Abstract

HSIEH, WEN-PING. Analysis of Gene Expression Profiles with Linear Mixed Models.
(Under the direction of Dr. Greg Gibson and Dr. Russ Wolfinger)

With the emergence of high throughput technology, proper interpretation of data
has become critical for many aspects of biomedical research. My dissertation explores
two major issues in gene expression profile microarray data analysis. One is
quantification of variation across and among species and its effect on biological
interpretation. The second part of my work is to develop better statistical estimates that
can account for different sources of variation for significant gene detection.

A previously published dataset of oligonucleotide array data for three primate
species was analyzed with linear mixed models. By decomposing the variation of
expression into different explanatory factors, the differences among species as well as
between tissues was revealed at the expression level. Issues of cross-species
hybridization and expression divergence compared to mutation-drift equilibrium were
addressed.

The power and flexibility of the linear mixed model framework for detection of
differentially expressed genes was then explored with a dataset that includes spiked-in
controls. The impact of probe-level sequence variation on cross-hybridization was
detected through a Gibb’s sampling method that highlights potential problems for short
oligonucleotide microarray data analysis. A motif as short as fifteen bases can possibly

cause significant cross-hybridization.



Finally, a bivariate model using information from both perfect match probes and
mismatch probes was proposed as a means to increase the statistical power for detection
of significant differences in gene expression. The improved performance of the method
was demonstrated through Monte Carlo simulation. The detection power can increase as

much as 20% with 5% false positive rate under certain circumstances.
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Chapter 1 Introduction

Microarray technology is widely adopted in all levels of biological research. The
application extensively covers drug efficacy screening (Jain 2000), prediction of gene
function (Zhang et al. 2004), temporal profiling (Cavallaro et al. 2002), and studies of
regulatory networks (Lee 2002). It is also an important tool in pharmaceutical and
clinical research. While monitoring the expression levels of several thousands of genes at
the same time with only limited amount of mRNA, it accelerates the discovery of disease
genes and helps us to understand the biological system as a whole. The extraordinarily
large amounts of data generated from microarray studies raise considerable challenges for
storage and handling of the data. Systematic statistical strategies for correctly retrieving
information from the massive datasets have become very critical to the drawing of solid
conclusions at the genomic scale.

The first important issue is the experimental design. A lot of suggestions and
alternatives have been provided. Yang et al. reviewed the pros and cons of several
different methods (Yang et al. 2002b) and evaluated the designs based on their efficiency
and purpose. Kerr et al. (2000) provided a detailed discussion of different sources of
variation and compared the two most widely used designs, the reference design and loop
design. There is also thorough discussion of the number of replicates and proper
arrangement of replication in these studies.

Statistical analysis of microarray data includes image processing and signal
acquisition at the front end (Yang 2002a). After all the preprocessing steps have been

completed, there are different approaches for mining information from the data.



Clustering methods are often used to discover hidden patterns. (Eisen et al. 1998,
Tibshirani et al. 1999, Dudoit et al. 2000a); these are called unsupervised learning in
information science. Most of the well-developed statistical methods such as hierarchical
clustering, k-means clustering, self-organizing maps, and principal component analysis
have been applied to seek potential sub-types of tumor samples or to group genes that
might be co-regulated (Alizedeh et al. 2000, Eisen et al. 1998). A second category of
pattern searching is supervised learning methods, which are also generally known as
classification methods. It is often very useful to associate samples with disease types
(Ben-Dor et al. 2000, Golub et al. 1999) and to classify genes according to their

functional roles (Brown et al. 2000).

1.1 Normalization
Due to the nature of the technology itself, there are several sources of technical variation
relating to RNA extraction, reverse transcription, labeling and fluorescence detection.
The variation can be systematic, which means that they have a similar effect on many
measurements and can be explicitly accounted for. Alternatively, it can also be largely
stochastic with the result that it cannot be captured according to current knowledge. The
more we know about where the variation comes from, the better we can integrate the
sources as systematic effects and account for them.

There are many different ways to correct for systematic noises. The simplest way
is to adjust globally for the mean or median (Yang 2002¢, Quackenbush 2001). The
basic assumption is that most genes are not differentially expressed across different

conditions. Hence the mean and median values for all arrays should be approximately



the same. If this assumption is violated, another measure for global noise reduction is to
use the information from a set of invariant genes (Li and Wong 2001b). They assume
that the rank of probe intensity from non-differentially expressed genes within each array
does not change appreciably across arrays, and use this invariant set to determine the
normalization relationships among arrays. Another category of normalization is
intensity-based, such as Loess transformation (Yang et al. 2002¢). The most flexible and
comprehensive global normalization method is the ANOVA approach (Kerr et al. 2000,
Wolfinger et al. 2001), which can easily integrate all possible sources of noises as effects

in the model.

1.2 Significant gene detection
One of the most important goals for microarray experiments is to identify genes that are
differentially expressed across different conditions such as treatment and control,
different tissues, species, developmental stages, pathological conditions, etc. In two
group comparisons, fold change is generally used by biologists to assess the difference
between groups (Draghici 2002, DeRisi 1996). It is simple and intuitive. However, the
behavior of genes at high levels of expression is different from that observed at low
expression levels. There tends to be a lot more variation in low expression levels
(Draghici 2002, Rocke and Durbin 2001). A high fold change between groups for a gene
might result from randomness and need not have statistical significance.

T-tests take one further step to assess the statistical significance of differences
between groups (Dudoit et al. 2000b, Pan 2002, Claverie 1999). This univariate test can

also be adjusted for multiple comparisons as described in Dudoit et al (2002b). Another



approach to detect differentially expressed genes is to use model-based clustering
methods such as mixture models (Lee et al. 2000). A similar approach is to assay the
probability that a given gene is truly differentially expressed between two conditions

using empirical Bayes analysis (Efron 2001).

1.3 ANOVA analysis and Two step Linear Mixed Model analysis of microarray data
Kerr et al. were among the first to use an ANOV A approach for microarray data analysis.
(Kerr et al. 2001). Their model puts all genes into one comprehensive model and
decomposes the variation of expression into different sources such as the dye effect, pin
effect and batch effect, etc. It can estimate the variation at the global level as well as the
gene level. This approach seems to be promising, but it is computationally prohibitive in
most large experiments in which the increased number of genes and conditions increases
the number of parameters to be estimated. Two-step analyses (Wolfinger et al. 2001, Wu
et al. 2003) have been proposed as alternatives to the full model analysis. Another
drawback is that fixed effect ANOVA cannot comprehensively account for all kinds of
random factors so an extension proposed by Wolfinger et al (2001) is the use of mixed
models.

Mixed models are known for their ability to accommodate correlation through
incorporation of random effects. For example, all the estimates from the same array
share the same background intensity caused by the manufacturing process and hence are
correlated. Fixed effect models treat the effects in the model as if the same categories or
levels will be repeated exactly if we do the same experiment again. Some effects, such as

slide effects, are better modeled as random effects, since the arrays are not reusable and



the levels will not be exactly repeated the next time we do the same experiment. We can
only assume that similar effects will be drawn from the same population (Cui et al. 2002).
The method proposed by Wolfinger et al. (2001) uses two interconnected sequential
mixed models. The first model accounts for global effects such as the dye effect, slide
effect, print tip effect, etc. The residuals from the first model become the response
variable in the second model. The second model assesses the gene specific effects. It
associates the variation with the varieties we are interested in and makes inference based
on F-statistics or f-statistics to detect genes that are differentially expressed among
conditions. Mixed model analysis provides a comprehensive and flexible framework
with which to identify all kinds of systematic sources of variance.

Although the two-step mixed model is only equivalent to the one step mixed
model under certain circumstances (Yang 2003), it may not make much difference in
practice (Wolfinger 2001). While the one step model has a common error model for all
genes, the two step model can evaluate the error terms independently for each one and

can accommodate more information.

1.4 Basics of Affymetrix arrays

The Affymetrix GeneChip® is currently the most popular commercial type of array.
Each gene is represented by 10 to 20 short oligonucleotide sequences, each of which is 25
bases long and complementary to the target sequence (Lockhart 1996). These short
sequences are called perfect match (PM) probes. Each PM probe is accompanied by a
mismatch (MM) probe, which only differs from its associated PM probe with a single

base mismatch in the middle of the sequence. The single base mismatch is assumed to



disable any hybridization to the target sequence and the mismatch probes are designed to
capture the comparable level of non-specific binding and systematic noise as perfect

match probes.

1.5 How to incorporate mismatch probes

There are many different ways to combine the intensity measure from PM and MM to
interrogate target gene expression. Average difference (AvgDifY) is the first approach
adopted by Affymetrix as their default analysis in Affymetrix Micro Array Suite (MAS
4.0). This assumes that the difference PM-MM is proportional to the true signal, and
takes the weighted average across probes within a probe set as the measurement for the
target gene. The fact that PM-MM is not always positive causes problems for log-scale
analysis (Hubbell et al. 2002, Irizarry et al. 2003, Naef 2002). Affymetrix therefore
updated their algorithm in MAS 5.0 using Tuckey’s biweight function (Hubbell et al.
2002). This approach has been criticized for inefficient management of the MM data,
among other concerns (Irizarry et al. 2003).

Li and Wong’s also devised a method that is based on PM-MM (Li and Wong
2001a). It analyzes the data at the probe level and decomposes the signal into the product
of a probe sensitivity index and the gene expression index. Their software dChip has
been used in various genomic studies.

Irizarry et al. proposed a background subtraction based on the mode of MM
distribution instead of a probe-by-probe subtraction (Irizarry et al. 2003). This RMA
method is widely used to assess the array quality. Many empirical studies have indicated

that the MM probes capture a lot of true signal, making them problematic for background



noise detection, so several studies have focused solely on PM data (Li and Wong 2001a,
Zhou 2002). Chu et. al. adopted a linear mixed model with MM intensity as a covariate,
but this approach does not produce much improvement from the PM-only model (Chu et
al. 2002). I propose a bivariate model in Chapter 4 following Chu’s study, in order to
explore the best way of using the MM data under the framework of linear mixed models.
This approach is conceptually similar to Wu’s study (Wu et al. 2004), who essentially
decomposed the intensity of PM into true signal, non-specific binding and optical noise
and the intensity of MM into only non-specific binding and optical noise. They modeled
the non-specific binding from PM and MM as a bivariate normal distribution. The main
difference between our approaches is that my model can dynamically adjust for the
correlation between PM and MM based on classical linear mixed models, while they used

an constant empirical value of 0.7 in their model.

1.6 Specificity of oligonucleotide arrays

Short probe sequences on the oligonucleotide arrays create cross-hybridization issues. It
has been suggested that such problems can be avoided by paying attention to sequence
similarity at the probe design stage (Rouillard et al. 2002). However, since most samples
in the microarray studies may be from different individual organisms, the complexity of
the sequences in the whole genome provides few clues about the specificity problem. A
spike-in experiment described in Chapter 3 provides some transcript information that
enables close evaluation of the problem. My analysis in Chapter 3 shows that short
motifs can provide strong hybridization strength and cause cross-hybridization. Some

sequences are more susceptible to non-specific binding than others.



Some recent studies have attempted to assess whether sequences are “sticky” or not using
thermodynamic rules (Zhang et al. 2003, Wu et al. 2004, Naef et al. 2003, Mei et al.
2003). The free-energy model proposed by Zhang is based on the nearest-neighbor
model with some modifications to compute the gene-specific binding energy and
nonspecific binding energy. Naef et al. simplified the model and considered only the
sequence composition of the probes. The affinity for non-specific binding was modeled
as a function of position with a polynomial of degree 3 for each base. Their approach is
arguably successful to this end. Such concepts are also integrated in the probe design of
Affymetrix arrays (Mei et al 2003).

Another issue related to sequence specificity is the study of cross-species
hybridization. Since the effort needed to make the whole genome array for a new
organism is huge, pilot studies are usually carried out on the arrays of a closely related
species. Except for newly explored species, comparative genomic studies sometimes also
utilize the comparison of different species on the same arrays. Even if it is a preliminary
study for screening purpose, it is still desirable to retrieve the most accurate information
possible. If we have sequence information for both species that contribute to the arrays
and the samples, a straightforward approach would be to delete the probes with
mismatches among the species studied. However, we do not have complete sequence
information for most newly explored species, and nor do we have information from
different strains. An alternative method proposed by Ji et al (2004) uses only probes with
significant signals across all samples. This approach can be criticized on the basis that it
wastes a great proportion of useful information. My study in Chapter 2 uses a specific

feature of Affymetrix arrays, the probe profiles, to control for sequence variation. This



issue was first highlighted in Li and Wong’s method (Li and Wong 2001a). Based on the
heuristic rules that I propose, “bad” probes that might have polymorphisms or simply do

not function are filtered out of the analysis.

1.7 Motivation and research outline
1.7.1. Expression variation of primates
Why human beings look and behave differently from their close relatives, the
chimpanzee, gorilla, and orangutan, has been an intriguing question for a long time.
Since King et al. (1975) concluded that humans differ from chimpanzees at the regulatory
level of gene activities, people have been trying to characterize gene expression
differences in different ways. An experiment from Paabo’s group was the first study that
addressed this question with information from tens of thousands of genes. (Enard et al.
2002) Their experiment included three primate species and two tissues. The conclusion
they drew from the analysis of the data using phylogenetic methods favors the idea that
gene expression shows accelerated evolution in human brains.

They first generated evolutionary trees based on the expression of 12,600 genes.
The distance metrics they used was essentially weighted by the fold change between the
expression measurements of individuals. While the topology of their evolutionary tree is
confirmed when we reproduced their results, my approach with linear mixed models
provides a different perspective on this data set and the conclusions are not necessarily
consistent with theirs.

The second issue addressed in this study (Hsieh et al 2003a) was the degree of

cross-species hybridization. Since there is difference at the sequence level for the species



studied, the hybridization of great ape target cDNA to the human Affymetrix arrays
might not give correct signals. Lower intensity from non-human species might be caused
by the lack of hybridization instead of lower transcript abundance. From the observation
of consistent probe patterns, we used a heuristic rule to filter probes with potential
polymorphisms.  The conclusions from the biological analysis regarding relative
divergence of gene expression in brain and liver nevertheless remain valid after filtering
the probes.

Since I observed significant species variation for a significant proportion of the
genes, the third question I asked is whether there are transcripts undergoing some natural
selection. Based on the limited information we can have from the small sample, only a
few genes that diverged between species greater than expected under mutation-drift

balance were detected.

1.7.2. Cross-hybridization detection of Latin Square data

There are many different ways to analyze microarray data. Most of the proposed
methods have been demonstrated through experiments on model organisms and have
been evaluated by simulation or biological evidence. These only provide indirect support
of how well the statistical algorithms fit data to specific scenarios. To enable a fair
comparison across different methods, we needed a dataset with known answers. To this
end, Affymetrix provided a spike-in experiment that can be used to evaluate various
statistical methods (Affymetrix 2001). This experiment was in the form of a standard
Latin Square design. There are 14 spike-in transcripts with concentration levels from 0 to

1024 pM. Each of the 14 experiments contains each of the 14 transcripts with each of the

10



14 concentration levels appearing only once. The Latin Square design allows one to
evaluate the main effects of interest using the fewest samples needed, while leaving the
higher interaction effects confounded with some of the main effects. Dye-swapping
design for cDNA arrays are essentially a Latin Square design with balanced combination
of dyes and samples (Kerr et al. 2000).

I demonstrate the accuracy of significant gene detection with linear mixed models.
From the analysis I found several unexpected genes showing one of the 14 patterns of the
designed transcripts. Through the exploration of sequence similarity with Gibb’s
sampling, some short motifs were detected that possibly contribute to the inferred cross-
hybridization. The work was published in the proceeding of CAMDA 2002 (Hsieh et al,

2003b).

1.7.3. Bivariate model versus PM-only model

Affymetrix arrays are currently the most popular commercial platform used for
microarray experiments. Half of the probes on the arrays are designed to catch the real
signals and the other half are aimed at catching the background noise. From empirical
studies we know the truth somewhat deviates from the assumptions of this design
principle. Mismatch probes capture some of the real signal all the time, so cannot be
simply subtracted from the perfect match signals. Since mismatch probes do not play a
consistent role in background noise detection and vary according to the sequence
properties, most recommended current statistical methods ignore the mismatch probes
and use only the perfect match probes. I propose a bivariate model in Chapter 4 to

incorporate both signals together. The correlation between PM and MM can be

11



dynamically adjusted and hence the mismatch probes can provide the information for the
true signals according to the data itself. Including more data points can also increase the
accuracy of parameter estimates, and this increase in power is demonstrated through

simulation.
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Chapter 2 Mixed Model Reanalysis of Primate Data Suggests Tissue
and Species Biases in Oligonucleotide-Based Gene Expression Profiles

2.1 Abstract
An emerging issue in evolutionary genetics is whether or not it is possible to use gene
expression profiling to identify genes that are associated with morphological,
physiological, or behavioral divergence between species, and whether these genes have
undergone positive selection. Some of these questions were addressed in a recent study
(Enard et al, 2002) of the difference in gene expression between human, chimp and
orangutan that suggested an accelerated rate of divergence in gene expression in the
human brain relative to liver. Reanalysis of the Affymetrix dataset using analysis of
variance methods to quantify the contributions of individuals and species to variation in
expression of 12,600 genes indicates that as much as one quarter of the genome shows
divergent expression between primate species at the 5% level. The magnitude of fold
change ranges from 1.2 —fold up to 8-fold. Similar conclusions apply to reanalysis of
Enard et al’s (2002) parallel murine dataset. However, biases inherent to short
oligonucleotide microarray technology may account for some of the tissue and species
effects. At high significance levels, more differences were observed in the liver than the
brain in each of the pairwise species comparisons, so it is not clear that expression
divergence is accelerated in the human brain. Further, there is an apparent bias toward up
regulation of gene expression in the brain in both primates and mice, whereas genes are
equally likely to be up- or down-regulated in the liver when these species diverge. A
small subset of genes that are candidates for adaptive divergence may be identified on the

basis of a high ratio of inter-specific to intra-specific divergence.
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2.2 INTRODUCTION

One of the most interesting applications of gene expression profiling in evolutionary
genetics is the comparison of transcript abundance between closely related species.
Given that studies of yeast, flies and killifish have each suggested that between 10 and
25% of the transcriptome differs significantly in expression level between any two
individuals of the same species (CHEUNG and SPIELMAN, 2002; JIN et al, 2001;
OLEKSIAK et al, 2002; CAVALIERI et al, 2000), there is an expectation that a similar
fraction of the transcriptome may differ between sibling species. Some of these
differences will be associated with morphological, physiological, and behavioral
diversification, and if causally related to the divergence, may also provide signatures of
natural selection. Quantification of transcript abundance within and between species thus
has much to contribute to our understanding of the evolutionary forces acting at the level

of gene expression.

The first effort to address these questions in relation to human evolution was
recently published by Pddbo and coworkers (ENARD et al, 2002). The centerpiece of
their study was a comparison of 12,600 gene expression profiles of left prefrontal lobe
brain samples (Brodmann Area 9) from three humans, three chimpanzees, and an
orangutan, each of which had died of natural causes, using Affymetrix U95A
oligonucleotide gene chips. They also examined liver samples from the same specimens,
and conducted a parallel series of experiments with Mus musculus, M. spretus, and M.

caroli, three mouse species that show similar levels of genetic divergence. After
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computing a pairwise distance matrix based on the average level of expression for each
gene on their arrays, they drew neighbor-joining trees that summarize the overall
divergence in transcript abundance for each tissue between the triplets of species. Their
major finding was that the branch joining the three human samples to the central node on
their brain expression tree was almost twice as long in relative terms as the same branch
on the liver tree or in either of the murine trees. The same result was obtained with a
smaller experiment using cDNA microarrays. Hence the authors concluded that gene

expression had diverged most rapidly in the human brain.

Although it is easy to criticize this study over concerns such as the small sample
size, the suitability of senescent individuals, and the validity of extrapolating to general
conclusions on the basis of a small section of the brain, it is also the case that the already
rich dataset will support further quantitative analyses that may be of interest. In the
reanalysis of the data reported here, we sought to address the following questions: how
many of the genes on the array are actually significantly more divergent between than
within species; what is the mean magnitude of expression divergence between species;
why did one of the human samples have an average difference from the other two that
was as great as their overall divergence from the chimps; what is the nature of the genes
that have diverged in expression; and do the same genes diverge between all three species?
Our major finding is that gene expression actually diverges more between human and

chimp liver samples than brain.
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In the course of our analyses, we also noticed biases in the directionality and
significance of changes in expression that led us to question whether the Affymetrix
technology is really suitable for interspecific comparisons. We implemented mixed
model analysis of variance in SAS (WOLFINGER ef al, 2001; CHU et al, 2002) to tease
apart the contributions to transcript abundance of variance among individuals and
between species.  Fluorescence intensity from each individual perfect match
oligonucleotide probe was taken as the measure of expression, rather than the average
difference between perfect and mismatch probes. A detailed analysis of a subset of the
genes that showed strong species-by-probe interaction effects highlights some of the
difficulties associated with the use of oligonucleotide arrays to compare genotypes that
diverge at the nucleotide level. Consequently, our results also have implications for the

interpretation of Affymetrix data for any comparisons of genetically polymorphic strains.

2.3 MATERIALS AND METHODS

Mixed Model Analysis of Variance: Variation in gene expression was assessed using a
two-step strategy essentially as outlined in CHU et al (2002). In the first step, each
individual probe measurement was centered relative to the array mean by subtracting the
log, transformed value of the intensity from the mean /og, value for the probes on the
array. We simply used the Perfect Match (PM) intensities, and ignored the Mismatch
(MM) values as we find that these statistically generally just add noise. Data quality was
then checked by plotting pairwise scatter plots of the normalized probe intensities for
each possible comparison of similar treatments. See Supplementary Figure 2.1 for the six

human brain samples. All contrasts show good linear correlations as expected. Values
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range from -2 to +4, with the upper limit indicating saturated signal intensity. Almost
0.9% of the probes were at this level, undoubtedly reducing the power of comparisons
involving highly expressed genes. As generally observed, transcript abundance is skewed
toward a large number of genes showing relatively low abundance, hence the skewed
distribution of intensity values about the mean. All pairwise comparisons contrasting
individual number 2 with individuals number 1 or 3 have broader scatter plots, reflecting
the reported observation that this individual has more divergent expression in the brain
than the other two individuals. Similar saturation values were seen for the other tissues
and species.

The second modeling step was to fit gene-specific mixed models using PROC

MIXED in SAS as follows:

log (PM,)=S,+T, + B +ST,+Th, +SL, + R, +&,5

{0
PM ,, denotes the perfect match expression measurement of the kth probe of the /th
individual for ith species (human, chimp, or orangutan) in the jth tissue (brain or liver).
The symbols S, 7, P represent the fixed effects of species, tissues, and probes respectively.
Individual effects within species were specified as random effects, and assumed to be
independent and identically distributed according to a normal distribution with mean zero

and variance 0. Theeg,, 's were also specified as independent and identical normal

distributions with mean zero and variance o* that are independent of the R, ,,'s. For
the comparison in Figure 2.6, variance components of species effects were zero for a
large fraction of genes, so we instead present results of a simplified general linear model
run with PROC GLM in SAS on the reduced data consisting of human and chimp brain

arrays only.
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Correlation coefficients for filtering probes: Correlation coefficients were calculated

between /og; transformed human brain PM intensity values (a,, ) and corresponding
chimp brain values (b, ) from the ith individual, jth sample and kth probe associated with

a particular gene. The expression profile for each species was first calculated as the

average probe measure among samples: a , = ZZaUk (I*J),b, = ZZbUk /(I*J).
Jooi Jooi

Subsequently, the correlation coefficient between the expression profiles of those two

where a is the average of a , and b is the average of b, .

Outlier probes were then deleted systematically until the correlation exceeded 0.95. For
example, removal of the single inconsistent probes in Figure 2.4C and 2.4D results in a
large increase in the overall correlation between human and primate data. The species
effect for the remaining probes is consistent, and likely represents a better measure of the

true difference in gene expression.

Neighbor-joining trees: Euclidean distance matrices were computed for each pair of
arrays on the least squares mean gene expression measures from the mixed model
analysis, and rescaled to fit the format required by the package PHYLIP (Felsenstein,
1989). Neighbor-joining trees were generated by the NEIGHBOR option with default
settings. This analysis is similar to that of ENARD et al (2002), except that they used

average distance measures computed by Affymetrix software.
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Crude estimation of the fraction of genes diverging under positive selection:

Following RIFKIN et al (2003) and LYNCH and HILL (1986), under mutation-drift
equilibrium, the expected squared difference between species for each gene expression
level is amzt, where 0,,” is the mutational variance and 7 the time in generations since
separation, and the expected level of intraspecific variance, which is assumed to have
remained constant in both lineages since divergence, is 2Neam2 , wWhere N, is the effective
population size. Then the ratio of mean square estimates of the species and individual
within species effects Fhuman-chimp ~ [MSspecies/MSind(species)]-[ 2N,6,)°/ amzt]. The
mutational variances cancel out, so that the relationship between the observed and
expected ratio of divergence to polymorphic variance is scaled by the ratio 2N,/ t.
Assuming an N, of 10,000 individuals and one generation every 15 years in the 6-7
million years since divergence between human and chimp, the expected distribution of F’
ratios is expected to be 20-23 times the standard F, distribution (with one degree of
freedom for the species comparison, and two degrees of freedom for the three individuals
within each species). The outer 2.5% tail for this comparison must exceed an F value of
39, hence under these conservative conditions only ratios greater than (39x20), ~ 800,
provide clear evidence for a rate of expression divergence greater than that expected
under this simple neutral model. Only 17 genes satisfy this criteria, but relaxation of the
population size to 100,000 individuals and number of generations to 100,000 reduces the
expected rate of neutral divergence, and almost 500 of the 12,600 genes (4%) would fall
into the unexpectedly rapidly divergent class. This analysis serves primarily to highlight
the conclusion that even high ratios of between species to among individual variance

need not imply the action of positive (diversitying) selection.
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2.4 RESULTS

Mixed model analysis of the Affymetrix data

The primate dataset reported by ENARD et al (2002) consists of 28 gene chips, including
14 for each tissue (brain or liver), and two replicates of each of the seven individuals.
Each of the approximately 12,600 genes was represented by up to 20 unique probes,
although these often overlap as described below. This data was analyzed using mixed
model analysis of variance (WOLFINGER ef al, 2001; CHU et al, 2002) as described in the
Materials and Methods and briefly here. The data was first centralized simply by taking
the logarithm of each probe fluorescence intensity on the base 2 scale, and then
subtracting the mean value for the particular gene chip. The relative fluorescence
intensity, log:(PMjy), thus represents a measure of transcript abundance observed for the
kth Perfect Match probe for the /th individual within the ith species (human, chimp or
orangutan) sampled for the jth tissue (brain or liver). A value of 0 corresponds to a gene
expressed at the sample mean, -1 or 1 a gene that is one half or two-fold greater than the
sample mean, -2 or 2 a gene that is one quarter or four-fold greater, and so on. If a gene
has a mean value on this normalized scale of 2 in one species and —1 in another, we can
conclude that there is an eight-fold difference in gene expression between the species.
Other methods of normalization have been proposed (QUACKENBUSH, 2002; KERR et al,
2000), but we just consider this log-linear normalization strategy here. We next fit a
mixed model with fixed main effects of Species (human, chimp, or orangutan), Tissue

(brain or liver) and Probe, and Individual within species as a random effect. Expression
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differences and significance were estimated for each effect, as well for each species and

tissue comparison.

Several checks of data quality were performed. Figure 2.1 shows a "submarine"
scatter plot of standardized residuals (the estimated residuals €;; divided by the square
root of the variance of these residuals for each gene model) against predicted value.
While there appear to be a large number of outliers, actually just 0.5% of the probes have
standardized residuals greater than 3. Many of these can be attributed to data saturation.
Testing for the normality of the distribution of residuals for each gene specific model
indicated that as many as 39% of the genes did not reach the conservative 0.05
significance level. As discussed below, biases in the data due to probe effects may have a

particularly large impact on interpretation of contrasts among species.

Levels of divergence within and between species

Direct visualization of the significance and magnitude of effects in the primate
comparisons are provided by volcano plots for each pairwise species contrast and each
tissue in Figure 2.2. Note that the main effect estimates are averaged over and adjusted
for all of the different oligonucleotide probes for each gene, and significance is assessed
in the mixed model taking into account among probe variance. Volcano plots contrast
significance on the -/og;¢(p) scale against expression difference on the /og, scale. Genes
toward the left and right on each plot show a large expression difference, and those
toward the top have high significance, with values of 2, 3, etc representing p-values of

102,107, etc.
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Figure 2.1:  Submarine plot of standardized residuals against predicted values for log
base 2 transformed signal intensity measurements of each individual oligonucleotide in
the primate dataset. The shape of the plot is fairly typical for gene expression data, but
asymmetry above and below the horizontal testifies to several percent of probes showing
saturation or failure of hybridization.
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Figure 2.2:  Volcano plots of significance against fold change in expression for each

Brain: Human vs Chimp

Liver: Human vs Chimp

primate species comparison in brain (left hand side) and liver (right hand side). Each
point represents a single gene analyzed by mixed model ANOVA. Highly significant
values toward the top, small expression difference at the center of each plot. Expression
difference plotted as difference in the least squares mean of log base 2 normalized
expression values for Chimp minus Human (C-H), Orangutan minus Human (O-H) or
Orangutan minus Chimp (O-C). The red points are the genes with the most significant
(top 1%) species*probe interaction effects: these are clearly asymmetrically distributed in
favor of higher apparent expression in the species expected to show the closest sequence
homology to the human probes.
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Two features of these plots stand out. First, the number of genes toward the top
of each plot is greater for the liver than the brain contrasts. For example, comparing
human and chimp at the 5% significance level, 25% of the genes show evidence for
differential transcript abundance in the brain, and up to 35% in the liver, with a mean of
just a 1.2 fold change in either direction. The numbers increase slightly for the contrasts
involving the other species. We confirmed this observation on the human-chimp contrast
using the analytical approach implemented in dChip software (LI and WONG, 2002),
which gave similar results (data not shown). Second, whereas the liver plots are fairly
symmetrical, the brain plots are highly asymmetrical: in each case, those genes on the left
hand side of each plot are more dispersed across the range of expression differences.
Since the plots were drawn with expression difference expressed as chimp minus human,
orangutan minus human, and orangutan minus chimp, this means that there are apparently
many more genes upregulated in the range of 2 to 4 fold in the human brain relative to the
other species than are downregulated. Similarly the chimp shows an apparent bias

toward upregulation relative to the orangutan.

Assessment of the significance of expression differences is complicated by the
large number of contrasts that are performed as well as the variable residual variance for
each gene. If two genes have the same fold difference between species, but one has
higher among individual variance within species than the other, the significance of the
species difference will be elevated for the second gene. Further, the more genes that are
assessed, the more likely it is that genes exceed a low significance threshold by chance.
Consequently, we present the number of genes that are significant and the associated fold

increase or decrease in expression between species at three different significance levels in
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Table 2.1. These are 4x107 (the conservative Bonferroni-adjusted contrast, calculated as
0.05/12,600, and reflected in a negative log;) p-value greater than 5.4), 0.001 (-log;op >
3.0) and 0.05 (-log;op > 1.301). We also present the average expression difference for
both up- and down-regulated genes, the percentage of genes that are apparently
upregulated, and the percentage of all genes that are differentially expressed for each

contrast.

The murine dataset consisted of 14 Affymetrix GeneChips, each containing up to
20 independent oligonucleotide probes for each of approximately 12,488 genes derived
from Mus musculus sequences. M. musculus and M. spretus were each represented by
three individuals, with a single hybridization for each of the two tissues (hence 6 arrays
each), while M. caroli was represented by a single individual (2 arrays). We analyzed the
data according to the same model as for the primates. The three data quality checks
indicated that the data was slightly more favorable for analysis of variance. Only 0.3% of
the datapoints had standardized residuals greater than 3, while 86% of the genes passed
the normality test for residuals from the mixed model. However, since there were no
replicates of each individual, significance tests are not as powerful as for the primate
data. Nevertheless, the overall nature of the analyses is remarkably similar, as
documented in Figure 2.3 and Table 2.2. Between the two most closely related species,
M. musculus and M. spretus, approximately 10% of the genes showed significantly
different transcript abundance at the 5% significance level, with an average of almost 1.3
fold change in either direction for both brain and liver. The same biases toward greater

divergence in the liver, and asymmetric upregulation in the brain favoring M. musculus
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Table 2.1 Fraction of Genes showing Expression Differences Among Primate Species

Comparison SigLevel1 N(Up)2 ><Up3 N(Dn)2 xDn®>  xAIP %Up4 %genes5

Raw Data

Brain: H C Bonferroni 86 1.75 5 1.67 1.74 95 0.7
Brain: H_C 0.001 522 141 173 1.24 1.37 75 5.5
Brain: H_C 0.05 1520 1.26 1734 1.12 1.18 47 25.8
Liver: H C Bonferroni 126  2.01 41 1.75 1.95 75 1.3
Liver: H _C 0.001 614  1.49 449 133 1.42 58 8.4
Liver: H C 0.05 1777 1.27 2664 1.16 1.20 40 35.2
Brain: C O Bonferroni 31 2.17 11 1.71 2.04 74 0.3
Brain: C _ O 0.001 411 1.62 352 1.27 1.44 54 6.1
Brain: C _ O 0.05 1685 1.37 3301 1.16 1.22 34 39.6
Liver: C _ O Bonferroni 72 2.48 33 2.28 2.41 69 0.8
Liver: C _ O 0.001 528 1.72 369  1.46 1.61 59 7.1
Liver: C_ O 0.05 1586 1.39 2184 1.23 1.29 42 29.9
Brain: H O Bonferroni 91 2.27 13 1.62 2.17 88 0.8
Brain: H O 0.001 772 1.71 823 1.23 1.44 48 12.7
Brain: H_ O 0.05 2120 1.44 4466 1.17 1.25 32 52.3
Liver: H O Bonferroni 139  2.68 31 2.19 2.57 82 1.3
Liver: H O 0.001 647 1.82 407 144 1.66 61 8.4
Liver: H O 0.05 1608 1.48 2334 1.21 1.31 41 31.3

Filtered Data

Brain: H C Bonferroni 37 2.08 5 1.54 2.01 88 0.3
Brain: H_C 0.001 193 1.48 158 1.24 1.37 55 2.8
Brain: H_C 0.05 854 1.24 1878 1.12 1.16 31 21.7
Notes

"Significance levels: Bonferroni = -logP > 5.4; 0.001 = -logP > 3.0; 0.05 = -logP > 1.301
2 Number of genes up- or down-regulated at indicated significance level

3 Magnitude of fold change up (greater in left-hand species) or down (opposite direction)
based on the raw (unfiltered) data

4 Percent of genes that are significantly differentially expressed that are up-regulated

3 Percent of all genes on the microarrays that are differentially expressed
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Figure 2.3:  Volcano plots of significance against fold change in expression for each

murine species comparison in brain and liver. Layout is essentially the same as in Figure
2.2. Species comparisons are Mus spretus minus M. musculus (s-m), M. caroli minus M.
musculus (c-m), and M. caroli minus M. spretus (c-s).
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Table 2.2 Fraction of Genes showing Expression Differences Among Murine
Species

Comparison SigLevel1 N(Up)2 ><Up3 N(Dn)2 xDn’  xAIP %Up4 %genes5

Raw Data
Brain: M _ S Bonferroni 23 2.27 1 1.74 2.25 96 0.2
Brain: M S 0.001 190 1.53 53 1.41 1.49 78 1.9
Brain: M _ S 0.05 767  1.28 534 1.21 1.25 59 10.4
Liver: M S Bonferroni 27 2.81 4 3.23 2.87 87 0.2
Liver: M S 0.001 186  1.80 64 1.72 1.78 74 2.0
Liver:M S 0.05 738  1.38 812 1.23 1.30 48 12.4
Brain: S C Bonferroni 6 3.23 6 1.88 2.46 50 0.1
Brain: S _C 0.001 112 1.82 48 1.55 1.73 70 1.3
Brain:S _C 0.05 698 141 555 1.23 1.33 56 10.0
Liver: S C Bonferroni 5 4.89 5 4.47 4.69 50 0.1
Liver: S _C 0.001 72 2.08 80 1.84 1.95 47 1.2
Liver: S _C 0.05 582 1.51 497 137 1.44 54 8.6
Brain: M _ C Bonferroni 12 3.20 4 1.80 2.77 75 0.1
Brain: M C 0.001 202 1.83 42 1.61 1.79 83 2.0
Brain: M _C 0.05 919 1.44 672  1.21 1.34 58 12.7
Liver: M _C Bonferroni 7 6.23 3 2.50 4.72 70 0.1
Liver: M _ C 0.001 127  2.19 58 1.64 2.00 69 1.5
Liver: M _C 0.05 646  1.56 538 1.29 1.43 55 9.5

Notes

"Significance levels: Bonferroni = -logP > 5.4; 0.001 = -logP > 3.0; 0.05 = -logP > 1.301
2 Number of genes up- or down-regulated at indicated significance level

3 Magnitude of fold change up (greater in left-hand species) or down (opposite direction),
based on the raw (unfiltered) data.

4 Percent of genes that are significantly differentially expressed that are up-regulated

> Percent of all genes on the microarrays that are differentially expressed
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over M. spretus over M. caroli are observed, though not as strongly as for the primate
data.

From both Tables 2.1 and 2.2, it can be seen that the fraction of genes that appear
to be up-regulated (that is, expression in species A is greater than in species B) is
consistently reduced as the significance level is relaxed (for example, from 95% to 47%
for the human-chimp brain contrast). This implies that the there is a systematic tendency
for overestimation of the expression level for genes in the order human > chimp >
orangutan (or underestimation in the opposite order). A similar tendency was observed in
the murine dataset (M. musculus > M. spretus > M. caroli), and in all cases the
consequent apparent bias toward up-regulation is observed in the species genetically

closest to M. musculus, from which the probe sequences derive.

Probe effects in the context of genetic divergence

This suggests the hypothesis that apparent up-regulation is due to stronger
hybridization to individuals of one species over another. At a genome-wide rate of
sequence divergence of 1%, if the probes were non-overlapping then only one quarter of
them should have any nucleotide differences between species, and only a fraction of these
would be near the center of the probe where they are most likely to affect hybridization.
Nevertheless, small differences in two or three probes out of 20 could be sufficient to
yield an apparent up-regulation of around 1.2-fold. It is also noteworthy that the
estimated magnitude of down-regulation is always less than the estimated magnitude of
upregulation at the same significance level (hence, the absolute value of the fold-change

is always less than the magnitude of up-regulation). This is consistent with the idea that
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reduced hybridization to a few probes in the divergent species contributes to apparent up-

regulation.

Significance levels are affected by a balance between the fold-change averaged
across probes (tending to make more genes appear to be upregulated) and the increase in
among-probe variance due to sequence divergence for some probes (tending to reduce the
significance of contrasts). We thus asked whether the species-by-probe interaction effect
in the mixed model for each gene is more likely to be significant for up-regulated genes.
This effect is small in magnitude, but it is significant for more than half of the genes (see
Supplementary Information). The red points in the volcano plots in Figure 2.2 indicate
the genes with the top 1% of the most significant species-by-probe interaction effects,
and these are almost all apparently upregulated. This result is consistent with the
hypothesis that the overwhelming bias toward apparent upregulation in the brain in the
phylogenetically closest species, which is expected to show the least sequence

divergence, might be attributed to loss of hybridization to a subset of probes.

To further explore whether this is the case, we next examined the actual profiles
of fluorescence intensity for representative genes. Figure 2.4 shows plots of relative
fluorescence intensity for human and chimp brain arrays for each probe for a set of 6
representative genes. The order and spacing of probes along the abscissa is proportional
to the number of bases offset along the gene sequence for each probe. Human intensity
values are indicated as large open diamonds, and chimp values as small solid boxes.
Gene A is an example of a “well-behaved” probe set: despite absolute differences in

intensity for each probe, all probes indicate a similar magnitude of upregulation in the
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Figure 2.4:  Parallel plots of individual oligonucleotide measurements for human and
chimp brain samples for six genes. Each of the 16 oligonucleotides are plotted in
proportion to the spacing between first nucleotides from 5° to 3°: numbers below each
plot show the number of nucleotides between these sites. Thus a spacing of 1 represents
oligonucleotide probes that overlap by 24 of 25 bases, while a spacing of 45 represents
non-overlapping probes. Normalized log base 2 expression level for the perfect match
probe on the y-axis: open diamonds human, filled squares chimp. Gene or EST names
correspond to GenBank accessions D54318, L.38503, AI36567, M92302, J04182, and
W28807 for A-F respectively. (A) A “well-behaved” gene with similar differences
between species for each probe; (B) “poorly behaved” gene with variable differences; (C)
and (D) genes where an overall expression difference is contributed almost entirely by a
single probe indicated by the asterisks; (E) and (F) genes where two classes of expression
difference, largely but not completely corresponding to overlapping probes, is observed.
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human relative to chimp. Gene B by contrast is “poorly-behaved” in so far as each probe
predicts a different magnitude for the species difference. Gene C is an example of a
locus where a single probe that shows much-reduced hybridization to chimp ¢cDNA (the
far right probe) would be sufficient to suggest an overall 1.2-fold upregulation in humans
relative to chimps. This situation was also occasionally seen in the reverse direction (one
probe gives a stronger chimp signal) as shown for Gene D. However, many of the cases
of strong species-by-probe interaction effects involved multiple probes, as seen for Genes
E and F. LAMPI is apparently upregulated in humans, but only half of the probes
showed the difference, and all of these eight probes overlap with their 5° most
nucleotides separated by just 14 bases. The next two probes, just 9 and 10 bases further
3°, show much reduced species difference. MAPILC3B gave a similar result, except that
the species difference was seen in two non-overlapping sets of probes. It is sobering in
this case that even probes that overlap by all but one nucleotide give 10-fold differences

in signal intensity for both species, and several-fold differences between species.

In an attempt to filter out the probe-by-species interactions, we imposed a
constraint that genes should only be included in the analysis if the correlation between
human and chimp fluorescence intensity exceeded 0.95. So as to include all genes, we
wrote a script to systematically remove outlier probes for each gene until this condition
was met. Typically this meant removal of just 2 to 5 probes per gene, but more than half
of the genes showed the high correlation without removing any probes. A plot of the
expression difference before filtering against after filtering in Figure 2.5A shows many
more points below the diagonal than above, indicating that the effect of filtering is

typically to reduce the magnitude of the apparent upregulation in human brains, as
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expected. However, the volcano plot for the human versus chimp brain comparison in
Figure 2.5B remains somewhat asymmetric, and the overall tendency for more genes to
be differentially expressed in the liver than the brain when comparing human and chimp

is still apparent (see also Table 2.1B).
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Figure 2.5:  Effect of filtering outliers on inference of expression difference between
human and chimp brain. (A) Subtraction of human from chimp expression value tends to
produce more negative values on the original data than the filtered data: most points lie at
or below an imagined diagonal line running through points for which filtering has no
effect. (B) Volcano plot after filtering: compared with the top left plot in Figure 2.2, this
plot is considerably more symmetric, due to removal of probes that contribute to the large
species*interaction effect. Both plots are for just the brain data.
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2.5 DISCUSSION

Possible Biases in Oligonucleotide Expression Data

Our mixed model analyses of the primate and murine gene expression data leads to
conclusions that are not necessarily consistent with those reported by the original authors
(ENARD et al, 2002) in so far as there is little evidence for accelerated divergence in gene
expression in the human brain. Whichever method of analysis is used, the interpretation
should be tempered to some extent by our finding of potential species-specific biases in
the magnitude of inferred transcript abundance. Since in all cases more genes were seen
to be upregulated in the species that is closest to the one whose sequence was used to
generate the probes (that is, Homo sapiens or M. musculus), the most straight forward
explanation is that this bias reflects differential hybridization to loss of perfect sequence

matching.

However, three lines of evidence lead us to question this explanation. The first is
that detailed analysis of numerous genes that showed a species-by-probe interaction
effect (that is, variable differences in transcript abundance among probes within a gene)
indicated a complex relationship between sequence and signal. Overlaying the mismatch
probe data on the perfect match data does not help at all as it just increases the noisiness
of the results (data not shown: many mismatches hybridize as strongly as the match and

the difference between match and mismatch also varies greatly by probe within each
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gene). Many factors, presumably including amount of cross-hybridization, alternative
splicing, and sequence divergence, must contribute to probe effects, and it is not obvious
how to deal with these statistically. The fact that Affymetrix’ probe selection algorithm
tends to choose clusters of sequences that differ by just a few bases also introduces a
correlation structure to the data that formally but impractically should be dealt with on a
gene by gene basis. We and others (CHU et al, 2002; LI and WONG, 2002; SASIK et al,
2002) have demonstrated that modeling gene expression profiles by probe within gene is
generally much more accurate than using the average difference measure, but it is also

clear that genotypic differences can affect the results in ways that are difficult to control.

The second line of evidence arguing against sequence divergence accounting for
all of the biases toward upregulation is that the effect appears to be much greater in the
brain samples than the liver. This could imply that brain proteins are diverging at a faster
rate than liver proteins. Comparative sequence analyses will soon resolve this issue.
ENARD et al (2002) also provided 2-D gel electrophoresis evidence for divergence in
protein sequence and abundance between human and chimp brain, but it is not yet
possible to assess whether differential sequence divergence is responsible for at least
some of the apparent upregulation of a large number of human genes. The third line of
evidence is that the upward bias is only observed for the 10 to 20 percent of genes that
show the most significant divergence in gene expression. Below the 5% significance
level there are essentially equivalent numbers of genes up and down-regulated in each
comparison. Attempts to filter out the largest probe-by-specific effects had little impact

on the overall conclusions, arguing that many of the observed differences in gene
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expression are real and that there may in fact be a biological basis to the tendency toward
increased gene expression in humans over chimps and orangutan. Whether this relates to

increased size and/or complexity of the brain remains to be seen.

Divergent Gene Expression among Primates

Our reanalysis of ENARD et al’s data (2002) on a gene-by-gene basis is in broad
agreement with their analysis based on whole-transcriptome variation in several respects,
but also allows quantification of the fraction of genes that contribute to within and
between species differences. Both analyses indicate that there are significant differences
in gene expression among species that are of a greater magnitude than the differences
among individuals within a species, and that there is a general increase in degree of
transcriptional divergence as sequence (and hence temporal) divergence increases. As
pointed out by ENARD et al (2002), conclusions concerning relative rates of divergence

are however quite sensitive to the metrics used.

Mixed model analysis provides formal statistical support for 51 genes being differentially
expressed between human and chimp Brodmann’s area 9 after filtering outlier probes,
and just under twice this number if raw data is used. At the less conservative significance
threshold of 0.001, 482 genes are differentially expressed with an average almost 1.4 fold
change between human and chimp brain, compared with a chance expectation of just 13
genes at this level. Based on the raw data, this number increases to 695 genes, and to

1595 genes when human is compared to orangutan. For the liver, there are 1063 genes

43



differentially expressed between human and chimp, also with an average 1.4 fold change,
and 1054 genes between human and orangutan at a slightly higher mean fold change of
1.6. The chimp-orangutan comparisons are intermediate, with slightly more genes

differentially expressed with a larger fold-change in the liver than in the brain.

Most of our comparisons of species and tissue pairs suggest then that there are more
genes divergently expressed in the liver than the brain, and that the magnitude of change
also tends to be greater in the liver. While it is clear that dramatic cognitive changes have
occurred particularly in the human lineage, it also not surprising that transcription has
evolved greatly in the liver, given the differences in diet and culture of the primate
species. A possible reconciliation of our findings with the inference favored by ENARD
et al (2002) that “changes of gene expression in the brain may have been especially
pronounced during recent human evolution” is the suggestion that much of that change
has occurred on the human-orangutan axis. We also observe a relatively large branch
length between all humans and the central node on neighbor-joining trees based on
transcriptome-wide average expression differences at each level of significance (see
Supplementary Figure 2.2). It is noteworthy though that the relative length of this node,
as well as the divergence of the second human individual from the others, is very much a

function of the number of genes included in the analysis.

The nature of the differentially expressed genes is also of interest. Those that are

significantly divergent between human and chimp brain and liver are tabulated in

Supplementary Figure 2.3. A number of neuronal genes such as neurotransmitter

44



receptors and channels are obvious in the brain list, as are detoxification enzymes such as
cytochrome P450s on the liver list. However, the majority of genes have more general
potential functions in regulation of cell growth and division, and cell structure: members

of most of the major gene ontology categories are represented in both lists.

Finally, we can also ask whether the divergence in gene expression is more likely
attributable to drift or diversifying selection. A significantly elevated measure of
divergence in expression between species, relative to the observed level of among
individual within species variation, is not prima facie evidence for selection. Figure 2.6A
shows that the most significant genes in the human versus chimp brain comparison both
diverge between species and have relatively low levels of intraspecific variance. There
are also a large number of genes for which this relationship is reversed. In fact, a
histogram of the log ratios of the mean squares for the species and individual within
species components is slightly skewed toward low ratios, suggesting that many genes
may be more variable within species than expected. RIFKIN et al (2003) have recently
proposed, following LYNCH and HILL’s approach (1986) for phenotypic traits, that the
expected degree of divergence under mutation-drift equilibrium can be formulated by
scaling the ratio of mean squares for divergence and polymorphism by the ratio of twice
the effective population size over the number of generations since divergence. Assuming
a small effective population size for humans of 10,000 individuals and a mean generation
time of 15 years over the 6-7 million years since the human and chimp lineages diverged
(BRUNET et al, 2002), the expected distribution of ratios for this dataset is 20 to 23 times

larger than the F;, distribution. Consequently, only genes with a divergence to

45



polymorphism ratio greater than 800, a handful of just 15 to 20 genes in our analysis,
clearly lie in the upper 2.5% tails of the expected level of divergence for these population
parameters. Relaxation of these conservative assumptions provides suggestive evidence
that 5% or more of the genes may be experiencing diversitying selection. Clearly more
individuals need to be sampled at different ages and for more targeted tissue samples, but
comparison of gene expression divergence, coincident with assessment of nucleotide
sequence divergence, is a promising approach to identification of genes that may have

contributed to human cognitive evolution.
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Contrast of contributions of species and individual within species to

expression variance between human and chimp brain. (A) Plot of mean square from a
general linear ANOVA for the species and individual within species terms for each gene.
Open diamonds toward the left of the figure show genes with a significant F-ratio,
indicating significant divergence between species relative to variation within. Note the
large number of genes (filled diamonds, mostly toward right of plot) with much greater
variation within than between species. (B) Histogram of frequency of log base 10 ratio
of mean square species:mean square individual within species values from (A). Only a
few genes have a ratio approaching 1000 (that is, 3 on the log scale), whereas
approaching 25% of the genes have a ratio above 10.
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Supplementary Figure 2.1:  Scatterplot Matrix of log base 2 fluorescence intensity
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Supplementary Figure 2.2: Neighbor-joining trees for primate data. Top to bottom:
Brain, 2062 most significant genes (p < 0.001) from the combined three-species dataset;
Brain, all genes; Liver, 1919 most significant genes (p < 0.001); Liver, all genes. In all
plots, the branch length is proportional to the distance between individuals (1 orangutan,
at tip of left branch, 3 humans and 3 chimps; each averaged over two replicates). As
noted by Enard et al, the branch from the central node to the base of the 3 humans is more
than twice as long than the corresponding branch to chimps, but only for the brain (not
liver) sample. However, the connectivity between individuals within a species is strongly
influenced by the number of genes included in the analysis.
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Supplementary Figure 2.3: Excel spreadsheet sorted by significance of differentially
expressed genes with and without filtering for brain and liver comparisons of human and

chimp. See http://statgen.ncsu.edu/ggibson/HCO/PrimateSigGenes.xls
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Chapter 3. WHO ARE THOSE STRANGERS IN THE LATIN SQUARE?

3.1 Abstract
A Latin Square data was provided by Affymetrix to evaluate statistical algorithms for
microarray data analysis. 1 approach it from a classical parametric statistical modeling
perspective. The first stage is to formulate a reasonable model for the probe-level data based
on extant knowledge of the experimental design and technology.  Some options are
presented and it is settled on a linear mixed model for the log, perfect match data. Upon
applying this model to the data for every gene in turn, it is discovered that not only do the
fourteen spiked-in genes appear highly significant, but that a few additional, unexpected,
genes display profiles remarkably similar to those of the fourteen.  Except for probe sets
aimed at examining the same genes, it is likely that some short motifs might be the reason for
this cross hybridization. Each of these genes was investigated and some details were

provided with plausible explanations.

Key words:  perfect match versus mismatch probes, mixed model, cross hybridization
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3.2 INTRODUCTION

Microarray data analysis is a complex process involving image analysis, normalization,
modeling, and clustering. Each step plays an important role in reaching accurate
conclusions. To evaluate methods used for analysis, a high quality data set is very useful.
The Affymetrix Latin Square data is quite appropriate for this end [Affymetrix technical
report, 2002], as it provides not only a good experimental design but also known targets
for evaluation. The design will be briefly summarized in the next section.

In this report, the data set was first normalized and then a linear mixed model
[Chu et al., 2002] was used to detect probe sets with significant variation between
experiments, which were designed to have 14 different patterns of transcript
concentration. The hybridization level of each gene is examined for each target profile.
It is assumed that only the target probe sets will show the expression profile matching
their respective spiked genes. Curiously, this analysis retrieves not only the putative
targets that match the spiked genes, but also some unexpected probe sets that show the
same profiles. Certain motifs were considered to be the reason for cross hybridization

and some examples were discussed in detail.

3.3 THE AFFYMETRIX LATIN SQUARE EXPERIMENT
Affymetrix designed an experiment on the human HG-U95A arrays to test their new
statistical algorithm for data analysis. Each sample hybridized to the arrays consists of
the same 14 known transcripts but with different concentrations. Experiment A to T
represents 14 combinations of transcript concentrations as shown in Table 3.1. Each

experiment has two to twelve replicates.
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Table 3.1. Latin Square design.

Each column represents one combination of
concentrations for the 14 transcripts listed in the leftmost column. The concentration is

in the unit of pM.
Transcript Experiments >
l A B C D E F G H I J K L M, Q.R,
NO, | S,T
P
37777 at 1 0 0.25 0.5 1 2 4 8 16 32 64 128 256 512 | 1024
684 at | 2 0.25 0.5 1 2 4 8 16 32 64 128 256 512 | 1024 0
1597 at | 3 0.5 1 2 4 8 16 32 64 128 256 512 | 1024 0 0.25
38734 at | 4 1 2 4 8 16 32 64 128 256 512 | 1024 0 0.25 0.5
39058 at | 5 2 4 8 16 32 64 128 256 512 | 1024 0 0.25 0.5 1
36311 at | 6 4 8 16 32 64 128 256 512 | 1024 0 0.25 0.5 1 2
36889 at | 7 8 16 32 64 128 256 512 | 1024 0 0.25 0.5 1 2 4
1024 at | 8 16 32 64 128 256 512 | 1024 0 0.25 0.5 1 2 4 8
36202 at | 9 32 64 128 256 512 | 1024 0 0.25 0.5 1 2 4 8 16
36085 at | 10 64 128 256 512 | 1024 0 0.25 0.5 1 2 4 8 16 32
40322 at | 11 128 256 512 | 1024 0 0.25 0.5 1 2 4 8 16 32 64
407 at | 12 0 0.25 0.5 1 2 4 8 16 32 64 128 256 512 | 1024
1091 at | 13 512 | 1024 0 0.25 0.5 1 2 4 8 16 32 64 128 256
1708 at | 14 | 1024 0 0.25 0.5 1 2 4 8 16 32 64 128 256 512
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34 STATISTICAL MODEL SELECTION

For these data, the experimental design is well known, although several options are
available regarding which dependent variable to use in terms of the perfect match (PM)
and mismatch (MM) intensity measurements. Some choices include models for paired
differences [Li and Wong, 2001a, 2001b], PM-only [Chu et al.2002], [Lazaridis et al.,
2001], adjusted PM [Efron et al., 2000], [Irizarray et al., 2001], both PM and MM
[Lemon et al., 2001], [Teng, 1999]. Some of these are on the original scale and some on
a log scale, and even compromises have been recommended [Durbin et al., 2002]. How
to decide?

Linear reproducibility is one criterion that has bearing, and Table 3.1 lists the
average correlation coefficient of several different intensity measurements of the fourteen
spiked genes within each of fourteen experimental groups. The log transformed PM and
MM values have the best consistency in this metric for most of the experimental groups.
Based on this evidence, and the fact that the raw intensities represent pixel counts ranging
heterogeneously over several orders of magnitude, a log transformation is justifiable. For
my modeling efforts, log base 2 was used so that a unit difference on this scale can be
interpreted as a two-fold change in the original scale. Furthermore, if the amount of
cross-hybridization for an individual probe is proportional to the observed signal, and the
constant of proportionality remains stable across the experiment, then this constant will
cancel out any differences taken on the log scale.

Figure 3.1 plots replicate values of log2(PM) and log2(MM) against one another

for the three chips in experiment A. This plot reveals some potential data quality issues
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that should be addressed. In particular, outliers that appear well away from the main
diagonal represent inconsistent measurements that should be handled carefully and
potentially filtered out of the analysis.

Regarding how to handle the mismatch data, Figure 3.2, from a randomly chosen
chip (1532e9%hpp av04), shows how strongly log2(MM) is correlated with log2(PM).
MM is clearly picking up true signal and is subject to noise, and therefore subtracting it

directly from PM is likely not the most optimal way to proceed.
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Table 3.2. Average correlation coefficient across replicates within the experiment groups

Average Correlation Coefficient

Experiment LogPM Log MM PM MM PM-MM
A 9811 9876 9712 9921 9213
B .9940 9911 9918 9905 9798
C .9926 9917 .9888 .9843 .9887
D .9934 9918 9880 .9845 9823
E .9944 9915 .9882 9878 9881
F .9905 .9860 9776 .9823 9707
G 9928 9902 9883 9878 9861
H .9934 .9890 9901 9825 9865
I .9904 9830 9864 .9804 9793
J .9954 .9939 9912 9891 9874
K .9938 9770 9871 9788 9785
L .9948 9931 9215 .9868 .8644
M,N,O,P .9957 9912 .9898 9855 .9862
Q.R,S.T .9952 9896 9903 9883 9819
Average .9927 9891 .9822 9858 9701
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Figure 3.1. Scatter plot matrix of log; PM (blue) and log, MM (red) for the three replicate
chips in experiment A
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Figure 3.2. Plot of log,(MM) versus loga(PM) for chip 1532e99%hpp av04 in Experiment
E. Each curve represents a contour of the bivariate density for logx(MM) and log,(PM).
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Based upon the preceding considerations, I employ log;(PM) as a dependent
variable in a linear modeling context. Research on methods for including MM as an
additional dependent variable in a bivariate fashion is reported in Chapter 4. My analysis
follows methods reported in [Wolfinger et al., 2001] and [Chu et al., 2002]. In particular,

the following two models are employed in turn:

log, (PM
R

we) =B+ A, +&,, (1)

kg E ig + P, kg + Au‘g + gu‘kg (2)

In Model (1), the symbols PM, E, 4, and € represent perfect match probe intensity,
global experiment effect, global chip random effect, and stochastic error term,
respectively. Here, “global” emphasizes that the corresponding effect applies across all

genes. To be more precise, PM ,,, means the intensity of the jth replicate of the ith

experiment for the kth perfect match probe of the gth gene. In Model (2), the symbols R,
E, P, A, and ¢ represent the residual calculated from Model (1), gene-specific experiment
effect, gene-specific probe effect, gene-specific chip random effect, and stochastic error
term, respectively. Model (1) is fitted once to jointly normalize all of the data, and model

(2) is fitted separately for each gene.

3.5. Results
I fit the preceding models to the data for all 12,626 genes using SAS Proc Mixed. After
this modeling, outliers for standardized residuals greater than a certain threshold were
filtered and then various output statistics were collected. The fourteen spiked genes each

had wildly significant results, with overall —log;o(p-values) around 300. In Figure 3.3 the
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least squares mean of gene-specific experiment effect from model (2) were standardized
for each of the 14 target probe sets. The figure displays the profiles for these genes
across each of the 14 concentration levels on a standardized scale. The resulting subtle S-
shape matches that seen in other analyses.

What surprised us, however, was the significance of several genes in addition to
the putative fourteen. These are listed in Table 3.3. Expression profiles of 14 target
genes are shown in Figure 3.4 and the top five unexpected genes including the one that
was claimed to be missing in the supporting information that Affymetrix provided are
displayed in Figure 3.5. A few have obvious explanations, but others do not. One
example of the latter is 1032 at, which has an expression profile matching that of the

spiked gene 684 at.
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Figure 3.3. Overlay of standardized least squares mean profiles for the 14 spiked genes.
Different genes are marked with different colors. The concentration order from 1 to 14
matches to the concentration 0 pM to 1024 pM. The straight line and the curve represent
linear and smooth nonparametric fitted lines respectively.
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Table 3.3. Unexpected significant genes from the mixed model analysis

Probe Set Target Remark

33818 at AC004472 should be in Latin Square as Transcript #12
546 at S76965 same profile as 36202 at

1598 ¢ at 1L13720 same profile as 1597 at

37658 at [.13720 same profile as 1597 at

1032 at U11872 same profile as 684 at
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I discovered the unexpected genes in Table 3.2 by statistically screening the
expression profiles of the target transcripts with that of all probes in the U95A chip.
Empirically, the intensity measurement is not quite linearly proportional to the transcript
concentration level at high and low concentrations. To reflect the observed intensity
measurement patterns, I used least squares mean of the experiment effects in model (2) as
queries to retrieve probes with similar expression profiles. 1 first take averages of
expression levels across replicates for each experiment and then calculate the correlation
coefficients of those 14 average values with the 14 least squares mean values. The higher
the correlation coefficient, the higher the similarity in expression pattern between the
target gene and the sequence to which it cross hybridized. Once obtained, the selected
matches are obvious by visual comparison of Figures 3.4 and 3.5.

A brief investigation of the five genes in Table 3.2 produced simple explanations
for their observed expression profiles, except for that of probe set 1032 at. Five probes
of 1032 _at have correlation coefficients higher than 0.99 with profile of 684 at while the
other 11 probes have correlation coefficients less than 0.5. Since the five highly
correlated probe sequences have significant overlap with each other, part of this
overlapping sequence was expected to be definitive, and Gibbs Sampling [Lawrence,
1993] was used to identify possible motifs. For each threshold setting on correlation
coefficients, the longest common motif of all the probes chosen was identified and
manually checked for the most probable candidate sequences. Not all of the probes have
similar sequences as those of probe set 1032 at, but two of them were found that
supported our conjecture. They are displayed in Table 3.3, and the expression profiles of

those probes are shown in Figure 3.6.
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The first sequence, GCAGCCGTTT, appears in seven probe sequences of the
U95A chip other than those in probe set 1032 at. Only three out of seven match the
sequence similarity profile of target 684 at, however they are not so strong as the second
motif CCGTTTCTCCTTGGT in probe set 39059 at. This 15-base motif has a similar
counterpart in the probe sequences of 1032 at but with an additional base T. If this
single base T is allowed to mismatch when hybridizing to the target sequence, then the
alignment in Figure 3.7 seems to be a promising reason for the observed cross

hybridization.
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Table 3.4. Probe sequences with expression profile matching that of target 684 at from
netaffy.com. Highlighted motifs can be aligned to the sequence in gene K02215 (target of
684 at) but not the probe sequences of 684 at.

Correlation coefficient of
expression profile with the

Probe Set Position Probe Sequence target profile 684 at

1032 at 46 agaatatGCAGCCGTTTtctccttc 0.997

1032_at 48 aatatGCAGCCGTTTtctccttcct 0.997

1032_at 49 atatGCAGCCGTTTtctccttcctg 0.998

1032_at 51 atGCAGCCGTTTtctccttcctggg 0.994

1032_at 52 tGCAGCCGTTTtctccttcctgggt 0.994

34404 at 1600 tgGCAGCCGTTTcttaacatgttga 0.875

38729 at 1878 agactcctggGCAGCCGTTTtcctc 0.888

38729_at 1885 tggGCAGCCGTTTtcctcatccttt 0.824

1402 ;t 2105 gagtGCAGCCGTTTcagaagaaaac < 0.5

32618 at 2229 acatctgagtGCAGCCGTTTgagaa < 0.5

32616_at 72238 tGCAGCCGTTTgagaagaaaacatc < 0.5

40261_at 1338 gacatGCAGCCGTTTcggggtagat < 0.5

39059 at 2305 QgtgcgCCGTTTCTCCTTGGTagcgt 0.996

39059 at 2310 CCGTTTCTCCTTGGTagcgtgcacg 0.991
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Figure 3.6. Expression profiles of probes listed in Table 3.3. Each plot contains 59 points,
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1032_at_1 ATGCAGCCGTTTTCTCCTTCCTGGG————————

1032_at_2 TGECAGCCGTTTTCTCCTTOCTGGET——
1032_at_3 AGAATATGCAGCCGTTTTCTCCT T ————————
1032_at_4 AATATGCAGCCGTTTTCTCCTTCC T ——————
1032_at_5 ATATGCAGCCGTTTTCTCCTTOC TG
39059 _at_3 GTGCGCCGTTT-CTCCTTGET——AGCGT——
39059 _at_4 CCGTTT-CTOCTTGET———AGUG TG A
Knz2z215 CTTCTAATGAGTCGACTTTGAGCTGGAAAGCAGCCGTTT-CTCCTTGGTCTAAGTGTGCT

HENNEE HHNENENR

Fifgure 3.7. Sequence alignment for probes of 1032 at and 39059 at with K02215 (target
of 684 at)
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3.6 CONCLUSION
A linear mixed model of log2(PM) is a powerful method for assessing significance of
gene expression profiles. For the Affymetrix Latin Square data, it detected all fourteen
spiked genes with extremely high precision, as well as five additional “strangers”. One
of the five, 1032 at, did not have an initially obvious explanation, but after a more
detailed motif finding exercise, I was able to find a few motifs that likely caused the cross
hybridization. Additional spiked-in experiments like this one will be useful for further

insights into probe performance and design.
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Chapter 4. Comparison of Statistical Performance of Univariate and

Bivariate Mixed Models for Affymetrix® Probe Level Data

4.1 Abstract

Half of the probes on Affymetrix® microarrays contain a single base mismatch (MM) of
a known perfect match (PM) target sequence. While putatively designed to detect non-
specific binding, the MM data can also contain true signal, and so debates persist
concerning how to best combine PM and MM data for statistical modeling purposes.
Most current approaches involve either subtracting some function of MM from PM or
ignoring MM altogether. Here a bivariate model is proposed to include both PM and
MM based on the mixed linear modeling framework. It directly models the correlation
between PM and MM and thereby increases the power of significant gene detection.

It is shown that the bivariate mixed model offers moderate gains in power over a
comparable univariate model that ignores the MM data. The gains are more prominent
when the number of replicates and the array-to-array variability is small. The models are
applied to a small experiment on yeast and these data are used as a basis for a Monte
Carlo simulation.

Key words: Affymetrix®, mixed model, bivariate model, perfect match probes, mismatch

probes.
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42 INTRODUCTION

Affymetrix® arrays are currently the most widely adopted commercial platform for high
throughput gene expression profiling. Characteristic features of these arrays include the
multi-probe representation of each gene and the inclusion of mismatch (MM) probes.
MM probes are designed to have the same strength of non-specific binding as their
counterpart, perfect match (PM) probes, and so can potentially serve as an adjustment
factor for the PM signals (Lipshutz, 1999). However, empirical studies report that
typically 30 percent of MM signals are greater than PM signals, and several authors have
proposed reasonable methods for handling the difficulties (Hubbell 2002, Irizarry 2003).

PM and MM data occur in pairs, and the two measurements typically have a
correlation around 0.8 within any one chip (see Figure 4.1). While a portion of this
strong correlation is undoubtedly due to non-specific binding, it is also the case that MM
probes detect the true signal as well. The hybridization strength varies from sequence to
sequence and is determined by the sequence composition. Promising explanations are
available from thermodynamic models (Naef 2002, Zhang 2003). Since the real signal
detected by MM varies from sequence to sequence, I propose a bivariate model for each
gene under the mixed model framework to directly estimate the correlation between PM
and MM. Rather than integrating a biophysical model of nucleic acid hybridization into
the analysis, my objective is to provide a general covariance modeling approach to
directly incorporate all of the MM data.

These ideas are applied to an experiment conducted by Pharmacia (Teng 2001).
The organism under study was yeast, with a control group that was grown in rich media

compared to a treated group grown in minimal media. The RNA samples retrieved from
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each group were hybridized to three arrays. There are 9335 probe sets included in the
Affymetrix® YG-S98 chip. After normalizing the log2 data by mean-centering, gene-
specific univariate mixed models were fitted using only the PM probes as the first model
(as in Chu et al. 2002) and compared with the results of a bivariate mixed model
approach described in Section 2. Comparisons were limited to these two models because
the univariate mixed model has already been shown to be very competitive compared to
other popular approaches (Chu et al, 2004).

The improvement in power of the bivariate model over the univariate model is
demonstrated by Monte Carlo simulation in Section 3. Several factors that contribute to
the improvement of power are also discussed, including the correlation between PM and
MM, the zero boundary constraint of the array variance component, and the scale of the

variance components and residuals.

4.3 DATA ANALYSIS
Preliminary Check of Data and Normalization
The data quality of the six arrays were first checked. From the correlation table of log
(base 2) intensity of PM probes in Table 4.1, the arrays within the same treatment are
strongly correlated, which means the signals are highly reproducible in this experiment.
Probes within a treatment class always show a correlation between arrays greater than

0.95, while the correlation between treatment classes is in the range of 0.88 to 0.91.
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Figure 4.1. Scatter plot of log, (PM) vs. log, (MM) probes from data of six arrays
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Table 4.1. Correlation coefficients between pairs of arrays of the yeast experiment.
Arrays 1-3 are perfect match probes hybridized with control samples and 4-6 are perfect
match probes hybridized with treated samples.

Array 1 2 3 4 5 6
1
0.981 1
0.952  0.953 1
0.904 0906 0.886 1

0.894 0.889 0883 0.973 1
0.897 0.898 0.887 0.973 0.980 1
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The range of the intensity is approximately the same for each array. That means
we do not have significant global patterns with respect to either treatments or arrays. To
remove systematic variation at the array level, a reasonable and simple normalization
method is to center the log intensities so that the mean of each array is zero. This is
based on the observation that the proportion of differentially expressed genes is very

small and will not affect the mean value of each array.

Gene-specific models

ANOVA analysis is often used to decompose the effect into a linear combination of
different factors (Kerr and Churchill 2000). To extend inference to random populations,
Wolfinger et al. (Wolfinger et al 2001) propose a mixed ANOVA approach to model
array variation as a random effect. Chu et al. further extended it to probe level data (Chu
et al 2002), and used only PM probes to detect significant effects. The mixed model from
Chu et al is the first model compared in this report and it is called the PM-only model
throughout the discussion. The model is constructed on a gene-by-gene basis to account
for the heterogeneity of variation across genes and also to avoid handling a huge data set

in one complex model.

I. PM-only model

The model formulation is

log, (PMl.jk) =7 +P +TP, + A].(I.) +&,

The symbols PM, T, P, TP, A and ¢ represent perfect match probe intensity, treatment

effect, probe effect, treatment by probe interaction effect, chip random effect and
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stochastic error term. Both of the random terms are assumed to follow normal
distributions as follows:

&, ~ N(0,0%)is independent of 4,, ~ N(0,0,),

)
II. Bivariate model

The correlation between the PM probes and MM probes is 0.819 as shown in Figure 4.1.
To borrow the information from MM probes, I include both PM and MM intensity as
paired repeated measures under the framework of the mixed model. The model is
formulated as follows

log, (Y;

ik )=T,+M_ +TM, + P, +TP, + MP, , + A].(,.) + € om
The symbol Y, represents the intensity for MM probes if m equals to 1 and it represents
the PM intensity if m equals to 2. The symbols 7, M, P, TM, TP, MP, A and € represent
the treatment effect, mean effect for PM and MM probes, probe effect, treatment by
probe type interaction effect, probe type by probe interaction effect, chip random effect
and stochastic error terms. [ assume a bivariate normal distribution for the error terms of
the PM and MM probes as follows:
2
(g'ﬂd ] ~ N( (OJ ,(O-MM POt T s ) is independent of 4,,, ~ N(0,07,),

2
k2 0 PO O py  Opy

PM and MM are assumed to follow a bivariate normal distribution with

correlation coefficient __ 9% *P%w%m . Under this probabilistic description, 2 is
Vol + i \og + ot

constrained to be non-negative. However, it is permissible to allow the estimate of 52 to
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be negative as long as the marginal variance-covariance matrix of the data is positive
definite. The implication of this will be explored in the next section.

This model is similar to that of Wu et al. (Wu et al. 2004), except that p can be

estimated directly using restricted maximum likelihood. Wu e/ al. used information from
other experiments to score the optical noise and non-specific binding strength. Such
extra experiments need to be performed under parallel conditions and are often

unavailable.

Hypothesis Tests

The main interest here is the difference of expression levels between treatment and
control groups for each gene. The hypothesis tested in the PM-only model is simply that
the difference of the two treatment effects is zero:

Hy:T,-T,=0

For the bivariate model, the treatment effects are tested using parameters corresponding
to the PM data:

Hy:T,-T,+TM,, ~TM,, =0

The two hypotheses are comparable in the sense that they have exactly the same point
estimates from the data. See the Appendix A for SAS code describing the two models

and the tested hypothesis.

Results
The two models were first compared based on the significance level from the above

described hypothesis tests. The scatter plot of negative log p-values is shown in Figure
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4.2. All but a few hundred genes have a higher significance level in the Bivariate model
than in PM-only model.
An intriguing pattern for the scatter plot in Figure 4.2 is the distinctly separated

groups. They turn out to be associated with genes that have zero estimates of o (the

random Array effect) in the PM-only or Bivariate model. This is caused by the non-
negativity constraint on this parameter applied during model fitting. About 7% of the

genes have a zero estimates of ¢, in PM-only model and 6% of the genes in Bivariate

model. Those genes have signals that are highly consistent across the six arrays.

Zero variance component estimates increase the degrees of freedom used for
hypothesis testing to a different extent for the two models. Some details are provided in
Appendix B. To investigate this phenomenon more thoroughly, I dropped the constraint

of non-negativity for the estimate of the variance components, . It is referred to as the

NOBOUND case (corresponding to the name of the SAS Proc Mixed option used to
specify it). When the array variation is small, there is a good chance of getting estimates
less than zero. See Appendix C for details. Besides the concern of degrees of freedom,
the type I error is better controlled without the non-negativity constraint (Murray 1998).
The estimates are forced to be positive or zero with the constraint, which in turn inflates
the mean of variance component estimates, and decreases test size. The scatter plot of
negative log p-values in the NOBOUND case is plotted in Figure 4.3. There are no

distinct groups caused by discontinuous degrees of freedom estimates.

83



20

¥ Zero o in Ph-only model
X Zero o _in Bivariate model

@ zero o in both model

negative log p-values from Bivariate model

0 10 20 30 40

negative log p-values from PM-only model
Figure 4.2. Scatter plot of negative log p-values from the two models for yeast data. The
random components are estimated under the non-negativity constraint.
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Figure 4.3. Scatter plot of negative log p-values from the two models for yeast data with
NOBOUND option. The contours model a smooth surface that describes how dense the
data points are at each point in that surface. The red line indicates equal p-values in both
models.
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The significance of the test statistics is determined by three components. They
are estimates of treatment difference, standard deviation, and degrees of freedom. Figure
4.4 shows the comparison of the three components between the two models from the
yeast data. Since our testing hypothesis is made to test the difference between two
treatments in the PM data for both models, the estimates are identical. All gains in power
in the bivariate case should be due to either smaller estimated standard errors or more
estimated degrees of freedom. These two figures provide evidence for the improvement
offered by the Bivariate model. To quantify the exact gains of power, Monte Carlo

simulation was performed with different parameter settings.

4.4 SIMULATION
The parameters needed in the simulation were derived from the estimates of the yeast
data. Figure 4.5 plots the distribution of standard deviation estimates from the PM-only
and Bivariate models. The standard deviation estimates are mildly skewed, as would be
expected for this kind of parameter. The estimated correlation coefficient between the
errors for PM and MM in the Bivariate model has a bell-shaped distribution between -1
and 1 with mean and median close to 0.13. Note that this number is a lot smaller than the
value of 0.8 from Figure 4.1. The Bivariate model captures the correlation of PM and

MM not only through p but also through the array random effect, which models a

common correlation amongst all the PM and MM measurements on the same chip.
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Figure 4.4 Comparison of (a) estimates of treatment effect difference, (b) standard
deviation of the estimates, and (c) estimates of degrees of freedom from Kenward-
Roger’s method for the two models
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Figure 4.5. Histograms of covariance parameter estimates from the yeast data.

p are from the residual matrix of bivariate model. o, , and o, ,, are the array

UMM > UPM >
random components for bivariate model and PM-only model respectively. The
parameters are derived under the NOBOUND case, thus permitting negative estimates of
the array standard deviations. The standard deviation estimates are computed from the
variance component estimates using a signed square root. If the variance is smaller than
zero, the standard deviation is -1 times the square root of the absolute value of the

variance. Otherwise, it is the simple square root.

88



I picked several values to represent each factor and simulate the data from the
Bivariate model. The values are ,,, =0.1,0.15, o, =0.1,0.15, p=-0.8,-0.4,0,0.4,0.8,
o, =0.01,0.03,0.05, 0.1. For each combination of parameters, 1000 sets of data were
generated from a bivariate normal distribution. The treatment difference 7,-7, was
specified from 0 to 0.2. The treatment effect 7, -7, was tested at significance level 0.05

and the power curves are shown in Figure 4.6. The standard deviation of detection rate is

bounded by /O‘SXO‘S ~0.016. The parameters represented in Figure 4.6 are close to
1000

median values of Figure 4.5.

It is clear that the bivariate model shows more power than the PM-only model
when the random components are small and when the treatment difference is less than 0.1
on the log2 scale. It creates the most margin when the random components are

O =0.1, 0, =0.1, and &, =0.01. I will focus on this combination in the discussion of

different correlation coefficients.

There is a trend for the power to increase with respect to correlation coefficients
of PM and MM errors (Figure 4.6). The power increase is the smallest when p is close
to 1. It seems that the statistics formed from the bivariate model possess more efficiency
when the PM and MM errors are negatively correlated, a state perhaps induced by
competitive binding. This trend is conceptually close to that for antithetic variates in

Monte Carlo simulation (Fishman 1972).
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Figure 4.6 Power curves. The x-axis stands for the difference of treatment effects and the
y-axis stands for the proportion of rejection in 1000 simulations. The type I errors at
treatment difference zero meet the specified size 0.05.
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To further explore this efficiency gain, I checked the estimates for the standard
errors and degrees of freedom. The simulation results were considered under the scenario
c,=00L0,, =0.1, 0,, =0.1, and T, -7, =0.05, all combined with different values of
o . 1000 sets from the Bivariate model were generated, and the statistics were derived

with both models. The mean values of standard errors did not seem to differ across

different p values although the variation grows larger for more positively correlated data

(Figure 4.7). There was an interesting trend of degrees of freedom estimates with respect

to p (Figure 4.8). The degrees of freedom had a much wider range when p took more

negative values. This trend matches the increase of power observed in Figure 4.6.
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Figure 4.7 Histograms of standard errors from 1000 simulations under the condition of
c,=00L0,, =01, 0,, =0.1and 7} -7, =0.05

92



Bivariate PM-only
£ =08 P =0 p =08

50 -
B
70
&0
50
40
-

Figure 4.8 Histograms of estimates of degrees of freedom from 1000 simulations under
the condition of o, =0.01,0,,, =0.1, 0,,, =0.1and 7, -7, =0.05
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45 ANOVA
To summarize these simulation findings, I put all factors together in an ANOVA
model to see which one contributed most to the power improvement. The response
variable is the power of detecting the treatment difference at 7, -7, =0.05. It was
calculated as the number of simulations in which the difference was detected correctly,
divided by the total number of simulations. The main effects included the standard

deviation of the MM probes (o,,, ), the standard deviation of the PM probes (o, ), the
standard deviation of the random effect (o, ), the correlation between PM and MM errors

(o), an indicator variable for either of the two models (M ), and an indicator variable for
the NOBOUND case ( NB). Since I did not simulate all combinations of these
parameters, the data were fit with a reduced model consisting of only main effects and all
pairwise interactions. The Type III effect tests are provided in Table 4.2. The rank order
of significant main effects was as follows: 1. o,, 2. o,,, 3. model, and 4. correlation
coefficients p.  Our choice of settings for these parameters make their F-statistics

roughly comparable. To sum up, the values of chip random effect and the stochastic
error term seem to have the most crucial effect on the detection power. Their relative

values also contribute significantly.
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Table 4.2. Type III table for the ANOVA analysis of the factors contributing to the
explanatory power of the model.

Effect Num DF F values Pr>F
O\ 1 1.57 0.212

Oy 2 681.11 <.0001
O s “O puys 1 1.08 0.2993
o, 3 1916.67 <.0001
Oy *0, 2 5.33 0.0055
Opy X0, 3 390.9 <.0001
P 4 11.48 <.0001
Oy P 4 0.9 0.463

O * P 8 0.87 0.5427
o.*p 12 3.74 <.0001
nb 1 0.84 0.3592
O, Nb 1 1.3 0.2561
Oy, “Nb 1 1.87 0.1732
o, nb 3 0.85 0.4674
£ *nb 4 0.24 0.9171
model 2 139.25 <.0001
O\, “model 2 2.41 0.0921
O 1, *model 3 1.05 0.373

o, *model 4 28.87 <.0001
p *model 8 8.25 <.0001
nb*model 2 0.93 0.397
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4.6  DISCUSSION

Owing to the high cost of microarrays, many research projects can only afford a small
number of replications, which adversely affects statistical power for detecting differential
expression. It is thus desirable to explore statistical procedures that increase inferential
power from datasets with small numbers of replicates. I propose a bivariate model under
the mixed ANOVA framework and demonstrate the power increase relative to the PM-
only model, which utilizes only half of the data from each array. The bivariate model not
only integrates more data points but also dynamically estimates the covariance structure
between PM and MM probes.

I have made a relatively thorough investigation concerning the standard errors and
degrees of freedom estimates for mixed model test statistics and find an antithetic trend
of power improvement with respect to the correlation coefficients between PM and MM
probes. This is an interesting behavior of the bivariate model and is worth more
theoretical discussion.

Overall, at the cost of additional theoretical and computational complexity, the
bivariate model improves power over the PM-only model by utilizing extra information
from all MM probes. It works well especially when both the treatment difference and
chip-to-chip variability are small. For an experiment with a greater number of replicates,
the improvement will likely become insignificant since then we will have better estimates
from the PM-only model and the margin created by the degrees of freedom difference
will decrease. The computational time needed for the bivariate model is approximately
10-20 times more than the PM-only model and so the bivariate model is only

recommended when the treatment effects are expected to be small and when the
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experiment has a small sample size. However, under these circumstances it must be
recognized that biological or technical experimental sources of variation are more likely
to contribute to apparent differential expression. Caution is urged in interpreting higher
statistical significance as true biological difference.

In general, the mixed model approach provides flexibility for modeling different
sources of variation and correlation. In the bivariate model discussed here, the variance
components can be refined to separate the variation from PM and MM. It can also be

constrained so that o,,,=0,, =c. Reducing the number of parameters can result in

even better estimates of other parameters and improved power, as long as the reduced

model still fits the data well.
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4.8 APPENDIX

A. SAS code

*PM-only model;

proc mixed data=pharmacia;
by unit;
where flag=pm;
class probe treatment chipid;
model logi = probe|treatment /ddfm=kr;
random intercept / subject=chipid(treatment);
estimate 'trt' treatment 1 -1;

run;

* Bivariate model;

proc mixed data=pharmacia;

by unit;

class probe flag treatment chipid;

model logi = probe|flag|treatment@?2 / ddfm=kr;

random intercept / subject=chipid(treatment);

repeated flag / type=un subject=probe(chipid*treatment) r rcorr;

estimate "trt:conditioned on PM" treatment 1 -1 flag*treatment 0 0 1 -1;
run;

B. Degrees of freedom estimates with and without NOBOUND

When the array variation is greater than zero, the degrees of freedom estimated by
Kenward-Roger’s method (Kenward and Roger 1997) approximately equal (number of
subjects - number of parameters estimated for main effects], which is 6-2=4 in the yeast
data and is comparable in both the PM-only and bivariate models. When the estimate of
array variation is zero, the test statistic is the same as that in fitting a fixed-effect

ANOVA and the degrees of freedom is [# - total number of parameters estimated], where
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n is the total number of observations. The number #» is about 100 for one gene in PM-
only model of the yeast data, depending on the number of probes representing the gene.
This number is doubled in the bivariate model. Increasing the degrees of freedom from 4

to 100 greatly improves the power of a t-test.

C. Calculating the probability of getting negative estimates

A simple model considered here has two treatments and three replicates in the PM-only
model. The probe set under consideration is assumed to have 16 probes, which is a
general case.

y=u+T,+P +TP, + 4, +¢,
4, ~N(0,0,).&, ~ N(0,0;)
T: treatment, i=1,2

P: probe, j=1~16
A: array effect, k=1~3

Table 4.3. Model expected mean squares

Source Type Il Expected Mean Square D.F.

Treatment Var(Error)+16Var(ChipID(Treatment))+ 1
Q(treatment, Probe* Treatment)

=0, +160. +Q(T,P*T)

Probe Var(Error)+Q(Probe, Probe*Treatment) 15
=0l +0(P,P*T)

Probe*Treatment Var(Error)+Q(Probe*Treatment) 15
=0l +0(P*T)

ChipID(Treatment) Var(Error)+16Var(ChipID(Treatment)) 4
=0, +160]

Error Var(Error) 60
=0 2

&

Let MSC represent the mean sum squares of variation from array effect and MSE
represent the mean sum squares of error. We have

G2 =(MSC — MSE)/16
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, . [4 oI, 0
Under the normality assumption: ~ N| 0,
& 0 ;1

It can be shown (Searle 1992) that _SE Ko = COMBE ~ Zéo
E(MSE) E(MSE)

Similarly _AMSC Zi
E(MSC)

When o, =0.1,0, =0.01, according to Searle (1992), we can calculate the probability of
getting negative estimates as
Pr(6> < 0) = Pr{MSC / MSE <1}
_ Pr{MSC/E(MSC) - E(MSE)
MSE | E(MSE)  E(MSC)
0.1°
0.1 +16x 0.012}
= Pr{F,, <0.862}
=0.508

}

= Pr{F <
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Chapter 5. Conclusions and Future direction

My thesis has focused on two major issues in gene expression profile analysis. One was
to measure the variation across and among species and make biological interpretation.
The long term goal is to understand how evolution occurs in organisms at the gene
expression level. The second part of my work was to develop better statistical estimates
that can account for different sources of variation for significant gene detection.

In chapter 2, the experiment carried out by Enard et al was re-analyzed. In this
study, I used linear mixed model to decompose the expression variation into species,
tissues and probe effects. With a gene-by-gene approach, there were more genes
differentially expressed between human and chimpanzee within the liver tissues than that
within the brain tissues, which provides a different perspective to the observations
described in the original paper by Enard ef al (2002) who suggested that there is
accelerated evolution in the human brain.

A second observation was the tendency of higher expression levels for species in
the order of human>chimpanzee>orangutan. Although this may simply explained by
sequence divergence increasing with genetic distance of non-human species to human,
whose sequences the array was designed for, there are significantly different degrees of
asymmetry between brain tissues and liver tissues. This suggests that part of the bias
might be contributed by real increases in expression in addition to the effect due to
sequence divergence.

One of the important features specific to short oligonucleotide arrays is the probe

patterns. The relative hybridization strength of probes within a probe set maintains the
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same profiles across samples most of the time. Based on this assumption, I used a
correlation-based heuristic rule to filter probes that are inconsistent between chimpanzee
and human probe profiles. It hypothetically removes some of the probes that have
sequence divergence between the two species. It improved the asymmetry somewhat
although still maintained the order mentioned above.

Although this dataset contains a limited number of biological replicates for each
species, the results indicated significant divergence across species. The hypothesis
testing approach proposed by Rifkin et al. was applied to compare the divergence
observed with the divergence expected under mutation-drift equilibrium. Under
conservative conditions of effective population size and the time since divergence of
human and chimpanzee lineage, only a few genes were suggested to be experiencing
diversifying selection.

Given the issues that probe variation raises for interpretation of short
oligonucleotide based gene expression profiles, the remainder of my research focused on
development of statistical methods for teasing apart probe effects. These were pursued
using two published experiments where perfect match and mismatch probes were both
considered. Genetic variation among individuals in a population is expected to be small.

In chapter 3, a spike-in dataset was used to evaluate the linear mixed model. The
Latin Square design with known genes and known concentration allows us to compare
the estimates with true answers. There were three observations in this project. First, by
comparing the correlation across arrays, the log 2 scale was shown to have the best
consistency across the arrays. Second, when the least squares mean were used to

represent the expression pattern across experiments, all 14 patterns were correctly
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identified but the estimates and the true concentration did not follow a strict linear
relation; instead, they fell into an S-shape. The linearity held better only for a certain
range of concentrations. The last observation was the significant cross-hybridization to
genes other than the 14 spiked ones. Some examples identified by Gibb’s sampling
method were given and they demonstrated how complicated the issue could be since a
motif with length as short as 15 bases can possibly cause strong binding.

Following the observation in Chapter 3, a bivariate model was proposed in
Chapter 4 to combine the mismatch probes as repeated measures to the perfect match
probes under the framework of linear mixed models. Power increase was demonstrated
for small samples through both simulation and application to a real yeast dataset.
Although there is no significant improvement to PM-only models when the sample size is
large, it is still a good alternative when there are only limited resources to do the
experiment.

Based on the conclusion and observations above, there are some issues needed to
be resolved in the future. One is cross-species hybridization, which was partly taken care
of in this study by using a heuristic rule. For highly variable species such as Drosophila,
intraspecific sequence polymorphism is greater than cross-species divergence among
primates, so may have a large impact on inference of differential expression. A more
detailed understanding about sequence similarity and hybridization strength will help to
evaluate expression variation within and across species.

The second problem that needs to be studied is to understand the mechanism
behind the expression divergence. It is the first time of the history that scientists are able

to look at the behavior of tens of thousands of genes at the same time. By treating
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expression as quantitative traits, the high-dimension data provide us with a different
angle to look at evolution at the molecular level.

Throughout the thesis, the normalization methods were based on a strong
assumption that most of the genes are not differentially expressed across experiments.
This assumption holds for most whole genome experiments, but new applications for a
small set of target gene detection could be problematic. The current available
normalization methods are more or less based on the same assumption. A more general
approach should be developed to fit all circumstances.

How to handle the cross-hybridization signals has been discussed in the
microarray community but no conclusions have been reached so far. Motif finding based
on sequence similarity was demonstrated to be an informative strategy in the thesis but it
is not possible to have a comprehensive survey with spike-in data. It is sensible to
consider the chemical and physical properties of the oligonucleotide sequences when

dealing with this problem.
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