
ABSTRACT

ELLIOTT, LAINE E. Adjusting for Measurement Error. (Under the direction of Dr. Len
Stefanski and Dr. Marie Davidian.)

A variety of complications arise when imperfect measurements, W, are observed

in place of a true variable of interest, X. In the context of linear and non-linear regression

models where X is a covariate, regression parameter estimators obtained when W is substi-

tuted for X may be substantially biased. Many strategies for correcting for measurement

error depend on the specific modeling or regression context and can be intractable in highly

non-linear models. In addition, previous methods often assume that the measurement error

is normally distributed. In our work, we focus on re-creating the distribution of X from

the observed W, either as the primary quantity of interest or as a means to improving pa-

rameter estimation. We obtain estimators of X for which the first M sample moments are

unbiased for the corresponding moments of X. We investigate the benefit of substituting

these estimates in density estimation, logistic regression and survival models. We compare

this moment adjusted imputation (MAI) approach to existing alternatives in applications

with normally distributed measurement error. We identify an important case of chi-square

measurement error and propose a variety of methods to adjust for it, including a version

of MAI. We find that MAI is often superior and has the advantage that once the estimates

of X are obtained, they can be substituted in any model, including complicated non-linear

models.
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Chapter 1

Moment Adjusted Imputation for

Measurement Error Models

1.1 Introduction

In clinical studies, biological covariates are often measured only at baseline, and

this measurement includes noise due to natural fluctuations or other sources. The relevant

quantity of interest may be the average over fluctuations. For example, Gheorgiade et al.

(2006) studied systolic blood pressure at hospital admission in patients hospitalized with

acute heart failure using data from the Organized Program to Initiate Lifesaving Treatment

in Hospitalized Patients with Heart Failure (OPTIMIZE-HF) registry. The relationship be-

tween blood pressure and mortality was studied in-hospital by fitting logistic regression

models and post-discharge by fitting Cox proportional hazard models. The value of blood

pressure was determined by a single in-hospital measurement. However, many studies have

demonstrated large fluctuations in systolic blood pressure, and the average of many longi-

tudinal blood pressure measurements is more strongly correlated with outcomes (Brueren

et al., 1997; Pickering et al., 2005; Marshall, 2008). In other words, outcomes are more di-

rectly related to an underlying blood pressure level, averaged over fluctuations. Similarly, in

descriptive analysis an unobserved “true” value may be more relevant than a noisy baseline

measure.

Complications arise in the analysis of data when an imperfect measurement, W , is

observed in place of a latent variable, X, and desired inferences involve X. When interest
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focuses on estimation of the density of X, this presents an obvious problem because the

mis-measured data, W , do not have the same distribution as the unobserved X. When X is

a covariate in a linear or non-linear regression model for an outcome Y , estimators obtained

when W is substituted for X may be substantially biased (Liu et al., 1978) and statistical

power may be compromised (Freudenheim and Marshall, 1988; Carroll et al., 2006).

The effects of measurement error have been extensively studied. Many strategies

to adjust for measurement error depend on the specific modeling or regression context. Cor-

rection for measurement error in linear model covariates is commonly achieved by regression

calibration (RC) (Carroll and Stefanski, 1990; Gleser, 1990), which substitutes an estimate

of the conditional mean E(X|W ) for the unknown X. The linear regression based on this

substitution estimates the underlying parameters of interest. Regression calibration is also

implemented in non-linear models because of its simplicity, but is typically most effective

for general linear models when the measurement error is not large (Rosner, Spiegelman

and Willett, 1989; Carroll et al., 2006). Alternatives for non-linear models are described

by Carroll et al. (2006). These include structural models, which regard X as a random

variable, and functional models in which X is treated as a fixed parameter. Structural

methods, like maximum likelihood, yield efficient estimation but require that the density

of X, fX(x), be known or well approximated. Alternatively, conditional score methods

use estimating equations derived from the distribution of the observed data conditional on

sufficient statistics for the unobserved X and include estimators that are efficient among

functional methods. These have been developed for generalized linear models (Stefanski

and Carroll, 1985, 1987), survival analysis (Tsiatis and Davidian, 2001), and joint models

for longitudinal data and a primary endpoint (Li, Zhang and Davidian, 2004).

The preceding methods target estimation of parameters in a specific regression

context; a different method must be implemented for every type of regression model in

which X is used. This would be very time consuming in the OPTIMIZE-HF study where

the mis-measured variable is used in multiple analyses. An alternative approach is to focus

on re-creating the distribution of X from the observed W , either as the primary quantity

of interest or as a means to improving parameter estimation. This has been explored

from a Bayesian perspective (Louis, 1984; Shen and Louis, 1998; Freedman et al., 2004).

Freedman et al. (2004) aim to replace the mis-measured data W with estimators that

have the same joint distribution with Y as X, asymptotically. They implement a more
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practical approximation to this idea by focusing on only the first two moments of the joint

distribution. Their method, called moment reconstruction (MR), is based on empirical

Bayes estimators, X̂MR, which are derived so that E(X̂MR), Var(X̂MR) and Cov(X̂MR, Y )

are equal to the corresponding moments of X. They impute the estimates X̂MR in a variety

of applications and observe good results for normally distributed X.

When X has a normal distribution, it suffices to match two moments; bias in re-

gression parameter estimators will be eliminated regardless of the particular model. Except

in linear regression, this will not be true for other latent variable distributions. Moreover,

this is not adequate when the density of X is of specific interest. This suggests an extension

of moment reconstruction to higher-order moments and cross-products. To the best of our

knowledge, the idea of computing higher-order, moment-adjusted estimates of the true X

originated with the unpublished dissertation research of Bay (1997). His work focused on

linear regression and applications to estimating distribution functionals such as the inter-

quartile range. We expand on this work, calling the method Moment Adjusted Imputation

(MAI). Our method retains the convenience of other imputation methods like regression cal-

ibration and moment reconstruction, in that, once the adjusted values are obtained, they

can be used across a variety of analyses on the same data set using standard software.

In this chapter, we demonstrate the benefit of MAI, particularly for density esti-

mation and logistic regression, where X is non-normal. In Section 1.2 we define the MAI

algorithm and relate it to other imputation methods. In Sections 1.3 and 1.4 we compare

adjustment procedures by simulation studies of kernel density estimation and regression

models, respectively. We adjust the previous OPTIMIZE-HF analysis to account for mea-

surement error and obtain estimates that describe the features of “true” blood pressure in

Section 1.5.

1.2 The Method

In this section we describe the method developed by Bay (1997). Consider a collec-

tion of mis-measured observations Wi, i = 1, . . . , n. These may be mis-measured versions of

a scalar covariate Xi in a regression model of interest, or subject-specific estimates of scalar

random effects Xi in a mixed effects model, subject to estimation uncertainty represented

by Ui. Assume the Wi are independent across i = 1, . . . , n, Wi = Xi+Ui for Ui ∼ N(0, σ2
ui),
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where N(µ, σ2) is the normal distribution with mean µ and variance σ2, U = (U1, . . . , Un)T

independent of X = (X1, . . . , Xn)T , and Ui are mutually independent. No assumptions are

made about the unobservable latent variables X1, . . . , Xn; they could be an independent,

identically distributed (iid) random sample from some unknown distribution, as in a struc-

tural model, or fixed constants. We focus on the iid case where notation is simpler. Assume

that σui are known, as is common in measurement error models.

The objective is to construct adjusted versions of the Wi, say X̂i, where the first

M sample moments of X̂i unbiasedly estimate the corresponding moments of Xi; that is,

E(n−1
∑n

i=1 X̂
r
i ) = E(Xr), r = 1, . . . ,M . The distribution of X̂i resembles that of Xi up to

M moments. If the latent variable Xi is a predictor in a regression model, E(Yi|Xi), we also

match cross-product moments. This has intuitive appeal but can be motivated considering

the simple case of linear regression. In linear regression, where E(Yi|Xi)= β0 + βXXi, the

naive estimator of β = (β0, βX)T based on Wi is

β̂
N

=

 n
∑

iWi∑
iWi

∑
iW

2
i

−1  ∑
i Yi∑

iWiYi

 .
Inspection of β̂

N
suggests matching the first two moments of Xi as well as the cross-product

with Yi so that M = 2 and E(n−1
∑n

i=1 X̂iYi)=E(XY ). Freedman et al. (2004) match these

same moments. It is straightforward to show that

β̂ =

 n
∑

i X̂i∑
i X̂i

∑
i X̂

2
i

−1  ∑
i Yi∑

i X̂iYi


is consistent for β. Similarly, in the linear regression model including an error-free covariate

Zi, i.e. E(Yi|Xi) = β0 + βXXi + βZZi, both βX and βZ are consistently estimated if X̂i

also satisfy E(n−1
∑n

i=1 X̂iZi)=E(XZ). In non-linear models, where parameter estimates

depend on higher-order moments and cross-products, we propose to match these as well.

In general, we want to find X̂i with E(n−1
∑n

i=1 X̂
r
i Vik)=E(XrVk) for

r = 1, 2, . . . ,M , where Vik is the (i, k) element of V = (1, Y , Z), 1 is an n × 1 vector of

ones, Y =(Y1, . . . , Yn)T , and Z is an n × (K − 2) matrix whose columns are the values of

K − 2 error-free covariates for i = 1, . . . , n and k = 1, . . . ,K. Because V includes a vector

of ones, matching cross-products with the columns of V includes matching moments. We
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make the common surrogacy assumption that Wi is conditionally independent of Vik given

Xi, and use this in the following implementation (Carroll et al. 1995, Section 2.5).

1.2.1 Implementation

The first step is to find estimators m̂rk so that E(m̂rk) = E(XrVk), k = 1, . . . ,K.

Based on the normality of Ui, unbiased estimators for the moments of Xi can be found as fol-

lows. Define Hermite polynomials by the recursion formula H0(z) = 1, H1(z) = z, Hr(z) =

zHr−1(z) − (r − 1)Hr−2(z) for r = 2, 3, . . . (Cramer, 1957). Stulajter (1978) proved that,

if W ∼ N(µ, σ2), then E{σrHr(W/σ)} = µr (Stefanski, 1989; Cheng and Van Ness, 1999).

Letting Pri(w) = σruiHr(w/σui), we have E{Pri(Wi)|Xi} = Xr
i . The estimators m̂rk =

n−1
∑n

i=1 Pri(Wi)Vik are unbiased under the surrogacy assumption that Wi is conditionally

independent of Vik given Xi because E{E(m̂rk|X,V )} = E[n−1
∑n

i=1E{Pri(Wi)|Xi}Vik]
= n−1

∑n
i=1E(Xr

i Vik) = E(XrVk).

The adjusted X̂i are obtained by minimizing
∑n

i=1(Wi−Xi)2 subject to constraints

on the moments and cross-products. For each of the K columns of V , Mk constraints

are imposed. For a particular matrix V , the vector M = (M1, . . . ,MK) describes the

number of cross-products matched, with each of its columns. Using Lagrange multipliers

(λ11, ..., λMkK) = Λ, the objective function is

QMK(X1, ..., Xn,Λ) = n−1
n∑
i=1

1
2

(Wi −Xi)2 +
K∑
k=1

Mk∑
r=1

λrk
r

(n−1
n∑
i=1

Xr
i Vik − m̂rk). (1.1)

We take the derivative of QMK with respect to (X1, ..., Xn,Λ), equate this to 0, and solve

for (X̂1, ..., X̂n, Λ̂) by Newton-Raphson (Appendix A.1). The resulting adjusted data are

defined implicitly as X̂i = h(Wi,V i, Λ̂). The solution X̂i is then substituted for Xi in the

standard methods of estimation that would be performed if Xi were observed.

1.2.2 Implications

In a simple case it is possible to obtain an analytical solution that minimizes

objective function (1.1). When we are interested in a single X in the absence of additional

covariates, the estimator that matches two moments is X̂i = Wiâ + W (1 − â), where â =(
σ̂2
x/σ̂

2
w

)1/2, σ̂2
w = n−1

∑n
i=1(Wi −W )2, σ̂2

x = σ̂2
w − σ2

u, and σ2
u = n−1

∑n
i=1 σ

2
ui. A very

similar estimator was developed via a multi-stage loss function by Louis (1984), with the
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intention of matching only two moments. Except for the exponent in â =
(
σ̂2
x/σ̂

2
w

)1/2, this

estimator resembles the empirical Bayes estimator, which is known to have variance smaller

than the posterior expected variance (Louis, 1984). The proposed approach puts more

weight on Wi than does empirical Bayes. Thus, MAI provides an alternative to empirical

Bayes when one is concerned about the problem of “overshrinkage.”

MAI maintains the desirable properties of RC and MR with additional benefits.

In fact, in simple linear regression we can replicate the RC and MR parameter estimates by

matching two moments and a cross-product with the response, soM = (M1,M2)= (2, 1) for

V = (1, Y ). The adjusted data are X̂i = Wiâ+W (1− â)+(Yi−Y )
(
σ̂wy/σ̂

2
y

)
(1− â), where

W =
∑n

i=1Wi, Y =
∑n

i=1 Yi,σ̂
2
y = n−1

∑n
i=1(Yi − Y )2, â={(σ̂2

xσ̂
2
y − σ̂2

wy)/(σ̂
2
wσ̂

2
y − σ̂2

wy)}1/2,

and σ̂wy = n−1
∑n

i=1(Wi−W )(Yi−Y ). The parameter estimator β̂X=
∑n

i=1(X̂i− X̂i)(Yi−
Y i)/

∑n
i=1(X̂i− X̂i)2 is equivalent to the RC estimator, (σ̂2

w/σ̂
2
x)β̂NX , which is also identical

to MR (Bay, 1997; Freedman et al., 2004). The application of our method with M = (2, 1)

does not result in the same X̂i as Freedman et al. (2004), but our X̂i have similar properties.

The X̂i converge to X∗i = Wia + E(X)W (1 − a) + {Yi − E(Y )}
(
σwy/σ

2
y

)
(1 − a), where

a={(σ2
xσ

2
y −σ2

wy)/(σ
2
wσ

2
y −σ2

wy)}1/2. (X∗, Y ) has the same distribution as (X,Y ) when this

is multivariate normal. This allows for consistent estimation of the regression error variance

(Freedman et al., 2004).

The proposed method replicates the adjusted estimator of Cheng and Schneeweiss

(1998) for polynomial regression, which is obtained without adjusting data. In polynomial

regression, there is a closed form solution for the coefficients that depends only on sample

moments and cross-products, so the unbiased estimators m̂rk can be substituted directly into

this solution. These authors use the same Hermite polynomials as a method to obtain m̂rk

for normally distributed measurement error. Our method creates adjusted data that have

these unbiased moments and therefore replicates that of Cheng and Schneeweiss (1998). For

consistent estimation of a quadratic polynomial regression in X it is necessary to substitute

unbiased estimators for four moments and second order cross-products, i.e. M = (4, 2) for

V = (1, Y ). Although closed form solutions are not available for many non-linear models,

the non-linearity is often well approximated by a lower-order polynomial. This suggests

that these estimators are largely determined by lower-order moments and cross-products,

so MAI could result in negligible bias.
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1.2.3 Practical considerations

In practice, the m̂rk may not be a valid moment sequence. If our aim is only to

match moments, but not cross-products (k = 1), it is well known (Shohat and Tamarkin,

1943) that a sequence of 2q + 1 moments is valid if

 1 m̂11

m̂11 m̂21

 ≥ 0, . . . ,


1 m̂11 · · · m̂q1

...
...

...
...

m̂q1 m̂(q+1)1 · · · m̂(2q)1

 ≥ 0.

Checking these inequalities will identify the number of valid moments for a given data set.

We address how many of these valid moments should be used, depending on the context.

For the purpose of matching an arbitrary number of moments and cross-products

it is less clear how to identify a valid collection. For this discussion, let there be a single

error-free covariate Z. We consider a limited set of M = (M1,M2 = M1/2, ...MK = M1/2),

where the number of moments, M1, is even and the order of cross-products is (M1/2 + 1).

This corresponds to matching the variance-covariance matrix of (1, X, . . . ,XM1/2, Y, Z),

and therefore has a nice interpretation. It is also the set of moments that must be matched

to achieve consistent parameter estimation in polynomial regression of order M1/2. In

addition, simulations indicate that letting M1 be odd can lead to “outlying” X̂i if the true

distribution of Xi is extremely skewed (Bay, 1997). When M1 = 4 we obtain m̂11, m̂21,

m̂31, m̂41, m̂12, m̂22, m̂13, and m̂23, which have expectation E(X), E(X2), E(X3), E(X4),

E(XY ), E(X2Y ), E(XZ), and E(X2Z), respectively. Guided by this structure, we check

the following to guarantee that we are targeting a valid variance covariance matrix:

1 m̂11 m̂21 n−1
∑
Yi n−1

∑
Zi

m̂11 m̂21 m̂31 m̂12 m̂13

m̂21 m̂31 m̂41 m̂22 m̂23

n−1
∑
Yi m̂12 m̂22 n−1

∑
Y 2
i n−1

∑
YiZi

n−1
∑
Zi m̂13 m̂23 n−1

∑
YiZi n−1

∑
Z2
i


≥ 0.

Occasionally, we encounter numerical problems when these moments can not be

matched with a data set of size n. Even if the moments form a valid sequence, there may not

be an empirical distribution function that takes jumps of size 1/n at each of n points having

these moments. When this occurs, the Newton-Raphson algorithm will not converge to a
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solution. It is rare to encounter this problem when only moments, but not cross-products,

are involved. When this does occur, we recommend matching fewer moments.

1.3 Histogram and Kernel Density Estimation

In this and the next section, we demonstrate the utility of MAI in several represen-

tative analysis contexts. A simple and useful application of moment matching is to adjust

mis-measured data to resemble the underlying error-free variable when interest focuses on

insight about the distribution of the latent variable. A histogram or kernel density estimate

(KDE) based on mis-measured data is too flat and dispersed. We illustrate this for three

distributions of X: N(0,1), chi-square with 4 degrees of freedom, and a bimodal mixture

of normals, which is 30% N(0,1) and 70% N(5,1), where the latter two are standardized

to have mean 0 and variance 1. Measurement error with variance σ2
u = 1 is added to the

data, corresponding to large measurement error, where the reliability ratio (RR), defined

as var(X)/var(W ), is 0.5. Kernel density estimates for a single simulated data set for each

distribution are displayed in Figure 1.3. Density estimates based on X̂M=4 have features

more like the density estimate that would be obtained from the true X. Because the normal

distribution is completely defined by its first two moments, there is no benefit in matching

additional moments. However, there is great improvement from matching four moments

when X is chi-square or bimodal, as the KDE based on X̂M=4 is substantially closer to that

based on X.

These examples illustrate of the potential improvement in density estimation. We

conducted a Monte Carlo simulation to investigate the extent of improvement and to identify

the best number of moments to match under a variety of conditions. Several situations

were considered, including the three distributions for X described above, two levels of

measurement error, with reliability ratios of 0.75 and 0.5, and three sample sizes. The

sample sizes n = 300, 1000, and 2000 were typical for measurement error applications

(Stefanski and Carroll, 1985; Freedman et al., 2004).

We compare KDE based on our X̂i to that based on alternative methods of ob-

taining adjusted data. The first is regression calibration, where E(Xi|Wi) is estimated by

the best linear unbiased estimator X̂RC,i = µ̂x + (σ̂wx/σ̂2
w)(Wi − µ̂w), where µ̂x, σ̂wx, and

σ̂2
w are estimates obtained by method of moments. This is the form of the maximum likeli-
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Figure 1.1: Kernel Density Estimation; solid line: KDE of X, dark-dashed line: KDE of
X̂M=4, light-dotted lines: KDE of W and X̂M=2; n = 2000 and RR = 0.50

hood estimator for Xi when X is normally distributed, however, the same linear estimator

is used regardless of the actual distribution of X. To account for non-normality, we also

consider a different estimate of E(Xi|Wi) called X̂SNP,i, obtained by assuming Xi has den-

sity represented by the flexible family of semi-nonparametric (SNP) densities fX(x|µ, σ,α)

(Gallant and Nychka, 1987; Carroll et al., 2006), which involve parameters µ, σ, and α

and can approximate many potential latent variable distributions. The family has a conve-

nient form so that fW (w|µ, σ,α) can be obtained by integration over x, and the parameters

(µ, σ,α) can be estimated from the observed data by maximum likelihood. This approach

naturally provides density estimation in the form of fX(x|µ̂, σ̂, α̂). We took the extra step

of estimating E(Xi|Wi) as X̂SNP,i =
∫
xfX,W (x,wi|µ̂, σ̂, α̂)dx/fW (wi|µ̂, σ̂, α̂).

The versions of X̂i are evaluated according to their closeness to the underly-

ing Xi as measured by MSE(X̂) = B−1
∑B

b=1 n
−1
∑n

i=1(X̂i,b − Xi,b)2 and B simulated

data sets, and by computing the integrated squared error between the empirical distribu-

tions functions, given by ISE(G
X̂

) = B−1
∑B

b=1

∫
{G

X̂,b
(t) − GX,b(t)}2dt, where GX(t) =

n−1
∑n

i=1 I(Xi≤t), −∞ < t < ∞. When X is assumed to have an SNP density we can also

estimate the cumulative distribution function, cdfSNP , directly from fX(x|µ̂, σ̂, α̂). Density

estimation using the SNP family is well established, so we also calculate ISE(cdfSNP ) =

B−1
∑B

b=1

∫
{cdfSNP,b(t)−GX,b(t)}2 dt as a gold standard. We report an MSE ratio,

MSE(W )/MSE(X̂), and an ISE ratio, ISE(GW )/ISE(G
X̂

) so that larger ratios indicate

a greater reduction in error. Standard errors for these ratios are obtained by the delta
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method and are reported as a “coefficient of variation” which is the ratio standard error

divided by the ratio itself.

Table 1.1: Simulation results for three latent variable distributions, fX(x); two re-
liability ratios (RR), B = 500 simulated data sets, and n = 1000. Statistics re-
ported: (a) MSE(W )/MSE(X̂), where MSE(X̂) = B−1

∑B
b=1 n

−1
∑n

i=1(X̂i,b − Xi,b)2

(coefficient of variation ≈ 0.001), and (b) ISE(GW )/ISE(G
X̂

), where ISE(G
X̂

) =
B−1

∑B
b=1

∫
{G

X̂,b
(t) − GX,b(t)}2dt, for GX(t) = n−1

∑n
i=1 I(Xi≤t), −∞ < t < ∞ (coef-

ficient of variation ≈ 0.02). Adjusted data X̂: RC, regression calibration; M = 2, M = 4,
M = 6, MAI matching 2, 4 or 6 respectively; SNP, semi-nonparametric.

Distribution RR X̂RC X̂M=2 X̂M=4 X̂M=6 X̂SNP cdfSNP

(a) MSE(W )

MSE(X̂)

Normal 0.75 1.33 1.24 1.24 1.23 1.32 -
0.50 1.99 1.71 1.70 1.55 1.99 -

Chi Sq df=4 0.75 1.33 1.24 1.38 1.37 1.43 -
0.50 1.99 1.71 1.88 1.79 2.15 -

Bimodal 0.75 1.33 1.24 1.50 1.43 1.64 -
0.50 2.00 1.71 1.79 1.64 2.15 -

(b) ISE(GW )
ISE(G

X̂
)

Normal 0.75 1.09 7.90 7.03 4.20 1.08 5.99
0.50 1.34 23.72 11.65 0.82 1.33 9.64

Chi Sq df=4 0.75 1.39 2.41 6.96 5.15 0.61 1.08
0.50 1.74 4.39 10.99 3.15 1.19 1.91

Bimodal 0.75 0.81 1.32 5.05 1.94 2.35 2.71
0.50 0.86 1.90 4.13 1.29 1.48 4.99

Simulation results for sample size n = 1000 are displayed in Table 1.1. Results

for n = 300 and n = 2000 were similar and are available in Appendix A.2. For normally

distributed X, there is very little difference in the MSE ratio based on matching two or

four moments. However, there is no additional benefit from matching six moments. When

it is not important to get each X̂i close to the original Xi, but instead we want an ensemble

of X̂1, ..., X̂n that have a similar distribution to X1, ..., Xn, then ISE ratios indicate that

it is better to match only two moments. However, when fX(x) is chi-square or bimodal
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normal mixture, both ratios indicate that it is better to match four moments rather than

two or six. Moments greater than four may not be as essential in describing distributions,

and their estimators are likely to be highly variable. A general recommendation is to match

four moments.

A comparison of MAI X̂M=4 to X̂RC and X̂SNP indicates that the latter two

methods do a better job at getting each X̂i close to the originalXi. These have slightly larger

MSE ratios that those for X̂M=4. This is true regardless of the underlying distribution of

X. It is not surprising that conditional expectations give good estimation of the individual

X̂i. However expectations are known to be less variable than the original data, so the

distribution of X̂RC and X̂SNP may not resemble that of X. In fact, the ISE ratios

for these methods are close to 1, or even smaller than 1, indicating that the empirical

distribution based on these X̂ is no better than that of W . Thus, when interest focuses

on density estimation, RC and SNP are not a good approaches. The ISE ratios for X̂M=4

reflect large improvement in density estimation relative to W . This confirms the impression

suggested by Figure 1.3. The ISE ratios for X̂M=4 are at least as large as those of our gold

standard, cdfSNP , particularly for chi-square X. The SNP density estimator is based on the

normal distribution and is not ideal for estimating skewed densities. Here, MAI provides a

good alternative.

1.4 Simulations in Regression Models

In this section, we evaluate various methods that adjust for covariate measurement

error in common non-linear models over a range of conditions, including (1) Distribution

of X : N(0,1), standardized chi-square df=4, standardized bimodal mixture of normals

(see Section 3) (2) Sample size: n = 300, n = 1000, n = 2000 (3) Measurement error

variance: moderate σ2
u = 0.33 (reliability ratio 0.75), large σ2

u = 1.0 (reliability ratio 0.50)

(4) Underlying model parameters: levels depend on the specific model. An additional error-

free covariate Z was generated from the same distribution as X, and the correlation between

Z and X was 0.4. The underlying model parameters control the extent to which the model

deviates from linearity. To get a general understanding of how these methods perform in

different circumstances, we vary the model parameters and strength of the covariate effects.

We compare parameter estimation based on three imputation methods as well as
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the conditional score method (Stefanski and Carroll, 1987; Tsiatis and Davidian, 2001).

For RC, X̂RC is the best estimated linear unbiased estimator of E(X|W,Z). We use

the modification of MR proposed by Freedman et al. (2004) that involves conditioning

on the error-free covariate so that X̂MR,i = Ê(W |Yi, Zi)(1 − Ĝ) + WiĜ, where Ĝ =

v̂ar(X|Yi, Zi)1/2/v̂ar(W |Yi, Zi)1/2. For the MAI method we use X̂4,2,2 for which E(X),

E(X2), E(X3), E(X4), E(XY ), E(X2Y ), E(XZ), E(X2Z) are matched. Some alterna-

tives are discussed in the context of specific models.

When X̂i are used in a regression model, the usual standard errors for regression

parameter estimates will not be correct. When the regression parameter estimators are

M-estimators, standard errors may be obtained by the empirical sandwich approach. The

equations that determine (X̂1, ..., X̂n, Λ̂) can be stacked with the usual equations in which

the unknown Xi are replaced with h(Wi,V i, Λ̂). Details are included in the Appendix A.3.

Alternatively, standard errors can be obtained by bootstrapping. We estimate standard

errors for the Cox model parameters by bootstrapping.

1.4.1 Logistic Regression

A common model to describe the relationship between a binary outcome Yi and

covariates is logistic regression. The model for the response is P (Y = 1|X,Z) = F (β0 +

βXX + βZZ) where F (v) = 1 + exp(−v)−1, and Z is a scalar error free covariate. We

simulate data from two parameter settings, (β0, βX , βZ) = (−1.5, 1, 1) and (β0, βX , βZ) =

(−0.6, 0.3, 0.3). The first is similar to Freedman et al. (2004) and corresponds to substantial

non-linearity, strong covariate effects, and event rate P (Y = 1) ≈ 0.30. For the second set

of parameter values, P (Y = 1|X,Z) is nearly linear in the range of X, the effect of X is

moderate, and the event rate P (Y = 1) ≈ 0.36. The observed data are Yi, Wi, and Zi, for

i = 1, . . . , n.

Boxplots of the estimated coefficients β̂X from 500 simulations are displayed in

Figure 1.2 for the case where (β0, βX , βZ) = (−1.5, 1, 1), n = 2000, and σ2
u = 1.0. When

X is normally distributed, the RC estimator for βX shows slight bias, but has the least

variability. The other methods are unbiased and have similar variability. RC and MR are

expected to perform well when X is normally distributed, and there is nothing to be gained

from information about higher order moments. However, it is reassuring to see that the

increase in variability from matching additional moments is not substantial. When the
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latent variable distribution is either chi-square or bimodal, the RC and MR estimators are

biased. Only MAI and CS are unbiased, and these have similar variability.

Other results are presented in Appendix A.4. When the underlying coefficients

are (β0, βX , βZ) = (−1.5, 1, 1), results are similar to those in Figure 1.2. As expected, when

the underlying coefficients are (β0, βX , βZ) = (−0.6, 0.3, 0.3), all adjustment methods are

nearly identical in terms of estimator bias and variability. The measurement error in X

also effects the estimation of the error-free covariate effect, βZ . The naive estimator for βZ

is biased. This can be corrected by adjusting for measurement error in X. However, in

our simulations the regression calibration estimator for βZ is biased, even when the latent

variable is normally distributed. The other adjustment procedures perform similarly and

demonstrate negligible bias in βZ (Appendix A.4).
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Figure 1.2: Boxplots of β̂X from B = 500 simulated data sets where P (Y = 1|X,Z) =
F (β0 + βXX + βZZ) with true values (β0, βX , βZ) = (−1.5, 1, 1), σ2

u = 1.0, and n = 2000.

Moment matching is a good alternative in logistic regression when the underlying

latent variable distribution is unknown. In logistic regression, we recommend that four,

moments and two cross-products with every model variable be matched. This level of

matching is necessary to render negligible bias in our simulations (Appendix A.4). In

Appendix A.4, Table A.10, we compare the sandwich variance to the Monte Carlo variance

of parameter estimates and observe that the sandwich formula estimates are reasonable.

1.4.2 Cox Proportional Hazard Model

Another common non-linear model is the Cox proportional hazard model for a time

to event. For subject i = 1, . . . , n, let Ti denote the failure time and Ci denote the censoring
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time. The failure time Ti is not available for all subjects, but instead Yi = min(Ti, Ci) and

δi = I(Ti ≤ Ci) are observed. As before, Xi denotes a covariate of interest for which

Wi = Xi + Ui is observed in its place, and Zi is an error free covariate. The hazard of

failure λ(t|X,Z) is related to the covariates by the proportional hazard model

λ(t|X,Z) = limh→0+

{
h−1P (t ≤ T ≤ t+ h|T ≥ t,X,Z)

}
= λ0(t) exp(βXX + βZZ),

where λ0(t) is an underlying baseline hazard function.

We consider two scenarios. One is similar to that of Wang (2006), where failure

times occur according to the hazard function λ(t|X,Z) with λ0 = 0.2, βX = 0.7, and

βZ = 0.7, and 50% of subjects are censored uniformly. This implies a very strong covariate

effect with a hazard ratio of 2 for each unit change in X and a hazard ratio of 66 for the

largest value of X compared to the smallest [exp(0.7) ≈ 2 and exp{0.7range(X)} ≈ 66].

As a moderate alternative, we generate failure times from hazard function λ(t|X,Z) with

λ0 = 1, βX = 0.3, and βZ = 0.3, and 40% of subjects are censored. This corresponds to a

hazard ratio of 1.4 for each unit change in X and a hazard ratio of 6 overall [exp(0.3) ≈ 1.4

and exp{0.3range(X)} ≈ 6]. This is strong enough to be statistically significant in a sample

of n = 300, but moderately so.

In logistic regression, the available data consist of (Y,W,Z) whereas for time to

event data we have (Y, δ,W,Z). In this case we extend the moment matching to include

δ and target the joint distribution of (Y, δ,X,Z). We considered alternative matching

approaches. For example, the simplest approach would match the variance-covariance ma-

trix of (1, X, . . . ,XM1/2, Y, δ, Z). We could also match the variance-covariance matrix of

(1, X, . . . ,XM1/2, Y, Z) within each level of δ. Furthermore, we could match on risk sets,

which is to re-match (1, X, . . . ,XM1/2, Y, Z) at different points in time for those subjects

who are still at risk. We tried all of these approaches and saw little difference in the re-

sults. We therefore recommend the first and simplest method. The adjusted data are X̂MAI

for which E(X), E(X2), E(X3), E(X4), E(XY ), E(X2Y ), E(Xδ), E(X2δ), E(XZ), and

E(X2Z) are matched. We compared this to a lesser adjustment for which only E(X),

E(X2), E(XY ), E(Xδ), E(XZ) are matched and observed more bias and similar variabil-

ity in the resulting estimator. Among the MAI methods we prefer X̂MAI and results are

presented for this version only.
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Figure 1.3: Boxplots of β̂X from B = 500 data sets where λ(t|X,Z) = λ0(t) exp(βXX +
βZZ) with true values {λ0(t), βX , βZ} = (0.2, 0.7, 0.7) or {λ0(t), βX , βZ} = (1, 0.3, 0.3),
σ2
u = 1.0, and n = 2000.

Boxplots of the estimated coefficients β̂X from 500 simulations, where n = 2000

and σ2
u = 1.0, are displayed in Figure 1.3. When the true parameter values are λ0 = 0.2,

βX = 0.7, and βZ = 0.7, only the CS estimator is unbiased, regardless of the distribution of

X. The bias in RC and MAI estimators is evident, though relatively small. The variability

in these estimators is similar, though the RC estimator is somewhat less variable. When the

true parameter values are λ0 = 1, βX = 0.3 and βZ = 0.3, and X has a normal distribution,

all of the methods give virtually unbiased estimation with similar variability. However, for

a chi-square or bimodal latent variable, the RC estimator is biased. Both the MAI and CS

estimators are unbiased and have similar variability. The results for other sample sizes and

levels of measurement error are similar (Appendix A.5).

As in logistic regression, the measurement error in X impacts estimation of βZ ,

and the naive estimator is biased. In Appendix A.5, we see that the RC estimator for

βZ is over-corrected, particularly for the larger underlying parameter values. MAI and CS
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estimators are nearly unbiased and have similar variability to RC.

In our simulations, the conditional score approach is preferable. However, the con-

ditional score approach may be excessively time consuming or infeasible for complicated Cox

models. Imputation approaches, although imperfect, offer a practical solution. Both RC

and MAI are easy to implement and provide great improvement over the naive method. For

the estimation of βX neither can be recommended over the other based on our simulations.

However, when βZ is also of interest MAI is preferable to RC.

1.5 Application to OPTIMIZE-HF data

We redo the OPTIMIZE-HF analyses performed by Gheorgiade et al. (2006) ac-

counting for measurement error. The data set consists of n = 48, 612 subjects, aged 18

or older, with heart failure. The distribution of systolic blood pressure across subjects is

described by the KDE (Figure 1.4). There are two outcomes of interest, in-hospital mortal-

ity and post-discharge mortality. We use the models reported by Gheorgiade et al. (2006),

which include baseline systolic blood pressure, many baseline covariates that are regarded

as error-free, and linear splines and truncation that account for non-linearity in continuous

covariates. Their model for in-hospital mortality can be written as

P (Y = 1|Z, X) = {1− exp(β0 + βTZZ + β1S)}−1,

where Z includes error-free covariates listed in Appendix A.6, Table A.17; S is a truncated

version of blood pressure, i.e. S=−{XI(X < 160) + 160I(X ≥ 160)}; and X represents

true systolic blood pressure. A pre-specified subset of patients (n = 5, 791) were followed

for 60 to 90 days after discharge. In this group, post-discharge mortality is described by

the Cox proportional hazard model

λ(t|X,Z) = λ0(t) exp(βTZZ + β1S1 + β2S2)

where Z includes error free covariates which are listed in Appendix A.6, Table A.18; S1 and

S2 fit a linear spline to blood pressure, i.e. S1=−{XI(X < 140) + 140I(X ≥ 140)} and

S2 = −{0I(X < 140) +XI(X ≥ 140)}; and X is true systolic blood pressure. Gheorgiade

et al. (2006) fit these models using baseline systolic blood pressure, W , in place of X. We

adjust the mis-measured W and impute X̂ in place of X. We report the odds ratios per
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10-mm Hg change in S and hazard ratios for S1, and S2 per 10-mm Hg change. Ninety-five

percent confidence intervals for the odds ratios and hazard ratios are based on standard

errors obtained from 1000 bootstrap samples.

The adjustment procedures assume that the measurement error variance, σ2
u, is

known. In practice, this is usually replaced by a good estimate. It would be best to estimate

the measurement error variance from replicate measures of systolic blood pressure, taken

over a period of time. Replicate measures were not available in the OPTIMIZE-HF data

set; however, variability in blood pressure has been extensively studied. One source is

the Framingham data set (Carroll et al., 2006), which includes four measurements of blood

pressure, two taken at the first exam and two taken at a second exam. The average standard

deviation in four measurements is 9 mm Hg, which corresponds to a reliability ratio of about

0.75. Based on the information from other external studies, the measurement error may

actually be larger (Marshall, 2008). For the purpose of illustration, we use a reliability ratio

of 0.75 for adjustment. In practice it is very important to obtain replicate data.

Let W denote baseline systolic blood pressure in 10-mm Hg units and X̂M=4 denote

the MAI adjusted data based on matching four moments. The estimated distribution of

baseline systolic blood pressure is altered by adjustment (Figure 1.4). The adjusted version

indicates a distribution with higher peak and smaller tails and conveys the impression that

patients’ blood pressures are more similar to each other.
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Figure 1.4: Kernel Density Estimate; light-dotted lines: KDE of W , dark-
dashed line: KDE of X̂M=4

In Table 1.2 we compare the adjusted odds ratios and hazard ratios to those

obtained by Gheorgiade et al. (2006). The adjusted estimates indicate a stronger effect of
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systolic blood pressure. The RC estimates move in the same direction as MAI, but are closer

to the naive estimates. The impact of adjustment is not substantial in this case; however,

we are assuming a relatively moderate amount of measurement error. Many studies have

reported higher variability in replicate blood pressure measurements and adjustment could

be more important in estimating effect size.

Table 1.2: Parameter Estimates for the OPTIMIZE-HF data analysis. Confidence intervals
are included in parenthesis, following the estimates

Unadjusted RC MAI

(a) Odds ratios for logistic regression (1.5)
β1 1.21 (1.17, 1.25) 1.28 (1.22, 1.33) 1.36 (1.44, 1.52)

(b) Hazard ratios for Cox model (1.5)
β1 1.18 (1.10, 1.26) 1.24 (1.13, 1.36) 1.38 (1.22, 1.54)
β2 1.08 (1.01, 1.15) 1.10 (1.00, 1.21) 1.06 (0.94, 1.17)

1.6 Discussion

We have introduced MAI as a means for adjusting mis-measured data to reflect

the latent variable distribution and improve parameter estimation in non-linear regression

models. The method does not require any assumptions on the latent variable distribution.

Moreover, it performs well for a variety of distributions. For the purpose of density estima-

tion, MAI is typically superior to the alternatives we considered. In simulations of logistic

regression, the method is similar to MR when the latent variable is normally distributed,

but is a superior imputation method when the latent variable is non-normal. In the Cox

proportional hazards model, RC and MAI provide substantial improvement over the naive

approach, but do not eliminate bias. Of the functional approaches that we considered,

the conditional score is the only method that eliminates bias in the Cox model parameter

estimators.

The OPTIMIZE-HF study of systolic blood pressure performed by Gheorgiade

et al. (2006) is illustrative of a typical data analysis. The mis-measured variable is included

in descriptive analyses and in multiple models. The models are complex, involving splines
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to account for non-linearity. In practice, models could include splines, squared terms or

interactions with the latent variable of interest. These are easily accommodated by imputa-

tion methods, and other approaches such as conditional score may be difficult or impossible

to implement. In these circumstances, an imputation approach may be desirable.

In this paper we develop MAI for the case of normally distributed measurement

error. The method depends on correct specification of the measurement error distribution.

Analysts should take care to verify that normality of measurement error is a reasonable

assumption. The MAI method can be extended to other types of measurement error, as

long as the distribution is known. Work on such extensions is reported elsewhere (Chapter

3).
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Chapter 2

Extension of Moment Adjusted

Imputation to Multiple

Mis-measured Covariates

2.1 Introduction

In Chapter 1, we focus on measurement error in a single latent variable of interest

X. In a regression setting, we assume that other model variables are measured without error

or that the error is negligible. In some situations, this may not be reasonable. When multi-

ple covariates are measured with error, we could apply a univariate adjustment separately.

However, this would not account for correlation between the latent variables, which could

be exploited to improve the adjustment. For example, systolic and diastolic blood pressure

are often measured simultaneously and with error. Because these are likely to be correlated,

we should consider their joint distribution in making adjustments. In addition, the mea-

surement error in observed systolic and diastolic blood pressures will be correlated. In this

chapter, we propose an extension of Moment Adjusted Imputation (MAI) that accounts for

these features of multivariate mis-measured data.
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2.2 The Method

The notation used in Chapter 1 is not convenient for multivariate mis-measured

data. Here we introduce notation for the current problem that is similar to Chapter 1 but not

identical. Let Xi = (Xi1, . . . , XiG)T be a (G× 1) vector of latent variables for i = 1, . . . , n.

The observed data are W i = Xi + U i where U i ∼ MVN(0,Σui), MVN(µ,Σ) is the

multivariate normal distribution with mean µ and covariance matrix Σ, 0 is a G× 1 vector

of zeros, U i is independent of Xi, and U i are mutually independent. We assume that Σui is

known. The latent variables Xi may be of particular interest, as in density estimation or as

predictors in a regression model. In the latter case, we also have a response Yi and potentially

a vector of (K − 1) error-free covariates Zi. These additional variables are collected to

create V i=(Yi,ZT
i ), with components Vik for k = 1, . . . ,K. Note that the definition of V

differs from Chapter 1. We assume that Yi and Zi are not related to the measurement

error in Xi, so that V i is conditionally independent of W i given Xi (Carroll et al. 1995,

Section 2.5). The goal is to obtain adjusted versions of the W i, X̂i, that reflect the joint

distribution of Xi and possibly the joint distribution of Xi and other variables. In terms

of moments, we require that E(n−1
∑n

i=1 X̂i)=E(Xi), E(n−1
∑n

i=1 X̂iX̂
T

i )=E(XiX
T
i ),

E(n−1
∑n

i=1 X̂iVik)=E(XiVik) for k = 1, . . . ,K, and E(n−1
∑n

i=1 X̂
r

i )=E(Xr
i ) for r =

3, . . . ,M , and the rth power is applied component-wise.

2.2.1 Implementation

The first step is to define unbiased estimators for the unknown quantities mr =

E(Xr
i ), (G × 1) and r = 1, . . . ,M , m∗ = E(XiX

T
i ), (G × G), mV

k = E(XiVik), (G × 1).

Because W i|Xi ∼ MVN(Xi,Σui), we know that E(W i) = E{E(W i|Xi)} = E(Xi) so

m̂1=n−1
∑n

i=1W i. Unbiased estimators for the higher order moments are defined using the

recursion formula H0(z) = 1, H1(z) = z, Hr(z) = zHr−1(z)−(r−1)Hr−2(z) for r = 2, 3, . . .

(Cramer, 1957). Stulajter (1978) proved that if W ∼ N(µ, σ2), then E{σrHr(W/σ)} = µr

(Stefanski, 1989; Cheng and Van Ness, 1999). Let Wig and Xig denote the gth compo-

nent of W i and Xi, respectively, and let Σui,gg′ denote the element of Σui in the gth row

and g′th column. Marginally, Wig|Xig ∼ N(Xig,Σui,gg). Letting Pr(w, σ) = σrHr(w/σ),

we have E{Pr(Wig,Σui,gg)}= E[E{Pr(Wig,Σui,gg)|Xig}]=E(Xr
ig). The gth component of

m̂r is m̂rg = n−1
∑n

i=1 Pr(Wig,Σui,gg) for r = 1, . . . ,M . In addition, E(W iW
T
i |Xi)=
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XiX
T
i + Σui, so m̂∗=n−1

∑n
i=1(W iW

T
i −Σui) is unbiased for m∗. In some cases the esti-

mate m̂∗ may be non-positive definite, corresponding to an invalid moment sequence. We

only perform adjustment for a valid sequence of moments estimates, as defined in Section

2.3. Under the surrogacy assumption that V i are conditionally independent of W i given

Xi, E(W iVik) = E{E(W iVik|Xi, Vik)} = E{VikE(W i|Xi)} = E(XiVik). Therefore, the

estimators m̂V
k =n−1

∑n
i=1W iVik are unbiased for mV

k .

The adjusted X̂i are obtained by minimizing

n∑
i=1

(W i −Xi)TΣ−1
ui (W i −Xi) (2.1)

subject to the following constraints on sample moments and cross products: n−1
∑n

i=1X
r
i

= m̂r, n−1
∑n

i=1XiX
T
i = m̂∗, and n−1

∑n
i=1XiVik = m̂V

k . This is minimized by taking

the derivative with respect to Xi, and constraints are imposed by Lagrange multipliers.

In an implementation, we set the derivatives equal to 0 and solve numerically using the R

function multiroot().

2.2.2 Special Case: Matching two moments and cross product

In the simple case where V i = Y i and we are only interested in matching two

moments of Xi, the X̂i can be obtained analytically. In order to simplify notation, we

minimize
n∑
i=1

(W i −Xi)T (W i −Xi) (2.2)

rather than (2.1). The weighted minimization problem can be simplified to (2.2) by making

a change of variables. We demonstrate this later. Based on (2.2), the objective function is

n−1
∑n

i=1(W i −Xi)T (W i −Xi) + λT1 (n−1
∑n

i=1Xi −W i)

+λT2 vech(n−1
∑n

i=1XiX
T
i −W iW

T
i + Σui) + λT3 (n−1

∑n
i=1XiYi −W iYi)

(2.3)

where λT1 and λT3 are vectors of Lagrange multipliers and λT2 is a vector. Let IG denote the

identity matrix of dimension G. Taking the derivative with respect to Xi gives (Xi−W i)+

λ1 +({vech−1(λ2)+IG}Xi+λ3Yi = 0, and the solution for Xi is Xi = A(W i−λ1−λ3Yi)

where A = {2IGvech−1(λ2) + IG}−1, where vech−1 re-creates a symmetric matrix from its

vech half so that if A = vech(B) for symmetric matrix B, then vech−1(A) = B. The

solution for Xi depends on the unknown Λ = (λT1 ,λ
T
3 ,λ

T
2 )T , which must be estimated to
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obtain X̂i. Taking the derivative with respect to Λ provides additional equations that we

can solve to obtain Λ̂.

Rather than solving for Λ directly, it is easier to solve for “coefficients” in the

equation for Xi. Note that the Xi have the form AW i +B +CYi, and we solve for the

“coefficients” A,B, and C as follows:

Constraint 1: X̂=W for X̂=n−1
∑n

i=1 X̂i, and W=n−1
∑n

i=1W i

So ÂW + B̂ + ĈY=W and B̂ = (IG − Â)W − ĈY .

Substituting this for B̂ we have X̂i = ÂW i + (IG − Â)W + Ĉ(Yi − Y ).

Constraint 3: n−1
∑n

i=1 X̂iYi = n−1
∑n

i=1W iYi

Equivalently S
X̂Y

= SWY for

S
X̂Y

= n−1
∑n

i=1 X̂i(Yi − Y ) and SWY = n−1
∑n

i=1W i(Yi − Y ).

Substituting X̂i = ÂW i + (IG − Â)W + Ĉ(Yi − Y ) implies that

ÂSWY + Ĉs2
Y = SWY , where s2

Y = n−1
∑n

i=1(Yi − Y )2.

This gives Ĉ = (IG − Â)SWY /s
2
Y .

Constraint 2: n−1
∑n

i=1XiX
T
i = n−1

∑n
i=1W iW

T
i − Σui

Equivalently S
X̂X̂

= SWW − Σui.

S
X̂X̂

= n−1
∑n

i=1(X̂i − X̂i)(X̂i − X̂i)T

SWW = n−1
∑n

i=1(W i −W )(W i −W )T

Substituting (X̂i − X̂i) = Â(W i −W ) + (IG − Â)SWY (Yi − Y )/s2
Y we have

S
X̂X̂

= ÂSWW Â
T

+(IG−Â)M+ÂM(IG−Â)T +(IG−Â)MÂ
T

= SWW−Σui,

where M = SWY S
T
WY /s

2
Y .

Algebraic simplification leads to the equation

Â(SWW −M)Â
T

= SWW − Σui −M , or

Â(SWW s
2
Y − SWY S

T
WY )Â

T
= (SWW − Σui)s2

Y − SWY S
T
WY .
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The matrix V 1 = (SWW s
2
Y −SWY S

T
WY ) is positive definite by the Cauchy Schwartz

inequality. If V 2 = (SWW − Σui)s2
Y − SWY S

T
WY is non-negative definite, then the

equation can be solved to yield Â = V
−1/2
1 (V 1/2

1 V 2V
1/2
1 )1/2V

−1/2
1 . The second ma-

trix V 2 is usually non-negative definite, unless the measurement error is very large

and/or the correlation between Xi and Yi is extremely high.

This defines our adjusted data X̂i = ÂW i + (IG − Â)W + Ĉ(Yi − Y ).

Now we show that the weighted minimization (2.1) can be framed in terms of

(2.2). Let X∗i = Σ−1/2
ui Xi and W ∗

i = Σ−1/2
ui W i Then W ∗

i |X∗i ∼ MVN(X∗i , IG), and∑n
i=1(W i−Xi)TΣ−1

ui (W i−Xi) =
∑n

i=1(W ∗
i−X∗i )T (W ∗

i−X∗i ). We can define the moment

constraints based on the distribution of W ∗
i |X∗i and perform an unweighted minimization

to obtain X̂
∗
i . On the original scale we have X̂i=Σ1/2

ui X̂
∗
i .

2.2.3 Practical Considerations

The estimators m̂r, m̂
∗, and m̂V

k are not always a valid set of moments in finite

samples. This is primarily a problem if the sample size n is small or the measurement error

in W i is very large. Before adjusting data, we first check that our estimators represent

a valid sample variance-covariance matrix. When M = 2, our adjustment corresponds to

matching the variance-covariance matrix of (1,XT
i ,V

T
i )T . For simplicity, let Xi be (2× 1)

(G = 2), and let V i include only the response Yi and a single error free covariate Zi. Then

we check the following condition to guarantee that we are targeting a valid set of moments:
1 m̂T

1 n−1
∑n

i=1 Yi n−1
∑n

i=1 Zi

m̂1 m̂∗ (m̂V
k )T

n−1
∑n

i=1 Yi

n−1
∑n

i=1 Zi
m̂V

k

n−1
∑n

i=1 Y
2
i n−1

∑n
i=1 YiZi

n−1
∑n

i=1 YiZi n−1
∑n

i=1 Z
2
i

 ≥ 0.

For M = 4, we match higher order moments for the G components of Xi. In this case, we

also verify the inequality 
1 m̂1g m̂2g

m̂1g m̂2g m̂3g

m̂2g m̂3g m̂4g

 ≥ 0

for all g = 1, . . . , G.
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In general, we do not have an analytical solution for the X̂i, and we solve for these

numerically, as described in Section 2.1. Even for a valid sequence of moments, numerical

problems occur for some data sets, and a solution is not obtained. In our simulations (see

Section 2.4), this happens for about 10% of data sets, even when Xi is only 2 dimensional.

In the following section, we suggest an alternative method of obtaining adjusted data that

generally avoids numerical problems.

2.3 Alternative Implementation of Adjustment

Our goal is to obtain adjusted data X̂i that have unbiased moments for the corre-

sponding moments ofXi. In Section 2.1, we do this by imposing constraints on the moments

and minimizing the “distance” between our observed data W i and the adjusted data X̂i,

as measured by (2.1). This measure incorporates all of the G components of X̂i and their

cross products and weights the components inversely according to their measurement error.

A simpler alternative minimizes the unweighted norm (2.2). This is more crude and does

not account for differential measurement error nor correlated measurement errors.

Even (2.2) can be difficult to minimize numerically, since nG adjusted data points

are obtained, and many constraints may be involved. This approach can be approximated

by performing a univariate adjustment sequentially; adjusting (W1g, . . . ,Wng) for each g =

1, . . . , G. At each step (X̂1g, . . . , X̂ng), are obtained such that E(n−1
∑n

i=1 X̂
r
ig) = E(Xr

ig)

= mrg, for r = 1, . . . ,M , and E(n−1
∑n

i=1 X̂igVik) = E(XigVik) = mV
kg, and we account for

the correlation between Xig and Xig′ by requiring that E(n−1
∑n

i=1 X̂igX̂ig′) = E(XigXig′)

= m∗gg′ for all g 6= g′.

The estimators m̂r, m̂
∗, and m̂V

k are obtained exactly as in Section 2.1, based

on the distribution W i|Xi ∼ MVN(Xi,Σui). The adjustment is performed sequentially

beginning with g = 1. For each g, we obtain (X̂1g, . . . , X̂ng) by minimizing
∑n

i=1(Wig −
Xig)2 with the following constraints imposed by Lagrange multipliers: n−1

∑n
i=1X

r
ig=m̂rg,

n−1
∑n

i=1XigVik=m̂V
kg, and n−1

∑n
i=1XigXig′=m̂∗gg′ for g′ < g.

At each step, a separate objective function is defined, and Newton Raphson is used

to solve for (X̂1g, . . . , X̂ng). At the first step, adjusted data are not available, so we can not



26

impose constraints to match m̂∗1g. The objective function is

n−1
n∑
i=1

1
2

(Wi1 −Xi1)2 +
M∑
r=1

λr
r

(n−1
n∑
i=1

Xr
i1 − m̂r1) +

K∑
k=1

λVk (n−1
n∑
i=1

Xi1Vik − m̂V
k1),

where λr and λVk are Lagrange multipliers. The adjusted data, (X̂11, . . . , X̂n1), can be used

to adjust Wi2 so that (X̂12, . . . , X̂n2) have E(n−1
∑n

i=1 X̂i1X̂i2) = E(Xi1Xi2). The second

objective function, which incorporates this additional constraint, is

n−1
n∑
i=1

1
2

(Wi2 −Xi2)2 +
M∑
r=1

λr
r

(n−1
n∑
i=1

Xr
i2 − m̂r2) +

K∑
k=1

λVk (n−1
n∑
i=1

Xi2Vik − m̂V
k2)

+ λ∗1(n−1
n∑
i=1

X̂i1Xi2 − m̂∗12),

where λr, λVk and λ∗1 are Lagrange multipliers. This process is continued at each step using

the previously adjusted data. So (X̂1G, . . . , X̂nG) have E(n−1
∑n

i=1 X̂igX̂iG) = E(XigXiG),

for g = 1, . . . , (G− 1). The final objective function is

n−1
n∑
i=1

1
2

(Wig −Xig)2 +
M∑
r=1

λr
r

(n−1
n∑
i=1

Xr
ig − m̂rg) +

K∑
k=1

λVk (n−1
n∑
i=1

XigVik − m̂V
kg)

+
G−1∑
g=1

λ∗g(n
−1

n∑
i=1

X̂igXiG − m̂∗gG),

where λr, λVk and λ∗g are Lagrange multipliers.

The sequential approach imposes the same moment constraints defined in Section

2.2. However, the full set of constraints is not implemented at every stage of adjustment.

The sequential nature requires that additional constraints be added at each step. This

suggests that the order of adjustment should be carefully considered. We recommend that

Wig be adjusted in the order of least measurement error to greatest measurement error.

This implies that the variables with greatest measurement error are subject to the most

constraints and adjusted most. In the following section, we compare the sequential approach

to joint adjustment based on minimizing (2.1) or (2.2).

2.4 Simulations in Logistic Regression

We performed simulations to compare parameter estimation in logistic regression

based on each these methods of implementing MAI. We let Xi = (Xi1, Xi2), and a re-
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sponse Yi is observed with probability P (Yi = 1|Xi1, Xi2) = F (β0 + β1Xi1 + β2Xi2), where

F (v) = 1 + exp(−v)−1. Both Xi1 and Xi2 have a chi-square distribution with four degrees of

freedom, standardized to have mean zero and variance one, with Corr(Xi1, Xi2) ≈ 0.5. The

coefficients β=(β0, β1, β2) are (1.5, 0.5, 0.5). This corresponds to substantial non-linearity

over the range of Xi.

We generated B = 500 simulated data sets, each having sample size of n = 1000. In

place ofXi, we observeW i = Xi+U i forU i ∼ N(0,Σu) and Σu = vech{1, 0.5(0.2)1/2, 0.2}.
Because the off-diagonal of Σu is non-zero, the measurement error in these two variables

is correlated. The measurement error in Xi1 is large and corresponds to a reliability ratio

of 0.5. The measurement error in Xi2 is smaller with a reliability ratio of 0.83. Joint

minimization of (2.1) weights components inversely by their measurement error variance

and may provide better adjustment by accounting for these features of the measurement

error. We perform sequential adjustment, first for Xi2 then Xi1, adjusting the variable

with least measurement error first. For each of the three methods of data adjustment, the

estimated β̂1 and β̂2 are compared in Table 2.1.

Table 2.1: Estimation of β for P (Y = 1|X1, X2) = F (β0 + β1X1 + β2X2). True value of
β = (1.5, 0.5, 0.5); B, bias; SD, standard deviation; MSE-R, MSEW /MSE

X̂
. Adjusted

data X̂: Seq, sequential adjustment; J, joint adjustment (2.2); JW, joint adjustment (2.1).

Matching 2 moments Matching 4 moments
Stat. W X̂Seq X̂J X̂JW X̂Seq X̂J X̂JW

Estimation of β1; true value is 0.5
B -0.35 -0.09 -0.09 -0.09 0.04 0.04 0.06
SD 0.06 0.14 0.14 0.14 0.23 0.22 0.22
MSE-R 1.00 4.53 4.54 4.65 2.47 2.49 2.39

Estimation of β2; true value is 0.5
B -0.05 -0.04 -0.04 -0.03 -0.01 -0.01 0.02
SD 0.09 0.12 0.12 0.12 0.14 0.14 0.13
MSE-R 1.00 0.72 0.72 0.74 0.57 0.26 0.62

We see no practical difference in the coefficient estimation provided by these three

methods of adjusting data (Table 2.1). The bias and standard deviation of estimators are

virtually identical across the three methods. There is no apparent loss from performing

sequential adjustment. There is a noticeable difference in estimator bias and standard devi-
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ation depending on whether two or four moments are matched. It appears that the impact

of adjustment on logistic model parameter estimation comes primarily from the moment

constraints rather than from differences in the minimization. We investigate alternative

scenarios in Appendix B and observe similar results. However, the various implementations

of MAI may differ in situations that we did not consider. The weighted joint minimization

(2.1) has the benefit of accounting for differential measurement error and correlated mea-

surement error, which could be important in many other applications. There is no benefit

numerically, nor theoretically, from performing unweighted joint minimization (2.2), so we

do not use this approach. The sequential approach runs more quickly and encounters fewer

numerical problems, so we favor this approach when computing time is limited.

In the previous comparisons, we implement sequential adjustment in order of least

to greatest measurement error. In Appendix B, we address the impact of adjustment order

on logistic regression parameter estimation. In the cases that we considered, the order of

adjustment had a negligible impact of the parameter estimates. We have not observed a

case where the order of adjustment was important in logistic regression.
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Chapter 3

Coefficient Estimation in Logistic

Regression Where Covariates

Include Variance Components

From a Model for Longitudinal or

Repeated Measurements

3.1 Introduction

Dichotomous health outcomes are frequently modeled by logistic regression, where

the covariates may include subject-specific random effects and/or residual variances that

characterize the longitudinal features of a continuous response. In this chapter we inves-

tigate the relationship between variability in longitudinal blood pressure and short-term

mortality in hemodialysis patients. In healthy patients, blood pressure variability is often

measured using 24-hour ambulatory monitoring, where patients wear a device to mea-

sure blood pressure at regular intervals throughout a typical 24 hour period. Describing

variability in hemodialysis patients is more complex because their treatment may induce

fluctuations over longer periods than 24 hours. For this reason, in a retrospective analy-

sis of the Accelerated Mortality on Renal Replacement (AMoRR) cohort, Brunelli et al.
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(2008) measured blood pressure variability over a three month period of dialysis treatment

(91 to 180 days). Blood pressure was not measured until 91 days in order to allow sub-

jects to “acclimate” to dialysis therapy. Patients underwent hemodialysis three times per

week (typically), and blood pressure was measured and recorded immediately prior to each

treatment. Afterwards, patient follow-up was conducted to assess mortality (181 to 365

days). Thus, the focus was on long-term variability and mortality among patients who had

survived at least 180 days after the introduction of hemodialysis treatment. The AMoRR

study includes adults (>18 years) who were incident to hemodialysis between June 2004

and August 2005. Using these same data1, we wish to evaluate the relationship between

short-term mortality, occurring before 180 days, and blood pressure variability. For the

analysis presented here, blood pressure measurements were obtained from 91 to 120 days,

and patient follow-up began at 121 days.

Individual subject longitudinal blood pressure trajectories are often well described

by a simple linear random coefficient model with subject-specific intercept and slope. Vari-

ability in blood pressure may be correlated with the slope and intercept that describe a

subject’s longitudinal trajectory (Brunelli et al., 2008). In this context, it is also plausible

that slopes and intercepts may be associated with mortality. To assess the independent

effect of variability, we model short-term mortality by logistic regression with longitudinal

blood pressure slope, intercept, and intra-subject variance parameters as covariates. These

longitudinal parameters must be estimated from the blood pressure measurements taken

over 91 to 120 days. The average number of replicates observed during this period is 12

with standard deviation of 1.5. Consequently, the subject-specific estimators are subject

to substantial variability about the corresponding unknown parameters. This uncertainty

of estimation introduces a problem of measurement error that must be addressed in fitting

the primary logistic regression model.

This problem has been thoroughly studied for primary outcome models that in-

clude subject-specific random effects like longitudinal slope and intercept as covariates.

Wang, Wang, and Wang (2000) characterize these “joint models” and show that a naive

approach that substitutes ordinary least squares estimators, based on each subject’s longi-

tudinal data, for the random effects, leads to biased inference on parameters in the primary
1Our collaborator Steve Brunelli had sole access to the data. R code for this analysis was developed on

simulated data.
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model. To adjust for this measurement error bias, they propose a variety of structural

methods including regression calibration (Carroll et al., 2006) and a psuedo-expected es-

timating equation approach. These methods rely on normality of the underlying random

effects. In order to avoid parametric assumptions on the random effects parameters, Li,

Zhang and Davidian (2004) introduce a conditional score approach for generalized linear

primary models, which includes logistic regression as a special case. They follow the strategy

of Stefanski and Carroll (1987) and derive unbiased estimating equations by conditioning

on sufficient statistics for the unknown random effects parameters. The common feature

in these joint models is that the estimated random effect parameters have a normal distri-

bution, conditional on the true random effects. In other words, the measurement error is

normally distributed. This is suitable for joint modeling applications where interest focuses

on longitudinal slope and intercept parameters.

Many recent studies define joint models where the primary outcome model de-

pends on subject-specific variance components. Yang et al. (2007) identified an association

between hemoglobin variability and mortality in patients with end stage renal disease, even

after controlling for the absolute level and temporal trend in hemoglobin. Havlik et al.

(2002) reported increased risk of late-life white matter brain lesions for patients with higher

variability in systolic blood pressure during mid-life. Similar work is abundant (Iribarren

et al., 1995; Grove et al., 1997; Yang et al., 2007; Brunelli et al., 2008). These outcome

models often include both random effects and variance components to describe the longi-

tudinal data. Coefficient estimation should account for both sources of measurement error,

which are correlated. Moreover, the measurement error in the variance estimators has a

chi-square, rather than normal, distribution.

It seems that the problem of measurement error is not well appreciated in this

context, as the previous studies all take a naive approach to model fitting. This is not

surprising as, to the best of our knowledge, there is very little methodology to address this

problem. One exception is a maximum likelihood method proposed by Lyles et al. (1999).

These authors note that variance estimators have high variability relative to estimators of

a mean from a similar sample size, so the problem of measurement error may be even more

pronounced in this scenario. They study a continuous outcome, decline in CD4 counts after

seroconversion, modeled by linear regression that depends on both the subject-specific mean

and variance of longitudinal CD4 counts measured before seroconversion. They obtain a full
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likelihood for the observed data by assuming that the subject-specific means are normally

distributed and independent of log-normally distributed subject-specific variances. Based

on these assumptions, they fit the model by maximum likelihood as well as a regression

calibration type approach. In many applications, the investigator may not have confidence

in parametric assumptions about the true longitudinal parameters and variances. This

suggests that a functional approach that does not require these assumptions is desirable.

In this chapter, we introduce and compare three functional approaches when the

outcome of interest is modeled by logistic regression. In Section 3.2 we define the joint

model of interest, and methods for fitting the model are derived in Section 3.3. The first is a

conditional score method, which is limited to a specific formulation of the logistic regression

model. The second is a corrected score method. The exact implementation of this method

is complicated and computationally intensive. A slight modification gives an approximately

unbiased score function that avoids excessive computation. This approach also requires a

specific formulation of the logistic regression model and is not easily adapted to alternative

versions. Finally, we describe a modification of MAI (Chapter 1), which accommodates

measurement error due to estimation of variance parameters. MAI is flexible and easy to

implement for many complicated logistic regression models. We compare these approaches

by simulation in Section 3.4. In Section 3.5, we present the analysis of short-term blood

pressure variability and mortality in hemodialysis patients from the AMoRR study. Some

conclusions and extensions are presented in Section 3.6.

3.2 Joint Model

Data are observed for subjects i = 1, . . . , n. The binary outcome of interest is

denoted Yi, and baseline error-free covariates are included in an (p × 1) vector Zi. In ad-

dition, repeated measurements of a continuous response Si = (Si1, . . . , Siri)
T are collected.

These may be longitudinal measurements collected at times ti1, . . . , tiri . We formulate the

model for longitudinal data, although replicate measurements can be accommodated as a

special case. The Si can be described by a linear mixed model given by Si = Diγi +U i,

where Di is the (ri × q) design matrix, and U i = (Uit, . . . , Uiri)
T are the within-subject

errors such that U i ∼ N(0, σ2
i Iri). In particular, we focus on the linear random coefficient

model where Di has rows (1, tij), j = 1, . . . , ri, and γi = (γ0i, γ1i)T . The primary endpoint
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Yi is related to the baseline covariates Zi and longitudinal parameters (γi, σ2
i ) through the

logistic regression model

P (Yi = 1|γi, σ2
i ,Zi;β) = F{β0 + γTi βγ + T (σ2

i )βσ +ZT
i βZ}, (3.1)

where F (t) = 1/(1 + e−t); βγ = (βγ0 , βγ1)T ; β = (β0,β
T
γ , βσ,β

T
Z)T ; and the function T (·)

represents a transformation of the variance, typically the square root or logarithm.

In this chapter, our interest focuses on estimation of βσ, although all of the com-

ponents of β are important in many applications. The naive approach to estimating β

is to replace the longitudinal model parameters (γi, σ2
i ) with estimates (γ̂i, σ̂2

i ), obtained,

for example, by individual specific ordinary least squares, and fit the logistic regression

model for Yi as if these parameters were known. In the following section, we develop es-

timators for β that account for the estimation of (γi, σ2
i ). These methods require that

we know the sampling distributions of γ̂i|γi, and σ̂2
i |σ2

i . We obtain γ̂i by ordinary least

squares on the longitudinal data for the ith subject so that γ̂i = (DT
i Di)−1DT

i Si, and

σ̂2
i = ν−1

i

∑ri
j=1(Sij − Ŝij)2 for νi = ri − q with q = 2. For these estimators we have

γ̂i|γi ∼ N{γi, σ2
i (D

T
i Di)−1} and σ̂2

i |σ2
i ∼ (σ2

i /νi)χ
2
νi . The measurement error in γ̂i is

normally distributed and in σ̂2
i is proportional to a chi-square distribution. The vector of

estimators γ̂i is conditionally independent of σ̂2
i given (γi, σ2

i ). In addition, we make the

common surrogacy assumption that Yi and Zi are independent of (γ̂i, σ̂2
i ) conditional on

(γi, σ2
i ) (Carroll et al. 2006, Section 2.5). The following estimators require no assumptions

on the distributions of the underlying parameters γi and σ2
i , as these are typically unknown

in practice.

3.3 Proposed Methods

3.3.1 Conditional Score

The estimating equations for logistic regression model parameters, based on the

maximum likelihood (ML) score function, are biased estimating equations when estimators

are naively substituted for true covariates. When the measurement error in covariates is nor-

mally distributed, an unbiased score function can be obtained by conditioning on sufficient

statistics for the unknown random effects parameters (Stefanski and Carroll, 1987; Wang

and Huang, 2001; Li, Zhang and Davidian, 2004). This method is widely used to obtain
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consistent estimators for the logistic regression model parameters in the presence of mea-

surement error. The sufficient statistics are identified by factorization of the observed data

likelihood. This involves the measurement error distribution, which, in the present case, is

not normally distributed but chi-square. We account for this, and follow the approach of

Stefanski and Carroll (1987).

We start with the special case of Model (3.1) defined by P (Y = 1|σ2;β) = F{β0 +

βσ(1/σ2)} for β = (β0, βσ)T . This model describes the relationship between the probability

of an event and the inverse variance, which is often referred to as precision in the Bayesian

statistics literature. In the exponential family form, the corresponding density of Y for a

given true predictor σ2 is

fY (y;σ2,β) = exp
[
y

(
β0 + βσ

1
σ2

)
+ log

{
1− F

(
β0 + βσ

1
σ2

)}]
. (3.2)

The observed variance estimates σ̂2 have conditional density

fσ̂2(σ̂2;σ2) =
(ν/σ2)

2ν/2Γ(ν/2)

(
νσ̂2

σ2

)ν/2−1

exp
(
−νσ̂2

2σ2

)
I(σ̂2 > 0). (3.3)

Using the surrogacy assumption that Y and σ̂2 are independent given σ2, the joint density

of the observed pair (Y, σ̂2) given σ2 and β is the product of (C.1) and (C.2),

fY,σ̂2(y, σ̂2;σ2,β) =
1

2ν/2Γ(ν/2)
exp

{
yβ0 + (ν/2)log(ν) + (ν/2− 1)log(σ̂2)

}
×

exp
[(
yβσ −

ν

2
σ̂2
)( 1

σ2

)
+ log

{
1− F

(
β0 + βσ

1
σ2

)}
+ (ν/2)log

(
1
σ2

)]
. (3.4)

If σ2 is viewed as a parameter in density (3.4), and βσ is treated as fixed and known, then

the statistic ∆= ∆(Y, σ̂2, βσ) = σ̂2 − Y (2/ν)βσ is complete and sufficient for σ2. Thus

the conditional distribution of Y |∆ does not depend on the unknown σ2. Let fY |∆(y|δ;β)

denote the condititional distribution of Y given ∆ = δ. Treat δ as a fixed conditioning

argument in the following calculations. The Jacobian of the transformation from (Y, σ̂2)

to (Y, σ̂2 − Y (2/ν)βσ) has determinant one. Thus, P (Y = 1,∆ = δ|σ2)= P (Y = 1, σ̂2 =

δ + (2/ν)βσ|σ2). Using the surrogacy assumption we have P{Y = 1, σ̂2 = δ + (2/ν)βσ|σ2}
= P (Y = 1|σ2)P{σ̂2 = δ+(2/ν)βσ|σ2} = F{β0 +βσ(1/σ2)}fσ̂2{δ+(2/ν)βσ;σ2}. Similarly,

P (Y = 0,∆ = δ|σ2)=P (Y = 0, σ̂2 = δ|σ2)=
[
1− F{β0 + βσ(1/σ2)}

]
fσ̂2(δ;σ2). Using
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P (∆ = δ|σ2) =P (Y = 1,∆ = δ|σ2)+ P (Y = 0,∆ = δ|σ2) we have

P (Y = 1|∆ = δ) =
1

1 +
1− F{β0 + βσ(1/σ2)}
F{β0 + βσ(1/σ2)}

fσ̂2(δ;σ2)
fσ̂2{δ + (2/ν)βσ;σ2}

=
1

1 + exp
{
−
(
β0 + βσ

1
σ2

)} [ fσ̂2(δ;σ2)
fσ̂2{δ + (2/ν)βσ;σ2}

]

=


0, δ > 0, δ + 2βσ/ν < 0

Q(δ) =
1

1 + exp−β0 (1− 2βσ/νδ)
1−ν/2 , δ > 0, δ + 2βσ/ν > 0

1, δ < 0.

This does not depend on σ2, and the conditional density is

fY |∆(y|δ;β) =


I(y = 0), δ > 0, δ + 2βσ/ν < 0

Q(δ)y{1−Q(δ)}1−y, δ > 0, δ + 2βσ/ν > 0

I(y = 1), δ < 0.

(3.5)

Based on this density, and with β = (β0, βσ)T , we obtain a score function as

Ψ(y, σ̂2,β)=∂/∂β{logfY |∆(y|δ;β)} evaluated at δ = σ̂2 − y(2/ν)βσ, so that

Ψ(y, σ̂2,β) =

{y −Q(δ)}

 1

β∗

 I (δ > 0, δ + 2βσ/ν > 0)


δ=σ̂2−y(2/ν)βσ

, (3.6)

where β∗=(ν/2− 1)/(βσ + νδ)/2. This is unbiased for β because E
{

Ψ(Y, σ̂2,β)
}

=

E
[
E
{

Ψ(Y, σ̂2,β)|∆
}]

= 0.

In applications, the distribution of 1/σ2
i can be extremely skewed (Figure 3.1),

and therefore inclusion of 1/σ2
i as a linear term in the logistic model might be questioned.

In addition, the problem becomes quite complicated when the model involves other mis-

measured covariates. In Appendix C.1, we demonstrate another specific case where the

conditional score approach may be developed, namely in the model P (Y = 1|σ2;β) =

F{β0 + βγ0
(
γ0/σ

2
)

+ βσ(1/σ2)} for β = (β0, βγ0 , βσ). In practice, the parameters in this

model may be difficult to interpret, even if the model provides a reasonable fit to the data.

We do not pursue this method any further, though additional discussion is included in

Appendix C.1.
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Figure 3.1: Subject-specific variances in systolic blood pressure, estimated from four repli-
cates (Exam 1-4) on n = 1, 615 subjects in the Framingham Heart Study data set (Carroll
et al., 2006).

3.3.2 Corrected Score

The conditional score method is not very general, as it requires a logistic regression

model of questionable practical utility. In order to accommodate an alternative specifica-

tion of the regression model, we now consider a corrected score approach. Nakamura (1990)

defined a corrected score function as “one whose expectation with respect to the measure-

ment error distribution coincides with the usual score function based on the unknown true

independent variables.” Nakamura (1990) derived corrected score functions for certain gen-

eralized linear models involving covariates measured with error, where the “usual” score

was the derivative of the log likelihood. In general, a correction of the likelihood score

does not exist for logistic regression (Stefanski, 1989; Huang and Wang, 2001). Huang and

Wang (2001) define an alternative to the likelihood score function that is unbiased under

the logistic regression model in the absence of measurement error, and they show how this

can be corrected for measurement error. In addition to applications with standard mis-

measured data, the corrected score approach has been adopted for joint modeling (Wang,

2006). Thus, it is a natural strategy to consider in the present problem.

Let T (σ2) = log(σ2) define the transformation of the subject-specific variance.
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This transformation is often applied in the literature (Lyles et al., 1999) because it re-

duces skewness in the distribution of the subject-specific variances. It is also convenient

for the derivation of a score function. We begin with the score equation that is ob-

tained by maximum likelihood when all of the covariates are known and not estimated,

ΨML(Y,γT , σ2,Z,β) =
{
Y − 1/(1 + e−t)

}{
1,γ, log(σ2),ZT

}T , for t = β0 + γTβγ +

log(σ2)βσ + ZTβZ. This is unbiased and has expectation 0 at the true value of β under

model (3.1). If we naively substitute estimators, ΨML(Y, γ̂T , σ̂2,Z,β) is not unbiased. We

want to assess the bias and correct for it. This is problematic for ΨML(Y,γT , σ2,Z,β),

but much simpler for a modified score equation. Following the idea of Huang and Wang

(2001), we multiply ΨML by (1 + e−t) to obtain the estimating function Ψ(Y,γ, σ2,Z,β)=

(1+e−t)ΨML(Y,γ, σ2,Z,β) =
{
Y (1 + e−t)− 1

}{
1,γT , log(σ2),ZT

}T . Like the ML score,

Ψ(Y,γ, σ2,Z,β) is unbiased when (γ, σ2,Z) are known because

E
{
Y (1 + e−t)− 1|γ, σ2,Z,β

}
= (1 + e−t)/(1 + e−t)− 1 = 0.

When γT and σ2 are estimated, Ψ(Y, γ̂, σ̂2,Z,β) is not unbiased. To account for

this, we now define a corrected score that has expectation Ψ(Y,γ, σ2,Z,β), with respect to

the measurement error distribution. Begin with the expanded version of Ψ(Y,γ, σ2,Z,β),
(Y − 1) + Y exp(−β0 −ZTβZ) exp(−γTβγ)(σ2)−βσ

(Y − 1)γ + Y exp(−β0 −ZTβZ)γ exp(−γTβγ)(σ2)−βσ

(Y − 1)log(σ2) + Y exp(−β0 −ZTβZ) exp(−γTβγ)log(σ2)(σ2)−βσ

(Y − 1)Z + YZ exp(−β0 −ZTβZ) exp(−γTβγ)(σ2)−βσ

 =


(Y − 1) + Y exp(−β0 −ZTβZ)E1(γ, σ2,β)

(Y − 1)γ + Y exp(−β0 −ZTβZ)E2(γ, σ2,β)

(Y − 1)log(σ2) + Y exp(−β0 −ZTβZ)E3(γ, σ2,β)

(Y − 1)Z + YZ exp(−β0 −ZTβZ)E1(γ, σ2,β)

 ,

where E1(γ, σ2,β) = exp(−γTβγ)(σ2)−βσ , E2(γ, σ2,β) = γ exp(−γTβγ)(σ2)−βσ , and

E3(γ, σ2,β) = exp(−γTβγ)log(σ2)(σ2)−βσ . We can substitute unbiased estimators γ̂ and

l̂og(σ2) for γ and log(σ2), respectively. In addition, let Êt(γ̂, σ̂2,β) be unbiased estimators

such that E{Êt(γ̂, σ̂2,β)|γ, σ2} = Et(γ, σ2,β) for t = 1, 2, 3. Substituting the estimators
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for unknown quantities we obtain,

Ψ∗(Y, γ̂, σ̂2,Z,β) =


(Y − 1) + Y exp(−β0 −ZTβZ)Ê1(γ̂, σ̂2,β)

(Y − 1)γ̂ + Y exp(−β0 −ZTβZ)Ê2(γ̂, σ̂2,β)

(Y − 1)l̂og(σ2) + Y exp(−β0 −ZTβZ)Ê3(γ̂, σ̂2,β)

(Y − 1)Z + YZ exp(−β0 −ZTβZ)Ê1(γ̂, σ̂2,β)

 .

Ψ∗(Y, γ̂, σ̂2,Z,β) is a corrected score, because E{Ψ∗(Y, γ̂, σ̂2,Z,β)|γ, σ2, Y } =

Ψ(Y,γ, σ2,Z,β), where the expectation is with respect to the measurement error distribu-

tion and the surrogacy assumption holds, i.e. Y is independent of γ̂ and σ̂2 given γ and

σ2.

In Appendix C.3, we suggest how such estimators Ê1, Ê2, and Ê3, can be defined.

The implementation of this correction is quite complicated, and preliminary simulations

show that a much simpler approximation works well and is practically unbiased. Here, we

derive an Approximately Corrected Score (ACS), and we use the approximation for the

remainder of this chapter.

An approximately corrected score function is based on estimators for the quanti-

ties exp(−γTβγ), γ exp(−γTβγ), (σ2)−βσ , and log(σ2)(σ2)−βσ . The estimators, derived in

Appendix C.2, are

T1(γ̂, σ̂2,β) = exp
{
−γ̂Tβγ − βTγ σ̂2(DTD)−1βγ/2

}
, E(T1|γ, σ2) ∼= exp(−γTβγ)

T2(γ̂, σ̂2,β) =
{
γ̂ + σ̂2(DTD)−1βγ

}
T1(γ̂, σ̂2,β), E(T2|γ, σ2) ∼= γ exp(−γTβγ)

g1(σ̂2, ν,β) = (νσ̂2/2)−βσΓ(ν/2)/Γ(ν/2− βσ), E(g1|σ2) = (σ2)−βσ

g2(σ̂2, ν,β) = −
{

log(2/νσ̂2) +D(ν/2− βσ)
}
g1(σ̂2, ν,β), E(g2|σ2) = log(σ2)(σ2)−βσ .

The function D(t) denotes the di-gamma function. The estimators g1(σ̂2, ν,β) and

g2(σ̂2, ν,β) are defined only if ν/2 > βσ; violation of this condition is most likely to arise

if the number of longitudinal replicates, and hence ν, is small. For a moderate number of

longitudinal replicates, like r = 10, this would only occur if βσ were greater than 4, which

corresponds to an odds ratio greater than 50, per unit change in log(σ2). This is a limitation

of the method, though it may be rare in practice.

In Ψ(Y,γ, σ2,Z,β), the unknown quantities are replaced with their estimators to
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define an approximately unbiased score

ΨA(Y, γ̂, σ̂2,Z, ν,β) =


(Y − 1) + Y exp(−β0 −ZTβZ)T1(γ̂, σ̂2,β)g1(σ̂2, ν,β)

(Y − 1)γ̂ + Y exp(−β0 −ZTβZ)T2(γ̂, σ̂2,β)g1(σ̂2, ν,β)

(Y − 1)l̂og(σ2) + Y exp(−β0 −ZTβZ)T1(γ̂, σ̂2,β)g2(σ̂2, ν,β)

(Y − 1)Z + YZ exp(−β0 −ZTβZ)T1(γ̂, σ̂2,β)g1(σ̂2, ν,β)

 .
(3.7)

An estimator β̂A satisfying
∑n

i=1 ΨA(Yi, γ̂i, σ̂2
i , νi,Zi, β̂A) = 0 is called an ACS

estimator. This score is not exactly unbiased, firstly because T1 and T2 involve the σ̂2 rather

than σ2, and additionally because g1 and g2 also depend on σ̂2 and are therefore correlated

with T1 and T2. Consequently,

E{T1(γ̂, σ̂2,β)g1(σ̂2, ν,β)|γ, σ2} 6= E1(γ, σ2,β) even though

E{T1(γ̂, σ2,β)g1(σ̂2, ν,β)|γ, σ2} = E{T1(γ̂, σ2,β)|γ, σ2} E{g1(σ̂2, ν,β)|γ, σ2} =

E1(γ, σ2,β). However, T1 and T2 depend on σ̂2(DTD)−1, which shrinks in magnitude as the

number of replicates increases and DTD increases. The correlation between the estimators

T and g becomes quite small with adequate replication, and the estimation of σ̂2 becomes

very good so that T1(γ̂, σ̂2,β) is nearly T1(γ̂, σ2,β). In this sense, ΨA(Y, γ̂, σ̂2,Z, ν,β) can

be considered approximately unbiased.

Solutions to the score equations can be obtained by a Newton-Raphson algorithm.

The naive estimate for β can be can be used a starting value. In practice, the ACS approach

is less susceptible to numerical problems than the corrected score defined in Appendix C.3.

In addition, our simulations indicate no discernable bias in the approximate score estimating

equations, nor resulting estimators, with as few as 10 replicates per subject (Section 3.4).

The estimator β̂A is an M-estimators, so that under regularity conditions it is asymptotically

normal, and standard errors may be obtained by the empirical sandwich estimator (Carroll

et al., 2006). In Appendix C.5, we show that sandwich standard errors provide reliable

inference.

3.3.3 Moment Adjusted Imputation

The ACS is a functional approach that yields bias reduction asymptotically, while

making no assumptions on the underlying distributions of subject-specific random effects

and variances. There are some disadvantages to its implementation. Primarily, the score

equation is difficult to solve numerically and frequently has convergence problems, even for



40

the approximate version. In addition, our current derivation requires that the logistic regres-

sion model depend on the log transformation of subject-specific variances, T (σ2) = log(σ2).

In practice, the analyst may want to modify the model to include other transformations

of the covariates, quadratic terms, splines or categorization of continuous variables. The

corrected score approach can be adapted for some alternative specifications of the logistic

regression model, but even when this is possible, new derivations are required. Alterna-

tively, we suggest that Moment Adjusted Imputation (MAI) (Chapters 1 and 2) can be

implemented in this situation. In Chapters 1 and 2, we account for normally-distributed

measurement error by obtaining new, estimated values for the covariate data, which have

been constrained to have unbiased moments for the distribution of the unknown population

covariate. The adjusted data are imputed in place of the underlying, unobserved covariate

and the logistic regression model can be fit by standard methods. This approach offers

greater flexibility than the corrected score.

We briefly review the MAI method and describe the modifications that are neces-

sary to accommodate the present problem. LetXi represent the (3×1) vector of unobserved

subject-specific random effects and transformed variances,
{
γ1i, γ0i, T (σ2

i )
}T , for subjects

i = 1, . . . , n. The components of Xi should be ordered from least to greatest relative mea-

surement error, or largest to smallest reliability ratio. In some scenarios, this order may

be different than the order presented here. The Xi need not be identically distributed,

but we make this assumption to simplify notation. The estimates of these quantities,

W i =
{
γ̂1i, γ̂0i, T (σ̂2

i )
}T , are observed in place of Xi. We also have a response Yi and other

error-free covariates collected in a (K − 1) × 1 vector Zi. These additional variables are

collected to create V i=(Yi,ZT
i ), with components Vik for k = 1, . . . ,K. We make the usual

surrogacy assumption that V i and W i are independent, given Xi.

The goal is to obtain adjusted versions of the W i, X̂i, that reflect the joint

distribution of Xi and other model variables by imposing constraints on the moments of

X̂i. Various approaches to obtaining adjusted data are compared in Chapter 2. Here, we

perform adjustment sequentially for the three components ofW i, denoted Wig for g = 1, 2, 3

as in Section 2.2. For each of these, we minimize
∑n

i=1(Wig − Xig)2 constrained so that

E(n−1
∑n

i=1 X̂
r
ig) = E(Xr

ig) = mrg, for r = 1, . . . ,M , and E(n−1
∑n

i=1 X̂igVik) = E(XigVik)

= mV
kg, for k = 1, . . . ,K. Moreover, we require that E(n−1

∑n
i=1 X̂igX̂ig′) = E(XigXig′) =

m∗gg′ for all g 6= g′.
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In order to implement the constrained minimization, we must unbiasedly esti-

mate mrg, mV
kg, and m∗gg′ . In Chapter 2, we show how to estimate these quantities when

W i|Xi ∼MVN(Xi,Σui), and Σui is known. In the present problem, (Wi2,Wi1)T = γ̂i|γi
∼ N{γi,Σui = σ2

i (D
T
i Di)−1}. In the following derivations of moment estimators, Σui is

regarded as known, though σ̂2
i is substituted for σ2

i in the implementation of MAI. The

moment estimators defined in Chapter 2 are m̂r1 = n−1
∑n

i=1 Pr(γ̂1i,Σui,22) and m̂r2 =

n−1
∑n

i=1 Pr(γ̂0i,Σui,11), for r = 1, . . . ,M , where Pr(w, σ) = σrHr(w/σ), and Hr are the

Hermite polynomials defined as H0(z) = 1, H1(z) = z, Hr(z) = zHr−1(z)− (r− 1)Hr−2(z)

for r = 2, 3, . . . (Cramer, 1957). The cross products are estimated by m̂V
k1 = n−1

∑n
i=1 γ̂1iVik

and m̂V
k2 = n−1

∑n
i=1 γ̂0iVik, for k = 1, . . . ,K. Finally, m̂∗21=m̂∗12=n−1

∑n
i=1(γ̂0iγ̂1i−Σui,12).

These cross product estimators are unbiased as long as the surrogacy assumption is not vi-

olated (Chapter 2), and assuming Σui is known.

The measurement error in Wi3 = T (σ2
i ) is not normally distributed and hence

previous definitions of moment estimators are not applicable. Moments and cross products

involving Wi3 are estimated based on the chi-square variation in σ̂2
i . We develop moment

estimators for two variance transformations, T (σ2
i ) = σi and T (σ2

i )= log(σ2
i ). First, con-

sider the square root transformation. Like the log transformation, σi tends to be less skewed

than σ2
i and is often preferred for the interpretation as subject-specific standard deviation.

Given that σ̂2
i ∼ (σ2

i /νi)χ
2
νi we can integrate σ̂ri over it’s distribution to find that E(σ̂ri |σi) =

σri /H(r, νi) where H(r, ν) = (ν/2)r/2Γ(ν/2)/Γ(ν/2 + r/2). So E{σ̂riH(r, νi)|σi} = σri . The

estimators m̂r3 = n−1
∑n

i=1 σ̂
r
iH(r, νi) are unbiased for E(σri )=mr3 and r = 1, . . . ,M . As-

suming that Vik are independent of σ̂2
i given σ2

i , the cross products with Vik can be estimated

by m̂V
k3= n−1

∑n
i=1 σ̂

r
iH(r, νi)Vik, for k = 1, . . . ,K. Based on the surrogacy assumption,

these are unbiased for mV
k3 because E[E{σ̂riH(r, νi)Vik|σi, Vik}] = E[VikE{σ̂riH(r, νi)|σi}]=

E(σri Vik). Under the joint model described in Section 3.2, γ̂i are conditionally indepen-

dent of σ̂2
i given (γi, σ2

i ), so the estimators m̂∗32=m̂∗23= n−1
∑n

i=1 σ̂iH(1, νi)γ̂0i and m̂∗31

= m̂∗13 = n−1
∑n

i=1 σ̂iH(1, νi)γ̂1i are also unbiased because E[E{σ̂riH(r, νi)γ̂0i|σi, γ0i}] =

E[E{γ̂0i|γ0i}E{σ̂riH(r, νi)|σi}] = E(σri γ0i) = m∗32 and E[E{σ̂riH(r, νi)γ̂1i|σi, γ1i}] =

E[E{γ̂1i|γ1i}E{σ̂riH(r, νi)|σi}] = E(σri γ1i) = m∗31. Estimators for the moments of log(σ2
i )

are more complicated, but can still be defined in closed form. These are provided in Ap-

pendix C.4.
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3.4 Simulations

3.4.1 Model (3.1) with slope, intercept and variance covariates

We conducted simulations to compare the alternative approaches to fitting model

(3.1) with adjustment for measurement error. The model without error-free covariates is

P (Yi = 1|γi, σ2
i ;βγ , βσ) = F{β0 + γTi βγ + T (σ2

i )βσ} (3.8)

where F (t) = 1/(1 + e−t). The underlying data were generated to resemble the AMoRR

blood pressure data. In this data set, the event rate was around 7 percent. It is common to

see such a low event rate when the outcome of interest is mortality. We generated the un-

derlying subject-specific variances from a chi-square distribution with 6 degrees of freedom

scaled by a multiple of 60, and the subject-specific intercepts and slopes according to a mul-

tivariate normal distribution, (γ0, γ1)T ∼MVN{0,Σ} where Σ = vech{162, 0.4(16)(4), 42}.
Because the off-diagonal is non-zero, these coefficients are correlated. This distribution pro-

duces data that resemble the subject-specific blood pressure intercepts, slopes and variances

from the AMoRR trial.

We studied the two cases where T (σ2)=σ and where T (σ2)=log(σ2), two sample

sizes (n = 1000, 5000), and two levels of replication (r = 10, 40) on each subject. The true

covariate effects were either moderately significant at n = 1000, or weakly significant. When

T (σ2) = σ, these are (βγ0 , βγ1 , βσ) = (0.02, 0.08, 0.08) and (0.01, 0.04, 0.04), respectively.

When T (σ2) = log(σ2), these are (βγ0 , βγ1 , βσ) = (0.02, 0.08, 0.80) and (0.01, 0.04, 0.40),

respectively. In this chapter, we focus on the results where n = 5000 and r = 10 because

these values reflect our application of interest.

For the model where T (σ2)=log(σ2), boxplots of the estimates from B = 500

simulated data sets are displayed in Figure 3.2. The naive approach results in substantial

bias in the estimator for βσ, although the bias in estimators for βγ0 and βγ1 is much less.

Implementation of MAI essentially eliminates the bias, regardless of whether two or four

moments are matched. There is a tradeoff between bias and variance, which is particularly

pronounced in the estimation of βγ0 and βγ1 . However, we are primarily interested in βσ, for

which the reduction in bias is large relative to the increase in variance. This is quantified by

a comparison of mean squared errors in Table 3.1. The ACS estimator is nearly unbiased,

suggesting that the approximation is good, however the variability is much larger than
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for MAI (Figure 3.2). In addition, the Newton-Raphson algorithm for obtaining the ACS

estimates failed to converge in 74 data sets, and these are not displayed.
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Figure 3.2: Boxplots of β̂ where P (Y = 1|γ, σ2;β) = F (β0 + γTβγ + log(σ2)βσ) with true
values (β0, βγ0 , βγ1 , βσ)=(−10.4, 0.02, 0.08, 0.8), r = 10, and n = 5000. Methods: X, true
covariates; W, naive approach; M=2 and M=4, MAI matching 2 and 4 moments; ACS,
Approximately Corrected Score (based on 426 data sets for which the algorithm converged).

In addition to plots, summary statistics for the case where T (σ2)=log(σ2) are

displayed in Tables 3.1 and 3.2. We do not include the ACS method in these tables because

it takes an exceedingly long time to run and demonstrates excessive variability relative to

MAI. Results for the case where T (σ2)=σ are similar and are included in Appendix C.5.1.

Parameter estimators based on the naive method are compared to the adjusted versions

according to relative bias, Monte Carlo standard deviation of relative bias, mean squared
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error (MSE) and coverage probability. The scale of MSE’s for these parameters is very

small, so we report the ratio of MSE based on naive estimates divided by the MSE for

adjusted estimates. Thus, large values of the MSE ratio indicate greater reduction in MSE

relative to the naive method. The coverage probability is calculated by the proportion

of data sets for which a 95% Wald confidence interval contains the true parameter value.

Standard errors used in these confidence intervals were obtained by the sandwich method.

On average, they are quite similar to the Monte Carlo standard deviation.

The primary parameter of interest is βσ. In all scenarios, the relative bias in β̂σ

is greatly reduced by adjustment. There is a tradeoff in terms of variability. In some cases

the MSE ratio is less than one, indicating that the adjusted parameter estimator has larger

MSE than the naive estimator. However, when the sample size is large, the MSE ratio is

typically greater than one, and the adjusted parameter estimator has smaller MSE than

the naive estimator. The coverage probability of the naive estimator is quite poor in most

scenarios, and it is restored to 95% by adjustment.

The bias in naive estimators for βγ0 and βγ1 is less than for βσ. Although MAI

reduces bias, there is a substantial tradeoff in terms of variability in the estimation of βγ0
and βγ1 . The MSE ratios for these parameters are often less than one, indicating that the

naive method is preferable, in terms of MSE. In the present problem, covariates γ0 and γ1

are included primarily for the purpose of adjusting the model so the additional variability

in their estimates is not of direct concern. The coverage probability of the naive estimators

is close to 95% in many cases, though it is improved by adjustment.

In general, the MAI estimators have minimal bias across a range of situations. In

terms of MSE there is little difference between MAI which matches two or four moments,

though the relative bias is often smaller for the version which matches four. As expected,

the adjustment is most beneficial for data sets with less replication, larger sample size and

stronger covariate effects.



Table 3.1: Estimation of β where P (Y = 1|γ0, γ1, σ
2;β) = F (β0 + γ0βγ0 + γ1βγ1 + log(σ2)βσ) with true values

(β0, βγ0 , βγ1 , βσ)=(−10.4, 0.02, 0.08, 0.8), two levels of replication (r), two sample sizes (n). RB, relative bias (standard er-
ror approximately 0.02 for n=1000, 0.01 for n=5000); SD, Monte Carlo standard deviation of β̂ multiplied by 100; SE/SD ratio
of average sandwich standard deviation to Monte Carlo standard deviation; CP, coverage probability; MSE-R, MSEβW /MSEβ

X̂

(standard error in MSE-R divided by MSE-R ranges between 0.01 and 0.08). Methods: W, naive approach; M=2 and M=4,
MAI matching 2 and 4 moments; ACS, Approximately Corrected Score.

βγ0 βγ1 βσ
r n Stat. W X̂M=2 X̂M=4 W X̂M=2 X̂M=4 W X̂M=2 X̂M=4

10 1000 RB −0.21 −0.10 −0.06 0.17 0.08 0.08 −0.42 −0.05 0.05
SD 0.61 1.38 1.50 3.09 3.93 3.97 18.01 40.68 47.22
SE/SD 1.00 1.05 1.05 1.00 0.97 0.97 1.00 1.02 1.03
CP 0.87 0.95 0.95 0.95 0.95 0.95 0.51 0.94 0.94
MSE-R 1.00 0.28 0.24 1.00 0.72 0.70 1.00 0.89 0.66

5000 RB −0.18 −0.04 −0.01 0.14 0.03 0.04 −0.43 −0.08 0.01
SD 0.26 0.59 0.63 1.38 1.72 1.74 8.01 18.00 20.55
SE/SD 1.00 1.02 1.02 1.00 0.97 0.97 1.00 1.03 1.03
CP 0.68 0.94 0.94 0.88 0.95 0.95 0.01 0.92 0.95
MSE-R 1.00 0.57 0.50 1.00 1.07 1.05 1.00 3.46 2.95

40 1000 RB −0.01 0.02 0.04 0.04 0.01 0.01 −0.14 −0.04 0.00
SD 0.76 0.96 0.99 3.45 3.68 3.69 22.77 28.29 30.25
SE/SD 1.00 1.00 1.00 1.00 1.03 1.03 1.00 0.99 0.99
CP 0.96 0.96 0.96 0.94 0.94 0.94 0.93 0.95 0.95
MSE-R 1.00 0.63 0.58 1.00 0.89 0.89 1.00 0.80 0.71

5000 RB −0.04 −0.01 0.00 0.02 −0.01 −0.01 −0.14 −0.04 0.00
SD 0.34 0.43 0.45 1.55 1.65 1.66 10.68 13.26 14.10
SE/SD 1.00 1.02 1.02 1.00 1.04 1.04 1.00 1.03 1.03
CP 0.94 0.96 0.96 0.95 0.94 0.94 0.79 0.95 0.95
MSE-R 1.00 0.66 0.62 1.00 0.88 0.88 1.00 1.29 1.19
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Table 3.2: Estimation of β where P (Y = 1|γ0, γ1, σ
2;β) = F (β0 + γ0βγ0 + γ1βγ1 + log(σ2)βσ) with true values

(β0, βγ0 , βγ1 , βσ)=(−6.4, 0.01, 0.04, 0.4), two levels of replication (r), two sample sizes (n). RB, relative bias (standard error
approximately 0.05 for n=1000, 0.02 for n=5000); SD, Monte Carlo standard deviation of β̂ multiplied by 100; SE/SD ratio of
average sandwich standard deviation to Monte Carlo standard deviation; CP, coverage probability; MSE-R, MSEβW /MSEβ

X̂

(standard error in MSE-R divided by MSE-R ranges between 0.01 and 0.06). Methods: W, naive approach; M=2 and M=4,
MAI matching 2 and 4 moments.

βγ0 βγ1 βσ
r n Stat. W X̂M=2 X̂M=4 W X̂M=2 X̂M=4 W X̂M=2 X̂M=4

10 1000 RB −0.19 −0.06 −0.04 0.10 −0.01 −0.01 −0.42 −0.06 0.01
SD 0.60 1.31 1.35 3.16 4.16 4.17 16.30 35.48 38.20
SE/SD 1.00 1.03 1.03 1.00 1.05 1.05 1.00 0.98 0.99
CP 0.92 0.93 0.94 0.94 0.94 0.94 0.80 0.96 0.96
MSE-R 1.00 0.23 0.22 1.00 0.59 0.58 1.00 0.44 0.38

5000 RB −0.15 −0.01 0.01 0.15 0.02 0.02 −0.41 −0.04 0.01
SD 0.26 0.56 0.57 1.40 1.76 1.77 6.92 15.25 16.29
SE/SD 1.00 1.00 1.00 1.00 1.03 1.03 1.00 0.95 0.95
CP 0.90 0.94 0.94 0.91 0.93 0.94 0.37 0.96 0.97
MSE-R 1.00 0.28 0.27 1.00 0.74 0.73 1.00 1.35 1.19

40 1000 RB −0.07 −0.05 −0.04 0.06 0.03 0.03 −0.09 0.03 0.05
SD 0.74 0.93 0.95 3.29 3.51 3.51 20.97 26.00 26.90
SE/SD 1.00 1.00 1.00 1.00 1.01 1.01 1.00 0.97 0.97
CP 0.94 0.94 0.94 0.94 0.94 0.94 0.95 0.95 0.95
MSE-R 1.00 0.64 0.62 1.00 0.88 0.88 1.00 0.67 0.62

5000 RB −0.05 −0.04 −0.03 0.07 0.04 0.04 −0.11 0.00 0.03
SD 0.34 0.42 0.43 1.45 1.56 1.56 9.59 11.87 12.25
SE/SD 1.00 1.02 1.02 1.00 1.01 1.01 1.00 1.00 1.00
CP 0.95 0.95 0.95 0.94 0.95 0.95 0.92 0.95 0.95
MSE-R 1.00 0.65 0.63 1.00 0.89 0.89 1.00 0.79 0.73
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3.4.2 Model (3.1) with variance covariate only

We also consider the special case of model (3.1), where the association between

longitudinal variability and a binary outcome is evaluated without adjustment for other

covariates. The model is

P (Yi = 1|σ2
i ;βσ) = F{β0 + T (σ2

i )βσ} (3.9)

where F (t) = 1/(1 + e−t). As previously, the true subject-specific variances were generated

from a scaled chi-square distribution. The value of βσ was either 0.08 or 0.04 for T (σ2) = σ

and 0.80 or 0.40 for T (σ2) = log(σ2). The value of the intercept β0 was chosen to maintain

an event rate near 7%. In this chapter, results are presented for T (σ2)=log(σ2), and similar

results for T (σ2) = σ2 are included in Appendix C.5.3. In this reduced model, (3.9), the

ACS method is implemented more quickly, and it is compared to MAI in our simulation

results.

In Tables 3.3 and 3.4, we see substantial benefit from adjustment under most

conditions. All of the adjustment methods reduce bias, however, the version of MAI that

matches four moments over-corrects when the sample size is small. As expected, there is

additional variability in the adjusted estimators, particularly the ACS estimator. For the

MAI method of adjustment, the MSE ratios are typically greater than one. In addition,

the coverage probability of the naive estimator is quite poor, and it is restored to 95% by

either method of adjustment, MAI or ACS. When the sample size is large (n = 5000), and

the replicates are few (r = 10), the performance of MAI is particularly good, and its MSE

ratios are between 2.5 and 7.0. As in model (3.8), adjustment is most beneficial for data

sets with less replication, larger sample size, and stronger covariate effects.
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Table 3.3: Estimation of β where P (Y = 1|σ2;β) = F (β0 + log(σ2)βσ) with true values
(β0, βσ)=(−7.2, 0.80), two levels of replication (r), two sample sizes (n). RB, relative bias
(standard error approximately 0.02 for n=1000, 0.01 for n=5000); SD, Monte Carlo stan-
dard deviation of β̂ multiplied by 100; SE/SD ratio of average sandwich standard deviation
to Monte Carlo standard deviation; CP, coverage probability; MSE-R, MSEβW /MSEβ

X̂

(standard error in MSE-R divided by MSE-R ranges between 0.04 and 0.07). Methods: W,
naive approach; M=2 and M=4, MAI matching 2 and 4 moments.

βσ
r n Stat. W X̂M=2 X̂M=4 ACS

10 1000 RB −0.40 0.01 −0.13 −0.02
SD 16.13 27.91 20.20 134.98
SE/SD 1.00 1.01 1.41 0.51
CP 0.50 0.96 0.96 0.94
MSE-R 1.00 1.64 1.54 0.07

5000 RB −0.43 −0.05 −0.04 0.05
SD 7.34 12.60 11.94 23.10
SE/SD 1.00 0.98 1.08 0.97
CP 0.00 0.92 0.95 0.96
MSE-R 1.00 7.13 6.96 2.25

40 1000 RB −0.14 −0.01 −0.10 0.15
SD 19.87 22.90 17.80 41.56
SE/SD 1.00 1.00 1.31 0.77
CP 0.91 0.96 0.97 0.94
MSE-R 1.00 0.98 0.92 0.28

5000 RB −0.15 −0.03 −0.02 0.01
SD 8.56 9.86 9.44 13.52
SE/SD 1.00 1.05 1.13 0.99
CP 0.76 0.95 0.97 0.95
MSE-R 1.00 2.10 2.05 1.16
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Table 3.4: Estimation of β where P (Y = 1|σ2;β) = F (β0 + log(σ2)βσ) with true values
(β0, βσ)=(−4.8, 0.40), two levels of replication (r), two sample sizes (n). RB, relative bias
(standard error approximately 0.03 for n=1000, 0.01 for n=5000); SD, Monte Carlo stan-
dard deviation of β̂ multiplied by 100; SE/SD ratio of average sandwich standard deviation
to Monte Carlo standard deviation; CP, coverage probability; MSE-R, MSEβW /MSEβ

X̂

(standard error in MSE-R divided by MSE-R ranges between 0.02 to 0.07). Methods: W,
naive approach; M=2 and M=4, MAI matching 2 and 4 moments; ACS, Approximately
Corrected Score.

βσ
r n Stat. W X̂M=2 X̂M=4 ACS

10 1000 RB −0.35 0.08 0.04 0.19
SD 16.07 27.02 25.55 48.75
SE/SD 1.00 0.95 1.03 0.78
CP 0.80 0.94 0.95 0.98
MSE-R 1.00 0.62 0.58 0.19

5000 RB −0.41 −0.03 −0.02 0.02
SD 6.66 11.11 11.42 13.38
SE/SD 1.00 1.03 1.03 1.01
CP 0.33 0.95 0.95 0.97
MSE-R 1.00 2.53 2.42 1.76

40 1000 RB −0.10 0.02 0.03 0.15
SD 18.79 21.48 21.50 29.39
SE/SD 1.00 0.99 1.01 0.84
CP 0.94 0.95 0.95 0.94
MSE-R 1.00 0.80 0.77 0.41

5000 RB −0.13 −0.02 −0.01 0.01
SD 8.15 9.30 9.46 10.42
SE/SD 1.00 1.02 1.02 1.00
CP 0.90 0.95 0.96 0.96
MSE-R 1.00 1.10 1.06 0.88
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3.5 Application to AMoRR data

We use both the ACS and MAI approaches to investigate the relationship between

variability in longitudinal diastolic blood pressure (DBP) and short-term mortality in the

AMoRR data set. The analysis includes n = 7382 subjects who had ri ≥ 5 pressure

measurements, observed between 91 and 120 days and who survived until 120 days. Follow-

up for short-term mortality began at 121 days and concluded at 180 days. During this time,

215 deaths were observed, and approximately 4% of patients were censored.

We measure the variability in DBP by the mean squared error from a linear regres-

sion, fit for each individual subjects’ longitudinal DBP data. This quantity, σ̂2
i , is defined

as in Section (3.2) and is mis-measured for an unknown true diastolic blood pressure (DBP)

variability, σ2
i . In addition, the data include subject-specific slope and intercept estimates,

γ̂i, which describe the trajectory of longitudinal DBP, and error-free variables, age, dia-

betes, and body mass index. In order to assess the independent association between DBP

variability and short-term mortality, we fit the fully adjusted logistic regression model (3.1),

P (Yi = 1|γi, σ2
i ,Zi;β) = F{β0 + γTi βγ + T (σ2

i )βσ +ZT
i βZ},

where Zi includes age, diabetes, and body mass index. Body mass index is fit as a categor-

ical variable with four levels to account for non-linearity. Additional error-free covariates

were available in the AMoRR data set, but are not included in this analysis.

Tables 3.5 and 3.6 display the logistic regression parameter estimates that are

obtained by unadjusted and adjusted analysis. These include results for two transformations

of DBP variability, the log transformation, T (σ2)=log(σ2) (Table 3.5), and the square root

transformation, T (σ2)=σ (Table 3.6). The ACS method is applicable only for the log

variance transformation, and these results are included only in Table 3.5. We are primarily

interested in the estimate of βσ, controlling for other covariates. However, the estimates for

βγ are also included. We saw little difference in β̂Z , with and without adjustment, and do

not report these quantities.

Regardless of the variance transformation, there is no statistically significant re-

lationship between DBP variability and short-term mortality. Even so, the parameter es-

timate for βσ is modified by adjustment. The results are very similar for both variance

transformations, so we limit our discussion to the log transformation. The naive approach,

which ignores measurement error, gives an odds ratio estimate of 1.10 (95% CI 0.93-1.26),
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per standard deviation increase in DBP variability. The MAI odds ratio estimate is 1.26

(95% CI 0.93-1.62), and the odds ratio based on ACS is 1.59 (95% CI 0.49-2.69). As

expected, the naive odds ratio is closer to one than the adjusted odds ratios. The ACS

odds ratio is larger than the MAI and has a substantially larger confidence interval. All of

the confidence intervals contain one, and there is no significant association between DBP

variability and short term mortality, regardless of adjustment.

In this analysis, adjustment for measurement error had only a modest impact on

the estimation of βσ, and the corresponding odds ratio. The adjustment could be more

substantial for stronger covariate effects, such as those considered in Section 3.4.

Table 3.5: Parameter estimates for the model P (Y = 1|γ, σ2,Z;β) = F (β0 + γTβγ +
log(σ2)βσ + ZTβZ). Methods: Naive, model fit with γ̂ and log(σ̂2) unadjusted for mea-
surement error; MAI, Moment Adjusted Imputation; ACS Approximately Corrected Score.
Quantities are reported per standard deviation increase in the covariate, and are followed
by standard errors in parenthesis.

Method Estimate P-value Odds ratio
βσ Naive 0.09 (0.07) 0.22 1.10 (0.08)

MAI 0.24 (0.14) 0.08 1.27 (0.18)
ACS 0.46 (0.35) 0.19 1.59 (0.56)

βγ0 Naive -0.42 (0.10) 0.00 0.66 (0.07)
MAI -0.50 (0.13) 0.00 0.61 (0.08)
ACS -0.30 (0.17) 0.08 0.74 (0.13)

βγ1 Naive -0.24 (0.08) 0.00 0.79 (0.07)
MAI -0.32 (0.19) 0.10 0.73 (0.14)
ACS -0.09 (0.14) 0.52 0.91 (0.13)
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Table 3.6: Parameter Estimates for the model P (Y = 1|γ, σ2,Z;β) = F (β0 +γTβγ+σβσ+
ZTβZ). Methods: Naive, model fit with γ̂ and σ̂ unadjusted for measurement error; MAI,
Moment Adjusted Imputation. Quantities are reported per standard deviation increase in
the covariate, and are followed by standard errors in parenthesis.

Method Estimate P-value Odds ratio
βσ Naive 0.13 (0.07) 0.08 1.14 (0.08)

MAI 0.23 (0.12) 0.06 1.25 (0.15)

βγ0 Naive -0.43 (0.10) 0.00 0.65 (0.06)
MAI -0.44 (0.13) 0.00 0.64 (0.08)

βγ1 Naive -0.24 (0.08) 0.00 0.79 (0.06)
MAI -0.23 (0.22) 0.28 0.79 (0.17)
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3.6 Discussion

We have compared three approaches to adjusting for measurement error in logistic

regression models where covariates include variance components. The conditional score and

corrected score approaches are limited to certain to primary outcome models that depend

on 1/σ2 and log(σ2), respectively. The MAI method is flexible and can be used with many

transformations of σ2. These methods require no assumptions on the distribution of subject-

specific parameters, but make use of the sampling distributions to adjust for measurement

error. In our simulations, the MAI estimator was preferable to the ACS estimator because

the ACS had high variability and frequent outliers. The MAI estimator was generally

preferable to the naive estimator for estimating the association between subject-specific

variance and outcomes, particularly when the number of replicates was few and the sample

size large.

In this chapter, our simulations involve data sets with at least ten longitudinal

replicates. Many studies collect fewer longitudinal replicates (Yang et al., 2007). This

leads us to wonder whether adjustment would be beneficial in these cases. In preliminary

simulations we considered fewer replicates, such as r = 5. In this case, the measurement

error in a variance estimates is very large, with reliability ratio around 0.30. The numerical

algorithms necessary for MAI and ACS methods tend to fail. MAI can be implemented,

but problems occur more frequently with fewer replicates. Thus, replication is not only

important for reducing measurement error directly, but to facilitate adjustment. We stress

the need for replication when subject-specific variances are included as covariates in a

primary outcome model.

All of the methods of adjustment rely on the surrogacy assumption, that Yi and

Zi are independent of (γ̂i, σ̂2
i ) conditional on (γi, σ2

i ). This is a common assumption in

measurement error literature and is justifiable in many cases. In the present problem, this

means that measurement error in the subject-specific estimates is not related to the proba-

bility of observing an event, nor to the value of error-free covariates. This could be violated

if the data collection is not homogeneous across subjects. For example, if data are collected

whenever a patient visits the doctor, sicker patients will have more medical appointments

and consequently have greater replication and less measurement error. Because these pa-

tients also have a higher probability of adverse outcomes, the surrogacy assumption may be
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violated. Alternatively, if data collection is designed to achieve a common level of replication

for all patients, with minimal missing data, the surrogacy assumption may be reasonable.

Further research is needed to account for violations of the surrogacy assumption, and/or

assess the consequences in models involving variance parameters as covariates.

In this chapter, we focus on dichotomous data that can be modeled by logistic

regression. Biological outcomes are often quantified by time-to-event data. Future research

could extend the methods in this chapter to survival models such as the Cox proportional

hazard model. In addition, we study a relatively simple specification of the logistic regression

model involving linear predictors. More complicated models involving quadratic terms

or splines are often required in practice. The MAI method can easily be used to adjust

continuous covariates that are later transformed to fit quadratic terms or splines. Future

work could to assess the performance of MAI in these models.
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Appendix A

Supplement to Chapter 1

A.1 Implementation of Newton Raphson

We wish to minimize n−1
∑n

i=1
1
2(Wi−Xi)2 subject to moment constraints imposed

by Lagrange multipliers. The objective function is

QMK(X1, ..., Xn,Λ) = n−1
n∑
i=1

1
2

(Wi −Xi)2 +
K∑
k=1

Mk∑
r=1

λrk
r

(n−1
n∑
i=1

Xr
i Vi,k −mrk). (A.1)

Differentiation with respect to Xi and Λ = (λ11, ..., λMkK) gives the equations n−1(Xi −
Wi +

∑K
k=1

∑MK
r=1 λrkX

r−1
i Vi,k) = 0 for i = 1, . . . , n, and (1/r)(n−1

∑n
i=1X

r
i Vi,k −mrk) =

0 for k = 1, . . . ,K and r = 1, . . . ,Mk. These can be solved jointly for Θ̂ = (X̂1, ..., X̂n, Λ̂)

using software packages, such as R multiroot(). However, this may be slow or encounter

convergence problems. Alternatively, we implemented our own Newton-Raphson iteration

to solve these equations. The Newton-Raphson update at iteration t is

∆λ,t+1 = Λt+1 − Λt = −(BT
t A
−1
t Bt)−1{BT

t A
−1
t `x(Θt)− `λ(Θt)},

∆x,t+1 = Xt+1 −Xt = −A−1
t {`x(Θt) +Bt∆λ,t+1},

where `x(Θ) is the (n×1) vector with components n−1(Xi−Wi+
∑K

k=1

∑MK
r=1 λrkX

r−1
i Vi,k),

`λ(Θ) is the (
∑K

k=1Mk × 1) vector with components (1/r)(n−1
∑n

i=1X
r
i Vi,k −mrk),

A is an (n× n) diagonal matrix with elements n−1(1 +
∑K

k=1

∑MK
r=2 λrk(r − 1)Xr−2

i Vi,k),

and B is the (n×
∑K

k=1Mk) matrix with ith row

n−1(V1i, XiV1i, ...X
M1−1
i V1i, ...Vki, XiVki, ...X

Mk−1
i Vki).
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This algorithm requires starting values for (X̂1, ..., X̂n, Λ̂). We let X̂i,1 = γ0 +

γ1Wi + · · · + γPW
P
i for P =

∑K
k=1Mk − 1 denote the initial adjusted value for X̂i. The

parameters (γ0, γ1, . . . , γM−1) are chosen to minimize
∑K

k=1

∑Mk
r=1(mrk−n−1

∑n
i=1 X̂

r
i,1Vk)

2.

We perform this minimization using standard software like the R nlm() function. The

X̂i,1, along with Λ̂=0, provide good starting values for the Newton-Raphson algorithm.

Sometimes convergence is not achieved, and a simpler alternative works well. This is to let

X̂i,1 = Wi + Ui where Ui ∼ N(0, σ̂2
w/10) and σ̂2

w = n−1
∑n

i=1(Wi − W̄ )2. In all of the cases

we considered, these starting values were adequate to reach convergence.

A.2 Simulations in Kernel Density Estimation
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Table A.1: Simulation results for three latent variable distributions, fX(x); two re-
liability ratios (RR), B = 500 simulated data sets, and n = 300. Statistics re-
ported: (a) MSE(W )/MSE(X̂), where MSE(X̂) = B−1

∑B
b=1 n

−1
∑n

i=1(X̂i,b − Xi,b)2

(coefficient of variation ≈ 0.001), and (b) ISE(GW )/ISE(G
X̂

), where ISE(G
X̂

) =
B−1

∑B
b=1

∫
{G

X̂,b
(t) − GX,b(t)}2dt, for GX(t) = n−1

∑n
i=1 I(Xi≤t), −∞ < t < ∞ (coef-

ficient of variation ≈ 0.02). Adjusted data X̂: RC, regression calibration; M = 2, M = 4,
M = 6, MAI matching 2, 4 or 6 respectively; SNP, semi-nonparametric.

Distribution RR X̂RC X̂M=2 X̂M=4 X̂M=6 X̂SNP cdfSNP

(a) MSE(W )

MSE(X̂)

Normal 0.75 1.33 1.24 1.24 1.18 1.33 -
0.50 1.98 1.70 1.65 1.54 1.98 -

Chi Sq df=4 0.75 1.33 1.24 1.37 1.31 1.40 -
0.50 1.99 1.70 1.82 1.67 2.11 -

Bimodal 0.75 1.32 1.24 1.47 1.31 1.62 -
0.50 2.00 1.70 1.74 1.66 2.05 -

(b) ISE(W )

ISE(X̂)

Normal 0.75 1.09 3.10 2.62 0.93 1.06 2.16
0.50 1.32 7.84 2.50 1.07 1.26 7.63

Chi Sq df=4 0.75 1.27 2.00 3.26 1.43 0.65 1.09
0.50 1.67 3.58 3.33 1.62 1.28 3.31

Bi-modal 0.75 0.81 1.26 2.86 1.16 2.07 4.59
0.50 0.86 1.75 2.66 1.55 1.01 2.00
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Table A.2: Simulation results for estimation of fX(x), B = 500, n = 1000 (Table entries
are as in Table A.1)

Distribution RR X̂RC X̂M=2 X̂M=4 X̂M=6 X̂SNP cdfSNP

(a) MSE(W )

MSE(X̂)

Normal 0.75 1.33 1.24 1.24 1.23 1.32 -
0.50 1.99 1.71 1.70 1.55 1.99 -

Chi Sq df=4 0.75 1.33 1.24 1.38 1.37 1.43 -
0.50 1.99 1.71 1.88 1.79 2.15 -

Bimodal 0.75 1.33 1.24 1.50 1.43 1.64 -
0.50 2.00 1.71 1.79 1.64 2.15 -

(b) ISE(W )

ISE(X̂)

Normal 0.75 1.09 7.90 7.03 4.20 1.08 5.99
0.50 1.34 23.72 11.65 0.82 1.33 9.64

Chi Sq df=4 0.75 1.39 2.41 6.96 5.15 0.61 1.03
0.50 1.74 4.39 10.99 3.15 1.19 4.00

Bi-modal 0.75 0.81 1.32 5.05 1.94 2.35 4.45
0.50 0.86 1.90 4.13 1.29 1.48 8.92
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Table A.3: Simulation results for estimation of fX(x), B = 500, n = 2000 (Table entries
are as in Table A.1)

Distribution RR X̂RC X̂M=2 X̂M=4 X̂M=6 X̂SNP cdfSNP

(a) MSE(W )

MSE(X̂)

Normal 0.75 1.33 1.24 1.24 1.24 1.33 -
0.50 2.00 1.71 1.70 1.59 2.00 -

Chi Sq df=4 0.75 1.33 1.24 1.38 1.38 1.43 -
0.50 2.00 1.71 1.89 1.82 2.18 -

Bimodal 0.75 1.33 1.24 1.51 1.48 1.65 -
0.50 2.00 1.71 1.82 1.68 2.15 -

(b) ISE(W )

ISE(X̂)

Normal 0.75 1.13 15.00 13.20 9.71 1.13 2.16
0.50 1.40 47.49 24.90 1.14 1.39 7.89

Chi Sq df=4 0.75 1.39 2.51 9.08 10.05 0.59 1.13
0.50 1.81 4.60 18.75 4.76 1.21 3.00

Bi-modal 0.75 0.81 1.33 6.18 3.75 2.40 4.01
0.50 0.85 1.92 5.91 1.41 1.54 15.22
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A.3 Approximating variance for regression model parame-

ters

When X̂i are used in a regression model, the usual standard errors for regression

parameter estimates will not be correct. When the regression parameter estimators are M-

estimators, standard errors may be obtained by the empirical sandwich approach. This is

possible because the adjusted data are functions of observed data (Wi,V i) and Λ̂, which is

an M-estimator solving an equation of the form n−1
∑n

i=1 ΨΛ(Wi,V i, Λ̂)=0. The equations

that define Λ̂ can be stacked with the usual regression parameter estimating equations to

obtain approximate variances. We illustrate this in a variety of cases, beginning with simple

linear regression for simplicity. We then show the extension to logistic regression models

that are considered in Chapter 1.

A.3.1 Linear regression, matching only two moments and a cross product

with response

Suppose we are interested in the linear regression model Y = β0 + βXX + ε, for

ε ∼ N(0, σ2
ε ). In place of X we observe W , and we obtain adjusted values by MAI. For

simplicity, we match only two moments of X and a cross product with Y . The objective

function, with Lagrange multipliers Λ = (λ11, λ21, λ12), is

n−1
n∑
i=1

(Wi−Xi)2+λ11(n−1
n∑
i=1

Xi−m11)+λ21(n−1
n∑
i=1

X2
i −m21)+λ12(n−1

n∑
i=1

XiYi−m12).

(A.2)

As described in Section 1.2.1, we take the derivative with respect to (X1, ..., Xn,Λ), equate

this to 0, and solve for (X̂1, ..., X̂n, Λ̂). In this simple case, the equations have a closed form

solution. The derivative of this objective function with respect to Xi is n−1(Xi − Wi +

λ11 +λ21Xi+λ12Yi). Setting this equal to 0 and solving gives Xi=h(Wi, Yi,Λ)=(Wi−λ11−
λ12Yi)/(1+λ21). The derivative of the objective function with respect to Λ = (λ11, λ12, λ21)T

gives the equations n−1
∑n

i=1 ΨΛ(Wi, Yi, σ
2
ui,Λ)=0, where

ΨΛ(w, y, σ2
u,Λ) =


{h(w, y,Λ)− w}/n

{h2(w, y,Λ)− w2 + σ2
u}/2n

{h(w, y,Λ)− w}y/n

 .
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Our estimator for Λ is Λ̂, which solves n−1
∑n

i=1 ΨΛ(Wi, Yi, σ
2
ui, Λ̂)=0. We see that the first

n equations define the form of h(Wi, Yi,Λ), and X̂i = h(Wi, Yi, Λ̂) depends on the observed

data and M-estimators, Λ̂.

Using the adjusted data, we fit the regression model Y=β0 + βXX̂ + ε = β0 +

βXh(W,Y, Λ̂) + ε. The least squares estimator β̂ = (β̂0, β̂X) solves

n−1
∑n

i=1 Ψβ,i(Wi, Yi, β̂, Λ̂) = 0 for

Ψβ(w, y,β,Λ) =

 y − β0 − βXh(w, y,Λ)

{y − β0 − βXh(w, y,Λ)}h(w, y,Λ)

 .
Because this equation involves Λ̂ we can account for the adjustment by stacking equations,

i.e.,

Ψ(w, y,β,Λ) =

 ΨΛ(w, y, σ2
u,Λ)

Ψβ(w, y,β,Λ)

 .
Letting θ = (β,Λ) we see that θ̂ = (β̂, Λ̂) is an M-estimator solving

n−1
∑n

i=1 Ψ(Wi, Yi, β̂, Λ̂)=0. The solution β̂ estimates the regression parameters for Y =

β0 +βXX̂+ ε. These are the same estimators that are obtained from ordinary least squares

of Y on X̂. For the purpose of variance estimation, it is necessary to consider the stacked

equations Ψ(w, y,β,Λ).

The sandwich variance approximation follows from the normal approximation

n1/2(θ̂ − θ0) ∼̇ MVN(0, A−1B(A−1)T ), where θ0 is defined by E{Ψ(W,Y, θ0)} = 0, B =

E{Ψ(W,Y, θ0)ΨT (W,Y, θ0)}, A = E{Ψ̇(W,Y, θ0)}, and Ψ̇(w, y, θ) = ∂Ψ(w, y, θ)/∂θT . A

and B can be estimated by Ân = n−1
∑n

i=1 Ψ̇(Wi, Yi, θ̂) and

B̂n = n−1
∑n

i=1 Ψ(Wi, Yi, θ̂)Ψ(Wi, Yi, θ̂)T . Then the empirical sandwich variance of our es-

timators is V̂ = Â−1
n B̂n {Â−1

n }T /n. In this case, the variance estimator for β̂0 is V̂44 and

for β̂X is V̂55.

The variance estimator for β̂ can alternatively be calculated by partitioning Ân

and B̂n as follows. For ΨΛ,i=ΨΛ(Wi, Yi, θ̂) and Ψβ,i=Ψβ(Wi, Yi, θ̂) let

Ân =

 Â11 = n−1
∑n

i=1 ∂ΨΛ,i/∂ΛT Â12 = n−1
∑n

i=1 ∂ΨΛ,i/∂β
T

Â21 = n−1
∑n

i=1 ∂Ψβ,i/∂ΛT Â22 = n−1
∑n

i=1 ∂Ψβ,i/∂β
T



B̂n =

 B̂11 = n−1
∑n

i=1 ΨΛ,iΨT
Λ,i B̂12 = n−1

∑n
i=1 ΨΛ,iΨT

β,i

B̂21 = n−1
∑n

i=1 Ψβ,iΨT
Λ,i B̂22 = n−1

∑n
i=1 Ψβ,iΨT

β,i

 .
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Then V̂ (β̂) = 1
nÂ
−1
11 {B̂12 − Â21Â

−1
11 B̂12 − B̂T

12(Â−1
11 )T ÂT21 + Â21Â

−1
11 B̂11(Â−1

11 )T ÂT21}(Â
−1
11 )T .

All of the operations required to obtain this variance estimator can be performed

numerically. The estimating equations can by solved by the R multiroot() function or

methods described in Section A.1, and derivatives can be computed by the R jacobian()

function. This can be a slow process, and we improve the speed by calculating Ψ̇(w, y, θ) =

∂Ψ(w, y, θ)/∂θT analytically. For the case of linear regression, matching two moments and

a cross product,

Ψ̇(w, y, θ) =



∂h/∂ΛT 0 0

h(w, y,Λ)∂h/∂ΛT 0 0

y∂h/∂ΛT 0 0

βX∂h/∂ΛT 1 h(w, y,Λ)

−(y − β0 − 2βXh(w, y,Λ))∂h/∂ΛT h(w, y,Λ) h2(w, y,Λ)


,

where ∂h/∂ΛT= {−1/(1 + λ21),−(w − λ11 − yλ12)/(1 + λ21)2,−y/(1 + λ21)}.

A.3.2 Linear regression, matching four moments and two cross product

with response

Allowing a little more complexity, we can fit the same model using X̂ for which

four moments of X and two cross products with Y have been matched. The objective

function, with Lagrange multipliers Λ = (λ11, . . . , λ41, λ12, λ22), is

n−1
n∑
i=1

1
2

(Wi −Xi)2 +
4∑
r=1

λr1
r

(n−1
n∑
i=1

Xr
i −mr1) +

2∑
r=1

λr2
r

(n−1
n∑
i=1

Xr
i Yi −mr2). (A.3)

The derivative with respect to Xi is equated to 0 and we get

Xi −Wi +
4∑
r=1

λr1X
r−1
i +

2∑
r=1

λr2X
r−1
i Yi = 0. (A.4)

It is no longer straightforward to solve for Xi. Instead, we define h(Wi, Yi,Λ) implicitly as

the solution to this equation. The estimating equations for Λ are
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n−1
∑n

i=1 ΨΛ(Wi, Yi, σ
2
ui,Λ)=0 where

ΨΛ(w, y, σ2
u,Λ) =



{h(w, y,Λ)− w}/n
{h2(w, y,Λ)− w2 + σ2

u}/2n
{h3(w, y,Λ)− w3 + 3wσ2

u}/3n
{h4(w, y,Λ)− w4 + 6w2σ2

u + 3σ4
u}/4n

{h(w, y,Λ)− w}y/n
{h2(w, y,Λ)− w2 + σ2

u}y/2n


.

These are the only changes to Section A.3.2 needed to account for additional matching

and Ψ(w, y,β,Λ) = {ΨT
Λ(w, y, σ2

u,Λ),ΨT
β (w, y,β,Λ)}T with Ψβ(w, y,β,Λ) defined previ-

ously. Numerical calculation of the empirical sandwich variance is straightforward based on

these equations. For the analytical derivative there are additional considerations. Firstly,

Ψ̇(w, y, θ) involves ∂h/∂ΛT , but we no longer have an explicit form of h(w, y,Λ). In the

present problem, ∂h/∂ΛT can be found by noting that w = h(w, y,Λ) +∑4
r=1(λr1/n)h(w, y,Λ)r−1 +

∑2
r=1(λr2/n)h(w, y,Λ)r−1y = g{h(w, y,Λ), y,Λ}. Differenti-

ating g with respect to Λ gives

0 =
∂g

∂ΛT
=
∂g

∂h

∂h

∂ΛT
+

∂g

∂ΛT
∂Λ
∂ΛT

.

Solving for ∂h/∂ΛT gives ∂h/∂ΛT=−∂g/∂ΛT

∂g/∂h . For the case of linear regression, matching

four moments and two cross products with the response,

∂h/∂ΛT =
−(1, h, h2, h3, y, yh)

1 +
∑4

r=2(r − 1)λr1hr−2 + 2λ22hy
,

and

Ψ̇(w, y, θ) =



∂h/∂ΛT 0 0

h(w, y,Λ)∂h/∂ΛT 0 0

h2(w, y,Λ)∂h/∂ΛT 0 0

h3(w, y,Λ)∂h/∂ΛT 0 0

y∂h/∂ΛT 0 0

h(w, y,Λ)y∂h/∂ΛT 0 0

βX∂h/∂ΛT 1 h(w, y,Λ)

−(y − β0 − 2βXh(w, y,Λ))∂/∂ΛT h(w, y,Λ) h2(w, y,Λ)


.
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A.3.3 Linear regression, matching moments and cross products

In addition to the latent variable of interest X, we may have error-free covariates

Z. The linear regression model is Y = β0 + βTZZ + βXX + ε, for ε ∼ N(0, σ2
ε ). Some

of the error-free covariates, Z, may be highly correlated with X, and we wish to match

cross-products with these components as well as with the response Y . Let Z∗ be the subset

of Z which are correlated with X. Then we wish to match cross-products with the columns

of the (n×K) matrix V =(1, Y , Z∗). We match four moments of X and two cross products

with the components of V , i.e. M = (4, 2, . . . , 2).

The objective function, with Lagrange multipliers Λ = (λ11, . . . , λMkK), is

n−1
n∑
i=1

1
2

(Wi −Xi)2 +
K∑
k=1

Mk∑
r=1

λrk
r

(n−1
n∑
i=1

Xr
i Vi,k −mrk). (A.5)

Differentiation with respect to Xi gives the equation n−1(Xi−Wi+
∑K

k=1

∑MK
r=1 λrkX

r−1
i Vi,k)

= 0 and h(Wi,V i,Λ) is the implicitly defined solution to this equation.

The estimating equations for Λ are n−1
∑n

i=1 ΨΛ(Wi,V i, σ
2
ui,Λ)=0 where

ΨΛ(w,v, σ2
u,Λ) =



{h(w,v,Λ)− w}/n
{h2(w,v,Λ)− w2 + σ2

u}/2n
{h3(w,v,Λ)− w3 + 3wσ2

u}/3n
{h4(w,v,Λ)− w4 + 6w2σ2

u + 3σ4
u}/4n

{h(w,v,Λ)− w}v2/n

{h2(w,v,Λ)− w2 + σ2
u}v2/2n

...

{h(w,v,Λ)− w}vK/n
{h2(w,v,Λ)− w2 + σ2

u}vK/2n



.

Based on the adjusted data we fit the regression model Ŷ = β0 + βTZZ + βXh(W,V , Λ̂).

The least squares estimator β̂ solves n−1
∑n

i=1 Ψβ(Wi, Yi,Zi, β̂, Λ̂) for

Ψβ(w, y, z,β,Λ) =


y − β0 − βTZz − βXh(w,v,Λ)

{y − β0 − βTZz − βXh(w,v,Λ)}z
{y − β0 − βTZz − βXh(w,v,Λ)}h(w,v,Λ)

 .
Combining these estimating equations, we get Ψ(w, y, z,β,Λ) =
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(ΨT
Λ(w,v, σ2

u,Λ),ΨT
β (w, y, z,β,Λ))T . The derivative of the estimating equations with re-

spect to the parameters is

Ψ̇(w, y, z,β,Λ) =


(1, h, h2, h3, v2, v2h, . . . , vK , vKh)T∂h/∂ΛT 0

(βX , βXzT ,−(y − β0 − βTZz − 2hβx))T∂h/∂ΛT
1 zT h

z zzT zh

h hzT h2


where 0 is an (

∑K
k=1Mk ×K) matrix of zeros and

∂h/∂ΛT =
−(1, h, h2, h3, v2, v2h, . . . , vK , vKh)

1 +
∑K

k=1

∑Mk
r=2 λrk(r − 1)hr−2vk

.

A.3.4 Logistic Regression

Our regression model for the relationship between a binary outcome, Y , latent

variable, X, and error-free covariates, Z, is the logistic model P (Y = 1|X,Z) = F (β0 +

βTZZ + βXX) where F (v) = 1 + exp(−v)−1. In place of X we observe W , and we obtain

adjusted values by MAI matching four moments of X and two cross products with the

components of V , where V =(1, Y , Z∗) as in the previous section.

The consideration of a new outcome model requires no change to the adjusted

data. The objective function A.5 is still applicable as is ΨΛ(w,v, σ2
u,Λ). Based on the

adjusted data we fit the regression model P̂ (Y = 1|X,Z) = F{β0 +βTZZ +βXh(W,V , Λ̂)}.
The maximum likelihood estimator β̂ solves n−1

∑n
i=1 Ψβ(Wi, Yi,Zi, β̂, Λ̂) for

Ψβ(w, y, z,β,Λ) =


y − F

(y − F )z

(y − F )h(w,v,Λ)


where F = F{β0 − βTZz − βXh(w,v,Λ)}. The parameter estimate θ̂ = (β̂, Λ̂)T solves

n−1
∑n

i=1 Ψ(Wi, Yi, β̂, Λ̂)=0 for Ψ(w, y, z,β,Λ) = {ΨT
Λ(w,v, σ2

u,Λ),ΨT
β (w, y, z,β,Λ)}T .

The derivative of the estimating equations with respect to the parameters is
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Ψ̇(w, y, z,β,Λ) =
(1, h, h2, h3, v2, v2h, . . . , vK , vKh)T∂h/∂ΛT 0

(F 2 − F )βX∂h/∂ΛT

(F 2 − F )βXz∂h/∂ΛT

{(y − F ) + (F 2 − F )hβx}∂h/∂ΛT
(F 2 − F )


1 zT h

z zzT zh

h hzT h2




where

∂h/∂ΛT =
−(1, h, h2, h3, v2, v2h, . . . , vK , vKh)

1 +
∑K

k=1

∑Mk
r=2 λrk(r − 1)hr−2vk

.

A.4 Simulations in Logistic Regression



Table A.4: Estimation of βX for P (Y = 1|X,Z) = F (β0 + βXX + βZZ), where X is normally distributed, two reliability ratios
(RR), three sample sizes (n). B, bias (standard error approximately 0.01); SD, standard deviation; MSE-R, MSEβW /MSEβX̂
(standard error in MSE-R divided by MSE-R ranges between 0.05 and 0.12). Adjusted data X̂: RC, regression calibration; MR,
moment reconstruction; MAI with M=(2,1,1) and M=(4,2,2); CS, conditional score. Values impacted by outliers marked by ∗.

(β0, βX , βZ) = (−1.5, 1, 1) (β0, βX , βZ) = (−.6, .3, .3)
RR n Stat. W X̂RC X̂MR X̂2,1,1 X̂4,2,2 X̂CS W X̂RC X̂MR X̂2,1,1 X̂4,2,2 X̂CS

0.75 300 B −0.29 0.00 0.04 0.04 0.05 0.06 −0.09 0.00 0.00 0.00 0.00 0.00
SD 0.15 0.22 0.24 0.24 0.25 0.26 0.11 0.16 0.16 0.16 0.16 0.16
MSE-R 1.00 2.24 1.72 1.81 1.62 1.53 1.00 0.81 0.78 0.78 0.78 0.78

1000 B −0.43 −0.03 0.02 0.02 0.03 0.04 −0.09 0.00 0.00 0.00 0.00 0.00
SD 0.16 0.14 0.17 0.16 0.18 0.18 0.06 0.09 0.09 0.09 0.09 0.09
MSE-R 1.00 9.87 7.44 7.73 6.59 6.17 1.00 1.48 1.43 1.43 1.43 1.43

2000 B −0.31 −0.04 0.00 −0.01 0.00 0.01 −0.09 0.00 0.00 0.00 0.00 0.00
SD 0.06 0.09 0.10 0.09 0.10 0.10 0.05 0.07 0.07 0.07 0.07 0.07
MSE-R 1.00 11.18 10.87 11.01 10.38 10.12 1.00 2.24 2.18 2.18 2.18 2.18

0.50 300 B −0.58 −0.05 0.04 0.02 0.08∗ 0.24∗ −0.16 0.01 0.02 0.02 0.02 0.03
SD 0.11 0.29 0.37 0.35 0.49∗ 3.56∗ 0.09 0.21 0.22 0.22 0.22 0.22
MSE-R 1.00 4.07 2.48 2.74 1.37∗ 0.03∗ 1.00 0.78 0.70 0.70 0.68 0.65

1000 B −0.57 −0.05 0.01 0.00 0.02 0.03 −0.16 0.00 0.01 0.01 0.01 0.01
SD 0.07 0.16 0.19 0.19 0.20 0.21 0.05 0.11 0.12 0.12 0.12 0.12
MSE-R 1.00 11.67 8.85 9.25 8.26 7.42 1.00 2.30 2.14 2.14 2.11 2.11

2000 B −0.58 −0.07 −0.01 −0.02 0.00 0.01 −0.16 0.00 0.01 0.01 0.01 0.01
SD 0.05 0.11 0.13 0.13 0.14 0.14 0.03 0.08 0.08 0.08 0.08 0.08
MSE-R 1.00 19.91 18.98 19.44 17.25 15.89 1.00 4.63 4.33 4.34 4.35 4.35

71



Table A.5: Estimation of βZ for P (Y = 1|X,Z) = F (β0 + βXX + βZZ), where X is normally distributed, two relia-
bility ratios (RR), three sample sizes (n). B, bias (standard error approximately 0.01); SD, standard deviation; MSE-R,
MSEβZ(W )/MSEβZ(X̂) (standard error in MSE-R divided by MSE-R ranges between 0.02 and 0.10). Adjusted data X̂: RC, re-
gression calibration; MR, moment reconstruction; MAI with M=(2,1,1) and M=(4,2,2); CS, conditional score. Values impacted
by outliers marked by ∗.

(β0, βX , βZ) = (−1.5, 1, 1) (β0, βX , βZ) = (−.6, .3, .3)
RR n Stat. W X̂RC X̂MR X̂2,1,1 X̂4,2,2 X̂CS W X̂RC X̂MR X̂2,1,1 X̂4,2,2 X̂CS

0.75 300 B 0.08 −0.04 0.00 0.00 0.00 0.01 0.04 0.00 0.00 0.00 0.00 0.00
SD 0.20 0.21 0.21 0.21 0.21 0.22 0.14 0.15 0.15 0.15 0.15 0.15
MSE-R 1.00 1.05 1.03 1.03 1.02 1.00 1.00 0.96 0.96 0.96 0.96 0.96

1000 B 0.10 −0.06 0.00 −0.01 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00
SD 0.11 0.12 0.12 0.12 0.12 0.12 0.08 0.08 0.08 0.08 0.08 0.08
MSE-R 1.00 1.35 1.65 1.67 1.63 1.58 1.00 1.08 1.08 1.08 1.08 1.08

2000 B 0.07 −0.04 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00
SD 0.07 0.08 0.08 0.08 0.08 0.08 0.05 0.05 0.05 0.05 0.05 0.05
MSE-R 1.00 1.42 1.72 1.72 1.71 1.68 1.00 1.39 1.38 1.38 1.38 1.38

0.50 300 B 0.15 −0.07 0.00 0.00 −0.01 > 10∗ 0.07 0.00 0.01 0.01 0.01 0.01
SD 0.20 0.22 0.23 0.23 0.24 > 10∗ 0.13 0.15 0.15 0.15 0.15 0.15
MSE-R 1.00 1.12 1.14 1.18 1.01 0.00∗ 1.00 1.01 1.00 1.00 0.99 0.99

1000 B 0.14 −0.07 0.00 0.00 0.00 0.01 0.07 0.00 0.00 0.00 0.00 0.00
SD 0.11 0.12 0.13 0.13 0.13 0.13 0.07 0.08 0.08 0.08 0.08 0.08
MSE-R 1.00 1.49 1.92 1.93 1.88 1.79 1.00 1.45 1.45 1.45 1.44 1.44

2000 B 0.12 −0.08 −0.01 −0.01 −0.01 0.00 0.06 −0.01 −0.01 −0.01 −0.01 −0.01
SD 0.07 0.08 0.08 0.08 0.08 0.08 0.05 0.05 0.05 0.05 0.05 0.05
MSE-R 1.00 1.64 3.05 3.06 3.02 2.89 1.00 1.85 1.89 1.89 1.88 1.88

72



Table A.6: Estimation of βX for P (Y = 1|X,Z) = F (β0 + βXX + βZZ), where X is chi-square df=4, two reliability ratios
(RR), three sample sizes (n). B, bias (standard error approximately 0.01); SD, standard deviation; MSE-R, MSEβW /MSEβX̂
(standard error in MSE-R divided by MSE-R ranges between 0.06 and 0.14). Adjusted data X̂: RC, regression calibration; MR,
moment reconstruction; MAI with M=(2,1,1) and M=(4,2,2); CS, conditional score.Values impacted by outliers marked by ∗.

(β0, βX , βZ) = (−1.5, 1, 1) (β0, βX , βZ) = (−.6, .3, .3)
RR n Stat. W X̂RC X̂MR X̂2,1,1 X̂4,2,2 X̂CS W X̂RC X̂MR X̂2,1,1 X̂4,2,2 X̂CS

0.75 300 B −0.25 0.06 0.09 0.10 0.04 0.05 −0.07 0.02 0.02 0.02 0.02 0.02
SD 0.16 0.23 0.25 0.26 0.24 0.24 0.12 0.17 0.18 0.18 0.18 0.18
MSE-R 1.00 1.56 1.19 1.13 1.50 1.40 1.00 0.67 0.63 0.63 0.65 0.65

1000 B −0.27 0.02 0.05 0.06 0.00 0.00 −0.08 0.01 0.01 0.01 0.00 0.00
SD 0.09 0.12 0.13 0.14 0.13 0.13 0.06 0.08 0.08 0.08 0.08 0.08
MSE-R 1.00 5.12 3.98 3.66 4.80 4.82 1.00 1.46 1.41 1.41 1.46 1.46

2000 B −0.27 0.02 0.05 0.06 0.01 0.01 −0.08 0.00 0.01 0.01 0.00 0.00
SD 0.06 0.09 0.10 0.10 0.10 0.10 0.04 0.06 0.06 0.06 0.06 0.06
MSE-R 1.00 8.32 6.02 5.41 8.02 8.21 1.00 2.29 2.21 2.21 2.28 2.29

0.50 300 B −0.52 0.07 0.14 0.18 0.08 0.30∗ −0.16 0.01 0.02 0.02 0.02 −0.04∗

SD 0.13 0.31 0.39 0.41 0.46 1.90∗ 0.10 0.23 0.24 0.24 0.24 1.30∗

MSE-R 1.00 2.84 1.65 1.43 1.32 0.08∗ 1.00 0.69 0.61 0.62 0.60 0.02∗

1000 B −0.52 0.06 0.10 0.13 0.02 0.03 −0.16 0.01 0.01 0.01 0.00 0.00
SD 0.06 0.16 0.19 0.19 0.18 0.18 0.05 0.11 0.11 0.11 0.11 0.11
MSE-R 1.00 9.85 6.38 4.96 8.81 7.93 1.00 2.30 2.15 2.14 2.27 2.27

2000 B −0.53 0.05 0.08 0.12 0.01 0.02 −0.16 0.00 0.00 0.00 0.00 0.00
SD 0.05 0.12 0.14 0.15 0.14 0.15 0.04 0.08 0.09 0.09 0.09 0.09
MSE-R 1.00 16.38 10.19 7.47 14.13 12.94 1.00 3.90 3.66 3.65 3.83 3.84
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Table A.7: Estimation of βZ for P (Y = 1|X,Z) = F (β0 +βXX+βZZ), where X is chi-square df=4, two reliability ratios (RR),
three sample sizes (n). B, bias (standard error approximately 0.01); SD, standard deviation; MSE-R, MSEβZ(W )/MSEβZ(X̂)

(standard error in MSE-R divided by MSE-R ranges between 0.03 and 0.09). Adjusted data X̂: RC, regression calibration; MR,
moment reconstruction; MAI with M=(2,1,1) and M=(4,2,2); CS, conditional score.Values impacted by outliers marked by ∗.

(β0, βX , βZ) = (−1.5, 1, 1) (β0, βX , βZ) = (−.6, .3, .3)
RR n Stat. W X̂RC X̂MR X̂2,1,1 X̂4,2,2 X̂CS W X̂RC X̂MR X̂2,1,1 X̂4,2,2 X̂CS

0.75 300 B 0.08 −0.04 0.01 0.00 0.02 0.02 0.04 0.00 0.01 0.01 0.01 0.01
SD 0.19 0.20 0.20 0.20 0.20 0.20 0.14 0.15 0.15 0.15 0.15 0.15
MSE-R 1.00 1.05 1.05 1.05 1.06 1.04 1.00 0.95 0.95 0.95 0.95 0.95

1000 B 0.07 −0.05 0.00 −0.01 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.00
SD 0.10 0.10 0.10 0.11 0.10 0.10 0.07 0.07 0.07 0.07 0.07 0.07
MSE-R 1.00 1.08 1.31 1.30 1.32 1.31 1.00 1.10 1.10 1.10 1.10 1.10

2000 B 0.06 −0.06 −0.01 −0.01 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00
SD 0.08 0.08 0.08 0.08 0.08 0.08 0.05 0.06 0.06 0.06 0.06 0.06
MSE-R 1.00 1.01 1.46 1.44 1.49 1.48 1.00 1.21 1.21 1.21 1.22 1.22

0.50 300 B 0.13 −0.11 −0.01 −0.02 0.00 > 10∗ 0.07 0.00 0.00 0.00 0.00 0.02∗

SD 0.19 0.22 0.22 0.22 0.23 > 10∗ 0.13 0.16 0.16 0.16 0.16 0.44∗

MSE-R 1.00 0.86 1.06 1.03 1.00 0.00∗ 1.00 0.92 0.91 0.91 0.91 0.11∗

1000 B 0.12 −0.12 −0.02 −0.03 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00
SD 0.10 0.11 0.11 0.11 0.11 0.12 0.07 0.08 0.08 0.08 0.08 0.08
MSE-R 1.00 0.94 1.85 1.77 1.93 1.83 1.00 1.36 1.37 1.37 1.38 1.39

2000 B 0.11 −0.12 −0.02 −0.03 −0.01 0.00 0.06 0.00 0.00 0.00 0.00 0.00
SD 0.07 0.08 0.08 0.08 0.08 0.08 0.05 0.06 0.06 0.06 0.06 0.06
MSE-R 1.00 0.85 2.62 2.40 2.86 2.80 1.00 1.98 2.01 2.00 2.03 2.03
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Table A.8: Estimation of βX for P (Y = 1|X,Z) = F (β0 + βXX + βZZ), where X is bimodal normal, two reliability ratios
(RR), three sample sizes (n). B, bias (standard error approximately 0.01); SD, standard deviation; MSE-R, MSEβW /MSEβX̂
(standard error in MSE-R divided by MSE-R ranges between 0.05 and 0.11). Adjusted data X̂: RC, regression calibration; MR,
moment reconstruction; MAI with M=(2,1,1) and M=(4,2,2); CS, conditional score. Values impacted by outliers marked by ∗.

(β0, βX , βZ) = (−1.5, 1, 1) (β0, βX , βZ) = (−.6, .3, .3)
RR n Stat. W X̂RC X̂MR X̂2,1,1 X̂4,2,2 X̂CS W X̂RC X̂MR X̂2,1,1 X̂4,2,2 X̂CS

0.75 300 B −0.20 0.11 0.14 0.15 0.04 0.04 −0.07 0.02 0.03 0.03 0.02 0.02
SD 0.16 0.22 0.25 0.25 0.21 0.21 0.12 0.16 0.17 0.17 0.16 0.16
MSE-R 1.00 1.07 0.82 0.78 1.50 1.49 1.00 0.66 0.64 0.64 0.70 0.70

1000 B −0.22 0.08 0.11 0.12 0.02 0.01 −0.07 0.01 0.01 0.01 0.01 0.01
SD 0.08 0.12 0.13 0.13 0.11 0.11 0.06 0.09 0.09 0.09 0.09 0.09
MSE-R 1.00 2.66 1.96 1.80 4.54 4.67 1.00 1.22 1.19 1.19 1.30 1.30

2000 B −0.23 0.07 0.10 0.10 0.01 0.00 −0.08 0.01 0.01 0.01 0.00 0.00
SD 0.06 0.09 0.10 0.10 0.08 0.08 0.04 0.06 0.06 0.06 0.06 0.06
MSE-R 1.00 4.33 3.08 2.77 8.22 8.61 1.00 2.38 2.33 2.33 2.52 2.53

0.50 300 B −0.49 0.12 0.23 0.25 0.08 0.12∗ −0.16 0.01 0.02 0.02 0.00 0.00
SD 0.13 0.31 0.40 0.40 0.34 0.93∗ 0.09 0.20 0.21 0.21 0.20 0.20
MSE-R 1.00 2.33 1.21 1.13 2.11 0.28∗ 1.00 0.83 0.76 0.76 0.86 0.86

1000 B −0.49 0.11 0.19 0.21 0.04 0.01 −0.16 0.02 0.02 0.02 0.01 0.01
SD 0.07 0.16 0.20 0.20 0.17 0.16 0.05 0.11 0.12 0.12 0.11 0.11
MSE-R 1.00 6.35 3.29 2.86 8.16 9.98 1.00 2.03 1.92 1.90 2.18 2.19

2000 B −0.49 0.10 0.17 0.19 0.02 0.00 −0.16 0.01 0.01 0.01 0.00 0.00
SD 0.05 0.11 0.13 0.14 0.12 0.10 0.04 0.08 0.09 0.09 0.08 0.08
MSE-R 1.00 10.65 5.22 4.33 17.29 23.70 1.00 3.81 3.60 3.57 4.10 4.12
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Table A.9: Estimation of βZ for P (Y = 1|X,Z) = F (β0 +βXX+βZZ), where X is bimodal normal, two reliability ratios (RR),
three sample sizes (n). B, bias (standard error approximately 0.01); SD, standard deviation; MSE-R, MSEβZ(W )/MSEβZ(X̂)

(standard error in MSE-R divided by MSE-R ranges between 0.03 and 0.09). Adjusted data X̂: RC, regression calibration; MR,
moment reconstruction; MAI with M=(2,1,1) and M=(4,2,2); CS, conditional score. Values impacted by outliers marked by ∗.

(β0, βX , βZ) = (−1.5, 1, 1) (β0, βX , βZ) = (−.6, .3, .3)
RR n Stat. W X̂RC X̂MR X̂2,1,1 X̂4,2,2 X̂CS W X̂RC X̂MR X̂2,1,1 X̂4,2,2 X̂CS

0.75 300 B 0.09 −0.03 0.01 0.01 0.02 0.03 0.04 0.00 0.00 0.00 0.00 0.00
SD 0.21 0.21 0.22 0.22 0.22 0.22 0.14 0.15 0.15 0.15 0.15 0.15
MSE-R 1.00 1.16 1.09 1.09 1.10 1.08 1.00 0.96 0.96 0.96 0.96 0.96

1000 B 0.07 −0.05 −0.01 −0.01 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00
SD 0.11 0.11 0.11 0.11 0.11 0.11 0.07 0.07 0.07 0.07 0.07 0.07
MSE-R 1.00 1.11 1.22 1.22 1.26 1.24 1.00 1.10 1.09 1.10 1.10 1.10

2000 B 0.07 −0.04 0.00 0.00 0.01 0.01 0.03 0.00 0.00 0.00 0.00 0.00
SD 0.08 0.08 0.08 0.08 0.08 0.08 0.05 0.05 0.05 0.05 0.05 0.05
MSE-R 1.00 1.42 1.68 1.69 1.70 1.67 1.00 1.28 1.27 1.27 1.28 1.27

0.50 300 B 0.16 −0.08 0.00 0.00 0.01 0.03∗ 0.08 0.01 0.01 0.01 0.02 0.02
SD 0.20 0.21 0.23 0.23 0.22 0.36∗ 0.14 0.15 0.16 0.16 0.15 0.15
MSE-R 1.00 1.21 1.20 1.20 1.26 0.48∗ 1.00 1.05 1.03 1.03 1.03 1.03

1000 B 0.14 −0.09 −0.02 −0.02 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00
SD 0.11 0.12 0.12 0.13 0.12 0.12 0.07 0.08 0.08 0.08 0.08 0.08
MSE-R 1.00 1.32 1.94 1.93 2.01 2.01 1.00 1.37 1.37 1.37 1.37 1.37

2000 B 0.14 −0.09 −0.01 −0.02 0.00 0.01 0.06 0.00 0.00 0.00 0.00 0.00
SD 0.07 0.08 0.08 0.08 0.08 0.08 0.05 0.06 0.06 0.06 0.06 0.06
MSE-R 1.00 1.65 3.51 3.47 3.66 3.61 1.00 1.87 1.88 1.88 1.89 1.89
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Table A.10: Standard deviation of β̂X for P (Y = 1|X,Z) = F (β0 + βXX + βZZ), three
distributions of X, two reliability ratios (RR), two sample sizes (n). SD, monte carlo stan-
dard deviation; SE, sandwich standard deviation. Adjusted data X̂: MAI with M=(2,1,1)
and M=(4,2,2).

(β0, βX , βZ) = (−1.5, 1, 1) (β0, βX , βZ) = (−.6, .3, .3)
RR n Stat. X̂2,1,1 X̂4,2,2 X̂2,1,1 X̂4,2,2

Normally distributed X

0.75 300 SD 0.25 0.24 0.16 0.16
SE 0.26 0.25 0.17 0.17

2000 SD 0.10 0.09 0.07 0.07
SE 0.10 0.09 0.06 0.06

0.50 300 SD 0.49 0.35 0.22 0.22
SE 0.48 0.36 0.23 0.22

2000 SD 0.14 0.13 0.08 0.08
SE 0.14 0.13 0.08 0.08

Chi-square X
0.75 300 SD 0.24 0.26 0.18 0.18

SE 0.24 0.26 0.17 0.17
2000 SD 0.10 0.10 0.06 0.06

SE 0.09 0.10 0.06 0.06

0.50 300 SD 0.46 0.41 0.24 0.24
SE 0.45 0.40 0.23 0.23

2000 SD 0.14 0.15 0.09 0.09
SE 0.14 0.14 0.08 0.08

Bi-modal X
0.75 300 SD 0.21 0.25 0.16 0.17

SE 0.21 0.24 0.16 0.16
2000 SD 0.08 0.10 0.06 0.06

SE 0.08 0.09 0.06 0.06

0.50 300 SD 0.34 0.40 0.20 0.21
SE 0.39 0.40 0.20 0.21

2000 SD 0.12 0.14 0.08 0.09
SE 0.13 0.14 0.08 0.08
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A.5 Simulations in Survival Analysis



Table A.11: Estimation of βX for λ(t|X,Z) = λ0(t) exp(βXX + βZZ), where X is normally distributed, two reliability ratios
(RR), three sample sizes (n). B, bias (standard error approximately 0.005); SD, standard deviation; MSE-R, MSEβW /MSEβX̂
(standard error in MSE-R divided by MSE-R ranges between 0.04 and 0.09). Adjusted data X̂: RC, regression calibration; MAI
with M=(2,1,1) and M=(4,2,2); CS, conditional score. Values impacted by outliers marked by ∗.

(βX , βZ) = (0.7, 0.7) (βX , βZ) = (0.3, 0.3)
RR n Stat. W X̂RC X̂2,1,1 X̂4,2,2 X̂CS W X̂RC X̂2,1,1 X̂4,2,2 X̂CS

0.75 300 B −0.22 −0.03 −0.04 −0.02 0.01 −0.08 0.01 0.01 0.01 0.02
SD 0.08 0.12 0.12 0.13 0.14 0.09 0.12 0.12 0.12 0.13
MSE-R 1.00 3.71 3.56 3.24 2.63 1.00 0.91 0.90 0.86 0.84

1000 B −0.22 −0.03 −0.04 −0.02 0.01 −0.09 0.00 0.00 0.00 0.00
SD 0.05 0.06 0.06 0.07 0.08 0.05 0.07 0.07 0.07 0.07
MSE-R 1.00 10.06 8.44 9.24 8.13 1.00 2.20 2.19 2.07 2.06

2000 B −0.22 −0.03 −0.04 −0.02 0.01 −0.09 0.00 0.00 0.00 0.00
SD 0.03 0.05 0.05 0.05 0.06 0.04 0.05 0.05 0.05 0.05
MSE-R 1.00 17.19 13.14 17.31 15.31 1.00 3.62 3.62 3.47 3.42

0.50 300 B −0.40 −0.03 −0.06 0.00∗ 0.11∗ −0.16 0.01 0.02 0.03 0.04
SD 0.07 0.17 0.17 0.25∗ 0.54∗ 0.07 0.17 0.17 0.19 0.23
MSE-R 1.00 5.42 5.22 2.57∗ 0.55∗ 1.00 1.07 1.05 0.86 0.56

1000 B −0.41 −0.06 −0.08 −0.04 0.03 −0.16 0.00 0.00 0.01 0.01
SD 0.04 0.09 0.08 0.11 0.19 0.04 0.08 0.08 0.09 0.09
MSE-R 1.00 16.16 12.03 13.11 4.72 1.00 4.04 4.05 3.56 3.36

2000 B −0.41 −0.06 −0.08 −0.04 0.01 −0.16 0.00 0.00 0.00 0.00
SD 0.03 0.06 0.06 0.07 0.10 0.03 0.06 0.06 0.07 0.07
MSE-R 1.00 24.88 15.72 23.13 17.36 1.00 7.30 7.32 6.53 6.30
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Table A.12: Estimation of βZ for λ(t|X,Z) = λ0(t) exp(βXX+βZZ), where X is normally distributed, two reliability ratios (RR),
three sample sizes (n). B, bias (standard error approximately 0.005); SD, standard deviation; MSE-R, MSEβZ(X)/MSEβZ(X̂)

(standard error in MSE-R divided by MSE-R ranges between 0.03 and 0.09). Adjusted data X̂: RC, regression calibration; MAI
with M=(2,1,1) and M=(4,2,2); CS, conditional score. Values impacted by outliers marked by ∗.

(βX , βZ) = (0.7, 0.7) (βX , βZ) = (0.3, 0.3)
RR n Stat. W X̂RC X̂2,1,1 X̂4,2,2 X̂CS W X̂RC X̂2,1,1 X̂4,2,2 X̂CS

0.75 300 B 0.06 −0.02 0.01 0.00 0.02 0.02 −0.01 −0.01 −0.01 −0.01
SD 0.11 0.11 0.11 0.11 0.12 0.11 0.12 0.12 0.12 0.12
MSE-R 1.00 1.23 1.22 1.21 1.10 1.00 0.93 0.93 0.93 0.93

1000 B 0.04 −0.03 −0.01 −0.01 0.00 0.03 0.00 0.00 0.00 0.00
SD 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06
MSE-R 1.00 1.19 1.53 1.48 1.48 1.00 1.19 1.18 1.18 1.18

2000 B 0.04 −0.03 −0.01 −0.01 0.00 0.03 0.00 0.00 0.00 0.00
SD 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
MSE-R 1.00 1.23 1.95 1.83 1.95 1.00 1.52 1.52 1.52 1.51

0.50 300 B 0.09 −0.06 −0.02 −0.03 −0.01∗ 0.06 −0.01 −0.01 −0.01 −0.01
SD 0.10 0.12 0.12 0.13 0.18∗ 0.10 0.12 0.12 0.12 0.13
MSE-R 1.00 1.04 1.28 1.08 0.57∗ 1.00 1.02 1.03 1.01 0.88

1000 B 0.09 −0.05 −0.02 −0.02 0.00 0.06 0.00 0.00 0.00 0.00
SD 0.05 0.06 0.06 0.07 0.07 0.06 0.06 0.06 0.06 0.06
MSE-R 1.00 1.53 2.58 2.27 2.00 1.00 1.85 1.85 1.81 1.78

2000 B 0.09 −0.05 −0.02 −0.02 0.00 0.06 −0.01 0.00 0.00 0.00
SD 0.04 0.05 0.04 0.05 0.05 0.04 0.04 0.04 0.05 0.05
MSE-R 1.00 1.85 4.16 3.54 3.59 1.00 2.42 2.46 2.39 2.35
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Table A.13: Estimation of βX for λ(t|X,Z) = λ0(t) exp(βXX + βZZ), where X is chi-square with df=4, two reliability ratios
(RR), three sample sizes (n). B, bias (standard error approximately 0.005); SD, standard deviation; MSE-R, MSEβW /MSEβX̂
(standard error in MSE-R divided by MSE-R ranges between 0.06 and 0.09). Adjusted data X̂: RC, regression calibration; MAI
with M=(2,1,1) and M=(4,2,2); CS, conditional score. Values impacted by outliers marked by ∗.

(βX , βZ) = (0.7, 0.7) (βX , βZ) = (0.3, 0.3)
RR n Stat. W X̂RC X̂2,1,1 X̂4,2,2 X̂CS W X̂RC X̂2,1,1 X̂4,2,2 X̂CS

0.75 300 B −0.18 0.04 0.00 −0.01 0.02 −0.07 0.02 0.01 0.00 0.00
SD 0.08 0.12 0.11 0.11 0.12 0.08 0.12 0.12 0.11 0.11
MSE-R 1.00 2.52 2.99 3.06 2.51 1.00 0.86 0.93 1.01 0.99

1000 B −0.18 0.03 −0.01 −0.02 0.01 −0.07 0.02 0.01 0.00 0.00
SD 0.04 0.06 0.06 0.06 0.07 0.05 0.07 0.06 0.06 0.06
MSE-R 1.00 7.03 9.03 7.94 7.41 1.00 1.58 1.77 1.99 1.95

2000 B −0.18 0.03 −0.01 −0.02 0.00 −0.07 0.02 0.01 0.00 0.00
SD 0.03 0.04 0.04 0.04 0.05 0.03 0.05 0.04 0.04 0.04
MSE-R 1.00 12.73 18.06 14.08 15.46 1.00 2.32 2.77 3.27 3.20

0.50 300 B −0.37 0.03 −0.03 −0.04 0.08∗ −0.15 0.03 0.02 0.00 0.01
SD 0.06 0.17 0.16 0.19 0.46∗ 0.07 0.17 0.17 0.16 0.16
MSE-R 1.00 4.82 5.65 3.95 0.65∗ 1.00 0.95 1.02 1.18 1.11

1000 B −0.37 0.03 −0.04 −0.05 0.02 −0.15 0.03 0.01 0.00 0.00
SD 0.04 0.09 0.08 0.09 0.12 0.04 0.08 0.08 0.07 0.07
MSE-R 1.00 14.64 16.53 12.17 9.69 1.00 3.09 3.70 4.51 4.38

2000 B −0.37 0.03 −0.04 −0.06 0.01 −0.15 0.03 0.02 0.00 0.00
SD 0.02 0.06 0.06 0.06 0.08 0.03 0.06 0.06 0.05 0.05
MSE-R 1.00 29.34 28.14 20.06 22.41 1.00 4.82 6.18 7.87 7.74
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Table A.14: Estimation of βZ for λ(t|X,Z) = λ0(t) exp(βXX + βZZ), where X is chi-square df=4, two reliability ratios (RR),
three sample sizes (n). B, bias (standard error approximately 0.005); SD, standard deviation; MSE-R, MSEβZ(X)/MSEβZ(X̂)

(standard error in MSE-R divided by MSE-R ranges between 0.03 and 0.10). Adjusted data X̂: RC, regression calibration; MAI
with M=(2,1,1) and M=(4,2,2); CS, conditional score. Values impacted by outliers marked by ∗.

(βX , βZ) = (0.7, 0.7) (βX , βZ) = (0.3, 0.3)
RR n Stat. W X̂RC X̂2,1,1 X̂4,2,2 X̂CS W X̂RC X̂2,1,1 X̂4,2,2 X̂CS

0.75 300 B 0.04 −0.05 −0.01 −0.01 0.00 0.03 −0.01 0.00 0.00 0.00
SD 0.09 0.09 0.09 0.09 0.10 0.09 0.10 0.10 0.10 0.10
MSE-R 1.00 0.87 1.07 1.06 0.99 1.00 1.00 1.00 1.01 1.00

1000 B 0.04 −0.05 −0.02 −0.01 0.00 0.03 −0.01 0.00 0.00 0.00
SD 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
MSE-R 1.00 0.72 1.22 1.24 1.24 1.00 1.19 1.21 1.22 1.22

2000 B 0.03 −0.05 −0.02 −0.01 0.00 0.03 −0.01 −0.01 0.00 0.00
SD 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
MSE-R 1.00 0.64 1.50 1.61 1.73 1.00 1.27 1.33 1.37 1.37

300 B 0.09 −0.08 −0.02 −0.02 0.01∗ 0.06 −0.02 −0.01 0.00 0.00
SD 0.09 0.11 0.11 0.11 0.16∗ 0.09 0.11 0.11 0.11 0.11
MSE-R 1.00 0.79 1.27 1.17 0.57∗ 1.00 0.97 1.00 1.04 1.01

1000 B 0.07 −0.09 −0.03 −0.03 0.00 0.06 −0.02 −0.01 0.00 0.00
SD 0.05 0.06 0.06 0.06 0.06 0.05 0.06 0.06 0.06 0.06
MSE-R 1.00 0.62 1.81 1.86 1.93 1.00 1.56 1.71 1.78 1.78

2000 B 0.07 −0.09 −0.03 −0.03 0.00 0.06 −0.02 −0.01 −0.01 0.00
SD 0.04 0.04 0.04 0.04 0.05 0.03 0.04 0.04 0.04 0.04
MSE-R 1.00 0.61 2.26 2.53 3.03 1.00 2.18 2.51 2.66 2.67
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Table A.15: Estimation of βX for λ(t|X,Z) = λ0(t) exp(βXX + βZZ), where X is bimodal normal, two reliability ratios
(RR), three sample sizes (n). B, bias (standard error approximately 0.005); SD, standard deviation; MSE-R, MSEβW /MSEβX̂
(standard error in MSE-R divided by MSE-R ranges between 0.05 and 0.13). Adjusted data X̂: RC, regression calibration; MAI
with M=(2,1,1) and M=(4,2,2); CS, conditional score. Values impacted by outliers marked by ∗.

(βX , βZ) = (0.7, 0.7) (βX , βZ) = (0.3, 0.3)
RR n Stat. W X̂RC X̂2,1,1 X̂4,2,2 X̂CS W X̂RC X̂2,1,1 X̂4,2,2 X̂CS

0.75 300 B −0.18 0.02 0.00 0.00 0.01 −0.08 0.01 0.01 0.01 0.01
SD 0.08 0.11 0.11 0.11 0.12 0.09 0.12 0.12 0.12 0.12
MSE-R 1.00 3.08 3.27 3.05 2.68 1.00 0.89 0.91 0.94 0.93

1000 B −0.19 0.01 −0.01 −0.01 0.00 −0.08 0.01 0.00 0.00 0.00
SD 0.05 0.06 0.06 0.07 0.07 0.05 0.06 0.06 0.06 0.06
MSE-R 1.00 8.43 8.97 8.45 7.39 1.00 2.01 2.07 2.14 2.10

2000 B −0.19 0.01 −0.01 −0.01 0.00 −0.08 0.01 0.01 0.00 0.00
SD 0.03 0.04 0.04 0.04 0.05 0.03 0.05 0.05 0.04 0.04
MSE-R 1.00 19.13 19.23 18.46 17.33 1.00 3.18 3.31 3.51 3.49

0.50 300 B −0.37 0.03 −0.01 0.03 0.06 −0.15 0.03 0.02 0.02 0.03
SD 0.06 0.15 0.15 0.22 0.26 0.07 0.17 0.16 0.16 0.42
MSE-R 1.00 5.66 6.13 2.93 1.98 1.00 1.00 1.02 1.09 0.16

1000 B −0.37 0.02 −0.03 −0.01 0.01 −0.16 0.02 0.01 0.00 0.00
SD 0.04 0.08 0.08 0.10 0.14 0.04 0.09 0.08 0.08 0.08
MSE-R 1.00 18.93 19.60 14.89 7.44 1.00 3.41 3.55 3.67 3.58

2000 B −0.37 0.02 −0.03 −0.02 0.00 −0.16 0.02 0.01 0.00 0.00
SD 0.02 0.06 0.06 0.07 0.08 0.03 0.06 0.06 0.06 0.06
MSE-R 1.00 34.36 33.29 27.06 20.41 1.00 6.96 7.41 8.08 8.00
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Table A.16: Estimation of βZ for λ(t|X,Z) = λ0(t) exp(βXX + βZZ), where X is bimodal normal, two reliability ratios (RR),
three sample sizes (n). B, bias (standard error approximately 0.005); SD, standard deviation; MSE-R, MSEβZ(X)/MSEβZ(X̂)

(standard error in MSE-R divided by MSE-R ranges between 0.03 and 0.09). Adjusted data X̂: RC, regression calibration; MAI
with M=(2,1,1) and M=(4,2,2); CS, conditional score. Values impacted by outliers marked by ∗.

(βX , βZ) = (0.7, 0.7) (βX , βZ) = (0.3, 0.3)
RR n Stat. W X̂RC X̂2,1,1 X̂4,2,2 X̂CS W X̂RC X̂2,1,1 X̂4,2,2 X̂CS

0.75 300 B 0.05 −0.03 0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.00
SD 0.11 0.11 0.11 0.11 0.12 0.10 0.11 0.11 0.11 0.11
MSE-R 1.00 1.09 1.13 1.10 1.05 1.00 1.00 1.00 1.00 0.98

1000 B 0.04 −0.04 −0.01 −0.01 0.00 0.03 0.00 0.00 0.00 0.00
SD 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
MSE-R 1.00 1.05 1.34 1.33 1.32 1.00 1.23 1.22 1.23 1.22

2000 B 0.05 −0.03 −0.01 −0.01 0.01 0.03 0.00 0.00 0.00 0.00
SD 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
MSE-R 1.00 1.46 2.23 2.20 2.14 1.00 1.47 1.46 1.46 1.46

0.50 300 B 0.09 −0.07 −0.02 −0.03 0.00 0.07 0.00 0.00 0.00 0.00
SD 0.11 0.13 0.13 0.14 0.15 0.10 0.12 0.12 0.12 0.16
MSE-R 1.00 0.99 1.20 1.02 0.93 1.00 1.07 1.07 1.06 0.57

1000 B 0.08 −0.07 −0.02 −0.03 0.00 0.06 0.00 0.00 0.00 0.00
SD 0.06 0.06 0.06 0.06 0.07 0.05 0.06 0.06 0.06 0.06
MSE-R 1.00 1.17 2.25 1.99 2.03 1.00 1.86 1.86 1.85 1.85

2000 B 0.08 −0.07 −0.02 −0.03 0.00 0.06 0.00 0.00 0.00 0.00
SD 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.04
MSE-R 1.00 1.38 3.79 3.17 3.70 1.00 2.95 2.94 2.93 2.94
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A.6 OPTIMIZE-HF supplement

Table A.17: Covariates included in Model 1.5 and regarded as error-free

age
black race
heart rate
diastolic blood pressure
sodium level
serum creatinine level
hemoglobin level
primary cause of hospital admission
prior cerebrovascular accident or transient ischemic attack
hyperlipidemia
hypertension
liver disease
smoker within past year
chronic obstructive pulmonary disease
peripheral vascular disease
known heart failure prior to this admission
rales
LVSD



86

Table A.18: Covariates included in Model 1.5 and regarded as error-free

serum creatinine level lower than 4 mg/dL at admission
age
reactive airway disease
weight
lower extremity edema
lipid lowering agent at discharge
sodium level
depression
any F-blocker use at discharge
systolic blood pressure at discharge
serum creatinine level at discharge
liver disease
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Appendix B

Supplement to Chapter 2

This Appendix provides a supplement to the comparison in Chapter 2 of the three

methods of implementing moment adjustment: sequential, unweighted joint minimization

(2.2), and weighted joint minimization (2.1). In addition, we assess the importance of

order in adjusting data sequentially. In Chapter 2, we propose that sequential adjustment

be performed in the order of smallest to largest measurement error. The adjusted data

obtained this way will be denoted X̂Seq−C , indicating “correct” adjustment order. When

the order is switched, the adjusted data are denoted X̂Seq−W , for “wrong” order.

B.1 Comparison of Adjustment: Scenario 1

In this section, we compare the adjusted data, X̂, and estimation of logistic re-

gression model coefficients, based on a single data set. The data generation is similar to

Chapter 2, Section 2.4. However, the measurement error in W1 and W2 is extremely differ-

ent. W1 has large measurement error, with a reliability ratio of 0.5, and W2 has virtually no

measurement error, with a reliability ratio greater than 0.99. The scenario is the following:

• Model: P (Y = 1|X1, X2) = F (β0 + β1X1 + β2X2)

• n = 1000 observations of (Y,X1, X2)

• X = (X1, X2)T ∼MVN(0,ΣX)

• ΣX =

 1 0.5

0.5 1


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• (β0, β1, β2) = (1, .5, .5) (moderately significant for n = 1000, 70% event rate)

• U = (U1, U2)T ∼MVN(0,ΣU )

• ΣU =

 1 0.8(.01)

0.8(.01) .0001


• W = X +U

Here, we really have univariate mis-measured data, W1, which should be adjusted,

and W2 should not. If an adjustment procedure is implemented for W , including both W1

and W2, we would hope that the impact on W2 would be negligible and that parameter

estimation would be equivalent to a univariate adjustment of W1. In Figure B.1 we compare

the adjusted X̂2 to W2. The correctly ordered sequential adjustment and weighted joint

adjustment do not meaningfully alter the W2. The other two approaches do alter W2, even

though it was error free. If the adjusted data are of particular interest, this is undesirable.

Despite differences in the adjusted data themselves, these various methods pro-

duce virtually identical logistic regression parameter estimates, even under these extreme

circumstances (Table B.1). This is consistent with the simulation results in Chapter 2.

Table B.1: Coefficient estimates. Methods: X, true covariates; W, mis-measured covariates;
Seq-W, wrongly ordered sequential; Seq-C, correctly ordered sequential; J, joint minimization
(2.2); JW, joint minimization (2.1); X̂1, univariate adjustment of W1

Method β̂0 β̂1 β̂2

X 1.048 0.557 0.454
W 1.032 0.238 0.592

Seq-W 1.043 0.541 0.475
Seq-C 1.043 0.540 0.474

J 1.043 0.541 0.474
JW 1.043 0.540 0.474
X̂1 1.043 0.539 0.473



89

●● ●
●

●

●

●

●
●

●

●●
●●●

●
●

●

●●●
●●●
●

●●

●●

●

●
●

●●
●

●
●
●
●●
●●●

●
●●
●●
●●●
●

●

●●
●
●●
●●
●●●
●

●
●
●

●●
●

●

●
●●●

●

●

●
●
●●●●
●●
●●

●

●●
●
●●●
●

●
●
●
●
●
●●

●●
●

●

●
●●●●
●

●
●●
●

●
●

●
●

●

●●
●
●●
●
●

●

●

●●
●
●●●
●●●
●
●●●●
●●●

●
●●

●
●●
●

●

●●●

●

●
●

●

●
●●●

●
●

●
●
●●●

●
●●●●●
●●

●

●●

●

●

●

●

●
●
●●●●●●
●●●

●●

●●
●●
●
●
●
●
●●

●

●
●
●
●●

●

●

●
●●

●

●●
●

●●

●
●●●●●
●

●
●●
●

●

●

●
●●

●

●●●●

●
●●
●●

●

●
●

●●●
●

●
●●

●

●●●●
●●●●

●●●●

●

●●
●

●
●●

●

●●●
●●●
●
●●●●
●
●●●

●

●●
●●●

●

●

●

●

●●

●

●●
●

●

●
●
●
●

●●

●●●
●

●
●
●

●
●●
●●
●

●

●
●●
●●
●●

●
●
●●●
●

●
●●●●
●
●

●

●

●
●●
●

●

●
●
●

●●●●●
●

●
●

●●

●

●●
●

●●

●
●●●
●
●●
●

●
●●
●
●
●

●
●●

●
●
●●●●

●
●
●

●
●
●
●
●●
●

●●
●

●
●●
●●●
●●

●

●

●

●

●●●●
●●

●

●
●●
●
●
●

●
●●●
●●

●

●
●●●
●
●●

●

●●
●
●●●●
●
●
●
●
●
●●●
●

●

●
●

●
●

●

●●●

●

●

●
●

●
●
●●
●

●

●●

●●

●
●●
●
●

●
●
●●●●
●
●

●
●

●

●
●●
●

●
●
●
●●●

●

●
●
●●
●
●
●
●
●
●●

●

●
●

●●●●●●●
●

●●
●
●●
●●●
●●●

●●
●
●

●●●

●

●●
●

●
●
●
●
●

●

●

●

●
●

●
●●●
●
●
●

●

●

●

●
●●
●●●●●●●●

●
●

●

●

●●●
●
●●
●
●
●
●●●●
●
●

●●
●

●
●

●

●

●

●●
●●●●
●●●
●

●

●
●●●
●●
●
●
●●●●
●
●

●

●
●
●●●

●

●
●●●
●
●
●
●
●

●
●
●●●
●

●●

●●

●
●
●
●
●●●
●
●
●●
●

●
●●●

●
●
●
●

●

●

●●
●●

●

●

●●

●
●●
●
●

●
●
●
●

●

●

●●●

●

●●
●
●●
●●●
●

●
●●

●

●
●●

●●●

●
●

●

●
●
●
●●

●

●●●

●●

●●●
●

●

●●

●

●

●●

●
●
●

●

●●●
●

●

●
●
●

●
●
●

●
●●●
●

●
●●●
●
●

●

●

●●

●
●●
●●

●
●●
●
●●
●

●
●●

●

●●

●
●
●
●

●

●

●
●●

●
●

●●

●

●

●
●
●
●
●●

●

●

●

●●

●

●●
●

●
●●●
●

●●

●
●●
●

●
●
●●
●
●
●●
●●

●

●

●

●

●

●

●
●●●
●
●

●

●

●

●
●
●●
●
●

●
●

●

●
●●●
●
●●

●●

●

●

●
●

●
●
●●

●
●

●
●
●
●
●●

●

●●

●
●
●
●●●●●
●●
●●●
●●

●

●●●
●●

●

●

●

●
●
●
●
●●●

●
●
●●●
●●●

●●●●

●

●
●●●

●
●

●

●●
●

●

●
●●●

●●

●

●●

●

●
●
●
●
●
●●

●

●●

●

●●
●

●

●●

−2 −1 0 1 2 3

−
2

−
1

0
1

2
3

W2

X̂
S

eq
−−W ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

−2 −1 0 1 2 3

−
2

−
1

0
1

2
3

W2

X̂
S

eq
−−C

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●
●●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

−2 −1 0 1 2 3

−
2

−
1

0
1

2
3

W2

X̂
J

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

−2 −1 0 1 2 3

−
2

−
1

0
1

2
3

W2

X̂
JW

Figure B.1: Direct Comparison of X̂2 to W2 for a single data set. X̂2: Seq-W, wrongly
ordered sequential; Seq-C, correctly ordered sequential; J, joint minimization (2.2); JW,
joint minimization (2.1)
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B.2 Comparison of Adjustment: Scenario 2

Here we make comparisons for a slightly different data scenario. In this case both

variables are measured with error, although the amount of measurement error differs. More

importantly, the measurement error is highly correlated. The data are generated under the

following scenario:

• Model: P (Y = 1|X1, X2) = F (β0 + β1X1 + β2X2)

• n = 1000 observations of (Y,X1, X2)

• X = (X1, X2)T ∼MVN(0,ΣX)

• ΣX =

 1 0.5

0.5 1


• (β0, β1, β2) = (1.5, .5, .5) (moderately significant for n = 1000, 70% event rate)

• U = (U1, U2)T ∼MVN(0,ΣU )

• ΣU =

 1 0.8(.6)

0.8(.6) .36


• W = X +U

The sequential adjustment accounts for correlated measurement error only in the

moment estimation, but not in the minimization. Thus, it will differ from the weighted

joint adjustment. Here, we evaluate the extent of that difference. In Figure B.2 we see that

the sequentially adjusted data are more similar to the weighted joint minimization when

the adjustment occurs in the “wrong” order. In terms of re-creating the joint adjustment,

the “wrong” order is preferable under these circumstances. However, in Table B.2 we see

that none of the methods differ in terms of logistic regression parameter estimation.
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Figure B.2: Direct Comparison of X̂ for a single data set. X̂: Seq-W, wrongly ordered
sequential; Seq-C, correctly ordered sequential; JW, joint minimization (2.1)

Table B.2: Coefficient estimates. Methods: X, true covariates; W, mis-measured covariates;
Seq-W, wrongly ordered sequential; Seq-C, correctly ordered sequential; J, joint minimization
(2.2); JW, joint minimization (2.1)

Method β̂0 β̂1 β̂2

X 0.964 0.535 0.512
W 0.902 0.182 0.392

Seq-W 0.970 0.561 0.481
Seq-C 0.969 0.557 0.483

J 0.970 0.559 0.482
JW 0.970 0.560 0.481
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B.3 Additional Simulations

Finally, we include an additional simulation to compare logistic regression pa-

rameter estimation for the various methods. The data are generated under the following

scenario.

• B = 100 data sets

• Model: P (Y = 1|X1, X2) = F (β0 + β1X1 + β2X2)

• n = 1000 observations of (Y,X1, X2)

• X = (X1, X2)T ∼MVN(0,ΣX)

• ΣX =

 1 0.5

0.5 1


• (β0, β1, β2) = (−2.5, .25, .25) (weakly significant for n = 1000, 7% event rate)

• U = (U1, U2)T ∼MVN(0,ΣU )

• ΣU =

 1 0.8(.01)

0.8(.01) .0001


• W = X +U

There are two differences between this scenario and that of the simulation in

Chapter 2. The coefficient magnitudes and event rate differ. These coefficients are weakly

significant and the event rate is very low. In addition, only a single variable is actually

measured with error, but both are adjusted. As in other cases, we see no meaningful

difference in the parameter estimation, regardless of how the data were adjusted (Table

B.3).
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Table B.3: Estimation of β for P (Y = 1|X1, X2) = F (β0 + β1X1 + β2X2). True value of
β = (−2.5, .25, .25); B, bias; SD, standard deviation; M, MSEW /MSE

X̂
. Adjusted data

X̂: Seq-W, wrongly ordered sequential; J, joint adjustment (2.2); JW, joint adjustment
(2.1).

Matching 2 moments Matching 4 moments
Stat. W X̂Seq−W X̂J X̂JW X̂Seq−W X̂J X̂JW

Estimation of β1; true value is 0.25
B -0.135 0.031 0.03 0.03 0.032 0.037 0.031
SD 0.098 0.235 0.235 0.235 0.236 0.236 0.238
M 0.028 0.497 0.498 0.498 0.490 0.491 0.485

Estimation of β2; true value is 0.25
B 0.073 -0.006 -0.006 -0.006 -0.006 -0.007 -0.002
SD 0.133 0.164 0.164 0.164 0.163 0.170 0.166
M 0.023 0.860 0.860 0.860 0.864 0.706 0.835
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Appendix C

Supplement to Chapter 3

C.1 Conditional score for mean and variance predictors

The conditional score approach relies on obtaining sufficient statistics for mis-

measured covariates. When we are interested in the simple logistic regression model that

includes only the inverse of the subject-specific variance as a predictor this method is easily

derived. However, the problem becomes quite complicated when the model involves other

mis-measured covariates.

In this section we show another case where a sufficient statistic can be obtained,

but the disadvantages to this approach become obvious. Let P (Y = 1|σ2;β) = F{β0 +

βγ0
(
γ0/σ

2
)

+ βσ(1/σ2)} for β = (β0, βγ0 , βσ). The corresponding density of Y is

fY (y; γ0, σ
2,β) = exp

[
y

(
β0 + βγ0

γ0

σ2
+ βσ

1
σ2

)
+ log

{
1− F

(
β0 + βγ0

γ0

σ2
+ βσ

1
σ2

)}]
,

(C.1)

where γ0 and σ2 are regarded as unknown constants. The observed variance estimators σ̂2

have density

fσ̂2(σ̂2;σ2) =

(
ν
σ2

)
2ν/2Γ(ν/2)

(
νσ̂2

σ2

)ν/2−1

exp
(
−νσ̂2

2σ2

)
I(σ̂2 > 0). (C.2)

The estimators γ̂0 have density

fγ̂0(γ̂0; γ0, σ
2) =

1√
2πσ2c

exp
{
− 1

2σ2c
(γ̂0 − γ0)2

}
. (C.3)
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fY,σ̂2,γ̂0(y, σ̂2, γ̂0; γ0, σ
2,β) = g(Y, σ̂2, γ̂0)h(σ2, γ0)×

exp
[
−1
2σ2

{
(γ0 − yβγ0 − γ̂0)2 − (yβγ0 + γ̂0)2 + γ̂2

0 + νσ̂2 − 2yβσ
}]
. (C.4)

By factorization, the two dimensional statistic {Y βγ0 + γ̂0,−(Y βγ0 + γ̂0)2 + γ̂2
0 +νσ̂2−2Y βσ}

is sufficient for (γ0, σ
2).

This factorization relies on the specific form P (Y = 1|σ2;β) = F{β0+βγ0
(
γ0/σ

2
)
+

βσ(1/σ2)}. Otherwise, we are unable to factor the joint density of observed data. In prac-

tice, it may be difficult to justify the use of covariates γ0/σ
2 and 1/σ2, especially when inter-

pretable parameters are desired. For a logistic model that includes γ = (γ0, γ1)T and T (σ2)

as covariates, our factorization requires that the model be defined P (Y = 1|γ, σ2;β) =

F (β0 + (1/σ2)γTDTDβγ + T (σ2)βσ). In this case, the model involves linear combinations

of γ0 and γ1, which does not have a reasonable interpretation. For this reason, we do not

pursue this method any further.

C.2 Derivations for the approximately unbiased score

The approximately unbiased score function (3.7) is based on estimators for the

quantities exp(−γTβγ), γ exp(−γTβγ), (σ2)−βσ , and log(σ2)(σ2)−βσ . In this section, we

derive the estimators defined in Chapter 3.

We want to obtain an estimator, T1(γ̂, σ̂2,β) for exp(−γTβγ). Begin with a naive

estimator, exp(−γ̂Tβγ). We have γ̂|γ ∼ N{γ, σ2(DTD)−1}. For notational convenience

let Σ = σ2(DTD)−1. The naive estimator is biased since

E
{

exp(−γ̂Tβγ)|γ,Σ
}

=

c

∫
exp(−γ̂Tβγ) exp

{
−1

2
(γ̂ − γ)TΣ−1(γ̂ − γ)

}
dγ̂

=c
∫

exp
{
−1

2
(γ̂ − b)TΣ−1(γ̂ − b)

}
exp

{
−1

2
(
γTΣ−1γ − bTΣ−1b

)}
dγ̂,

where b = (γ − Σβγ)

= exp(−γTβγ + βTγ Σβγ/2).

Hence, exp(−γ̂Tβγ − βTγ Σβγ/2) is unbiased for exp(−γTβγ). However, this includes the

unknown σ2 in Σ=σ2(DTD)−1. We substitute σ̂2 to define the estimator

T1(γ̂, σ̂2,β) = exp{−γ̂Tβγ − βTγ σ̂2(DTD)−1βγ/2}. (C.5)
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Let T2(γ̂, σ̂2,β) denote the estimator for γ exp(−γTβγ). Note that γ exp(−γTβγ)

= −d/dβγ exp(−γTβγ). We already have E
{
T1(γ̂, σ2,β)

}
= exp(−γTβγ). Taking the

derivative on both sides gives −d/dβγE
{
T1(γ̂, σ2,β)

}
= γ exp(−γTβγ). By interchanging

differentiation and expectation, we have E
{
−d/dβγT1(γ̂, σ2,β)

}
= γ exp(−γTβγ). Our

unbiased estimator is −d/dβγT1(γ̂, σ2,β) =
{
γ̂ + σ2(DTD)−1βγ

}
T1(γ̂, σ2,β). Because

this depends on the unknown σ2, we substitute σ̂2 to obtain an approximately unbiased

estimator

T2(γ̂, σ̂2,β) =
{
γ̂ + σ̂2(DTD)−1βγ

}
T1(γ̂, σ̂2,β). (C.6)

Let g1(σ̂2, ν,β) denote the estimator for (σ2)−βσ . Begin with a naive estimator

(σ̂2)−βσ . This is biased, as

E
{

(σ̂2)−βσ |σ2
}

=

(
ν
σ2

)
2ν/2Γ(ν/2)

∫ ∞
0

(σ̂2)−βσ
(
νσ̂2

σ2

)ν/2−1

exp
(
−νσ̂2

2σ2

)
d(σ̂2)

= (σ2)−βσ (ν/2)βσ Γ(ν/2− βσ)/Γ(ν/2).

Correcting for the bias, we define

g1(σ̂2, ν,β) = (σ̂2)−βσ (ν/2)−βσ Γ(ν/2)/Γ(ν/2− βσ). (C.7)

Let g2(σ̂2, ν,β) denote the estimator for log(σ2)(σ2)−βσ . Note that log(σ2)(σ2)−βσ

= −d/dβσ(σ2)−βσ . We already have E
{
g1(σ̂2, ν,β)

}
= (σ2)−βσ . Taking the derivative on

both sides gives −d/dβσE
{
g1(σ̂2, ν,β)

}
= log(σ2)(σ2)−βσ . By interchanging differentia-

tion and expectation, we have E
{
−d/dβσg1(σ̂2, ν,β)

}
= log(σ2)(σ2)−βσ . Our unbiased

estimator is

g2(σ̂2, ν,β) = −d/dβσg1(σ̂2, ν,β)

= Γ(ν/2)/Γ(ν/2− βσ)
(
2/νσ̂2

)βσ {log
(
2/νσ̂2

)
+D(ν/2− βσ)

}
. (C.8)

The approximately unbiased score function (3.7) is defined by substituting the

estimators T1(γ̂, σ̂2,β)g1(σ̂2, ν,β) for E1, T2(γ̂, σ̂2,β)g1(σ̂2, ν,β) for E2, and

T1(γ̂, σ̂2,β)g2(σ̂2, ν,β) for E3.

C.3 Corrected score equation

We require unbiased estimators of E1(γ, σ2,β) = exp(−γTβγ)(σ2)−βσ , E2(γ, σ2,β)

= γ exp(−γTβγ)(σ2)−βσ , and E3(γ, σ2,β) = exp(−γTβγ)log(σ2)(σ2)−βσ . Let T ∗1 (γ̂, σ̂2,β)
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and T ∗2 (γ̂, σ̂2,β) be unbiased estimators for exp(−γTβγ) and γ exp(−γTβγ). These can be

defined by the methods of Stefanski, Novick, and Devanarayan (2005). Randomly partition

the replicate data into two halves. Estimate γ̂1i and σ̂2
1i using the first r1i replicates and

γ̂2i and σ̂2
2i using the second r2i replicates, where r1i + r2i = ri. The estimates γ̂1i, σ̂2

1i, γ̂2i

and σ̂2
2i are mutually independent. Define the following estimators

Ê1(γ̂1, σ̂
2
1, ν1, γ̂2, σ̂

2
2, ν2,β) = 1

2T
∗
1 (γ̂1, σ̂

2
1,β)g1(σ̂2

2, ν2,β) + 1
2T
∗
1 (γ̂2, σ̂

2
2,β)g1(σ̂2

1, ν1,β),

Ê2(γ̂1, σ̂
2
1, ν1, γ̂2, σ̂

2
2, ν2,β) = 1

2T
∗
2 (γ̂1, σ̂

2
1,β)g1(σ̂2

2, ν2,β) + 1
2T
∗
2 (γ̂2, σ̂

2
2,β)g1(σ̂2

1, ν1,β),

Ê3(γ̂1, σ̂
2
1, ν1, γ̂2, σ̂

2
2, ν2,β) = 1

2T
∗
1 (γ̂1, σ̂

2
1,β)g2(σ̂2

2, ν2,β) + 1
2T
∗
1 (γ̂2, σ̂

2
2,β)g2(σ̂2

1, ν1,β).

Then an unbiased score function is Ψ∗(Y, γ̂1, σ̂
2
1, ν1, γ̂2, σ̂

2
2, ν2,Z,β) =

(Y − 1) + Y exp(−β0 −ZTβZ)Ê1(γ̂1, σ̂
2
1, ν1, γ̂2, σ̂

2
2, ν2,β)

(Y − 1)γ̂ + Y exp(−β0 −ZTβZ)Ê2(γ̂1, σ̂
2
1, ν1, γ̂2, σ̂

2
2i, ν2,β)

(Y − 1)l̂og(σ2) + Y exp(−β0 −ZTβZ)Ê3(γ̂1, σ̂
2
1, ν1, γ̂2, σ̂

2
2i, ν2,β)

(Y − 1)Z + YZ exp(−β0 −ZTβZ)Ê1(γ̂1, σ̂
2
1, ν1, γ̂2, σ̂

2
2, ν2,β)

 .

The corrected score estimator β̂∗ solves
∑n

i=1 Ψ∗(Yi, γ̂1i, σ̂
2
1i, ν1i, γ̂2i, σ̂

2
2i, ν2i,Zi, β̂∗) = 0.

This score function is more complicated than the approximate score. Numerical algorithms

that solve for β̂∗ frequently fail to converge or result in outlying values. Our simulations

demonstrate negligible bias in the approximate estimator, β̂A, and this is easier to obtain

numerically. So we implement the Approximately Corrected Score approach in all analyses.

C.4 Moments of log transformed variance

Suppose that our primary outcome model depends on T (σ2
i ) = log(σ2

i ), so we

are interested in adjusting log(σ̂2
i ). This corresponds to the scenario for which we have

developed a corrected score approach. Estimators for the moments of log(σ2
i ) are more

complicated, but can still be defined in a closed form. We first take the conditional expec-

tation of {log(σ̂2
i )}r, given σ2

i , and find that is has additive bias. We then subtract off a

method of moments estimator of this bias. The resulting estimators for mr3=E{log(σ2
i )
r}

are provided below after defining some preliminary functions. The polygamma function is

denoted ψn(z) = dn+1

dzn+1 log[Γ(z)]. Polygamma functions can be computed using mathemati-

cal software, such as the psigamma() function in R. Solutions to the following integrals are
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given in terms of polygamma functions

I1

(ν
2
, 2
)

=
∫ ∞

0

1
2
ν
2 Γ
(
ν
2

) {log (u)}u
ν
2
−1e−u/2du =

{
ψ0

(ν
2

)
+ log(2)

}
I2

(ν
2
, 2
)

=
∫ ∞

0

1
2
ν
2 Γ
(
ν
2

) {log (u)}2 u
ν
2
−1e−u/2du =

{
I1

(ν
2
, 2
)}2

+ ψ1

(ν
2

)
I3

(ν
2
, 2
)

=
∫ ∞

0

1
2
ν
2 Γ
(
ν
2

) {log (u)}3 u
ν
2
−1e−u/2du =

{
I1

(ν
2
, 2
)}3

+ 3
{
I1

(ν
2
, 2
)}

ψ1

(ν
2

)
+ ψ2

(ν
2

)
I4

(ν
2
, 2
)

=
∫ ∞

0

1
2
ν
2 Γ
(
ν
2

) {log (u)}4 u
ν
2
−1e−u/2du =

{
I1

(ν
2
, 2
)}4

+ 6
{
I1

(ν
2
, 2
)}2

ψ1

(ν
2

)
+ 4

{
I1

(ν
2
, 2
)}

ψ2

(ν
2

)
+ 3

{
I1

(ν
2
, 2
)}2

+ ψ3

(ν
2

)
.

First, we show the complete derivation of the estimator for m13=E{log(σ2
i )}. To

simplify notation, let W = σ̂2
i and X = σ2

i and W |X ∼ X
ν χν . Then E{log(σ̂2

i )|σ2
i }=

E{log(W )|X} =
(ν/X)

2
ν
2 Γ
(
ν
2

) ∫ ∞
0

log (w)
(νw
X

) ν
2
−1
e−kw/2Xdw

=
1

2
ν
2 Γ
(
ν
2

) ∫ ∞
0

log
(
Xu

k

)
(u)

ν
2
−1 e−u/2du

=
1

2
ν
2 Γ
(
ν
2

) ∫ ∞
0

log (u) (u)
ν
2
−1 e−u/2du+ log(X)− log(ν)

= I1

(ν
2
, 2
)

+ log(X)− log(ν)

Taking the expectation on both sides of the equation, we see that log(W ) is biased for

E{log(X)}. Subtracting off the bias, we have E
[
E
{

log(W )− I1

(
ν
2 , 2
)

+ log(ν)|X
}]

=

E{log(X)}. In terms of σ2
i we can define the estimator m̂13=n−1

∑n
i=1 log(σ2

i )− I1

(
ν
2 , 2
)

+

log(ν), which is unbiased for m13=E{log(σ2
i )}.

We can perform similar integrations to obtain E[{log(W )}r|X]. For r = 2, 3, 4
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these are

E[{log(W )}2|X] = log(X)2 + I2

(ν
2
, 2
)

+ 2I1

(ν
2
, 2
)
{log(X)− log(ν)}

− 2log(X)log(ν) + log(ν)2

E[{log(W )}3|X] = log(X)3 + I3

(ν
2
, 2
)

+ 3I2

(ν
2
, 2
)
{log(X)− log(ν)}

+ 3I1

(ν
2
, 2
){

log(X)2 − 2log(X)log(ν) + log(ν)2
}

− 3log(ν)log(X)2 + 3log(ν)2log(X)− log(ν)3

E[{log(W )}4|X] = log(X)4 + I4

(ν
2
, 2
)

+ 4I3

(ν
2
, 2
)
{log(X)− log(ν)}

+ 6I2

(ν
2
, 2
){

log(X)2 − 2log(X)log(ν) + log(ν)2
}

+ 4I1

(ν
2
, 2
){

log(X)3 − 3log(ν)log(X)2 + 3log(ν)2log(X)− log(ν)3
}

− 4log(X)2log(ν) + 6log(X)2log(ν)2 − 4log(X)log(ν)3 + log(ν)4

The quantity {log(W )}r has additive bias for E[{log(X)}r]. When r = 1 the bias is constant

and is subtracted off to obtain an unbiased estimator. For r > 1 the bias involves lower

order moments. We replace the unknown, lower order moments with unbiased estimators

and subtract off the resulting estimator of bias. In terms of σ2
i , unbiased estimators for

mr1=E[{log(σ2
i )}r] are m̂r1 =n−1

∑n
i=1Hr{νi, log(σ̂2

i )} where Hr (ν, w) is defined as follows:

H1 (ν, w) =w − [I1

(ν
2
, 2
)
− log (ν)]

H2 (ν, w) =w2 − [I2

(ν
2
, 2
)

+ 2I1

(ν
2
, 2
)
{m̂11 − log (ν)} − 2m̂11log (ν) + log (ν)2]

H3 (ν, w) =w3 − [I3

(ν
2
, 2
)

+ 3I2

(ν
2
, 2
)
{m̂11 − log (ν)}

+ 3I1

(ν
2
, 2
)
{m̂21 − 2m̂11log (ν) + log (ν)2}

− 3m̂21log (ν) + 3m̂11log (ν)2 + log (ν)3]

H4 (ν, w) =w4 − [I4

(ν
2
, 2
)

+ 4I3

(ν
2
, 2
)
{m̂11 − log (ν)}

+ 6I2

(ν
2
, 2
)
{m̂21 − 2m̂11log (ν) + log (ν)2}

+ 4I1

(ν
2
, 2
)
{m̂31 − 3m̂21log (ν) + 3m̂11log (ν)2 − log (ν)3}

− 4m̂31log (ν) + 6m̂21log (ν)2 − 4m̂11log (ν)3 + log (ν)4].

We have E{Hr(νi, log(σ̂2
i ))|σ2

i } = {log(σ2
i )}r so that the estimators m̂r1 =

n−1
∑n

i=1Hr{νi, log(σ̂2
i )} are unbiased for E[{log(σ2

i )}r]=mr1 and r = 1, . . . , 4. Assuming
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that Vik are independent of σ̂2
i , given σ2

i , the cross products with Vik can be estimated by

m̂V
k1= n−1

∑n
i=1H1(νi, log(σ̂2

i ))Vik, for k = 1, . . . ,K. Since γ̂i are conditionally independent

of σ̂2
i given (γi, σ2

i ), the estimators m̂∗12=m̂∗21= n−1
∑n

i=1H1(νi, log(σ̂2
i ))γ̂0i and m̂∗13=m̂∗31=

n−1
∑n

i=1H1(νi, log(σ̂2
i ))γ̂1i are also unbiased for m∗12 and m∗13.

C.5 Additional Simulation Results

C.5.1 Model (3.1) with slope, intercept and variance covariates

This appendix provides additional simulation results for the following logistic re-

gression model

P (Yi = 1|γi, σ2
i ;βγ , βσ) = F{β0 + γTi βγ + log(σ2

i )βσ} (C.9)

where F (t) = 1/(1 + e−t). These results are similar to the case where T (σ2)=log(σ2), and

are discussed in Section 3.4.1.
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Figure C.1: Boxplots of β̂, from B = 500 simulated data sets where P (Y = 1|γ, σ2;β) =
F (β0 + γTβγ + σβσ), with true values (β0, βγ0 , βγ1 , βσ) = (−7.3, 0.02, 0.08, 0.08), 10, and
5000. Methods: X, true covariates; W, naive approach; M=2 and M=4, MAI matching 2
and 4 moments.



Table C.1: Estimation of β, where P (Y = 1|βγ0 , βγ1 , σ2;β) = F (β0 + γ0βγ0 + γ1βγ1 + σβσ), with true values
(β0, βγ0 , βγ1 , βσ)=(−7.3, 0.02, 0.08, 0.08), two levels of replication (R), two sample sizes (n). RB, relative bias (standard er-
ror approximately 0.03 for n=1000, 0.01 for n=5000); SD, Monte Carlo standard deviation of β̂ multiplied by 100; SE/SD ratio
of average sandwich standard deviation to Monte Carlo standard deviation; P, power; CP, coverage probability of nominal 95%
Wald confidence interval; MSE-R, MSEβW /MSEβ

X̂
(standard error in MSE-R divided by MSE-R ranges between 0.01 and

0.10). Methods: W, naive approach; M=2 and M=4, MAI matching 2 and 4 moments.

βγ0 βγ1 βσ
R n Stat. W X̂M=2 X̂M=4 W X̂M=2 X̂M=4 W X̂M=2 X̂M=4

r=10 n=1000 RB −0.18 −0.02 0.05 0.16 0.06 0.09 −0.44 −0.08 0.04
SD 0.65 1.43 1.60 3.22 4.16 4.49 1.77 4.11 5.00
SE/SD 1.00 0.90 0.88 1.00 0.97 0.92 1.00 0.95 0.93
CP 0.87 0.94 0.94 0.94 0.95 0.94 0.46 0.95 0.96
MSE-R 1.00 0.27 0.22 0.00 0.69 0.59 0.00 0.91 0.63

n=5000 RB −0.17 0.00 0.05 0.14 0.02 0.04 −0.44 −0.08 0.02
SD 0.27 0.57 0.65 1.38 1.74 1.97 0.73 1.66 1.99
SE/SD 1.00 0.97 0.92 1.00 1.02 0.91 1.00 1.02 0.98
CP 0.73 0.94 0.93 0.89 0.95 0.94 0.00 0.94 0.95
MSE-R 1.00 0.56 0.43 0.00 1.03 0.80 0.00 4.12 3.30

r=40 n=1000 RB −0.04 −0.01 0.02 0.07 0.05 0.07 −0.15 −0.02 0.02
SD 0.76 0.95 1.04 3.66 3.89 4.03 2.40 3.03 3.29
SE/SD 1.00 1.02 0.96 1.00 0.94 0.91 1.00 0.97 0.95
CP 0.96 0.96 0.95 0.93 0.93 0.92 0.91 0.94 0.94
MSE-R 1.00 0.64 0.53 0.00 0.90 0.83 0.00 0.79 0.67

n=5000 RB −0.03 −0.01 0.01 0.03 0.01 0.02 −0.15 −0.02 0.02
SD 0.33 0.42 0.48 1.51 1.60 1.80 1.04 1.31 1.44
SE/SD 1.00 1.03 0.93 1.00 1.01 0.90 1.00 0.98 0.95
CP 0.95 0.95 0.95 0.95 0.96 0.95 0.80 0.94 0.95
MSE-R 1.00 0.66 0.51 0.00 0.91 0.72 0.00 1.45 1.21
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Table C.2: Estimation of β, where P (Y = 1|βγ0 , βγ1 , σ2;β) = F (β0 + γ0βγ0 + γ1βγ1 + σβσ), with true values
(β0, βγ0 , βγ1 , βσ)=(−5, 0.01, 0.04, 0.04), two levels of replication (r), two sample sizes (n). RB, relative bias (standard error
approximately 0.05 for n=1000, 0.02 for n=5000); SD, Monte Carlo standard deviation of β̂ multiplied by 100; SE/SD ratio
of average sandwich standard deviation to Monte Carlo standard deviation; CP, coverage probability of nominal 95% Wald
confidence interval; MSE-R, MSEβW /MSEβ

X̂
(standard error in MSE-R divided by MSE-R ranges between 0.01 and 0.06).

Methods: W, naive approach; M=2 and M=4, MAI matching 2 and 4 moments.

βγ0 βγ1 βσ
r n Stat. W X̂M=2 X̂M=4 W X̂M=2 X̂M=4 W X̂M=2 X̂M=4

10 1000 RB −0.21 −0.11 −0.06 0.15 0.06 0.10 −0.40 0.00 0.08
SD 0.57 1.27 1.34 3.57 4.45 4.57 1.92 4.25 4.66
SE/SD 1.00 1.06 1.03 1.00 0.93 0.92 1.00 0.98 0.97
CP 0.96 0.96 0.96 0.93 0.93 0.93 0.87 0.95 0.95
M 1.00 0.23 0.20 0.00 0.66 0.62 0.00 0.35 0.29

5000 RB −0.17 −0.02 0.00 0.12 −0.01 0.00 −0.42 −0.05 0.01
SD 0.27 0.56 0.58 1.48 1.81 1.83 0.82 1.76 1.91
SE/SD 1.00 1.03 1.04 1.00 1.01 1.00 1.00 1.02 1.02
CP 0.90 0.96 0.96 0.94 0.95 0.95 0.48 0.95 0.95
MSE-R 1.00 0.32 0.31 0.00 0.73 0.72 0.00 1.12 0.97

40 1000 RB −0.06 −0.05 0.00 0.04 0.01 0.04 −0.15 −0.02 −0.01
SD 0.81 1.01 1.04 3.53 3.75 3.85 2.39 3.02 3.15
SE/SD 1.00 0.98 0.97 1.00 0.99 0.97 1.00 1.02 1.01
CP 0.95 0.94 0.94 0.96 0.96 0.96 0.95 0.95 0.95
MSE-R 1.00 0.64 0.61 0.00 0.89 0.84 0.00 0.66 0.61

5000 RB −0.05 −0.03 −0.01 0.02 0.00 0.01 −0.14 −0.01 0.01
SD 0.36 0.45 0.47 1.52 1.62 1.70 1.06 1.34 1.40
SE/SD 1.00 1.00 0.96 1.00 1.02 0.98 1.00 1.02 1.01
CP 0.96 0.96 0.95 0.95 0.95 0.94 0.92 0.95 0.94
MSE-R 1.00 0.65 0.58 0.00 0.89 0.80 0.00 0.79 0.73
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C.5.2 Model (3.1) with mean and variance covariates

Here we consider the case where a primary outcome is related to the subject-specific

means and variances of a continuous response by the logistic regression model

P (Yi = 1|µi, σ2
i ;βµ, βσ) = F{β0 + µiβµ + T (σ2)βσ}, (C.10)

where F (t) = 1/(1 + e−t). This is appropriate when the subject-specific data are repeated

measures, rather than longitudinal data. Even with longitudinal data, the slopes may be

zero, and the replicate data can be described by an intercept-only model in which the

intercept represents the mean of the data. Model (C.10) is a special case of model (3.1)

where µ=γ0 and there is no subject-specific slope.
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Table C.3: Estimation of β, where P (Y = 1|µ, σ2;β) = F (β0 + µβµ + σβσ), with true
values (β0, βµ, βσ)=(−7.2, 0.02, 0.08), two levels of replication (R), two sample sizes (n).
RB, relative bias (standard error approximately 0.02 for 1000, 0.01 for 5000); SD, Monte
Carlo standard deviation of β̂ multiplied by 100; SE/SD ratio of average sandwich standard
deviation to Monte Carlo standard deviation; CP, coverage probability of nominal 95% Wald
confidence interval; MSE-R, MSEβW /MSEβ

X̂
(standard error in MSE-R divided by MSE-

R ranges between 0.03 and 0.07). Methods: W, naive approach; M=2 and M=4, MAI
matching 2 and 4 moments.

βµ βσ
R n Stat. W X̂M=2 X̂M=4 W X̂M=2 X̂M=4

10 1000 RB 0.12 0.01 0.00 −0.47 −0.07 0.07
SD 0.74 0.97 1.01 1.78 3.39 4.13
SE/SD 1.00 0.94 0.93 1.00 0.98 0.97
CP 0.93 0.94 0.94 0.44 0.95 0.96
MSE-R 1.00 0.65 0.60 1.00 1.47 1.00

5000 RB 0.14 0.04 0.03 −0.48 −0.08 0.02
SD 0.31 0.39 0.41 0.78 1.47 1.72
SE/SD 1.00 1.02 1.01 1.00 0.99 0.99
CP 0.84 0.96 0.96 0.00 0.93 0.94
MSE-R 1.00 1.08 1.02 1.00 5.78 5.02

40 1000 RB 0.05 −0.01 −0.02 −0.16 −0.01 0.05
SD 0.74 0.80 0.81 2.21 2.68 2.88
SE/SD 1.00 1.01 1.02 1.00 1.01 1.01
CP 0.96 0.95 0.95 0.93 0.97 0.96
MSE-R 1.00 0.88 0.86 1.00 0.92 0.78

5000 RB 0.07 0.01 0.00 −0.17 −0.02 0.02
SD 0.32 0.35 0.35 1.00 1.20 1.28
SE/SD 1.00 1.05 1.05 1.00 1.00 1.00
CP 0.94 0.96 0.96 0.72 0.95 0.95
MSE-R 1.00 1.01 0.99 1.00 1.98 1.74
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Table C.4: Estimation of β, where P (Y = 1|µ, σ2;β) = F (β0 +µβµ+σβσ), with true values
(β0, βµ, βσ)=(−5, 0.01, 0.04), two levels of replication (R), two sample sizes (n). RB, relative
bias (standard error approximately 0.04 for 1000, 0.02 for 5000); SD, Monte Carlo standard
deviation of β̂ multiplied by 100; SE/SD ratio of average sandwich standard deviation to
Monte Carlo standard deviation; CP, coverage probability of nominal 95% Wald confidence
interval; MSE-R, MSEβW /MSEβ

X̂
(standard error in MSE-R divided by MSE-R ranges

between 0.01 and 0.06). Methods: W, naive approach; M=2 and M=4, MAI matching 2
and 4 moments.

βµ βσ
R n Stat. W X̂M=2 X̂M=4 W X̂M=2 X̂M=4

10 1000 RB 0.10 −0.02 −0.03 −0.46 −0.05 0.04
SD 0.74 0.97 0.99 2.02 3.83 4.20
SE/SD 1.00 0.98 0.98 1.00 0.96 0.95
CP 0.96 0.94 0.95 0.86 0.94 0.95
MSE-R 1.00 0.60 0.57 1.00 0.51 0.42

5000 RB 0.12 0.00 0.00 −0.46 −0.06 0.00
SD 0.33 0.43 0.43 0.88 1.65 1.79
SE/SD 1.00 1.00 1.00 1.00 0.98 0.97
CP 0.93 0.96 0.96 0.42 0.95 0.95
MSE-R 1.00 0.67 0.65 1.00 1.51 1.31

40 1000 RB 0.11 0.06 0.05 −0.19 −0.04 −0.01
SD 0.82 0.89 0.89 2.46 2.98 3.08
SE/SD 1.00 0.96 0.96 1.00 0.98 0.98
CP 0.94 0.94 0.94 0.94 0.95 0.95
MSE-R 1.00 0.87 0.86 1.00 0.75 0.70

5000 RB 0.07 0.01 0.01 −0.18 −0.03 0.00
SD 0.36 0.38 0.38 1.05 1.27 1.31
SE/SD 1.00 1.01 1.00 1.00 1.04 1.04
CP 0.94 0.96 0.96 0.91 0.96 0.96
MSE-R 1.00 0.90 0.89 1.00 0.99 0.93
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Table C.5: Estimation of β, where P (Y = 1|µ, σ2;β) = F (β0 + µβµ + log(σ2)βσ), with
true values (β0, βµ, βσ)=(−10.3, 0.02, 0.80), two levels of replication (R), two sample sizes
(n). RB, relative bias (standard error approximately 0.02 for 1000, 0.01 for 5000); SD,
Monte Carlo standard deviation of β̂ multiplied by 100; SE/SD ratio of average sandwich
standard deviation to Monte Carlo standard deviation; CP, coverage probability of nominal
95% Wald confidence interval; MSE-R, MSEβW /MSEβ

X̂
(standard error in MSE-R divided

by MSE-R ranges between 0.03 and 0.08). Methods: W, naive approach; M=2 and M=4,
MAI matching 2 and 4 moments.

βµ βσ
R n Stat. W X̂M=2 X̂M=4 W X̂M=2 X̂M=4

10 1000 RB 0.11 0.00 0.00 −0.46 −0.05 0.03
SD 0.70 0.91 0.95 18.39 35.63 40.64
SE/SD 1.00 0.98 0.98 1.00 0.96 0.94
CP 0.94 0.95 0.95 0.42 0.93 0.94
M 1.00 0.64 0.59 1.00 1.31 1.02

5000 RB 0.11 0.01 0.01 −0.48 −0.10 −0.02
SD 0.32 0.42 0.43 7.99 15.29 17.07
SE/SD 1.00 0.95 0.95 1.00 0.98 0.99
CP 0.88 0.95 0.95 0.00 0.90 0.93
MSE-R 1.00 0.89 0.83 1.00 5.18 5.14

40 1000 RB 0.04 −0.01 −0.02 −0.16 −0.03 0.01
SD 0.73 0.79 0.80 23.87 28.56 30.24
SE/SD 1.00 1.02 1.02 1.00 0.95 0.95
CP 0.95 0.96 0.96 0.89 0.94 0.94
M 1.00 0.87 0.85 1.00 0.90 0.81

5000 RB 0.06 0.01 0.01 −0.17 −0.04 0.00
SD 0.32 0.34 0.35 9.75 11.64 12.30
SE/SD 1.00 1.04 1.04 1.00 1.04 1.04
CP 0.95 0.97 0.97 0.72 0.94 0.95
MSE-R 1.00 1.00 0.98 1.00 1.94 1.86
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Table C.6: Estimation of β, where P (Y = 1|µ, σ2;β) = F (β0 + µβµ + log(σ2)βσ), with
true values (β0, βµ, βσ)=(−6.4, 0.01, 0.40), two levels of replication (R), two sample sizes
(n). RB, relative bias (standard error approximately 0.04 for 1000, 0.02 for 5000); SD,
Monte Carlo standard deviation of β̂ multiplied by 100; SE/SD ratio of average sandwich
standard deviation to Monte Carlo standard deviation; CP, coverage probability of nominal
95% Wald confidence interval; MSE-R, MSEβW /MSEβ

X̂
(standard error in MSE-R divided

by MSE-R ranges between 0.01 and 0.06). Methods: W, naive approach; M=2 and M=4,
MAI matching 2 and 4 moments.

βµ βσ
R n Stat. W X̂M=2 X̂M=4 W X̂M=2 X̂M=4

10 1000 RB 0.16 0.03 0.03 −0.45 −0.03 0.02
SD 0.67 0.88 0.89 17.32 32.74 34.81
SE/SD 1.00 1.02 1.02 1.00 0.99 0.99
CP 0.95 0.96 0.96 0.82 0.95 0.95
M 1.00 0.62 0.60 1.00 0.58 0.51

5000 RB 0.15 0.03 0.03 −0.44 −0.05 0.00
SD 0.30 0.38 0.39 7.81 14.54 15.39
SE/SD 1.00 1.03 1.03 1.00 0.98 0.98
CP 0.93 0.96 0.96 0.38 0.94 0.94
MSE-R 1.00 0.74 0.72 1.00 1.76 1.60

40 1000 RB 0.13 0.08 0.07 −0.15 −0.02 0.01
SD 0.78 0.84 0.84 22.41 26.58 27.37
SE/SD 1.00 0.95 0.95 1.00 0.96 0.96
CP 0.94 0.93 0.94 0.92 0.93 0.94
M 1.00 0.88 0.87 1.00 0.76 0.72

5000 RB 0.06 0.01 0.01 −0.15 −0.02 0.00
SD 0.33 0.35 0.35 9.83 11.64 11.99
SE/SD 1.00 1.01 1.01 1.00 0.98 0.98
CP 0.94 0.95 0.95 0.90 0.94 0.94
MSE-R 1.00 0.90 0.89 1.00 0.99 0.94
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C.5.3 Model (3.1) with variance covariate only

This appendix provides additional simulation results for the following logistic re-

gression model

P (Yi = 1|σ2
i ;βσ) = F{β0 + T (σ2

i )βσ}, (C.11)

where F (t) = 1/(1 + e−t). These results are similar to the case where T (σ2)=log(σ2), and

are discussed in Section 3.4.2.
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Table C.7: Estimation of β, where P (Y = 1|σ2;β) = F (β0 + σβσ), with true values
(β0, βσ)=(−4, 0.08), two levels of replication (R), two sample sizes (n). RB, relative bias
(standard error approximately 0.01 for 1000, 5000) ; SD, Monte Carlo standard devia-
tion of β̂ multiplied by 100; SE/SD ratio of average sandwich standard deviation to Monte
Carlo standard deviation; CP, coverage probability of nominal 95% Wald confidence inter-
val; MSE-R, MSEβW /MSEβ

X̂
(standard error in MSE-R divided by MSE-R ranges between

0.04 and 0.08). Methods: W, naive approach; M=2 and M=4, MAI matching 2 and 4 mo-
ments.

βσ
R n Stat. W X̂M=2 X̂M=4

10 1000 RB −0.43 −0.06 0.02
SD 1.57 2.60 3.07
SE/SD 1.00 1.00 0.99
CP 0.41 0.95 0.95
MSE-R 1.00 2.04 1.51

5000 RB −0.44 −0.08 0.00
SD 0.70 1.15 1.34
SE/SD 1.00 0.99 0.98
CP 0.00 0.91 0.95
MSE-R 1.00 7.49 7.04

40 1000 RB −0.15 −0.02 0.01
SD 1.86 2.14 2.27
SE/SD 1.00 1.04 1.04
CP 0.90 0.96 0.96
MSE-R 1.00 1.06 0.94

5000 RB −0.16 −0.03 0.00
SD 0.87 1.00 1.06
SE/SD 1.00 0.99 0.99
CP 0.69 0.94 0.94
MSE-R 1.00 2.23 2.13
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Table C.8: Estimation of β, where P (Y = 1|σ2;β) = F (β0 + σβσ), with true values
(β0, βσ)=(−3.4, 0.04), two levels of replication (R), two sample sizes (n). RB, relative bias
(standard error approximately 0.03 for 1000, 0.01 for 5000); SD, Monte Carlo standard
deviation of β̂ multiplied by 100; SE/SD ratio of average sandwich standard deviation to
Monte Carlo standard deviation; CP, coverage probability of nominal 95% Wald confidence
interval; MSE-R, MSEβW /MSEβ

X̂
(standard error in MSE-R divided by MSE-R ranges

between 0.02 and 0.06). Methods: W, naive approach; M=2 and M=4, MAI matching 2
and 4 moments.

βσ
R n Stat. W X̂M=2 X̂M=4

10 1000 RB −0.45 −0.10 −0.04
SD 1.70 2.80 3.03
SE/SD 1.00 1.00 1.00
CP 0.85 0.95 0.95
MSE-R 1.00 0.77 0.67

5000 RB −0.43 −0.06 −0.02
SD 0.79 1.28 1.38
SE/SD 1.00 0.96 0.96
CP 0.41 0.94 0.94
MSE-R 1.00 2.10 1.89

40 1000 RB −0.19 −0.07 −0.05
SD 2.05 2.36 2.43
SE/SD 1.00 0.99 0.99
CP 0.94 0.94 0.94
MSE-R 1.00 0.85 0.80

5000 RB −0.14 −0.01 0.00
SD 0.94 1.08 1.12
SE/SD 1.00 0.97 0.97
CP 0.89 0.94 0.94
MSE-R 1.00 1.03 0.98


