
Abstract

ŞAHİN, İBRAHİM. A Compilation Tool for Automated Mapping of Algorithms

onto FPGA-Based Custom Computing Machines. (Under the directions of Dr.

Clay S. Gloster and Dr. Winser E. Alexander).

Adaptive computing, also known as Reconfigurable Computing (RC), is a

field that combines hardware and software data processing platforms. RC

systems combine the flexibility of General Purpose Processors (GPP) with

the speed of application specific processors [1, 2]. In a typical reconfigurable

computer, computationally intensive portions of algorithms are executed on Field

Programmable Gate Arrays (FPGA) for enhanced performance.

Although RC systems offer significant performance advantages over GPPs,

they have a few disadvantages. RC systems require more application development

time than GPPs. Also, RC system designers need to be knowledgeable in the

areas of hardware and software system design. Since each application is different

in terms of data inputs, outputs, and the method of processing data, designers

are required to design a specific RC implementation for each specific problem.

Our major contribution in this research is the development of a

design automation tool called the Reconfigurable Computing Com-

pilation Tool (RCCT) to address the problems mentioned above. In

addition, this tool was designed to automate the process of mapping applications

onto RC systems, and to provide the potential performance benefits of RC

systems to typical software programmers. The final version of the tool contains

four components: The RC Compiler, the Module Library, the Loader and the

Simulator. Our contributions also includes a novel assembly language

instruction set for the modules and a session file format (a new

assembly language program format for RC systems).

The tool was tested on several applications to demonstrate its effectiveness.

Among the selected applications were matrix multiplication, and some image

processing algorithms such as 3-D Image correlation. We compared the execution

times of the applications when they were run on different GPPs to different RC

configurations to demonstrate the tool’s effectiveness.

Our results showed that the tool is able to enhance the performance of the

applications by mapping portions of them to the RC systems. Simulations

with the tool showed that when the user applications are mapped to the RC

systems, significant speedups (around 10 times to 100 times) can be attained

for the mapped sections of the applications. We also noticed that the design

and implementation time of the RC versions of the applications were reduced

significantly. With the tool, the RC versions of the applications were developed,

in a matter of a few hours. No special skills are needed to map applications to the

RC systems using RCCT if the required hardware modules are readily available.

A Compilation Tool for Automated Mapping of
Algorithms onto FPGA-Based Custom

Computing Machines

by
İbrahim Şahin

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Department of
Electrical and Computer Engineering

Raleigh, NC

August 2002

Electrical Engineering

Approved By:

Co-chair, Dr. Clay S. Gloster Co-chair, Dr. Winser E. Alexander

Member, Dr. Paul D. Franzon Member, Dr. Gregory T. Byrd

Dedication

This thesis is dedicated to my wife,

Şeyma Şahin

and my son,

Mehmet S. Şahin

ii

Biography

İbrahim Şahin was born on December 14, 1970 in Ankara, Türkiye. He

attended Gazi University in Ankara, Türkiye where he obtained the degree

of Bachelor of Science in Electronics and Computer Education in June 1993.

Immediately after graduation, he started working at a high school as a teacher.

After teaching for six months at Isparta Technical and Vocational High School,

he passed a nation wide competitive qualification examination organized by The

Higher Educational Council of Turkey (YÖK) and received a university sponsored

grant to pursue on M.S. and Ph.D. in an overseas country. After the examination

he became a research assistant at Abant Izzet Baysal University in Bolu, Türkiye.

In 1995, he moved to Norfolk, Virginia and started his M.S. study at Old

Dominion University. He received his M.S degree from Old Dominion University

in December 1997. He was admitted to the Ph.D. program in Electrical and

Computer Engineering at North Carolina State University in the Fall of 1997.

His hobbies include traveling, hiking, and skydiving.

iii

Acknowledgments

I would like to express my sincere gratitude to my advisors, Dr Clay S. Gloster

and Dr. Winser E. Alexander for their invaluable guidance, encouragement, and

support during this lengthly work. This dissertation would not have been possible

without their knowledge, wisdom and directions.

I would like to express my appreciation to the other members of my Ph.D.

committee, Dr. Gregory T. Byrd, Dr. Paul F. Franzon and Dr. Albert J. Shih

for their suggestions, comments and beneficial discussions.

In addition, I would like to thank the BDFA group members particularly

Christopher C. Doss and An-Te Deng for their help with knowledge and

suggestions.

I also thank NASA for their financial support in this research project∗. My

special thanks goes to Abant Izzet Baysal University of Türkiye for their support

through my M.S. and Ph.D. study in the U.S.A.

* This research was supported by NASA under contract AIST-0016-0044.

iv

Contents

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Goals of the Proposed Research 3

1.2 The Tool: An Overview . 5

1.3 Distinguishing Features of RCCT 8

1.4 Organization of the Dissertation 10

2 Background 11

2.1 FPGA Technology . 12

2.2 An overview of the automatic mapping tools for RC Systems . . . 16

2.2.1 Using an High-Level Programming Language (HLPL) as

an HDL . 19

2.2.2 Raw Machines . 20

2.2.3 Pipeline Vectorization for RC Systems 22

2.2.4 Handel-C . 23

2.2.5 Garp . 24

2.2.6 PipeRench . 26

2.2.7 COBRA-ABS . 28

3 The Hardware Module Library 29

3.1 Introduction to the Hardware Modules 30

3.2 Basic Floating-Point Core Units 32

3.3 The First Generation Module . 34

v

3.4 The Second Generation Modules 36

3.4.1 Module Datapaths . 37

3.4.2 Module Controllers . 40

3.4.3 Module Instruction Format and Module Execution 42

3.4.4 Module Assembly Language Instruction Set 45

3.4.5 Module Statistics . 47

3.5 The Third Generation Module . 48

3.5.1 Function Core Units . 49

3.5.2 The Datapath . 51

3.5.3 The Controller . 52

3.5.4 The Instruction Set . 53

3.6 Mathematical Models for the Third Generation Modules 56

3.7 Module Execution versus GPP Execution 59

4 The RCCT Compiler 62

4.1 An Overview of the RCCT Compiler 62

4.2 Inputs to the Compiler . 66

4.2.1 User Application . 66

4.2.2 Module Definition File . 66

4.2.3 Parameter File . 69

4.3 Scanner . 72

4.4 Parser . 73

4.4.1 Parser Data Types . 73

4.4.2 Parser Functions and Algorithms 75

4.4.3 Parsing a for Loop . 77

4.4.4 Parsing an if Statement 78

4.4.5 Parsing Arithmetic and Conditional Expressions 80

4.4.6 Symbol Tables . 83

4.4.7 Parsing Module Definition and Parameter Files 83

4.5 Code Writer . 84

4.5.1 Code Writer Data Types 85

4.5.2 Module Matcher . 87

4.5.3 Vector Instruction Writer 90

vi

4.5.4 Data Dependency Analyzer 93

4.5.5 Instruction Scheduler . 95

4.5.6 Index Information Collector and Optimizer 95

4.5.7 Memory Manager . 99

4.5.8 Operand Sorter . 100

4.5.9 New Source Code Writer 101

4.5.10 Session File Writer . 104

4.6 Handling RC Directives . 106

5 The RCCT Loader, Simulator and the Session File Format 110

5.1 An Overview of the RCCT Loader and Simulator 111

5.2 Session File . 113

5.3 Stand-Alone Version of the Loader 115

5.3.1 Data Type Definitions to Store Parsed Session Files 117

5.3.2 Scanning, Parsing and Printing the Session File 117

5.3.3 Running the Parsed Session File 121

5.4 DLL Version of the Loader . 124

5.5 The Simulator . 126

6 Experimental Setups and Test/Simulation Results 133

6.1 Validating the Simulator . 134

6.2 Computing Systems Used in the Experiments 137

6.3 Application 1: Matrix Multiplication 139

6.4 Application 2: 3-D Image Correlation 144

6.5 Application 3: Image Intensity Calculation 149

6.6 Application 4: Frequency Domain Filter 155

6.7 Summary of the Results . 159

7 Conclusion and Future Research Possibilities 163

7.1 Future Research . 165

Bibliography 167

Appendixes 179

vii

A Lex Specification for the Scanner 179

B Assembly Language Instruction Set for the

Third Generation Module 184

viii

List of Tables

3.1 Three-operand instructions. 46

3.2 Four-operand instructions. 47

3.3 Device utilization and maximum clock speeds. 47

3.4 Expression that can be calculated by the function core in figure 3.9b. 50

3.5 Execution control and load/store instructions. 55

5.1 The Loader instruction set. 123

6.1 Comparing real RC execution times of the modules with the

Simulator’s estimated execution times. 136

6.2 General purpose processors used in the experiments 137

6.3 Matrix multiplication execution times on GPPs. 142

6.4 Estimated execution times of matrix multiplication on the RC

systems. 143

6.5 Estimated speedup of the RC systems over GPP1 for matrix

multiplication. 143

6.6 Estimated speedup of the RC systems over GPP2 for matrix

multiplication. 143

6.7 Estimated speedup of the RC systems over GPP3 for matrix

multiplication. 144

6.8 3-D image correlation execution times on GPPs. 147

6.9 Estimated execution times of 3-D image correlation on the RC

systems. 147

6.10 Estimated speedup of the RC systems over GPP1 for 3-D image

correlation. 148

ix

6.11 Estimated speedup of the RC systems over GPP2 for 3-D image

correlation. 148

6.12 Estimated speedup of the RC systems over GPP3 for 3-D image

correlation. 149

6.13 Image intensity calculation execution times on GPPs. 152

6.14 Estimated execution times of image intensity calculation on the

RC systems. 153

6.15 Estimated speedup of the RC systems over GPP1 for image

intensity calculation. 153

6.16 Estimated speedup of the RC systems over GPP2 for image

intensity calculation. 154

6.17 Estimated speedup of the RC systems over GPP3 for image

intensity calculation. 154

6.18 Frequency domain filtering execution times on GPPs. 156

6.19 Estimated execution times of frequency domain filtering on the RC

systems. 157

6.20 Estimated speedup of RC systems over GPP1 for frequency

domain filtering. 157

6.21 Estimated speedup of the RC systems over GPP2 for frequency

domain filtering. 158

6.22 Estimated speedup of the RC systems over GPP3 for frequency

domain filtering. 158

x

List of Figures

1.1 Sample source code. 5

1.2 Compilation phase. 7

1.3 Execution phase. 8

1.4 DesignfFlows . 9

2.1 Structure of the Xilinx 4000 series FPGA chips [3]. 14

2.2 CLB block diagram of Xilinx 4000 series FPGA chips [3]. 15

3.1 Execution phase. 30

3.2 Block diagram of the standard core units. 33

3.3 Block diagram of the first generation module. 35

3.4 Top level block diagram of the second generation modules. 37

3.5 Block diagram of the standard datapath for four operand modules. 38

3.6 Block diagram of the standard datapath for the accumulator and

the product modules. 39

3.7 Memory access schedule for one and two input vector adder,

subtractor and multiplier. 41

3.8 Module instruction formats. 43

3.9 Sample function cores. 50

3.10 Data processor section of the datapath of the third generation

module. 51

3.11 Fetch/decode section of the datapath of the third generation module. 52

3.12 Vector instructions format for the third generation module’s

function cores . 54

3.13 Sample memory cycles . 57

3.14 Sample code fragment. 59

xi

3.15 Machine code for source code in Figure 3.14. 60

4.1 Top level flow chart of the Compiler. 64

4.2 Second level flow chart of the Compiler. 65

4.3 Sample module definition file. 67

4.4 Data type definitions for the Parser. 74

4.5 Algorithm for the Parse() function 76

4.6 Algorithm for ParseFor() function. 78

4.7 Algorithm for ParseIf() function. 79

4.8 Algorithm for BuildExpressionTree() function. 81

4.9 Steps of the BuildExpressionTree() function on an example

expression. 82

4.10 Code Writer flow chart. 85

4.11 Data type definitions for the Code Writer. 86

4.12 Algorithm for Match() function. 88

4.13 Algorithm for the CmpExp() function. 89

4.14 Algorithm for Match() function. 90

4.15 Sample user code fragment. 91

4.16 Parse tree formed by the parser for the code in Figure 4.15. 91

4.17 Vector instructions extracted from the source code in Figure 4.15. 92

4.18 Algorithm for the data dependency analyzer. 94

4.19 Algorithm for the BuildVarIdxList() function. 97

4.20 Sample user application. 102

4.21 Output of the RCCT Compiler for the program shown in Figure

4.20. 103

4.22 A sample session file. 105

4.23 Sample user code fragment with RC directives. 108

4.24 Session file written by the RCCT Compiler for the code fragment

shown in Figure 4.23. 109

5.1 RCCT Execution phase. 112

5.2 Session file format. 114

5.3 Flow chart of the Loader (stand-alone version). 116

5.4 Data type definitions for the Loader. 117

xii

5.5 Algorithms for the parser functions. 120

5.6 Algorithms for executor functions. 122

5.7 Flow chart of the Loader (DLL version). 126

5.8 Flow chart of the Loader (DLL version) with the Simulator. . . . 128

5.9 Algorithm for the module simulator. 130

5.10 Calculation tree. 131

6.1 The for loop for matrix multiplication. 140

6.2 Function core design for matrix multiplication. 140

6.3 A sample for loop block in 3-D image correlation (Not mapped). 145

6.4 Mapped for loop block in the 3-D image correlation algorithm. . 146

6.5 Function core design for 3-D image correlation. 146

6.6 The for loop block for image hue calculation (Not Mapped). . . . 150

6.7 The for loop block for image intensity calculation (Mapped). . . 150

6.8 Function core design for image intensity calculation. 151

6.9 Mapped for loop blocks in frequency domain filter. 155

6.10 Function core designs for frequency domain filter. 156

6.11 Estimated speedups of the RC systems for matrix multiplication

(matrix size is 1024 x 1024). 159

6.12 Estimated speedups of the RC systems for 3-D image correlation

(image size is 2 x 400 x 800). 160

6.13 Estimated speedups of the RC systems for image intensity calcu-

lation (image size is 2000 x 2000). 160

6.14 Estimated speedups of the RC systems for frequency domain filter

(image size is 1024 x 2048). 161

xiii

Chapter 1

Introduction

Adaptive computing, also known as Reconfigurable Computing (RC), is a

field that combines hardware and software data processing platforms. RC

systems typically include a general purpose processor and one or more Field

Programmable Gate Array (FPGA) devices. These systems combine the

flexibility of general purpose processors with the speed of application specific

processors [1, 2]. In a typical reconfigurable computer, computationally intensive

portions of algorithms are executed on FPGA devices for enhanced performance.

A well-designed and utilized adaptive computer could yield 10 times to 100 times

improvement in execution time over conventional “software only” computers

based on a general purpose processor based.

Several applications have been mapped to reconfigurable computers to

demonstrate the viability of RC systems. Applications mapped to these systems

include image processing algorithms [4, 5, 6, 7], genetic optimization algorithms

[8], and pattern recognition [9]. In most cases, the reconfigurable computing

system provided the smallest published execution time for these applications.

Each FPGA device contains a finite set of hardware resources. Therefore, not

all applications can be efficiently mapped to these systems. This is especially true

1

2

for applications for which floating-point (FP) arithmetic operations are needed

due to the large amount of resources required by floating-point units. As a result,

application developers typically either avoided implementing these applications in

RC systems or converted the floating-point operations to fixed-point operations

to reduce the amount of hardware resources required [10].

Recent advances in FPGA technology have opened new doors for developers.

Both size and clock speed of FPGA devices have increased significantly. With

today’s technology, more than a million logic gates can be implemented on a

single FPGA device, and can be clocked at speeds greater than 100 MHz. These

improvements give us the opportunity to implement more complex applications,

including those that require floating-point arithmetic.

Although RC systems offer significant performance advantages over general

purpose processors, they have a few disadvantages. RC systems require more

application development time than general purpose processors, but significantly

less than developing an application specific integrated circuit. Also, RC system

designers need to be knowledgeable in the areas of hardware and software system

design. Since each application is different in terms of data inputs, outputs, and

the method of processing data, designers are required to design a specific RC

implementation for each specific problem.

These disadvantages of RC systems suggest that there is a need for a tool to

automate the design and implementation process of RC applications. Such a tool

could reduce both the design and implementation time of the applications greatly

and it could eliminate the need for the system designer. With such a tool, an

ordinary software programmer with little or no hardware knowledge could easily

develop RC applications. Our primary contribution in this research is to develop

3

this RC design automation tool that can speed up applications by automatically

mapping them to RC systems.

1.1 Goals of the Proposed Research

The goals of this research project are to:

• Automate the RC application development process: In this research,

a compilation tool that maps C/C++ programs onto RC systems is

presented.

• Reduce the application development time: RC systems require more

application development time than general purpose processors. Our goal

is to reduce application development time significantly. We anticipate that

the development time can be reduced from several weeks to a few hours

when the tool is used.

• Increase the performance of the application: It is well known that

applications can achieve significant speedup when they are mapped to

RC systems. The goal of this research is to achieve at least an order of

magnitude speedup when the applications are mapped to the RC system

using the tool.

• Provide the potential performance benefits of RC systems to

typical software programmers: As mentioned in the previous section,

developing an RC application requires designers who are knowledgeable in

the areas of hardware and software system design. An ordinary software

programmer with little or no hardware knowledge could be able to develop

RC applications by utilizing the tool.

4

Our main contribution in this research is development of a design automation

tool called Reconfigurable Computing Compilation Tool (RCCT) to accomplish

our goals listed above. The tool consists of four components: The Compiler,

the Loader, the Simulator, and the Hardware Module Library. Additionally, a

novel assembly language instruction set for the hardware modules and a session

file format (a new assembly language program format) for RC systems were

developed.

The tool was tested on several applications to demonstrate its effectiveness.

Among the selected applications are matrix multiplication, and a few image

processing algorithms such as 3-D image correlation. We compared the execution

times of the applications when they were run on different GPPs and when

they were mapped to different RC configurations to demonstrate the tool’s

effectiveness.

Our results showed that the tool is able to enhance the performance of

the applications by mapping portions of them to the RC systems. The tool’s

Simulator showed that when the user applications are mapped to the RC

systems, significant speedups (around 10 times to 100 times) can be attained

for the mapped sections of the applications. We also noticed that the design

and implementation time of the RC versions of the applications were reduced

significantly. With the tool, in a matter of a few hours, RC versions of the

applications were created. It is also observed that with RCCT, no special skills

are needed to map applications to RC systems if the required hardware modules

are available. The following section presents an overview of the tool.

5

1.2 The Tool: An Overview

The main contribution of this research is the development of a tool that automates

the application design and implementation process for reconfigurable systems.

The tool targets sections of the applications that have the greatest potential to

reduce execution time on an RC system. Basically, it targets single or nested

for loops due to the fact that for loops are the most frequently used loops to

perform computationally complex vector operations. The final version of the tool

contains four components: The RCCT Compiler, the Hardware Module Library,

the Loader and the Simulator. Additionally, an assembly language instruction

set for the modules and a session file format have been developed.

The RCCT Compiler performs several important tasks. As shown in Figure

1.1, it takes the original source code and produces a modified source code that is

compiled by a traditional programming language compiler.

void main(int argc, char *argv[]){
float a[n][n];
float b[n][n];
float c[n][n];

for (i=0; i<n; i++)

int i,j,k;

for (i=0; i<n; i++)

PrintMatrix(C,n);
}

#include <stdio.h>
#include <stdlib.h>
#include <iostream.h>
#define n 5

for (j=0; j<n; j++) {
a[i][j] = float((i+1)+(j*n));
b[i][j] = a[i][j] + n*n;
c[i][j] = 0.0; }

for (j=0; j<n; j++)
for (k=0; k<n; k++)

c[i][j] += a[i][k]*b[k][j];

#include <stdio.h>
#include <stdlib.h>
#include <iostream.h>
#define n 5

void main(int argc, char *argv[]){
float a[n][n];
float b[n][n];
float c[n][n];
int i,j,k;

for (i=0; i<n; i++)
for (j=0; j<n; j++) {

a[i][j] = float((i+1)+(j*n));
b[i][j] = a[i][j] + n*n;
c[i][j] = 0.0; }

PrintMatrix(C,n);
}

Function calls to the tool
Loader/Simulator to utilize
Hardware Modules

(a) (b)

Figure 1.1: Sample source code: a) Before compilation with the RCCT Compiler b) After
compilation with the RCCT Compiler.

6

The Module Library includes a set of hardware modules that perform basic

mathematical operations on vectors. Each module is a previously placed and

routed configuration file for a specific FPGA device. These modules are optimized

for both area and speed.

The Loader works as an interface between the application and the RC system.

It executes the candidate portions of the application on the RC system. It allows

the application to utilize the hardware modules on one or more FPGA devices

when the execution flow reaches the modified sections of the application.

Before executing a modified section of the user application on an RC system,

the Loader checks the availability of an RC system and an appropriate hardware

module. It checks for the existence of an RC system via the system’s Application

programming Interface (API) and attempts to locate a configuration file for the

hardware module. When an appropriate hardware module or an RC system is not

available, the Loader activates the Simulator to execute the same section on the

host computer as if it were being executed on an FPGA device. The Simulator

returns the estimated module execution time.

The tool works in two phases, the compilation phase and the execution

phase. Figure 1.2 demonstrates the compilation phase. In this phase, the RCCT

Compiler takes the original source code (nested loops) and modifies it. It detects

the computationally complex portions of the source code and replaces them with

function calls to the Loader. The sections that do not require high performance

are not modified and are executed on the general purpose processor. While

compiling the code, the RCCT Compiler also generates one or more session files

for each modified section. Session files include an assembly language program for

the hardware modules to execute and commands for the Loader to initialize the

FPGA/memory.

7

After the application code is compiled by the RCCT Compiler, it is recompiled

by a traditional programming language compiler and the executable code for the

application that includes function calls to the Loader is produced.

Compiler
Parameters

Modified
Source
Code

New App.
Executable

Session
Files

Original
Source
Code the Loader

Programming

Compiler
Language

RCCT
Compiler Calls to

Module
Definition

File

Figure 1.2: Compilation phase.

Figure 1.3 illustrates the execution phase of the mapping process. In this

phase, sections of the application executable code that do not require high

performance run on the general purpose processor. When the execution reaches

the sections produced by the RCCT Compiler, the application utilizes the RC

system via several function calls to the Loader. The Loader includes four types of

functions, that can be called by the application. These are: IsModuleAvailable,

Store Data, Load Data and Run functions. The Store Data and Load Data

functions move data between FPGA devices and the host processor. By calling

the Run function with a session file name as a parameter to it, it instructs the

Loader to execute a given assembly language program on a particular FPGA

device with a specific hardware module.

8

Session
Files

New App.
Executable

the Loader
Calls to

The
Loader/

Simulator

FPGA

API
Board
FPGA

FPGA−Based CCM

General Purpose Processor

Library
Module

Hardware Module
Definition

File

Compiler
Parameters

Figure 1.3: Execution phase.

1.3 Distinguishing Features of RCCT

Recently, several tools have been presented in the literature for compilation

of high-level programming languages, such as Java and C++, to hardware

designs. These tools typically take the user application developed in a high

level programming language and produce a circuit design implemented in a

Hardware Description Language (HDL). This HDL code is synthesized, and

FPGA placement and routing tools are executed to map the design to a specific

RC system.

The major problem with these tools is that the time required for placement

and routing of the HDL source code is significant and has to be repeated each

time a change is made to the source code. On the other hand, RCCT uses pre-

compiled, placed and routed hardware modules which are loaded into the FPGA

as needed. Thus, it eliminates these time consuming steps from the application

mapping process. Figure 1.4 shows the design flow for RCCT and the traditional

design flow approach.

9

Source
Code

Modified
Source
Code

Modified

Bit
Stream

Logic
Synthesis

Placement
& Routing

HDL

Compiler

Executable
Code

Code
Source

Compiler
Special

Original

(b)

High−Level

(a)

Definition
Module

FileCode
Source

Original

Session
Files

RCCT
Compiler

High−Level
Compiler

Executable
Code

Figure 1.4: Design flows. a) RCTT, b) Traditional approach.

In addition, the Hardware Module Library of RCCT is dynamic. That is, as

new modules are designed and implemented, the user of the tool can easily add

them to the module definition file. The Compiler can then recognize and make use

of these new modules without any modification on it. Therefore, as specifications

for the new module implementations are added to the module definition file, the

tool has a better chance to improve the performance of the user applications when

they are mapped to the RC systems.

10

1.4 Organization of the Dissertation

This thesis is organized as follows. Chapter one gives an overview of RCCT and its

components. It also presents the distinguishing features of the tool. Background

information and related studies presented in Chapter 2. Through the course

of this research, our understanding of the module design and implementation

improved greatly. As a result, several versions of the hardware modules have

been designed and implemented. Details of the module design and the core units

used in these modules are introduced in Chapter 3. The Compiler is the most

important part of RCCT. It consists of a total of 10467 lines of C++ code: 2482

produced using compiler generation tools, and 7985 generated manually. Several

recursive algorithms were also developed/implemented for the Compiler and are

presented next. Details of the Compiler are presented in Chapter 4. The Loader

is another major component of RCCT. Two versions: the stand-alone version and

the Dynamic Link Library (DLL) version of the Loader are discussed in Chapter

5. We implemented an RC resource simulator by adding several functions to

the DLL version of the Loader. The Simulator is also presented in Chapter 5.

Several applications were mapped using the tool and were simulated for different

RC environments to demonstrate the effectiveness of RCCT. These applications

and the results of mapping them to an RC system are introduced in Chapter 6.

Chapter 7 presents conclusions and suggestions for future research.

Chapter 2

Background

A Reconfigurable Computing (RC) system can be defined as a computer system

that contains one or more general purpose processors and one or more configurable

hardware components that are designed for their functionality to be configured

by the user of the system for different applications. Usually the general purpose

processor acts as the host processor and the reconfigurable hardware components

are used as a coprocessor. The users of the RC system typically partition

their applications and execute the computationally complex sections on the

reconfigurable hardware to potentially increase performance.

It has been shown that executing computationally complex sections of

applications on RC systems significantly reduces the execution time of the

applications compared to the general purpose processor only systems [11].

However, applications must be mapped to FPGA devices before they can

be executed on these systems. The mapping processes can be performed

either manually or automatically using software tools. Several applications

were mapped to RC systems manually including image processing algorithms

[4, 5, 6, 7], genetic optimization algorithms [8], and pattern recognition [9].

Mapping applications to FPGA devices manually is a time consuming process.

Some of the steps taken during the manual mapping are designing the hardware,

11

12

coding it in a Hardware Description Language (HDL), compiling the HDL code to

bit streams for the FPGA devices (which could take several hours) and developing

an interface to utilize the new design on the FPGA devices. A mistake done at

the design stage requires repetition of the steps and results in a increase in the

development time.

Several tools were developed to automate the application mapping process and

to reduce the Reconfigurable Computing application development time. With

these tools, in a matter of hours or days, RC implementations of the software

applications can be developed.

The tradeoff between the manual and automatic mapping is the quality of

the resulting RC implementations. In the manual mapping, one can develop a

specific hardware implementation and an interface resulting in a performance

improvement for the target applications. On the other hand, in the automatic

mapping, improvement in the application performance is limited by the tool’s

ability to map the applications to the RC systems. Several studies have been

conducted at research centers to improve the quality of the automatic mapping

process. In this chapter, after a brief introduction to the building blocks of the

RC system (FPGA devices) we will introduce some of the selected automatic

mapping tools.

2.1 FPGA Technology

Field Programmable Gate Arrays (FPGAs) are a type of chip that are completely

prefabricated and contain special features for customization [12, 13, 14]. The

user of these chips can implement digital circuit designs by configuring them.

The biggest advantage of these chips is their configuration time. Since the

13

configuration time of these chips is very small (for some chips the configuration

time is less then a millisecond), circuit designs can be realized very quickly

compared to Application Specific Integrated Circuits (ASIC) implementations. A

typical circuit development cycle for an FPGA device includes four steps. These

steps are designing the circuit, coding the design in a Hardware Description

Language, compiling the HDL code to a configuration file and loading the

configuration to the chip.

FPGA chips can be classified into three categories according to the structure

of their configurable parts [15]. These categories are Static Random Access

Memory (SRAM)-based FPGAs, Electrically Erasable and Programmable Read

Only Memory (EEPROM)-based FPGAs, and antifuse-based FPGAs. Because

the configuration of an antifuse is permanent, antifuse-based FPGA’s are one-

time programmable devices. Thus, the user of the chip should carefully verify his

design before loading the configuration file onto the chip. The configuration of

an EEPROM-based FPGA can be changed electrically. Since loading and erasing

a configuration to/from a chip is done using high-voltage electrical signals, they

have to be configured with special equipment before they are placed into the

target systems. SRAM-based FPGA chips can be reconfigured very easily by

loading the bits in the configuration file into the SRAM memory cells. These

chips can be reconfigured at run time by loading a new configuration to the

SRAM cells. Since they use the same technology as computer memories, they

have to be configured each time the system is powered on. Because the ease of

configuration, SRAM-based FPGA chips are the most widely used FPGA chips.

Also, theoretically these chips can be reprogrammed an infinite number of times.

The flexibility of FPGA devices comes at a cost in efficiency relative to the ASIC

circuits. Villasenor et. al. stated that “an FPGA device never achieves the power,

14

clock rate, or die size that could be realized in a full custom chip optimized for a

particular task”.

A typical FPGA device contains three configurable parts [15, 16]. These

parts are an array of logic cells called Configurable Logic Blocks (CLBs), a

programmable interconnection network and programmable input/output blocks.

Figure 2.1 shows the structure of the Xilinx 4000 series FPGA devices. Each I/O

block includes a number of I/O cells. These cells provide the interface between

the package pins and internal signal lines of the FPGA chip. Each cell can

be configured as an input, output, or bidirectional port. The interconnection

network consists of switch boxes and metal wires. The CLBs are connected

together by configuring the switch boxes in the interconnection network. Two

most commonly used interconnection network types are island style and cellular

style. In island style networks, point-to-point communications between the CLB

are possible. On the other hand, the cellular style network provides only local

communication between the CLBs.

I/O Block

I/O Block

I/
O

 B
lo

ck

I/O
 B

lock

Network
Interconnection

Configurable
Logic
Blocks (CLBs)

Figure 2.1: Structure of the Xilinx 4000 series FPGA chips [3].

15

CLBs are the most important parts of the FPGA device. Each FPGA

manufacturer implements a different type of CLB. In this section, we briefly

introduce the structure of CLBs for the Xilinx series FPGA chips. Figure 2.2

shows the block diagram of the CLB used in Xilinx 4000 series FPGA chips

[3, 17]. This CLB includes three Lookup tables (LUT), two programmable flip-

flops and several programmable multiplexers. The LUTs are function generators,

capable of implementing any combinational logic function of their inputs. The

LUTs in Figure 2.2 can perform any function of up to five inputs when they are

combined. SRAM controlled multiplexers are used to route signals within the

CLB. The flip-flops are used to register output signals when required.

���� ��
��
��
��

��
��
��
��

��
��
��
��

����

�
�
�
�

�
�
�
�

�
�
�
�

���� ��

��
��
��
��

��
��
��
��

����

�
�
�
�

��
��
��
��

��
��
��
��

��

����

����

����

��

LUT

LUT

LUT

G2
G1

G3
G4

F1
F2
F3
F4

S/R
D

EC

Q

S/R
D

EC

Q

C1 C2 C3 C4

YQ

Y

XQ

X

K

Figure 2.2: CLB block diagram of Xilinx 4000 series FPGA chips [3].

16

In Xilinx’s latest FPGA chips, (the Virtex-II Pro), each CLB comprises four

similar slices cite [18]. The slices are connected together with a local feedback

bus. The Four slices in the CLB are split into two columns. Each slide includes

two four-input function generators, arithmetic logic gates, carry logic, function

multiplexers and data storage elements.

In a reconfigurable computer, one or more FPGA chips are organized on a

printed circuit board (PCB) and they are attached to a host computer as a

coprocessor. Some of the most famous FPGA boards are SPLASH-2 [19, 20, 21]

and DECPeRLe [22, 23, 24]. The SPLASH-2 board includes a linear array of

Xilinx 4010 FPGA chips. Sixteen FPGA chips are used on the board and they

are organized in a linear systolic array. One additional FPGA is used for control

purposes. Each FPGA has a limited 36-bit connection to its two nearest neighbor

chips. A 512 KByte local memory is also attached to each FPGA. Several

SPLASH boards can be connected to form a chain and up to 16 boards can be

connected together to form a 256-element linear systolic array. The DECPeRLe-I

board includes 23 Xilinx 3090 FPGAs. Sixteen FPGAs were used to form a 4 x

4 array and the remaining chips were used for interfacing with the RAM and the

host computer.

2.2 An overview of the automatic mapping tools

for RC Systems

With a promise to deliver high-performance and flexibility, FPGA-based Custom

Computing Machines attract great attention in the scientific community. Several

studies have been conducted to automate the process of designing and mapping

applications to these machines [25, 26, 27, 28, 29, 30, 31, 32].

17

Some of these studies are similar in terms of the methodology and environment

employed. Hauck et. al. classified the automatic mapping tools according to

the tool suites’ input application language [33]. According to his classification,

the input application language tool classes are: those that support C [34, 35,

36, 37, 38, 39, 40, 41, 42], C++ [43], Ada [44], Occam [45, 46], Data Parallel C

[47, 48], Smalltalk [49], Assembly [50], and special hardware description languages

[51, 52]. The Reconfigurable Computing Compilation Tool (RCCT) developed

in this thesis supports C and C++. Thus, according to Hauck’s classification,

our tool can be classified in the first two groups. In fact RCCT is very flexible.

By reconstructing the front end of the RCCT Compiler, some other high-level

programming languages can also be supported.

A better and more up-to-date classification was done by Radunovic et. al.

They classified these studies according to their granularity (fine, medium and

coarse), integration (closely coupled and loosely coupled), and reconfigurability

of the external interconnection network (fixed network, reconfigurable network)

[53], [54]. The granularity reflects the smallest block that a RC device is made of,

and the integration is the way the RC device is connected to a general purpose

processor. The following is a partial list of the classes related to our study that

were reported by Radunovic et. al. with some example studies.

1. Coarse grained, Fixed external interconnection network: RAW project

conducted at MIT [26].

2. Medium grained, Fixed external interconnection network, Loosely coupled:

MATRIX project by Mirsky et. al. at MIT [32] and Xputer project studied

by Rainer Kress et. al. at University of Trier Germany [55, 56].

18

3. Fine grained, Fixed external interconnection network, Loosely coupled:

SPLASH machine developed by Gokhale et. al at Supercomputing Research

Center [57], PRISM-I developed by Athanas et. al at Virginia Polytechnic

University [34], and RENCO studied by Haenni et. al. at Swiss Federal

Institute of Technology [58].

4. Fine grained, Fixed external interconnection network, Closely coupled:

SPYDER project developed by Iseli et. al. at Swiss Federal Institute

of Technology [43], and GARP project developed by Hauzer et. al. at

University of California, Berkeley [59].

5. Fine grained, Reconfigurable external interconnection network, Loosely

coupled: SPLASH-II developed by Buel et. al. at Supercomputing

Research Center [60], and SOP (Sea Of Processors) developed by Yamauchi

et. al at NEC Laboratory [42].

According to Radunovic’s classification, our tool, RCCT, falls in to the 4th

class because we used fine grained Processing Elements (PE), a general purpose

processor has to communicate with PEs through a PCI bus and the current

version of the tool does not support communication between the PEs.

The general aim of the automatic mapping tools is to take a software

application implemented in a high-level programming language and translate it

into a hardware configuration suitable for a specific RC system. Different tool

suites have been developed for applications implemented in different high-level

programming languages. Usually, each approach introduces a new reconfigurable

architecture and a set of associated compilation/simulation tools. Since C/C++

is the most widely used high-level programming language, most of the mapping

19

tools accept applications implemented in C/C++. In the following sections some

of the selected studies are briefly presented.

2.2.1 Using an High-Level Programming Language (HLPL)
as an HDL

High level programming languages offer several advantages over the traditional

hardware description languages in digital circuit development. Some of the

advantages are: fast circuit synthesis, easy simulation and debugging, and a

more flexible environment for circuit specification. Several studies have been

conducted to develop digital circuit design automation tools that uses a HLPL

as an input.

A Java-based FPGA application development and debugging tool, JHDL, has

been developed by Hutchings et. al. at Brigham Young University [25, 61, 62].

JHDL is a combination of several design and development tools including a circuit

library, a simulator, a schematic generator and a hardware debugger.

JHDL helps RC application developers in two ways. First, it provides several

tools to develop, simulate and debug an application. Second, it provides tools to

generate interface programs that can be used to effectively utilize RC systems.

As a hardware description language, Java was selected. The reason for

selecting Java that it is a common programming language and its object-oriented

nature is useful for capturing all the details of hierarchical circuit designs. In

JHDL, gates, circuits and wires are represented as Java objects. The users

specify their designs in JHDL by extending existing classes from the JHDL

circuit library. Although JHDL provides great benefits for developing, debugging

and running applications, it does not automate the RC application development

process completely. Users still have to design and hand code the application.

20

Another Java-based development tool has been developed by Chu et. al. at

the University of California at Berkeley [63]. This tool is a generator framework

which can be utilized in large development tools for RC systems. The user of

the tool can describe his design using the base class provided by the tool. A

block-based hierarchical design methodology is supported. The tool also provides

several methods that can access any subcomponent and perform various functions

on the subcomponents. The tool is able to generate an XNF netlist and simulate

the design. This tool, used in isolation, is not sufficient to automate the RC

application development process but can be utilized in an integrated design

automation environment.

One major advantage of the HLPL based development tools is that the

user can specify the design using a high-level programming language. On the

other hand, the initial design of the application has to be completely manually

coded in a specific HLPL. These tools are not capable of converting an arbitrary

application written in Java or C++ into a magic datapath. Another drawback

of these development tools is that the user must have experience in hardware

design and must specify his design in the HLPL similar to any other hardware

description language. Lastly, changes in the HLPL description require the user

to run placement and routing tools repeatedly. Whereas, each run could take

several hours to complete.

2.2.2 Raw Machines

In a research project called Reconfigurable Architecture Workstation (RAW),

Waingold et. al. at Massachusetts Institute of Technology, a new reconfigurable

system was developed [26, 64, 65]. Their system has two components, a new RAW

21

Processor architecture and several compilation tools that help to map applications

to this architecture.

The RAW microprocessor is based on highly interconnected replicated tiles.

Tiles in the processor work as separate processing elements (PE). Each tile

contains an instruction memory, and a data memory, an ALU, and registers.

The processor has two configurable parts, a configurable logic part that allows

the users to implement custom instructions, and a programmable switch that

supports both dynamic and compiler-orchestrated static routing between tiles.

The RAW microprocessor can be viewed as a gigantic FPGA with coarse

grained tiles in which software-orchestrates communication over the static

interconnections [66].

The compiler for the RAW processor is able to map serial or parallel programs

written in C. The RAW compiler views the tiles in a RAW processor as a collection

of function units. While compiling a program, the compiler tries to utilize as

many tiles as possible to maximize instruction level parallelism. The compiler

is also responsible for selecting an application specific configuration for loading

into the configurable logic in each tile. Additionally, the compiler also calculates

the switch configurations for a given application to regulate the communications

between the tiles.

Several algorithms have been mapped to the RAW processor and the results

demonstrate that the RAW processor can achieve 10 to 1000 speedup over the

Sparc station 20/71. The main advantage of the RAW processor comes from its

parallel structure and its reconfigurable parts (configurable logic inside each tile

and configurable switches between the tiles). The compiler can effectively select

configurations for these parts for a given application to maximize the speed. The

22

RAW processor is a kind of MIMD processor. The PEs are simplified in order

to reduce hardware complexity. On the other hand, due to this simplification,

implementing floating-point applications seems infeasible.

This project differs from our research in terms of execution of the applications.

It tries to execute the entire applications on PEs. On the other hand, our system

executes only the computationally complex parts of the applications on the RC

system using the modules in our module library.

2.2.3 Pipeline Vectorization for RC Systems

Weinhart et. al. developed a tool for automatically producing pipelined circuits

from high-level programs [27, 67]. They used software vectorization techniques

to produce circuits for reconfigurable devices.

This research mainly focused on vectorization of the loop structures in high-

level programs and creating circuits for RC systems. First, their tool normalizes

the target loops in the application program using several loop transformation

techniques. After that, it checks the data dependencies and generates a Dataflow

Graph (DG) for each loop using the predefined macro cells. In the next step, the

tool inserts pipeline registers between the combinational logic units to reduce the

critical path delay. Next, candidate DGs are selected according to their potential

in terms of speedup. Finally, the selected DGs are synthesized and, using vendors’

tools, bit streams for specific FPGA device are created. They claimed that their

tool is not architecture specific and can be used as an front end for some other

design suites such as RaPid-B.

The main advantage of this tool is that it automatically generates the circuits

necessary to calculate arithmetic operations in a loop. However, the tool is not

able to create the controller and interface program for the datapaths. The output

23

of the tool is a circuit design implemented in a HDL. This HDL implementation

has to go through the placement and routing processes to be usable. The

placement and routing step influences the application development of the tool

negatively (requiring several hours to days). Another disadvantage of the tool

is that it is not able to handle nested loops. It only generates datapaths for

the innermost loops, resulting in poor performance in execution of nested loops.

This tool, used in isolation, is not able to automate the entire process of mapping

applications to RC systems. This project differs from our research in terms

of creating the hardware components and level of abstractions. They build

datapaths for each specific loop. In our case, hardware modules are predefined,

generalized to accommodate different cases, optimized for speed, and able to

handle nested loops. Our tool also includes a generalized interface for different

applications.

2.2.4 Handel-C

Ian Page and his research group at Oxford University, developed a new behavioral

programming language called Handel-C and a compiler for mapping applications

to reconfigurable systems [68, 69]. Later, Page founded a company called Celoxica

and commercialized the Handel-C system by adding several new tools to the suite.

The Handel-C language was developed for specifying high-level algorithms

and compiling them directly into gate-level hardware for FPGA implementation.

The language is a variant of the C language with additional constructs to

accommodate parallel execution [70]. The parallel constructs were added to

exploit inherent parallelism in the algorithm being mapped to hardware. The

language also supports variable bit-with data types.

24

The commercialized Handel-C environment consists of a simulator, a compiler

and a user interface. The simulator can display content and status of the variables

declared in the given program or design. It can also visualize actual timing

behavior of the design for a number of clock cycles. The compiler processes the

design and generates either EDIF or VHDL for FPGA implementation [71].

The hardware development cycle using the Handel-C environment includes

several steps. First, the algorithm has to be coded in the Handel-C language.

While coding, the user has to identify potential parallel execution opportunities.

Then, the hardware description must be simulated. The design is then compiled

to VHDL code using the Handel-C compiler. From this point on, the user has

to use FPGA vendors design tools to place, route and create the final bit stream

for the FPGA chips from the VHDL code generated by Handel-C compiler.

Handel-C has a few weaknesses. First of all, it only supports single clock

designs. Modularity in the language is not strong enough [70]. Compared

to RCCT, Handel-C also has some other weak points. The user has to be

knowledgeable in hardware design. Applications already implemented in the

C language can not be used directly. The user has to re-implement his/her

application fully or partially in Handel-C language. Also, the Handel-C compiler

produces VHDL and this code has to go through the placement and routing

process which are very time consuming steps. RCCT eliminates all of these weak

points of using Handel-C.

2.2.5 Garp

Garp is another reconfigurable architecture and compiler set for automatic

mapping of applications implemented in a high-level language [59, 28]. The Garp

25

architecture includes a MIPS processor and a reconfigurable array of logic blocks.

It combines the processor and the reconfigurable hardware on the same die.

The reconfigurable hardware includes a two dimensional array of logic blocks.

Logic blocks are similar to CLB’s of the Xilinx 4000 series FPGA chips. Four

memory busses are placed vertically through the rows. These buses are used

to transfer data to/from the logic block array. They are also used for loading

configurations to the array and saving/restoring the array state. Another wire

network is used for the communication between the blocks. The main processor

is responsible for the loading and execution of the configurations. Several new

instructions were added to the MIPS instructions set for these purposes.

The software environment for the Garp architecture includes a compiler and

a simulator. Actual processor chip has not been implemented yet; therefore, a

simulator is used instead of the processor. The compiler accepts applications

implemented in C language. It uses SUIF as a front end [72]. It performs several

tasks on the user source code before producing the final executable code for

the processor. The compiler takes the source code written in C and generates

a dataflow graph. Then, the module mapping and the placement tasks are

performed. In the module mapping task, modules are synthesized for the nodes in

the dataflow graph. In the placement step, the synthesized modules are placed for

the reconfigurable array. Next, the routing task is applied to the placed module

and a bit stream is generated for the modules. In the final step, the compiler

links the bit stream as constant data to the final program executable code.

While the Garp compiler works at the instruction level, the RCCT tool works

at the statement level. Thus, it may not be able to exploit parallelism available

in the user applications. Also, Reconfigurable resources available in the the Garp

26

processor are limited. Hence, large tasks cannot be implemented. Moreover,

floating-point operations cannot be implemented on the reconfigurable part of

the Garp processor.

2.2.6 PipeRench

Goldstein et.al. at Carnegie Mellon University developed a reconfigurable system

called PipeRench. Similar to the design suites mentioned above, PipeRench also

includes a reconfigurable architecture and an associated compiler [73, 74, 75, 76].

Developers of PipeRench identified several problems associated with the

current commercial FPGA devices. The granularity of the FPGA chips were

not suitable for multimedia applications. The configuration times were found to

be the limiting factor in the FPGA potential performance gain. Also, FPGAs

typically were not forward compatible. That is, applications developed for the

current FPGAs need to be redesigned and compiled for the future FPGA devices.

The sizes of the FPGA chips were also found to be not large enough to implement

a wide variety of applications. They claimed that their approach solved these

problems.

The PipeRench processor includes a set of physical pipeline stages called

stripes. Each stripe contains a set of PEs and an interconnection network. Each

PE contains an ALU and a pass register file. PEs can access operands from

registered outputs of the previous stripe through the interconnection network.

When an applications is compiled for PipeRench, the resulting hardware for

the application is divided into small sequential pieces and a separate configuration

file for each piece is generated. Let us assume that an application is divided into

five sequential pieces and compiled for a three stage PipeRench. Also assume that

the execution of each piece takes two cycles. During the execution of the example

27

application, the first sequential configuration file is loaded into the first pipeline

stage in the first clock cycle. In the second cycle, the second configuration is

loaded into the second stage while the first stage is executing the first part of the

applications. In the next cycle, the third configuration is loaded into the third

stage. In this cycle, configuration one continues execution in the first stage, and

the second configuration starts execution and it uses the result produced by the

first stage. In the fourth cycle, the first stage of the pipeline becomes available

and is configured with the fourth configuration file. The second configuration

continues execution and the third starts execution. Sequential pieces of the

application are loaded into the pipeline in order and executed repeatedly until the

application completes. PipeRench uses a technique called pipeline configuration

to rapidly configure each stage of the pipeline [77].

The compiler for PipeRench accepts applications implemented in a special

language called the Dataflow Intermediate Language (DIL). After performing

several steps on the applications implemented in DIL, the compiler produces

configuration files for the PipeRench.

Goldstein et.al. compared PipeRench with the state-of-the-art general

purpose processors. Results showed that PipeRench outperforms other processor

by more than 10 times.

The most important advantage of PipeRench over the other reconfigurable

systems is that it is able to reduce the configurable resources needed for a given

application. On the other hand, it may not fully exploit the available parallelism

because detecting parallelism at the instruction level is a more difficult task.

Since it uses a special language, the user of the system needs to be familiar with

the language and hardware design issues. RCCT eliminates these disadvantages

of PipeRench.

28

2.2.7 COBRA-ABS

Duncan et. al. at the University of Aberdeen, developed another automatic

mapping system called COBRA-ABS [78, 79]. COBRA-ABS system includes

a parameterized compiler. The purpose of the compiler is to transform high-

level applications implemented in C into VHDL code. The compiler reads three

input files. These are the algorithm description specified in C, the definition

of the target FPGA-based Custom Computing Machine and a library file that

includes the definitions of the available RTL datapath library components. After

the compilation process, the compiler produces VHDL code for the synthesized

hardware design and a compiler script. The user of the tool must compile the

VHDL code with the FPGA vendor’s compilation tool to get the final bit stream.

One nice feature of the tool is that it is able to generate a compiler script. Its

advantage over the other automatic mapping systems is that, to some degree,

it is not architecture dependent. The user can specify different target RC

environments. One drawback of the system is that it was designed to synthesize

DSP algorithms implemented in, C rather than other generic applications.

Chapter 3

The Hardware Module Library

The Hardware Module Library is one of the major components of the Recon-

figurable Computing Compilation Tool (RCCT). It includes several hardware

modules designed to perform vector operations on the RC systems. In fact, each

hardware module in the library is a pre-compiled, placed and routed configuration

file to be used with a specific FPGA device. The modules were designed as

vector processors, implemented in Very High Speed Integrated Circuits Hardware

Description Language (VHDL), and compiled to configuration files using the

FPGA vendor’s compilation tools. Module generation is performed in isolation

from application compilation. Hence, with our approach, long place and route

times can be tolerated.

Through the course of this research, our understanding of the module design

and implementation improved greatly. In addition, improvements in the FPGA

technology enabled us to use more complex module designs. As a result, several

versions of the modules have been designed and implemented. It is possible

to classify these modules into three generations. In each generation, different

controllers and datapaths are used with the same basic floating-point core units.

Each generation is an improved version of its preceding generation.

29

30

In this chapter, basic floating-point core units are presented after a brief

introduction to the hardware modules. Then, detailed information about module

generations is given. The chapter concludes with the mathematical models of the

modules and a comparison between the module execution and a general purpose

processor execution.

3.1 Introduction to the Hardware Modules

A hardware module in the Module Library is a pre-compiled, placed and routed

configuration file to be used with a specific FPGA device. The purpose of the

hardware modules is to execute computationally complex sections (ie. mapped

sections) of the user applications on FPGA devices with a significant speedup

over the execution of the same code on a general purpose processor.

The modules are used in the execution phase of the application mapping

process as shown in Figure 3.1. When the execution order comes to a mapped

section of the user application, the Loader configures the FPGA devices with

appropriate hardware modules and executes that section of the application on

the RC system.

Session
Files

New App.
Executable

the Loader
Calls to

The
Loader/

Simulator

FPGA

API
Board
FPGA

General Purpose Processor

Library
Module

Hardware Module
Definition

File

Compiler
Parameters

Figure 3.1: Execution phase.

31

Several modules have been designed and implemented to perform different

vector operations on FPGA devices. In fact, each module was designed as a

vector processor, capable of performing one or more mathematical operations

on input vectors. We focused on vector operations due to the fact that general

purpose processors perform single operations very well. There is no significant

potential performance gain with the execution of a single operation on an FPGA.

Actually, there is a performance degradation because of the data transfer issues

between the host computer and the FPGA device. On the other hand, when the

FGPA is configured with speed-optimized hardware modules, the FPGA device

can easily outperform general purpose processors on vector operations.

Currently, all modules have been designed to perform IEEE single precision

floating-point operations. We decided to implement floating-point modules

instead of integer modules for the following reasons. First, most of the scientific

applications that require an extensive amount of CPU time process floating-point

data. Secondly, floating-point operations require more CPU time than integer

operations. And finally, it is easier to debug hardware that was designed using

floating-point when the original application uses floating-point. No floating-point

to integer conversions are required.

We designed several floating-point modules to cover a wide variety of vector

operations [80, 81, 82]. Some of the modules includes three and four operand

addition, subtraction, multiplication and division modules, and accumulation

module. Creating several different types of modules that are useful for

various applications is a time consuming process. To reduce the design and

implementation time, we took the following approach. First, we developed

several standard components. These components are basic floating-point core

32

units, module controllers and module datapaths. In order to facilitate module

interconnection for complex operations, these components are standardized in

terms of the number of inputs, number of outputs, and module latency. Second,

several different types of modules have been created by combining basic core units

with a few controllers and datapaths. Using this approach, the time required to

design a new module is reduced significantly. When a new core unit is designed,

one simply combines the new core with an off-the-shelf controller and datapath

to form a new module. The modules were implemented using VHDL. Several

thousand lines of VHDL code were written for these modules. After the VHDL

coding, modules were compiled placed and routed for the Xilinx XC4044XL

FPGA chip.

3.2 Basic Floating-Point Core Units

The most important components of the hardware modules are the basic floating-

point core units instantiated in the datapath. For each floating-point operation,

we developed a standard basic core unit. Each core unit is highly pipelined, has

the same number of inputs and outputs, and has the same latency. We created

several modules by instantiating one or more basic core units into a standard

module structure.

Figure 3.2 shows the block diagram of the standardized basic core unit. Each

core has two 32-bit inputs and one 32-bit output to accommodate single precision

floating-point numbers. For addition, subtraction and multiplication, different

floating-point core units were developed. There is a standard interface definition

for the basic core units to reduce design time. Once a new core unit is designed,

it is easy to create a new module by just instantiating the new core unit into one

of the standard module structures.

33

As shown in Figure 3.2, all basic core units are divided into a standard number

of pipeline stages (8) to improve the maximum clock speed that can be applied

to the units. We used a standard number of pipeline stages to alleviate the

need to develop a unique controller for each core. However, the main controller

can handle cores with arbitrary latencies. While using pipelined units requires

additional registers, resulting in an increase in FPGA CLB resources, it provides

a significant benefit in terms of increased clock speed.

3232

Ready
Left Right

ReadyData In Data In
RightLeft

Stage 1

Stage 7

Stage 6

Stage 2

Stage 3

Stage 4

Stage 5

Stage 8

32

Result
Ready

Data
Output

Figure 3.2: Block diagram of the standard core units.

The basic core units are designed as self-controlled units to reduce the

hardware requirements and to make the module controller simpler. Once data is

available at both inputs (LEFT READY and RIGHT READY = 1), the core unit starts

processing. Results are available at the output of the unit 8 clock cycles later.

This is accomplished with a standard floating-point core I/O interface. Each core

has two input signals and one output signal for control and core interconnection.

Each time that the module controller reads a floating-point number from the

memory, it asserts either the LEFT READY or RIGHT READY signal corresponding to

34

the core input that has valid data. When both inputs to the core have valid data

and both ready signals are asserted, the core begins the floating-point operation.

When the core finishes processing the data, it asserts the RESULT READY signal.

The main controller then stores the result in memory.

Use of the standard interface control signals serves two purposes. The main

purpose is to reduce controller complexity. Hence, a single controller can handle

future cores with arbitrary latencies. The controller does not send command

signals to each stage of the core. Instead, it uses the interface signals to signal the

core that the input data is ready. It also uses the RESULT READY signal produced

by the core to determine when the result is ready. This simplification in the

controller saves control states, logic gates, and future application development

time. The other purpose is to facilitate the addition of complex cores into the

library. The use of the standard interface control signals makes it easy to form

larger cores by simply linking existing cores together.

3.3 The First Generation Module

As a first generation module, we designed and implemented a vector adder. It

was implemented as a test case to see the potential performance of our design

before implementing the other modules in the same style. Figure 3.3 shows the

top level block diagram of the vector adder.

The module architecture consists of a datapath and three separate controllers.

The datapath is a standard datapath containing a floating-point core unit (adder

core), registers, multiplexers and counters. As can be seen from Figure 3.3, to

control the datapath and data movements between the datapath and the memory

unit, a main controller, a read and a write controllers, were used. The main

35

controller is responsible for starting and stopping given vector operations and

controlling the read and write controllers. Read/Write controllers are used to

fetch instructions and read and write data from/to local memory.

Micro

Feedback
Signals

Instructions

Handshaking

Signals

Datapath

Memory

Write
ControllerController

Main
Controller

C
on

t.
Si

g.

A
dd

r.
 B

us

D
at

a
I/

O

Read

Figure 3.3: Block diagram of the first generation module.

To execute one vector instruction, the main controller first fetches the

instruction by activating the read controller and initializes the vector address

counters in the datapath. After the initialization, the main controller starts

executing the instruction. Since it is a vector instruction, the main controller

performs this operation in a loop. At each iteration of the loop, it reads the

input data to the datapath by again activating the read controller. After the

data is read, the main controller lets the datapath process it. When the data is

processed and the result is available, the main controller writes the result back

to the memory by activating the write controller. In this approach, the main

controller is isolated from memory operations. Thus, every time the memory

is accessed, the main controller activates either the read or write controller.

Handshaking signals were used between the main controller and the read and

write controllers to activate either controller and to check if these controllers had

completed their tasks.

36

The main reason we use three separate controllers is that we want our design to

be easily adaptable for different conditions. With little or no modification to the

design, we can create new modules or recompile current module implementations

for different types of RC systems. For instance, if we replace the core unit in the

datapath with another core with a different number of pipeline stages, we only

need to update the main controller. If we want this module to be available for

another RC system, we only need to modify the read and write controllers.

After we implemented the first module, we tested it using large vectors.

During the initial tests, we monitored both the execution time and the

functionality of the module. Functionally, the module behaved as expected.

On the other hand, the execution time results were not encouraging. We were

expecting enhanced performance compared to general purpose processors, but

actually observed a performance degradation.

When we closely examined the module, we discovered that the main controller

spent too many clock cycles communicating with the read and write controllers,

resulting in poor memory access performance. The controller was not able to

utilize the memory address bus and memory data bus efficiently. Although the

datapath is able to process one set of data at every clock cycle, due to the poor bus

utilization, the datapath was waiting for data for more than half of the cycles. To

solve this problem, we modified the controllers and created the second generation

modules.

3.4 The Second Generation Modules

Figure 3.4 shows the generalized block diagram of the second generation floating-

point modules. Each module consists of a standard controller and a standard

37

datapath that interfaces with an external memory. For the second generation

modules, four datapaths, four controllers, and three core units (adder, subtractor,

multiplier and divider cores) were designed and implemented. Additionally, by

combining the basic adder and multiplier cores, a multiply-accumulate core was

also developed. As shown in Figure 3.4, a total of 9 floating-point modules were

formed by combining these standard components.

Standard
Datapath

Controller

Standard

Feedback

Signals

Instructions

Micro

Floating−Point

Core

Hardware Module

Memory

D
at

a
I/O

A
dd

r.
 B

.

C
on

t.
S

.

Figure 3.4: Top level block diagram of the second generation modules.

3.4.1 Module Datapaths

Four unique datapaths have been developed for the second generation modules.

First, two datapaths were designed for the one and two input vector adder,

subtractor and multiplier modules. A third datapath was designed for the

accumulator and product modules and a fourth datapath was designed for the

multiply-accumulate module. Since datapaths are similar in terms of structure,

we only introduce two of them in this section.

Figure 3.5 shows the block diagram of the datapath for the two-input modules.

As shown in the figure, the datapath is partitioned into two sections, the data

processor and the fetch/decode unit. The data processor section includes a core

38

function unit and two 32-bit data registers, RO and R1. These registers are used

as temporary storage for incoming data from the local memory. By instantiating

different core units into this datapath, the adder, subtractor, and multiplier

modules are formed. Although currently only these core units are available, this

datapath can be used in the design of any module that accepts two input vectors

and produces an output vector, provided that all input and output vector sizes

are equal.

Datapath

Fetch/Decode
Unit

Processor
Data

Comp.
nm

32 18

32

Data Processor
Micro Inst.

Input

Data Out Address
Output

Data
In

Fetch/Decode
Micro Inst.

Input

Done Final
(To the

Controller)

Floating−Point
Core

R0 R1 CR0 CR1 CW PC

M0

RF

Figure 3.5: Block diagram of the standard datapath for four operand modules.

The fetch and decode unit includes four counters, one register, one specialized

comparator, and a multiplexor. The CR0, CR1 and CW counters are loadable

counters and are used for addressing input and output vectors. PC is used as a

program counter to keep track of the module instructions. The RF register is used

to store the size of the input vectors. The specialized comparator produces two

signals. The DONE signal is asserted when the module completes execution of the

current vector instruction. The FINAL signal is asserted when all instructions have

been processed, (i.e. when the HALT instruction is fetched). The M0 multiplexor

is used to select one of the address counters.

39

Figure 3.6 shows the block diagram of the datapath designed for the multiply-

accumulate module. Similar to the datapath illustrated in Figure 3.5, the

datapath is partitioned into the data processor and the fetch/decode sections.

In the data processor section, two basic core units, the multiplier core and the

adder core, were used. The incoming data sets are multiplied by the first core and

the results produced by the first core are added up by the second core. To save

the hardware resources, only one input register, R0, was used before the multiplier

core. At each iteration, the first number read from memory is temporarily stored

in R0 and the second number is grabbed directly from the memory and fed to the

core unit. R1 and R2 are used to store temporary results of the multiplier core.

To be able to perform the accumulation process, it is necessary to connect the

output of the second core back to the input of the same core. This connection is

accomplished with M0 and M1 multiplexors.

Floating−Point
Core 2

32

Data Out

M1M0

R2

R0

R1

Floating−Point
Core 1

Comp.
n

18

32

Address
Output

Data
In

Fetch/Decode
Micro Inst.

Input

Done Final
(To the

Controller)

CR0 CR1 RW PC

M2

RF

 ECnt

4

To the
Controller

Data
Proce ssor

Fetch/Decode
Unit

Datapath

Figure 3.6: Block diagram of the standard datapath for the accumulator and the product
modules.

40

The fetch and decode section is very similar to the previously explained

datapath. The only difference is the E counter. This counter is utilized while

emptying the pipelined core units. After the final input data is loaded from

memory, the controller sets this counter equal to the number of cycles required to

empty the pipeline. The controller waits until all the remaining data in the core

is processed and the results are written back to the memory. The E counter

is especially useful while emptying the accumulator, product, and multiply-

accumulate cores.

3.4.2 Module Controllers

For the second generation modules, four unique main module controllers, one for

each datapath, were implemented. The first controller assumes that elements of

the input vector pair are interleaved or stored in consecutive memory locations.

This controller is used for some of the three operand instruction modules. The

second controller assumes that the input vectors are disjoint, and it is used for

some of the four operand modules. The first and the second type of controllers

were used to construct two different types of vector addition, subtraction, and

multiplication modules. The third controller was developed for the accumulator

and the product modules and the final controller was developed for the multiply-

accumulate module. The controllers for the accumulator, the product and the

multiply-accumulate modules are much more complicated than the others due to

the required pipeline emptying process.

The first and the second type controllers perform vector operations in a single

loop. At each iteration of the loop, they go though four steps: read first, wait

idle, read second, and write back steps. The controllers perform vector operations

by observing two conditions. The first condition is the availability of the result.

41

If the result is not available at the output of the core unit, the write back step

becomes an idle step. The second condition is whether all the numbers are read

from the memory and some results need to be written back to the memory. When

this condition happens, read first and read second steps become idle steps. The

first condition occurs at the beginning of the vector instruction when the pipelined

core is not filled completely and the second conditions occurs while emptying the

pipelined core unit. Figure 3.7 shows how the controller utilizes memory address

and data buses and floating-point core unit. With this control scheme, a new

result is available every 4 cycles.

A 1

A 1

A 2

A 2

B 1

B 1

B 2

B 2 C 1

C 2

C 2

D 1

D 1

D 2

D 2

E 1

E 1

E 2

E 2

C 1

BA C D E

BA C D E

BA C D E

BA C D E

BA C D E

BA C D E

BA C D E

1 X 1 X 1 X 1 X 1 X

MAB

MDB

S2

S1

S3

S4

S5

S6

S7

S8

M
em

.

St
ag

es
FP

 C
or

e
U

ni
t S

ta
ge

s

R/W 1 X 01 1 X 1 0 1 X X 0 X X 0 X X X 0X

BA C D E

A

A B

B

C

C

D

D

E

E

Figure 3.7: Memory access schedule for one and two input vector adder, subtractor and
multiplier.

The multiply-accumulate controller performs the multiplication and accumu-

lation process in three stages. In the first stage, the pipeline is initialized, and

continuously reads numbers from the memory to enable the multiplier core to

multiply these numbers. When the multiplication results are available, they are

fed to the right input of the adder. At this stage, the multiplier results are

forwarded through the adder core by adding 0 (zero). When the first number

appears at the adder core output, the controller enters the second stage. In

this stage, while still supplying new numbers to the multiplier from the memory

42

and forwarding the result of multiplier results to the adder, the controller starts

returning the adder results back to the adder’s input and starts accumulation.

During this stage, at any time, the pipelined adder core holds some intermediate

results. When the last set of data is read from the memory and processed by the

multiplier core, the module enters the last stage, pipeline emptying stage. In this

stage, all the intermediate results in the core are added up and the final result is

written back to the memory.

3.4.3 Module Instruction Format and Module Execution

All modules are designed to execute their specific machine language instruction.

In fact, each module is able to execute only one module instruction and the

HALT instruction. Each module instruction corresponds to a single floating-point

vector operation. A standard module instruction includes three or four operands,

depending on the type of module used. Figure 3.8 shows the instruction formats

for each module type. For each three-operand module instruction, the first

operand is the starting address of the input vector, the second is the starting

address of the output vector, and the third is the size of the input vectors. For

each four-operand module instruction, the first two operands are the starting

addresses of the two input vectors, the third operand is the starting address of

the output vector and the last operand is the size of the vectors. The floating-

point accumulation and product modules use the instruction format of Figure

3.8a. However, these modules produce an output vector with length 1.

All modules were designed for a commercial FPGA board [83] that is readily

available in our laboratory. This board includes five FPGA devices, or Processing

Elements (PEs). Each PE has its own local memory (1M Byte). The host

computer and the PE both have read and write access to the local memory. The

43

memory space of each module is partitioned into two sections, instruction and

data. The instruction memory always starts at memory address $00000 and ends

with the HALT instruction ($FFFFFFFF). The remaining memory that is not used

for instructions is used for data.

Stop address of input vector + 1
Start address of the output vector
Start address of the input vector

FPVECADDS 100 150 200 150

FPVECADD 100 200 150

Stop address of 1st input vector + 1
Start address of the output vector
Start address of the 1st input vector
Start address of the 2nd input vector

(a)

(b)

Figure 3.8: Modules instruction formats. (a) Module instruction for 3 operand vector modules.
(b). Module instruction format for 4 operand vector module and the multiply-accumulate
module.

Once a module configuration has been loaded into a PE, and the local memory

has been initialized by the host computer, the module waits for the reset signal

to be asserted. When this occurs, the module reads the first instruction from

the memory location $00000. It then begins executing the instruction. When

the current instruction is completed, the module reads the next instruction from

the instruction memory. This process continues until the module reads a HALT

instruction ($FFFFFFFF) from the instruction memory. When this value is read,

the module stops and sends an interrupt signal to the host computer.

The modules’ execution times can be evaluated given the number of cycles

required to process one set of vectors. The memory unit we used has a two-

clock cycle latency for read operations and a one clock cycle latency for write

operations. The vector addition, subtraction and multiplication modules write

44

results back to the memory between successive read operations. Hence, the

optimal memory access schedule for these modules is two read cycles followed

by one write cycle producing a result every 3 cycles. We achieved near optimal

performance with our modules since we inserted only one idle state. Using this

approach, an output is produced every 4 cycles.

We developed Equation 3.1 to approximate the total execution time TEX of

the modules. In this equation, NF is the number of cycles required to fetch an

instruction, NP is the number of cycles required to process the given vectors, NE

is the number of cycles required to empty the pipelined core, FM is the module

clock rate, and CAPI is the Application Programming Interface (API) overhead.

TEX =
NF + NP + NE

FM
+ CAPI (3.1)

TEX =
4N

FM
+ CAPI (3.2)

For three and four operand modules developed for vector addition, subtrac-

tion, and multiplication, the instruction fetch takes 9 and 10 cycles respectively

and pipeline emptying takes 8 cycles. Processing takes 4 cycles per pair of vector

elements. The constant API overhead depends on the host computer’s speed (in

our case, it is 0.3 millisecond for each function call). For large vectors, instruction

fetch and pipeline emptying times for addition subtraction, and multiplication are

negligible and Equation 3.1 could be rewritten, as Equation 3.2 where N is the

length of the vectors.

Since the accumulator and product modules do not write back to the memory

until the end of the module instruction, both are able to read an element of

the input vector from the memory every clock cycle. As a result, cores in the

45

accumulator and the product modules are utilized 100% and run almost four

times as fast as the other modules. Equation 3.1 also applies to these modules.

Equation 3.3 shows the execution time for the accumulation and the product

modules. The instruction fetch and emptying are negligible.

TEX =
N

FM
+ CAPI (3.3)

TEX =
2N

FM
+ CAPI (3.4)

The multiply-accumulate module is able to read two FP numbers, one number

from each input vector, every two cycles. The core units in this module are 50%

utilized. Equation 3.4, derived from Equation 3.1, could be used to estimate the

execution time for the multiply-accumulate module.

3.4.4 Module Assembly Language Instruction Set

There are two types of instructions in the module assembly language, three-

operand instructions and four operand instructions. Table 3.1 shows the three-

operand instructions. In three operand instructions, the first operand is the

starting address of the input vector and the second operand is the starting address

of the output vector. In this instruction format, RF marks the size of the input

vector. The output vector size changes depending on the type of the instruction.

Three operand FPVECADD, FPVECSUB and FPVECMULT instructions assume that

elements of the input vector pair are interleaved, stored in consecutive memory

locations as follows: A[0], A[1], A[2], A[3], · · · , A[m− 1], where m = 2n and n is

the length of each input vector. The even locations are the first input vector and

46

the odd locations are the second input vector. For these instructions, the size of

the output vector is equal to one half of the input vector size. Since FPVECACC

and FPVECPROD instructions produce a single output, the size of the output vector

is equal to one.

Table 3.1: Three-operand instructions.

Instruction Operands Meaning
FPVECADD [CR] [CW] RF C[i] = A[2i] + A[2i + 1], i = 0, 1, 2, ..., n− 1

where n = (sizeofinputvector)/2
FPVECSUB [CR] [CW] RF C[i] = A[2i]−A[2i + 1], i = 0, 1, 2, ..., n− 1

where n = (sizeofinputvector)/2
FPVECMULT [CR] [CW] RF C[i] = A[2i] ∗A[2i + 1], i = 0, 1, 2, ..., n− 1

where n = (sizeofinputvector)/2
FPVECACC [CR] [CW] RF C =

∑n−1
i=0 Ai, i = 0, 1, 2, ..., n− 1

where n is the size of the input vector
FPVECPROD [CR] [CW] RF C =

∏n−1
i=0 Ai, i = 0, 1, 2, ..., n− 1

where n is the size of the input vector

Table 3.2 shows four-operand instructions. All four-operand instructions

assume that there are two equal size input vectors and these vectors are disjoint,

not interleaved. In these instructions, CR0 and CR1 are the starting addresses of

the input vectors and CW is the starting address of the output vector. Similar to

the three-operand instructions, RF marks the size of the input vectors. With four

operand instructions, the vectors are stored in two disjoint contiguous memory

blocks as; A[0], A[1], A[2], · · · , A[n− 1] and B[0], B[1], B[2], · · · , B[n− 1]

47

Table 3.2: Four-operand instructions.

Instruction Operands Meaning
FPVECADDS [CR0] [CR1] [CW] RF C[i] = A[i] + B[i], i = 0, 1, 2, ..., n− 1

where n is size of the input vectors
FPVECSUBS [CR0] [CR1] [CW] RF C[i] = A[i]−B[i], i = 0, 1, 2, ..., n− 1

where n is size of the input vectors
FPVECMULTS [CR0] [CR1] [CW] RF C[i] = A[i] ∗B[i], i = 0, 1, 2, ..., n− 1

where n is size of the input vectors
FPVECMULTACC [CR0] [CR1] [CW] RF C =

∏n−1
i=0 AiBi, i = 0, 1, 2, ..., n− 1

where n is the size of the input vecs.

3.4.5 Module Statistics

Table 3.3 shows the resulting device utilization and maximum clock speed for

each module. These values were collected after module placement and routing

was completed for an XC4044XL FPGA device [84].

Table 3.3: Device utilization and maximum clock speeds.

CLB % Clk. Speed
Module Name Utilization Utilization (MHz)
Adder (Three Operand) 463 28 29.53
Adder (Four Operand) 473 29 30.44
Subtractor (Three Operand) 464 29 30.08
Subtractor (Four Operand) 476 29 30.64
Multiplier (Three Operand) 953 59 28.47
Multiplier (Four Operand) 984 61 27.23
Accumulation 432 27 31.43
Product 944 59 26.44
Multiply-Accumulate 1265 79 25.35

The adder and the subtractor modules use only 28% and 29% of the FPGA

device, respectively. This means that three adder or subtractor modules can

48

fit into one FPGA device. On the other hand, since the adder and subtractor

cores require only 20% of the device, five cores can fit into one FPGA device.

Since the board that we are using has 5 FPGA devices on it, a total of 25 adder

or subtractor cores can be utilized on the board. The complete multiplier and

product modules require around 60% of an FPGA device, and the multiply-

accumulate module requires 79% of an FPGA device. Only one multiplier,

product or multiply-accumulate module can fit into one FPGA. Therefore, a

total of five multipliers, product or multiply-accumulate modules can be utilized

on the board simultaneously.

3.5 The Third Generation Module

Usually, the floating-point core unit of a module is the one that requires more

hardware resources than the other parts of the module do. As the size and the

density of the FPGA devices increase, we realized that it is possible to place

more core units (4 or more) into a single FPGA device at the same time. With

some additions to the existing datapath and controller, we designed the third

generation module that includes seven function core units. The third generation

module brought several advantages over the previous generation. First, instead of

using several different modules, we only need to use one module that can perform

the same functionality. Second, reconfiguration time is reduced significantly. For

example, during the execution of a program, if we need to use several different

modules, we do not need to reconfigure the FPGA device every time we need

a different module. All we need to do is to utilize the appropriate core unit

in the module. Third, with this new module, it is possible to perform some

other instructions such as load and store instructions. These features of the

49

third generation module offer more flexibility in mapping applications to the

reconfigurable systems.

3.5.1 Function Core Units

In the third generation module, we used function cores units. A function core is

a unit that includes one or more of the basic floating-point core units and some

other useful parts such as data delay buffers. Basic cores are used as building

blocks for the function cores. Figure 3.9 shows two sample function cores. In the

first function core, there is only one basic core unit used and it is similar to the

cores used in the second generation modules. The second function core, Figure

3.9b, includes two multiplier cores and an adder core. To synchronize the core

units, ENABLE and DONE signal are used. The main controller of the module first

reads all the input data into the data registers and then it triggers the function

core unit by asserting the ENABLE signal to the multipliers. The DONE signal of

the multipliers are connected to the ENABLE input of the adder core through an

AND gate. When both multiplier cores finish multiplying their input data, they

trigger the adder core by asserting their DONE signals. The adder core grabs

the multiplier outputs and adds them up. When the adder finishes its job it

also asserts a DONE signal that goes to the module controller. Finally, when the

controller receives this DONE signal, it writes the final result back to the memory.

Using this method, more complicated function core units can be formed.

Using function core units in the module design offers great advantages over

the previous generation. Firstly, we can perform complex arithmetic operations

with more than 2 inputs. For example, the function core unit in Figure 3.9b can

calculate the vector operation A[i] = B[i] ∗ C[i] + D[i] ∗ E[i]. Secondly, a single

function core can be used pipelined fashion to perform several mathematical

50

operation. Table 3.4 shows the list of expressions that can be calculated using

the function core shown in Figure 3.9b. The first expression is the primary

expression for this core and the rest of them are secondary expressions. Third,

all the mathematical operations are performed in parallel in the function cores

where as they are performed sequentially in a general purpose processor.

R2 R3

Enable

Done

Done

Enable

Enable
(from the

controller)

Done
(To the

controller)

Basic Core

R0 R1

Enable

Done

Basic Core

(b)

R0 R1

Done

Enable

(a)

+ * *

+

Basic Core

Basic Core

Figure 3.9: Sample function cores. (a) Single arithmetic unit function core (b) Multiple
arithmetic unit function core.

Table 3.4: Expression that can be calculated by the function core in figure 3.9b.

Expression Comment
Y [i] = A[i] ∗B[i] + C[i] ∗D[i] Regular use
Y [i] = A[i] ∗B[i] + C[i] ∗K Load R3 with a constant K
Y [i] = A[i] ∗B[i] + C[i] Load R3 with value 1
Y [i] = A[i] ∗B[i] + K Load R2 with K and Load R3 with value 1
Y [i] = A[i] ∗B[i] Load R2 and R3 with value 0
Y [i] = A[i] ∗K1 + C[i] ∗K2 Load R1 with K1 and R3 with K2

Y [i] = A[i] ∗K + C[i] Load R1 with K and R3 with value 1
Y [i] = A[i] ∗K1 + K2 Load R1 with K1, R2 with K2 and R3 with value 1
Y [i] = A[i] ∗K Load R1 with K, and R2 and R3 with value 0

51

3.5.2 The Datapath

Figure 3.10 shows the block diagram of the data processor section of the third

generation module’s datapath. The datapath can include up to 7 function core

units and each function core can include several basic cores. The size of the

register file limits the number of inputs that a function core can have. Since the

data register file has only 8 registers, the number of inputs to the function cores

cannot exceed 8 but it can be less than 8. While executing a vector instruction all

function cores read the input data from the register file, process it and produce

a result, but only one result is written back to the memory. The main controller

determines which result needs to be written back to the memory by looking at the

instruction decoder output and asserting control signals to the MO multiplexer.

0
Fun Core

1
Fun Core

6
Fun Core

32−bit Data
Register File

Enable

Done

Enable

Done. . .
...

Register
Select

32
Data
In

32
32

32

M0

Data
Out

32

Select
Core

...

Figure 3.10: Data processor section of the datapath of the third generation module.

As seen in Figure 3.11, the Fetch/Decode section of the datapath includes

an address counter file, a counter for the result vector, a program counter, a

counter for the input vector size and an instruction decode unit. Each counter in

the counter file is associated with a register in the register file. These counters

52

are used to address input vectors. Different from the previous generation,

the fetch/decode section has a special instruction decoder. The decoder is

used because this module is able to execute not only vector instructions but

also Load/Store instructions. These instructions are explained in detail in the

following sections.

18−bit Addr.
Counter File CounterCounter

Write Size

address bus
8 x 18−bit

18 18

18181818 Data
In

32

Address
Out

18

D. Counter
Program

Zero
Flag

M1Address

Select

(to the controller)

32

Instruction
Register

32

Figure 3.11: Fetch/decode section of the datapath of the third generation module.

3.5.3 The Controller

A special controller has been designed for the third generation module. The

controller is able to utilize several function core units to execute a wide variety

of vector instructions. During the execution of a vector instruction, first it

initializes the register file with constant values, if needed. After that, similar

to the second generation, the controller executes the vector instruction using the

selected function core. A distinguishing feature of the controller is that, besides

the vector instructions, the controller is able to execute Load/Store instructions

and execution control instructions.

53

3.5.4 The Instruction Set

The third generation module is able to execute a wide variety of instructions. It

is possible to classify module instructions into three classes, vector instructions,

Load/Store instructions, and execution control instructions.

Since there are up to 7 function cores in the module and each core is able

to execute a number of vector instructions, it is not possible to enumerate all

vector instructions here; therefore, only an example instruction is presented in

this section.

Similar to the second generation module, vector instructions start with the

name of the instruction and include several operands identifying the start address

and size of the input and output vectors. One additional operand, number

of input vectors, is used in this instruction format. With the help of this

additional operand, the controller is able to use the same function core to

execute several different instructions written for several different mathematical

expressions. Figure 3.12 shows how two different vector instructions can be

executed on the same function core shown in Figure 3.9b. Figure 3.12a is the

primary instruction and Figure 3.12b is one of the secondary instructions for this

function core.

54

VECMULADDMUL 4

Y[i] = A[i]*B[i] + C[i]*D[i]

200 300 400 500 50

Size of all vectors
Start address of Y vector

Start address of C vector
Start address of B vector
Start address of A vector

Start address of D vector

The number of input vectors

VECMULADDMUL
LOADR

Y[i] = A[i]*B[i] + C[i]*K

3
3 500300200100

001
50

Size of all vectors
Start address of Y vector
Start address of C vector
Start address of B vector
Start address of A vector
The number of input vectors

;Read K from address 001 to Reg#3; Executed by the controller

(a)

(b)

100

Figure 3.12: Vector instructions format for the third generation module’s function cores. (a)
Primary instruction. (b) One of the secondary instructions.

Execution of a primary instruction of a function core is the same as execution

of the vector instruction in the second generation modules. The controller reads

the numbers, triggers the core and when the result is available it writes the result

back to the memory. On the other hand, execution of a secondary instruction

requires initialization of some input registers with constant values. As it can

be seen in Figure 3.12a a LOADR (Load Register) instruction is used to initialize

register #3 with constant K.

In the third generation module, the opcodes are formed by combining two

numbers, n and m. The first number, n, indicates the location of the function

core in the module that executes the given vector instruction. Since there are

only seven positions in the module that can be loaded with function cores n can

take values from 0 to 6. The second number, m , indicates the number vector

operands in the vector instructions. Using this approach in the instruction set

55

allows the reuse of particular opcodes for different instructions. For example the

opcodes two input vector adder, subtractor, multiplier and divider are the same

when the function cores for these instructions are located in the same position in

the module datapath.

This approach combines the advantages of RISC and CISC processor. Similar

to the RISC processors, the number of instructions that the module controller has

to decode was reduced significantly. As result, the decode logic was simplified

and the controller’s clock rate was increased. On the other hand, potentially

each location in the module core can be configured with an infinite number of

unique function cores to execute an infinite number of vector instructions. This

feature of the instructions set provides the benefits of the CISC processors. The

module assembly language instruction set for some function cores is presented in

Appendix B.

Table 3.5 summarizes the Load/Store instructions and the execution control

instruction. With the help of these instructions, the module becomes more flexible

and is able to utilize function cores more efficiently.

Table 3.5: Execution control and load/store instructions.

Instruction Comment
RUN Start running
PAUSE Cycl# Stop a core or a pipelined unit for a given # of cycles
STOP Stop a core or a pipelined unit for an indefinite time
HALT Completely stop the system.
LOADR Reg#, [Address] Load data from a give address to a data register.
LOADRIMM Reg#, Data Load immediate data to a data register.
LOADC Cnt#, [Address] Load data from a given address to a Index Counter.
LOADCIMM Cnt#, Data Load immediate data to an Index Counter.
STORER Reg#, [Address] Store data from a data register to a given addr.
STOREC Cnt#, [Address] Store data from an Index Counter to a given addr.

56

3.6 Mathematical Models for the Third Gener-

ation Modules

Performance of a module highly depends on the memory cycle of the function

core unit which is utilized for the given vector operation. The memory cycle is

the number of clock cycles during which the module completes reading one set

of input data and writing one result back to the memory. The Memory Cycle of

a function core unit can be calculated using Equation 3.5.

Memory Cycle = RC + RL + WC + WL (3.5)

where, RC is the number of input vectors to the function core unit and RL is

Memory Read Latency. WC is equal to the number of results produced per

Memory Cycle and WL is Memory Write Latency. Memory write latency for

most memory types is zero and can be eliminated from the equation. Figure

3.13a shows a sample memory cycle. In this figure, the module has to read data

from three vectors and it has to write the result back to memory. The read

latency is two and the write latency is zero. In Figure 3.13a and 3.13b, RAi,k is

the read address asserted on the memory address bus by the module for the kth

element of the ith input vector, RDi,k is the data asserted by the memory for the

kth element of the ith input vector, WAj is the write address and WDj is the

output data asserted by the module for the jth element of the output vector.

The Memory cycle in Figure 3.13a can be improved by inserting a wait/idle

state (a clock cycle during which the controller does not do a memory read

request) in the read sequence before the last read request as shown in Figure

3.13b. This eliminates the effect of the write operation on the memory cycle and

memory cycle becomes equal to RC +RL. Improvement in memory cycle through

57

wait/idle state insertion is a special case and can only be applied if RC >= 2 and

RL = 2i , where i = 1, 2, 3, · · · .

(a)

RD
2,k+1

RA

1,k
RD

1,k
RARA

0,k

RD
0,k

M. Addr. Bus

M. Data Bus

Clock Cycles 876543210 9 10 11

2,k+1

One Memory Cycle

RA
2,k

WD
j

1,k+1
RD RD

2,k+1

1,k+1
RA RARA

2,k+1
WA

WD
j+1

RD
0,k+11,k

RD RD
2,k

1,k
RA RARA

2,k
WA

j

WD
j

RD
0,k

0,k+1
M. Addr. Bus

M. Data Bus

Clock Cycles

One Memory Cycle

876543210 9 10 11

0,k j+1

WA
j

WA
j+1

WD
j+1

RD
1,k+1

RD
0,k+1

1,k+1
RA

RD
2,k

1,k+2
RA

0,k+2
RA

0,k+1
RA

(b)

Wait/Idle States

Figure 3.13: Sample memory cycles: (a) Memory cycle for the module that does three reads
and one write, (b) Improved memory cycle for the same module.

Execution time of one vector instruction can be calculated with Equation 3.6.

IEX =
Memory Cycle ∗ V ector Size + FC + EC

Clock Rate
(3.6)

where, FC is the number of clock cycles required to fetch a vector instruction and

EC if the number of clock cycles required to empty a pipelined core unit.

In a session, a PE is assigned to execute a number of vector instructions.

By multiplying the result of Equation 3.6 with the vector instruction count

for a session and adding the Application Programming (API) overhead, we can

58

calculate the execution time for the session, Equation 3.7.

TEX =
[(

Memory Cycle ∗ V ector Size + FC + EC

Clock Rate

)
∗ Inst. Count

]
+ CAPI (3.7)

where, CAPI is API overhead. By substituting Equation 3.5 into Equation 3.7

we get Equation 3.8 which is the mathematical model used by the Simulator for

the modules.

TEX =
[(

(RC + RL + WC + WL) ∗ V ector Size + FC + EC

Clock Rate

)
∗ Inst. Count

]
+ CAPI

(3.8)

Equation 3.8 is a very generalized mathematical model for the modules. It has

to be reevaluated for different types of modules. For example, an accumulation

module does not write a result at every memory cycle rather it writes one result

at the end of the vector instruction. This situation makes WC and WL zero.

Since the module does not need to write back at every Memory Cycle it can

continuously read from the memory in a pipelined fashion. This means that the

module does not need to wait idle for the data it requested during the Memory

Read latency period. In one clock cycle, the module can request input data and

at the same time it can read the data previously requested. This eliminates RL.

The module waits idle for memory read latency only once at the beginning of

the vector instruction which is negligible. With this information, we can rewrite

Equation 3.8 as Equation 3.9 for the accumulation modules.

ACCEX =
[(

RC ∗ V ector Size + FC + EC

Clock Rate

)
∗ Inst. Count

]
+ CAPI (3.9)

59

Equation 3.9 is also valid for two memory unit accumulation or non-

accumulation modules. Since either type of module does not write back to

the input memory, they do not interrupt data reading from the input memory.

Modules can continuously read from the input memory and write to the output

memory if it needs to.

3.7 Module Execution versus GPP Execution

Although modules run at slower clock speeds, they are typically able to

outperform much faster general purpose processors. This situation could be

explained with the following example. Let us assume that the code fragment

in Figure 3.14 is a part of a user application implemented in C/C++.

for (i=0; i<1000; i++)
Result[i] = Input1[i] + Input2[i];

Figure 3.14: Sample code fragment.

The purpose of the code in Figure 3.14 is to perform the addition operation

on individual elements of two input vectors and store the results in the Result

vector. When this section is compiled with a C/C++ compiler, the compiler

will produce machine code similar to the code in Figure 3.15. (Note: Compilers

generate processor-specific code. Here, we demonstrate a generalized form of

different machine code formats [85].) Lets assume that R0, R1 and R2 hold the

starting addresses of vectors Result, Input1 and Input2, respectively and R3

holds the index value.

60

As it can be seen in Figure 3.15, to process one element from each input

vector and to produce one result, a general purpose processor spends 19 clock

cycles total. The above clock cycle numbers are for the best case. In the case

of cache misses, a general purpose processor spends even more clock cycles to

execute the above code. Moreover, a general purpose processor also spends extra

clock cycles for operating system overhead. On the other hand, the same C/C++

code can be compiled to a single vector instruction for a specific hardware module

as follows:

FPVECADD Addr1, Addr2, Addr0, Size

where Addr1, Addr2, and Addr0 represent the starting addresses of Input1,

Input2 and Result, respectively and Size represents the size of the vector

operation.

Label OpCode Operands Clock Cycle
===

LOADW R3, #1000 2
Loop: LOADF F1, 0(R1) 2

LOADF F2, 0(R2) 2
ADDF F0, F1, F2 3
STORE 0(R0), F0 1
ADDI R0, R0, #2 2
ADDI R1, R1, #2 2
ADDI R2, R2, #2 2
SUBI R3, R3, #1 2
BNEZ R3, Loop 1

===
Total cycles 19

Figure 3.15: Machine code for source code in Figure 3.14.

Since general purpose processors are designed to execute a wide variety of

instructions, they have to execute a series of machine instructions repeatedly

61

to perform a simple vector operation. At each iteration it has to fetch, decode

and execute the same set of instructions. As a result, it spends a lot of time

fetching and decoding the same set of instructions repeatedly. On the other hand,

hardware modules are specialized on execution of a single vector instruction.

They only fetch and decode a few instructions at the beginning of each vector

operation and then perform the operation. Another advantage of the modules

is that they can perform arithmetic operations in pipelined fashion depending

on the numbers of basic cores used in the module. For example, the multiply-

accumulate module multiplies numbers and at the same time it accumulates the

multiplication results of the previous operation. And lastly, if multiple FPGAs

are used, we can execute several instructions in parallel. These are the reasons

why modules are able to outperform general purpose processors.

Chapter 4

The RCCT Compiler

The Compiler is the most important part of the Reconfigurable Computing

Compilation Tool (RCCT). The purpose of the Compiler is to map user appli-

cations developed in C/C++ to Reconfigurable Computing (RC) environments

to enhance performance of them. In this chapter, detailed information about the

Compiler is provided. The chapter begins with an overview of the Compiler. The

next section presents the inputs of the Compiler. The subsequent sections give

detailed information about the sections of the Compiler.

4.1 An Overview of the RCCT Compiler

A compiler takes as input, source code, usually written in a high level

programming language, and translates it to an equivalent representation in

another language, usually to a machine language that is specific to a processor

or a computer architecture. In our case, the RCCT Compiler takes the original

source code written in C/C++ and translates it into a new C/C++ source code

by modifying the computationally complex sections of it. It also produces one

or more session files that contain machine language instructions for a standard

reconfigurable processor.

62

63

General Purpose Processors (GPPs) perform very well on single mathematical

operations. On the other hand, a well designed and optimized RC system offers

excellent performance gains on vector operations compared to GPPs. For that

reason, the Compiler targets computationally complex sections of the source code

contained in nested loops and translates them into vector operations that are

executed on a RC system. The Compiler targets the for loops, because they

are the ones most frequently used to perform vector operations. The Compiler

must calculate the iteration count of the loops being mapped to an RC system

at compile time. The iteration counts of while and do-while loops can not be

determined at compile time; therefore, these loops were not considered due to

their indeterministic nature.

During the compilation process, the Compiler first determines the target

sections of the user applications that are going to be mapped to the RC system.

Then, it identifies the vector operations in these sections and writes them into one

or more session files. These session files allow the Loader to run that section of

the application on one or more FPGA devices. Next, the Compiler rewrites

the source code by replacing these target sections with function calls to the

Loader. The Compiler inserts four types of Loader functions in each modified

section of code. These are, IsModuleAvailable() to check the availability of the

hardware module that executes the given section on an RC system, Store Data()

to transfer data from host memory to the RC system, Load Data() to transfer

data from the RC system to the host memory, and run() to start execution of

the given section on the RC system.

Figure 4.1 shows the top level flow chart of the Compiler. Besides the

application source code, the Compiler reads a module definition file and a

64

parameter file. The module definition file provides information about the

hardware modules that the Compiler can use while mapping the user applications.

The parameter file provides information about the RC environment that the user

application is being mapped to. The parameter file also includes user preferences

about the mapping process. Detailed information about these files is provided

in Section 2 of this chapter. The Compiler outputs a modified user source code

and one or more session files for each modified section of the user source code.

Details of the syntax of a session file is found in section 5.2

Compiler
Parameters

Original
Source
Code

New App.
Src. Code

Session
Files

RCCT
Compiler

the Loader
Calls to

File
Definition
Module

Figure 4.1: Top level flow chart of the Compiler.

Figure 4.2 shows the second level flow chart of the Compiler. The Compiler

uses the same scanner to scan all three input files. On the other hand, different

parsers were developed to parse each input file. Special parsers were implemented

to parse the module definition file and the parameter file. A unique parser was

designed and implemented to parse the user source code. The user source code

parser is able to identify computationally complex sections of the given source

code and form a parse tree for these sections. It is also able to generate symbol

tables for these sections.

65

Modified
Src. Code

Calls to
the Loader

Original
Source
Code

Parameter

File

ScannerScanner

Token Token Token

String String String

Module ParameterParser
Parser Parser

Parse Tree
and Symbol

Table

Module
Library
Class

Parameter

Class

Scanner

Session

Files

Module
Definition

File

Code Writer

Figure 4.2: Second level flow chart of the Compiler.

The code writer is responsible for the rest of the mapping process. It takes the

parse tree, produced by the parser, and performs several transformations before

it writes the new source code and session files. Some of the steps that the code

writer goes through are: identifying appropriate hardware modules for the parsed

expressions in the parse tree, performing data dependency analysis, eliminating

the sections that can not be mapped to the RC system, scheduling instructions

to available PEs and organizing the memory assignments. Details of these steps

are given in section 4.5.

66

4.2 Inputs to the Compiler

The Compiler reads three files. These are: the source code of the user application,

a module definition file and a parameter file. In the following subsections, these

input files are presented.

4.2.1 User Application

The current version of the Compiler accepts user applications implemented in

C/C++. We selected C/C++ as the input source code Language for the RCCT

Compiler due to the fact that it is one of the most popular high level programming

languages used for scientific data processing. Another reason for selecting C/C++

is that, several typical RC Application Programming Interfaces (APIs) were

developed in C/C++ language. Using an API developed in the same language

as the user application, facilitates interfacing the user application with the RC.

Although we selected C/C++, the Compiler can easily be adapted for other

languages. Different languages such as Fortran or Java can be compiled with

little modification to the Compiler. Only the front end, scanner and parser,

needs to be modified.

4.2.2 Module Definition File

The module definition file includes specifications of the hardware module imple-

mentations available for the Compiler to use while mapping user applications

to the RC system. Figure 4.3 shows a sample module definition file. In the

module definition file, single line comments, that must start with “//” are allowed.

Specification of a module should start at the beginning of the line and should

end in the same line. Users can define two types of modules, regular modules and

67

conditional modules. A “.” before the module name indicates that the module is

a regular module and a “-” indicates that the module is a conditional module.

//Sample Module Library

//MODULE_NAME GRAMMAR OP1 OP2 OP3 OP4 OP5 OP6
//---------- ----------------------------------- --- --- --- --- --- ---

//A second generation module
.FPVECADDS VF[1]= VF[1]+VF[1]; 2 2 1 8 12 100

//A third generation module
.FPVECACC VF[0]+=VF[1]; 1 2 0 8 61 100
+FPVECMULACCS VF[0]+=VF[1]*VF[1]; 2 2 0 0 62 100
+FPVECCOMP VF[1]= VF[1]+(VF[-1]+VF*1.0)*VF[1]; 3 2 1 32 39 100

//conditional modules
-FPEQ VF[1]==VF[1]; 1 2 0 0 3 100
-FPBETWEEN (VF[1]<VF[1]) && (VF[1]<VF[1]); 4 2 0 0 5 100
-FPLTC VF <VF; 0 2 0 0 3 100

Figure 4.3: Sample module definition file.

Since the second generation modules include only one core unit, these modules

can be specified with a single entry in the module definition file. In contrast, the

third generation module includes more than one function core, and each core

unit has to be specified as an entry in the definition file. The specification of

the first function core unit must start with “.”, and the specification of the

other function core units combined in the same module have to start with “+”

and should immediately come after the first function core specification. Since the

specification of a second generation module and specification of a third generation

function core are the same, we need only to explain the second generation module

specification.

The user has to specify eight parameters for each type of module. The first

parameter is the name of the module. Module names must be all uppercase and

the first character must be a letter. Users are not allowed to use the “ ” character

68

in the module names, because this character is used by the Compiler to represent

the combination of conditional and regular modules internally.

The second parameter is the module grammar. A module grammar is a

mathematical expression that specifies the vector operation performed by the

module on given vectors. In the module grammar, to specify integer constants

and floating-point constants “1” and “1.0” strings must be used, respectively.

Integer and floating-point variables can be specified by the words “VI” and “VF”,

respectively. Words “VI” and “VF” followed by square brackets are used to

specify integer and floating-point vectors, respectively. Inside the square brackets,

the user must define the amount of change or delta in the index values of the

multi-dimensional vectors at each iteration while the module performs the vector

operation. For example [1] means increment by one. In the module grammar,

parentheses are allowed to define the order of the mathematical operations.

Module grammars must end with “;” to assist the module definition file parser

in detecting the end of a module grammar. The difference between the regular

module grammar and the conditional module grammar is that in regular module

grammars, relational operators are not allowed. In conditional module grammars,

both relational and arithmetic operators can be used.

After the module grammar of functional definition, six module timing

parameters must be specified. These parameters are used in the estimation

of the module’s execution time. The first parameter indicates the number of

memory read operations the module has to perform at each iteration. The second

parameter specifies the memory read latency in units of clock cycles. The third

parameter specifies if the module writes back to memory at each iteration of the

vector operation. For accumulation modules, this parameter must be set to “0”

69

and for other types of modules it must be “1”. Pipeline depth of the module is

specified by the fourth parameter. The fifth parameter specifies the amount of

time needed to empty a pipelined module and fetch a module instruction in units

of clock cycles. The last parameter is reserved for future use.

The user of the RCCT tool can also include specifications of modules that

have yet to be implemented. In such case, the Compiler assumes that the modules

are available and it uses the specifications, to map the user application. On the

other hand, when the user tries to execute the compiled application and when the

execution order comes to the section for which a module specification is to execute

that has not been implemented, the Loader activates the Simulator instead of

accessing the actual RC system. The Simulator behaves like the module defined

in the module definition file and executes the section. The Simulator returns

the processed data along with an estimated execution time to give the the user

an estimate of the performance that would be obtained using these hypothetical

module designs.

4.2.3 Parameter File

The Compiler reads information about the target RC environment and the user

preferences about the compilation process from the parameter file. There are

nine parameters that the user can set before compiling applications. If the user

does not set a value to a parameter, the Compiler uses the default value for that

particular parameter.

In the parameter file, each parameter must be declared on a separate line.

The format for the parameter declaration is that the declaration must start with

the <Parameter name> and must be followed by the <Value> of the parameter.

70

All parameter names and values must be upper case. The following is a list of

parameters along with their explanations.

• OPERANDSEQMODE: With this parameter, the user can indicate the order of

the vector instructions’ operands that the Compiler writes for modified

sections of user applications. This parameter can take three values.

– ORGMODE: In this mode, the Compiler does not change the order of

operands. It keeps them in the order they appear in the source code.

(Default).

– REGMODE: The operands are placed in the following order. <Output

Op.>, <Inputs Ops.> (Variables first), <Size>

– NEWMODE: The operands are placed in the following order. <Inputs

Ops.> (Variables first), <Output Op.>, <Size>

• ASSIGNMEMMODE: Can be used to indicate how vector instructions are

extracted from each for block and scheduled to the PEs.

– SINGLEBLOCK: All vector instructions of a for block are scheduled to

one PE. (Default).

– SINGLEINST: Each set of vector instructions of a for block is assigned

to a PE.

– PARALLEL: Each set of vector instructions is scheduled to all available

PEs for parallel execution.

• WORDSIZE: Different RC systems can use different word lengths while

addressing data in memory. The user can specify the word length with

this parameter. (Default = 2).

71

• BASEOFFSET: Using this parameter, the user can tell the Compiler to start

using RC memory starting from a base address. (Default = 1).

• CLOCKSPEED: Clock speed of the RC system can be defined with this

parameter. (Default = 50).

• VARNUMBER: Controller of the third generation module needs to know how

many of the input operands of a vector instruction are variable. If

the applications are mapped to the third generation module, then this

parameter must be set to TRUE. (Default = false).

• PE NUMBER: The number of available PEs can be specified by this parameter.

(Default = 1).

• OUTPUTADDRESS: Some dual memory unit PEs, in fact, have one memory

unit but two ports to the same memory. The PE can read data from one

port, while writing data to the other port. The output port usually starts

from a specific memory location. The user can specify the starting address

of the output port with this parameter. (Default = -1);

• ASSIGNSIZE: This parameter is used to specify the vector size form. The

<size> operand in each vector operation can be the actual size of the vector

operation or the offset size.

– ORIGINALSIZE Original size of the vector operation if written in the

vector instruction.(Default = ORIGINALSIZE).

– OFFSETSIZE The offset size is calculated by adding the actual size of

the vector operation to the start address of the first input vector.

72

4.3 Scanner

The Scanner, also called the lexical analyzer, reads the source code, which is

usually in the form of ASCII character string, and divides into meaningful units

called tokens. In typical source code, reserved words of the language, numbers,

identifiers, some special character sequences, delimiters, comment and blank

spaces are all considered tokens. Some scanners eliminate unnecessary tokens

such as blank spaces and send the meaningful tokens to the next step of the

Compiler.

A scanner can be hand written/coded or automatically generated. There are

some tools such as lex and flex available that generate source codes for scanner.

These tools accept a specification file in which tokens and instructions for the

scanner tool are specified. The tool converts the given specification file into table

driven source code usually generated in C..

The scanner of the RCCT Compiler was generated using the lex tool available

in Unix environment. We started with Jef Lee’s lex specification [86] as the

specification file for our scanner. This specification file tells the scanner generator

to only return the token itself. We modified the specification and made the

scanner return additional information about the tokens to make the parsing

process easier and to help the Compiler create the modified source code. The

current version of the scanner returns the tokens, the token text, and classification

information about the tokens. After the compilation process, the Compiler uses

the token text to rewrite the source code. The specification file for the scanner

used in this thesis can be found in the Appendix.

After we generation of the scanner program using lex, we converted it to a

C++ class. Converting the scanner to a C++ class lets us use it, not only to scan

73

user applications but, also to scan the module definition file and the parameter

file.

4.4 Parser

A parser takes the source code in the form of tokens from the scanner

and performs syntax analysis. During the syntax analysis phase, the parser

determines the structure of the program. The parser creates a parse tree as

an output and forwards it to the next step of the Compiler.

Similar to the scanner, a parser can also be generated using tools, such as

yacc and bison. Such a tool accepts a grammar file in which the grammatical

rules of the Language are specified and outputs source code for a program that

performs the parsing operation.

Since the RCCT Compiler focuses only on a subset of C/C++ statements,

we decided not to use parser generators and to implemented our own parser.

The current version of the parser only parses for loop statements, expression

statements, (arithmetic and conditional), and conditional statements (if state-

ments). Future version of the Compiler will parse additional and more complex

statements. One or more recursive parser functions were implemented for each

statement. In this section, the data structure used to represent the parse tree is

introduced first. Then, the parser functions and algorithms are explained.

4.4.1 Parser Data Types

Figure 4.4 shows the data type definitions for the parser. Note that it is not

possible to present all details of the type definitions here; therefore, only the

important ones are depicted in the figure and explained in the text.

74

NodeEnum

char *NodeName

NodeType

Expression

Expression

Expression

*Index

*Left

*Right

Expression IfNode

bool

Expression

Expression

Expression

Predicate

*Conditional

*ExpTrue

*ExpFalse

ForNode

int

Expression

Expression

NestLevel

*E1

*E2

*E3Expression

STEnum STType

Union

ForNode

Expression

IfNode

Statement

Statement *Sub

*Next

F

*E

*I

Statement

(a)

(b)

(c)

(d)

Figure 4.4: Data type definitions for the Parser.

For expression statements, Expression type is defined as shown in Figure

4.4a. This data type is used to form binary expression trees. The parser uses this

type to store information about individual elements of expression trees. Left and

Right fields are used to link left and right subtrees. The Index field is used to

link indexing information of the array variables. This type definition is used for

both arithmetic expressions and conditional expressions.

Figure 4.4b shows the data type definition for for statements. Since a for

statement can include three sets of expressions, three expression fields, E1, E2

and E3 were added to the definition to link these expression sets.

The type definition for the if statement is shown in Figure 4.4c. The

Predicate field is used to store the result of the evaluation of the conditional

expression of the if statement. The Conditional field is used to link the

conditional expression of the if statement. Since we only map arithmetic

75

expressions under if statements to RC systems, we defined links for only the

arithmetic operations under the IfNode data type. These are ExpTrue and

ExpFalse.

Figure 4.4d shows the top level data type definition for statements. This is

a wrapper definition for the other definitions. It starts with STType. This field

holds the type information of the statement. The next field is a union of the types

Expression, ForNode, and IfNode. Union is used to conserve memory. The Sub

field is used to link statements under another statement. For example, expression

statements under a for statement are linked to the for statement with this field.

The Next field is used to link a series of statements in a block under a statement.

4.4.2 Parser Functions and Algorithms

The main() function of the Compiler calls the Parse() function of the Parser

to parse the input source code. Figure 4.5 shows the algorithm of the Parse()

function. The algorithm starts by forming a token list. By calling the Scanner,

a linked list of tokens is formed. At this stage the parser does not eliminate

unnecessary tokens such as comments and blank spaces because these tokens are

used while rewriting the source code.

After forming a token list, the Parser enters a while loop and passes through

the tokens. It parses the source code in a single pass. When the Parser finds a

for reserved word while scanning the token list, it calls the ParseFor() function

to parse the for loop block. The ParseFor() function returns a pointer to a

ForNode variable if the for loop is successfully parsed or else it returns NULL. If

the return of ParseFor() is not NULL then it is added to the end of the parse

tree list.

76

Parse()

Statement *ST;

PTHead ← new Statement;

� Scan the input file and form a linked list of tokens.

while (! End of token list) do

if (Current token is a RC Directive) then

� Skip tokens until the end RC directive.

end if

if (Current token is for) then

ST ← ParseFor();

� Add ST to the linked list headed by PTHead

end if

end while

return PTHead;

Figure 4.5: Algorithm for the Parse() function

The Compiler is able to process a few RC directives. Inside the loop, if

the Parser sees an RC directive, it skips the tokens until the end of the RC

Directive. These sections of the source code are processed by the code writer

of the Compiler.

Only a limited number of statements can be mapped to the RC sys-

tems. These are: for loops, arithmetic expressions that perform vector

operations, and if statements. Four functions were implemented to parse

these statements. These functions are ParseFor(), ParseMultStatement(),

ParseExpressionStatement() and ParseIf(). The parser calls the ParseFor()

function and starts a sequence of recursive function calls to parse a for loop block.

Then, these four functions call each other recursively by following the structure of

the block to parse a for loop block. At any point, if a function detects an error,

it returns NULL to the calling function. This NULL value is returned through

77

all recursive calls and subsequently reaches the Parse() functions. When the

Parse() function receives a NULL value, it eliminates the current for block and

keeps searching for another one.

Each function returns a pointer to a Statement variable. The calling function

links the return of a called function to the current Statement variable’s Sub link

to form a parse tree if the return value is not NULL.

4.4.3 Parsing a for Loop

Figure 4.6 shows the algorithm developed to parse for loops and the statements

found in the for loop body. The algorithm first parses the header of the

given for statement. It calls the expression parser to parse initialization,

termination and increment expressions of the loop. After parsing the header,

it calls the other functions to parse the body of the loop. If the next token

is a curly bracket (“{”), then, it calls the ParseMultStatement() function

to parse a block of functions. If the next token is an identifier then it calls

the ParseExpressionStatement() to parse the expression. At this point,

ParseFor() assumes that all statements starting with an identifier are expression

statements. The ParseExpressionStatement() function checks if the statement

is an expression statement or not. If the statement is not an expression statement

then ParseExpressionStatement() returns NULL.

If the next token is the beginning of another for statement then ParseFor()

calls itself recursively to parse the inner loop. As was mentioned, only a limited

number of statements can be mapped to the RC systems using RCCT; therefore,

ParseFor() returns NULL if it detects a statement other than the ones mentioned

above.

78

ParseFor()

Statement *STCurrent;

STCurrent ← new Statement;

STCurrent 7→STType ← FOR STATEMENT;

� Parse the header of the for statement.

switch (Current Token)

case “{”:

STCurrent 7→Sub ← ParseMultStatement();

case Identifier:

STCurrent 7→Sub ← ParseExpressionStatement();

case “if”:

STCurrent 7→Sub ← ParseIf();

default:

� Print an error message.

return NULL

end switch

return STCurrent;

Figure 4.6: Algorithm for ParseFor() function.

4.4.4 Parsing an if Statement

The algorithm for the ParseIf() function is shown in Figure 4.7. It starts with

parsing the header of a given if statement. The conditional expression of the if

statement is parsed by the BuildConditionalExp() function.

After parsing the header, the function parses the body of the if statement.

The current version of the Compiler allows only arithmetic expressions under

the if statement due to the fact that it is not practical to design a module to

execute a combination of the other statements under an if statement; therefore,

the ParseMultStatements() function was not used here. Instead, we developed

a special switch-while combination shown in Figure 4.7 (lines 08 through 21) to

79

parse the true part of the if statement. The arithmetic expressions are linked to

the ExpTrue field of the IfCur variable. The same lines are repeated if the else

part of the if statement is present, but in this case, the expressions are linked

to the ExpFalse field of the IfCur variable. In each part of the if statement,

once a statement other than an arithmetic expression is detected, the ParseIf()

function returns NULL. Currently, no else-if chains are allowed.

01 ParseIf()

02 Statement *STCurrent;

03 IfNode *IfCur;

04 Expression *ExCur;

05 STCurrent ← new Statement;

06 STCurrent 7→STType ← IF STATEMENT;

07 � Parse the header of the if statement.

08 switch (Current Token)

09 case “{”:

10 while (Current Token is not “}”) do

11 if (Current Token is an Identifier) then

12 ExCur ← BuildExpressionTree();

13 � Add ExCur to IfNode7→ExpTrue

14 else

15 return NULL;

16 end if

17 case Identifier:

18 � Repeat lines 12 and 13

19 default:

20 return NULL;

21 end switch

22 if (Current Token is else) then

23 � Repeats the lines 08 through 21 but add expressions to IfNode7→ExpFalse

24 return STCurrent;

Figure 4.7: Algorithm for ParseIf() function.

80

4.4.5 Parsing Arithmetic and Conditional Expressions

Different implementations of the same expression parsing algorithm are used to

parse arithmetic and conditional expressions. The difference between these two

implementations is that the conditional parser implements the same algorithm in

two levels. In the lower level, it only sees the arithmetic operators and operands

as entities to parse in the given conditional expression. It parses these entities by

calling the arithmetic expression parser. It exits from the lower level whenever it

sees a conditional operator. In the upper level, it sees the conditional operators

and arithmetic expressions parsed in the lower level as entities to parse and it

applies the same algorithm. Since the conditional operators have lower priority

than the arithmetic operators, they are considered at the upper level.

By implementing the same algorithm at multiple levels, expressions that

include an arbitrary number of different operators with different priority levels

can be parsed. The highest priority operators have to be parsed in the lowest

level and the lowest priority operators have to be parsed in the upper most level.

At each level, two priority levels can be parsed. For example, since the “+” and

“-” pair and ‘the ‘*” and “/” pair have two different priority levels, expressions

including these operators can be parsed in one level. With a few modifications to

the algorithm, the unary operators and increment and decrement operators can

also be parsed in one level together with “+”, “-”, “*”, and “/” operators.

Since the conditional and arithmetic expression parsers have the same

algorithm, we only explain the arithmetic expression parser which is the

BuildExpressionTree() function. 603 lines of C++ code was written to

implement the BuildExpressionTree() function.

Figure 4.8 shows the algorithm for the expression parser. We will explain this

algorithm with the example shown in Figure 4.9. The algorithm includes four

81

steps. In the first step, the given expression is divided into pieces. A piece can

include a lower priority level operator (in this case “+” and “-”) or a group of

operands and operators in which all the operators have higher priority level (in

this case “*” and “/”) and all operands and operators are consecutive. In this

step everything inside a set of parentheses is parsed within a single recursive call

and treated as an operand. The result operand and assignment operator are also

counted as pieces. A stack is formed for each piece and by linking these stacks

in the order they appear in the expression, a list of stacks is formed. Figure 4.9a

shows the stack list for the expression in the same figure. In the figure, shaded

nodes are empty nodes used to link stacks or binary trees.

BuildExpressionTree()

Step 1 Form stack list for a given expression.

Step 2 Convert the stack list to a list binary trees.

Step 3 Built the final binary expression tree.

Step 4 Return the final binary tree.

Figure 4.8: Algorithm for BuildExpressionTree() function.

82

*

A[i]

B[i]

2

C

/

+

D[i]

F−

=

M[i] −

+ F

*

/

C

*

2B[i]

A[i]

+

D[i]

+*

*A[i]

B[i] 2

/

+C

D[i]

=M[i] − F

*

This branch is parsed
in a recursive call.

M[i] = +

(b)

(a)

Root

(c)

Root

Root

M[i] = A[i] * B[i] * 2 + C / (23.0 + D[i]) − F

One Stack

Tree
One

23.0

23.0

23.0

Figure 4.9: Steps of the BuildExpressionTree() function on an example expression: a) Stack
list after the first step, b) List of binary trees after the second step, c) Final binary tree after
the third step.

83

In the second step of the algorithm, the function passes through the stack

list once and converts each stack to a binary tree. The conversion procedure is

applied to each vertical stack. Figure 4.9b shows the binary tree list equivalent

of the stack list in Figure 4.9a. The third step of the algorithm assumes that the

binary tree list is one horizontal stack and the root of each tree is a node in the

stack. With this assumption, the stack conversion procedure is applied to shaded

nodes (horizontally) to form the final binary tree. Figure 4.9c shows the final

binary tree for the expression in the same figure. In the fourth step, a pointer to

the root of the binary tree is returned to the calling function.

4.4.6 Symbol Tables

The parser is also responsible for forming the symbol tables that hold information

about the program variables and constants. Since each for loop block is handled

individually, a separate symbol table for each block is formed. In the table,

the Parser stores the name, type, and dimension information for each of the

variables. Constant values are also stored in the symbol table. A status field

and a current value field are also defined for each entity in the symbol table.

The symbol tables are used by the Code Writer while matching modules and

extracting vector operations.

4.4.7 Parsing Module Definition and Parameter Files

A special function, ParseModuleLib(), was implemented to parse the module

definition file. This function uses the Parser class’ BuildExpressionTree()

function to parse the given module grammars. It also forms a linked list in which

each entity holds a module definition. The function returns a pointer to the head

84

of the list to the calling function. The calling function links the module library

to the parse tree and sends them to the code writer.

Another special parser is implemented for the parameter file. This parser

initializes the parameter class with the default values. Then, it reads the

parameter values from the parameter file. Any parameter which is not defined

with a value in the parameter file is left initialized with the default value.

4.5 Code Writer

Over 5000 lines of C++ source code were written to implement the code writer.

Figure 4.10 shows the flow chart of the code writer. It includes nine steps. At

each step, each for loop block of the user code is processed individually. It starts

with the module matching step. At this step, it tries to find hardware modules

for the arithmetic and conditional expressions (the conditional expressions of if

statements) in the parse tree formed by the parser. In the second step, by running

the loops in the parse tree, it extracts vector instructions for the expressions

and conditional statements inside the loops. The third step performs the data

dependency analysis between the vector instructions extracted from a for loop

block. The next step schedules the vector instructions to the available PEs if

more than one PE is available. Step five collects information about the indices

of the array operands of the vector instructions and optimizes this information

by eliminating unnecessary repetitions. Step six does the memory assignment,

both for the vector instructions and for the operands of the vector instructions.

The next step sorts the operands of the vector instructions for different hardware

module implementations. In the last two steps, session files for each for loop

block and new source code are written.

85

Module
Library
Class

Parse Tree
and Symbol

Table

Parameter

Class

Session

Files

Modified
Src. Code

Calls to
the Loader

Index Info.
Collector

and Optimizer

Memory
Manager

Operand
Sorter

Module
Matcher

Vector
Instruction

Writer

Data
Dependency

Analyzer

Vector
Instruction
Scheduler

New Source
Code

Writer

Session
File

Writer

Figure 4.10: Code Writer flow chart.

In the rest of this section, the data types used by the code writer are

introduced. Then, detailed information about each code writer step is provided.

4.5.1 Code Writer Data Types

Figure 4.11 shows the data type definitions for the code writer. Multiple instances

of the data type InstType shown in Figure 4.11a are used to store one vector

instruction with multiple operands. One instance of the InstType is used for

single element variables and constant operands. An instance of InstType is used

for each dimension of the array variable and these are linked together with the

*Same field of this data type. The *Next field of the data type is used to link

multiple operands together to form one vector instruction.

The Compiler extracts a set of vector instructions for most of the for loop

blocks. ILType shown in Figure 4.11b is used to form a linked list of vector

86

instructions extracted by the Compiler. The list is formed using the *Next field

of the data type. This data type holds additional information regarding each

vector instruction. For instance, a reference number for the hardware module

matched for the instruction and the size of the vector instruction. Conditional

expressions are also represented with this data type. The *Sub link field was

defined to link the sub-instructions of a conditional vector instruction.

VarIdxType

VarIdxType

ILType

int

ILSetType

ILSetType

*VInlist

*Next

*Scheduled

PE_Number

*IList

*VOutList

ILSetType

*ILSet

ILBlock

ILSetType

SymbolTable

bool

ILBlock *Next

DDep

*TB

NodeEnum

char

NodeType

int

int

int

int

int

int

VarIdxType

VarIdxType NextVar

NextIndex

MStop

MStart

*Stop

*Start

VarN

DimN

*Vname

VarIdxType

NodeEnum

int

int

int

bool

char

int

float

int

InstType

InstType

NodeType

*Next

*Same

MemLoc

FVal

IVal

*VName

Vaiable

Step

FinalValue

Value

InstType

STEnum

int

int

int

int

bool

InstType

STType

STNo

MdNo

Var

Size

ILType

ILType *Next

*Sub

*Inst

Predicate

ILType

(a) (b) (c)

(d) (e)

Figure 4.11: Data type definitions for the Code Writer.

The Compiler collects information about the memory references performed

by the vector instructions to determine which program variables and arrays

(which sections of arrays) have to be transfered between the host computer

and the RC system. VarIdxType was defined as shown in Figure 4.11c to store

this information. This is also a multi-link type definition. In one direction,

87

NextIndex, information regarding the same operand of a vector instruction is

linked. In the other direction, NextVar, information regarding different operands

of a vector instruction are linked together.

Some for loop blocks include more than one expression. The Compiler writes

a group of vector instructions for each expression statement under the for loop

block. ILSetType is defined as shown in Figure 4.11d to link these groups together

and to store related information. This is also a dual linked data type. The *Next

link is used to link the next group of vector instructions. The Compiler uses the

*Scheduled link to store scheduled vector instructions.

The header type for the Instruction group is ILBlock, shown in Figure 4.11e.

An instance of ILBlock is used for each for loop block, and they are linked

together to form a linked list. The symbol tables formed by the parser for each

block is also linked by this type definition. The DDEP field is used by the Data

Dependency Analyzer. After the analysis of the block, this variable is set to true

if there is a data dependency between the expressions in the given block.

4.5.2 Module Matcher

The purpose of the module matcher is to find appropriate hardware modules for

the arithmetic and conditional expressions parsed by the parser. The matcher

performs this task in three steps as shown in Figure 4.12. In the first step,

it collects information about the vector operations performed by the for loop

blocks. Basically, it runs the nested or non-nested for loop structures and

looks for the array index changes in both arithmetic and conditional expression

statements. This information is vital in the module matching procedure. The

information collected in this step is stored in binary trees formed for the

expression statements.

88

Match()

Step 1 Collect information about the arithmetic and conditional expressions.

Step 2 Try to find a hardware module for each expression.

Step 3 Eliminate the for loop blocks which include

one or more expressions without matching hardware modules.

Figure 4.12: Algorithm for Match() function.

In the second step, module matching is performed. Expressions are compared

with the module definitions read from the module definition file. The Compiler

compares an expression with all module definitions until a matching module is

found for the expression. In the last step, for loop blocks containing one or more

expressions that have not been matched with modules are eliminated. These for

loops are executed on the host processor.

In order to have a successful module match, two conditions have to be satisfied.

First, the binary trees of the expression and the module have to be identical.

Second, array index information collected from the parsed loop block must match

the index information provided in the module definition file for the candidate

module. A function called CmpExp() was developed to compare binary trees of

an expression and a module. The function starts from the roots of the trees and

recursively spans the trees. While spanning the trees, it compares the structure

of the trees as well as the array indexing information of the nodes.

Figure 4.13 shows the algorithm for the CmpExp() function. The algorithm

performs a graph matching operation. Since the expression trees are acyclic

graphs and we know the starting nodes (the root nodes), the algorithm compares

trees in a single pass. Each recursive instance of the algorithm first checks

the right and left subtrees, if they exist, it process them by calling itself

89

recursively. Then, the current nodes are compared. The final result is calculated

by performing a logical AND operation on the results of the right and left subtrees

comparisons and the current node comparison.

CmpExp(Expression *ExA, Expression *ExB)
bool RightResult, LeftResult, SelfResult
//Compare right subtrees
if (ExA has a right subtree)

if (ExB has a right subtree)
RightResult ← CmpExp(ExA 7→Right, ExB7→Right);

else
RightResult ← false;

end if
else

if (ExB has a right subtree)
RightResult ← false;

else
RightResult ← true;

end if
end if
//Compare left subtrees
if (ExA has a left subtree)

if (ExB has a left subtree)
LeftResult ← CmpExp(ExA 7→Left, ExB7→Left);

else
LeftResult ← false;

end if
else

if (ExB has a left subtree)
LeftResult ← false;

else
LeftResult ← true;

end if
end if
//Compare current nodes
if ((ExA 7→Token == ExB7→Token) && (ExA 7→NodeType == ExB7→NodeType))

if ((ExA 7→NodeType == VF) || (ExA 7→NodeType == VI))
SelfResult ← CmpIndex(ExA,ExB);

else
SelfResult ← false;

end if
end if
return (RightResult && LeftResult && SelfResult);

Figure 4.13: Algorithm for the CmpExp() function.

90

4.5.3 Vector Instruction Writer

The purpose of the vector instruction writer step is to write an initial draft

of the vector instructions of the for loop blocks whose expressions have been

successfully matched in the previous step. Figure 4.14 shows the algorithm for

the vector instruction writer. The Write() function processes all matched for

loop blocks. First, it initializes the global variable ILHeadGlobal defined in the

code writer class. The Codewriter() function recursively spans the given parse

tree and runs the nested for loop structures in the tree. While running the loops

in the tree, it extracts vector instructions and adds them to the list pointed to

by the ILHeadGlobal variable.

Writer(ParseTree *PTLoc)

while (PTLoc) do

ILHeadGlobal ← NULL;

CodeWriter(PTLoc7→ST, PTLoc7→TB,1);

ILHeadGlobal ← VarOperands(ILHeadGlobal);

ILHeadGlobal ← SortInstList(ILHeadGlobal);

� Add ILHeadGlobal to ILBlockHead

PTLoc ← PTLoc7→NextTree;

end while

Figure 4.14: Algorithm for Match() function.

The third generation module requires the Compiler to identify the number

of array operands in each vector operation. The VarOperand functions processes

the list pointed to by the ILHeadGlobal variable, determines the number of array

operands in each vector instruction, and stores this information in the same list.

In a nested for loop structure, expressions can be located at any nest level.

Because of this arbitrary distribution of the expressions, the CodeWriter()

91

function writes vector instructions in a mixed order by giving them a reference

number and links all vector instructions for all expressions in a block to one linked

list. The SortInstList() function classifies these vector instructions and forms

a linked list for each class. At the end, the function links these instruction lists

together to form a list of vector instruction lists.

Figure 4.15 shows a sample user code fragment which includes three nested

for loops and an expression statement at each nest level. We specified hardware

modules in the module definition file for the expressions shown in the figure, and

compiled the source code with the Compiler. Figure 4.16 shows the screen dump

of the parse tree formed by the parser for the code fragment shown in Figure

4.15.

for (i=0; i<2; i++)
{

aa[0] += bb[i];
for (j=0; j<2; j++)
{

m[j] = b[j]+d[j];
for (k=0;k<3; k++)

e[k] = a[k]*b[k]*2;
}

}

Figure 4.15: Sample user code fragment.

For Statement
Expression Statement
For Statement

Expression Statement
For Statement

Expression Statement

Figure 4.16: Parse tree formed by the parser for the code in Figure 4.15.

92

Figure 4.17 shows the screen dumps of the CodeWriter() function for the

sample user code fragment shown in Figure 4.15. The first part of the figure shows

the vector instructions after the CodeWriter() function returns. At this point,

the vector instructions are in the order they were written and linked together in

a single list with a reference number. The second part of the figure shows the

instructions after they were classified into groups. The first group includes only

one, the second group includes two, and the third group includes four instructions.

These instruction groups are stored in a tree called the Instructions Group Tree.

FPVECMULMUL [-842150451] 0 0 0 -1 Size = 3
FPVECMULMUL [-842150451] 0 0 0 -1 Size = 3
FPVECADDS [-842150451] 0 0 0 Size = 2
FPVECMULMUL [-842150451] 0 0 0 -1 Size = 3
FPVECMULMUL [-842150451] 0 0 0 -1 Size = 3
FPVECADDS [-842150451] 0 0 0 Size = 2
FPVECACC [-842150451] 0 0 Size = 2

FPVECACC [1] 0 0 Size = 2

FPVECADDS [2] 0 0 0 Size = 2
FPVECADDS [2] 0 0 0 Size = 2

FPVECMULMUL [2] 0 0 0 -1 Size = 3
FPVECMULMUL [2] 0 0 0 -1 Size = 3
FPVECMULMUL [2] 0 0 0 -1 Size = 3
FPVECMULMUL [2] 0 0 0 -1 Size = 3

Figure 4.17: Vector instructions extracted from the source code in Figure 4.15.

In the nested for loop structures, the inner loops and the expressions inside

these loops perform vector operations. The outer loops cause the repetition of

the vector operation. In the inner most loop found in Figure 4.15, the k loop

performs a single vector operation which we called FPVECMULMUL. The outer loop

repeats this loop four times; therefore, the CodeWriter() function writes four

vector instructions for the inner most loop. The same rule applies to the other

expressions and the for loops in Figure 4.15.

93

4.5.4 Data Dependency Analyzer

In some cases, for loop blocks include more than one expression. When these

kinds of blocks are mapped to the RC system, the Compiler writes a session file for

each expression and puts all the vector instructions related to these expressions

into separate session files. At run time, these session files are executed on the RC

system individually in the order they are written. Because the session files are

executed sequentially, data dependency between the expressions cause the RC

system to calculate incorrect results. The Compiler performs a data dependency

analysis on the for loop blocks to prevent the calculations of incorrect results on

the RC system. The blocks with data dependencies are eliminated at the end of

the analysis and the remaining blocks are sent to the next stage of the Compiler.

Figure 4.18 shows the algorithm for the data dependency analyzer. Since the

individual for loop blocks in the original source code are executed sequentially

both on the general purpose processor and on the RC system, no data dependency

analysis is needed between these blocks; therefore, the algorithm analyzes each

block independently.

The algorithm compares the output variables of each group of vector

instruction with the input variables of the other groups of vector instructions

in the same for loop block. A match indicates that there is data dependency

between two instruction groups. In such a case, the algorithm marks the block

and skips the next block immediately. After processing all blocks, the algorithm

eliminates the blocks with data dependencies and sends the rest of them to the

next step of the Compiler. The algorithm compares each instruction group with

all other instruction groups in the same for loop block to detect the loop-carried

data dependencies.

94

AnalyzeDataDepHigh()

bool Result;

ILBlock *ILBlockCur;

ILSetType *ILSetCur,*ILSetTarget;

InstType *InstCur;

while (ILBlockCur) do

if (The number of Instruction sets > 1) then

Result ← false;

ILSetCur ← ILBlockCur7→ILSet;

while (ILSetCur) do

� InstCur ← Output variable of ILSetCur

ILSetTarget ← ILBlockCur7→ILSet;

while (ILSetTarget) do

if (ILSetCur != ILSetTarget) then

if (InstCur == one of ILSetTarget output variable) then

Result ← true;

break;

end if

end if

ILSetCur ← ILSetCur7→Next;

if (Result) then break;

end while

ILSetCur ← ILSetCur7→Next;

if (Result) then break;

end while

end if

ILBlockCur7→DDep ← Result;

ILBlockCur ← ILBlockCurILBlockCur7→Next;

end while

� Eliminate the blocks with data dependencies.

Figure 4.18: Algorithm for the data dependency analyzer.

95

4.5.5 Instruction Scheduler

The purpose of the instruction scheduler is to schedule one or more groups of

vector instructions extracted from a for loop block to one or more PEs. The

scheduling is important if there are more than one PE available. In such a case,

the Compiler tries to exploit parallelism by distributing vector instructions to

multiple PEs.

The scheduler performs the scheduling task according to the value of the

PE NUMBER parameter. If there is only one PE available, the scheduler schedules

each group of instructions sequentially to the PE. In the single PE case, no

modification is done to the instructions groups. Groups are executed sequentially

on the PE. If there are more than one PE available, vector instructions in each

group are evenly distributed to PEs for parallel execution. In this case, the

scheduler divides each group of instructions into a number of subgroups and each

subgroup is assigned to a PE.

4.5.6 Index Information Collector and Optimizer

A group of vector instructions extracted from a for loop block usually have one or

more input variables and one output variable. These input and output variables

are usually in the form of arrays. When we execute the vector instructions on

PEs, all input variables have to be transfered from the user application to the

PE memories and at the end of PE execution the results have to be transfered

back to the user application.

Transferring data between the user application and the RC system is not an

easy task. The Compiler has to know several things before transferring data in

both directions. First of all, in some applications, some for loop blocks use only

96

portions of the input array variables and produce results for a portion of the

output array variable. We call this case the Partial Use of the variables. In this

case, the Compiler needs to know which elements of the input array variables

are used and which elements of the output variable are calculated by the vector

instructions. With this knowledge, the Compiler writes the new source code so

that only portions of the input and output variables are transfered between the

user application and the PEs.

Secondly, in an instruction group, each vector instruction uses a portion of

the input array variables and produces results for a portion of the output array

variable. When the vector instructions are divided into subgroups and each group

is assigned to a PE, correct segments of the input data must be transfered to the

correct PE and after the PE execution completes, results collected from several

PEs must be integrated correctly in the output array variable. We call this case

Data Scheduling.

Thirdly, for some for loop blocks, the Compiler writes a group of vector

instructions in which some vector instructions use the same portion of the same

input array variable. This case is called Data Sharing for vector instructions. For

example, in matrix multiplication, to calculate one column of the result matrix,

one column of one input matrix is processed with all rows of the other input

matrix. In this case, the input data segment that is shared by a number of vector

instructions has to be transfered once and all vector instructions that use the

piece of data have to be directed to the same memory location.

The Compiler collects information about indexing of the input and output

array variables that are used by the vector instructions to handle these three

cases: Partial Use, Data Scheduling, and Data Sharing. Figure 4.19 shows the

algorithm for the function that performs the index information collection task.

97

BuildVarIdxList(ILBlokc *ILBlockHead)
ILBlock *ILBlockCur;
ILSetType *ILSet, *ILSch;
ILType *IL;
VarIdxType *Vhead;
ILBlockCur ← ILBlockHead;
while (ILBlockCur) do

ILSet ← ILBlockCur7→ILSet;
while (ILSet) do

ILSch ← ILSet 7→Scheduled;
while (ILSch) do

IL ← ILSch7→IList;
VHead ← NULL;
while (IL) do

VHead ← BuildVarIdxOut(IL, IL7→Inst, VHead);
end while
ILSch7→VOutList ← VHead;
VHead ← NULL;
while (IL) do

VHead ← BuildVarIdxIn(IL, IL7→Inst, VHead, ILSch7→VOutList. false);
end while
ILSch7→VInList ← VHead;
ILSch ← ILSch7→ Next;

end while
ILSet ← ILSet 7→ Next;

end while
ILBlockCur ← ILBlockCur7→ Next;

end while
ILBlockCur ← ILBlockHead;
while (ILBlockCur) do

ILSet ← ILBlockCur7→ILSet;
while (ILSet) do

ILSch ← ILSet 7→Scheduled;
while (ILSch) do

ILSch7→VOutList ← ConcatVarIdxVariables(ILSch7→VOutList);
ILSch7→VInList ← ConcatVarIdxVariables(ILSch7→VInList);

end while
ILSet ← ILSet 7→ Next;

end while
ILBlockCur ← ILBlockCur7→ Next;

end while

Figure 4.19: Algorithm for the BuildVarIdxList() function.

98

The BuildVarIdxList() function also processes each for loop block individ-

ually and independently. Each group of instructions written for a for loop block

is also processed independently from the others due to the fact that groups are

executed sequentially on PEs and a separate session file is written for each group.

The BuildVarIdxList() function spans the Instruction Group Tree formed by

the vector instruction writer and processes the instruction groups. It builds

an input variable list and an output variable list for each group of instruction.

Since, in each group, there is only one output variable, the output variable list

is a one dimensional linked list. On the other hand, for the output variables, a

two dimensional linked list is formed. In one dimension, information for different

variables are linked together and in the other dimension indexing information of

a single variable for all vector instructions are linked together. Note that variable

index lists are also used to represent constants and single element variables with

special settings.

In the accumulation expressions, the result variable also appears on the left

side of the expressions as an input variable. While building the input variable

list for this kind of expressions, each input variable is compared with the output

variable of the expression. If there is a match, then this variable is excluded from

the input list; otherwise, two separate memory spaces will be reserved for the

same variable and this will cause confusion in the later steps of the Compiler.

The variable index list can include some entities that can be eliminated. For

example, it can include some redundant entities due to problems found in the

Data Sharing case. Some entities in the list can be concatenated in one entity.

For example, in a list, one entity indicates that A[3:7] (elements 3 through 7

of array variable A) are is used for one vector instruction and another entity

99

indicates that A[5:9] are used for another vector instruction. These two entities

can be concatenated into one entity indicating A[3:9]. Concatenation reduces the

amount of data communication between the host memory and PE memory. After

the index lists are formed, the BuildVarIdxList() function spans the Instruction

Group Tree one more time, eliminates the redundant entities and concatenates

some entities if possible.

4.5.7 Memory Manager

The memory manager is responsible for assigning memory locations to both vector

instructions and their operands. The memory assignment operation is completed

in two steps. In the first step, memory locations are assigned to the variables

listed in the variable index lists of the vector instructions and this information

is stored in the variable index lists. In the second step, the memory information

stored in variable index list is translated to the vector instructions and the second

draft of the vector instructions is written.

In the first step, the memory assignment can be done in three different

ways depending on the user’s preference. The user specifies his preference by

setting the ASSIGNMEMORYMODE parameter in the parameter file. In SINGLEBLOCK

mode, continuous memory assignment is performed for all variables of all vector

instructions in a single for loop block. This option is implemented for the

third generation module. Since the third generation module can include several

function cores, it can execute different types of vector instructions in one run.

In the SINGLEINST mode, each group of vector instructions written for a for

loop block is considered separately. In this mode, different groups can be

assigned to different PEs for parallel execution but this does not guarantees

the even distribution of the vector instructions to the PEs. Some instruction

100

groups may include as few as one instruction and some may include as may as

a thousand vector instructions. In the PARALLEL mode, since each subgroup of

vector instructions scheduled is executed on a different PE-memory pair, memory

assignment for each subgroup is performed separately.

While the hardware modules were designed, we reserved the first part of

the PE memory starting at address $00000 to store vector instructions. The

second and third parts immediately following the first part are reserved for output

variables and input variables respectively. For that reason, in each mode, the

memory manager first calculates the amount of memory space needed to store

vector instructions. Then, it performs the memory assignment to the output

and input variables listed in the variable index list. Dual memory PEs are also

considered during memory assignment.

In the second step, the memory manager spans the vector instruction group

tree one more time and translates memory address information stored in variable

index lists to the vector instructions. During the translation process, the manager

takes a variable and searches the variable index list for that variable. When it

finds the entity that covers the same indexing area with the variable, it calculates

the final memory location for that variable and stores that information in the

related field of the vector instruction.

4.5.8 Operand Sorter

The purpose of the operand sorter is to reorder the operands of the vector

instructions to make them compatible with different module implementations.

In the second draft of the vector instructions, operand order is first the <Output

Operand>, then the <Input Operands> (in the order they appear in the original

expression) and finally the <Size> of the vector instructions.

101

The operand sorter sorts the operands according to the value of the

OPERANDSEQMODE parameter. If the parameter is set to ORGMODE, the sorter does

not change the order of the operands. If the parameter is set to REGMODE,

the sorter puts the operands into the following order. <Output Operand>,

<Input Operands> (array variables first), <Size>. If the parameter is set

to NEWMODE, operands are sorted as <Input Operands> (array variables first),

<Output Operand>, <Size>. For the hardware modules that we developed

OPERANDSEQMODE parameter has to be set to NEWMODE.

The operand sorter puts the vector instructions into the final form. After this

step, vector instructions are ready to be written into session files.

4.5.9 New Source Code Writer

The purpose of the new source code writer is to rewrite the user source code

by removing the sections that are successfully mapped to the RC system and

replacing the removed sections by function calls to the Loader so that these

sections can be executed on the RC system.

The source code writer uses the token list formed by the scanner. The source

code writer starts writing the source code by including the Loader’s header file,

loader.h, into the user applications. Then, it declares a boolean variable

called RC ModAva. This variable is used by the Loader functions to determine

the availability of the hardware modules and to activate the Simulator in the

case that the required modules are not available. After that, it writes tokens

until the first token of the first mapped for loop block. At this point, instead of

writing the tokens of the mapped for loop block, it inserts the Loader functions.

After all Loader functions are written, it skips the tokens until the end of the

first mapped for loop block and keeps writing the source code from the token

102

list. The source code writer repeats the same cycle for each successfully mapped

section.

The new source code writer inserts four different functions for each modified

section. First, it inserts RC IsModuleAvailable(“<Module Name>”) to check

the availability of the FPGA board and hardware modules. This function returns

true if the hardware module to execute current section on PEs is available. This

result is passed to the other Loader functions to let them know that the module

is available. If the module is not available, other Loader functions activate the

Simulator. Next, the Store Data() function calls are written to transfer data to

the PEs. The Run() function is written to start the PEs and the Load Data()

functions are inserted to transfer the results back to the host processor memory.

Detailed explanation of these functions can be found in Chapter 5.

The new source code writer also adds some comments, before and after each

modified section. Figure 4.20 and 4.21 show a sample user program and the

Compiler’s output for this program, respectively.

#include <stdio.h>

void main()
{

float aa[5],bb[5];
float a[5],b[5],c,d[5],m[5],e[5];
int i,j,k;

for (i=0; i<2; i++) {
aa[0] += bb[i];
for (j=0; j<2; j++) {

m[j] = b[j]+d[j];
for (k=0;k<3; k++)

e[k] = a[k]*b[k]*2
}

}
}

Figure 4.20: Sample user application.

103

#include "loader.h"

bool RC_ModAva;

#include <stdio.h>

void main()
{

float aa[5],bb[5];
float a[5],b[5],c,d[5],m[5],e[5];
int i,j,k;

//***Begin Mapped Section***
//This section is written by software please do not edit.
//Section No: 1

RC_ModAva = RC_IsModuleAvailable("FPVECACC");
RC_StoreVector(1,&bb[0],0,0,0,0,0,1,1,1,1,0,1,0,2,5,6,RC_ModAva);
RC_Run("dummy1.ses",RC_ModAva);
RC_LoadVector(1,&aa[0],0,0,0,0,0,1,1,1,1,0,1,-1,1,4,4,RC_ModAva);

RC_ModAva = RC_IsModuleAvailable("FPVECADDS");
RC_StoreVector(1,&b[0],0,0,0,0,0,1,1,1,1,0,1,0,2,7,8,RC_ModAva);
RC_StoreVector(1,&d[0],0,0,0,0,0,1,1,1,1,0,1,0,2,9,10,RC_ModAva);
RC_StoreVector(2,&b[0],0,0,0,0,0,1,1,1,1,0,1,0,2,7,8,RC_ModAva);
RC_StoreVector(2,&d[0],0,0,0,0,0,1,1,1,1,0,1,0,2,9,10,RC_ModAva);
RC_Run("dummy2.ses",RC_ModAva);
RC_LoadVector(1,&m[0],0,0,0,0,0,1,1,1,1,0,1,0,2,5,6,RC_ModAva);
RC_LoadVector(2,&m[0],0,0,0,0,0,1,1,1,1,0,1,0,2,5,6,RC_ModAva);

RC_ModAva = RC_IsModuleAvailable("FPVECMULMUL");
RC_StoreVector(1,&a[0],0,0,0,0,0,1,1,1,1,0,1,0,3,9,11,RC_ModAva);
RC_StoreVector(1,&b[0],0,0,0,0,0,1,1,1,1,0,1,0,3,12,14,RC_ModAva);
RC_StoreVector(2,&a[0],0,0,0,0,0,1,1,1,1,0,1,0,3,9,11,RC_ModAva);
RC_StoreVector(2,&b[0],0,0,0,0,0,1,1,1,1,0,1,0,3,12,14,RC_ModAva);
RC_StoreVector(3,&a[0],0,0,0,0,0,1,1,1,1,0,1,0,3,9,11,RC_ModAva);
RC_StoreVector(3,&b[0],0,0,0,0,0,1,1,1,1,0,1,0,3,12,14,RC_ModAva);
RC_StoreVector(4,&a[0],0,0,0,0,0,1,1,1,1,0,1,0,3,9,11,RC_ModAva);
RC_StoreVector(4,&b[0],0,0,0,0,0,1,1,1,1,0,1,0,3,12,14,RC_ModAva);
RC_Run("dummy3.ses",RC_ModAva);
RC_LoadVector(1,&e[0],0,0,0,0,0,1,1,1,1,0,1,0,3,6,8,RC_ModAva);
RC_LoadVector(2,&e[0],0,0,0,0,0,1,1,1,1,0,1,0,3,6,8,RC_ModAva);
RC_LoadVector(3,&e[0],0,0,0,0,0,1,1,1,1,0,1,0,3,6,8,RC_ModAva);
RC_LoadVector(4,&e[0],0,0,0,0,0,1,1,1,1,0,1,0,3,6,8,RC_ModAva);

//***End Mapped Section***
}

Figure 4.21: Output of the RCCT Compiler for the program shown in Figure 4.20.

104

The new source code writer determines which variables and constants need

to be transfered between the user application and the PEs by looking at the

variable index lists. For each entity in these lists, it inserts a Load/Store Loader

function. It also passes a number of parameters to the Load/Store functions.

These parameters are: the PE Number, starting memory address of the array

variable (up to 5 dimensions allowed), array dimension sizes, the starting index

number of the segment that needs to be transfered, the transfer size, module

availability information, and an address where the data is loaded from or stored

to in PE memory.

4.5.10 Session File Writer

The purpose of the Session file writer is to write all vector instruction groups into

text files, called session files, in a predetermined format. Details of the session

file format is explained in Section 5.2. Similar to the previous Compiler steps,

the session file writer spans the instruction group tree and writes one session file

for each vector instruction group.

Since at compile time the user data is unknown, the Compiler can not insert

the user data into session files; therefore, the user application has to transfer data

to PEs before each session and transfer the results from PEs after the execution

of a session. Due to this required data transfer between the user application

and the PEs, it is not possible to put more than one session into each session file.

Because, once the Loader starts executing a session file on PEs, it can not request

data from the user application nor it can not send the results back to the user

application between the execution of two sessions. This is due to the fact that

the Loader is not able to initiate an action, like data transfer or start execution.

All actions are started by the user application by calling the Loader functions.

105

When the sample user application shown in Figure 4.20 is compiled with the

RCCT Compiler, the Compiler writes three session files one for each expression

statement in the nested for loop block. Figure 4.22 shows the session file written

by the Compiler for the second expression, m[j] = b[j] + d[j].

dummy2 1
{

SESSION 0 2
{

PE 1
{

Instructions 2 0x0
{

FPVECADDS 0x7 0x9 0x5 0x9
HALT

}
Data 0
{
}

}
PE 2
{

Instructions 2 0x0
{

FPVECADDS 0x7 0x9 0x5 0x9
HALT

}
Data 0
{
}

}
HOST
{

Instructions 4
{

LOADFILE 1 FPVECADDS.X86
LOADFILE 2 FPVECADDS.X86
SETCLOCK 50
START ALL

}
DATA 0
{
}

}
}

}

Figure 4.22: A sample session file.

106

4.6 Handling RC Directives

There are a few cases that the Compiler may fail to map the user application to

a desired hardware module. For example, a user may develop a single module

that can execute multiple for loop blocks in the user application at once. In this

case, to let the Compiler map these sections of the user application to the desired

hardware module we defined several compiler directives.

By including these directives into the source code, the user can tell the

Compiler that a certain section of the source code should be mapped to a certain

hardware module. With directives, the user can also specify the program variables

and constants that need to be transfered to the PEs and how the results can be

collected.

Each directive has to be preceded by a “#” character and should start from the

first column. The following is a list of user directives and their brief explanations.

• RC Start: Marks the beginning of the desired section.

• RC End: Marks the end of the desired section.

• RC Module: Defines the module name and the module parameters.

• RC In Vector: Defines an array variable that needs to be transfered to

the PE in which the module configuration is loaded.

• RC In Single: Defines a variable that needs to be transfered to the PE in

which the module configuration is loaded.

• RC In Const: Defines a constant that needs to be transfered to the PE

in which the module configuration is loaded.

107

• RC Out Vector: Defines an array variable or a single variable in which

the results from PE is loaded.

• RC VectorSize: Defines the size of vector operation that the module has

to perform.

RC directives are handled at the very last step of the Compiler by the new

source code writer. While writing the new source code from the token list, the

source code writer monitors the tokens being written to output. When it sees an

RC directive, it skips the tokens until it sees the directive that marks the end of

directive section and calls the MapRCDirective() function. This function collects

all necessary information from the directives to write a session file for the desired

section and to replace the desired section with the function calls to the Loader.

After all needed information is collected, it adds the require Loader functions to

the new source code and writes a session file for the desired section. When the

MapRCDirective() function returns, new source code writer continues to process

other mapped sections.

Figure 4.23 shows a sample source code fragment that includes RC directives.

In this code fragment, two for loop blocks are executed. The user has got

a module called DIR EX MODULE that can calculate these two for loop blocks.

When the code fragment was compiled with the RCCT Compiler, it generated

the session file shown in Figure 4.24.

108

RC_Start

RC_Module DIR_EX_MODULE Dm Da Db Dc 23 Dd;
RC_Out_Vector Dm 5 4 5;
RC_In_Vector Da 5;
RC_In_Vector Db 5;
RC_In_Single Dc;
RC_In_Const 23;
RC_In_Vector Dd 5;
RC_VectorSize 5;

for (i=0; i<5; i++)
{

Da[0] += Db[i];
for (j=0; j<5; j++)
{

Dm[j] = Db[j]+Dd[j];
for (k=0;k<3; k++)

Db[k] = Da[k]*Db[k]*2;
}

}

for (fff=0;fff<2;fff++)
for (jj=0;jj<5;jj++)

for (i=0;i<5;i++)
Dm[fff] += Da[i] + (Db[jj] + Dc * 23.0) * Dd[i];

RC_End

Figure 4.23: Sample user code fragment with RC directives.

109

dummyD1 1
{

SESSION 0 1
{

PE 1
{

Instructions 2 0x0
{

DIR_EX_MODULE 0xe 0x5 0x4 0x5 0x72 0x5 0x77 0x5 0x7c 0x7d 0x7e
0x5 0x5

HALT
}
Data 0
{
}

}
HOST
{

Instructions 3
{

LOADFILE 1 DIR_EX_MODULE.X86
SETCLOCK 50
START ALL

}
DATA 0
{
}

}
}

}

Figure 4.24: Session file written by the RCCT Compiler for the code fragment shown in Figure
4.23.

Chapter 5

The RCCT Loader, Simulator
and the Session File Format

The Loader/Simulator pair is another major component of the Reconfigurable

Computing Compilation Tool (RCCT). It is analogous to the assembler and

loader found in traditional General Purpose Processor (GPP) compilation

systems. The Loader is a software program that works as an interface between

the user applications and reconfigurable devices. The main purpose of this

interface program is to synchronize the host computer with the FPGA device.

The application utilizes reconfigurable resources by calling the functions available

in the Loader. The Simulator was developed as an integral part of the Loader

to simulate new hardware module designs and new RC systems. A session file is

a text file that includes vector instructions, vector data and instructions for the

Loader. The Loader instructions in a session file are executed by the Loader on

the GPP and the vector instructions are executed by the hardware modules on the

FPGA devices [81, 82]. In this chapter, the session file format is introduced after

a brief overview of the Loader/Simulator pair. Subsequently, detailed information

about two versions of the Loader and the Simulator is provided.

110

111

5.1 An Overview of the RCCT Loader and

Simulator

Initially, we developed the Loader as an interface for the hardware modules

explained in Chapter 3. We made the Loader so generalized that it can be

used not only with our hardware modules but also with other reconfigurable

applications. We call this version of the Loader the stand-alone version. Later,

with some added functions, the Dynamic Link Library (DLL) version of the

Loader was developed. This version was especially developed for the applications

compiled by the RCCT Compiler. Finally, we added the Simulator to the Loader

as an integral part for simulating new module designs and new RC systems before

they are implemented.

Each version of the Loader accepts session files as input. They take the

given session file and execute some portions of it on the host computer and some

parts on FPGA devices. It accesses the reconfigurable device by calling FPGA

device vendor’s Application Programming Interface (API) functions. It is able to

perform complex tasks, invoked in the given session file as host instructions, by

calling several API functions. When instructed in the session file, it can produce

a results file that includes the results collected from the reconfigurable devices

after the execution of the session file on the device. The Simulator was added

to the DLL version of the Loader. The DLL version of the Loader activates the

Simulator to simulate a new module design or a new RC system when needed.

The DLL version of the Loader and the Simulator pair is used in the execution

phase of the mapping process as illustrated in Figure 5.1. In this phase, sections of

the application executable code that do not require high performance run on the

112

general purpose processor. When the execution reaches the sections produced by

the RCCT Compiler, the application utilizes the RC system via several function

calls to the Loader. The Loader includes four types of functions, that can be called

by the application. These are: IsModuleAvailable, Store Data, Load Data and

Run functions. The Store Data and Load Data functions move data between

FPGA devices and the host processor. By calling the Run function with a session

file name as a parameter, it instructs the Loader to execute a given section on

FPGA devices with given hardware modules.

Session
Files

New App.
Executable

the Loader
Calls to

The
Loader/

Simulator

FPGA

API
Board
FPGA

General Purpose Processor

Library
Module

Hardware Module
Definition

File

Compiler
Parameters

Figure 5.1: RCCT Execution phase.

Each Loader function that can be called by the user application accesses the

RC system using API functions. If a module configuration file or the RC system

is not available, these functions automatically activate the Simulator instead of

calling the API functions. The Simulator provides several functions, which are

associated with the API functions, to the Loader. The purpose of the Simulator

is to calculate an estimated execution time for the mapped sections of the user

applications if the configuration file for the module or the RC system is not

available to run the user applications.

113

5.2 Session File

A session file is a text file that contains RC system specific commands that

are executed on the General Purpose Processor (GPP) or on the FPGA devices

[81, 82]. It is highly structured and includes instructions and data for both the

Loader and the hardware modules. Figure 5.2 shows the general structure of

the session file. The file is divided into nested regions. Each region includes

a single line header and a body. The beginning and ending of a region’s body

are delimited by “{” and “}”. The session file begins with the name of the file

and a number that indicates the total number of sessions in the file. The main

regions in the file are called sessions because all instructions and data in a session

are processed at once by utilizing one or more Processing Elements (PEs). The

header of a session region includes the word SESSION, session ID number, and

the number of PEs that are going to be utilized in this particular session. Inside

a session, a PE region is inserted for each PE.

A PE region always includes two sub-regions, instructions and data. An

instruction sub-region begins with the word INSTRUCTION and a number that

indicates the number of instructions inserted in that region. Instructions under

this region are the ones that are executed by the modules. The final instruction

in this sub-region should always be HALT to direct the PE to stop execution. The

other sub-region of the PE region is the DATA sub-region. For flexibility, the data

region is divided into further sub-regions called blocks. Each block begins with

the word BLOCK and an address indicating where the data inside the block will

be stored in the PE memory.

Inside a session region immediately following the PE regions, a HOST sub-region

is inserted. Each session region must include only one host region. Similar to

114

the PE region, a host region includes instructions and data sub-regions. The

only difference is that instructions and data in these regions are processed by the

Loader on a GPP.

<Session File Name> <Session Sount>
{

SESSION <Session ID> <PE Count>
{

PE <PE ID>
{

INSTRUCTIONS <Instruction Count> <Address>
{

<Instruction_1>
<Instruction_2>

<Instruction_n>

:
:

HALT
} # End of Instructions
DATA <Block Count>
{

BLOCK <Size> <Address>
{

<Data_1>
<Data_2>

<Data_n>
} # End of the Block
:
: # More Data Blocks
:

} # End of Data
} # End of a PE
:
: # More PEs
:
HOST
{

INSTRUCTIONS <Instruction Count>
{

<Host Instruction_1>
<Host Instruction_2>

<Host Instruction_m>
:

}
DATA <Block Count>
{

Similar to the PE DATA Region
}

} # End of Host
} # End of the Session
:
: # More Sessions
:

} # End of the Session File

Figure 5.2: Session file format.

As was mentioned above, the session file is highly structured. The structure of

the session file makes it easy to parse and store in data structures. The structure

also helps in determining the schedule of the jobs for PEs. All jobs that can be

115

executed in parallel can be included in one session depending on the availability

of the PEs. If there is a dependency between Jobt and Jobt+1 (Jobt+1 depends on

the result of Jobt) then Jobt+1 must be scheduled in a session that comes after

the session that includes Jobt. The session file format is also flexible. One can

schedule as many sessions as needed in a session file. Further more, in a session,

as many PEs as available can be utilized. All instruction and data regions are

flexible. Data regions could be empty in cases that data is transfered directly

from the user application to the PE memories.

Single line comments are allowed in the session file. They are especially useful

for debugging the session file if the user is writing it by himself. Each comment

line has to start with “#” symbol and must not overflow to the next line.

5.3 Stand-Alone Version of the Loader

The stand-alone version of the Loader is an interface program for RC systems

that can be used not only with our hardware modules, but also with other

reconfigurable applications. With current RC systems like the one available in

our laboratory, RC applications developers typically need to write an interface

program, to be able to utilize their hardware implementation on the RC system.

The main purpose of this interface program is to synchronize the host computer

with the FPGA device. Usually, an interface is responsible for initializing

the FPGA devices by loading hardware configurations, starting and stopping

the hardware implementation, and managing data movement between the host

computer and the FPGA devices. Since each application is different, in terms of

data inputs, outputs, and the method of processing data, designers are typically

required to implement a specific interface program for each specific application.

116

Hence, we developed the stand-alone Loader program as a generalized form

of the interface program. Rather than writing a new interface program and

recompiling it for each application, the user simply writes a new session file

(text-file). This removes the need for recompilation of the interface program.

The stand-alone Loader program includes most of the basic functions that an

interface can perform. For each interface function such as initialization of the

FPGA devices or data movement, a loader instruction is defined and included in

the session file. The Loader reads the session file and manipulates the RC system

according to the instructions inserted in the session files.

The stand-alone version of the Loader was initially developed for testing the

hardware modules. After new hardware modules are implemented, the developer

can easily utilize them by writing new session files for the new modules and by

running the Loader with the new session files.

As show in Figure 5.3, this version of the Loader includes two major parts.

These are the session file scanner/parser, printer, and the Executor. In the

following sub-sections, first the data type definitions are introduced. After the

type definitions, two parts of the stand-alone Loader are introduced.

HW
Modules

Session
File

(stand−alone)
The Loader

CRT

Printer
Parser

Scanner

FPGA
DeviceExecutor

Result
File

Figure 5.3: Flow chart of the Loader (stand-alone version).

117

5.3.1 Data Type Definitions to Store Parsed Session Files

Figure 5.4 shows the data structure defined in the loader.h file to store a parsed

session file. For each region of the session file, a specific data type was defined. To

be able to store structural features of the session file format, these data types are

linked together. To make type definitions flexible, pointers were used as needed.

Instead of using linked lists in the type definitions, we used the pointers as array

pointers. The size of a region or the number of sub-regions included in that region

is specified in the header of that region. This information helps the Loader in

forming necessary arrays in the desired size before parsing the given region. In

Figure 5.4, vertical dots are used to indicate variable size arrays.

HostType
int InstSize

InstType *Inst

int BlockCount

BlockType
*Block

BlockType
int BlockSize

DWORD
BlockAddr

float *BockData

OpCodeType

InstType

OpCode

char *st

int OpCount

DWORD *Ops

OpCodeType

InstType

OpCode

char *st

int OpCount

DWORD *Ops

BlockType
int BlockSize

DWORD
BlockAddr

float *BockData

ProcessType SessionType PeType
int SessionIdint SessionCount

charName

SessionType
*Session

int PeCount

PeType *Pe

HostType
Host

int PeId

int InstSize

InstType *Inst

int BlockCount

BlockType
*Block

Figure 5.4: Data type definitions for the Loader.

5.3.2 Scanning, Parsing and Printing the Session File

The vocabulary of the session file only includes a few reserved words, two types

of numbers, real and integer, and some delimiters, “{” and “}”. No expressions

118

or complex grammars are used in the session file format definition. With the

help of the information included in the region headers, it is always possible for

the parser to predict the next token or type of the next token in the session file

while parsing it; therefore, a simple scanner and a parser were coded to scan and

parse session files.

When the Loader is run, it first reads the session file in a character buffer

and then calls the parser. Every time the parser needs to read a token from the

character buffer, it calls the scanner function, ReadNext(). When it is called,

the ReadNext() functions identifies the next token in the character buffer and

returns it as a string to the parser. The parser takes this string and converts it

to an appropriate type such as identifier, integer or real.

The information provided in each region’s header and the structure of the

session file makes the parser’s job easier. By looking at the headers, the

parser determines what it needs to parse next. One specific parser function

was implemented to parse each region of the session file. Algorithmically, these

functions are very similar. Figure 5.5 shows the algorithms for these functions.

Each function first parses the header of the region, and then it reserves enough

memory space to parse the body of the region. Finally, by calling other parser

functions, the body of the region is parsed. Taking this approach, significantly

reduced the programming effort was needed to implement a special parser for

session files.

The parser has several features that are useful for debugging. It checks for

reserved words and the boundaries of each region. When an error is detected, the

parser sends an error message along with the location of the error to the user. A

print function has been implemented for debugging purposes also. When printing

119

is enabled, the Loader prints the session file after parsing is completed. These

features are useful, especially when the session file is created manually.

ReadProcess()
P ← new ProcessType; //A global variable defined in intprt class
P.Name ← ReadNext(“ ”);
P.SessionCount ← atoi(ReadNext(“ ”));
P.Session ← new SessionType[P.SessionCount];
for SesNum ← 0 to P.SessionCount do

ReadSession(SesNum);
end for

ReadHost(int SesNum)
P.Session[SesNum].SessionId ← atoi(ReadNext(“ ”));
P.Session[SesNum].PeCount ← atoi(ReadNext(“ ”));
P.Session[SesNum].Pe ← new PeType[P.Session[SesNum].PeCount];
for PeNum ← 0 to P.Session[SesNum].PeCount do

ReadPe(SesNum,PeNum);
end for

ReadHost(SeNum);

ReadPe(int SesNum, int PeNum)
P.Session[SesNum].Pe[PeNum].PeId ← atoi(ReadNext(“ ”));
P.Session[SesNum].Pe[PeNum].InstSize ← atoi(ReadNext(“ ”));
P.Session[SesNum].Pe[PeNum].Inst ← ReadOp(P.Session[SesNum].Pe[PeNum].InstSize);
P.Session[SesNum].Pe[PeNum].BlockCount ← atoi(ReadNext(“ ”));
P.Session[SesNum].Pe[PeNum].Block ←

new BlockType[P.Session[SesNum].Pe[PeNum].BlockCount];
for i ← 0 to P.Session[SesNum].Pe[PeNum].BlockCount do

P.Session[SesNum].Pe[PeNum].Block[i].BlockSize ← atoi(ReadNext(“ ”));
P.Session[SesNum].Pe[PeNum].Block[i].BlockAddress ← atoi(ReadNext(“ ”));
P.Session[SesNum].Pe[PeNum].Block[i].BlockData ←

new float[P.Session[SesNum].Pe[PeNum].Block[i].BlockSize];
for k ← 0 to P.Session[SesNum].Pe[PeNum].Block[i].BlockSize do

P.Session[SesNum].Pe[PeNum].Block[i].BlockData[k] ← atoi(ReadNext(“ ”));
end for

end for

Figure 5.5: Algorithms for parser functions.

120

ReadHost(int SesNum)

P.Session[SesNum].Host.InstSize ← atoi(ReadNext(“ ”));

P.Session[SesNum].Host.Inst ← ReadOp(P.Session[SesNum].Host.InstSize);

P.Session[SesNum].Host.BlockCount ← atoi(ReadNext(“ ”));

P.Session[SesNum].Host.Block ←
new BlockType[P.Session[SesNum].Host.BlockCount];

for i ← 0 to P.Session[SesNum].Host.BlockCount do

P.Session[SesNum].Host.Block[i].BlockSize ← atoi(ReadNext(“ ”));

P.Session[SesNum].Host.Block[i].BlockAddress ← atoi(ReadNext(“ ”));

P.Session[SesNum].Host.Block[i].BlockData ←
new float[P.Session[SesNum].Host.Block[i].BlockSize];

for k ← 0 to P.Session[SesNum].Host.Block[i].BlockSize do

P.Session[SesNum].Host.Block[i].BlockData[k] ← atoi(ReadNext(“ ”));

end for

end for

ReadOp(int InstSize)

Inst ← new InstType[InstSize];

for OpNum ← 0 to InstSize do

Inst[OpNum].Opcode ← ReadNext(“ ”);

If Inst[OpNum].OpCode is an Host instruction then

� Read parameters for the specific Host instruction to Inst[OpNum].Opx

else

� Save Current buffer position

� Count the number of parameters and store in Cnt.

Inst[OpNum].Ops ← new DWORD[Cnt]

� Restore saved buffer position

for i ← 0 to Cnt do

Inst[OpNum].Op[i] = atoh(ReadNext(“ ”));

end for

end if

end for

Figure 5.5: Algorithms for the parser functions (continues).

121

5.3.3 Running the Parsed Session File

The most important part of the Loader is the executor. This part is the one that

interacts with the RC system. It runs the parsed session file on the RC system.

It also manages data movements between the FPGA devices and the software

portions of the applications.

Figure 5.6 shows the algorithms for the executor functions of the Loader.

The RunProcess() function goes through parsed sessions and executes them in

sequence by calling the RunSession() function. The sessions are executed in

the order they are placed in the session file. The RunSession() function first

initializes the local PE memories by scanning all parsed PE regions under the

current session region. It moves all module instructions and module data located

under these parsed PE regions to local memories of their associated actual PEs.

After that, it calls the RunHost() function to execute the host instructions located

under the parsed host region of the current session region.

The RunHost() function assumes that at least one START instruction is located

among the host instructions and some LOADFILE instructions are used before the

START instruction. The LOADFILE instructions tells the Loader to configure PEs

with module configuration files. The Loader first executes all host instructions

until the START instructions. When it sees a START instruction, it fires all

hardware modules and lets modules execute their specific module instructions

on their local data previously moved to their memory by the RunSession()

function. When all modules are fired, the RunHost() functions enters a wait state

and waits for the interrupt signals from the hardware modules. It waits until all

modules assert interrupt signals. When a module asserts an interrupt signal, it

declares that it has finished execution of its specific module instructions. When

122

all hardware modules assert interrupt signals, the RunHost() functions exits from

the wait state and executes the rest of the host instructions under the host region.

RunProcess()

� Open connection with the available RC resource.

for SesNum ← 0 to P.SessionCount do

RunSession(SesNum);

end for

� Close connection with the available RC resource.

RunSession(bf int SesNum)

for PeNum ← 0 to P.Session[SesNum].PeCount do

� Initialize PEs

• Move Module data to Local PE Memory.

• Move Module Instructions to Local PE Memory.

end for

RunHost(SeNum);

RunHost(bf int SesNum)

� Execute all instructions in P.Session[SesNum].Host.Inst until START instruction.

� Store current time information.

� Start all PEs

� Wait until all PEs send interrupt signals

� Calculate timing using current time and stored timing information.

� Execute the rest of the instructions in P.Session[SesNum].Host.Inst.

Figure 5.6: Algorithms for executor functions.

While entering and exiting the wait state, the RunHost() functions records

the current time and calculates the execution time of each session. To calculate

timing information precisely, the functions reads general purpose processor’s (in

our case Pentium X) Time-Stamp-Counter every time it needs to record current

time. This counter is incremented by one at every clock pulse applied to the

processor. The execution time of a session is calculated using Equation 5.1,

123

where TS is session execution time, t0 and t1 are current values of the Time-

Stamp-Counter read while entering and exiting wait state respectively and CCPU

is processor’s clock rate.

TS =
t1 − t0
CCPU

sec (5.1)

The RunHost() functions executes host instructions by calling RunOp()

function. Table 5.1 shows the RunOp() function’s instruction set and the meaning

of each instruction. This table is also the instruction set of the Loader. The

RunOp() function executes host instructions by calling one or more API functions

of the FPGA device. Being able to execute host instructions isolates the users

from complex API functions and offers a user friendly environment. Currently,

the instructions set is limited, but new instructions can be added by simply

modifying the RunOp() function as required.

Table 5.1: The Loader instruction set.

Instruction Meaning
LOADFILE ID, FILE Loads a configuration bit stream to a PE.

ID: PE ID number, FILE: Configuration file name
SETCLOCK FR Sets the clock frequency of the RC system.

FR: Frequency
START ID Starts one or all PE by releasing reset signal.

ID: PE ID Number,
ID = ALL=> Start all available PEs

PRINTMEMBLOCK ID,ADDR, Prints a block of data from a PE’s memory in
SIZE,TYPE Integer, Float or Hex format.

ID: PE ID number, ADDR : PE Memory Address,
SIZE: Size of the data block, TYPE: Printing type

MOVEMEMBLOCK ID1,ADDR1, Moves a block of data from one PE’s memory
ID2,ADDR2, to another PE’s memory
SIZE ID1: Src. PE ID number, ADDR1 : Src. address

ID2: Dest. PE ID number, ADDR2 : Dest. address

124

5.4 DLL Version of the Loader

The easiest and the most efficient way to incorporate the Loader into the user

applications compiled by the RCCT Compiler is to convert the Loader to a

Dynamic Link Library (DLL) and call it from the applications during runtime.

For that reason, the DLL version of the Loader was implemented by adding some

exportable functions to it. When a user application is compiled with the RCCT

Compiler, the Compiler modifies the source code and produces a new application

source code by replacing computationally complex sections of the application

with exportable Loader functions. This new source code is then recompiled with

the original programming language compiler to get the application executable

code.

The DLL version of the Loader was built on top of the Stand-alone version.

This means that the DLL version of the Loader includes the stand-alone version

plus some exportable functions that can be called by the user applications

compiled by the RCCT Compiler. Four types of exportable functions were

added. These are IsModuleAvailable(), Store Data(), Load Data() and

Run() functions.

With the IsModuleAvailable() function, a user application can check the

availability of hardware modules. If a requested hardware module is available, the

IsModuleAvailable() function returns TRUE. The user application forwards the

result of IsModuleAvailable() to the other DLL functions. This is necessary

for informing the Loader about the availability of the module. If the hardware

module is not available, the Loader activates the Simulator instead of utilizing

the FPGA device.

125

User applications can utilize the Store Data() and Load Data() functions

to move data between FPGA devices and the host computer. There are four

Store Data() functions available. These are: StoreSingle(), StoreConst(),

StoreWholeVector() and StoreVector(). StoreSingle() and StoreConst().

These functions can be used to store the content of a single variable and a

constant value to a specific memory address location of a specific FPGA device.

User applications can copy whole arrays (up to 5 dimensions) to a specific

FPGA device’s local memory, starting from a specific memory location with

the StoreWholeVector() function. The StoreVector() function is the most

sophisticated store function among the others. With this function, applications

can select one piece of one dimension of an array (up to 5 dimensional) and copy

it to a specific FPGA device’s local memory, starting from a specific memory

location. For every Store Data() function, excluding StoreConst(), a matching

Load Data() function that does the reverse operation is also implemented.

Figure 5.7 shows data flow while a user application accesses reconfigurable

resources through the DLL version of the Loader. It first checks the availability

of the hardware module and forwards the result to the other functions that it calls

from the Loader. After checking the availability of the required hardware module,

the application initializes FPGA devices by storing data to their local memories

using Store Data() functions. When all data that needs to be processed is

transfered to FPGA memories, the application calls the Run() function to start

hardware modules. It calls the Run() function with the name of a session file

generated by the RCCT Compiler when the application is compiled. The Run()

function parses and executes the given session file as was explained in the previous

section. After the module execution is completed, the Run() function exits. At

this point, the application collects the results from FPGA memories by utilizing

126

Load Data() functions. In some cases, the RCCT Compiler modifies more than

one section of the user applications. In such cases, the execution cycle is repeated

for each modified section of the user application.

Session
Files

Scanner
Parser
Printer

Executor

Local
FPGA

Memory

D
at

a
B

us
FPGA
Device

A
dd

re
ss

 B
us

Result File

Hw Modules

Run
Name
File

Store
Functions

Export

Data

Load
Functions

Session

M. name

User
Application
Compiled by

RCCT

The Loader (DLL)

Import

Data

T/F IsModuleAva.?

Figure 5.7: Flow chart of the Loader (DLL version).

5.5 The Simulator

We developed an RC resource Simulator by adding several functions to the DLL

version of the Loader. We chose to combine the Simulator with the Loader

because the Loader had a lot of features that are also needed for the Simulator.

The Simulator is able simulate modules and alter the content of the FPGA

127

memories. When module specifications are provided, the Simulator is able to

simulate any module that performs vector operations.

There are several reasons behind developing a simulator for the modules.

First, designing and implementing a new module could take a significant amount

of time. With the Simulator, users can simulate their module definitions and make

necessary adjustments on their designs before they implement them. As a result,

design and implementation time of the new modules can be reduced significantly.

Secondly, when an appropriate hardware module is not available to execute a

modified section of the user application, the Loader activates the Simulator.

The Simulator executes that section of the application on the host computer

as if it were being executed on the FPGA chip and it returns an estimated

execution time along with the results. By examining the estimated execution

time, users can determine if a new hardware module can reduce execution time

of an application before implementing the module. Third, by adjusting the RCCT

Compiler parameters, such as the number of PEs available or the maximum clock

rate of the modules, users can simulate their applications on virtually defined

reconfigurable environments. This is especially useful when users need to make a

decision on purchasing new reconfigurable hardware for their applications. Users

can see how much performance gain they will get when they purchase a specific

reconfigurable system.

As was mentioned, the Simulator was built on top of the DLL version of

the Loader. Figure 5.8 shows how user applications can utilize the Simulator.

Beside the session file and input data provided by user applications, the Simulator

requires some additional inputs to be able to simulate compiled user applications.

One of the additional inputs that the Simulator needs is the Module.lib file. The

128

user should carefully specify his modules in the module.lib file. The Simulator

reads module specifications from this file and uses them as templates while

executing module instructions. The Simulator also needs to know values of the

compiler parameters used while compiling the user application. The Simulator

needs this information in order to understand how the RCCT Compiler compiled

the user application. For example, the Simulator collects the number of PEs

available from this file.

Session
Files

Memory

D
at

a
B

us

A
dd

re
ss

 B
us

FPGA
Virtual

Device
FPGA
Virtual

Scanner, Parser
and

Printer

Simulator
Parameters

Run
Name
File

Session

Store
Functions API Func.

PutMem.
VitualExport

Data

Load
Functions GetMem.

Vitual

API Func.

IsModuleAvailable?

Compiled by
Application

RCCT

User Import

Data

T/F

M. name

The Loader (DLL)
with the Simulator

module.lib

Figure 5.8: Flow chart of the Loader (DLL version) with the Simulator.

As seen in Figure 5.8, when a user application is started, it first checks the

availability of the required hardware module. When the requested hardware

129

module is not available, the IsModuleAvailable() function returns FALSE.

After that, the user application calls Store Data() functions with the result of

IsModuleAvailable() function. This situation causes Store Data() functions

to activate the Simulator. Instead of accessing the real reconfigurable system,

these functions write data to virtual memory by calling the Simulator’s virtual

API functions. The Load Data() behaves the same way. When the user

application needs to read results from the RC system, they access the virtual

memory.

After initializing the Simulator memory, the user application calls the Run()

function with a session file name as a parameter to this function. The Run()

function first gets the session file parsed by calling the Loader’s scanner and

parser. After the session file is parsed, instead of calling the Executor, the Run()

function calls the Simulator with the parsed session file. The Simulator goes

through the given session file and simulates it using virtual module definitions by

accessing previously initialized virtual memory.

The most important part of the Simulator is the module simulator. Figure

5.9 shows the algorithm for this part of the Simulator that executes module

instructions on virtual module definitions. The Simulator is able to simulate

both regular modules and the conditional modules. The algorithm first reads

necessary parameter values used during the compilation of the user applications

to understand how the application is compiled. After that, the Simulator reads

the module definitions from the module.lib file. It reads two things for each

module from this file. These are grammar and timing information of the modules

used in the session currently being simulated. Module grammars specified in the

module.lib file are actually mathematical expressions defining vector operations

130

that the module performs on the given vectors, variables and constant values.

The timing information is used to estimate the execution time of the module

using equations provided in Chapter 3.

SimulateModule(int SesNum, int PeNum)

� Read compiler parameters from par.txt file.

� Find specification for the given virtual module from module.lib

� Construct operand map for the module

� EXECUTE ALL MODULE INSTRUCTIONS

for i ← 0 to Process.Session[SesNum].Pe[PeNum].InstCount do

� Calculate estimated execution time of the instruction.

� Initialize addresses on the operand map of the module

� EXECUTE ONE MODULE INSTRUCTION

for k ← 0 to VectorSize do

• Grab data from memory and put it into the temporary data array.

• Put the data into virtual in correct module.

• Execute the virtual module for one iteration

of the vector instruction.

• Put the result back to the memory.

• Update addresses on the module map.

end for

end for

Figure 5.9: Algorithm for the module simulator.

Using the module grammar, the Simulator constructs a binary calculation

tree for the given module. The Simulator uses this tree as a template to execute

module instructions. Figure 5.10 shows an example module grammar and the

binary calculation tree for the given grammar. In the tree, nodes can be either a

mathematical operator or a data node. Each operator node holds a mathematical

operator that is applied to the results of left and right sub-trees of the node. Data

nodes can hold an array element, a singe variable or a constant value.

131

M[i]

A[i]

B[i]

D[i]

C 23.0

M[i] = A[i] + (B[i] + C * 23.0) * D[i]

=

+

*

*

+

Figure 5.10: Calculation tree.

In the next step of the algorithm, the Simulator constructs an operand

map. During the compilation phase, the RCCT Compiler uses the same module

grammars provided in the module.lib file and writes module instructions. While

writing module instructions, the Compiler does not keep the operands in the

order they appear in module grammar. Depending on parameter values specified

in par.txt, the Compiler reorders the operands. The Simulator has to find

the correct order of the operands; therefore, it looks at the parameter file and

constructs an operand map while parsing module grammar. This map is used

to match the operands read from module instruction generated by the RCCT

Compiler and the nodes of the calculation tree, while setting data in the tree.

The order of the operands in the tree is equal to their order of appearance in the

module grammar when the calculation tree is scanned recursively (left first scan).

132

After the construction of the map, the algorithm enters a loop and goes

through all module instructions. In the loop, first, the module execution time for

the current instruction is estimated and is added to the total elapsed time. After

that, address fields in the operand map are initialized with the values read from

the given module instruction. The algorithm enters the second loop to execute

one module instruction. At each iteration of the inner loop, first, a set of data

is read from the virtual memory to a temporary data array and then using the

map, the calculation tree is initialized with the data read in the temporary array.

After initialization, the Simulator evaluates the value of the tree and writes the

result back to the virtual memory.

After the Simulator finishes simulating modules, the user application can

collect results from the virtual memory. Beside the actual results, the Simulator

also reports an estimated execution time for each session in the session file. One

session could include utilization of more than one modules on PEs. In such a

case, the Simulator assumes that all modules work in parallel on different PEs.

For that reason, the Simulator compares all modules’ estimated execution time

and returns the execution time of a module with the biggest execution time.

A mapped application can include several mapped sections and for some

mapped sections actual module configuration file may not be available. When

this type of applications are executed using RCCT, the Loader/Simulator pair

execute the sections on the RC system for which actual module configuration files

are found while simulating the other sections.

Chapter 6

Experimental Setups and
Test/Simulation Results

Several applications were mapped using the tool Compiler and the resulting

new applications were simulated for different Reconfigurable Computing (RC)

environments. The main goal of the experimental tests and simulations was to

demonstrate the effectiveness of our Reconfigurable Computing Compilation Tool

(RCCT). The other goals of the tests and simulations are:

• Verifying the accuracy and validity of the Simulator.

• Measuring execution time of the selected user applications on general

purpose processors.

• Estimating execution time of the mapped user applications using the

Simulator.

• Measuring speedup gained when the user applications are mapped to

different RC systems.

The applications that we selected are considered computationally complex

applications. The common feature of these applications is that most of the

133

134

operations are performed in one or more nested loops. Since we have floating-

point modules and floating-point applications require significantly more CPU

time, we selected floating-point versions of the applications. The following is a

list of the applications that we mapped using RCCT.

1. Matrix Multiplication

2. 3-D Image Correlation

3. Image Intensity Calculation

4. Frequency Domain Filtering

The chapter is organized as follows. The following section presents how the

validity and accuracy of the Simulator is verified. The next section presents the

computational environments used in the experiments. The subsequent sections

present how the selected applications were mapped to the RC system and how

much speedup was attained over the general purpose processor implementation

of the same application.

6.1 Validating the Simulator

The accuracy of the Simulator in estimating the execution time of the mapped

applications depends on the mathematical models of the modules used in the

mapping of these applications. A generalized form of the mathematical models

for the modules are introduced in Chapter 3. The Simulator uses these models

and the module parameters provided in the module library file to estimate the

execution times of the mapped sections of the user applications.

135

When a section of an application is executed on an RC system using the

modules, the total execution time of the section is equal to the module’s

execution time plus the Application Programming Interface (API) overhead. Our

experiences with the WildForce board and the associated API showed that the

API overhead for starting and stopping a Processing Element (PE) is about 0.1

millisecond on the average. API overhead is variable and depends on the host

computer’s processor speed and the work load at the time the API function is

called. While estimating the execution time of a user application section, the

Simulator is able to calculate the execution time of a module precisely and adds

0.2 millisecond API overhead to calculate the total execution time. Since the API

overhead is variable, a small difference occurs between the real execution time

and the estimated execution time.

To find the accuracy of the Simulator, we performed some vector operations

on the WildForce board using our module implementations introduced in Chapter

3. In these experiments, we utilized only one Processing Element and we clocked

the modules at 50 MHz. The vector size(s) for each vector operation was 131000.

We let the modules process given vectors and measured the execution time of each

vector operation. We also implemented these vector operations in C and mapped

them to the same RC system using the RCCT Compiler. This time, instead of

running the mapped applications on the RC system, we simulated them using

the Simulator and recorded the estimated execution time of each vector operation

calculated by the Simulator. Table 6.1 shows the results collected from both the

RC system and the Simulator. As seen in the table, except for the accumulator

case, the Simulator is able to estimate execution time with less than 2% error.

As explained above, this error occurs due to the fact that the API overhead

in the real word is variable and the Simulator uses a constant API overhead

136

value. The Accumulator case is not a good example for evaluating the Simulator’s

performance. Since the module execution time is very small, a little change in

the API overhead greatly affects the total execution time.

For better evaluation of the Simulator’s performance, we tested it with an

implementation of the matrix multiplication algorithm. Again, the Simulator

was able to estimate the total execution time with less than 2% error, the second

part of the Table 6.1. The results presented in Table 6.1 verifies the validity of

the Simulator in estimating execution time.

Table 6.1: Comparing real RC execution times of the modules with the Simulator’s estimated
execution times.

Vector RC Simulator Percent
Module Name Size Execution Estimation Difference Error
4 Op. Vec. Addition 131000 10.80 10.68 0.12 1.11
Accumulation 131000 2.70 2.82 -0.12 -4.30
Multiply-Accumulate 131000 5.43 5.44 -0.01 -0.17

Matrix RC Simulator Percent
Application Name Size Execution Estimation Difference Error
Matrix Multiplication 200 x 200 95.25 93.90 1.35 1.43

The Simulator is not only able to estimate the execution time but also able

to Simulate modules’ functionality. Using the module specifications provided in

the module definition file, the Simulator is able to process the given data as if it

were a module running on a RC system. Functional correctness of the Simulator

was verified by comparing the calculation results collected from the RC system

and the Simulator.

137

6.2 Computing Systems Used in the Experi-

ments

Three General Purpose Processor (GPP) computers were used in the experiments

to compare with RC systems. Table 6.2 summarizes the specifications of these

computer systems.

Table 6.2: General purpose processors used in the experiments

GPP1 GPP2 GPP3
Processor Type Pentium II Pentium III Pentium IV
Processor Speed 400 MHz 866 MHz 1700 MHz
Memory Size 128 MB 256 MB 384 MB
Operating System Windows NT Windows 2000 Windows 2000

In addition to the above computer systems, we modeled two actual reconfig-

urable system for simulation purposes. These are WildForce [83] and WildCard

[87] reconfigurable cards. These cards are currently available in our laboratory.

Instead of using these cards to test the RCCT tool, we preferred to model and

simulate them due to the fact that most of the module designs for selected

applications do not fit onto these cards. Compared to the state-of-the-art RC

cards, these cards have very limited hardware and memory resources available.

While modeling the cards, we assumed that they have adequate memory and

hardware resources. Our intention here is to demonstrate how these cards can

outperform GPPs even though they run at a much slower clock rate than the

GPPs.

The WildForce card has five processing elements and one local memory unit

is available for each PE. The maximum clock frequency that can be applied to

the PEs is 50 MHz. Since one of the PEs was used as a controlling PE and some

138

part of it was used for implementation of the card’s own design, we excluded it

when we modeled the card. The second card includes one processing element

and two local memories. This card can be clocked up to 100 MHz. Through

the rest of the chapter, WildForce and WildCard will be called RC1 and RC2,

respectively.

For timing estimations, the Simulator needs to know three parameters of the

cards. The first parameter is the number of processing elements available on the

card. The availability of more PEs on a card offers more chances for the RCCT

Compiler to exploit parallelism in the user applications when they are mapped to

the RC systems. The second parameter is the clock rate that can be applied to

the processing elements when they are configured with hardware modules. The

third parameter is the number of local memory units available for each PE. If

there is only one memory unit available for each PE, the PE has to read and

write to the same memory unit. On the other hand, if a PE has two memory

units, it can read from one memory and write to the other memory unit. PEs

with two local memory units can offer more throughput compared to one memory

unit PEs.

By changing card parameters required for the Simulator, we defined several

virtual reconfigurable systems for our tests. The first virtual system, VRC1,

contains four PEs and each PE has one local memory unit. We defined the

card’s clock speed as 200 MHz. The second virtual system, VRC2, has the same

features as VRC1 expect for that each PE has two local memory units. This

configuration added to the tests to demonstrate effects of dual memory unit PEs

in execution time. The third and final virtual RC system, VRC3, has four PEs

and each PE has one local memory unit. The clock speed for VRC3 is defined

as 400 MHz.

139

6.3 Application 1: Matrix Multiplication

Matrix multiplication was selected because it is one of the major mathematical

operations used in several engineering applications such as image processing and

solving linear equations. It is also one of the most popular operations that

scientists try to speed up. An ordinary matrix multiplication algorithm performs

O(n3) computation on O(n2) data where n is the size of a row or column [88];

therefore, it requires huge amount of CPU time especially if the input matrix

sizes are larger than 100x100. Hence, we think that matrix multiplication is a

good initial candidate application to show effectiveness of our tool. The product

of two matrices is defined in Equation 6.1.

Cij =
n−1∑
k=0

AikBkj (6.1)

i = 0, 1, 2, · · · , m− 1

j = 0, 1, 2, · · · , p− 1,

where C, A, and B matrices have dimensions of (m, p), (m, n) and (n, p),

respectively.

Figure 6.1 shows the C++ code fragment that performs matrix multiplication

on two square matrices. As it can be seen from the source code, the inner most

loop (lines 03 and 04) performs the multiply-accumulate vector operation on the

columns and rows of the input matrices to calculate individual elements of the

output matrix. The RCCT Compiler is able to identify this vector operation

and map it to the RC systems. Since calculation of the output matrix requires

size2 times repetition of the inner most loop, the Compiler generates size2

140

vector operations for the matrix multiplication. Depending on the RC system

configuration, the Compiler distributes these vector operations through PEs for

parallel calculation of the matrix multiplication.

01 for (i=0; i<size; i++)
02 for (j=0; j<size; j++)
03 for (k=0; k<size; k++)
04 c[i][j] = c[i][j] + a[i][k] * b[k][j];

Figure 6.1: The for loop for matrix multiplication.

The function core shown in Figure 6.2 was designed and specified in the

module definition file for the RCCT Compiler to perform multiply-accumulate

vector operation. This function core unit includes two basic cores to perform

multiplication and accumulation. The input numbers are first multiplied by the

multiplier and are forwarded to the adder for accumulation.

P0 = 2
P1 = 2

P3 = 58
P4 = 7

P2 = 0

M1M0

R2

Output

*

+

R3

R0 R1

Inputs Core Parameters

Figure 6.2: Function core design for matrix multiplication.

The multiplier is able to produce one result every other clock cycle. Since

the adder is an 8 stage pipeline, adding one output of the multiplier to the

141

current accumulator value normally takes 8 cycles. To speed up the adder and

synchronize it with the multiplier, an approach called rotating partial results is

used. At any moment, the pipelined adder holds four partial results. The adder

continuously rotates these partial results through itself and adds the multiplier

outputs to these partial results in order. At the end of the vector operation, with

help of the module controller, the adder adds up these partial results and sends

the final result to the core output.

Since this core is an accumulation core, and it does not have to write a

result back to the memory at every memory cycle, it can continuously read data

from memory. With the help of the rotating partial results technique, 100%

memory address and data bus utilization and 50% multiplier and adder basic

core utilizations were achieved.

Table 6.3 shows the execution times, in milliseconds, of the matrix multipli-

cation algorithm for different matrix sizes on GPP1, GPP2 and GPP3. For

simplicity, we used square matrices and the matrix sizes were 128 x 128, 256

x 256, 512 x 512 and 1024 x 1024 Each matrix multiplication experiment was

run four times on each computer to eliminate the unwanted effects of operating

systems on the execution time. Each set of results was evaluated individually.

If all four results were very close to each other (if the difference between each

individual result and the average of the results was less than 5%), we put the

average of them in the table. If three results were close to each other and one

result was abnormal, then we eliminated the abnormal result and put the average

of the three results in the table. If more that one result looked abnormal, then

we repeated the test. This technique worked very well. Less than 10% of the

time, one result was abnormal and less than 1% of the time, two results were

abnormal. The same technique was used for the other applications.

142

In Table 6.3, the first column indicates the matrix size and the other

columns show the execution time of the algorithm on different computers. When

the matrix size was doubled in both dimensions the number of floating-point

operations needed to perform matrix multiplication and the execution time

increased exponentially. Clearly, this can be observed from the table and this

verifies the validity of the tests.

Table 6.3: Matrix multiplication execution times on GPPs.

Matrix GPP1 GPP2 GPP3
Size (msec.) (msec.) (msec.)

128 x 128 227.29 82.41 36.89
256 x 256 1758.69 816.11 471.37
512 x 512 19427.59 8396.39 4348.76

1024 x 1024 173185.50 71102.99 40277.95

Table 6.4 shows the RCCT Simulator’s estimated execution times of the

matrix multiplication on different RC environments for different matrix sizes.

Note that VRC1 and VRC2 showed the same performance. They both have

the same number of PEs and their clock rate is the same, but VRC2 has a

dual memory unit for each PE. Since the function core designed for matrix

multiplication is an accumulation core, it is not able to take advantage of dual

memory PEs. This happens due to the fact that the core has to write only one

result at the end of each vector operation and this is negligible.

Tables 6.5, 6.6, and 6.7 give the estimated speedups of various RC configura-

tions over GPP1, GPP2 and GPP3, respectively. The first column of each table

gives the matrix size. The subsequent columns indicate the speedup attainable by

the RC systems when the RCCT is used. Speedups in these tables were calculated

dividing execution time of GPPx by the estimated execution time of (V)RCx.

143

Table 6.4: Estimated execution times of matrix multiplication on the RC systems.

Matrix RC1 RC2 VRC1 VRC2 VRC3
Size (msec.) (msec.) (msec.) (msec.) (msec.)

128 x 128 26.96 53.12 7.12 7.12 3.81
256 x 256 190.23 379.65 47.93 47.93 24.22
512 x 512 1430.50 2860.19 358.00 358.00 179.25

1024 x 1024 11089.19 22177.58 2772.67 2772.67 1386.59

Table 6.5: Estimated speedup of the RC systems over GPP1 for matrix multiplication.

Matrix RC1 RC2 VRC1 VRC2 VRC3
Size Speedup Speedup Speedup Speedup Speedup

128 x 128 8.431 4.279 31.945 31.945 59.695
256 x 256 9.245 4.632 36.692 36.692 72.626
512 x 512 13.581 6.792 54.267 54.267 108.383

1024 x 1024 15.618 7.809 62.462 62.462 124.901

Table 6.6: Estimated speedup of the RC systems over GPP2 for matrix multiplication.

Matrix RC1 RC2 VRC1 VRC2 VRC3
Size Speedup Speedup Speedup Speedup Speedup

128 x 128 3.057 1.551 11.583 11.583 21.644
256 x 256 4.290 2.150 17.027 17.027 33.701
512 x 512 5.870 2.936 23.454 23.454 46.842

1024 x 1024 6.412 3.206 25.644 25.644 51.279

144

Table 6.7: Estimated speedup of the RC systems over GPP3 for matrix multiplication.

Matrix RC1 RC2 VRC1 VRC2 VRC3
Size Speedup Speedup Speedup Speedup Speedup

128 x 128 1.368 0.694 5.185 5.185 9.689
256 x 256 2.478 1.242 9.834 9.834 19.465
512 x 512 3.040 1.520 12.147 12.147 24.261

1024 x 1024 3.632 1.816 14.527 14.527 29.048

6.4 Application 2: 3-D Image Correlation

Image Correlation is an image processing algorithm typically used for template

matching. Using this algorithm, the target image is compared with the input

image. The algorithm processes two images and finds a position on the

input image where the best match happens between the input image and the

target image. It has many application areas from medical imaging to military

applications.

Image correlation is basically image convolution. Computational complexity

of the regular implementation of the algorithm for three-dimensional square

images is O(n6) [89]. Due to its popularity and high demand for CPU time,

we selected the correlation algorithm as an example application. Nikolaidis

et. al. [89] implemented the image correlation algorithm for three dimensional

images. Their algorithm first transforms the input and target images from the

time domain to the frequency domain and then performs a multiplication of the

two transformed images. After the multiplication, the result is transformed back

to the time domain. The transformations are done by a special function developed

by Nikolaidis et. al. on the general purpose processor.

145

The correlation algorithm includes three for loop blocks. The first for

block initializes the temporary arrays with zero and the second for block copies

the input and target images to the temporary arrays as shown in Figure 6.3.

Since both of these for blocks include assignment operations and there is no

module definition provided in the module library file for this operation, the RCCT

Compiler parsed these for blocks but did not map them to the RC systems.

01 for(nf=0,nff=0; nf<L2;nf++, nff++)
02 for(nr=0,nrr=0; nr<N2;nr++, nrr++)
03 for(nc=0,ncc=0; nc<M2;nc++, ncc++)
04 {
05 matmere1[nff][nrr][ncc] = mats1[nf][nr][nc];
06 matmere2[nff][nrr][ncc] = mats2[nf][nr][nc];
07 }

Figure 6.3: A sample for loop block in 3-D image correlation (Not mapped).

Figure 6.4 shows the third for loop block which performs the multiplication of

the transformed images. The inner most loop includes two expressions which are

similar. For these expressions we designed the function core shown in Figure 6.5

and specified it in the module definition file. When the source code is compiled

with the RCCT Compiler, the Compiler matched these two expressions in the

third for block with the module specification in the module definition file and

mapped the for block to the RC systems. While mapping a block, the Compiler

checks the expressions if there is any data dependency between them. In this for

block, the Compiler did not find any data dependency between the expressions.

The Compiler generated two session files for this block, one for each expression.

146

01 for(nf=0;nf<frames2;nf++)
02 for(nr=0;nr<rows2;nr++)
03 for(nc=0;nc<columns2;nc++)
04 {
05 Mmere1[nf][nr][nc] = matmere1[nf][nr][nc] * matmeim1[nf][nr][nc]
06 + matmere2[nf][nr][nc] * matmeim2[nf][nr][nc];
07 Mmeim1[nf][nr][nc] = matmere2[nf][nr][nc] * matmeim1[nf][nr][nc]
08 + matmere1[nf][nr][nc] * matmeim2[nf][nr][nc];
09 }

Figure 6.4: Mapped for loop block in the 3-D image correlation algorithm.

R0 R1 R2 R3

Core Parameters

*

Output

P1 = 2

P4 = 9

P2 = 1

P0 = 4

P3 = 16

+

*

Inputs

Figure 6.5: Function core design for 3-D image correlation.

Table 6.8 shows the execution times when the algorithm was run on GPP1,

GPP2 and GPP3. The first column shows the size of the three dimensional

images. The first number specifies the frame count and the subsequent numbers

specify the number of columns and rows in each frame, respectively. The

algorithm uses several temporary arrays and the size of these temporary arrays

is equal to two times the size of the original image in each dimension. GPP1

fails for the images of size 4 x 400 x 600 and up and GPP2 fails for the images

of size 4 x 400 x 800. These two computers actually completed the job but due

to their memory limitations they used virtual memory on the hard drive to store

147

arrays used by the algorithm. Using virtual memory makes these two computers

extremely slow and was not fair for comparisons with the RC systems for the

image sizes indicated above.

Table 6.9 shows the execution times, in milliseconds, estimated by the RCCT

Simulator. Since the function core designed for this application is not an

accumulation module it takes advantage of double memory unit PEs. Clearly,

this can be seen when the estimated execution times of VRC1 and VRC2 are

compared.

Table 6.8: 3-D image correlation execution times on GPPs.

3D Image GPP1 GPP2 GPP3
Size (msec.) (msec.) (msec.)

2 x 100 x 200 100.41 54.42 21.83
4 x 100 x 200 203.70 108.89 43.56
2 x 200 x 400 411.45 220.58 70.64
4 x 200 x 400 820.82 442.09 142.53
2 x 400 x 600 1241.41 651.14 193.90
4 x 400 x 600 Failed 1308.07 396.94
2 x 400 x 800 Failed 869.93 262.79
4 x 400 x 800 Failed Failed 526.71

Table 6.9: Estimated execution times of 3-D image correlation on the RC systems.

3-D Image RC1 RC2 VRC1 VRC2 VRC3
Size (msec.) (msec.) (msec.) (msec.) (msec.)

2 x 100 x 200 20.38 26.40 5.85 4.25 3.42
4 x 100 x 200 39.77 52.40 10.69 7.50 5.85
2 x 200 x 400 78.17 103.60 20.29 13.90 10.65
4 x 200 x 400 155.34 206.80 39.58 26.80 20.29
2 x 400 x 600 232.14 309.20 58.78 39.60 29.89
4 x 400 x 600 463.27 618.00 116.57 78.20 58.78
2 x 400 x 800 308.94 411.60 77.98 52.40 39.49
4 x 400 x 800 616.87 822.80 154.97 103.80 77.98

148

Tables 6.10, 6.11, and 6.12 shows the estimated speedup of RC1, RC2,

VRC1, VRC2, VRC3 over three different general purpose processors. The

first column in each table indicates the size of three dimensional input images

and the other columns shows the speedup attainable by the RC systems.

Table 6.10: Estimated speedup of the RC systems over GPP1 for 3-D image correlation.

3-D RC1 RC2 VRC1 VRC2 VRC3
Image Size Speedup Speedup Speedup Speedup Speedup
2 x 100 x 200 4.926 3.803 17.176 23.626 29.334
4 x 100 x 200 5.122 3.887 19.052 27.160 34.844
2 x 200 x 400 5.264 3.972 20.276 29.601 38.648
4 x 200 x 400 5.284 3.969 20.736 30.628 40.450
2 x 400 x 600 5.348 4.015 21.118 31.349 41.530

Table 6.11: Estimated speedup of the RC systems over GPP2 for 3-D image correlation.

3-D RC1 RC2 VRC1 VRC2 VRC3
Image Size Speedup Speedup Speedup Speedup Speedup
2 x 100 x 200 2.670 2.061 9.309 12.805 15.898
4 x 100 x 200 2.738 2.078 10.184 14.519 18.626
2 x 200 x 400 2.822 2.129 10.870 15.869 20.720
4 x 200 x 400 2.846 2.138 11.168 16.496 21.786
2 x 400 x 600 2.805 2.106 11.077 16.443 21.783
4 x 400 x 600 2.824 2.117 11.222 16.727 22.252
2 x 400 x 800 2.816 2.114 11.155 16.602 22.028

149

Table 6.12: Estimated speedup of the RC systems over GPP3 for 3-D image correlation.

3-D RC1 RC2 VRC1 VRC2 VRC3
Image Size Speedup Speedup Speedup Speedup Speedup
2 x 100 x 200 1.071 0.827 3.734 5.136 6.377
4 x 100 x 200 1.095 0.831 4.074 5.808 7.451
2 x 200 x 400 0.904 0.682 3.481 5.082 6.635
4 x 200 x 400 0.918 0.689 3.601 5.318 7.024
2 x 400 x 600 0.835 0.627 3.299 4.896 6.487
4 x 400 x 600 0.857 0.642 3.405 5.076 6.753
2 x 400 x 800 0.851 0.638 3.370 5.015 6.654
4 x 400 x 800 0.854 0.640 3.399 5.074 6.754

6.5 Application 3: Image Intensity Calculation

Color images are represented by the combination of three gray scale images. Each

gray scale image represents a different main color, red, green and blue (RGB).

The algorithms developed for gray scale images are applied to all three gray scale

images to analyze one color image. Applying the same algorithm to three gray

scale images triples the amount of data needed to process a color image compared

to a gray scale image. One way to solve this problem is to perform data reduction

algorithms prior to running any image analysis algorithm. The most frequently

used data reduction algorithms are image intensity and hue algorithms. Seul et.

al. [90] implemented these algorithms in one application.

Figure 6.6 and 6.7 show the code segments that perform hue and intensity

calculations, respectively. After parsing the application source code, the RCCT

Compiler only mapped the second for loop block and kept the first block

unchanged. The first block, hue calculations, was not mapped by the Compiler

due to the fact that the Compiler detected function calls inside the for block.

As shown in Figure 6.6, lines 09 and 16 includes sqrt() and acos() functions,

150

respectively. The nature of RC mapping process forbids the Compiler mapping

these types of for blocks to the RC systems. If the Compiler maps a for including

a function call, during the execution of the for block, the RC system will not

be able to evaluate the function call; therefore, the Compiler does not map this

kind of for blocks.

01 for (iy = 0; iy < height; iy++) {
02 for (ix = 0; ix < width; ix++) {
03 r = ImgIn[0][iy][ix] / (float)255.0;
04 g = ImgIn[1][iy][ix] / (float)255.0;
05 b = ImgIn[2][iy][ix] / (float)255.0;
06 c = (float)(0.5 * (2.0 * r - g - b));
07 d = (float)(sqrt ((r - g) * (r - g) + (r - b) * (g - b)));
08 if (d == 0.0)
09 ImgOut[iy][ix] = 255.0; /* arbitrary value -> hue undefined */
10 else {
11 temp = c / d; /* imprecision causes > |1| */
12 if (temp > 1.0)
13 temp = 1.0;
14 else if (temp < -1.0)
15 temp = -1.0;
16 temp = (float)(acos (temp));
17 if (b > g)
18 temp = (float)(2.0 * M_PI - temp);
19 ImgOut[iy][ix] = (float)(temp * 100.0 / M_PI); /* scale 0-200 */
20 }
21 }
22 }

Figure 6.6: The for loop block for image hue calculation (Not Mapped).

01 for (iy = 0; iy < height; iy++) {
02 for (ix = 0; ix < width; ix++) {
03 ImgOut2[iy][ix] = (ImgIn[0][iy][ix] + ImgIn[1][iy][ix] +
04 ImgIn[2][iy][ix]) / (float)3.0 + (float)0.5;
05 }
06 }

Figure 6.7: The for loop block for image intensity calculation (Mapped).

151

We designed the function core shown in Figure 6.8, and specified it in the

module definition file to help the Compiler in mapping the intensity for block

shown in Figure 6.7. Since each basic core inside the function core has 8 stages

pipelined, the total pipeline stages of the function core unit is equal to 32. One

delay unit was used to synchronize the data streams inside the function core unit.

Two 32-bit registers were used to store constant values of the expression in the

for block. The module reads these constant values only once at the beginning

of a vector operation and uses them until the end of the operation. When the

source code is mapped, the Compiler matched the module definition with the

expression inside the for loop and mapped the block to the RC systems. The

Compiler generated only one session file for this block.

+

/

+

R1

*

Output

Delay
Unit

R0 R2 R3 R4

Inputs Core Parameters

P1 = 2
P2 = 1

P0 = 3

P3 = 32
P4 = 10

Figure 6.8: Function core design for image intensity calculation.

152

Table 6.13 shows the execution times of the intensity calculation for block on

GPP1, GPP2, and GPP3. The first column of the table indicates the image

size and the others indicate the execution times in milliseconds. The execution

time of the for loop block increases parallel to the number of floating-point

operations needed to process the given image. For example, on row 2, the image

size is 200 x 200 and the execution time is 7.68 milliseconds on GPP1. On row

three, the image size is doubled in both dimensions. This means that the number

of floating-point operations needed to process a given image increases four times

and the execution time is quadrupled on GPP1. This verifies the correctness of

the data collected from the tests.

Table 6.13: Image intensity calculation execution times on GPPs.

Image GPP1 GPP2 GPP3
Size (msec.) (msec.) (msec.)

100 x 100 1.61 0.78 0.28
200 x 200 7.68 4.58 1.31
400 x 400 31.75 18.08 4.65
800 x 800 131.03 72.65 18.69

1000 x 1000 203.83 117.52 29.24
2000 x 2000 814.15 460.77 113.93

Table 6.14 shows the estimated execution time of the intensity for block on

different RC systems. Since the function core design is not an accumulation

core, this application is also able to take advantage of dual memory unit PEs

systems. The effect of dual memory can be seen clearly when results for VRC1

and VRC2 are compared. For smaller image sizes, because of constant CAPI

overhead, estimated execution times seem very close on VRC1 and VRC2. The

difference can be observed clearly on larger image sizes.

153

Table 6.14: Estimated execution times of image intensity calculation on the RC systems.

Image RC1 RC2 VRC1 VRC2 VRC3
Size (msec.) (msec.) (msec.) (msec.) (msec.)

100 x 100 1.77 0.93 1.57 1.54 1.53
200 x 200 2.53 1.87 1.76 1.66 1.63
400 x 400 5.56 5.54 2.52 2.12 2.01
800 x 800 17.63 20.07 5.53 3.93 3.52

1000 x 1000 26.66 30.94 7.79 5.29 4.65
2000 x 2000 101.82 121.28 26.58 16.59 14.04

Tables 6.15, 6.16, and 6.17 shows the estimated attainable speedups of RC1,

RC2, VRC1, VRC1, VRC1 over GPP1, GPP2 and GPP3. For small images

speedup is very small, and in some cases it is less than 1 time. This happens

because of two reasons. First, when the algorithm executed for smaller images

general purpose processors takes the advantage of cache memory. Second, there

is a greater influence of CAPI on estimated execution time for smaller images.

Table 6.15: Estimated speedup of the RC systems over GPP1 for image intensity calculation.

Image RC1 RC2 VRC1 VRC2 VRC3
Size Speedup Speedup Speedup Speedup Speedup

100 x 100 0.912 1.724 1.028 1.044 1.050
200 x 200 3.033 4.111 4.369 4.631 4.715
400 x 400 5.706 5.735 12.619 14.998 15.812
800 x 800 7.433 6.528 23.686 33.307 37.267

1000 x 1000 7.646 6.588 26.166 38.513 43.882
2000 x 2000 7.996 6.713 30.630 49.090 57.988

154

Table 6.16: Estimated speedup of the RC systems over GPP2 for image intensity calculation.

Image RC1 RC2 VRC1 VRC2 VRC3
Size Speedup Speedup Speedup Speedup Speedup

100 x 100 0.442 0.835 0.498 0.506 0.509
200 x 200 1.809 2.452 2.605 2.762 2.812
400 x 400 3.249 3.266 7.186 8.540 9.004
800 x 800 4.121 3.619 13.133 18.467 20.663

1000 x 1000 4.408 3.798 15.086 22.205 25.300
2000 x 2000 4.525 3.799 17.335 27.782 32.818

Table 6.17: Estimated speedup of the RC systems over GPP3 for image intensity calculation.

Image RC1 RC2 VRC1 VRC2 VRC3
Size Speedup Speedup Speedup Speedup Speedup

100 x 100 0.159 0.300 0.179 0.182 0.183
200 x 200 0.517 0.701 0.745 0.790 0.804
400 x 400 0.836 0.840 1.848 2.197 2.316
800 x 800 1.060 0.931 3.379 4.751 5.316

1000 x 1000 1.097 0.945 3.754 5.525 6.295
2000 x 2000 1.119 0.939 4.286 6.869 8.115

155

6.6 Application 4: Frequency Domain Filter

The image filterization process can be performed in the frequency domain. For

this purpose, the image is transfered from the time domain to the frequency

domain. Then, the filterization process is applied to the image in the frequency

domain. After that, the image is transformed back to the time domain by

applying the inverse transformation. Seul et. al. [90] implemented the image

filterization algorithm in C++. The implementation includes several for loops.

When we compiled it with the RCCT Compiler, the Compiler selected four for

blocks to map the RC systems shown in Figure 6.9.

01 for (y = 0; y < nRow; y++)
02 for (x = 0; x < nCol; x++)
03 imgIn[y][x] = 255 - imgIn[y][x];

01 for (y = 0; y < nRow; y++)
02 for (x = 0; x < nCol; x++)
03 image[y][x] = image[y][x] * hammingX[x] * hammingY[y];

01 for (y = 0; y < nRow2; y++)
02 for (x = 0; x < nCol2; x++)
03 imgOut[y][x] = (unsigned char) ((imgReal[y][x] - min) * norm + 0.5);

01 for (y = 0; y < nRow2; y++)
02 for (x = 0; x < nCol2; x++)
03 imgOut[y][x] = 255 - imgOut[y][x];

Figure 6.9: Mapped for loop blocks in frequency domain filter.

We designed three function core units shown in Figure 6.10 for the for blocks

selected by the RCCT Compiler. The function core design in Figure 6.10a was

used both for the first and the last for blocks in Figure 6.9. The core design

in Figure 6.10b and 6.10c were used for calculation of the second and third for

blocks in Figure 6.9, respectively.

156

−

R0

Inputs

Output

*
Delay
Unit

*

Inputs

Output

R0 R1 R2

−

*

+

Inputs

Output

Core Parameters

P1 = 2
P2 = 1

P0 = 1

P3 = 8
P4 = 7

Core Parameters

P1 = 2
P2 = 1

P0 = 3

P3 = 16
P4 = 8

Core Parameters

P1 = 2
P2 = 1

P0 = 1

P3 = 24
P4 = 9

(c)

(a)

(b)

Figure 6.10: Function core designs for frequency domain filter.

Table 6.18 shows the execution time of the selected for blocks on GPPs. The

first column indicates the image size and the other columns show total execution

time of the four for blocks in milliseconds.

Table 6.18: Frequency domain filtering execution times on GPPs.

Image GPP1 GPP2 GPP3
Size (msec.) (msec.) (msec.)

128 x 128 26.35 14.38 5.04
128 x 256 55.97 29.33 9.98
256 x 256 113.47 59.34 20.21
256 x 512 226.70 118.80 40.17
512 x 512 453.04 238.28 80.20
512 x 1024 916.47 477.63 165.86
1024 x 1024 1815.81 951.32 319.43
1024 x 2048 22459.31 1913.69 653.26

157

The RCCT Simulator’s estimated execution times are presented in Table 6.19.

Again in this table, the first column indicates the image size and the other

columns indicate the total estimated execution time of the four mapped for

blocks.

Table 6.19: Estimated execution times of frequency domain filtering on the RC systems.

Image Size RC1 RC2 VRC1 VRC2 VRC3
Size (msec.) (msec.) (msec.) (msec.) (msec.)

128 x 128 8.70 6.05 6.68 6.46 6.34
128 x 256 11.32 9.49 7.33 6.89 6.67
256 x 256 16.65 16.58 8.66 7.77 7.33
256 x 512 27.13 30.34 11.28 9.49 8.64
512 x 512 48.26 58.28 16.57 12.99 11.28
512 x 1024 90.21 113.34 27.05 19.87 16.53
1024 x 1024 174.41 224.27 48.10 33.73 27.05
1024 x 2048 342.18 444.47 90.05 61.26 48.02

Tables 6.20, 6.21, and 6.22 show the total attainable speedups of mapped

four for blocks. Since none of the function cores designed for this applications is

accumulation, dual memory PEs offer better performance gain over the GPPs.

Table 6.20: Estimated speedup of RC systems over GPP1 for frequency domain filtering.

Image RC1 RC2 VRC1 VRC2 VRC3
Size Speedup Speedup Speedup Speedup Speedup

128 x 128 3.03 4.36 3.95 4.08 4.16
128 x 256 4.94 5.90 7.64 8.13 8.40
256 x 256 6.82 6.84 13.10 14.60 15.48
256 x 512 8.36 7.47 20.09 23.88 26.23
512 x 512 9.39 7.77 27.35 34.89 40.15
512 x 1024 10.16 8.09 33.88 46.13 55.46
1024 x 1024 10.41 8.10 37.75 53.83 67.12
1024 x 2048 65.64 50.53 249.42 366.63 467.68

158

Table 6.21: Estimated speedup of the RC systems over GPP2 for frequency domain filtering.

Image RC1 RC2 VRC1 VRC2 VRC3
Size Speedup Speedup Speedup Speedup Speedup

128 x 128 1.65 2.38 2.15 2.23 2.27
128 x 256 2.59 3.09 4.00 4.26 4.40
256 x 256 3.56 3.58 6.85 7.63 8.09
256 x 512 4.38 3.92 10.53 12.51 13.75
512 x 512 4.94 4.09 14.38 18.35 21.12
512 x 1024 5.29 4.21 17.66 24.04 28.90
1024 x 1024 5.45 4.24 19.78 28.20 35.17
1024 x 2048 5.59 4.31 21.25 31.24 39.85

Table 6.22: Estimated speedup of the RC systems over GPP3 for frequency domain filtering.

Image RC1 RC2 VRC1 VRC2 VRC3
Size Speedup Speedup Speedup Speedup Speedup

128 x 128 0.58 0.83 0.76 0.78 0.80
128 x 256 0.88 1.05 1.36 1.45 1.50
256 x 256 1.21 1.22 2.33 2.60 2.76
256 x 512 1.48 1.32 3.56 4.23 4.65
512 x 512 1.66 1.38 4.84 6.18 7.11
512 x 1024 1.84 1.46 6.13 8.35 10.04
1024 x 1024 1.83 1.42 6.64 9.47 11.81
1024 x 2048 1.91 1.47 7.25 10.66 13.60

159

6.7 Summary of the Results

In general, the RC systems significantly outperformed the GGPs except for some

rare cases. RC1 and RC2 are the same age RC systems with GPP1, and VRC1,

VRC2 and VRC3 are the same age RC systems with GPP2 and GPP3. To

be fair, we only look at the comparisons between the same age RC systems and

GPPs.

Figures 6.11, 6.12, 6.13 and 6.14 show the estimated speedups of the RC

systems compared to GPPs for four selected applications. RC1 and RC2

can speed up applications 2 to 15 times compared to GPP1. Although RC1

and RC2 are very slow systems compared to the state-of-the-art reconfigurable

systems, they were able to outperform today’s state-of-the-art GPPs in most

cases. The results showed that VRC1, VRC2 and VRC3 can speed up the

applications 3 to 125 times compared to GPP2 and GPP3. In most cases, the

speedups of the RC systems are more that 10 times.

RC1 RC2 VRC1 VRC2 VRC3
Type of the RC System

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

S
pe

ed
up

RC Systems’ Speedup Compared to GPP1, GPP2 and GPP3

 GPP1

 GPP2

 CPP3

Figure 6.11: Estimated speedups of the RC systems for matrix multiplication (matrix size is
1024 x 1024).

160

RC1 RC2 VRC1 VRC2 VRC3
Type of the RC System

0.000

5.000

10.000

15.000

20.000

25.000

S
pe

ed
up

RC Systems’ Speedup Compared to GPP2 and GPP3

 GPP2

 GPP3

Figure 6.12: Estimated speedups of the RC systems for 3-D image correlation (image size is 2
x 400 x 800).

RC1 RC2 VRC1 VRC2 VRC3
Type of the RC System

0.00

10.00

20.00

30.00

40.00

50.00

60.00

S
pe

ed
up

RC Systems’ Speedup Compared to GPP1, GPP2 and GPP3

 GPP1

 GPP2

 GPP3

Figure 6.13: Estimated speedups of the RC systems for image intensity calculation (image size
is 2000 x 2000).

161

RC1 RC2 VRC1 VRC2 VRC3
Type of the RC System

0.00

10.00

20.00

30.00

40.00

50.00

S
pe

ed
up

RC Systems’ Speedup Compared to GPP2 and GPP3

 GPP2

 GPP3

Figure 6.14: Estimated speedups of the RC systems for frequency domain filter (image size is
1024 x 2048).

VRC1 and VRC2 have the same number of PEs and their clock speeds are

the same, but PEs in VRC2 have dual memory units. VRC2 is added to the

tests to show the effects of the dual memory unit PEs in the performance of

the RC systems. In matrix multiplications, accumulation modules were used;

therefore, the dual memory unit PEs did not showed any additional performance

gain. As illustrated in Figure 6.11, results for VRC1 and VRC2 are the same.

This happened due to the fact that the accumulation modules does not need to

write a result back to memory at every iteration of the module; therefore, the

second memory unit reserved for the results has no effect on the performance

of the RC system. On the other hand, all other three applications use non-

accumulation modules, and dual memory unit PEs showed an additional 45% to

60% performance gain compared to the single memory unit PEs. This can be

seen in Figures 6.12, 6.13 and 6.14 when VRC1 and VRC2 are compared.

During our experiments and simulations we noticed one weak point of the

current RC systems which is the data transfer rate between the PEs and the

162

PE memories. PEs in the future RC systems must be supported with multiple

memory units to increase data transfer rate between the PE and the PE memories.

For example, our third generation module includes function cores that can handle

complex arithmetic operations in a pipelined fashion. Each function core has

multiple data inputs. With the current RC systems, all core inputs are fed

from a single memory unit resulting in a poor core utilization. The cores must

be supplied with multiple data inputs from multiple memory units to increase

the core utilization and to further enhance the performance of the module and

the user applications. We also noticed that to exploit parallelism in the user

applications, future RC systems must have multiple PEs.

Chapter 7

Conclusion and Future Research
Possibilities

Beside their performance advantages over general-purpose processors, reconfig-

urable (RC) systems have a few disadvantages. First, RC systems require more

application development time than general purpose processors, but significantly

less than developing an application specific integrated circuit. Second, RC system

designers need to be knowledgeable in the areas of hardware and software system

design. Third, since each application is different in terms of data inputs, outputs,

and the method of processing data, designers are required to design a specific RC

implementation for each specific problem.

Our main contribution in this research is the development a design automation

tool called Reconfigurable Computing Compilation Tool (RCCT). By developing

the tool, our major goals were to address the problems mentioned above and to

automate the process of mapping applications onto the RC systems.

The tool includes four majors components. These are: The Compiler, the

Hardware Module Library, a generalized interface program called Loader and the

Simulator. The purpose of the Compiler is to identify computationally complex

portions of user applications and replace them with appropriate function calls to

163

164

the Loader so that these portions can be executed on RC systems. The Compiler

is also responsible for writing session files that includes vector instructions

extracted from the selected portions of user applications. The Loader’s job is to

work as an interface between the modified user applications and the RC resources.

When it is called by a modified section of a user application, it executes that

section of the application by execution the session file written for that specific

section on the RC systems. The Module library includes configuration files of

hardware modules that were specifically designed and implemented to perform

vector operations on RC systems. The Loader uses these modules to execute

vector instructions written in session files on RC systems. We also developed

a Simulator to assist the user of the tool in evaluating performance of new RC

systems or a new hardware module design before the module is implemented.

Additionally, a novel assembly language instruction set for the hardware modules

and a session file format, a new assembly language program format for RC

systems, were developed.

The tool was tested on several applications to demonstrate its effectiveness.

We selected matrix multiplication, and some image processing algorithms such

as 3-D Image correlation, to test the tool. First, the applications were compiled

with the tool Compiler. The tool Compiler selected the computationally complex

sections of the applications and mapped them to the RC systems. Then, the

mapped applications were simulated with the tool’s Loader-Simulator pair. For

some of the applications, some new hardware module designs were added to the

Module Library. The selected applications were also run on General Purpose

Processors for comparison purposes. We compared the execution times of the

mapped sections of the applications when they were run on different GPPs and

165

when they were mapped to different RC configurations to demonstrate the tools

effectiveness.

Our results showed that the tool is able to enhance the performance of

the applications by mapping portions of them to the RC systems. The tool’s

Simulator showed that when the user applications are mapped to the RC

systems, significant speedups (around 10 times to 100 times) can be attained

for the mapped sections of the applications. We also noticed that the design

and implementation time of the RC versions of the applications were reduced

significantly. With the tool in a matter of minutes RC version of the applications

were created. It is also observed that with RCCT, no special skills are needed to

map applications to RC systems if the required hardware modules are available.

7.1 Future Research

A fair amount of future research possibilities are available. The following is a list

of some important improvements can be done to enhance the performance of the

RCCT tool.

1. Currently, the Module Library includes a limited number of hardware

module implementations. More modules can be designed and implemented

to increase the Compiler’s chance to map more applications.

2. During the module matching step, the current version of the Compiler

performs a one-to-one comparison between the hardware module specifi-

cations and the expressions it finds in the given user application. When the

Compiler finds a complex expression for which a module definition has not

been done, it skips the expression. With an additional step to the Compiler,

166

these types of expressions can be divided in to some smaller expressions that

can be calculated by the basic hardware modules available in the module

library.

3. If there is a data dependency between two expressions in a for loop block,

the Compiler skips the block. The Compiler can be improved to handled

some data dependency types.

4. Java/Fortran are other high level programming languages that are used

to implement computationally complex scientific applications. A new

version of the tool can be developed to map applications implemented in

Java/Fortran. For this purpose, the front end of the Compiler has to be

re-designed to be able to scan and parse Fortran source code. Also, some

modifications may be need in the Loader for interfacing with an executable

code generated from a Fortran source code.

Bibliography

[1] D. Bhatia, “Reconfigurable computing,” Tenth International Conference on

VLSI Design, pp. 356–359, Jan. 1997.

[2] F. Rincon and L. Teres, “Reconfigurable Hardware Systems,” 1998

International Semiconductor Conference, vol. 1, pp. 45–54, Oct. 1998.

[3] Xilinx Inc, The Programmable Logic Data Book, San Jose, CA, 1994.

[4] E. Cerro-Prada, S.M. Charlwood, P.B., and James-Roxby, “Image

Processing and Its Applications,” Seventh International Conference on

Image Processing and Its Applications, vol. 1, pp. 450–454, Jul. 1999.

[5] R.C.D.M. Tavares, C.J.N. Jr. Coelho, A.D.A. Araujo, and A.O. Fernandes,

“Implementation of an Edge Detection Algorithm in a Reconfigurable

Computing System,” Proceedings of the Eleventh XI Brazilian Symposium

on Integrated Circuit Design, pp. 38–41, Sep. 1998.

[6] M. A. Figueiredo and C. Gloster, “Implementation of a Probabilistic Neural

Network for Multi-spectral Image Classification on an FPGA Based Custom

Computing Machine,” Proceedings of 5th Brazilian Symposium on Neural

Networks, pp. 174–179, Dec. 1998.

167

168

[7] M. Figueiredo, C. Gloster, M Stephens, C Graves, and M. Nakkar,

“Implementation of Multi-spectral Image Classification on a Remote

Adaptive Computer,” Journal of VLSI Design Special Issue on

Reconfigurable Computing, vol. 10, no. 3 pp. 307–319, 2000.

[8] P. Graham and B. Nelson, “Genetic Algorithms in Software and in

Hardware,” Fourth IEEE Workshop on FPGAs for Custom Computing

Machines, Apr. 1996.

[9] H. Hogl, A. Kugel, J. Ludvig, R. Manner, K.H. Noffz, and R. Zoz,

“Enable++: A Second Generation FPGA Processor,” Third IEEE

Workshop on FPGAs for Custom Computing Machines, 1995.

[10] W.B. Ligon III, S. McMillan, G. Monn, K. Schoonover, F. Stivers, and

K.D. Underwood, “A Re-evaluation of the Practicality of Floating-point

Operations on FPGAs,” Proceedings of the IEEE Symposium on FPGAs for

Custom Computing Machines, Apr. 1998.

[11] A. DeHon and J. Wawrzynek, “Reconfigurable Computing: What, Why,

and Implications for Design Automation,” Proceedings of 36th Design

Automation Conference, pp. 610–615, New Orleans, Louisiana, 1999.

[12] J. Villasenor and B. Hutchings, “The Flexibility of Configurable

Computing,” IEEE Signal Processing Magazine, vol. 15, no. 5, pp. 67–84,

1998.

[13] M. John S. Smith, Application-Specific Integrated Circuits. Addison-Wesley

Inc., 1997.

169

[14] R. Tessier and W. Burleson, “Reconfigurable Computing for Digital Signal

Processing: A Survey,” Journal of VLSI Signal Processing, vol. 28, pp. 7–27,

1998.

[15] S. Hauck, “The Roles of FPGSs in Reprogrammable Systems,” Proceedings

of the IEEE, pp. 615–638, 1998.

[16] S. Brown and J. Rose, “Architecture of FPGSs and CPLDs: A Tutorial,”

2002. http://klabs.org/richcontent/Tutorial/fpga/Toronto tutorial.pdf.

[17] “Field Programmable Gate Arrays (FPGAs) An Enabling Technology,”

2002. http://www.vcc.com/fpga4000.html.

[18] Xilinx Inc, Virtex-II ProTM Platform FPGAs: Functional Description, San

Jose, California, 2002.

[19] D. A. Buell, J. M. Arnold, and W. J. Kleinfelder, SPLASH 2: FPGAs for

Custom Computing Machines, IEEE Computer Society Press, Los Alamitos,

1996.

[20] N. K. Ratha and A. K. Jain, “Computer Vision Algorithms on

Reconfigurable Logic Arrays,” IEEE Transactions on Parallel and

Distributed Systems, vol. 10, no. 1, pp. 29–43, 1999.

[21] N. K. Ratha, A. K. Jain, and D. T. Rover, “FPGA-Based Coprocessor

for Text String Extraction,” IEEE International Workshop on Computer

Architectures for Machine Perception, pp. 217–221, Padovay, Italy, 2000.

[22] J. Vuillemin, P. Bertin, D. Roncin, M Shand, H. Touati, and Ph. Boucard,

“Programmable Active Memories: Reconfigurable Systems Come of Age,”

IEEE Transactions on VLSI Systems, vol. 4, no. 1, pp. 56–69, Mar. 1996.

170

[23] T. Lewis, M. Perkowski, and L. Jozwiak, “Learning in Hardware:

Architecture and Implementation of an FPGA-Based Rough set Machine,”

Proceedings of 25th EUROMICRO Conference, pp. 326–334, Milan, Italy,

1999.

[24] M. Perkowski, A. Chebotarev, and A. Mishchenko, “Evolvable Hardware

or Learning Hardware? Induction of State Machines from Temporal Logic

Constraints,” Proceedings of the First NASA/DoD Workshop on Evolvable

Hardware, pp. 129–138, Pasadena, CA, 1999.

[25] B. Hutchings and B. Nelson, “Developing and Debugging FPGA

Applications in Hardware with JHDL,” Conference Record of the 33rd

Asilomar Conference on Signals, Systems, and Computers, vol. 1, pp. 554–

558, Oct. 1999.

[26] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, , and

J. Kim, “Baring it All to Software: RAW Machines,” IEEE Computer, vol.

30, no. 9, pp. 86–93, Sep. 1997.

[27] M. Weinhardt and W. Luk, “Pipelined Vectorization for Reconfigurable

Systems,” Proceedings of the 7th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines, pp. 52–62, Apr. 1999.

[28] T. J. Callahan, J. R. Hauser, and J. Wawrzynek, “The Garp Architecture

and C compiler,” IEEE Computer, vol. 33, no. 4, pp. 62–69, Apr. 2000.

[29] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R. R.

Taylor, “PipeRench: a Reconfigurable Architecture and Compiler,” IEEE

Computer, vol. 33, no. 4, pp. 70–77, Apr. 2000.

171

[30] D. C. Cronquist, C. Fisher, M. Figueroa, P. Franklin, and C. Ebeling,

“Architecture Design of Reconfigurable Pipelined Datapaths,” Proceedings

of the 20th Anniversary Conference on Advanced Research in VLSI, pp. 23–

40, Mar. 1999.

[31] M. Gokhale and D. Gomersall, “High Level Compilation for Fine Grained

FPGAs,” Proceedings of the 5th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines, pp. 165–173, Apr. 1997.

[32] E. Mirsky and A. DeHon, “MATRIX: a Reconfigurable Computing

Architecture with Configurable Instruction Distribution and Deployable

Resources,” Proceedings of the IEEE Symposium on FPGAs for Custom

Computing Machines, pp. 166–157, Apr. 1996.

[33] S. Hauck and A. Agarwal, “Software Technologies for Reconfigurable

Systems,” Northwestern University, Dep. of ECE, Technical Report, 1996.

[34] P. M. Athanas and H. F. Silverman, “Processor Reconfiguration Through

Instructions-Set Metamorphosis,” IEEE Computer, vol. 26, no. 3, pp. 11–18,

Mar. 1993.

[35] M Wazlowski, L. Agarwal, T. Lee, A. Smith, E. Lam, P. Athanas,

H. Silverman, and S. Ghosh, “PRISM-II Compiler and Architecture,” First

IEEE Workshop on FPGAs for Custom Computing Machines, pp. 9–16,

1993.

[36] L. Agarwal, M Wazlowski, and S. Ghosh, “An Asynchronous Approach

to Efficient Execution of Programs on Adaptive Architectures Utilizing

FPGAs,” Second IEEE Workshop on FPGAs for Custom Computing

Machines, pp. 101–110, 1994.

172

[37] D. Wo and K. Forward, “Compiling to the Gate Level for a Reconfigurable

Co-Processor,” 1985 International Symposium On Circuits and Systems, pp.

2–4, 1985.

[38] D. Galloway, “The Transmogrifier C Hardware Description Language and

Compiler for FPGAs,” Third IEEE Workshop on FPGAs for Custom

Computing Machines, 1995.

[39] T. Isshiki and W. W.-M. Dai, “High-Level Bit-Serial Datapath Synthesis for

Multi-FPGA Systesm,” ACM/SIGDA Symposium on Field Programmable

Gate Arrays, pp. 167–173, 1995.

[40] J. B. Peterson, R. B. O’Connor, and P. M. Athanas, “Scheduling and

Partitioning ANSI-C Programs onto Multi-FPGA CCM Architectures,”

Fourth IEEE Workshop on FPGAs for Custom Computing Machines, 1996.

[41] D. A. Clark and B. L. Hutchings, “Supporting FPGA Microprocessors

Through Retargetable Software Tools,” Fourth IEEE Workshop on FPGAs

for Custom Computing Machines, pp. 195–205, 1996.

[42] T. Yamauchi, S. Nakaya, and N. Kajihara, “SOP: A Reconfigurable

Massively Parallel System and Its Control-Data-Flow Based Compiling

Method,” Fourth IEEE Workshop on FPGAs for Custom Computing

Machines, 1996.

[43] C. Iseil and E. Sanchez, “Spyder: A SURE, SUperscalar and REconfigurable

Processor,” Journal of Supercomputing, vol. 9, pp. 231–252, 1993.

[44] M. F. Dossis, J. M. Noras, and G. J. Porter. Custom Co-processor

Compilation, Abingdon EEE and CS Books, Oxford, England, 1994.

173

[45] I. Page and W. Luk, Compiling Occam into FPGAs Abingdon EE and CS

Books, pp. 271–283, 1991.

[46] W. Luk, D. Ferguson, and I. Page, Structured Hardware Compilation of

Parallel Programs, Abingdon EEE and CS Books, Oxford, England, 1994.

[47] M. Gokhale and R. Minnich, “FPGA Programming in a Data Parallel C,”

First IEEE Workshop on FPGAs for Custom Computing Machines, pp. 94–

102, 1993.

[48] S. A. Guccione and M. J. Gonzalez, “A Data-Parallel Programming Model

for Reconfigurable Architectures,” First IEEE Workshop on FPGAs for

Custom Computing Machines, pp. 79–87, 1993.

[49] B. Pottier and J. Llopis, “Revisiting Smalltalk-80: A Logic Generator

for FPGAs,” Fourth IEEE Workshop on FPGAs for Custom Computing

Machines, 1996.

[50] R. Razdan, PRISC: Programmable Reduced Instruction Set Computers, PhD

thesis, Harvard University, Cambridge, MA, 1994.

[51] S. Singh, “Architectural Descriptions for FPGA Circuits,” Proceedings of

the Third IEEE Workshop on FPGAs for Custom Computing Machines, pp.

145–154, Apr. 1995.

[52] G. Brown and A. Wenban, “A Software Development System for FPGA-

Based Data Acquisition Systems,” Fourth IEEE Workshop on FPGAs for

Custom Computing Machines, 1996.

174

[53] B. Radunovic and V. Milutinovic, “A Survey of Reconfigurable Computing

Architectures,” Proceedings of FPL 98 Eigth International Workshop on

Field Programmable Logic and Applications, Tallin, Estonia, 1998.

[54] B. Radunovic, “An Overview of Advances in Reconfigurable Computing

Systems,” Proceedings of 32th Havaii International Conference on System

Science, Havaii, 1999.

[55] R.W. Hartenstein, R. Kress, and H. Reinig, “A Reconfigurable Data-Driven

ALU for Xputers,” Proceedings. IEEE Workshop on FPGAs for Custom

Computing Machines, pp. 139–146, Napa Valley, CA, Apr. 1994.

[56] R Kress. A Fast Reconfigurable ALU for Xputers, PhD Thesis,

Kaiserslautern University, 1996.

[57] M. Gokhale, W. Holmes, A. Kopser, S. Lucas, R. Minnich, D. Sweely, and

D. Lopresti, “Building and Using a Highly Parallel Programmable Logic

Array,” Computer, vol. 24, no. 1, pp. 81–89, Jan. 1991.

[58] J. O. Haenni, J. L Beuchat, and E. Sanchez, “RENCO: A Reconfigurable

Network Computer,” IEEE Symposium on FPGAs for Custom Computing

Machines, pp. 288–289, Napa Valley, CA, Apr. 1998.

[59] J. R. Hauzer and J. Wawrzynek, “GARP: A MIPS Processor with a

Reconfigurable Coprocessor,” Proceedings of the IEEE Symposium on

FPGAs for Custom Computing Machines, pp. 12–21, Apr. 1997.

[60] J. M Arnold et al, “The SPLASH 2,” Proceedings of the 4th Annual

ACM Symposium on Parallel Algorithms and Architectures, pp. 316–324,

Jun. 1992.

175

[61] B. Hutchings, B. Nelson, and M. J. Wirthlin, “Designing and Debugging

Custom Computing Applications,” IEEE Design and Test of Computers,

vol. 17, no. 1, pp. 20–28, Mar. 2000.

[62] B. L. Hutchings and B. E. Nelson, “Unifying Simulation and Execution in a

Design Environment for FPGA Systems,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 9, no. 1, pp. 201–205, Feb. 2001.

[63] M. Chu, N. Weaver, K. Sulimma, A. Dehon, and J. Wawrzynek, “Object

Oriented Circuit-Generators in Java,” Proceedings of the IEEE Symposium

on FPGAs for Custom Computing Machines, pp. 158–166, Apr. 1998.

[64] J. Babb, M. Frank, V. Lee, E. Waingold, R. Barua, M. Taylor, and J. Kim,

“The RAW Benchmark Suite: Computation Structures for General Purpose

Computing,” Proceedings of he 5th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines, pp. 134–143, Apr. 1997.

[65] R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal, “Compiler Support for

Scalable and Efficient Memory Systems,” IEEE Transactions on Computers,

vol. 50, no. 11, pp. 1234–1247, Nov. 2001.

[66] C. A. Moritz, D. Yeung, and A. Agarwal, “SimpleFit: A Framework for

Analyzing Design Trade-Offs in Raw Architectures,” IEEE Transactions on

Parallel and Distributed Systems, vol. 12, no. 7, pp. 730–742, Jul. 2001.

[67] M. Weinhardt and Wayne Luk, “Pipeline Vectorization,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 20, no.

2, pp. 234–248, Feb. 2001.

176

[68] I. Page, “Closing the Gap Between Hardware and Software: Hardware-

Software Cosynthesis at Oxford,” EE Colloquium on Hardware-Software

Cosynthesis for Reconfigurable Systems, pp. 2/1–2/11, Feb. 1996.

[69] I. Page and R. Dettmer, “Software to Silicon,” IEE Review, vol. 46, no. 5,

pp. 15–19, Sep. 2000.

[70] M. Fleury, R. P. Self, and A. C. Downtown, “Hardware Compilation for

software Engineers: An ATM Example,” IEE Proceedings - Software, vol.

148, no. 1, pp. 31–42, Feb. 2001.

[71] K. Buchenrieder, A. Pyttel, and A. Sedlmeier, “A Powerful System Design

Methodology Combining OCAPI and Handel-C for Concept Engineering,”

Proceedings of Design, Automation and Test in Europe Conference and

Exhibition, pp. 870 –874, Mar. 2002.

[72] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J-A. M.

Anderson, S. W. K. Tjiang, S-W. Liao, C-W. Tseng, M. W. Hall, M. S. Lam,

and J. L. Hennessy, “SUIF: An Infrastructure for Research on Parallelizing

and Optimizing Compilers,” SIGPLAN Notices, vol. 29, no. 12, pp. 31–37,

1994.

[73] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and R. R.

Taylor, “PipeRanch: A Virtualized Programmable Datapath in 0.18 Micron

Technology,” IEEE 2002 Custom Integrated Circuits Conference, pp. 63–66,

2002.

[74] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R. R.

Taylor, “PipeRench: A Reconfigurable Architecture and Compiler,”

Computer, vol. 33, no. 4, pp. 70–77, 2000.

177

[75] Y. C. Chou, P. Pillai, H. Schmit, and J. P. Shen, “PipeRench Implementation

of the Instruction Path Coprocessor,” International Symposium on

Microarchitecture, pp. 147–158, 2000.

[76] S. C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. R. Taylor,

and R. Laufer, “Piperench: A Coprocessor for Streaming Multimedia

Acceleration,” ISCA, pp. 28–39, 1999.

[77] H. Schmit et al, “Pipeline Reconfigurable FPGAs,” Journal of VLSI Signal

Processing, pp. 1–18, 2000.

[78] A. A. Duncan, D. C. Hendry, and P. Gray, “An Overview of the Cobra-abs

High Level Synthesis System for Multi-FPGA Systems,” IEEE Proceedings

of FPGAs for Custom Computing Machines, pp. 106–115, 1998.

[79] A. A. Duncan, D. C. Hendry, and P. Gray, “The COBRA-ABS High-Level

Synthesis System for Multi-FPGA Custom Computing Machines,” IEEE

Transactions Very Large Scale Integration (VLSI) Systems, vol. 9, no. 1, pp.

218–223, 2001.

[80] IEEE Standards Board, “IEEE Standard for Binary Floating-Point

Arithmetic,” Aug. 1985.

[81] I. Sahin, C. Gloster, and C. Doss, “Feasibility of Floating-Point Arithmetic

in Reconfigurable Computing Systems,” Military and Aerospace Applications

of Programmable Devices and Technology Conference, Washington, DC., Sep.

2000.

178

[82] I. Sahin and C. Gloster, “Floating-Point Modules Targeted for Use with RC

Compilation Tools,” Earth Science Technology Conference (ESTC) 2001,

College Park, MD, Aug. 2001.

[83] WildForce Reference Manual, Annapolis Micro Systems Inc., 1997. Rev 3.4.

[84] Xilinx Data Book 2000, Oct. 1999.

[85] J. L. Hennessy and D. A. Patterson, Computer Architecture a Quantitative

Approach. Morgan Kaufmann Publisher, Inc., San Francisco, CA, 1996.

[86] Jutta Degener, “ANSI C Grammar: Lex Specification,” 2002.

http://www.lysator.liu.se/c/ANSI-C-grammar-l.htm.

[87] WildCard Reference Manual, Annapolis Micro Systems Inc., 1999.

[88] K. Li, Y. Pan, and S.Q. Zheng, “Fast and Processor Efficient Parallel Matrix

Multiplication Algorithms on a Linear Array with a Reconfigurable Pipelined

Bus System,” IEEE Transactions on Parallel and Distributed Systems, vol.

9, no. 8, pp. 705–720, Aug. 1998.

[89] N. Nikolaidis and I. Pitas, 3-D Image Processing Algorithms, John Wiley

and Sons, Inc., New York, NY, 2001.

[90] M. Seul, L. O’Gorman, and M. J. Sammon, Practical Algorithms for Image

Analysis, Cambridge University Press, New York, NY, 2000.

Appendix A

Lex Specification for the Scanner

D [0-9]

L [a-zA-Z_]

H [a-fA-F0-9]

E [Ee][+-]?{D}+

FS (f|F|l|L)

IS (u|U|l|L)*

%{

#include <stdio.h>

#include <stdlib.h>

#include "y.tab.h"

FILE *fpin, *fpout;

struct LexType{

int Token;

int Code;

char *TokenText;

};

main()

{ char ch;

struct LexType a;

fpin = fopen("test.c","r");

fpout = fopen ("test.lex","w");

yyin = fpin;

yyout = fpout;

printf("Hit enter to start scanning\n");

scanf("%c",&ch);

while (!feof(fpin)){

a = yylex();

/*if (yytext!="\0" && yytext != "\t" &&

yytext != "\n" && yytext != "\v" &&

yytext != "\f")*/

fprintf(fpout,"\n");

/*printf("yytext = %s\n",yytext);*/

printf("Text: %20s Code: %4i Token: %4i\n",a.TokenText,a.Code,a.Token);

}

printf("End of scanning\n");

}

void Count();

179

180

%}

%%

"/*" {Comment(); LexReturn->Token = -1; LexReturn->Code = WHT;

strcpy(LexReturn->TokenText,"/*Comment*/"); return LexReturn;}

"//" {Comment1(); LexReturn->Token = -1; LexReturn->Code = WHT;

strcpy(LexReturn->TokenText,"/*Comment*/"); return LexReturn;}

"auto" {Count(); LexReturn->Token = (int)AUTO; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"break" {Count(); LexReturn->Token = (int)BREAK; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"case" {Count(); LexReturn->Token = (int)CASE; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"char" {Count(); LexReturn->Token = (int)CHAR; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"const" {Count(); LexReturn->Token = (int)CONST; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"continue" {Count(); LexReturn->Token = (int)CONTINUE; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"default" {Count(); LexReturn->Token = (int)DEFAULT; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"do" {Count(); LexReturn->Token = (int)DO; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"double" {Count(); LexReturn->Token = (int)DOUBLE; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"else" {Count(); LexReturn->Token = (int)ELSE; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"enum" {Count(); LexReturn->Token = (int)ENUM; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"extern" {Count(); LexReturn->Token = (int)EXTERN; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"float" {Count(); LexReturn->Token = (int)FLOAT; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"for" {Count(); LexReturn->Token = (int)FOR; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"goto" {Count(); LexReturn->Token = (int)GOTO; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"if" {Count(); LexReturn->Token = (int)IF; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"int" {Count(); LexReturn->Token = (int)INT; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"long" {Count(); LexReturn->Token = (int)LONG; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"register" {Count(); LexReturn->Token = (int)REGISTER; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"return" {Count(); LexReturn->Token = (int)RETURN; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"short" {Count(); LexReturn->Token = (int)SHORT; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"signed" {Count(); LexReturn->Token = (int)SIGNED; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"sizeof" {Count(); LexReturn->Token = (int)SIZEOF; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"static" {Count(); LexReturn->Token = (int)STATIC; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"struct" {Count(); LexReturn->Token = (int)STRUCT; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"switch" {Count(); LexReturn->Token = (int)SWITCH; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

181

"typedef" {Count(); LexReturn->Token = (int)TYPEDEF; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"union" {Count(); LexReturn->Token = (int)UNION; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"unsigned" {Count(); LexReturn->Token = (int)UNSIGNED; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"void" {Count(); LexReturn->Token = (int)VOID; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"volatile" {Count(); LexReturn->Token = (int)VOLATILE; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"while" {Count(); LexReturn->Token = (int)WHILE; LexReturn->Code = RES;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

{L}({L}|{D})* {Count(); LexReturn->Token = (int)IDENTIFIER; LexReturn->Code = IDENT;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

0[xX]{H}+{IS}? {Count(); LexReturn->Token = (int)CONSTANT; LexReturn->Code = HEXC;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

0{D}+{IS}? {Count(); LexReturn->Token = (int)CONSTANT; LexReturn->Code = INTC;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

{D}+{IS}? {Count(); LexReturn->Token = (int)CONSTANT; LexReturn->Code = INTC;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

’(\\.|[^\\’])+’ {Count(); LexReturn->Token = (int)CONSTANT; LexReturn->Code = UNKNW;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

{D}+{E}{FS}? {Count(); LexReturn->Token = (int)CONSTANT; LexReturn->Code = REALC;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

{D}*"."{D}+({E})?{FS}?

{Count(); LexReturn->Token = (int)CONSTANT; LexReturn->Code = EXPC;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

{D}+"."{D}*({E})?{FS}?

{Count(); LexReturn->Token = (int)CONSTANT; LexReturn->Code = EXPC;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

\"(\\.|[^\\"])*\"

{Count(); LexReturn->Token = (int)STRING_LITERAL; LexReturn->Code = STRC;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

">>=" {Count(); LexReturn->Token = (int)RIGHT_ASSIGN; LexReturn->Code = ASGN;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"<<=" {Count(); LexReturn->Token = (int)LEFT_ASSIGN; LexReturn->Code = ASGN;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"+=" {Count(); LexReturn->Token = (int)ADD_ASSIGN; LexReturn->Code = ASGN;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"-=" {Count(); LexReturn->Token = (int)SUB_ASSIGN; LexReturn->Code = ASGN;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"*=" {Count(); LexReturn->Token = (int)MUL_ASSIGN; LexReturn->Code = ASGN;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"/=" {Count(); LexReturn->Token = (int)DIV_ASSIGN; LexReturn->Code = ASGN;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"%=" {Count(); LexReturn->Token = (int)MOD_ASSIGN; LexReturn->Code = ASGN;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"&=" {Count(); LexReturn->Token = (int)AND_ASSIGN; LexReturn->Code = ASGN;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"^=" {Count(); LexReturn->Token = (int)XOR_ASSIGN; LexReturn->Code = ASGN;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"|=" {Count(); LexReturn->Token = (int)OR_ASSIGN; LexReturn->Code = ASGN;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

">>" {Count(); LexReturn->Token = (int)RIGHT_OP; LexReturn->Code = OPRT;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"<<" {Count(); LexReturn->Token = (int)LEFT_OP; LexReturn->Code = OPRT;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"++" {Count(); LexReturn->Token = (int)INC_OP; LexReturn->Code = OPRT;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

182

"--" {Count(); LexReturn->Token = (int)DEC_OP; LexReturn->Code = OPRT;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"->" {Count(); LexReturn->Token = (int)PTR_OP; LexReturn->Code = OPRT;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"&&" {Count(); LexReturn->Token = (int)AND_OP; LexReturn->Code = OPRT;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"||" {Count(); LexReturn->Token = (int)OR_OP; LexReturn->Code = OPRT;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"<=" {Count(); LexReturn->Token = (int)LE_OP; LexReturn->Code = OPRT;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

">=" {Count(); LexReturn->Token = (int)GE_OP; LexReturn->Code = OPRT;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"==" {Count(); LexReturn->Token = (int)EQ_OP; LexReturn->Code = OPRT;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"!=" {Count(); LexReturn->Token = (int)NE_OP; LexReturn->Code = OPRT;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

";" {Count(); LexReturn->Token = 59; LexReturn->Code = DELI;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"{" {Count(); LexReturn->Token = 123; LexReturn->Code = CPAR;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"}" {Count(); LexReturn->Token = 125; LexReturn->Code = CPAR;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"," {Count(); LexReturn->Token = 44; LexReturn->Code = DELI;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

":" {Count(); LexReturn->Token = 58; LexReturn->Code = DELI;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"=" {Count(); LexReturn->Token = 61; LexReturn->Code = ASGN;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"(" {Count(); LexReturn->Token = 40; LexReturn->Code = PAR;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

")" {Count(); LexReturn->Token = 41; LexReturn->Code = PAR;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"[" {Count(); LexReturn->Token = 91; LexReturn->Code = SPAR;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"]" {Count(); LexReturn->Token = 93; LexReturn->Code = SPAR;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"." {Count(); LexReturn->Token = 46; LexReturn->Code = DELI;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"&" {Count(); LexReturn->Token = 38; LexReturn->Code = OPRTS;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"!" {Count(); LexReturn->Token = 33; LexReturn->Code = OPRTS;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"~" {Count(); LexReturn->Token = 126; LexReturn->Code = OPRTS;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"-" {Count(); LexReturn->Token = 45; LexReturn->Code = OPRTS;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"+" {Count(); LexReturn->Token = 43; LexReturn->Code = OPRTS;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"*" {Count(); LexReturn->Token = 42; LexReturn->Code = OPRTS;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"/" {Count(); LexReturn->Token = 47; LexReturn->Code = OPRTS;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"%" {Count(); LexReturn->Token = 37; LexReturn->Code = OPRTS;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"<" {Count(); LexReturn->Token = 60; LexReturn->Code = OPRTS;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

">" {Count(); LexReturn->Token = 62; LexReturn->Code = OPRTS;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"^" {Count(); LexReturn->Token = 94; LexReturn->Code = OPRTS;

183

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"|" {Count(); LexReturn->Token = 124; LexReturn->Code = OPRTS;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"?" {Count(); LexReturn->Token = 63; LexReturn->Code = OPRTS;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

"#" {Count(); LexReturn->Token = 35; LexReturn->Code = DIRF;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

[\t\v\n\f] {Count(); LexReturn->Token = -1; LexReturn->Code = WHT;

strcpy(LexReturn->TokenText,yytext); return LexReturn;}

. { /* ignore bad characters */ }

%%

yywrap()

{ return(1);

}

Comment()

{ char c, c1;

loop:

while ((c = lex_input()) != ’*’ && c != 0)

putchar(c);

if ((c1 = lex_input()) != ’/’ && c != 0){

unput(c1);

goto loop;

}

if (c != 0) putchar(c1);

}

Comment1()

{ char c;

while ((c = lex_input()) != ’\n’ && c != 0)

putchar(c);

}

int column = 0;

void Count()

{ int i;

for (i = 0; yytext[i] != ’\0’; i++)

if (yytext[i] == ’\n’) column = 0;

else if (yytext[i] == ’\t’) column += 8 - (column % 8);

else column++;

ECHO;

}

Appendix B

Assembly Language Instruction
Set for the Third Generation
Module

In the instruction set below, it is assumed that all function cores to execute

instructions are located in the first position of the third generation module.

//====KEY

VEC : Vector

ADD : Add

SUB : Subtract

MUL : Multiply

DIV : Divide

ACC : Accumulate

DACC : DeAccumulate

PROD : Product

DPROD : DeProduct

K : Constant

R : Register

C : Counter

IMM : Immediate

//====BASIC OPERATIONS //====Comments

Op- Core Variable

Code Number Count

VECADD 2 Yi=Ai+Bi 12 1 2

VECADD 1 Yi=Ai+K 11 1 1

VECSUB 2 Yi=Ai-Bi 12 1 2

VECSUB 1 Yi=Ai-K 11 1 1

VECMUL 2 Yi=Ai*Bi 12 1 2

VECMUL 1 Yi=Ai*K 11 1 1

VECDIV 2 Yi=Ai/Bi 12 1 2

VECDIV 1 Yi=Ai/K 11 1 1

184

185

//====COMBINED INSTRUCTIONS //====Comments

//====WITHOUT CONSTANT

Op- Core Input Vector

Code Number Count

VECADDMUL 3 Yi=(Ai+Bi)*Ci 13 1 3

VECMULADD 3 Yi=(Ai*Bi)+Ci 13 1 3

VECADDDIV 3 Yi=(Ai+Bi)/Ci 13 1 3

VECDIVADD 3 Yi=(Ai/Bi)+Ci 13 1 3

VECADDSUB 3 Yi=(Ai+Bi)-Ci 13 1 3

VECSUBADD 3 Yi=(Ai-Bi)+Ci 13 1 3

VECSUBMUL 3 Yi=(Ai-Bi)*Ci 13 1 3

VECMULSUB 3 Yi=(Ai*Bi)-Ci 13 1 3

VECSUBDIV 3 Yi=(Ai-Bi)/Ci 13 1 3

VECDIVSUB 3 Yi=(Ai/Bi)-Ci 13 1 3

VECMULDIV 3 Yi=(Ai*Bi)/Ci 13 1 3

VECDIVMUL 3 Yi=(Ai/Bi)*Ci 13 1 3

//====COMBINED BASIC //====Comments

//====OPERATIONS (+,*) Op- Core Input Vector

Code Number Count

VECADDMUL 3 Yi=(Ai+Bi)*Ci 13 1 3

VECADDMUL 2 Yi=(Ai+Bi)*K 12 1 2

VECADDKMUL 2 Yi=(Ai+K) *Ci 12 1 2

VECADDKMUL 1 Yi=(Ai+K1)*K2 11 1 1

VECMULADD 3 Yi=(Ai*Bi)+Ci 13 1 3

VECMULADD 2 Yi=(Ai*Bi)+K 12 1 2

VECMULKADD 2 Yi=(Ai*K) +Ci 12 1 2

VECMULKADD 1 Yi=(Ai*K1)+K2 11 1 1

//====COMBINED BASIC //====Comments

//====OPERATIONS (+,/) Op- Core Input Vector

Code Number Count

VECADDDIV 3 Yi=(Ai+Bi)/Ci 13 1 3

VECADDDIV 2 Yi=(Ai+Bi)/K 12 1 2

VECADDKDIV 2 Yi=(Ai+K) /Ci 12 1 2

VECADDKDIV 1 Yi=(Ai+K1)/K2 11 1 1

VECDIVADD 3 Yi=(Ai/Bi)+Ci 13 1 3

VECDIVADD 2 Yi=(Ai/Bi)+K 12 1 2

VECDIVKADD 2 Yi=(Ai/K) +Ci 12 1 2

VECDIVKADD 1 Yi=(Ai/K1)+K2 11 1 1

//====COMBINED BASIC //====Comments

//====OPERATIONS (+,-) Op- Core Input Vector

Code Number Count

VECADDSUB 3 Yi=(Ai+Bi)-Ci 13 1 3

VECADDSUB 2 Yi=(Ai+Bi)-K 12 1 2

VECADDKSUB 2 Yi=(Ai+K) -Ci 12 1 2

VECADDKSUB 1 Yi=(Ai+K1)-K2 11 1 1

VECSUBADD 3 Yi=(Ai-Bi)+Ci 13 1 3

VECSUBADD 2 Yi=(Ai-Bi)+K 12 1 2

VECSUBKADD 2 Yi=(Ai-K) +Ci 12 1 2

VECSUBKADD 1 Yi=(Ai-K1)+K2 11 1 1

//====COMBINED BASIC //====Comments

//====OPERATIONS (-,*) Op- Core Input Vector

Code Number Count

VECSUBMUL 3 Yi=(Ai-Bi)*Ci 13 1 3

VECSUBMUL 2 Yi=(Ai-Bi)*K 12 1 2

VECSUBKMUL 2 Yi=(Ai-K) *Ci 12 1 2

186

VECSUBKMUL 1 Yi=(Ai-K1)*K2 11 1 1

VECMULSUB 3 Yi=(Ai*Bi)-Ci 13 1 3

VECMULSUB 2 Yi=(Ai*Bi)-K 12 1 2

VECMULKSUB 2 Yi=(Ai*K) -Ci 12 1 2

VECMULKSUB 1 Yi=(Ai*K1)-K2 11 1 1

//====COMBINED BASIC //====Comments

//====OPERATIONS (-,/) Op- Core Input Vector

Code Number Count

VECSUBDIV 3 Yi=(Ai-Bi)/Ci 13 1 3

VECSUBDIV 2 Yi=(Ai-Bi)/K 12 1 2

VECSUBKDIV 2 Yi=(Ai-K) /Ci 12 1 2

VECSUBKDIV 1 Yi=(Ai-K1)/K2 11 1 1

VECDIVSUB 3 Yi=(Ai/Bi)-Ci 13 1 3

VECDIVSUB 2 Yi=(Ai/Bi)-K 12 1 2

VECDIVKSUB 2 Yi=(Ai/K) -Ci 12 1 2

VECDIVKSUB 1 Yi=(Ai/K1)-K2 11 1 1

//====COMBINED BASIC //====Comments

//====OPERATIONS (*,/) Op- Core Variable

Code Number Count

VECMULDIV 3 Yi=(Ai*Bi)/Ci 13 1 3

VECMULDIV 2 Yi=(Ai*Bi)/K 12 1 2

VECMULKDIV 2 Yi=(Ai*K) /Ci 12 1 2

VECMULKDIV 1 Yi=(Ai*K1)/K2 11 1 1

VECDIVMUL 3 Yi=(Ai/Bi)*Ci 13 1 3

VECDIVMUL 2 Yi=(Ai/Bi)*K 12 1 2

VECDIVKMUL 2 Yi=(Ai/K) *Ci 12 1 2

VECDIVKMUL 1 Yi=(Ai/K1)*K2 11 1 1

//====ACCUMULATION //====Comments

//====OPERATIONS Op- Core Input Vector

Code Number Count

VECACC 1 Y=Y+Ai 11 1 1

VECDACC 1 Y=Y-Ai 11 1 1

VECPROD 1 Y=Y*Ai 11 1 1

VECDPROD 1 Y=Y/Ai 11 1 1

VECMULACC 2 Y=Y+(Ai*Bi) 12 1 2

VECMULKACC 1 Y=Y+(Ai*K) 11 1 2

VECMULDACC 2 Y=Y-(Ai*Bi) 12 1 2

VECMULKDACC 1 Y=Y-(Ai*K) 11 1 2

VECDIVACC 2 Y=Y+(Ai/Bi) 12 1 2

VECDIVKACC 1 Y=Y+(Ai/K) 11 1 2

VECDIVDACC 2 Y=Y-(Ai/Bi) 12 1 2

VECDIVKDACC 1 Y=Y-(Ai/K) 11 1 2

//====LOAD/STORE OPERATIONS

LOADR Reg#, [Address] //Load to a data register from a given addr.

LOADRIMM Reg#, Data //Load to a data register an immediate data

LOADC Cnt#, [Address] //Load to a Index Counter from a given addr.

LOADCIMM Cnt#, Data //Load to a Index Counter an immediate data.

STORER Reg#, [Address] //Store from a data register to a given addr.

STOREC Cnt#, [Address] //Store from a Index Counter to a given addr.

//====OTHER INSTRUCTIONS

RUN //Start running

PAUSE Cycl# //Stop a core or a pipelined unit for a given # of cycles

STOP //Stop a core or a pipelined unit for an indefinite time

HALT //complately stop the system.

	List of Tables
	List of Figures
	Introduction
	Goals of the Proposed Research
	The Tool: An Overview
	Distinguishing Features of RCCT
	Organization of the Dissertation

	Background
	FPGA Technology
	An overview of the automatic mapping tools for RC Systems
	Using an High-Level Programming Language (HLPL) as an HDL
	Raw Machines
	Pipeline Vectorization for RC Systems
	Handel-C
	Garp
	PipeRench
	COBRA-ABS

	The Hardware Module Library
	Introduction to the Hardware Modules
	Basic Floating-Point Core Units
	The First Generation Module
	The Second Generation Modules
	Module Datapaths
	Module Controllers
	Module Instruction Format and Module Execution
	Module Assembly Language Instruction Set
	Module Statistics

	The Third Generation Module
	Function Core Units
	The Datapath
	The Controller
	The Instruction Set

	Mathematical Models for the Third Generation Modules
	Module Execution versus GPP Execution

	The RCCT Compiler
	An Overview of the RCCT Compiler
	Inputs to the Compiler
	User Application
	Module Definition File
	Parameter File

	Scanner
	Parser
	Parser Data Types
	Parser Functions and Algorithms
	Parsing a for Loop
	Parsing an if Statement
	Parsing Arithmetic and Conditional Expressions
	Symbol Tables
	Parsing Module Definition and Parameter Files

	Code Writer
	Code Writer Data Types
	Module Matcher
	Vector Instruction Writer
	Data Dependency Analyzer
	Instruction Scheduler
	Index Information Collector and Optimizer
	Memory Manager
	Operand Sorter
	New Source Code Writer
	Session File Writer

	Handling RC Directives

	The RCCT Loader, Simulator and the Session File Format
	An Overview of the RCCT Loader and Simulator
	Session File
	Stand-Alone Version of the Loader
	Data Type Definitions to Store Parsed Session Files
	Scanning, Parsing and Printing the Session File
	Running the Parsed Session File

	DLL Version of the Loader
	The Simulator

	Experimental Setups and Test/Simulation Results
	Validating the Simulator
	Computing Systems Used in the Experiments
	Application 1: Matrix Multiplication
	Application 2: 3-D Image Correlation
	Application 3: Image Intensity Calculation
	Application 4: Frequency Domain Filter
	Summary of the Results

	Conclusion and Future Research Possibilities
	Future Research

	Bibliography
	Appendixes
	Lex Specification for the Scanner
	Assembly Language Instruction Set for the Third Generation Module

