ABSTRACT

SangPil Hwang. Dynamic Time Series Analysis Using Logistic Function. (Under the
direction of David A. Dickey.)

This paper investigates a set of autoregressive time series models whose coefficients
have the form of a logistic function. The transfer function type models give additional
flexibility over the fixed coefficients models and include them as a special case. NLAR
models with the AR(1) coefficient being a hyperbolic tangent function work well for
modeling series which have asymmetric stochastic volatility or changing amplitude

around 0 with a persistent autocorrelation and locally nonstationary behavior.
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Chapter 1

Introduction

Dynamic time series analysis based on nonlinear models has become a topic of
interest lately. Here we will analyze time series whose coefficients involve the logistic
function. The models studied include a transfer function type model and a nonlinear

extension of the autoregressive model.

The usual transfer function has the form

Y = Z%’xt—i + 2
i=0

= v(B)x; + 2

where Y, || < o0.

We assume the input process x; and noise process z; are both stationary and are
mutually independent. The coefficients 7g, 71, - - describe the weights assigned to

past values of x; used in predicting y; and

7(B> = Z %’Bi
i=0



where B is the backshift operator B(x;) = x;—;(Shumway and Stoffer, 1999).

The model allows y; to depend on current and past values of the explanatory
variable X. For this standard model, the coefficients are fixed, neither they nor their
estimates change with time. We extend this to a model which has flexible weights,

reflecting a different impact of explanatory variables at different times.

We first consider a simple nonlinear transfer function model where the weight is

expressed using a logistic function. Our model is

Y = vp(x1—1)Te—1 + €

. 1
where p(11-1) = Gama T

Thus, p(x;—1) is a function of the explanatory variable X. The model can be

extended to, for example,

Y = 11p(@—a)Ti—1 + 72 (1 — p(Ti—q)) Tt—2 + €

where p(x;_q) = L wandd=1,2,-- or

exp(a+Bzi_a)
v = nll —p1(@e—a) — pa(@i—a) @ + Y2p1(Ti—a)Te—1
+  v3p2(Ti—q)Ti—o + €

and p2<xt_d) — ZQexp(a2+52xt_d) d -

Z exp(aitBize_a) 1’

exp(a1+512;—q)
S explaitBime—a)+1

where p () =

0,1,2, -

Also, variants of

Y = p(x—a)[Yore + 1Te—1 + - -+ VTi—k] + €



where p(x;_q) = L IS and d =0,1,2,---, are considered.

oxp(atBze 4
The idea of the model with two lagged Xs is to allow the relative importance of

xi—1 and x;_o to vary with the magnitude of X. For example, it may be that when X

is small, the coefficient of x;_5 receives relatively little weight as compared to x;_1.

This model is a simple variant of smooth transition regression(STR) model intro-

duced in the literature(Bacon and Watts, 1971; Granger and Terdsvirta, 1993).

v = (c11+ ¢rove + prixi—1 + -+ + P1pTi—p)

+ (12 + P20 + G121 + -+ PopTi_p) F(21—q) + €1

where F(z;_4) is a continuous function which may be either even or odd and d =
0,1,2,---. For example, F'(x;_4) may be a cumulative distribution function such as
a N(u,0?), or an odd, monontonically increasing function with F(—oc0) = 0 and
F(o0) = 1. Where F(x;_4) changes very sharply, it could be viewed as a threshold

model with 2 regimes.

Here, we focus on the changing behavior of the coefficients rather than the regime
shifting. In this way, the nonlinear estimation could be more efficient and the model
is easily extended to three or more weight models. The estimation with more weights

is implemented easily as well.

The model has worked well in fitting to a string of log transformed daily flows
for the Neuse River in North Carolina in which Y is downstream flow and X is a
flow at an upstream location. In a period of high upstream flow, water would move
downstream faster. On the other hand, the water upstream could take longer to clear

out by virtue of the high volume. Our model allows the data to inform us on this



issue.

Another goal of this paper is to investigate the possibility of allowing the second
moment properties of a univariate time series to change dynamically by using constant
variance innovations but dynamically changing difference equation coefficients. This
also can be accomplished through the use of the logistic function. This gives somewhat
different dynamic effects than the well known ARCH models in that the conditional

innovation variance changes in ARCH models.

ARIMA models are the most common time series models for data fitting and
forecasting. In these models y; represents the observation at time t, u represents the
long term mean and e; represents the innovation, that is, e; is an uncorrelated mean
0, variance o2 sequence consisting of the portion of ¥, that can not be forecast from

the past. The general model is

Y — = P11 — ) — - — Gpra(Yp—p—a — ) = € — bherg — - — Gper_,

where ¢1, -+, ¢pta, 01, - -, 0, are fixed but unknown parameters. They are not ran-
dom. The behavior of the data generated from this model is dependent on the roots
of the “characteristic equation” mP™4 — gymprd=t —...—¢ ., = 0. It is assumed that
d of these roots are 1 and that the remaining p roots are less than 1 in magnitude. If
d = 0, the model is called ARMA and has the property that a convergent weighted
sum of the e; sequence exists which, when used as y; — i1, solves the difference equation

above.

Furthermore, if d = 0, estimates of the parameters based on linear (if ¢ = 0) or

nonlinear least square estimates have asymptotic multivariate normal distributions.



If d = 0, the series is typically referred to as “stationary” meaning that y; — p has
mean 0 and lag j covariance that is a function of j only. If d and ¢ are both 0, the
model is autoregressive of order p,AR(p). Low order autoregressive models are often

used for modeling.

Stationary models have autocorrelations that are bounded by an exponentially
decaying function of the lag number. This quickly decaying correlation seems incon-
sistent with many observed time series. The traditional method of dealing with this
has been to difference the data at least once, and then fit an ARMA model to the dif-
ferences, that is d is taken to be 1 or more. In the class of ARIMA(p,d,q) models, one
linear difference equation with fixed parameters is assumed to govern the behavior of

the series at all times.

Over the past 20 years, various models that allow more flexibility have been in-
troduced. They can be divided into nonparametric, semiparametric, and parametric
groups in general. In the parametric group, where a specific functional form is as-

sumed, usually with some parameters to be estimated, we have

(i) the polynomial model, for example, the quadratic
y=0+07+ Z;CZt + e

where C is a symmetric matrix of parameters. Z; consists of independent ex-

planatory variables or lagged variables,

(ii) the smooth transition regression(STR) model

Y = ﬁ;Zt + F(Zt)ﬁ;Zt + €t

5



where F'is a function for capturing the transition aspect of the model such as

a normal CDF or a logistic function,

(iii) the flexible Fourier form

q
=040 Zi+ 2,CZ + Y {c;sin(j(y Zy)) + djcos(j(v Z1))} + e

=1

which is the polynomial model with sine and cosine terms added,

(iv) neural networks

q

Yy =+ Zﬂﬂ?ﬁ;&) + €

=1

where ¢ is a squashing function, such as a cumulative distribution function or a
logistic function and Z; consists of independent explanatory variables or lagged

variables.

(Granger and Terasvirta, 1993).

In the area of the nonlinear autoregressive(NLAR) models, amplitude-dependent
exponential autoregressive(EXPAR) models were independently introduced by Jones

(1976) and Ozaki and Oda(1978), and have become widely known. The EXPAR

model is
! 2
Z aj + By exp(—0y;_1)|ye—j + e
where 6 > 0.
Also, the autoregressive conditionally heteroscedastic(ARCH) model of Engle(1982)
and subsequent variants GARCH, EGARCH etc, are very popular. These models al-

low the variance to change in a dynamic way by letting the variance at time ¢ satisfy

a difference equation whose innovations are squared residuals.

6



In this paper, we begin by proposing a minor adjustment to the AR(1) model.
This adjustment appears to provide quite a bit of flexibility in terms of the types of

data structure it can provide.

The usual autoregressive order 1 model with mean 0 satisfies

Yt = PYt—1 + €
where p and o2, the variance of e, are constant.

Our proposed model retains the constant innovations variance and uses dynamic
coefficients to model changing variances in the observations. The modification is to

replace p by a modified logistic function of past Y values, namely, the random variable

Yp(Ye-1)-

Yo = VP (Ye—1)Yi—1 + €&

where p(y, 1) = SRAELU2 Here f(y) = y] or f(y) =y, [7| <1, and 3> 0.

The modified logistic function we are using is also called a hyperbolic tangent.

sinhz  exp(2z) —1
coshz  exp(2z) +1

tanh z =

where z = $(a+ f(y)). The range of tanh z is (-1,1).

Notice that |yp(t)| < |y|. So, the model can produce local autocorrelation coeffi-
cients quite close to £1 if |y| is near 1. This allows the model to generate data which is
locally nonstationary in appearence but in the long term tends to be mean reverting.
The model is useful for explaining series which have asymmetric stochastic volatility

or changing amplitude around 0 with a more or less persistent autocorrelation rather

7



exp(a+ff(yt—1))—1
exp(a+Af(yi—1))+1

than an exponential decay. A model where p(y;_1) has the form gives

more interesting features such as mentioned previously, with 2 or more regimes, than

1
exp(atBf(ye—1))+1"

does a model using the form

The model can be considered as a variant of the logistic smooth threshold autore-

gressive(LSTAR) model such that

v = YP(Y—1)Yi—1 + €

exp(a + Bf(yi-1)) — 1
exp(a + 8f(yi-1)) +1

= YY1 — 2VYt—1

Yi—1+ €

1
exp(a + Bf(y-1)) + 1

=+ €.

A gradual transition between the different regimes is obtained by a smoothly changing
logistic function, which changes from 0 to 1 depending on f(y;—;). This can also
be thought of as a very simple form of the single neural network model mentioned

previously.

The STAR model has been used a lot to analysis regime-switching behavior of
series. The STAR model for a univariate y;, which is observed at t =1 —p,1 — (p —

1),--- —=1,0,1,---, 7 —1,T, is given by

Ye = Prae[l — G(sy v, ¢)] + domG (557, ¢) + &

where Ty = (1, Zi’;), with «i‘t — (yt—h e 7yt_p), and 9252 = <¢i,07 (bi,l; cee (bi,p)/;i = 1, 2.t=
1,---,T. The model allows exogenous variables zyy, - - -, 2x; as additional regressors.

The ¢’s are assumed to be a martingale difference sequence with Ele;|€;_1] = 0 and

E[E?mtfl] = Uz-Qtfl = {ytfla Yt—2," s Y1—p-1, ylfp}-
The transition function G(s:;7,c¢) is a continuous function that is bounded be-

8



tween 0 and 1. Usually, the logistic function

G(st;7,¢) = (1 +exp{—y(s: — C)}>_1

where v > 0 and the exponential function

G(si;7,¢) =1 —exp{—(s; — 0)2}
where v > 0 are used. s; could be a lagged endogenous variable, an exogenous

variable, a time trend or a function of them. The resultant models are called the

logistic STAR(LSTAR) and the exponential STAR(ESTAR) model respectively.

The conditions under which STAR models generate series that are stationary are
not well known(Chan and Tong, 1986; Tong, 1990; Franses and van Dijk, 2000). The
stationarity and ergodicity of the series are generally pre-assumed. Testing unit roots
in TAR models has been discussed in Enders and Granger(1998). Tong(1990) has
proved that the nonlinear least square(NLS) estimates of the stationary and ergodic
LSTAR model are consistent and asymptotically normal. Specification, estimation,
and evaluation of STAR models are introduced in detail in Terdsvirta(1994) and

Eitrheim and Terdsvirta(1996).

Recently, various extensions of the basic STAR model have been suggested. The
multiple STAR(MRSTAR) model is obtained by encapsulating two different two
regime STAR models(van Dijk and Franses, 1999).

yr = (0171 — Gi(s16m, 01) + G Gr(s163 715 €1)][L — Ga(sar5 72, 2]
+ [¢§xt(1 — Gi(s15m,¢1) + ¢£L$tG1(31t§ T, 1)|Ga(S215 72, ¢2) + €
The model allows for a maximum of four different regimes. It can be extended to

contain 2™ regimes with m > 2.



The flexible coefficient STAR model(Medeiros and Veiga, 2000) can be derived
from the MRSTAR. It is obtained by assuming the transition variables si; and so
are linear combinations of lagged dependent variables, i.e., s; = ;%7 = 1,2, and
imposing the restriction ¢ ; — ¢2; — ¢3; + ¢a; = 0 for j = 1,---,p. The model can

be rewritten as
Ye = op'we + 012G T 71, €1) + 05 0 GoahTy; 72, ¢2) + €
where ¢f = ¢1,07 = ¢ — ¢1 and @5 = ¢3 — ¢1(van Dijk, Terdsvirta, and Franses,

2002).

If one of the transition variables is taken to be time ¢, MRSTAR leads to time-
varing STAR(TVSTAR) model. The model is useful for analyzing the time series
which display both nonlinearity and structural instability (Franses and van Dijk, 2000;

van Dijk, Terdsvirta, and Franses, 2002).

In addition, the fractionally integrated STAR(FISTAR) model which combines the
features of long memory and nonlinearity into a single model has been suggested(van
Dijk and Franses, 2000) and STAR-GARCH model where the errors have GARCH

structure have been used for forecasting(Chan and McAleer, 2002).

We pay attention to the first order LSTAR model

1
yt - ¢2yt—1 + (¢1 - ¢2)yt—1exp(a —I— ﬁf(yt_l) + 1) + €t
where ¢; = —v and ¢ = v with |y| < 1. A series with a strong persistent auto-

correlation like a long memory process is generated when |7y| is near 1 and we prove
ergodicity of the series, and consistency and asymptotic distributions of parameter

estimates for this model.

10



We can incorporate serially correlated errors into the model easily and still get

the properties above.

v = YP(Ye-1)Yr—1 + N,

and

M= 01Me—1 + -+ + OpM—i + €.

NLAR(1) with serially correlated errors can be displayed as a LSTAR with many

regimes.

Usually, for threshold models, it is not easy to estimate many regimes at once
including the identification of order p and the delay factor d. The parameters of
our suggested model can be easily estimated by using the Gauss-Newton algorithm,
and one-step-ahead prediction is easily obtained from the fitted model. There is a
possibility that the usual STAR fitting process, because of its generality, does not work
well for the data generated by our suggested NLAR models(Granger and Terdsvirta,

1993; Terdsvirta,1994).

Estimation problems(non-convergence) are fairly common for some parameter set-
tings. However, we find that setting  set to a value near, but less than 1 gives good
convergence and provides good prediction mean square errors, even if the true = is
not near 1. It will be shown through simulation that the fitting is fairly robust with

respect to the assumed 7.

Finally, we deal with the model with v = 1.

v = p(Y—1)yi—1 + €

11



where p(y;—1) = zggzig;gzj;%ﬁ When the parameter space of || is not restricted to

|v| < 1, e.g., v = 1, it is not easy to obtain the theoretical distribution of parameter
estimates. In fact, it appears that no single distribution applies, even for large sam-
ples, across the full range of possible («, 3) values. The Monte Carlo study suggests
that similar distributional results to those of parameter estimates with |y| near but
less than 1 are obtained using only those series which reject a unit root, and we find
a region in which the normal approximation works reasonably well. The region is
analogous to the stationarity region in standard ARIMA models in which standard
behavior of estimators seems to hold. This extension to the case 7 = 1 distinguishes

our investigation from other nonlinear approaches of which we are aware.
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Chapter 2

Transfer function type models

2.1 some nonlinear models

We will study some time series models of the transfer function type here. A simple

case to begin with is

Yo = p(Ti—1) -1 + & (2.1)

where p(z,_1) = In this model, z; could be a sequence of fixed values

1
exp(at+Bari_1)+1"
or a random process. The e; are independent draws from a N (0, ?) distribution and
are independent of X. Here, v is a scale adjustment. An intercept could be added
and z;_; replaced by (z;_; — p). Notice that p(x;_1) depends on the explanatory

variable X (see Figure 2.1 and 2.2). This model can be estimated by nonlinear least

squares.

Let an estimator of the unknown 6y be the 6 that minimizes @, (), where Q,(0)

13



is a function of the observations and 6. The least squares estimator of 6, is the 6 that

minimizes

S

Qui(6) = z<y 1)

where f(0) = yp(xi—1)xi—1. Thus, at 6 = 6,

The function @, (0), up to a scalar constant, is the negative of the logarithm of the
likelihood in the case of maximum likelihood estimation for the model with normal

independent e;.

The Gauss-Newton algorithm gives a one step adjustment based on an initial

estimate éa.
Olar) = 0 + (Er () Fur(6)) " Frn(62)e
where F;(0) is the k dimensional vector of first derivatives of f;(0),t =1,2,---,n, and
Far(0) = [F{(0), F5(0), -+, F,(0)]
is the n x k matrix of first derivatives. é, = éa(éa) is a vector of residuals using

current estimates.

For 0" = (v, «, 3), Fnx(6) will have the form

p(z0)z0 —vp(z0) (1 — p(w0))wo —vp(z0) (1 — p(w0))x}
p(z1)z1 —yp(z1)(1 — p(x1))71 —yp(z1)(1 — p(x1))a?
2
2

p(x2)x: —yp(x2)(1 = p(x2))22 —yp(x2)(1 = p(x2))x

p(@n—2)tn—2 —Vp(@n-2)(1 = p(@n-2))tn-2 —Vp(¥n-2)(1 - p(zn-2))®
p(@n-1)tn-1 —vp(@n-1)(1 = p(@n-1))tn-1 —7p(xn-1)(1 = p(zn-1))z

S I

14



So, F!,(0) Foi(6) will be

n p2(ze_1)z?_ | o2 (zp—1)(1 — plze—1))z?_ v (xp—1)(A = p(ze—1))z_|
D B LR Y e A R LR oY) L A CTRS [ C A
t=1 o2 (wr—1)(1 = plar—1))2s_y A2 (1)1 — p(me_1))?ab_ ¥2p%(me—1)(1 — p(ze—1)) 2w},

We need F,;(0) to be nonsingular everywhere in some neighborhood of the true
parameters. Obviously, we have to exclude the possibility of v = 0. If 5 =0, F,x(9)
is singular and it violates the rank qualification(Gallant, 1986). Thus, in practice,a
failure of the estimates to converge could be caused by v or 3 being 0. When /3 is
0, p(x;_1) is constant and it becomes impossible to break the product of constants
vp(z¢—1) into meaningful components based on observed data. Column 2 of F,x(6)
becomes a constant multiple of column 1. Of course, we must also assume that X
takes on enough values so that X and X? are not linearly dependent. Note also that,
as a practical matter, the logistic function, for certain o and (3, and range of X,
can be almost flat(i.e., constant) so that an analyst should always hold the constant
coefficient model as a possible model when non-convergence is encountered. Threshold

models with 2 regimes could be considered as competitors when 3 approaches infinity.

When § # 0, the matrix will satisfy the rank qualification. Thus, there will be

1 v
nnk

() Fx(0) and a limit matrix provided + 377, z]_, converges for j = 2,3, 4. Mak-
ing this assumption, we write the limit as
N
B(6o) = limy — Fyy(6o) Fruk (o)
and assume that B(6p) is nonsingular where 6y is the true value of the parameter 6.

15



Thus, we are assuming 3y # 0.

Also, in our model, we have only one local minimum at 6 = #,. This is called

identification condition in Gallant(1986). For the uniqueness of 6y, we show

S(0) = lim = S°(£(6) — fu(60)?

n—oo n,

has a unique minimum at 6 = 6.

Note

1 1
exp(a+ Bz)+1  exp(ag+ Box) +1

only if

exp(a + fz) + 1 = exp(ap + Fox) + 1.

Thus, if 8 = By, @ must equal «p. If § # [y, then = must be %:ﬂll’ that is, the curves

cross at only one z. So, if v = 7, the curves,

1
exp(a+ fz) + 1

f(x) =~

and

1

folw) =0 exp(ap + for) + 1

cross at only one z, that is, the curves are equal only if @« = ay and 3 = (3y. Note if

v =7 = 0, then they are equal even if o # «, etc.

Setting f(z) = fo(z), we have, assuming -y # 0,

v expla+ fr)+1

Yo explag+ fox) + 17

16



On the left is a constant. On the right is a function of x which can only be
constant if &« = ag, and § = 5. Thus, we must have a = «g, 7 = (3, in which case

the right is the constant 1 and v = 7.

In conclusion, under all combinations of 6 = (v, «, 3) that have 3 # 0 and 7 # 0,
S(0) = 0 is obtained only when o = g,y = 70 and 3 = . Hence a unique minimum

exists at 8 = 6.

To begin with, we suppose x; to be a sequence of fixed values or conditionally
fixed as in classical theory. Under the conditional approach, x; is ancillary in the
sense that the joint distribution of x; does not depend on model parameters. In the

case of fixed X, it is reasonable to assume that |z;| < ¢ < o0.

The consistency of 6, is obtained using theorem 6 in Jennrich(1969). With ,
fixed and e; from an IID (0, 0?), if a unique minimum exists at § = 6, then 6, is a

strongly consistent estimator of 6.
We quote theorem 6 from Jennrich(1969) in our notation.

Assume

(i) A sequence of real valued responses y; has the structure

Yo = fi(0o) + e

where the f; are known continuous functions, and 6, is in a compact subset ©

of a Euclidean space and the e; are IID (0, ?).

17



(ii) The tail cross product [f, f] of f = (f;) with itself exists and

[(£0) = f(00))*aP ()

has a unique minimum at § = 6,. We define [f, f] and = below.

Let 0, be a sequence of least squares estimators. Under assumptions (i) and (ii),

A

0, and 02, are strongly consistent sequences of estimators for 6y and o?(Jennrich,

1969).

For the assumptions, let z = (z;) and y = (y;) be two sequences of real numbers
and let (z,y), = n~ ",z If (z,y), converges to a real number, its limit (z,y)
will be called the tail product of x and y. Let g and h be two sequence valued
functions on ©. If (g(a), h(5))n — (g9(), h(F)) uniformly for all @ and § in O, let
[g, h] denote the function on © x © which takes < «, > into (g(«),h(5)). This

function will be called the tail cross product of g and h (Jennrich, 1969).

Jennrich(1969) proved if § and h are bounded and continuous functions on X x ©,
gt = §(z4,0) and hy = fNL(:ct, 0), where 1, xs,- -+ is a sequence of vectors in X whose

sample distribution function F), approaches a distribution function F' completely, then

(9(@), b)) = [ Gz, @)h(w,a)dF (2)

uniformly for all & and § in ©. Hence the tail cross product [g, h] exists.

In our case, f is a bounded and continuous function on X x © where z; is a

bounded sequence of real numbers and |y| < M < oc.

|f:(0)| = |vp(@i—1) x| < |yxi—a| < |Yl|lze-a]| < oo

18



We assume the sample distribution function F,,(x) approaches a distribution function
F(z) completely. Thus the tail cross product [f, f] exists. With the identification con-

dition shown before, the assumptions in Jennrich’s theorem are all satisfied. Hence,

~

0, is a strongly consistent sequence of estimators for 6.
For the asymptotic distribution of §,, theorem 7 in Jennrich(1969) could be used.
In addition to assumption (i) and (ii) from theorem 6, assume
(iii) For 0 = (01, -,0), the derivatives [£{"(6),---, £ (0), 'V (0), -, £(0),

ft(kl)(Q), e ft(kk)(ﬁ)] exist and are continuous on © and that all tail cross prod-

ucts of the form [g, h] where g, h = f, fU), fU") exist.

(iv) The true parameter vector 6 is an interior point of © and the matrix B(6p) is
nonsingular, where B(6y) = lim, o = Fy,. (60) Fri(60).-
Then, under assumption (i),(ii),(iii) and (iv),
n'(8, — 6,) - N[0, B~ (6,)0?]
(Jennrich, 1969).
We have already shown assumptions (i) and (ii) are satisfied.

With L; = a + (Bx;_1, we have

ofi(0) 1

S S

ofe exp(Ly)

da (L) + 12"
oM _ el —ew(L),
0a? (exp(Ly) +1)3 b
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ofi(0) exp(Ly) 2

o5~ exp(Ly+ 12
0f(0) __ exp(L)(1 —exp(Ly)) 4
op? oL+ )7 Y
Jf:(0) _ exp(Ly) .

OyOa (exp(Ly) + 1)2 b

0f:(0) _ exp(Ly) 2

oatele] (exp(Ly) +1)2770

OB __ewlL)( (L) ,
000 (exp(Ly) + 1)3 =1

where the derivatives are not 0.

All derivatives are bounded and continuous functions where x; is a bounded se-
quence of real numbers and |y| < M < oco. Thus all tail cross products exist and
assumption (iii) is satisfied. Assumption (iii) is needed to get asymptotic normality
of 6, using the central limit theorem. For assumption (iv), our conditions v # 0 and
B # 0 ensure the existence of a nonsingular B(fy). Hence, according to theorem 7
in Jennrich, the sequence of least squares estimators will be asymptotically normally

distributed.

Fuller(1996) showed one-step Gauss-Newton estimator has a limiting normal dis-

tribution. We introduce theorem 5.5.4 in Fuller(1996) in our notation.

We write the model as
yr = fr(Oo) + e

where the e; are IID (0, 0?) random variables or are (0, 0?) martingale differences.

For the model, the vector sequence {[F}(g)e;, €]} satisfies
E{[Ft(e())et’ €t, 6?} |At71} = [07 07 02]7
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E{|[Ft(6’0)et,et]|2+”|At_1} < MF < 00,

E{[F}(00)F(0)e})| A1} = F}(00) F(6o)c
a.s., for all ¢, where 0 > 0 and Mp is a positive constant.

Ay is the o-field generated by

{X17X2a vy Xty €1, €2, .00y et—l}-
xX¢ could be fixed or random.

Let 0 be the one-step Gauss-Newton estimator of 6, given by

0=0+ (Frlbk<é)Fnk(é))_1FJLk(é>é
Assume

(i) There is an open set S such that S is in 6,6, € S, and

p lim ~F(0)F(0) = B(0)

n—00 N,

is nonsingular for all # in S, where F'(6) is the n x k matrix with ¢j-th element

given by ft(j ) ().

(i) plim,—o +G'(0)G(0) = L(#) uniformly in 6 on the closure S of S, where the
elements of L(f#) are continuous functions of # on S, and G(6) is an n x (1 +

k + k% + k3) matrix with ¢-th row given by
10, 10, 170, £ 0), -+ 1106),
t(k1)<9)7 ) ft(kk)(9)7 t(lll)(e)a T t(kkk)og)}
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where fU )(9), £U 7")(9), £l TS)(Q) denote the first, second and third partial deriva-

tive of f;(0) with respect to j, jr, jrs-th element of 6.

(iii) The initial estimator of 6y, say, é, satisfies (é—@o) = Op(an), where lim,,_,o a,, =

0.
(iv) n-1/2 Sy Fl(00)eq LN N[0, B(6p)o?] and a? = o(nfl/Q).

Then
0— 0y = (F'(00)F (00)) *F'(6o)e + Op{maz (a2, a,n %)}
and
n'’2(6 — 6y) —% N0, B (6)0?].
(Fuller, 1996).

We know 6, is a strongly consistent estimator of 6y. Now, we assume the initial
estimator to be consistent where (§ — 6) = O,(n~/?)(condition (iii)). An initial
consistent estimator can be obtained through a random search of n values of 6 for

the one 0 which minimizes @Q),,(#)(Jennrich, 1969).

In our case, f;(0) = vp(x4_1)xs—1 is continuously differentiable with respect to 0,
and F),(0)F,;(0) is nonsingular except for the case 7 = 0 or § = 0. We assume the

true 6,6y has v # 0 and 8 # 0 as well.

As before, we suppose x; to be a sequence of fixed values or conditionally fixed as

in classical theory. Then, all sample variation enters only via the random variables
e, ea, e}
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Under this assumption, F;(fy) has (conditionally) all fixed values and the condi-
tions for the model are satisfied with e; from a N(0,0?) distribution. E(|e;[*™) <

M < oo is enough for e;.
Specifically,
F/(6o) = [po(xi—1)i-1, —y0po(xi-1)(1 = pol(i—1))2s1,

—0p0(ze-1)(1 — po(ze—1))x} ]

1
exp(ao+Boxt—1)+1"

where po(xi_1) =
Thus, under given A;_1,
E{[F,(00)es, e, €2]| A=}y = 0,0, 0.
E{|[Ft(00)et,et]|2+”|At_1} = E{[Pg(ﬂft—l)$?—1
+ %000 (1) (1 = po(i-1))’a7,

+ g (1) (1 — polz—1))’xy,

+ 1](24-1/)/2 [6?](2+V)/2 |At—1}

= [pg@’tfl)xil + ’ngg(xtfl)(l _ PO(ﬂft71))2xt271
+ 73/7(2)(%—1)(1 — po(me_1)) i | + 1](2+u)/2

E{[ef]*2| A1},

With E(|e,|>™) < M < 0o, E{|[Fi(60)es, e A1} < Mp < 0.

Now, for condition (i), plim, . ~F'(0)F(0) = B(f) =

n
1 pe(we—_1)a?_, Yopg(zt—1)(1 — po(zt—1))a?_, Yorg(ze—1)(1 = po(ze—1))ad_,
— Yora(ze—1)(A — polze—1))z? | Epd(ze—1)(A — polze—1))?22 |  ~A2pa(zi—1)(1 — po(zi—1))%z3_,
n Yorg(@r—1)(1 — po(ze—1))as_;  aps(ze—1)(A — po(ze—1))223_  A2pE(ze—1)(A — po(zi—1)) 2z,
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1
exp(ao+LPori—1)+1

where po(z4_1) = . In the case of fixed Xs, it is reasonable to assume

that |z;] < ¢ < oo, and that n=' Y aJ,j = 2,3,4, converges to some appropriate

nonzero constant.
Condition (ii) is also satisfied with X fixed.

With L; = a + Bx;_1, we have

of(0) 1
oy exp(Lly) + TR
3ft_w) _ exp(Ly) 2
da Tlexp(Ly) + 127"
0f(0) _ _veXp(Lt)(l —exp(Ly))
da? (exp(L) +1)* "
0f(0) _ ¢ exp(Ly) .
oo’ ’y(exp(Lt) +1)* b
af(0) _ exp(Ly) 22
toJ5] (exp(Ly) +1)2741
0f(0) _ _veXp(Lt)(l —exp(Ly)) 5
o3 (exp(Ly) +1)2 "7
af(6) _ 9 Cexp(Ly) A
033 (exp(Ly) + 1)* =1
of(6) _ exp(Ly) .
Oyoa (exp(Ly) +1)2° 7"
of(6) _ exp(Ly) 2
RRGE (exp(Le) +1)27 7V
0f0) _ _veXp(Lt)(l —exp(Ly)) »
Dadf3 (exp(Ly) + 1)3 =
af+(0) _ Cexp(Ly)(1 — exp(Lt))m
Da2dy (exp(Ly) + 1)3 b
0f+(0) _ Cexp(Ly) 2
00203 (exp(Ly) + 1470
0£u(0) _ _exp(L)(1 —exp(Ly)) 4
0620~y (exp(Ly) + 1)3 =
0f(6) - C'exp(Ly) 3
0320a (exp(L;) + 1470
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ofi(0) 2exp(Lt)(l — exp(Lt))QI72

00203 (exp(Ly) +1)3 "~

where the derivatives are not 0 and where C' = 1 — 4dexp(L;) 4+ exp(2L;). Thus we
have L(6) such that plim,_. 1G'(§)G(#) converges uniformly in 6 on the closure S

of S as in condition (i). All tail cross products exist for each term in the matrix.

To show condition (iv) is satisfied, we need to show that for any k-dimensional

vector A\, A # 0,

n k )
)\/[”_1/2F7/zk(90)6n] = Zn—l/Q{Z Ajft(])(eo)et}
t=1 j=1
converges in law to a univariate normal distribution. Fuller(1996) proved it using

theorem 5.3.4 for general nonlinear model.

Theorem 5.3.4 in Fuller(1996) gives a central limit theorem for martingale differ-

ences as follows.

Let {Z;, : 1 <t <n,n > 1} denote a triangular array of random variables defined
on the probability space (2, A, p), and let {A;, : 0 <t <n,n > 1} be any triangular
array of sub-o-fields of A such that for each n and 1 <t <n, Z;, is A;,-measurable
and A;_4, is contained in A,. For 1 <k <n,1<j<n,andn >1, let

k
Skn = Z Ztn7
t=1
0 = B{Zp|Ai 1},

tn

J
2 _ 2
V;'n - Z5tn’
t=1

and
sy, = E{V}}.
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Assume

(1) E(Zin|At—1.n) = 0 almost surely for 1 <t < n,
(i) V252 251,

nn-nn

(ii) limy—oo 8,0 35— E{Z2,1(1Zjn] > €Spn)|At—1n} = 0 for all € > 0. I(A) denotes

the indicator function of a set A.

Then, as n — oo,
571 S — N(0,1)

(Fuller, 1996).

Note that n='/2F’, (6y)e, is already normal with e, from an IID N(0,0?) distri-

bution. We quote the proof in our notation. Let

k .
Ly = n_l/Q{Z Ajft(J)(Qo)et}
j=1
and let A;, be 4;,0 <t <n,n>1. Then
E{Ztn|At71,n} =0

almost surely and

V2 =Y E{Z} | A1} = 0*Nn" Flu(00) Fai(60)) M.
t=1

Also

Var{n’l/QXF;Lk(@o)en} = NE{n 'F.,.(00) Fue(00)] 3
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and

Sun = E{Vin} = * N E{[n™ Fo(60) Foi (60) 3 A

We have

. 1 / . 1 /
plim —F), (00)Fnp(00) = lim —E{F,,.(60)F.x(60)}

= B(th)

from condition (i).

Thus,

o 2(V2 —s2) = N[n ' E L (00)Fu(60)]A
— NE{[n""Fy(00) Fur (60) I A
converges to zero in probability.
52 — a?NB(0g)A >0

nn

and

as n — oo by the Slutsky theorem.

Now for arbitrary € > 0,

Sme S E{Z31(|Zjn| > €5nn)|Ar—1.0}
7=1
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n

502 > €8u) B Z3al 7 1 Zjal 2 €0l Av-1}

nn

IN

j=1
< E_VS_(2+V)TL—(1+V/2)

— nn

n k ) »
xS B{| SN O0)er] 11 7] > )| Aur)
t=1 j=1

n k ) »
< E—VS;7§2+V)7,L—(1+V/2) ZE{' Z)‘jft(])(eo)et’2+ |At_17n}

t=1 j=1

671/5;17&2+V)n7(u/2) Mp

IN

using the previously defined bound M, and

n—oo

lim 5,:3 Z E{anl(|Zjn| > €Spn)|At—1n} =0
j=1
for all € > O(Fuller, 1996).

Hence, the conditions for theorem 5.3.4 in Fuller are all satisfied and

n~ Y23 Fl(6p)e, — N[0, B(6)0?).

t=1

Thus, according to Fuller’s theorem, we can conclude that the asymptotic distri-

bution of 0 converges to a normal distribution.
n'2(6 — 6y) % N[0, B~ (6,)0?]

where B(6y) =plim,, %Fyllk(e[))Fnk(QO)-

If we know ; is a finite random sample from a (0,0?) distribution or a strictly
stationary and ergodic sequence such as a a finite order Gaussian ARMA series, we
can obtain B(6y) that has the form of an expectation.

The consistency of 6§, can be shown using lemma 5.5.2 in Fuller(1996), which is
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more general than that of Jennrich(1969). We state the lemma in our notation for
completeness.

Let 0, in © be a measurable function that minimizes an objective function Q,(6)
on O almost surely. In addition, given (2, A, p) and a compact set €2 that is a subset
of R¥ let Q, : 2x© — R be arandom function continuous on © a.s., forn = 1,2, - - -.

Suppose there exists a function Q,, : © — R such that

Qn(0) — Qu(0) == 0
uniformly on © and assume that for any 7 > 0,

lim inf { inf [Q,(0) — Qn(e())]} > 0.

n—00 L 0-09>n

Then 6, — 6y 25 0 as n — oo(Fuller, 1996).
The first condition is related to a uniform law of large numbers and the second
condition is the identification condition.
Where Q,,(0) =n~t " (y: — £:(0))?, a natural choice for Q,(6) is
Qn(0) =n~" Y Elly: — £:(0))*]
t=1

(Fuller, 1996).

Here,

M-

Qu(0) = 0" B[y — £i(80) + £i(60) — £(0))?]

H
Il
—_

-1

I
3
NE

[E(e}) + 2B (e fi(6) — £(0)) + E((£i(6o) — £2(60)))]
((f(60) — £:(0))%)

-

= 0‘2—|—

where X and e are independent.
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Now
Qu(8) = n' 32 (e = fillo) + fulbo) — £i(0))’]

= Y[+ 2l fulb) = F(0) + (F00) = £(0))7]

t=1

Note that if z; is a finite order Gaussian ARMA series and ¢, is IID N (0, 0?), then

x; and e; are jointly strictly stationary and ergodic. So, any measurable function of

the series is also strictly stationary and ergodic(Stout, 1974;Taniguchi and Kakizawa,

2000). We quote theorem 1.3.3 from Taniguchi and Kakizawa(2000) in our notation.

Suppose that a vector process {Z : t € Z} is strictly stationary and ergodic, and

that there is a measurable function ¢ : R® — RF. Let Yy = ¢(Z¢, Z¢_1,---). Then
{Yy :t € Z} is strictly stationary and ergodic.

Thus €2, e;(f:(60) — f:(0)) and (f;(6o) — f:(0))? are strictly stationary and ergodic.

In addition, the ergodic theorem says if { Yy : t € Z} is strictly stationary and ergodic

and F||Y¢|| < 0o, then

1 " a.s
_ZYt —= E(Yy)

t=1
(Stout, 1974; Davidson, 1994; Taniguchi and Kakizawa, 2000).

So,
—1262 25 Be?) = o?
with E(e2) < oo.
E(le:(f:(60) — f:(0))])
= E(led]]f:(60) — f:(B)])
= E(le)E(|fi(00) — fu(0)]).
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With E(e?) < oo and E(]x]) < oo,

E(lei(fe(00) — f:(0))]) < o0.

Thus, by the ergodic theorem,

n z (o) — 1:(60)) 5 Een(fu(B0) — 1:(6))) = 0.

In this way, with F(2?) < oo,

nzf (80) — F(0))2 5 E((f(00) — £(0))?)

as well.

That is,

Qu(0) =n"" Xn:(yt = [l(0)) == Qu(0) = o® + E((fu(60) — f())?).

t=1

Hence,

Qn(e) - Qn(e) % 0.
To show

lim inf { inf [Qn(0) = Qu(6)]} >0

n—o0 L 6—60|2n

we notice that

Q) = Qulth) = 17> B[(y = F(O)F =~ 100
- ilE((fAeo) 10,

Thus, if a unique minimum exists at # = 6y, the condition is satisfied. Hence, 0, —
0y =2 0 as n — o0.

For the asymptotic distribution of én, we use Fuller’s theorem 5.5.4 here again.
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In this case, the variations enter into Y through both X and e. The Xs are

assumed to be independent of the errors and A;_; is generated by {x1, z9, ..., 21,

€1,€9, ..., et,l}.
Given A;_; and ¢; from a N (0, 0?) distribution, the vector sequence {[F;(6p)es, €]}

satisfies

E{[Fy(6)er, er, €7]| Ai—r } = [0,0, 07,
E{|[F,(00)es, e[ A1} < Mp < oo,
E{[F/(00) Fy(00)ef]| Ae—1} = F{(00) Fy(60)0”
a.s., for all ¢.
For condition (i), B(f) is obtained by the ergodic theorem.
If z; is an IID sequence or a strictly stationary and ergordic series, then any
function of the series is also strictly stationary and ergodic.
So, by theorem 1.3.3 in Taniguchi and Kakizawa(2000), we know p*(z;_1)z2 |,
¥} (201) (1 = plria))aiy and ¥*p*(wi-1)(1 — p(wi-1))*x] -, where j = 2,3,4, are
strictly stationary and ergodic.

Also,
PP (@)a | < |27 ).
For j = 2,3, 4,

PP (@) (1= plaa))ada| < Il

V2P (e (1 = pla))aly| < |21l
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Assuming a finite 4th moment for X, all terms in F), (0)F,x(f) converge to finite
expectations by the ergodic theorem.
Thus,
]- 1 a.s. i
n ZPQ(xtfﬁmg—l - E[Pz(%fl)c’d—l]'
t=1

For j =2, 3,

%E:L;VPQ(xt—l)(l - P(xt—l))xz—l == E[7p2(xt_1)(1 - p(xt—I»xg—l]u

and for j = 2,3,4,

n

>0 (@) (= plae-n)’ap g == Bly*p*(wim1)(1 = plae-1))a] ).

t=1

S|

Recall that our assumptions imply F(¢(z;-1)) is a constant function of ¢.

This shows that L F, (6)F,.(0) =

12 p2(ze_1)z?_ | o2 (zp—1)(A — plze—1))z?_| ¥ (xe—1) (A = p(zp—1))z_|
= | P00 st PR (- s )R AP (1 el 1)
ni,3 Yo% (e—1) (A — p(ze—1))zb_ Y22 (zem1) (1 — plze—1))?ad_ | 2p% (we—1)(A — p(ze—1)) %2},

converges to

2 (@e-1)(1 = plwe—1))z;_y V2P (@)1 = plai—1)’w;_; V2P (we-1)(1 — p(we—1)) 2],
Yo% (x—1) (A — p(ze—1))zb_; 2% (ze—1) (1 = p(ze—1))?aP_ | A2p%(we—1) (A — p(z¢—1)) 2},

P2 (zp—1)xi_, v (wy—1) (A — plzg—1))z?_; o2 (ze—1)(A — plze—1))zs_,
E
in probability and this is continuous at 6.
Using theorem 1.3.3 from Taniguchi and Kakizawa(2000) and the ergodic theorem,
condition (ii) is also obtained uniformly in 6 on the closure S of S with a finite 8th

moment for X.

Condition(iv) is satisfied irrespective of X being fixed or random.
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Hence, according to Fuller’s theorem, we can conclude that the asymptotic distri-

bution of 0 converges to a normal distribution.
n'2(6 — 6y) % N[0, B~(6,)0?]

and B(fp) has the form

pe(ze_1)a?_| Yorg(ze—1)(1 = po(ze—1))x?_, Yorg(ze—1)(1 — po(xt—1))as_,
FE Yorg(e—1)(1 — po(zs—1))xi_1  varg(e—1)(1 — polwe—1))2 2} | v3pg(ze—1)(A — po(ws—1))2zs_;
Yorg(e—1)(1 — po(zs—1))ad_|  apa(ze—1)(A — polze—1))225_ | 43pE(ze—1)(A — po(zs—1))2z]_,
1
exp(ao+Bozi—1)+1

where po(zy_1) = (see section 2.2).

Serially correlated errors are easily incorporated into this model. The approach
is to assume the process {n;}° _ generating the realized disturbances {n;}; is

covariance stationary in the following model.

yr = f(x;0) +

and

Ne = 01Me—1 + ++ + Ok + €.
Then, we get the autocovariance function of the process
v(h) = cov(ne, Netn)

where h = 0,£1,£2,---.

Now, with known I',,, we would estimate 6y by the value of 8 which minimizes

ly = FO)T, Ty — f(0)]

where y = (y1, 92, -+, yn)'(n x 1) and

f0) = [f(z1;0), f(22;0),- -, fan; 0)]' (n x 1).
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If we suppose that I';! can be factored as I';' = ¢P’P where c is scalar and we

put z = Py, h(0) = Pf(0), and e = Pn, then the newly created model will be
z=nh(0)+e

where F(e) = 0 and Var(e) = oI.

For example, if the errors have AR(1) structure with coefficient ¢, then

VI—92 0 0 0 0 0

) 1 00 0 0

pP= 0 510 -~ 0 0
0 0 0 0 51

can be considered.
Here, z; = Py, has the form
V1—d%y

—0y1 + Y2
—0y2 + Y3

_5yn—2 + Yn—1
_53/7171 + Yn

35



and hy(0) = Pf;(0) has the form
V1= 6%yp(xo)xo

—0yp(wo)wo + yp(21) 71
—6yp(w1) 71 + Yp(T2)T2

—07p(Tn-3)Tn—3 + VP(Tn_2)Tn_2
—07p(Tp—2)Tp—2 + Yp(Tn-1)Tn-1

Now the estimators are the minimizer of

S [z — 0vp(w—0)Ti-2 — Yp(T4-1)T4-1]?
t=2

in

3|>—‘

with resepct to 0 = (v, a, ) with ¢ known. We can ignore the first observation. Then
the model goes back to the standard case. This justifies the nonlinear least squares
estimator and associated inference procedure(Gallant, 1986). The method would be
the general nonlinear least squares estimator.

In reality, ;! is not known. It can be replaced by f; ! which would be obtained

applying an AR(p) model to estimated residuals(Gallant and Goebel, 1976; Gallant,
1986). Gallant(1986) provides the theoretical justification for this approach. Then
the model is estimated using the Gauss-Newton algorithm with f; L

The estimation procedure may be iterated getting autocorrelation in residuals
from the previously fitted model. The asymptotic properties of the estimator by
iteration do not differ and n=/2(f, — 6,) is asymptotically normally distributed under
appropriate regularity condition(Gallant and Goebel, 1976).

The consistency of 6,, is still obtained because a unique minimum exists at 6 = 6.

Note that we assume 0 < § < 1. Using theorem 5.5.4 in Fuller again, we show the
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one-step Gauss-Newton estimator converges to a normal distribution.

Let H;(0) is the k dimensional vector of first derivatives of hy(0),t = 1,2, n,

and

Hoi(0) = [Hi(0), H(6), - - H,(0)]

is the n x k matrix of first derivatives.

Now the Gauss-Newton estimator will be

= 0+ (H(0)Hu(0) " Hyy(0)e

St

= O+ (F (O, Fu(0) " F@)r, e

We assume z; is conditionally fixed and the error structure 7 is covariance stationary.

To begin with,

E{[Ht(GO)etv €t, 6?] |At—1} = [07 Oa 0-2}7
E{|H: (00)er, e[| Arr} < My < oo,

E{[H;(60)Hy(00)ei]| Ar—1} = Hy(00) Hy(60)0™

a.s., for all ¢.

Assuming the errors follow an AR(1) process with parameter 0, and ignoring the

first observation,

H(6y) = [~0po(ze—2)Ti-s + po(Te—1)Te-1,
—S”Yopo(xm)(l — po(t—2))xi—2 + Yopo(x1—2)(1 — po(@1—2))Ti—2,

—70p0(w1-2) (1 = po(we—2))a7_5 + Yopo(we-1)(1 = polws-1))77 ]

_ 1
where po(z;_1) = TR

37



A;_1 is generated by {ej,es, -, e, 1}, and under a given A;_;, the assumptions
for the vector sequence {[H;(6y)es, €]} are all satisfied with e; from a N(0,0?) distri-
bution.

Now condition (i) and (ii) are satisfied where

p lim lH’(@)H(@) = plim l(ﬁF(e))’(PF(@))

= plim lF’(@)P’PF(&)

n—oo n,

= plim %F’(@)f‘lF(Q)
= B(9)
where I'™! is an n x n matrix and
plim SI6)J6) = plim G OG0
= L(0)
where J(0) is an n x (1 + k + k? + k*) matrix with ¢-th row given by
[e(0), 1 (0), - 1 (0), BV (6), - ™ (0),
B (0), - ™ 0), MY (0), - R (0)].

For condition (iv), the proof is exactly the same as that of the standard case

except that
: (47)
Ztn = n_l/2 { Z )‘jhtj (00)€t] )
=1

E{Ztn|At—1,n} =0
almost surely and

VnQn = Z E{Zth|At—17N} = UQ[H_IFr,zk(QO)fT:IFnk(QO)]‘
t=1
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Thus, according to theorem 5.5.4 in Fuller, the asymptotic distribution of 6 con-

verges to a normal distribution.
n'2(6 — 6y) —% N[0, B (6)0?]

where B(f) =plim, oo L F/, (00)T " Fui (60).

Before building a nonlinear model, it is advisable to find out if indeed a nonlinear
model would adequately characterize the relationship under analysis. Various nonlin-
earity tests have been suggested in the literature(Tong, 1990; Granger and Terdsvirta,
1993). They largely consist of tests derived against a specific nonlinear alternative
that one has in mind or tests against a general nonlinear model.

Polynomial regressions can be used to test for nonlinearity in conditional expec-

tation(Fuller, 1996). Let

v = flzy0) +e

= yp(xi_1)Ti—1 + e

where p(x;_1) = and 0 = (v, «, ).

Suppose X comes from a stationary time series with a N (0, ¢?) distribution. For
such series, theorem 8.6.1 in Fuller(1996) suggests that we fit a polynomial regression
using 1,z 1,22 |, }_|,---, as explanatory variables.

Intuitively, this simply says that we expect curvature in the plot of y; versus x;_;
when the coefficient on x;_; is a nonconstant function of z;_;. We can approximate
the nonlinear function by, say, a 4th degree polynomial terms of x;_;. Then, the null

distribution of the test statistic F' is approximately that of Snedecor’s F' with 3 and

(n — 5) degrees of freedom, according to Fuller(1996).
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Now we can extend our results to the model below.

Y = 1P (T1—a)Ti—1 + Y2 (1 — p(24—q)) Ti—2 + € (2.2)
where p(.flft_d) = m and d = 1, 2, R

In this model, p(z;_4) reflects a weight that allows X to dictate the relative influ-
ence of 1 and 2 lags. A weight could be dependent on the other lagged X variables.

Variants of the model can also be considered. One variant is

Yo = p(T-a) Yot + N1Te1 + o+ pwees] ey (2.3)
where p(x;_q) = m andd =0,1,2,---. f(z)is a function of X. The model

gives smoothly changing coefficients depending on lagged X.
In a similar way to that shown previously, we obtain the parameter estimates and

the asymptotic distributions.
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2.2 simulation

For model (2.1), 5,000 draws of data based on (v,«,3) = (1.0,0.8,0.5) have
been generated where (i) z; and e; come from an IID N(0,1) and an IID N(0,0.04)
respectively, and (ii) x; is AR(1) with the coefficient 0.6 and innovations N(0,1) and
e; comes from an IID N(0,0.04). x; and e, are independent.

The Gauss-Newton algorithm has been employed to estimate each triplet of pa-
rameters (v, «, ). The maximum number of iterative updates of the estimation
algorithm is chosen to be 100 and if the iteration continues up to this number, each
program is stopped and it is declared that no convergence was reached. Also, if 2
successive iterates é(aﬂ) and éa have a relative difference of less than 1078, we stop

the program and declare é(aH) to be solution. That is, we stop if
maxl:l,...,p’él,(a+1) - él,a’/|él,a| < 1078-

Without any further mention, all nonlinear least squares estimation in this paper will
be done using the process above. Also, for all simulations made here, the initial values
for generating the series are set to be 0 and the first 100 observations are discarded to
eliminate the initialization effects. From these 5,000 nonlinear estimations, we have
the empirical distribution of the parameters.

As shown in Table 2.1, the biases get smaller with increasing n. The figures in
parentheses in the table show the theoretical standard errors of the parameter esti-
mates. They are computed from the asymptotic variance-covariance matrix B~ (6,)o?
and are numerically evaluated using “SAS! IML”. The standard deviations(STD) of

4 are bigger than their theoretical values mainly due to a few extreme estimates.

ISAS is the registered trademark of SAS Institute, Cary, N.C.
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JB stands for the Jarque-Bera statistic for testing whether the data are normally
distributed. The test statistic measures the difference of the skewness and kurtosis
of the data from those of the normal distribution. Under the null hypothesis of a
normal distribution, the Jarque-Bera statistic is distributed as x? with 2 degrees of
freedom(x2 ;5 = 5.99).

JB statistics soundly reject normality. However, it is seen that the skewness is
not so bad. The non-normality appears to be due to a few extreme tail values. Often
a = 0.05 is used in constructing tests and confidence intervals. To see how the outliers
affect this, a t statistic is computed by taking the deviation of each parameter estimate
from the true value, then dividing by the estimated standard error. The proportion
of t statistics that exceed the standard Z; g5 is also reported in Table 2.1. They are
close to the nominal 0.05 with 4 showing the largest departure(0.0822 vs 0.05) where
n = 1,000. We conclude that the departure from normality would have a rather small
impact on the level in a nominal 5% level test.

The estimation did not converge in 100 iterations for a few replicates and thus the

number of replications R in the table is not 5,000 in some cases.
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2.3 application

A transfer function model, which has the form of model (2.2), having coefficients
that are logistic functions of an observed variable, is fit to a string of log trans-
formed daily flows for the Neuse River in North Carolina. The flows are measured
at Goldsboro and downstream at Kinston North Carolina. The data consist of 400
daily measurements from Oct 1, 1970 to Nov 4, 1971(see Figure 2.3 (a)). The data
have previously been analyzed using a standard, fixed transfer function methodol-
ogy(Brocklebank and Dickey, 2003).

Their model is

Vy: = 0.4954(1 + 0.5503B)Vz;_,
(0.0185) (0.0454)
+ (1 —-0.8878B)/(1 — 1.1632B + 0.4796 B*)e,

(0.0351) (0.0505)  (0.0456)

where 1, and z; are the log transformed series at the two stations and the mean square
error for this model is 0.00584. The figures in parentheses indicate the standard errors
for parameter estimates.

Since these are two stations on the same stream and the response is a flow, it
would seem sensible to propose a model in which the lag structure between the sta-
tions is a function of the previous flow at the upstream station. During a high flow
period, a percentage change in flow(additive change in log(flow)) at the upstream
location is adding more water into the system than during a low flow period so that

the effects might be felt downstream for a longer time, that is, the lag structure might
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extend back more days during a high flow period. On the other hand, the increased
volume produces faster flows and thus any given parcel of water should arrive down-
stream in less time during a high flow period. Figure 2.4 shows that the prewhitened
crosscorrelation imply that lags 1 and 2 capture the majority of the lag relationship.

Experiments show that the prewhitened crosscorrelation could be used for select-
ing lagged X variables, even if there is serial correlation in the errors. We get a similar
pattern of the crosscorrelation function using the level data of two variables.

We estimate a model that allows differing lag structures and let the data settle
the question of how these structures relate to flow rates. Because two lags appear to
capture the majority of the transfer activity, we fit model (2.2) using two lags.

We have done a linearity test based on Theorem 8.6.1 of Fuller(1996). If we

estimate a quadratic model as a first approximation, we obtain

y, = 1.8734 + 1.9046z,_, — 1.2672x4_5 4+ 0.051222_| — 0.29852;_ 1245
(0.3790)(0.3003)  (0.3000) (0.0736)  (0.1349)
+0.2659z7 , + ;.

(0.0681)

The F' statistic for testing the hypothesis that all quadratic terms are zero is
12.48(> F3 = 2.60,a = 0.05). The hypothesis of all zero coefficients is rejected.

Note that the estimate of z7_; is not significant. We can remove z? ; from the
quadratic model. This leaves x;_17;_» and x? ,. Because z;_» appears in both, we
use x;_o as the variable in our logistic weight function.

With many parameters to be estimated, the nonlinear estimation algorithm con-

verges well where the mean of X variable is subtracted from z;(dz; = x; — ). The
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resulting model is

exp(—0.1570 — 0.4069dx; ) .
exp(—0.1570 — 0.4069dx,_5) +1 "
(0.1008)  (0.2069) (0.1029)

exp(—0.1570 — 0.4069dx;_»)
exp(—0.1570 — 0.4069dx; o) + 1

g = 0.8042

+ 0.5523[1 _ ]da:H
(0.0658)
+ 7.5852 + 1,

(0.0862)
and

m = 1.3220m_1 — 0.5054n_s + 0.1371n,_4 + e;.

(0.0473)  (0.0586)  (0.0306)

The “SAS” procedure “PROC NLIN” was used for nonlinear estimation. We

estimate the parameters by minimizing directly

n

Z[yt — 8y — Yp(Tem1) i1 + Svp(2i2)m—a)?
t=2

S|

with resepct to 8 = (4,7, «, 3), for example, where the model is

Y = vp(xi—1)Ti—1 + 10

and

e = 0ne—1 + €4,

which is easy to implement(Seber and Wild, 1988).
Note that the cross products matrix of the first derivatives for 8 = (0,7, «, ) is

block-diagonal, implying that the serial correlation can be estimated separately.
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The lag p for an AR(p) model could be determined by observing autocorrelation
in residuals from the fitted model where serial correlation is not considered.

We have estimated the same model for this data by using the stepwise general-
ized least squares method suggested by Gallant(1986). The following table shows 20
Gauss-Newton iterations. The last row shows almost the same estimates as given
before(the first row(x) in the Table). The final estimates for an AR(4) model in

residuals are very similar as well.

o B Yo gl gp MSE
*1-0.1570 -0.4069 7.5852 0.8942 0.5523 | 0.00584
1] 0.5260 -1.7870 7.4819 0.8626 0.9534 | 0.02490
2| 04229 -0.3564 7.4995 0.8155 1.0019 | 0.00663
3] 03973 -0.2914 7.5066 0.8261 0.9622 | 0.00600
4] 0.3588 -0.2935 7.5097 0.8345 0.9306 | 0.00599
51 0.3286 -0.2964 7.5122 0.8407 0.9061 | 0.00598
6| 0.3004 -0.2994 7.5145 0.8464 0.8838 | 0.00598
71 02720 -0.3027 7.5170 0.8520 0.8618 | 0.00597
8| 0.2409 -0.3066 7.5197 0.8578 0.8382 | 0.00597
9| 02044 -0.3116 7.5230 0.8644 0.8109 | 0.00596

10 | 0.1590 -0.3187 7.5274 0.8722 0.7776 | 0.00595
11| 0.1138 -0.3260 7.5320 0.8801 0.7453 | 0.00594
12 ] 0.0476 -0.3400 7.5396 0.8881 0.6978 | 0.00591
13 ] -0.0286 -0.3593 7.5501 0.8950 0.6445 | 0.00587
14 | -0.0920 -0.3806 7.5624 0.8966 0.5988 | 0.00583
15 | -0.1289 -0.3970 7.5734 0.8938 0.5715 | 0.00581
16 | -0.1443 -0.4058 7.5805 0.8907 0.5593 | 0.00581
171 -0.1495 -0.4094 7.5838 0.8890 0.5549 | 0.00581
18 | -0.1515 -0.4108 7.5852 0.8882 0.5532 | 0.00581
19 1 -0.1521 -0.4113 7.5856 0.8879 0.5527 | 0.00581
20 | -0.1524 -0.4115 7.7858 0.8878 0.5524 | 0.00581

All estimates except that for « are significant at the 5% level and there seems to
exist no significant autocorrelation of residuals. The residuals from this fit have been

passed to “SAS PROC ARIMA” to check the white noise assumption. Note that the

Ljung-Box theory was developed for standard ARIMA models, and besides, degrees

46



of freedom would have to be adjusted for the model fitting. The Ljung-Box statistic
may be conservative when the test is applied to estimated residuals of a nonlinear
model with small sample size(Eitrheim and Terdsvirta, 1996).

However, ARCH effects are detected here using the standard statistical tests. The
ARCH test is used to check autoregressive conditional heteroskedasticity(ARCH) in
the residuals and is motivated by the fact that the magnitude of residuals often
appears to be related to the magnitude of recent residuals, especially in financial
time series(Engle, 1982). “SAS PROC AUTOREG” provides Q and Lagrange mul-
tipler(LM) statistics that test for the absence of ARCH effects. Ignoring the ARCH
effects may result in loss of efficiency of estimators and the test on residuals from
nonlinear model fitting is often used to judge model misspecification(Granger and
Terasvirta, 1993).

Because there seems to be heteroscedasticity in residuals, we get the heteroscedas-
tic invariant variance estimates. These are valid even if the innovations are not 11D
Gaussian(White, 1982).

Let 0 be the least squares estimator, which minimizes

S (e — LO)

~+
—_

Then, the heteroscedastic invariant variance estimates are obtained as

where

B
b3
—
>
N~—
o3
—
>
S~—
S~
|
—
N
o~
|
e
—
>
N—
N—
3
—
>
P
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or simpler

and

(White, 1980, 1982; Gallant, 1986).
Using the parameter estimates obtained from the least squares estimation above,
we get the robust standard errors for parameters. A simpler A, (6) is used for calcu-

lating variance estimates. All estimates are still significant except for that of a.

The parameter estimates and robust standard errors

o ﬁ 0 A Y2 (51 52 54
-0.1570  -0.4069  7.5852 0.8942 0.5523 1.3220  -0.5054  0.1371
(0.2316) (0.1138) (0.0950) (0.1411) (0.0709) (0.1266) (0.1910) (0.0792)

Note: The figures in parentheses indicate the robust standard errors.

We can think of p = ei};12859i155;2(1?)?4%)%%iﬁf231)1 as a weight that allows the upstream
flow dx;_5 to allocate the transfer relationship between 1 and 2 lags. Notice that if
£ in model (2.2) is 0, then p is a redundant constant and this is just the usual fixed
coefficient transfer function model. Our 3 confidence interval lies well away from
8 =0.

The mean square error 0.00585 is about the same as 0.00584 found with the fixed
coefficient transfer function model. Notice that a unit root has been imposed on

the error term in the fixed coefficient model, a rather difficult result to justify in

stream flows, and there is some evidence(moving average coefficient 0.88) against

48



unit roots. Mean square error comparisons may not be critically important here.
Using the level variables in the standard transfer function model, we have not found
a satisfactory model in terms of the cross-correlation of residuals with the input z; and
the autocorrelation in residuals. The obtained MSEs from those models are around
0.0063.

In Figure 2.3 (b), the observed and predicted series from the nonlinear transfer
function are overlaid and are almost indistinguishable. The predictions seem to be
excellent. Also, the weights for dx;_; and dx;_» are plotted against time in Figure
2.5. Notice that the logistic slope, B is significant and negative, indicating as do the
graphs that larger flows at Goldsboro are associated with longer lag structures. That
is, a percentage change in flow during a high flow period seems to result in a longer
lasting downstream effect. Higher flows at Goldsboro put more weight on the second
coefficient, resulting in a slightly larger and more prolonged effect at Kinston.

The range of p(dz; o) is from about 0.26 to 0.69 in this series. We have analyzed
the phase spectra of two stream flows at each of these extremes. To illustrate the

results, we use the observed x; series and generate two 7; series by computing
U = Yo + Y1pidri—1 + Yo (1 — p;)dxy_o
where p; = 0.26 and p, = 0.69. We then calculate the two phase spectra and put
them in Figure 2.6. Note that if
Yr = Yo +11pidriy 4 2 (1 — pi)dri o + 11,

then under the standard independence assumption, the correlation between y; and
dx¢_; is the same as that between g and dx;_; and thus the phase spectrum can be

computed using ;.
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The lag effects can be seen in the phase spectrum. The slope of the phase spectrum
at low frequencies measures the time delay as a function of frequency. The phase
spectra at our two extreme regimes give an estimated 1.55 day lag effect at a high
flow period, whereas 1.14 day lag effect is observed at a low flow period using a
few spectrum estimates at low frequencies(see Figure 2.6). Our nonlinear model
estimation result coincides with the phase spectrum analysis.

We get the impulse response function based on the fitted model. The responses
are obtained for a high and low stream flow scenario respectively. The stream flow
series in Goldsboro extends from about -2.35(¢;) to 2.15(cy). At both extreme levels,
we impose a one unit increase(Adz;_o = 1) and calculate the stream flow changes in

Kinston.

exp(—0.1570 — 0.4069(¢c; + Adz;_»))
(exp(—0.1570 — 0.4069(c; + Adzi—2)) + 1

exp(—0.1570 — 0.4069(¢; + Adx,_5))
exp(—0.1570 — 0.4069(¢; + Adx; o)) + 1

Y = 0.8942 (Ci‘i‘Adl’t_l)

+ 0.5523[1 - (i + Adzy )

+ 75852+,

where i = 1,2. Adx, is given by AR models.

In terms of the estimation results for the log-transformed Goldsboro stream flow
series, AR(5) with some insignificant coefficients is chosen based on the AIC. An
AR(2) is selected by the SBC. We generate values following the impulse based on the
estimated AR(2) and AR(5) models as well as an AR(1) model. Figure 2.7 shows the
responses following each impulse function. The response deviations and the changes
in p(dr;_o) from the equilibrium state are displayed. The changes are more dramatic

at a low stream flow at Goldsboro.
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The model could even be extended to

v = Ml = p1(@i—a) — pa(wi—a)|@e + yop1(T4—a) i1

+ yap2(xi—g)Ti—2 + e

o exp(ag+P2xi_q) =
1 and p2($t—d) N Z?:1exp(0¢i+ﬁixt—d)+1. d B

exp(a1+612;—q)
> exp(itBizi—a)+

where g () =
0,1,2,--

We use 3 logistic weights, one for each of x;, x; 1 and x;_5. As an example, we
analyse flows from the same stream between Kinston and downstream Fort Barnwell
in North Carolina. 1,003 daily measurements from Oct 1, 1996 to Jun 30, 1999 are
used. The data are log transformed and differenced as before. Figure 2.8 (a) shows
two series.

Using an ARMA(3,1) for prewhitening the series(Vx;) in Kinston, three lags ap-
pear to capture the majority of the transfer activity in this case(see Figure 2.9).

By a standard transfer model, we get the fitted model

Vy, = 0.3042(1 4+ 0.61758 — 0.5939B%) /(1 — 0.6639B)Vz,
(0.0224) (0.1590) (0.1743) (0.0629)
+ (1 —0.4402B — 0.5550B8%) /(1 — 0.5448 B — 0.2421B?)e;

(0.0873)  (0.0875) (0.0989)  (0.0914)

The obtained MSE is 0.00467.
However, there seems to be a near unit root in the estimated coefficients of the
numerator factor for e; suggesting possible overdifferencing. Considering we have

rather a long series here, we estimate the transfer function model for level data as
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well.

Y, = 0.3042(1+ 0.6126B — 0.6049B%)/(1 — 0.6699B)x;
(0.0224) (0.1586) (0.1733) (0.0614)
+ (1 +0.5570B)/(1 — 0.5477B — 0.2424B%)e; + 0.9228.

(0.0878) (0.0991)  (0.0913)  (0.1215)

The model seems to fit well and the obtained MSE is 0.00465.

We fit the data using a 3 weight model considering that 3 major lags are found
in the cross-correlation function. We have done a linearity test for the levels y; using
the explanatory variables z;, x; 1, and x;_o and polynomials in these up through
quadratic terms. The F' statistic is 8.13. The linearity hypothesis is rejected at the
5% significance level(F? = 2.10, o = 0.05).

Because the nonlinear estimation algorithm in the suggested model does not con-
verge well with many parameters estimated, the mean of the X variable is subtracted
from z;(dzr; = x; — T) and we set @« = oy = . Nonlinear parameter estimates are
well obtained and the estimates are all significant at the 5% level except for that of
a(t-ratio: -1.93).

1
— 0.8020 d
vt exp(—0.6106 — 0.6877das_2) + exp(—0.6106 + 0.6823da, o) + 1

(0.1273)  (0.3150) (0.1571) (0.1771)
exp(—0.6106 — 0.6877dx;_»)

0.8235 d,_
* exp(—0.6106 — 0.6877dx_) + exp(—0.6106 + 0.6823dw,_5) + 1
(0.1004)
exp(—0.6106 + 0.6823d,_5)
1.0727 da,_
* exp(—0.6106 — 0.6877dx;_s) + exp(—0.6106 + 0.6823dz, 5) + 1 ">
(0.1178)
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+ 7.9439 + 1,

(0.0205)
and

m = 108687]15_1 - 0344077t—2 —+ 012557]1&—3 + e;.

(0.0319)  (0.0458)  (0.1255)

The MSE is 0.00471 and no significant serial correlation in the residuals remains.
The MSE is slightly worse than that of the transfer function in this example.

One possible reason the nonlinear models are not superior is failure to include
enough lagged X terms in the explanatory variables. The term (1 — 0.6699B) 'z; in
the standard transfer function model includes more lagged X variables and three lags
may not be enough to approximate this.

Including dx;_4 and dx;_g in the explanatory variables, we have the following
result(Originally dx;_3 and dx;_5 were included, but omitted because they had |t|-

ratio less than 1).

1

— 0.8066 d
v exp(—0.5814 — 0.7231dz_) + exp(—0.5814 + 0.7617dz,5) + 1"
(0.1270) (0.3155) (0.1572) (0.2002)
exp(—0.5814 — 0.7231dx;_»)
0.7629 dz,_
i exp(—0.5814 — 0.7231da_2) + exp(—0.5814 + 0.7617dw,_o) + 1 ¢
(0.0882)
05814 + 0.7617dx,_
L 09121 exp(—0.5814 + 0.7617dx;_») s

exp(—0.5814 — 0.7231dx,_5) + exp(—0.5814 + 0.7617dx;,_5) + 1
(0.0916)

+ 7.9572 + 0.0366dx,_s + 0.0596dz,_g + m;,
(0.0206)(0.0211) (0.0181)
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and

. = 1.0665m;,_1 — 0.3256m;_o + 0.1287n;_3 + €.

(0.0319)  (0.0455)  (0.0319)

Now the obtained MSE is 0.00457 and the estimates are significant at the 5%
significance level except for those of «a(t-ratio: -1.84) and dw;_4(t-ratio: 1.73). There
seems to be no serial correlation left in residuals as before. A few added X terms
have brought the MSE to the smallest value yet.

It is reasonable that we observe the nonlinear behavior at a few low lag terms
rather than through all lags.

Figure 2.8 (b) shows the predicted stream flows of Fort Barnwell and Figure 2.10
shows the weights for dz;, dx;_; and dz;_ respectively. A large X at the upstream
gives more weight to the coefficients of lag 2. The coefficients from the two nonlinear
models estimated above give the similar patterns.

ARCH effects are detected in the residuals of all fitted models including the fixed
coefficient model. Using robust standard error estimates, the nonlinear estimates
for the model, where dz;,_, and dz;_¢ are included, are all significant at the 5%

significance level except for those of a(t-ratio: -1.83) and dz;_4(t-rtaio: 1.51).

The parameter estimates and robust standard errors

o B B2 Yo 71 V2
-0.5814  -0.7231 0.7617 7.9572 0.8066 0.7629

(0.3178)  (0.2278) (0.2607) (0.0197) (0.1341) (0.1272)
73 74 76 51 52 (53

0.9121 0.0366 0.0596 1.0665 -0.3256  0.1287

(0.0768) (0.0242) (0.0194) (0.0631) (0.0752) (0.0384)

Note: The figures in parentheses indicate the robust standard errors.
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This kind of nonlinear model adds insights unavailable with the fixed coefficient
model.

Next, we analyze the relationship between the southern oscillation index(SOI) and
associated recruitment(number of new fish) introduced in Shumway and Stoffer(1999).
The data consist of 453 monthly observations ranging over the years 1950-1987(see
Figure 2.11). The SOI measures changes in air pressure, related to sea surface temper-
atures in the central Pacific. The data have been analyzed using a standard transfer
function model or frequency domain method in that text. We notice nonlinear be-
havior, as the relation tends to flatten out at both extremes at some lags(see Figure
2.12). We attempt to find a nonlinear relationship using model (2.3).

The cross-correlation of the two prewhitened series shows an apparent shift of

= 5 months and exponential decrease thereafter(see Figure 2.13). The SOI series,
x, is detrended by a linear function of time as in Shumway and Stoffer(1999), and the
recruitment series, y;, is standardized. Both series are prewhitened using an AR(1)
model.

Using a standard transfer function model, we obtain

yo = —0.7536(1 — 0.8157B) ‘a5 + (1 — 1.2647B + 0.4105B%)'e,.

(0.0393)  (0.0230) (0.0432)  (0.0432)

The estimates are all significant and the mean square error is 0.0638.

As noted previously, there appear to exist nonlinear relationships at some lags such
as h =5,---,10. We suspect that there might be a different impact for y;, depending
on the magnitude of x;_p, at a certain h. The estimated results using model (2.3) where

f(z) = z4_5 are quite satisfactory with mean square error 0.0595 and all coefficients
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significant at the 5% level. We have found a logistic relationship for the response of
y; which is consistent with the scatterplots of y; and x;_,,h =5, -+, 10.

The estimated model is

1
_ — 0.8049z,_
YT exp(—4.0422 — 3.8784z,5) + 1 [ i

(0.7601)  (0.8640) (0.0448)

— 0.564T2,_ — 0.48182,_7 — 0.4T71z,_g — 0.385824_0
(0.0490)  (0.0519)  (0.0518)  (0.0505)
— 0.2596z;_19 — 0.15121; 11| +

(0.0481)  (0.0387)

and

m = 1.3541n_; — 0.50361;_5 — 0.1357n, 4
(0.0434)  (0.0434)  (0.0634)
+ 0.3156m,_5 — 0.1830m_

(0.0797)  (0.0483)

Figure 2.14 shows the behavior of p(z;_5). The residuals from this fit have been
passed to “SAS PROC ARIMA” to check the white noise assumption as before. We
suggest subtracting 5 degrees of freedom for the y? test corresponding to 5 autore-
gressive noise parameters. Unlike the constant coefficient results, we do not reject the

white noise null hypothesis. Also, there does not seem to exist a serious ARCH effect
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as investigated by the ARCH test for residuals unlike the standard transfer function
model.

If we add some linear lagged terms from z;_15 up to x;_15 into the nonlinear model,
considering the slowly decaying term (1 — 0.8157B) 'z;_5 in the standard transfer
function model, then we obtain the MSE 0.0554.

The following table shows the fitting results where “nlin (i) and (ii)” are the non-
linear models without and with added linear lagged terms in the model respectively.
A few added X terms have resulted in the considerable improvement of the MSE. No
serious serial correlation or ARCH effects are found in the residuals.

It seems to be reasonable that the nonlinear behavior is found in the first few

cross-correlation lags rather than through all lags.

a 3 MSE | ARCH(1) ARCH(4) ARCH(6)
trans 0.0638 | 0.0451  0.0123  0.0229
nlin (i) | -4.0442 -3.8784 | 0.0595 | 0.3935  0.3635  0.1195
(0.7601)  (0.8640)
nlin (ii) | -3.9763 -3.7706 | 0.0554 | 0.2852  0.3775  0.4853
(0.6518)  (0.7469)

Note: The figures in parentheses indicate the standard errors for the
parameter estimates and ARCH(q) is the p-value for the ARCH LM test of no
ARCH effects up to order g. ‘trans’ means the standard transfer function
model and ‘nlin’ is the nonlinear model where more lagged X terms are not
included.
Now, we analyze the relationship between precipitation and stream flow. The
data consist of daily records of precipitation and stream flow at Tarboro and Kinston

North Carolina from Aug 1, 1948 to July 31, 2002. There is a total of 19,723 paired

observations of rainfall and stream flow for each region.
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Averages of yearly precipitation at Tarboro and Kinston are 46.63 and 50.62 inches
respectively(see Table 2.2 and 2.3). At Tarboro, the maximum yearly precipita-
tion was 63.66 inches in 1999 when Hurricane Floyd passed through North Carolina.
The minimum precipitation was 32.21 inches in 1988. For Kinston, 1971 has the
biggest(67.10 inches) yearly precipitation and 1954 has the smallest(33.36 inches).

Both areas have about 110 days of rain per year. The year 1989 has the maximum
number of rainy days in both areas. The average daily flows are 2,211.48 and 2,845.66
cubic feet per second respectively in Tarboro and Kinston. In Tarboro, the year of
maximum average daily stream flow is 1999 with 4,276.09 cubic feet per second. The
minimum, 614.09 cubic feet per second was in 1981. For Kinston, maximum and
minimum stream flows are 4,860.86 and 1,066.71 cubic feet per second in 1989 and in
1986 respectively.

Seasonal patterns in environmental data such as precipitation and stream flow
series are quite common. Figure 2.15 and 2.16 show the monthly pattern of rainfall
and stream flow in both regions. As shown in the figures, there seem to be clear
seasonal trends at both sites. The rainy days are frequent around summer. The
average stream flows show relatively higher values in the spring and in September.
Also, we find a very similar patten of yearly rainfall and stream flow in both areas(see
Figure 2.17).

Statistical models typically require independent errors with homogeneous vari-
ance. This can not be reasonably assumed for some data including those discussed
here. In our analysis, a logarithmic transformation has been made for stream flow

data, and a square root transformation for precipitation data. Figure 2.18 shows QQ

o8



plots for transformed data. Most of the extreme deviations from a straight line for
both rainfall and stream flows are caused by the observations in 1999 when Hurricane
Floyd passed through North Carolina. The smaller outliers for stream flows occur
mainly in 1954 and in 1968. The effect of having many rainless days is evident in the
rainfall plots of Figure 2.18.

As noticed previously, there exist clear seasonal trends in all series. Periodogram
analyses show that there exist cycles at about 182.5 day and 365 days for both trans-
formed rainfall and stream flow series(see Figure 2.19 and 2.20). These are modeled
by sinusoids providing deseasonalized residuals for both data sets. Using the desea-
sonalized data, we investigate the lag structure between rainfall and stream flows by
calculating the cross-correlation of these two series.

Figure 2.21 shows the cross-correlations of deseasonalized stream flow and rainfall
in Tarboro and Kinston. They are obtained from the prewhitened series(ARIMA
(1,0,2) for Tarboro and ARIMA(2,0,1) for Kinston). As expected, stream flow is
affected by current and lagged rain. The effects of rainfall on flow persist for several
days. They initially increase then decrease as time passes by. The highest cross-
correlations are at lag 4 and at lag 6 for Tarboro and for Kinston respectively. The
lag effects can be shown in the phase spectra of rainfall and stream flow as well. Figure
2.22 shows the phase spectra of Tarboro and Kinston. In a pure delay model, the
slope of the phase spectrum at low frequencies measures the time delay as a function
of frequency, where the rainfall precedes the stream flow in this case. The slopes as
frequency goes from 0 to 0.6 appear to be in the -3 to -4 range, a 3 or 4 day lag, for

Tarboro and -5 to -6 range, a 5 or 6 day lag for Kinston, which seems consistent with
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our observed maximum cross-correlations.
Keeping these facts in mind, we analyze the data using a transfer function model.
The goal is to predict deseasonalized stream flows S; from deseasonalized rainfall R;.

The estimated transfer function model for the Tarboro data is

S, = 0.2147(1 — 1.3690B — 0.4698B* + 0.6196 3 + 1.0143B*
— 0.7838B° — 0.1361B° — 0.1099B" + 0.3889B° — 0.1517B7)*
(1+0.5361B — 0.6315B% — 0.7246 B*) R,
+ (1 —2.1038B + 1.3539B% — 0.2487B%) !

(14 0.53618 — 0.63158% — 0.7246 %) 2,
and for Kinston, it is

S, = 0.1027(1 — 2.5422B + 2.8076 B% — 2.0561 8" 4 1.4405B*
— 1.0998B° + 0.6949B° — 0.3704B" + 0.2331 8% — 0.0985 %)+
(1 —0.6621B + 0.39028% + 0.3532B*) R,

+ (1 —1.3203B +0.3662B%) (1 + 0.3143B) ;.

The obtained mean square errors(MSEs) are 0.02661 and 0.01025 for Tarboro and
Kinston respectively. The estimates are all significant at the 5% level.
On the other hand, we can also approximate the relationship using a typical linear

regression.
St =R + 01 R+ -+ O R + 11 (2.4)
where R; . is uncorrelated with ;.
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If the input, Ry, is white noise or prewhitened, then the cross-correlation function
between the prewhitened input and correspondingly transformed output is directly
proportional to the ¢;s. Simply regressing S; on R, and its lags is an alternative,
approximate method of identifying and estimating the relationship between S and R.
Given that the weights ¢; decline quickly and sufficient lags are used in the regression,
we get regression coefficients that approximate the impulse response function(Box,
Jenkins and Reinsel, 1994).

For identifying the impulse response function here(see Figure 2.21), we have used
ARIMA(1,0,2) and ARIMA(2,0,1) for prewhitening in each region. The coefficients
are such that these can be closely approximated by an MA(1) with coefficient 0.174
and 0.168 for Tarboro and for Kinston respectively. These amounts of autocorrelation
do not much affect the relationship between rainfall and stream flow.

The model requires selection of the point £ beyond which the cross-correlation
is effectively zero and 7; can be serially correlated. We estimate the series using a
typical linear regression method.

Based on the cross-correlation structure of the prewhitened series, the Akaike
information criterion(AIC), and the Schwartz Bayesian criterion(SBC), k is chosen
to be 24 for Tarboro and 29 for Kinston. The residuals from the initial models
in both areas are serially correlated so refined estimates are obtained adjusting for
autocorrelation of residuals. The patterns of the estimated coefficients look like the
cross-correlations between the two series.

As mentioned previously, there might be a different lag structure when there are

heavy rains. We can estimate a different response for different input levels just by
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adding some indicator variables. We expect the relationship between rainfall and
stream flow will be strong with heavy rains and add indicator variables to catch the
additional effects of rainfall on stream flow. To capture this effect, the model we

consider is

St = GoR + 1Ry + -+ O Ry,

+ ’YOIRt + ’71[Rt_1 + -+ ’}/qIRt_q + Tt (25)

where I R; = R; — Ry for a “heavy rain” period, and I R; = 0 for a “low rain” period.

Heavy rain is arbitrarily defined by letting Ry be the 95th percentile of the precip-
itation data. Most of the major Hurricanes and tropical storms which pass through
both regions are included here. Rainfall data on days of high rainfall and the subse-
quent 24 days for Tarboro and 29 days for Kinston are used for a “heavy rain” period,
so that immediate and lagged effects can be considered.

The estimated coefficients for Tarboro are all significant at the 5% level and the
MSE is 0.02725 without indicator variables(model (2.4)) and 0.02595 with indica-
tor variables(model (2.5)). Table 2.4 shows the coefficients from the fitted models.
Elimination of insignificant indicator variables leads to a model with ¢ = 8. The
MSE is less than that of the previous transfer function model, 0.02661 with indicator
variables included. The rainfall coefficient is highest at lag 4 and the “heavy rain”
period shows some difference up to ¢ = 8 days after rainfall depending on the size of
(R — Ro).

We test Hy : vo =71 = -+ = Y4=8 = 0 using F' statistics.

(SSEred - SSEful)/(dfered - dfeful)
SSEful/dfeful

F =

62



The calculated F statistic is 90.85 and the p-value is < 0.0001. Thus we reject Hj at
the 5% significance level.

For Kinston, all coefficients are also significant and different effects of rainfall
exist up to ¢ = 4 days after “heavy” precipitation. The highest coefficient is at lag
6. The MSEs are 0.01035 without indicator variables(model (2.4)) and 0.01000 with
indicator variables(model (2.5)). The F statistic and p-value for Kinston are 114.90
and < 0.0001 respectively. Table 2.4 shows the coefficients from the fitted models.

The previous analysis shows that there exist different effects depending on the
period of rainfall. We expect that the responses of stream flows will differ linearly or
nonlinearly based on the amount of rainfall several days prior to the date of measured
stream flow.

We did a linearity test based on Fuller(1996) using the quadratic terms up to lag 3
as explanatory variables as well as linear terms, expecting that the nonlinear behavior
will be centered on a few low lag terms rather than through all lags. The F' statistic
for the test that the coefficients of all quadratic terms are zero is 37.50 for Tarboro.
The F statistic for Kinston is 10.19. The linearity hypothesis is rejected at the 5%
level in both areas.

Now we fit the following nonlinear model
Sy =p) R+ 01 Ry + -+ OgRi—g| + Gg1 Ri—g1 + -+ m

where p(t) = T for the series. Our intent is to replace the lag 0,---,¢q

1
exp(a+Bf(R)
coefficients in model (2.5), those for which our indicators have been significant, with

nonlinear coefficients.

Where ¢ = 1, the nonlinear model with a smaller MSE is obtained. The variable
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R; has worked well as a transition variable in the logistic function, i.e., f(R) = R;.
The estimates are all significant at the 5% level and the obtained MSE is 0.02683 for

Tarboro.

1
Se = R, + 2.1693R,_
"7 exp(1.5172 — 0.2143R,) + 1 Rt )

+ 0.5053R;—3 + -+ -+ 0.00913R;_23 + 14,

and

m = 1.3230m,_1 — 0.4810m,_5 + 0.10157,_5 — 0.02931; 5

+ 00487nt—6 + €.

Table 2.4 shows all estimated coefficients from the fitted model.

For Kinston, we have obtained

1
= R, + 2.0907R,_
exp(2.3351 — 0.1559R,) + 1[ e+ t 1}

+ 0.2322R;_o + -+ + 0.00869R; 25 + 1y,

and

m = 1.6445m,_1 — 0.88311y_s + 0.26697,_5 — 0.0861n;_4

+ 0.03461_¢ + €.

The estimates, which are shown in Table 2.4, are all significant at the 5% level and
the MSE is 0.010207.
We have found a nonlinear relationship for the stream flows depending on the

amount of rainfall a few days prior to that of the measured stream flow. However,

64



the performance of the nonlinear models does not seem to be superior to some other

suggested models in these examples.
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Table 2.1: Distribution of 4, &, and 3 for model (2.1)

(i)y=1.0,aa=0.8, 3=0.5. z; ~ N(0,1) and ¢, ~ N(0,0.04)

n=1,000 | n=2,000|n=3,000

4 | bias 0.0916 0.0301 0.0178
STD 0.4451 0.1709 0.1284
(0.1843) (0.1303) (0.1064)

skewness 8.6066 2.2637 1.5333
JB >1,000 >1,000 >1,000
Pr([t| > z0.025) 0.0878 0.0640 0.0604

& | bias 0.0463 0.0181 0.0094
STD 0.3713 0.2286 0.1846
(0.2934) (0.2075) (0.1694)

skewness 1.2511 0.6887 0.5556

JB >1,000 855.62 453.98

(G | bias 0.0034 0.0020 0.0016
STD 0.0672 0.0452 0.0365
(0.0614) (0.0434) (0.0354)

skewness 0.2273 0.1430 0.0262

JB 53.73 19.82 0.62
Pr(|t| > zo.025) 0.0529 0.0536 0.0502

R 4,991 5,000 5,000
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(ii) v = 1.0, = 0.8, 3 = 0.5.

xy = 0.6x41 + pug, 1e ~ N(0,1) and e, ~ N(0,0.04)

n=1,000 | n=2,000 | n = 3,000

4 | bias 0.0168 0.0040 0.0031
STD 0.1193 0.0715 0.0564
(0.0926) (0.0655) (0.0535)

skewness 1.8222 0.7375 0.4790

JB >1,000 786.01 298.92
Pr(|t| > z0.025) 0.0582 0.0488 0.0546

& | bias 0.0097 0.0001 0.0006
STD 0.1773 0.1152 0.0924
(0.1540) (0.1089) (0.0889)

skewness 0.4923 0.2665 0.1031

JB 586.46 89.68 22.25
Pr(|t| > zo.025) 0.0454 0.0432 0.0508

(| bias 0.0017 0.0018 0.0011
STD 0.0394 0.0268 0.0218
(0.0367) (0.0259) (0.0212)

skewness 0.1238 0.0738 0.0876

JB 19.85 4.78 12.88
Pr(|t| > z0.025) 0.0492 0.0466 0.0518

R 5,000 5,000 5,000

Note: The figures in parentheses show the theoretical standard error of
parameters in B~1(6y)o? which is numerically evaluated using SAS
integration procedure.
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Table 2.2: The summary of yearly precipitation and stream flow(1949-2001)

Tarboro | Kinston
Precipitation | mean 46.63 50.62
(inches std 7.35 7.03
per year) min 32.21 33.36
max 63.66 67.10
Rainy days mean 112,72 | 109.70
(per year) std 13.02 17.52
min 88.00 67.00
max 144.00 142.00
Stream flow | mean | 2211.48 | 2845.66

std | 770.79 | 940.02
min | 614.09 | 1066.71
max | 4276.09 | 4860.86

Note: Stream flows are recorded as daily cubic feet per second.
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Table 2.3: Major Hurricane or tropical storm passing through both regions

Tarboro Kinston

year period name excess max | excess —max
1954 Oct.5-18 Hurricane HAZEL 0.14 1.20 0.39 1.28
1955 Aug.7-21 Hurricane DIANE 0.77 4.75 1.30  7.83
Sep.10-24 Hurricane IONE 0.64 3.10 1.79 431
1956 Sep.21-30 Hurricane FLOSSY 0.84 3.40 -0.13  1.06
1959 Jul.5-12 Hurricane CINDY 0.09 0.70 -0.13  1.16
1960 | Jul.28-Aug.1 | Hurricane BRENDA 1.87 4.49 1.27  3.98
Aug.29-Sep.14 | Hurricane DONNA 1.10 4.78 1.11  6.82
1964 | Aug.20-Sep.5 | Hurricane CLEO -0.04 1.21 0.21  1.55
1965 Jun.11-18 Tropical storm 1 0.67 2.89 0.33 2.01
1971 | Sep.6-Oct.5 | Hurricane GINGER 0.51 5.09 0.41  4.05
1972 Jun.14-23 Hurricane AGNES 0.02 0.94 0.30 1.36
1981 Aug.7-22 Hurricane DENIS 0.24 231 0.31 3.44
1984 Sep.8-16 Hurricane DIANA 0.50 4.46 0.16  2.20
1996 Jul.5-17 Hurricane BERTHA 0.33 4.00 0.40  4.58
Aug.23-Sep.10 | Hurricane FRAN 0.38 2.21 0.45  5.69
1997 Jul.16-27 Hurricane DANNY -0.02  1.73 0.31  2.07
1998 | Aug.31-Sep.8 | Hurricane EARL 0.02 1.50 0.33 197
1999 | Aug.24-Sep.8 | Hurricane DENNIS 0.39 2.81 0.32  5.50
Sep.7-Sep.19 | Hurricane FLOYD 261 7.11 1.74 11.80
Oct.12-19 Hurricane IRENE 1.08 4.29 0.94 4.02

2000 Sep.15-25 Tropical storm
HELENE -0.01 1.05 0.34 1.62

Note: “excess” means the average excess rainfall by the day over the monthly
average rainfall by the day where precipitation is bigger than 0 and “max”

shows the maximum daily precipitation over the period.
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Table 2.4: The coeflicient estimates from the fitted models

Tarboro Kinston
reg(i) reg(ii) nlin reg(i) reg(ii) nlin
o 1.5172 2.3351
3 -0.2143 -0.1559
oo 0.2098 0.1189 0.1020 0.0619

é1 | 0.3992 0.3030 2.1693 | 0.1906 0.1463  2.0907
do | 05092 0.4402 0.5053 | 0.2388 0.2056 0.2322
és | 0.6005 0.5480 0.5959 | 0.3168 0.3001  0.3080
6y | 0.6019 0.5574 0.5979 | 0.3793 0.3726  0.3699
bs | 05473 0.5065 0.5434 | 0.4033 0.4008  0.3934
b6 | 0.4812 0.4473 0.4757 | 0.4035 0.4009  0.3929
ér | 0.4106 0.3830 0.4044 | 0.3867 0.3845 0.3753
ds | 0.3484 0.3323 0.3413 | 0.3575 0.3560  0.3450
b9 | 03015 0.2956 0.2934 | 0.3269 0.3251 0.3128
b0 | 0.2643 0.2571 0.2554 | 0.2948 0.2927  0.2794
éu | 0.2263 0.2188 0.2166 | 0.2658 0.2627  0.2485
b2 | 0.2064 0.1991 0.1961 | 0.2375 0.2346 0.2189
b3 | 0.1814 0.1750 0.1717 | 0.2122 0.2093  0.1921
b | 0.1584 0.1538  0.1489 | 0.1880 0.1854 0.1665
b5 | 0.1421 0.1377 0.1323 | 0.1684 0.1662 0.1452
é16 | 0.1231 0.1189 0.1133 | 0.1519 0.1497 0.1277
é17 | 0.1066 0.1021 0.0967 | 0.1360 0.1333  0.1103
b5 | 0.0800 0.0854 0.0798 | 0.1224 0.1206 0.0961
b0 | 0.0741 0.0710 0.0652 | 0.1135 0.1121 0.0861
boo | 0.0648 0.0634 0.0561 | 0.1021 0.1005 0.0734

Note: “reg(i)” and “reg(ii)” are the regression models without and with the
indicator variables respectively. “nlin” means the nonlinear model.
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Tarboro Kinston

reg(i) reg(ii) nlin reg(i) reg(ii) nlin
P21 0.0538 0.0522  0.0435 0.0898 0.0876  0.0590
D2 0.0429 0.0405  0.0321 0.0791 0.0778  0.0463
®23 0.0209 0.0186 0.00913 0.0661 0.0654  0.0312
P24 0.009428 0.008867 0.0568 0.0564  0.0206
P25 0.0452  0.0455 0.00869
026 0.0333 0.0330
o7 0.0231 0.0223
Oog 0.0141 0.0133
(29 0.006109 0.005778
Yo 0.5413 0.2319
Y1 0.5876 0.2645
Yo 0.4132 0.1876
Y3 0.3049 0.0829
Y4 0.2500 0.0231
Y5 0.2239
Y6 0.1759
V7 0.1370
Y8 0.0690
MSE | 0.02725  0.02595 0.02683 | 0.01035  0.01000 0.01021
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Cross—corr

Figure 2.4: The cross-correlation of Vi, and Vx,
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Figure 2.6: (a) phase spectrum and (b) squared coherency of two log transformed
stream flow series at a high flow period(solid line) and a low flow period(dotted line)
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Cross—corr

Figure 2.9: (a) the cross-correlation of Vy, and Vz;, (b) the cross-correlation of y;
and x;
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Figure 2.13: The cross-correlation of y; and x;
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Chapter 3

Nonlinear autoregressive model

3.1 NLAR(1) model

We now consider a nonlinear autoregressive model with no intercept.

Ye = 1p(Ye-1)Yr-1 + € (3.1)

where p(y;—1) = Zﬁiggigﬁiiﬂ;ﬁ Here f(y) = |y| or f(y) =y, |7 <1, >0, and ¢

comes from an IID (0, ¢?) distribution.

Models with lagged dependent variables are classified as dynamic models(Gallant
1986). This model is a minor adjustment to the usual constant coefficient AR(1)
model and a specific form of LSTAR. This adjustment appears to provide quite a
bit of flexibility in terms of the types of data structure it can provide. The model
is appropriate for series with asymmetric stochastic volatility or changing amplitude
around 0 and a more or less persistent autocorrelation at long lags where || is near

1. The difference between the series generated using f(y) = |y| and f(y) = y is that
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the former appear symmetric in the long run with locally asymmetric features, while
some of the latter can stay asymmetric for a long time(see Figure 3.1,---,3.6).

Notice that |yp(y:—1)| < |7|. The model can produce local autocorrelation coeffi-
cients quite close to £1 if |7y| is near 1. This allows the model to generate data that is
locally nonstationary in appearance but in the long term tends to be mean-reverting.
The restriction |y| < 1 holds yp(y;—1) within the (—1,1) interval. With this restric-
tion, F, (0)F,x(0) satisfies the rank qualification and the identification condition with
B >0 and 7 # 0 as shown in chapter 2 for model (2.1).

We restrict the range of 3 to > 0. Notice that for 8’ = (v, o, §) and (—v, —a, =),

Lot B yen)) =1 explza =6/ (y)) =1
exp(a + B (1)) + 1 exp(—a — Bf(ye—1)) + 1

Thus, there will be multiple optimizing solutions. But we always find a unique mini-
mum by restricting 5 > 0.

For dynamic models, it is not easy to get consistency and asymptotic normality
of parameter estimates. There has been much discussion about that in the liter-
ature(Gallant, 1986; Tj¢stheim, 1986; Tong,1990; Taniguchi and Kakizawa, 2000).
Tong(1990) introduces general conditions for consistency and asymptotic normality.
Also, he proved consistency and asymptotic normality of the parameter estimates in
the STAR model under the assumption that the series is strictly stationary and er-
godic. The conditions under which STAR models generate series that are stationary
are not well known(Chan and Tong, 1986; Tong, 1990; Franses and van Dijk, 2000).

We quote theorem A1.10 and theorem 4.3 from Tong(1990). These prove the
geometric ergodicity of series. If a series satisfies the conditions from the theorems, it

is called geometrically ergodic and consistency and asymptotic normal distribution of
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parameter estimates can be obtained under some restrictions. We state them using
our notation.

Consider the following nonlinear autoregressive(NLAR(m)) model

Y =1 fi(Yie1;01) + aofo(Yieo; 02) + - - + o frn (Y Om) + €1

We assume that

(i) For all 6;, f;(.;0;) is a fixed function bounded over bounded subsets of R.

(i) e; is IID, E(Jet|) < oo, and e; admits a positive and continuous p.d.f.

(iii) For all 4, there exist ¢;(cy, 0;) such that «; fi(y; 0;) — ¢;y is a bounded function.

Now we write the model as

Y. = T(Ye1) +S(Yio1,€)

= Y 1+ 5(Yio1,6)

where
o1 P2 P Pm
1 0 0 0
= 0 1 0 0 |,
0 0 1 0
and

S(Yt—la et) =Y —PYy 1.

The associated deterministic difference equation is

ye = T(ye-1) = Pye_1.

96



Under the assumptions above, if the following conditions hold, then Yy is geomet-
rically ergodic. Note that g, is the solution to the deterministic equation and Y; is a

random variable.

(i) 0 € R™ is an equilibrium state for yy = T'(y¢-1), that is, 0 = 7'(0), and is
exponentially asymptotically stable in the large, that is, there exists a K and
¢ > 0 such that for all ¢ > 0, and starting with yo € R™, ||ys|| < Ke ||yoll,

where ||.|| denotes the Euclidean norm in R™.

(ii) T is Lipschitz continuous over R™, that is, there exists a M > 0 such that for

all y,x € ™ [|T(y) = T(x)|| < Mlly —x].
(iii) For some 7 > 0, E[||S(Y¢-1,¢e:)|| given Y1 =y| < 7 for ally € R™.
(end of theorem A1.10).
Notice that this theorem expresses Yy in a form reminiscent of the AR(m) model
Y. = T(Y¢ 1)+ e

Stationary conditions on the roots of T are sufficient for (i) and (ii).

For our model where m =1 and f(y) = |y|,

v = Wi-1)yi-1 + e

exp(e + Blyeal) = 1

exp(a+ flyea|) +1
2

exp(e + Blye1|) +1

Y1+ €&

= YY-1—7 Yi—1 + €.

It has the origin as the exponentially asymptotically stable equilibrium because
the root of the characteristic equation of

Yt = VYi—1
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lies inside the unit circle as long as |y| < 1 and

2
exp(a + By,

S(yi—1,et) = — )+ 11/1571 + e4.

Note that |y )y\ < ¢ < oo where § > 0 and E(|e;]) = ¢ < oo for some ¢

-2
exp(a+ply|
and ¢’. Thus, condition (i) and (iii) are satisfied. Clearly, T" is Lipschitz continuous
over R. Hence, the data generated by the model above are geometrically ergodic
whenever || < 1.

For f(y) = v, |7my| is not bounded. So, we may not use theorem A1.10.
We employ another theorem 4.3 by Tong(1990) which proves geometric ergodicity for

this case with additive noise.

Under the Markov chain defined by
Y, = T(Y¢ 1)+ e
where t > 1 and T : R™ — R™, if Y satisfies
(i) The same as condition (i) in theorem A1.10.

(ii) Either ey are IID, with marginal distribution function absolutely continuous,
with an everywhere positive probability density function over R™, and with
Ellet]| < oo, or ey = (e,0,---,0)" with e; being IID, each having an absolutely
continuous distribution with an everywhere positive probability density function

over R and E(|e;]) < oo.
(iii) The same as condition (ii) in theorem A1.10.

then Y; is geometrically ergodic(end of theorem 4.3).
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Where m =1,
Y = T(yt—1>
= ’Yp(yt—l)yt—l-

So,

yi = 7p(Y%)Yo,
y2 = oY1)
= *p(y1)p(o)yo,
ys = p(Y2)ye
= 7’ p(y2)p(y1)p(Y0)Yo,
ya = p(Ys)ys

= 7p(ys)p(y2) p(y1)p(yo)yo.

In general,

Y = pr(ytfl)ytfl

= ' pye-1)p(Ys—2) - -~ p(y1)p(Yo)Yo-

Clearly,

Y p(ye-1)p(Ye—2) -+~ p(y1) p(yo)yol < 1Yol < 17 [[wol-
Thus, there exists a K and ¢ > 0 such that

el < [ lyol < Ke™|yol.
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Condition (i) is satisfied.

exp(a+By)—1

The function (ot Ay T

y is Lipschitz continuous over R. To begin with, we

assume a« = 0,06 > 0,7 =1, and y > 0. So,

Note that g(y) = g(—vy), because

xp(fy) =1 _ exp(f(=y)) — 1
exp(fy) +17  exp(6(-y)) +1

(—y).

We pick y; > 0, yo = y1 + d where 6 > 0 and want to show there exist a M such

that

lg(y +6) — g(y)| M

for all y and 4.

The mean value theorem says

gy +9) —gly) =04 ()

fory <y <y+94.

9'() ='Wy +ply)

and
Hy) = 26exp(By) 1 exp(fy)
(exp(By) + 1)? (exp(By) + 1) (exp(By) + 1)
243 exp(By)

Here, p'(y)y = Tepn Y — 0 exponentially fast and thus |p'(y)y| takes on a
maxium value c.

d' ()] <c+1

for all y > 0.
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Hence,
l9(y +9) — g(y)| = 04’ (9)| < dlc+ 1]

where M = ¢+ 1. g(y) is Lipschitz continuous.

Now, for —oo < y < 0o, we take any ys > ;.

ly2 — y1| = || = ||

and
9(y) = g(|yl)

by symmetry. Thus,

l9(y2) = g(y)l _ lg(lyal) = gl l)]

<M
Y2 — 11 [y2| = |yl

using the result above.

We move to the region § < 0. With 7 = —3 > 0,

_exp(—T1y) —1
9ly) = exp(—T1y) + 1Y

and

B _exp(Ty) — 1
W= plr) 17

Thus, —g(y) is Lipschitz continuous. Note that

| = 9(42) = (=9(1))] = 9(y2) — 9(y)]-
It follows that if —g(y) is Lipschitz continuous, then g(y) is also Lipschitz continuous.
Where a # 0, we write

exp(a + fy) — 1
exp(a + fy) + 1y

9(y)
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_oexp(Bly+9) -1, o aexp(Bly+F) -1
= Bt 1T T BopBy e T
_ exp(fz) -1 aexp(fz) —1

exp(fz) +1 Bexp(Bz)+1

exp(B2)—1
exp(B2)T1

with z =y + % Then, zo — 21 = yo — y1 and the first function z is Lipschitz

. . a exp(fz)—1
continuous. The second function 5 oxp(52) 11

is also Lipschitz continuous, because its

1 exp(fz)
exp(Bz)+1) (exp(8z)+1)

derivative (QQeXp(ﬁ 2)

(B T1)? is bounded. So again, by the mean

= 204(
value theorem, we have the result. In this way, condition (iii) is satisfied.

We assume e; is an IID (0, 0?) sequence, so this satisfies condition (ii). Hence, y; is
geometrically ergodic. The previous case f(y) = |y| can be shown to be geometrically
ergodic by using this approach, too.

Tjpstheim(1986) proved the consistency and asymptotic normality of parameter
estimates where Y; is strictly stationary and ergodic with some restrictions. Let
{Y;,t € I} be a discrete time stochastic process taking values in R? and defined on
a probability space (€2, A, P). Observations (Yy,---,Y,) are available and A} ;(p) is
the o-field generated by {Ys,t —p < s <t—1}. For NLAR(p), we have E(Y;|A) |) =
E(Y:|AY |(p)) where t > p+1 and AY | is the sub o-field of A generated by {Y;, s < t}.
We quote theorem 3.1 and 3.2 of Tj¢stheim(1986) in our notation.

Assume that Y} is a d-dimensional strictly stationary ergodic process with E(Y;?) <

oo and such that Y;;—1(0) = E(Y;|A)_,(p)) is almost surely three times continuously

differentiable in an open set © containing ;. Moreover, suppose that

(i) B(| 2= (00)[) < o0 and E(|%052(6,)[*) < oo for i,j = 1,7,

(i) The vectors 0Yy—1(00)/06;,i = 1,---,r, are linearly independent in the sense
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that if a1, - - -, a, are arbitrary real numbers such that

thenay =ay=---=a, =0.

(iii) For 0 € ©, there exist functions Gij_kl(Yl, -+, Y, 1) and Hfjk (Y1,---,Y;_1) such

that

O*Yyi—1

96,06,
*Yyi1

96:00,00,

‘5yt|t—1

5 (0) (6)] < G, B(G) < o0,

(Y = Yy (6)) (0)| < H, E(H/™) < o0,

fori,j,k=1,---,r.

Then there exists a sequence of estimators 6,, minimizing

n

Qn(e) = Z (Y;t - Y;f|t—1(9))2.

t=p+1
for which, 6,, — 0, almost surely as n — oo and for € > 0, there is an event F in
(Q, A, P) with P(E) > 1—¢€ and an ng such that on E and for n > ny, 8Qn(én)/89i =
0,0=1,---,r,and @, attains a relative minimum at én(end of theorem 3.1). Tjgstheim’s
theorem 3.1 establishes almost sure convergence of a sequence (6,,). His theorem 3.2
establishes the limit distribution of the normalized sequence n'/? (én —6p). It includes
some additional assumptions as follows.
(i)
E(Y|A,) = E(Yi|A1(p))

almost surely, and

fier = B((Y: = Y1) (Y — Yip—1)T|AL)
= B((Y: — Y1) (Ye = Yyer)TTAL 1 (D))
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almostly surely.

(ii) The same as the condition (i),(ii),and (iii) in theorem 3.1.

(i)

oYL DYy
R=E( 5'5 L (80) fiye—1(60) 5‘; H(60)) < oo,

Then 6, which is the estimator obtained by minimizing Q,(6) converges to a

normal distribution.

n'?(, — 6,) - N(0,U'RUY)

where

oyl oYy,
00 7).

Note that U and R are r x r matrices(end of theorem 3.2).

U=E(

Condition (i) is trivially satisfied for nonlinear AR processes and condition (iii) is
implied by condition (i) of theorem 3.1 in general time series where Y; — Y;_1(6y) is
independent of AY |.

Thus, it is enough to check conditions (i)-(iii) in theorem 3.1 to allow application of
both theorems in our case. For this, we assume F(e}) < oo, which implies F(y}') < oo.

With Yo = O,

Yy = e€i,
Y2 = ply)er + e,
ys = Yp(y2)y2 +es
= p(y2)(vp(y1)er + ea) + €3

= Vo) p(y1)er +vp(y2)es + es,
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ys = 7p(ys)ys + es
= p(ys)(V’p(y2)p(y1)er + vp(ya)es + €3) + ea

= *p(ys)p(y2)p(yn)er + ¥ p(ys)p(y2)e2 + 1p(ys)es + s

In this way,
v = V7 p(yem1)p(ye—2) - p(y2)p(y1)er
+ Y o(y—1)p(Yi—2) - - - pys) p(ya)es
+ V(Y1) p(Yr—2)er—a + Yp(v—1)er—1 + €
Clearly,
VT (1) p(yi—2) - - p(y2)p(yi)en| < |7 e,
t—2 < |at2
V' 7 o(—1)p(Ye—2) - p(ys)p(y2)ea] < |7V eql,
<
1V o(y—1)p(yi—a)er—a| < |Ver—al,
vp(yi—1)e—1| < |vei—1].
Thus,

IV p(ye-1) p(yi—2) - - - p(y2) p(yn)er| + 172 p(ye—1) p(i—2) - - - p(ys) p(y2)ea|
+ o V(1) p(e2)er—a| + [vp(yi—1)er—1| + |ed]

<y Tel + [y el -+ W Per—a| 4 Iveia| + Jedl.
With E(e?) < M < oo for all t and Y!20 |9 < oo,

t—1 [e'¢)
ZE|767&1 Z‘V‘E ‘et’L Zh/‘\/ M+
=0 i=0
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The right-hand side is absolutely summable. Therefore, the left-handed side is

absolutely summable and

E(y) = EO 'oy—1)p(Wi—2) - p(y2)p(y1)er)
+ EO 7 p(ye-1)p(yi—2) - - pys)p(y2)ez)

+ o+ E(Pp(-1)p(y-2)er—2) + E(vp(ye-1)er-1) + E(er).
Again,

vi = VW) Ye2) - 00 (12) 0% (1)ed

+ 0 (Ye-1)P? (2) - 0 (ys) 0P ()€
Lo 74p2(yt—1)92(yt—2>63—2 + 72P2(?Jt—1)€?_1 + 6?
+ 297 0 ()P  (Ye2) - 0¥ (w2) p(yn ey

+ o+ 29p(Ye—1)er—r6s

Clearly,

2D 02 (g, 1) (Ye2) - - - 2 (y2) P2 (1) €2

|y

+ 2 0 (1) (e—2) -+ 07 ()07 (1) €3]

+o A+ PP W) P () elo] + V0 ()l |+ e
F207 Y 0 (Y1) 0 (e—2) - - 0 (y2) p(y1 ) e e

+o A+ 2|vp(Yio1) e e

< |PEDeR] + [ + -+ [vrel | + [ Pef |+ |ef]

+2|7t—17t—26162| + .+ 2|’76t—1€t|'

The expected value of right-hand side is absolutely summable provided E(e?) <
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M < oo for all ¢. This follows from
E(ler—ierj]) < [E(ef )] [E(e} ;)]

for i # j. Thus, the left-hand side is also absolutely summable and F(y?) < oo exists.
For E(y}), each term of y} expressed as a combination of ¢; ;,i = 1,2,...,t — 1

will be less than
t—1t—1¢—1¢-1

Z Z Z Z |7i'7j7k7l‘|€t—z’€t—j€t—k€t—l

i=0 j=0 k=0 1=0

= > ["llerl

i=j=k=I

+ > V¥ leserl
i=j=k#l

+ Y Pl
i=j k=l

+ > WYY leiejerkerl.
i kAL

With E(e}) < M < oo for all ¢ and
E(lef_ief i) < [B(ef )] [E(ef )2
E(jef_ieet]) < [B(ei ) [B(ef_)]"*

E(ler—ier—jer—rer|) < [Elef_sei_)VP[E(ef_ei_ )],

both sides are absolutely summable and E(y}) < co exists as long as |y| < 1. Thus,
E(y}) < oo provided E(ef) < M < oo. This result holds for both f(y) = y and

f) = lyl.

Now, with L; = o + By;_1, we have

ayt|t71 _ exp(Lt) - 1y
0y exp(Ly) +17"7"
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ayﬂt—l
Oa
ayt2|t—1
oo
9yf’|t71
da3
OYyje—1
op
83/1t2|t—1
032
ayt3|t—l
003
8yt2|t—1
0y0a
a?Jt2|t—1
oop

exp(Ly)
,y(exp( ) 1)2% 1

exp(Le) (1 — exp(Lt))

2y (exp(Le) + 1)3 Yi—1,
C exp(Ly)
27(exp(L )+ 1)4% 1,
y exp(Ly) y2
(exp(Ly) + 1)27
exp(Le)(1 — exp(Ly)) 5
27 ( p(Lt> ) t—1>
Cexp(Ly)
QWKeXp(L>_+]J4yt17
exp(Ly) y
(exp(Ly) + 1)277"
exp(Ly) 9

(exp(Ly) + 1)2%717
exp(L¢)(1 — GXP(Lt))yz
(exp(Ly) +1)2 770
exp(Ly)(1 — exp(Ly))
2 (exp(Ly) + 1)° Yi—1,
Cexp(Ly)
(exp(Ly) + 1)4%—1,
exp(L¢)(1 — exp(Ly)) 4
2 (exp(Ly) + 1)? Yi—1s
Cexp(Ly) 4
(exp(Le) + 1)4%717
2eXp(Lt)(l —exp(Ly)) o
(exp(Ly) +1)3 =1

2y

where the derivatives are not 0 and where C' = 1 — 4exp(L;) + exp(2L;). These

derivatives are bounded by |y;—1|, |[v7_ ], |yi_1], and |y} ;|. Thus, with E(y}) < oo,

condition (i) is satisfied.
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For condition (iii),

| [ P L) ek SR
Yt — Yte—1] = Yt ’Yexp(Lt)+1yt—1
<yl + [ye-al-

Thus, for example,

‘( (9 O Yijt—1 ’
Yt — Yet— 1) 970adp

exp(L,)(1 — exp(Ly)) 4 |

(exp(Ly) + 1)2 /!
< ln- yﬂuwfxp((f;i(&; ]
exp (Lt)(1 —exp(Ly)) o

= ‘2(% - yt|t—1)

<
= | t” eXp ) )3 t— 1‘
exp(L:)(1 —exp(L
+ [y 1"2 (La)( (3 t))yt21‘
(exp(Ly) + 1)
< |yt||yt—1| + |yt—1|

< WPy + vyl
and
E(y) ()Y + g ]) < oo

with E(y}) < co. We know that condition (iii) is satisfied in this way.

Finally, let aq, as, and a3 be three arbitrary real numbers. Then

OYrji—1 OYrji—1 OYefe—112\
E(’al 87 + a9 o + as 86 ’ )—0
implies
exp(L;) — 1 exp(L;) exp(Ls) 2
——y 1+ 2a _1+2a ., =0
aleXp(Lt>+1yt 1 27<6Xp(.[/t)+1)2yt 1 37<exp(Lt)+1)2yt 1
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almost surely. E(y?) > E(e?) > 0. Y takes on enough values that each derivative is
not linearly dependent on any other and a; = as = az = 0 follows.

In detail, it should be

aj(exp(2L;) — D)yp—1 + 2a9y exp(Ly)yi—1 + 2as7y exp(Lt)yf_l =0

from the equation above. Note that y and y? are linear independent functions of .
So, yexp(L) and y? exp(L) must be linear independent. In addition, neither these nor
yexp(2L) is a linear function of y. Thus, y exp(2L)—y must be linearly independent of
yexp(L) and 3% exp(L). Unless v = 0, which we assume does not happen since v = 0
implies @ and 3 not identified, the linear independence is thus proved. Condition (ii)
is also satisfied and the consistency and asymptotic normality of parameter estimates
are obtained.

Hence,

almost surely, and

n'2(8, — 6,) - N[0,U'RUY.

Here, U"'RU! =
(1= 2p0)%y;_; 270p0(1 — po)(1 — 2p0)y7_;  270p0(1 — po)(1 — 2p0)ys_, -1 9
E | 2v0000 = p0)@ = 200)v2 4vgpa (1 — po)2y?_, 493 p2 (1 — po)2y_, o
270p0(1 — po) (1 — 2p0)v?_, 473 p3 (1 — po)3yd_, 473 p2 (1 = po)2yi_,
h _ 1
where py =

exp(ao+Boyt—1)+1°
We can show this where f(y;—1) = |yi—1| as well. Then, U"'RU™" =
(1 —2p0)%y2_, 27000 (1 — po)(1 — 2p0)¥2_|  2v0p0(1 — po)(1 — 2p0) |ye—1ly2_, -1 9
FE 270p0(1 — po)(1 — 2p0)y7_, 43 p3 (1 — po)?yi_, 493 p5(1 — p0)|ye—1lvi_, g
270p0(1 — po)(1 — 2p0) ye—1lyi_1 4¢P (1 — po)?lye—1lyi_, 4vgpg (1 = po)2yt_;

1
exp(ao+0Bolys—1])+1°

where py =
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Persistent autocorrelation as in model (3.1) can appear along with serial autocor-
relation of residuals under the same model(see Figure 3.7). We extend our model to

the one with serially correlated errors.
Ye = vPp(Ye—1)Ye—1 + N,
and
N = 01Me—1 + -+ + OpMe—i + €.

where e; comes from an IID (0, 0?) distribution. The series generated by this model
is still geometrically ergodic.

For example, k=1, where f(y) = |y|
v = vYp(Yr—1)Ye—1 + M,
Ny = 57]15—1 + €t.
So,
v = Yp(Yr—1)Yt—1 + M,
0y = OVp(Yr—2)Yi—a + 0 1.

Then,

exp(a + Blyi-1]) — 1] 1
tf
exp(a + Blyi1]) + 1
exp(a + Blyi—2|) — 1

— 9 _2+te
Texpla+ By ) + 14727

= (0 4+7)y—1 — 0vy—2

Yo = [5‘1‘

2
Texpla+ Blyal) + 177
2
+ _9 + €.
7exp(oz + Blyi—2|) + (Y2
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Notice that this can be thought as a LSTAR with four regimes. NAR(1) with serially
correlated errors is one variant of LSTAR with many regimes.

We have the skeleton

e = T(Yt&)
_ ( (0 4+ V)Yt—1 — 0YYt—2 )

Yt—1
and

2 2
S(Y¢o1,er) = ( Y explatBlye_iN+17t-1 +gﬁyexp(o&ﬁlyt2)+1yt2 e ) )

Two roots of the characteristic equation
m?> — (0 +~y)m+dy=0

lie inside of unit circle under |§| < 1 and |y| < 1 and each of the terms of S(Y¢_1,€t)
is bounded. Following theorem A1.10, the series is geometrically ergodic.
For f(y) =y, we use theorem 4.3 again.

For m = 2,

Ye = T(thl)
exp(a+By:—1)—1 exp(a+Byi—2)—
( {5+76Xp(a+ﬁyif1)+l Yt—1— 57exp(a+ﬁyz 2)+1yt 2 )

Yt—1
€t
e = .
0

v = (0+70(Ye-1))Ye-1 — 07p(Ye—2)yi—2 + €

and
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where p(y;-1) =

So,

In general,

exp(a+fyt—1)—1
exp(atByi—1)+1°

Yt

U1

Y2

Y3

Ya

= (6+7p(y0))v0,

= (0 +p(y1)yr — 570 (Yo)yo

= (8 + 0vp(y1) +7*p(y1)p(Y0) %0,
= (0 +70(y2))y2 — 5vp(yr)ys

= (0" + 0®vp(y2) + 67 ply2)p(y1)
+ 7’ p(y2)p(y1)p(Yo) Yo,

= (0+7p(ys))ys — 517p(y2)y2

= (0" + vp(ys) + 6% plys)p(y2)
+ 07°p(ys)p(y2)p(y1)

+ v o(ys)p(y2) (1) p(Y0)) Yo-

(5 + P)/p(ytfl))ytfl - 57p<yt72)yt72
(0" + 6" yp(yi—1) + 6" 22 p(ys—1) p(Ys—2)

8" p(ye—1) p(Y1—2) p(Y—3)

52y 2 p(ye—1) p(Yi—2) - - p(y3)p(y2)
0 p(ye—1) p(ye—2) - - p(y2) p(y1)

Y (Y1) p(Ye=2) -~ p(y1) P(40))Yo-
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Clearly,

(0" + 0" yp(yer) + 67y p(yi1) p(Y1—2)
+0 p(Yr1) p(Ys—2)p(Ye—3) + - -

+2 (Y1) p(yi—2) - - - p(ys) p(y2)

+07 7 (Y1) p(Yi2) - - p(y2) (1)

' p(Ye-1)p(Ye—2) - - p(y1) p(Yo) ol

< (|07 + 10" A+ 102

HO T+ 160+ Y DIyl
Under |§] < 1 and |y| < 1, There exists a K and ¢ > 0 such that
el < Ke™|yo-

Hence, according to theorem 4.3, the series is geometrically ergodic.

The series with serially correlated errors is geometrically ergodic and the pa-
rameter estimates are normally distributed based on the theorem 3.1 and 3.2 of
Tjpstheim(1986).

For forecasting, consider the model
Ye = F(y-1;0) + e

for some nonlinear function F(y;_1;60). Using a least square criterion, the optimal
point forecasts of future values of the time series are given by their conditional ex-
pectation(Frances and van Dijk, 2000). Thus, the optimal h-step-ahead forecast of

Yern at time ¢ is obtained by

Z?t+h|t = E[zmh ‘ Qt]

114



where €2; denotes the history of the time series up to and including the observation
at time t.
Using the fact that Ele:1|Q2:] = 0, the one-step-ahead forecast in our model is

easily obtained as

Yerrpp = Ely11]€]
= E[F(y;0) + er1|$%]
= F(ys0)
= 1Y)y

exp(a+pBf(yt))—1

where p(t) = exp(a+Bf(y:))+1°

The forecast at h = 2 is given by

Yol = Elyt12|<%]
= E[F(yr+1;0) + ery2| ]
= E[F(ye1;0)|<%]
= E[F(F(y:;0) + er+1;0)[$%]
= EF (@ + e1; ) [€0].

(Lin and Granger, 1994; Franses and van Dijk, 2000).

Notice that
E[F(yi41;0)|] # F(Elyi1|0);0) = F(?)t+1|t% 0).

The expected value of a function is generally not equal to the function of the expected
value. The forecast will be biased in general and will not go to zero as the sample size

becomes large(Brown and Mariano, 1989; Lin and Granger, 1994). Various methods
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to obtain more desirable multiple-step-ahead forecasts have been discussed. The
Monte Carlo and bootstrap methods work well compared to other methods(Lin and
Granger, 1994; Franses and van Dijk, 2000).
The 2-step-ahead Monte Carlo forecast is given by
1k
Yigolt = © ; F(@tﬂ\t +e;;0)
where k is some large number and e; comes from the presumed distribution of e; ;.

The bootstrap forecast is given by

A | LA .
Yot = © Z F(yt+1\t +é;;0).
i=1

The residuals from the estimated model é;,t = 1,---,n are used with no assumption

of the distribution of e, which is one advantage over the Monte Carlo method.
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3.2 simulation

We look at data sets generated recursively from the model (3.1).

Yr = YP(Ye—1)Yi—1 + €

where |y| < 1 and p(y;—1) = EgEZigﬁz:B;; with yo = 0. We first deal with the case
fy)=v.

For this kind of nonlinear regression model, it is not easy to get a good asymptotic
approximation to the finite sample behavior(Granger and Terdsvirta, 1993). Our case
also shows the need for a large sample size to obtain a nearly normal distribution of
(%, &, B) The convergence rate of the distribution (¥, &, B) to a normal density seems
to be dependent on the relative size of parameters. Also, we have much interest in
the case where |7y| is near 1. For estimation of parameters, we suggest v be assumed
known and not estimated rather than estimating (v, a, 3) at the same time. By doing
that, we can use normal approximation for & and B with moderate sample size. We
will demonstrate that estimating o and § with  set to near 1 gives good prediction
one-step-ahead forecasting error.

The modified logistic function we are using is also called a hyperbolic tangent.

sinhz  exp(2z) —1

tanh z = =
MRS osh 2 exp(2z) + 1

where z = %(oz + By). Because this varies between 1 and -1, the case where v = 1
allows transitions between seemingly stationary and nonstationary behavior. Thus,
fixing v at 1 and estimating o and  would be of some practical interest. However, it

appears that the distributional results here can only be obtained through simulation.
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For |y] < 1, theoretical results are obtainable as shown in section (3.1). We will
consider cases where the true parameter is assumed and cases where the true 7 is
not the one assumed. The idea is that a hyperbolic tangent with amplitude ~ over

some observed domain might be near another with amplitude ~; provided a and 3 are

exp(a+6f(y))—1

adjusted appropriately. For example, if 3 is near 0 and « = log 2, then Y (ot Af)I

is close to %7. Note if v; = 27 and a = log 1.4, we again have Pyl% = %fy.
Clearly, this sort of computation would not always be possible. If the hyperbolic

tangent is near 1 and v is reduced to y; < 7, it would not likely be possible to make

exp(a+Bf(y)—1 -

up for the decrease by adjusting (o, 3). The maximum value for v, oxpla 3G TT 18

v1 < 7. Thus, if we assume a known -, it is better to err on the high size. With
this in mind, we will investigate the case where a value of v near but less than 1 is
assumed and the true 7 is less than assumed.

For showing the usefulness of the estimation with v fixed at certain values, 5,000
data sets have been generated based on (v, a, ) = (0.5,2.0,0.8),
(—0.5,1.0,0.6) and (0.5,—3.0,0.2) respectively where e; comes from IID N(0,1).
Then we estimate the parameters a and ( with v unknown, with ~ fixed at the
true value(*), and v fixed at 0.99(*). The simulation results are shown in Table 3.1.
“SAS PROC NLIN” is used for this particular nonlinear estimation.

Entries in Table 3.1 are explained in the following paragraphs. Notice that we
have restricted > 0 to ensure the geometric ergodicity of 3, using theorem A1.10 of

Tong(1990) in section (3.1), and for ¢ = (v, a, B) and (—v, —«, —[3),

exp(a+ Bf(y-1)) =1 exp(—a —Bf(y-1)) — 1

explat Bf))+1  expl—a—Bfga) +1

Restricting 6 > 0 is the same as specifying the sign of v. Hence, we suggest
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have a positive sign as well as assuming v known. Furthermore, under this estima-
tion assumption, we can estimate the model where ( is known to be 0 by obtaining

nonsingularity of F;(6). When 3 =0, yp(y;—1) becomes

_exp(a) —1
Yo(Yi-1) = Vexp(a) 11

which is assumed to be 0. 992’(1‘;8)“ here. So, if the true v is 79 < 0.99, one can find

exp(a)— 1 exp(ap)—
xp(a)l 0 e_xp(a—o )

a to exactly make 0.99- for given 7y and ay.

The series generated by smaller v can be estimated effectively by fixing v at
0.99. Doing this, we can still get an approximate normal distribution of & and B
For example, in the case of (v,«a,3) = (0.5,2.0,0.8), we get approximate normal
distribution of (v, &, 3) with Monte Carlo mean (0.99,0.6544,0.2051). That is, our
simulations indicate these numbers as means for a and $ under v = 0.99. The
distributions of & and B with ~ fixed at 0.99 appear to be approximately normal while
even the estimation of a and 3 with ~ fixed at its true value rejects the normality
in terms of JB statistics. Note, however, these distributions are not centered on the
true o and . While it may seem unusual to fix v at some value, notice that the same
thing is done is standard time series analysis. When one differences a series, they are
assuming that a certain parameter is 1, rather than estimating it. This is common
practice even though it is a well known fact that all parameters can be estimated
consistently using, for example, least squares.

Of course, the key question is whether this scheme leads to good one-step-ahead
forecasts. We address this by studying the mean squared error(MSE). The MSE ratios

of the estimation with v fixed at 0.99 over ~ fixed at the true value and v unknown

are almost 1 showing the effectiveness of this nonlinear estimation.
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The results could apply to the model (3.1) with serially correlated errors. We
performed 5,000 nonlinear estimations for data sets generated based on (v, «, 3) =
(0.5,2.0,0.8) and (0.5, —3.0,0.2) where 7 comes from AR(1) with coefficient(d) 0.95,
giving similar features(see (vi) and (vii) in Table 3.1).

We need to mention that the distribution of y; of STAR is not well known. In
general, one has to resort to numerical procedures or simulation to evaluate the dis-
tribution of y;(Tong, 1990; Franses and van Dijk, 2000).

We are interested in whether a model with an assumed 7 will produce simi-
lar low order moments to a model using the true (v,«,3). To that end, we use
the means of (d,B) from our previous simulations. Based on simulation, y; gen-
erated based on (v,«, ) = (0.5,2.0,0.8) and (0.99,0.6544,0.2051) both have esti-
mated mean(F(y;)) 0.15 and standard deviation(Std(y;)) 1.07 with n = 1,000. For
(v,, 3) = (—0.5,1.0,0.6) and (0.99, —0.4097, —0.2447), the mean is -0.10 and stan-
dard deviation is 1.03 for both. The mean of y; is generally not 0 as the examples
above indicate. Figure 3.8 and 3.9 show estimates of E(g;), each obtained through
500 generated data sets, for various a and (3 with v fixed at 0.99, ¢ = 1.0 and ¢ = 0.5
respectively.

We made another simulation about the distributions of & and 5 For this simula-
tion, we fix v at 0.99 and o = 1.0. 5,000 data sets have been generated for this and
n is set to 1,000, 2,000, 3,000 respectively. e; comes from N(0,1). [ takes on the
values -0.9 to 0.9 by steps of 0.3. For each & and B, 5,000 nonlinear regressions are
run. The results are shown in Table 3.2.

Judging from JB statistics, the normality null hypothesis is rejected in most cases.
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But, Pr(|t| > z0.025), the proportion of exceedences combining the two tails seems
reasonably consistent with the normal distribution for both estimators.

Notice that there seems to exist a trend in skewness for (.

The range of a and 3 such that a normal approximation holds depends on the
sample size and variation scale of e;. Figure 3.10 show a triangular area of true (o, )
parameters for which the t tests of a = oy and § = 3y have empirical rejection rates
not significantly different from 0.05, based on binomial test of Hy : p = 0.05.

A vertical shifting term is easily incorporated by putting x into the model.

Y = K+ 70(Ye-1) (Y1 — K) + 0

where

exp(a+ Bf(yr1 — k) — 1
expla+ Bf(yi1 —kK))+ 1

P(Yi1) =

The distributional results of other parameters do not change much by adding the
term.

Finally, we compare the nonlinear estimation with ARMA fits. The data have
been generated using the same random number sequence e¢; ~ N(0, 1) for both models
where v = 0.5 or v = 0.99 and n = 2,000. The series are estimated using an ARMA
model and our NLAR(1) model with v = 0.99 fixed. Interestingly, an ARMA fits
each of the series generated by the model above quite well with no indication of lack
of fit using the Ljung-Box statistic on the obtained residuals. The ARMA models
have been chosen based on the Akaike information criterion(AIC). Table 3.3 shows
that most of the x? p values are 0.2 or higher, checking up to 48 lags, and most of

the ARMA parameters have p values less than 0.001, so the fits are excellent by all
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the standard measures. Thus if such a NLAR model underlies a set of observed data,
that fact would not easily be revealed by standard diagnostics. Notice that most of
the ARMA fits give error variances bigger than the true innovations variance 1, while
the nonlinear least square estimators, with v = 0.99 fixed, result in estimates slightly
under 1. The improvement in MSE is bigger where the data have been generated by
v = 0.99. There we have seen more asymmetric features for some series, especially as
[ increases. It is seen that fitting the true logistic autocorrelation by nonlinear least
squares results in a nonnegligible improvement in the one-step-ahead prediction error
variance versus ARMA models.

We do the same thing for f(y) = |y| in model (3.1) and obtain similar results.
One of the differences from the previous case where f(y) = y is that the mean of
the data generated by this is asymptotically 0 regardless of the parameter values(see
Table 3.4,3.5,3.6 and Figure 3.11).

Nonlinear estimation can often be a more efficient way of estimation and prediction
where the series have asymmetric volatility or severely changing amplitude with a

rather persistent autocorrelation.
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3.3 further analysis

The model with v = 1 will be introduced here.

Yo = p(Ye-1)Y1—1 + €& (3.2)

where p(y—1) = Zggi%gtﬂgﬁ Here f(y) = |y| or f(y) = vy, and e; comes from

an IID N (0, c?) distribution. When the parameter space of || is not restricted, i.e.,
|7 = 1, it is not easy to obtain the theoretical distribution of parameters. We can
not say they are geometrically ergodic anymore except where 3 = 0.

The process generated by the model above could show a diverging behavior for
a long period depending on e;. For example, suppose ¢, is replaced by a constant ¢
fort =n+1,n+2,---. It does not meet the condition of e; by Tong(1990) for the
geometric ergodicity of the series. But it can give a hint for the dynamics of ; in a
rather extreme way. For example, in a stationary AR(1) with parameter p, we would
get convergence to the constant fcp, while a random walk would produce the linear

sequence ct.

: exp(1.04+0.6y;_1)—1 _ .
Figure 3.12 and 3.13 show the trend of y; and p(y;—1) = exgglioi%zzi;ﬂ with ¢
fixed at 4.0, 1.0, 0.0, -0.2, -1.0, -4.0 respectively. While the series always gets stable
at |y| < 1, y¢ diverges sometimes where v = 1. If p(y;—;) hits near 1 very often, this

could result in the instability of the series. Where § = 0, y; always converges.

In general, there exist no constant K and ¢ > 0 such that
[ys| < Ke™Jyol.

Thus, we do not satisfy the assumptions of the theorems by Tong(1990). That is

0 = T(0) is not exponentially asymptotically stable(Cline and Pu, 1999). Where
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B =0, we can always find a K and ¢ > 0 satisfying the condition above.

Most discussions for the geometric ergodicity of the series, including those by
Tong(1990), give sufficient conditions(Tweedie, 1975; Chan and Tong, 1985, 1994;
Tjgstheim, 1990; Meyn and Tweedie, 1994; An and Huang, 1996; Cline and Pu, 1999).
The necessary and sufficient conditions seem to be found only for a very special kind
of threshold AR(1) model(Petruccelli and Woolford, 1984; Chan, Petruccelli, Tong
and Woolford, 1985; Chen and Say, 1991; Guo and Petruccelli, 1991).

The suggested model could be viewed as a variant of the STAR model. Chan and

Tong(1986) have showed that in the STAR model,

Y = Go+ QY1+ OpYi—p

+ (o + Py -+ ¢;yt—p)F((yt—d —7)/2) + e

where d > 0 and p > 1, if (i) either p = 1,d = 1,¢1 < 1,¢1 + ¢} < 1, and ¢1(¢1 +
¢1) < 1 or (i)supgepe (Zle b + 9¢;]) < 1, then y, is ergodic and there is a
unique stationary process satisfying the STAR difference equation. F'is the standard
Gaussian distribution. e; are IID random variables independent of y,, s < t and is
assumed to have finite second moment and zero mean.

Further, they have said that the condition (i) is ‘almost’ necessary and sufficient
for the ergodicity of y; because if ¢1 > 1,¢1 + ¢} > 1, and ¢1(¢p1 + ¢}) > 1 where
p=1,d =1, then y; is not ergodic(Chan and Tong, 1986).

The series generated with |y| = 1 shows very similar features as with |y| near
1. However, it sometimes causes apparent nonstationarity which is the main reason
for failure of convergence of any nonlinear estimation algorithm(see Figure 3.14 and

3.15). That is, for some parameter values, y; eventually moves into a region where
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p(yi—1) is nearly 1. The series behaves like a random walk and thus wanders around
in a region producing p(y;_1) near 1 repeatedly. The series can remain “stuck” in
this random-walk-like behavior for relatively long periods. This suggests that we can
not make unambiguous conclusions about the geometric ergodicity of the series in
the general parameter space of (a,3) under given innovations. Noise having finite
support could be studied as suggested in Chan and Tong(1994).

In contrast, for § = 0, the model reduces to the usual AR(1) model and thus the
asymptotic distribution of 6, can be proved clearly.

Under Hy : 8 = 0 with f(y) = y for model (3.2), the true p(y;—1) is the constant

po = %. Suppose we estimate a and 8. F!,(6)F(f) for the Gauss-Newton

algorithm has the form

dexp(2L:) . 2 dexp(2Lt) 3
(exp(Lo)+1)3 Jt=1 Texp(Le)+1)2 i1

dexp(2L:) 3 4exp(2Lt) 4
op(Lo11)3 Y1 Tep(Lo+1)F -1

where L; = a + By;_1.

Now assume we have initial consistent estimates

dn — Qg = OP(7)7

- 1
Bn - 50 - Op(%)

Because y; is a simple AR(1) under Hy, the matrix B(6) to which L F), (0)F,(6)

converges in probability with Hy : 3 = 0 can be found as

( 4e)(<p(2)ao))4 022 0
_ exp(ag)+1)* 1—p
B(QO) - 0 ’ 4 exp(2ap) 304

(exp(a0)+1)* (1-p5)?

and
n2(0, — 6p) = N[0, B~1(8y)0?).
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This result holds irrespective of the form of f(y). Table 3.7 shows the distribution
of & and B coincides with the theoretical results where § = 0, even though the
normality is not verified sometimes in terms of JB statistics at || far away from 0.
For this, # has been fixed at 0 and a has changed from -3.6 to 3.6 by the step of 1.2.
n = 1,000. We have estimated («, 3) for the generated data using the usual nonlinear
least squares estimation algorithm. Other than this special case, there seems to be
no theoretical way to get asymptotic distributions of parameters that hold over the
whole parameter space.

Simulation indicates that certain parameter combinations result in behavior remi-
niscent of a unit process and in those cases parameters are difficult to obtain(convergence
problems) or they have unusual distributions. To avoid such cases, we propose doing

an initial unit root test, then fitting

Yt = p(Ye—1)Yt—1 + €1,

only if we reject the unit root null hypothesis. In this way, we should avoid («, [3)
settings that cause unit root behavior and resulting estimation problems.
Figure 3.16 and 3.17 show the distribution of & and B where the series are gener-

ated by
exp(1.0 + 0.6y;—1) — 1
exp(1.0 + 0.6y;—1) + 1

Yy = Y1 + €.

(a) and (b) in Figures are obtained using all generated series and using only those
series which reject a unit root hypothesis by the Augmented Dickey-Fuller(ADF) test
respectively. Even if the sample size increases from n = 1,000 to n = 3,000, the
distributions of & and 3 in (a) do not seem close to normal or some other familiar

density.
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Now, as in Table 3.2 and 3.5 of section (3.2), we generated 5,000 data sets. n
is set to 1,000, 2,000, 3,000 respectively and e, comes from N(0,1). [ takes on the
values -0.9 to 0.9 by steps of 0.3. Each series has been tested by the ADF test and R
shows the number of replications which appear stationary based on that test and are
convergent using the nonlinear estimation procedure. In this experiment, every series
that appeared stationary has produced estimates, that is, convergence is obtained.

The simulation results are similar to those of v = 0.99 fixed cases(see Table 3.8
and 3.9). In terms of JB, normality of the distributions of & and Bis rejected in most
cases. But, for the 5% hypothesis tests, the normal approximation can be reasonably
used under a certain range of parameter values, which is similar to that found in the
v = 0.99 fixed case. The region of parameters where the normal approximation is
available based on Pr(|t| > zp.025) seems to be somewhat reduced(see Figure 3.18 and
3.19).

Though the distributions of o and ( look similar, the situation is different from
the model with |y| near 1. The mean(E(y,)) of series with v = 1 does not get stable
and the stationarity ratio does not improve with bigger sample size in certain cases.
For example, 5,000 data sets with («,5) = (1.0,0.8) are generated for each of our
sample sizes and the means for those series which reject unit roots are obtained(see
Table 3.10). When v = 0.99 or 0.999, the stationarity ratios increase and these
means appear to approach some fixed value as n increases. But, with v = 1, the
stationarity ratios tend to decrease and the means appear to continue to rise even
when n = 13,000. This means that the series generated based on |y| < 1 and |y| =1

are quite different in nature even though the models look very similar.
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For practical use, after ADF test, estimating with ~ set to near 1 can be considered.
As shown previously, the series generated with v = 1 could lead to nonstationary
behavior in the long run and severe local nonstationarity. That is, p(y;_1) could be
so close to 1 that the series behaves like a random walk for very long periods. Note
that the series with |y| near 1 show very similar behavior to the series at v = 1 after
unit root hypothesis has been rejected.

We have generated 5,000 series based on v = 1.0 and («, 3) as given in Table 3.11
and 3.12. Then, we estimate the parameters o and § with v unknown, with ~ fixed
at the true value(*), and ~ fixed at 0.99(*) for only the series which reject unit roots.
Table 3.11 and 3.12 show the MSE ratios of the estimation with ~ fixed at 0.99 over
~ fixed at 1 and v unknown are almost 1.

To summarize all simulation results for our suggested models, where v = 1, we
can obtain good parameter estimates by nonlinear least squares estimation using only
those series which reject unit roots hypothesis by the ADF test. Estimating with ~y set
to near 1 is helpful to get better convergence and distributional results of parameter
estimates. The one-step-ahead forecasting errors seem good for the estimation with
~ fixed near 1. The estimates obtained in this way could be used as initial values for

the estimation of all parameters at the same time.
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3.4 application

As mentioned in section (3.2), the model (3.1) with serially correlated errors can
be displayed as a LSTAR model with many regimes. It is not easy to estimate many
regimes at once including the identification of order p and delay factor d. There is
a possibility that the usual STAR fitting process, because of its generality, does not
work well for the data generated by our suggested NLAR models. We show this

through an artificially generated data set. The data are generated based on

exp(0.8 +0.45y,1) — 1
exp(0.8 + 0.45y, 1) + 1

yr = 0.99 Yi—1 1 M,

and

nm = 0.95T]t_1 + €.

The series has a strong persistent autocorrelation as shown in Figure 3.7 (b).

We fit the model by

exp(0.6906 + 0.4867y, 1) — 1
exp(0.6906 + 0.4867y,_1) + 1

(0.0429)(0.0342)

yt = 099 ytfl + 77t7

and

m = 0.95937]15714-6,5.

(0.0056)

We want to fit this data using a LSTAR. The estimation procedure of STAR
models is well introduced in Terdsvirta(1994). The major steps are

(i) specification of a linear AR(p) model,
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(ii) testing linearity for different values of the delay parameter d and, if it is rejected,

simultaneously determining d,
(iii) choosing between LSTAR and ESTAR

(Granger and Terasvirta, 1993; Terdsvirta, 1994).

The AIC or the SBC may be used to find an appropriate linear model in the
step (i). The Ljung-Box test statistic is also considered to avoid the effects of any
remaining serial correlation on the linearity tests(Granger and Terdsvirta, 1993; Hall,
Skalin, and Terdsvirta, 2001).

Judging from the AIC and the Ljung-Box statistics, AR(8) seems to be appropriate

for order p of the model.

Some statistics for determining p in a linear AR model

AIC SBC  p(lag 6) p(lag 12)
p=1 | -3460.00 -3454.00 0.00 0.00
p=2 | -4575.96 -4563.94 0.00 0.00
p=3 | -4653.20 -4635.18 0.00 0.00
p=4 | -4677.38 -4653.36 0.03 0.00
p=25 | -4684.16 -4654.12 0.02 0.00
p=06 | -4690.48 -4654.44 - 0.01
p=7 | -4691.40 -4649.36 - 0.01
p=28 | -4704.44 -4656.39 - 0.36
p=9 | -4702.52 -4648.46 - 0.21
p =10 || -4700.52 -4640.46 - 0.10

Note: p means p-values of the Ljung-Box statistics at lag 6 and lag 12.

Notice that the true series is the one such that the order p is 2 and it consists of

two logistic functions with d = 1 and d = 2. So, the model will be misspecified in
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this case as we know p = 2.

exp(0.8 +0.45y,1) — 1

exp(0.8 + 045y, 1) + 177
exp(0.8 + 0.45y;2) — 1
exp(0.8 + 0.45y; o) + 1

g = 0.99

4+ 0.95(y—1 — 0.99 Yi—2) + €

1
exp(0.8 + 0.45y; 1) + 1

= 1.94y;_ 1 — 0.9405y; o — 1.98y, 1

1
exp(08 + 045y, 2) 11 €

+ 1.881yt_2 te

For the linearity test and the search for the delay factor d, we run the following

auxiliary regression.
P P
Yo = Lo+ D Bijy—j+ Y BojYi—jYi—d
j=1 j=1

+ Epjl BsiYt-iYi-a + i&jyt—jyf_d + 1
j= j=
and test Hy: Bo; = B35 = B4; =0, =1,---,p=8.

LM-test statistics, approximately F' distributed, are 23.09, 24.23, 23.38, 22.44,
20.95, 19.61, 18.92, and 18.43 for each d = 1, ---, 8. This test statistic is used for lin-
earity test against STAR under the null hypothesis of linearity (Luukkonen, Saikkonen
and Terasvirta, 1988; Terasvirta, 1994; Franses and van Dijk, 2000). All F' statistics
are bigger than 1.52(~ FS{JZ;::OO, a = 0.05). Linearity against STAR is rejected at
the 5% significance level.

Also, the p-values of F' statistics have the smallest value at d = 2. The delay
factor seems to be d = 2 in the sense that the test should have the maximum power,
if the alternative model is correctly specified, i.e., if the correct transition variable is
used(van Dijk, Terdsvirta, and Franses, 2002). Hence, the model could be erroneously

estimated as a STAR with p = 8 and d = 2 using the usual STAR estimation

procedure.
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Ten series are randomly generated to see how p is misspecified using the usual

STAR fitting process. The true models are

(i)

exp(1.0 + 0.8y;-1) — 1

e = exp(1.0 + 0.8y,_1) + 141 ten
and
(ii)
exp(0.8 + 0.45y,_1) — 1
U= 0 D08 - 04By, ) L 10 T
with

ne = 0.95m1 + e

The p which gives the minimum AIC and no serious autocorrelation by the Ljung-
Box statistics in each series is used to select a linear AR approximation. As the table
shows, p is misspecified in all cases. However, the delay factor d seems to be well

specified in this experiment.

1 2 3 4 5 6 7 8 9 10

model i) |p|5 6 9 4 5 3 4 3 7 5
dj1 11 1 1 1 1 1 1 1

model (ii) |p |4 10 4 5 4 3 5 4 8 10
dj2 1 2 3 2 11 2 2 1

Now, back to the series introduced in the beginning, we already know that p is 2

and d is at most 2 in the true generated series. For comparison, we have estimated
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the model with p = 2 and one logistic function d = 1 or d = 2 assuming wrongly a
LSTAR with only 2 regimes.

For d =1, we get

Y = 20095%—1 - 10118yt—2

(0.0271)  (0.0271)

1
exp(—0.1831 + 1.2120y;_q) + 1

(0.4424)  (0.2717) (0.2575) (0.2515)

[—1.3277y,_1 + 1.2826y,_5] + €.

For d = 2,

ye = 2.0047y; 1 — 1.0068y; o

(0.0268)  (0.0268)

1

—1.5346y,_, + 1.4835y,_ ,

exp(0.0866 + 1.0886y,_q) + il Ye-1 + Yea] + €
(0.4724)(0.2428) (0.3707) (0.3594)

The MSEs for the last two models are bigger than that based on the true model.
The MSE based on the true model is 0.0102 compared with 0.0104 and 0.0103 re-
spectively. For the last two models, we can proceed to a model with more regimes
through the remaining nonlinearity test. The remaining nonlinearity tests against 3
or 4 regimes have been suggested in Eitrheim and Terdsvirta(1996), and van Dijk and
Franses(1999). However, the procedure could be quite complicated for higher order
serially correlated errors.

For real data analysis, we analyze the stream flow series in Goldsboro and Kinston
North Carolina. The data have been introduced in Chapter 2 for a transfer function

analysis. Here, we study two series using our suggested models.
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First, we deal with the stream flow series in Goldsboro. The series is log-transformed
as in Chapter 2. The unit root hypothesis is rejected for this series at the significance
level o = 0.05 with the mean term added. The stream flows are expected to have a
slowly decaying autocorrelation like a long memory process. As shown in Figure 3.20,
the series has an autocorrelation function which decreases slowly and stays, more or
less, at a constant and significant level for a long time. This characteristic coincides
with the feature of autocorrelation functions by our suggested NLAR model.

To begin with, we estimate the series using an ARMA model. The fitted ARMA

model is

g = 7.2940 + (1 — 1.3948B + 0.4262B%) 'e,.

(0.3083) (0.0452)  (0.0453)

There does not seem to exist serial correlation in residuals and the MSE is 0.04078.

We have done a linearity test based on Theorem 8.6.1 of Fuller(1996). It is im-
portant to determine whether a nonlinear model is an adequate representation of the
process generating the data before building a nonlinear time series model(Terdsvirta,
1994). We have estimated y; using quadratic polynomial terms 32 |, y2 , and y;_1y;_o
as explanatory variables based on the fitted result above and found that the F' statis-
tic for testing the hypothesis that the coefficient of the quadratic term is zero is
11.36(> F3 =~ 2.60,a = 0.05). The hypothesis of a zero coefficient is rejected.

We have fitted the series using an autoregressive nonlinear model with a hyperbolic

tangent function and obtained a better result than a standard ARMA model.
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The fitted model using a NLAR model is

exp(0.5058 4- 0.3783 (141 — 7.1295)) — 1
exp(0.5058 4- 0.3783 (1,1 — 7.1295)) + 1

(0.3580) (0.0713)  (0.2831)

Ye (y1—1 — 7.1295)

+  7.1295 4 1,
and

m = 1.2766m_1 — 0.3234n,_5 + €.

(0.1366)  (0.1295)

The estimates are all significant at the 5% level except for that of o and the MSE
is 0.03656. The residuals seem to have no significant autocorrelation left and no
ARCH effects are detected(ARCH(1)=0.8271, ARCH(4)=0.1362, ARCH(6)=0.3159,
ARCH(q) is the p-value for the ARCH LM test of no ARCH effects up to order q).
ARCH test for residuals is often used for a diagnostic check for the fitted nonlinear
model and the standard tests of constant conditional variance against ARCH have
power against nonlinearity in the conditional mean(Granger and Terdsvirta, 1993;
van Dijk, Terdsvirta, and Franses, 2002). Figure 3.20 shows the predicted values of
the stream flow series and p(y;_1) against y;_;.

Now, we fit the stream flow series in Kinston. The series is log-transformed as well
and the unit root hypothesis is rejected at the 5% significance level with the mean
term added. Figure 3.21 shows the features of the series. Using an ARMA(5,1), we

have obtained the following result.
ye = (1 —2.4248B +2.1704B% — 1.0866 8> + 0.5338 B* — 0.1909B°)*
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(0.1165) (0.2128)  (0.1755)  (0.1285)  (0.0506)
(1 —0.7980B)e, + 7.5012.

(0.1116)  (0.5750)

There does not seem to exist serial correlation in residuals and the MSE is 0.01526.
Notice that a near unit root seems to be found in the fitted AR coefficients, which is
difficult to justify in stream flow series. A first differenced series could be modeled.
We fit our suggested NLAR model again for this series. The linearity hypoth-
esis(based on Fuller(1996) using all quadratic polynomial terms of 41, -+, y;—5) is
rejected at the 5% significance level(F = 2.83 > F15 ~ 1.67,« = 0.05). The estima-

tion result is as follows. All variables with t-ratio bigger than 1 are included in this

model.
exp(1.3315 + 0.4170(y,, — 7.4773)) — 1
_, — 74773
v exp(1.3315 + 0.4170(y,_y — 7.4773)) + 1 (g )
(0.4712) (0.1200)  (0.3419)
+ TATT3+ 1,
and

ne = 1.14601m;_1 — 0.3503n;_o + 0.22921;_5 — 0.09987n; _4
(0.1560) (0.1330) (0.0775) (0.0640)
— 0.0975m;_7 + 0.1264n;_g + €.

(0.0550)  (0.0492)

The estimates for o and (3 are significant at the 5% significance level. No serial

correlation is found in residuals and serious ARCH effects do not seem to be detected
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unlike the ARMA model(ARCH(1)=0.0122, ARCH(4)=0.1321, ARCH(6)=0.2837).
The obtained MSE is 0.01439. Figure 3.21 shows the predicted y; and p(y;_1) against
Yi—1-

Based on the fitting results so far, NLAR(1) models with serially correlated errors
seem to yield competitive one-step-ahead forecasting errors for the stream flow series
in both regions. As a reference, the MSE obtained here for Kinston is almost 2.5 times
bigger than in the transfer function type model where another explanatory variable
is added rather than its lagged own terms.

We fit the weekly Soybean price series in North Carolina from March 1, 1982 to
March 21, 1999, which consists of the 899 observations as an another example. There
seems no noticeable seasonality in the series judging from the periodgram analysis(see
Figure 3.22 (b)). The unit root hypothesis is rejected with the mean term added.
Figure 3.22 shows that the series has a persistent autocorrelation and a strong partial
antocorrelation at the first lag.

As usual, we fit the series using an ARMA model. AR(1) seems appropriate,
but the Ljung-Box statistics show that there exists a significant autocorrelation in

residuals at some low lags. The obtained MSE is 0.042482.

y, = 6.3323 +0.9791(y,—; — 6.3323) + e,.

(0.3114)(0.0068)

We did a linearity test using the terms y;_; and y? ; as explanatory variables. The
F' statistic for the test that the coefficient of the quadratic term is zero shows 7.87,
which is bigger than F! ~ 3.84 at a = 0.05. The linearity hypothesis is rejected at

the 5% significance level.
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We have analyzed the data using our suggested model. Using the values obtained
with v set to 0.99 as initial values for nonlinear least squares estimation, we get the

following result.

exp(4.7507 — 1.3765 (-1 — 7.7129)) — 1
exp(4.7507 — 1.3765(1—1 — 7.7129)) + 1

(0.0060) (2.2349) (0.6218)  (0.7190)

v = 0.9976

(yt_l — 77129)

+  7.7129 + ¢.

The estimates are all significant at the 5% level and the obtained MSE is 0.041701,
much reduced over that of the AR(1). However, there still seems to be autocorrelation
left in residuals adjusting the x? degrees of freedom. Removing the autocorrelation

in residuals up to lag 6, we obtain the fitting model such as

exp(4.6409 — 1.2688(y;—1 — 7.6877)) — 1
exp(4.6409 — 1.2688 (11 — 7.6877)) + 1

(0.0066) (1.9499) (0.5817)  (0.6500)

v = 0.9980

(i1 — 7.6877)

+ T7.6877 4 n,

and

m = 0.06931_ — 0.0727n,_5 + €. (3.3)

(0.0345)  (0.0345)

Now the MSE is 0.041572, least of all and there seems to be no significant auto-
correlation left at low lags, even though we have adjusted the degrees of freedom for
x? statistics. We have estimated the series removing the autocorrelation up to lag

11, but no particular difference is observed in parameter estimates. The MSE there

is 0.041153.
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As mentioned previously, significant serial correlation in residuals is not found
at low lags, but ARCH effects are detected for all models. The linearity of the error
process could be tested against STAR to see whether the fitted model has captured all
of the nonlinearity(Granger and Terdsvirta,1993). Because no serious correlation is
left, p = 1 is used as the AR order for the tests. F' statistics are 0.35, 8.41, 2.53, 2.78,
1.20, 5.07 and 1.72 for each d = 1, - - -, 7. There seems to be no remaining nonlinearity
at most of the delay factors(F2, ~ 2.60,« = 0.05). But some nonlinearity is found at
d= 2,4 and 6.

Notice that neglected heteroscedasticity of the series may result in the spurious
rejection of the linearity hypothesis(Granger and Terdsvirta, 1993; Franses and van
Dijk, 2000).

For example, we did a nonlinearity test against STAR for a GARCH generated

data by

€& = Zt\/ ht,

and
hy = 0.001 + 0.5¢2 | + 0.4h;_,

where z comes from N(0,1) and n = 3,000. Ten series with no serial correlation are
chosen for this experiment. Since there is no serial correlation left in the series, p = 1
is used as the AR order for the tests and the delay factor d changes from 1 to 8. The
test statistics are F' distributed(F?2 = 2.60,a = 0.05).

The table below shows that the linearity hypothesis against STAR is rejected many
times for the nonlinearity generated by GARCH. This implies that the nonlinearity

test against STAR is sensitive to GARCH effects.
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d=1 2 3 4 ) 6 7 8
111393 167 1.13 1054 753 331 034 292
2 252 807 688 6.11 148 548 4.02 2.00
3 | 1452 3733 428 1351 242 6.86 1.07 1.42
4 418 157 317 138 433 8.08 262 1.66
) 9.06 4.09 995 1.70 10.86 5.57 3.21 9.82
6 452 1652 3.16 449 0.80 7.38 1.59 3.34
7 987 578 190 345 1949 7.62 813 0.26
8§ | 13.04 049 9.09 427 093 182 1.08 4.40
9 5.70 1858 1577 7.77  6.26 253 3.02 045
10| 218 3.30 23.00 1725 213 5.69 858 6.67

For this, robust tests for nonlinearity under heteroscedastity have been suggested
(Granger and Terasvirta, 1993; Franses and van Dijk, 2000).

The procedure against STAR is that we regress y; on st= (1,41, -+, yt—p) and
get the residuals wy,t = 1,---,n. We regress the auxiliary regressors
(YerYt—ds = Yrpli—d> Y71 Yedy - ,y?,pytfd, Yi Y-y 7y§,pytfd) on sy and compute
the residuals 7;. Then we weight the residuals 7; by w; and regress 1 on the weighted
residuals. The explained sum of squares from this regression is the test statistic. It
is Xgp distributed. This robust test is not recommended to find and model any non-
linearity of the original series, because the robustification often weakens the power of
linearity tests, and leads to the failure of existing nonlinearity detection. It is rather
considered at the evaluation stage of model building(Lundbergh and Terasvirta, 1998;
van Dijk, Terdsvirta and Franses, 2002).

We use this robust test as a diagnostic check for the nonlinearity of residuals.
Applying a heteroscedasticity-consistent variant of the LM-type test statistic against
STAR, we get x? statistics 0.31, 5.37, 1.98, 3.16, 1.75, 2.84 and 1.11 ford = 1,---,7
respectively(x2 ~ 7.81, & = 0.05). Nonlinearity from STAR does not seem to exist in

residuals.
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However, considering ARCH effects are detected, we try to fit a STAR model,
which is more flexible. We did linearity tests against STAR. p = 1 seems reasonable
for this. Changing the delay factor d from 1 to 7 in sequence, we get the F' statistics
6.80, 3.70, 4.95, 3.71, 4.00, 1.88 and 1.64. The linearity hypothesis against STAR
is rejected at d = 1,---,5(F2 =~ 2.60,a = 0.05), and d = 1 is chosen for the delay
factor.

For the choice of LSTAR or ESTAR, two methods are generally used. One way

suggested by Terdsvirta(1994) is to use the linearity test against STAR model.
p p
vy = [o+ Z BrjYi—j + Z B ¥t—jYt—d
j=1 j=1

p p
+ Z Bap—Yi—q + Z Bage—3Yi—q + -
j=1 j=1

The hypothesis tested within the auxiliary regression is Hyy : 345 = 0, Hoa : B35 =
0|f4; = 0, Hos : Ba; = 0|Ps; = B4; = 0. If p-value of the test corresponding to Hp, is
smallest, then an ESTAR is selected, while a LSTAR is selected in other cases. As
mentioned previously, the test Hyg : B2 = 835 = B4 = 0 is used for testing linearity
against STAR model, especially the LSTAR model(van Dijk, Terdsvirta, and Franses,
2002).

Escribano and Jordd(1999) have introduced another method. For the auxiliary

regression
P P
v = [o+ Z BrYe—j + Z B2 Yt—Yt—d
=1 =1
L 2 - 3
+ D By gViat D B Y
7=1 j=1
L 4
+ Z BsiYt—iYi—a T Mts
j=1
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Hop : B35 = Bs; = 0 and Hyp, : Ba; = [4; = 0 are tested. If Hyg is more strongly
rejected, then an ESTAR is selected. The test Hgs : Boj = B35 = B1; = B5; = 0 is
used for testing linearity against ESTAR model(van Dijk, Terdsvirta, and Franses,
2002). However, there is no clear cut preferred method for this and both can be well
fitted if both functions have similar shape within the range of the transition variable.

We have done the tests for choosing a STAR model. The AIC statistics show the
local minimum at lag 1,6,11,16 reflecting the strong partial autocorrelation at lag 1
and some significant partial autocorrelations at other lags(see Figure 3.22 (f)). As a
linear basis for AR(p), p = 6,11 and 16 as well as p = 1 are also considered. Both

tests choose an ESTAR as an appropriate model at p = 1,6, 11 and 16.

test (1) test  (II)
Hor  Hopz Hos Hop Hor Hps Hgs
p=1 d=1 113 1132 787 E|047 024 E|6.80(0.00) | 5.13(0.00)
d=2|234 817 058 E|289 238 E|3.70(0.01) | 3.82(0.00)
d=3]323 653 503 E|158 1.04 E|4.95(0.00) | 3.86(0.00)
d=41{179 561 369 E|074 039 E|3.71(0.01) | 2.81(0.02)
d=5|111 613 472 E|085 063 E|4.000.01) |3.230.01)
d=61094 332 139 E|7.56 7.89 L |1.88(0.13) | 4.91(0.00)
d=T71]179 193 120 E|4.83 511 L |1.64(0.18) | 3.14(0.01)
p=6 d=4691 724 346 E|6.09 579 E|6.07(0.00) | 6.02(0.00)
p=11 d=4 478 721 306 E|390 3.69 E|527(0.00) | 484(0.00)
p=16 d=4 412 629 292 E|384 370 E|473(0.00) | 460(0.00)

Note: “E” and “L” mean that an ESTAR or a LSTAR will be selected based
on the test results. The figures in parenthesis show the p-values of F' statistics.

Here, we need to mention that the tests for choosing STAR models, i.e., ESTAR
or LSTAR, could misspecify the appropriate model for the NLAR(1) with serially
correlated errors. Some experiments with ten randomly generated series using the

coefficients of the fitted model (3.3), where the shifting term is zero and o2 is 0.04,

142



show that Hy, is more strongly rejected in favor of an ESTAR in many cases following
the test procedure suggested by Terdsvirta(1994). Escribano and Jordd(1999) chooses
a LSTAR.

As in Figure 3.22 (f), every generated series shows a strong partial autocorrelation
at lag 1 and minor significant partial autocorrelation at some other lags. Considering
this, we choose p = 1 and find p which gives the minimum AIC with no serious
autocorrelation by the Ljung-Box statistics. For each series, this is our basis for a
linear AR model. At both ps, we find the delay factor d and make tests for choosing

an ESTAR or a LSTAR. The following table shows the results.

test (I) test  (II)
Hopp  Hoe Hog Hop  Hop
1 |p=1 d=5|262 1788 292 E |38 865 L
p=3 d=51250 602 382 E|3.01 459 L
2 |p=1 d=1|441 434 950 L |509 783 L
p=3 d=41251 215 469 L |3.09 461 L
3 |p=1 d=31929 944 026 E |803 10.13 L
p=4 d=4|266 330 049 E|167 185 L
4 |p=1 d=3| 315 940 410 E|[352 756 L
p=7 d=1]126 253 121 E|138 166 L
SO |p= d=31251 861 037 E|508 698 L
p=3 d= 0.74 218 107 E|110 175 L
6 =1 d=1|4.07 1206 1.74 E |6.52 956 L
p=8 d=41158 270 08 E|1.65 207 L
7 |p=1 d= 849 2233 838 E|961 1718 L
p=6 d= 1.78 393 255 E|[182 315 L
8 |p= d= 216 407 119 E|418 541 L
p=6 d= 145 1.83 151 E|[127 149 L
9 |p= d= 6.65 9.68 149 E|[940 1188 L
p=6 d= 354 192 061 L|269 280 L
0|p=1 d= 091 10.08 591 E|432 451 L
p= d=1|145 252 165 E|[203 240 L

Note: “E” and “L” mean that an ESTAR or a LSTAR will be selected based
on the test results.
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Two tests are different most of time in their results. Also, notice that the model used
to generate the series is the MRLSTAR with p = 6 and d = 1,3,6. In this kind of
model, d as well as p are often misspecified.

Now, back to the soybean series, an ESTAR is selected as the appropriate STAR
model using two sets of tests. However, it could be a LSTAR judging from the
experiment results. Also, Hpg is more strongly rejected than Hgg at p = 1 and
d = 1. We have tried several STAR models including LSTAR at p = 1,d = 1 and
p = 6,d = 4, in which the coefficients are more flexible, but no satisfactory results
have not been found than our suggested models.

Figure 3.23 shows the pattern of the predicted values and p(y,_1) using our sug-
gested model. p(y;_1) changes from about 0.73 to 1 within the range of y,. If 1 is
used as a value of p(y;—1) in model (3.3), the resulting constant coefficient AR model
has a biggest root 0.9980, while substitution of 0.73 for p(y;_1) shows a biggest root
0.7285(= 0.998 x 0.73). The logistic function produces an interesting behavior in
prices. When the level gets unusually high(June 19, 1988, around time 340, for exam-
ple), the correlation becomes smaller and the next observation tends to drop toward
the mean somewhat quickly. That initial drop implies an increased autocorrelation,
thus slowing the rate of descent. An asymmetrical characteristic of price behavior
can be well explained.

Even though, there seems to be no remaining nonlinearity in the estimated model,
ARCH effects still remain in the residuals. Also, the distribution of the residuals has
a higher kurtosis than normally distributed data.

STAR-GARCH models have been suggested lately(Lundbergh and Terdsvirta,
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1998; Chan and McAleer, 2002). The assumption that the error sequence in STAR
models has a constant conditional variance is normally not realistic when modeling

high-frequency financial series(Lundbergh and Terdsvirta, 1998).

The STAR-GARCH model allows ¢; to follow a GARCH process.
ye = (92510 + Zr:lﬁbliyt—i—&-l)(l — G(s;7,0))
+ (¢20 + il¢2iyti+l)G<St; 7:¢) + e,
and

o= /i

where

2 ~i.i.d.(0,1),

p q
ht =w+ Z &ief—i + Z ﬂihtfi-
i=1 i=1

The transition function G(s:;7,c) is a continuous function that is bounded be-

tween 0 and 1. Usually, the logistic function

G(si;7,¢) = (L+exp{—y(st —)}) "

where v > 0 and the exponential function

G(st;7,¢) =1 —exp{—(s: — 0)2}

where v > 0 are used. s; could be a lagged endogenous variable, an exogenous
variable, a time trend and a function of them. The resultant models are called the

logistic STAR(LSTAR) and the exponential STAR(ESTAR) model respectively.
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The regularity conditions for stationarity of the GARCH component or for the
existence of its moments, and statistical properties relating to the GARCH component
are not well known(Chan and McAleer, 2002). Chan and McAleer(2002,2003) have
proved that under the following assumptions regarding the structural and asymptotic

properties of the STAR model,
(i) the process generating the STAR model is strictly stationary and ergodic,
(ii) the necessary and sufficient conditions for the existence of moments are satisfied,

(iii) the maximum likelihood estimators of parameters in the STAR model are con-

sistent and asymptotically normal,

the STAR-GARCH model given above has a unique, second-order stationary solution,
and {yq, €, hi } are strictly stationary and ergodic. It extends to MRSTAR, too.

In addition, where p = 1 and ¢ = 1 in the GARCH lags, if
E(log(ay2} + 1)) <0

then, 6 which maximizes the likelihood function I(f)

2

Z(loght—i— ;—i)

t=1

1(6) = —

N | —

for the STAR-GARCH model defined, is consistent for 6, and asymptotically nor-
mal(Chan and McAleer, 2002, 2003).
The log-moment condition can be replaced by the condition F(e?) < co. Empiri-
cally, the moment conditions are obtained by
T ~
T log(an 2 + Br) <0,
t=1
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and
651 _'_Bl < 17

respectively.

We suggest the conditional mean of the STAR-GARCH model be replaced by our
NLAR models. In NLAR models, the generating process is strictly stationary and
ergodic where |y| < 1. We assume that processes for which unit roots are rejected
with a standard test are stationary and ergodic. Note that NLAR(1) with serially
correlated errors can be considered as a special case of MRLSTAR. We suppose the
other conditions (ii) and (iii) be satisfied as in the STAR-GARCH models.

We have analyzed the series using NLAR-GARCH model. It is preferable to
estimate the parameters for the conditional mean and the conditional variance at the
same time(Lundbergh and Terdsvirta, 1998). However, the information matrix of a
STAR-GARCH model is block-diagonal if z; follows a symmetric distribution. Thus,
the conditional mean could be estimated at the first stage by nonlinear least squares,
and using the obtained residuals, the conditional variance could be estimated without
loss of asymptotic efficiency(Lundbergh and Terdsvirta, 1998; Chan and McAleer,
2002).

The GARCH for residuals where p = 1 and ¢ = 1 is well fitted using “SAS PROC

AUTOREG” procedure. The maximum likelihood estimation is employed there.

he = 0.001495 + 0.2090¢>_, + 0.7627h,_1.

(0.0003) (0.0258)  (0.0225)

The estimates are all significant at the 5% significance level, and a; + B =

0.9717 < 1. The second moment condition is satisfied empirically.
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z; will follow 7.7.d.(0, 1) theoretically. Using the estimated standard errors, we get
2 = étﬁt_ /2 One important assumption in a GARCH model is that z; are independent
and identically distributed. So, if the model is well specified, Z; will possess the
properties such as constant variance and lack of serial correlation(Franses and van
Dijk, 2000). We investigate the properties of Z;.

First, there seems to be no autocorrelation left for 2, and 22.

For independence test, we use two tests suggested in Brockwell and Davis(1991).
Let y1, - - -, y, be a sequence of the observations. If y; 1 < y; and y; > y; 11 or y;—1 > y;
and y; < y;+1, the data has a turning point at time 7,1 < ¢ < n. Define T to be the
number of turning points of the sequence yq,---,y,. If y1,---,y, are observations of

an IID sequence, then,
pr = E(T) = 2(n - 2)/3,
and
o7 = Var(T) = (16n — 29)/90.

T follows AN (ur,0%) and |T — pr|/or is used as a test statistic.

Also, we count the number(S) of values of i such that y; > y;—1,4 = 2,--+,n or

equivalently the number of times the y; — y;_1 > 0. Then,
ps = E(S) = (n—1)/2,
and
oz =Var(S) = (n+1)/12.

S follows AN (us,0%).
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We calculate |T' — pr|/or and |S — ug|/os for 2, and 22.

T  pr |T—prlfor| S  ps |S—psl/os
Z: | 598  593.3 0.37 451 445.5 0.64
221596 593.3 0.21 453  445.5 0.87

Both 2; and 22 are shown to be random sequences, and estimated skewness and
excess kurtosis for z; are 0.0729 and 1.0815. The model seems to be fitted well.
The fitted NLAR-GARCH model explains the change of the conditional innovation

variance as well as the dynamically changing second moments following the constant
Figure 3.24

innovations with dynamically moving difference equation coefficients.

shows the estimated conditional standard errors( fALt)
From the examples, we can see that NLAR models using hyperbolic tangent func-

tion, of which the estimates are easily obtained through Gauss-Newton algorithm,

could be one alternative to deal with the series with a rather persistent autocorrela-

tion and nonlinearity.
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Table 3.1: Estimation of o and /8 for model (3.1) where f(y) =y

(i) y=10.5,a = 2.0, and = 0.8, n = 1,000

estimate STD skewness JB R MSE ratio

0.5549 0.4213 21.34 >1,000 | 4,809
2.2684 1.4691 14.71  >1,000
0.9487 0.6929 15.70  >1,000

*

2.1106 0.5511 1.4475 >1,000 | 4,995 | 0.9999(4,804)
0.8647 0.2929 1.3208 >1,000

*

*

0.6544 0.0671 0.0540 3.07 | 5,000 | 1.0028(4,809)"
0.2051 0.0373  -0.0583 3.60 1.0027(4,995)*

*

= O Ty O © =2

(ii) v = =0.5,a = 1.0, and 5 = 0.6, n = 1,000

estimate STD skewness JB R MSE ratio

-0.5993  0.6245 -11.84 >1,000 | 4,013
1.4153 1.8418 26.17 >1,000

0.8435 1.1021 24.56 >1,000

*

1.0291 0.2406 0.8638 >1,000 | 5,000 | 0.9998(4,013)
0.6138 0.1377 0.7712  >1,000

*

*

~0.4097 0.0696  -0.0217  4.19 | 5,000 | 1.0007(4,013)F
-0.2447 0.0407  -0.0353  1.96 1.0005(5,000)*

@ O O & O =2

*
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(iii) v = 0.5, = —3.0, and 5 = 0.2, n = 3,000

estimate STD skewness JB R MSE ratio
A 0.5012  0.1898 19.19 >1,000 | 2,862
& | <-1,000 >1,000 -53.50 >1,000
B >1,000 >1,000 53.50 >1,000
a* | -3.2288  0.9860 -10.61  >1,000 | 4,991 | 0.9999(2,859)1
B* 0.2471  0.3636 5.3677 >1,000
a* | -0.9809 0.0415 0.0056 3.53 | 5,000 | 1.0001(2,862)"
B* 0.0236  0.0216 0.0166 1.28 1.0000(4,991)*

(iv) v =10.99,a = 1.0, and 3 = 0.8, n. = 3,000

estimate STD skewness JB R MSE ratio
A 0.9874 0.0060  -1.6445 >1,000 | 5,000
Q 1.0121 0.0761 0.1923 38.96
B 0.8125 0.0463 0.2678 62.52
a* 1.0021 0.0729 0.1795 32.86 | 5,000 | 1.0000(5,000)"
[3* 0.8039 0.0436 0.3218 97.88

(v) ¥ =10.99,a = —3.0, and 5 = 0.1, n = 3,000

estimate STD skewness JB R MSE ratio
A 1.0176 0.2574 9.0092 >1,000 | 3,810
Q -3.6420 1.6396 -13.80 >1,000
B3| 02055 0.2225 18.96 >1,000
a* | -3.0040 0.1059  -0.2451 54.54 | 5,000 | 0.9999(3,810)"
[3* 0.1010 0.0269 0.1055 12.35
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(vi) vy =0.5,a0 = 2.0, 5 =0.8, and § = 0.95, n = 3,000

estimate STD skewness JB R MSE ratio
A 0.5430 0.2496 14.51 >1,000 | 4,709
Q 2.1892 0.8390 1.4027 >1,000
3 1.0015 0.5989 2.3510 >1,000
5 0.9492 0.0066  -0.4293 200.72
Q 2.0341 0.2240 0.6465 576.42 | 5,000 | 1.0000(4,709)
B* 0.8316  0.2200 0.6567  585.97
0% | 0.9492 0.0066 -0.4310 216.12
a* 0.7755 0.0446 0.0065 0.84 | 5,000 | 1.0006(4,709)
3 0.1899 0.0392 0.0227 2.49 1.0006(5,000)*
5 0.9493 0.0066  -0.4258 209.81

(vii) v = 0.5,a = —3.0, 8= 0.2, and § = 0.95, n = 3,000

estimate STD skewness JB R MSE ratio
4 | 04798 0.1326 23.11 >1,000 | 2,420
Q <1,000 >1,000 -49.19  >1,000
B >1,000 >1,000 49.19 >1,000
b 0.9495 0.0060  -0.4028 75.33
Q -5.5231  133.20 -66.82  >1,000 | 4,993 | 0.9998(2,420)1
B* 3.0704 165.77 66.56  >1,000
o 0.9494 0.0060  -0.3779 124.87
a* | -0.9853  0.0431  -0.0155 3.29 | 5,000 | 0.9999(2,420)"
B* 0.0234 0.0960  -0.0485 7.27 1.0000(4,993)*
o 0.9493 0.0060  -0.3838 130.58

Note: * and * indicate the estimation of a and [ with « fixed at true value
and with v fixed at 0.99. T and ¥ show MSE ratio over the estimation of ~
unknown and of v fixed at true value respectively.
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Table 3.2: Distribution of & and 3 for model (3.1) where f(y) =y

15} n=1,000 | n=2,000 | n = 3,000
-0.9 | & | bias 0.0134 0.0051 0.0040
STD 0.1736 0.1069 0.0683
skewness 1.9798 0.3378 0.3067

JB >1,000 168.21 92.26

Pr(|t| > z0.025) 0.0424 0.0446 0.0488

(G | bias -0.0195 -0.0098 -0.0054
STD 0.1150 0.0666 0.0537
skewness -2.6314 -0.5830 -0.4404

JB >1,000 422.71 208.81

R 4,998 5,000 5,000

-0.6 | & | bias -0.0012 0.0003 -0.0016
STD 0.0965 0.0673 0.0545
skewness 0.0843 0.0772 0.0504

JB 8.28 8.31 2.15

[ | bias -0.0019 -0.0008 -0.0004
STD 0.0523 0.0373 0.0294
skewness -0.2592 -0.1462 -0.0814

JB 65.42 18.13 6.40

Pr(|t| > z0.025) 0.0490 0.0480 0.0508

R 5,000 5,000 5,000
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I6] n=1,000 | n=2,000 | n=3,000
-0.3 | & | bias -0.0044 -0.0030 -0.0006
STD 0.0757 0.0542 0.0443
skewness 0.0596 -0.0055 -0.0177

JB 2.97 0.50 1.70

Pr(|t| > z0.025) 0.0482 0.0486 0.0480

[ | bias 0.0004 0.0010 0.0004
STD 0.0391 0.0276 0.0228
skewness 0.0262 -0.0250 0.0694

JB 0.58 2.52 4.40

R 5,000 5,000 5,000

0.0 | & | bias -0.0046 -0.0023 -0.0023
STD 0.0729 0.0514 0.0420
skewness 0.0516 -0.0827 0.0547

JB 2.31 5.72 2.66

[ | bias -0.0002 0.0000 -0.0003
STD 0.0381 0.0262 0.0213
skewness 0.0204 0.0174 0.0755

JB 1.83 1.73 4.90

Pr(|t| > z0.025) 0.0522 0.0530 0.0502

R 5,000 5,000 5,000
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1] n=1,000 | n=2,000 | n=3,000
0.3 | & | bias -0.0052 -0.0016 -0.0020
STD 0.0773 0.0545 0.0443
skewness 0.0461 -0.0408 0.0512

JB 4.28 3.67 2.96

Pr(|t| > z0.025) 0.0514 0.0498 0.0550

[ | bias -0.0024 -0.0001 0.0004
STD 0.0397 0.0276 0.0224
skewness -0.0264 -0.0186 -0.0442

JB 1.39 0.84 1.74

R 5,000 5,000 5,000

0.6 | & | bias -0.0008 0.0007 -0.0005
STD 0.0954 0.0681 0.0547
skewness 0.1878 0.0453 0.0693

JB 38.57 2.38 4.51

[ | bias 0.0016 0.0002 0.0004
STD 0.0522 0.0366 0.0293
skewness 0.2445 0.1667 0.0844

JB 73.55 25.68 6.26

Pr(|t| > z0.025) 0.0504 0.0570 0.0486

R 5,000 5,000 5,000

155



1] n=1,000 | n=2,000 | n=3,000
0.9 | & | bias 0.0149 0.0048 0.0056
STD 0.1659 0.1083 0.0873
skewness 1.6183 0.3888 0.2989

JB >1,000 168.53 100.93

Pr(|t| > z0.025) 0.0482 0.0458 0.0548

[ | bias 0.0165 0.0074 0.0051
STD 0.1078 0.0667 0.0543
skewness 2.4445 0.6480 0.4511

JB >1,000 601.59 209.04

R 5,000 5,000 5,000
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Table 3.3: Comparison of ARMA and nonlinear estimation for model (3.1) where

fly) =y

(i) data generated by v = 0.5

Q(6) ARMA (p:p:q) MSE | NLIN(« : §) | MSE
a=1 p=0.79 0.11:1.07 -0.14 -0.06:0.87 0.974 0.41:0.15 0.971
=03 (4.83:12.75 -3.71 -2.56:10.64) (0.05:0.03)
a=1 p = 0.28 -0.08:-2.74:- 0.972 0.43:-0.10 | 0.969
~ 03 (0.21:9.80:-) (0.05:0.03)
a=1 p = 0.88 0.15:0.22:- 1.033 0.42:0.20 1.017
3=0.6 (5.23:10.10:-) (0.05:0.03)
o= p = 0.06 0.25:0.26:- 0.989 0.47:0.28 0.970
B=09 (8.39:12.11:-) (0.05:0.03)
o= p=0.22 -0.20:0.21:- 1.058 0.32:-0.34 | 0.999
B=-09 (-6.83:9.42:-) (0.05:0.03)
a=1 p=0.30 0.27:0.21:- 1.053 0.25:0.40 0.989
B =12 (9.13:9.80:-) (0.05:0.03)
o= p=0.34 0.35:0.20:- 1.078 0.12:0.50 0.996
B =20 (12.03:9.00:) (0.06:0.03)
o= p=0.99 -0.35:0.19 0.05 0.05:- 1.072 0.15:-0.52 | 0.977
B=-20 (-10.54:8.54 2.23 2.27:-) (0.05:0.03)
a=30 |p=0.386 0.01:0.45 0.05:- 0.966 1.04:-0.02 | 0.968
B=0.1 (0.29:20.16 2.06:-) (0.05:0.03)
a=-30|p=0.24 0.00:-0.46:- 0.969 -1.01:0.00 | 0.969
B =0.1 (0.30:-23.15:-) (0.05:0.03)
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(i) data generated by v = 0.99

Q(6) ARMA (p:p:q) MSE | NLIN(« : §) | MSE
a=1 p=0.82 0.33:1.31 -0.34 -0.08:0.83 1.003 0.95:0.31 0.972
5=0.3 (8.60:12.23 -5.04 -3.27:7.83) (0.05:0.03)
o= p=0.18 -0.28:0.50:- 0.998 1.00:-0.27 | 0.969
~ 03 (-6.32:25.51:-) (0.05:0.03)
a=1 p=0.51 0.96:1.40 -0.43:0.70 1.227 1.02:0.58 1.015
B =06 (3.44:21.05 -7.03:12.37) (0.07:0.03)
a=1 p=0.01 2.20:1.47 -0.49:0.60 1.118 1.22:0.98 0.970
£=0.9 (4.52:9.81 -3.40:4.32) (0.12:0.08)
o= p=041| -1.89:1.57-0.51-0.07:0.80 | 1.201 1.09:-0.90 | 0.996
g =-0.9 (-5.64:12.08 -5.20 -2.01:6.30) (0.10:0.06)
a=1 p=0.14 2.55:1.48 -0.49:0.61 1.157 0.98:1.24 0.986
B=12 (4.14:10.76 -3.70:4.80) (0.16:0.12)
o= p=0.29 2.91:1.59 -0.60:0.68 1.105 1.08:2.29 0.986
g =20 (4.43:9.61 -3.73:4.42) (0.42:0.47)
a=1 p=0.28 -2.77:0.88 0.09:- 1.105 0.93:-1.95 | 0.969
B=-20 (-3.76:39.53 4.13:-) (0.33:0.33)
a=30 |p=032 0.46:0.91:- 0.973 3.04:0.11 0.969
B=0.1 (1.97:96.45:-) (0.12:0.03)
a=-30|p=0.30 0.02:-0.89:- 0.968 || -3.00:0.07 | 0.968
B=0.1 (2.04:-89.05:-) (0.12:0.03)

Note: The figures in parentheses indicate t values in ARMA and standard

errors in NLIN for estimates. Q(6) figures show BOX-Ljung x? statistic at lag

6.
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Table 3.4: Estimation of o and 8 for model (3.1) where f(y) = |y|

(i) y=10.5,a = 2.0, and = 0.8, n = 1,000

estimate STD skewness JB R MSE ratio

0.5376 0.1651 5.5423 >1,000 | 2,817
5.4372  49.40 10.98 >1,000
2.8633  16.80 -3.14  >1,000

*

5.3901  40.33 13.59  >1,000 | 4,766 | 0.9996(2,767)1
0.6139 11.59  -9.4138 >1,000

*

*

0.9143 0.1924 0.0549 2.78 | 5,000 | 1.0002(2,817)"
0.0568 0.0995 0.0090 0.15 1.0002(4,766)*

*

= O Ty O © =2

(ii) v = =0.5,a = 1.0, and 5 = 0.6, n = 1,000

estimate STD skewness JB R MSE ratio

-0.5136 0.3104  -8.6621 >1,000 | 3,031
1.0088  21.07 18.90  >1,000

2.7353  11.20 5.6212  >1,000

*

1.0113 0.7424  -0.0771 >1,000 | 4,995 | 0.9997(3,029)
0.6455 0.6446 11.32 >1,000

*

*

-0.5700 0.1778  -0.0107 0.18 | 5,000 | 1.0002(3,031)"
-0.1363 0.0968  -0.0285 0.86 1.0001(4,995)*

*

@ O O & O =2
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(iii) v = 0.5, = —3.0, and 5 = 0.1, n = 3,000

estimate STD skewness JB R MSE ratio
A 0.4768 0.1929 21.55 >1,000 | 2,620
& | <-1,000 >1,000 -51.19  >1,000
B | <-1,000 >1,000 -51.19  >1,000
a* | -3.0705 1.3021 -31.55  >1,000 | 4,993 | 0.9999(2,620)7
B* 0.1966  0.5003 10.38 >1,000
a* | -0.9979  0.1082  -0.0947 7.47 | 5,000 | 1.0000(2,620)"
B* 0.0337  0.0559 0.0115 0.11 1.0000(4,993)*

(iv) v =10.99,a = 1.0, and 3 = 0.8, n. = 3,000

estimate STD skewness JB R MSE ratio
A 0.9880 0.0054  -1.7255 >1,000 | 5,000
Q 0.9782 0.2321  -0.0799 15.62
B 0.8308 0.1352 0.5845 433.34
ar 1.0014 0.2291  -0.0480 12.59 | 5,000 | 1.0000(5,000)
[3* 0.8065 0.1236 0.5149  333.50

(v) ¥ =10.99,a = —3.0, and 5 = 0.1, n = 3,000

estimate STD skewness JB R MSE ratio
A 0.9285  0.2070 15.22  >1,000 | 3,015
& | <-1,000 >1,000 -54.91 >1,000
3 94.47  >1,000 46.40  >1,000
a* | -3.0251 0.2206  -0.2344 50.31 | 5,000 | 1.0000(3,015)"
B* 0.1085 0.0612 0.1739 26.65
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(vi) vy =0.5,a0 = 2.0, 5 =0.8, and § = 0.95, n = 3,000

estimate STD skewness JB R MSE ratio
A 0.5223 0.2626 16.50 >1,000 | 3,601
Q 2.5706  15.53 25.12  >1,000
3 2.6747  13.27 3.7943 >1,000
5 0.9493 0.0066  -0.4061 118.91
Q 2.0371 0.5104 9.7250 >1,000 | 4,999 | 0.9999(3,600)
B* 0.8503 0.6938 2.9257  >1,000
o 0.9493 0.0065  -0.4232 173.56
a* 0.8445 0.0719 0.0880 7.22 | 5,000 | 1.0002(3,601)7
3 0.1119 0.0626  -0.0996 21.18 1.0001(4,999)*
0* | 0.9494 0.0065 -0.4042 157.64

(vii) v = 0.5,a = —3.0, 8= 0.2, and § = 0.95, n = 3,000

estimate STD skewness JB R MSE ratio
A 0.4706  0.0875 10.75  >1,000 | 2,076
Q <1,000 >1,000 -45.56  >1,000
I >1,000 >1,000 45.56  >1,000
b 0.9493 0.0060  -0.3074  32.65
Q -3.0860  0.9608  -5.4098 >1,000 | 4,995 | 0.9998(2,076)"
B 01362 24901  -9.6762 >1,000
o 0.9493 0.0059  -0.3323  97.47
a* | -0.9856  0.0720  -0.0040 0.05 | 5,000 | 0.9999(2,076)"
B 0.0231  0.1630  -0.0020 9.75 1.0000(4,995)*
o 0.9493 0.0059  -0.3320  97.07

Note: * and * indicate the estimation of a and [ with « fixed at true value
and with v fixed at 0.99. T and ¥ show MSE ratio over the estimation of ~
unknown and of v fixed at true value respectively.
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Table 3.5: Distribution of & and § for model (3.1) where f(y) = |y

15} n=1,000 | n=2,000 | n=3,000
-0.9 | & | bias 0.0014 0.0008 -0.0006
STD 0.1846 0.1281 0.1039
skewness 0.0190 -0.0607 0.0449

JB 0.43 3.13 2.66

Pr(|t| > z0.025) 0.0530 0.0520 0.0468

(G | bias 0.0005 0.0007 0.0004
STD 0.1122 0.0785 0.0634
skewness 0.0012 0.0715 -0.0399

JB 0.04 5.14 5.44

R 5,000 5,000 5,000

-0.6 | & | bias -0.0033 -0.0005 0.0017
STD 0.1777 0.1244 0.1005
skewness 0.0135 0.0026 0.0378

JB 0.27 0.48 1.22

Pr(|t] > z0.025) 0.0500 0.0480 0.0392

[ | bias 0.0022 0.0004 -0.0006
STD 0.1013 0.0719 0.0579
skewness -0.0079 0.0462 -0.0020

JB 0.08 1.78 0.13

Pr(|t| > z0.025) 0.0434 0.0516 0.0424

R 5,000 5,000 5,000
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15} n=1,000 | n=2,000 | n = 3,000
-0.3 | & | bias 0.0044 0.0021 0.0028
STD 0.1799 0.1267 0.1011
skewness 0.1046 0.0638 0.0810

JB 9.12 3.50 5.60

Pr(|t| > z0.025) 0.0542 0.0508 0.0456

[ | bias -0.0018 -0.0012 -0.0015
STD 0.0972 0.0684 0.0545
skewness -0.0711 0.0215 -0.0095

JB 8.34 2.07 0.14

Pr(|t] > z0.025) 0.0500 0.0532 0.0480

R 5,000 5,000 5,000

0.0 | & | bias 0.0112 0.0047 0.0041
STD 0.1858 0.1354 0.1086
skewness 0.0613 0.0880 0.0433

JB 3.14 10.19 2.62

Pr(|t] > z0.025) 0.0466 0.0562 0.0496

[ | bias -0.0066 -0.0033 -0.0019
STD 0.0966 0.0693 0.0554
skewness -0.0131 -0.0476 -0.0142

JB 0.20 5.44 0.17

Pr(|t| > z0.025) 0.0494 0.0556 0.0464

R 5,000 5,000 5,000
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15} n=1,000 | n=2,000 | n = 3,000
0.3 | & | bias 0.0244 0.0118 0.0096
STD 0.2081 0.1466 0.1191
skewness 0.1104 0.0783 0.1390

JB 14.09 6.05 16.41

Pr(|t| > z0.025) 0.0532 0.0528 0.0532

[ | bias -0.0136 -0.0065 -0.0056
STD 0.0985 0.0703 0.0569
skewness -0.0770 -0.0549 -0.1057

JB 8.51 3.15 9.31

Pr(|t| > z0.025) 0.0484 0.0546 0.0520

R 5,000 5,000 5,000

0.6 | & | bias 0.0197 0.0107 0.0070
STD 0.2803 0.1900 0.1545
skewness 0.0042 -0.0606 -0.0164

JB 22.89 3.12 2.00

Pr(|t] > z0.025) 0.0581 0.0538 0.0536

[ | bias -0.0049 -0.0036 -0.0022
STD 0.1383 0.0937 0.0751
skewness 0.4156 0.2893 0.1861

JB 300.68 121.12 32.14

Pr(|t| > z0.025) 0.0715 0.0670 0.0606

R 4,992 5,000 5,000
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15} n=1,000 | n=2,000 | n = 3,000
0.9 | & | bias -0.0226 -0.0057 0.0027
STD 0.5256 0.3477 0.2696
skewness -0.0114 -0.0493 -0.0557

JB >1,000 189.31 4.24

Pr(|t| > z0.025) 0.0647 0.0575 0.0524

[ | bias 0.0486 0.0219 0.0093
STD 0.3616 0.2089 0.1572
skewness 4.1322 1.1085 0.6294

JB >1,000 >1,000 500.67

Pr(|t| > z0.025) 0.0792 0.0647 0.0570

R 4,824 4,975 4,997
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Table 3.6: Comparison of ARMA and nonlinear estimation for model (3.1) where

f) =yl

(i) data generated by v = 0.5

Q6) | ARMA(u:p:q) | MSE | NLIN(« : ) | MSE
a=1 p=0.99 -:0.29:- 0.948 0.44:0.10 0.948
B=0.3 (-:13.50:-) (0.12:0.07)
a=1 p=0.99 -:0.11:- 0.949 0.40:-0.12 | 0.948
B=-03 (-:4.74:) (0.12:0.07)
a=1 p = 0.87 -:0.37:- 1.004 0.52:0.15 1.002
B =06 (17.74:-) (0.12:0.06)
o= p=0.95 -:0.41:- 1.015 0.99:-0.06 | 1.015
B=09 (-:20.13:-) (0.13:0.06)
a=1 p=0.16 --:0.10 1.042 0.45:-0.41 1.025
= 0.9 (-:-:4.70) (0.12:0.07)
a=1 p=0.72 -:0.45:- 1.069 0.74:0.13 1.067
B=12 (22.75:-) (0.12:0.06)
o= p=0.51 -:0.46:- 0.988 0.91:0.06 0.986
3 =20 (-:23.42:-) (0.13:0.07)
o= p =042 --0.36:- 1.009 0.08:-0.50 | 0.987
B =-20 (--17.02:-) (0.13:0.07)
a=3.0 p = 0.48 -:0.49:- 0.924 1.15:-0.04 | 0.924
B =01 (-:25.06:-) (0.14:0.08)
a=-30|p=0381 --0.48:- 1.053 -1.09:0.02 | 1.052
8=0.1 (-:-24.33:-) (0.14:0.07)
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(i) data generated by v = 0.99

Q(6) ARMA (p:p:q) MSE | NLIN(« : §) | MSE
a=1 p=0.78 -:0.63:- 1.056 1.16:0.17 1.052
B =0.3 (-:36.51:-) (0.15:0.07)
o= p=10.54 -:0.27:- 0.949 0.97:-0.25 | 0.942
= 0.3 (-12.41:) (0.12:0.06)
a=1 p=0.19 -:0.88:- 1.074 | 0.87:0.65 | 1.033
B =0.6 (-:82.77:-) (0.18:0.09)
a= p = 0.63 -:0.98:- 1.085 0.56:1.05 | 0.987
g =0.9 (-:230.96:-) (0.28:0.18)
a= p=0.06 -:-0.25:- 1.063 | 0.84:-0.80 | 0.983
B=-09 (--11.51:-) (0.12:0.08)
a=1 p=0.15 -:0.99:- 1.025 0.15:1.76 1.014
B=12 (-:263.69:-) (0.54:0.48)
a= p=10.26 -:0.99:- 0.991 2.05:0.94 | 0.989
B =20 (-:287.81:-) (0.96:0.56)
a=1 p=0.04| --1.47-0.47:-0.56 | 1.134 0.88:-1.89 | 1.030
B=-20 (--6.69 -2.22:-2.65) (0.29:0.25)
a=3.0 p=0.72 -:0.95:- 0.986 3.14:0.14 0.984
f=0.1 (-:133.53:-) (0.36:0.08)
a=-30|p=0.70 -:-0.86:- 1.032 -2.92:0.09 | 1.029
B =0.1 (--74.41:-) (0.26:0.07)

Note: The figures in parentheses indicate t values in ARMA and standard
errors in NLIN for estimates. Q(6) figures show BOX-Ljung x? statistic at lag

6.
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Table 3.7: The distribution of & and 3 where 8 =0 n = 1,000

a parms bias STD JB  Pr(|t]) R
-3.6 o} -0.0054 0.2125(0.1965) >1,000 0.0428 5,000
[—0.9486] I3 0.0006 0.0436(0.0365) >1,000 0.0372
-2.4 o -0.0012  0.1154(0.1145) 2.43 0.0472 5,000
[—0.8337] I} 0.0001 0.0377(0.0365) 7.61 0.0460
-1.2 « -0.0035 0.0758(0.0750) 2.33 0.0524 5,000
—05371] | B -0.0006 0.0370(0.0365)  2.78 0.0482
0.0 o} -0.0019  0.0636(0.0633) 0.05 0.0490 5,000
[0.0] I} -0.0006 0.0367(0.0365) 1.23  0.0466
1.2 o} -0.0080 0.0748(0.0750) 1.03 0.0516 5,000
[0.5371] I} 0.0004 0.0368(0.0365) 0.41 0.0450
2.4 o} -0.0164 0.1139(0.1145) 2.79 0.0580 5,000
[0.8337] 154 0.0007 0.0377(0.0365) 0.66 0.0490
3.6 o} -0.0600 0.2032(0.1965) 228.33 0.0848 5,000
[0.9486] I} -0.0002 0.0414(0.0365) 116.26 0.0574

Note: Pr(|t) indicates Pr(|t| > z0.025). The figures in parentheses [ | show
_ exp(ag)—1
pPo = iﬁ&iﬁm

of parameters in B~1(6p)o>.

and those in parenthesis () are the theoetical standard error

168



Table 3.8: Distribution of & and 3 for model (3.2) where f(y) =y

15} n=1,000 | n=2,000 | n = 3,000
-0.9 | & | bias -0.0138 -0.0081 -0.0026
STD 0.1616 0.1148 0.1011
skewness 2.0584 0.3771 0.5757

JB >1,000 90.70 88.28

[ | bias 0.0082 0.0068 0.0063
STD 0.1026 0.0727 0.0622
skewness -2.1514 -0.6653 -0.5103

JB >1,000 164.22 49.54

Pr(|t| > z0.025) 0.0705 0.0717 0.0559

R 1,418 1,256 1,091

-0.6 | & | bias -0.0087 -0.0046 -0.0032
STD 0.0944 0.0696 0.0567
skewness 0.1340 0.1374 0.1422

JB 15.81 29.06 12.67

Pr(|t] > z0.025) 0.0493 0.0536 0.0465

[ | bias 0.0040 0.0022 0.0015
STD 0.0514 0.0369 0.0298
skewness -0.2701 -0.2479 -0.2059

JB 51.44 54.41 29.99

Pr(|t| > z0.025) 0.0536 0.0531 0.0493

R 4,014 3,843 3,634
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15} n=1,000 | n=2,000 | n = 3,000
-0.3 | & | bias -0.0047 -0.0023 -0.0011
STD 0.0757 0.0540 0.0441
skewness 0.0351 0.0498 0.0066

JB 1.90 3.90 2.11

Pr(|t| > z0.025) 0.0528 0.0534 0.0530

[ | bias 0.0006 0.0001 0.0000
STD 0.0381 0.0271 0.0221
skewness 0.0166 -0.0039 0.0566

JB 0.49 0.67 2.81

Pr(|t] > z0.025) 0.0478 0.0498 0.0492

R 5,000 5,000 5,000

0.0 | & | bias -0.0048 -0.0033 -0.0008
STD 0.0712 0.0503 0.0414
skewness 0.0098 -0.0274 -0.0051

JB 0.55 0.63 0.02

[ | bias 0.0002 0.0000 -0.0001
STD 0.0366 0.0262 0.0214
skewness 0.0288 -0.0469 0.0343

JB 1.27 3.14 1.08

Pr(|t| > z0.025) 0.0484 0.0500 0.0530

R 5,000 5,000 5,000
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1] n=1,000 | n=2,000 | n=3,000
0.3 | & | bias -0.0046 -0.0024 -0.0021
STD 0.0749 0.0539 0.0438
skewness 0.0100 0.0292 0.0251

JB 1.46 1.23 2.35

Pr(|t| > z0.025) 0.0462 0.0540 0.0506

[ | bias -0.0008 -0.0008 -0.0004
STD 0.0390 0.0275 0.0218
skewness -0.0392 -0.0323 -0.0842

JB 4.09 2.01 7.72

R 5,000 5,000 5,000

0.6 | & | bias -0.0066 -0.0052 -0.0012
STD 0.0984 0.0686 0.0571
skewness 0.1087 0.0978 0.1091

JB 26.39 6.22 9.86

Pr(|t] > z0.025) 0.0563 0.0514 0.0490

[ | bias -0.0044 -0.0032 -0.0015
STD 0.0519 0.0369 0.0303
skewness 0.2709 0.2592 0.2997

JB 64.37 45.89 61.18

Pr(|t| > z0.025) 0.0548 0.0607 0.0490

R 4,012 3,836 3,656
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15} n=1,000 | n=2,000 | n = 3,000
0.9 | & | bias -0.0195 -0.0123 -0.0119
STD 0.1556 0.1257 0.0985
skewness 0.5167 0.6795 0.3754

JB 108.29 255.75 47.98

Pr(|t| > z0.025) 0.0498 0.0520 0.0464

[ | bias -0.0109 -0.0028 -0.0062
STD 0.0968 0.0761 0.0623
skewness 0.8337 0.6915 0.6561

JB 285.51 123.32 116.46

Pr(|t| > z0.025) 0.0671 0.0594 0.0653

R 1,505 1,230 1,057
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Table 3.9: Distribution of & and § for model (3.2) where f(y) = |y

1] n=1,000 | n=2,000 | n = 3,000
-0.9 | a | bias -0.0085 -0.0022 -0.0008
STD 0.1876 0.1290 0.1064
skewness 0.4426 0.5380 0.3850

JB >1,000 >1,000 >1,000

Pr(|t] > z0.025) 0.0531 0.0452 0.0464

[ | bias 0.0068 0.0018 0.0003
STD 0.1155 0.0779 0.0656
skewness -0.7707 -0.2834 -0.4693

JB >1,000 >1,000 >1,000

R 4,994 4,995 4,995

-0.6 | & | bias -0.0017 -0.0007 -0.0024
STD 0.1751 0.1249 0.0999
skewness 0.0720 0.0211 -0.0048

JB 5.69 5.54 1.60

[ | bias 0.0014 0.0002 0.0015
STD 0.1015 0.0720 0.0568
skewness -0.0425 0.0173 0.0210

JB 5.56 5.88 0.40

Pr(|t| > z0.025) 0.0506 0.0520 0.0428

R 5,000 5,000 5,000
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I6] n=1,000 | n=2,000 | n=3,000
-0.3 | & | bias 0.0039 -0.0019 -0.0002
STD 0.1750 0.1247 0.1023
skewness 0.0707 -0.0103 -0.0150

JB 4.28 0.33 1.30

Pr(|t| > z0.025) 0.0468 0.0498 0.0542

[ | bias -0.0019 0.0017 0.0001
STD 0.0955 0.0679 0.0549
skewness -0.0359 0.0178 0.0300

JB 1.12 0.39 3.17

R 5,000 5,000 5,000

0.0 | & | bias 0.0082 0.0053 0.0029
STD 0.1846 0.1324 0.1059
skewness 0.0880 0.0858 0.0118

JB 6.46 6.94 2.71

Pr(|t] > z0.025) 0.0514 0.0506 0.0490

[ | bias -0.0046 -0.0034 -0.0016
STD 0.0951 0.0670 0.0547
skewness -0.0286 -0.0280 0.0077

JB 0.74 0.65 2.99

Pr(|t| > z0.025) 0.0512 0.0468 0.0482

R 5,000 5,000 5,000
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1] n=1,000 | n=2,000 | n=3,000
0.3 | & | bias 0.0234 0.0128 0.0073
STD 0.2026 0.1420 0.1163
skewness 0.1780 0.0444 0.1026

JB 29.77 7.57 17.82

Pr(|t| > z0.025) 0.0528 0.0488 0.0542

[ | bias -0.0136 -0.0083 -0.0042
STD 0.0965 0.0675 0.0560
skewness -0.1593 -0.0622 -0.0757

JB 22.94 4.37 13.94

R 4,999 5,000 5,000

0.6 | & | bias 0.0490 0.0221 0.0231
STD 0.2850 0.1932 0.1585
skewness 0.0296 -0.0882 -0.0431

JB 4.94 5.03 1.08

[ | bias -0.0277 -0.0141 -0.0125
STD 0.1317 0.0894 0.0732
skewness 0.4797 0.3710 0.3530

JB 230.50 120.53 84.31

Pr(|t| > z0.025) 0.0912 0.0705 0.0654

R 3,628 3,349 3,229
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15} n=1,000 | n=2,000 | n = 3,000
0.9 | & | bias 0.1888 0.0774 0.0497
STD 0.6844 0.4031 0.3332
skewness 1.5599 0.0463 -0.0049

JB >1,000 33.88 0.05

Pr(|t| > z0.025) 0.1333 0.0791 0.0654

[ | bias -0.0931 -0.0494 -0.0267
STD 0.3989 0.2300 0.1871
skewness 6.7579 1.2877 0.8720

JB >1,000 5H88.82 185.24

Pr(|t| > z0.025) 0.2339 0.1500 0.1090

R 1,043 860 780
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Table 3.10: The mean of model (3.1) with v = 0.99, 0.999 and 1.00, @ = 1.0, and

B =0.8

(i) where f(y) = y

= 0.99 v= 0.999 v = 1.00

n || mean STD R mean STD R mean STD R
1,000 || 2.4756 1.0549 4,932 | 3.1134 1.3624 2,588 | 3.1478 1.4008 2,102
2,000 || 2.5590 0.8642 5,000 | 4.6198 1.8771 2,632 | 4.6271 1.9063 1,792
3,000 || 2.5290 0.6777 5,000 | 5.9081 2.2752 2898 | 5.8740 2.2828 1,576
4,000 || 2.5438 0.5933 5,000 | 6.9463 2.5521 3,243 | 6.9624 2.6216 1,478
5,000 || 2.5491 0.5293 5,000 | 7.8862 2.8552 3,501 | 7.8079 2.7783 1,362
6,000 || 2.5762 0.4958 5,000 | 8.5895 3.0312 3,819 | 8.8218 3.1295 1,348
7,000 || 2.5544 0.4438 5,000 | 9.2507 3.2298 4,118 | 9.7184 3.2991 1,242
8,000 || 2.5523 0.4253 5,000 | 9.8554 3.3606 4,386 | 10.4749 3.5286 1,199
9,000 || 2.5598 0.3957 5,000 | 10.1754 3.4823 4,553 | 11.6832 3.5482 1,148
10,000 || 2.5543 0.3847 5,000 | 10.5641 3.5849 4,732 | 12.0972 3.9427 1,054
11,000 || 2.5562 0.3570 5,000 | 10.7806 3.6127 4,810 | 12.7711 4.0089 1,057
12,000 || 2.5499 0.3447 5,000 | 10.9710 3.6182 4,874 | 13.3524 4.1012 1,047
13,000 || 2.5555 0.3362 5,000 | 11.0867 3.6247 4,933 | 14.6505 4.4322 1,038
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(ii) where f(y) = |y|

v = 0.99 = 0.999 v = 1.00

n mean STD R mean STD R mean STD R
1,000 || 0.0163 1.5455 4,805 | -0.0355 2.1025 1,959 | 0.0671 2.0906 1,553
2,000 || 0.0078 1.2231 5,000 | 0.0840 2.9303 2,108 | 0.1366 2.8985 1,349
3,000 || 0.0024 1.1068 5,000 | 0.0331 3.8890 2,442 | -0.0981 3.6867 1,209
4,000 || -0.0158 0.8990 5,000 | -0.1331 4.4303 2,697 | -0.0747 4.3820 1,121
5,000 | 0.0035 0.7915 5,000 | 0.0416 4.9563 2,970 | 0.3055 4.9907 977
6,000 || 0.0016 0.7334 5,000 | 0.1398 5.2765 3,395 | -0.0198 5.6800 993
7,000 || -0.0039 0.6751 5,000 | -0.1955 5.6063 3,718 | 0.0726 5.9298 868
8,000 || -0.0004 0.6241 5,000 | -0.0425 5.9141 4,008 | 0.3187 6.5415 881
9,000 || 0.0217 0.6047 5,000 | 0.0144 6.0392 4,307 | -0.2095 7.0508 848
10,000 || 0.0130 0.5549 5,000 | -0.0309 6.2077 4,508 | -0.0780 7.1496 785
11,000 || 0.0007 0.5259 5,000 | -0.1225 6.3735 4,655 | 0.3432 7.8830 813
12,000 || -0.0048 0.5114 5,000 | 0.0183 6.1392 4,767 | -0.3454 7.9886 710
13,000 || -0.0041 0.4910 5,000 | -0.1025 6.2142 4,871 | -0.2629 8.3086 728

Note: R shows the number of replications which are stationary through ADF

test.
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Table 3.11: Estimation of o and 8 with ~ fixed at 0.99 where f(y) =y

(i) v =1.0,a = 1.0, and § = 0.6, n = 3,000

estimate STD skewness JB R MSE ratio
A 0.9902 0.0115  -2.3188 >1,000 | 3,696
Q 1.0232 0.0653 0.2411 83.09
B 0.6186 0.0361 0.5511  376.72
ar 0.9971 0.0577 0.0517 4.51 | 3,696 | 1.0002(3,696)
B* 0.5985 0.0306 0.4186 278.36
a 1.0238 0.0607 0.0785 7.42 | 3,696 | 1.0019(3,696)7
B* 0.6198 0.0329 0.4241 270.21 1.0017(3,696)*

(ii) v = 1.0, = —3.0, and # = 0.1, n = 3,000

estimate STD skewness JB R MSE ratio
0.9728 0.2892  -1.9698 >1,000 | 3,237
-3.4221 2.0433 8.0786 >1,000
0.1750 0.2381 -4.4436  >1,000
* | -3.0018 0.1018  -0.2114 38.14 | 5,000 | 0.9999(3,237)7
0.1010 0.0243 0.0773 5.95
1 -3.1169 0.1166  -0.2710 64.83 | 5,000 | 0.9999(3,237)1
0.1118 0.0273 0.1193 16.01 1.0000(5,000)*

*

S O > D =

Q*>

Note: * and * indicate the estimation of a and 3 with « fixed at 1 and with ~
fixed at 0.99. T and T show MSE ratio over the estimation of v unknown and
of v fixed at 1 respectively.
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Table 3.12: Estimation of o and 8 with ~ fixed at 0.99 where f(y) = |y

(i) v =1.0,a = 1.0, and § = 0.6, n = 3,000

estimate STD skewness JB R MSE ratio
A 0.9912 0.0104  -2.4185 0.93 | 3,171
Q 0.9708 0.1654  -0.0383 234.73
B 0.6418 0.0903 0.5444 >1,000
ar 1.0209 0.1621 -0.0533 1.93 | 3,171 | 1.0003(3,171)"
B* 0.5876 0.0761 0.3304 73.95
a 0.9628 0.1663  -0.0471 1.92 | 3,171 | 1.0021(3,171)7
B* 0.6491 0.0836 0.2886 59.67 1.0019(3,171)*

(ii) v = 1.0, = —3.0, and # = 0.1, n = 3,000

estimate STD skewness JB R MSE ratio
0.8630  0.4914  -2.7935 >1,000 | 801
-5.5763 10.3299  -2.6078 >1,000
0.5175  1.6735 4.1472  >1,000
* 1 -3.0251  0.2130  -0.1979 32.66 | 5,000 | 0.9998(801)T
* 0.1081  0.0580 0.1728 25.80
1 -3.1287  0.2309  -0.2103 36.83 | 5,000 [ 0.9998(801)T
5 0.1164  0.0625 0.1711 25.28 1.0000(5,000)*

> O T O Ty O =2

Note: * and * indicate the estimation of a and 3 with « fixed at 1 and with ~
fixed at 0.99. T and T show MSE ratio over the estimation of v unknown and
of v fixed at 1 respectively.
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Figure 3.8: The trend of mean with 0? = 1.0 where f(y) =y
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Figure 3.9: The trend of mean with ¢ = 0.25 where f(y) =y
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Figure 3.14: Examples of series generated by (a) (v,«,3) = (0.99,1.0,0.8), (b)
(7, e, B) = (1.0,1.0,0.8) where f(y) =y

194



(a) (b)

S A g
= = o |
S o A g «
> >
o S A
s |
I
o
S |
T ! T
(o] 500 1000 1500 2000 (o] 500 1000 1500 2000
t t
o o
— — ] \ D
[=2] (=2
[SENN (ST
@ @
= S ] = s
= g
£ 3 £ 5
© =)
oS S A
[T [T}
o 2
0 500 1000 1500 2000 0 500 1000 1500 2000
t t
Series : yl Series : y2
o o
- -
[oe) ©
[SE [SE
e =)
[SE [SE
[ L
(@] (&}
<< << |
o o
N N
- .
< [ 11 11 [ 11 <
o o
o] 10 20 30 (o] 10 20 30
Lag Lag

Figure 3.15: Examples of series generated by (a) (v,«,3) = (0.99,1.0,0.8), (b)
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Figure 3.20: Stream flows in Goldsboro; (a) original series(y;), (b) scatter plot of y;
and y;_1, (c) autocorrelation of y;, (d) partial autocorrelation of y;, (e) prediction(y;:
solid line, prediction: dotted line), (f) p(yi—1) vs yt—1

200



Yy
Yy

fime )
Series y Series y
]
L 6]
o
: <3
<3 i
S
HHHHWHHH ST
N ol L I1________"1 T N I_ " _' ______
O - ] ‘
o ¢
————————————————————————— O'_
T T T T T w T T T T T
0 10 0 ki) 1} 0 5 10 5 0 5
Lag Lag
() ()
0 J
Ll
]
@
(0]
2 g ]
5 2 .
i
N
i
°
T T T T T ° T T T T
0 10 0 30 40 6 1 8 9
fime )
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Chapter 4

Conclusion

We have investigated a set of autoregressive time series models whose coefficients
have the form of a logistic function. The transfer function type models give additional
flexibility over the fixed coefficients models and include them as a special case.

We have analyzed two stream flow series using the nonlinear model where the
weight of the coefficients are determined by the logistic function. Our models include

variants of

Y =np(Xi—a)Ti—1 + Y2 (1 — p(x4_a)) T1—2 + €

where p(l.tfd) = m and d = 172 N and

v = Ml = p1(®i—a) — pa(wi—a)|e + y2p1(T4—a) i1
+  v3pa(Ti—q)Ti—o + €

and pQ(xt—d) — Z2exp(a2+ﬁzxt_d) q —

Z exp(aitBize_a) 1’

exp(a1+B81%_q)
7 explaitBizi—a)+1

where pi(2i-q) =
0,1,2,--
The stream flow between Goldsoboro and Kinston North Carolina has been well

fitted by the two weights model and that between Kinston and Fort Barnwell North
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Carolina has been explained well by giving three weights to the coefficients of lagged
variables. These nonlinear models add insights unavailable with the fixed coefficient
model.

NLAR model with the AR(1) coefficient being a hyperbolic tangent function has

been introduced.

Y = YP(Yi—1)Yi—1 + €

where p(y, 1) = SRCBLUL - f(y) = |y] or f(y) = y.

They work well for modeling series which have asymmetric stochastic volatility or
changing amplitude around 0 with a persistent autocorrelation and local nonstation-
ary behavior.

Geometric ergodicity of the series, and the consistency and the asymptotic nor-
mality of the parameter estimates have been established for the series generated with
|v| < 1. Where 7 = 1, it appears that no single distribution applies, even for large
samples, across the full range of possible («, 3) values. we have shown that similar
distributional results to those of parameter estimates with |y| near but less than 1 are
obtained using only those series which reject a unit root using a standard test, and
we have found a region in which the normal approximation works reasonably well by
conducting a Monte Carlo study.

In addition, we have found that estimating the other parameters with ~ set to
near 1 gives good prediction mean square errors, even if the true v is not near 1,
implying that the fitting is fairly robust with respect to the assumed ~.

We have applied the model to the analysis of the stream flow series in Goldsoboro

and Kinston North Carolina and the soybean price data in North Carolina. It has
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been found that their performance is better compared to the standard ARMA model
and the slowly decaying autocorrelation is well modeled.

In particular, in the case of the soybean price series, we fit a model in which a
change of the conditional innovation variance(GARCH) as well as the dynamically
changing difference equation coefficients(NLAR) are incorporated. We call this the
NLAR-GARCH model.

A previously introduced model, the STAR model, could be misspecified and over-
parameterized in its estimation stage using the usual STAR fitting process in the
analysis of a series which has a rather persistent autocorrelation or ARCH type data
structure. Our suggested NLAR could be one alternative.

Finally, a unit root test such as the ADF test still can be applied to check sta-
tionarity of the nonlinearly generated time series. For series that reject unit roots,

we get well-behaved asymptotic distributions of parameter estimates.
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