shdub@ t@o small. In sensor networks, it
is not desirable to include too many nodes in a large clustettalthe increasing message collisions
and transmission delay in a large cluster. We use CoefficiElariance (CV) = 100*(Standard
Deviation)/(mean value of set) to evaluate the variancehefduster size. We expect to divide
nodes into clusters with a low coefficient of variance. A tdagormation protocol should minimize
the clusters with a single node.

In our simulation, we uniformly deploy 100, 200, 300, 400 &3 sensor nodes in a 100
x 100 (n?) simulation area, respectively. The transmission rangsl ¢fie sensor nodes is fixed to
20 meters. Each point in the result figures is the averagédt idsL000 experiments.

We compare the cluster characteristics of our distributetbpol to LCA [11], one typical
Leader-First based cluster formation protocol, and a aénéd clique formation protocol. In LCA,
from the lowest ID node to the highest ID node, a node declése$ to be a cluster-head if it
has the lowest ID among the non-covered neighbor nodes. A& iwdovered if it is in the 1-
hop neighborhood of a node who has declared itself to be geclhead. In the centralized clique

formation protocol, we assume a sink node has obtained plodogy graph’= of the whole network.
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The sink node first finds the maximum cliqdg in G, and updates- by removingC; from G.
Then, it finds the maximum cliqué€’; in the remainingz, and then remove€’; from currentG.
The algorithm completes wher becomes empty. We borrow the C implementation (dfmax) from
[2] to find a maximum clique in a random graph.

Figure 4.5 compares the cluster characteristics of thre®gols. As Figure 4.5(a) shows,
the average cluster sizes of the three protocols increabetird node density of the network. Our
protocol has a smaller average cluster size than the otleptatocols. The reason is that our
protocol requires all the nodes in a clique be able to diyemiimmunicate with each other. While,
in LCA, the maximum distance between any two nodes in ondarlisstwo hops. Compared to the
centralized clique formation protocol, our heuristic pial in Step 1 may not find the maximum
local clique. Thus, the average cluster number is a littlalE@m

Figure 4.5(b) shows the variance of the cluster sizes. Quopol has a smaller coefficient
of variance than the other two protocols, which means ouopob generates more uniform clusters.
Figure 4.5(c) presents the maximum cluster sizes in thre®gols. Our protocol has a moderate
maximum cluster size. As Figure 4.5(d) shows, our protoeslfiewer single-node clusters than the
other two protocols. The reason is that LCA and the cengdlidique formation protocol attempt
to form the largest cluster first, and thus leave some nodesimall clusters. While in our protocol,
because all the nodes choose their clusters in a distrilauntégarallel way, it decreases the chances

to form large clusters and single-node clusters.

4.4 Summary

In this chapter, we developed a fault-tolerant clusterevtime synchronization scheme
that can guarantee an upper bound of clock difference bataeg nonfaulty nodes in a cluster,
provided that the malicious nodes are no more than one thitteacluster. Compared with the ex-
isting fault-tolerant clock synchronization techniqutt® proposed scheme can avoid the message
collision problem in these techniques, and does not requistly digital signatures. The proposed
scheme also has some limitations. First, it requires tlehtdes in a cluster maintain initial syn-
chronization. Thus, it has to rely on other means, for exarmplbootstrapping phase with trusted
external devices (see Section 4.2.1), or a fault-tolenaitiai clock synchronization method (e.g.,
[59]). Second, it requires that each node be able to reacthalbther nodes in a cluster, thus

reducing the geographical coverage of each cluster.
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We also proposed a secure and distributed clique formatiotogol for sensor networks
to divide sensor nodes into mutually disjoint cliques, inathwe can run the fault-tolerant cluster-
wise time synchronization to achieve a consistent grougkdime. The protocol is fully distributed,
and guaranteed to terminate. Currently, our clique foromedcheme is only suitable for static sensor
networks. It requires to use digital signatures to idenfy possible malicious nodes; however,

digital signatures are still quite heavy for computatiostr@ned sensor nodes.
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Chapter 5

Secure and Resilient Global Time
Synchronization with Unicast

Authentication

With the secure single-hop pair-wise time synchronizatio@hapter 3, a compromised
node has limited impact on single-hop time synchronizabetween neighbor nodes. It can only
affect the clock difference between itself and a normal n@dther than between normal nodes).
However, when a pair of nodes are synchronized through a-hmyitpath (e.g., [26, 31, 87]), a com-
promised node in the path can introduce an arbitrary eritais implies global time synchronization
using multi-hop paths is vulnerable to compromised nodes.

In this chapter, we develop two secure time synchronizagidmemeslevel-based time
synchronizatiorand diffusion-based clock synchronizatjoio provide secure multi-hop pair-wise
and secure global time synchronization. The basic idea tf schemes is to provide redundant
ways for one node to synchronize to a far-away node, so thanittolerate partially missing or
false synchronization information provided by the malidanodes. To achieve global clock syn-
chronization, we adopt a model where all the sensor nodeshsynize their clocks to a common

source, which is assumed to be well synchronized to an edtetock. The level-based scheme
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builds a level hierarchy in the sensor network, and thentaymszes the whole network level by
level. The diffusion-based scheme allows each node togdifits clock to its neighbor nodes after it
has synchronized to the source node. Our analysis and giomutasults indicate that these two ap-
proaches are complementary. The level-based approacttablsifor static sensor networks, while
the diffusion-based approach is suitable for dynamic semstwvorks. The level-based approach has
less overhead and higher precision than the diffusionebapproach, but has less coverage than the
diffusion-based approach.

To improve the synchronization precision and reduce conication overhead in large
sensor networks, we propose to deploy multiple source noddse network, so that the sensor
nodes can synchronize to the nearest source node. Moreayextend this approach to increase
the resilience of such time synchronization. As a resuleressr node can obtain the correct clock
time even if up to the half of the source nodes to which it carchyonize are compromised.

We assume each pair of nodes communicate through unicdsttfopair-wise and global
time synchronization, and any two nodes that need to conuatenivith each other share a unique
pair-wise key, so that the messages between them are daéttedt One node can also identify the
other node based on the unique pair-wise key. Such pairkeige can be provided by several key
predistribution schemes proposed for sensor networksitlgge.g., [56, 17, 25]).

5.1 Global Time Synchronization Model

5.1.1 A Motivating Example

Consider Figure 5.1, in which there are multiple, interbshpaths between nodeand
nodeD. Assume nodé needs to estimate the clock difference between itself add SoSuppose
that each pair of nodes connected by an edge in the networkeagkbors, and have synchronized
with each other using the single-hop pair-wise time syneizagion scheme in Chapter 3. For con-
venience, we denote the pair-wise clock difference betveegrtwo nodes andj asd; ;. Specifi-
cally, 5, ; = C; — C;, whereC; andC} are the local clock of nodeand nodej, respectively. We
assume some nodes may have been compromised, and thus mbguteany information needed
by other nodes.

We first estimate the clock differences betwegeand the nodes close 19 (in a fault-
tolerant way), then gradually use these clock differenoesstimate those betweéhand the nodes



71

Figure 5.1: A mesh network between nodeand D

farther away fromS, and eventually derive the clock difference betwé&esnd D. According to the
assumption, nodes 1, 2, and 3 have obtaifhed d2 5, andds g, respectively. Now consider node
4. Node4 may estimate), s through 1, 2, or 3. To deal with potentially malicious nodesge
4 can estimaté, s through all three nodes. When node 1 is chosen, node 4 cdg easipute
5&% = 04,1 +01,5. Similarly, node 4 can compuﬁ% andéfg through nodes 2 and 3, respectively.
Then nodet chooses the median of the three valuesas As a result, if only one of nodes 1, 2,
and 3 is malicious and attempts to attack time synchrowiaatts effect will be removed.
This process may continue for nodes 7, 8, and 9, assuminga#d% have obtained; s,

5,5, anddg g, respectively. Eventually, node can obtain the correct clock differenég s if there

is at most one malicious node in each level in the mesh netlwetlkweenS and D. In general,
if there are2t 4+ 1 nodes in each level of the mesh network between nétdaad D and all the
neighboring nodes can communicate with each other, thisbapp can tolerate up tocolluding

malicious nodes in each level.

5.1.2 Our Model

We develop our secure time synchronization techniques bgrgéizing the above moti-
vating example. We assume there soairce nodes that is well synchronized to the external clock,
for example, through a GPS receiver. We would like to synoize the clocks of all the sensor
nodes in the network to that of the source node. We assumetineesnode is trusted, and all the
other nodes know the identity of the source node.

We adopt the following model for secure and resilient gldlraké synchronization:

1. Each node maintains docal clockC;. The local clock of the source node (i.€l) is the
desired global clock.
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2. For each neighbor nogeeach node maintains aingle-hop pair-wise clock differenég; =
C; — C; with the secure single-hop pair-wise time synchronizatemhnique in Chapter 3.

3. Each node also maintains aource clock differencé s between its local clock and the clock
of the source nod#. Node: can directly obtain it if it is a neighbor node 8t Otherwise,
node: needs to estimat# .

4. To tolerate up ta@ malicious neighbor nodes, each nadeeeds to compute at leat + 1
candidatesource clock differences through different neighbor no&gecifically, the candi-
date source clock difference obtained through neighboe riad 5% = 0;; + 9;,5. Node
i then chooses the median of the candidate source clockediffes as; s. We assume the
sensor network of concern is dense so that each node hashenoomper of neighbor nodes
to obtain2t + 1 candidate source clock differences.

5. Each node can estimate thglobal clockC's by using its local clock and its source clock

difference (i.e.C's = C; + d; ).

We assume there are malicious nodes (e.g., compromised tizatepossess valid cryp-
tographic keys) in the network, which may collude togetteedisrupt time synchronization. A
malicious node may affect a normal nodg by affecting nodej’s measurement of; ; and/or ly-
ing aboutd; 5. Our goal is to provide secure time synchronization so thanef a certain number
of malicious nodes collude together to disrupt clock syanfration, each normal nodecan still
synchronize its local clock to the source node.

We give the following recursive definition to further clarithe correctness of secure and

resilient time synchronization.

Definition 4 With a unique source nod&, a source clock difference; s obtained by nodée is

correctif

e nodei is a neighbor node of nod§, or
e §; 5 Is computed as; s = J;; + J; 5, where nodg is a neighbor of node, and either (1)
node; is a normal node and; s is correct, or (2) node has two other normal neighbor

nodesm andn such that,,, s andd,, s are correct and; ,,, + 6.5 < 6;.5 < 6ip + In 5.
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It is easy to see that if nodehas a correct source clock difference, it can estimate the
global clockCs “correctly”.

We assume each pair of nodes communicate through unicdsitfopair-wise and global
time synchronization, and any two nodes that need to conuateivith each other share a unique
pair-wise key, so that the messages between them are do#ttedt One node can also identify the
other node based on the unique pair-wise key. Such pairkeige can be provided by several key
predistribution schemes proposed for sensor networksitlgge.g., [56, 17, 25]). For brevity, we
assume all pair-wise clock differenég; between two neighbor nodésind; is obtained with our
secure single-hop pair-wise time synchronization teaimmig Chapter 3 without explicit statement.
Thus, the single-hop pair-wise clock difference betweamrarmal nodes is always trusted, though
it may be impaired when one of the nodes is malicious.

It is natural for sensor nodes to communicate through bastdbut in hostile environ-
ments, it requires local broadcast authentication. Ree=giarch (e.g. TinyPK [97]) shows that it
is applicable to apply asymmetric cryptographic technplogsensor network. However, due to
the resource constraint of sensor nodes, those technigrieslaerable to DoS attacks. In our later
research, we develop a secure and resilient global timénsynization using broadcast authentica-
tion based on a novel use of thd ESLA broadcast authentication protocol focal authenticated
broadcast resolving the conflict between the goal of achieving tinecsyonization with TESLA-
based broadcast authentication and the factif&SLA requires loose time synchronization. We
will discuss the detail in Chapter 6.

5.2 Secure and Resilient Global Time Synchronization

We develop two secure and resilient time synchronizatidreses for sensor networks:
the level-based scheme and the diffusion-based schente level-based scheme, a level hierarchy
is established in the sensor network, and each node obtanddck differences from its parent
nodes in the level hierarchy. In the diffusion-based schenmode can obtain the clock differences
from any neighbor nodes. The level-based scheme is suitablgtatic sensor networks, where
sensor nodes stay in the same places after deployment; aghtediffusion-based scheme is more

suitable for dynamic sensor networks, where sensor nodgsmee frequently.
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5.2.1 Level-Based Time Synchronization

Level-based time synchronization aims at static senserarks, where the network topol-
ogy does not change frequently. Level-based time synckataon consists of two phasetevel
discovery phasandsynchronization phaseé he level discovery phase is to organize the legitimate
sensor nodes into a hierarchy rooted at the source Aastethat two nodes connected in the hier-
archy are neighbors. Each node except for the root has a pareft nodes in the hierarchy, and
each node except for the leaf nodes has a set of children n&deb node is also associated with
alevel which is the number of hops in the longest path from the rodhis node. We refer to this
hierarchy as the level hierarchy. In the synchronizatioasghall the sensor nodes obtain the source
clock differences through their parent nodes, estimatie tfnn source clock differences, and then

help their children nodes to synchronize their clocks.

Level Discovery Phase

To establish the level hierarchy, each node maintains tragables:| evel , par ent s,
andchi | dren. The variable evel records the level of the nodd?ar ent s andchi | dren
record the parents and the children of the node in the leeghichy, respectively. After the level
hierarchy is established, a noflean obtain the candidate source clock differences from dides
in its parent set, and may help the nodes recorded in itsrehildet to obtain their source clock
differences.

We assume all the sensor nodes have discovered their nesghdfore the level discovery
phase. Consider the source ndtlelnitially, S.| evel =0, S.parents = (), andS.chi | dren
= {z|z is a neighbor of5}. The variables of all the other nodes are unknown. The sowdeS
initiates the level discovery phase by unicastinigxal discovery messade each of its neighbor
nodes. A level discovery message contains the sender'stidand its level number, authenticated
(and optionally encrypted) with the pair-wise key sharetiieen the sender and the receiver. After
receiving an authenticated level discovery message Soeach neighbot of S setsi.l evel as
1, andi.par ent s as{S}. It then unicasts a level discovery message to each of ighher nodes
except forsS.

The nodes that are more than one hop away from the source nageaeteive more
than one level discovery messages from their neighbor nolietolerate up t@ malicious parent
nodes in the synchronization phase, a node needs to r@¢ordl parent nodes that will send
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synchronization message to it. When a normal node3has1 parent nodes in the level hierarchy,
even if up tot malicious parent nodes keep silent during the synchraoizaihase, the node still can
receive2t + 1 candidate source clock differences and synchronize itkcld/e have two options
for a sensor node to obtain its level and parent set. In thieojitson, after receiving authenticated
level discovery messages from the fi3st- 1 different neighbor nodes, nodehooses these nodes
as its parent nodes. In the second option, nioaey wait for a period of time units after getting
the first3t + 1 candidate parent nodes, and then choos&#hel nodes with the least levels as the
parent nodes. When using the second option, the convergene®f the level discovery phase is
longer than that by using the first option, but the averagel lef/the sensor nodes is smaller than
that by using the first option. Because the source node rwe$ déscovery process infrequently,
we adopt the second option in our level-based scheme. Aaguiime maximum level of the parent
nodes id, node; then sets.| evel asl + 1.

After determining its level, a nodeunicasts level discovery messages to its neighbor
nodes from which it has not received any authenticated lg¢ebvery message. Node&lso uni-
casts messages to its parent nodes to add itself as one otlfildren nodes. Nodeé will drop
subsequent level discovery messages.

The level hierarchy needs to be maintained when there aytaet slhanges in the network
(e.g., node joins, failures). The maintenance may be peddrlocally without re-executing the
level discovery phase. When a new node joins the networlkeats to determine its level and find
its parent nodes in the level hierarchy. To do it, it unicdestel query messagés all its neighbor
nodes. A neighbor node will send backeael reply message&ontaining its identity and its level.
All the messages are authenticated by the shared pair-wise e new node can determine its
level and parent nodes by the receiving level reply messdgéle synchronization phase, when a
node fails to receive from at lea®t + 1 parent nodes in several rounds of synchronization, it will
send level query messages to its neighbor nodes that arts parént or children nodes, and recruits

new parent nodes according to the level reply messages.

Synchronization Phase

Due to the clock drift of sensor nodes, the source nogeriodically initiates the synchro-
nization phase by unicastingynchronization messagés its neighbor nodes. A synchronization
message contains the sender’s identity, a sequence nuantakthe sender’s source clock differ-

ence. Each node maintains a sequence number, and incresseadh round of synchronization.
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These nodes then further send synchronization messagesitahildren nodes. All the relevant
messages are authenticated with a key shared between tineucorating nodes.

After receiving a synchronization message from nSgéevel one nodes start the single-
hop pair-wise time synchronization with the source nodeeri[ they unicast synchronization mes-
sages to their children nodes. Consider a nb@e a level greater than 1. When it receives a
synchronization message from a parent ngdafter obtaining the single-hop pair-wise clock dif-
ference from nodg, node: calculates a candidate source clock differenceiffg/ = 0;; + 0.

To tolerate up ta malicious nodes in its parent nodes, it has to collect at [2iag- 1 candidate
source clock differences through its parent nodes. Noskis the source clock differendgs as
the median of thet + 1 candidate source clock differences. Then, nbdricasts its source clock
difference to its children nodes.

Effectiveness

We first introduce Lemma 5.2.1 to facilitate the analysis.

Lemma 5.2.1 Assume a normal nodéhas at leas2t+ 1 neighbor nodes, among which there are at
mostt colluding malicious nodes. Nodecan obtain a correct source clock difference if it receives
from each neighbor node the source clock difference andhallnormal neighbor nodes provide

their correct source clock differences.

Proof. According to our model, nodé computes a candidate source clock difference with the
source clock difference provided by each neighbor nodetlzm chooses the median as its source
clock differenced; s. Suppose the source clock difference is obtained througte npthat is,
di,s = 0;; + 0j5. There are two cases. (1) If nogds a normal node, both; ¢ andd; ; must
be correct according to the assumption, ang = d; ; + 9, s is correct according to Definition 4.
(2) Suppose nodg is malicious. Because there are at mostalicious nodesg; g, which is the
median of the2t + 1 candidate source clock differences, must be between twididate source
clock differences obtained through two normal nodes. Tthessource clock differencg s is still
correct, according to Definition 4.

Based on Lemma 5.2.1, we have the following results on tlee®feness of level-based

time synchronization.
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Lemma 5.2.2 The level-based time synchronization can synchronizéakhormal nodes correctly,
if each normal node at levél(l > 1) receives at leastt + 1 source clock differences from distinct

parent nodes and at mosbut of these parent nodes are colluding malicious nodes.

Proof: This is equivalent to proving that each normal nad=an obtain the correct source clock
differenced; s if the given conditions are satisfied. We prove it by indugtio

Each node at level one can obtain the correct source clock differeige which is the
single-hop pair-wise clock difference. Now suppose eagimabnode at a level less than or equal
to level k (kK > 1) has obtained the correct source clock difference. Considermal node at
level k£ + 1. All parents of nodej have levels less than or equal ko If node j receives source
clock differences from at leagt + 1 distinct parent nodes and at mesiut of them are colluding

malicious nodes, then by Lemma 5.2.1, ngden obtain its correct source clock differerigg;.

5.2.2 Diffusion-Based Time Synchronization

With level-based time synchronization, all the sensor soslechronize to the source
node by using the level hierarchy. The following diffusibased time synchronization scheme
allows sensor nodes to obtain source clock differencesigffirany neighbor nodes without requiring
any level hierarchy.

In the diffusion-based scheme, the source nfdeitiates the synchronization process
periodically by unicasting synchronization messagesstngighbor nodes. After obtaining a source
clock difference from the source node, the neighbor nodé&supidate their source clock differences,
and then unicast synchronization messages to their naighéba@ept forS. To tolerate up ta
colluding malicious nodes among its neighbor node, a nodeerttan one hop away from the
source node needs to receive at lest- 1 candidate source clock differences through different
neighbor nodes, and updates its source clock differenceeamédian of th&t + 1 source clock
differences. The node then sends synchronization mesgageseighbors from which it has not
received synchronization messages.

We have the following results on the effectiveness of diffashased time synchroniza-

tion.

Lemma 5.2.3 The diffusion-based time synchronization scheme can mymizk all the normal
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nodes correctly, if each normal node that is more than one &opy from the source node re-
ceives the source clock differences (of the neighbor nddas) at least2t + 1 distinct neighbor

nodes among which at mashodes are colluding malicious nodes.

Proof: This is equivalent to proving that each nadean obtain the correct source clock difference
d; s if the given conditions are satisfied. We prove it by inductio

Each neighbor nodé of the source node can obtain the correct source clock differ
d;,5, Which is the single-hop pair-wise clock difference. Thalspormal nodes have correct source
clock differences right aftef’s neighbor nodes obtain their source clock differencessufge at
a certain time, all the normal nodes that have been syndwedriiave correct source clock differ-
ences. Consider a normal nogléhat is more than one hop away from the source node. From
the assumption, if it can receive the source clock diffeesnof the neighbor nodes) from at least
2t + 1 distinct neighbor nodes, among which at mbsbdes are colluding malicious nodes, then
by Lemma 5.2.1, nodg can obtain its own correct source clock difference.

The benefit of the diffusion-based scheme is that all comoatioin is localized without
depending on a distributed level hierarchy. However, a n@deto send synchronization messages
to all its neighbor nodes from which it has not received syostzation messages. The diffusion-
based scheme potentially has higher communication overtizen the level-based ones, but it is

more applicable for dynamic sensor networks, where thear&ttopology changes frequently.

5.2.3 Security Analysis

By using unique shared pair-wise keys for message autlagiotic our scheme can pre-
vent external malicious nodes from inserting or modifyingssages and impersonating other nodes,
and internal malicious nodes from pretending to be otheesollext we analyze other possible at-
tacks against the proposed schemes, and show how our scbem@®vent or tolerate these attacks.

Attacks against Level NumbersThis attack is unique to the level-based scheme. During
level discovery, a malicious node may lie about its level dgonmal nodes. Because a node sets its
level as the maximum level of the parent nodes plus one, whealiious node sends a level
discovery message with a large fake level, the normal nodeagsign itself a large level if it
chooses the malicious node as one of its parent nodes. Tdhtepr can be mitigated if the normal
node waits for a period of time, since there may be other nbcaradidate parent nodes at lower
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levels. However, there is in general no guarantee that this©v@ppen. Alternatively, we can set a
level threshold to the maximum level in the level hierarchiyhen a node receives from a parent
node whose level is greater than the level threshold, itgltbe message.

Silence Attacks A malicious node may delay or refuse to provide source cloffkere
ences to its children nodes in the synchronization phasielfevel-based scheme, we can tolerate
such attack by recort + 1 parent nodes in the parent set, so that even if upnbalicious nodes
keep silence, a normal node can still recélve 1 source clock differences. This attack has little
effect on diffusion-based scheme when a normal node camatmarce clock differences from any
2t + 1 neighbor nodes, though the malicious nodes keep silience.

Replay Attacks A malicious node may launch replay attacks during the sysrahation
process. Specifically, a malicious node may record a synctatton message in one round of time
synchronization, and replay it to normal nodes in later dsurAs a result, the normal nodes may
accept the replayed message, and derive a false sourcediffecknce.

This attack can be prevented by including a per-node segquemmber in the synchro-
nization messages. Specifically, each node maintains a&seguumber for itself, and keeps a
copy of the most recent sequence number received &achof its parent nodes. In a new round of
time synchronization, each node increments its sequenoberand includes it in all the messages
sent to its neighbor nodes. Accordingly, a node only accaptessage from a neighbor node (and
update the recorded sequence number of this neighbor rfate)sequence number in the message
is greater than the recorded one.

Note that we cannot use a global sequence number to prey#ay @tacks. Otherwise,
a malicious node that has the right keying materials maydawenial of Service (DoS) attacks.

Resource Consumption AttacksAn attacker may attempt to launch resource consump-
tion attacks. In level discovery phase, a malicious node male itself the children node of all its
neighbors. In the synchronization phase, all its neighlooies will have to unicast synchronization
messages to this malicious node, which is a waste of tha&nyatower. However, such a malicious
node can only force each of its neighbor nodes to transmitvarfessages in each synchronization
round, and thus has limited impact.

There is a potentially more serious resource consumptiaglat In the synchronization
phase, a malicious node may unicast synchronization mesgsadts neighbor nodes at any time,
without receiving any synchronization message. In othexdgahe malicious nodes intend to start
one round of synchronization without being triggered by sbarce node. Fortunately, a normal

node sends synchronization messages only after receivlags2t + 1 synchronization messages
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from distinct neighbors. As a result, the malicious nodey oavince its normal children nodes
to request synchronization messages from other parensnbdewill not convince them to further
send synchronization messages, as long as the victim nowdal has less thakt + 1 malicious
neighbor nodes.

Wormhole Attacks Wormhole attacks are a serious threat to multi-hop wirefests
works. In a wormhole attack, an attacker tunnels packetived in one part of the network over
a low latency link and replays them in a different part [44}takkers may tunnel level discovery
messages or synchronization messages through wormhaegevdr, such wormhole attacks do not
help much in disrupting time synchronization. An attackexyriry to impair the single-hop pair-
wise clock difference between two nodes by introducing yelahen forwarding the related mes-
sages. Fortunately, with a sender-receiver pair-wise synehronization technique (e.g., SPS [29]),
two communicating nodes can measure the message trarmmtisse at the same time when they
measure their clock difference, and thus will be able toatdtes wormhole if the wormhole intro-
duces noticeable delay. An attacker may also establish samaholes in level discovery phase
but stop them in the synchronization phase. Such attacksudogumed by normal node failures,
and can be addressed with the maintenance of the level ¢tgrar

Sybil Attacks A malicious node may forge multiple identities to send mgesa How-
ever, this attack can be prevented if the two communicatoues share a unique pair-wise key and
use it to authenticate the communication messages. Ifdintijunalicious nodes can exchange their
keying materials, one malicious node may impersonate déneaway malicious nodes in its local
network. Such colluding malicious nodes may be detectedrambved by using the techniques
proposed in [73].

5.2.4 Performance Analysis

We discuss the performance of our schemes on metrics sucasunication overhead,
synchronization precision, and memory requirement.

Communication Overhead When considering a sensor network as a graph, in which
each vertex stands for a node in the network, and each edgsesps that the two vertices of the
edge are neighbor nodes, we gét= {V, E} where|V| is the number of sensor nodes gt is
the number of connections between the nodes.

In the level discovery phase of level-based approach, aftexde determines its level, it

unicasts level discovery messages to the neighbors thatrtwsent level discovery messages to it.
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Assuming there is no communication failures and all the s@te included in the level hierarchy,
all the edges in the graph will be covered exactly once by emel ldiscovery message in both
approaches. Thus, the overheadi$E|). In the synchronization phase, we assume that there is no
communication failures and all the nodes in the network gaotsronize their clocks. Suppose there
aren; nodes in level one. Since the nodes at levels more thaifl receive 2t + 1 synchronization
messages, the total number of messages transmitted in oné o clock synchronization can be
estimated as

ny+ (|V]—n1 — 1)(2t + 1). (5.1)

In the diffusion-based scheme, the number of messagesrtithaed in one round of time
synchronization is the same as that in the level discoveag@lof the level-based schemes, that is
O(|E]). Suppose each node hasieighbor nodes in average in a large dense sensor network. We
have|E| = |V| - k/2. Compared with the level-based schemes, the diffusiorebasheme has a
higher communication overhead when> 2(2t + 1). In real sensor networks, due to the message
collision, the overhead in both schemes will be higher.

Synchronization Precision The synchronization precision at a nodean be measured
by the clock error between nods estimated global clock and the actual global clock (thee,clock
of the source node) when nodedjusts its local clock. Specificallyyrror; = |C; + 6; s — Cg|,
whereC; andC's are the node and the source nodg's local clock times, respectively, argls is
the estimated source clock difference.

In our scheme, the major clock error is mostly caused by thekalrift between the time
when the source node starts one round of time synchronizatid the time when a node obtains its
source clock difference. Suppose the source nfodatiates one round of synchronization at time
t, and node; adjusts its clock at time;, wheret; > tg. We denote the maximum time duration
t; —tg of all the nodes as thgynchronization timeBy [22], when the maximum clock drift of all the
clocks isp, the maximum clock drift during; — t; between nodé& and node is up to2p(t; —ts). It
seems that a sensor node may recéiveé 1 messages sooner in the diffusion-based scheme than in
the level-based scheme, since it can receive from any neigtdale in the diffusion-based scheme.
However, due to the higher communication overhead in tHesidn-based scheme, there is more
message collision and message retransmission. Henceiffillgamh-based scheme has a longer
synchronization time and a worse synchronization precidian the level-based scheme.

Given the required precision and maximum clock drift rate, s&n decide theynchro-

nization interva) which is about how often the source node initiates one raifitiche synchroniza-
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tion. Suppose the maximum clock drift rate of all the sensmtas isp. Given the synchronization
precisiond and the required precisioA of an application, the synchronization intervalmust
satisfy thatk < (A —4)/p.

Memory Usage Memory usage is a critical issue for resource constrainegdasenodes.
In the level discovery phase, the level-based approachresgmemory to record a node’s level,
its parent nodes, and its children nodes. To tolerate upn@licious node among its neighbor
nodes, a normal node has to have a certain amount of memagidetfor children node so that the
malicious nodes cannot prevent it from having normal ckitddnodes by consuming this memory.
In the synchronization phase of both level-based and dfiffubased approaches, each node only
needs to recor@t + 1 single-hop pair-wise clock differences ald+ 1 source clock differences

from its neighbor nodes.

5.3 Secure and Resilient Global Time Synchronization with Mltiple

Source Nodes

In our initial experiments, we observe that it took a longdime synchronize a large
sensor network, and some nodes are usually not synchrortaadinvestigation revealed that this
is mostly due to message propagation and increased occasr@f message collsions. Moreover,
the nodes far away from the source node may not be synchtbwiitk a high precision due to the
clock drift during the synchronization process. To redimesynchronization time and improve the
synchronization rate and the synchronization precisiapmpose to deploy multiple source nodes
into the network, and make sensor nodes synchronize to grestesource node. This approach is
in essence similar to the typical techniques (e.g., [82/8368]) for location estimation in sensor
networks, where multiple anchor nodes that know their iooatare deployed to help the other
nodes to estimate their locations.

The multiple source nodes can also increase the robusthéiss time synchronization,
so that sensor nodes can get synchronized from other soodes rven if the nearest source node
fails. In hostile environments, it is possible for malicsoattackers to compromise a small portion
of the source nodes, though the source nodes are typicdtiyr lpFotected from attacks than the
normal ones. Thus, we also extend our techniques to tolaregéetain number of malicious source

nodes.
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5.3.1 Extended Model

We assume all the normal source nodes are well synchronizad éxternal clock, for
example, through GPS receivers. Suppose the IDs of theesowdes are known to all the sensor
nodes. We extend the time synchronization model in Sectibi2 5o accommodate synchronization

with multiple source nodes:

1. Each nodé maintains docal clockC;.

2. Each node may obtain a source clock differenégs; between its local clock and the clock
of a source nodé; following the model in Section 5.1.2.

3. To tolerate up te malicious source nodes, each nadeeds to obtain at lea3t + 1 source
clock differences from distinct source nodes. Naedken chooses the median of the source

clock differences as its global clock differenges.

4. Each node can estimate thglobal clockCs by using its local clock and its source clock

difference (i.e.C's = C; + d; ).

When all the source nodes are normal (ise= 0), sensor nodes may synchronize to any

source node.

5.3.2 Estimation of Hop-Count Threshold

When multiple source nodes are used for time synchronizagiach node only need syn-
chronize to the neare&s + 1 source nodes. Thus, it is unnecessary to propagate the yime s
chronization messages for each source node to the entis@metAs a result, we can significantly
reduce the message propagation time and the chances ofgaesdlgsions. Therefore, we propose
to limit the coverage area of each source node. Specifica#lyset a suitable hop-count threshold
on the maximum hop count that a synchronization message edorlvarded. We certainly still
need to guarantee that each sensor node can synchronize-tb source nodes.

In the level-based scheme, we can set the hop-count theebkidimiting the maximum
level in each source node’s level hierarchy. In the levelalisry phase, a sensor node only chooses
the neighbor nodes whose level are less than the hop-coreghthld as its parent nodes. If a
sensor node’s level equals to the hop-count threshold,llined send level discovery messages to
its neighbor nodes. In the synchronization phase, a seosiermay send synchronization messages

only if its level is less than the hop-count threshold.
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In the diffusion-based scheme, we set an uppper bound ticesh the maximum hop
count for the synchronization messages. We add a hop coldhirfithe synchronization messages.
When a source node initiates one round of synchronizatiogets the hop count in the messages
to 0. Each sensor node only accepts a sychronization mesgazge hop count field is less than
the threshold, and records the hop count in the message. |éfat® up tot malicious neighbor
nodes, a sensor node needs to recgivé 1 messages from neighbor nodes. If the maximum hop
count of the2t + 1 messages is less than the hop-count threshold minus oreeriker node sends
synchronization messages to its neighbors from whom it diadeceive a synchronization message.

Otherwise, it does not send any synchronization message.

C1 C2
Ai

(@) (b)

Figure 5.2: Estimation of Hop-count threshold

In the following, we present a method to derive a suitable ¢mymt threshold for a source
node. Suppose all the nodes have the same transmission farfggure 5.2(a), we assume that
sensor nodes are uniformly distributed in a rectangle fielak@a A. Two circlesCy, andC, have
radii R andr, respectively. The distance between the centers of theitale€isd, we can calculate

the shadow ared; of the circle intersection by:

i 4 1% — R? 2+ R? — ¢?
2l 2 1
A; =r°cos™( 5 )+ R cos™ ( d R )
1
—5\/(T+R—d)(d+r—R)(d—l—R—r)(d—l—?“—l—R). (5.2)

Suppose a source node locates at pOintThe sensor nodes in the cirelg have obtained
their levels, and the maximum level of these sensor nodegdsnsider a sensor nodé¢hat locates

at pointCy with transmission range In the level-based scheme, nodeeeds to receive frolt 41
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neighbor nodes with less than or equal tevels to obtain its level. This condition can be satisfied
only if

n
A; - — 1. 53
A>3t+ (5.3)

Given the node density of the netwofk, node transmission range and the number
of malicious neighbor nodes by equation 5.3, we can calculate the maximum distah@®m
the levell 4+ 1 nodes to the source node. Figure 5.2(b) shows the procedwbtain the level
threshold, given a maximum distané& from the source node. We assume that the source node
locates at the center of the cirdg, and its transmission rangeris All the level one nodes are in
the transmission range of the source node, and the maximstande from level one node to the
source node id; = r. For level two nodes, by using = d; = r into equation 5.2, we can get the
maximum distances from the level two nodes to the source nodes. For level thodes by using
R = dy andr = r into equation 5.2, we get the maximum distadgdrom level three nodes to the
source node, and so on. Because the shadowAr@aFigure 5.2(a) increases along wiity we
haved; .o — d;+1 > d;+1 — d; wheni > 1, which means the bands in Figure 5.2(b) will become
wider and wider. Now given the maximum distanBPefrom the farthest node to the source node,
we can calculate the a level threshdldby finding the minimumL that satisfiesl;, > D. In the
level-based scheme, the level threshold functions as thecbont threshold.

In the diffusion-based approach, we can perform a similiouéation. But we should
use inequation 5.4 instead of inequation 5.3, since a noddsn® receiv@t + 1 synchronization

messages from neighbor nodes.

n
Ai- 7 > 24 1. (5.4)

5.3.3 Time Synchronization with Multiple Source Nodes

All source nodes are normal. When all the source nodes are normal, since a sensor node
can synchronize to any source node, we can improve the symzhtion performance. First, multi-
ple source nodes make sensor nodes receive from a sourcenrsiaeter hops, so the accumulated
synchronization error on the nodes along the path can beeddusecond, multiple source nodes
can reduce the message collision and shorten the syncatiomizime, so they can improve the
synchronization precision. Moreover, the multiple sounrodes may increase the synchronization

rate in a randomly distributed sensor network.
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In the level-based scheme, each source node builds a lerattiy rooted by itself. For
the neighbors of a source node, they choose the source ndlde asique parent node. For a node
more than one hop away from any source node, to tolerate tymtdicious neighbor nodes, it can
choose either (1) a set 8f + 1 parent nodes that synchronize to the same source node, @s€2)
of 3t+ 1 parent nodes that may synchronize to different source ndaddse synchronization phase,
a node may obtain a source clock difference after receiwnglwonization messages fra + 1
parent nodes.

In the diffusion-based scheme, the neighbors of the sousdesican synchronize their
clocks after receiving from a source node. For a node mone dn@ hop away from any source
node, a node can synchronize its clock after receiving spmtration messages from agy + 1
neighbor nodes.

Partial source nodes are malicious.To tolerate up t@ malicious source nodes, a normal
sensor node has to receive at least- 1 source clock differences from distinct source nodes.

When some source nodes are malicious, the sensor node shmaid each source clock
difference from a set of parent nodes that synchronize tsahge source node. Note that the sensor
nodes cannot use the source clock difference obtained fisghat parent nodes that synchronize to
different source nodes. Consider Figure 5.3, in which egdtand for source nodes, and triangles
stand for sensor nodes. Suppose the shadow nodes are maliEr the bottom sensor node, one
of the three neighbor sensor nodes is malicious, one of tiee source node is malicious, and the
malicious nodes may collude with each other. In each subgithe bottom node obtains a source
clock difference by choosing the median value of the threwlickate source clock differences re-
ceived from the three neighbor nodes, which synchronizbreetdifferent source nodes. Similarly,
each parent node synchronizes to different source nodech ®#bgraph. The bottom node can
obtain three source clock differences from the neighboresdbat synchronize to different source
nodes, but the two source clock differences in (a) and (btanérolled by the colluding malicious
nodes. When the bottom node uses the median of the threeesdook differences to synchronize
its clock, it cannot correctly synchronize its clock.

In both level-based and diffusion-based schemes, the sqwde adds its identity into
the messages that it initiates. In the level-based scheach, source node independently builds a
level hierarchy rooted at itself. When a sensor node’s ligwalsource node’s level hierarchy is no
more than the level threshold, the sensor node recordstfirégren sets for the source node. Note
that a sensor node may record parent/children sets for rhare2t + 1 distinct source nodes. In

the synchronization phase, after one sensor node obtamseesclock difference from one source
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(a) (b) ()

Figure 5.3: Partial malicious source nodes

node, it sends synchronization messages to the set of ehiftsdes that synchronize to the same
source node. After obtainirgs + 1 source clock differences from different source nodes, ¢énsaer
node uses the median of tBe + 1 source clock differences to adjust its clock. Similarly e
diffusion-based scheme, to toleratenalicious source node, a sensor node synchronizes its clock
after obtaining2s + 1 source clock differences.

When all the source nodes are normal, we can improve therpafece on communica-
tion overhead and synchronization precision. When somesmodes may be malicious, we can
tolerate the attacks from malicious source nodes by synéhing sensor nodes to multiple source
nodes. However, we sacrifice the performance of our schemashieve the robustness. To tol-
erates malicious source nodes, a normal node has to ol2ais 1 source clock differences from
different source nodes. For each source clock differeffeenbde needs to receive fratn + 1
neighbor nodes to tolerate up#analicious neighbor nodes. Thus, the communication overisea
increased along with andt. To guarantee that each node can receive f2em- 1 source nodes,
each source node has to increase its coverage area, in whggage collisions increase. Due to the
increased occurrences of message collisions, both the oomation overhead and the synchro-
nization time increase a lot. In the level-based scheméy made allocates more memory to record
the parent/children sets for multiple source nodes. In lestbi-based and diffusion-based schemes,
each node needs to allocate more memory to record the cémdidarce clock differences from

different neighbor nodes and different source nodes.
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5.4 Simulation Results

We studied both level-based and diffusion-based time spmitation through simulation
in ns2 [5]. Our goal is to gain a better understanding of thdopmance issues of the proposed
techniques, which cannot be obtained through theoretiwyais. We implemented a new agent in
ns2 to provide global time synchronization for sensor notldsused a simple “Hello” protocol for

nodes to discover their neighbor nodes.

Table 5.1: Simulation parameters in level-based and didfubased schemes

Number of Nodes 50, 100, 150, 200
Simulation Area 60m x 60m
Transmission Range 20m
Physical Link Bandwidth 250 kbps
MAC layer 802.11 with DATA/ACK
Clock Drift Rate {us/s) uniformly distributed
in [0, 10]
Malicious Neighbors t=0,1,3
Total Source Nodes S=1,9
Malicious Source Nodeg s=0when S=1
s=0, 1, 3 when S=9

Table 5.1 shows the parameters used in our experiments. Urhbers of nodes in a
sensor network is 50, 100, 150, and 200, respectively, aeyldb not include the source nodes.
All the sensor nodes remain static after being randomlyayeal in a 60 mx 60 m simulation
area. Suppose all the nodes have the same transmission vémige is 20 m. The bandwidth of
each physical link is 250 kbps, as provided by MICAz moteq.[20ur simulation uses 802.11
with DATA/ACK as the MAC layer, in which an ACK message is sémick for a unicast DATA
message, and no ACK message for broadcast DATA messager $inmulation, we did not enable
the RTS/CTS/DATA/ACK pattern in the 802.11 protocol, sittlse control messages will introduce
a large extra latency into the synchronization time and ladwgh collision rate on themselves. We
simulate a nodé’s local clock asC; = (1 + p;) - Cs, whereCj is the clock of the source node
andp; is nodei’s clock drift rate. Eaclp; is randomly generated according to a uniform distribution
between 0 and 10s/s.

First, we deploy a single source node in the center of the lalion area, and assume
the unique source node is always trusted. For each sensey th@dnumber of malicious neighbor

nodest can be 0, 1, and 3, respectively. Whes 0, our scheme degenerates into an existing time
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synchronization scheme (e.g., [31], [63]), depending ersthgle-hop pair-wise clock synchroniza-
tion scheme adopted in our scheme. Next, we deploy 9 soudssno the simulation area as Figure

5.4 shows. The number of malicious source nodes can be Od B, aaspectively.

Figure 5.4: Topology of multiple source nodes in simulation

Our simulation adopts a simple single-hop pair-wise cloakchronization scheme: one-
way pair-wise time synchronization [67]. Specifically, lwé single source nodg, a node;j sends
its current global clock time:'g) in the synchronization messages. After receiving this aggEss
node: can calculate its source clock difference®y = 6; ; + ;5 = C; — C; + 95 = Céj) -
C;. The advantage of this scheme is that a node can obtain thevisai clock difference from
a neighbor and the neighbor’'s source clock difference insymehronization message, so it can
decrease the possibility of message collision and shomsytnchronization time. Note that if we
use TPSN [31] to obtain the single-hop pair-wise clock défee, we may get a higher precision on
the pair-wise clock difference than this simple approacbweler, since a node needs to exchange
at least 2 messages with each parent node, the messagerallit increase more than twice, the

synchronization time is longer, and the synchronizatictision becomes worse.

5.4.1 Single Source Node

When deploying a single source node in the network, we sthdyperformance of our
schemes when they can tolerate up tealicious sensor nodes. We compare the level-based scheme
and the diffusion-based scheme on synchronization ratemeoication overhead, synchronization
time, and synchronization precision. Each data point irréiselt figures is an average of 10 simu-

lation runs with identical configuration but different ramdly generated node deployments. The Y
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axis error bars show confidence interval a¥®&onfidence.
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Figure 5.5: Convergence time of level discovery phase

Convergence Time of Level Discovery The convergence time of the level discovery
phase is shown in Figure 5.5. When= 50 andt = 3, the level hierarchy cannot include all the
sensor nodes. In our simulation, to reduce a node’s levdlaridvel hierarchy, after obtaining its
level, each sensor node delays 1 second before it sendsdiegelery messages to its neighbor
nodes.

Synchronization Rate Figure 5.6 shows the percentage of sensor nodes that can be
synchronized. Wheh = 3 andn = 50, due to the relatively low density of the network, the level-
based scheme can synchronize onlyi40odes, while diffusion-based scheme can synchronize
60% nodes. When n increases to 150, both schemes can synchadmiast all the sensor nodes.
The diffusion-based scheme can synchronize more senses tioan the level-based scheme in the
sparse sensor networks. Whee: 3 andn = 200, due to the increased message collision, several
sensor nodes may not be synchronized in the level-basethsche

Communication overhead In both schemes, the neighbors of the source node require
only one synchronization message from the source node,hendaddes more than one hop away
from the source node need to receive at I@ast 1 messages from neighbor nodes.

Figure 5.7 shows the number of synchronization messagersene round of time syn-
chronization. One message can be retransmitted at mose4 timour simulation. The diffusion-
based approach has a higher communication overhead thdevtiédased approach. The com-

munication overheads increase along with the number ofehecs nodes in both schemes. In the
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Figure 5.6: Synchronization rate using unicast

level-based scheme, the overhead also increases along siitke nodes need to receive from more
parent nodes. In the diffusion-based scheme, whisrsmaller, a node will send to more neighbor
nodes from whom it has not received the message. It may eedein a neighbor node before

it sends out the buffered message to the neighbor node, Wilt lesume to send the message in
our simulation. Thus, in the diffusion-based scheme, tleemanication overhead decreases a little

whent increases.
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Figure 5.7: One round communication overhead using unicast

Synchronization Time Before measuring the synchronization precision, we firahex
ine the synchronization time, which has a major effect orsiimehronization precision.
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Figure 5.8: Maximum synchronization time using unicast

Figure 5.8 and 5.9 show the maximum and average synchrarizéanes to finish one
round of global time synchronization. The synchronizatione increases along within both
schemes. The level-based scheme can finish sooner tharfftreodi-based scheme. The level-
based scheme can finish one round of synchronization in sndecehent = 3; while in the

diffusion-based scheme, the maximum synchronization nmear 16 seconds whern= 3.
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Figure 5.9: Average synchronization time using unicast

Synchronization Precision Now we examine the synchronization precision of the pro-
posed schemes. To reduce the impact of the nondetermidedgs caused by the MAC layer, we
follow [31] to use MAC layer timestamp. We modify the 802.11AM layer in ns2 to record the
exact timestamp when a message is transmitted or receiyesitplty.
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Figure 5.10 and 5.11 show the maximum and average clocksasf@ll the nodes imme-
diately after synchronizing their local clocks. The letr@sed scheme can provide a much better
clock precision than the diffusion-based scheme. The niagson is that the clock drift during the

synchronization time is greater in the diffusion-basecdesoh than that in the level-based scheme.
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Figure 5.10: Maximum synchronization error using unicast
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Figure 5.11: Average synchronization error using unicast

5.4.2 Multiple Source Nodes

We deploy 9 source nodes in the network, as Figure 5.4 shoaenWp tos source nodes
may be compromised, a sensor node has to obtain source dfierkitces from2s-+1 source nodes.
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In our simulation, we fix the number of sensor nodes to 200,baridz ands can take values from
0,1, and 3.

Hop-count Threshold First, we need to decide the hop-count threshold to allowhall
sensor nodes receive froRs + 1 source nodes. When = 0, all the source nodes are normal.
Since the multiple source nodes can guarantee that all titeoseodes can directly receive from
at least one source node, the hop-count threshold is set M/lens = 1, each sensor node
needs to receive source clock differences from at least &emodes. As Figure 5.12(a) shows,
the maximum distance for all the sensor nodes to receive fhr@mearest 3 source nodesis=
15 % /5 = 33.54m. Whens = 3, each node needs to receive from 7 source nodes. Figurenk.12(
shows that the maximum distance for a sensor node to req@iwethe nearest 7 source nodes is
D = 30 % /5 = 67.08m. Table 5.2 shows the hop-count thresholds whea 200, calculated by

following Section 5.3.2.

(b) s=3

Figure 5.12: Maximum distance from 2s+1 source nodes

Table 5.2: Hop-count thresholds when n=200, S=9.

Scheme s=0| s=1, t=1]| s=1, t=3| s=3, t=3
Level-based 1 2 3 6
Diffusion-based| 1 2 3 5

In the level-based scenarios, the source nodes can buitdetel hierarchies at different
times to prevent the message collision caused by message®ther source nodes.

Synchronization Rate In all the scenarios, all the 200 sensor nodes can be syrizbdn

Synchronization Time From our simulation results, when= 0 ands = 1, all the
source nodes may initiate the synchronization processeasdime time. Due to the small hop-
count thresholds, the message collision is under controlwever, whens = 3, if all the source
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nodes synchronize at the same time, due to the high hop-tm@sholds, there is a huge message
collision which makes it impossible to synchronize the semsodes. To reduce the collision, we
divide the 9 source nodes in to 5 groups, thafis8}, {2,6}, {3, 7}, {4,5} and{0}. The source
nodes in the same group can initiate synchronization atadhgegime, since they are relatively
far from each other and have less message collision. In owlation, each group initiates the
synchronization process in an interval of 20 seconds indbeldbased scheme, and an interval of
30 seconds in diffusion-based scheme. This arrangemdnheviéase the synchronization time and
the synchronization error, but maximizes the synchroiupatate. There may exist better ways to
arrange the order for source nodes to initiate the time spnétation, and we consider it as our
future work.

Figure 5.13(a) shows the maximum synchronization time fiedint scenarios. We can
see that the synchronization time increases along with ainel 5. Whers = 0, the whole network
can be synchronized in one second, no matter the value sice all the sensor nodes can be
directly synchronized.

Whens = 1 andt = 1, the synchronization time is around 16 seconds in the level-
based scheme, and around 57 seconds in the diffusion-bakethe. Whers = 1 andt¢ = 3,
because a node far away from a source node needs to recemektdferences before sending its
synchronization messages, the time increases to arounec@fds in the level-based scheme, and
around 75 seconds in the diffusion-based scheme. Wher$ and¢ = 3, the level-based scheme
needs around 2.5 minutes to finish one round of synchroaizatvhile the diffusion-based scheme
needs almost 4 minutes. In order to decrease the synchtionizame, we may distributed more
source nodes into the network.

Synchronization Error Figure 5.13(b) shows the maximum synchronization errorelvh
s = 0, the maximum synchronization error is less thanik0Whens = 1 andt = 3, the maximum
synchronization error is less than 0.23 ms in the leveldbasheme, and 0.6 ms in the diffusion-
based scheme. When= 3 andt = 3, the maximum synchronization error increases almost 3
times.

Communication Overhead Whens = 0, the message overheads in both schemes are
less than 400. The communication overhead in the leveldssdgeme is moderate for sensor nodes.
Whens = 3 andt = 3, in average, each sensor node sends nearly 100 messagesrivuad of
synchronization. The communication overhead of the diffudased scheme is much higher than
the level-based scheme. When= 1 andt¢ = 1, each node has to send nearly 200 messages.

Whens = 3 andt = 3, each node sends around 850 messages. Considering theceesoustraint
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in sensor nodes, it makes the diffusion-based scheme #@ideab tolerate more malicious source
nodes.

5.5 Summary

In this chapter, we presented two secure and resilient biioba synchronization schemes
for sensor networks. We adopted a model where all the semst@snsynchronize their clocks to
a common source, which is assumed to be well synchronized &xi@rnal clock. We propose to
increase the performance by deploying multiple source sioaled extend our schemes to tolerate
malicious source nodes.

When we developed these two schemes, we believed that taddarst authentication is
not applicable in wireless sensor networks. Therefore,vese to provide unicast authentication by
using the secret pair-wise key shared between two commingoaodes, and we can guarantee the
security of our schemes. However, because each node nesgisdc@ne message to each neighbor
node in each round of time synchronization, the commurinativerhead is quite high, and it may
cause potential huge message collisions. Therefore, tienses are difficult to be used in large
sensor networks.

In our consecutive research, we developed a secure ariémegiobal time synchroniza-
tion using broadcast authentication based on a novel usee@fMESLA broadcast authentication
protocol forlocal authenticated broadcastesolving the conflict between the goal of achieving time
synchronization with TESLA-based broadcast authentication and the factii&SLA requires
loose time synchronization. In each round of global syneization, each node only broadcasts one

synchronization message. We will discuss the detail in deapter.
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Chapter 6

Secure and Resilient Global Time
Synchronization with Broadcast

Authentication

In this chapter, we describe the desigrilafySeRSynf[94], a secure and resilient global
time synchronization using broadcast authentication. gre#ocol is based on a novel way to in-
tegrate broadcast authentication into time synchrommativhich successfully provides authentica-
tion of the source, the content, and the timeliness of symihation messages.

We implement TinySeRSync on MICAz motes running TinyOS aedgrm a thorough
evaluation through field experiments in a network of 60 MICptes. The evaluation results
indicate that TinySeRSync is a practical system for secackrasilient time synchronization in

wireless sensor networks.

6.1 TinySeRSync: Secure and Resilient Global Time Synchraation

In this section, we propose a secure and resilient globa# sgmchronization protocol,

TinySeRSync, which is integrated with local broadcast entication. We adopt the same global
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time synchronization model in Section 5.1. The source nadadtasts synchronization messages
periodically to adjust the clocks of all sensor nodes. Thekyonization messages are propagated
throughout the network to reach nodes that cannot comntenigdh the source node directly.
The timely transmission of all these messages are auth&dic Moreover, each node obtains
synchronization information from multiple neighbor nodes that it can tolerate compromised

nodes to a certain extent.

6.1.1 Basic Approach

To deal with the ad hoc deployments of sensor networks anthtkeof initial synchro-
nization among sensor nodes, TinySeRSync consists oasynchronouphasesPhase |I-secure
single-hop pair-wise synchronizatipandPhase ll-secure and resilient global synchronizatiom
Phase I, pairs of neighbor nodes exchange messages witlotgcho obtain single-hop pair-wise
time synchronization. Phase | uses authenticated MAC lay@stamping and a two message ex-
change to ensure the authentication of the source, thergpatel the timeliness of synchronization
messages. Nodes run Phase | periodically to compensatin{omus) clock drifts and maintain cer-
tain pair-wise synchronization precision, providing tberdation for global time synchronization
as well as thes TESLA-based local broadcast authentication in Phase II.

Phase Il useauthenticated local (re)broadcasb achieve global time synchronization,
starting with a broadcast synchronization message frorsdghece node. Phase Il adapfSESLA
to ensure the timeliness and the authenticity of the locaddicast synchronization messages. To
be resilient against potential compromised nodes, each astimates multiple candidates of the
global clock using synchronization messages received fruitiple neighbor nodes, and chooses
the median. Nodes that are synchronized to the source ndtieffuebroadcast the synchronization
messages locally. This process continues until all the :iade synchronized. Phase Il also runs
periodically to maintain certain global time synchroniaatprecision.

We would like to emphasize that the two phasesassgnchronousin other words, secure
single-hop pair-wise synchronization (Phase I) is exethbtenodes individually and independently,
while secure and resilient global synchronization (Ph#ses Icontrolled by the source node and
propagated throughout the network. The only requiremetfias a node finishes Phase | before
entering Phase Il. Also note that both Phase | and Phasedkaneited periodically. Though a node
that has not performed Phase | synchronization with itshimignodes cannot participate in a global

synchronization, it may join the next round of global symrhzation once it finishes Phase I. Thus,
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our approach supports incremental deployment of sensagspaghich is an important property
required by many sensor network applications.

TinySeRSync has a critical difference from the schemesqa®eg in Chapter 5: it uses
authenticated local broadcash propagate global synchronization messages, while thenses in
Chapter 5 uses authenticated unicast that leads to subk@mnhmunication overhead as well as
message collisions. This difference represents a key Bgg@hables practical secure and resilient
time synchronization in sensor networks.

The ability to authenticate local broadcast messages isdheerstone of the proposed

protocol. In the following, we describe in detail how thiglisne in TinySeRSync.

6.1.2 Authentication of Local Broadcast Synchronization Messages

As discussed earlier, the signaling messages for globalgynchronization are broadcast
in nature, and must be transmitted in a timely and authertio&ay. There are two general solutions
for authenticating broadcast messages in sensor netwdigital signatures andTESLA [74, 76].
Though it is possible to verify digital signatures on senglatforms, as shown in [37], digital
signature operations are still multiple order of magnitmere expensive than secret key based
solutions such ag TESLA. Using digital signatures for time synchronizatiomyrquickly exhaust
the battery power of sensor nodes. Moreover, it is also aactitte target of Denial of Service
(DoS) attacks: An attacker may broadcast synchronizatiessages with false digital signatures to
force sensor nodes to perform expensive signature veitficat

uTESLA [76] relies on symmetric cryptography, and thus dostssaffer from the above
problems. Howeveru TESLA requires loose time synchronization between the dirast sender
and the receivers. Considering the goal of having the sooode synchronize the clocks of all
the sensor nodes, there seems to be a conflict in yshigSLA for authenticating broadcast time
synchronization messages.

We can indeed avoid the above conflict. We observe that twghber nodes may securely
perform single-hop pair-wise time synchronization usimg technigues in Chapter 3. Consider an
arbitrary node A. Assume node A have synchronized with @h@ighbor nodes so that node A and
any of its neighbor nodes know the clock difference betwdemt As a result, if node A needs
to broadcast a synchronization message to all its neighbdes) it may certainly useTESLA
for broadcast authentication, since the “loose synchatioiz” requirement needed yTESLA is

already satisfied. In other words, we only yseEESLA locally to avoid the above conflict.
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Specifically, we adapt: TESLA for local broadcast authentication to protect thealro
cast messages from a node to its neighbors, assuming the Phaghbor synchronization has
completed. In the following, we first give a brief introdwmti to u TESLA, and then discuss the
adaptation o TESLA in TinySeRSync.

Overview of u TESLA Protocol

An asymmetric mechanism such as public key cryptographyerselly required for
broadcast authentication [74]. Otherwise, a maliciougivet can easily forge any message from
the sender, as discussed earlieFESLA introduces asymmetry by delaying the disclosure aiisy
metric keys [76]. A sender broadcasts a message with a MI€rgtad with a secret kely, which
is disclosed after a certain period of time. When a receie¢s this message, if it can ensure that
the message was sent before the key was disclosed, theearebeffers this message and authenti-
cates the message when it later receives the disclosed &ayonfinuously authenticate broadcast
messages; TESLA divides the time period for broadcast into multipléeitvals, assigning different
keys to different time intervals. All messages broadcaatgarticular time interval are authenticated
with the key assigned to that time interval.

To authenticate the broadcast messages, a receiver fingngighates the disclosed keys.
UTESLA uses a one-way key chain for this purpose. The sentlrtsea random valu&’,, as the
last key in the key chain and repeatedly performs a (crypfaigic) hash functiod’ to compute all
the other keysK; = F(K;11),0 < i < n— 1, where the secret kelf; (except forK) is assigned
to thei-th time interval. Because of the one-way property of thehHfasction, givenk; in the
key chain, anybody can compute all the previous kBys0 < i < j, but nobody can compute
any of the later one#(;,j + 1 < i < n. Thus, with the knowledge of the initial kekfy, which
is called thecommitmentf the key chain, a receiver can authenticate any key in theckain by
merely performing hash function operations. When a brostdoassage is available in theéh time
interval, the sender generates a MIC for this message wittyalkrived fromK;, broadcasts this
message along with its MIC, and discloses the k&y 4 for time interval I;_, in the broadcast
message (wheris the disclosure lag of the authentication keys). Figutdlfustrates the division
of the time line and the assignment of authentication keysliBSLA.

Each key in the key chain will be disclosed after some delag.aAesult, the attacker
can forge a broadcast message by using the disclosed/Hé&ySLA uses a security condition to

prevent such situations. When a receiver receives an imgphbroadcast message in time interval
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Figure 6.1:uTESLA protocol

I;, it checks the security condition(7. + A — T1)/Tint| < i+ d — 1, whereT, is the local time
when the message is received, is the start time of the time interval, T;,,; is the duration of
each time interval, and\ is the maximum clock difference between the sender and.itfeihe
security condition is satisfied, i.e., the sender has naotatisd the keys; yet, the receiver accepts

this message. Otherwise, the receiver simply drops it.

Short Delayedy TESLA: Adapting ¢ TESLA for Global Time Synchronization

Distribution of 4 TESLA Parameters: In order to useuTESLA, the sender needs to transmit a
number of parameters to all the receivers before the actoablbast messages. These include the
key chain ID, the key chain commitment, the duration of eate interval, and the starting time
of the first time interval. We can fix the duration of time int&lis and the length of each key chain
as network wide parameters. However, the other paramedwestb be communicated from each
node to its neighbors. To reduce communication cost, weypiggk the transmission of these
uTESLA parameters with the single-hop pair-wise synchration between neighbors. In other
words, each node sends the parameters of its @WBSLA key chain to a neighbor node during
secure single-hop pair-wise synchronization. When onecdkeyn is about to expire, each node
needs to communicate with each neighbor node again to tiatigrnparameters for the next key
chain.

Balancing Key Chain Size and Authentication Delay: A direct application ofuTESLA to au-
thenticate the local broadcast synchronization messages fa risk.u TESLA is subject to DoS
attacks [75], in which an attacker overhearing a valid bocaatl message may use the disclosed
key in the message to forge broadcast synchronization gpessé receiver has to buffer all such
(forged) messages claimed to be from some neighbor untitéives the disclosed key. As a result,

the receiver may not have enough memory to buffer synchatioiz messages from other neighbor
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Figure 6.2: Short delayedTESLA protocol

nodes. The immediate authentication mechanism propogd@®jicannot be applied here, because
it requires that the sender know the next message to be tittedriefore sending the current mes-
sage.

One possible way to mitigate the threat of DoS attacks inajlslgnchronization is to
exploit the tight time synchronization established duiftigase 1. Specifically, when usip ESLA
for local broadcast authentication, we may use very shos thtervals to limit the duration vulner-
able to DoS attacks. Because the neighbor nodes have bédg tignchronized with each other
during phase I, the broadcast sender can use very shortritergals and disclose an authentication
key right after the corresponding interval is over. Whentiime interval is short enough, it does not
give enough time to an attacker to forge broadcast messajes the disclosed key it just learns
from the valid broadcast message. A short enough intervalion also offers authentication of the
timelinessof the synchronization messages; it disallows a replayessage to be transmitted in the
valid time interval, and thus enables receivers to detettramove them.

However, this approach comes with a significant cost: To iIcaveertain period of time
(e.g., 30 minutes), the sender needs to generate a faidykisynchain due to the short time intervals,
and most of the keys will be wasted. Reducing the key chamtltewill force all the neighbor nodes
to exchange the key chain commitments frequently, leadirigeivy communication overhead.

We propose to adaptTESLA to address the above conflict. Specifically, we progose
to use two different intervals in oneTESLA instance, a short interval and a long intervalR.
The short intervals and the long intervals are interlea@asdshown in Figure 6.2. As in the orig-
inal uTESLA, each time interval is still associated with an autloation key, which is used to
authenticate messages sent in this time interval. Eachbmodelcasts a message authenticated with
uTESLA only during the short intervals, while broadcastihg tlisclosed key in the following long
interval (possibly multiple times to tolerate messagedels

Upon receiving a broadcast message, a receiver first chieekseturity condition using
the (MAC layer) message receipt time. Because each recangethe sender have synchronized
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tightly with each other, the receiver can easily transfdne rieceipt time into the time point in the
sender’s clock, and verify if the corresponding authetibcekey has been disclosed when the re-
ceiver receives the message. Consider Figure 6.2. Sugmoseceiver B receives a synchronization

messagé\l; from the sender A at its local timg (taken in the MAC layer), and the start time of

t;—To+Ap, A
r+R

lowing security conditiont; — Ty + A A + Omaz < @ * (R+ 1) + 17, whereAp 4 is the pair-wise

As uTESLA instance islp in As clock. B may calculate = | | and checks the fol-
clock difference between A and B, ahigl,, maximum synchronization error between two neighbor
nodes. B stores the message and the numbely if this check is successful. Otherwise, B simply
drops the message. After nodeobtains the disclosed kely;, it verifies F*~7(K;) = K; with a
previously received key or commitmeRt; wherej < . If the key is valid, B then usek| to verify

the MIC included in the broadcast synchronization messdge

6.2 Analysis

6.2.1 Security Analysis

Phase I. Phase | provides authentication of the source and the dpatesynchronization mes-
sages. Moreover, Phase | uses a two-way message exchargjanate both the clock difference
between direct neighbors and the transmission delay, amdleict attacks that attempt to mis-
lead time synchronization by introducing extra messagaydelThus, Phase | provides protection
of the source, the content, and the timeliness of singleg@pwise synchronization messages.
Specifically, Phase | effectively defeats external attdlc&sattempt to mislead single-hop pair-wise
time synchronization, including forged and modified messagulse-delay attacks, and wormhole
attacks that introduce extra delays. Phase | protocol ¢dmaadle DoS attacks that completely
jam the communication channel. Nevertheless, no existingppol can survive such extreme DoS
attacks.

Phase Il. Given the secure single-hop pair-wise synchronizationoga in Phase I, the remaining
threats to global time synchronization are two-fold. Fiest external attacker may fake or replay
(local) broadcast messages used for global synchroniztdimislead the regular nodes. To defend
against this threat, Phase Il adap®ESLA to provide local broadcast authentication. The sgcur
of this variation ofu TESLA follows directly from the original scheme [74]. Besillocal broadcast
authentication, another benefit of usinfESLA is the authentication of the timeliness of local
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broadcast synchronization messages, since a delayedguesgibbe automatically discarded due
to the violation of the security condition. Thus, similarRbase I, by authenticating the source, the
content, and the timeliness of local broadcast synchrtnizanessages, Phase Il can successfully
defeat all the external attacks that are intended to migleatime synchronization.

Second, a compromised node may provide misleading synizlaten information to
disrupt the global time synchronization. Thus, our gloliralet synchronization protocol must be
resilient to compromised nodes. Since the source nodestettuin Phase Il, each direct neighbor
node of the source node can directly estimate the globakdecurely. However, the other nodes
may receive false synchronization information from conmpised nodes. The solution used by
Phase Il is to have each node use the source clock differeaceived fron2t + 1 neighbor nodes
to estimate2t 4 1 candidate source clock differences, and select the mediama® its own source
clock difference. Itis easy to see that if every node has nent@nt compromised neighbor nodes,
Phase Il can successfully synchronize all the normal noslésng as they have enough number of
neighbor nodes. Similar to Phase |, Phase Il cannot hand& ddacks that completely jam the
communication channel.

In conclusion, TinySeRSync provides a practical solutmprovide secure and resilient
global time synchronization in wireless sensor networkscah successfully defeat all non-DoS

external attacks against time synchronization, and ifieasio compromised nodes.

6.2.2 Performance Analysis

Synchronization Precision and Coverage. TinySeRSync uses predication-based MAC layer
timestamping in Phase |, avoiding many places that coulddnice uncertainty during time syn-
chronization. In Phase IlI, TinySeRSync tries to estimagegibbal clock through the estimation of
source clock differences, and thus greatly reduces thedngemerated by the propagation delays
of synchronization messages. Thus, TinySeRSync can rdwigh precision time synchronization.
Moreover, TinySeRSync employs flooding-based propagatiaiobal synchronization messages;
this allows all the nodes that have enough number of neighbdes to be synchronized.
Communication, Computation, and Storage Overheads.TinySeRSync uses message exchanges
between direct neighbor nodes for Phase | synchronizafihithese message exchanges are local,
and do not introduce wide area interference. In Phase [S@RSync adopts local broadcast for
the propagation of global synchronization messages,teffég harnessing the broadcast nature of

wireless communication. Thus, TinySeRSync is efficienenmis of communication.
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TinySeRSync uses efficient symmetric cryptography for mgssauthentication. In par-
ticular, it exploits the hardware cryptographic suppoadviled by the CC2420 radio component.
Thus, TinySeRSync introduces very light computation ogathfor cryptographic operations.

TinySeRSync does increase the storage overhead on selgsr chae to the need to main-
tain cryptographic keys, buffer the local broadcast messagnd store the source clock differences
received fron2t + 1 neighbor nodes. A critical issue is the maintenance offRESLA key chain
required for authenticating outgoing synchronization sages. Our adaptation pTESLA greatly
reduces the number of keys in each key chain. In addition,see@nother approach to further reduce
the memory requirement and the delay: After generating ackeyn, each node only saves some
select keys calletey anchorge.g., 1 of every 10 keys), and also caches the keys befoneettie
key anchor to be used (e.qg., the first 10 keys). WheBSLA key is required for authentication,
if the key is available in the cache, the node can directlyitug@therwise, the node can regenerate
and fill the key cache using the next key anchor.

Incremental Deployment. As discussed earlier, TinySeRSync uses two asynchron@asephboth

of which are executed periodically. Thus, TinySeRSync waslell with incremental deployment
of sensor nodes. The newly deployed nodes first obtain thewise time differences and the
commitments of the key chains from its neighbor nodes in @hamnd then join the Phase 1l global
time synchronization. Our experimental results in Sectdh will show the performance when

there are incrementally deployed sensor nodes.

6.3 Experiment Results

Our implementation of TinySeRSync is targeted at MICAz rad#d. However, our im-
plementation can be used with slight modification for otl@rser platforms that also use CC2420
radio components, such as TelosB [7] and Tmote Sky [8]. MI@Ag an 8-bit micro-controller
ATMegal28l]1], which has 128k Byte program memory and 4k Byte SRAM. Asdssed earlier,
MICAz is equipped with the ChipCon CC2420 radio componeht\hich works at 2.4 GHz ra-
dio frequency and provides up to 250 kbps data rate. CC24a0 IEEE 802.15.4 compliant RF
transceiver that features hardware security support.

We performed a series of experiments in a network of 60 MICAra® to evaluate the
performance of TinySeRSync in real deployment. We focuseti® performance metrics in normal

situations, while relying on the analysis in Section 6.2tf@r security properties.
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6.3.1 Configuration

Figure 6.3 shows the sensor network test-bed used in ouriygr@s. The different node
shapes represent nodes deployed at different times durangmental deployment, which will be
explained in Section 6.3.3. The test-bed consists of 603)aaong which node 1 (with the solid

circle) is configured as the source node.
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Figure 6.3: Deployment of network test-bed.

We use a number of parameters in our evaluation. Each noftepera secure single-hop
pair-wise synchronization with its neighbor nodes for guér = 4 seconds. During this synchro-
nization, the node informs its neighbor nodes/BESLA parameters. The source node starts a
global synchronization every, seconds. In our experiments, we use= 5 or 10 seconds. The
degree of tolerance (against compromised neighbor nogespiesented as as used throughout
this dissertation. In our experiments, we use 0,1,2, 3,4 to examine the various performance
metrics.

We use a sink node to help collecting data from each sensa. rieeriodically, the sink
node broadcasts an anchor message with the highest powiéthe aodes. Upon receiving this

message, each node marks the receiving time and conveatghie tglobal time using its source
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Table 6.1: Code size of TinySeRSync on MICAz motes

| Memory || Size (bytes)|
RAM 1961
ROM 24814

clock difference. The sink node then queries each nodeithdilly to get the receiving time (in the

estimated global clock) along with other auxiliary infortioa. This allows us to discover the syn-
chronization error on each individual sensor node, themymization rate, as well as the number
of synchronization levels each node has to go through.

Let us first look at the code size of TinySeRSync on TinyOS Pefpre presenting the
performance results. The code size is related to the maximumber of neighbor nodes each
node may have. For each neighbor node, a node will spend 48 lytsave the pair-wise key,
current key in key chain, and clock differences, etc. In ogregiments, each node saves 10 keys
for a key chain with 100 keys. Each node reserves a bufferaie it most 6 unauthenticated
global synchronization messages, which increase the $iRABI. Table 6.1 shows the code size
of TinySeRSync when each node may have at most 8 neighbosndtie RAM size will increase
to 3137 bytes to accommodate 36 neighbor nodes.

6.3.2 Performance in Static Deployment

Let us first look at the performance of TinySeRSync in statigldyments. In our experi-
ments, we use the following metrics to evaluate the perfagaand the overhead of TinySeRSync:
the average and the maximum synchronization errors, thehsynization rate (i.e., the percentage
of nodes that can be synchronized), the synchronizatiogl [@e., the maximum number of hops

that global synchronization messages have to go througitdbafsensor node can be synchronized.

Average and Maximum Synchronization Error: Figure 6.4(a) shows the maximum and the
average synchronization error with different global syodization intervals and different degrees
of tolerance against compromised neighbor nodes. In akdéses, the maximum synchronization
error is below 14 ticks (121.52s), and the average synchronization error is below 6 ticRO&b
us). Figure 6.4(a) also indicates that as the global syndatian interval increases, the maximum
and the average synchronization errors both increase.

Synchronization Rate: Figure 6.4(b) shows the synchronization rate (i.e., thegrgage of nodes

that can be synchronized by TinySeRSync) after one, two,threk rounds of global synchro-
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nization. When the tolerance against compromised neighbdes increases, as we expected, the
synchronization rate decreases. However, after threedsooiglobal synchronization, even in the
worst case, about 95% of the nodes can be synchronized touhessnode.

Synchronization Level: Figure 6.5(a) shows the maximum and the average number af thep
global synchronization messages have to traverse befbtheahodes are synchronized. In our

test-bed, in all cases, the average synchronization levatdund 3. An interesting issue is that
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the maximum synchronization level initially decreasestestblerance increases, but then goes
up ast is greater than 2. This is because whdn very small (i.e.t = 0,1), a node can broad-
cast the synchronization message almost immediatelyiafgesynchronized. The synchronization
triggered by these fast nodes may be propagated to many tatdsave not been synchronized.
However, wheri is large enough, synchronizing a node with increasedjuires receiving synchro-

nization messages from more neighbor nodes, thus resuttiag increasing trend for maximum
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synchronization levels.

Communication Overhead: We measure the communication overhead by assessing theenomb
messages each node has to transmit per time unit. For eggttbnenode, a node sends one message
to obtain the pair-wise time difference. In one round of glafime synchronization, each node at
most broadcasts one synchronization message and one kkysdie message. Suppose each node
hasn neighbor nodes, the pair-wise synchronization interval ijsand the global synchronization
interval isds. In a given long time interval’, each node sends at most % + % messages.
Figure 6.5(b) shows the communication overhead per howa éanfiguration where each node has
10 neighbor nodes, the pair-wise time synchronizationniales 4 seconds, and the global time

synchronization interval is 10 seconds.

6.3.3 Incremental Deployment

We evaluated the performance of TinySeRSync when there imeremental deploy-
ments. Consider Figure 6.3. At the beginning of the expantmee deployed the 49 nodes marked
as circles. We then added 5 new nodes into the network abowiriiies later, and added another
6 new nodes about 1 minute later. In this experiment, we segkbbal synchronization interval
as 10s. Figure 6.6 shows the history of the average syndatton error and the coverage in this
experiment, when t=0, 2, and 4. As shown in the figure, wheméwve nodes were just added into
the network, they could not be synchronized immediately the average synchronization error
was large and the synchronization rate dropped to around 99éwever, after a few rounds of
global synchronization, all these new nodes were corragihchronized, resulting in a low average

synchronization error and 100% synchronization coverage.

6.4 Summary

In this chapter, we develop a secure and resilient time sgnctation protocol called
TinySeRSynfor wireless sensor networks, targeting common sensdoptas such as MICAz and
TelosB running TinyOS [41]. Our protocol offers a novel wayritegrate (broadcast) authentication
into time synchronization, which successfully providethautication of the source, the content, and
the timeliness of synchronization messages. Our novel UgdBSLA in secure global time syn-

chronization successfully resolved the conflict betweengibal of achieving time synchronization
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and the fact thau TESLA requires loose time synchronization. The resultingtqrol is secure
against external attacks and resilient against comprahmedes.

We provide an implementation of the proposed techniquesioyOlS and a thorough
evaluation through field experiments in a network of 60 MICptes. The evaluation results
indicate that TinySeRSync is a practical system for secaderasilient global time synchronization

in wireless sensor networks.
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Chapter 7

Conclusions

This dissertation contains a suite of techniques to achéexeire time synchronization
between two neighbor nodes, among a group of sensor nodésnanwhole sensor network,
respectively.

e Secure Single-hop Pair-wise Time Synchronizatioe develop a secure single-hop pair-
wise time synchronization protocol by usindhardware-assisted, authenticated MAC layer
timestampingtechnique to handle high data rate such as those producediGpzviand
TelosB motes. With the hardware security support in radimmenents, we implement the
proposed technigue on MICAz motes [20] running TinyOS [4lje secure single-hop pair-
wise time synchronization serves as the building block toiex® the secure and resilient
global time synchronization.

e Fault-tolerant Cluster-Wise Time Synchronizatiorthis technique provides a novel fault-
tolerant cluster-wise clock synchronization for a clustesensor nodes, where the nodes in
each cluster can communicate with each other directly tiirdaroadcast. In each round of
time synchronization, only one node serves assirechronizerand only one authenticated
synchronization message is broadcast. Thus, our schemavo#hthe message collision
problem. The proposed scheme exploits a recently propaszd broadcast authentication
technique for sensor networks, which is purely based on sstmercryptography [104], thus
avoiding the costly digital signature for message autbatitin. Our analysis shows that the
proposed scheme guarantees an upper bound on the clockliffebetween nonfaulty nodes
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when no more that/3 of the nodes are compromised and collude with each other.rdve p
pose a secure distributed cluster formation algorithmvmdithe sensor networks into mutual

disjoint cliques, which are required by the fault-tolerahister-wise time synchronization.

e Secure and Resilient Global Time Synchronizatidrinis research resulted in two secure and
resilient time synchronization schemes: level-based affigstbn-based time synchroniza-
tion. The level-based scheme builds a level hierarchy invtlieless sensor network, and
then synchronizes the whole network level by level. Thaugifin-based scheme allows each
node to diffuse its clock to its neighbor nodes after it haghyonized to the source node. To
improve the performance and the resilience of our techisiqwe propose to deploy multiple
source nodes in the network.

We first propose to use authenticated unicast messagesrtbudisthe synchronization infor-
mation by using secure key shared between each two neiglodesnHowever, due to high
communication overhead and huge message collisions, ihaalty be used in large sensor
networks. To solve this problem, we develop a secure anliergsjjlobal time synchroniza-
tion, TinySeRSync, based on a novel use of tH&ESLA broadcast authentication protocol
for local authenticated broadcgstesolving the conflict between the goal of achieving time
synchronization with, TESLA-based broadcast authentication and the fact/M&SLA re-
quires loose time synchronization. We implement TinySeRSyn TinyOS and a thorough
evaluation through field experiments in a network of 60 MIGAates. The evaluation results
indicate that TinySeRSync is a practical system for secoderesilient global time synchro-

nization in wireless sensor networks.

In my future work, | plan to investigate additional techreguthat can improve the syn-
chronization precision in our time synchronization teciueis. For example, we can adapt the linear
regression technique proposed in [63] to compensate th&tamanclock drifts. Because linear re-
gression technique requires each node store a time vecitsr RAM for each neighbor node, we
must allocate the RAM memory carefully. TinySeRSync is thet 8ecure and resilient global time
synchronization implemented in real wireless sensor rndgsvdNVe will look into the integration of

TinySeRSync in sensor network applications, such as tameking, data fusion, and power saving.
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