
Abstract 
KIM, JIHYE. Mining of Cis-Regulatory Motifs Associated with Tissue-Specific Alternative 
Splicing. (Under the direction of Steffen Heber). 
 
Alternative splicing (AS) is an important post-transcriptional mechanism that increases 

protein diversity and may affect mRNA stability and translation efficiency. Despite its 

importance, our knowledge about its mechanism and regulation is very limited. Although it is 

known that the regulation of AS is influenced by multiple factors, most previous studies have 

focused on analyzing an individual regulator. In this dissertation, we apply three types of 

association rule mining techniques to discover cis-regulatory motifs or motif groups that are 

associated with specific AS patterns in mouse. General association rule mining for 

categorical attributes is used to find “motif=>motif” rules in gene groups that show similar 

exon skipping patterns. This method provides candidates for interacting motifs. 

Discretization-based and distribution-based quantitative association rule mining techniques 

are used to find “motif => exon skipping profile” rules. Many of the discovered motif 

candidates coincide with known splicing factor binding sites. Our ultimate goal is to find 

motifs and motif combinations that are involved in the dynamic regulation of AS. Based on 

our observations we hypothesize that some cis-regulatory elements affect AS only in 

combination with other elements. Interacting motifs show interesting differences to motifs 

that act individually.  For example, interacting motif pairs are more conserved, they occur on 

average closer to the splice sites, motif pairs derived from distribution-based association rule 
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mining, occur also in higher multiplicity. Based on these observations, we hypothesize that 

interacting cis-regulatory motifs might often correspond to weaker binding sites that occur in 

clusters close to the regulated splice sites. 
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alternative splicing and its regulation 
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From the recent discovery that the estimate of the number of human genes has been revised 

down to 20,000 to 25,000 (Claverie 2001; Stein 2004) and that there are estimated 100,000 

gene products, alternative splicing could be a important mechanism for producing diversity 

of gene products (Brett, Pospisil et al. 2002; Black 2003). Also, Previous estimates of the 

ratio of alternative splicing have been revised to 70% (Ladd and Cooper 2002) and 74% of 

genes show at least one alternative splicing form (Mironov, Fickett et al. 1999; Brett, Hanke 

et al. 2000; Kan, Rouchka et al. 2001; Modrek, Resch et al. 2001; Modrek and Lee 2002; 

Johnson, Castle et al. 2003; Leipzig, Pevzner et al. 2004). Bioinformatical analysis became 

essential for discover mechanism of alternative splicing with growing importance and the 

number of alternative splicing events. 

This dissertation contributes to alternative splicing research by developing 

computational algorithms for the identification of alternative splicing regulatory elements. 

The computational methods and algorithms developed have applicability to other areas of 

bioinformatics research and the results produced are directly relevant to alternative splicing 

research. 

 

1.1  Alternative Splicing 

In higher eukaryotes, genes often contain intervening sequences (introns). In the central 

dogma from gene to protein eukaryote genes take an additional step to mature RNA, RNA 

splicing, before going out of the nucleus. During splicing the introns are removed and the 

remaining sequences (exons) are concatenated. In the general splicing process, the 
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spliceosome, which contains five small nuclear ribonucleoproteins (snRNPs), cleaves the 5’ 

splice site (5’ ss), joins the 5’ end of the intron to the branch point forming a loop, cleaves the 

3’splice site (3’ ss), and finally ligates the exons (Fig 1) (Cooper). This process results in 

excision of the introns and ligation of exons.  Often, a gene might be spliced in various ways, 

resulting in several splice variants and the corresponding protein isoforms (Fig 2). This 

process is known as alternative splicing (AS). There are examples of hundreds and even 

thousands of functionally divergent mRNAs and proteins being generated from a single gene 

(Black 2000). 
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Fig 1 Splicing of pre-mRNA by spliceosome. U1 snRNP binds to the 5’ss and U2 snRNP 

binds to the branch point. U4/U6 and U5 snRNP complex enters the spliceosome. U5 

binds to the upstream of the 5’ss, U6 displaces U1 and then U5 binds to the 3’ss, 

followed by removal of intron and concatenation of exons. 
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Fig 2 Alternative splicing (exon skipping). Rectangles represent exons in the gene 

sequence. Two mRNA isoforms and corresponding proteins are generated. Exon 2 

(marked in grey) can be either included or skipped. 

 

AS plays an important role in the generation of protein diversity, subcellular localization, as 

well as processes such as transcription and signal transduction (Brudno, Gelfand et al. 2001). 

AS is also involved in diseases such as familial isolated GH deficiency type II (IGHD II), 

Frasier syndrome, and myotonic dystrophy (Faustino and Cooper 2003; Garcia-Blanco, 

Baraniak et al. 2004). 

It is estimated that up to 70% of human genes are alternatively spliced (Ladd and 

Cooper 2002), and this percentage might even increase if one takes into account that often 

AS events occur only in specific tissues, and at specific  developmental stages (Yeo, Holste et 

al. 2004).  

There are several patterns of AS (Fig 3)(Cartegni, Wang et al. 2003). Exons that are 

always included in the mRNA are called constitutive. A cassette exon is an exon that is 
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sometimes included and sometimes skipped. In animals, exon skipping is the most frequent 

AS pattern. A famous example for exon skipping is sex determination in drosophila. In male 

flies the gene Sxl includes exon 3, while in female flies this exon is skipped (Baker and 

Rubin 1989; Black 2003). 

 

Fig 3 Alternative Splicing Patterns. In each case, one splicing path is indicated in the 

upper line and the other AS path is indicated in the lower line. The exon/intron part 

which makes a difference is marked as a gray box. In the intron retention type, the 

alternative pattern path represents no splicing. The whole intron is included in the final 

mRNA. 
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1.1.1 Analysis of Alternative Splicing 

There are few bioinformatics tools for de novo AS prediction, and due to our limited 

knowledge of the splicing process, their predictions typically represent only a fraction of the 

true transcripts (Stanke, Keller et al. 2006; Stanke, Tzvetkova et al. 2006). 

The most common way to identify AS involves aligning and comparing EST/cDNA 

sequences. Examples include UniGene (Schuler 1997), TIGR Gene Indices (Lee, Tsai et al. 

2005), and GeneNest (Haas, Beissbarth et al. 2000). This method has significant limitations 

due to biases in transcript coverage, non-uniformity of EST/cDNA libraries, and transcript 

sampling (Lee and Roy 2004). Some of the problems of EST/cDNA analyses have been 

overcome by the development of AS oligonucleotide microarrays (Hu, Madore et al. 2001; 

Pan, Shai et al. 2004). Microarray experiments can measure whether a specific splice form 

constitutes an important fraction of a gene’s transcripts, and investigate its regulation across 

different tissues. 

Very recently, high-throughput sequencing technology became available to 

investigate AS (Pan, Shai et al. 2008). Second-generation DNA sequencing (including 454 

pyrosequencing, Illumina, and SOLiD platforms) is capable to detect and quantify alternative 

mRNA isoforms (Margulies, Egholm et al. 2005; Shendure, Porreca et al. 2005; Turcatti, 

Romieu et al. 2008) is capable to detect and quantify alternative mRNA isoforms. This 

sequencing approach is expected to cover many of the limitations of previous technologies 

used to investigate AS 
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1.1.2 Alternative Splicing Resources 

High throughput techniques such as sequencing and microarray experiments allow us to 

generate a huge amount of data. Information about AS is spread among many databases. 

Some data is available with direct or indirect annotation in various sequence databases such 

as GenBank and EBI. Parallel to the increasing data volume, programs and web servers for 

analysis of AS are developed. A summary of currently available AS resources is given in 

Table 1.  

PALSdb (Huang, Chen et al. 2002) and EASED (Pospisil, Herrmann et al. 2004) 

collected AS events by comparisons of cDNA and protein sequences, ASAP (Lee, Atanelov 

et al. 2003), AltExtron and  AltSplice (Thanaraj, Stamm et al. 2004), and SpliceInfo (Huang, 

Horng et al. 2005) collected AS events from genomic exon-intron structures. Besides 

sequence and splicing information, databases also contain annotations such as tissue 

specificity, developmental stage, expression level, GC content, repeat information, 

conservation information and the biological function. AEDB database (Stamm, Zhu et al. 

2000), as part of ASD (Thanaraj, Stamm et al. 2004), contains experimentally identified 

splicing regulatory signals extracted from the literature. 

In addition to databases, several programs and web servers are developed to annotate 

alternatively spliced transcripts based on alignment of cDNAs and protein sequences. ASG 

(Leipzig, Pevzner et al. 2004) provides splice graphs for several eukaryotic genomes and 

ASmodeler (Kim, Shin et al. 2004) help users to create their own splice graph annotations. 

TIGR Gene Indices (Schuler 1997) and NCBI UniGene (Liang, Holt et al. 2000) provide 
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comprising gene index collections. 

Table 1 Resources of alternative splicing on the web. 

Resource Description Address 

ASAP (Lee, 
Atanelov et al. 2003) 

Database of alternative 
splice events by 
comparison of cDNA and 
genome alignments 

http://bioinfo.mbi.ucla.edu/ASAP/ 

ASD, AltExtron, 
AltSplice (Stamm, 
Riethoven et al. 
2006) 

Database of alternative 
splice events by 
comparison of cDNA and 
genome alignments 

http://www.ebi.ac.uk/asd/altextron/ 
http://www.ebi.ac.uk/asd/altsplice/ 

ASD, AEDB 
(Stamm, Riethoven 
et al. 2006) 

Database of alternative 
splice events by 
experimental data from 
the literature 

http://www.ebi.ac.uk/asd/aedb/ 

PALSdb (Huang, 
Chen et al. 2002) 

Database of alternative 
splice events by 
comparison of mRNA 
and EST sequences 

http://ymbc.ym.edu.tw/palsdb/ 

SpliceInfo (Huang, 
Horng et al. 2005) 

Database of alternative 
splice events by 
comparison of cDNA, 
protein and genome 
alignments 

http://spliceinfo.mbc.nctu.edu.tw/ 

ASG (Leipzig, 
Pevzner et al. 2004) 

Genome-based splice 
graphs by a collection of 
transcripts 

http://statgen.ncsu.edu/asg/ 

Asmodeler (Kim, 
Shin et al. 2004) 

Genome-based splice 
graphs for transcript 
prediction 

http://genome.ewha.ac.kr/ECgene/ASmo
deler/ 

TIGR (Liang, Holt et 
al. 2000) 

Gene indices by cDNA 
clustering and assembly 

http://compbio.dfci.harvard.edu/tgi/ 

UniGene (Schuler 
1997) 

Gene indices by cDNA 
clustering and assembly 

http://www.ncbi.nlm.nih.gov/unigene 
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1.2 Alternative Splicing Regulation 

There is growing evidence about the importance of regulated AS for novel therapeutics and 

diagnostic markers (Lyddy 2002). However, the splicing code, a set of rules for AS regulation 

is poorly understood. The first layer of the splicing code consists of consensus splice site 

sequences located at exon/intron boundaries. A second layer consists of proteins (AS factors) 

that tend to recognize short sequences (cis-elements, see Fig 4) that are located close to 

regulated splice sites, and that selectively control splice site choice (see (Cooper 2001) for a 

comprehensive review). For example, a study that used a custom microarray to profile AS in 

mice showed that deletion of the neural specific AS factor Nova-2 primarily affects AS 

events in genes related to synaptic proteins, or axon guidance (Ule, Ule et al. 2005). It has 

been shown that tissue-specific AS and tissue-specific transcription primarily regulate 

independent sets of genes, and that often splicing is not only regulated by a single protein 

binding to a single cis-element, but by a combination of multiple proteins (Burge, Padgett et 

al. 1998; Frilander and Steitz 1999; Pilpel, Sudarsanam et al. 2001; Hannenhalli and Levy 

2002; Kato, Hata et al. 2004; Chan, Elemento et al. 2005; Vardhanabhuti, Wang et al. 2007; 

Sinha, Adler et al. 2008). 
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Fig 4 Cis-elements on a pre-mRNA sequence. Cis-elements can be located on both exon 

and intron with a function as an enhancer or silencer – ISE (intronic splicing enhancer), 

ISS (intronic splicing silencer), ESE (exonic splicing enhancer), and ESS (exonic 

splicing silencer). They are known to be generally short (5 to 10-mer). For example a 

sequence GAAGAAG is an exonic splicing enhancer for a rat gene, COT (Caudevilla, 

Codony et al. 2001). 

 

Recently, Florea (Florea 2006) classified patterns of AS mechanisms (Fig 5). AS 

enhancement (or activation) is preceded by recruiting splicing activator proteins such as SR 

(Ser/Arg) proteins at RRM (RNA recognition motif) domains, RS domain or exon splicing 

enhancers (ESEs). AS repression (or silencing) is induced by splicing silencers (splicing 

repressor proteins) such as hnRNPs or polypyrimidine tract binding proteins (PTBs). 
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Fig 5 Mechanisms of AS. (A) Splicing activator binds ESE RS-domain to enhance AS. 

Splicing activators activates U2AF or other splicing activators. (B) Splicing activator 

and Splicing repressor compete against each other. Winner protein activates its 

assistant proteins to activate or inhibit AS. (C) Sometimes combinatorial splicing 

factors (repressors in this picture) blocks splicing activator protein. (D) Combinatorial 

splicing factors (repressors in this picture) bind to the motifs on the pre-mRNA 

sequences to silence the exon. 
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1.2.1 Methods to Investigate the Regulation of Alternative Splicing 

Because of a growing interest in AS, many experimental and computational methods have 

been developed to discover AS regulatory elements. 

1.2.1.1 Experimental methods 

Early detection of AS regulatory elements resulted in identifying individual genes with 

certain features. A number of publications describe specific experimental studies for special 

cases of individual genes in a specific environment. Large-scale experiments are also being 

pursued to find AS regulatory elements. 

1.2.1.1.1 SELEX (Systematic Evolution of Ligands by Exponential Enrichment) 

SELEX (Tuerk and Gold 1990) allows users to discover AS regulatory elements in vivo. 

Randomly generated oligonucleotides are exposed to gene sequences or part of gene 

sequences, which are supposed as pre-mRNA. Those that do not bind the gene sequences are 

removed and spliced sequences are amplified by RT-PCR to go through the next cycle. After 

several cycles, sequences with high binding affinity for specific splicing profiles are obtained. 

Often, ESE (exon skipping enhancer) elements are found such as ASF/SF2, SC35, SRp40 or 

SRp55 (Liu, Zhang et al. 1998; Cartegni, Wang et al. 2003). A web tool, ESEfinder(Cartegni, 

Wang et al. 2003) provides ESE searching with query sequences by using weight matrices of 

four different human SR proteins found by SELEX method. Many other computational 

methods also use the SELEX method to validate their motifs. 
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1.2.1.1.2 In vivo splicing reporter system 

C. Burge and his colleagues used a  green-fluorescent protein (GFP) reporter to detect ESS 

(exon skipping silencer) elements (Wang, Rolish et al. 2004). They used three-exon 

minigenes whose middle exons are suspected to be skipped.  The first and last exons together 

form the complete green fluorescent protein (GFP), and the middle exon contains a sequence 

that interrupts the reporter. The middle exon is used for testing ESS properties. A putative 

ESS oligonucleotide is inserted into the second exon. If the oligonucleotide is indeed an ESS 

sequence, the middle exon is skipped and the transcribed mRNA encodes a functional GFP 

protein. Minigenes are transfected into cultured cells, the cells with GFP are detected by 

fluorescent-activated cell sorting (FACS), and their inserts are sequenced to identify the 

oligonucleotides responsible for exon skipping. 

1.2.1.2 Computational methods  

As genome-wide methods, such as microarrays, have been applied to detect AS events, 

computational and statistical approaches methods were also applied to investigate the 

regulation of AS. Many methods have been developed and they can be categorized into 

several groups. 

1.2.1.2.1 Methods for finding exonic elements 

RESCUE-ESE (Fairbrother, Yeh et al. 2002) identifies ESEs by a statistical analysis of exons, 

introns, and strong, weak splice site signals. They collected all possible hexamers in exons 

and flanking intron regions. They also selected hexamers that were enriched in exons (as 
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compared to introns) and genes with weak splice sites. The idea assumes that exonic 

enhancing motifs are more frequent in exons with weak splice sites. They found 238 

hexamers overrepresented in exons with weak splice site signals. After clustering similar 

heptamers by CLUSTALW(Thompson, Higgins et al. 1994), 10 motifs were discovered and 

validated by in-vivo experiments using SELEX. Later, they applied the VERIFY (variant 

elimination reinforces functionality) method to assess the natural selection acting on 

hexamers they found (Fairbrother, Holste et al. 2004). From aligning human SNPs to the 

chimpanzee genome, they analyzed overlapping mutations for SNPs and their hexamers. 

They concluded that one-fifth of the mutations that break their prediction have vanished. This 

suggested valuable factors to identify variants of splicing as well as phenotypes. 

Similarly, Chasin et al.(Zhang and Chasin 2004) identified ESEs by comparing 

frequent oligonucleotides in non-coding exons with pseudo-exons and 5’UTRs of intronless 

genes to avoid protein coding information.  

Also, Itoh and his co-workers(Itoh, Washio et al. 2004) reported the comparative analyses 

indicating that AS exons have weaker splice sites and more regulatory motifs than 

constitutive exons. From M.musculus, they extracted 62 motifs including GAAGAAG, which 

overlaps with RESCUE-ESE results from humans. 

Regulation activity of many predicted ESEs and ESSs  is measured by neighborhood 

inference (NI) that predicts sequences with activity in regulating a biochemical process 

(Stadler, Shomron et al. 2006). Hexamers that are candidates for splicing elements are 

identified by their predictive power, measured by cross-validation, and their degree of 

sequence conservation, and validated by their effects shown through in-vivo splicing reporter 
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assays. The experiments revealed that orthologous exons in mammals are highly conserved 

over background than ESE primary sequence and that ESE sequences are frequently 

interchangeable in the exon of mammals. 

1.2.1.2.2 Methods for finding intronic elements 

Lim et al.(Lim and Burge 2001) analyzed short intron sequences. They measured information 

content using five eukaryote genomes and used Monte Carlo simulations to determine the 

necessary information for detecting reliably short introns in each organism. They discovered 

the fact that additional pentamers as motifs can improve splicing prediction, while 5’ss, 3’ss, 

and branch signals are not enough for the prediction of splicing.  

Yeo et al.(Yeo, Van Nostrand et al. 2007) recently analyzed conserved 

oligonucleotides in 4 different species. They focused on the flanking 400 bp long introns. 

Statistically overrepresented oligonucleotides are extracted and grouped by conservation 

information. A similar approach with nematodes is presented by Kabat et al.(Kabat, 

Barberan-Soler et al. 2006)  

1.2.1.2.3 Methods for finding tissue specific AS regulatory elements  

Brudno and his co-workers(Brudno, Gelfand et al. 2001) applied computational approaches 

to identify tissue-specific AS elements. They started by retrieving 25 brain-specific 

alternative-splicing- cassette exons from the literature and assumed that splicing is regulated 

by short sequences near introns. They compared the introns near the 25 brain- specific 

alternative- splicing- cassette exons with a corresponding set derived from constitutive exons. 
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From this, they found divergent 5’ss, highly pyrimidine-rich upstream introns, a paucity of 

GGG motifs in the downstream intron, and enriched UAGAUG in the downstream intron.  

A study by Stamm et al.(Stamm, Zhu et al. 2000) reported tissue-specific expressed 

cassette exons. Applying a Gibb’s algorithm on the database from the literature, they 

identified several motifs in exons surrounded by weak splice sites and in tissue-specific 

exons. They also showed some features of alternative exons. For example, they showed that 

they are significantly skewed towards small lengths while lengths of constitutive exons are 

normally distributed; their splice site are more variant than the consensus; their 3’ splice sites 

contains many purines; their 5’ splice sites are more variant at +4 and +5 positions; adenosine 

is more frequently used at -3 position of the 3’ splice site for a single tissue specific 

expressed exons. They suggested that there is a combinatorial effect of weak splice sites, 

atypical nucleotide usage at certain positions, and functional enhancers for alternative exon 

regulation.  

Similarly, Zavolan et al (Zavolan, Kondo et al. 2003) also compared constitutive 

exons and cassette exons. They analyzed full-length cDNA sequences and public mRNA 

sequences. They identified a significant length difference between cassette and constitutive 

exons. To identify sequence motifs, they collected overrepresented and underrepresented 

motifs in cassette exons relative to constitutive exons in mRNA. Interestingly, they found 

that TGAAG and AAGAA containing motifs reported as ESE in RESCUE-ESE are 

overrepresented in both cassette and constitutive exons while TGGA-containing motifs are 

overrepresented only in constitutive exons. They found additional motif features, e.g. 

constitutive exons have CG-containing motifs while cassette exons have many pyrimidine-
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rich motifs similar to SRp20 motifs reported by Schall and Maniatis(Schaal and Maniatis 

1999). Many of their motifs are hRNP binding sites, which are G-rich (frequently AGGG 

containing motifs).   

1.2.1.2.4 Combinatorial AS regulatory elements 

Han et al.(Han, Yeo et al. 2005) discovered tissue-specific combinatorial motifs by an 

experimental approach. They identified that UAGG and GGGG motifs functions together to 

silence the brain-specific cassette exon of the glutamate NMDA R1 receptor (GRIN1) 

transcript. Their results indicate that combinatorial signals may strongly influence tissue-

specific regulation of the cassette exon. 

Recently, Burge’s group identified interacting pairs of cis-regulatory elements by 

finding statistically co-conserved and co-occurring oligonucleotides (Friedman, Stadler et al. 

2008). Compositionally orthogonalized co-occurrence analysis (coCOA) identified three 

clusters of oligonucleotide pairs that frequently co-occur at 5' and 3' boundaries of human 

and mouse introns. They describe GC-rich sequences at the 5' ends of introns that co-occur 

and are co-conserved with specific AU-rich sequences near intron 3' ends. The motif pair is 

expected to silence the intervening exons. This was verified by a splicing reporter assay. 

 

1.2.2 Databases of AS Regulatory Elements 

Currently, there are only a few available databases of AS regulatory elements. AEDB 

(Alternative Exon Database)(Stamm, Zhu et al. 2000) is a database of AS regulatory elements 

covering several species including humans. AEDB is a sub-menu of ASD (Alternative 
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Splicing Database)(Stamm, Riethoven et al. 2006) Project in EBI (http://www.ebi.ac.uk/). 

AEDB is manually generated from the literature with experimental verification. It provides 

alternatively spliced exon sequences, their function, regulatory motifs, minigenes and 

associated diseases. About 300 regulatory motifs with various lengths (3 to several tens bp 

long) are stored in AEDB.  

Hollywood (Holste, Huo et al. 2006) is a database made by Burge’s group. It is based 

on the genomic annotation of splicing patterns of known genes from alignment of cDNAs 

and ESTs. Hollywood also provides splicing features such as splice site, strength, type of 

splicing factors (enhancer, silencer), and conserved/non-conserved patterns of splicing as 

well as splicing regulatory elements of human and mouse. Hollywood is a collection of 

Burge’s group’s knowledge from all AS regulation projects including RESCUE-ESE 

(Fairbrother, Yeh et al. 2002), ACEs (Yeo, Van Nostrand et al. 2005), and FAS-ESSs (Wang, 

Rolish et al. 2004). 

 

1.3 Outline of Dissertation 

This dissertation describes new methods, motif association rule mining algorithms for finding 

cis-regulatory elements or motifs which are involved in tissue-specific alternative splicing. 

Through computational experiments with association rule mining we predicted individual 

and combinatorial motifs in alternatively spliced mouse genes. For representing cis-

regulatory elements, we restricted AS motifs with short sequences (5-9mers) and we treated 

them as items or attributes in association rule mining techniques. The hypothesis of the 
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dissertation is that computational methods taking the biological contexts of alternative 

splicing are able to provide accurate predictions and are able to discover novel AS motifs.  

This hypothesis was evaluated by developing methods for discovery of motifs in alternatively 

spliced mouse genes and examining predictions. The subsequent chapters of this dissertation 

describe the introduction of association rule mining technique and following research 

projects 

1. Introduction of association rule mining (ARM) and its algorithms and concepts 

2. Design and evaluation of algorithm of motif association rule mining in 

alternatively spliced mouse gene datasets 

3. Design and evaluation of algorithm of discretization-based quantitative 

association rule mining in alternatively spliced mouse gene datasets 

4. Design and evaluation of algorithm of distribution-based quantitative association 

rule mining in alternatively spliced mouse gene datasets 
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Chapter 2 
 
Association Rule Mining 
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2.1 Association Rule Mining (ARM)  

Association rule mining is a tool for finding unexpected relationships or associations among 

a set of items (Agrawal and Srikant 1994). The association relationships are described in 

association rules. Each rule has two measurements, support and confidence. Confidence is a 

measure of the rules’ strength, while support corresponds to statistical significance indicating 

how frequently the items present. Given a set of transactions D, the problem of mining 

association rules is to generate all association rules that have support and confidence greater 

than the user-specified minimum support and minimum confidence respectively. Formal 

description is followed. 

Let I = {i1, i2, …, im} be a set of items. Let D be a set of transactions, where each 

transaction T is a set of items such that T ⊆ I. Associated with each transaction is a unique 

identifier, called its TID. An association rule is an implication of the form X =>Y, where X ⊂ 

I, Y ⊂ I, and X ∩ Y = ∅. X is called antecedent (or left hand side, lhs) while Y is called 

consequence (or right hand side, rhs) of the rule. The rule X =>Y holds in the transactions in 

D with support s, where s is the percentage of transactions in D that contain X ∩Y. This is 

taken as the probability, P(X ∩Y). The rule X =>Y has confidence c in the transaction set D if 

c is the percentage of transactions in D containing X that also contain Y. This is taken to be 

the conditional probability, P(Y|X). That is 

 
Support (X=>Y) = P(X∪Y) 

Confidence(X=>Y) = P(Y|X) 
(1) 
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2.1.1 Algorithm 

Given a user specified minimum support and minimum confidence, the problem of mining 

association rules is to find all the association rules whose support and confidence are larger 

than the respective thresholds.  Thus, it can be decomposed into two sub-problems: 

1. Finding all frequent itemsets whose support values are above the user-

determined minimum support.  

2. Deriving all rules, based on each frequent itemset, which have more than the 

user-determined minimum confidence. 

 

Apriori is the basic algorithm for association rule mining. Many ARM algorithms such as 

DHP (Park, Chen et al. 1995), FDM (Cheungt, Hans et al.), CD (Agrawal and Shafer 1996), 

DD (Agrawal and Shafer 1996), IDD (Han and Karypis), HD (Han and Karypis), and CCPD 

(Zaki, Ogihara et al. 1996) are based on the Apriori and hash tree concept. Fig 5 describes the 

Apriori algorithm. Starting by finding all frequent 1-itemsets (1-sized itemsets), we then 

consider 2-itemsets, and so forth. During the each iteration only candidates found to be 

frequent in the previous iteration are used to generate a new candidate set during the next 

iteration. The algorithm terminates when there are no frequent k-itemset. 

The apriori-gen function takes the argument Lk-1 and returns a superset of the set of all 

frequent k-itemsets. It consists of a join step and prune step. In the join step, generate Ck from 

joining Lk-1 with itself. In the prune step, delete all itemsets c∈ Ck such that some (k-1)-

subset of c is not in Lk-1 since any (k−1)-itemset that is not frequent cannot be a subset of a 
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frequent k-itemset. A subset function is used to find all the candidate k-itemsets in a 

transaction database using a hash tree. 

In the rule generation step, we make all possible candidate rules with all frequent 

itemsets. Each frequent itemset can be antecedent and consequent, but not both 

simultaneously. After generating candidate rules, we discard rules that cannot satisfy a 

minimum confidence threshold. We call only rules satisfying minimum confidence 

association rules. Here, we note that a rule A=>B is not same as B=>A. Also, an association 

rule A=>B does not guarantee that B=>A also satisfies the minimum confidence. 
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Fig 6 Apriori algorithm 
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2.1.2 Example of Apriori 

We have a sample database in Fig 7 (A). Suppose that we want to find association rules with 

the minimum support 40%. We assume that the transactions in the database are 

lexicographically ordered. Fig 8 shows how to generate frequent itemsets. From all frequent 

itemsets we generate candidate rules and discard ones which are not satisfying the minimum 

confidence.  

 

Fig 7 An example of finding frequent itemsets. From a sample database, we find 

frequent itemsets with 40% of minimum support. Underlined itemsets are dropped in 

choosing frequent itemsets. 
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Fig 8 An example of finding interesting association rules. After the rule generation step 

with all frequent itemset of sample DB (Fig 7), we calculate the confidence of each 

candidate association rule. From frequent itemsets in Fig 7, we find interesting 

association rules with 80% of minimum confidence. Underlined rules are dropped in 

choosing interesting association rules. 

 

2.1.3 Concepts in ARM 

To find frequent itemsets efficiently, several types of data structures are suggested. The hash 

tree is the most popular concept in ARM. Many algorithms of association rule mining applied 

a hash table and a hash tree. In mining association rules from the sample database in Fig 7, a 
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hash tree (bucket size = 3) is created in every step from the sample database (Fig 7). 

 

Fig 9 A sample database and hash trees for 2-sized (a), 3-sized (b), and 4-sized (c) 

candidate itemsets 

 

Lattice as another concept for ARM is created once during a step of finding frequent itemsets. 

It does not contain unnecessary nodes compared with the Apriori algorithm. The lattice-based 

algorithms are PARTITION (Savasere, Omiecinski et al. 1995), Eclat-based (Zaki, 

Parthasarathy et al. 1997), DIC (Brin, Motwani et al. 1997), CHARM (Zaki and Hsiao 2005). 

Fig 10 is the lattice from the sample database shown in Fig 7. 
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Fig 10 Lattice of a sample database. Grey nodes are not frequent. 

 

FP-tree (frequent pattern tree) (Han, Pei et al. 2000) is an extended prefix tree structure for 

storing compressed, crucial information about frequent patterns. FP-growth is an efficient 

FP-tree-based mining method for mining the complete set of frequent patterns by pattern 

fragment growth. FP-tree scans a database only twice like the CHARM algorithm (Zaki and 

Hsiao 2005). It, however, does not produce candidate itemsets or select frequent itemsets 

from the database itself. Thus, FP-tree saves the space for the candidate itemsets. Fig 11 

shows an FP-tree from the sample database shown in Fig 7. 



 30

 

Fig 11 FP-tree with a sample database 

 

Table 1 presents construction time and supporting counts time of concepts discussed 

previously. n is the number of 1-sized frequent items and |D| is the number of transactions in 

database. Table 1 shows that each concept depends on the characteristics of data including n 

and |D|. When |D| is large and sparse, we expect that support counting in lattice is faster than 

the one in FP-tree because support counting in lattice is done by intersecting of tid-lists 

(vertical formatted database). However, when n is large, the intersection in lattice is 

proportional to n2 and FP-tree shows better performance. 
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Table 2 Concept Comparison (n = 1-sized frequent item). 

Concept Construction time Support counting time 

Hash Tree )( 2nΟ  |)|( 2 DnΟ  

Lattice )( 2nΟ  

FP-Tree )(nΟ  |)|( Dn×Ο  

 

2.2 Quantitative Association Rule Mining  

In many practical problems, there are not only categorical, but also quantitative attributes that 

are measured on a numerical scale. Since quantitative attributes in general cannot be treated 

as categorical ones, it is necessary to define quantitative association rules and corresponding 

rule mining algorithms. Several recent papers have addressed this problem (Aumann and 

Lindell 1999; Fukuda 1999; Brin, Rastogi et al. 2003). To solve the problem and to find 

association rules from quantitative attributed databases many methods have been developed. 

We can divide them into groups by their basic ideas. 

 

2.2.1 Discretization-Based Methods 

One of the most popular approaches is based on discretization (also called binning) of 

quantitative attributes. An example of a rule according to a discretization-based method is X
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∈[20, 30] => Y∈[5, 10]. The discretization-based approach has an additional preprocessing 

step, discretization before performing mining work. Many methods have been developed 

based on either equi-depth or equi-width (Wang, Hock et al.; Ramakrishnan and Rakesh 

1996; Lent, Swami et al. 1997; Miller and Yang 1997). The bin that original values are 

assigned in is too sensitive to the bin size. To reduce the influence of bin definition, distance-

based methods such as clustering and interval merging have been suggested (Wang, Yang et 

al.; Yager 1995; Ester, Kriege et al. 1996; Guha, Rastogi et al. 1998; Chun-Hung, Ada 

Waichee et al. 1999). However, this approach is sensitive to outliers. Table 3 shows examples 

of discretization with these three methods. 

Table 3 Example of discretization of quantitative attributes. 

value Equi-depth (depth = 3) Equi-width (width = 10) Distance-based 

3 [3, 7] [1, 10] [3, 7] 

4 [3, 7] [1, 10] [3, 7] 

7 [3, 7] [1, 10] [3, 7] 

19 [19, 21] [11, 20] [19, 33] 

20 [19, 21] [11, 20] [19, 33] 

21 [19, 21] [21, 30] [19, 33] 

22 [22, 33] [31, 40] [19, 33] 

24 [22, 33] [31, 40] [19, 33] 

33 [22, 33] [31, 40] [19, 33] 
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2.2.2 Distribution-Based Methods 

An alternative approach that overcomes the challenge to choose the “correct” bin size was 

proposed by Aumann and Lindell (Aumann and Lindell 1999). Their method directly 

considers the distribution of continuous data via standard statistical measures, such as the 

mean and the variance. A quantitative association rule is an association between a subset of a 

database (left-hand side of a rule) and its extraordinary behavior (right-hand side of rule). An 

example of a quantitative rule is {A, B} => {mean (X) = 68.7}, where A and B are 

categorical items and X is a quantitative attribute. This rule is interesting if it reveals that a 

group containing A and B shows a significantly different average of X from the rest of the 

data. Webb (Webb 2001) extended the measures to standard deviation, minimum, count etc. 

 

2.2.3 Optimization-Based Methods 

Fukuda and his colleagues defined a new optimization parameter that is called Gain to get a 

trade-off between support and confidence. Based on their work, several extended ideas have 

been suggested (Fukuda 1999). Although this optimization-based approach produces 

optimized association rules from the image segmentation technique, it has a limitation of  one 

or two numeric attributes (Salleb-Aouissi, Vrain et al. 2007). Another optimization-based 

algorithm, GAR (Mata 2002) is performed by a genetic algorithm to optimize the support of 

itemsets. QuantMiner (Salleb-Aouissi, Vrain et al. 2007) also used genetic algorithm to 

define intervals and optimized support and confidence thresholds. Ruchkert et al. used linear 
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inequation on the left and right hand sides of an association rule (Ruckert, Richter et al. 

2004). 

 

In this dissertation, we suggest motif association rule mining applying discretization-based 

and distribution-based quantitative association rule mining approaches. 
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Chapter 3 
 
Association Rule Mining – based 
Motif Association Rules 
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Alternative splicing (AS) is a major mechanism to generate protein diversity. A single gene 

might generate hundreds or even thousands of different proteins. AS plays an important role 

in cell proliferation, differentiation and death. Human diseases caused by AS have been 

shown in many studies, examples are familial isolated growth hormone deficiency type II, 

Frasier syndrome, and myotonic dystrophy (see (Faustino and Cooper 2003; Garcia-Blanco, 

Baraniak et al. 2004) for a detailed review). 

It is assumed that splice sites, exonic splicing enhancers and silencers, intronic 

splicing enhancers and silencers, and gene-specific splicing regulators contribute to the 

regulation of splicing during development or in different tissues (Grabowski 2002). SR 

proteins are required for constitutive pre-mRNA splicing, and often regulate alternative 

splice-site selection. They have a modular structure that consists of one or two RNA-

recognition motifs (RRMs) and a C-terminal motif which is rich in arginine and serine 

residues (RS domain). Their activity in alternative splicing is antagonized by members of the 

hnRNP A/B protein family (Caceres and Kornblihtt 2002). Several splicing factor binding 

sites (cis-regulatory elements) which influence the amount and type of alternative splicing 

have been identified (Yeo, Holste et al. 2004). Often, these sequence motifs can be found in 

close proximity to the corresponding splicing sites (Akerman and Mandel-Gutfreund 2006). 

Considerable effort has been made to discover regulatory elements in experimental 

and computational analyses (Famulok and Szostak 1993; Fairbrother, Yeh et al. 2002; Zhang, 

Leslie et al. 2005). Several studies investigate k-mer frequencies (k usually ranges from 5-10) 

in spliced sequences and compare them against a control (Brudno, Gelfand et al. 2001; 

Fairbrother, Yeh et al. 2002; Yeo, Holste et al. 2004). Another study uses a support vector 
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machine to identify regulatory elements (Zhang, Leslie et al. 2005). All of these studies focus 

on finding single motifs, and do not investigate systematically the co-occurrence of motif 

combinations. 

Recently, powerful large-scale AS profiling microarrays have been developed, but 

computational methods which investigate the regulation of AS are still lagging behind. 

Researchers have focused on finding cis-regulatory motifs in pre-mRNA sequences. However, 

most studies are searching for single motifs, while many splicing events seem to be regulated 

by a combination of splicing factors. 

In this chapter, we use association rule mining to discover cis-regulatory motifs that 

are responsible for distinct alternative splicing patterns in 10 mouse tissues. Our approach 

generates motifs and motif association rules in different alternative splicing pattern groups in 

mouse. We search for exonic and intronic regulatory elements and their association rules in 

the exon/intron sequences flanking an exon skipping event.  The inferred association rules 

indicate that alternative splicing pattern in different tissues might be explained by different 

motif combinations. Many of our discovered cis-regulatory motif candidates coincide with 

known splicing factor binding sites. 

 

3.1 Datasets 

Pan and colleagues (Pan, Shai et al. 2004) measured AS patterns of mouse genes using a 

custom splice array. They published exon skipping rates for 3126 alternatively spliced exons 

from 2647 genes in 10 tissues. To estimate the relative exon skipping rate, they developed a 
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generative model for the AS Array Platform (GenASAP, (Shai, Morris et al. 2006)). The exon 

skipping rate is defined as the ratio of the expression value of the transcript isoform skipping 

the cassette exon divided by the total expression of both isoforms. For example, Fig 12 

shows exon skipping rates of the BG046833 gene in 10 tissues. 

We retrieved 3126 whole-length transcripts from NCBI using GeneBank (Benson, 

Karsch-Mizrachi et al. 2006) identifiers provided by Pan and colleagues. We trimmed polyA 

tails using the trimest program from the EMBOSS package (Rice, Longden et al. 2000) and 

mapped the transcripts onto the mouse genome (Build 36 v.1 released in May 2006) via 

BLAT (Kent 2002). Only transcripts that aligned with more than 95% identity over whole 

transcripts were used for our experiments. Each transcript may contain more than one partial 

match of the sequence (called blocks in BLAT), indicating potential exons. Blocks separated 

by less than 5bp were merged. We compared the original cassette exons that Pan’s group 

provided and their neighboring constitutive exons with the corresponding set of blocks. Only 

genes where the exon borders differed by less than 5bp from the corresponding block borders 

were used for our study, resulting in a total of 2565 alternatively spliced pre-mRNA 

sequences. 
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Fig 12 (A) Probe design of Pan’s quantitative microarray platform. The dark rectangle 

represents an alternatively spliced exon; grey rectangles correspond to constitutive up 

and downstream exons. Six probes (C1, A, C2, C1-A, A-C2, C1-C2) are chosen from 

exons, introns, and splice junctions. (B) Exon skipping rates of the BG046833 gene in 10 
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mouse tissues. The value of 89 in spleen is calculated by the ratio of mRNA without a 

cassette exon/the ratio of total mRNA. 

3.2 Clustering Alternative Spliced Genes 

To find motif candidates for different AS patterns we clustered the gene set based on their 

exon skipping profile. We used the Pearson correlation and Euclidean distance and applied 

three different clustering methods (complete linkage, average linkage, and Ward). Our 

clustering resulted in 50, 70, 100 clusters with each method. Clusters range from 5 to 174 

genes. Fig 13 shows an example cluster from complete linkage method. The genes in this 

cluster show a sharp exon skipping rate peak in salivary tissue and a small variance and small 

exon skipping rates in other tissues. All clusters of genes are stored in 

http://statgen.ncsu.edu/~jihye/ASCluster.html 
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Fig 13 Exon skipping profiles of the genes contained in a cluster from complete linkage 

method based on Euclidean distance. 

3.3 Algorithm 

We define seven regions around each alternatively spliced exon. Since it is assumed that the 

majority of cis-regulatory elements involved in splicing are found close to splice sites 

(Cooper 2001; Akerman and Mandel-Gutfreund 2006; An and Grabowski 2007), we restrict 

our analysis to 200 base pairs flanking the splice sites. Each gene corresponds to a 

transaction. We count the occurrence of all possible hexamers and use them as items. We 

consider hexamers from different regions of a gene as different items (see Fig. 14), and 
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combine them into a transaction. 

 

Fig 14 For each alternatively spliced exon (grey box) we define seven regions (1-7) in the 

corresponding genomic sequence. The hexamer composition of each region is analyzed 

separately, and the corresponding hexamer counts are stored in an occurrence table. 

 

Our goal is to apply association rule mining to find sequence motifs rules associated with 

different exon skipping rate patterns. We are searching for interesting rules of the form 

“hexamer set => hexamer set”, where the hexamers derived from seven exon/intron regions 

are treated as categorical attributes. A rule indicates that genes that include a specific set of 

hexamers are likely to show a similar pattern of exon skipping rates in 10 tissues.  
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Fig 15 A simple example of finding association motif rules. From five sequences, we 

have four frequent 3-mer sets with 0.5 minimum support threshold. From these 4 

frequent 3-mer sets, we finally extract two rules satisfying 0.7 minimum confidence 

threshold. 

 

Fig 15 shows how we apply ARM to find frequent hexamers and association rules. In this 

figure, we only show one of the seven investigated splice site flanking regions, however we 

used all possible hexamers in all 7 regions as independent items. The ”Eclat” and “apriori” 

algorithms in the R package “arules” are used to extract frequent itemsets and association 

rules (Hahsler, Grün et al. 2007). 

3.3.1 Overlap Handling 

Since we slide a hexamer window over sequences, hexamers, as items, might overlap. We 

say that a rule A=>B shows overlap iff A and B overlap in a gene sequence. We discard 
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hexamers with insufficient support during the ARM process, and we perform an additional 

pass through the extracted rules in order to select the rules with non-overlapping motifs.  

In the example of Fig 16, although the rule TAG=>AGG satisfies both minimum support and 

minimum confidence, it shows overlap since the suffix of TAG, AG is exactly the same as the 

prefix of AGG in sequence 1 to 4. To avoid overlapping association rules, the maximum 

distance of two motifs in gene sequences should be considered, in case we have repeats of 

motifs. 

 

Fig 16 An example of motif repeats in gene sequences. Since two motifs ACC and CCG 

are repeated in gene sequences, we still have a rule ACC→CCG although they overlap. 

 

3.3.2 Significance of Motif Association Rules  

To measure importance of a rule, a lift value (also called interest) is frequently used 

(McNicholas, Murphy et al. 2008). The lift value of a rule is defined as: 
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Lift(X→Y) = confidence / expected confidence  

=confidence(X→Y) / (support(X)*support(Y)/support(X)) 

=confidence(X→Y) / support(X) 

(2) 

 

Generally, a lift value greater than 1 indicates that the antecedent and the consequent appear 

more often together than expected. This can be interpreted as the occurrence of the 

antecedent has a positive effect on the occurrence of the consequent. We find all interest 

motif association rules with a lift value of 2 or higher.  

 

3.4 Results 

We tried various minimum support thresholds to find frequent hexamer sets. From the 

highest 0.2 minimum support, we decreased the threshold by 0.05. To find association rules, 

we needed lower minimum supports. In total, we found 4 frequent hexamers (0.2 minimum 

support or 430 genes) and 1 association rule (0.05 minimum support and 0.5 minimum 

confidence). Table 4 shows the frequent motifs with different minimum support thresholds 

from all exon skipping genes in mouse. 

 

Table 4 Frequent hexamer sets from all AS genes in mouse. Hexamer sets are merged 

when they have only one nucleotide difference. Also they are extended when they 

overlap at the sequence level. Numbers after motifs indicate the different gene regions 

(see Fig 14) the motifs are derived from. For example, a frequent motif TGAAGA and 
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GAAGAA are from the downstream exon. Four frequent 6-mers were combined to two 

7-mers, TGAAGAA and TTTTCTT. With 0.15 minimum support (or 323 genes), 37 

frequent 6-mers are found and combined to 11 longer motifs when they are overlapped 

in gene sequences. 

Minimum support = 0.2 Minimum support = 0.15 

TGAAGA(7), 

GAAGAA(7), 

TTTCTT(6), 

TTTTCT(6) 

CTGAAGAAGA(7), 

CTGC{A/T}G (7), 

CAGC{A/T}G(7), 

CCTGGAGA(7), 

AAAGAAAA(7), 

AGAGAAG(7), 

AGGAAGA(7), 

GAGGAGA(7), 

TTTTT{C/G}TTT(6), 

TTTTTCTTTT(3), 

GT{A/G}AGT(2) 

 

We found A/G rich hexamers in the frequent items derived from exon sequences, and A/T 

rich hexamers in frequent items derived from intron sequences. This is in good concordance 

with previous studies that show that the major exonic enhancers such as SR protein binding 

sites are often A/G rich sequences (Zheng, Huynen et al. 1998). A/G rich motifs in exons and 

A/T rich motifs in introns are also found by the RESCUE algorithm (Fairbrother, Yeh et al. 

2002). We also found CACC-containing cis-regulatory motif candidates, as predicted from 

SELEX experiments (Famulok and Szostak 1993). Some G/C rich motifs from exons may be 

a sign of coding regions.  
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Table 5 and table 6 show association motif rules from all AS genes and 50 clusters 

with Ward’s method and correlation, respectively. 

Table 5 Association motif rules from all AS genes. All motifs in rules are from region 4 

(alternatively skipped exon) in Fig 14. 

Minimum support = 0.05, 

Minimum confidence = 0.5 

Minimum support = 0.05, 

Minimum confidence = 0.4 

AAAAAT→TGAAGA AAAAAT→TGAAGA, 

AAAGGA→AGAAGA, 

GAAAAA→AAGAAG, 

CTGCCT→CTGGAG, 

AGGAAA→AAGAAG, 

AATAAA→AAGAAG 

 

We also compared the support of rules inside and outside clusters using a χ2-test, but we did 

not find a significant difference. In addition, we computed the lift values as a parameter to 

measure the importance of a rule. All motif association rules we found have a lift value 

greater than 2. 
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Table 6 Example of frequent hexamers and their rules from 50 clusters with Ward’s 

method. We applied 0.2 minimum support and 1.0 minimum confidence. The numbers 

in parentheses indicate exon/intron regions in Fig 14. We show only hexamers and rules 

for the selected two clusters. 

Cluster Association Rules, minsupp, minconf, lift 

3 {7_AGGAAG} => {6_TCTTTT} 0.226 0.875 3.01 

{6_TCTTTT} => {7_AGGAAG} 0.226 0.778 3.014 

30 {7_TTATCT} => {7_GAGAAA} 0.220 1.000 3.154 

{7_GAGAAA} => {7_TTATCT} 0.220 0.692 3.154 

{7_GAGAAA} => {7_CTTCAG} 0.220 0.692 2.580 

{7_CTTCAG} => {7_GAGAAA} 0.220 0.818 2.580 

{7_CTCACT} => {7_TCCTGT} 0.220 1.000 3.727 

{7_TCCTGT} => {7_CTCACT} 0.220 0.818 3.727 

{7_TGGCAC} => {7_CCTGCT} 0.220 1.000 4.100 

{7_CCTGCT} => {7_TGGCAC} 0.220 0.900 4.100 

{7_TGGCAC} => {7_TCCTGT} 0.220 1.000 3.727 

{7_TCCTGT} => {7_TGGCAC} 0.220 0.818 3.727 

{7_GATCTC} => {7_CCTGCT} 0.220 0.900 3.690 

{7_CCTGCT} => {7_GATCTC} 0.220 0.900 3.690 

{7_CTCACC} => {7_TCCTGT} 0.220 0.900 3.355 

{7_TCCTGT} => {7_CTCACC} 0.220 0.818 3.355 

 

We also computed frequent motif sets and their motif rules from gene clusters. Since the SR 

protein binding site motifs GAAGAA and TGAAGA are known to occur in about 20% of all 

splice sites, we chose a minimum support threshold of 0.2 for our clusters. In the case of 

small clusters, we also set a minimum number of occurrences for frequent motifs. Table 7 
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shows our results. We have 16 association rules from 14 clusters (among a total of 50 

clusters) when we use Ward’s method based on correlation information. Many of the rules in 

each cluster contain A/G rich motifs in exons and A/T and C/T rich motifs in introns. 

We also searched for the AS pattern specific association rules. Given an association 

rule A=>B we counted the number of occurrences of A, B, A and B, and non A and non B in 

and outside a cluster. We used the Cochran-Mantel-Haenszel chi-square test (Agresti 2002) to 

test for homogeneity between inside cluster and outside cluster frequencies. All association 

rules found in clusters show highly significant p-values (less than 2.2e-16). Also, most rules 

inside a cluster show 20% higher confidence than outside the cluster. Therefore, we 

hypothesize that these association rules are cluster specific- or AS pattern specific association 

rules. Table 7 shows the cluster specific association rules that have at least a 20% higher 

confidence inside the cluster than compared to outside the cluster. 
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Table 7 Association rules from clusters based on the Pearson correlation coefficient 

with Ward’s method. The rules satisfy 0.05 minimum support thresholds, and they are 

supported by at least 7 genes. Confidence difference = (confidence inside cluster – 

confidence outside cluster). The number in the parentheses indicates exon/intron 

regions in Fig 14. 

Cluster 
Non-overlapped association rules from clusters (number after 

motifs indicates region of sequence) 

Confidence 

difference 

2 AGCAGC (1) → GCAGCC (1) 0.38 

3 
TGAAGA (7) → GAAGAA (7), AGGAAG (7) → TCTTTT (6) 

TCTTTT (6) →AGGAAG (7) 

0.25 

0.60 

0.70 

6 TTCCTT (3) → TTTCCT (3) 0.26 

13 TCCAAA (7) → CCAAAG (7) 0.30 

16 TTTCTT (6) → TTTTCT (6) 0.25 

21 AAGCAG (7) → GAAGCA (7) 0.27 

30 GAGAAA (7) → TTATCT (7) 0.53 

35 CTTTTC (3) → TTTTCT (3) 0.18 

36 GGAAGA (7) → GAAGAA (7) 0.26 

42 TTTTTA (3) →TTTTAT (3) 0.38 

43 GCTCCA (7) → CTCCAG (7) 0.27 

44 TATTTT (3) → ATTTTT (3) 0.31 

47 CTGTTT (6) → TGTTTT (6) 0.29 

49 GTGTTT (6) → TGTTTT (6) 0.30 
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3.5 Conclusion and Discussion 

We applied association rule mining to discover co-occurrence of potential cis-regulatory 

motifs in alternatively spliced genes. We used the “eclat” and “apriori” algorithm to find 

frequent sequence motifs and their association rules in exonic/intronic sequences flanking an 

exon skipping event. To guarantee rules with non-overlapping motifs, we extracted only rules 

with more than a 6 bp distance between antecedent and consequent. However, significantly 

larger sequence motifs might still be misunderstood with independent motif combinations. 

We plan to address this problem together with a more flexible motif description in future 

work. Altogether, we found 37 and 2471 frequent hexamers in all AS genes and clusters, 

respectively. Among these frequent hexamers 1799 have been already described in the 

transcript regulatory motif section of the Alternative Exon DataBase (AEDB) (Stamm, 

Riethoven et al. 2006), and 672 are new candidates for splicing regulating sequence motifs. 

We also computed association rules in clusters of genes with similar AS profiles. All inferred 

associations show a highly significant AS pattern specificity, and a large difference between 

rule confidence inside and outside the cluster. They are very promising candidates for 

cooperation of cis-regulatory elements involved in the regulation of tissue- and condition-

specific AS. We hypothesize that they could be used to predict the exon skipping profile of 

mouse genes that are not included in our data set. 
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Chapter 4 
 
Discretization – based Motif 
Association Rules 
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In general association rule mining, items or attributes should be categorical such as shopping 

items from market basket data, so that our we read sequences by sliding window and counted 

frequency of every hexamers. To obtain frequent hexamer motifs in genes with similar AS 

patterns, we grouped genes with similar patterns of exon skipping rates by clustering 

techniques. However, gene groups are dependent on clustering techniques and can be 

changed by applying different clustering methods, therefore, different motif association rules 

may be produced.  

In this chapter, to solve this problem, we use exon skipping rate value itself as items 

instead of clustering. We applied a discretization-based motif association rule mining method 

to find candidates of or part of cis-regulatory motifs that may influence tissue-specific exon 

skipping rate in mouse. Based on our observations we hypothesize that some cis-regulatory 

elements only affect AS in combination with other elements. Also, combinational motifs are 

close to the splice site while individual motifs are located at some distance from the splice 

site. From this observation, we expect that individual motifs have a stronger signal of binding, 

locating far from the splice site, and also attracting other splicing factor binding as well as 

spliceosome.  

 

4.1 Algorithm 

In this project, we also use mouse genes by Pan and colleagues (Pan, Shai et al. 2004) that 

are introduced in chapter 3. They are composed of 3126 alternatively spliced cassette exons, 

as well as accompanying measures of their exclusion levels in ten tissues. As in chapter 3, we 
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define seven regions around each alternatively spliced exon reported in Pan’s data set (Pan, 

Shai et al. 2004), and counted the occurrence of all hexamers in these regions (see Fig. 17). 

Since it is assumed that the majority of cis-regulatory elements involved in splicing are found 

close to splice sites (Cooper 2001; Akerman and Mandel-Gutfreund 2006; An and Grabowski 

2007), we restrict our analysis to 200 base pairs flanking the splice sites. We consider 

hexamers from different regions of a gene as different items, and combine them into a 

transaction. 

 

Fig 17 Discretization of quantitative exon skipping rates.  We apply quartiles to convert 

numeric exon skipping rates to character items. BrainLow describes the first exon 

skipping rate quartile and BrainHigh describes the last exon skipping rate quartile in 

the brain. 
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We group the numeric %ASex values into four categories: TissueHigh, TissueMedium1, 

TissueMedium2, and TissueLow based on equi-depth bins (Han and Kamber 2000) that 

represent the exon skipping rate in the different tissues. In this study we only focus on rules 

involving the extreme skipping rates TissueHigh, and TissueLow (Fig 17).  

Fig. 18 shows how we apply ARM to find frequent hexamers, frequent AS profiles, 

and their association rules. Although this figure shows only one of the seven investigated 

regions, our algorithm uses hexamers from each region as independent items. We use the 

“apriori” algorithm of the R package “arules” to extract frequent itemsets and association 

rules (Hahsler, Grün et al. 2007). To find sequence motif combinations, we set the maximum 

itemset length to two. To find clusters of sequence motifs associated with tissue-specific AS, 

we restrict the occurrence of hexamers to the antecedent, and the %ASex value intervals to 

the consequent. 
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Fig 18 For each alternatively spliced exon (grey box) we define seven regions (1-7) in the 

corresponding genomic sequence. The hexamer composition of each region is analyzed 

separately, and the corresponding hexamer counts are stored in an occurrence table. 

 

To find all frequent hexamers and their association rules Borgelt’s C-version apriori program 

(Borgelt 2003) is used, which carries out a breadth first search on the lattice and uses a prefix 

tree to organize the counters for the itemsets. 
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Fig 19 A simple example of finding motif association rules. From five sequences, we 

have four frequent 3-mer sets and three frequent AS profile sets with 0.5 minimum 

support threshold. From these 4 frequent 3-mer sets and 4 AS profile sets, we finally 

extract one rule satisfying 0.7 minimum confidence threshold. Association rule 

appearance is defined so that only an AS profile item can be located in consequent. 

 

4.1.1 Significance of Motif Association Rules 

To compute statistically significant association rules we use a chi-square analysis (Brin, 

Motwani et al. 1997). As suggested by Brin and colleagues (Brin, Motwani et al. 1997), we 

use the lift value to define the dependence between antecedent and consequent of an 

association rule.  
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Sergio Alvarez gave the following relationship between the chi-square statistic, and 

the values for support, confidence, and lift of a rule (see Alvarez 2003 and Appendix A for 

detail): 

))((
)1( 22

confliftuppsconf
confuppsliftn

−−
⋅−=χ  (1) 

 

We use equation (1) to compute the relationship between support and confidence for fixed 

and lift. For α=0.05, n=2565 mouse genes and lift=1.2, we computed the maximized support 

(=0.032) and the corresponding minimum confidence (=0.195). To accommodate for multiple 

comparisons, we compute the p-value of each rule, and report significant rules after 

Bonferroni adjustment (Bonferroni 1936). 

 

4.1.2 Overlap Handling 

We noticed that the hexamer items of complex rules often overlap, and could be replaced by 

a single, longer sequence item. To identify such cases, we analyze the overlap and distance 

pattern of hexamer items involved in complex rules. If for an overlapping hexamer pair the 

thresholds for support and confidence are exceeded, we replace the hexamer pair by a single, 

larger sequence item and update the rule correspondingly.  
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Fig 20 From the gene sequence and AS profile dataset, 6 association rules are generated 

by 0.6 minimum support and 0.6 minimum confidence. To check if a hexamer pair rule 

is a longer simple motif rule or a complex rule, supports of overlapping and non-

overlapping hexamer pairs are computed. Both supports of hexamer pairs exceed the 

minimum support as well as minimum confidence. Overlapping hexamer pair rule 

{ATG, TGC} → BH, and non-overlapping hexamer pair rule {ATG, TGC} → HH 

exceed that threshold. Finally, we produce three simple rules and one complex 

association rule. 
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4.2 Results 

We compute all association rules for minimum support = 0.032, minimum confidence = 

0.195, and minimum lift = 1.2, and report all significant rules after Bonferroni correction. 

After overlap handling we obtained a total of 1260 single-hexamer association rules and 204 

hexamer pair association rules. The entire set of association rules is available in Appendix A 

(also, http://statgen.ncsu.edu/~jihye/MotifARM.html). 

Complex rules with two or more hexamers in the antecedent suggest a complex 

regulation of AS where multiple factors cooperate. We found 204 complex association rules, 

of which 117 rules contain hexamer pairs from different regions of the pre-mRNA sequence. 

For example, the rule {CCTGGG(2), TGTTTT(6)} → HeartHighQuan indicates that the 

occurrence of TGTTTT in the downstream intron of the cassette exon, and the occurrence of 

CCTGGG in the upstream intron seem to be associated with an increased exon skipping rate 

in the heart (Table 8). 
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Table 8 Examples of motif association rules. The number after the hexamer indicates a 

region on pre-mRNA sequence (Fig 18). P-values are Bonferroni adjusted. 

Association rule Supp. Conf. Lift p-value 

TTTCTC(6),TTCTTT(3)→BrainLowQuan 0.034 0.391 1.545 1.93e-4 

TTTCTG(6)→HeartHighQuan 0.169 0.309 1.246 3.24e-9 

TTTCTG(6),CTTTCT(3)→HeartHighQuan 0.033 0.417 1.678 5.31e-7 

CCTGGG(2),TGTTTT(6)→HeartHighQuan 0.036 0.380 1.532 1.48e-4 

GGTGGG(2),TTTCTT(3)→HeartHighQuan 0.034 0.384 1.545 1.70e-4 

TTGTTT(5)→IntestineHighQuan 0.172, 0.304  1.220  3.53e-7 

TTTTAT(5),TTGTTT(5)→IntestineHighQuan 0.044, 0.360  1.444 2.92e-3 

GGTGGG(2),TTTTCT(3)→IntestineHighQuan 0.034 0.379 1.523 8.03e-4 

CTTCCC(2),TTTTCT(6)→KidneyLowQuan 0.033 0.400 1.531 1.07e-3 

TTTCCT(6),TGTTTT(3)→LiverLowQuan 0.039 0.434 1.688 1.22e-11 

CCTGGG(2),TGTTTT(6)→LiverHighQuan 0.036  0.370  1.500  1.40e-3 

GTAAGT(2),TTTTGT(6)→LungHighQuan 0.033 0.405 1.625 6.30e-7 

TGTCTT(6)→MuscleHighQuan 0.159 0.292 1.204 1.02e-4 

TTTGTT(3),TTCTTT(6)→MuscleLowQuan 0.039 0.374 1.491 7.65e-4 

GTGAGT(2),TGTTTT(6)→SalivaryLowQuan 0.053 0.378 1.488 1.86e-6 

CTTTTT(6),TTCTTT (3)→SalivaryLowQuan 0.036 0.391 1.542 8.29e-5 

GTGAGT(5),TCTTTT(6)→SpleenHighQuan 0.033 0.393 1.587 1.29e-5 

CTTCCC(2),TTTTCT(6)→TestisLowQuan 0.033 0.388 1.518 2.17e-3 
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4.2.1 Motif Combinations 

For a given consequent Y there are three different types of antecedents. 

 A complex antecedent {A, B}, where neither hexamer A nor hexamer B 

occurs in a simple rule. One might speculate that the motif pair {A, B} 

influences exon skipping only in combinatorial way. e.g., CCTGGG in 

region 2 and TGTTTT in region 6 alone do not appear in simple rules, but 

they appear together in a complex rule with consequent HeartHighQuan 

(Fig 21. (A)). We found 138 complex association rules with such a feature. 

 A complex antecedent {A, B}, where hexamer A and/or hexamer B also 

occur in a simple rule. For example, TTTCTG in region 6 appears in simple 

rules and a combination with CTTTCT in region 3 also appears in a complex 

rule with consequent HeartHighQuan (Fig 21 (B)). We found 66 complex 

association rules with this feature. 

 A simple antecedent {A}, where hexamer A occurs only in a simple rule. For 

example, TTGTTT in region 5 appears in a simple rule with consequent 

IntestineHighQuan but it is not shown any complex rule whose consequent 

is IntestineHighQuan (Fig 21 (C)). We found 1194 simple association rules 

with this feature. 
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Fig 21 Three types of motif or motif combination effects on exon skipping. (A) Only 

genes with both hexamers, CCTGGG(2), and TGTTTT(6) show big different exon 

skipping value from all or genes with either hexamer. (B) A hexamer TTTCTG(6) 
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increases %ASex in the heart and cooperation with CTTTCT(3) increases more. (C) A 

hexamer TTGTTT(5) increases exon skipping in the intestine, however, cooperation 

with TTCTCT(6) does not show difference from the average %ASex even though they 

together are a frequent hexamer set. 

 

4.2.2 Motif Position Distribution 

To assess if there is a difference between simple and complex rules, we analyzed the 

distribution of hexamer occurrences with respect to the location of splice sites.  For each 

hexamer involved in an association rule we counted the number of occurrences that are 

less/more than 100 bps away from the adjacent splice site. We also prepared a background set 

of 200 randomly selected hexamers not involved in any rule. While hexamers from simple 

rules do not significantly differ from the background (p-value = 0.564 from a t-test), 

hexamers from complex rules show a significant enrichment of occurrences close to the 

splice site (p-value <2.2e-16). On average, 64% of the hexamer occurrences from complex 

rules are less than 100 bps away from the adjacent splice site, versus 49.5% for the 

background set. Fig 22 shows distributions of hexamer positions for complex and simple 

association rules as well as the background. 
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Fig 22 Distance distributions of (A) motifs from complex rules, (B) motifs from simple 

rules, and (C) random motifs. Motifs from complex rules are dense near the splice site 

while motifs from simple rules and random motifs are evenly distributed. 
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4.3 Conclusion and Discussion 

We applied association rule mining to discover putative cis-regulatory motifs and motif pairs 

in alternatively spliced genes. We used the “apriori” algorithm to identify statistically 

significant association rules between frequent sequence motifs in exonic/intronic sequences 

flanking exon skipping events, and exon skipping levels. Association Rule Mining provides a 

convenient framework for the systematic investigation of sequence motifs involved in the 

regulation of AS. We found 1260 simple and 204 complex rules with statistically significant 

associations to tissue specific AS events. Among the complex rules, 117 rules contain 

hexamer pairs from different regions of the pre-mRNA sequence. Among the complex rules, 

66 rules involve hexamers that also occur in simple rules, while 138 rules involve hexamer 

items not contained in any simple rule. An approach that targets only individual motif 

candidates would have overlooked these motifs. Surprisingly, we found a strong positional 

bias for sequence motifs involved in complex association rules, but not for motifs derived 

from simple rules. We hypothesize that different biological mechanisms might be involved in 

combinatorial regulation of AS. 

We assessed the overlap of our predictions with known AS regulatory sequence 

motifs stored in AEDB (Stamm 2000). Among all hexamers involved in simple and complex 

rules, 42% of the hexamers located in exonic regions, and 63% of the hexamers located in 

intronic regions overlap with enhancer/silencer sequences from AEDB. This is significantly 

higher (p-value<=2.18e-13) than a similar value computed for randomly selected hexamers 

(19% for exonic regions, 18% for intronic regions). We hypothesize that our results 
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correspond to AS regulating factors. Our motif catalog provides a promising list of 

candidates for subsequent validation experiments. 
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Chapter 5 
 
Distribution – based Motif 
Association Rules 
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In the previous chapter, we discretized numeric exon skipping rates to categorical items. 

Many interesting rules are discovered and supported by known and evaluated splicing factor 

binding sites. However, discretization-based rule mining is dependent on binning method and 

motif rules can be changed by applying different binning method and different bin size. Also, 

we met a problem of decision for proper thresholds to define interesting rules.  To avoid these 

problems, in this chapter, we adapted distribution-based association rule mining idea and 

used numeric exon skipping rate itself instead of converting to categorical items. We found 

that motifs from cooperating motif pairs typically occur multiple times per gene, and that 

they are more conserved than motifs which act individually. 

 

5.1 Algorithm 

The goal of our study is to apply quantitative association rule mining to find sequence motifs 

associated with tissue-specific exon skipping rate changes. We searched for interesting rules 

of the form “a set of heptamer(s) => exon skipping rate”, where a set of heptamer(s) from 

seven exon/intron regions are categorical attributes, and the exon skipping rate is a 

quantitative attribute. An “interesting” rule indicates that genes that include a specific set of 

heptamer(s) are likely to show an extraordinary exon skipping rate in one or several tissue(s) 

as compared to the remaining genes. After testing k-mers with k ranging from 5 to 9, we 

chose heptamers because of their superior performance, and because they are capable of 

detecting binding sites of splicing factors such as SR proteins (Fairbrother, Yeh et al. 2002; 

Yeo, Holste et al. 2004; Voelker and Berglund 2007).  
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We define seven regions around each alternatively spliced exon. Since it is assumed 

that the majority of cis-regulatory elements involved in splicing are found close to splice sites 

(Cooper 2001; Akerman and Mandel-Gutfreund 2006; An and Grabowski 2007), we restrict 

our analysis to 200 base pairs flanking the splice sites. Under this framework, each gene 

corresponds to a transaction. Each transaction contains as items, the counts for all 

occurrences of all possible heptamers in each of the 7 different gene regions. Fig 23 shows 

how the transaction database can be represented in tabular form. Each row corresponds to the 

transaction for a single gene. The generated table contains columns for each possible 

heptamer/region combination, for a total of 47 x 7 = 114,688 columns. Also included in the 

table are 10 additional columns containing the exon skipping rates for the various tissues. In 

Fig 23 (and throughout the text), the heptamers from a given region are fixed with the region 

number; for example, the heptamer GGCAGAT from region 4 is designated by 4_GGCAGAT.  
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Fig 23 For each alternatively spliced exon (grey box) we define seven regions (1-7) in the 

corresponding genomic sequence. The heptamer composition of each region is analyzed 

separately, and the corresponding heptamer counts are stored in an occurrence table. 

 

To identify sequence motifs associated with changes in exon skipping rates, we used an 

adaptation of Aumann and Lindell’s method. The algorithm for finding heptamer association 

rules follows three steps, outlined below: 

 

1. Find all “frequent” heptamer sets, where a heptamer set is called frequent if its 

support is greater than a user-defined minimum support threshold. 

2. For each frequent heptamer set and tissue type, compute the mean exon 

skipping rates for genes having the heptamer set, and genes lacking the 

heptamer set. 
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3. Identify and report “interesting” association rules using a t-test of the skipping 

rates computed in step 2. Association rules are considered interesting if the exon 

skipping rate is significantly different depending on whether the heptamer set 

on the left-hand side of the rule is found in the gene. 

 

5.1.1 Data Structure 

We computed frequent heptamer sets (which include both location and sequence information) 

based on an the Apriori algorithm (Agrawal and Srikant 1994). To efficiently compute 

frequent heptamer sets containing multiple heptamers, we used an itemset inclusion lattice, as 

described in (Zaki and Hsiao 2005). The lattice, G = (V, E), is composed of nodes of frequent 

heptamer sets with edges showing parent/children relationships (Fig. 24). An item superset 

cannot be frequent if any of its subsets is not frequent. For example, in Fig 24, a frequent 

heptamer set, {A, B} is frequent and all of its subsets, {A}, {B} are frequent. Also, {A, B, 

C} cannot be a frequent set because one of its subsets, {A, C} is not frequent. 
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Fig 24 Lattice of frequent heptamer sets. Each node stores (for every tissue) the mean 

exon skipping rate of the genes containing the corresponding heptamer set. If {A, C} is 

not a frequent heptamer set, a superset {A, B, C} cannot be a frequent heptamer set 

either. We compare each node with the root node. 

 

To identify interesting rules, we use a standard t-test. Let D denote the full gene set; let TA  

denote the set of genes that include a given frequent heptamer set, A which occurs on the left-

hand side of a rule for some tissue, t; and, let D − TA denote the remaining genes. Given the 

heptamer set, (Agrawal and Srikant 1994), we first compared t,TA
μ , the mean exon skipping 

rate in tissue t for genes having this heptamer with t,TD A−μ , the mean exon skipping rate of 

genes lacking the heptamer. The rule was reported if the corresponding null hypothesis is 

rejected at an alpha level of 0.05, after applying Bonferroni’s method to adjust for multiple 

testing. 
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5.1.2 Overlap Handling 

We noticed that the heptamer items for rules often overlapped, and could be simplified by 

substitution with a single, longer sequence motif on the left-hand side of the rule. To identify 

such cases, we analyzed the overlap and distance patterns of heptamer items involved in 

complex rules. If an overlapping heptamer pair exceeded the support threshold we replaced 

the heptamer pair by a single, larger sequence item and updated the rule correspondingly. Fig 

25 describes how motif overlapping is defined in association rules. In finding frequent 3-mer 

sets, two or more sized frequent sets are counted on two assumptions that frequent 3-mers are 

separated on sequence and that they are from one longer sequence. 

 

Fig 25 Overlap handling. We suppose that we want to find frequent 3-mers with 70% of 

minimum support. For a 2-sized frequent 3-mer set, {ACC, CCG}, we assume two cases 
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that they are separate on sequence and that they are from one motif. We count both 

cases and select the case that exceeds the minimum support. 

 

5.2 Results 

We computed all association rules for minimum support values ranging from 20 to 70 in 

steps of 5, corresponding to 2.72% to 0.77% of the whole dataset. Based on previous 

experience, we assumed that 20 genes is the smallest number to safely support sequence 

motifs as candidates for binding sites; we then increased the minimum support threshold and 

extracted the corresponding interesting rules until we could no longer find any interesting 

rules. In total, we mined 97 interesting rules, of which 3 contain multiple heptamers. There 

are 59 different heptamer sets and 71 individual frequent heptamers in the left hand sides of 

the rules. Table 9 shows heptamer association rules with absolute minimum support 20 genes 

in each tissue. The rules found for exon skipping rates in all tissues are listed in Table 15 of 

the Appendix B. All rules extracted are statistically significant after correcting for multiple 

testing. 

Table 9 Heptamer association rules with 20 minimum support (0.77%). P-values are 

Bonferroni adjusted. 

Tissue Heptamer set , p-value, mean difference 

Brain 3_TGACTAG , 0.026, -23.094 

3_TTGGTTC 3_TGGTTCT , 0.009, -23.613 

4_GCTGGAG , 0.001, -13.545 



 76

Table 9 Continued. 

 4_TGCTGGA , 0.004, -16.373 

4_TGCTGGA 4_GCTGGAG , 0.018, -19.440 

4_TGGGCTG , 0.015, -19.357 

6_TTTAAAA 3_TTATTTT , 0.004, -20.216 

7_ACCTCAC , 0.018, -18.713 

Heart 4_TGCTGGA , 0.010, -15.039 

4_TGTGGAG , 0.003, -14.416 

Intestine 4_TGCTGGA , 0.000, -19.731 

4_GTGCTGG 4_TGCTGGA , 0.001,- 25.057 

4_TGCTGGA 4_GCTGGAG , 0.001,-24.696 

4_GCTGGAG , 0.024, -13.480 

4_CTGCTGG 4_GCTGCTG , 0.003, -21.049 

4_GCTGCTG , 0.032, -13.389 

2_GAAGTCC , 0.042, -20.071 

4_GACATCA , 0.035, -17.672 

Kidney 7_TTGCTAA , 0.004, -19.492 

4_TGCTGGA , 0.000, -19.273 

4_TGCAGAA , 0.003, -15.417 

6_AACAGGA , 0.005, -16.567 

4_GAGAAGA 4_GGAGAAG , 0.003, -19.899 

4_GACATTG , 0.022, -20.627 

4_GGAGGTG , 0.002, -17.227 

Liver 4_TGCTGGA , 0.000, -19.649 

4_TGGGCTG 4_CTGGGCT , 0.027, -20.160 

6_GGTCCAG , 0.004, -21.932 

3_GACCTCT 3_TGACCTC , 0.003, -22.357 



 77

Tale 9 Continued. 

 4_GTGCTGG 4_TGCTGGA , 0.026,- 21.740 

2_TCACTCC , 0.029, -19.859 

4_TGCTGGA 4_GCTGGAG , 0.007, 22.490 

4_GCTGGAG , 0.000, 16.229 

6_CTCCTTC 6_CCTCCTT , 0.003, -21.575 

4_GAGAAGA 4_GGAGAAG , 0.025, -18.454 

4_GACATTG , 0.008, -20.388 

4_GGAGGTG , 0.002, -18.561 

2_AGGCCTG 2_GGCCTGG , 0.000, -19.685 

Lung 4_TGCTGGA , 0.000, -20.773 

6_CCTAGTC , 0.002, -22.784 

4_TGCTGGA 4_GCTGGAG , 0.000, -25.354 

4_GCTGGAG , 0.000, -15.564 

3_GAAGAGC 3_AAGAGCA , 0.001, -23.591 

2_AGGCCTG 2_GGCCTGG , 0.010, -17.604 

6_GTTTTTG 6_TTGTTTT 6_TTTGTTT , 0.024, -21.830 

Muscle 2_GCCGGGC , 0.034, +15.141 

4_GCTGGAG , 0.000, -13.921 

2_GGAGCGG , 0.037, +18.662 

4_TGTGGAG , 0.007, -14.381 

Salivary 4_TGGGCTG , 0.004, -21.590 

7_AGGGAGC , 0.021, +29.095 

4_TGCTGGA , 0.001, -17.907 

4_TGCTGGA 4_GCTGGAG , 0.003, -24.457 

4_GCTGGAG , 0.015, -13.987 

4_GGAGGTG , 0.002, -19.290 
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Table 9 Continued. 

Spleen 4_TGCTGGA , 0.000, -18.461 

3_AAAATAT 3_TTTGTTT , 0.002, -24.253 

2_TTTCTCT 3_TTTCTCT , 0.023, +32.536 

3_AAAATAT 3_TTTGTTT 3_TTGTTTT , 0.002, -24.879 

Testis 6_ATAAAAT 6_TAAAATG , 0.021, -21.401 

3_TTTTTCA 3_TTCATTT , 0.034, -22.472 

4_TGCTGGA , 0.016, -15.240 

3_ACCCACC 3_CACCCAC , 0.002, -25.001 

3_TTGGTCT , 0.045,- 20.042 

 

We performed a permutation experiment to estimate the number of rules obtained from a 

randomized data set. To do so, we shuffled gene sequences and exon skipping rates and then 

re-ran our algorithm. This procedure was repeated 100 times. Using the same minimum 

supports we found that the mean number of simple rules obtained from the randomized data 

sets was 14.7, compared to the 97 rules we found in the original database. Furthermore, we 

were unable to extract any complex rules using the randomized data sets. 

In general, the number of reported rules decreased with increasing minimum support, 

but some rules were especially robust (Fig 26). Several heptamer sets in region 4 (cassette 

exon) are commonly found for a wide range of minimum support values. For example a rule 

with left hand side GCTGGAG was reported for all tested support values in association rules 

describing exon skipping in brain, intestine, kidney, liver, lung, muscle and salivary tissue. 

This heptamer overlaps with the 5’ end of a potential SC35 binding site. It has been shown 
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that this binding site is crucial for the correct splicing of exon 5 of muscle-specific cardiac 

troponin T transcripts (Hodges, Cripps et al. 1999).  

The complex rules we uncovered included two complex rules having heptamers from 

different regions. In brain tissue, the rule {6_TTTAAAA, 3_TTATTTT} => {meandiff(Brain) 

= -20.216} indicates that genes with both TTTAAAA in a downstream intron and TTATTTT 

in an upstream intron show, on average, a 20.216% lower exon skipping rate in brain 

compared to the exon skipping rate of brain of other genes (Fig 27 (A)). Interestingly, neither 

of these heptamers is included in a simple rule in any of the tissues. The other complex rule 

with two heptamers from different regions was found in the spleen: {2_TTTCTCT, 

3_TTTCTCT} => {meandiff(Spleen) = 32.536}. This rule indicates that genes with two 

TTTCTCTs in the upstream intron show, on average, a 32.536% higher exon skipping rate in 

the spleen compared to the rest of the genes (Fig 27 (B)). 

The third complex rule also occurred in spleen, and contained two heptamers from the 

same regulatory region: {3_AAAATAT, 3_TTTGTTT} => {meandiff(spleen) = -24.253}. 
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Fig 26 Number of Rules according to a minimum support threshold. (A) the number of 

rules reported by tissue decreases with increasing minimum support but exceptions 

exists.  (B) As the minimum support decreases, the number of frequent heptamers 

increases exponentially while the number of rules increases linearly. 
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Fig 27 Exon skipping rates of complex rules. (A) {6_TTTAAAA, 3_TTATTTT} => 

{meandiff(Brain) = -20.216} (B) {2_TTTCTCT, 3_TTTCTCT} => {meandiff(Spleen) = 

32.536}. Genes with only one heptamer do not show a statistically significant difference 

in the mean exon skipping rate while genes with both heptamers show statistically 

significant lower exon skipping rates in both cases. 

 

5.2.1 Repeats of Motifs 

The heptamers corresponding to complex rules were, on average, repeated higher multiplicity 

within their genes than heptamers from simple rules (Fig 28). In genes with two or more 

heptamer occurrences, heptamers from complex rules occurred in greater numbers than 

heptamers from simple rules regardless of whether the heptamers were from the same region 

(p-value of 0.067) or from all regions (p-value of 0.009).  
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Fig 28 Number of genes with two or more heptamer repeats from simple and complex 

rules. 

 

5.2.2 Motif Conservation Score 

We also compared the motif conservation score of heptamers from simple and complex rules 

using PhastCons (Siepel, Bejerano et al. 2005) scores stored in UCSC. PhastCons fits a phylo 

–HMM to the data using maximum likelihood, and then predicts conserved elements based 

on this model (Siepel, Bejerano et al. 2005). Half of the heptamers from complex rules are 

significantly more conserved than random heptamers (p-values < 0.05) and a third of the 

heptamers from simple rules are significantly more conserved than random heptamers (p-
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values < 0.05, data not shown). The motif conservation score of each heptamer is shown in 

Table 10. 

Table 10 Motif conservation score of heptamers in association rules. Heptamer* is 

complex rules 

Heptamer Motif Conservation Score p-value (description) 

1_CCGGAGC 0.4759371 0.875 (not different) 

1_GCCAAAG 0.7630357 0.005543 (more conserved) 

2_AGGCCTG 0.1576149 0.3902 (not different) 

2_CGCGCGG 0.1275714 0.1068 (not different) 

2_GAAGTCC 0.1125476 0.4533 (not different) 

2_GCCGGGC 0.1603598 0.4606 (not different) 

2_GCGCGGG 0.1990612 0.01302 (more conserved) 

2_GGAGCGG 0.09390476 0.006311 (less conserved) 

2_GGCCTGG 0.1386000 0.05597 (not different) 

2_TCACTCC 0.009918367 8.206e-14 (less conserved) 

2_TTTCTCT* 0.002371429 3.195e-08 (less conserved) 

3_AAAATAT* 0.2795306 0.004029 (more conserved) 

3_AAGAGCA 0.1821746 0.461 (not different) 

3_ACCCACC 0.1191429 0.7986 (not different) 

3_CACCCAC 0.2122262 0.5112 (not different) 

3_GAAGAGC 0.3526286 0.4211 (not different) 

3_GACCTCT 0.05195122 0.0001790 (less conserved) 

3_TGACCTC N/A N/A 

3_TGACTAG 0.004457143 < 2.2e-16 (less conserved) 

3_TGGTTCT 0.1700071 0.05903 (not different) 

3_TTATTTT* 0.17487500 0.01479 (more conserved) 

3_TTCATTT 0.2955678 0.2106 (not different) 

3_TTGGTCT 0.4114898 0.2871 (not different) 
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Table 10 Continued. 

3_TTGGTTC 0.1498831 0.9735 (not different) 

3_TTGTTTT 0.2702045 0.2607 (not different) 

3_TTTCTCT* 0.1828286 0.9383 (not different) 

3_TTTGGTC 0.2199464 0.08885 (not different) 

3_TTTGTTT* 0.04705357 4.715e-09 (less conserved) 

3_TTTTCTG 0.3057817 0.4841 (not different) 

3_TTTTTCA 0.2803077 0.2038 (not different) 

4_AGGTGGT 0.7570238 0.04783 (more conserved) 

4_CAACAGC 0.9246364 6.003e-06 (more conserved) 

4_CTGCTGG 0.8603352 < 2.2e-16 (more conserved) 

4_CTGGGCT 0.8892347 4.773e-06 (more conserved) 

4_CTGGTGG 0.8295238 9.75e-12 (more conserved) 

4_GACATCA 0.8726032 1.181e-07 (more conserved) 

4_GACATTG 0.9939388 < 2.2e-16 (more conserved) 

4_GAGAAGA 0.7370714 1.278e-08 (more conserved) 

4_GCTGCTG 0.7899732 5.773e-11 (more conserved) 

4_GCTGGAG 0.7013886 2.742e-09 (more conserved) 

4_GGAGAAG 0.8079598 < 2.2e-16 (more conserved) 

4_GGAGGTG 0.7520159 0.004809 (more conserved) 

4_GGCTGTG 0.8156807 4.174e-11 (more conserved) 

4_GTGCTGG 0.6434286 0.008951 (more conserved) 

4_GTGGAGT 0.6524935 0.01505 (more conserved) 

4_TGAGCTT 0.7767347 0.04894 (more conserved) 

4_TGCAGAA 0.7505179 1.540e-07 (more conserved) 

4_TGCTGGA 0.7824000 5.937e-06 (more conserved) 

4_TGGCTGT 0.8259925 2.06e-12 (more conserved) 

4_TGGGCTG 0.6890317 0.2228 (not different) 

4_TGTGAAG 0.7787857 0.0003654 (more conserved) 
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Table 10 Continued. 

4_TGTGGAG 0.8583442 < 2.2e-16 (more conserved) 

4_TTGTGGA 0.7950084 2.207e-09 (more conserved) 

6_AACAGGA 0.06032653 0.06032653 (more conserved) 

6_ATAAAAT 0.2040905 0.8862 (not different) 

6_CCTAGTC 0.006171429 1.729e-14 (less conserved) 

6_CCTCCTT 0.02410714 7.784e-07 (less conserved) 

6_CTCCTTC 0.04338961 4.78e-14 (less conserved) 

6_CTTTCCT N/A N/A 

6_GCAGCTG 0.2440143 0.2602 (not different) 

6_GGTCCAG 0.0260000 2.518e-11 (less conserved) 

6_GTTTTTG 0.1706286 0.5052 (not different) 

6_TAAAATG 0.04618797 8.066e-06 (less conserved) 

6_TTGTTTT 0.1538424 0.9539 (not different) 

6_TTTAAAA* 0.4209580 0.0003128 (more conserved) 

6_TTTCCTT 0.1540514 0.5167 (not different) 

6_TTTGTTT 0.2385350 0.0001040 (more conserved) 

7_ACCTCAC 0.02132143 < 2.2e-16 (less conserved) 

7_AGGGAGC 0.7358810 0.6214 (not different) 

7_ATGAAAA 0.7263109 6.505e-10 (more conserved) 

7_TTGCTAA 0.9074935 1.228e-13 (more conserved) 
 

Finally, to further validate our motif predictions, we assessed the overlap of our predictions 

with known AS regulatory sequence motifs stored in AEDB (Stamm, Riethoven et al. 2006). 

Among all heptamers involved in simple and complex rules, 43% occur within 

enhancer/silencer sequences from AEDB. This is a significantly (p-value = 0.017) higher 

percentage than we observed for a randomly selected set of heptamers of equal size. 
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5.2.3 Various Sizes of k of k-mer  

We also found association rules with 6- to 9-mer with various minimum supports. 

Generally, k-mers proven after motif association rule mining are similar. For example, a 

heptamer rule, {4_GCTGGAG} => {meandiff(salivary) = -13.987} is extracted with all 

minimum support intervals we tried. It is found in hexamer rules in a rule with overlapping 

hexamers, {4_GCTGGA, 4_CTGGAG} => {meandiff(salivary) = -14.251}. It is also found 

in an octamer rule in a shape of superset rule, {4_TGCTGGAG} => {meandiff(salivary) = -

24.457}. All association rules with different size of k in k-mer are stored at 

http://statgen.ncsu.edu/~jihye/KmerRule.html. 

 

5.3 Conclusion and Discussion 

We have applied distribution-based quantitative association rule mining to discover putative 

cis-regulatory motifs and motif combinations in alternatively spliced genes. Quantitative 

association rule mining provides a convenient framework for the systematic investigation of 

sequence motifs involved in the regulation of AS. Using t-tests and Bonferroni’s multiple 

testing correction, we identified several statistically significant associations between 

sequence motifs, and tissue specific exon skipping rates. We found 94 simple rules 

containing 1 sequence motif in the antecedent, and 3 complex rules that contain 2 sequence 

motifs in the antecedent. Among the complex rules, 2 rules contain heptamer pairs from 

different regions of the pre-mRNA sequence. None of the heptamers from a complex rule is 
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also found in a simple rule. We hypothesize that these heptamer pairs correspond to factors 

that have to co-occur in order to influence AS. An approach that targets only individual motif 

candidates would have overlooked these motifs. 

Many heptamer sets are found in multiple tissues, even when using high support 

thresholds. For example, the heptamer TGTGGAG in the cassette exon appears in rules 

describing heart, intestine, and muscle expression. Genes including this heptamer show lower 

exon skipping rates in all tissues (Fig 29 (A)). In addition, two very similar heptamers 

4_GCTGGAG and 4_TGTGAAG, appear in rules that  also correspond to a reduction in exon 

skipping rates. We speculate that the heptamers TGTGGAG, GCTGGAG and TGTGAAG 

might correspond to a single degenerate cis-regulatory element associated with a reduction of 

exon skipping. Among all 59 heptamer sets, 16 heptamer sets are found in two or more rules 

affecting exon skipping in different tissues. 

On the other hand, some heptamers affect only exon skipping rates in a single tissue. 

For example, the rule {1_GCCAAAG} => {meandiff(spleen) = -18.186} occurs only in the 

spleen, with a support of 29 genes. The genes with this heptamer show significantly (p-value 

= 0.040) lower exon skipping in the spleen (Fig 29 (B)). We hypothesize that this heptamer 

motif increases exon inclusion specifically in the spleen. 

This work has demonstrated that distribution-based quantitative association rule 

mining is a viable approach for discovering putative complex regulatory motifs for AS. In 

addition, comparison with known regulatory motifs stored in AEDB (Stamm, Riethoven et al. 

2006) shows a significant enrichment of our heptamer set. Thus, we hypothesize that our 

motif catalog provides a promising list of candidates for subsequent experimental validation. 
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Fig 29 Exon skipping rates in 10 tissues. Gray bars represent the mean of exon skipping 

of genes with overall genes. Black bars represent the mean of exon skipping of genes 

with a frequent heptamer, GCCAAAG in upstream exon (A) and TGTGGAG in 

cassette exon (B), respectively. 
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Chapter 6 
Summary 



 90

This dissertation has addressed the problem of identifying cis-regulatory elements involved 

in tissue-specific AS. The research focuses especially on interacting motifs. We have adapted 

three types of association rule mining to discover putative cis-regulatory motifs and motif 

combinations. General association rule mining with categorical attributes is used for finding 

motifs in genes with a similar exon skipping profile. The results of this method suggest that 

some motifs might influence exon skipping rates only if they appear in groups together with 

other motifs. A potential shortcoming of this approach is that the produced rules depend on 

user-specified thresholds and gene clusters.  

 To avoid these drawbacks, we used numeric exon skipping rates as items in 

quantitative association rule mining.  In the discretization-based association rule mining 

method, we chose the equal–depth method to categorize numeric exon skipping rates in 

tissues. This method does not need to define clusters by exon skipping profiles. Using the 

results from this method we discovered individual motifs and also motif combinations which 

are involved in one or more tissue-specific AS. Many combinatorial motifs are from different 

exon and introns, indicating that they might be binding sites of different splicing factors 

which may work together in splicing process. This method is good to look at big patterns, but 

we cannot preclude the concern of missing important motifs and extracting trivial short 

sequences. It still contains problems in defining numeric values because it is sensitive to the 

bin size. 

 Lastly, distribution-based association rule mining methods free us from defining 

clusters or categorizing numeric values. Instead, we use the mean of the exon skipping rate as 

a measurement. It extracts association rules between motifs and splicing patterns more safely. 



 91

This method delivered us an interesting finding; some combinatorial motifs are not shown in 

a simple rules indicating that they work only together to influence AS. We also expect some 

interesting rules from different measurements such as variance.  

 From all methods, we extracted several typical splicing factor binding sites such as 

SR binding sites, GAAGAA, in common. In the validation with known motifs, they showed 

many overlapping sequences even though we still face  problems of sensitive thresholds for a 

general association rule mining and categorization for discretization-based association rule 

mining. Association rule mining is a modern and promising framework for motif discovery. 

 The most important contribution of this dissertation is the method we developed to 

mine tissue-specific regulatory element sets. It is the first such method we know of to predict 

both individual  and combinatorial motifs simultaneously. Over 40% of predictions are found 

to be known elements with support of a validated database. The findings are very useful for 

biologist interested in investigating tissue-specific AS events by helping to direct and 

prioritize their efforts and resources. In addition, they can make valuable contributions 

toward the creation of a catalogue of all splice regulatory elements and their respective 

condition distribution. 

 In the dissertation, we generate motif items with short sequences and see the exact 

matching of them during reading sequences. As a future direction, we can use more flexible 

motif representation by defining motif items with allowing gaps or mis-match or defining 

motifs with matrices. Also, we can include additional potential features of AS as association 

rule mining items such as trans-factors, exon length, splice site strength and RNA folds. Then, 

building a predictive model of AS with input of features or items of a gene and output of 
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tissue specific AS profile. Also, we can compare other approaches like tree-based methods 

including decision trees, regression trees, multivariate adaptive regression splines, and so on. 

 Association rule mining is also suitable for other areas. For example, with a similar 

approach, relationships between transcription factor motifs and conditions of transcribed 

genes can be estimated. As biological data grows faster, manually finding interesting features 

and relationships of features becomes impossible. Since, the nature of association rule mining 

is efficient discovery of unexpected relationships among a huge database, we expect 

association rule mining is a useful bioinformatical method which is helping to understand 

biological mechanism. 
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Appendix A. Significance of Motif Association Rules  

 

Sergio Alvarez explained the relationship between the chi-square statistic, and the values for 

support, confidence, and lift of a rule. With a rule “A=>B”, we have the following values of 

support, confidence and lift from the definitions, Supp (A=>B) = P(A∩B), Conf (A=>B) = 

P(A∩B) / P(A), Lift (A=>B) = P(A∩B) / P(A)P(B). 

 

P(A∩B) = supp, 

P(A) = supp / conf, 

P(B) = conf / lift 

(1) 

 

The contingency tables for the pair of variables (A, B) corresponding to the antecedent and 

consequent of an association rule A=>B are described as follows. 

Table 11 Observed contingency table of a rule A=>B. 

 B  B  

A suppn ⋅  ( )conf
conf
suppn −⋅ 1  

A  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− supp

lift
confn  ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−−

lift
confconf

conf
suppn 11  
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Table 12 Expected contingency table of a rule A=>B. 

 B  B  

A lift
suppn ⋅  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⋅

lift
conf

conf
suppn 1  

A  lift
conf

conf
suppn ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−1  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

lift
conff

conf
suppn 11  

 

The chi-squared statistic is defined in terms of observed values and expected values: 

 ∑
≤≤

−
=

10

2
2

j,i j,i

j,ij,i

ectedexp
)ectedexpobjserved(

χ  (2) 

 

From two contingency tables of a rule A=>B, the chi-squared statistic can be transformed to  

(see (Alvarez 2003) for detail): 

))((
)1( 22

confliftuppsconf
confuppsliftn

−−
⋅−=χ  (3) 

 

We use equation (3) to compute the relationship between the support and confidence for a 

fixed n/2χ  and lift. We set up α =0.05 ( 84.32 =χ , with 1 degree of freedom) with n=2565 

mouse genes and lift=1.2. Following the approach described in (Alvarez  2003) we computed 

the corresponding values for the maximized support (=0.032) and the corresponding 

minimum confidence (=0.195). To accommodate for multiple comparisons, we computed the 

p-value of each rule, and reported significant rules after Bonferroni adjustment (Bland and 

Altman 1995). 
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Appendix B. Discretization – Based Motif Association Rules 

With discretization-based method we compute all motif association rules for minimum 

support = 0.032 (82 genes), minimum confidence = 0.195, and minimum lift = 1.2. These 

thresholds are computed by maximizing support with α =0.05 and lift = 1.2 in chi-square 

analysis statistic (equation (3) in Appendix A). The following reported rules are significant 

after Bonferroni adjustment (Bland and Altman 1995) 

Table 13 Simple motif association rules by a discretization-based method. 

Consequent 

(exon skipping profile) 
Antecedent (hexamer) 

BrainHighQuan 7_AGAAAA, 5_CATCAT, 2_TCTAGT, 2_TAAGCT, 

 5_GCATCA, 3_GAAGAT, 1_GCATCA, 4_GTGGAT,  

5_TTTTGT, 2_CTCAAG, 5_TCCACT, 3_CCTCTG,  

3_TGTACT, 4_CTTGTG, 5_GTTAGT, 3_ATTCAA,  

6_GCAAAG, 2_GGGGAG, 2_TGGGGA, 2_AGATTG,  

4_ACTTCT, 4_ACCAAG, 5_CTTTGT, 5_TTTGGC,  

4_TGGGGA, 6_AGGAAT, 4_GCTGGG, 2_AACTGT,  

7_CAGTCC, 1_GAACAA, 6_CAAAGA, 2_TGGATG,  

3_GTGTTG, 2_AAACTG, 2_CAGTCT, 2_GGCCTT,  

5_TGGGAG, 3_TATTAT, 2_TAGATT, 4_AGCAGA,  

6_CTCCAG, 5_GCCAGG, 4_CAGCTG, 5_GTTTTG,  

3_CTTGTA, 4_AAAGAA, 6_AGTAAC, 2_TAACTT,  

5_CCTTAC, 4_GGAAAA, 4_TGGCTG, 5_AACTGC,  

2_AATCCT, 3_TTGTAG, 2_TGGGAT, 2_ATGGGA,  
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Table 13 Continued. 

 4_AAGATG, 7_GAAGAT, 3_CAGGTG, 2_TGGGTT,  

4_ATGTCA, 4_TCCCAT, 3_TGTATT, 5_GCTTTG,  

3_TACTCA, 2_GGAAAG, 7_ATTTGG, 6_CCTGGT,  

 5_CCAGTG, 2_TGAGAA, 4_GTCAGA  

BrainLowQuan 2_AATTGA, 1_GTGGAG, 5_ATGTTT, 2_CTTCTT,  

2_GGCCAG, 4_ATGGGC, 2_TTCTTC, 2_GGGCGG,  

1_CCCCTG, 4_ACAGCC, 3_AACTTA, 5_CATGTT, 

 3_TCTTAA, 2_TAATGG, 6_GCACAT, 5_GCCAAG, 

 5_TTGGGC, 2_GCCCAC, 4_CTTTGG, 5_GCTTTC,  

4_GCTCAG, 2_ACCATC, 3_GCATGC, 3_CTGGAC, 

 6_GTTCCA, 3_CAGCAA, 2_TCTTGA, 1_CAGACT,  

4_GGACAT, 6_TGCACA, 4_GTGACC, 5_ATGTCA,  

4_ATGGAT, 4_ACAAGA, 5_AGCATC, 5_AATGTT,  

6_AAATCA, 3_GATTTA, 7_GCTTCC, 4_GGACAC,  

4_GACCTC, 6_ATTCTC, 5_AAGGCT, 5_AAAATT, 

 2_ACTCAG, 5_TTTTAC, 4_TCAGCC, 5_TTTGCA,  

2_TCTTCA, 5_AAAACT  



 109

HeartHighQuan 5_CAGGGA, 3_TTTGGT, 3_GTTGCT, 5_TGTGCC,  

6_AACAAA, 7_AGATGG, 5_AGCCCT, 3_TTGATC,  

6_TAAATG, 6_AAAAAA, 7_GAAAAG, 2_AAACTG,  

2_CGGTGG, 1_ACCTGA, 4_CTACTG, 6_TTTCTG,  

4_CAGAGT, 3_GGGTCC, 3_ACTCAC, 3_CAACAA,  

5_GCATTA, 6_TCTTGT, 3_CCTCTG, 2_GGGCTG,  

7_CAGTCC, 4_TCCCAT, 7_GGAGTC, 2_GGGGAG,  

6_ATGCAG, 5_GGGACA, 6_ATTTAA, 3_GGATTC,  

2_AGAGAT, 3_TGGTTG, 5_CTAAAT, 7_CCCAGT,  

Table 13 Continued. 

 5_TTTGGC, 2_TGGGAG, 6_ATCTTC, 3_TCATGA,  

1_GTCCTC, 6_GTCTTG, 3_AAGCCA, 7_CAGTGT,  

3_GGGCTA, 4_CAGCAA, 5_GGTCAG, 4_AGCAAG,  

2_CGGGAC, 7_TTCTTC, 1_TTGCTG, 4_ACAAGT,  

1_GGCAGA, 3_CAACCC, 2_GGCCCG, 2_GAGATC  

HeartLowQuan 5_CTGTGC, 7_CAAGAA, 6_TCCAGA, 7_CTCTGG,  

2_ACCCAG, 4_CCAGGA, 4_TCCTTT, 3_CTTGGT,  

5_GAATGT, 2_AGAGGT, 5_GGAATA, 3_AATGCT,  

7_TCTCTC, 5_AAGGCT, 2_AACAAG, 5_TATTTC,  

6_AAGCAC, 1_AGGAAA, 5_TGGGGA, 2_GACCCA,  

3_TGCTGC, 4_ATGGGC, 4_CCCAGG, 6_CATGTT,  

2_GACAGT, 2_CAAGGT, 5_AGTAAG, 4_TGAGGC,  

7_CTTGGA, 4_CACCCA, 6_CCACTC, 5_GTGCTA,  

5_TCCCAC, 2_AGGCCG, 5_ATTTCA, 1_CAGACT,  

2_TGGTCC, 1_AGGCCG, 2_CTGTGG, 5_ACCATT,  

5_GCCAAG, 2_GCTAGG, 2_GAGAAT, 1_GGGCCC,  

5_CAAAAC, 3_AGGAGT, 7_AACATC, 6_AAATAT,  
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1_CATGAG, 4_GTGACC, 2_TTCCAA, 7_TTCTTG,  

2_AGGGAG, 1_ATGAGC, 2_ACCATC, 3_ATCTTC,  

2_GACCAG, 2_GTAATG, 3_TGCACT, 5_GTATTG,  

7_AAGGCT, 6_GTTCCA, 3_GTGGTG, 2_GTGAGG,  

2_ACCATG, 1_TGCGGG, 2_CAAGCA  

IntestineHighQuan 4_AGCAAG, 2_AGTGGA, 3_TAAAGG, 6_ATTTTC,  

4_CACCAT, 5_CCAGTG, 5_TCAGCC, 1_GGCAGA,  

3_GATCAG, 4_TGGAGG, 2_TCTGAG, 5_AACTGC,  

7_AGTGCA, 1_GTGGTG, 5_TAGCAG, 4_CTGATG,  

Table 13 Continued. 

 5_TACAGA, 7_GGACAA, 2_TGCTCA, 1_AAAGCA,  

3_CCCTCT, 5_ATTGAG, 7_GAACAA, 6_TCCCAA,  

2_GAAAGG, 5_CCTTCC, 7_AATGAG, 5_TTGTTT,  

6_ATCTTC, 7_CATTCT, 1_CAGCTG, 2_GGCCTT,  

5_GAGTGC, 2_CTGAAA, 7_CGGCAG, 2_TGGGAG,  

5_TAGTTG, 2_CGCTCC, 6_AGAATA, 4_GACAAG,  

4_AAAGGC, 2_CTCAAG, 6_AACAAA, 7_TGCTTC,  

4_AGAATG, 5_TTCCTT, 3_TGTGTT, 3_TAAGTA,  

7_TCAGAA, 2_ATTGGG, 7_CTTGAA, 1_CAAAGC,  

5_GTATCT, 7_TTCTCA, 6_CTATCT, 7_AGATGG,  

3_GGGTCC, 4_GACTCT, 5_CCATTG, 6_TGGACA,  

4_GGCCCA, 4_AGGCCC, 4_TCCCAT  

IntestineLowQuan 2_ACCATC, 3_TGGTAA, 3_TATGGT, 2_CAGGTA,  

3_AATATG, 7_TGATGT, 3_GGGCTG, 2_GACTGA,  

3_GAAGTT, 5_TGGACC, 7_GCAAGG, 7_TCAAAA,  

3_CAGTCA, 5_AAAACT, 5_ATGTTT, 3_TGGCTG,  
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3_AGTGCT, 3_CCTTGC, 7_GCTATG, 4_TTACAG,  

1_GTGACC, 7_CAAGGA, 4_GCTGTG, 3_CCTTGG,  

7_GTCACT, 6_GTTCCA, 2_ACTGAC, 3_AATGCT,  

2_GCCCAC, 5_GCCAAG, 4_GTCCTC, 7_ATGAAC,  

2_AACAAG, 4_CCCAGG, 7_AGTCAC, 6_CTGTAC,  

2_AGCACA, 3_GATTAT, 7_CTCAAG, 5_TGATGG,  

7_AAGGCT, 5_GGGGTA, 3_TTGGCT, 5_ACCATC,  

3_AGGAGT  

KidneyHighQuan 4_CAAAGC, 2_ACACAA, 6_GATAGA, 4_TCCCAT,  

1_TGTTCA, 6_AACTAT, 5_CTAAAT, 5_GCATTA,  

 

Table 13 Continued.  

 5_GAAATC, 6_GGCATT, 3_ACTGGC, 3_ACCATT,  

5_AATCAA, 5_GCTTAT, 7_ATAAAT, 3_TATTAG,  

4_GACAAG, 5_TCCAGT, 3_AGCCAG, 2_CGGTGG,  

7_GGATGG, 6_AAACTA, 4_CAAAAA, 7_CAGTCC,  

3_TGGATG, 2_GGGGAG, 7_TGTTGG, 7_TGCTTC,  

1_TGATGG, 6_CCATGA, 5_TAGCAG, 5_TGAAAT,  

3_GCCAGA, 6_GAGCCC, 5_CCAGTG, 5_TTTTGT,  

6_ATAAAT, 2_TGAGAG, 2_TCAGCC, 7_TCAGAA,  

5_TTATTA, 5_TCAGCC, 3_CCAGTG, 6_GTGGGG,  

2_GTAGAG, 1_GCTGCA, 4_AGCAAG, 1_GATGTG,  

4_AAGATG, 5_AGACAG, 2_CTGAGA, 6_TAAATG,  

6_ACAGAA, 4_AAGCCA, 5_AGGAGC  

KidneyLowQuan 3_CTGCAG, 1_TGGGGC, 1_GTGGAG, 3_TTTTAT,  

5_AAAACT, 4_CACCCA, 3_TTTATG, 2_TGAAAT,  

5_GGTATT, 1_ACCAGT, 7_TGCCTT, 3_AGGTCT,  
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2_ATTAAA, 5_TTTAGG, 5_TTTTGC, 5_TTGGTG,  

7_GGAGTT, 6_TTCTCA, 3_CTATTC, 7_CCAAGT,  

4_GTCCTC, 5_TTTGCA, 2_CTTATT, 1_CAGACT,  

3_TCTTAA, 5_AACTTT, 2_GGGGTC, 7_AGGGCA,  

7_GTGATG, 2_ACCATG, 7_CCCTGG, 6_GGACTT,  

3_CCATGT, 6_GCAGGG, 6_GTTCCA, 3_GTGCTC,  

2_ATGTTG  

LiverHighQuan 5_TAGCAG, 4_TCCCAT, 7_TCTGAG, 5_CTGTTA,  

5_AATTTG, 2_CTGCCT, 3_AGCCAG, 2_TCTGAG,  

3_TGCAAG, 5_AACCTT, 7_GAAGAT, 2_AGGGGA,  

5_TACAGA, 5_TGGGAC, 1_GTGGTG, 3_AAGGTA,  

 

Table 13 Continued.  

 3_CAACCC, 2_AGCAAT, 4_AGTTTC, 4_GGAAAA,  

4_AGCAAG, 4_GATGAT, 5_CTAAAT, 5_TTTTGT,  

5_AAAAAC, 3_AGATTA, 1_TGATGG, 2_TTGGCA,  

6_AACTAA, 4_GTTTGA, 7_AGATGG, 3_CTTTTG,  

3_TATTAG, 7_GCAAGC, 3_AGAAGG, 1_TTGCTG,  

2_TAGAGC, 7_ACAACA, 4_GACAAG, 3_GAACCT,  

4_AGCTGA, 2_TCTTGC, 5_TGACCT, 3_ACTGGC,  

5_TTCTGT, 2_ACACAA, 3_TAAAGG, 2_AGGAAT,  

5_GCATTA, 2_ACCCTT, 2_GTCTGA, 6_CTATCT,  

5_TAGGCA, 1_AGGCCC, 2_GTAGAG  

LiverLowQuan 6_GGTGGG, 3_AAGTGC, 6_AGAGCT, 3_AGCATC,  

7_AGACAC, 1_CATCCA, 5_TGGTGC, 6_CCTTTT,  

3_TCTGTG, 5_AAAACT, 5_GCTGGT, 7_CCCCTG,  

7_CCCTGG, 7_CCTGAA, 7_TCCTTC, 3_TAAAAA,  
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6_GCATCA, 5_TTGGTG, 3_ACCACA, 5_AAAGTC,  

5_TGGAAA, 6_TGGGCC, 2_GGCCAG, 5_TGTAAG,  

5_CTATAT, 7_GTTGAA, 3_CTATTC, 4_AGATTG,  

7_CCCCCT, 3_ATTTAC, 5_TCTTAA, 3_ACAGCA,  

1_AGGCCG, 5_AGTAAG, 5_GGTCCT, 7_CAGGGA 

LungHighQuan 6_GGAGCC, 5_CCAGTG, 4_AAGTTT, 2_ATTACA,  

2_CATTCT, 5_CTGTTA, 7_CCTGTT, 4_TGGTGT,  

5_TTTTGT, 3_TAAAGG, 1_CAGCTG, 7_GAGATG,  

7_AGATGG, 3_AGATGA, 4_GGCCCA, 1_TGCCTG,  

2_AGATTG, 4_CACCAT, 3_GAGGCC, 3_GATTGA,  

7_CAGTCC, 3_CAGCAC, 2_TGCTCA, 3_GGGTCC,  

6_TCAGTC, 7_GATGGA, 2_TCTTGC, 5_TTTTTG,  

 

Table 13 Continued.  

 4_TCCCAT, 5_CCTTCT, 1_ACTGAA, 3_TGTCCC,  

6_AACAAA, 2_CTCAAG, 3_ATAGAT, 5_GTTAGT,  

7_ACAACA, 3_TTGAAT, 3_ACTTAA, 5_CTAAAT,  

2_CTGTGA, 5_TGGGAG, 3_ACTCAC, 6_GTTTGG,  

1_TTTCTC, 5_GGTTTT, 4_GGAAAA, 6_GGCACA,  

4_AGCAAG, 5_TCATCA, 4_GGAACA, 4_AAACCA,  

3_CAACCC, 2_GGCCTT, 5_TTCCTT, 2_ATTCTT  

LungLowQuan 6_TTGGGG, 2_ACCATC, 5_ATGATG, 6_TCAATG,  

5_ATGGCC, 5_CTTAAT, 5_CTTTCT, 1_CTGGCC,  

7_CTTCCT, 5_GGGGTA, 1_CCTGGC, 2_GAAGTC,  

2_CAGGCA, 5_TAGTGG, 5_GCTTTC, 3_GGGCTG,  

3_GATTAT, 6_AATATG, 4_TTCTTC, 7_AAGGCT,  

7_CCCCTG, 6_TGATGG, 6_TTCTCA, 5_GAATGT,  
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4_GTCCTC, 1_AAGGAA, 6_CTTCCC, 5_CTATAT,  

5_TGATGG, 7_CTCAAG, 3_AGCCTA, 3_CTCAGC,  

2_CCACAC, 6_CACATT, 6_AGTGTC, 6_CCCTAG  

MuscleHighQuan 4_TGCATC, 6_AAGCTC, 2_ATCCTC, 6_AATGCC,  

3_GAAGTA, 2_TCTGTA, 3_ATCTCA, 5_CCACTC,  

5_GACCCT, 3_CAACCC, 4_GACAAG, 7_CATTCT,  

7_TTCCCT, 3_TTTGTC, 1_ACCAGA, 1_TCAAGA,  

7_CAGTCC, 4_ATGCCT, 5_GGAACC, 4_CTGGTG,  

3_CAGGCA, 4_GACTGC, 3_ACCAAA, 2_CTCATT,  

7_AGTGGT, 3_GGGTCC, 4_TGGTGT, 5_TGACCT,  

6_TGTCTT, 5_TTATCT, 7_CTGTGG, 7_ACCAGT,  

4_CAGAGT, 5_GGTAGG, 6_ACTATA, 4_CACCAT,  

3_CCAAAA, 7_TTCTCA, 4_TCCCAT, 3_CCTGTG,  

 

Table 13 Continued. 

 3_GATCTG, 7_GAGTCT, 5_AAGCCT, 4_AAACCA,  

5_GGTTAG, 6_CCAAGA, 6_TCCCAA, 5_CTAGGT,  

3_ATCTAA, 4_GATGCC, 3_GCCACA, 2_GGCCTT,  

7_GGAGTC, 2_ACACAA, 3_GTGTTG, 4_AGCTCC,  

1_AGAAAG, 2_CTACCC, 3_TGTGTT, 5_GAACTG,  

4_AGCAAG, 1_TCCCAA, 2_GCCCAT, 2_CAAGGG,  

5_CCTAGG, 5_TCCAGA, 5_GTTAGT, 4_CTCCAC,  

7_TCCCTG  

MuscleLowQuan 5_GGAGTC, 3_CACATG, 5_AGAGCC, 3_ATGTAG,  

5_CTTCAG, 6_ATGATT, 7_GGGAAC, 3_CTGAAA,  

7_CACACT, 3_TAAGAG, 1_CCTGCC, 1_CAGGGG,  

2_GTGGTG, 7_TGCTCT, 2_TCAAAA, 3_TTTTCC,  
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3_GTGAAC, 5_CAGGCA, 7_AAGGCT, 5_CTTTTT,  

7_GGAGCA, 6_TTCTCA, 6_CAAGTA, 1_GGCCAG,  

3_TTATGG, 5_GAAGAC, 6_TGATGG, 6_GTGTAG,  

3_ACAGCA, 7_AGGACC, 3_AGCCTA, 2_CAGTGT,  

4_CTTCAA, 6_CTGGAC, 5_AGGCTA, 7_TGGAGC,  

5_GGTATT, 2_ACTCAC, 6_CAGTGT, 3_AGGAGT,  

6_CACACC, 7_ATCACC, 2_AACAAG, 3_CCACAG,  

3_TGCACT, 6_AAGCCA, 2_AAAATC, 7_TCCCCA,  

3_GTTACA, 1_TGCTTC, 5_TGATGG, 7_GTTTGG,  

1_AGGCCG, 6_TCTCAG, 7_CCCCTG, 4_CATCCC,  

2_TCTACA, 2_GAAGTC, 4_CCCAGG, 7_GATGTC,  

6_GCATCA, 5_GTCATG  

SalivaryHighQuan 7_CCTGTT, 5_GTTTTT, 6_TCCCAA, 1_AACAGA,  

5_TTATCT, 3_ACTCAC, 6_GGGTCT, 2_GTAGAG,  

 

Table 13 Continued. 

 1_TGGTGC, 5_TTTTGT, 6_AAGCTC, 5_GTTAGT,  

3_TAAAGG, 3_CACTTA, 4_GGCCCA, 1_GCAAAG,  

6_CACCAC, 2_CTCAAG, 4_AAGTTT, 5_TCCAGT,  

6_ATGCAG, 4_GGAACA, 4_GATGAT, 6_ATCAGT,  

6_GGCACA, 4_TGTGAT, 2_TGGGGA, 3_GGGTCC,  

4_CACCAT, 7_CCTCCC, 7_AAACAT, 6_TGCCAA,  

4_AGCAAG, 5_GCTTAT, 2_GAAAGG, 5_GCATTA,  

2_ACACAA, 6_AGTAAC, 3_CTTGTA, 5_CCTCCC,  

5_AGCCCT, 3_TTGATC, 2_CTGTGA, 2_AAGGTA,  

6_ATAAAT, 1_CAGCTG, 3_CCATTT, 3_AGTTAG,  

6_TTTGAA, 6_CTTTGA, 7_AAGATG, 2_TTGAAA,  
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5_AGGAGC, 1_TGCCTG  

SalivaryLowQuan 1_GGACTT, 1_CTCAGT, 4_TGTGAC, 6_ATCAGC,  

1_AGGCCG, 3_TGGCTT, 1_AAGGAA, 4_GACTCC,  

7_TTGGCA, 2_GTTGGT, 3_TGCACT, 4_TTCTGG,  

5_TGATGG, 7_ATCACC, 5_TGATTT, 3_AGGAGT,  

5_GCTTTT, 1_CAGACT, 6_CACTGG, 5_AGGCTA,  

2_GAAGTC, 5_GGGGTA, 4_CCAGTT, 7_CCGTGG,  

1_ATCCAG, 1_TGACCA, 2_ATGGAA, 6_TGATGG,  

3_GATTAT, 5_GCCAAG, 5_TTATAT, 3_TAGAAT,  

2_GCCCTT, 3_ATTTAC, 5_TGGCCT, 5_GAAGAC,  

5_GATTTC, 6_AAGTTG, 5_GCCAGA, 1_CACCCC,  

6_ACTTAA, 3_GTCCTG, 1_CTGGCC, 1_CCAGAG,  

2_CAGGCA, 1_TGGCCA, 6_AGCTGT, 7_CTACAA,  

7_CTCAAG, 6_AAAGCC, 3_AGCCTA, 3_CTGAAA,  

6_GAAGAC, 6_CTTTTC, 1_CGCAGA, 6_TTTTCC,  

 

Table 13 Continued. 
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 3_TATGGT, 2_ACCATC, 7_AACTGG, 7_CACACT,  

2_CCATGA, 1_AGTGGA, 5_AGTTTC, 7_AAGGCT,  

4_GTGACC, 7_CCCCTC, 4_GGCTCC, 6_CACTTA,  

6_ACTTCC  

SpleenHighQuan 6_GCTACA, 4_GAAAGG, 5_AGAAGT, 3_CAGATC,  

4_GGAGCA, 7_CAGTCC, 6_AACCCC, 4_CTGGTG,  

5_GGTCAG, 2_CATTCT, 7_ACAAAG, 2_TGCTCA,  

3_AAAAGT, 6_TCTTGT, 4_AGCAAG, 7_CGGCAG,  

5_TACAGA, 2_AGTTAG, 3_GCCTAG, 3_GGGCTA,  

4_CCTGGT, 4_CACCAT, 4_GGAAAA, 2_GGCCTT,  

7_ATAAAT, 4_TGCATC, 7_TACTGG, 7_GGAGTC,  

2_CCCAAC, 1_TGGTGC, 7_GTGAGG, 4_GTTTGA,  

5_CCAGTG, 7_AAGCTG, 3_CTGTAC, 3_GGGGCC,  

4_TGGGAC, 3_GTCTTA, 4_TGGTGT, 3_TAGCCT,  

6_TGGACA, 3_ATATTG, 4_GAGCAG, 5_AGGCAA,  

4_GCCTTG, 3_GTTAGG, 4_GGCCCA, 3_GCAGGT,  

4_CAGAGT, 6_CTAAGG, 3_GCCTGT, 7_ACCAGT,  

4_CAAGAA, 5_GACTCA, 7_AGATGG, 5_CCACTC,  

2_TCTTGC, 3_AGGGTC, 4_GCCAAA, 5_GTTAGT,  

6_TGCCAA  

SpleenLowQuan 6_GTTGGT, 4_AAGGAG, 6_CTAAGT, 6_GGGCAG,  

2_CAGGAA, 4_CCTACA, 7_AGCAGG, 3_GGGCTG,  

6_TTTCAA, 3_CCTACC, 1_AAGCCA, 3_TTGGCT,  

4_GGCAGG, 7_AAGGCT, 5_TGTGGG, 5_GTGATG,  

6_GTGAGC, 7_AAGAAG, 3_GAAGTT, 7_CCCCTG,  

4_GAGTTT, 7_TGATGT, 4_GTCCTC, 7_AATGCA,  
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 2_GCCCAC, 2_CATCCA, 6_GCTAAG, 7_CACACT,  

5_TCTATG, 2_GAAGTC, 4_TCTGGT, 3_TGCACT,  

3_TCAGCC, 4_GACCAA, 7_GATGTC, 7_CCTGAA,  

7_TCCCCA, 5_ATGGCC, 4_TTCTGG, 4_GGAGTT,  

4_CATGCT, 3_GATTAT, 5_AGGATG, 1_CAGACT,  

4_CTTGTG, 7_AGACAC, 5_GATGGC, 5_TGATTT,  

5_TGATGG, 4_TTGTGA, 5_GCCAAG  

TestisHighQuan 6_GGGACA, 5_CCAGTG, 6_TGCCAA, 7_AGATGG,  

5_CCTGTA, 4_TGCTCA, 3_CACACT, 4_ACTGCT,  

3_AGATTG, 5_TTGGTT, 5_TGGGTT, 5_TATCTG,  

1_TGGGCT, 4_TGAGCA, 5_TCAGCC, 5_AGTGCT,  

3_GAAAGT, 3_CCTGAT, 7_TGAATT, 3_GAAGGT,  

4_AAGTTT, 7_GAGATG, 5_GAAGAG, 1_TGGTGC,  

5_TGACCT, 5_CCAAAT, 3_CTTTGG, 4_TCCCAT,  

2_TAGAGC, 6_GTTTGG, 2_CGCTCC, 7_AATCAG,  

5_GCAGTA, 4_CACCAT, 2_ACTCCT, 3_ACCATT,  

7_GAATTT, 5_GGACAA, 2_CAAGGG, 4_AGGACC,  

4_AAAGAA, 5_GTGGGA, 7_GGAGAT, 5_GAACCT,  

4_TAAAGA, 2_TCTGAG, 6_GATTAA, 2_GGCCTT,  

4_ACCAGT, 2_AAGGGC, 5_GTGTAG, 4_GGAAAA,  

1_AAAGCA, 5_GGGACA, 5_TGGTTG, 4_GACATT,  

3_GCCTAG, 4_GGACCC, 4_AGACAT, 1_CTGTGA,  

2_GAGATC, 6_AGTAAC, 3_TCAAAT, 2_ACACAA,  

7_GCTTCT, 3_TTCCCT, 6_GCTACT, 3_ATAGAT,  

2_CTCTCC, 3_CTCTTT, 6_ATTTTT, 4_GCTCAT  
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TestisLowQuan 7_TGGAGC, 3_TTGATT, 1_CGGGCT, 6_TGGACC,  

5_GGGGAA, 4_AGATTG, 3_GTGCCT, 5_TTGGTG,  

1_GCCTGC, 5_GGAAAA, 3_CATGCT, 4_TCTTCA,  

3_TGGTAA, 7_GATTCT, 2_CCCAGT, 1_GCCGGC,  

7_TTGGCA, 5_AATTTA, 5_GCTAGA, 3_AGACTG,  

7_TCTTCC, 2_TGATCT, 2_GGCCTG, 1_ATGAGC,  

2_GGCGCT, 1_CCTGGC, 5_TGGCAA, 1_ACCCCT,  

5_GTGATG, 5_ATGTCA, 6_GGAACC, 5_AATTAT,  

2_GATGGA, 3_CTGGTA, 5_GATTTA, 4_AGCCCT,  

6_GAAAGT, 4_CCTGTC, 7_AAGGCT, 5_TTAATG,  

1_CGGCTG, 3_GTGTAG, 5_GGCAAG, 5_TTTAGG,  

1_GGCGGG, 3_TGTAAG, 4_ATGGGC, 3_TATGGT,  

2_TCATCC, 4_ACCAGA, 1_TCTTCC, 7_TGCTCC,  

2_TTATTA, 7_TTCCAC, 3_GATTAT, 2_GTTGGT,  

2_CATCCA, 7_GTCTCC, 6_TTTCCT, 1_AGGCCG  

 
 
Table 14 Complex motif association rules. 

Consequent 

(exon skipping profile) 
Antecedent (hexamer set) 

BrainHighQuan {5_TTGTTT, 6_TTTCTT}, {5_TTGTTT, 6_TCTTTT}, 

{5_TTGTTT, 3_TTTTCT}, {3_ATGTTT, 3_TGTTTT},  

{3_TTTCTG, 6_TTTTCT}, {3_TTGTTT, 3_TTTTCT},  

{3_TGTCTG, 3_TTTTCT}, {3_TGTTGT, 3_TGTTTT} 

BrainLowQuan 

 

{5_TTTAAA, 5_TGTTTT}, {3_TTTTTT, 5_TGTTTT},  

{3_CTGTGT, 6_TTTCTT}, {6_TTTCTC, 3_TTCTTT} 
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HeartHighQuan {6_TTTTTA, 6_TTTTTC}, {6_TTTTTA, 3_TTCTCT},  

{5_TTCCTG, 6_TGTTTT}, {2_GGTGGG, 3_TTTCTT},  

{6_GTTTTT, 6_TTTTTT}, {6_TTCTGT, 6_TTTTCT},  

{2_GGAGGG, 6_TTTTCT}, {3_TTTCTG, 6_TCTTTT},  

{6_TTTCTG, 3_TTTTCT}, {6_TTTTTA, 6_TCTTTT},  

{6_TTTCTG, 6_TTTTCT}, {2_CCTGGG, 6_TGTTTT},  

{6_TTTCTG, 3_CTTTCT}, {5_TTGTTT, 6_TCTTTT},  

{6_TTTCTG, 3_TTTCCT}, {6_TTTATT, 3_TTTTCT},  

{6_TTTCTG, 3_TTCTGT}, {6_TTTCTG, 3_TTTCTT} 

HeartLowQuan {3_CTGCAG, 6_TTTCTT}, {3_TTTGCT, 3_TTCTTT},  

{5_TTTTTA, 6_TTTTTC}, {6_ACTTTT, 6_TTTTCT},  

{6_TGTCTT, 3_TTTCTT}, {6_TGTCTT, 3_TTCTTT} 

IntestineHighQuan {3_TTCTGT, 6_CTTTTT}, {5_TTTTAT, 5_TTGTTT},  

{6_TTTTTA, 3_TTCTCT}, {6_TTAAAA, 6_TTTAAA},  

{3_TTCTGT, 6_TCTTTT}, {5_TTTGTT, 6_TTGTTT},  

{3_TTTCTG, 6_TCTTTT}, {5_GTTTTT, 5_TTGTTT},  

{5_TGTGTG, 6_TTCTTT}, {2_GGTGGG, 3_TTTTCT},  

{2_GTAAGT, 6_CTTTCT}, {6_TTTTCA, 6_TTTTGT},  

{5_TTCTGT, 6_TTTCTT}, {5_TTTTAT, 5_TATTTT},  

{5_TTTTGT, 6_TTTTCT}, {6_TTTTTA, 6_TTTTGT},  

{5_TTTTTG, 5_TTGTTT}, {5_TTTTTT, 3_TTTTCT} 

IntestineLowQuan {5_CTTTTT, 5_TTTTCT}, {5_CTTTTT, 5_TTTCTT},  

{3_TGCTTT, 3_TTTCTT}, {6_CTTTTT, 3_TTTCTT},  

{6_CTTTTT, 2_GTGAGT}, {6_CTTTTT, 3_TTCTTT},  

{6_TCTTTT, 2_GTGAGT}, {3_CTTTCT, 2_GTGAGT},  

{3_CTTTTT, 3_TTTCTT}, {3_CTTTTT, 2_GTGAGT} 

 
 

Table 14 Continued.  



 121

KidneyHighQuan {6_TGCTTT, 3_TTTCCT}, {5_CTGTGT, 5_TTGTTT},  

{5_GTTTTT, 5_TTGTTT}, {5_TTCCTG, 6_TGTTTT},  

{5_CTGTCT, 3_TTTCTT}, {5_TTTTTG, 5_TGTTTT},  

{2_GTAAGT, 6_CTTTCT} 

KidneyLowQuan {5_ATTTTT, 5_TGTTTT}, {5_TTTAAA, 5_TTTTCT},  

{3_TTTTAT, 6_TTTCTT}, {6_CTTTTT, 3_CTTTCT},  

{3_TTGCTT, 3_TGTTTT}, {3_TTTTAT, 6_TTCTTT},  

{5_TTTAAA, 5_TGTTTT}, {6_TTCTCT, 5_TGTTTT},  

{5_TTATTT, 5_TTTAAA}, {5_TTAAAA, 5_TTATTT},  

{2_CTTCCC, 6_TTTTCT} 

LiverHighQuan {5_TTTTTG, 5_TGTTTT}, {6_CTTCCT, 6_TTTCTT},  

{5_TTCTGT, 6_TTTCTT}, {3_TTTCTG, 6_TCTTTT},  

{5_TTTCTT, 6_TTGTTT}, {5_TTTTCT, 6_TTGTTT},  

{2_CCTGGG, 6_TGTTTT}, {6_TTTTTA, 3_TTCTCT},  

{2_CCTGGG, 3_TGTTTT}, {2_GTAAGT, 6_CTTTCT} 

LiverLowQuan {6_CTTTTT, 3_CTTTCT}, {5_TTTAAA, 5_TTTTAA},  

{6_TTTCCT, 3_TGTTTT}, {6_CTTTTT, 3_TTTTTA},  

{6_CTTTTT, 3_TTCTTT}, {3_CTGTTT, 3_TTTGTT},  

{5_TTAAAA, 5_TGTTTT}, {5_TTAAAA, 5_TTATTT},  

{6_CTTTTT, 3_TTTCTT}, {5_TTTAAA, 5_TGTTTT} 

LungHighQuan {5_TTTTTG, 5_TTTGTT}, {5_TTCTGT, 6_TTTCTT},  

{5_CTTCCT, 3_TTTTCT}, {5_TTTTTG, 5_TTGTTT},  

{5_ATTTTT, 3_TTTTCT}, {2_GTAAGT, 6_CTTTCT},  

{3_CTGTCT, 3_TCTTTT}, {5_TTTTAT, 5_TATTTT},  

{2_GTAAGT, 6_TTTTGT}, {5_TTTTTG, 5_TGTTTT} 

LungLowQuan {5_CTTTCT, 6_TTTCTT}, {2_TTCTCT, 6_TTTTCT},  

{6_AAAATA, 6_TGTTTT}, {6_TGCTTT, 6_TTTTTT},  

Table 14 Continued. 
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 {3_TATTTT, 6_TTCTCT}, {6_TCTCTT, 3_TTTCTT},  

{2_TGTTTT, 6_TTTTCT}, {6_TTTCTG, 6_CTTTTT} 

MuscleHighQuan {3_TGTGTT, 6_TTTTCT}, {3_TGTGTT, 6_TTTCTT},  

{3_GTGTTT, 3_TTTTGT}, {5_TTTTCT, 6_TTGTTT},  

{3_CCTCTG, 6_TTTTCT}, {3_TGTGTT, 6_TTCTTT},  

{3_TGTGTT, 6_TCTTTT}, {5_TTTGTT, 6_TTGTTT},  

{3_TGTGTT, 3_TTCTGT}, {5_TTTTGT, 5_TTTTCT},  

{5_GTGAGT, 6_TCTTTT} 

MuscleLowQuan {5_CTTTCT, 5_TTTTCT}, {6_CTTTTT, 3_TTTCTT},  

{5_CTTTTT, 5_TTTTCT}, {5_CTTTTT, 5_TTTCTT},  

{3_GTTTTT, 3_CTGTTT}, {2_GTGAGT, 3_TGTTTT},  

{3_TGTGTG, 3_TTTCTT}, {6_TTTCAG, 3_TGTTTT},  

{2_TGTTTT, 6_TTTTCT}, {3_TTTGTT, 6_TTCTTT},  

{3_TGTGTG, 3_TTCTTT}, {5_TTTTTC, 5_CTTTTT},  

{6_TATTTT, 3_TGTTTT} 

SalivaryHighQuan {5_GTTTTT, 5_TTGTTT}, {5_CTGTGT, 5_TTGTTT},  

{5_TTTGTT, 3_TTTTGT}, {3_AATTTT, 3_TTTTAA},  

{3_CTTTCT, 6_TTGTTT}, {5_TTTTTT, 3_TTTTCT},  

{5_CTGTCT, 3_TTTTCT}, {5_TTTTTG, 5_GTTTTT},  

{5_TTTTTT, 5_TTTGTT}, {5_TTTATT, 6_TTTTCT},  

{5_GTTTGT, 5_TTGTTT}, {5_TTTTTG, 5_TGTTTT},  

{5_GTTTTT, 5_TTTGTT}, {5_TTTGTT, 5_TTTTTA},  

{5_TTTTAT, 5_TTTTTT}, {5_TTTTTG, 5_TTGTTT},  

{5_TTGTTT, 3_TTTTCT}, {6_TGTCTT, 6_TGTTTT},  

{5_TTTTTG, 5_TTTTTA}, {3_TTTTAA, 3_TTTTGT} 

SalivaryLowQuan {6_TGCTTT, 6_TTTTTT}, {6_TTCTGT, 6_TTTGTT},  

{6_TTTTCC, 2_GTGAGT}, {6_CTGTTT, 3_TTTTTT},  

Table 14 Continued. 
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 {2_GTGAGT, 6_TTTTCT}, {2_GTGAGT, 6_TGTTTT},  

{6_CTTTTT, 3_TTTCTT}, {6_CTTTTT, 3_TTCTTT},  

{6_CTTTTT, 2_GTGAGT}, {6_TGTGTT, 6_CTTTTT},  

{6_AAAATA, 6_TGTTTT} 

SpleenHighQuan {5_TTTTTG, 5_TTGTTT}, {3_TGTGTT, 6_TTCTTT},  

{5_TTCTGT, 6_TTTCTT}, {3_CTGTCT, 3_TCTTTT},  

{2_GTAAGT, 6_TTCTTT}, {5_GTGAGT, 6_TCTTTT},  

{2_GTAAGT, 6_CTTTCT}, {5_TCTGTT, 6_TTTTCT},  

{3_TGTGTT, 6_TTTCTT} 

SpleenLowQuan {5_CTTTTT, 5_TTTCTT}, {5_TCTTTT, 5_TTTTTA},  

{5_TTGTTT, 6_TTCTCT}, {6_TATTTT, 6_TTCTCT},  

{3_TGTGTG, 3_TCTTCT}, {3_TGTGTG, 3_TTTCTT} 

TestisHighQuan {3_CTCTTT, 6_TTCTTT}, {3_TTTCTG, 6_TCTTTT},  

{6_TTTCTC, 6_TTTTTA}, {3_CCTCTG, 6_TTTTCT},  

{3_TTTCTG, 6_TTTTCT}, {3_CTTTTC, 6_TTTTCT},  

{6_ATTTTT, 6_TTTTTA}, {3_GTTTTT, 3_TTTAAA},  

{6_TTTCTG, 6_TTTTGT} 

TestisLowQuan {5_TTTAAA, 5_TGTTTT}, {2_GTGAGT, 3_TGTTTT},  

{2_CTTCCC, 6_TTTTCT}, {3_TGCTTT, 2_GTGAGT},  

{3_TTTTTT, 5_TGTTTT} 
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Appendix C. Distribution – Based Motif Association Rules 

Table 15 Brain motif association rules by a distribution-base method. 

Minsupp Heptamer set , p-value, mean difference 

20 3_TGACTAG , 0.026, -23.094 

3_TTGGTTC 3_TGGTTCT , 0.009, -23.613 

4_GCTGGAG , 0.001, -13.545 

4_TGCTGGA , 0.004, -16.373 

4_TGCTGGA 4_GCTGGAG , 0.018, -19.440 

4_TGGGCTG , 0.015, -19.357 

6_TTTAAAA 3_TTATTTT , 0.004, -20.216 

7_ACCTCAC , 0.018, -18.713 

25 3_TGACTAG , 0.017, -23.094 

4_GCTGGAG , 0.001, -13.545 

4_TGCTGGA , 0.003, -16.373 

4_TGCTGGA 4_GCTGGAG , 0.012, -19.440 

4_TGGGCTG , 0.010, -19.357 

6_TTTAAAA 3_TTATTTT , 0.003, -20.216 

7_ACCTCAC , 0.012, -18.713  

30 4_GCTGGAG , 0.000, -13.545 

4_TGCTGGA , 0.002, -16.373 

4_TGCTGGA 4_GCTGGAG , 0.009, -19.440 

4_TGGGCTG , 0.007, -19.357 

7_ACCTCAC , 0.009, -18.713 

35 4_CAACAGC , 0.047, -18.049 

4_GCTGGAG , 0.000, -13.545 
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Table 15 Continued. 

 4_TGCTGGA , 0.001, 16.373 

4_TGGGCTG , 0.005, 19.357 

7_ACCTCAC , 0.006, -18.713  

40 4_GCTGGAG , 0.000, -13.545 

4_TGCTGGA , 0.001, -16.373 

45 4_GCTGGAG , 0.000, -13.545 

4_TGCTGGA , 0.001, -16.373 

50 4_GCTGGAG , 0.000, -13.545 

4_TGCTGGA , 0.001, -16.373 

55 4_GCTGGAG , 0.000, -13.545 

4_TGCTGGA , 0.000, -16.373 

60 4_GCTGGAG , 0.000, -13.545 

4_TGCTGGA , 0.000, -16.373  

65 4_GCTGGAG , 0.000, -13.545 

4_TGCTGGA , 0.000, -16.373 

70 4_GCTGGAG , 0.000, -13.545  

 

Table 16 Heart motif association rules by a distribution-base method. 

Minsupp Heptamer set , p-value, mean difference 

20 4_TGCTGGA , 0.010, -15.039 

4_TGTGGAG , 0.003, -14.416  

25 4_TGCTGGA , 0.007, -15.039 
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Table 16 Continued. 

 4_TGTGGAG , 0.002, -14.416 

4_GTGGAGT , 0.047, -19.546  

30 4_TGCTGGA , 0.005, -15.039 

4_TGTGGAG , 0.002, -14.416 

4_GTGGAGT , 0.033, -19.546  

35 4_TGTGGAG , 0.001, -14.416 

4_TGCTGGA , 0.003, -15.039  

40 4_TGTGGAG , 0.001, -14.416 

4_TGCTGGA , 0.003, -15.039 

45 4_TGTGGAG , 0.001, -14.416 

4_TGCTGGA , 0.002, -15.039 

50 4_TGTGGAG , 0.000, -14.416 

4_TGCTGGA , 0.001, -15.039 

55 4_TGCTGGA , 0.001, 15.039 

4_TGTGGAG , 0.000, -14.416 

60 4_TGCTGGA , 0.001, -15.039 

4_TGTGGAG , 0.000, -14.416 

65 4_TGCTGGA , 0.001, -15.039 

4_TGTGGAG , 0.000, -14.416 

70 4_TGTGGAG , 0.000, -14.416  
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Table 17 Intestine motif association rules by a distribution-base method. 

Minsupp Heptamer set , p-value, mean difference 

20 4_TGCTGGA , 0.000, -19.731 

4_GTGCTGG 4_TGCTGGA , 0.001,- 25.057 

4_TGCTGGA 4_GCTGGAG , 0.001,-24.696 

4_GCTGGAG , 0.024, -13.480 

4_CTGCTGG 4_GCTGCTG , 0.003, -21.049 

4_GCTGCTG , 0.032, -13.389 

2_GAAGTCC , 0.042, -20.071 

4_GACATCA , 0.035, -17.672 

25 4_TGCTGGA , 0.000, -19.731 

4_CTGCTGG 4_GCTGCTG , 0.002, -21.049 

4_GCTGCTG , 0.021, -13.389 

2_GAAGTCC , 0.028, -20.071 

4_TGCTGGA 4_GCTGGAG , 0.001, -24.696 

4_GCTGGAG , 0.016, -13.480 

4_GACATCA , 0.024, -17.672 

30 4_GGCTGTG , 0.050, -14.498 

4_TGCTGGA , 0.000, -19.731 

4_CTGCTGG 4_GCTGCTG , 0.001, -21.049 

4_TGTGGAG , 0.044, 13.729 

4_GCTGCTG , 0.015, 13.389 

7_ATGAAAA , 0.042, -15.412 

4_TGCTGGA 4_GCTGGAG , 0.000, -24.696 

4_GCTGGAG , 0.012, -13.480 

4_CTGCTGG , 0.040, -14.224 

4_GACATCA , 0.017, -17.672  
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Table 17 Continued.  

35 4_TGTGGAG , 0.032, 13.729 

4_GGCTGTG , 0.036, 14.498 

4_GCTGCTG , 0.011, -13.389 

7_ATGAAAA , 0.030, -15.412 

4_TGCTGGA , 0.000, -19.731 

4_GCTGGAG , 0.008, -13.480 

4_CTGCTGG , 0.029, -14.224 

4_GACATCA , 0.012, -17.672 

40 2_CGCGCGG , 0.048, +18.975 

4_TGTGGAG , 0.023, 13.729 

4_GGCTGTG , 0.026, -14.498 

4_GCTGCTG , 0.008, -13.389 

7_ATGAAAA , 0.022, -15.412 

4_TGCTGGA , 0.000, -19.731 

4_GCTGGAG , 0.006, -13.480 

4_CTGCTGG , 0.021, -14.224 

45 2_CGCGCGG , 0.035, +18.975 

7_ATGAAAA , 0.016, -15.412 

4_TGTGGAG , 0.017, -13.729 

4_GGCTGTG , 0.019, -14.498 

4_TGCTGGA , 0.000, -19.731 

4_GCTGCTG , 0.006, -13.389 

4_GCTGGAG , 0.005,- 13.480 

4_CTGCTGG , 0.015, -14.224  

50 2_CGCGCGG , 0.026, +18.975 

7_ATGAAAA , 0.012, 15.412 
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Table 17 Continued. 

 4_TGTGGAG , 0.013, 13.729 

4_GGCTGTG , 0.014, -14.498 

4_TGCTGGA , 0.000, -19.731 

4_GCTGCTG , 0.004, -13.389 

4_GCTGGAG , 0.003, -13.480 

4_CTGCTGG , 0.011, -14.224 

55 7_ATGAAAA , 0.009, -15.412 

4_TGCTGGA , 0.000, -19.731 

4_GCTGCTG , 0.003, -13.389 

4_GCTGGAG , 0.002, -13.480 

4_CTGCTGG , 0.008, -14.224 

4_TGTGGAG , 0.009, -13.729 

4_GGCTGTG , 0.011, -14.498 

60 4_TGCTGGA , 0.000, -19.731 

4_GCTGCTG , 0.002, -13.389 

4_GCTGGAG , 0.002, -13.480 

4_CTGCTGG , 0.006, -14.224 

4_TGTGGAG , 0.007, -13.729 

4_GGCTGTG , 0.008, -14.498 

65 4_GCTGGAG , 0.001, -13.480 

4_CTGCTGG , 0.005, -14.224 

4_TGCTGGA , 0.000, -19.731 

4_TGTGGAG , 0.005, -13.729 

4_GCTGCTG , 0.002, -13.389  

70 4_GCTGGAG , 0.001, -13.480 

4_CTGCTGG , 0.004, -14.224 
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Table 17 Continued.  

 4_TGTGGAG , 0.004, -13.729 

4_GCTGCTG , 0.001, -13.389  

 
 
Table 18 Kidney motif association rules by a distribution-base method. 

Minsupp Heptamer set , p-value, mean difference 

20 7_TTGCTAA , 0.004, -19.492 

4_TGCTGGA , 0.000, -19.273 

4_TGCAGAA , 0.003, -15.417 

6_AACAGGA , 0.005, -16.567 

4_GAGAAGA 4_GGAGAAG , 0.003, -19.899 

4_GACATTG , 0.022, -20.627 

4_GGAGGTG , 0.002, -17.227 

25 4_TGCTGGA , 0.000, -19.273 

3_TTTTCTG 3_TTGTTTT , 0.043, +24.570 

4_GAGAAGA 4_GGAGAAG , 0.002, -19.899 

4_GGAGGTG , 0.001, -17.227 

4_TGCAGAA , 0.002, -15.417 

6_AACAGGA , 0.003, -16.567 

30 4_TGCTGGA , 0.000, -19.273 

3_TTTTCTG 3_TTGTTTT , 0.030, +24.570 

4_GAGAAGA 4_GGAGAAG , 0.001, -19.899 

4_GGAGGTG , 0.001, --17.227 

4_TGCAGAA , 0.001, 15.417 

6_AACAGGA , 0.002, -16.567 
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Table 18 Continued.  

 4_GCTGGAG , 0.039, -11.838 

35 4_GGAGGTG , 0.001, -17.227 

4_TGCAGAA , 0.001, -15.417 

6_AACAGGA , 0.002, -16.567 

4_TGCTGGA , 0.000, -19.273 

4_GCTGGAG , 0.028, -11.838  

40 4_GGCTGTG , 0.041, -13.555 

4_GGAGGTG , 0.000, -17.227 

4_TGCAGAA , 0.001, -15.417 

6_AACAGGA , 0.001, -16.567 

4_TGTGAAG , 0.049, -13.747 

4_TGCTGGA , 0.000, 19.273 

4_GCTGGAG , 0.020, -11.838 

45 6_AACAGGA , 0.001, -16.567 

4_GGCTGTG , 0.030, -13.555 

4_CTGGTGG , 0.049, 13.066 

4_TGTGAAG , 0.036, -13.747 

4_GGAGGTG , 0.000, -17.227 

4_TGCTGGA , 0.000, -19.273 

4_GCTGGAG , 0.015, -11.838 

4_TGCAGAA , 0.001, -15.417 

50 4_GGCTGTG , 0.022, -13.555 

4_GGAGAAG , 0.043, -11.490 

4_CTGGTGG , 0.036, -13.066 

4_TGTGAAG , 0.027, -13.747 

4_TGCTGGA , 0.000, -19.273 
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Table 18 Continued.  

 4_GCTGGAG , 0.011, -11.838 

4_TGCAGAA , 0.000, -15.417 

55 4_CTGGTGG , 0.027, -13.066 

4_TGTGAAG , 0.020, -13.747 

4_TGCTGGA , 0.000, -19.273 

4_GCTGGAG , 0.008, -11.838 

4_GGCTGTG , 0.016, -13.555 

4_GGAGAAG , 0.032, -11.490  

60 4_CTGGTGG , 0.020, -13.066 

4_TGCTGGA , 0.000, -19.273 

4_GCTGGAG , 0.006, -11.838 

4_GGCTGTG , 0.012, -13.555 

4_GGAGAAG , 0.024, 11.490  

65 4_GCTGGAG , 0.005, -11.838 

4_CTGGTGG , 0.015, -13.066 

4_TGCTGGA , 0.000, -19.273 

4_GGAGAAG , 0.018, -11.490  

70 4_GCTGGAG , 0.003, -11.838 

4_GGAGAAG , 0.014, -11.490 

 
 
Table 19 Liver motif association rules by a distribution-base method. 

minsupp Heptamer set , p-value, mean difference 

20 4_TGCTGGA , 0.000, -19.649 

4_TGGGCTG 4_CTGGGCT , 0.027, -20.160 
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Table 19 Continued. 

 6_GGTCCAG , 0.004, -21.932 

3_GACCTCT 3_TGACCTC , 0.003, -22.357 

4_GTGCTGG 4_TGCTGGA , 0.026,- 21.740 

2_TCACTCC , 0.029, -19.859 

4_TGCTGGA 4_GCTGGAG , 0.007, 22.490 

4_GCTGGAG , 0.000, 16.229 

6_CTCCTTC 6_CCTCCTT , 0.003, -21.575 

4_GAGAAGA 4_GGAGAAG , 0.025, -18.454 

4_GACATTG , 0.008, -20.388 

4_GGAGGTG , 0.002, -18.561 

2_AGGCCTG 2_GGCCTGG , 0.000, -19.685  

25 4_TGGGCTG , 0.040, -16.402 

4_TGCTGGA , 0.000, -19.649 

6_CTCCTTC 6_CCTCCTT , 0.002, -21.575 

4_GAGAAGA 4_GGAGAAG , 0.017, -18.454 

6_GGTCCAG , 0.002, -21.932 

4_GGAGGTG , 0.001, -18.561 

2_AGGCCTG 2_GGCCTGG , 0.000, -19.685 

3_GACCTCT 3_TGACCTC , 0.002, -22.357 

4_TGCTGGA 4_GCTGGAG , 0.005,- 22.490 

4_GCTGGAG , 0.000, -16.229  

30 4_TGGGCTG , 0.028, -16.402 

4_TGCTGGA , 0.000, -19.649 

3_TTTGGTC , 0.039, 17.223 

4_GAGAAGA 4_GGAGAAG , 0.012, -18.454 

4_GGAGGTG , 0.001, -18.561 
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Table 19 Continued. 

 2_AGGCCTG 2_GGCCTGG , 0.000, -19.685 

4_TGCTGGA 4_GCTGGAG , 0.004, -22.490 

4_GCTGGAG , 0.000, -16.229 

4_GACATCA , 0.045, -18.491  

35 4_TGGGCTG , 0.021, -16.402 

4_GGAGGTG , 0.001, -18.561 

2_AGGCCTG 2_GGCCTGG , 0.000, -19.685 

3_TTGGTCT , 0.047, -19.969 

4_TGCTGGA , 0.000, -19.649 

4_GCTGGAG , 0.000, -16.229 

4_GACATCA , 0.033, -18.491  

40 4_GGCTGTG , 0.050, -13.862 

4_GGAGGTG , 0.001, -18.561 

2_AGGCCTG 2_GGCCTGG , 0.000, -19.685 

4_TGCTGGA , 0.000, -19.649 

4_GCTGGAG , 0.000, -16.229 

45 4_GGCTGTG , 0.037, -13.862 

4_GGAGGTG , 0.000, -18.561 

4_TGCTGGA , 0.000, -19.649 

4_GCTGGAG , 0.000, -16.229 

50 4_TGGCTGT , 0.040, -15.037 

4_GGCTGTG , 0.027, -13.862 

4_TGCTGGA , 0.000, -19.649 

4_GCTGGAG , 0.000, 16.229  

55 4_TGCTGGA , 0.000, 19.649 
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Table 19 Continued. 

 4_GCTGGAG , 0.000, -16.229 

4_GGCTGTG , 0.020, -13.862 

60 4_TGCTGGA , 0.000, -19.649 

4_GCTGGAG , 0.000, -16.229 

4_GGCTGTG , 0.015, -13.862  

65 4_GCTGGAG , 0.000, -16.229 

4_TGCTGGA , 0.000, -19.649  

70 4_GCTGGAG , 0.000, -16.229 

 
 
Table 20 Lung motif association rules by a distribution-base method. 

Minsupp Heptamer set , p-value, mean difference 

20 4_TGCTGGA , 0.000, -20.773 

6_CCTAGTC , 0.002, -22.784 

4_TGCTGGA 4_GCTGGAG , 0.000, -25.354 

4_GCTGGAG , 0.000, -15.564 

3_GAAGAGC 3_AAGAGCA , 0.001, -23.591 

2_AGGCCTG 2_GGCCTGG , 0.010, -17.604 

6_GTTTTTG 6_TTGTTTT 6_TTTGTTT , 

0.024, -21.830  

25 7_AGGGAGC , 0.044, +28.086 

4_TGCTGGA , 0.000, 20.773 

2_AGGCCTG 2_GGCCTGG , 0.007, -17.604 

4_TGCTGGA 4_GCTGGAG , 0.000, -25.354 

4_GCTGGAG , 0.000, -15.564  
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Table 20 Continued.  

30 4_TGCTGGA , 0.000, -20.773 

2_AGGCCTG 2_GGCCTGG , 0.005, -17.604 

4_TGCTGGA 4_GCTGGAG , 0.000, -25.354 

4_GCTGGAG , 0.000, -15.564  

35 2_AGGCCTG 2_GGCCTGG , 0.004, -17.604 

4_TGCTGGA , 0.000, -20.773 

4_GCTGGAG , 0.000, -15.564  

40 2_AGGCCTG 2_GGCCTGG , 0.003, -17.604 

4_TGCTGGA , 0.000, 20.773 

4_GCTGGAG , 0.000, -15.564  

45 4_TGCTGGA , 0.000, -20.773 

4_GCTGGAG , 0.000, -15.564  

50 4_TGCTGGA , 0.000, -20.773 

4_GCTGGAG , 0.000, -15.564  

55 4_TGCTGGA , 0.000, -20.773 

4_GCTGGAG , 0.000, -15.564  

60 4_TGCTGGA , 0.000, -20.773 

4_GCTGGAG , 0.000, -15.564  

65 4_GCTGGAG , 0.000, -15.564 

4_TGCTGGA , 0.000, -20.773  

70 4_GCTGGAG , 0.000, -15.564  
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Table 21 Muscle motif association rules by a distribution-base method. 

Minsupp Heptamer set , p-value, mean difference 

20 2_GCCGGGC , 0.034, +15.141 

4_GCTGGAG , 0.000, -13.921 

2_GGAGCGG , 0.037, +18.662 

4_TGTGGAG , 0.007, -14.381 

25 4_TTGTGGA 4_TGTGGAG , 0.041, -20.786 

1_CCGGAGC , 0.035, +17.970 

2_GGAGCGG , 0.025, +18.662 

4_TGTGGAG , 0.004, -14.381 

2_GCCGGGC , 0.023, +15.141 

4_GCTGGAG , 0.000, -13.921  

30 1_CCGGAGC , 0.025, +17.970 

2_GGAGCGG , 0.017, +18.662 

4_TGTGGAG , 0.003, -14.381 

2_AGGCCTG 2_GGCCTGG , 0.044, -16.294 

2_GCCGGGC , 0.016, +15.141 

4_GCTGGAG , 0.000, -13.921 

35 4_TGTGGAG , 0.002, -14.381 

2_AGGCCTG 2_GGCCTGG , 0.032, -16.294 

2_GCCGGGC , 0.012, +15.141 

1_CCGGAGC , 0.018, +17.970 

2_GGAGCGG , 0.013, +18.662 

4_GCTGGAG , 0.000, -13.921 

40 4_TGTGGAG , 0.002, -14.381 

2_AGGCCTG 2_GGCCTGG , 0.023, -16.294 
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Table 21 Continued. 

 2_GCCGGGC , 0.008, +15.141 

1_CCGGAGC , 0.013, +17.970 

2_GGAGCGG , 0.009, +18.662 

4_GCTGGAG , 0.000, -13.921 

45 2_GCCGGGC , 0.006, +15.141 

1_CCGGAGC , 0.010, +17.970 

4_TGTGGAG , 0.001, -14.381 

2_GGAGCGG , 0.007, +18.662 

4_TGCTGGA , 0.045, -13.640 

4_GCTGGAG , 0.000, -13.921 

50 2_GCCGGGC , 0.005, +15.141 

1_CCGGAGC , 0.007, +17.970 

4_TGTGGAG , 0.001, -14.381 

2_GGAGCGG , 0.005, +18.662 

4_TGCTGGA , 0.033, -13.640 

4_GCTGGAG , 0.000, -13.921 

55 2_GCCGGGC , 0.003, +15.141 

1_CCGGAGC , 0.005, +17.970 

4_TGCTGGA , 0.025, -13.640 

4_GCTGGAG , 0.000, -13.921 

4_TGTGGAG , 0.001, -14.381 

2_GGAGCGG , 0.004, +18.662 

60 2_GCCGGGC , 0.003, +15.141 

1_CCGGAGC , 0.004, +17.970 

4_TGCTGGA , 0.018, -13.640 

4_GCTGGAG , 0.000, -13.921 
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Table 21 Continued. 

 4_TGTGGAG , 0.000, -14.381 

2_GGAGCGG , 0.003, +18.662  

65 2_GCCGGGC , 0.002, +15.141 

4_GCTGGAG , 0.000, -13.921 

4_TGCTGGA , 0.014, -13.640 

4_TGTGGAG , 0.000, -14.381 

70 2_GCCGGGC , 0.001, +15.141 

4_GCTGGAG , 0.000, -13.921 

4_TGTGGAG , 0.000, -14.381 

 
 
Table 22 Salivary motif association rules by a distribution-base method. 

Minsupp Heptamer set , p-value, mean difference 

20 4_TGGGCTG , 0.004, -21.590 

7_AGGGAGC , 0.021, +29.095 

4_TGCTGGA , 0.001, -17.907 

4_TGCTGGA 4_GCTGGAG , 0.003, -24.457 

4_GCTGGAG , 0.015, -13.987 

4_GGAGGTG , 0.002, -19.290 

25 4_TGGGCTG , 0.003, -21.590 

7_AGGGAGC , 0.014, +29.095 

4_TGCTGGA , 0.001, -17.907 

4_GGAGGTG , 0.001, -19.290 

4_TGCTGGA 4_GCTGGAG , 0.002, -24.457 

4_GCTGGAG , 0.010, -13.987  
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Table 22 Continued. 

30 4_TGGGCTG , 0.002, -21.590 

4_TGCTGGA , 0.000, -17.907 

4_GGAGGTG , 0.001, -19.290 

4_TGCTGGA 4_GCTGGAG , 0.001, -24.457 

4_GCTGGAG , 0.007, -13.987 

35 4_TGGGCTG , 0.001, -21.590 

4_GGAGGTG , 0.001, -19.290 

4_TGCTGGA , 0.000, -17.907 

4_GCTGGAG , 0.005, -13.987 

2_CGCGCGG 2_GCGCGGG , 0.041, +23.934  

40 4_GGAGGTG , 0.000, -19.290 

4_TGCTGGA , 0.000, -17.907 

4_GCTGGAG , 0.004, -13.987  

45 4_GGAGGTG , 0.000, -19.290 

4_TGCTGGA , 0.000, -17.907 

4_GCTGGAG , 0.003, -13.987 

50 6_CTTTCCT 6_TTTCCTT , 0.042, +17.415 

4_TGCTGGA , 0.000, -17.907 

4_GCTGGAG , 0.002, -13.987  

55 4_TGCTGGA , 0.000, -17.907 

4_GCTGGAG , 0.001, -13.987 

6_CTTTCCT 6_TTTCCTT , 0.031, +17.415 

60 4_TGCTGGA , 0.000, -17.907 

4_GCTGGAG , 0.001, -13.987 

6_CTTTCCT 6_TTTCCTT , 0.023, +17.415  
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Table 22 Continued. 

65 4_GCTGGAG , 0.001, -13.987 

4_TGCTGGA , 0.000, -17.907  

70 4_GCTGGAG , 0.001, -13.987  

 
 
Table 23 Spleen motif association rules by a distribution-base method. 

Minsupp Heptamer set , p-value, mean difference 

20 4_TGCTGGA , 0.000, -18.461 

3_AAAATAT 3_TTTGTTT , 0.002, -24.253 

2_TTTCTCT 3_TTTCTCT , 0.023, +32.536 

3_AAAATAT 3_TTTGTTT 3_TTGTTTT , 

0.002, -24.879  

25 4_TGCTGGA , 0.000, -18.461 

4_GCTGCTG , 0.043, -12.906 

1_GCCAAAG , 0.040, -18.186 

30 4_TGCTGGA , 0.000, -18.461 

4_GCTGCTG , 0.031, -12.906  

35 4_GCTGCTG , 0.022, -12.906 

4_TGCTGGA , 0.000, -18.461 

40 4_GCTGCTG , 0.016, -12.906 

4_TGCTGGA , 0.000, -18.461 

4_GCTGGAG , 0.046, -11.911 

6_GCAGCTG , 0.038, -15.559 

45 2_CGCGCGG , 0.042, +18.532 
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Table 23 Continued.  

 4_TGCTGGA , 0.000, -18.461 

4_GCTGCTG , 0.012, -12.906 

4_GCTGGAG , 0.034, -11.911 

6_GCAGCTG , 0.028, -15.559 

50 2_CGCGCGG , 0.031, +18.532 

4_TGCTGGA , 0.000, -18.461 

4_GCTGCTG , 0.009, -12.906 

4_GCTGGAG , 0.025, -11.911 

6_GCAGCTG , 0.020, -15.559  

55 4_TGCTGGA , 0.000, -18.461 

4_GCTGCTG , 0.006, -12.906 

4_GCTGGAG , 0.018, -11.911  

60 4_TGCTGGA , 0.000, -18.461 

4_GCTGCTG , 0.005, -12.906 

4_GCTGGAG , 0.014, -11.911  

65 4_GCTGGAG , 0.010, -11.911 

4_TGCTGGA , 0.000, -18.461 

4_GCTGCTG , 0.004, -12.906  

70 4_GCTGGAG , 0.008, -11.911 

4_GCTGCTG , 0.003, -12.906  
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Table 24 Testis motif association rules by a distribution-base method. 

Minsupp Heptamer set , p-value, mean difference 

20 6_ATAAAAT 6_TAAAATG , 0.021, -21.401 

3_TTTTTCA 3_TTCATTT , 0.034, -22.472 

4_TGCTGGA , 0.016, -15.240 

3_ACCCACC 3_CACCCAC , 0.002, -25.001 

3_TTGGTCT , 0.045,- 20.042 

25 3_TTGGTCT , 0.031, -20.042 

4_TGCTGGA , 0.011, -15.240 

4_TGAGCTT , 0.045, -20.678 

30 4_AGGTGGT , 0.045, -18.570 

3_TTGGTCT , 0.022, -20.042 

4_TGCTGGA , 0.008, -15.240 

35 4_AGGTGGT , 0.033, -18.570 

3_TTGGTCT , 0.016,-20.042 

4_TGCTGGA , 0.006, -15.240  

40 4_TGCTGGA , 0.004, -15.240 

45 4_TGCTGGA , 0.003, -15.240 

50 4_TGCTGGA , 0.002, -15.240 

55 4_TGCTGGA , 0.002, -15.240  

60 4_TGCTGGA , 0.001, -15.240 

65 4_TGCTGGA , 0.001, -15.240 

70 N/A 

 


