
ABSTRACT

MARTEN, ALEX LENNART. Essays on the Application and Computation of Real Options.
(Under the direction of Professor Paul L. Fackler.)

This dissertation presents a series of three essays that examine applications and

computational issues associated with the use of stochastic optimal control modeling in the

field of economics. In the first essay we examine the problem of valuing brownfield re-

mediation and redevelopment projects amid regulatory and market uncertainty. A real

options framework is developed to model the dynamic behavior of developers working with

environmentally contaminated land in an investment environment with stochastic real es-

tate prices and an uncertain entitlement process. In a case study of an actual brownfield

regeneration project we examine the impact of entitlement risk on the value of the site

and optimal developer behavior. The second essay presents a numerical method for solv-

ing optimal switching models combined with a stochastic control. For this class of hybrid

control problems the value function and the optimal control policy are the solution to

a Hamilton-Jacobi-Bellman quasi-variational inequality. We present a technique whereby

approximating the value function using projection methods the Hamilton-Jacobi-Bellman

quasi-variational inequality may be recast as extended vertical non-linear complementarity

problem that may be solved using Newton’s method. In the third essay we present a new

method for estimating the parameters of stochastic differential equations using low observa-

tion frequency data. The technique utilizes a quasi-maximum likelihood framework with the

assumption of a Gaussian conditional transition density for the process. In order to reduce

the error associated with the normality assumption sub-intervals are incorporated and inte-

grated out using the Chapman-Kolmogorov equation and multi-dimensional Gauss Hermite

quadrature. Further improvements are made through the use of Richardson extrapolation

and higher order approximations for the conditional mean and variance of the process, re-

sulting in an algorithm that may easily produce third and fourth order approximations for

the conditional transition density.
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Chapter 1

Introduction

This dissertation presents a series of three essays that examine applications and

computational issues associated with the use of stochastic optimal control modeling in the

field of economics. In Chapter 2 we consider the problem of valuing brownfield remedi-

ation and redevelopment projects amid regulatory and market uncertainty. The question

regarding the worth of an environmentally contaminated site has been the subject of great

interest since the passage of the Comprehensive Environmental Response, Compensation,

and Liability Act in 1980. This interest comes from private developers trying to select prof-

itable investments in addition to those parties interested in designing effective incentives to

encourage brownfield reuse. In either case a key component of understanding the value of

such redevelopment projects is the ability to correctly account for the dynamic behavior of

developers in uncertain investment environments. Previous efforts to model this scenario

have made steady improvements, however they have consistently over simplified the prob-

lem and omitted important characteristics. We present a significant contribution to this

area by working in consultation with a leading remediation firm to develop a more acurate

real options framework for the value of brownfield remediation and redevelopment projects.

In order to achieve a realistic depiction of such investments we provide a number

of extensions to the traditional approach to brownfield valuation. Instead of adhering to

the typical simplifying assumption that prices follow geometric Brownian motion, we allow

the temporal dynamics of real estate markets to exhibit short-term variation in the growth
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rate. This allows the framework to capture the effects of common market phenomenon

often referred to as housing “bubbles” and “slumps”. In addition, the framework includes

the important but repeatedly overlooked feature of regulation uncertainty that arises from

the process of obtaining development entitlements. We combine these sources of market

and public sector uncertainty with other key facets of redevelopment projects, such as

managerial flexibility, monopolistic competition, and the time to build nature of remediation

and construction.

Using data from an ongoing brownfield regeneration project we derive the optimal

management policy for the firm, and examine the importance of accurately characterizing

the investment environment. We find that uncertainty in the future growth of housing

prices has a significant effect on the developer’s decision rule, given that remediation and

development do not occur instantaneously. Furthermore, our results indicate that the time

to build nature of remediation is paramount to understanding the impact of the entitlement

regulation process on the investment’s value. The need for a lengthly environmental cleanup

will limit the effect of regulatory lags on investment value, while uncertainty in the outcome

of the regulatory process will significantly effect site value.

Within this brownfield valuation framework we incorporate the fact that devel-

opment firms have some market power. As a result developer behavior is characterized

by an optimal switching model combined with a stochastic control accounting for the sale

price for finished units. This hybrid control framework is applicable to many problems in

economics, however, it has yet to be fully utilized. This is most likely due to the fact that

there does not exist a closed form solution for such models. In Chapter 3 we present a new

numerical technique to solve this class of combined optimal switching and stochastic con-

trol models. For these problems the value function and optimal control policies will be the

solution to a set of Hamilton-Jacobi-Bellman quasi-variational inequalities. Through the

use of projection methods to approximate the unknown value function, we transform the

problem into an extended vertical non-linear complementarity problem that may be solved

using Newton’s method. This technique is instrumental in obtaining a solution for the value

of brownfield remediation and redevelopment projects in Chapter 2. We further illustrate

this method in Chapter 3 using the optimal resource extraction problem of Brennan and
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Schwartz [1985]. In the past this model has been solved by eliminating or transforming one

of the controls so that the problem contains only a switching or a stochastic control. Using

the new numerical technique we show that such simplifications may lead to significant errors

in valuing investments.

Chapter 3 also considers the closely related class of models that combine im-

pulse and stochastic controls. The solutions for this class of problems are also described

by Hamilton-Jacobi-Bellman quasi-variational inequalities, and as such they too may be

represented as extended vertical non-linear complementarity problems through the use of

projection methods. This technique for solving combined impulse and stochastic control

problems is demonstrated using the portfolio management application considered by Ok-

sendal and Sulem [2002]. We also consider an alternative approach to solving combined

impulse and stochastic control problems by redefining the model as one that combines an

optimal switching control and a stochastic control. In order to demonstrate this alterna-

tive approach we consider the exchange rate control application of Cadenillas and Zapatero

[2000].

This dissertation concludes in Chapter 4 with the presentation of a new method for

estimating the parameters of continuous time Ito processes using low observation frequency

data. A key component in stochastic optimal control modeling is the use to stochastic

differential equations to define the dynamics of state variables. However the estimation of

parameters for these SDEs is typically troublesome due to the absence of known conditional

transition densities for many of the interesting processes. A popular solution to this prob-

lem is the quasi-maximum likelihood approach that assumes a normal conditional transition

density and approximates the conditional moments by discretizing the process with a first

order Euler approximation. However, the Gaussian assumption will only be valid in the

case where the observational frequency is relatively high, whereas many economic processes

are only observed on a monthly or even a quarterly basis. In these cases Monte Carlo ex-

periments have shown that the normality assumption with moments derived from the Euler

approximation will produce inaccurate parameter estimates. A theoretically attractive way

to improve this quasi-maximum likelihood estimate is to to improve the approximation of

the conditional transition density by making the time step small through the incorporation
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of additional observations between the known data points. Since these sub-observations are

unknown they must be integrated out using the Chapman-Kolmogorov equation.

While this approach is theoretically attractive, a number of significant computa-

tional issues have limited its accuracy and efficiency. Most notable is the need to compute

a multi-dimensional integral in the Chapman-Kolmogorov equation. Previous work in the

area has focused on the use of Monte Carlo integration, while we purpose a more efficient

algorithm that utilizes multi-dimensional Gauss Hermite quadrature. The benefit of nu-

merical quadrature over Monte Carlo integration is that the integral may be computed to

an arbitrary level of accuracy in a significantly shorter period of time, for low to moderate

dimensions. As a result of this improvement in the accuracy and efficiency of the inte-

gration, the accuracy of the conditional transition density approximation may be further

improved through the application of Richardson extrapolation. Given the accuracy of the

numerical integration and the benefits of Richardson extrapolation we are able to achieve

the same computational accuracy as the best Monte Carlo based estimators, however we

only require a one dimensional integral as opposed to the fifteen dimensional integral re-

quired in the Monte Carlo case. The method therefore provides a significant improvement

in computational efficiency without any loss of accuracy.
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Chapter 2

Valuing Brownfield Remediation

and Redevelopment Projects

Brownfields are “abandoned, idled, or underutilized industrial and commercial

facilities where expansion or redevelopment is complicated by real or perceived contamina-

tion” [Kaiser, 1998]. Within the United States it is estimated that at least 500,000 sites

fall into this classification [Meyer and VanLandingham, 2000], though there is evidence to

suggest the existence of up to 1,000,000 brownfields [Simons, 1998]. The benefits of success-

ful brownfield regeneration are clear; the reduction of public health threats, revitalization

of blighted areas, and decreased development pressure on open space [Singer et al., 2001].

Despite the significant public value of redevelopment, government led remediation efforts

remain limited, leaving private developers with a major role in brownfield regeneration. In

spite of numerous programs and incentives the participation of firms in brownfield redevel-

opment projects remains low. Developers have cited the difficulty in selecting profitable

regeneration projects as a primary reason for their limited involvement [Meyer and Lyons,

2000].

When analyzing potential investments in brownfields, the current standard is to

apply traditional discounted cash flow techniques such as net present value and internal

rate of return. However, these methods are incapable of accurately capturing the value of

regeneration projects due to the complexity of the remediation and redevelopment process.
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The interplay between uncertainty, irreversibility, and managerial flexibility is lost with

these simple valuation frameworks. In response, the industry has shown interest in utilizing

a real options approach that will facilitate a better understanding about the value of re-

development projects. In consultation with a leading remediation and redevelopment firm,

we design a model that incorporates the characteristics which are seen as critical determi-

nants of brownfield value. These factors include monopolistic competition, public sector

and market uncertainty, time to build, and managerial flexibility all within a multi-stage

investment framework.

A key feature of real estate projects, often overlooked in the investment literature,

is the effect of lags due to regulation processes such as rezoning and permitting. In cases

where such lags have been incorporated, the regulation process is unrealistically assumed

to be deterministic. In actuality both the length of the regulatory lag and the outcome of

the process are associated with uncertainty. Development firms have stated an interest in

understanding the impact of this regulation process on the value of sites requiring lengthly

environmental remediation prior to development. Using data from an ongoing remediation

and redevelopment project, we find that the common practice of ignoring this regulatory

process when analyzing brownfield investments will lead to significant valuation errors.

In addition we examine the importance of deviating from the conventional sim-

plifying assumption that housing prices follow geometric Brownian motion. This common

conjecture prohibits real estate prices from exhibiting volatility in a form consistent with

empirical observations, by virtually eliminating the probability of housing “bubbles”. The

inclusion of such short term deviations from long term price trends has important implica-

tions for the behavior of firms given the temporal nature of both real estate development

and environmental remediation. By better describing how developers are making decisions

we may increase our understanding of the value of managerial flexibility and in turn pro-

vide more appropriate valuations of such investments. Correctly accounting for the time

needed to complete lengthy remediation and redevelopment projects, along with incorporat-

ing accurate descriptions of real estate price dynamics are paramount in valuing brownfield

investments.

The framework developed to capture these features, in addition to updating the
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literature on brownfield valuation, provides two unique contributions to the real options

literature. First, to capture the regulation uncertainty within the multistage investment

we introduce the concept of a regulated compound exchange option where obtaining sub-

sequent options requires both endogenous and exogenous actions. Second the existence of

monopolistic competition is handled through the application of a hybrid optimal stochastic

control model that contains both discrete and continuous controls. This work constitutes a

step forward in developing real options based models that realistically depict the investment

environment faced by industry. Combining techniques such as time to build, multi-factor

stochastic processes, multiple types of regulation uncertainty, in addition to the inclusion

of both discrete and continuous control variables, we allow for a more accurate description

of such projects.

The remainder of the paper proceeds as follows: Section 2.1 outlines the history

of the brownfield problem and briefly discusses the current state of brownfield valuation

techniques; Section 2.2 details the model describing the processes of remediation and de-

velopment; Section 2.3 defines the problem of valuing the investment given the model of

redevelopment; Section 2.4 examines implications of the model through an empirical case

study; and Section 2.5 contains concluding remarks.

2.1 Brownfield Problem

The current abundance of brownfields is a reaction to both government regulation

and changing economic conditions. With enactment of the Comprehensive Environmental

Response, Compensation, and Liability Act (CERCLA) in 1980, any party associated with

property containing environmental contamination was subject to possible financial liability,

even those that were in no way responsible for the pollution [Bartsch and Collaton, 1995].

At the same time the structural shift in the United States economy away from manufac-

turing has resulted in downsizing and plant closings leaving abandoned or idle industrial

facilities in most communities [Collaton and Bartsch, 1996]. The ambiguous liability and

open ended definition of contamination within the legislation resulted in devaluation for

hundreds of thousands of such sites, most with little to no contamination [Chilton, 1998].
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For developers, a lack of experience in environmental cleanup and the absence of defini-

tive EPA guidelines for evaluating the extent of site contamination limited their ability to

accurately estimate the capital expenditures required for remediation [O’Brien, 1989]. In

most cases cleanup costs were severely overestimated and as a result brownfield regeneration

projects were passed over in favor of greenfield development.1 In addition to the uncertainty

of remediation expenses, the potential liability that the CERCLA attached to third party

financial institutions, led most commercial lenders to avoid investments associated with en-

vironmental contamination [Meyer and Lyons, 2000]. As a result of the high risk and lack

of available capital, redevelopment of brownfields was limited to a small number of sites.

In response to the problems surrounding brownfield redevelopment a number of

regulatory changes have been implemented. Most notable is the passage of the Asset Con-

servation, Lender Liability, and Deposit Insurance Act of 1996, which has provided limited

liability relief to financiers of brownfield regeneration projects. To further increase the avail-

ability of capital many state and federal programs have begun to offer additional financing

for the remediation of environmental contamination prior to development. Furthermore,

organizations such as the American Society of Testing and Materials, generated widely

accepted guidelines for establishing the extent of contamination on a site [Meyer and Van-

Landingham, 2000]. The availability of these standards aided in the creation of markets

for environmental insurance contracts, and as a result developers became able to reduce

their exposure to risk through environmental liability, cost-cap, and prospective liability

insurance. As a result of access to capital and the ability to better manage environmental

risk private firms with knowledge of remediation techniques found profitable ventures in

brownfield regeneration projects. By 2000 private developers had become an integral part

of the remediation process, with the three largest firms investing more capital in brownfields

than all state governments combined [Meyer and Lyons, 2000].2 In particular such firms

have been responsible for the majority of medium to large scale brownfield cleanup efforts.3

Despite the success of some developers, many investors choose to either forgo completely

or have limited involvement with brownfields due to the difficulty in valuing such projects.
1Greenfields are commonly defined as previously undeveloped land that is either open space or farmland.
2This excludes state spending on Superfund sites and underground storage tanks.
3Medium to large brownfields refers to sites over 5 acres.
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Previous attempts to provide a framework for valuing regeneration projects have failed to

properly characterize the uncertainty associated with such investments in an approach that

may be calibrated using real data.

2.1.1 Previous Approaches to Value Brownfields

The work in Patchin [1988] and Patchin [1991] began the pertinent discussion of

how to correctly value property that is affected by either real or perceived environmental

contamination. This research examined the importance of including brownfield specific

investment characteristics such as remediation costs and indemnity in the valuation of such

sites. Incorporating these concepts Mundy [1992b] developed a discrete time discounted cash

flow model to determine the value of brownfield redevelopment projects. The approach was

to adjust the net present value (NPV) of the final development for cleanup costs associated

with the environmental contamination. Additional work by Mundy [1992a] enhanced the

approach to provide further realism by accounting for extra investment attributes. Similar

research providing further extensions to the discounted cash flow technique of modeling

brownfield value may be found in: Chalmers and Roehr [1993], Fisher et al. [1992], Richards

[1996], Syms [1996], Tonin [2006], Wilson [1994]. Despite its popularity and the numerous

variants, at its core this approach to modeling the value of brownfield regeneration projects

overlooks an essential characteristic of such investments by fully ignoring uncertainty.

Prior to the sale of a completed development project, the firm must participate in a

lengthy construction process. During this period the market price of the final product, that

is real estate prices, will be continuously evolving in a non-deterministic fashion. Paramount

to capturing this uncertainty in the investment model is an understanding that as future

prices are realized the firm will reevaluate management policies. Therefore, to accurately

analyze the value of development projects, careful consideration must be given to the firm’s

operating flexibility. Traditional discounted cash flow models such as net present value are

unable to incorporate this class of optimal control in the face of uncertainty [Dixit and

Pindyck, 1994, Trigeorgis, 1993b, Schwartz and Trigeorgis, 2004]. That being the case,

it is necessary to utilize a real options approach when modeling the value of real estate

development projects [Sirmans, 1997]. What’s more, Quigg [1993] and Cunningham [2006]
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have found empirical evidence to support the use of real options models in pricing real

estate investments. The importance of incorporating the value of managerial flexibility is

only exacerbated when one considers investments in redevelopment projects, as the firm

must first undergo a lengthly remediation phase prior to beginning of construction.

In the literature on applying real options techniques to evaluating real estate in-

vestments (Williams [1991]; Capozza and Sick [1991]; Quigg [1995]; Holland et al. [2000];

Capozza and Li [2002]) there has been relatively little research devoted to the problem of

valuing brownfield remediation and redevelopment projects. Lentz and Tse [1995] were the

first to suggest that discounted cash flow models were unfit to value real estate associated

with environmental contamination. In response they developed a model for brownfield re-

generation projects where the investment is represented as a compound exchange option.

The initial option held is to remediate the site, upon execution the investor receives the

option to develop and sell the property.

Paxson [2007] purposed a similar model based on the idea of a compound exchange

option. Again the investment is portrayed as a two stage process, where the developer first

decontaminates the site and then engages in redevelopment for which the firm receives

a lump sum payment upon completion. It is assumed that the expenditure necessary to

complete the remediation is associated with some uncertainty. To include this feature the

cost of executing the initial option is said to be a process following geometric Brownian

motion (GBM). Furthermore, to characterize the uncertainty within the real estate market

the payment to the firm for the completed development is also considered to follow GBM.

The only significant difference from previous work is the inclusion of uncertainty in the

cost of construction, by the assumption that such expenditures are directly proportional to

the stochastic cost of remediation. The work of Lentz and Tse [1995] and Paxson [2007] is

significant for stating the need to develop a real options approach to brownfield valuation,

though the simplified framework ignores important characteristics that are crucial to un-

derstanding the value of redevelopment investments. The representation of the project as

a set of two simple American options implicitly assumes that remediation and development

are instantaneous, thereby ignoring the critical time to build aspect of redevelopment.

Espinoza and Luccioni [2005] draw on the work of Majd and Pindyck [1987] to
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incorporate this time to build property into the valuation of brownfield redevelopment

projects. The process of remediation is described as a continuous operation requiring a

constant negative cash flow over a predetermined period of time. Upon completion of the

stage the firm receives a one time payment associated with the value of the decontaminated

property. This payment is assumed to be uncertain and is described as a GBM process.

Once the essential time to build characteristic has been integrated into the model it is

imperative that careful consideration be given to the specification of managerial flexibility.

To this end, Espinoza and Luccioni [2005] provide the firm with the ability to indefinitely

suspend operations during the remediation process. This approach takes an important step

in incorporating the time to build characteristic.

We extend this work with three major additions. First, we consider the fact

that there still exists uncertainty within the remediation stage despite the predictability

of cleanup expenditures and availability of environmental insurance. In order to begin

construction, the firm must not only decontaminate the site but also obtain development

entitlements from the government. This regulatory process is fraught with uncertainty in

both the time it will take to complete and the final outcome. Second, in order to calibrate

the uncertainty accompanying the development value it is necessary to model its relation-

ship with prices in the real estate market. Therefore, we carefully model the details of the

development process including the underlying dynamics of the market price, the time to

build nature of construction, and the firm’s ability to influence market absorption. This

approach provides a means to calibrate the parameters of the model using empirical data.

Third, we note the importance of correctly specifying the sources managerial flexibility,

and for that reason incorporate additional options, beyond simple suspension of operations

into the model. The specific real options available to a developer are site specific, some

examples include the ability to alter the allocation of entitlements between commercial and

residential development or to donate the remaining property for tax purposes. To demon-

strate the importance of including additional sources flexibility we focus on the commonly

held option to sell the remaining undeveloped, and possibly contaminated, property. Given

these improvements the framework developed within this paper provides a considerably

more realistic model for valuing brownfield remediation and redevelopment projects. In
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addition it offers an ideal setting in which to consider the impact of the regulation process

on investment value and optimal firm behavior.

2.2 Model Description

A typical brownfield regeneration project is comprised of two distinct stages. An

initial stage during which the firm remediates the site and obtains the necessary entitle-

ments, and a subsequent stage where the property is developed and sold. This represents

an extension to the standard sequential investment models developed by Carr [1988] and

Trigeorgis [1993a], which have been applied to wide array of investment projects.4 Tradi-

tionally multistage investment models have focused on the case whereby foregoing a specific

cash outlay the firm is able to advance to a subsequent stage of the investment. The case

of brownfield remediation and redevelopment differs in that to gain the option to develop

the site, not only must the firm remove the existing environmental contamination but the

regulatory uncertainty must also be resolved. To the best of our knowledge this description

of a multistage investment as a compound option in which the investor’s ability to obtain

the second set of options requires both endogenous and exogenous actions to occur is a

unique contribution of this paper. This section proceeds by laying out the model describing

the investment environment beginning with the initial remediation stage.

2.2.1 Remediation and Entitlement Stage

During the investment’s initial stage the developer is required to both remediate

the site and obtain entitlements in order to facilitate future development. Therefore this

first stage is denoted as the remediation and entitlement stage. As noted by Mayer and

Somerville [2000a] regulation lags mainly occur at two major stages in the development pro-

cess. An initial delay in order to obtain zoning and subdivision approval and a subsequent

process of obtaining building permits. The permitting procedure tends to be relatively

quick and a successful outcome is typically certain. Therefore we choose to ignore this lag
4For a brief introduction to the types of applications using option pricing theory to evaluate multistage

investment projects we refer the reader to Panayi and Trigeorgis [1998], Alvarez and Stenbacka [2001], Lee
and Paxson [2001], and Rogers et al. [2002].
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in favor of focusing on the more lengthy initial regulatory process in which local authorities

will often require changes in the project’s design such as development density. The stage

is considered to begin with a request for entitlements to develop ε square feet of residential

housing. After the preliminary application is submitted to the appropriate government au-

thority, the process continues to require action on behalf of the firm. Therefore there exists

a negative cash flow CE for various soft costs, such as legal fees, until the completion of

the regulatory process. To the developer the time until final approval is both exogenous

and uncertain. This characteristic is captured by describing the time until conclusion of the

regulatory review as a random variable from the exponential distribution, with mean λ.5

To a developer the final outcome of the regulatory process is also considered to be

uncertain and exogenous to their actions. When project approval is granted by the local

authorities it is modeled as the proportion of the initial application amount ε for which

the firm will be entitled. This proportion will be defined as π ≥ 0, such that the firm will

be entitled to develop πε square feet of residential housing. Due to the uncertainty in the

regulatory proceedings π is defined as a random draw from a discrete distribution of N

possible outcomes where π1 = 0 and
∑N

j=1 Pr(πj) = 1. We introduce the variable Yt to

describe the state of the firm’s development entitlements, such that

Yt =

 0 if approval has not been received

j if approval has been received for πjε units
,

where Yt ∈ {0, 1, . . . , N} =: Y.

In addition to acquiring development entitlements the firm must also remediate the

site during the initial stage of the investment. These actions may take place simultaneously

or the developer may choose to delay remediation while observing the entitlement process

along with changes in the housing market. Based on initial evaluations of site contamination

the firm is assumed to know the total amount of remediation required. This is defined by

the total time, R̄, the firm must be actively cleaning the property in order to complete

the process. In other words at the beginning of the project, t = 0, the remediation time
5This assumption is analogous to describing entitlement regulation as a Poisson process with mean arrival

rate 1/λ.
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remaining is R0 = R̄. The dynamics of this state variable are dependent upon whether the

firm is actively remediating,

dRt =

 −dt if actively remediating

0 otherwise
.

While actively undertaking remediation the firm incurs a negative cash flow CH associated

with the hard costs of removing the environmental contamination and CR associated with

soft costs such as management and marketing fees.6 This deterministic description of the

remediation process represents the ability of experienced brownfield developers to use their

knowledge of contamination assessment and state of the art remediation technologies, to

accurately evaluate the cost and time required for the process. Well functioning markets for

environmental insurance allow for firms to hedge against unforeseen contamination further

strengthening the assumption of a deterministic cost for remediation of the site.7

If the firm is not currently remediating, they still face a negative cash flow CN

associated with soft costs such as management fees and maintaining security on the site.

The overall cash flow for the firm during the remediation and entitlement stage, will depend

on the current state of the regulatory process, Yt, along with the actions of the firm. That

is if the firm is actively remediating and has not yet received entitlement approval (Yt = 0)

the cash flow will be −(CH +CR+CE) as opposed to −(CN +CE) if the firm has suspended

remediation. If the regulatory process has already been completed (Yt > 0) the cash flow

while the firm is active or suspended will reduce to −(CH + CR) and −CN respectively.

The cumulative cash flow during the initial stage of the investment will always be

negative and may be viewed as the expenditure necessary to acquire the option to develop
6We make this distinction due to the fact that certain expenditures during this stage of the project are

unique to the firm and its intended use of the remediated property. Therefore not all expenditures will
impact the resale value of the contaminated site if the firm chooses to forego the remainder of the project.
Those costs that may viewed as a financial liability acquired by the firm at the time of the site’s purchase
are contained within CH .

7It may be the case that the developer anticipates a significant probability that cost overruns will sur-
pass the cost-cap insurance for the project. In response the hard costs associated with remediation, CH ,
may be described as a continuous time random variable that may increase with some positive probability.
Alternatively, it may be the case that the remediation time remaining, Rt, varies randomly. In consultation
with our corporate partner we have chosen to rule out this possibility by defining CH as a constant and
Rt as deterministic, but note that such environmental risk may be incorporated in the modeling framework
presented.
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the property. Though it may be the case that during the life of the investment the expected

remaining expenditures may no longer be warranted given the state of the market and the

expected value of the developed property. In these circumstances it may be optimal for the

developer to pursue other uses of the property. This managerial flexibility is analogous to

the firm holding a set of real options. In this paper we focus specifically on the firm’s option

to sell the site “as is” to another party, an option common to most brownfield redevelopment

projects. We note that the framework being developed may easily be augmented to include

additional site specific options, for example the ability to donate the site as a park for tax

purposes or rezoning the property for commercial use.

In order to describe the payoff from exercising the option to sell the site in its

current state, we assume that the value of the land is derived from the value of its possible

development use, adjusted for the remaining remediation costs. Additionally it is assumed

that the value of undeveloped property is directly proportional to the market value of

developed real estate, Pt. Therefore the salvage value for the firm is represented by

ηPtU(Yt)ε− CHRt, (2.1)

where

U(Yt) =

 E[π] if Yt = 0

πYt if Yt > 0
, (2.2)

and η is the proportion of the price for developed real estate attributed to the value of the

land. As a result, the first part of (2.1) is interpreted as the current value of the land that

may eventually be developed. In the case where entitlements have not yet been received

this value is an expectation based on the distribution governing the possible outcomes of the

approval process. The second component of the salvage value is the cost of the remediation

that is still required before development may begin.

2.2.2 Development Stage

Upon completion of the remediation and entitlement stage, that is once the firm

has completed the regulatory process and removed the environmental contamination, they
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hold the option to begin development of the site. The value of the development stage will

be dependent upon the state of the market for residential housing. It is assumed that the

market price for developed real estate, Pt, is governed by an Ito process of the form

dSt = µ(St)dt+ σ(St)dWt, (2.3)

where St ∈ Rd is a set of d state variables including the market price Pt; µ : Rd → Rd

is the drift function and σ : Rd → Rd×d is the diffusion function. Wt is a d-dimensional

Brownian motion in the (Ω,F ,P) probability space with the filtration {Ft}t≥0. To ensure

the existence of a unique solution to (2.3) it is assumed that µ(·) and σ(·) are Lipschitz

continuous and that

|µ(St)|2 + ||σ(St)||2 ≤ Q(1 + |St|2)

for some constant Q, where | · | and || · || are the vector and matrix norm respectively,

therefore ruling out explosive growth [Oksendal and Karsten, 1998]. At this stage no further

assumptions are made about the structure of the drift and diffusion in order to emphasize

the generality of the framework. We note that the particular form of the process appropriate

for a project will be site specific due to the spatial uniqueness of real estate markets.

We assume that the developer is operating under monopolistic competition and

therefore holds the option to adjust its output price.8 In particular the price at which the

developer sells completed units is modeled as proportional to the market price. That is the

sale price will be θPt, where θ ∈ R+ represents a continuous control for the firm.

The rate at which the market will absorb the firm’s development, A, will be depen-

dent upon the sale price so that A = A(θ). In essence the function defining the absorption

rate is the demand curve for the firm’s completed housing. As such it will be downward

sloping in the control θ, which represents the relative price for the firm’s product. For sim-

plicity it is assumed that the absorption rate will be a linear function of the relative price,
8The assumption of monopolistic competition was included after discussions with the remediation firm

consulted for this project. For many urban areas the majority of new development available to home buyers
is on the fringe, limiting those interested in closer proximity to the city center to preexisting housing [Mayer
and Somerville, 2000b]. Therefore developers of the large to medium brownfields commonly found within
urban areas have the ability to provide additional amenities beyond those common to the preexisting real
estate and as a result the firm experiences some market power.
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θ, on the range [ΘL,ΘH ], where ΘH represents the price markup beyond which consumer

demand is zero, and ΘL corresponds to an absorption rate equal to the firm’s maximum

construction rate, κ̄. Therefore the function defining the absorption rate for the firm’s

product, based on their choice of sale price, is piecewise linear of the form

A(θ) =


κ̄ if θ ≤ ΘL

κ0 + κ1θ if ΘL < θ < ΘH

0 if θ ≥ ΘH

,

where κ0 and κ1 are the intercept and slope of the linear function respectively. These

parameters are defined as

κ0 =
κ̄ΘH

ΘH −ΘL

and

κ1 =
−κ̄

ΘH −ΘL
.

Figure 2.1 illustrates this function.

It is assumed that the developer will operate in a manner consistent with main-

taining a zero inventory, that is the rate of construction will be equal to rate of absorption.

This represents a continuous analog to the case in which the firm develops the site in phases

and sells each one upon completion. Therefore the dynamics for the remaining number of

units the firm is entitled to construct, Kt, may be defined as

dKt = −A(θ)dt,

where the initial level was determined by the outcome of the regulatory process, K0 = πY ε.9

The marginal cost of development, CA, is considered to be constant over time.

While the firm is actively developing the site they are subject to a flow of ex-

penditures CM associated with soft costs such as management fees, marketing, and onsite

overhead. Therefore the net cash flow for to the firm when engaged in active construction
9The zero inventory assumption represents a simplification that was made in consultation with our

corporate partner, who considered this to be a minor issue. The benefit is that the dimensionality of the
problem may be reduced by eliminating the need to keep track of the current inventory of unsold units.
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Figure 2.1: Piecewise Linear Absorption Rate

has the form

A(θ) (θPt − CA)− CM .

We assume that the firm has the option to suspend construction of new units, A = 0, and

as a result faces a lower cost CS , such that CS < CM . Therefore the net cash flow for the

firm when operations are suspended is −CS .

In addition to the firm’s ability to optimally control the sale price and suspend

operations, it is important to include other sources of managerial flexibility in order to fully

capture the development value of the site. As previously discussed, the specific real options

held by the developer will be dependent upon both the site and the firm’s contractual

obligations. In this model we consider the option to sell the remaining property, and

continue with the same assumptions as in the remediation and entitlement stage. That is

the salvage value is determined by the current market value of the entitled construction.

Therefore by exercising the option to sell the remaining undeveloped property the firm

receives a one time payment of ηPtKt in exchange for the right to future development.



19

2.3 Investment Valuation

The objective of the firm is to maximize, with respect to its operating choices,

profits over an infinite time horizon.10 Therefore determining the investment’s value will

require an understanding of the optimal control solution to the dynamic optimization prob-

lem associated with the firm’s actions. This section outlines the conditions that define

both the value of the project and the developer’s optimal behavior. Despite the depen-

dence of the development stage on the outcome of the entitlement process, its value may

be determined independently over the whole range of possible values for the remaining

construction, [0, πN ε]. This solution may then be used to assign the terminal value of the

remediation stage. Given its importance in valuing the project during the initial remedia-

tion and entitlement stage we begin by discussing the problem of valuing the development

stage. Afterwards we present the problem of valuing the remediation and entitlement stage

given the development value.

2.3.1 Value of the Development Stage

The development stage may be characterized as a combined optimal switching

and continuous control model, where the investment is considered to be in one of three

regimes corresponding to active construction, suspension of operations, and sale of remain-

ing property. The current regime in time t is denoted by Zt such that Zt ∈ {1, 2, 3} =: Z

where

Zt =


1 if the remaining property has been sold

2 if construction is currently suspended

3 if the firm is actively developing the site

.

The firm’s choice of the current regime will be denoted as a discrete control as it may only

take on one of countably many values.

In addition to the choice of regime, the developer has control over the sale to

market price ratio θt when construction is active, Zt = 3. The variable θt will be denoted as

a continuous control as opposed to the discrete control Zt. It is assumed that with respect
10In practice there may be time constraints on the project, but including such characteristics would

increase the dimensionality of the problem and in turn make solving the model considerably more difficult.
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to the filtered probability space of the stochastic process, St as defined by (2.3), that

θt is Ft-measurable for all t ≥ 0. (2.4)

A policy w for the discrete control variable may be described as the possibly finite

double sequence

w = (τ1, τ2, . . . , τi, . . . ; ζ1, ζ2, . . . , ζi, . . .),

where 0 ≤ τ1 ≤ τ2 ≤ . . . are stopping times with respect to the filtration {Ft}t≥0. Associated

with the stopping times are the changes to the discrete control ζi ∈ Z. In other words at

time τi the agent switches to the regime ζi. Therefore a policy for the combined continuous

and discrete control may be written as ν = (θ, w). The combined policy ν is considered to

be admissible if (2.4) holds, θ ∈ [ΘL,ΘH ], ζi ∈ Z ∀i, and τi are stopping times. The set of

all admissible combined controls is denoted as V .

When the system is in the particular state (s, k, z), with the continuous control θ

the firm receives the net cash flow g(s, k, z, θ) where

g(s, k, z, θ) =


0 if z = 1

−CS if z = 2

A(θ) (θPt − CA)− CM if z = 3

,

recalling that Pt ∈ St. We refer the reader to Table 2.1 for a summary of the notation.

Given the state (s, k, z) the cost of switching from the current regime z to ζ is denoted by

HD(s, k, z, ζ) where

HD(s, k, z, ζ) =


−ηpk if z > 1 and ζ = 1

∞ if z = 1 and ζ 6= 1

0 otherwise

.

This definition states that the act of suspending and (re)starting active construction is cost-

less, and that by selling the remaining property the developer receives a one time payment
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ηpk.11 The implementation of an infinite switching cost is analogous to the assumption

that once the firm sells the property they are unable to regain ownership in the future. The

expected discounted flow of benefits to the agent at the onset of the stage and under the

policy ν ∈ V may then be defined as

Gν(s, k, z) = E
[∫∞

0 e−ρtg(St,Kt, Z,t, θt)dt

−
∑∞

j=1 e
−ρτjHD(Sτj ,Kτj , ζj−1, ζj)

∣∣∣S0 = s,K0 = k, Z0 = z
]
,

where ρ is the risk-adjusted discount rate and Zt = ζj if τj ≤ t < τj+1. It may be seen

that if z = 1, then Gν(s, k, z) = 0 due to the constraint that the firm may not reacquire

the project once it has been sold. We therefore restrict the discussion to the meaningful

problem of finding, for all (s, k, z) where z > 1, the value function for the development stage

V D(s, k, z) such that

V D(s, k, z) = sup
ν∈V

Gν(s, k, z). (2.5)

Due to the absence of a fixed cost associated with switching between the active

and suspension regimes it will be the case that V D(s, k, 2) = V D(s, k, 3). Given that the

project’s value, prior to being sold off, will be independent of the regime we redefine the

function as V D(s, k) = V D(s, k, 2) = V D(s, k, 3).

As a natural extension to the work of Brekke and Oksendal [1994] a viscosity

solution for the value function will be defined by the system

ρV D(s, k) ≥ A(θ∗) (θ∗Pt − CA)− CM −A(θ∗)
∂V D

∂k
+ LV D(s, k), (2.6)

ρV D(s, k) ≥ −CS + LV D(s, k), (2.7)

and

V D(s, k) ≥ ηpk, (2.8)
11It is possible to generalize the framework to include fixed switching costs for suspending and (re)starting

active construction. For the case study presented in this paper the developer considered such operating
changes to lack any fixed costs. Therefore, the generalization is forgone in favor of a notation simplification.
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Table 2.1: Brownfield Redevelopment Model Parameters and Variables

All monetary values are in 2007 U.S. dollars.

Parameter Description Value
L Cost of brownfield site 47,300,000
ε Requested entitlements (ft2) 2,601,000
λ Expected length of entitlement process (years) 0.5
CE Annual negative cash flow for the entitlement process 500,000
R̄ Total time needed for remediation (years) 2
CN Annual negative cash flow while remediation is suspended 886,225
CH Annual negative cash flow associated with remediation 2,956,500
CR Annual negative soft cost cash flow while actively remediating 2,532,074
η Proportion of developed value attribute to the land 0.16
ΘL Sale to market price ratio below which demand can’t be met 0.75
ΘH Sale to market price ratio above which demand is zero 1.25
κ̄ Maximum construction rate (ft2/year) 1,500,000
CA Marginal cost of construction ($/ft2) 92
CM Annual negative soft cost cash flow while actively developing 2,532,074
CS Annual negative cash flow while development is suspended 886,225

Variable Description
S Vector of d state variable describing the real estate market
P Market price of completed units ($/ft2, component of S)
µ Growth rate variable (component of S)
R Remediation remaining (years)
K Construction remaining (ft2)
π Proportion of the entitlement application approved
Y State of the entitlement process
θ Sale to market price ratio
A Absorption rate (ft2/year)
V R Value of the remediation stage
V D Value of the development stage
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where θ∗ is the optimal relative price and L is the differential generator

L =
d∑
i=1

µi(s)
∂

∂si
+

1
2

d∑
i=1

d∑
j=1

[
σ(s)σ(s)T

]
ij

∂2

∂si∂sj
. (2.9)

In addition one of the conditions in (2.6)-(2.8) must hold with equality. For each (s, k) the

equality will determine the firm’s optimal management policy with respect to the discrete

control. If (2.6) is the condition to hold with equality then it will be optimal at (s, k) for

the agent to be actively developing the site. On the other hand if (2.7) holds with equality,

then it is optimal for the firm to suspend operations. Alternatively, if it is optimal for

the developers to sell off the remainder of the site (2.8) will hold with equality. The value

function must also satisfy the boundary condition

V D(s, 0) = 0, (2.10)

which states that when the firm completes development of the site, k = 0, the project no

longer holds value for the developer.

The optimal policy for the continuous control, that is the relative price, will be

determined by maximizing the value function with respect to θ ∈ [ΘL,ΘH) given that the

firm is actively developing, z = 3. The fact that it is never optimal to choose a relative

price of ΘH is evident from the conditions in (2.6)-(2.8). If the firm is actively developing

the site, it must be the case that (2.6) holds with equality. Combining this result with the

condition in (2.7), it will be the case that

A(θ∗) (θ∗p− CA)− CM −A(θ∗)
∂V D

∂k
≥ −CS .

If it were optimal for the firm to choose a relative price at the upper kink in the absorption

rate function, θ∗ = ΘH , so that A(θ∗) = 0, the above condition would reduce to CM ≤ CS .

Whereas it was explicitly assumed in Section 2.2 that the fixed cost flow when suspended

was less than that of active development, CM > CS . Therefore, θ∗ will exist on the range

[ΘL,ΘH).
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Again we note that if it is optimal for the firm to be in the regime associated with

active development, z = 3, it must the case that (2.6) holds with strict equality. Therefore

maximizing the value function with respect to θ may be seen as analogous to the problem

sup
θ∈[ΘL,ΘH)

{
A(θ) (θPt − CA)− CM −A(θ)

∂V D

∂k
+ LV D(s, k)

}
.

Given that the upper bound on θ is non-binding the Karush-Kuhn-Tucker (KKT) conditions

associated with this constrained maximization problem are

∂A

∂θ
(θp− CA) +A(θ)p− ∂A

∂θ

∂V D

∂k
+ υ = 0,

(θ −ΘL)υ = 0, and υ ≥ 0.

On the interior where υ = 0 it will be the case that A(θ) = κ0 + κ1θ and

∂A

∂θ
= κ1,

and therefore the KKT conditions imply that the optimal policy for the continuous control

in the relative price will satisfy

κ1 (θ∗p− CA) + (κ0 + κ1θ
∗)p− κ1

∂V D

∂k
=,

such that the optimal policy θ∗ may be written as

θ∗ =
1
2

(
CA + ∂V

∂k

p
− κ0

κ1

)
. (2.11)

We note that this dependent upon an interior solution and that the optimal relative price

will not be lower than ΘL.

A closed form solution for the value function V D(s, k) defined by the variational

inequality in (2.6)-(2.8) and the conditions (2.10) and (2.11) does not exist. We therefore use

the numerical developed in Chapter 3 to obtain an approximation of the value function using

projection methods and collocation. To handle the dependence of the optimal continuous
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control policy on the partial derivative of the value function with respect to the remaining

construction, θ∗ is computed simultaneously with V D(s, k). It is worth noting that we

reduce the dimensionality of the problem by approximating the derivative of the value

function with respect to the deterministic state variable Kt using a explicit forward finite

difference, and then solve for value function at each point on a discrete grid for Kt. Full

details of the numerical method are located in Appendix A.

2.3.2 Value of the Remediation and Entitlement Stage

Similar to the development stage a brownfield regeneration project in the reme-

diation and entitlement stage may be described as an optimal switching model. In the

remediation stage the firm is not concerned with setting a sale price and therefore is not

considered to have a continuous control. Instead the problem is a pure optimal switching

model with a discrete control Xt representing the current regime in time t. Similar to the

development stage it will be the case that Xt ∈ {1, 2, 3} =: X where

Xt =


1 if the property has been sold

2 if remediation is currently suspended

3 if the firm is actively remediating the site

.

A policy w for this discrete switching control may again be described as the possibly finite

double sequence

w = (τ1, τ2, . . . , τi, . . . ; ξ1, ξ2, . . . , ξi, . . .),

where 0 ≤ τ1 ≤ τ2 ≤ . . . are stopping times associated with changes to the discrete control

ξi ∈ X . The set of all admissible controls is denoted by W.

The state of the system is defined by the variables (St, Rt, Yt, Xt), where St rep-

resents the state of the real estate market, Rt is the remediation remaining, Yt is the state

of the entitlement process, and Xt is the current regime. When the system is in the state
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(s, r, y, x) the net cash flow to the firm is f(y, x) where

f(y, x) =



0 if project has been sold, x = 1

−(CN + CE) if suspended and waiting for approval, x = 2, y = 0

−CN if suspended and entitlements approved, x = 2, y > 0

−(CH + CR + CE) if active and waiting for approval, x = 3, y = 0

−(CH + CR) if active and entitlements approved, x = 3, y > 0

.

Given the state (s, r, y, x) the cost of switching from the current regime x to ξ is denoted

by HR(s, r, y, x, ξ) where

HR(s, r, y, x, ξ) =


−ηpU(y)ε+ CHr if x > 1 and ξ = 1

∞ if x = 1 and ξ 6= 1

0 otherwise

,

and where U is defined in (2.2). This states that there are no fixed costs associated with

(re)starting and suspending remediation and that the lump sum payment received from

selling the property is ηpU(y)ε− CHr, consistent with the definition in (2.1). As with the

development stage, it is assumed that once the developer sells the property there exists an

infinite cost to reentering the project. Given the firm’s cash flow and switching costs the

expected discounted flow of profits to the developers at the onset of the stage and under

the policy w ∈ W is defined as

Fw(s, r, y, x) = E[
∫∞

0 e−ρtf(Yt, Xt)dt

−
∑∞

j=1 e
−ρτjHR(St, Rt, Yt, ξj−1, ξj)

∣∣∣S0 = s,R0 = r, Y0 = y,X0 = x],

where ρ is the risk adjusted discount rate and Xt = ξj if τj ≤ t < τj + 1. As was the case in

the development stage, it may be seen that when the firm has sold the project, x = 1, the

expected discounted profit flow is equal to zero, Fw(s, r, y, 1) = 0. The problem is then to

find for all (s, r, y, x) where x > 1 the value function for the development stage V R(s, r, y, x)

such that

V D(s, r, y, x) = sup
w∈W

Fw(s, r, y, x). (2.12)
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The absence of a fixed cost associated with switching between the suspension and active re-

mediation regimes implies that V R(s, r, y, 2) = V R(s, r, y, 3). Therefore in order to simplify

the notation we redefine the value function as V R(s, r, y) = V R(s, r, y, 2) = V R(s, r, y, 3).

Similar to the development value we define the value of the remediation and enti-

tlement stage as the solution to a set of variational inequalities. The system of conditions

differs from those of Section 2.3.1 due to the lack of a continuous control and the inclusion

of the regulatory process. The value function V R(s, r, y) will therefore satisfy the conditions

ρV R(s, r, y) ≥ f(y, 3)− ∂V R

∂r
+ LV R(s, r, y) +

1
λ

{
E
[
V R(s, r, ỹ)

]
− V R(s, r, y)

}
, (2.13)

ρV R(s, r, y) ≥ f(y, 2) + LV R(s, r, y) +
1
λ

{
E
[
V R(s, r, ỹ)

]
− V R(s, r, y)

}
, (2.14)

and

V R(s, r, y) ≥ ηpU(y)ε− CHr, (2.15)

where L is the differential generator as defined in (2.9) and ỹ represents the value of Yt after

approval has been received. Since this value is a random variable the expected change in the

value function from the entitlement process, 1
λ

{
E
[
V R(s, r, ỹ)

]
− V R(s, r, y)

}
, is defined in

terms of the expectation of the value function after approval. The distribution governing ỹ

is assumed to be discrete and therefore the expectation of the value function may be defined

as

E
[
V R(s, r, ỹ)

]
=

N∑
j=1

Pr(πj)V R(s, r, j). (2.16)

In the case where regulatory process has already concluded y > 0, we interpret ỹ as y so

that
1
λ

{
E
[
V R(s, r, ỹ)

]
− V R(s, r, y)

}
= 0.

One of the conditions in (2.13)-(2.15) must hold with equality. For each (s, r, y)

the optimal control policy for the firm will be determined by which condition holds as a

strict equality. If it is the case that (2.13) holds with strict equality then it is optimal at

(s, r, y) for the firm to actively remediate the site. However, if (2.14) were to hold with

strict equality instead, then it is optimal for the firm to suspend remediation. If it is (2.15)
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that holds with equality then the firm will sell off the project.

When the firm has completed remediation, r = 0, and if the regulation process

has been concluded, y > 0, then the developer will move on to the second stage of the

investment. Therefore the value function will be equal to that of the development stage,

such that

V R(s, 0, y) = V D(s, πyε), y > 0. (2.17)

In the case where the firm has completed remediation, r = 0, but has yet to

receive development entitlements, y = 0, the firm still has the ability to sell the project and

therefore the value will be the solution to an optimal stopping problem with an exogenous

shock (i.e. regulatory approval) that moves the project into the development stage. This

problem is similar to that of the remediation stage prior to regulatory approval except that

the firm only holds one option, and that is the ability to sell the property. As a result the

value V R(s, 0, 0) will be the solution to the variational inequality defined by

ρV R(s, 0, 0) ≥ −(CE + CN ) + LV R(s, 0, 0) +
1
λ

{
E
[
V D(s, πε)

]
− V R(s, 0, 0)

}
(2.18)

and

V R(s, 0, 0) ≥ ηpE[π]ε, (2.19)

where L is the differential generator in (2.9) and the expectation of the development value

with respect to the entitlement outcome is defined as

E
[
V D(s, πε)

]
=

N∑
j=1

Pr(πj)V D(s, πjε).

One of the conditions in (2.18)-(2.19) must hold with equality. If (2.19) holds with equality

than it is optimal for the developer to sell the project, otherwise the firm will continue to

wait for the regulatory decision.

The value function for the remediation and entitlement stage V R(s, r, y) is de-

fined by the variational inequality in (2.13)-(2.15) along with the boundary conditions in

(2.17)-(2.19). A closed form solution for the value function does not exist though a nu-
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merical approximation may be obtained through the use of finite difference and projection

techniques. In order obtain a more tractable problem we appeal to the fact that once the

regulation process has come to a conclusion the development entitlements are fixed for the

remainder of the project. Therefore the value of the remediation stage after the regulation

process has ended may be determined independently for each possible outcome. These val-

ues may then be employed in the computation of (2.13). For each of these N + 1 switching

models the dimensionality of the problem is further reduced by approximating the deriva-

tive of the value function with respect to the deterministic state variable Rt using a explicit

forward finite difference. At each time step the value functions are then approximated using

a projection method with collocation. Full details of the numerical method are included in

Appendix B.

2.4 Empirical Case Study

In order to test the valuation model presented and assess the impact of the regu-

lation procedure we consider an empirical case study using a site recently acquired by our

corporate partner. The property is a 402 acre parcel within the Houston / Sugar Land /

Baytown metropolitan statistical area (MSA) with a cost to the firm of $47,300,000. This

site was previously used for an industrial application which resulted in soil and groundwater

contamination. The primary source of contamination is the existence of petroleum hydro-

carbons in the soil, due to leaking underground storage tanks for fuel and oil. The extended

presence of the contaminants has resulted in groundwater pollution which requires exten-

sive remediation and monitoring. In addition lead and arsenic exist in the soil as a result

of a firing range and railroad previously located on the site. Also considered part of the

remediation process is the demolition of any structures that will not be redeveloped, thus

requiring the removal of an estimated 27,800 linear feet and 54,700 square feet of asbestos.

After remediation of the property the firm intends to construct primarily residential housing

on the site. This section proceeds by presenting the specifics of the investment, followed

by a discussion on the dynamics of real estate prices. We conclude the section with results

from the empirical case study.
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2.4.1 Parameter Calibration

Based on the extent of the environmental contamination in the soil and the volume

of asbestos it is estimated that the total cost of remediation to the firm will be $5,613,000.

The expectation is that the cleanup and demolition of the site will take two years. In order

to limit exposure to the risk associated with the contamination a $10 million insurance

policy for environmental and prospective liability will be purchased at a cost of $300,000.

Therefore the average annual negative cash flow associated with the remediation process is

estimated to be $2,956,500.

The firm expects that soft costs such as corporate management, marketing and

on-site overhead will total $15,192,446 over the life of the investment, which is assumed

to be six years. This results in an average soft cost flow of $2,532,074 per year while the

investment is in an active state. If the firm has suspended operations it is assumed that

it will only have to cover corporate management fees along with typical mothballing costs

such as on-site security. This is assumed to be 35% of the active soft costs or $886,225 per

year. There is assumed to be no difference in the soft costs between the remediation and

development stage.

During the initial stage of the investment the our corporate partner plans to request

entitlements to construct 867 residential units with an average floor plan of 3,000 square

feet for a total of 2,601,000 square feet of development. Conditional on prior information

regarding the local government the firm expects the entitlement process to last 6 months.

This corresponds to mean arrival time of 1/2 for the random variable governing the timing

of the regulation phase. The discrete distribution for outcome the entitlement process

has been parameterized by our corporate partner based on their previous experience and

initial discussions with the municipality. The 8 possible outcomes and the corresponding

probabilities are presented in Table 2.2. It is worth noting that there is a possibility for the

firm to be granted entitlements beyond what was applied for, π = 1.1. While engaged in

the regulation process the firm will face an average annual negative cash flow of $500,000

for management and legal fees.

Once in the development stage the firm faces an average construction cost of $92
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Table 2.2: Discrete Distribution for Entitlement Process Outcome
π Pr[π]
0 .02
.5 .04
.6 .07
.7 .10
.8 .20
.9 .40
1 .15
1.1 .02

per square of housing. This value includes the hard costs associated with the construction

of the residential housing along with non-reimbursable infrastructure expenses. The per

square foot sale price of development is proportional to the market price as defined by the

choice of θ. This continuous control dictates the development stage cash flow through the

per unit net income and the absorption rate. The piecewise linear function describing the

relationship between the relative price and the absorption rate, represents the most difficult

component to calibrate. After consulting with out corporate partner we set the maximum

construction rate to be 1,500,000 square feet per year. At a relative price of .75 it is assumed

that the market absorption would reach this maximum construction rate, and at a markup

of 1.25 demand for the firm’s housing would be equal to zero.

As previously discussed the firm holds the option to sell the undeveloped property

at any time during the life of the project. In doing so the developer collects a salvage

value that is directly proportional to the current market value of the remaining potential

development minus any remaining remediation costs. This proportion represents the part

of the price for developed property that may be attributed to the value of the land given

its entitlements. This particular property has been appraised at $47,300,000. Given the

definition of land value in (2.1) and the expectation of the entitlements from the distribution

in Table 2.2 it may be seen that the proportion of the developed value which may be

attributed to the land is 0.16.

A discount rate of 8% has been selected which remains consistent with previous

work in the area of real estate development. For reference the model parameters and their

values are presented in Table 2.1 along with a list of variable descriptions.
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2.4.2 Dynamics of Residential Real Estate Prices

Correctly specifying the dynamics of real estate prices is critical to obtaining an

accurate valuation of the brownfield regeneration project. The traditional one factor Ito

process considered in most real estate applications is limiting and tends to smooth out

information about potential uncertainty. For example consider the standard geometric

Brownian motion (GBM) process considered by Quigg [1995], Capozza and Li [2002], and

Paxson [2007] among others. This process assumes that absent of uncertainty the market

price will grow exponentially over time. With the addition of the diffusion component

the process becomes stochastic allowing for the price to deviate from the trend. However,

this assumption of GBM dynamics may be inadequate for describing housing prices that

traditionally exhibit short term deviations from the expected long-run growth rate. Such

movements are commonly described as housing “bubbles” or “booms” representing a short

term increase in prices above trend, typically followed by a sharp decrease in the value

[Case and Shiller, 2003]. In order to capture such dynamics we consider the two factor

stochastic process St = (Pt, µt)T , where Pt follows a continuous time random walk with

a stochastic mean reverting drift µt. The process represents the solution to the set of

stochastic differential equations

dPt = µtPtdt+ σPPtdW1 (2.20)

dµt = δ(µ̄− µt)dt+ σµdW2, (2.21)

where W1 and W2 are standard independent Brownian motions.12

In order to facilitate estimation of the parameters in the processes (2.20)-(2.21)

we consider the affine multivariate process S̃t = (ln(Pt), µt), where

d ln(Pt) =
(
µt −

1
2
σ2
P

)
dt+ σPdW1. (2.22)

12It was initially assumed that the Brownian motions would be correlated, though there was no statistical
evidence to suggest a significant correlation and therefore the the assumption of independence has been
applied.
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The affine nature of the process means that the conditional mean and variance are

E
[
S̃t+∆

∣∣∣S̃t ] =

 µ̄∆ + 1
δ (µ̄− µt)

(
e−δ∆ − 1

)
− 1

2σ
2
p∆ + ln(Pt)

e−δ∆ (µt − µ̄) + µ̄

 (2.23)

and

V ar
[
S̃t+∆

∣∣∣S̃t ] =

 σ2
p∆ + σ2

µ

δ3

[
e−δ∆

(
2− 1

2e
−δ∆)+ 2δ∆−3

2

] σ2
µ

2δ2

(
e−δ∆ − 1

)2
σ2
µ

2δ2

(
e−δ∆ − 1

)2 σ2
µ

2δ

(
1− e−2δ∆

)
 . (2.24)

We refer the reader to Appendix C for the derivation of the moments. The standard Kalman

filter is used to compute the log-likelihood for the system using the normal conditional

transition density and the mean and variance in (2.23)-(2.24). An optimization routine may

then be applied in order to find the set of parameters which maximize the log-likelihood.

The parameters are estimated using the Office of Federal Housing Enterprise Over-

sight (OFHEO) housing price index for the Houston / Sugar Land / Baytown MSA from

Q2 1976 to Q2 2007. We consider the data series only up to Q2 2007 as this was the

point in time when our corporate partner was considering an investment in this particular

project. There has been some debate as to the ability of indices maintained by the OFHEO

to predict dynamics for the price of new development. The main argument against the

use such indices is that they are created using preexisting home sales within urban centers,

when the primary location for new housing development is at the urban fringe. This is

not a concern within the context of this example as the brownfield in question lies in what

can be considered an urban center. The index is inflation adjusted to 2007 U.S. dollars

using the consumer price index from the Bureau of Labor Statistics. The estimates for the

parameters of the multi-factor price process are presented in Table 2.3 with the standard

errors in parenthesis.13

13The standard errors are computed using the diagonals of information matrix formed from the inverse of
the Hessian at the optimum as described by Hamilton [1994].
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Table 2.3: Parameter Estimates for the Housing Price Process
Parameter Estimate

δ 0.2705 (0.0698)
µ̄ -0.0047 (0.0003)
σP 0.0415 (0.0000)
σµ 0.0231 (0.0002)

2.4.3 Numerical Results

Provided with the parameters of the empirical case study we compute a numerical

approximation for the brownfield remediation and redevelopment project’s value using the

techniques detailed in Appendices A and B. The partial derivative of the value functions

with respect to the non-stochastic state variables, that is the remaining construction in

the development stage and the remediation remaining in the initial stage, are approximated

using a forward finite difference on a discrete grid. The number of points on the grid is fixed

at 100 for both approximations. The value at each of the discrete steps is approximated

as a piecewise linear function with 400 breakpoints in the P direction and 100 in the

direction of µ. The multidimensional function is represented as the tensor product of the

univariate versions such that at each step of the deterministic variable, and in the case

of the remediation stage given the state of the entitlement process, the value is defined by

40,000 approximating coefficients. Therefore, with eight possible outcomes for the regulation

process and the resolution of the discrete grid for the forward finite differences, the value of

the project is defined by over 36,000,000 unknown coefficients. The approximation covers

the state space where P ∈ [0, 300] and µ ∈ [−.25, .25].

Within the development stage the firm is considered to have to have control of a

discrete variable dictating the current status of the investment, in addition to a continuous

variable representing the relative price. The optimal management policy for these controls

will be dependent upon the state as determined by the market price, Pt, the market growth

rate, µt, and the development entitlements remaining, Kt. The optimal control policy for

the relative price, θ∗, will therefore be a function over the three dimensional state space.

Whereas the optimal policy with regards to the discrete control will be represented as a

partition of the three-dimensional state space. In order to analyze these controls we examine



35

cross sections of the optimal policies. We begin by considering the case where Kt = ε, which

would be the start of development stage when the firm receives all of the entitlements it

requested. The optimal control policy for this situation is presented in Figure 2.2. In this

plot the policy for the discrete choice variable defining the operating regime is defined by

the switching boundaries. The policy for the continuous control defining the price markup

is represented by a contour plot of the three dimensional function for θ∗. The choice to

suspend construction may be seen as determined by the relationship between the growth

rate of the real estate market and the firm’s discount rate. When the growth rate variable is

high, and in particular when it exceeds the discount rate, it is optimal for the firm to suspend

operations and allow the market price to increase. Due to the mean reverting nature of the

stochastic growth rate, it is expected to eventually decrease, at which point the firm will

resume operations in the event that the price is high enough. In the case of low prices, it

may be suboptimal for the firm to resume development even though the true growth rate

of the market price is below the discount rate. Here the firm will remain suspended and

monitor the market. If conditions improve enough, in terms of higher prices and possibly

higher growth rates, the firm may restart operations. However, if market conditions do

not improve but instead deteriorate, the firm will sell off the remainder of the project.

Interpretation of the optimal policy for the continuous control θ is straightforward. As the

growth rate decreases and becomes negative it is in the firm’s best interest to decrease the

sale to market price ratio in order to speed up the absorption of completed units, before

the market loses too much value.

As the firm is actively developing, the remaining entitlements will be decreasing at

a rate determined by the optimal sale price. While the state of Kt is declining the project’s

value will change to reflect this reduction in possible future construction. The developer’s

optimal control policy will also adjust. Figure 2.3 presents the evolution of the control

policy as the firm completes the project, for the case where the growth rate variable is

equal to 5 percent, µt = 0.05. This value of µ is chosen because at this point in the state

space there exists both a region for suspension and selling the project. At lower values of

µ there only exists a trigger value for selling off the remaining undeveloped property, as

eventually the the suspension region disappears as µ declines.
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Figure 2.2: Development Stage Optimal Control Policy, Kt Fixed

Optimal control policy for the case where the remaining stock of entitle-
ments equals the number requested, Kt = ε. The policy for the discrete
control variable is denoted by the switching boundaries and the policy for
the continuous control in the relative price is representing by a contour plot.
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Figure 2.3: Development Stage Optimal Control Policy, µ Fixed

Optimal control policy for the case where the market price growth rate
is µt = 0.05. The policy for the discrete control variable is denoted by
the switching boundaries and the policy for the continuous control in the
relative price is representing by a contour plot.
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As may be seen in Figure 2.3 the optimal policy for the relative price is generally

as expected, increasing as the remaining units the firm may supply decreases. However

when the project is near completion and the market price is relatively low, as compared to

the marginal cost of construction, it becomes optimal to slightly reduce the sale price in

order to increase the absorption rate. This behavior is an attempt to avoid suspending the

project when the there are only a small number of entitlements remaining. This is because

the costs associated with suspending the project begin to outweigh the benefits due to the

limited number of units the firm would be able to build once they resume operations. This

is why there exists a second contour for the relative price of 1.18. This behavior may be

seen in the suspension boundary as well. Near the end of the project, that is when almost

all entitlements have been used, we see that it is no longer as valuable to suspend the

investment as is represented by the decrease in the trigger price. In fact as the project gets

very close to completion it will never be optimal for the firm to suspend construction, even

with the absence of switching costs. The benefit associated with being able to sell the few

remaining units at a slightly higher price will not warrant the negative cash flow incurred

while suspended. Similarly, the benefit to the firm of suspending operations at relatively

low prices relative to the marginal cost of construction is also decreasing as the remaining

development entitlements decrease. Therefore, the trigger price for selling the remainder of

the project is increasing as Kt decreases.

Based on the optimal policy for the discrete and continuous control variables, a

cross section of the value for the development stage is presented in Figure 2.4, for the case

where the growth rate is equal to its long-run mean, µt = µ̄. The points within the Kt space

used for the cross section correspond to the possible outcomes of the entitlement process. In

other words, given µt = µ̄ and the market price, Pt, this represents the value of the option

to develop which the firm will receive upon completion of the remediation and entitlement

stage. The pronounced kink in the curves corresponds to the trigger price for selling the

project as presented in Figure 2.3. The development value of the remediated and entitled

site represents the driving force behind the value of the project in the initial stage and is

independent of any uncertainty in the regulation process. The value function at alternative

values of µ will have a similar shape, however the kink will be at a higher or lower price
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Figure 2.4: Development Value -V D

Development stage value at the possible outcomes of the entitlement process
given that the market growth rate is at its long-run mean, µt = µ̄.

depending upon the optimal switching boundaries when µ is below or above its long-run

mean.

Provided with the value of the development stage it is possible to approximate both

the value and optimal control policy for the remediation and entitlement stage. The initial

stage of the investment is defined in regards to four state variables representing the market

price, market growth rate, remediation remaining, and the status of the entitlement process.

In order to simplify the discussion we restrict ourselves to two dimensions by focusing on

the beginning of the project. This corresponds to the state in which remediation has not yet

begun, Rt = R̄, and the regulation process has not yet produced an outcome, Yt = 0. The

optimal control policy for this state is represented by the switching boundaries in Figure

2.5. These boundaries differ from those in the development stage in an intuitive manner.

Due to the lengthly nature of the remediation stage, it is no longer optimal to suspend

operations simply due to the presence of a high growth rate. Instead it is now optimal for
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Figure 2.5: Remediation Stage Optimal Control Policy

Optimal control policy at the beginning of the project when all remediation
remains, Rt = R̄, and entitlements have not been received, Yt = 0.

the firm to continue remediating the site while the market price rises from the high positive

growth rate. If when the firm enters the development stage the growth rate variable µ is still

relatively high compared to the discount rate, the firm may choose to suspend operations at

that time. Additionally, due to the significant amount of time needed for remediation and

the negative cash flow associated with the process, the boundary for selling the project now

resides at a set of points corresponding to better market conditions than in the development

stage. This is particularly evident in the case of of extremely low values of µ. Even at high

prices, the decrease in development value over the life of the remediation stage as a result

of the negative growth rate will make it optimal to sell the project. Based on the optimal

control policy for the firm the value of the project at the beginning of its life is presented

in Figure 2.6.

An important contribution of this paper is the inclusion of entitlement regulation

within the brownfield regeneration process. Ignoring the risk associated with this part
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Figure 2.6: Remediation Stage Value - V R

Value at the beginning of the project when all remediation remains, Rt = R̄,
and entitlements have not been received, Yt = 0.
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of the redevelopment process will lead to significant errors in valuing such investments.

Excluding the process and assuming that all entitlements requested would be granted prior

to development, that is π = 1 with a probability of one, would result in a significant

overvaluation of the project. At the outset of this particular project it was estimated that

Pt = 150 and µ = 0.0114. At this point in the state space ignoring the entitlement process

would result in an overvaluation of over 40 million dollars or 26% of the base case value.

This extreme error is a result of ignoring the uncertainty associated with the outcome

and length, and in turn cost of the regulatory procedure. For the example considered in

this paper, the distribution governing the outcome of the regulatory process has significant

downside risk as is evident from the expectation lying well below π = 1. Having local

governments downsize the purposed development is common in these types of projects.

Altering the assumption such that the developer will be able to construct units equivalent

to the expected entitlements, Kt = E[π]ε, will still result in a significant valuation error

of 1.07 million dollars or 1.1% of the base case value. This approach will partially include

the downside risk associated with the regulatory outcome, though it ignores the variance of

the distribution. Figure 2.7 presents the overvaluation that would occur from ignoring the

risk associated with the entitlement process and assuming the expected entitlements with

no delay.

The variance of the distribution governing the regulatory outcome is an important

property of the investment, as it has a significant impact of the project’s value. An under-

standing of this relationship is imperative as the outcome’s variability will differ markedly

across regions. According to our corporate partner, a common scenario in Europe and

certain communities in the United States (e.g. California) is one where the entitlement

outcome has two possibilities. Approval for the project as designed, with the potential for

small changes that may be considered negligible so that π = 1, or complete refusal for

rezoning and permitting such that π = 0. This distribution for the regulatory outcome may

be seen as an extreme in terms of the outcome’s variance relative to the base distribution

presented in Table 2.2. In order to maintain the same expected value the new distribution

is set such that the outcomes π = 0 and π = 1 are associated with the probabilities 0.176

and 0.824 respectively. With this increased uncertainty in the outcome of the entitlement
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Figure 2.7: Overvaluation in Millions Assuming Expected Entitlements and No Delay

Given that all remediation remains, Rt = R̄, the contours represent the
difference in value (in millions of dollars) between the base case with the
outcome distribution presented in Table 2.2 and λ = 0.5 and the case with
no entitlement uncertainty or regulatory delay. The * represents the point
where Pt = 150 and µ = 0.0114, which was estimated to be the current
point in the state space when the investment was being considered by our
corporate partner in Q3 2007.
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Figure 2.8: Value Change in Millions with All or Nothing Entitlements

Given that all remediation remains, Rt = R̄, the contours represent the
difference in value (in millions of dollars) between the base case with the
outcome distribution presented in Table 2.2 and the “all or nothing” case
with π ∈ 0, 1 with Pr(π = 0) = 0.176 and Pr(π = 1) = 0.824. The *
represents the point where Pt = 150 and µ = 0.0114, which was estimated
to be the current point in the state space when the investment was being
considered by our corporate partner in Q3 2007.

process the investment’s value is significantly decreased in states where it is optimal for the

firm to maintain ownership of the property under the base distribution. For the particular

case of Pt = 150 and µ = 0.0114 the increased uncertainty reduces the brownfields value by

over 2.8 million dollars or 2.81% percent of the base case value. The impact of the increased

variability across the entire state space is presented in Figure 2.8. This suggests that sites

within communities associated with “all or nothing” approval practices have a disadvantage

in attracting potential investors.

The other key parameter in the entitlement process is the expected length until

development approval. Previous work with greenfield development has found that the reg-

ulation lag has a significant impact on the decision of developers to engage in new housing
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construction [Mayer and Somerville, 2000a]. This effect may be attributed to the impact

that a lengthy entitlement process will have on the value of such real estate investments.

In the case of brownfields the firm must also undertake the time consuming task of remedi-

ation prior to the development phase. It is therefore the relationship between the length of

the processes that will determine the impact of the regulation. Since the actual time until

the firm receives development entitlements is a random variable, we examine the effect of

the expected length. For the base case the expected length of the regulatory process is 6

months, while the remediation process requires 2 years to complete. When µ = 0.0114,

Figure 2.9 presents the reduction in the project’s value when the expected length of the

entitlement process is extended to 1, 2, and 3 years. The shape of these curves is related to

the optimal control policy for the firm. At low levels of the price it is optimal for the firm to

sell off the project independent of the regulation process’ expected length, and therefore it

has no impact on the value. When the price is within the range where it is optimal for the

firm to remain suspended the expected lag length will have little effect on the value outside

the increased cost associated with the longer regulation procedure. However, when market

conditions are such that the firm will currently be actively remediating, or would do so with

a slight price increase, an escalation in the expected time until approval may have a signif-

icant impact on the project’s value. For the case where the expected time until approval is

increased from 6 months to 1 year the impact is relatively low, as this lag is still well below

the 2 years needed for remediation. It is worth noting that this decrease in the value is still

greater than the expected increase in costs associated with the longer entitlement procedure

due to the uncertainty in the process. As the expected length is increased the probability of

the process taking longer than the time needed for remediation increases. This is especially

significant when the market price is high enough that the firm is likely to complete the

remediation process without suspending, in order to begin the development stage as soon

as possible. When the expected length of the regulatory proceedings is increased to R̄ and

beyond, the probability of the process taking longer than remediation is high when the price

is high and therefore the value is seen to be lower. These results further illustrate that the

inclusion of the regulatory process is critical in accurately valuing redevelopment projects.

The temporal nature of the process along with its uncertainty result in a significant impact
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Figure 2.9: Effect of the Expected Length of the Entitlement Process

For the case where all remediation remains, Rt = R̄, and µ = 0.0114 the
lines represent the difference in value (in millions of dollars) between the base
case with λ = 0.5 and the various alternative values of λ. The vertical line
represents the point where Pt = 150 and µ = 0.0114, which was estimated
to be the current point in the state space when the investment was being
considered by our corporate partner in Q3 2007.

on the investment’s value.

Again we consider the particular state of the market surrounding this project at

its inception, where the price was $150 and µ was estimated to be 0.0114. This case is

represented in Figure 2.9 by the vertical line. As may be seen, the impact of increasing

the expected lag from 6 months to 1 year is relatively small though when the length of the

entitlement process becomes long compared to the time required for remediation the impact

may be substantial. These results may also be seen in the fact that the increase in value

from an expected length of 6 months to immediate notification of development entitlements

is relatively small. To be specific the increase in the value, $346,497, is only slightly greater

than the expected cost of undergoing the 6 month regulatory procedure, $250,000. The loss

in value beyond the expected negative cash flow from the lengthier regulatory procedure
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may be seen as a result of the uncertainty in the process. Though, for the case where the

expected lag goes from 6 months to 3 years the value decreases by $12,215,420 or 12.4% of

the base case value.

2.5 Concluding Remarks

This paper introduces the concept of a real options framework to value multistage

investments where movement between stages requires both endogenous actions in addition

to exogenous regulatory approval. The model is applied to the problem of valuing brownfield

remediation and redevelopment projects, in which obtaining the right to develop the site

requires not only the removal of environmental contamination but also entitlement approval.

Within this regulatory process both the outcome and the time until approval exist as factors

of uncertainty to the firm. We find through our case study that the expected length of

the regulatory process does not have a significant impact on brownfield value due to the

lengthy remediation process required to remove the environmental contamination. Though

the presence of uncertainty in the time required to obtain entitlements will have a negative

effect on the site’s value since it introduces a positive, though very minimal, probability that

the regulatory process will cause a delay in development. These results demonstrate that

traditional methods used to encourage site development such as “fast-track” approval may

not provide significant incentives for developers in the case of brownfields. Furthermore,

this example has broader implications which suggest that investment valuation models used

to assess the impact of public sector uncertainty, should be careful to consider the temporal

dynamics of both regulatory and investment procedures.

On the other hand we find evidence that the uncertainty associated with the

outcome of the entitlement process does in fact have a significant impact on the value of

brownfields. Therefore when comparing potential investments remediation firms will choose

sites within municipalities where they perceive there to be a lower variance in the regulatory

outcome, ceteris paribus. This suggests that communities with the reputation for greater

uncertainty in terms of approved entitlements, particularly those perceived to have “all or

nothing” approval processes, may be required to offer higher incentive packages to attract



48

investors. As seen with the case presented in Section 2.4 the impact of having a reputation

for “all or nothing” approval may be substantial.

This paper provides a significant update to the literature on valuing investments

in brownfields, not only through the introduction of the entitlement process but also with

the inclusion of more realistic dynamics for real estate markets. The traditional assumption

that prices follow GBM implies that the expected growth rate of the market price will be

constant over time, and therefore decisions may be made based solely on the current price

level. However, this result does not take into account developer expectations about short-

term movements in the real estate market that will fluctuate over time due to uncertainty

in the growth rate, a characteristic which should be considered by firms when making

decisions. Therefore we introduce a two-factor process for real estate price and growth

dynamics which captures such short term fluctuations. In turn our real options framework

provides a description of firm behavior which is defined over a state space that is more

representative of the market information that should be of concern to developers. As such

it provides a more attractive framework for the analysis of features such as the entitlement

process or incentive packages used to encourage redevelopment. The case study presented

suggests that ignoring the role of short term growth rates on developer’s decisions may lead

to serious errors in valuing brownfield regeneration investments.

With the current abundance of brownfields, the complexity of such investments,

and the multitude of benefits stemming from their redevelopment there exists both a need

and an opportunity for more research within the area of valuing brownfield remediation

projects. Firm’s operating on medium to large sites typically incorporate both residential

and commercial real estate development into such projects. This feature provides the po-

tential opportunity for municipalities to increase the attractiveness of particular sites by

offering flexible entitlements. Such entitlements allow the developer to alter the proportion

of residential and commercial real estate during the development stage. This type of incen-

tive for brownfield redevelopment is relatively new and its value has yet to be studied. The

real options model for redevelopment presented in this paper provides ideal framework for

the analysis of flexible entitlements in addition to other incentives.
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Chapter 3

Solving Optimal Switching or

Impulse Control Models Combined

with a Stochastic Control Using

Newton’s Method

The use of stochastic control modeling in economics and finance has grown substan-

tially over the last twenty years. The optimal switching framework has been of particular

importance due to its ability to describe the behavior of economic agents under uncertainty.

In this capacity it has been applied to a variety of problems ranging from firm investment

patterns, to optimal resource extraction, to the management of invasive species.1 In its

basic form the optimal switching framework considers an economic agent who is dynami-

cally choosing from a discrete set of operating environments, in an attempt to maximize a

particular objective function. The agent moves between the regimes in response to changes

in the state of nature, where the evolution is at least in part stochastic. We denote this

type of control over the current regime as a discrete control because it may only take on

one of countably many values.
1We refer the interested reader to Dixit and Pindyck [1994], Trigeorgis [1993b], and Schwartz and Tri-

georgis [2004] for collections of applications utilizing the optimal switching and other stochastic control
frameworks.
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In certain cases however, it is natural to view the agent as having not only this

type of discrete control, but also one or more continuous controls that may take on one of

an infinite number of values. An excellent example of this class of hybrid control models

is the application considered in the seminal paper of Brennan and Schwartz [1985]. They

analyze the case of optimal resource extraction in the form of a firm operating a mine under

an uncertain output price. The firm has a discrete control over the status of operations,

whether the mine is open or closed, in addition to continuous control in the rate of extrac-

tion. This type of combined optimal switching and stochastic control model for natural

resource management was extended by Lumley and Zervos [2001]. Other uses for such

hybrid controls include the behavior of firms in imperfect markets. Chapter 2 examines

the case of investments in brownfield remediation and redevelopment projects. During the

development phase the firm has the ability to adjust the sale price through a continuous

stochastic control but also holds a discrete control representing the options to suspend or

abandon the project.

A significant issue with the implementation of the combined optimal switching and

stochastic control framework in such applications is that the existence of the two control

types is almost enough to ensure that a closed form solution to the problem will not exist.

To date we unaware of any generalized numerical methods for solving this class of combined

optimal switching and stochastic control problems. Typical are the simplifications utilized

in Brennan and Schwartz [1985] and Lumley and Zervos [2001] where the continuous control

variable is either fixed or discretized, thereby returning the problem to one in which there

only exists the discrete control over the current operating regime. Such simplifications

have previously allowed for approximate solutions to such hybrid control models, though

at the cost of potentially serious errors in the project value and optimal control policies.

In this paper we present a new numerical method to solve the general class of combined

optimal switching and stochastic control problems. We rely on previous work to show that

for this class of hybrid stochastic optimal control models the value function is a viscosity

solution to the Hamilton-Jacobi-Bellman quasi-variational inequality, where the presence

of the continuous control variable implies that the inequalities are non-linear second order

partial differential equations with respect to the state variables. A numerical method is
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introduced that redefines the problem of approximating the value function and optimal

control policies as an extended vertical non-linear complementarity problem (EVNCP) that

may be solved using Newton’s method. We demonstrate this technique using the optimal

resource extraction application of Brennan and Schwartz [1985].

Closely related to the case of the combined optimal switching and stochastic control

model is that of the combined impulse and stochastic control model. Applications of this

framework include Oksendal and Sulem [2002] who consider the task of optimal portfolio

management in the presence of fixed transaction costs. They demonstrate that an economic

agent maximizing utility through control of consumption and their portfolio may be modeled

as a combined impulse control and stochastic control model. Similar portfolio management

applications have been considered by Zakamouline [2006], Chang [2007], and Ly Vath et al.

[2007]. The combined impulse and stochastic control framework has also been applied to

the problem of exchange rate management by Mundaca and Øksendal [1998] and Cadenillas

and Zapatero [2000], where the government is considered to have a continuous stochastic

control in the interest rate and an impulse control allowing them to intervene in the exchange

market through the purchase and sale of currency.

These combined impulse and stochastic control models have primarily been solved

using a distinct two step policy iteration procedure. The policy for the continuous control

is fixed and the value function and optimal impulse control are then evaluated; these are

then fixed and used to update the policy for the continuous control. This procedure is

iterated until there is convergence in the optimal control policy. More recently, Øksendal

and Sulem [2005] have demonstrated that the solution to a combined impulse and stochastic

control problem satisfies a Hamilton-Jacobi-Bellman quasi-variational inequality and as such

numerical methods should allow for the solution of the value function and control policies

in one step. We extend this work by showing that the quasi-variational inequality for

such problems may be redefined as an EVNCP similar to the approach taken in solving

the combined optimal switching and stochastic control case. The portfolio management

example of Oksendal and Sulem [2002] is used as an example to demonstrate the technique.

An alternative approach to solving combined impulse and stochastic control problems is to

redefine the problem as combined optimal switching and stochastic control problem using
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the method of Balikcioglu [2008]. This method is demonstrated using the exchange rate

control application of Cadenillas and Zapatero [2000].

The paper proceeds as follows: Section 3.1 defines the combined optimal switching

and stochastic control model and presents the main numerical method; Section 3.2 presents

an extension to the case of combined impulse and stochastic control models; Section 3.3

presents evidence of the procedure’s merits using examples from the literature; and Section

3.4 provides some concluding remarks.

3.1 Combined Stochastic Control and Optimal Switching

We consider an optimal switching model in which the principal agent will be

operating in one of m regimes. The current regime in time t is denoted by Zt where

Zt ∈ {z1, . . . , zm} =: Z.

The choice of the current regime will be denoted as a discrete control held by the agent as

it may only take on one of countably many values.

Along with the choice of regime the agent is assumed to have control over an

additional n continuous variables denoted by Xt ∈ Rn where S represents the set of state

variable. This continuous control will have an affect on the drift of the stochastic process

St, which describes the state of the environment for the agent. It is assumed that St ∈ Rd

is the solution to the time homogeneous2 stochastic differential equation

dSt = µ(St, Zt, Xt)dt+ σ(St, Zt)dW, (3.1)

where µ : Rd × Z × Rn → Rd is the drift function and σ : Rd × Z → Rd×d is the diffusion

function. To ensure the existence of a unique solution to (3.1) it is assumed that µ(·, z, x)
2The analysis in this paper assumes a time homogenous stochastic process for the state variables. How-

ever, the model may be extended by defining one of the state variables as time with a constant drift of one
and a diffusion of zero.
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and σ(·, z) are Lipschitz continuous and that

|µ(s, z, x)|2 + ||σ(s, z)||2 ≤ D(1 + |s|2)

for some constant D, where |·| and ||·|| are the vector and matrix norm respectively, therefore

ruling out explosive growth [Oksendal and Karsten, 1998]. Wt = W (t, ω); t ≥ 0, ω ∈ Ω is a d-

dimensional Brownian motion in the (Ω,F ,P) probability space with the filtration {Ft}t≥0.

In this paper we do explicitly incorporate the possibility of general Lévy processes, though

note that the method may be easily extended to handle the case of jump diffusions.

There exist p constraints on the continuous control, Xt, such that

g(St, Zt, Xt) ≤ 0. (3.2)

The control choice x is said to be admissible if (3.2) is satisfied, where the admissible set is

denoted as A(St, Zt) such that for a given state, St = s, and regime, Zt = z,

x ∈ A(s, z) = {x : g(s, z, x) ≤ 0}. (3.3)

A policy w for the discrete control variable may be described as the possibly finite

double sequence

w = (τ1, τ2, . . . , τk, . . . ; ζ1, ζ2, . . . , ζk, . . .),

where 0 ≤ τ1 ≤ τ2 ≤ . . . are stopping times with respect to the filtration {Ft}t≥0. Associated

with the stopping times are the changes to the discrete control ζk ∈ Z. In other words at

time τk the agent switches to the regime ζk. Therefore a policy for the combined continuous

and discrete control may be written as ν = (w, x). The combined policy ν is considered

to be admissible if (3.3) holds, ζk ∈ Z ∀k, and τk are stopping times, where the set of all

admissible combined controls is denoted as V .

The complete state of the system may be described by the stochastic process
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Yt ∈ Rd ×Z such that

Yt =

 St

Zt

 .

When an admissible control ν ∈ V is applied, the system has the form

Yt = Y ν
t =

 Sνt

ζk

 if τk ≤ t < τk+1,

where Sνt represents the dynamics for the states variables in St given the control policy ν.

When the system is in the state y = (s, z), with the continuous control policy

x ∈ A(s, z), the agent receives a flow of benefits f(s, z, x) where f : Rd × Z × Rn → R.

Given the state s the cost of switching from regime z to ζ is denoted by C(s, z, ζ) where

C : Rd × Z × Z → R. For completeness note that there is no cost to remaining in the

current regime, hence C(s, z, z) = 0. The expected discounted flow of benefits to the agent

at time zero under the policy ν may then be defined as

Jν(s, z) = E

∫ ∞
0

e−rtf(Sνt , Zt, Xt)dt−
∞∑
j=1

e−rτjC(Sτj , ζj−1, ζj)

∣∣∣∣∣∣S0 = s, Z0 = z)

 ,
where Zt = ζj if τj ≤ t < τj+1, ζ0 = z, and r is the discount rate. The problem is then to

find for all y = (s, z) the value function V (s, z) such that

V (s, z) = sup
ν∈V

Jν(s, z). (3.4)

Given the existence of an optimal combined control policy ν∗ = (w∗, x∗) the value function

may be defined as

V (s, z) = Jν
∗
(s, z).

As a natural extension of the work by Øksendal and Sulem [2005] on combined

impulse and stochastic control models and Brekke and Oksendal [1994] on switching models,

the conditions that define the value function, V (s, z), for the combined optimal switching
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and stochastic control model are

V (s, z) ≥ sup
ζ∈Z\{z}

[V (s, ζ)− C(s, z, ζ)] (3.5)

and

rV (s, z) ≥ sup
x∈A(s,z)

[f(s, z, x) + Lz,xV (s, z)] , (3.6)

where Lz,x is the differential generator

Lz,x =
d∑
i=1

µi(s, z, x)
∂

∂si
+

1
2

d∑
i=1

d∑
j=1

[
σ(s, z)σ(s, z)T

]
ij

∂2

∂si∂sj
, (3.7)

and either (3.5) or (3.6) must hold with equality. If (3.5) is the condition to hold with

equality then it will be optimal for the agent to switch regimes. The regime to which

they move will be determined by the supremum. On the other hand if (3.6) holds with

equality, then it is optimal to remain in the current regime. These conditions represent

a combination of the Hamilton-Jacobi-Bellman (HJB) equation for stochastic controls and

the quasi-variational inequality (QVI) for optimal switching problems, and therefore we

denote (3.5)-(3.6) as a HJBQVI following the similar work of Øksendal and Sulem [2005].

We assume that a solution for the optimal control policy x∗ exists within the

admissible set A(s, z). This solution will then satisfy the Karush-Kuhn-Tucker necessary

conditions

5xf(s, z, x∗) +
d∑
i=1

5xµj(s, z, x∗)
∂V (s, z)
∂sj

+
n∑
i=1

λi 5x gi(s, z, x∗) = 0, (3.8)

gi(s, z, x∗) ≤ 0 ∀i = 1, ..., p, (3.9)

λi ≥ 0 ∀i = 1, ..., p, (3.10)

and

λigi(s, z, x∗) = 0 ∀i = 1, ..., p. (3.11)

It may therefore be noted that the optimal continuous control, x∗, is a function of the state
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in addition to partial derivatives of the value function such that

x∗ = x∗
(
s, z,

∂V (s, z)
∂s

)
. (3.12)

Given the notation for the optimal continuous control in (3.12) the HJBQVI may

be rewritten as

V (s, z) ≥ sup
ζ∈Z\{z}

[V (s, ζ)− C(s, z, ζ)] (3.13)

and

rV (s, z) ≥ f(s, z, x∗) + Lz,x∗V (s, z). (3.14)

As before one of the conditions in (3.13)-(3.14) must hold with equality, which one deter-

mines the optimal policy for the discrete control, while the optimal policy for the continuous

control will be defined by (3.12).

3.1.1 Numerical Solution

A closed form solution for the value function defined by (3.13)-(3.14) does not gen-

erally exist though accurate numerical approximations may be obtained for most problems

through the use of projection methods. The value function is approximated as

V (s, z) ≈ φ(s)cz,

where φ represents a set of q basis functions for a family of approximating functions, and cz

is a q-dimensional vector of coefficients for the value associated with the zth regime. Given

this approximation the condition in (3.14) may be rewritten as

rφ(s)cz − f(s, z, x∗)− Lz,x∗φ(s)cz ≥ 0, (3.15)

Note that condition (3.15) is not linear in the coefficient vector cz due to the fact that the

optimal control policy definition in (3.12) includes the first derivative of the value function
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such that

x∗ = x∗
(
s, z,

∂φ

∂s1
cz, . . . ,

∂φ

∂sd
cz

)
.

The additional quasi-variational inequality condition in (3.13) may be rewritten as

min
ζ 6=z

[φ(s)(cz − cζ)− C(s, z, ζ)] ≥ 0. (3.16)

Since one of the conditions in (3.15) and (3.16) must hold with equality the problem may

be restated as

min
(
rφ(s)cz − f(s, z, x∗)− Lz,x∗φ(s)cz,min

ζ 6=z
[φ(s)(cz − cζ)− C(s, z, ζ)]

)
= 0. (3.17)

The goal here is to solve for the q×m unknown values of the coefficient vectors cz ∀z ∈ Z.

Collocation Solution

The problem of finding the coefficients that satisfy (3.17) for each of the m regimes

given a set of q nodal points may be described as an extended vertical non-linear comple-

mentarity problem (EVNCP) of the form

min (F1(c̃), F2(c̃), ..., Fm(c̃)) = 0, (3.18)

where the mq-dimensional vector c̃ represents the coefficient vectors, cz ∀z ∈ Z, stacked

vertically. Let Φ represent the set of basis functions evaluated at q nodal points, denoted

by s. Then the mq-dimensional functions Fi(c̃) derived from (3.17) are given by

Fi(c̃) = ei ⊗Hi(c̃) +
[
(Im − 1me

T
i )⊗ Φ

]
c̃+


C(s, 1, i)

· · ·

C(s,m, i)

 , (3.19)

where 1m is a column vector of m ones and ei is the ith column of the m × m identity

matrix, Im, and

Hi(c̃) = rΦci − f (s, i, x̂)− Li,x̂ci,
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where the matrix Lz,x is the differential generator Lz,x evaluated at the q nodal values s

and3

x̂ = x∗
(
s, i,

∂φ

∂s1
ci

∣∣∣∣
s

, . . . ,
∂φ

∂sd
ci

∣∣∣∣
s

)
. (3.20)

The min function in (3.18) represents a piecewise linear function that is not con-

tinuously differentiable, and therefore regular Newton-type methods may not be able to

determine the appropriate descent direction [Sun and Qi, 1999]. Therefore we can redefine

the EVNCP using a semi-smooth function with the same roots as the min function. This

may be accomplished through the application of an NCP-function γ : R2 → R where

γ(a, b) = 0⇐⇒ a, b ≥ 0, ab = 0.

The EVNCP in (3.18) requires an extension to Γ : Rm → R in order to accommodate the m

regimes in the model. This may be accomplished by iterating the NCP-function such that

Γi = γ(Γi−1, di),

where Γ1 = d1 and Γm = Γ(d1, d2, ..., dm).4 A well studied choice for the NCP-function is

γ(a, b) = a+ b−
√
a2 + b2, (3.21)

introduced by Fischer [1992] and commonly denoted as the Fischer-Burmeister function.

Using the iterated NCP-function the EVNCP in (3.18) is reformulated as

Γ[F1(c̃), F2(c̃), ..., Fm(c̃)] = 0. (3.22)

The system of nonlinear equations in (3.22) may then be used to compute the co-

efficients of the value function approximation through the use of a Newton based algorithm.

Given the semi-smooth property of the NCP-function, the Newton iteration will converge

to the solution c̃∗, where Γ[F1(c̃∗), F2(c̃∗), ..., Fm(c̃∗)] ≈ 0 [De Luca et al., 1996].
3We note that when finite difference methods are used to compute the derivatives of the basis functions

that Lz,x is has a slightly different interpretation than Lz,x evaluated at the q nodal values.
4The iteration may be performed in any order.
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3.1.2 Computing the Jacobian

The solution method laid out in Section 3.1.1 may be rewritten to allow for a more

computationally efficient implementation. Consider rewriting (3.19) as

Fi(c̃) = Mic̃+ li − Ui(c̃), (3.23)

where

Mi = eie
T
i ⊗

rΦ− 1
2

d∑
i=1

d∑
j=1

[
σ(s, z)σ(s, z)T

]
ij

∂2φ

∂si∂sj

∣∣∣∣
s

+ (Im − 1me
T
i )⊗ Φ, (3.24)

li =


C(s, 1, i)

· · ·

C(s,m, i)

 , (3.25)

and

Ui(c̃) = ei ⊗

{
f (s, i, x̂) +

d∑
i=1

µi(s, z, x̂)
∂φ(s)
∂si

ci

}
, (3.26)

where ∂φ(s)/∂si is a q-vector evaluated at the nodal points. By decomposing the function

into its linear and nonlinear components it is possible to reduce the computation time by

pre-computing Mi and li for every regime. Therefore during each iteration of the generalized

Newton method only the nonlinear component Ui must be recomputed.

This decomposition will also allow for a more efficient way to compute the Jaco-

bians of the EVNCP arguments, Fi(c̃). Based on the definition in (3.23) it may be seen

that
∂Fi(c̃)
∂c̃

= Mi +
∂Ui(c̃)
∂c̃

. (3.27)

Therefore in each iteration the computation of the Jacobian only requires computing the

derivative of the nonlinear component. As follows from the definition in (3.26)

∂Ui(c̃)
∂c̃

= ei⊗


∂f(s, i, x̂)

∂x
+

d∑
j=1

∂µi(s, i, x̂)
∂x

∂φ

∂si

∣∣∣∣
s

ci

 ∂x̂
∂c̃

+
d∑
j=1

µi(s, i, x̂)
∂φ

∂si

∣∣∣∣
s

 . (3.28)
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The first component on the right hand side will be equal to zero since for an interior solution

the first order condition in (3.8) will hold, and ∂x̂/c̃ = 0 otherwise. Therefore (3.28) reduces

to
∂Ui(c̃)
∂c̃

= ei ⊗

 d∑
j=1

µi(s, i, x̂)
∂φ

∂si

∣∣∣∣
s

 .
In addition to implementing the decomposition of Fi(c̃) one may increase the

performance of the algorithm by noting that Mi and ∂Ui(c̃)/∂c̃ are relatively sparse. This

is particularly true when standard finite difference methods are applied to approximate the

value function. By exploiting the sparsity of these components one is able to reduce the

memory requirements and reduce the computational burden associated with the linear solve

for determining the step direction in the generalized Newton algorithm.

3.1.3 Relationship to Policy Iteration

It is worth noting that the Newton based method introduced in this paper is

equivalent to a policy iteration algorithm, such as the one purposed by Øksendal and Sulem

[2005] to solve the class of combined impulse and stochastic control models. To show this

relationship we consider the kth step for the policy iteration algorithm. First the policy

for both the continuous and discrete variables are updated and then used to derive a linear

system Gk ĉk + lk = 0 that defines the updated approximating coefficients for the value

function. The optimal policy for the continuous control variable is updated using (3.20)

such that

xk = x∗
(
s, z,

∂φ

∂s1
ck−1
z

∣∣∣∣
s

, . . . ,
∂φ

∂sd
ck−1
z

∣∣∣∣
s

)
∀z ∈ Z. (3.29)

Subsequently the policy for the discrete control is updated using the HJBQVI in (3.18)

where

min
(
F1(ĉk−1), F2(ĉk−1), . . . , Fm(ĉk−1)

)
= 0,

where ĉk−1 represents the the m approximation coefficient vectors from step k − 1 stacked

vertically and Fi(·) is as defined in (3.19). If the ith component of minimization problem
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is the smallest for row j, then it will be the case that

(Gk)j· = (ei ⊗ (rΦ−∆i,xk) + [(Im − 1me
T
i )⊗ Φ])j·, (3.30)

and

(lk)j =

−ei ⊗ f(s, i, xk) +


C(s, 1, i)

· · ·

C(s,m, i)



j

. (3.31)

The approximating coefficients are then updated using the linear system Gk ĉk+ lk = 0 such

that

ĉk = −(Gk)−1lk. (3.32)

This process is repeated until there is convergence in the value function.

Now we consider the kth step of Newton’s method when using the min function

instead of the semi-smooth version derived from the Fischer-Burmeister function. Again the

first step is to compute the continuous control policy using (3.29), which is then substituted

into the HJBQVI. Then the residual from the HJBQVI is computed where the jth element

is equal to (Gk)j·ĉk−1 + (lk)j , where Gk and lk are defined as in (3.30) and (3.31) when the

ith element of the HJBQVI is the smallest. The Jacobian of the HJBQVI will be equal to

Gk for the reasons discussed in Section 3.1.2, and therefore the approximating coefficients

for the kth Newton iteration will be

ĉk = ĉk−1 − (Gk)−1(Gk ĉk−1 + lk)

= −(Gk)−1lk.

This represents the same update that is performed in policy iteration algorithm, in (3.32).

3.2 Combined Stochastic Control and Impulse Control

The same numerical technique laid out in Section 3.1 may be extended to the case

of combined stochastic control and impulse control models. In both cases a viscosity solution

is defined by a HJBQVI for which an approximate solution may be obtained by solving an
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EVNCP. There are however, distinct differences in the components of the EVNCPs due

to the differences between a switching and impulse control. While the previous case of

combined optimal switching and stochastic controls has not previously been addressed,

the problem of solving combined impulse and stochastic control problems has received

some attention. Most notable is the work by Øksendal and Sulem [2005], which defines

the HJBQVI for the combined control problem and suggests the use of finite difference

methods to approximate the value function. In this section we add to this line of research

by introducing the specifics of a numerical method for this class of hybrid control models. In

particular we demonstrate how numerical techniques similar to those presented in Section

3.1 may be used to define the problem of approximating a solution as an EVNCP that may

be solved using Newton’s method. We begin with a description of the framework and the

HJBQVI defining the value function and optimal control policy, followed by the setup of

the EVNCP for the combined impulse and stochastic control problem.

The state of the system will be defined by the stochastic process St ∈ Rd whose

dynamics in the absence of an impulse control are described by

dSt = µ(St, Xt)dt+ σ(St)dW, (3.33)

where µ : Rd × Rn → Rd is the drift function and σ : Rd → Rd×d is the diffusion function.

Again, to ensure the existence of a unique solution to (3.33) it is assumed that µ(·, x) and

σ(·) are Lipschitz continuous and that

|µ(s, x)|2 + ||σ(s)||2 ≤ D(1 + |s|2)

for some constant D, where |·| and ||·|| are the vector and matrix norm respectively, therefore

ruling out explosive growth [Oksendal and Karsten, 1998]. Wt = W (t, ω); t ≥ 0, ω ∈ Ω is

a d-dimensional Brownian Motion. The continuous control is represented by Xt and again

may be subject to a series of constraints There exist n constraints on the continuous control,

Xt, such that

g(St, Xt) ≤ 0. (3.34)
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The set of admissible controls A(s, z) ⊆ Rn is therefore defined by the conditions in (3.34).

In addition to the stochastic control the agent is assumed to have an additional

control over the state of the system, where at any time τ the agent is able to exert a control

over the state Sτ in the form of an impulse ξτ ∈ E ⊆ Rp such that

Sτ = S−τ + P (ξτ ),

where S−τ = limt↑τ St and P (ξτ ) : E → Rd. The set of admissible impulses E = E(s) ensures

that any constraints on the state of the system hold. When the agent exerts an impulse

control ξ given the state s they pay a cost of K(s, ξ) where K : Rd × E → R. A policy w

for the impulse control may be described as the possibly finite double sequence

w = (τ1, τ2, . . . , τk, . . . ; ξ1, ξ2, . . . , ξk, . . .),

where 0 ≤ τ1 ≤ τ2 ≤ . . . are stopping times with respect to the filtration {Ft}t≥0. Associated

with the stopping times are the impulse controls ξk ∈ E . In other words at time τk the

agent exerts the control ξk on the state of the system. Therefore a policy for the combined

stochastic and impulse control may be written as ν = (x,w). The combined policy ν is

considered to be admissible if (3.34) holds and ξi ∈ E(Sτi) ∀i. The set of all admissible

combined controls is denoted as V .

When the system is in the state s, with the continuous control policy x ∈ A(s, z),

the agent receives a flow of benefits f(s, x) where f : Rd×A(s, z)→ R. Given the discount

rate r the expected discounted flow of benefits to the agent at time zero under policy ν may

be defined as

Jν(s) = E

∫ ∞
0

e−rtf(Sνt , xt)dt−
∞∑
j=1

e−rτjK(S−τj , ξj)

∣∣∣∣∣∣S0 = s

 .
The objective of the agent is find the optimal control policy that will maximize the dis-
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counted flow of benefits, such that

V (s) = sup
ν∈V

Jν(s),

where V (s) is denoted as the value function. Given the existence of the optimal control

policy ν∗ = (x∗, w∗) the value function may be defined as

V (s) = Jν
∗
(s).

The solution to this optimization problem is defined by the HJBQVI

Vx(s) ≥MVx(s) (3.35)

and

rVx(s) ≥ sup
x∈A(s,z)

[f(s, x) + LxVx(s)] , (3.36)

where M is the intervention operator

Mh(s) = sup
ξ∈E\{0}

h [s+ P (ξ)]−K(s, ξ), (3.37)

and Lx is the differential generator for the combined stochastic and impulse control problem

Lx =
d∑
i=1

µi(s, x)
∂

∂si
+

1
2

d∑
i=1

d∑
j=1

[
σ(s)σ(s)T

]
ij

∂2

∂si∂sj
. (3.38)

Where one of the conditions in (3.35)-(3.36) must hold with equality. Which condition holds

with equality will again determine the optimal management policy for the agent. If (3.36)

holds with equality then it is optimal for the agent to refrain from exerting an impulse

control. However, if (3.35) holds with equality then the agent should exert an impulse

control, whose value will be determined by the intervention operator. Øksendal and Sulem

[2005] provides a proof that under mild conditions the value function is a viscosity solution

to the HJBQVI in (3.35)-(3.36).

We assume that a solution for the optimal control policy x∗ exists and is within the
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admissible set A(s, z). This solution will then satisfy the Karush-Kuhn-Tucker necessary

conditions such that

5xf(s, x∗) +
d∑
j=1

5xµi(s, x∗)
∂V (s)
∂sj

+
n∑
i=1

λi 5x gi(s, x∗) = 0, (3.39)

gi(s, x∗) ≤ 0 ∀i = 1, ..., n, (3.40)

λi ≥ 0 ∀i = 1, ..., n, (3.41)

and

λigi(s, x∗) = 0 ∀i = 1, ..., n. (3.42)

Once again it may be seen that the optimal control policy x∗ will be a function of not only

the current state but also the first partial derivatives of the value function, such that

x∗ = x∗
(
s,
∂V (s)
∂s

)
. (3.43)

The HJBQVI for the value function may then be rewritten as

V (s) ≥MV (s) (3.44)

and

rV (s) ≥ f(s, x∗) + Lx∗V (s), (3.45)

where one of the conditions must hold with equality, M is the intervention operator in

(3.37) and Lx is the differential generator in (3.38). It should be noted that dependence

of optimal control policy, x∗, on the value functions first partial derivatives means that the

differential generator in (3.45) will be a non-linear second order partial differential equation

of degree d.

3.2.1 Numerical Solution

In order to solve for the value function and the optimal control policy in the

combined stochastic and impulse control model we employ an approach similar to that
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presented in Section 3.1.1. Again the goal is to represent the value function in such a

manner that the quasi-variational inequalities may be restated as a EVNCP that may be

smoothed and solved using a Newton type method. Therefore we begin by approximating

the value function using a set of q basis functions from a family of approximating functions,

denoted as φ where

V (s) ≈ φ(s)c.

The q dimensional vector c represents the approximation coefficients. Given this approxi-

mation for the value function the condition in (3.45) may be rewritten as

rφ(s)c− f(s, x∗)− Lx∗φ(s)c ≥ 0. (3.46)

The optimal policy for the continuous control variable x∗ is defined by (3.43) using the

approximating function such that

x∗ = x∗
(
s,
∂φ

∂s1
c, . . . ,

∂φ

∂sd
c

)
.

The additional condition in (3.44) may be restated as

φ(s)c−Mφ(s)c ≥ 0. (3.47)

The approximation of the quasi-variational inequality in (3.46)-(3.47) may be

rewritten as

min
(
rφ(s)c− f(s, x∗)− Lx∗φ(s)c, φ(s)c−Mφ(s)c

)
= 0.

The goal is therefore to find the unknown vector of approximating coefficients c. This

may be accomplished by restating the problem as a EVNCP where the approximation is

evaluated at a set of q nodal points s. The complementarity problem is then defined as

min
(
rΦc− f(s, x∗)− Lx∗c,Φc−MΦc

)
= 0, (3.48)

where Φ represent the set of basis functions evaluated at the q nodal points and the inter-
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pretation of Lx
∗

is the same as in Section 3.1. The EVNCP in (3.48) may be restated as

a semi-smooth function using the Fischer-Burmeister function in (3.21). Newton’s method

may then be used to compute the vector of coefficients c.

Of particular concern when working with impulse control models is the intervention

operatorM. The computational efficiency of this or any other algorithm that solves impulse

control problems relies heavily on the efficient implementation of this optimization problem.

While it is possible to implement a true optimization algorithm to solve the maximization

problem associated with the intervention operator, this would be prohibitively costly since

it would need to be performed for each nodal point during each evaluation of the smoothed

EVNCP residual. An attractive alternative is to discretize the problem such that

Mφ(s)c = max
ξ∈X (s)

φ[s+ P (ξ)]c−K(s, ξ),

where X (s) is a discrete set of admissible interventions such that X (s) ⊆ E(s)\{0}. Com-

puting the intervention operator is then simply a search over the discrete set of impulse

controls for the maximum.

A natural way to select the discrete set X (s) is to consider the set of impulse

controls that would be admissible and would result in a new state that is also one of the

nodal points used in the approximation. A serious problem with this approach is that there

is no guarantee that the set of impulse controls associated with moving to another nodal

points will be within the admissible set. This is the case with the example considered in

Section 3.3.3, in which, for any nodal point on the discrete grid representing the state space,

the set of new states that would result from admissible controls may be represented as a

piecewise linear function with a discontinuity at the current state. For this specific example

it may be the case that this function does not intersect with any points on the discrete grid,

implying that X (s) = {}, which is clearly not the case. This scenario is presented in Figure

3.1. Noting that this problem may extend beyond this specific example we purpose that in

general the discrete set of admissible interventions, X (s), be explicitly selected as a discrete

subset of the admissible controls E(s)\{0}.

As an alternative, Balikcioglu [2008] presents a method of representing a subclass
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Figure 3.1: Admissible Set and Nodal Points

Depicts an example in which at the point S = (5, 5), denoted by *, the
admissible set, denoted by the solid line, does not intersect with any of the
nodes on the discrete grid, denoted by +. This example is adapted from the
problem considered in Section 3.3.3.
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of impulse control problems as optimal switching problems, therefore avoiding the need to

implement the intervention operator. In this case the problem of a combined stochastic

and impulse control model would fall back to a combined stochastic control and optimal

switching model which may be solved using the techniques from Section 3.1.

3.3 Examples

3.3.1 Optimal Resource Extraction

To examine these methods we consider the example of a firm operating a mine.

This example is similar to those presented in Brennan and Schwartz [1985] and Brekke and

Oksendal [1994]. The firm has control of a mine with Qt units of ore remaining at time

t and will operate the mine as to maximize the discounted flow of profits. When the ore

is extracted it may be sold at the market price, Pt, which is assumed to follow geometric

Brownian motion so that

dPt = αPtdt+ βPtdWt.

The firm is considered to have a continuous control in the choice of the proportional ex-

traction rate, ht, such that ht ∈ R+. The cost of operating the mine at the current rate,

K(ht), is assumed to be

K(ht) = k0 + k1h
2
t .

With k1 > 0 this definition implies a standard upward sloping marginal cost curve. As may

be noted, even at an extraction rate of zero, the firm will still incur some expenditures,

denoted by k0 > 0. These represent operating expenditures associated with keeping the

mine open. The firm is assumed to have the option to forgo these expenses by closing the

mine for a fixed cost of C21. Once closed the mine may be reopened by the firm at a cost

of C12. These two states, open or closed, represent the two possible regimes in the model

where

R =

 1 if the mine is closed

2 if the mine is open
.
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Given this description of the problem the dynamics of the mine’s ore may be described as

dQt =

 0 if R = 1

−htQtdt if R = 2
,

and the flow of rewards to the firm may be described as

f(Pt, ht, R) =

 0 if R = 1

htQtPt −K(ht) if R = 2
.

Once the firm chooses to open the mine they will operate at the optimal extraction

rate, h∗. From the variational inequality in (3.13)-(3.14) it may be shown that the firm will

suspend operation prior to choosing an extraction rate of zero if k0 − rC21 > 0, where r

is the discount rate. In other words, if the cost flow associated with remaining open and

not extracting is greater than the opportunity cost associated with closing the mine it will

never be optimal for the firm to set the extraction rate to zero. For the numerical example

considered this condition is met and therefore the optimal extraction rate will be an interior

solution such that

h∗ =
[Pt − VQ(Pt, Qt, R)]Qt

2k1
, (3.49)

where VQ is the partial derivative of the value function with respect to the ore remaining.

It should be noted that this holds only for the case where the firm is actively operating the

mine, R = 2, as when the mine is closed, R = 1, the extraction rate is zero by definition.

The parameter values used in this example are presented in Table 3.1. The family

of approximating functions used are piecewise linear with centered finite difference deriva-

tives in the interior of the state space and one sided second order finite difference derivatives

on the boundaries. We do not impose any constraints at these boundaries. We use 150

breakpoints for both state variable P and Q with a maximum value of $20 for P and 100

units of ore for Q. For both state variables the minimum value considered is 0. The problem

is then solved using a Newton algorithm with an Armijo line search for the step size, where

the convergence criteria for the residual is set to 1−8 in the L2 norm.5

5The algorithm is based on the one detailed in Chapter 2 of Kelley [2003].
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Table 3.1: Parameters for the Mine Example
Parameter Description Value
α Market price drift rate 0.01
β Market price diffusion rate 0.02
r Discount rate 0.04
k0 Fixed operating cost 3
k1 Extraction cost parameter 200
C12 Cost of opening the mine 5
C21 Cost of closing the mine 5

A contour plot for the value of the mine in the open regime, R = 2, is presented

in Figure 3.2. As anticipated the the value is increasing in both the market price and the

amount of ore remaining in the mine. Figure 3.3 presents the optimal switching boundaries.

The area of hysteresis between the two boundaries is due to the fixed cost of closing and

opening the mine. Simply put, at a given level of ore it is optimal for the firm to wait

until the price is far enough above the shutdown value before opening, in order to avoid

paying the fixed cost when there exists a high probability of the price returning to below

the shutdown value in the future.

When the mine is open the firm will extract the ore at the optimal rate as defined

by (3.49). Figure 3.4 presents both the switching boundary and the contour lines for the

optimal extraction rate. Below the switching boundary the optimal rate is zero due to the

fact that in this area the firm would choose to close the mine.

An alternative approach to solving models with combined discrete and continuous

controls, is to discretize the continuous control in order to utilize known methods of solving

optimal switching models. In the simplest form one might consider a two regime model. In

the first the mine is closed, and in the second the firm is extracting ore at a constant rate.

In order to better capture the value of the firm’s operating flexibility the practitioner may

choose to include additional regimes that represent operating the mine at different extraction

rates. For this example we consider three cases in which the continuous control has been

discretized. The first case represents the two regime model where the firm is extracting ore

at a rate of h = 0.3 when the mine is open. In the second case the firm is given greater

flexibility through the use of a four regime model with extraction rate possibilities defined

as h ∈ {0.2, 0.3, 0.4}. The third case provides for slightly greater flexibility with six regimes,
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where h ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.6 In all cases it is considered to be costless to move among

the regimes in which the mine is actively operating. In other words there is no fixed cost

associated with adjusting the extraction rate within the limited range of the control. As the

model grows and allows for more flexibility in the choice of extraction rate the result will

approach that of the case with the continuous control. However, as the number of regimes

within the model increases so will the computational burden.

As the firm gains more flexibility with respect to the extraction rate the overall

value of the mine will increase, reflecting the value of this control. Therefore, the models

with the discretized control will always undervalue the project compared to the approach

with the continuous control representing the case of full flexibility. To demonstrate this

characteristic we evaluate the value function in all four cases using a grid of nodes with 100

evenly spaced points in both the P and Q state spaces respectively. We measure how closely
6We note that even though it is not optimal to chose an extraction rate of 0.5 within the [0,100]x[0,100]

state space for the continuous control, it will be an optimal choice in the case of the discretized control for
a subset of the state space.
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the value of the discretized model with H choices of the extraction rate, V H(P,Q,R), ap-

proximates the value of the continuous control case, V C(P,Q,R) using the mean percentage

difference over a discrete grid of 100 points in each direction of the state space, such that

Mean Value Error =
1

100

100∑
k=1

100∑
l=1

V H(Pk, Ql, 2)− V C(Pk, Ql, 2)
V C(Pk, Ql, 2)

.

In all cases the value is computed using the second regime. For the cases with more than

one regime V H(P,Q, j) = V H(P,Q, i) ∀j, i ≥ 2 due to the fact that it is costless to switch

between these regimes.

The results for this experiment are presented in Table 3.2.7 It may be seen that

the model with the continuous control takes only slightly longer to solve than the model

with the fixed extraction rate. This is due to the fact that the existence of the continuous

control requires very little additional computation per iteration as discussed in Section 3.1.2.

One must only compute the optimal control policy for the extraction rate and subsequently

update the non-linear component of the EVNCP. However, the more complex hybrid frame-

work does take two additional Newton iteration, though this additional computational time

appears minor compared to the the fact that the model with the fixed extraction rate fails

completely in capturing the value of the firm’s ability to adjust the extraction rate. The

value of having flexibility in the extraction rate is evident by the high error when it is fixed.

Through the addition of extra regimes to approximate the continuous control one is able to

reduce the valuation error as seen by the decreasing norm. However, increasing the number

of regimes also increase increase the dimensionality of the complementarity problem defin-

ing the solution which results in a large computational burden. It may clearly be seen that

the additional time required by the non-linearity in the complementarity problem for the

case of the continuous control is relatively small compared to the addition of more regimes.

These results suggest that the numerical method presented in this paper will provide a

more accurate solution for the combined optimal switching and stochastic control model

than the case of a discretized continuous control. In addition solving the problem with the
7The runtime for the various models has been normalized to make comparison easier. We note that a

value of 100 is equivalent to approximately 21 seconds on an Intel Core Duo 2.0 Ghz processor with 2 GB
of RAM, running OS X 10.5.6 and MATLAB 2007a.
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Table 3.2: Continuous vs. Discrete Control of the Extraction Rate
Model Iterations Time Mean Value Error
Continuous Control 19 100.00 —
h = 0.3 17 75.33 -15.13%
h ∈ {0.2, 0.3, 0.4} 31 236.12 -3.82%
h ∈ {0.1, 0.2, 0.3, 0.4, 0.5} 53 618.07 -0.67%

continuous control may be quicker than the case of the discretized control.

3.3.2 Exchange Rate Control

In this section we consider the application presented in Cadenillas and Zapatero

[2000]. The model represents a central bank that seeks to maintain an exchange rate target

through the use of an interest rate control and interventions in the foreign exchange market.

This may be classified as a combined impulse and stochastic control problem, where the

interest rate represents the continuous control and the market intervention is the impulse

control. We transform this problem into a combined optimal switching and stochastic

control problem and solve for the value function and optimal control policies using the

method of Section 3.1.

The goal of the central bank is to maintain the target exchange rate ρ. The cost

of deviating from the target is represented by the function

f(Xt, ut) = (Xt − ρ)2 + ku2
t ,

where Xt is the market exchange rate, ut is the interest rate continuous control, and k is the

marginal cost parameter for the interest rate control. The exchange rate, Xt, is assumed to

follow a process that behaves like geometric Brownian motion when no controls are being

exerted, such that

dXt = (µXt −Kut) dt+ σXtdWt.

In addition to the continuous control, the central bank may intervene in the foreign exchange

markets directly in order to alter the exchange rate. Specifically, the central bank may exert
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an impulse ξ such that

Xτ = X−τ + ξ,

where X−τ is the value of the exchange rate just prior to the impulse. In the case where the

central bank pushes the exchange rate upwards they face a fixed intervention cost of C and

a marginal cost of c, such that the total cost of an impulse ξ > 0 is C + cξ. Alternatively, if

the impulse is designed to push the exchange rate downwards the fixed and marginal costs

are denoted by D and d respectively.

The goal of the central bank is determine the optimal control policy that minimizes

the expected discounted flow of costs associated with deviating from the target rate and

implementing the control policies such that

V (Xt) = sup
u,ν

E

∫ ∞
0
−e−λtf(Xt, ut)dt−

∞∑
j=1

e−λτjv(ξj)

 ,
where λ is the discount rate, ν is the policy for the impulse control

ν = (τ1, τ2, . . . , τn, . . . ; ξ1, ξ2, . . . , ξn, . . .),

and

v(ξ) =

 C + cξ if ξ > 0

D + dξ if ξ < 0
.

Following Section 3.2 the value function will satisfy the complementarity problem

min
(
λV (Xt)− f(Xt, u

∗)− Lu∗V (Xt), V (Xt)−MV (Xt)
)

= 0,

where L is the differential generator and M is the intervention operator

MV (Xt) = sup
ξ
V (Xt + ξ)− v(ξ),
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and u∗ is the optimal policy for the continuous control defined by

u∗ =
K

2k
V ′(Xt).

Extending the work of Balikcioglu [2008] to the combined impulse and stochastic

control case, we transform this problem into a combined optimal switching and stochastic

control problem with three regimes where

R =


1 No impulse is being exerted

2 The rate is being pushed upward

3 The rate is being pushed downward

where the value function, V (Xt, R), satisfies the complementarity problem

min (Q(Xt, u
∗), V (Xt, 1)− V (Xt, 2) + C, V (Xt, 1)− V (Xt, 3) +D) = 0, (3.50)

min
(
V (Xt, 2)− V (Xt, 1), c− V ′(Xt, 2)

)
= 0, (3.51)

min
(
V (Xt, 3)− V (Xt, 1), d+ V ′(Xt, 3),

)
= 0, (3.52)

where Q(Xt, u
∗) = λV (Xt, 1)−f(Xt, u

∗)−LV (Xt, 1). We refer the interested reader to the

work of Balikcioglu [2008] for an in depth discussion of the intuition behind this transfor-

mation.

The combined optimal switching and stochastic control problem in (3.50)-(3.52)

may easily be solved using the numerical method outlined in Section 3.1. In this example

we use the same parameter values as in Cadenillas and Zapatero [2000]; these are presented

in Table 3.3. The family of approximating functions used are piecewise linear with upwind

finite difference derivatives and 1000 breakpoints. In the Newton algorithm the convergence

criteria is set to 1−8.

The approximate value functions are presented in Figure 3.5. It will be the case

that at a trigger value of b = 1.936 it will be optimal for the central bank to exert a

downward impulse to the target value of β = 1.617. For the upward impulse the trigger
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Table 3.3: Parameters for the Exchange Rate Example
Parameter Description Value
µ Uncontrolled exchange rate drift parameter 0.1
σ Exchange rate diffusion parameter 0.3
λ Discount rate 0.06
ρ Exchange rate target 1.4
k Marginal cost parameter for continuous control 1
K Continuous control effectiveness −0.2

√
2

C Fixed cost of upward impulse 0.1672506173
c Marginal cost of upward impulse 0.8
D Fixed cost of downward impulse 0.015714985
d Marginal cost of downward impulse 1.2

value is a = 0.594 with an associated target value of α = 0.937. The optimal control for

the continuous interest rate control is presented in Figure 3.6.

3.3.3 Portfolio Management

This example of a combined stochastic and impulse control model focuses on the

portfolio management problem presented in Chancelier et al. [2002] and Oksendal and Sulem

[2002]. An investor holds two assets, a risk-less investment Xt that grows at rate r and a

risky investment Yt whose dynamics are described by geometric Brownian motion such that

dYt = αYtdt+ σYtdWt.

The investor may transfer the amount ξ from the risk-less asset to the risky asset for a

fixed cost k and a proportional cost λ. Therefore the total cost of exerting the impulse ξ is

k + λ |ξ|. The costs are taken from the account holding the risk-less asset so that exerting

the impulse ξ at time τ will therefore affect the state such that

Xτ = X−τ − ξ − k − λ |ξ|

and

Yτ = Y −τ + ξ.



79

0 0.5 1 1.5 2 2.5
−6.6

−6.4

−6.2

−6

−5.8

−5.6

−5.4

−5.2

−5

−4.8

a

b

α

β

X
t

V
(X

t)

 

 

V(X
t
,1)−Continuation

V(X
t
,2)−Upward Impulse

V(X
t
,3)−Downward Impulse
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A positive impulse ξ > 0 implies a purchase of the risky asset and a negative impulse

ξ < 0 represents a sale of the risky asset. An admissible impulse ensures that the state

variables must stay within the solvency region Xt ≥ 0 and Yt ≥ 0, therefore prohibiting

borrowing and selling short. The set of all admissible controls given the state (x, y) is

denoted by Ξ = Ξ(x, y). In terms of the notation from Section 3.2 the impulse control may

be described by

P (ξ) =

 −k − λ |ξ| − ξ
ξ

 (3.53)

and

K(St, ξ) = 0 ∀St ∈ R2
+, ξ ∈ Ξ,

where

St =

 Xt

Yt


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such that

Sτ = S−τ + P (ξτ ).

The utility Ut of the investor is described by,

U(ct) =
cγt
γ
,

where ct is the consumption rate. The investor’s consumption is withdrawn from the account

of the risk-less asset, so that the dynamics of Xt may be defined as

dXt = (rXt − ct)dt.

The choice of the consumption rate represents a continuous control for the investor. The

combined control policy (c, ν) is said to be admissible if 0 ≤ c ≤ cu8 and the state remains
8This constraint was imposed by Chancelier et al. [2002] for numerical reasons.
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in the solvency region, denoted by (c, ν) ∈ W. The objective of the investor is to select the

optimal policy for the both the impulse and stochastic control such that they maximize the

expected discounted utility,

V (x, y) = sup
(c,ν)∈W

E

[∫ ∞
0

e−δtU(ct)dt
∣∣∣∣X0 = x, Y0 = y

]
,

where δ represents the agent’s discount rate. As discussed in Section 3.2 the value function

representing the maximized expected discounted flow of benefits will satisfy the quasi-

variational inequalities in (3.44)-(3.45) where the optimal stochastic control is determined

by (3.43). In this case the optimal consumption choice will be

c∗ =
[
∂V (x, y)
∂x

] 1
γ−1

,

within the interior 0 ≤ c∗ ≤ cu.

As noted previously, the intervention operatorM in (3.44) presents a challenge in

terms of efficient implementation. Given the definition of the control’s impact on the state

variables in (3.53), the intervention operator may be interpreted as

MV (X,Y ) = max
ξ
V (X − k − λ |ξ| − ξ, Y + ξ),

subject to the solvency constraint that X and Y remain greater than or equal to zero.

Therefore the intervention operator is a simple line search for argmax ξ. This procedure

still represents a computationally costly process as the optimization problem needs to be

solved for every nodal point in the approximation each time the EVNCP is evaluated.

As discussed in Section 3.2 we reduce the complexity of the problem by discretizing the

intervention operator as

MV (X,Y ) ≈ max
(
ΦM (X,Y )c

)
, (3.54)

where c is the vector of approximating coefficients and ΦM (X,Y ) is the family of ap-

proximating functions evaluated at M uniformly space points on the line that defines the

admissible range for ξ. This basis matrix may be be pre-computed so that the intervention
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operator is reduced to a matrix multiplication operation and a simple maximum.

In order to solve the problem Chancelier et al. [2002] represent the combined

stochastic and impulse control as the limit of an iterative series of combined stochastic

control and optimal stopping problems. To solve the combined stochastic control and op-

timal stopping problem a policy iteration approach is combined with a finite difference

approximation scheme for the value function. This method provided a solution that was

computationally burdensome and numerically unstable. The technique presented in (3.2)

is able to solve this problem in an efficient and accurate manner.

In order to implement their solution Chancelier et al. [2002] assume zero Neumann

boundary conditions such that
∂V (L, Y )
∂X

= 0 (3.55)

and
∂V (X,L)

∂Y
= 0. (3.56)

where L represents the artificial boundary of the state space. As noted by Chancelier et al.

[2002] this limits the accuracy of their result to a subset of the state space [0, L]× [0, L]. In

an attempt to limit the influence of imposing such a condition at an artificial boundary, we

consider a transformation of variables mapping the true state space from [0,∞)× [0,∞) to

[0, 1]× [0, 1]. Letting v(x, y) = V (X,Y ) where

x =
X

a+X
,

and

y =
Y

a+ Y
,

where a is a constant. Given this transformation the quasi-variational inequality defining

the solution may be rewritten as

v(x, y) ≥Mv(x, y) (3.57)
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Table 3.4: Parameters for the Portfolio Management Example
Parameter Description Value
α Risky asset drift rate 0.11
σ Risky asset diffusion rate 0.3
r Risk-less asset interest rate 0.07
δ Discount rate 0.1
γ Utility function parameter 0.3
k Fixed transaction cost 0.05
λ Proportional transaction cost 0.1
cu Maximum consumption rate 100

and

δv(x, y) ≥ cγ

γ
+
[
rx(1− x)− c(1− x)2

a

]
∂v

∂x
+ (µ− σ2y)y(1− y)

∂v

∂y
+

1
2
σ2y2(1− y)2∂

2v

∂y2
.

(3.58)

The parameters used in this example are the same as Chancelier et al. [2002] and

are presented in Table 3.4. The family of approximating functions used are piecewise linear

with 200 breakpoints in both directions of the x and y state space. We use centered finite

difference methods in the interior of the state space and single sided finite difference methods

on the boundaries. The transformation parameter a is set to 100. In the Newton algorithm

the convergence criteria for the L2 norm of the residual is set to 1−8. In evaluating the

approximation of the intervention operator as described in (3.54) a value of M = 300 is

used for each (x, y) node.

The optimal policy for the impulse control is presented in Figure 3.7. When in

the “no transaction” region the investor should allow the state of the system to evolve

uncontrolled until it hits one of the trigger boundaries. At this point it is optimal for the

investor to exert an impulse that moves the state to the optimal target. In the case were

the investor is initially outside the “no transaction” region at t = 0 it is optimal for to

immediately move the state to within the region. As may be noted the transformation of

variables allows the solution to be valid over the entire space [0, 100] × [0, 100] unlike the

results presented in Chancelier et al. [2002], which are suggested to be valid only over a

subset such as [0, 50]× [0, 50].

The value function is presented in Figure 3.8 and the optimal consumption rate is
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Figure 3.7: Impulse Control Boundaries for Portfolio Management Example

presented in Figure 3.9. We note that value of consumption is equal to zero when X = 0,

due to the fact that strictly positive consumption requires the value of X to decrease while

the solvency constraint prevents X from being negative. However, if the stock of the risky

asset is greater than zero than it will be optimal for the agent to sell a portion of stock

returning them to a part of the state space where consumption is greater than zero. It also

worth noting that this situation would only occur if the agent were to start at this point in

the state space, as the optimal policy for the impulse control would ensure that portfolio

does not reach this point.

3.4 Concluding Remarks

With the growing interest in complex stochastic optimal control models that bet-

ter accommodate reality, comes a need for efficient and accurate numerical solutions to such

problems. This paper presents such a framework for the class of problems that combine opti-
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mal switching models with additional stochastic controls. The techniques discussed provide

an attractive method of solving small to medium scale problems. As is the issue with multi-

dimensional projection methods in general, the procedure suffers from the common curse of

dimensionality. However, the techniques we present may be combined with other techniques

for reducing the complexity of the quasi-variational inequalities such as transformation for

variables and explicit finite differences methods for deterministic state variables.9 Despite

this shortcoming, the methods discussed are capable of handling the models currently being

presented within the literature and can deal with additional complexity as is the case with

the application in Chapter 2.

Based on the examples considered we find that there is a significant error associated

with discretizing continuous controls in order to reduce the problem to that of only one class

of control variable. To represent accurate approximations to the continuous control such

techniques would require a level of discretization that produces a problem which is much

more computationally burdensome than that with the continuous control. In fact, in the

included resource extraction example the time required to compute the solution for the case

with the continuous control was only slightly greater than that of a two regime switching

model where the continuous control was held at a fixed value. We also find that combined

impulse and stochastic control problems may easily be handled by either the direct EVNCP

representation of the quasi-variational inequalities or through converting the problem to a

combined optimal switching and stochastic control problem.

9See Chapter 2 for an example of handling a deterministic stock variable and Brekke and Oksendal [1994]
for an example of variable transformations that reduces a problem’s dimensionality.
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Chapter 4

Efficient Estimation of One Factor

Diffusion Models with Multivariate

Gauss Hermite Quadrature

Continuous time Ito processes provide a convenient approach to modeling the

dynamics of stochastic state variables and have therefore become increasingly popular in

finance and economics. It is common to describe such a process by its stochastic differential

equation (SDE) of the form

dXt = a(Xt, θ)dt+ b(Xt, θ)dWt, (4.1)

where X(t0) = X0, W is a standard Brownian motion, and θ ∈ Θ ⊂ Rp. This paper focuses

on univariate time homogenous processes where the drift and diffusion functions, a(Xt, θ)

and b(Xt, θ), are known except for a vector of parameters θ.1 The estimation of these

unknown parameters, θ, proves to be a nontrivial problem for many applications due the

discrete nature of data observations and a lack of known conditional transition densities.

Given the wide use of SDEs a lot of effort has been put in to developing methods that

provide an efficient estimate for θ using discrete observations. With much of this research
1Though the explicit focus of this paper is on univariate time homogenous processes the approach devel-

oped may be expanded to the multivariate and time heterogenous cases with some work.
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there exists a trade off between computational accuracy and efficiency, in addition to ease

of implementation. This paper presents a new estimation technique that provides accuracy

with a computationally efficient algorithm that is relatively simply to apply.

The ideal estimator for the unknown parameter vector θ, is of course, the maximum

likelihood estimate (MLE), such that

θ̂ = arg max
T−1∑
t=1

ln [f(Xt+∆;Xt, θ)] ,

where ∆ is the time step and f(Xt+∆;Xt, θ) is the conditional transition density for the

process. However, the explicit conditional transition density is only known for a small

number of specific processes. As a result much of the research on estimating θ has been

focused on deriving efficient approximations for the conditional transition density.

The most common approach is to assume that the conditional transition density

is Gaussian such that

Xt+∆|Xt ∼ N
[
µ(Xt, θ,∆), σ2(Xt, θ,∆)

]
.

where the moments are computed using a discrete approximation to (4.1). The simplest

form of this discretization is the first order (Euler) approximation where

Xt+∆ = Xt + a(Xt, θ)∆ + b(Xt, θ)
√

∆ε, (4.2)

and ε ∼ N(0, 1). Florens-Zmirou [1989] has shown that under mild conditions the quasi

maximum likelihood estimate (QMLE), obtained with the first order Euler approximation,

will converge to the true MLE as the sampling interval goes to zero. However for common

frequencies found in economics, such as weekly and monthly, experiments have shown that

such estimates will exhibit significant bias (see e.g. Ait-Sahalia [1999], Durham and Gallant

[2002]). Alternative approaches to compute the moments of the Gaussian transition density

have fared better in tests. Shoji and Ozaki [1998] present a linearization of the SDE resulting

in an Ornstein-Uhlenbeck process that has a Gaussian transition density for which the true

moments are known. Kessler [1997] uses a higher order Ito-Taylor expansion of the SDE in
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order to approximate the moments for the Gaussian conditional transition density.

The trouble with methods based on a discrete approximation of (4.1) is that they

all require the sampling interval to go to zero in order to obtain convergence to the true

conditional transition density. As an alternative the forward Kolmogorov (Fokker-Planck)

partial differential equation, which is satisfied by the transition density, may be numerically

solved for an approximation of the true density (see e.g. Lo [1988]). The method of Ait-

Sahalia [2002] and Bakshi and Ju [2005] introduces a closed form approximation of the

conditional transition density based on an Ito-Taylor Hermite expansion around a Gaussian

density. Though this technique still requires the sampling interval to approach zero for finite

expansions the approximation may made arbitrarily close to the true transition density

through the inclusion of additional correction terms.

Though attractive due to a lack of reliance on small sampling intervals, such meth-

ods are uncommon amongst practitioners due to either poor numerical accuracy or diffi-

culty of implementation. As a result, research on the use of discrete approximations has

persisted, primarily in the form of the simulated maximum likelihood estimate (SMLE).

First introduced by Pedersen [1995] the technique incorporates points between each pair of

observations and then integrates out the unknown states (see also Brandt and Santa-Clara

[2002]). Noting that the first order discrete approximation in (4.2) will only be accurate

for small time steps the SMLE method incorporates sub-intervals between the points t and

t + ∆, where t = τ0 < τ1 < ... < τI = t + ∆. The number of sub-intervals, I, is chosen so

that the Gaussian assumption for the conditional transition density will be accurate for the

smaller time step ∆/I. However, the points X(τ1), ..., X(τI−1) will be unobserved. Fortu-

nately the Markovian nature of the process allows these observations to be integrated out

through an application of the Chapman-Kolmogorov equation, such that

f (I)(Xt;Xt+∆, θ) =
∫ I−1∏

i=0

f(zi+1; zi, θ)dλ(z1, ..., zI−1), (4.3)

where λ is the Lebesgue measure, z0 = Xt and zI = Xt+∆. As the name suggests, the

SMLE approach performs the integration using Monte Carlo simulations. Pedersen [1995]

shows that under mild conditions the approximation f(Xt;Xt+∆, θ) ≈ f (I)(Xt;Xt+∆, θ) will



90

converge as I becomes large.

The original version of the SMLE method was attractive because the technique is

easily applied to any process with an explicit SDE. However, the method is computationally

costly as it requires a large number of sample paths generated over a large number of sub-

intervals for each pair of observations. Furthermore even with a high value for I and a large

number of sample paths the method is not as computationally accurate as alternative ap-

proaches. Durham and Gallant [2002] provided a substantial update to the SMLE technique

by utilizing moments derived from higher order approximations such as those introduced

by Shoji and Ozaki [1998] and Kessler [1997], in order to improve the approximation of

the sub-densities. In addition they incorporated techniques from the Markov Chain Monte

Carlo (MCMC) methods of Eraker [2001], Jones [1999], and Elerian et al. [2001], to improve

the numerical integration of (4.3).2 As a result of these improvements they are able to in-

crease the accuracy of the SMLE. However, the SMLE approach is still computationally

burdensome due to the choice of Monte Carlo integration and the relatively large number

of sub-intervals required to obtain an accurate approximation of the conditional transition

density.

We purpose an alternative method based on the approximation of (4.3), in which

the unobserved states are integrated out using multivariate Gauss Hermite quadrature as

opposed to Monte Carlo simulation. The benefit of numerical quadrature over Monte Carlo

integration is that for low to moderate values of I the integral may be computed to an

arbitrary level of accuracy in a significantly shorter period of time. This provides the op-

portunity to compute approximations of the conditional transition density for multiple time

steps which may then be combined using Richardson extrapolation in order to further im-

prove the approximation. Given the accuracy of the numerical integration and the benefits

of Richardson extrapolation we are able to achieve the same computational accuracy as the

updated SMLE using only a one dimensional integral as opposed to the fifteen dimensional

integral required in the SMLE. The method therefore provides a significant improvement

in computational efficiency without any loss of accuracy.
2We refer the reader to Hurn et al. [2007] for an overview of such likelihood based estimation techniques,

in addition to non-likelihood based estimation methods for SDEs.
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The approximation for the conditional transition density presented in (4.3) is as-

sociated with three sources of error in its computation. The first two stem from the ap-

proximation of the density and its conditional moments when computing the sub-density.

Whereas the third source of error arises in the numerical integration used in computing

the Chapman-Kolmogorov equation. The paper proceeds by first discussing methods of re-

ducing the error associated with computing the sub-density in Section 4.1, followed by the

presentation in Section 4.2 of an accurate method for integrating out the sub-intervals. In

Section 4.3 we examine a number of experiments to test the accuracy of the new estimator

and in Section 4.4 we provide concluding remarks.

4.1 Approximating the Sub-Density

The approximation for the conditional transition density presented in (4.3) still

requires a transition density to be defined for the subintervals. For this purpose it is possible

to utilize the first order Euler approximation in (4.2) such that the density for an observation

at time t+ ∆, given the information at time t, is assumed to be Gaussian, where

f(Xt+∆;Xt, θ) =
1

σ(Xt, θ,∆)
√

2π
exp

{
− [Xt+∆ − µ(Xt, θ,∆)]2

2σ2(Xt, θ,∆)

}
,

where the mean, µ(Xt, θ,∆), and variance, σ2(Xt, θ,∆), are defined as

µ(Xt, θ,∆) = Xt + a(Xt, θ)∆,

and

σ2(Xt, θ,∆) = b2(Xt, θ)∆.

As shown by Florens-Zmirou [1989] this approximation will converge to the true condi-

tional transition density as ∆ approaches zero. It is worth noting that the error of this

approximation will be of order ∆ (see Bally and Talay [1995]). Therefore in theory this

approximation for the sub-densities will be accurate if the number of sub-intervals, I, is

large enough so that the step size is made sufficiently small. However in practice the step
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size required for the Euler method to provide an accurate approximation of the conditional

transition density would requires a relatively high number of sub-intervals to be included.

As a result (4.3) includes a high dimensional integral that must be solved for each pair of

observations. Therefore there exists a benefit to considering more accurate approximations

for the conditional transition density, such that an integral of a lower dimension may be

used.

This section presents a set of three methods for increasing the accuracy of the

sub-density approximation while maintaining the assumption that the conditional transi-

tion density will be Gaussian. The first technique involves transforming the data so that

it appears more Gaussian. The second two methods provide improvements in the approx-

imation of the conditional transition density by utilizing second order approximations of

the SDE including a second order Milstein approach and the local linearization method of

Shoji and Ozaki [1998].

4.1.1 Euler with Constant Diffusion

There is evidence to suggest that transforming the SDE to a process with a con-

stant diffusion term will reduce the error associated with the approximation (see Bally and

Talay [1995]), as the conditional transition density for a constant diffusion process is more

Gaussian in nature. To obtain a unit diffusion process consider the transformation

Yt ≡ γ(Xt, θ) =
∫ Xt

b−1(u, θ)du. (4.4)

The process governing the dynamics of Y may be obtained via Ito’s lemma and will have

the general form

dYt = α(Yt, θ)dt+ βdWt, (4.5)

where β = 1 for the transformation in (4.4).3 Under this transformation the Euler first order

approximation for the first two moments of the Gaussian conditional transition density,
3We include β as a reminder that it is not required that the diffusion be equal to one as is the case with

the transformation in (4.4). In fact from a computational standpoint transformations that do not explicitly
depend on the parameters θ yet produce a constant diffusion process will be preferred.
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f(Yt+∆;Yt, θ) are

µ(Yt, θ,∆) = Yt + α(Yt, θ)∆,

and

σ2(Yt, θ,∆) = β2∆.

The conditional transition density approximation using the Euler method for the constant

diffusion SDE will provide an improvement in the accuracy of the approximation, though

it will remain of order ∆.

4.1.2 Second Order Milstein Approximation

To examine the possibility of higher order approximations for the sub-density we

turn to the second order Milstein approximation for the non-constant diffusion SDE in

(4.1).4 The SDE may be rewritten in integral form as

Xt+∆ = Xt +
∫ ∆

0
a(Xt+τ , θ)dτ +

∫ ∆

0
b(Xt+τ , θ)dWt+τ . (4.6)

The Milstein approximation utilizes the fact that (4.6) may be expressed as

Xt+∆ = Xt +
∫ ∆

0

[
a(Xt, θ) +

∫ τ

0
da(Xt+s, θ)

]
dτ +

∫ ∆

0

[
b(Xt, θ) +

∫ τ

0
db(Xt+s, θ)

]
dWt+τ .

(4.7)

Applying Ito’s lemma to the drift and diffusion functions of (4.1) results in

dat(Xt, θ) =
[
a′(Xt, θ)a(Xt, θ) +

b2(Xt, θ)a′′(Xt, θ)
2

]
dt+ a′(Xt, θ)b(Xt, θ)dWt, (4.8)

and

dbt(Xt, θ) =
[
b′(Xt, θ)a(Xt, θ) +

b2(Xt, θ)b′′(Xt, θ)
2

]
dt+ b′(Xt, θ)b(Xt, θ)dWt.

4For a detailed discussion of higher oder SDE approximations we refer the interested reader to Kloeden
and Platen [1992].
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Given these dynamics for the drift and diffusion functions and holding X constant at Xt

will yield

∫ ∆

0
da(Xt+τ , θ) ≈

[
a′(Xt, θ)a(Xt, θ) +

1
2
b2(Xt, θ)a′′(Xt, θ)

]
∆+a′(Xt, θ)b(Xt, θ)(Wt+τ−Wt),

(4.9)

and

∫ ∆

0
db(Xt+τ , θ) ≈

[
b′(Xt, θ)a(Xt, θ) +

1
2
b2(Xt, θ)b′′(Xt, θ)

]
∆+b′(Xt, θ)b(Xt, θ)(Wt+τ−Wt).

(4.10)

Substituting (4.9) and (4.10) into (4.7) yields

Xt+∆ ≈ Xt + a(Xt, θ)∆ + 1
2

[
a′(Xt, θ)a(Xt, θ) + 1

2b
2(Xt, θ)a′′(Xt, θ)

]
∆2

+a′(Xt, θ)b(Xt, θ)
∫ ∆

0 (Wt+τ −Wt)dτ + b(Xt, θ)
∫ ∆

0 dWt+τ

+
[
b′(Xt, θ)a(Xt, θ) + 1

2b
2(Xt, θ)b′′(Xt, θ)

] ∫ ∆
0 τdWt+τ

+b′(Xt, θ)b(Xt, θ)
∫ ∆

0 (Wt+τ −Wt)dWt+τ .

(4.11)

Noting that ∫ ∆

0
dWt+τ ≈ (Wt+∆ −Wt),

∫ ∆

0
(Wt+τ −Wt)dWt+τ =

1
2
[
(Wt+∆ −Wt)2 −∆

]
,

and ∫ ∆

0
(Wt+τ −Wt)dτ =

∫ ∆

0
τdWt+τ = Zt+∆ − Zt,

where Zt+∆ ∼ N(Zt,∆3/3), (4.11) may be rewritten as

Xt+∆ ≈ Xt + a(Xt, θ)∆ + 1
2

[
a′(Xt, θ)a(Xt, θ) + 1

2b
2(Xt, θ)a′′(Xt, θ)

]
∆2

+a′(Xt, θ)b(Xt, θ)(Zt+∆ − Zt) + 1
2b
′(Xt, θ)b(Xt, θ)

[
(Wt+∆ −Wt)2 −∆

]
+
[
b′(Xt, θ)a(Xt, θ) + 1

2b
2(Xt, θ)b′′(Xt, θ)

]
[∆(Wt+∆ −Wt)− (Zt+∆ − Zt)]

+b(Xt, θ)(Wt+∆ −Wt).
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Given that the Cov(Wt+∆, Zt+∆|Wt, Zt) = ∆2/2, we can replace the random variable Zt+∆−

Zt with ∆/2(Wt+∆ −Wt) + W̃t where W̃t ∼ N(0,∆3/12), such that

Xt+∆ ≈ Xt + a(Xt, θ)∆ + 1
2

[
a′(Xt, θ)a(Xt, θ) + 1

2b
2(Xt, θ)a′′(Xt, θ)

]
∆2

+∆
2

[
a′(Xt, θ)b(Xt, θ) + b′(Xt, θ)a(Xt, θ) + 1

2b
2(Xt, θ)b′′(Xt, θ)

]
(Wt+∆ −Wt)

+
[
a′(Xt, θ)b(Xt, θ)− b′(Xt, θ)a(Xt, θ)− 1

2b
2(Xt, θ)b′′(Xt, θ)

]
W̃t

+1
2b
′(Xt, θ)b(Xt, θ)

[
(Wt+∆ −Wt)2 −∆

]
+ b(Xt, θ)(Wt+∆ −Wt).

(4.12)

The presence of the term (Wt+∆ −Wt)2 suggests that the second order approximation of

the conditional transition density for a non-constant diffusion process is not normal. In

fact it may be shown that the correct density is a convolution of a normal density and a

non-central chi-square density.

If we instead consider the constant diffusion transformed process in (4.5), (4.12)

will reduce to

Yt+∆ ≈ Yt + α(Yt, θ)∆ + 1
2

[
α′(Yt, θ)α(Yt, θ) + 1

2β
2α′′(Yt, θ)

]
∆2

+β
[(

1 + α′(Yt,θ)∆
2

)
(Wt+∆ −Wt) + α′(Yt, θ)W̃t

]
.

Therefore in the constant diffusion case the second order approximation for the conditional

transition density will be normal with conditional mean and variance

µ(Yt, θ,∆) = Yt + α(Yt, θ)∆ +
1
2

[
α′(Yt, θ)α(Yt, θ) +

1
2
β2α′′(Yt, θ)

]
∆2,

and

σ2(Yt, θ,∆) = β2

[
1 + α′(Yt, θ)∆ +

(α′(Yt, θ))2

3
∆2

]
∆.

4.1.3 Shoji and Ozaki

Shoji and Ozaki [1998] purpose an alternative second order approximation for the

conditional transition density that is based on a local linearization. Henceforth we denote

this approach as the Shoji & Ozaki method. Given the constant volatility process in (4.5),
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applying Ito’s lemma to the drift function results in

dαt(Yt, θ) =
[
α′(Yt, θ)α(Yt, θ) +

β2α′′(Yt, θ)
2

]
dt+ α′(Yt, θ)βdWt. (4.13)

By assuming that for a small time step, ∆, the first two derivatives of the drift are constant,

the process in (4.13) is an Ornstein-Uhlenbeck process, whose conditional transition density

is known to be Gaussian. It may be seen that the first moment of the process solves the

ordinary differential equation (ODE)

dE[α(Yt+∆, θ)|Yt]
d∆

= α′(Yt, θ)E[α(Yt+∆, θ)|Yt] +
β2α′′(Yt, θ)

2
,

subject to the boundary condition E[α(Yt, θ)|Yt] = α(Yt, θ). The solution to the ODE is

E[α(Yt+∆, θ)|Yt] =
[
eα
′(Yt,θ)∆ − 1

] β2α′′(Yt, θ)
2α′(Yt, θ)

+ eα
′(Yt,θ)∆α(Yt, θ).

Given this expectation for the local linearization of the drift function the expectation of the

process, Y , will be:

E[Yt+∆|Yt, θ] = Yt +
∫ ∆

0 E[α(Yt+τ , θ)|Yt]dτ

= Yt + eα
′(Yt,θ)∆−1
α′(Yt,θ)

α(Yt, θ) +
[
eα
′(Yt,θ)∆−1
α′(Yt,θ)

−∆
]
β2α′′(Yt,θ)
2α′(Yt,θ)

.

From the Kolmogorov backward equation it may be seen that the conditional

variance of the process will be

V ar[Yt+∆|Yt, θ] =
[∫ ∆

0 e2α′(Yt,θ)τdτ
]
β2

= e2α
′(Yt,θ)∆−1

2α′(Yt,θ)
β2.

Therefore, the mean and variance of the Gaussian conditional transition density for Yt+∆

given Yt are µ(Yt, θ,∆) = E[Yt+∆|Yt, θ] and σ2(Yt, θ,∆) = V ar[Yt+∆|Yt, θ] respectively.
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4.2 Integration Over Sub-Intervals

Given a representation for the sub-density the approximation for the conditional

transition density f(Xt;Xt+∆, θ) ≈ f (I)(Xt;Xt+∆, θ) is defined as in (4.3). Due to the

assumption of normality for the sub-densities this integration may be approximated using

Gauss Hermite quadrature such that

f (I)(Xt+∆;Xt, θ) ≈
N∑
n=1

ωnφ(Xt+∆; zI−1,n, θ),

where ω1, ..., ωN are the set of quadrature weights, φ is the normal density function, and

zi,n = µ

(
zi−1,n, θ,

∆
I

)
+ σ

(
zi−1,n, θ,

∆
I

)
ui,n,

where ui,1, ..., ui,N are the set of quadrature nodes for subinterval i and z0 = Xt. Based

on our testing we suggest the use of standard Gauss Hermite quadrature for the one di-

mensional integral in the f (2)(Xt+∆;Xt, θ) approximation and use of the tensor product of

one dimensional rules for the multivariate cases of I ≥ 3 (see Miranda and Fackler [2002]).

For this application sparse Gauss Hermite quadrature methods appear to have poor perfor-

mance requiring the use of a greater number of nodes, than the tensor product, in order to

achieve a given level of accuracy.

The use of numerical quadrature to perform the integration as opposed to Monte

Carlo simulations, as is the case with the SMLE, allows for a significant improvement in both

accuracy of the integral approximation and the computational speed for low to moderate

values of I. As a result it is computationally cheap to evaluate f (I)(Xt;Xt+∆, θ) for multiple

values of I allowing for the implementation of Richardson extrapolation to further reduce

the order of the error associated with the conditional transition density approximation. For

example, consider an approximation of the transition density with a step size of ∆ and error

of order ∆n, such that

f (1)(Xt+∆;Xt, θ) = f(Xt+∆;Xt, θ) + a∆n +O(∆n+1).
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An approximation of the transition density with a step size of ∆/I may be similarly repre-

sented as

f (I)(Xt+∆;Xt, θ) = f(Xt+∆;Xt, θ) + a

(
∆
I

)n
+O

(
∆n+1

)
.

It is possible to determine coefficients, λ1 and λ2, such that the approximation of conditional

transition density

f(Xt+∆;Xt, θ) ≈ λ1f
(1)(Xt+∆;Xt, θ) + λ2f

(I)(Xt+∆;Xt, θ),

is of order ∆n+1. It is easily seen that in this example the weights must satisfy

λ1 + λ2 = 1 (4.14)

and

λ1 +
λ2

In
= 0. (4.15)

Therefore solutions for the coefficients may be obtained by solving the system presented in

(4.14)-(4.15), so that

λ1 =
1

1− In
, λ2 =

In

In − 1
.

This method may be easily generalized to a framework for approximations of the

conditional transition density f (1), f (2), ..., f (I) each of order ∆n,
(

∆
2

)n
, ..,
(

∆
I

)n respectively.

The new approximation is given by

f(Xt+∆;Xt, θ) ≈
I∑
i=1

λif
(i)(Xt+∆;Xt, θ), (4.16)

where the weights satisfy
I∑
i=1

λi = 1 (4.17)

and the I − 1 conditions

I∑
i=1

λi
(i)n+h

= 0 h = 0, ..., I − 2. (4.18)
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The square linear system in (4.17)-(4.18) may easily be solved for the extrapolation coef-

ficients. As a result the new approximation of the conditional transition density in (4.16)

will be of order ∆n+I−1.

The Euler approximation is of weak order ∆, while the Milstein approximation

along with the one developed by Shoji and Ozaki [1998] are of weak order ∆2. As demon-

strated in Section 4.3 the benefits associated with the application of Richardson extrapo-

lation are substantial. It is worth noting that the ability of Richardson extrapolation to

reduce the order of the approximation error is based on the assumption that the integra-

tion in f (I)(Xt+∆;Xt, θ) is computed to a high degree of accuracy. If this is not the case

the application of Richardson extrapolation has the possibility of reducing the accuracy

of the conditional transition density approximation. To see this consider the example of

λ1f
(1)(Xt+∆;Xt, θ) + λ2f

(2)(Xt+∆;Xt, θ). Given that integration in f (2)(Xt+∆;Xt, θ) is

numerically approximated it will be the case that

λ1f
(1)(Xt+∆;Xt, θ) + λ2f

(2)(Xt+∆;Xt, θ) = f(Xt+∆;Xt, θ) + λ2ε+O(∆n+1),

where ε represents the error associated with the numerical integration. In order for Richard-

son extrapolation to be beneficial the integration error must be small enough that it does

not dominate the error associated with the sub-density approximation. This is why Richard-

son extrapolation is not an effective technique for reducing the approximation error in the

SMLE. The number of simulated paths required to achieve the needed accuracy in the

Monte Carlo integration would result in a significant computational burden. However, the

utilization of Gauss Hermite quadrature in approximating (4.3) allows for relatively quick

and accurate numerical integration making the implementation of Richardson extrapolation

attractive.

With the use of Richardson extrapolation it is possible obtain negative conditional

transition densities for particular sets of parameters and observations. Any application of

the technique should check for this error and fall back to f (Ī)(Xt+∆;Xt, θ) if encountered,

where Ī represents the best approximation computed for use with Richardson extrapolation.
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4.3 Numerical Examples

In order to examine the efficiency of the purposed conditional transition density

approximation we consider a set of numerical examples. To gauge the method’s numerical

properties in addition to its performance in empirical analysis we study both simulated

experiments and applications utilizing observed data. The first test of the new technique

follows the setup of Ait-Sahalia [1999] in which the parameters of SDEs with known tran-

sition densities are estimated using monthly observations of the federal funds rate. This

provides the ability to examine the efficiency of the new approximation, as compared to

the MLE, in an application setting. We find that incorporating only a single sub-interval

produces estimates that are only negligibly different from the true MLE. To further examine

the properties of the new estimator we consider a set of benchmarks based on experiments

using the Cox-Ingersol-Ross process. Again we find the new method to be both compu-

tationally accurate and efficient. We conclude this section with a a series of examples to

showcase the performance of the approximation in a variety of complex cases.

4.3.1 Diffusion Models for Interest Rates

Ait-Sahalia [1999] presents a study of various models which have been utilized

to describe the dynamics of short term interest rates. For our purpose we focus on a set

of three models, for which explicit expressions for the true conditional transition densi-

ties are known. As such these models present an ideal basis to judge the performance

of conditional transition densities in an empirical setting. The models of interest are the

Ornstein-Uhlenbeck, Cox-Ingersol-Ross, and inverse square root process. In addition we

examine the constant elasticity of variance model for which there is no closed form solution

for the conditional transition density, but other accurate approximations are available for

comparison of the estimates.
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Ornstein-Uhlenbeck

The Ornstein-Uhlenbeck process is a mean reverting process whose SDE takes the

form

dXt = θ2(θ1 −Xt)dt+ θ3dWt.

This process has a Gaussian transition density such that

fOU (Xt+∆;Xt, θ) =

√
θ2

πγ2
exp

{
−
[
Xt+∆ − θ1 − (Xt − θ1)e−θ2∆

]2
θ2

γ2

}
,

where γ2 = θ2
3

(
1− e−2θ2∆

)
. It may be noted that the diffusion function is constant so no

transformation is necessary.

Cox-Ingersol-Ross

The process introduced by Feller [1952] has been used in numerous financial ap-

plications, most notably is the application to short term interest rates by Cox et al. [1985].

As a result the process is commonly referred to as the Cox-Ingersol-Ross or CIR process.

Its SDE has the form

dXt = θ2(θ1 −Xt)dt+ θ3

√
XdW. (4.19)

The true conditional transition density of (4.19) is

fCIR(Xt+∆;Xt, θ) = ce−(u+v)
(v
u

)q/2
Iq(2
√
uv), (4.20)

where

c =
2θ2

θ2
3(1− e−θ2∆)

,

u = cXte
−θ2∆,

v = cXt+∆,

q =
2θ2θ1

θ2
3

− 1,
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and Iq(·) is a modified Bessel function of the first kind of order q. It may be seen that

the transformed random variable, Y = 2cX, has a conditional transition density that is

non-central chi-square with 4θ2θ1/θ
2
3 degrees of freedom and a non-centrality parameter

Yte
−θ2∆.

In the cases where the process must be transformed to have a constant diffusion

the transformation Yt = 2
√
Xt is used, such that

dYt =
[(

2θ1θ2 −
θ2

3

2

)
1
Yt
− θ2

2
Yt

]
dt+ θ3dW. (4.21)

Inverse of Feller’s Square Root Model

The inverse of Feller’s square root process (ISR) has a specification of one over the

CIR model. From Ito’s Lemma the SDE is defined as

dXt = Xt[θ2 − (θ2
3 − θ2θ1)Xt]dt+ θ3X

3/2
t dWt.

The true conditional transition density is given by

f ISR(Xt+∆;Xt, θ) =
1
X2
t

fCIR
(

1
Xt+∆

;
1
Xt
, θ

)
,

where fCIR is the conditional transition density for the CIR process as defined in (4.20).

In the cases where the process must be transformed to have a constant diffusion the trans-

formation Yt = 2/
√
Xt is used. The form of the transformed process will equivalent to that

of (4.21).

Constant Elasticity of Variance

The constant elasticity of variance (CEV) model proposed by Chan et al. [1992]

has the form

dXt = θ2(θ1 −Xt)dt+ θ3X
θ4
t dWt.

The CIR process is a special case of the CEV process in which θ4 = 1/2. However, in

the case of the more general CEV process there does not exist a closed form solution for
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the conditional transition density. The constant diffusion transformation is also dependent

upon the unknown parameters, such that Yt = X1−θ4
t /(1− θ4) where transformed SDE has

the form

dYt =
{
θ2[γ(Yt, θ)]−θ4 [θ1 − γ(Yt, θ)]−

1
2
θ2

3θ4[γ(Yt, θ)]θ4−1

}
dt+ θ3dWt,

where

γ(Yt, θ) = [Yt (1− θ4)]
1

1−θ4 .

Results

Following the work of Ait-Sahalia [1999] parameter estimates for the three models

are computed using a monthly sampling of the Federal Funds rate from January 1963 to

December 1998. The observations are presented in Figure 4.1. To represent the new method

we utilize the constant diffusion transformations of the models along with the mean and

variance approximations generated from the second order Milstein specification discussed

in Section 4.1.2. Using Richardson extrapolation we combine the estimates from the case

using the standard step size, I = 1, and one where we introduce an additional sub-interval,

I = 2. As such the integral in (4.3) is only over one dimension and as such is relatively quick

to compute. In order to obtain the nodes and weights for the Gauss Hermite quadrature

we utilize the standard one dimensional rule with “order” M = 25.5 We denote this new

method by f (1) + f (2) to conserve on notation. In the subsequent section we explore in

depth the properties of various forms of the new method. Here we demonstrate that in

empirical applications even a low dimension form of the new approximation may provide

accurate estimates

The parameter estimates for the new method, f (1) + f (2), along with the MLE are

presented in Table 4.1. For comparison we also include the estimates from the basic first

order Euler approximation of Section 4.1 in addition to the Hermite expansion approxima-

tion presented in Ait-Sahalia [1999]. As may be seen, the Euler approximation provides

poor performance in matching the MLE. However, the new method, even with only two
5The term order is used to represent the degree of polynomial which may be integrated exactly with the

quadrature technique. An order of M corresponds to a polynomial of degree 2M − 1.
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sub-intervals, is able to produce estimates relatively close to the MLE. Given that only one

dimensional integration needs to be performed in order to obtain these estimates they are

relatively fast to compute. In fact during these experiments, using the new method with

f (1) + f (2) and the Milstein approximation took at most .01 seconds longer to compute a

log-likelihood as compared to the method of Ait-Sahalia [1999] with K=2. The difference

in the total time required to compute the estimates using the two methods will of course be

based on the number of function evaluations required by the optimization algorithm, but

in practice differed by less than half a second in most cases. This additional computational

burden is quite small compared to the additional preparation time required to derive and

program the complex Hermite expansions required by the method of Ait-Sahalia [1999].

Therefore given the simplicity of the technique presented in this paper, the overall time

required to obtain parameter estimates for an additional model will be significantly less

than that associated with utilizing the Hermite expansion method, and without a loss of

accuracy.
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Figure 4.1: Monthly Federal Funds Rate, 1963-1998
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Table 4.1: Maximum-Likelihood Estimates for the Monthly Federal Funds Rate

Model Euler
Ait Sahalia

K=1
Ait Sahalia

K=2
f (1) + f (2) True Density

dXt = θ2(θ1 −Xt)dt+ θ3dWt

θ1 = 0.0717 θ1 = 0.0720 θ1 = 0.0717 θ1 = 0.0717 θ1 = 0.0717
θ2 = 0.2584 θ2 = 0.2575 θ2 = 0.2614 θ2 = 0.2613 θ2 = 0.2613
θ3 = 0.0222 θ3 = 0.0224 θ3 = 0.0224 θ3 = 0.0224 θ3 = 0.0224

dXt = θ2(θ1 −Xt)dt+ θ3

√
XtdWt

θ1 = 0.0732 θ1 = 0.0722 θ1 = 0.0721 θ1 = 0.0721 θ1 = 0.0721
θ2 = 0.1452 θ2 = 0.2184 θ2 = 0.2189 θ2 = 0.2190 θ2 = 0.2189
θ3 = 0.0652 θ3 = 0.0667 θ3 = 0.0667 θ3 = 0.0667 θ3 = 0.0667

dXt = Xt[θ2 − (θ2
3 − θ2θ1)Xt]dt+ θ3X

3/2
t dWt

θ1 = 15.0190 θ1 = 15.1565 θ1 = 15.1411 θ1 = 15.1413 θ1 = 15.1414
θ2 = 0.1771 θ2 = 0.1813 θ2 = 0.1821 θ2 = 0.1821 θ2 = 0.1821
θ3 = 0.8059 θ3 = 0.8211 θ3 = 0.8211 θ3 = 0.8211 θ3 = 0.8211

dXt = θ2(θ1 −Xt)dt+ θ3X
θ4
t dWt

θ1 = 0.0808 θ1 = 0.0842 θ1 = 0.0842
θ2 = 0.0971 θ2 = 0.0886 θ2 = 0.0886
θ3 = 0.7224 θ3 = 0.7792 θ3 = 0.7792
θ4 = 1.4607 θ4 = 1.4812 θ4 = 1.4812
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Figure 4.2: Conditional Transition Density for CIR Process

Based on the parameters θ = (.06, .5, .15), ∆ = 1/12, and Xt = .1.

4.3.2 Testing with the CIR process

To further examine the properties of the new approximation for the conditional

transition density we consider various benchmarks using the CIR process as described in

Section 4.3.1. These tests are similar to those presented in Ait-Sahalia [2002] and Durham

and Gallant [2002]. In order to stay consistent with previous benchmarking in this area

we use base case parameter values of θ0 = (.06, .5, .15), ∆ = 1/12, and X0 = .1 in our

experiments. For these parameter values the true conditional transition density and its log

are presented in Figure 4.2.

CIR Benchmarks

Both Ait-Sahalia [2002] and Durham and Gallant [2002] develop a number of

benchmarks with which one may test the efficiency of new estimation techniques using the

CIR model. We follow the precedence they have set utilizing three benchmarks.

First we present a visual analysis of the approximation errors associated with

the various techniques discussed in this paper. That is for a fixed point, Xt = X0, the

approximate conditional transition density for a series of points, Xt+∆ ∈ [0.05, 0.15], is

computed and compared with the true conditional transition density. Since the end goal is to

accurately approximate the log-likelihood function we consider the errors in approximating



107

the log of the density as opposed to its level. As pointed out by Durham and Gallant

[2002], the errors associated with approximating the level of the density do not provide

an intuitive way of analyzing the effect such methods will have on constructing the log-

likelihood function.

In order to better understand the ability of the proposed approximations in com-

puting the log-likelihood function, a second benchmark is used. For this benchmark a series

of L = 10, 000 observations are simulated using draws from the non-central chi-square dis-

tribution, given a starting value Xt = X0. The true and approximate conditional transition

densities are then computed for each observation generated. Two methods for analyzing

the accuracy of the approximation are considered. The first is the root mean squared error

(RMSE),

RMSE =

{
1
L

L−1∑
i=0

(
ln(f̂(Xi+1;Xi, θ

0))− ln(fCIR(Xi+1;Xi, θ
0))
)2
} 1

2

,

where f̂ represents the approximation of the density and fCIR is the true conditional tran-

sition density as defined in (4.20). The second method is the maximum approximation error

relative to the maximum value of the conditional transition density (MRE),

MRE = max
i


∣∣∣ln(f̂(Xi+1;Xi, θ

0))− ln(fCIR(Xi+1;Xi, θ
0))
∣∣∣

maxi[ln(fCIR(Xi+1;Xi, θ0))]

 .

Using this benchmark one is also able to gauge the computational efficiency of the various

approximations techniques.

The third benchmark employs Monte Carlo experiments in order to examine the

ability of the approximation techniques to produce accurate parameter estimates in a man-

ner more rigorous than in the previous section. For the experiment a series of N = 512

data sets with L = 1, 000 observations are generated. Then the parameter estimates are

computed using both the exact log-likelihood function and it approximations. For the exact
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MLE we compute the error in estimating the true parameters using the mean error (ME),

METRUE−MLE =
1
N

N∑
i=1

(
θ̂MLE − θ0

)
.

The estimates obtained from using the approximation techniques are then compared to the

exact MLE using the mean error,

MEMLE−APPROX =
1
N

N∑
i=1

(
θ̂MLE − θ̂APPROX

)
, (4.22)

for a given approximation technique denoted by APPROX. Durham and Gallant [2002]

suggest that in order to be considered accurate an error of 1% of the error associated with

the MLE should be achievable using the approximation.

CIR Benchmark Results

Plots of the approximation errors using the Euler method with the untransformed

process, the Euler method with the transformed process, and the second order Milstein

approximation are presented in Figures 4.3, 4.4, and 4.5 respectively. In each of these tests

four approximations are considered. The methods are denoted by f (I), where I represents

the number of intervals used to compute the conditional transition density. In all cases

we use a quadrature order of M = 15. Note that in the case of Richardson extrapolation

the method is denoted as the simple sum of the density estimates, excluding the necessary

coefficients. This approach is simply to reduce the complexity of the notation and will be

used throughout the remainder of this paper.

It is strikingly apparent that the constant diffusion transformation provides a

significant improvement for the Euler method by an order of magnitude. Another order of

magnitude improvement may be gained by implementing a higher order approximation such

as the Milstein approach. The technique of Shoji & Ozaki provides a similar benefit to the

of Milstein. Furthermore, it may be seen that the use of numerical quadrature techniques

to increase the number of sub-densities used in the approximation, does indeed reduce the

errors associated with the approximation. Most notable however, is the improvement made
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Figure 4.3: Approximation Error with Untransformed Euler

once the various approximations are combined through Richardson extrapolation.

These points are further illustrated in Table 4.2 which presents the results of the

second set of benchmarks analyzing the ability of the approximation to compute the con-

ditional transition densities for a series of L = 10, 000 simulated observations. Again it

may be seen that the constant diffusion transformation provides an order of magnitude

improvement in terms of reducing the RMSE. While a further order of magnitude improve-

ment is possible by implementing one of the higher order approximations such as the second

order Milstein or Shoji & Ozaki specification. Such alternatives significantly improve the

approximation without a substantial increase in computation time.6

Further reduction in the approximation error may be obtained through incorpo-

rating sub-densities into the transition density. Though again the true benefit of being able

to reduce the step size of the approximation comes from the ability to apply Richardson

extrapolation, which takes very little additional computation. Using the Shoji & Ozaki
6All run times were computed on an Intel Core Duo 2.0 Ghz processor with 2 GB of RAM, running OS

X 10.5.6 and MATLAB 2007a.
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Table 4.2: Approximation Errors for the Log Conditional Transition Density
Moment

Approximation
Density

Approximation
M RMSE MRE

Time
(sec.)

Untransformed Euler

f (1) 0.14499 1.10943 0.01
f (2) 10 0.07009 0.38198 0.02
f (3) 10 0.04716 0.22640 0.32
f (1) + f (2) 10 0.02757 0.27752 0.03
f (1) + f (2) + f (3) 10 0.00681 0.06355 0.36

True Moments

f (1) 0.14267 0.91936 0.01
f (2) 10 0.07023 0.34593 0.03
f (3) 10 0.04743 0.20962 0.46
f (1) + f (2) 10 0.02550 0.27256 0.04
f (1) + f (2) + f (3) 10 0.00647 0.07487 0.52

Transformed Euler

f (1) 0.03649 0.12471 0.01
f (2) 10 0.01832 0.05906 0.03
f (3) 10 0.01223 0.03858 0.32
f (1) + f (2) 10 0.00275 0.04071 0.03
f (1) + f (2) + f (3) 10 0.00035 0.00386 0.34
f (1) + f (2) + f (3) 5 0.01502 0.03198 0.11
f (1) + f (2) + f (3) 25 0.00034 0.00334 0.75
f (1) + f (2) + f (3) 25 0.00033 0.00335 2.02

Milstein

f (1) 0.00592 0.05878 0.01
f (2) 10 0.00129 0.01171 0.05
f (3) 10 0.00056 0.00482 0.67
f (1) + f (2) 10 0.00036 0.00309 0.05
f (1) + f (2) + f (3) 10 0.00005 0.00062 0.71
f (1) + f (2) + f (3) 5 0.00460 0.00634 0.20
f (1) + f (2) + f (3) 15 0.00004 0.00044 1.56
f (1) + f (2) + f (3) 25 0.00004 0.00044 4.22

Shoji & Ozaki

f (1) 0.00519 0.04907 0.01
f (2) 10 0.00121 0.01019 0.07
f (3) 10 0.00053 0.00424 1.25
f (1) + f (2) 10 0.00026 0.00178 0.08
f (1) + f (2) + f (3) 10 0.00003 0.00021 1.32
f (1) + f (2) + f (3) 5 0.00461 0.00634 0.37
f (1) + f (2) + f (3) 15 0.00002 0.00021 2.92
f (1) + f (2) + f (3) 25 0.00002 0.00025 7.94
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Figure 4.4: Approximation Error with Transformed Euler

approximation for the moments of the Gaussian sub-density and combining the versions

with one, two, and three subintervals results in an MRE of 0.00021. Or in other words,

the maximum error is only one fiftieth of one percent of the maximum value of the true log

conditional transition density. To obtain this result the practitioner needs not approximate

an integral higher than two dimensions, which may be computed relatively quickly using

numerical quadrature methods. We note that the second order Milsten approximation pro-

vides nearly the same level of accuracy as the Shoji & Ozaki specification. However, the

lack of exponential operators in the Milstein approximation allows for quicker computation.

We also consider the the use of the true moments for the CIR process in place

of the approximations presented in Section 4.1. For the CIR process the true conditional

moments are

E[Xt+∆ |Xt, θ ] = θ1 + e−θ2∆(Xt − θ1)
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Figure 4.5: Approximation Error with Second Order Milstein Approximation

and

V ar[Xt+∆ |Xt, θ ] =
θ2

3

(
1− e−θ2∆

)
θ2

[
θ1

(
1− e−θ2∆

)
+Xte

−θ2∆
]
.

However, it may be seen from the results in Table 4.2 that the use of the true conditional

moments provides very little increase in accuracy over the first order Euler approximation

for the untransformed process. This result follows with the discussion of Section 4.1.2

which notes that the constant diffusion transformation is required to attain higher order

approximations for the conditional transition density. It is worth noting that for many

cases, including the CIR process, the SDE of the transformed process does not have a linear

drift function, which for the most part rules out the possibility of deriving closed form

expressions for the true conditional moments.

In addition to the choice of moment approximation and the number of sub-intervals,

a major determinant of the computational complexity and accuracy of the approximation is

the order of the numerical quadrature. As may be seen in Table 4.2, up to a point increasing

the accuracy of the numerical integral will result in a reduction of the approximation error.
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For example moving from M = 5 to M = 10. This result is consistent across the moment

specifications. However, when increasing the quadrature order a point will be reached where

the error of the numerical integral is dominated by the error associated with the Gaussian

assumption and moment approximations. In this case a further increase in the order of the

numerical integral does not result in a significant improvement of the conditional transition

density approximation, only an increase in the computation time. For example increasing

the order from M = 15 to M = 25 in the case of f (1) + f (2) + f (3) using the Shoji & Ozaki

specification reduces the RMSE by less than 10−6, though increases the computation time

by 172%.

Given the importance of quadrature order to both accuracy and efficiency we

explore this point further through a simulation based analysis of the order of the approxi-

mation error. As discussed in Section 4.2 for the case of a relatively small integration error

the relationship

f (I)(Xt+∆;Xt, θ) = f(Xt+∆;Xt, θ) + a

(
∆
I

)n
+O(∆n+1). (4.23)

will hold, where n is the order of the approximation error. When applying the technique

of Richardson extrapolation it is necessary for this condition to hold in order to be able to

derive the correct weights. To estimate the order of the approximation error we simulated

N = 1, 000 observations of the CIR process and estimate the log mean absolute error version

of (4.23),

ln

(
1
N

N∑
n=1

∣∣∣f (I) − f
∣∣∣) = ln (â) + n̂ ln

(
∆
I

)
, (4.24)

over the estimators f (I) i = 1, ..., 4.

Table 4.3 presents the estimated order of the approximation error for the quadra-

ture order of M = 10. It is clear that the error is well described by (4.24). As expected the

Euler approximation is of order one independent of the constant diffusion transformation,

however the transformation does significantly reduce the error through its effect on the

constant a. This is line with the results of the second benchmark presented in Table 4.2.

Also as expected, the Milstein and Shoji & Ozaki approximations are of order two. These
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Table 4.3: Mean Absolute Error for M=10

The error was computed for N = 1, 000 simulated observations using the
true parameter set θ0 = (.06, .5, .15), step size ∆ = 1/12, and Xt = .1.

Moment Approximation â n̂ Residual
Euler 11.13 0.99 0.00
Euler (Transformed) 3.12 1.00 0.00
Milstein 0.89 2.00 0.01
Shoji & Ozaki 0.91 2.01 0.04
True Moments 10.38 0.99 0.00

Table 4.4: Mean Absolute Error for Milstein Approximation

The error was computed for N = 1, 000 simulated observations using the
true parameter set θ0 = (.06, .5, .15), step size ∆ = 1/12, and Xt = .1.

M â n̂ Residual
4 0.00 -1.21 2.20
6 0.18 1.08 1.70
8 1.27 2.06 0.50
10 0.89 2.00 0.01

results also further confirm that the true conditional moments offer only slightly better

performance the first order Euler approximation for the untransformed process. Plots of

the error versus the time step ∆/I are presented in log scale in Figure 4.6.

These results suggest that (4.23) holds, indicating that the integration error is

relatively small. In cases where integration over the sub-intervals is inaccurate the ap-

proximation of the conditional transition density will be inaccurate as well. Furthermore

Richardson extrapolation will no longer be a viable technique for reducing the order of the

approximation error. Table 4.4 presents estimates of (4.24) for the Milstein approximation

over the quadrature errors M ∈ 4, 6, 8, 10. It is clear that the relationship in (4.23) is sen-

sitive to the quadrature order, a point that is further illustrated in Figure 4.7 which plots

the error versus the time step ∆/I in log scale. It appears that M = 10 is sufficient to pro-

vide an approximation of order ∆2 for the Milstein approximation. This is in line with the

results from the second benchmark in which increasing the order of approximation beyond

M = 10 providing little benefit, as the integration error is dominated by that associated

with the sub-density approximation.
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(a) Euler Untransformed
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(b) Euler Transformed
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(c) Milstein
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(d) Shoji & Ozaki

Figure 4.6: Mean Absolute Error in Log Scale for M=10

The reference line has a slope of two for the Milstein and Shoji & Ozaki
cases and a slope of one for the other two cases. The error was computed
for N = 1, 000 simulated observations using the true parameter set θ0 =
(.06, .5, .15), step size ∆ = 1/12, and Xt = .1.
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(a) M=4
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(b) M=6
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(c) M=8
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(d) M=10

Figure 4.7: Mean Absolute Error in Log Scale for Milstein Approximation

The reference line has a slope of two in all cases. The error was computed
for N = 1, 000 simulated observations using the true parameter set θ0 =
(.06, .5, .15), step size ∆ = 1/12, and Xt = .1.
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In order to examine the efficiency of the purposed approximation in estimating

the parameters of SDEs we turn to the third benchmark. Monte Carlo experiments are

conducted in order to determine the accuracy of parameter estimates obtained used the

approximate conditional transition density relative to the true density. The results for the

experiments are presented in Table 4.5. As may be seen, the criteria suggested by Durham

and Gallant [2002] of 1% of the error associated with the MLE is easily reached by the

f (1) + f (2) approximation. In fact the mean error across the simulations is below 10−5 for

all three parameters in the case of M = 15. This requires only computing a one dimensional

integral for each pair of observations. We note that Durham and Gallant [2002] achieved

similar accuracy with the SMLE, however for this result they required sixteen subintervals.

As a result a fifteen dimensional integral needed to be computed for each pair of observations,

using Monte Carlo techniques.

It is worth noting that additional accuracy may be obtained by both increasing

the order of the integral approximation and the number of sub-intervals included in the

density approximation. An increase in the order of the numerical quadrature technique, M ,

will provide some improvement in the accuracy of the estimates up until the quadrature

error becomes dominated by the density approximation error. As may be seen in Table 4.5,

increasing the order from M = 10 to M = 15 for the case of f (2) does little to improve

the accuracy of the estimates. However, it should be noted that in the case of f (1) + f (2)

the increase in order has a more significant effect. As discussed in Section 4.2 the ability

of Richardson extrapolation to increase the order of the approximation is dependent upon

the integration error being relatively small. From our testing it appears that through the

use of Gaussian quadrature such accuracy in the numerical integration is easily achieved.

4.3.3 Additional Examples

To further examine the accuracy of this new approximation technique for a wider

variety of SDEs we consider three additional examples. These models cover cases with

non-linearities in both the drift and diffusion, strong skewness in the conditional transition

density, and an inability to apply a constant diffusion transformation. In all of these com-

plex situations the new method presented in this paper is able to provide computationally
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Table 4.5: Mean Approximation Errors for Parameter Estimates

Following the benchmark of Durham and Gallant [2002] the mean error was
computed for 512 experiments with N = 1, 000 simulated observations using
the true parameter set θ0 = (.06, .5, .15), step size ∆ = 1/12, and Xt = .1.
The error for the MLE is computed from the true parameters, whereas the
error for the conditional transition density approximations is taken from
the MLE. The standard deviations for the mean approximation errors are
presented in parentheses.

Moment
Approximation

Density
Approximation

M θ1 θ2 θ3

f (CIR) 0.00041 0.04534 0.00023
(0.00822) (0.11995) (0.00350)

Transformed Euler f (1) 0.00026 0.01780 0.00366
(0.00003) (0.01139) (0.00075)

Milstein

f (1) -0.00000 0.00185 -0.00009
(0.00003) (0.00834) (0.00008)

f (2) 10
-0.00000 0.00028 -0.00002
(0.00001) (0.00253) (0.00002)

f (2) 15
-0.00000 0.00021 -0.00002
(0.00001) (0.00147) (0.00001)

f (3) 10
0.00000 0.00008 -0.00001

(0.00000) (0.00063) (0.00001)

f (1) + f (2) 10
0.00000 0.00017 -0.00000

(0.00001) (0.00263) (0.00001)

f (1) + f (2) 15
0.00000 0.00009 -0.00000

(0.00000) (0.00159) (0.00001)

f (1) + f (2) + f (3) 10
0.00000 0.00001 -0.00000

(0.00000) (0.00071) (0.00001)
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accurate and efficient approximations of the conditional transition densities.

Duffie 2001

The model presented in Duffie [2001] provides a more complex example with highly

non-linear drift and diffusion functions. The SDE has the form

dXt = [θ1 + θ2Xt + θ3Xt ln(Xt)] dt+ (θ4 + θ5Xt)θ6dWt.

It is worth noting that the Ornstein-Uhlenbeck, CIR, and CEV processes are all specific

cases of this more general model. For the constant diffusion case the transformation has

the form

Yt =
(θ4 + θ5Xt)1−θ6

θ5(1− θ6)
,

where, by Ito’s Lemma, the transformed SDE will be

dYt =
{
−θ5θ6

2γ(Yt,θ)
+ [θ2+θ3η(Yt,θ)]γ(Yt,θ)

θ5
+
[
θ1 − θ4θ2

θ5
− θ3θ4

θ5
η(Yt, θ)

]
[γ(Yt, θ)]

−θ6
1−θ6

}
dt

+dWt,

where

γ(Yt, θ) = −θ5(θ6 − 1)Yt

and

η(Yt, θ) = ln

{
[γ(Yt, θ)]

1
1−θ6 − θ4

θ5

}
.

Unfortunately the true conditional transition density for this process is unknown

in closed form. However, an extremely accurate approximation may be obtained as the

solution to the forward Kolmogorov (Fokker-Planck) equation

∂f(Xt+∆;Xt,θ)
∂∆ =

{
bb′′ + (b′)2 − a′

}
f(Xt+∆;Xt, θ) + [2bb′ − a] ∂f(Xt+∆;Xt,θ)

∂Xt+∆

+ b2

2
∂2f(Xt+∆;Xt,θ)

∂X2
t+∆

,
(4.25)

subject to the initial condition that f(Xt; θ) is equal to the Dirac function centered at Xt.

The dependence of the drift and diffusion functions on Xt and θ has been left out in order
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Figure 4.8: Conditional Transition Density Approximation for Duffie 2001

to simplify the notation. We solve the forward Kolmogorov equation using adaptive finite

difference methods in time and 500 nodes in the space dimension. Though this method

is computational inefficient for approximating the conditional transition density for the

purpose of parameter estimation, it does provide an accurate description for the purpose of

testing the new method.

For the purpose of testing we use the parameters θ = (0.03, 0.81, 0.47, 0.75, 0.76, 20.28)T

which are calibrated to Federal Funds rate data used in Section 4.3.1, along with ∆ = 1/12

and Xt = 0.10. Figure 4.8 presents the approximations for both the conditional transi-

tion density and its natural log. As may be seen, the first order Euler approximation on

the untransformed process performs poorly relative to the new method using the Milstein

approximation and f (1) + f (2) with a quadrature order of M = 10.

Ait-Sahalia 1996

Another interesting example to consider is the process introduced by Ait-Sahalia

[1996] where the SDE has the form

dXt =
(
θ1 + θ2Xt + θ3X

2
t +

θ4

Xt

)
dt+

√
θ5 + θ6Xt + θ7X

θ8
t dWt.

This process is of particular interest due both its complexity and the fact that there

does not exist a closed form constant diffusion transformation. Despite the inability to
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Figure 4.9: Conditional Transition Density Approximation for Ait-Sahalia 1996

obtain a constant diffusion version of the process the new method is still able to accu-

rately approximate the conditional transition density. Again the true conditional tran-

sition density is not known is closed form, though we are able to accurately approxi-

mate it through a numerical solution to (4.25). As with the Duffie 2001 example we use

paraemters calibrated from the Federal Funds rate data utilized in Section 4.3.1, such that

θ = (−0.29, 3.36,−10.26, 0.0065,−0.00028, 0.010, 0.40, 37.76)T , along with ∆ = 1/12 and

Xt = 0.10.

Since a constant diffusion transformation is unavailable for this process we apply

the first order Euler approximation in order to obtain the conditional mean and variance for

the Gaussian transition density. In order to obtain a third order approximation for the con-

ditional transition density using the untransformed process we utilize f (1) +f (2) +f (3) with

a quadrature order of M = 10. The approximation for the conditional transition density

is presented in Figure 4.9 along with the standard Euler approximation and that obtained

from solving the forward Kolmogorov equation. As is clear, the third order approximation

obtained by using Richardson extrapolation to combine f (1), f (2), and f (3) is significantly

more accurate than the standard first order Euler approximation. This suggests the method

presented in this paper may be used to compute accurate approximations of the conditional

transition density even for processes that may not be transformed to a constant diffusion

case.
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Power CIR

The last example we consider is that of the power CIR process, Yt, where Yt =

(Xt/θ1)θ4 and Xt follows the CIR SDE in (4.19). The conditional transition density for this

process is strongly skewed for large values of θ4. This model therefore provides an ideal way

of testing the ability of the new approximation method to handle such skewness. The SDE

will have the form

dYt =
θ4

2θθ41

(
θ1Y

1
θ4
t

)θ4−1 [
θ2

3(θ4 − 1)− 2θ1θ2

(
Y

1
θ4
t − 1

)]
dt+

θ3θ4

θθ41

(
θ1Y

1
θ4
t

)θ4− 1
2

dWt,

where the true conditional transition density is known to be

f(Yt+∆;Yt, θ) =
θθ41

θ4
Y

1
θ4
−1

t fCIR(Xt+∆;Xt, θ),

where fCIR(Xt+∆;Xt, θ) is described by (4.20). The constant diffusion transformation has

the form Zt = 2θ4Y
1/2θ4
t where by Ito’s Lemma

dZt =
[
θ2

4

(
2θ2 −

θ2
3

2θ1

)
1
Zt
− θ2

2
Zt

]
dt+

θ3θ4√
θ1
dWt.

For testing purposes we use the same parameters as Ait-Sahalia [2002] where θ =

(0.08, 0.50,
√

0.02, 7)T , ∆ = 1/12, and Yt = 4.77. Figure 4.10 presents the true conditional

transition density along with the first order Euler approximation using the untransformed

process and the approximation using Milstein and f (1) + f (2) with M = 10. Despite the

strong skewness in the conditional transition density the new approximation method is

capable of accurately computing the density. To further illustrate the accuracy of the new

approximation Figure 4.11 presents the approximation error.

4.4 Concluding Remarks

Given the popularity of models utilizing continuous time stochastic variables, esti-

mation of the unknown parameters in SDEs using discretely observed data is important in

the field of economics as well as finance. The lack of explicit conditional transition densities
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Figure 4.10: Conditional Transition Density Approximation for Power CIR
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for all but a few SDEs eliminates the possibility of obtaining the true MLE in most ap-

plications. We have presented an approximation to the conditional transition density that

produces a QMLE which is within a negligible distance of the MLE. In tests with the CIR

process when using the new approximation for the conditional transition density, parame-

ter estimates that are within 1% of the error associated with the MLE are easily obtained.

This is accomplished through the use of Gauss Hermite quadrature for the computation of

a one dimensional integral in the density approximation. As such this new technique has a

significant computational advantage over similar SMLE methods. In addition to its compu-

tational accuracy and efficiency the approximation is very easy to implement, making it a

desirable alternative to more complicated QMLE methods such as those utilizing Hermite

expansions of the conditional transition density.

Given the accuracy of Gauss Hermite quadrature the conditional transition density

obtained from the Chapman-Kolmogorov equation may be computed quickly with very few

nodes. The results presented suggest that using only 10 nodes in the one dimensional

quadrature rules is adequate to ensure that the integration error is of an order less than

that of the sub-density approximation. For the case of introducing two sub-intervals with

a second order sub-density approximation, such as that of Milstein, the f (3) approximation

to the conditional transition density may be computed with only 100 nodes. As a result

the log-likelihood for a sample of 1,000 observations may be easily computed in under a

tenth of a second. Using the f (2) approximation with moments derived from the Milstein

approximation, a case requiring only one dimensional integration with 10 nodes, the log-

likelihood for 1,000 observations is computed in around one one hundredth of a second. This

represents a negligible increase in computation time from the case where no sub-intervals

are used but a significant increase in accuracy.

Furthermore, we find the use of Richardson extrapolation to be highly beneficial

in producing accurate approximations of the conditional transition density. Through its

use higher order approximations may be obtained with nearly no additional computational

burden. The second order conditional transition density approximation f (3) that is obtained

by using moments derived from the Milstein approximation, may be easily expanded to a

fourth order approximation by combining with the f (1) and f (2) densities. In this case the
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log-likelihood for a sample of 1,000 observations may still be computed in under one tenth

of a second. However, our testing suggests that for monthly observations the third order

approximation f (1) + f (2) with moments derived from the Milstein approximation is more

than adequate. This requires only one dimensional integration with 10 nodes allowing for the

log-likelihood of 1,000 observations to be computed in around one one hundredth of a second.

However, the ability to utilize Richardson extrapolation to increase the approximation order

in an efficient manner is dependent upon quick and accurate numerical integration of the

Chapman-Kolmogorov equation. For this purpose the use of Gauss Hermite quadrature, as

suggested by this paper, is the ideal choice.

We also find that the constant diffusion transformation significantly reduces the

error associated with the assumption of a Gaussian transition density. In addition the trans-

formation allows for the use of higher order approximations through the implementation of

Shoji & Ozaki’s or Milstein’s method for determining the moments of the Gaussian density.

These techniques along with Richardson extrapolation allow for higher order approximations

to be obtained with the inclusion of fewer sub-intervals. They are not required, however,

to obtain accurate approximations of the conditional transition density. As demonstrated

in Sections 4.3.2 and 4.3.3 accurate high order approximations may still be obtained with

the use of the first order Euler approximation for the moments. This is useful for models

in which a closed form constant diffusion transformation is unavailable.
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A Approximating the Development Stage Value Function

The value function for the development stage is defined by the variational inequal-

ity in (2.6)-(2.8) and the additional conditions (2.10) and (2.11). The specific form of the

value function is unknown and therefore projection techniques as presented in Miranda and

Fackler [2002] and Judd [1998] are used to approximate the function. Let

V D(s, k) ≈ φ(s)cD(k), (A.1)

where φ : Rd → Rq is a set of q basis functions for a family of approximating functions,

and cD(k) is a q-dimensional vector of approximating coefficients when k units may still be

constructed. In order to reduce the dimensionality of the approximation problem the change

in value with respect to a change in k is approximated using a finite forward difference such

that
∂V D

∂k
≈ φ(s)

cD(k)− cD(k −∆)
∆

, (A.2)

where ∆ represents the step size. Given the approximations in (A.1) and (A.2) the varia-

tional inequality in (2.6)-(2.8) may be rewritten as

ρφ(s)cD(k) ≥ A(θ∗) (θ∗p− CK)− CM −A(θ∗)φ(s)
cD(k)− cD(k −∆)

∆
+ L, (A.3)

ρφ(s)cD(k) ≥ −CS + L, (A.4)

and

φ(s)cD(k) ≥ ηpk, (A.5)

where L is the approximation of the differential generator

L =

 d∑
i=1

µi(s)
∂φ

∂si
+

1
2

d∑
i=1

d∑
j=1

[
σ(s)σ(s)T

]
ij

∂2φ

∂si∂sj

 cD(k). (A.6)

Given that one of the conditions in (A.3)-(A.5) must hold with equality the problem of

obtaining the approximating coefficients, cD(k) for a given k may be represented by as a
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complementarity problem (CP) of the form

min
[
BD

1 c
D(k) + bD1 , B

D
2 c

D(k) + bD2 , B
D
3 c

D(k) + bD3
]

= 0. (A.7)

Given a vector of q nodal points ŝ, the CP is defined by

BD
l =


Φ if l = 1

ρΦ− L̂ if l = 2[
ρ+ A(θ∗)

∆

]
Φ− L̂ if l = 3

,

and

bDl =


−ηp̂k if l=1

CS if l = 2
−A(θ∗)

∆ ΦcD(k −∆)−A(θ∗) (θ∗p− CK) + CM if l = 3

,

where Φ is the set of basis functions evaluated at the nodal points ŝ, p̂ represents the price

nodes within ŝ, L̂ is the differential generator approximation at ŝ, and θ∗ is the optimal

choice for the relative price.

The optimal continuous control is defined by the numerical approximation to

(2.11), such that

θ∗ =
1
2

(
CK + Φ cD(k)−cD(k−∆)

∆

p
− κ0

κ1

)
. (A.8)

The dependence of θ∗ on the value function itself, implies that the CP in (A.7) is in fact

an extended nonlinear complementarity problem (ENCP). To obtain the approximating

coefficients, the Fischer-Burmeister approximation to the min function is applied in an

iterative fashion in order to provide a semi-smooth system of nonlinear functions that may

solved using a Newton-type method. This approach to solving regime switching models

combined with a stochastic control is discussed in detail in Chapter 3.

Given the approximation of the boundary condition for k = 0 in (2.10)

ΦcD(0) = 0,

it may be seen that the vector of approximating coefficients, cD(0), at the end of the projects
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life is equal to a vector of zeros. Given this information we may iterate backwards in the

K space, starting at K = 0, solving the ENCP in (A.7) for the next set of approximating

coefficients at each ∆ step.

B Approximating the Remediation Stage Value Function

As described in Section 2.3.2 the problem of obtaining an approximation for the

value function while the investment is in the remediation and entitlement stage may be seen

as the solution to set of N + 1 problems of reduced complexity. This approach is based on

the fact that after the regulation process has been concluded, Yt > 0, the value function

given a particular outcome may be obtained independent of the value under alternative

outcomes. In the case of the outcome Yt = y where y > 0 and given the state (s, r) the

value function is defined by the variational inequality

ρV R(s, r, y) ≥ f(y, β)− β∂V
R

∂r
+ LV R(s, r, y) ∀β ∈ B, (B.1)

and

V R(s, r, y) ≥ ηpU(y)ε− CHr, (B.2)

where L is the differential generator defined in (2.9). The approximation to the value

function is defined as

V R(s, r, y) ≈ φ(s)cR(r, y), (B.3)

where φ : Rd → Rq is a set of q basis functions for a family of approximating functions, and

cR(r, y) is a q-dimensional vector of approximating coefficients when r years of remediation

remain and the outcome of the entitlement process is y. The dimensionality of the problem

is reduced by approximating the change in value with respect to a change in r using a

forward finite difference such that

∂V R

∂r
≈ φ(s)

cR(r, y)− cR(r −∆, y)
∆

, (B.4)
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where ∆ represents the step size. Given the approximations in (B.3) and (B.4) the vari-

ational inequality defining the value after the regulation process as defined in (B.1)-(B.2)

may be rewritten as

ρφ(s)cR(r, y) ≥ f(y, β)− βφ(s)
cR(r, y)− cR(r −∆, y)

∆
+ L ∀β ∈ B, (B.5)

and

φ(s)cR(r, y) ≥ ηpU(y)ε− CHr, (B.6)

where L is the approximation of the differential generator as defined in (A.6).

The problem of solving for the approximating coefficients cR(r, y) ∀y > 0 for

a given r may be represented as an extended vertical linear complementarity problem

(EVLCP) due to the fact that one of the conditions in (B.5)-(B.6) must hold with equality.

The EVLCP will be of the form

min
[
BR

1 c
R(r, y) + bR1 , B

R
2 c

R(r, y) + bR2 , B
R
3 c

R(r, y) + bR3
]

= 0. (B.7)

Given a vector of q nodal points ŝ the EVLCP is defined by

BR
l =


Φ if l = 1

ρΦ− L̂ if l = 2[
ρ+ 1

∆

]
Φ− L̂ if l = 3

,

and

bDl =


−ηp̂πyε+ CHr if l=1

CN if l = 2
−1
∆ ΦcR(r −∆) + CH + CR if l = 3

,

where Φ is the set of basis functions evaluated at the nodal points ŝ and L̂ is the differential

generator approximation evaluated at ŝ.

Since entitlements have already been obtained, y > 0, when remediation is com-

plete r = 0 the value will be equivalent to the development value with πyε units of con-
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struction remaining as defined in the boundary condition (2.17) such that

ΦcR(0, y) = ΦcD(πyε).

This defines the vector of approximating coefficients, cR(0, y) ∀y > 0, at the end of the

initial stage. Given this information we may iterate backwards in the r space solving the

EVLCP in (B.7) for the next set of approximating coefficients at each ∆ step using a

newton-type method and a semi-smooth version of the EVLCP.

Given the approximation for the value function after the regulation process has

concluded the prior expectation may be computed using (2.16)

E
[
V R(s, r, ỹ)

]
≈ φ(s)

N∑
j=1

Pr(πj)cR(r, j), (B.8)

where ỹ > 0. The value of the project before completing remediation, r > 0, and obtaining

entitlements, y = 0, will satisfy the variational inequality in (2.13)-(2.15), which may be

rewritten in terms of the approximation as

ρφ(s)cR(r, y) ≥ f(y, β)− βφ(s) c
R(r,y)−cR(r−∆,y)

∆ + L

+ 1
λφ(s)

[∑N
j=1 Pr(πj)c

R(r, j)− cR(r, 0)
]
∀β ∈ B,

(B.9)

and

φ(s)cR(r, y) ≥ ηpU(y)ε− CHr, (B.10)

where L is the approximation of the differential generator as defined in (A.6). Again it is

possible to rewrite the system as an EVLCP of the form

min
[
B̃R

1 c
R(r, y) + b̃R1 , B̃

R
2 c

R(r, y) + b̃R2 , B̃
R
3 c

R(r, y) + b̃R3

]
= 0, (B.11)

where

B̃R
l =


Φ if l = 1

(ρ+ 1
λ)Φ− L̂ if l = 2(

ρ+ 1
λ + 1

∆

)
Φ− L̂ if l = 3

,
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and

b̃Dl =


−ηp̂πyε+ CHr if l=1

CN − 1
λΦ
∑N

j=1 Pr(πj)c
R(r, j) if l = 2

−1
∆ ΦcR(r −∆) + CH + CR − 1

λΦ
∑N

j=1 Pr(πj)c
R(r, j) if l = 3

.

Similar to the approach for the remediation stage after the regulation process,

initially the approximating coefficients at the terminal boundary for the deterministic state

variable are computed. We then iterate backwards over the r space solving the EVLCP in

(B.11) for the remaining approximating coefficients. The initial coefficients at the terminal

boundary r = 0 are determined by the value defined in (2.18)-(2.19). The boundary condi-

tion defined by the variational inequality in (2.18)-(2.19) may be approximated in a similar

fashion.

C Derivation of Moments for the Price Process

The two factor process for may be described as S̃t = (ln(Pt), µt) where

dS̃t =

 −1
2σ

2
p

δµ̄

+

 0 1

0 −δ

 S̃t
 dt+

 σp 0

0 σµ

 dWt,

where dW = (dW1, dW2). In integral form this may be represented as

S̃t+∆ = S̃t +
∫ ∆

0

 −1
2σ

2
p

δµ̄

+

 0 1

0 −δ

 S̃t+h
 dh+

∫ ∆

0

 σp 0

0 σµ

 dWh.

Noting the fact that the diffusion term will have an expectation of 0 it may be seen that

E
[
S̃t+∆

∣∣∣S̃t ] = S̃t +
∫ ∆

0

 −1
2σ

2
p

δµ̄

+

 0 1

0 −δ

E [ S̃t+h∣∣∣ S̃t]
 dh,

which may be rewritten as

∂E
[
S̃t+∆

∣∣∣S̃t ]
∂∆

=

 −1
2σ

2
p

δµ̄

+

 0 1

0 −δ

E [S̃t+∆

∣∣∣S̃t ] .
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This represents an ordinary differential equation with the boundary condition E
[
S̃t+∆

∣∣∣S̃t ] =

S̃t for ∆ = 0. The solution to which is

E
[
S̃t+∆

∣∣∣S̃t ] =

 µ̄∆ + 1
δ (µ̄− µt)

(
e−δ∆ − 1

)
− 1

2σ
2
p∆ + ln(Pt)

e−δ∆ (µt − µ̄) + µ̄

 . (C.1)

To find the variance of the process we consider the function yt = E
[
S̃t+∆

∣∣∣S̃t ] =

Y
(
S̃t

)
. By Ito’s Lemma

dy =

∂Y
∂t + ∂Y

∂S̃

 −1
2σ

2
p

δµ̄

+

 0 1

0 −δ

 S̃t
+ 1

2
∂2Y
∂S̃2

vec

 σ2
p 0

0 σ2
µ

 dt

+∂Y
∂S̃

 0 1

0 −δ

 dW.
The drift must be equal to zero due to the law of iterated expectations and therefore this

reduces to

dy =
∂Y

∂S̃

 0 1

0 −δ

 dW.
This may be rewritten in integral form such that

S̃t+∆ = yt +
∫ ∆

0

∂Y

∂S̃

 0 1

0 −δ

 dW, (C.2)

for which the variance is

V ar
[
S̃t+∆

∣∣∣S̃t ] = E

[(
S̃t+∆ − yt

)(
S̃t+∆ − yt

)T ∣∣∣∣ S̃t] .
Given the definition in (C.2) this variance may be rewritten as

V ar
[
S̃t+∆

∣∣∣S̃t ] = E


∫ ∆

0

∂Y

∂S̃

 0 1

0 −δ

 dW
∫ ∆

0

∂Y

∂S̃

 0 1

0 −δ

 dW
T
∣∣∣∣∣∣∣ S̃t
 .
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Which reduces to the problem of a single integral such that

V ar
[
S̃t+∆

∣∣∣S̃t ] = E

∫ ∆

0

∂Y
∂S̃

 0 1

0 −δ

 0 1

0 −δ

T ∂Y
∂S̃

T


∣∣∣∣∣∣∣ S̃t
 . (C.3)

From the definition of the first moment in (C.1) it may be seen that

∂Y

∂S̃
=

 1 1
δ

(
1− e−δ∆

)
0 e−δ∆

 .
Therefore the definition of the variance in (C.3) may be rewritten as

V ar
[
S̃t+∆

∣∣∣S̃t ] = E

∫ ∆

0

 σ2
p + 1

δ

(
1− e−δ∆

)2
σ2
µ

1
δ

(
1− e−δ∆

)
e−δ∆σ2

µ

1
δ

(
1− e−δ∆

)
e−δ∆σ2

µ e−2δ∆σ2
µ

∣∣∣∣∣∣ S̃t
 ,

which has the solution

V ar
[
S̃t+∆

∣∣∣S̃t ] ==

 σ2
p∆ + σ2

µ

δ3

[
e−δ∆

(
2− 1

2e
−δ∆)+ 2δ∆−3

2

] σ2
µ

2δ2

(
e−δ∆ − 1

)2
σ2
µ

2δ2

(
e−δ∆ − 1

)2 σ2
µ

2δ

(
1− e−2δ∆

)
 .


