
  

ABSTRACT 
 

ALTUNAY, MINE. Collaboration Policies: Access Control Management in SOA-based 
Dynamic Collaborations. (Under the direction of Gregory T. Byrd.) 

 
Service-oriented architectures change the computing paradigm by providing easily 

accessible services and by promoting collaborations among the provided services. The 

services can be harnessed with other services to create more powerful services.  Ideally, the 

end user expects to select from an existing service pool, mix-and-match services, and come 

up with original applications that are tailored to his unique needs.  

A collaboration is a collection of services that harnessed together to achieve a common 

goal. During run-time, each service is expected to interact with multiple peer services. An 

interaction occurs in the form of a data exchange between two peer services. Although 

collaboration significantly helps tackling difficult problems, it also leads to the increased 

exposure of a service. First, the collaborations are often short-termed and dynamically built 

based on end-user’s demands. Therefore, there may not be established trust relationships 

among peers. Second, during run time, a service becomes exposed to the all of the 

collaborative peers. The interactions within the collaboration are not isolated from one 

another. Instead, each interaction consecutively follows one another in order to propagate 

data among multiple parties. As a result, a service is not only exposed to the peers with 

which it directly interacts, but also exposed to other peers due to indirect interactions.        

We approach the access management from a service owner’s perspective. We first study 

the type of interactions that are present in a collaboration. Based on the identified interaction 

types, we discuss the security threats that can arise with each interaction type. Our access 

control model aims to mitigate these security threats. Our access control model is designed to 



  

evaluate a collaboration context, and it recognizes the multitude of information present 

within a collaboration context: varying interactions, different peers engaged in these 

interactions, and the actions taken by each of these peers.    

In order to express access requirements from a collaboration, we designed collaboration 

policies. A collaboration policy contains access rules that are specified to evaluate the 

collaboration context. A service owner can associate each access rule with a specific 

interaction type. As a result, different peers with different interaction types are applied 

against different access requirements. In other words, our access control model varies access 

requirements from a collaborative peer depending on the collaboration context. 

We encompass our work inside a framework. We develop a system architecture where 

each service that is invited into the collaboration can use its own collaboration policy to 

reach a decision. These evaluations are carried out as peer-peer trust evaluations. Our 

framework provides a message infrastructure that is used to carry out these evaluations. 

Moreover, the results of the security evaluations are collected and are used to determine the 

feasibility of the collaboration. We determine a collaboration is feasible when each 

collaborative service is willing to join the collaboration as a result of its security evaluations.  

Our work aims to provide a secure and autonomous computing environment, and it aims 

to promote collaboration among services. We do this by enabling service owner’s with 

necessary means to protect themselves, and by encompassing these decisions into a 

framework.    

 



  

COLLABORATION POLICIES: ACCESS CONTROL MANAGEMENT IN SOA-
BASED DYNAMIC COLLABORATIONS 

 
 

 
 
 

by 
MINE ALTUNAY 

 
 
 
 
 

A dissertation submitted to the Graduate Faculty of  
North Carolina State University  

in partial fulfillment of the  
requirements for the Degree of  

Doctor of Philosophy 

 

COMPUTER ENGINEERING  
 

Raleigh, NC 
 

2007 
 
 
 

APPROVED BY 

 
 
 

         Eric Rotenberg                     Douglas S. Reeves 
 
 

 
         Ralph A. Dean          Gregory T. Byrd 

   Co-Chair of Advisory Committee   Chair of Advisory Committee 
 
 
 
 



 ii

BIOGRAPHY 
 

 
Mine Altunay was born in Turkey, on September 9, 1979. She attended Bursa Science 

and Math High School, and later graduated from Bilkent University with a Bachelor of 

Science Degree in Electrical and Electronics Engineering, 2001. Immediately after 

graduation, she moved to the U.S.A. to purse graduate studies in Computer Engineering  

at North Carolina State University.      



 iii

ACKNOWLEDGEMENTS 
 

 
There are a few people, without whom I could not have completed this body of work. I 

would like to take this opportunity to express my deep gratitude and thanks to those. Dr. 

Greg Byrd and Doug Brown contributed immensely to my education, not only in academic 

terms, but also other aspects of life. I cannot thank them enough for their availability, 

accessibility and patience. My family was the strongest driving force behind me that enabled 

me to complete this work; without their support, I could not have possibly been where I am 

today. My mother, my aunt, Gulcan Ozer, my uncle, Kadir Ozer, and my sister are the people 

that I cannot thank enough. Sarah Timberlake was not only a friend, but she was my 

extended family here; she is no different than a sister in my heart.. Also, I like to thank my 

aunt for making me believe that I can achieve anything I want (and also I can graduate within 

6 short months). I am very blessed that I have such great role models and have such a 

wonderful family.      

There are several friends, family members, professors, and fellow graduate students that 

helped me in so many ways. I cannot list all the names in this restricted space, but I am 

thankful to all of them.  

 
 



 iv

TABLE OF CONTENTS 
 

 
LIST OF TABLES................................................................................................................... vi 
LIST OF FIGURES ............................................................................................................... viii 
1.     Introduction....................................................................................................................... 1 

1.1   Contributions of the Work ............................................................................................ 7 
2.     Background and Related Work....................................................................................... 11 

2.1 Background and Assumptions ................................................................................ 11 
2.2 Interaction Types .................................................................................................... 17 
2.3 Security Issues and the Related Work .................................................................... 21 

2.3.1    Workflow Authorization Management ............................................................... 22 
2.3.2     Conflict of Interest ............................................................................................. 25 
2.3.3   Delegation of Rights ............................................................................................ 29 
2.3.4   Business Regulations and Partnerships................................................................ 32 

3.     Collaboration Policies..................................................................................................... 33 
3.1 Access Control Model............................................................................................. 33 
3.2 Collaboration Policy Model.................................................................................... 40 

3.2.1 Policy Model Requirements............................................................................ 41 
3.2.2 Collaboration Policy Model............................................................................ 42 

3.3 The Collaboration Policy Syntax ............................................................................ 50 
3.3.1 Combination Logic ......................................................................................... 50 
3.3.2 Maximum Evaluation Radius ......................................................................... 51 
3.3.3 Access Rule Syntax......................................................................................... 51 

3.4 Access Rule Types.................................................................................................. 59 
3.4.1 Underlying (U) Rule Type .............................................................................. 60 

3.5 The Collaboration Policy Implementation.............................................................. 63 
3.5.1 Collaboration Request Model ......................................................................... 64 
3.5.2 Collaboration Rules ........................................................................................ 70 
3.5.3 Collaboration Rule Types: Local and Underlying .......................................... 71 

4.     Delegation of Credentials ............................................................................................... 78 
4.1 Delegation-upstream (DU) Rule Type..................................................................... 79 
4.2 Delegation-downstream (DD) Rule Type................................................................ 83 
4.3 Implementation of Delegation-upstream (DU) Rules.............................................. 88 
4.4       Implementation of Delegation-downstream (DD) Rules......................................... 92 

5.    Evaluation of Collaboration Policies ............................................................................... 98 
5.1 Preparation of Collaboration Requests ................................................................... 99 
5.2 Evaluation of the Collaboration Request .............................................................. 106 

5.2.1 Evaluation of Type DU Rules........................................................................ 112 
5.2.2 Evaluation of Type DD Rules........................................................................ 129 

6.     The System Architecture............................................................................................... 133 
6.1 The Collaboration Locator Module ...................................................................... 136 
6.2 The Authorization Management Module.............................................................. 144 
6.3 The Policy Enforcement Point .............................................................................. 147 



 v

6.3.1  The Scope of a Collaboration Policy: The Calculation of Evaluation Radiuses  
………………………………………………………………………………148 

6.4 Policy Decision Point............................................................................................ 151 
6.5 The Interaction Patterns Among the Modules ...................................................... 151 

6.5.1 Round-One.................................................................................................... 152 
6.5.2 Round-Two ................................................................................................... 157 

6.6 The Security Analysis of Our Framework ............................................................ 160 
7.     Deployment and Measurements.................................................................................... 164 

7.1 Deployment........................................................................................................... 164 
7.2 Performance Measurements.................................................................................. 165 

7.2.1 Collaboration Policy 1 (L Policy) ................................................................. 168 
7.2.2 Collaboration Policy 2 (U Policy)................................................................. 168 
7.2.3 Collaboration Policy 3 (L+U Policy)............................................................ 168 
7.2.4 Collaboration Policy 4 (L+U+D Policy)....................................................... 169 
7.2.5 The Collaboration Graph 1: The Simplest Case ........................................... 170 
7.2.6 Collaboration Graph 2: 1-Branch.................................................................. 181 
7.2.7 Collaboration Graph 3: Double Branching Effect ........................................ 186 
7.2.8 Collaboration Graph 4: Same Service Multiple Appearance........................ 191 
7.2.9 Collaboration Graph 5: Multiple Interactions............................................... 194 

7.3 Performance Conclusion....................................................................................... 199 
8.     Conclusions and Future Work ...................................................................................... 201 

8.1 Future Work .......................................................................................................... 203 
REFERENCES ..................................................................................................................... 206 



 vi

LIST OF TABLES 
 
 
 
                     Page 
 
Chapter 7                     
 
 
 Table 7.1 Services’ policy decisions with L Policy over Graph 1………………….171 
 
 Table 7.2 The service execution times with L Policy over Graph 1………………..171 
 
 Table 7.3 The difference in execution times with changing radiuses………………172 

 
 Table 7.4 The policy decision for each service with U Policy over Graph 1……....173 
 
 Table 7.5 Service execution times for U Policy over Graph 1……………………..173 

 
Table 7.6 The difference between the execution time for changing radiuses with U 
Policy. ………………………………………………………………………………174 
 
Table 7.7 The policy decision for each service with L+U Policy over Graph 1…....176 
 
Table 7.8 Service execution times with L+U Policy over Graph 1………………...176 
 
Table 7.9 The policy decision for each service with L+U+D Policy over Graph 1 
………………………………………………………………………………………179 
 
Table 7.10 Service execution times for L+U+D Policy…………………………….179 
 
Table 7.11 The policy decision for each service with L+U Policy over Graph 2…..182 
 
Table 7.12 The policy decision for each service with L+U+D Policy over Graph 2 
………………………………………………………………………………………183 
 
Table 7.13 Service execution times with L+U+D Policy over Graph 2……………184 
 
Table 7.14 The policy decision for each service with L+U Policy over Graph 3…..187 
 
Table 7.15 Service policy decisions with L+U+D Policy over Graph 3…………...188 
 
Table 7.16 Service execution times with L+U+D Policy over Collaboration Graph 3. 
………………………………………………………………………………………189 
 



 vii

Table 7.17 Service 3’s policy decision with L+U+D Policy over Graph 4………...192 
 
Table 7.18 Service execution times with L+U+D Policy over Graph 4……………193 
 
Table 7.19 The policy decision for each service with L+U Policy over Graph 5…..196 
 
Table 7.20 Service policy decisions with L+U+D Policy over Graph 5…………...198 
 
Table 7.21 Service execution times with L+U+D Policy over Graph 5……………198 



 viii

LIST OF FIGURES 
 
 
                     Page 
 

Chapter 1 
 
 Figure 1.1 Our framework………………………………………………………….…8 
 
 
Chapter 2 
 
 Figure 2.1 Phases of workflow construction and execution…………………………12 
  

Figure 2.2 Collaboration scenario……………………………………………………18 
 
 
Chapter 3 
 
 Figure 3.1 The collaboration request for Service 3…………………………………..37 
  

Figure 3.2 Fine-grained collaboration request for Service 3………………………...40 
  

Figure 3.3 The Policy model…………………………………………………………45 
  

Figure 3.4 The collaboration policy stated in Example 1…………………………....46 
 
Figure 3.5 The collaboration policy stated in Example 2……………………………47 
 
Figure 3.6 The collaboration policy stated in Example 2……………………………48 
 
Figure 3.7 The collaboration policy stated in Example 2……………………………49 
 
Figure 3.8 A sample collaboration request implemented with XACML access  
requests………………………………………………………………………………66 

 
 
Chapter 4 

 
Figure 4.1 Delegation of credentials scenario………………………………………..85 

 
 
 
 



 ix

 
 
 
 
Chapter 5 
 

Figure 5.1 The collaboration request created by service A’s PEP………………….106 
 

Figure 5.2 The evaluation of a collaboration proposal……………………………..111 
 
Figure 5.3 The evaluation of a failing collaboration request against a Du rule…….116 
 

 
Chapter 6 

 
Figure 6.1 The system architecture……………………….………………………...133 

 
Figure 6.2 The sub-collaboration graph for Service A…...………………………...140 
 
Figure 6.3 The multiple interactions between two services………………………...141 
 
Figure 6.4 Multiple interactions…………………………………………………….143 
 
Figure 6.5 The Round-One of our framework……………………………………...152 
 
Figure 6.6 The Second-Round of our framework…………………………………..157 

 
 
Chapter 7 
 
 Figure 7.1 Collaboration Policy 4.………………………………………………….169 

 
Figure 7.2 Collaboration Graph 1…………………………………………………..170 
 
Figure 7.3 The difference in execution times with respect to L Policy and U  
 
Policy……………………………………………………………………………….175 

  
Figure 7.4 The comparison of results for the radius of 3…………………………...177 

  
Figure 7.5 Execution time comparison between L+U Policy and L+U+D Policy…180 

  
Figure 7.6 The Collaboration Graph 2……………………………………………...181 

  
Figure 7.7 Service execution times for Policy 3 over Graph 1 and Graph 2……….182 



 x

  
Figure 7.8 Service execution times for L+U Policy and L+U+D Policy over 
Collaboration Graph 2………………………………………………………………185 
 
Figure 7.9 The Collaboration Graph 3……………………………………………...186 
 
Figure 7.10 Service execution times for L+U Policy over Graph 2 and Graph 3….187 
 
Figure 7.11 Service execution times for Policy 3 and Policy 4 over Collaboration 
Graph 3……………………………………………………………………………...190 
 
Figure 7.12 Collaboration Graph 4…………………………………………………191 
 
Figure 7.13 Service execution times for L+U+D Policy over Collaboration Graph 4 
and Collaboration Graph 3………………………………………………………….194 
 
Figure 7.14 The Collaboration Graph 5…………………………………………….194 
 
Figure 7.15 Service execution times for L+U Policy over Collaboration Graph 5 and 
Collaboration Graph 4………………………………………………………………197 
 
Figure 7.16 Service 3 execution times for L+U+D Policy over Graph 4 and Graph 5 
………………………………………………………………………………………199
 

 



 1

Chapter 1:  
Introduction 

 

The service-oriented architecture [W3C04] provides a computational environment that is 

not constrained by geographical or organizational proximity. The computational environment 

contains various services that are drawn from different organizations and are provided for the 

end users. A service is the smallest building block of the service-oriented architecture, and 

each service provides a particular functionality. The end user has a variety of choices for his 

needs; he can select a single service, or combine multiple services in various ways.  

The service-oriented architecture promotes collaboration among the services. Services are 

expected to cooperate and interact with each other, and they are harnessed together to create 

non-trivial applications. In order to fully realize service-oriented architectures, uniform 

patterns of interactions between services must be developed. To satisfy this need, bodies such 

as OASIS [OASIS] and W3C [W3C] have defined several standards. These standards define 

the interaction patterns among services at various layers: from the transport layer message 

exchange to the upper layer business execution logic.    

Collaboration among services is achieved with the help of the Web-Services standards 

and service-oriented computing principles. Before the adoption of service-oriented 

architecture, each organization typically built applications with its own proprietary 

technologies. Interaction among different organizations and their applications were 

burdensome, if not impossible. Inter-organizational interaction usually required a significant 
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amount of work and modifications to the existing applications. As a result, inter-

organizational collaboration and interoperability were usually avoided or neglected. 

The adoption of service-oriented architecture and the Web-Services standards has 

changed this situation. Applications that were once only accessed through proprietary 

technologies become services that are accessible via the Web-Services standards. The 

adoption of uniform practices results in interoperability across organizational domains. A 

service can still be implemented and built in domain-specific technologies; however, the 

Web-Service standards describe a uniform way of interacting with the specific service. As a 

result, a service can be exposed to the external world, beyond its own domain. The end user 

is no longer expected to be a member of the service’s organization. Anyone who has the 

means to access the service and can bear the consequences of using the service (such as, 

paying a fee for the service) can become an end user.  

This new computing paradigm triggered what we now call Web 2.0 [O’Reil05]. The term 

Web 2.0 points to the change from the earlier web (Web 1.0), where applications usually aim 

to disseminate static data and have one-way interaction with the end user. Web 2.0, on the 

other hand, distinguishes itself by allowing two way service-user and service-service 

interactions. Several organizations are already participating in Web 2.0 by providing their 

services. For example, Google, Yahoo!, and Flickr provide their services via open APIs. An 

end user can use the provided services in his own application, mix and match services, and 

custom-tailor his application to his own needs. The resulting end user application usually 

contains services drawn from different organizations, blending and mixing disparate services. 

This type of application is called a mash-up due to its generation process. For example, a 

simple mash-up application can combine Google Maps API with Yahoo shopping API to 
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provide the end user with a more sophisticated shopping tool, which shows the goods and 

their locations with respect to the user’s location. The organizations that provide their APIs 

are content with this new usage scenario because their services are used in creative ways and 

even promoted to newer markets through the mash-up. Moreover, the end user’s creativity 

teaches them new usage scenarios for their services, hence, enhancing their services for the 

market trends in a faster manner.   

The service-oriented architectures are instrumental not only for creating mash-ups, but 

for numerous other application domains, such as scientific applications in bioinformatics or 

physics domains. A single scientific application is challenging to be fully home-made, and 

can be realized through combining services from different organizations, companies, or 

different laboratories. Scientific applications benefit from the service-oriented architectures 

in the same way the mash-ups do; however, scientific applications are usually realized 

through more sophisticated technologies, workflow management tools [WFMC]. In our 

work, we focus more on the workflow management tools due to their wide-spread adoption 

for large collaborations and the established prior research on them. Although our work is 

independent of a specific collaboration technology, we show the details of our architecture on 

the basis of workflow management tools. (We discuss the workflow management tools in 

Chapter 2.)   

Although different application domains benefit from the service-oriented architectures in 

different manners, their ultimate goal is the same: achieving collaboration among the 

services. The collaboration is a collection of services that work together to achieve a specific 

goal on behalf of the end user. The end user is regarded as the person or the entity that has 

triggered the collaboration. The collaboration of the services provides an advantage to tackle 



 4

significant problems; however, it causes security issues, which are the main focus of this 

work. 

In service-oriented architectures, a service has a large and a heterogeneous user pool. The 

service, in fact, is designed to reach end users that are beyond its organizational boundaries. 

This is significantly different from before the adoption of service-oriented architectures. 

Then each service or the application had a limited and pre-determined user list. The user list 

usually consisted only of the members of the application’s own domain. Since the 

applications were rarely exposed outside of their own domains, limiting the user list to the 

members of the organization was viable.  

The service-oriented architecture leads to increased exposure of services. A service is not 

only exposed to the end users outside of its home domain, but it also expected to interact with 

other services. The access control becomes more complicated because the end user and the 

other collaborative services belong to separate security domains. These domains do not share 

a pre-established framework for identification, authentication, and authorization. 

Furthermore, there may not be pre-established trust among these domains. Assuming 

existence of pre-established trust is not realistic because the services are combined in 

arbitrary ways and often on-demand. A collection of the services may include services owned 

by rival companies, or separated by corporate firewalls, or otherwise inhibited from working 

collaboratively. 

Furthermore, a service that is involved in the collaboration is affected by the other 

collaborative services, even when these collaborative services are not directly interacting 

with the service. In other words, they can still indirectly interact with each other via other 

services. Security threats, such as viruses, Trojan Horses, or corrupted data, may travel to the 
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service through the indirect interactions within the collaboration. As a result, it is insufficient 

to circumscribe the security evaluations to the collaborative services that are explicitly 

interacting with the service or to the end user. The service involved in the collaboration must 

assess the security threats introduced by several parties, including the end user and the 

collaborative services. 

Managing access control for a single service within the collaboration is challenging. The 

security threats are introduced by multiple parties: the end user as well as the collaborative 

services. Moreover, each of these parties has a different interaction with the service 

throughout the collaboration. To address the security challenges, an access control 

mechanism must (1) have a model of the collaboration, (2) distinguish between the 

interactions occurring in the collaboration, and (3) evaluate the involved parties accordingly. 

These are non-existent in the current access control models, which are built for interactions 

between a single service and a single end user. They cannot assess and detect the security 

threats unique to a collaboration. Our work addresses this challenge. We identify and analyze 

the security threats associated with collaborations. We provide the necessary tools to 

eliminate the identified threats. Based on the characteristics of ad-hoc and dynamic 

collaborations, we have identified the following list of security requirements.   

Peer-level mutual trust evaluations. Collaborations require several services to interact 

with each other. These interactions often lead to unconsidered security consequences, such as 

direct or indirect accesses to a service by its peer services. A service may have reservations 

about joining a proposed collaboration due to the unexamined interactions. In order to 

address these reservations, each service must be able to evaluate a proposed collaboration. 

Each service must evaluate the potential access requests that would occur throughout the 
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collaboration and determine whether they constitute a security threat. This leads to peer-peer 

trust evaluations among the services and the end user. A collaboration framework that 

enables and incorporates the peer-level trust evaluations eliminates the unforeseen security 

violations, and reduces the reluctance towards service’s participation into the collaborations.  

Decentralized authorization framework. Each service participating in a collaboration may 

have domain-specific security policies and requirements that are confidential [KM03].  Thus, 

the collaboration framework should have a decentralized access control management such 

that each service must independently evaluate the collaboration and reach a decision over 

whether to join the collaboration. Moreover, the collaboration framework should not assume 

any prior knowledge about the security policies governing the collaborative services, because 

the collaborations are built dynamically, and services are not expected to reveal their security 

policies to other parties.   

Context-based, collaboration-aware access control model. Classical identity-based 

models or the families of role-based (RBAC) [San96] and task-based (TBAC) [TS93] access 

control models assume that a service owner has prior knowledge of the user pool.  This 

assumption is not adequate for today’s highly dynamic, market-oriented web services 

paradigm, wherein the services are offered to anyone with the necessary credentials.  

Proposed access control models based on trust management [BFIK99] address this problem.  

However, trust management-based access control models still need to be incorporated with a 

high level abstraction that encompasses the requirements of multi-party collaborations. The 

new access control model must be designed for evaluating access requests based on the 

context of a collaboration. 
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Our work aims to promote dynamic, on-demand collaborations among services by 

addressing the access control issues. We aim to enable the services to protect themselves 

against the security threats that can occur within the collaborations. Each service is enabled 

to evaluate a proposed collaboration context and to make its own decision on whether to join. 

A service evaluates the proposed collaboration in terms of the access requests that are going 

to happen during the collaboration execution. When the service determines that these access 

requests are authorized and do not constitute a threat, it joins the collaboration. Otherwise, it 

declines the collaboration. Our work incorporates the services’ responses into an access 

control management framework. Based on the services’ responses, our framework 

determines whether the current collaboration is feasible for execution.   

1.1   Contributions of the Work 

Our work has two main contributions: it provides a service with necessary means to 

express and evaluate its trust requirements from a proposed collaboration (collaboration 

policies), and it provides an access control management framework that takes these 

evaluations into consideration (Figure 1.1). 

We developed an access control model (Chapter 3) tailored for collaborations. Our model 

can be used to evaluate arbitrary collaborations, and is independent of the technology that is 

used to create a collaboration. Our access control model views a collaboration as the 

collection of interactions among the services and the end user. The access control model 

interprets these interactions from the viewpoint of a specific service, which is protected by 

the access control model. The interpretation of these interactions, and hence the 

collaboration, is different for each service. For example, the same interaction may be 

interpreted and evaluated differently by two different services’ access control models; this is  
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due to the different roles played by each of these services within the collaboration. The 

model allows defining varying access requirements based on these interactions. The 

collaborative services or the end user that request access over a certain service can be applied 

to different access requirements based on the collaboration context and their interactions with 

the requested service. Moreover, our access control model deals with special cases that are 
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Figure 1.1 Our Framework. The contributions of our work: the collaboration policy engine at 
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likely to occur during collaboration, such as the delegation of rights and conflict of interest 

scenarios. 

Based on our access control model, we developed a policy language: collaboration 

policies (Chapter 3 and Chapter 4). The collaboration policies enable services to express their 

trust requirements from the collaboration. A collaboration policy includes access control 

rules designed for different interaction types occurring within a collaboration. In order to 

ease the adoption of the collaboration policies, we built them as enhancements over an 

existing and widely-used access control language, XACML [XACML05]. We enhanced the 

XACML existing syntax in order to fit the collaboration policy syntax. We implemented the 

tools that can evaluate and enforce the collaboration policies. Likewise, these tools are built 

by using an open source XACML implementation provided by Sun [Sun05].  

Our access control management framework (Chapter 5) views services as equal peers, 

and enables them to carry out their own trust evaluations with one another. Our framework 

defines uniform message patterns among the collaborative services and the end user so that 

the trust evaluations can be carried out. Our framework uses the result of the peer-peer trust 

evaluations in order to determine whether the collaboration is feasible for execution.    

Our work contributes to the services and to the end users who want to build 

collaborations and make use of the service-oriented architecture. We enable the services to 

conduct their own security evaluations before joining a collaboration. Thus, our work 

increases the services’ willingness to participate into the collaborations. Services that find the 

collaboration insecure refuse to join. On the other hand, we enable the end user to determine 

the feasibility of his proposed collaboration. The end user is saved from trying to execute a 
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collaboration that was not agreed upon by all parties; thus, he is saved from run-time security 

failures.      

In the rest of this paper, we first present the background of our research and the related 

literature in Chapter 2. We then discuss our access control model and policy model in 

Chapter 3. Chapter 3 also present the syntax and implementation details of collaboration 

policies. We continue with a special case that can occur within a collaboration: delegation of 

credentials. Chapter 4 discusses how we deal with delegation of credentials within a 

collaboration. We present our policy evaluation mechanism in Chapter 5. Our framework that 

encompasses our work is discussed in Chapter 6. In Chapter 7, we present the run time 

performance results of our framework and discuss the conclusion from the data collected. We 

conclude in Chapter 8.  
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Chapter 2: 
Background and Related Work 
 
 

In this chapter, we first present the underlying assumptions of our work and familiarize 

the reader with the necessary background material. Then, we present and discuss prior 

research that is closely related to our work.  

2.1 Background and Assumptions  

A collaboration can be realized via many technologies. Mash-up applications typically 

use AJAX [AJAX], which uses JavaScript as the glue code between the services. Scientific 

applications, on the other hand, employ workflow management tools that have more formal 

and sophisticated execution environments. The workflow tools, for example, provide 

graphical-user interfaces that allow for selection of services, and generate documents 

explaining the combination of the services and their execution. Both approaches embody the 

service-oriented architecture and employ the same Web-Services standards; however, they 

realize them through different technologies.  

Our work addresses the service-oriented computing principles and the existing standards, 

and we do not limit ourselves to any specific technology. However, we focus more on the 

workflow management tools, due to their widespread adoption and the breadth of existing 

literature.  

Workflow management tools model a collaboration as an ordered collection of tasks. A 

workflow task represents the smallest unit of work that must be accomplished. When all the 

tasks are accomplished, the collaboration reaches its goal. In a service-oriented workflow, a 

service is assigned to accomplish each task. The data flows among the workflow tasks such 
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that once a service accomplishes its task, the service forwards its output to another service 

that is responsible for the next task. As a result, a collaboration can also be modeled as an 

ordered set of interactions among the services.  For the rest of our paper, we refer to and 

illustrate a collaboration as a directed acyclic graph. (Our implementation currently does not 

support directed cyclic graphs; we leave that as future work.) Each node of the graph 

indicates a service. The arc between two nodes indicates the data exchanged between two 

services. The direction of the arc is same as the direction of the dataflow. When we refer to 

an interaction, we mean a specific data exchange between two services. An interaction is 

represented by an arc of the graph.   

 

 

 
Figure 2.1 The phases of workflow construction and execution. The collaboration context evaluation is 
performed in planning stage. It includes all peer-peer trust evaluations. Service-level access control 
indicates the access control checks that are done when a service receives a standalone “traditional” access 
request. The collaboration context evaluation includes the service-level access control checks in addition 
to the other peer-peer trust evaluations that are not part of the service-level access control checks.  In 
execution phase, the result of the collaboration context evaluation can be verified; however, it does not 
have to be performed again, indicated by the dashed lines. In execution time, only service-level access 
control checks are performed.  
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Figure 2.1 shows a very high-level view of the stages involved in constructing and 

executing a workflow. The management of the stages is performed by a workflow engine.  In 

the Design and Choreography phase, a complex business process or application is expressed 

in terms of interacting tasks.  In the Planning phase, the services which meet the operational 

requirements of the design are chosen, and the interactions among the services – in other 

words, the required collaborations – are identified.  In the Execution phase, services perform 

their assigned tasks, and messages are passed among them to carry out the workflow 

operations.  

In many workflow environments, security evaluations are delayed until the execution 

stage. A service evaluates its security policies when it is invoked at run time. The requested 

service evaluates its invoker, which is the service that has accomplished the preceding task, 

and the requested service determines whether to grant access. There are multiple problems 

with this approach. First, if the requested service refuses access, it leads to the breakdown of 

the workflow at execution time, and eventually forces re-planning and re-execution. For large 

workflows with numerous services, re-executing the workflow until it successfully completes 

is unaffordable, not to mention very inefficient. The second problem is that the security 

evaluation does not inform the services about the collaboration context. An access request 

only contains information about the requestor service and the requested service: the other 

services that are present in the collaboration are not conveyed in the access request. 

Therefore, the requested service is not aware of the interactions that have led to the current 

request, nor the interactions that must occur afterwards. Left unevaluated, the remaining 

interactions present in the collaboration can cause security breaches, such as data propagated 

from or into un-trusted domains, Trojan horses, or conflict of interest scenarios.  
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As a solution, we incorporate the security evaluations into the planning stage (Figure 

2.1). Our security evaluations do not involve the discovery and selection of suitable services. 

We assume that discovery and service selection has already been performed by the planning 

engine. After the planning engine finds suitable services that meet the functional 

requirements of the collaboration, our framework receives the name of the selected services 

and the collaboration graph as its inputs. Our work provides the means for conducting 

security evaluations among the selected services; therefore, it addresses the access control 

management for a group of selected services. In our framework, services are presented with 

the collaboration context during the planning stage. The collaboration context represents the 

interactions occurring in the collaboration and the services that are involved in these 

interactions. For a requested service, the collaboration context not only includes the explicit 

interaction between the requestor service and the requested service, but also it contains other 

interactions that leads to or succeed this explicit interaction. If the same service is involved in 

multiple separate interactions, the collaboration context contains all the interactions that can 

affect the security of a service. Each service receives a different collaboration context 

because each context is circumscribed to the interactions that affect the security of a specific 

service. In Chapter 6, we explain how we create the collaboration context and communicate 

this with the services.  

Based on the collaboration context, the service can distinguish between its peer services, 

and it can evaluate them accordingly. Each service applies its collaboration context against 

its collaboration policy. During this evaluation, a service conducts peer-peer trust evaluations 

with the services within its context. The trust evaluations allow a service to determine 

whether to provide access to its peer or not. For example, a service may deny access to 



 15

another service if one of the preceding interactions is deemed to be insecure. These trust 

evaluations are preliminary authorization checks among the services. 

When a service discovers that it would not grant access to any of its peer services, it 

declines the collaboration. The planning stage completes when all services agree on 

participating in the collaboration. Only then does the execution stage start. As a result, the 

execution stage has a higher chance of successful completion.    

During the execution stage, the collaboration context can be evaluated again in order to 

ensure that the collaboration has not been changed since the planning stage. The execution 

stage is beyond the scope of our work; however, this can be accomplished if each service 

stores a copy of the collaboration context from the planning stage, and compares it with the 

access requests received at run-time. The service-level access requests during the execution 

stage (Figure 2.1) refer to the accesses that are made during the execution stage. These run 

time access requests do not carry any additional information about the collaboration context. 

They are traditional access requests in the sense that they only carry information about the 

requestor service and the requested service. Note that the service-level access requests are 

also represented inside the collaboration context; therefore, they are already evaluated during 

the planning stage. We recognize that the collaboration context can contain information that 

cannot be captured from the run time access requests. As a result, ensuring that the 

collaboration has not been changed between planning and the execution could become 

challenging. We leave this as an open question and later discuss it among our future work.   

The final problem with the current security evaluation is that it is only unidirectional: the 

security evaluation is only performed by the requested service to determine whether the 

requestor service is authorized or not. It does not evaluate the requestor service’s trust in the 
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requested service. In other words, there is not a bilateral trust evaluation between the 

requestor and the requested service. This is a problem in a collaboration because neither 

service has a prior knowledge of each other. In fact, the services are collaborating with each 

other only because the collaboration owner selected them. Therefore, the services may not 

have an established trust in each other.  

To remedy this situation, we allow bilateral peer-peer trust evaluations among the 

services. At the planning stage, each service receives a different collaboration context. Each 

service evaluates the interactions in the context against its collaboration policy. These 

interactions are different with respect to each service. (We discuss the interaction types in the 

next section.) As a result, each service can evaluate all of its peer services, and may also be 

evaluated by other peers.    

Our work focuses on the planning stage, and does not make any modifications to the 

remaining workflow stages. We assume that a suitable service for each task is earlier found 

during the service discovery stage. We focus solely on the security evaluations among the 

selected services. Once we ensure that the selected services agree to the proposed 

collaboration, they can be bound to their tasks and the execution stage can start. However, 

the implementation of the service binding and the execution stage is beyond the scope of our 

work. We only forward the name of the services that agree to join the collaboration to the 

execution stage. The actual service binding and the execution occur in this stage.        

We assume that a service is the provision of any kind of facility to the public, such as 

computing power, storage, or simple remote code invocation. A service is not limited to its 

domain boundaries. We assume that the services are exposed over a network, and utilize the 

current Web-Service standards such as WSDL [WSDL1.1] and SOAP [SOAP]. Each 
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service’s collaboration policy is private, and is not divulged to other services, or to the 

workflow engine. Each service has access credentials that can be evaluated by its peers for 

authorization and authentication purposes. These credentials are assumed to belong to the 

actual service owner. We model a service’s credentials similar to the proxy credentials 

[Wel03] defined by Welch et al. such that a service has the same rights and privileges as that 

of its owner. For example, a service may invoke other services that its owner is authorized 

for.  Furthermore, due to the heterogeneity of the services involved in the collaboration, we 

do not assume that a service has prior knowledge of other peer services that are present in the 

collaboration. 

2.2 Interaction Types 

Within a collaboration, each service interacts with a number of peer services. An 

interaction involves the data exchange between two services. The interactions among the 

services are crucial for the security evaluations. Therefore, below we examine these 

interactions in two different categories: direct and indirect. Later, we refine these two 

categories with respect to the direction of the dataflow: upstream and downstream. As a 

result, we introduce four different types of interactions: direct-upstream, direct-downstream, 

indirect-upstream, and indirect-downstream.   
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Figure 2.2 Collaboration scenario. 

 

Direct interactions occur between the services that exchange data with each other without 
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i.e., the trustworthiness of the requested service from the requestor’s viewpoint – is not 

explicitly modeled. Instead, it is assumed that the invoking party implicitly makes a trust 

evaluation before launching its request. This implicit modeling does not work in a multi-

party collaboration because a third party, the collaboration owner, selects the participating 

services and requests them to interact with each other. The selection of collaborating services 

does not necessarily equate to the existence of trust between the services. As we illustrate in 

above example, the collaboration owner has selected Service A and Service B to interact with 

each other.  However, this does not guarantee that B does not possess any security threats to 

A, vice versa. As a result, the bilateral nature of direct interactions must be recognized, and 

interacting services must be allowed to perform bilateral authorization checks on each other 

[ABBD2-05].   

Indirect interactions occur between services that exchange data with the help of 

intermediate services. The intermediate services relay the data between the interacting 

services. Two services with an indirect interaction are also called indirect neighbors. The 

Services A and C in Figure 2 are indirect neighbors. There are several reasons why indirect 

interactions must be carefully evaluated.  

(1) Confidential documents or the results of a sensitive service are typically passed 

among several peers throughout a collaboration; thus even an indirect neighbor might have 

access to confidential data. Furthermore, partnership agreements and competition among 

businesses may prevent them from doing business with certain organizations. Even when 

such interactions are safe from a security standpoint, the higher-level business logic may 

forbid them. In addition, some peers in a workflow graph may introduce security threats to 

the other peers due to the security breaches within their own domains.  An access request that 
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has traveled through an un-trusted security domain may infect the other peers that are on the 

same workflow path.  

(2) Indirect neighbors can cause conflict of interest scenarios that cannot be caught by 

only inspecting the direct neighbors. An indirect neighbor involved with an access request 

may cause fraud and should not be allowed indirect access.    

(3) A workflow chain may require or allow delegation of rights between services. 

Delegated rights may have to travel through several disparate security domains and may be 

handled by intermediate peers until utilized for an access request. A service that receives an 

access request with delegated credentials may want to evaluate the trustworthiness of the 

intermediate parties as well as the peer that launched the access request. Likewise, the  

riginal owner of the delegated rights may also put trust requirements on the intermediate 

parties in order to prevent abuse of its rights. 

We further refine direct and indirect interactions with respect to the direction of the 

dataflow: upstream and downstream interactions. A service experiences an upstream 

interaction with another service when the first service is the recipient of the data exchange 

and the second service is the sender. For example, Service B has a direct-upstream 

interaction with Service A in Figure 2.2.  On the other hand, when the data flows out of the 

first service into the second service, the first service has a downstream interaction with the 

second service. The Service A in Figure 2.2 has a direct-downstream interaction with the 

Service B. We refine both direct and indirect interactions with respect to the direction of the 

dataflow, resulting in four kinds of interactions: direct-upstream, direct-downstream, 

indirect-upstream, indirect-downstream.  
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Refining an interaction with respect its dataflow is important for a few reasons. First of 

all, the dataflow indicates the sender and the recipient services in an interaction. Although the 

two services participate in the same interaction type, the roles they play in these interactions 

are different. Typically, the sender service (Service A in Figure 2) is the requestor that 

invokes the requested service. The recipient (Service B) is the requested service that would 

accomplish the next task in the workflow. Second, due to the flow of the data, the security 

threats associated with the services are different. Service A, due to the downstream 

interaction, is concerned about revealing its output document to Service B. B is concerned 

about allowing A to invoke. Therefore, informing a service only about the interaction type 

such as direct or indirect is not sufficient. The service must also be informed about the 

direction of the dataflow because based on the direction of the dataflow, the service’s access 

requirements from its interaction partner differ. Later, when we introduce our access control 

model, we discuss how different types of interactions can be evaluated.    

2.3 Security Issues and the Related Work 

We present the related work in four sections. First, we discuss the existing workflow 

authorization management frameworks. We then discuss the delegation of rights and the 

conflict of interest, respectively – their characteristics within a multi-party workflow and the 

shortcomings of the existing work to capture these characteristics. Conflict of interest and 

delegation of credentials are well-studied research problems in the literature; however, most 

of the existing work studies them either outside of the workflows, or within established 

homogeneous communities. We believe that these two research problems frequently occur in 

collaborations, and they have special characteristics due to the multiple autonomous security 

domains involved. We demonstrate that these characteristics cannot be captured within 
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existing models. Finally, we discuss the implications of multi-party collaborations on the 

current business models and regulations. We present how current government regulations and 

legal contracts may hold each collaborator responsible for the consequences of their 

interactions with other parties.    

    

2.3.1    Workflow Authorization Management 

There are several workflow authorization frameworks proposed [AH96, HA99, Kno00]. 

These frameworks are designed to manage workflow authorization within a single security 

domain, such as within a large organization. The existing work focuses on selecting suitable 

services or human subjects that can perform the workflow tasks. A central workflow 

authority defines the access rules that must be satisfied by a candidate service or a human to 

perform a task. Since these frameworks have a single-domain model, they omit peer-to-peer 

trust relationships, which is one of the focuses of our work. Every workflow participant is a 

member of the same security domain, and there is established trust between the participants. 

Furthermore, there is a central security governing the entire security domain. The participants 

do not have separate policies to protect themselves; the participants are supposed to trust and 

follow the central security policy. The above frameworks target to assign the services to the 

tasks with respect to the central security policy. Another contribution of the above 

frameworks is to synchronize accesses to workflows tasks with respect to the workflow 

progression. In other words, no workflow participant can execute a task before the workflow 

reaches a certain state.  

Other approaches by Bertino [BFA97], Tan [TCG04], and Hung [HK03] are similar to 

the above frameworks in that they use authorization constraints to define which services may 
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be used for executing a workflow task. They rather focus on extending RBAC models to 

express the authorization constraints over the workflow tasks.  

Kang [KPF01] recognizes the inter-organizational, distributed nature of new-generation 

workflows and adopts a multi-domain security model. However, Kang’s model requires a 

pre-established trust relationship between the disparate security domains. Kang uses the 

RBAC model, and assumes that a central workflow engine can access each service’s security 

policy so that the workflow engine can determine which services may interact with other 

services. This type of preparatory communication results in pre-established relationships 

among the security domains. In other words, before the collaboration is even conceived, the 

security domains communicate with each other in order to gain an understanding of one 

another’s security policies. The main drawback of Kang’s work is that it does not allow 

building dynamic workflows, where the workflow engine should not require prior knowledge 

about the internal security policies of participants. 

Koshutanski [KM03] proposes an authorization framework for ad-hoc workflows.  Based 

on the collaboration owner’s request, a workflow engine dynamically selects suitable 

services to perform tasks. Koshutanski assumes that none of the services publicly announces 

their access control policies. Koshutanski’s key contribution is an authorization mechanism 

between the collaboration owner and the services. Instead of sending access policies at the 

data-level (i.e., publicly exposing the policies), each service sends a mobile process to the 

collaboration owner. The mobile process must be executed in the owner’s domain, and it 

determines whether the owner is authorized to access the service. The mobile code is 

assumed to access the credentials stored within the owner’s domain so that an access decision 

can be reached. The reliance on mobile code introduces other security issues, such as how the 
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workflow owner’s domain can verify the mobile code, and how the mobile code should 

retrieve all the required credentials. Koshutanski’s framework neglects the peer-level trust 

evaluations between services, and focuses on authorizing the owner to each service 

individually.  

The WAS framework [KKHK03] adopts a multi-domain security model and targets grid-

based computing environments. The WAS framework assumes pre-established trust 

relationships between the domains. The WAS engine functions as a trusted third party 

between the service owners and the collaboration owner. Each service owner informs the 

WAS engine about his service, and delegates the access rights over the service to the WAS 

engine. Upon building a workflow, the WAS server determines which services are 

participating in the workflow. The WAS engine delegates the access right associated with 

these services to the parties that would request access during the execution stage. WAS 

framework can function well in small grid communities, where prior trust and community-

wide policies can be established. However, it is not well suited for ad-hoc distributed 

workflow models. 

Shehab [SBG05] also addresses the security issues of multi-domain collaborations. This 

framework assumes that there are cross-domain role mappings, and each domain is aware 

which mappings are forbidden or authorized. In addition, formation of the cross-domain 

mappings is not within the scope of their work, and assumed to be handled priorly. Their 

approach is focused on tracking the history of an access request, which is a list of the 

domains that are visited until the access request. All the domains that are involved with an 

access request can be evaluated at access decision time. Their approach is similar to ours in 

that they allow a workflow participant to check the direct or indirect domains involved with 
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an incoming access request. However, they differ in their assumption of cross-domain role-

mappings. They state that domains must somehow consult each other and generate role-

mappings. Our proposed framework does not require pre-defined mappings between 

domains, formation of which require exposure of policies between the domains and an 

established trust relationship. Instead, our approach focuses on expression and evaluation of 

collaboration policies such that, without public exposure, each domain can examine the 

history of an access request. As a result, their framework has a rather straightforward 

approach at detecting illegitimate access requests that traveled through unauthorized 

domains; each service has a complete list of forbidden mappings between domains and an 

access request that includes a forbidden link is denied access.  

 

2.3.2     Conflict of Interest  

In collaborations, conflict of interest usually occurs due to the high number of 

collaborative services, especially when the services perform sensitive tasks. A malicious 

service, which is assigned to perform multiple sensitive tasks, may deliberately modify the 

outcome of one of the tasks to provide benefit. Furthermore, a malicious service may 

deliberately provide corrupted information to its peers in order to affect the outcome of other 

sensitive tasks. Therefore, the conflicts may affect the collaboration owner, as well as the 

services. As a result, the detection and prevention of conflicts within workflows remains a 

significant research problem.  

One of the early works in the conflict of interest area is that of Saltzer and Schoreder 

[SS75]. They argued that assigning multiple entities to specific tasks reduces the likelihood 

of fraud. This argument later led to a concept known as separation of duties. Most of the 

latest work [CW87, BFA99, San88, San90, HQ03, KS01, BE01] in this area studies the 
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conflict of interest problem within a single security domain, such as a large organization. The 

services or humans perform the tasks, and they all belong to the same domain. The 

permissions to execute workflow tasks are centrally defined and regulated; thus, the 

complexity of the problem is reduced, and unauthorized accesses can be caught centrally. 

There are two reasons for the reduction in the complexity: first, the services belong to the 

same security domain and are assumed trust one another; second, a single central policy per 

collaboration is sufficient for preventing the conflicts. A service does not have its own policy  

for protecting from the conflicts. Rather, the service trusts the central policy that its 

successful enforcement would also protect the service’s interest. The work in this area 

focuses on assigning services to workflow tasks such that the there would be no conflict of 

interest among the services and the collaboration owner. Typically, a central security policy 

dictates how to select services for each workflow task.      

We, on the other hand, study the conflicts within a multi-domain model. Our multi-

domain model assumes that each service has a distinctive view of a conflict and accordingly 

has a different policy to protect itself. These views and policies may not overlap or comply 

with that of other domains. This is radically different than single-domain approach, which 

assumes a common understanding of a conflict and accordingly requires a single policy. We, 

on the other hand, focus on the conflicts that may arise in a workflow participant’s domain 

due to the unexamined direct or indirect interactions with other services. Such conflicts are 

not necessarily considered as violations by other services or by the collaboration owner. Note 

that above approaches have a central policy that defines what a conflict is from the 

collaboration owner’s perspective (i.e. the large organization). When the services are selected 

according to the central policy, there should not be any conflicts at all.  
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We believe that the single-domain approach is fitting when there is an established trust 

relationship between the involved parties and they agree on what constitutes a conflict. Each 

party would be assured that its interests would also be protected by enforcement of the 

central policy. However, in the absence of an established trust relationship, this cannot be 

guaranteed. Each workflow participant must enforce its own collaboration policies to ensure 

that the proposed workflow does not violate their policies.  

In particular, Sandhu [San88, San90] proposed that the roles that are allowed to execute 

tasks (called transactions in the original paper) must be specified in such a way that a user 

may be allowed to execute only a single task in a workflow. Bertino [BFA99] proposed a 

formal language that defines the access control constraints within a workflow context. 

Bertino’s framework allows a security officer to define the conflicts between tasks and how 

these conflicts are reflected as constraints on the task execution rights given to the roles. 

(Roles here refers to the role types defined within the organization. Each role has assigned 

permissions to access the organization’s resources. Services as well as human participants are 

assigned to specific roles.) During the execution of a specific workflow instance, the history 

of events in a workflow is captured, and the services’ rights to execute tasks are dynamically 

adjusted based on the history of events and the workflow constraints. For example, a typical 

constraint is that a manager role that has accessed a task to create a loan application can no 

longer access another task that determines the outcome of the application in the same 

workflow instance.  

Knorr [KS01] designed a workflow management tool that helps security officers to 

analyze the consistency of access constraints through graphical modeling. His Simple 

Separation of Duties Language (SSoD Language), which is used to express constraints, is 



 28

similar to the constraint language proposed by Bertino, in that both languages express 

constraints based on task abstractions.  

Botha [BE01] argued that identifying conflicts between tasks is not sufficient to detect all 

possible conflict scenarios. He proposed that in addition to specifying conflicting tasks, 

conflicting entities must also be specified. Conflicting entities would capture scenarios such 

as: John cannot execute a task that is conflicting with another task that has been performed 

by Jack because John and Jack are brothers. 

Huang [HQ03] explicitly uses conflict of interest classes, where each conflict class 

identifies the conflicting tasks of a workflow. A workflow participant is allowed to perform a 

single task from each conflict class. At the planning stage, suitable services are selected with 

respect to the conflict of interest classes defined for a workflow. A web service that is 

functionally capable of executing two tasks of a workflow is selected for only one of these 

tasks, when the two tasks are in the same conflict class. Huang demonstrates how conflict 

classes within a workflow can be expressed in WS-Policy, and how the security policy of the 

workflow is conveyed so that the service discovery and selection would incorporate the 

conflict classes. 

Huang’s approach is closest to ours in that it assumes multiple security domains. Each 

service belongs to a different security domain. However, his approach omits the examination 

of peer-level conflicts, and adopts the view of a collaboration owner to prevent conflicts. In 

other words, Huang’s work assumes that there is a single policy to detect the conflicts. This 

policy is defined by the collaboration owner, and it only reflects the view of a conflict from 

the collaboration owner’s perspective. This approach neither enforces the individual policies 

of the services, nor protects them against conflicts among the services.  
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2.3.3   Delegation of Rights   

Delegation of rights usually occurs within a multi-party collaboration. A peer service (the 

delegator) delegates its credentials (i.e. rights) to another service (the delegatee). The 

delegation occurs typically between peers that have established trust relationships. The 

delegation is performed in order to prevent an authorization failure and to complete the 

workflow execution. The delegatee lacks the necessary credentials to access another service, 

and the delegator provides its own credentials to prevent the access failure. It is possible that 

multiple intermediate services may relay the delegated credentials until they reach the 

delegatee.  

Several delegation frameworks assume a single-domain security model and specify 

centrally enforced delegation policies [ZAC01, ZAC02, WK05].  This model is insufficient 

to meet the needs of a multi-domain model, which is the focus of our work.  

First of all, each party (i.e. the delegator, the delegatee, the requested service) that is 

involved with a delegation may belong to disparate domains, and has a separate delegation 

policy. From a delegator’s standpoint, the delegation policy must specify the access rules for 

prospective delegatees and the treatment of received rights by the delegatees, such as re-

delegation depth and width. Conversely, from a service owner’s standpoint, the delegation 

policy must specify whether access with delegated credentials are accepted, and the access 

rules over the delegatees. In other words, the service owner must determine whether the 

delegatees constitute a security threat against the service’s domain. A delegator, on the other 

hand, is more interested in preventing the abuse of its rights.  

In a multi-domain security model, these policies may not overlap, or may contradict with 

each other. For example, a delegatee that is evaluated as trustworthy by a delegator may be 

found to be un-trustworthy by a service owner. Likewise, a service owner may accept an 
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access request from a delegatee that is abusing the delegated rights, and violating the policies 

of the delegator, as long as such violations do not cause a harm to the service’s domain.   

Unless disparate security domains have access to each other’s policies, they have no 

means to know or enforce each other’s policies. Furthermore, even when we assume they 

have access to each other’s policies, even though this is an unrealistic assumption for ad-hoc 

distributed workflows, they may not have sufficient motivation to protect each other’s best 

interest.  

Zhang’s policy language (RDM2000) [ZAC01, ZAC02] introduces a set of relations into 

RBAC96 and RDBM0. The can_delegate relation defines the delegating role and the 

conditions on the delegated role along with the maximum re-delegation depth. Similarly, 

can_revoke relation specifies who is eligible to revoke a delegated right. A central security 

officer must specify these relations and enforce them each time a request for delegation and 

revocation is made. Note that a delegator must send a request to the central security officer to 

delegate its rights to a delegatee, an approach called administrator-directed delegation 

[LN99].  

Wainer [WK05] separates the object rights from delegation rights: the former indicate the 

access rights on an object, whereas the latter show the right to delegate the object rights to 

another entity. A central authority decides to accept delegations and controls re-delegations 

by checking three properties: (1) the delegator must have the right to delegate, (2) the 

delegatee must satisfy all the constraints in order to receive the delegated rights, and (3) the 

generic constraints must not be violated. (These generic constraints specify the additional 

organizational policies on the delegation.) This approach, like Zhang’s, is administrator-

directed.  
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Both Wainer and Zhang’s approaches adopt the single-domain model and specify a single 

delegation policy per domain. Since all the parties belong to same domain, a central security 

officer can enforce the policy and prevent any violations. 

Other delegation frameworks with multi-domain security models [KFP01, PWFK+02] 

suffer from their dependence on pre-established trust relationships between the domains.  

Kagal’s framework [KFP01] models two distinctive security domains: the delagator’s and 

the service owner’s. It assumes that a delegatee and a delegator reside in the same security 

domain, and are therefore controlled by the same central security officer. Kagal adopts an 

administrative directed approach. Each time a delegatee requires access to a remote service, 

the security officer in the delegatee’s domain examines the request, and sends an approval 

message to the security officer in the requested service’s domain. The security officer at the 

requested service’s domain must verify that the remote access request is indeed approved by 

the delegatee’s security officer.  

A similar approach is presented in the Community Authorization Service (CAS) 

[PWFK+02], where a central CAS server delegates access rights to Virtual Organization 

(VO) [FKT01] members. Through these delegated rights, the members may access 

distributed resources of a VO. The VO resources may reside in any organization that is a 

member of the VO. Each time CAS server delegates access rights to a VO member, the 

delegated rights are inserted into the delegatee’s X.509 credentials as extensions. When an 

access request occurs, the security officer in the requested resource’s domain checks the 

delegatee’s X.509 credential, and grants access to the object if it complies with the delegated 

rights.  
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2.3.4   Business Regulations and Partnerships 

The same rules governing brick and mortar businesses also govern the businesses that 

offer their services in cyberspace. Businesses pick their collaborators based on their 

partnership logic, rivalry, and government regulations. Although, currently, business 

functions such as selecting partners, contract building, and quality of service enforcement are 

not fully automated, the growing support technologies will soon turn these obstacles into 

added benefits of doing business on the Internet. Security and trust are two inseparable 

decision factors shaping businesses’ everyday functions. The lack of necessary tools to 

incorporate security and trust into the collaboration decisions prevent building dynamic 

collaborations. Businesses are often reluctant to join a collaboration for fear of interacting 

with parties that are rivals or blacklisted organizations.   

Government regulations, such as Health Insurance Portability and Accountability Act 

(HIPAA) [HIPAA03], put further restrictions on businesses’ choice of partners. For example, 

HIPAA defines every organization that exchanges confidential patient reports with each 

other as partners and holds them responsible for each other’s actions. Another example is 

licensing contracts that strictly define how to distribute and use a service [BP02]. A licensee 

that uses the licensed service must be careful about how the result of service is propagated 

and used in a collaboration chain. Some licenses may strictly forbid using their services in 

certain countries or for certain purposes. It is the licensee’s responsibility to ensure that none 

of the rules of engagement are violated.  

The fear of unknowingly breaking regulations that may lead to litigation or lost profit can 

prevent businesses from joining dynamic on-demand collaborations. Without dynamic 

heterogeneous collaborations, the true benefit of service oriented computing, which is to help 

discovering and connecting with previously unknown services, may never be realized.  
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Our collaboration policy-based framework allows businesses to define access control 

rules on their direct or indirect neighbors so that an illegal chain of interaction can be 

detected at the workflow planning stage. A service may put additional restrictions on its 

partners’ identities based on the level of interaction required and the service being offered. 

This added assurance would promote the willingness of service owners to join collaborations. 
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Chapter 3: 
Collaboration Policies 
 

 

A collaboration policy is used to determine whether or not to provide a service to a 

proposed collaboration. In order to accomplish this, the collaboration policy models the 

collaboration as a collection of collaborative peers that are interacting with each other to 

achieve a common goal. The collaboration policy [ABBD05] states the trust requirements 

sought from the collaborative peers. The collaborative peers and the interactions among these 

peers are evaluated against the stated trust requirements.  

Definition 1: Collaboration Policy (CP) is a collection of access control rules, each of which 
represents the trust requirements sought from a collaborative peer included in a proposed 
collaboration. The peers are applied to the access rules with respect to their interactions 
inside the collaboration. A policy decision is “permit” or “deny”, where permit means joining 
the collaboration, and deny means declining the collaboration. Boolean logic operators are 
used to combine the results of access rules. 

 

For the remainder of this chapter, we discuss our access control model and accompanying 

collaboration policy model, then present the syntax of collaboration policies, and finally 

discuss the implementation of the collaboration policies. The discussion of our access control 

model and the policy model aim to explain why we need a model specifically designed for 

services provided to the collaborations. The succeeding sections present the complete policy 

syntax and the implementation details.   

3.1 Access Control Model 

Before delving into our discussion, let us introduce some terminology. A subject is an 

entity that requests access. A subject can also be called a requestor. An object is a resource 
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that is being requested. An action is an activity that is to be performed on the object. A 

collaborative peer is a service. A collaborative peer is being proposed to join the 

collaboration. The collaborative peer uses its collaboration policy to determine whether to 

accept the proposal. When the collaboration is built and enacted, the collaboration is realized 

by the interactions among the collaborative peers. During the collaboration, a collaborative 

peer can act both as a subject and an object. When the collaborative peer requests access to 

another peer (for example, invoking another peer, or sending data, or consuming output data 

of another peer) within the collaboration, the collaborative peer acts as a subject, while the 

requested peer acts as an object.  

Our access control model is designed to evaluate an “access request” that represents an 

invitation to the collaboration. When the service “grants the access request”, the service joins 

the collaboration. When the service “denies the access request”, it declines the invitation. The 

“access request”, in our model, represents the collaboration and all the interactions contained 

within the collaboration. By granting access to the collaboration, all of the collaborative 

peers that must interact with the provided service are granted access. In other words, the 

“access request” represents all of the accesses that are going to be performed by the 

collaborative peers once the collaboration is built. We call this “access request” a 

collaboration request. This is not just a syntactical change; it reflects that a collaboration 

request differs from a traditional access request. A traditional access request represents a 

single interaction between a subject and an object, whereas a collaboration request indicates 

all the interactions that are contained within the proposed collaboration. In order to join the 

collaboration, the service must simultaneously accept all of the interactions within the 

collaboration request.    
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Upon joining the collaboration, a service will interact with various collaborative peers. 

Each of these interactions introduces a different security threat to the service. Hence, each of 

the peers that interact with the service must be applied to the security evaluations. Moreover, 

the access requirements sought from these peers may change with respect to their interaction 

types.  

In order to accomplish this, a collaboration request consists of multiple subjects (i.e. 

collaborative peers), their interactions with the requested service, and the requested actions 

over the service. The interaction types are used as a differentiator among the subjects. A 

subject that is involved in a certain interaction type may be applied to different access 

requirements than another subject that is involved with a different interaction type. A key 

point of the collaboration request is that due to the varying interaction types, each subject 

maybe involved with a different action over the same service. For example, consider a 

collaboration involving three services (Services A, B, and C), where the Service A invokes 

Service B and passes its results to Service B. Later, Service B must send its results to Service 

C, and invoke it. From Service B’s perspective, the interactions with Service A and Service C 

are different: Service A invokes Service B and passes input arguments, whereas, Service C 

consumes the output generated by Service B. The first interaction can be represented as an 

“invoke” request from “Service A” over “Service B”, whereas the second interaction can be 

represented as a “consume” request from “Service C” over “Service B”. Although both 

interactions are related to Service B, the specific actions taken in each of them are different, 

as well as, the subjects taking these actions. More importantly, Service B must approve both 

interactions simultaneously in order to join this collaboration.  
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Existing access control models are designed to evaluate what we call traditional access 

requests. A traditional access request represents a single interaction. Each request is typically 

evaluated alone and an individual policy decision is generated. The request consists of a 

subject, an object and an action entity. Recent research [ACDV+, XACML05] has introduced 

variations to this model such that the access request includes additional entities such as an 

environment entity. The environment entity is evaluated as part of the access request so that 

additional attributes of the request such as the date, the time, and the location of the request 

(when the requestors are mobile) can be evaluated. Therefore, the access request is defined as 

four-tuple of a subject, an object, an action, and an environment entity.   

Furthermore, there has been other work that introduces multiple subject entities into a 

single request. The XACML [XACML05] framework, specifically, allows for this. The 

reasoning is that when multiple subjects pertain to the same access request, they must be 

evaluated simultaneously. The most common use-case scenarios are seen in the financial 

sector, where two or more subjects must be involved with a specific request to prevent any 

conflict of interest. The XACML model, however, does not allow for multiple action entities. 

Moreover, it only allows for multiple resource entities under certain circumstances: when the 

resources have a hierarchical tie such that accessing a higher level resource allows accessing 

a lower level one, then the multiple resources can be included in a single request. This 

situation is often observed when a request pertains to system directories or files.  

A collaboration request, on the other hand, conveys information that is not conveyed in a 

traditional access request. The collaboration request represents all of the interactions that 

involve the service as part of the collaboration. In other words, the collaboration request 

presents a limited snapshot of the collaboration as it relates to the service being contributed.  
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The collaboration request includes 4 pieces of information: the subjects (i.e. the 

collaborative peers), the interaction types, the actions, and the object (i.e. the provided 

service). The collaboration request maintains the association among a subject, its interaction 

type with the object, and the associated action (Figure 3.1).  

Figure 3.1 The collaboration request for Service 3.   
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However, the subjects that have different interaction types are applied to different access 

requirements. Therefore, the access requirements sought from the subjects are not uniform. 

There are two actions defined in our model: invoke and consume. The invoke action is 

used by any collaborative peer that has an upstream interaction with the service. Any 

collaborative peer that has a downstream interaction with the service uses the consume 

action.  

The collaboration request contains a single object: the service provided to the 

collaboration. However, as an exceptional case, when a service has a composite nature, we 

allow for defining multiple object elements within a single collaboration request (Figure 3.2). 

A service is generally regarded as synonymous with a single web service (or a single 

program implementation); however, in many cases, this is not true. Services are composite of 

several resources, including but not limited to multiple web services orchestrated together, 

databases, file systems and so on. The service, which is exposed to the external world, is 

realized through the interactions among all of its resources. Therefore, in practice, a service 

is rarely a single concrete object, but rather a composite abstraction. We call such services 

with multiple resources as composite services. Each resource of the composite service may 

have different access requirements. In such cases, the collaboration request can have multiple 

object entities, each of which represents a specific resource of the service. In other words, the 

collaboration request does not have a single object entity representing the service. As shown 

in Figure 3.2, Service C has multiple resources: it has three operations implemented as web 

services, a database, and two outcome documents. Each of the resources has different access 

requirements. The interaction between Service 3 and Service 2 can be represented as an 

“execute” request over the “opInvoke” by “Service 2”, whereas the interaction between 
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Service 3 and Service 4 can be represented as a “read” request over the “Output Doc 1” by 

“Service 4”. As seen, the collaboration and its interactions affect each resources of Service C 

differently. In this case, the collaboration request can list each of these resources as a 

separate object entity. This is a fine-grained approach.  

When the fine-grained approach is taken, it is also possible to further refine action entity 

of the collaboration request model. Rather than just using two action types, invoke and 

consume, more refined action types can be used. Our access control model does not restrict 

the refined action types. However, the actions must be meaningful over the resources 

included in the collaboration request. In Chapter 5, we show how this type of request can be 

prepared in detail.   

A service must evaluate and accept the entire collaboration request, all of the subject and 

action entities (and the object entities, if it adopts the fine-grained approach) listed within the 

collaboration request, before committing to the collaboration. Once the service joins the 

collaboration, the service must grant access to all of its peers through their designated 

interactions. Consequently, the service would become exposed to the collaborative peers 

such that it would become impossible to isolate and protect the service from untrustworthy 

peers. Therefore, it is crucial that the collaboration request must be evaluated in a 

comprehensive manner. The entire collaboration request must be evaluated against the 

collaboration policy. Evaluating the parts of the collaboration request separately, such as 

evaluating each subject separately, can lead to undetected security breaches. The 

comprehensive evaluation approach eliminates security risks that cannot be detected by 

examining individual interactions or peers. (We later have a detailed discussion of how the 
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lack of a comprehensive approach results in conflict of interest issues. The reader can refer to 

Chapter 2 for a detailed discussion of our comprehensive evaluation method.) 

 

 

Figure 3.2 Fine-grained collaboration request for Service 3. 
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3.2.1 Policy Model Requirements 

The first requirement is that a collaboration policy must be able to distinguish among the 

collaborative peers with respect to their interactions with the service. The peers must be 

applied to different access requirements based on their interaction types. Moreover, the 

collaboration policy must combine the evaluation result of each collaborative peer to 

generate a final policy outcome. While combining the peers’ evaluation results, the 

interaction types must be taken into account. For example, a collaboration policy must be 

able to state that access to a service is allowed as long as all the peers with a direct 

interaction type are trustworthy and all collaborative peers with an indirect interaction type 

do not belong to a rival company. As seen, the peers with indirect interaction types do not 

have to be trustworthy; however, they should not belong to a certain organization. The 

collaboration policy must be able to apply the peers to different access requirements based on 

their interaction types, and combine the results to reach a final decision. 

The second requirement is that the collaboration policy must be easily integrated into an 

existing access control system. A collaboration policy is an upper layer access rule 

collection. It is called an “upper-layer” rule collection because collaboration policies are 

designed to co-exist with the access control policies that are traditionally designed to 

evaluate standalone access requests. The existing access control policies (also called 

underlying policies) handle the access requests that are standalone and are not part of any 

collaboration. It is imperative that: first, collaboration policies must not disrupt the existing 

access control system; second, collaboration policies must be easily augmented to the 

existing system; third, the collaboration policies may make use of existing policies whenever 

desirable. The third requirement aims to promote policy re-use among the collaboration 

policies and the existing policies. Although the collaboration policies are specifically 
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designed with collaborations in mind, a policy writer must easily be able to refer to the 

existing policies in order to re-use them for collaboration decisions. An efficient method that 

provides policy re-use between underlying and collaboration policies is essential. As a result 

of achieving this affect, collaboration policies would be regarded as a complementary and an 

easy-to-adopt security feature. 

 

3.2.2 Collaboration Policy Model  

 We model a collaboration policy as the smallest building block of the security system 

that makes access decisions for a service provided to the collaborations. There can be 

multiple such blocks; each collaboration policy manages access to a different service. In 

other words, for each service that can be offered to collaborations, there must be a specific 

collaboration policy. A service owner who offers multiple of his services to the collaboration 

must separately evaluate each service’s collaboration policy. 

Within a collaboration policy, an access rule is the smallest building block that states the 

access requirements sought from a collaborative peer. Each rule is designed to evaluate a 

specific interaction type. In order to distinguish between the peers, each rule is incorporated 

with a target interaction type. The target interaction can be one of the four distinctive 

interactions: upstream-direct, upstream-indirect, downstream-direct, and downstream-

indirect. When desired, these interaction types can be further refined. (We discuss this in 

Section 1.3.1) In addition, each rule is designed for a specific action and object. The action is 

determined with respect to the target interaction of this rule. When the rule targets upstream 

interactions, the action is set to invoke, whereas, when the rule targets downstream 

interactions, the action is consume. The object is the service being provided to the 

collaboration.    
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A collaborative peer is evaluated against a specific rule when the peer possesses the 

designated interaction type. The peer must also possess the action and object entities that 

match the rule’s target. In a proposed collaboration, there can be multiple separate peers that 

possess the target interaction type of a specific rule. Each peer is evaluated by the matching 

rule separately. The final result of the rule is determined in a deny-overrides manner.  When 

a single peer fails the rule, the result of the rule becomes deny, even if all other matching 

peers satisfy the rule. For example, consider a rule that states that all peers with an upstream-

indirect interaction must belong to a certain trusted organization. There are likely to be 

multiple peers in a given collaboration matching this rule. The rule result must become a 

deny decision when even a single peer belongs to another un-trusted organization, although 

all other peers belong to the specified trusted organization.   

The result of each rule is combined with respect to a pre-defined combination logic. The 

name of the combination algorithm must be explicitly stated in each policy. The result of the 

combination algorithm constitutes the final decision over contributing service to the 

collaboration. It is possible that a rule’s result may be a permit decision with obligations. The 

obligation refers to the future activities that must be performed by the subject. The rule result 

is contingent upon the subject satisfying the obligation. In such cases, the rule’s obligations 

are propagated through the policy decision. We discuss obligations and how they are 

represented within a policy decision in Chapter 4.  

 

Rule Types: 

In order to meet our second requirement (the policy re-use between underlying and 

collaboration policies), we designed two rule types: Local (L) and Underlying (U). A rule 
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type conveys information about the manner in which the rule is evaluated. This information 

is used in addition to the access requirements stated inside the rule. The Local (L) rule type 

indicates that the rule is locally contained within the collaboration policy. In other words, all 

the access requirements associated with this rule are locally stored inside the rule; therefore, 

the rule does not make any references to external rules or policies.  

The Underlying (U) rule type indicates that the access requirements associated with this 

rule are stored in an underlying policy (Figure 3.3). The Underlying (U) rule type is used to 

provide the re-use between underlying policies and collaboration policies. Instead of re-

stating rules from underlying policies, the service owner simply creates a collaboration rule 

of Underlying type. The type Underlying rules do not have their own access requirements; 

they only refer to other policies. During the collaboration policy evaluation, their results are 

determined by the underlying policy decision (as we later show this in detail).  

We designed two more rule types in order to deal with delegation of credentials: 

Delegation-downstream (DD), and Delegation-upstream (DU). The Delegation-upstream 

(DU) rule type is used when a service is accessed with delegated credentials. The Delegation-

downstream (DD) rule is used when a service’s credentials are delegated to other parties. 

Peers that have established trust relationships can join the same collaboration simultaneously. 

One of these peers may delegate its credentials to one of its trusted peers. In such cases, 

above rules types evaluate the access requests pertaining to the delegated credentials. We 

discuss the details of rule types, their syntaxes and implementation issues in succeeding 

sections.    
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Figure 3.3 The Policy Model. The Underlying rules accomplish the policy re-use. The Local rules are 
tailored for collaborations. 
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Sample Policies: 

Below we present sample collaboration policies in plain language in order to illustrate 

our policy and access control model better. The service below refers to the service that is 

provided to the collaboration. Each example stands on its own.    

Example 1: The service can only be provided to a collaboration where: all collaborative 
peers that have an upstream-direct interaction with the service must be members of 
“Organization Y”; and all collaborative peers that have a downstream-direct interaction with 
the service must have credentials from the “Better Business Bureau”.  

 

 
Figure 3.4 The collaboration policy stated in Example 1. The access rules are shown as individual blocks 
consisted of three bars: target, type and conditions elements.  The connection among the rules indicates 
the logical combination of the rule results.   
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Example 2: The service can only be provided to a collaboration where:  all collaborative 

peers with an upstream interaction (upstream-direct or upstream-indirect) with the service 
must have credentials from the “Better Business Bureau”; and all collaborative peers that 
have an upstream-direct interaction with the service must already have authorization 
according to the underlying policies. 
 

 

 
 

Figure 3.5 The collaboration policy stated in Example 2. The Underlying rule has no access conditions 
since it merely indicates that the matching collaborative peer must be authorized by the underlying 
policies (indicated by the dashed lines).  

 
 
 
 
 
 
 
 

 

Target
Type = 
Local

Conditions

upstream:any

Target
Type = 

Underlying

Conditions

upstream:direct

Must be members of 
“Better Business Bureau”

Must be authorized as 
a standalone requestor 

by the underlying policies

AND

Target
Type = 
Local

Conditions

Target
Type = 
Local

Conditions

upstream:any

Target
Type = 

Underlying

Conditions

upstream:direct

Must be members of 
“Better Business Bureau”

Must be authorized as 
a standalone requestor 

by the underlying policies

AND



 48

Example 3: The service can only be provided to a collaboration where:  all collaborative 
peers that have an upstream-direct interaction or a downstream-direct interaction with the 
service must be authorized by the underlying policies; and all collaborative peers that have a 
downstream-indirect interaction or an upstream-indirect interaction with the service must 
have credentials from the “Better Business Bureau”. 

 

 
 

Figure 3.6 The collaboration policy stated in Example 3. The Underlying rules have no access conditions 
since they merely indicate that the matching collaborative peer must be authorized by the underlying 
policies (indicated by the dashed lines).  
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Example 4: The service can only be provided to a collaboration where:  all collaborative 
peers that have an upstream-direct interaction with the service must already have 
authorization according to the underlying policies; all collaborative peers that have a 
downstream-direct interaction with the service must be members of “Organization Y”; all 
collaborative peers that have a downstream-indirect interaction or an upstream-indirect 
interaction with the service must have credentials from the “Better Business Bureau”.  
 

 

 
 
Figure 3.7 The collaboration policy stated in Example 4. The Underlying rule has no access conditions 
since it merely indicates that the matching collaborative peer must be authorized by the underlying 
policies (indicated by the dashed lines).
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3.3 The Collaboration Policy Syntax 

A collaboration policy consists of three elements:  combination logic, maximum 

evaluation radius, and access rules. Below we present each element respectively. Note that 

whenever we refer to an element of our syntax, we represent them in italics. 

 
3.3.1 Combination Logic 

The combination logic element states the name of the algorithm that is used to combine 

the rule results. We provide a Boolean rule-combining algorithm in our implementation. This 

algorithm takes the Boolean operators and the access rules as its inputs, and combines the 

rule results accordingly. The policy writer must set the CombinationLogic element to the 

name of the rule-combining algorithm and provide the inputs. It is possible to define different 

algorithms in addition to the Boolean combining algorithm we provide. The policy writer can 

implement custom-made algorithms and point the CombinationLogic element to a specific 

algorithm name.  

In fact, as we discuss in Section 1.5, our policy implementation is based on the XACML 

specification. We modified and enhanced the XACML specification as deemed necessary. 

The XACML specification also supports an element named RuleCombiningAlgId, which 

does the same job as the CombinationLogic.  The XACML implementation provides a few 

rule-combining algorithms, such as deny-overrides, permit-overrides, first-matching-rule, etc. 

Since our implementation is based on that of XACML, the policy writer, in addition to the 

Boolean algorithm we provide, can also reference these rule-combining algorithms.   

 Definition 12: The CombinationLogic element equals to the name of the combination 
algorithm that combines the rule results and generates a policy decision.  
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3.3.2 Maximum Evaluation Radius 

Definition 13: The MaximumEvaluationRadius element has an integer value. This value 
indicates the maximum number of edges between a collaborative peer and the service within 
the collaboration; any peers beyond this distance are not applied to the collaboration policy.  

 
In large collaborations, the number of collaborative peers that match a rule’s designated 

interaction type increases significantly. Especially, when a rule is designed for the indirect-

upstream or the indirect-downstream interaction types, the number of matching peers 

increases with the collaboration complexity. As a limiting measure, the service owner can set 

the MaximumEvaluationRadius element to an integer. This integer indicates the maximum 

number of edges between a collaborative peer and the service such that only the peers whose 

distances from the service are equal or smaller than this value are applied to the collaboration 

policy. There can be peers in the proposed collaboration that are beyond this set distance; 

these peers are exempted from the policy evaluation. If the MaximumEvaluationRadius 

element is not included in a policy, an effective radius of infinity is used. 

 
 

3.3.3 Access Rule Syntax 

   Definition 2: An Access Rule (AR) = {Target, Type, Conditions}, is the minimum building 
block in a collaboration policy that communicates the access requirements sought from a 
collaborative peer based on the peer’s interactions within the collaboration. Each rule has a 
target interaction type, and only evaluates the peers that possess the target interaction. The 
access rule evaluates to either “access” or “deny”.    
 

An access rule consists of three elements: Target, Type, and Conditions. The Target 

element determines which collaborative peers, and their corresponding interactions, must be 

evaluated by this rule. The unmatched peers are not applied to the rule.  

 
Definition 3: Target = {PeerLocation, Object, Action}. Target element determines the 

collaborative peers and their interaction types that must be evaluated by the rule. 
PeerLocation indicates the specific interaction type, Object indicates the requested resource, 
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and Action indicates the requested permission over the Object. The Object element can either 
be the requested service name, or a resource component of the requested service. 

 

The PeerLocation element indicates the interaction type that a collaborative peer should 

possess in order to be evaluated against the rule. The PeerLocation element can be 

represented in two ways: either as a direction:interaction pair, or by the keyword EndUser. 

In the former case, the direction could either be upstream (up) or downstream (down). The 

interaction element indicates the interaction type that must exist between the service and the 

collaborative peer (i.e. the subject). The interaction element is either one of the keywords 

direct, indirect, and any, or alternatively, the interaction element could be an integer. The 

keywords direct/indirect respectively state that only a requesting peer with a direct/indirect 

interaction can be evaluated against the rule. The keyword any states that any peer, regardless 

of its interaction type, must be applied to this rule. When the interaction element is an 

integer, it indicates the number of edges between the service and the collaborative peer (i.e. 

the subject) within the collaboration.  

Instead of a direction:interaction pair, the keyword EndUser can be used. The EndUser 

indicates that the collaboration owner, which is the entity on whose behalf the collaboration 

is initiated, must be evaluated against this rule, regardless of the interaction type shared 

between the service and the collaboration owner. The evaluation of the collaboration owner 

is performed when the collaboration owner is present in the collaboration such that there is a 

service present in the collaboration that belongs to the collaboration owner. If the 

collaboration owner has no services in the collaboration, this evaluation must happen through 

the workflow engine. The service must notify the workflow engine about its desire to 

evaluate the collaboration owner, and the workflow engine urges the collaboration owner to 
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send his credentials to the service. Our implementation currently does not support this second 

operation mode. However, it can be implemented as the future work.  

Definition 4: PeerLocation, indicates the interaction type and the relative location of a 
requesting peer with respect to the author. It is represented either as a direction:interaction 
pair or by the keyword EndUser 

 
Definition 5: The interaction indicates the interaction type of a collaborative peer. It is 

one of the keywords direct, indirect, and any, or it can also be specified as an integer. When 
specified as an integer, it indicates the umber of edges between the collaborative peer and the 
service within the collaboration.   

 
Definition 6: Direction indicates the relative location of a collaborative peer with respect 

to the service. It is either upstream (up), or downstream  (down).  
 
Definition 7: A collaborative peer is in the Upstream Direction of the service when there 

exists a directed walk W between the peer and the service such that W= v0, e1, v1, …, en ,V , 
where V represents the service; v represents collaborative peers; e represents the data 
exchanged between two services such that the data is sent from the service on the left side of 
e to the service on the right side of e. If a collaborative peer is a member of W, it is in the 
upstream direction of the service.  

 
Definition 8: A collaborative peer is in the Downstream Direction of the service when 

there exists a directed walk W between the collaborative peer and the service such that W= 
V, e1 , v1 , …, en , vn , where V represents the service; v represents collaborative peers; e 
represents the data exchanged between two services such that the data is sent from the 
service on the left side of e to the service on the right side of e. If a collaborative peer is a 
member of W, it is in the downstream direction of the service.  

 
The Conditions element of an access rule states the access requirements sought from a 

collaborative peer. The access requirements are represented as a predicate. During rule 

evaluation, the matching collaborative peer is applied against the predicate. The result of the 

predicate is used to determine the rule’s result.  

  Definition 9: An Attribute is a characteristic of an entity, such as a subject, an object, or 
an action. Each attribute has a name and a value.  

 
Definition 10: A Predicate, P: ( F(e) = v), is a Boolean-valued function, where e denotes a 

variable, F denotes the predicate function that e must be applied to, and v denotes the desired 
outcome of F. When the result of F equals to v, the result of the predicate becomes true, 
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otherwise becomes false. F could be any arbitrary function. The variable e typically 
represents attributes of entities such as subject, object, or action. It is also possible that e 
could be another predicate. When e is defined as another predicate, first, the value of e is 
calculated, and then this value passed as a variable to the F. This situation results in iterative 
evaluation of at least two predicates (or more, depending on the number of variables). It is 
usually used to express complicated access requirements.     

 

Definition 11: The Conditions element states the access requirements sought from a 
collaborative peer. The Conditions element is represented as a predicate, whose value is 
either true or false. A true evaluation is associated with “access”, and false evaluation is 
associated with “deny”.   
 

Each entity, a subject, an object, or an action entity, has several attributes. In order to 

distinguish among the attributes, one of the keywords Subject, Object, or Action is used. 

These keywords represent which entity in the collaboration request owns the attribute. The 

predicate function (F) takes advantage of these keywords when it has to check an attribute 

used by different entities.   

 
Example 5:   

AC: { 
           ( Subject.X509OrgNameAttr = “OrganizationNameX”)         
}     
 
Above access condition (AC) states that the subject entity must have an attribute named 
X509OrgNameAttr with a value equal to “OrganizationNameX”. The variable e is the 
Subject.X509OrgNameAttribute. The predicate function F is trivial, it is the identity 
function, so it is not shown above explicitly. v is the desired outcome of F, which is 
OrganizationNameX.  It is possible to define complex predicate functions (F) that take 
multiple variables as its input; here, we opt to show the simplest case for brevity. In the 
remaining examples, unless we explicitly indicate F, the reader can assume that F is trivial 
and it is equal to the identity function.   
     

As it is observed in above example, we used an attribute that is created based on the 

subject’s X.509 credential. Of course, this is not mandatory, and only for illustrative 

purposes. An access condition can choose to use any attributes. However, the common 
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practice is to use attributes that are already conveyed by the well-adopted credentials, tickets 

or keys. In other words, it is good practice to look for attributes that can easily be extracted 

and generated based on the existing technologies. Existing access control systems typically 

employ X.509 credentials [IETF99], Kerberos tickets [Kerberos], SAML tokens [OASIS05-

2], or user name-password pairs. In our framework, any of these keys, tokens or credentials 

can be employed. A policy writer can refer to these credentials, keys or tokens in order to 

retrieve the attributes of a collaborative peer. We do not limit the policy writer for specifying 

any of these attributes. A policy, for example, may require checking the security domain of a 

requestor by retrieving the requestor’s SAML token issued by a trusted server, or by 

retrieving the requestor’s X.509 credential. In the current prototype, we tested with X.509 

credentials; however, we plan to demonstrate our framework with different type of 

technologies, such as SAML tokens, in future. 

Example 6:  
AR1: { { up: direct, Service C, invoke}, L,   

Conditions:  { 
( Subject.X509DistName = “Alice”)  

} 
    } 

Above access rule (AR1) targets the collaborative peers with an upstream direct interaction 
with Service C, and they request to invoke Service C. The Conditions element states that any 
collaborative peer applied against this rule must have an X509DistName attribute with a 
value equal to Alice.   
 

Example 7:  
AR2: { { up: 2, Service C, invoke}, L,   

Conditions:  { 
( Subject.X509OrgNameAttribute = “Organization Y”) 

} 
    } 

Above access rule (AR2) targets collaborative peers that are in upstream direction of Service 
C, and are 2 edges away from Service C. Note that instead of an interaction type, the service 
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owner states the exact distance between a collaborative peer and the Service C. Therefore, 
this rule does not apply to any peer that has a direct interaction, or has an indirect interaction 
with a distance bigger than 2 edges.   
 

Since we conclude the basics of our syntax here, below we present sample collaboration 

policies. The policies below only include the basic rule type Local (L). Later, once we 

discuss rule types in more detail, we present how our syntax is augmented with additional 

elements. 

Example 8: 
CP1 :     

{  
CombinationLogic= “AND” 
 
AR { { down: direct, Service C, consume}, L,   

Conditions:  { 
( Subject.X509OrgNameAttribute = “Organization Y”)  

} 
} 
 
AR { { up: direct, Service C, invoke}, L,   

Conditions:  { 
( F (Subject.X509DistName = “Alice”)  

} 
} 

} 
 
Above policy (CP2) has two access rules (each indicated by AR). The rules are combined 
with a Boolean AND operator, as indicated in CombinationLogic element. The 
MaximumEvaluationRadius is not specified; therefore, any collaborative peers matching the 
above rules must be evaluated. The policy states that in order to contribute Service C to a 
collaboration: the direct downstream peers (note that there could be multiple direct 
downstream peers) must be members of Organization Y; the direct upstream peers, on the 
other hand, can only be an entity with the name Alice. Note that this policy has no 
requirements from the peers that have an indirect interaction with the Service C. Instead, the 
policy only expresses access requirements from peers with direct-upstream and direct-
downstream interactions.    
 

Example 9: 
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CP3 :  
{  
 CombinationLogic= “AND” 
  

AR { { up: indirect, Service C, invoke}, L,   
Conditions:  { 

( Subject.X509OrgNameAttribute = “Organization Y”)  
} 

} 
 

AR { { up: direct, Service C, invoke}, L,   
Conditions:  { 

( Subject.X509DistName = “Alice”)  
} 

} 
} 

 
Above policy (CP3) has two access rules. The rules are combined with a Boolean AND 
operator. The MaxiumumEvaluationRadius is not specified. (Note how drastically the 
number of peers matching the first rule can increase with a large collaboration. In next 
example, we show how to remedy this situation.) The policy states that in order to contribute 
Service C to a collaboration: the upstream indirect neighbors must be members of 
Organization Y; the upstream direct neighbors must be entities with a name equal to Alice. 
This policy does not have any requirements from the downstream peers. This could be 
because the service owner does not think that the downstream peers constitute a security 
threat against the Service C.     
 

Example 10: 
CP4 :  

{  
 CombinationLogic= “AND” 

MaximumEvaluationRadius= 3 
 
AR { { up: indirect, Service C, invoke}, L,   

Conditions:  { 
( Subject.X509OrgNameAttribute = “Organization Y”)  

} 
} 
 
AR { { up: direct, Service C, invoke}, L,   
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Conditions:  { 
( Subject.X509DistName = “Alice”)  

} 
} 

} 
 

Above policy (CP4) has two access rules, combined with a Boolean AND operator. CP4 
differs from CP3 of Example 5 due to its MaximumEvaluationRadius, set to 3. As a result, 
the collaborative peers that must be applied to the first rule is limited. Although the first rule 
targets any peer with an indirect interaction type, the MaximumEvaluationRadius exempts 
the peers that are located more than 3-edges away from the Service C. Therefore, only the 
peers with a distance of 2-edges or 3-edges are applied to the first rule, of course given that 
they must be in the upstream direction of Service C.        
 

Example 11: 
CP5 :  

{  
 CombinationLogic= “AND” 

MaximumEvaluationRadius= 3 
 
AR { { up: any, Service C, invoke}, L,   

Conditions:  { 
( F (Subject.X509OrgNameAttribute = “Organization Y”)  

} 
} 
 
AR { { up: direct, Service C, invoke}, L,   

Conditions:  { 
( F (Subject.X509DistName = “Alice”)  

} 
} 

} 
 

Above policy (CP5) is almost identical to the CP4 of Example 6. However, the first access 
rule of CP5 uses the any keyword to indicate its target interactions, whereas the first rule of 
CP4 uses the indirect keyword. As a result of this difference, the collaborative peers with a 
distance of 1-edge, 2-edges or 3-edges away from the Service C are applied to the first rule of 
CP5. On the other hand, the peers with 2-edges or 3-edges away from the Service C are 
applied to the first rule of CP4. Due to this difference, in CP5, the upstream peers with direct 
interaction type are applied to both the first rule and the second rule. Thus, an authorized 
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upstream peer with direct interaction must belong to the Organization Y, and also has a name 
attribute equal to Alice.     
 

3.4 Access Rule Types 

There are four types of access rules defined for collaboration policies: Local (L), 

Underlying (U), Delegation-downstream (DD), and Delegation-upstream (DU).  In this 

chapter, we only discuss the Underlying and the Local rule types. The Delegation-upstream 

and Delegation-downstream rule types are discussed in the succeeding chapter due to their 

complexity.  

A rule type communicates information about the manner in which a rule must be 

evaluated. This information is in addition to the access requirements stated within the rule.  

The Local (L) type indicates that the rule is locally contained within the collaboration policy. 

All access requirements associated with this rule are locally stored inside the rule; therefore, 

the rule does not make any references to external rules or policies. The Underlying (U) type, 

on the other hand, indicates that the rule refers to external policies during its evaluation. The 

access requirements associated with this rule are stored in an external policy, typically in 

underlying policies. The Underlying (U) rule type is used to provide the re-use between 

underlying policies and collaboration policies. If a rule lacks an explicit rule type, its type is 

defaulted to the Local (L). We discuss the details of rule types, their syntaxes and 

implementation issues in succeeding sections.    

The Local rule type fully conforms to the policy syntax we introduced in the earlier 

sections. Its syntax is identical to the syntax presented in the Definition 2. The Local rule 

type can be regarded as a generic rule type with the simplest syntax, and it is most commonly 

used in collaboration policies. In this section, we rather focus on the Underlying rule type, 

which has a slightly different syntax. 
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3.4.1 Underlying (U) Rule Type 

The Underlying (U) rule type allows a collaboration rule to refer to another policy. The 

referred policy is different from the collaboration policy that contains the rule. The referred 

policy does not have to be another collaboration policy; it can be an arbitrary access control 

policy. A rule of this type indicates that the access requirements associated with this rule are 

stored inside the referred policy, not inside the collaboration policy that contains the rule. 

Therefore, the rule’s result is determined by the referred policy.  

This rule type is designed to provide the re-use between the underlying policies and the 

collaboration policies. As we discussed in our policy model, we model a collaboration policy 

as an upper-layer access control policy. The other access control policies that are not 

designed to evaluate collaborations are modeled as lower-level policies. These lower-level 

policies already exist in almost every security system and they are designed to evaluate 

standalone access requests. We call these policies as underlying policies. A service owner 

can re-use some of the access requirements that are already stated in underlying policies in 

his collaboration policy. The resulting collaboration policy is a medley of access rules; some 

rules are stated only for evaluating collaborations, and some rules have access requirements 

taken from the underlying policy. This situation is observed when the underlying policies are 

necessary and sufficient to express some of the access requirements; thus, they must be 

included in the collaboration policies.  

However, to achieve this effect, the service owner should not be enforced to re-iterate all 

of the access requirements taken from the underlying policy in his collaboration policies. 

First, this would not be an efficient solution. Second, the desired access requirements may be 

spread across multiple underlying policies. Third, the underlying policies may be difficult to 
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convert into the collaboration policy syntax. An Underlying (U) type collaboration rule is 

designated to address this problem. That is why we call this rule type as Underlying (U). 

(From now on, we call this rule type as type U for brevity.)   

Definition 12: A type Underlying (U) collaboration rule has an empty Conditions 
element. A collaborative peer that matches the Target of this rule must be evaluated against 
an underlying policy. The policy decision returned from the underlying policy determines the 
result of this rule.  

The Target element of a type U rule indicates which collaborative peers must be 

evaluated against this rule. Since a type U rule refers to an underlying policy for its access 

requirements, the matching collaborative peers are, in effect, evaluated by the underlying 

policy. The result returned from the underlying policy determines the outcome of the type U 

rule.   

In order to evaluate type U rules, the collaboration policy engine must be given the 

location of the underlying policy engine that enforces the underlying policies. During the 

evaluation of a type U rule, the collaboration policy engine contacts the underlying policy 

engine. The collaboration policy engine creates a new access request. The new request 

complies with the request model expected by the underlying policy engine. Our collaboration 

policy engine, the prototype, is already configured to create requests complying with some of 

the well-known request models such as that of XACML model, and it can easily be 

configured for other request models. While creating the new access request, the collaboration 

policy module may eliminate some of the information that is not meaningful to the 

underlying policy engine, such as the interaction type of a collaborative peer. The new access 

request still contains the attributes of the collaborative peer. The result returned from the 

underlying policy engine is treated as though it is generated by the type U collaboration rule.  
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An advantage of our evaluation scheme is that the underlying policy engine carries out 

the actual evaluation of the new request; thus, the collaboration policy is isolated from the 

details of the lower-level security system. Consider that most underlying security systems 

have complicated legacy-like structures. It is possible that there may be multiple underlying 

policies, each located in different places, even built in different languages. As a result, the 

evaluation of the underlying policy could be a challenge in and of itself. However, since we 

delegate this responsibility to the underlying policy engine, the job of the collaboration 

policies significantly eases. Furthermore, our solution frees the service owner from 

replicating the underlying structure at an upper layer, which leads to the data pollution.   

 

Example 12:  
CP6 : {  
  
 CombinationLogic= “AND” 

AR { {up:any, Service C, invoke}, U, Conditions: ∅ }   
}    
 
CP6 states that any upstream peers with a direct or indirect interaction type must be evaluated 
against the underlying policy. In other words, each upstream collaborative peer, regardless of 
its interaction type, must be authorized as though it requested the Service C standalone, not 
part of a collaboration.  
  

Example 13:  
CP7 : {  

CombinationLogic= “AND” 
MaximumEvaluationRadius= “3” 
 
AR { { up: direct, Service C, execute }, U, Conditions: ∅ }  
 
AR { { up: indirect, Service C, execute}, L,   

Conditions:  { 
(Subject.X509OrgNameAttr = “Organization Y”)  
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} 
} 

} 
 
CP7 states that all upstream collaborative peers with a direct interaction type must be 
evaluated against the underlying policy. Therefore, these peers are subject to the access 
requirements that are expected of the standalone requestors. The upstream collaborative peers 
with an indirect interaction, on the other hand, must only be members of “Organization Y”. 

  

 

3.5 The Collaboration Policy Implementation   

Due to the difficulties involved with promoting and implementing a new access control 

language, we selected an existing language and enhanced its syntax and implementation to 

meet the requirements of our collaboration policies.  

The XACML (eXtensible Access Control Markup Language) framework provides an 

XML-based meta-language to represent access control policies, an extendable policy engine 

to evaluate and enforce the policies, and a simple model of access requests and access 

decisions that can be easily exchanged over the wire.  Sun’s implementation of the XACML 

framework [Sun05] provides an open source Java library, which makes it possible to realize 

and enhance Sun’s framework. A custom-built XACML engine, based on Sun’s Java 

libraries, can be exposed as a web service so that it can easily communicate with other 

services for authorization purposes. Since we focus on web services collaborating with each 

other in a dynamic manner, being able to expose a policy module as a web service and to 

exchange access requests and the policy decisions in a uniform XML-based message format 

is essential for us. Finally, our experience from our earlier work [ABBD2-05] (incorporating 

a custom-built XACML engine into the Globus Toolkit (GT) [FK97]) motivated us to adopt 

the XACML framework as our foundation. 
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In order to implement the collaboration policies, we have enhanced the existing XACML 

syntax and its implementation, when necessary. In the following sections, we discuss each of 

these enhancements and their implementation details.  

 

 3.5.1 Collaboration Request Model 

A collaboration request consists of prospective collaborative peers, their interactions with 

the requested service, and their resulting actions over the service. A key point of a 

collaboration request is that it includes multiple collaborative peers, each acting in different 

interaction types with the service. As a result, each peer may be involved in a different action 

over the same service.  

A typical XACML access request consists of a subject, a resource and an action. 

XACML, however, also recognizes the situations in which multiple subjects pertain to a 

single access request and each subject acts in different capacities; therefore, each subject 

must be evaluated accordingly. XACML uses an attribute, namely subject-category, to 

differentiate between these subjects. An XACML policy, for example, can include two 

separate access rules: each targets a different subject-category attribute, and each rule 

correspondingly has different access requirements on the matching subjects. Each access rule 

target must explicitly indicate its target subject-category, so that only the matching subjects  

would be evaluated by the rule. Since an XACML access request can only have a single 

action element and a single resource element, there are no action-category or resource-

category attributes. (XACML allows for multiple resources under special circumstances, 

such as when there is a resource hierarchy, e.g. a hierarchical file system; however, it is a 

special case [MULT].) 



 65

An XACML access request with multiple subjects, which we call a composite XACML 

request, would be evaluated in the same manner as any other XACML request with a single 

subject: the access request is checked against each rule contained in the XACML policy and 

is evaluated against the rules that they match. However, once the composite XACML request 

matches a rule, the rule’s access condition must only be evaluated against the intended 

subject-category. To achieve this, the rule’s access condition must explicitly indicate the 

subject-category attribute. Otherwise, the rule’s conditions would be applied to on 

unintended subject and may be incorrectly false. For example, a composite XACML request 

has two subjects: a manager and a loan approver. There are two categories for each subjects. 

In order to return a permit decision, the manager and the loan approver must be applied to 

two different rules simultaneously. Each rule has the intended subject-category expressed in 

its access condition element. During evaluation, the composite request matches both rules. 

The first rule, intended for the manager, must only check the attributes of the manager 

contained in the XACML request. If the rule tries to evaluate the unintended subject, the 

loan-approver, it may return a false result.   

The subject-category attributes of XACML standard would have eased our job of 

expressing collaboration requests in the XACML access request model. However, XACML 

access request model allows a single action element to be defined per each access request. In 

a collaboration request, it is possible that different collaborative peers may request different 

actions over the same service due to their interaction types. Consider that a collaborative peer 

that possesses an upstream direct interaction type with the service may request an “invoke” 

action over the service, whereas, another collaborative peer that possesses a downstream 
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direct interaction type with the same service may request a read action over the service’s 

outcome. 

In order to fit our collaboration request model into the XACML request model, we chose 

to create a separate XACML access request for each of the collaborative peers (Figure 3.8). 

The XACML requests are combined to form a single collaboration request. Each access 

request has a single subject, resource (corresponds to object in our terminology) and action 

element. Since XACML does not allow for an additional element for indicating interaction 

types, we incorporated the interaction as a sub-element of subject element. As discussed in 

Chapter 5, the interaction types are implemented as attributes of a subject element and passed 

into the XACML context. Since we create a separate XACML request for each collaborative 

peer, we did not have to use multiple subjects in a XACML request. Thus, we do not enforce 

using subject-categories in collaboration policies. As a result, we did not have to incorporate 

subject-categories into our policy syntax, and we relieved the service owner from 

incorporating subject-categories into his policies.     

 Figure 3.8 A sample collaboration request implemented with XACML access requests. 

 

<Collaboration Request 1>

<XACML Request 1>
<Subject>

<Interaction>
<Resource>
<Action>

</XACML Request 1>

<XACML Request 2>
<Subject>

<Interaction>
<Resource>
<Action>

</XACML Request 2>
…
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The evaluation of a collaboration request is different from that of an XACML request. 

Below we first discuss the evaluation of an XACML request without any modifications. We 

later discuss how we implemented the evaluation of collaboration requests.  

In XACML framework, an XACML request is first checked against all available policies. 

Only a single XACML policy must match the request. Within the matched policy, the request 

is then checked against all the access rules. Each access rule that matches the request 

evaluates the request. A rule’s result can be one of the permit, deny, inapplicable, or 

undetermined decisions. The results of evaluated rules are combined with respect to the rule-

combining logic stated in the policy. The evaluation is performed by the Sun’s 

implementation of Policy Decision Point (PDP). 

In order to evaluate a collaboration request, we initially thought of separately evaluating 

each XACML request contained within the collaboration request. We could use the existing 

Policy Decision Point (PDP) implementation of Sun. However, combining the results of 

XACML requests would be troublesome. First, collaboration policies may combine their rule 

results in non-trivial manners. The rule-combining logic is only presented in the 

collaboration policy and directly accessed by the PDP. Once an XACML request is 

evaluated, its result has not yet been combined with any other XACML requests. The only 

entry point to the Policy Decision Point (PDP) is to invoke it with an XACML request. We 

could have modified the PDP implementation such that we can combine the XACML results 

out of the PDP. However, this would not be an elegant solution. It would be inefficient 

because the PDP is designed to the combination if the requests were provided 

simultaneously.  



 68

Moreover, we realized that separately evaluating XACML requests might lead to the loss 

of information pertaining to the collaboration context. This would have led to undetected 

conflict of interest scenarios. Consider that a policy states that no two upstream-indirect peers 

may belong to the same organization in order to prevent any conflict of interest scenarios. In 

a collaboration with two such indirect-upstream peers, the conflict of interest may go 

undetected. Assume that these two peers belong to the same trusted organization. They 

satisfy all their matching rules, but fail the conflict of interest principle. When we combine 

their results out of the PDP, this may go undetected. Our current prototype does not support 

detecting conflict of interest scenarios; however, we leave this as future work, and want to 

design our existing implementation for easily incorporating this feature in future.      

In order to evaluate a collaboration request against the collaboration policy, we modified 

the XACML framework as follows. We modified the PDP so that it evaluates all of the 

XACML requests before returning a policy decision. Each XACML request is iteratively 

evaluated against the policy rules. Each rule only evaluates a matching access request, or 

returns an inapplicable result if there is no matching XACML request found. Separate access 

requests that share the same interaction types can match the same access rule during their 

evaluations. For example, there are likely to be multiple peers that possess the indirect 

interaction with the requested service; hence, they each match against the same access rule 

during their evaluations. In these cases, we determine the rule result in a deny-overrides 

manner. In other words, if one matching access request fails to pass the access rule, even if 

all other matching requests satisfy the rule, we determine the rule result as deny. Once each 

access request is evaluated, we resume to regular XACML implementation, which already 

provides ways to combine rule results to produce a policy result.  
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Moreover, we enhanced the matching algorithm between a request and a collaboration 

policy. Existing XACML standard requires each policy to have a Target element. The Target 

element consists of three elements: subjects, resources, and actions elements. A subjects, 

element can iteratively contain multiple subject elements. Note that subjects and subject are 

two different element names. Likewise, the resources and the actions elements can have 

multiple resource and action elements. The lowest level elements (e.g. subject elements) have 

a Boolean OR relationship. An XACML request, for example, matching one of the subject 

elements contained within the subjects element is considered to be a match. In order for the 

policy to match the entire request, the resource and action elements of the request must also 

match with the policy Target. Furthermore, when we tested Sun’s XACML implementation 

with an XACML access request that includes two different subjects, we realized that the 

request matches an XACML policy as long as one of the subjects matches the policy target, 

even when the other subject does not match the policy target.  

Since we have multiple XACML requests embedded inside a collaboration request, it is 

crucial for us to ensure that not only one of the requests, but all of them separately match a 

collaboration policy. Otherwise, a collaboration request may end up matching a collaboration 

policy that is not fit to evaluate the collaboration request. In those cases, one of the 

collaborative peers and their interaction types contained in the collaboration request may not 

be covered within the collaboration policy. To prevent such situations, we slightly modified 

the XACML framework: we imposed a Boolean AND relationship such that unless all 

XACML requests contained in the collaboration request match the policy, we regarded it a 

mismatch between the collaboration request and the policy. 
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3.5.2 Collaboration Rules  

Each collaboration rule has a Target element that defines which collaborative peers must 

be applied to the rule. Recall that Target element has three elements PeerLocation, Object 

and Action. Fortunately, XACML rule syntax allows for defining a target element for an 

XACML rule; the XACML standard defines the target element as a composite of subject, 

resource and action elements. We decided to use existing resource and action elements with 

no modification; therefore, they would respectively correspond to our Object and Action 

elements.  

However, for the PeerLocation element, we had to enhance XACML standard. Each 

collaboration rule is required to define their target peer either with a direction:interaction 

pair (e.g., up:indirect, down:any), or with a direction:distance pair (e.g., up:2, down:3), or 

with the EndUser keyword. In order to implement these keywords, we modified the Sun’s 

XACML implementation. The rule target and policy target matching mechanisms are 

modified to recognize these keywords and they match the incoming collaboration requests 

accordingly. In our implementation, the keyword any, when placed to indicate the direction, 

matches both directions. When any is used in the place of an interaction type, it matches all 

interaction types. The keyword direct, when compared with an integer, is treated as integer 

value of one. For example, an upstream collaborative peer with a direct interaction type 

would match with any rule Target element covering the upstream direction and the direct 

interaction type. Examples of matching rule Target elements are: up:1, up:direct, up:any, 

any:any, any:1, any:direct. For other keywords, we seek for an absolute match between the 

collaboration request (or the XACML requests contained within the collaboration request) 

and a rule or a policy Target element.  
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3.5.3 Collaboration Rule Types: Local and Underlying 

Each collaboration rule must include a Type element. The lack of a rule type indicates 

that the rule type is Local (L). The XACML standard does not use any type information 

associated with an access rule. In order to introduce rule types, we enhanced the Sun’s 

XACML implementation by adding the type information to a rule instance. We realized that 

the Local type rules have a similar syntax to that of XACML access rules, except that Local 

type rules have different Target and Type elements. Since we already covered how we 

incorporated the Target and the Type elements into XACML standard, we do not discuss 

Local type rules here separately. Instead, we present an example of Local type rule and focus 

on type U rules. The discussion of Delegation-upstream and Delegation-Downstream rules is 

presented in Chapter 4.   

Example 14: 
<Rule RuleId="LocalRule1" RuleType="urn:collaboration:L" Effect="Permit"> 
    <Target> 
      <Subjects> 
        <Subject> 
          <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 
              <AttributeValue  

        DataType="http://www.w3.org/2001/XMLSchema#string"> 
                         up:any</AttributeValue> 
              <SubjectAttributeDesignator  
                    DataType="http://www.w3.org/2001/XMLSchema#string" 
                    AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"/> 
          </SubjectMatch> 
        </Subject> 
      </Subjects> 
      <Resources> 
         <AnyResource/> 
      </Resources> 
      <Actions> 
        <AnyAction/> 
      </Actions> 
    </Target> 
     
    <Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 
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         <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only"> 
             <SubjectAttributeDesignator  

        DataType="http://www.w3.org/2001/XMLSchema#string" 
                    AttributeId="urn:oasis:names:tc:xacml:1.0:subject:X509:DN"/> 
         </Apply> 
         <AttributeValue  

  DataType="http://www.w3.org/2001/XMLSchema#string">Alice</AttributeValue> 
    </Condition > 
</Rule> 
 
Above Local type rule targets toward upstream peers with all interaction types. The rule’s 
Target element has a subject element that indicates that the peers in upstream direction with 
all interaction types match this rule (specifically the SubjectMatch element). The rule’s 
access requirements are shown in the Condition element. The predicate in the Condition 
element has a single variable, a string-equal function. The input variable is conveyed by the 
Apply element inside the Condition element. Apply element states that the subject’s attribute 
with the indicated AttributeId must be passed as a variable to the predicate function. This 
specific predicate function would find the value of the indicated attribute and return the 
value. If returned value is equal to the desired value (indicated as “Alice”), the predicate 
evaluates to true.  
 

Type U Collaboration Rules  

A type Underlying (U) collaboration rule indicates that any collaborative peer that 

matches this rule must be evaluated by the underlying policy engine. The decision returned 

from the underlying policy engine is treated as though it is the result of the type U rule. A 

type U rule has an empty Conditions element.  

Before we set out to modify XACML standard, we explored if there was a way to 

introduce this rule type with the minimum amount of modifications.  We realized that 

XACML standard adopts a flexible approach when it comes to introducing new attribute 

types or combining algorithms, or custom-made finder modules. For example, a service 

owner is allowed to define new attribute types and to include them in his policy. Likewise, he 

can define new combining algorithms for calculating policy results. Correspondingly, the 

Sun’s XACML implementation leaves several points of entry for developers who like to 
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enhance the existing implementation and introduce custom-designed types. One of such entry 

points is Finder modules. Finder modules come in three flavors: attribute finder, resource 

finder and policy finder. An attribute finder searches an incoming access request and 

retrieves the attribute values that are requested by the XACML policy. In case a developer 

knows ahead of time that an incoming access request would not include the specified 

attribute type, he can design a custom-made attribute finder module that searches alternative 

locations to grab the specified attribute value. For example, after introducing a new attribute 

type, only meaningful to the service owner, it is likely that the incoming access request 

cannot have the new attribute readily available. In this scenario, a developer can overwrite 

existing attribute finder module and provides alternative methods to retrieve the value of his 

custom-designed attribute.  

The resource finder module deals with finding the resources that are included within an 

access request, but are not included in a policy. This situation is most likely to occur when 

there is a hierarchy of multiple resources. Finally, policy finder module allows for searching 

for policies in alternative ways. A Policy Decision Point (PDP) module embedded with a 

custom-designed policy finder module can retrieve a matching policy for the request. The 

policy finder module is most useful when policies are placed into the security system in an 

ad-hoc manner, or they are placed at alternative locations. XACML standard states that only 

a single matching policy for each request must be returned.   

For our purposes, we need to provide a service owner with an easy and efficient way to 

write a collaboration rule such that, when included in a policy, this rule indicates that 

whichever access request matches the rule must be evaluated by the underlying policy 

engine. We expect that a service owner would like to re-use existing access conditions over 



 74

some of his collaborative peers. For example, it is likely to define new access rules over an 

indirect neighbor or a neighbor involved in a delegation; however, it is also likely that 

existing underlying access control policies might still be sufficient to evaluate a direct 

neighbor. We do not purport to force a service owner to specify each and every access rule 

from scratch. Instead, we view the collaboration policy as an upper layer policy that can re-

use the policies that are already defined and used at the lower level.  

We first explored whether we can allow such rule re-use without introducing a special 

rule type. Policy finder module stands as the most promising solution since we desired a way 

of retrieving the underlying policy decision. As a first solution, we deliberated to write a new 

policy finder module that, in addition to the Sun’s basic policy finder module, could point to 

the underlying policy or policies, if there are multiple of them. Whenever a collaborative peer 

is evaluated, the collaboration policy engine would first search for the collaboration policy by 

using the basic policy finder module. If no matching rules are found for the peer, the 

collaboration engine then would employ the new policy finder module to retrieve the 

matching underlying policy. For the collaborative peers that must be evaluated by the 

underlying policy, it is essential that the collaboration engine must not find any matching rule 

inside the collaboration policy.  

The problems with this approach are twofold. First, we need to ensure that the 

collaboration policy does not match the incoming request. If the policy writer mistakenly 

covers the incoming access request in the collaboration policy’s Target element or includes a 

rule that matches the peer, then the access request would match two policies: the 

collaboration policy and the underlying policy, which is an error in our framework, and in the 
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XACML framework, too. Since this method requires exclusion of type U rules from the 

collaboration policy, we thought this approach could be prone to mistakes.  

Second problem is that once the underlying policy’s result is returned, this result might 

still need to be combined with the result of the collaboration policy. Since the policy results 

are directly returned to the collaboration policy engine, combining the underlying policy 

result and the collaboration policy result would have had to occur outside of any policy 

context. In the case that the combining algorithm between two (or more policies, if there are 

multiple underlying policies or collaboration policies) policies is complicated, this would 

have been burdensome for the policy engine. Consider that a service owner states that he 

would like to evaluate his direct neighbors in either direction against the underlying policy as 

if they are standalone requestors. However, if the upstream direct neighbor fails to satisfy the 

underlying policy, the service owner is still willing to permit access if the direct neighbor 

receives delegated credentials from a two-hops away upstream neighbor, given of course that 

the indirect upstream neighbor has the authorized credentials and the direct neighbor is not 

member of a rival organization. Above scenario contains Delegation-upstream rule types; 

however, the discussion of the delegation is beyond the scope of our discussion right now. 

Instead, this example is to illustrate that the result of an underlying policy decision can be 

combined with the result of the collaboration policy in non-trivial manners.  

As an alternative solution, we deliberated to employ a policy set such that it includes the 

collaboration policy and all underlying policies related to the service. By defining a policy- 

combining algorithm, we could have gotten rid of policy result combination problem. 

However, literally including all the underlying policies inside the policy set defeats our 

purpose of providing an easy method to re-use underlying policies. After all, we set ourselves 
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for not forcing the service owner to repeat the underlying policies over and over again. 

Moreover, it is possible that there could be multiple underlying policies, or even multiple 

policy sets, that manage standalone access requests to a service. We certainly did not want to 

replicate a complicated underlying system at the collaboration policy level.  

As our final solution, we retreat to using rule type Underlying (U). This solution required 

a service owner to simply specify a rule with an appropriate Target element and label the rule 

type as Underlying, with an empty Conditions element. In order to evaluate a type U rule, we 

modified the Sun’s implementation as follows. Inside the Rule class, that is used to evaluate 

and determine a rule result, we placed a software hook. When an access request is applied 

against a rule type U, the hook acts as a policy evaluation agent. The software hook contacts 

the underlying policy engine, creates a new access request based on the one being evaluated, 

and sends the new request to the underlying policy engine. The newly created access request 

has a message content that is compatible with the underlying policy engine’s expectations. 

Recall that an access request inside a collaboration request has interaction types, distances 

and other attributes that are not understandable, nor desired by an underlying policy. The 

software hook acts as if it is a policy evaluation point (PEP) for the underlying policy module 

and makes sure that the newly created request fully complies with the underlying policy 

model. The result returned from the underlying module is treated as the result of type U rule.  

Example 15: 
<Rule RuleId="RuleU1" RuleType="urn:collaboration:U" Effect="Permit"> 
    <Target> 
      <Subjects> 
        <Subject> 
          <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 
            <AttributeValue  
                   DataType="http://www.w3.org/2001/XMLSchema#string"> 
                   any:direct 

</AttributeValue> 
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            <SubjectAttributeDesignator  
       DataType=http://www.w3.org/2001/XMLSchema#string 

                   AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"/> 
          </SubjectMatch> 
        </Subject> 
      </Subjects> 
      <Resources> 
         <AnyResource/> 
      </Resources> 
      <Actions> 
        <AnyAction/> 
      </Actions> 
    </Target> 
</Rule> 

 

Above example illustrates a type U rule that requires every direct neighbor in each direction 
to be evaluated with respect to the underlying policies. In other words, each direct neighbor 
would be subject to the same access control checks as if their access request is not part of a 
collaboration, rather a standalone request. Note that this rule has no Conditions element. The 
specified permit effect of this rule is only taken when there is a permit decision returned by 
the underlying policy. 
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Chapter 4: 
Delegation of Credentials 
 
 

In our framework, the delegation of credentials occurs when a peer discovers that it does 

not have the necessary credentials to join the collaboration. This peer must have failed to 

pass the access requirements of another peer, and hence, would not likely to join the 

collaboration. The peer with insufficient credentials can ask other collaborative peers to 

delegate their credentials. The act of delegation occurs when the peer with insufficient 

credentials (the delegatee) finds another peer (the delegator) who is willing to delegate its 

credentials. It is likely that the delegatee and the delegator have a pre-established trust 

relationship even before joining the collaboration. For example, they may belong to the same 

organization, or to organizations that are business partners. The delegation of credentials is a 

rare case; nevertheless, it can occur when such peers join the collaboration together. 

Therefore, we designed our framework to allow for it.      

We designed two rule types that deal with the delegation of credentials: Delegation-

upstream (DU) and Delegation-downstream (DD). The Delegation-upstream (DU) rule type is 

used when a service allows itself to be accessed with delegated credentials. The Delegation-

downstream (DD) rule is used when a service’s credentials are delegated to other parties. For 

the remainder of this chapter, we first discuss our motivation for designing DU and DD rule 

types. During this discussion, we introduce each rule’s syntax. As we show later, the DU and 

DU type rules have a slightly different syntax than that of Local rules. Finally, we discuss the 

implementation details of two rule types.    
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4.1 Delegation-upstream (DU) Rule Type  

The Delegation-upstream (DU) rule type is syntactically and semantically different from 

Local and Underlying rule types. This rule type is designed for cases in which a subject (i.e. a 

collaborative peer) may be allowed to access the object (i.e. the provided service) with 

delegated credentials, rather than using its own credentials.  

It is possible that the delegated credentials can be relayed through intermediate parties. In 

such cases, the delegator forwards its credentials to an intermediate party, and the 

intermediate party (or parties) relays the credentials to the designated delegatee. It is possible 

that the intermediate parties can also use the received credentials for their own access 

purposes. However, as we discuss below, the intermediate parties and their usage of received 

credentials are beyond the scope of Delegation-upstream (DU) rules. A malicious 

intermediate party may use the delegated credentials for unintended purposes (i.e. the 

purposes other than the original purpose for which the delegator agreed to delegate its 

credentials). However, type DU rules are not designed to prevent such situations. A DU rule is 

only designed to protect the requested object: whether or not accessing the object (i.e. the 

service) with delegated credentials poses a security threat to the requested object’s security 

domain. (Later, we show that Delegation-downstream type rules can be used to prevent the 

abuse of credentials.) In order to protect the requested object, a type DU rule states the access 

requirements sought from each of the parties that is involved with the delegated credentials: 

the delegator, the intermediate parties and the delegatee. These access requirements are 

specified from the viewpoint of the object’s owner. Therefore, they do not aim to regulate the 

intermediate parties’ or the delegatee’s treatment of the delegated credentials. In fact, the 

owner of the requested object may not be even aware of the circumstances under which the 

delegator agreed to the delegation.  
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Our motivation for designing type DU rule is to enable a service owner to place access 

requirements over the parties involved with the delegated credentials. The delegator exercises 

his discretion over whether or not to delegate its credentials to another party, and if so, under 

which circumstances should the delegation occur. The delegated credentials naturally provide 

access to a set of services. However, at the time of the delegation, the owner of these services 

may have no means to prevent an undesired delegation that has taken place between a 

delegator and a delegatee. A delegatee that poses a security risk to the service owner may be 

deemed as trustworthy by the delegator. The delegator’s trust in the delegatee does not 

equate to the service owners’ trust in the delegatee, especially when the delegatee and the 

service owner belong to different organizations. Moreover, the intermediate parties handle 

the credentials, and hence they can introduce security threats such as viruses, Trojan horses 

and so on. Likewise, the delegator’s trust in the intermediate parties does not guarantee the 

service owner’s trust in them. Instead, the service owner must be enabled to carry its own 

security evaluation over each of these parties and to reach a decision over whether or not to 

allow access with delegated credentials. A type DU rule is used to eliminate such security 

risks by allowing the service to exercise access control over the parties involved with the 

delegated credentials.  

Definition 13: The rule type Delegation-upstream (DU) indicates that accessing the 
requested service with delegated credentials is allowed as long as the Conditions element of 
this rule evaluates to true. The Conditions element of this rule places access requirements 
over the parties involved with the delegated credentials: the owner of the delegated 
credentials (i.e. the delegator), any intermediate parties relaying the credentials, and the final 
recipient of the delegated credentials (i.e. the delegatee). 

 

A type DU rule’s syntax differs from Local and Underlying rule types in two ways: First, 

the Conditions element of a DU rule uses a special predicate, namely delegation-upstream 
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predicate, Second, this rule type optionally includes an additional element, namely 

DelegationDistance (DelDist). (Note that for the remainder of this chapter, whenever we 

refer to the elements of the rule syntax, we show them in italics.) 

The delegation-upstream predicate contains three inner-predicates. These inner-predicates 

are used to convey the access requirements sought from the delegatee, the delegator, and the 

intermediate peers. All three inner predicates must evaluate to true in order to return a true 

decision from the delegation-upstream predicate. If a service owner does not require placing 

access requirements over one of these parties, he can leave the corresponding inner predicate 

unspecified.  

When specified, the DelDist element is located between the Type element and Conditions 

element of the rule, causing the access rule to have four elements instead of three.  

Definition 14: The DelegationDistance, DelDist, element shows the maximum number of 
times the credentials may have been relayed until they reach the delegatee. A 
DelegationDistance of 1 indicates that the credentials have been relayed directly from the 
delegator to the delegatee. Any DelegationDistance bigger than one indicates the presence of 
intermediate parties between the delegator and the delegatee.    

 

A collaborative peer with delegated credentials can only be allowed access when a DU 

rule evaluates to true. If the collaboration policy does not include any DU type rules targeting 

this peer, then the peer is denied access. Moreover, if the DelDist element is specified, the 

number of times that the credentials have been relayed must not exceed the value of the 

DelDist element. Otherwise, the collaborative peer is denied access. If the DelDist element is 

not specified, its value is assumed to be infinity.  

 
Example 16: 

CP8: { 
CombinationLogic= “OR” 
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MaximumEvaluationRadius= 3 
 

AR { {up:direct, Service C, invoke}, DU , 2, 
Conditions:{ 

Delegation-Upstream{ 
(Subject.X509OrgName = “Organization Y”)    

                     (Subject.X509DistName = “Alice”)  
    (Subject.X509OrgName = “Organization Y”)                          
  

} 
  }            

} 
 
AR { {up:direct, Service C, invoke},  U, Conditions: ∅ } 

}   
 
CP8 has two access rules: a type U (Underlying) rule and a type DU rule. The type U rule 
states that any peer with the direct-upstream interaction must be evaluated against the 
underlying access control policies. The type DU rule states that the delegatee must have a 
name equal to Alice (the second inner predicate), and the delegator and the intermediate 
parties involved in the delegation must be members of Organization Y (the first and third 
inner predicates). Moreover, the credentials must have been relayed only twice, meaning that 
there can only be a single intermediate party involved. Due to the combination logic above, 
the Boolean OR operator, a collaborative peer with the direct-upstream interaction has two 
options to satisfy the collaboration policy: the peer can either satisfy the U type rule by 
passing the access requirements specified for standalone service requestors, or the peer can 
use the delegated credentials in order to satisfy the type DU rule.  
 

Example 17: 
CP9: { 

CombinationLogic= “OR” 
MaximumEvaluationRadius= “3” 

 
AR { {up:direct, Service C, execute}, DU , 2, 

Delegation-Upstream{ 
(Subject.X509OrgName = “Organization Y”)    

                   (FUP (Subject.X509DN) = “Permit”)  
   (Subject.X509OrgName = “Organization Y” )                            

}            
OR  
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AR { {up:direct, Service C, execute},  U, Conditions: ∅ } 
}   
 
Example 2 is presented to show how a service owner can define specialized predicate 
functions and how varying inner predicates over delegation entities can be harnessed. CP9 is 
almost identical to CP8. The only difference between CP9 and CP8 is their second inner-
predicates within their type DU rules. Unlike CP8, CP9 uses a special predicate function, FUP. 
CP9 states that the delegator must be applied to FUP and the outcome of FUP must equal to 
permit. The predicate function FUP indicates that the delegator entity must be evaluated 
against the underlying policy. FUP function is a special function that serves the same purpose 
as Underlying rule types. Inside a type DU rule, when a service owner wants an entity to be 
evaluated against the underlying policies, it employs FUP function. This is because we cannot 
define a type Underlying rule inside a type DU rule in a nested fashion. Allowing nested rules 
increases the complexity of our syntax, and the likelihood of mistakes made by a policy 
writer. As a solution, we defined a special predicate function (FUP) that does not violate our 
syntax and also provides the desired functionality. FUP predicate function is evaluated in an 
identical way as an Underlying rule type. The collaboration policy engine creates a new 
access request and routes it to the underlying policy engine, and finally retrieves the outcome 
of underlying policy. When this outcome is equal to Permit, FUP would return a true result to 
the delegation-upstream predicate. (The implementation details of FUP are explained in 
Section 3.1.5) 
 

 

4.2 Delegation-downstream (DD) Rule Type 

The type Delegation-downstream (DD) rules are evaluated when a collaborative peer 

wishes to obtain another peer’s credentials. Type Delegation-downstream (DD) rules are 

designed to regulate the delegation of credentials. A delegator evaluates its Delegation-

downstream (DD) type rules to determine whether to delegate its credentials. The Delegation-

downstream (DD) rule evaluates the delegatee, and any intermediate parties if they exist. If 

the rule evaluates to permit, the delegator delegates its credentials via the intermediate 

parties. The goal of the (DD) rule is to prevent the abuse of credentials. It achieves this by 

allowing the delegation of credentials only to the trusted delegatees and intermediate parties. 

Definition 16: The rule type Delegation-downstream (DD) indicates that the downstream 
delegation of the service’s credentials is allowed as long as the Conditions element of this 
rule evaluates to true. The Conditions element of this rule places access requirements over 
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the parties involved with the delegation of the service’s credentials: the final recipient of the 
delegated credentials (i.e. the delegatee) and the intermediate parties relaying the credentials. 

 

The credentials must be propagated through the intermediate peers when the delegator 

and the delegatee do not have an edge between one another in the collaboration graph. It is of 

course possible that the delegator can send its credentials directly to the delegator, even when 

they do not share an edge in the collaboration graph. This can either happen outside of the 

collaboration context, or by adding a new edge between the delegator and the delegatee in the 

existing graph. We do not allow for either of these approaches. First, we are only interested 

in managing the delegation within the collaboration context; we have no control outside of 

the collaboration context. Second, adding a new edge to the collaboration graph would cause 

complications. The new edge causes new connections between the peers that were not 

connected before. Since this may happen when some peers have already finished evaluating 

their peers, these peers would have to re-evaluate the entire collaboration. Needless to say, 

due to the new connections, the number of peers that must be evaluated by a single peer 

increases significantly because the number of peers that are connected increases. Due to these 

reasons, we restrict a delegator to delegate its credentials only along the existing edges in the 

collaboration graph.  

The delegator states the access requirements sought from the delegatee and the 

intermediate parties inside the DD rule. Since the delegator itself is a service, the DD rule 

governing the delegation of the delegator’s credential must be present in its collaboration 

policy. Absence of a type DD rule indicates that the credentials cannot be delegated to any 

other party.  
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The Delegation-downstream (DD) rule type can be thought as the complement of the 

Delegation-upstream (DU) rule type (Figure 4.1). The former is evaluated when the 

delegator’s credentials are delegated to another party; therefore, it communicates the 

delegator’s access requirements for the delegatee and the intermediate peers. The latter is 

evaluated when a service is accessed with delegated credentials; therefore, it communicates 

the requested service’s access requirements for the delegatee, the delegator and the 

intermediate peers.  

 

Figure 4.1 Delegation of credentials scenario. 

  

Having come from two different viewpoints, the access requirements included in a type 

DD rule and a DU rule can be completely different even when they pertain to the same 

service. The DD rule aims to protect the delegated credential, hence the delegator, while the 

DU rule aims to protect the service requested using the delegated credentials. As shown 
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Figure 4.1, the delegator and the requested service are two separate peers; they are likely to 

belong to separate organizations and have different policies. 

There might be ideal situations, in which the DD rule and the DU rule are identical. In 

such cases, when the delegator allows delegation of its credentials, the requested service does 

not need to make any security evaluation of its own because the requested service would trust 

the delegator to have already deemed all parties involved in the delegation as secure and 

suitable. In a reverse example, the delegator may show some leeway in delegating its 

credential (such as not being explicit in which ways the credentials can be used), believing 

that eventually the requested service would detect all forbidden access requests and deny 

them. However, these types of situations are the exception, rather than the norm. As long as a 

delegator and the requested service belong to different security domains and have different 

security policies, it is highly unlikely that such a complete overlap would occur. Advocating 

otherwise may put an undue trust in a credential owner or in a service owner. We believe that 

employing separate DD and DU rules prevents such security breaches.       

A type DD rule syntactically differs from all other rule types. First, the Conditions 

element of the rule has a special predicate, namely Delegation-downstream predicate. 

Second, the rule can optionally include an additional element, namely the 

DelegationDistance (DelDist) element (defined in Definition 14). Third, the Target element 

of this rule must have the name of the service’s credentials as its object and “delegate” as its 

action. When specified, the DelDist element is located between the Type element and 

Conditions element of the rule, causing the access rule to have four elements instead of three. 

If the DelDist element is left unspecified, it is treated as infinity.  



 87

The Delegation-downstream predicate contains two inner-predicates. These inner- 

predicates are used to convey the access requirements sought from the delegatee and the 

intermediate peers, respectively. Both inner predicates must evaluate to true in order to return 

a true decision from delegation-downstream predicate. If a service owner does not have any 

access requirements from one of these parties, he can leave the corresponding inner predicate 

unspecified.  

The delegatee authorized by a DD rule is the final recipient of the delegated credentials, 

and it is the only party authorized for using the credentials for access purposes. The 

intermediate parties are only authorized for relaying the credentials between the delegator 

and the delegatee. A type DD rule does not express any additional requirements regarding the 

re-delegation of the service’s credentials from the delegatee to other parties for access 

purposes. For the reasons related to the difficulties of enforcing re-delegation requirements 

and the architecture of our framework, we did not design DD rule types to convey information 

about re-delegation of credentials. We discuss our reasons in Section 3.1.5 when we show the 

implementation of collaboration policies.   

 
Example 18: 

CP10:  {  
CombinationLogic= “AND” 
MaximumEvaluationRadius= 2 

 
AR { {down:any, ServiceCert, delegate}, DD , 1,  

Delegation-Downstream { 
   (Subject.X509DistName = “Alice”) 
   (null) 
   } 
 } 
} 
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CP10 states that any downstream collaborative peer can request the delegation of the 
ServiceCert. The delegation is granted as long as the downstream peer’s name equals to 
“Alice”. Note that the DelegationDistance (DelDist) element is set to 1; it indicates that there 
should not be any intermediate peers involved with this delegation. Therefore, the delegatee 
(i.e. the peer with name “Alice”) is the final recipient of the ServiceCert.  
 

Example 19: 
CP11:  {  

CombinationLogic= “None” 
MaximumEvaluationRadius= “2” 

 
AR { {down:any, ServiceCert, delegate}, DD , 5,  

Delegation-Downstream { 
   (Subject.X509DN = “Alice”) 
   (Subject.X509OrgName = “Organization Y”) 
   } 
 } 
} 
  
CP11 states that the downstream delegation of ServiceCert is allowed as long as a downstream 
collaborative peer with name Alice wishes to obtain the credentials.  The DelegationDistance 
element indicates that the credentials can only be relayed 5 times before arriving at the 
delegatee. Moreover, the intermediate parties that relay the credentials must be members of 
Organization Y. 
 

 

4.3 Implementation of Delegation-upstream (DU) Rules 

A type DU rule differs from type U or L rule in that it can place access requirements over 

multiple collaborative peers that are involved with delegation. Each type U or type L rule is 

designed for a specific interaction type. A type DU rule, on the other hand, can 

simultaneously target up to three specific interaction types that are involved in the delegation 

process. A delegatee is a collaborative peer that possesses a direct-upstream interaction type 

with the requested service. (We accept that, albeit a rare case, a peer with upstream-indirect 
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interaction type can use delegated credentials during peer-peer evaluations. Although, our 

framework can handle these cases, we rather focus on the cases that involve a delegatee with 

the direct interaction type. Later in Chapter 5, we discuss why we care more about the 

delegatees with direct interactions.) A delegator and an intermediate peer possess an indirect-

upstream interaction type with the requested service.  

In order to state specific access requirements for the parties involved with the delegation, 

a type DU rule employs a special predicate, delegation-upstream. Delegation-upstream 

predicate consists of three inner predicates that, respectively, check the conditions over a 

delegatee, a delegator and an intermediate peer(s).  

In order to implement delegation-upstream predicate, we introduced a new function, 

namely delegation-upstream function, into Sun’s XACML implementation. Since XACML 

standard welcomes contributing new functions or attribute types, our addition did not cause 

any disruption. Each inner-predicate consists of a predicate function, input variables, and a 

value that defines the desired outcome of the predicate function. A service owner is free to 

set any of these three items while defining each inner-predicate.          

  During the evaluation of a DU rule, all three inner predicates are combined with a logical 

AND. The service owner does not have to explicitly set any combining algorithm to bind the 

inner-predicate results. The delegation-upstream function requires each inner-predicate to 

return a true outcome in order to return a true outcome for the delegation-upstream predicate. 

The result of a type DU rule is different from other rule results. The rule result contains 

the identities of the delegatee, the delegator, and the intermediate peers. This information is 

checked when the actual access is allowed at run-time. At run-time, if the peers involved in 

the delegation are different from the peers stated in the rule contract, the service refuses 
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permitting access. A detailed discussion of rule contracts and policy obligations is presented 

in Chapter 5.  

Finally, a type DU rule has a third element, DelegationDistance (DelDist), placed 

between the Type and the Conditions elements. In case a DU rule does not specify any values 

for the delegation distance, our implementation assumes infinity as the delegation distance. 

In order to implement DelDist element, we followed a similar approach to that of Type 

element’s implementation: we modified the Rule class in Sun’s implementation and added a 

new instance variable for showing the delegation distance. The delegation distance shows the 

number of times the credentials can be relayed. If the number of edges between the delegator 

and the delegatee exceeds this number, a deny result is returned from the DU rule. 

A peer that is involved with the delegation of credentials can also be subjected to type L 

and type U rules as part of the collaboration policy, as well as being evaluated by a DU rule. 

The result of the collaboration policy depends on such a peer’s ability to satisfy all of the 

matching rules. For example, a peer involved in a delegation may satisfy the conditions 

stated in a type DU rule; however, if this peer fails to satisfy a matching type L rule, the 

outcome of the collaboration policy would be deny.  (The complete overview of the policy 

evaluation is discussed in Chapter 5.) 

 

Example 20: 
<Rule RuleId="Delegation1" RuleType="urn:collaboration:Du" DelDist="2"    
   Effect="Permit"> 
    <Target> 
      <Subjects> 
        <Subject> 
          <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 
            <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string"> 

       up:any</AttributeValue> 
            <SubjectAttributeDesignator  
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       DataType="http://www.w3.org/2001/XMLSchema#string" 
                   AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"/> 
          </SubjectMatch> 
        </Subject> 
      </Subjects> 
      <Resources> 
      <AnyResource/>      </Resources> 
      <Actions> 
        <Action> 
          <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 
            <AttributeValue  
                  DataType="http://www.w3.org/2001/XMLSchema#string"> 

Request 
            </AttributeValue> 
            <ActionAttributeDesignator 

      DataType="http://www.w3.org/2001/XMLSchema#string" 
                  AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"/> 
          </ActionMatch> 
        </Action> 
      </Actions> 
    </Target> 
    <Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:delegation-upstream">    
     <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 
         <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and- 
                                 only"> 
  <SubjectAttributeDesignator  
          DataType="http://www.w3.org/2001/XMLSchema#string" 
                                AttributeId="urn:oasis:names:tc:xacml:1.0:subject:X509:ON"/> 
              </Apply> 
         <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string"> 

    Organization Y 
       </AttributeValue> 

     </Apply> 
    
     <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 
         <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and- 
                                 only"> 
  <SubjectAttributeDesignator  
          DataType="http://www.w3.org/2001/XMLSchema#string" 
                                AttributeId="urn:oasis:names:tc:xacml:1.0:subject:X509:DN"/> 
              </Apply> 
         <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string"> 

    TrustedPeer 
       </AttributeValue> 

     </Apply> 
               <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string"> 
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                    null 
              </AttributeValue>    </Condition > 
</Rule> 
Above type DU rule has a delegation distance of 2. Each inner-predicate is surrounded by an 
Apply element within the Condition element. The final inner predicate has a null value; thus, 
it is shown by a null-valued AttributeValue element. Within each Apply element (i.e. each 
inner predicate), there is a function, an input variable, and the desired value of the function 
outcome. Also, note that the Condition element has the predicate delegation-upstream. The 
DU rule communicates that: the delegator must be a peer named TrustedPeer, which is proved 
by its X.509 credential; the delegatee must be a member of Organization Y; the intermediate 
peers could be any peers, shown by the null attribute value passed in the place of the third 
inner-predicate.  

 

4.4       Implementation of Delegation-downstream (DD) Rules 

A type Delegation-downstream (DD) rule is used to determine whether or not to delegate 

credentials to a downstream peer. An access request that has the requested credentials as its 

object and “delegate” as its action matches a type DD rule. The collaborative peer who 

desires to receive the credentials, the delegatee, launches the access request. The service that 

receives the request, the delegator, evaluates the DD rule.  

A type DD rule is very similar to a type DU rule in terms of implementation purposes. A 

significant difference lies in the predicate employed by type DD rules: delegation-

downstream. The delegation-downstream predicate takes two inner-predicates as input. The 

first one expresses access requirements sought from a delegatee and the second one expresses 

access requirements sought from the intermediate peers involved. The inner predicates are 

bound with an implicit Boolean AND operator. As with delegation-upstream predicate, the 

order of the inputs passed into the delegation-downstream predicate is crucial. The service 

owner can select any predicate functions, attribute types and outcome values to form inner-

predicates. Like delegation-upstream predicate, an inner-predicate can be left null, in case the 

evaluation of the corresponding peer is not necessary. 
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A type DD rule has a third element DelegationDistance (DelDist). DelDist element is 

implemented identically to that of the DU rule. 

The DD rule does not convey any information about the re-delegation of the credentials. 

By re-delegation, we mean that the delegatee would further relay credentials to other parties. 

Programmatically, implementing this feature into DD rule type would not be burdensome. We 

could have added another inner predicate that conveys the access requirements sought from 

peers that receives the credentials through re-delegation. However, we realized that 

enforcement of this feature at run-time would be complicated. As we will present in Chapter 

6, our framework allows the delegation of credentials only once during a single 

collaboration; it is impossible to re-delegate the same credentials during the same 

collaboration. The evaluation of collaboration policies occurs at the planning stage in order to 

decide which peers must be allowed to join the collaboration. The type DD rules are evaluated 

when a peer lacks the authorized credentials to join the collaboration. The framework allows 

a delegation between the delegator and the delegatee. However, this happens only once. If 

there were another peer who requires the re-delegation of the credentials from the delegatee, 

this peer would already be dismissed from the current collaboration due to the insufficient 

authorization. Thus, before the collaboration finishes the planning stage, all the peers joined 

the collaboration already have the required credentials to accomplish the tasks that they are 

assigned. Therefore, they would not be allowed for re-delegation. However, re-delegation of 

the credentials can occur in a subsequent collaboration. In that case, in order to enforce the 

DD rule from the initial collaboration, we must record and evaluate the state information from 

the first collaboration. The delegatee who acts as a re-delegator in the second collaboration 

must contact the original owner of the credentials and notify him about the re-delegation. 
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Consequently, the original owner must re-evaluate DD rule, specifically its third predicate 

over the re-delegation recipients, and reach a decision. Since we currently do not record such 

kind of state information across collaborations, we chose not to implement this feature. As a 

result, our current implementation works for the delegation cases in which a delegatee is the 

final receiver of the delegated credentials.        

In order to ensure that the delegatee is the final recipient, we tie down each delegation to 

a specific collaboration graph. As we show in Chapter 6, each collaboration has a unique ID 

number. When the delegation of credentials occurs the delegator can embed this number into 

the credential, for example into the extensions field of an X.509 credential. During the 

delegation, the delegator can create a proxy credential [Vel03], embed the name of the 

delegatee, the collaboration ID, and its own name, and finally sign and delegate this 

credential. Since we use a collaboration ID per delegation, the revocation of delegated 

credentials is not required. We have not implemented this feature in our prototype. In other 

words, when the credentials are delegated, collaboration ID is not embedded into the 

delegated credentials. This is because our work so far focuses on the planning stage, not on 

the run-time creation of delegated credentials.  

By tying a specific delegation collaboration ID, we can limit the abuse of the delegated 

credentials. For example, consider the case that a delegatee abuses the delegated credentials 

for accessing an unintended service, which results in financial charges to the delegator. By 

using the collaboration ID, the delegator can prove that the delegated credentials are abused 

because they are only valid within a specific collaboration context. We recognize that there 

can be other consequences of credential abuse that do not result in financial charges, such as 

accessing confidential files. Our framework does not address such situations currently. 
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Addressing such situations may require an additional mechanism that ensures that delegatee 

uses the delegated credentials only for intended purposes. This requires support within the 

domain of the requested object. In other words, the service that is accessed by the delegatee 

must honor the original intentions of the delegator and enforce them. However, in distributed 

environments, there is not an easy way of verifying that the requested object’s domain honors 

the delegator’s intentions, especially when there is no established trust between the parties, or 

one of the parties behaves maliciously. We recognize that this is a challenging problem and it 

has significant similarities to the Digital Rights Management issues (DRM) [DRM]. The 

DRM also deals with ensuring that parties who receive copyrighted material honors the 

intentions of the original party that gave them access to the material. We leave this as our 

future work.      

Finally, the result of a DD rule stores additional information that identifies the delegatee 

and the intermediate peers involved. This information stored in a special object called rule 

contract. Since collaboration policies are first evaluated during the planning stage, a 

delegator must store the results of its collaboration policies and the accompanying rule 

contracts until run-time. If the peers involved with the delegation at run-time differs from the 

authorized peers at planning time, the delegator refuses to delegate its credentials. (We 

discuss rule contracts in Chapter 5.)   

 
Example 21: 

<Rule RuleId="Delegation2" RuleType="urn:collaboration:Dd" DelDist="2"    
   Effect="Permit"> 
    <Target> 
      <Subjects> 
        <Subject> 
          <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 
            <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string"> 

           down:any</AttributeValue> 
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            <SubjectAttributeDesignator             
DataType="http://www.w3.org/2001/XMLSchema#string" 

                        AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"/> 
          </SubjectMatch> 
        </Subject> 
      </Subjects> 
      <Resources> 
        <Resource> 
          <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 
            <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string"> 

X509Credential 
</AttributeValue> 
<ResourceAttributeDesignator  

DataType="http://www.w3.org/2001/XMLSchema#string" 
                        AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"/> 
          </ResourceMatch> 
        </Resource> 
     </Resources> 
     <Actions> 
        <Action> 
          <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 
            <AttributeValue 

DataType="http://www.w3.org/2001/XMLSchema#string"> 
delegate 

           </AttributeValue> 
           <ActionAttributeDesignator  

DataType="http://www.w3.org/2001/XMLSchema#string" 
                        AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"/> 
         </ActionMatch> 
        </Action> 
    </Actions> 
  </Target> 
  <Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:delegation-downstream">    
     <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 
         <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and- 
                                 only"> 
  <SubjectAttributeDesignator  
          DataType="http://www.w3.org/2001/XMLSchema#string" 
                                AttributeId="urn:oasis:names:tc:xacml:1.0:subject:X509:DN"/> 
              </Apply> 
         <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string"> 

    TrustedPeer 
       </AttributeValue> 

     </Apply> 
                  <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 
         <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and- 
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                                 only"> 
  <SubjectAttributeDesignator  
          DataType="http://www.w3.org/2001/XMLSchema#string" 
                                AttributeId="urn:oasis:names:tc:xacml:1.0:subject:X509:ON"/> 
              </Apply> 
         <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string"> 

    Organization Y 
       </AttributeValue> 
</Apply>    </Condition > 

</Rule> 
      

Above type DD rule indicates that the credentials can be delegated to a delegatee through a 
single intermediate party because the DelDist element’s value is 2. The delegatee must be a 
TrustedPeer as indicated by its X.509 distinguished name, and any intermediate peer must be 
a member of Organization Y.  
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Chapter 5: 
Evaluation of Collaboration Policies  

 
 

Two software modules perform evaluation of a collaboration policy: the Policy 

Enforcement Point (PEP) and the Policy Decision Point (PDP). The PEP plays the role of a 

gatekeeper; it receives the collaboration request, sends it to the PDP and enforces the 

decision returned from the PDP. The PDP, on the other hand, is responsible for generating a 

policy decision for each collaboration request. The PDP does not contact any requestor 

directly; it is the PEP’s responsibility to interact with the requestors and with the external 

world. In fact, the PDP module has no point of contact outside of its security domain. In our 

framework, each collaborative peer has a PEP module and a PDP module. Once a policy 

decision is made, the PEP sends the result to the Collaboration Locator Module (CLM). If a 

policy decision is a permit with policy obligations, then the PEP further processes these 

obligations and sends the obligations along with the decision to the CLM. The policy 

obligations indicate that granting access at run-time is dependent upon fulfilling the stated 

policy obligations. Otherwise, the access will be denied.  

In this chapter, we discuss the several steps involved with collaboration policy 

evaluation. We start with the preparation of collaboration requests (by PEP module). Later, 

we discuss the evaluation of a collaboration request (by the PDP module). Finally, we discuss 

the policy obligations and their preparation (by PEP module). 

In order to avoid any confusion, for the rest of this chapter, we call a peer that desires to 

evaluate his collaborative peers an authorizing peer. The peers that are being evaluated by 

the authorizing peer are called requesting peers. During security evaluations, each peer plays 
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both the role of an authorizing peer and the role of a requesting peer. In this chapter, we 

discuss the policy evaluation mechanisms from the perspective of an authorizing peer to 

simplify our discussion.  

 

5.1 Preparation of Collaboration Requests 

A collaboration policy evaluates the collaborative peers based on their interaction types. 

The peers that possess the interaction types indicated in the collaboration policy must be 

evaluated against the policy. However an authorizing peer does not know which one of the 

collaborative peers exhibits these interactions. Thus, the authorizing peer must ask the 

Collaboration Locator Module (CLM) to identify the corresponding peers for the specific 

collaboration. To achieve this, the authorizing peer’s PEP module sends the interaction types 

required by its collaboration policy to the CLM. (How this is done is explained in detail in 

Chapter 6, in Section 6.1.) The CLM then consults the collaboration (the choreography of the 

collaboration, more specifically) and identifies the peers that correspond to the required 

interactions.  

The CLM is responsible for sending a message to each of the requesting peers’ PEP 

modules, and another message to the authorizing peer’s PEP module to trigger the security 

evaluations. (The message content and the complete system architecture with order of the 

messages are discussed in Chapter 6.) The requesting peers’ PEP modules are informed about 

the location of the authorizing peer’s PEP and are notified to send their access requests. The 

authorizing peer’s PEP is also informed about the identities of the requesting peers and their 

interaction types. The security evaluations start once each requesting peer’s PEP receives a 

message from the CLM. 
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Each requesting peer’s PEP sends an access request to the authorizing peer’s PEP. A 

request consists of the requesting peer’s credentials, the name of the collaboration and the 

name of the authorizing peer. These initial access requests do not conform to the XACML 

access request model, nor do they conform to collaboration request model. It is the job of the 

authorizing peer’s PEP to convert these initial requests into the collaboration request format. 

We made this design choice for a few reasons. First, we want the initial access requests to 

have a uniform and simple message structure. Second, we want the message formats to be 

independent of any specific access control model. Each peer’s PEP module converts these 

messages into whichever access control model its domain employs. As a result, the 

requesting peers require minimal knowledge about the access control model of the 

authorizing peer. Moreover, our framework can accommodate peers that have different 

access control models, other than our collaboration model. 

The authorizing PEP receives an initial request from each of its requesting peers, and 

converts these requests into a collaboration request. A collaboration request consists of 

multiple XACML requests, each of which pertains to a specific requesting peer. (This is 

discussed in detail in Chapter 3, Section 3.5.1.) The PEP must first create an XACML 

request for each of the requesting peers, and later collect these requests into a collaboration 

request and send the collaboration request to the Policy Decision Point (PDP).  

It is possible that a requesting peer has multiple separate interactions with the authorizing 

peer. In that case, each of the interactions is listed separately by the CLM, and the 

authorizing peer is informed of each of these interactions. The authorizing peer creates as 

many XACML requests as the number of separate interactions possessed by the requesting 

peer.  
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To convert the initial requests into the XACML format, the PEP first processes each 

received request. For each request, the PEP creates the attributes that are sought by the PDP, 

and extracts the corresponding values from the request. At this step, the PEP must be aware 

of which attributes are sought by the PDP. Although missing attributes can later be retrieved 

by the PDP (we show how this can be done in Chapter 3.5.3 – Type U Collaboration Rules), 

the PEP aims to reduce the burden on the PDP. It is highly likely that the attribute values are 

extracted from the credentials accompanying the request. For example, if the PDP requires an 

attribute showing the X.509 distinguished name of a subject, the PEP first creates the 

attribute and then extracts the value of the attribute from the X.509 credential. Once all 

attributes and their values are created, the XACML access request can be built. This step may 

include creating multiple attributes, each of which belongs to a different element of the 

collaboration request, such as the subject or action elements.  

The PEP creates the subject, resource and action elements for each XACML request, and 

attaches the bags of corresponding attributes to each of these elements. In our current 

prototype, we defined a special subject attribute that shows the interaction type shared 

between a requesting peer and the authorizing peer. The PEP creates this attribute for each 

requesting peer and sets its value to each requesting peer’s interaction type. By examining 

this attribute, the PDP can determine which requesting peer matches which rules. If there are 

other attributes required by the collaboration policy, these attributes are also created by the 

PEP and attached to the subject element.  

The action element has a single attribute; it shows the name of the action requested by the 

requesting peer, either invoke or consume. When a requesting peer has an upstream 

interaction with the authorizing peer, its action element is set to invoke, whereas, when a 
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requesting peer has a downstream interaction with the authorizing peer, its action element is 

set to consume. Finally, the resource element is set to the name of the authorizing peer.  

It is possible that the PEP can define the resource and action elements at a desired level 

of granularity. It is the job of the authorizing peer to determine the desired level of 

granularity and to configure the PEP accordingly. The PEP can be configured to adopt either 

a fine-grained or a coarse-grained approach. When the authorizing peer is a service that is 

composite of multiple resources (such as multiple orchestrated web services, databases, files, 

etc.), the fine-grained approach can be employed. In this approach, the PEP determines the 

interaction types of each requesting peer with the authorizing peer. Based on the interaction 

type, the PEP determines which resource of the service is accessed by the requesting peer. 

Consequently, the PEP sets the resource element to indicate the resource that gets accessed. 

When there are multiple resources of the service that are accessed by the same requesting 

peer, a separate XACML request with a different resource element is created. In other words, 

there may be multiple XACML requests correspond to the same requesting peer with 

different resource elements. Alternatively, when a coarse-grained approach is taken, the PEP 

sets the resource element of an XACML request to the authorizing peer’s name (more 

specifically, to the URL of the service). Different collaborative peers each with different 

interaction types have the same resource element: the authorizing peer’s name. In this 

approach, a single XACML request is created for each collaborative peer. For example, 

assume that the authorizing peer is a service that generates three disparate output documents. 

Each output document is accessed by a different peer with a downstream interaction. 

Furthermore, the access requirements for each document are different. In fine-grained 

approach, for each downstream peer, the PEP sets a different resource element indicating one 
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of the output documents. In the coarse-grained approach, the PEP sets the resource element 

to the authorizing peer’s name, and all downstream peers’ XACML requests have the same 

resource element. 

Likewise, the action element of an XACML request can be set at a desired level of 

granularity. Our framework does not restrict the action types that can be used within a policy 

when fine-grained approach is taken. However, the actions must be meaningful over the 

resources that are already used in XACML requests. Continuing with the above example, the 

action element of the XACML requests can be read action. Notice that in a coarse-grained 

approach, each XACML request has the same action element, consume. 

Once all of the received requests are converted into the XACML format, the PEP starts 

converting them into the collaboration request format. Earlier we said that a collaboration 

request is the collection of all the XACML requests received from the requesting peers. 

However, when necessary, the XACML requests can be divided into groups, and for each 

group a separate collaboration request is created. As we discuss in the next section, a 

collaboration request may result in a permit decision with accompanying obligations, which 

are to be fulfilled by the requesting peers at run-time. An obligation pertains to a group of 

requesting peers. Therefore, if the PEP can, in advance, group the peers that are likely to be 

covered in the same obligation, the generation and process of obligations would be much 

easier. This is not a requirement; rather, it is an optimization performed by the PEP.  

In our framework, there are two rule types that may cause obligations over a policy 

decision: type DU rules and type DD rules. For both rules, an obligation corresponds to the 

requesting peers that have consecutively direct interactions with one another. In other words, 

the peers that are covered in the same obligation constitute a directed walk that either 
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originates from the authorizing service, or terminates at the authorizing service. In other 

words, these requesting peers are on the same path. For type DU rules, an obligation covers 

peers that are on the same upstream path, where the path terminates at the authorizing peer. 

For type DD rules, an obligation covers peers that are on the same downstream path, where 

the path originates from the authorizing peer. Since an obligation covers the peers that are on 

the same path, if we group and evaluate the peers on a path-by-path basis, the generation and 

processing of the obligation would be much easier. (Section 5.2.1 discusses the obligations 

and demonstrates how the PEP generates a policy obligation from a policy decision.) 

As a result, in our prototype, we divided the XACML requests into groups based on their 

paths. The upstream neighbors that are located on the same path are grouped together. 

However, the downstream neighbors are kept in a single aggregate group. A single group of 

upstream peers is merged with the group of the downstream peers; the resulting group of 

XACML requests becomes a single collaboration request. In an iterative fashion, we create 

as many collaboration requests as the number of upstream paths terminating at the 

authorizing peer.  

The reason for not separating downstream paths is due to our system architecture. A 

collaboration policy first evaluates its DU rules (first round of our framework) and then, if the 

need arises, the policy evaluates its type DD rules later (second round of our framework).  

Therefore, in the first evaluation of the policy, there is no need to group downstream peers 

because they would not be applied to any type DD rules. Therefore, there cannot be any 

obligations generated over the downstream peers.  

Finally, in a single collaboration request, we merge each group of upstream peers with all 

of the downstream peers because we do not want to cause any false-negative policy 
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decisions. A single collaboration policy contains rules over requesting peers in any 

interaction types. If we were to evaluate each upstream group alone (without the downstream 

group), this might cause the policy to result in a false deny decision, due to the missing 

downstream requesting peers. Even though this is a small possibility, we choose to be overly 

cautious and include the downstream group each time we create a collaboration request.        

Once the collaboration requests are prepared, they are sent to the PDP for evaluation. In 

order to join the proposed collaboration, each collaboration request must return a permit 

decision. Otherwise, the authorizing peer refuses to join the collaboration. In our prototype, 

the PDP evaluates each request sequentially; however, this can be optimized to evaluate all 

requests in parallel. The PDP returns a policy decision to the PEP only after it evaluates all of 

the collaboration requests. In the next section, we discuss how evaluation of a single 

collaboration request is accomplished. (Figure 5.2 shows the process diagram for evaluating 

collaboration requests.) Figure 5.1 shows the collaboration requests that are created by 

Service A’s PEP.  
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Figure 5.1 The collaboration requests created by Service A’s PEP. The requesting services are shown in 
the sub-collaboration graph that is sent to Service A by the CLM. Note that 4 collaboration requests are 
created for each upstream paths.   
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composite structure of the collaboration request; second, the evaluation order of the 
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collaboration rules; third, the policy obligations introduced by the type DU and type DD rules. 

We discuss them respectively in this section and the next sections. 

 Upon receiving a collaboration request, the PDP finds the matching collaboration policy 

for the collaboration request. To achieve this, the PDP must first find a matching policy for 

each XACML request contained inside the collaboration request. A matching policy must 

have a Target element that matches the subject, resource and action elements of an XACML 

request. When a policy simultaneously matches all the XACML requests, the policy is 

determined to match the collaboration request. Since each XACML request has a different 

subject and action element (and different resource elements if fine-grained approach is 

taken), it is crucial that the found policy simultaneously match all of the XACML requests.  

The PDP starts evaluating the collaboration request against the policy. The evaluation 

order of the rule types is: first Underlying(U) and Local(L) rule types, second Delegation-

upstream rule type, and third Delegation-downstream rule type are evaluated (Figure 5.2). 

Each rule only evaluates the XACML requests that are matching its Target element.  

Since the collaboration request has multiple XACML requests inside, a rule must first 

determine which of the XACML requests it matches. A rule is determined to match an 

XACML request if the XACML request’s subject, resource and action elements match the 

rule’s Target element. If the rule does not match any of the XACML requests, its result 

remains as “inapplicable”. When a rule matches more than one XACML request, each 

XACML request is evaluated separately. The rule’s result is calculated in a deny-overrides 

manner: if a single XACML request fails the rule, then the rule result becomes a failure. To 

illustrate our logic, consider that a type L rule states that none of the peers (direct or indirect, 

upstream or downstream) can belong to a rival organization. Even when all peers except a 
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single one come from trustworthy organizations, this rule result must evaluate to deny 

because one of the collaborative peers does not evaluate to true. 

Once all the L and U type rules are evaluated, the policy result is computed with respect 

to the rule-combining algorithm stated in the policy. If a policy result is permit, the PDP 

stops evaluation of the collaboration request. Note that in this case, DU rules are not evaluated 

at all. However, if the policy result is deny, then the collaboration request is marked as a 

failing request, and the evaluation of type DU rules starts  

At the end of the evaluation of type DU rules, which we explain in detail in the next 

section, the policy decision for the failing request may be changed to permit with some 

obligations. If the failing request returns a deny decision from the evaluation of DU rules, the 

PDP finalizes the decision for this specific request as deny. This result cannot be changed. 

Since each collaboration request pertaining to the same collaboration proposal must return a 

permit decision, the PDP terminates evaluating any more collaboration requests belonging to 

this collaboration. The PDP returns a deny decision to the PEP. The PEP conveys to the 

collaboration (to the CLM, more specifically) that the authorizing peer cannot join the 

proposed collaboration.  

If all collaboration requests pertaining to the same collaboration return permit decisions, 

the PDP returns a permit result to the PEP. The PEP determines that the authorizing peer can 

join the collaboration. However, the PEP does not convey this result to the collaboration (the 

CLM module) right away. Instead, the PEP asks the PDP to start evaluating the DD rules. All 

collaboration requests are evaluated once again by the PDP, but only against the type DD 

rules this time.  Once the PDP reaches a decision over the result of the DD rules, it sends its 

result back to the PEP. Only then does the PEP sends its decision to the collaboration (to the 
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CLM module). Since all the collaboration requests have already returned a permit decision, 

the PEP determines that the authorizing peer can join the collaboration. Furthermore, if the 

evaluation of DD rules allows any delegation of the authorizing peer’s credentials, this is also 

conveyed to the CLM. We discuss the evaluation details of the type DD rules in Section 5.2.2.  

 There are a few reasons for the evaluation order of our rule types. Type DU rules allow 

access with delegated credentials. For a failing collaboration request that just returned a deny 

decision, evaluation of type DU rules may switch the policy result to permit by considering 

the delegated credentials for access. For example, a requesting peer who cannot meet the 

access conditions imposed by type L or U rules, may satisfy a type DU rule. Consequently, 

the requesting peer is allowed access, and the result of the policy is switched to a permit. 

However, this permit is dependent upon fulfilling the policy obligation: the requesting peer 

must use the delegated credentials for access, not its own credentials since they already failed 

the type L and U rules. 

The reason for delaying the evaluation of DU rules is that a DU rule comes with 

obligations that must later be fulfilled. In order not to impose any unnecessary obligations, a 

collaboration request is first evaluated against the collaboration policy that is stripped of its 

DU rules. If the result is deny, only then is the collaboration request evaluated against the 

type DU rules. By delaying the evaluation of DU rules after the evaluation of L and U type 

rules, we ensure that the final policy decision contains the minimum number of obligations.  

The evaluation of type DD rules occurs after the evaluation of type DU rules. A type DD 

rule determines whether to delegate the authorizing peer’s credentials to a requesting peer. 

The result of this evaluation is stored separately, and it does not affect the authorizing peer’s 

decision on joining the collaboration. The result of DD rules only determines whether the 
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authorizing peer delegates its credentials to a requesting peer upon joining the collaboration. 

The authorizing peer can still decide to join the collaboration even when it refuses delegation 

of its credentials.  

The reason for delaying the evaluation of DD rules is that an authorizing peer first must 

determine whether it joins the collaboration or not, which means having satisfied L, U and 

DU rules. If the collaboration request already fails the L, U and DU rules, then the peer refuses 

the collaboration proposal. Therefore, the peer does not need to consider whether it is willing 

to delegate its credentials to a collaborative peer, which results in skipping evaluation of DD 

rules.  

For the rest of this chapter, we follow the progress of the policy evaluation. We first 

discuss how type DU rules are evaluated and their corresponding obligations are generated. 

Then, we discuss how type DD rules are evaluated and their corresponding obligations are 

created.  
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Figure 5.2 The evaluation of a collaboration proposal. The shaded boxes indicate the decision points. 
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Figure 5.2 (continued). 

 
 

5.2.1 Evaluation of Type DU Rules 
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collaboration request that cannot satisfy the DU rule(s) would return a deny decision to the 

PEP. If there are no DU rules found in the policy, a deny decision over the collaboration 

request is returned to the PEP. The deny decision for a single collaboration request 
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A crucial point is that not all of the type DU rules are evaluated: only the DU rules that can 

change the policy result from deny to permit are evaluated. This is due to the obligations 

caused by the DU rules. If a DU rule is not absolutely necessary to switch the policy decision, 

then it should not be evaluated; thus, it cannot cause any unnecessary obligation over the 

policy decision. The selection of DU rules that are necessary to change the policy outcome is 

discussed below.  

 

Selection of Du rules 

The rules of a collaboration policy are combined with Boolean operators: AND and OR 

operators. Once all rules reach a decision, their results are combined with respect to the rule-

combining algorithm stated in the policy.  

In order to select the DU rules that can switch the policy decision, we perform the rule- 

combining algorithm. Since we have the results of L and U rules from the earlier evaluation, 

we substitute them into the combining logic. If there are any type DD rules within the policy, 

they are skipped during this combination process.  

When the combining operation between two rules is an AND operator, we compute their 

combined result as follows: 

1. If both rules are of type DU, return a set of both rule names as the combination result.  

2. If only one of the rules is of type non-DU and has a result of Deny, return Deny. 

3. If only one of the rules is of type non-DU and has a result of Permit, return a single set 

with DU rule’s name. 

4. If none of the rules are of type DU, return the logical combination of their results.  
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When the combining operation between two rules is an OR operator, we compute their 

combined result as follows: 

1. If both rules are of type DU, return two separate result sets; each set has one DU rule’s 

name  

2. If only one of the rules is of type non-DU and has a result of Deny, return a single set 

with DU rule’s name. 

3. If only one of the rules is of type non-DU and has a result of Permit, return Permit. 

4. If none of the rules are of type DU, return the logical combination of rule results.  

 

The rule-combining algorithm proceeds until all rules are exhausted. The combination 

result for DU rules eventually becomes sets of DU rule names. When these sets are combined 

with other rule results, they are treated as type DU rules, in the manner explained above. Once 

the rule-combining algorithm is finished, the outcome may be a permit or a deny, or sets of 

DU rules. Within each set, the rules maintain an AND relationship. Among the sets, there is 

an OR relationship: any set is capable of satisfying the policy alone. If the outcome of the 

combining process does not contain any DU rules, we conclude that there is no DU rule that 

can change the policy outcome from deny to permit. Hence, the execution of DU rules is 

terminated, and deny decision for the specific collaboration request is returned to the PEP 

(which leads to the refusal of the collaboration proposal). Otherwise, we conclude that the DU 

rules that are contained in the combining outcome are the necessary DU rules that may switch 

the policy decision from deny to permit. The evaluation of these selected DU rules then start. 
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Evaluation of Selected DU rules 

Since collaboration policies are first evaluated during the workflow planning stage, it is 

likely that the actual act of delegation between the delegator and the delegatee has not yet 

occurred. The act of delegation from the delegator to the requesting peer (i.e. the delegatee) 

may occur later, after the planning stage or at run-time.  To take advantage of this, our 

framework adopts a preemptive approach with type DU rules: even before the act of 

delegation occurs between the delegatee and the delegator (in fact, even before the delegator 

agrees to delegate its credentials), the PDP can assess a potential delegation. The PDP does 

this evaluation when a failing collaboration request is evaluated against the DU rules.  

The PEP sends a failing collaboration request back to the PDP for an evaluation against 

the DU rules. This second evaluation is done in a preemptive manner such that type DU rules 

assess the possibility of a future delegation that has not occurred yet. A type DU rule assess 

three questions in a preemptive evaluation: if there is to be a future delegation taking place, 

(1) is there a suitable delegator in the collaboration (the peer must satisfy the second inner 

predicate of the rule); (2) are there suitable intermediate parties that can relay the credentials 

between the delegator and the delegatee (the peer must satisfy the third inner predicate of the 

rule); (3) does the delegatee satisfy the access requirements expected from the delegatees (the 

peer must satisfy the first inner predicate of the rule).  

To evaluate a selected DU rule, the PDP selects the suitable peers based on their 

interaction types (Figure 5.3). A peer that has a direct upstream interaction with the protected 

service is marked as a potential delegatee; a peer that has an indirect upstream direction with 

the protected peer is marked both as a potential delegator and as a potential intermediate 

party. The marked peers are located on the same path so that the delegation, if it occurs later, 
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can occur among the peers that are already connected to each other by the existing 

collaboration connections. It is, of course, possible to seek delegation among the peers that 

are not connected by the collaboration; however, this would increase the number of potential 

delegation peers, increasing the evaluation complexity. It also may cause complications in 

creating new connections along which the delegation can take place. These are the 

motivating reasons for our decision in evaluating peers along an existing upstream path. 

Since when we prepared the collaboration requests, we already grouped the peers based on 

their paths, each collaboration request already contains peers along a single upstream path, 

making it easier to evaluate DU rules. 

 

Figure 5.3 The evaluation of a failing collaboration request against a Du rule. 
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In our implementation, we start evaluating potential delegators with the smallest distance 

from the protected service for performance reasons. If a delegator cannot play the role of an 

intermediate party, the rule evaluation terminates immediately because no delegation chain 

beyond that peer can be built. 

The evaluation of a DU rule proceeds as follows: a potential delegatee is applied to the 

first inner-predicate of the DU rule; a potential delegator is applied to the second inner 

predicate; a potential intermediate party is applied to the third inner-predicate of the DU rule. 

Since a potential delegator can also be treated as a potential intermediate party, it is applied 

to both second and third inner predicates.  

If the potential delegatee does not satisfy the first inner-predicate, the rule evaluation is 

terminated and a deny result is returned for this rule. If the delegatee satisfies its predicate, 

the evaluation continues with the potential delegator. If the potential delegator satisfies the 

second inner-predicate, it is marked and is recorded within the rule result (more specifically, 

the delegator’s identity is stored inside the rule contract, discussed in next section.). The 

delegator is also evaluated against the third inner-predicate. If the potential delegator fails the 

third predicate, the rule evaluation terminates. The rule result is set to permit only if has the 

delegator satisfied the second inner-predicate; otherwise, if the delegator failed the second 

inner-predicate, the rule result is set to deny. If the potential delegator satisfies the third 

inner-predicate (with or without satisfying the second predicate), the rule evaluation 

continues with another potential delegator that is one-edge away from the current potential 

delegator. The new delegator is treated in the same manner. The evaluation continues until all 

potential delegators within the delegation distance are exhausted. A DU  rule can find multiple 
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potential delegators in a collaboration request. Each of these delegators is marked and stored 

in the rule result separately.   

Although it is not required in our framework, the PDP can adopt a different evaluation 

approach with DU rules. In this approach, the evaluation of a DU rule occurs after the actual 

act of delegation between the delegator and the delegatee; this is different than our 

preemptive approach, where the evaluation of type DU rules occurs before the delegation 

actually takes place. In this alternative approach, the delegatee first obtains the delegated 

credentials and attaches them to its access request. Upon receiving the request with delegated 

credentials, the PEP examines the delegated credentials and extracts information to set 

attribute values. The attributes of the delegator, the intermediate peers and the delegatee are 

extracted from the delegated credentials. Consider, for example, a delegated X.509 

credential. The PEP can extract information from the delegated credential, such as who is the 

original owner of the credential, if there are any intermediate parties, and the requesting 

peer’s identity. The PEP creates a separate XACML request for the delegator, the delegatee 

and the intermediate parties, in the exact manner of the pre-emptive approach. The PEP 

finally creates a collaboration request including all the parties involved in the delegation, and  

sends it to the PDP for evaluation. The matching DU rule would evaluate the peers as they 

correspond to the specific inner predicates, and a final rule result is returned. Since there is 

no need to seek for potential delegators, the DU rule only evaluates a single delegator.  

For a failing collaboration request, it is imperative that the request must satisfy all 

selected DU rules. Otherwise, the policy result remains as deny.  In our prototype, a failing 

collaboration request is evaluated against all DU rules in the above fashion until the selected 

DU rules are exhausted. 
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When all DU rules are satisfied, the processing of their results can start, and subsequently 

the policy obligations are generated. 

 

The Policy Obligations 

A policy obligation indicates that the permission stated in a policy decision is contingent 

on mandatory actions that must later be taken by the collaborative peers. These mandatory 

actions are conveyed by the policy obligation. If the collaborative peers do not take these 

actions, the permission decision is revoked. There could be multiple obligations 

accompanying a single policy decision. Obligations are handled in XACML framework also. 

However, in XACML approach, the obligations are specified as part of the policy; they are 

not derived from the evaluation context. For example, a policy writer can specify a policy 

such that upon satisfying the policy, the requestor must accomplish the obligations stated in 

the policy. The PEP of XACML framework is responsible for ensuring that the obligations 

are honored. In our framework, obligations are not specified as part of a collaboration policy. 

Instead, the obligations are dynamically derived from the collaboration context. Upon 

satisfying the same collaboration policy, two collaboration requests can have different 

obligations.      

In our framework, policy obligations can only be generated due to type DU rules and type 

DD rules. For both rules, the obligations state the identities of the delegator, the delegatee and 

the intermediate peers. A type DU rule or a type DD rule’s result is only valid for a specific 

delegation instance; if there are to be changes in the delegation instance at run-time, the rule 

result becomes obsolete. For example, if one of the intermediate peers is replaced by a 

different peer, or the delegated credentials are different from the credentials that are 
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evaluated, the rule result becomes deny. Policy obligations record the state information 

related to a specific delegation instance.  

A DU  rule result contains a special object, namely a rule contract. A rule contract is used 

to identify the delegators that succeeded in satisfying the DU rule. The contents of a rule 

contract is shown below: 

Rule Contract: {Collaboration Request Path ID, (Location of the first delegator, allowed 

re-delegation distance), (Location of the second delegator, allowed re-delegation distance), 

*}. The star indicates that the location and re-delegation distance pairs are repeated for each 

suitable delegator.  

Semantically, a rule contract states that the DU rule would grant the promised access only 

if one of the delegators agrees to delegate its credentials to the delegatee. The identities of 

delegatee and the intermediate peers are not separately stored because the path ID along 

which the delegation must take place is included in the rule contract. A delegatee has a direct 

interaction with the service, and the peers in between are identified as intermediate parties 

along a specific path.  

For example, Rule Contract 1 = {path:1, (3, unbounded), (5, unbounded)} means either a 

delegator located 3-hops away or another delegator located 5-hops away must be willing to 

delegate to the delegatee which is one-hop away from the service. The delegators located 3-

hops away and 5-hops away have unbounded re-delegation distances. When a specific re-

delegation distance is defined, the delegatee that has received the credentials in a manner that 

exceeds the delegation limit is refused access, even when the credentials are properly 

delegated. The delegation distance is indicated by the DelegationDistance (DelDist) element 

of the rule.  
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A policy obligation object has the same content as a rule contract. However, it differs 

from the rule contracts semantically.  

Policy Obligation: {Collaboration Request Path ID, (Location of the delegator, allowed 

re-delegation distance)*} 

A policy obligation object enumerates the delegators that must be willing to delegate 

their credentials. If even one of the stated delegators refuses to partake in the delegation, the 

obligation is said to be unsatisfied. A rule contract, on the other hand, enumerates the 

delegators, at least one of which must agree to delegate their credentials. In other words, the 

list of delegators inside a rule contract maintains an OR relationship, whereas, the delegators 

inside a policy obligation maintain an AND relationship. For example, a policy obligation 

including two peers, such as up:3 and up:5, means that both peers must simultaneously be 

willing to delegate their credentials. A rule contract that has the same content means that as 

long as one of the two peers agrees to delegate their credentials, the DU rule is satisfied.  

The semantic difference arises from the different usages of rule contracts and policy 

obligations; a rule contract enumerates the suitable delegators for a specific rule, whereas, a 

policy obligation enumerates the suitable delegators for an entire policy. In order to generate 

a policy obligation, the results of the requisite DU rules and their rule contracts must be 

combined and be processed according to the policy’s rule combining logic. A policy 

obligation must be created such that it states all of the requisite delegators that can and must 

satisfy simultaneously all of the selected DU rules. In other words, a policy obligation is a 

combination of rule contracts with respect to the combining logic specified by the policy.     
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Generation of Policy Obligations 

The following algorithm is applied to generate the policy obligations for a single 

collaboration request that has been evaluated against a group of selected DU rules. Recall that 

when we select the DU rules, we perform the rule-combining algorithm among the rule 

results. As the outcome of combining process, we obtain sets of DU rule names. Within each 

set, the rules maintain an AND relationship. Among the sets, there is an OR relationship; 

meaning that any set is capable of satisfying the policy alone. Below, we show how we 

process these rule sets in order to generate the policy obligations.   

 

For a set of DU rules, combined with AND operator 

a. Create a temporary policy obligation object 

b. Compute the dot product of two rule contracts as follows 

i. For each element of the first rule contract, except the path ID element 

1. Concatenate the element with each element of the second rule 

contract. (Resulting element would have two separate 

delegators and their re-delegation distance.) 

2. Store the resulting elements inside the temporary policy 

obligation object. 

3. If the element of the first rule contract covers the element of 

the second rule contract, apply pruning algorithm and move 

onto Step (e), no more processing is required for this element 

of the first contract. 

c. Delete both rule contracts from step 1-a  
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d. Select a new rule contract and move onto Step b, only this time compute the 

dot product of the temporary policy obligation object with the new rule 

contract. Repeat this step until all rule contracts are processed.   

e. Create the final policy obligation objects 

i. Create a separate policy obligation object for each element of the 

temporary policy obligation object 

 

The above algorithm determines which delegators must be willing to delegate their 

credentials in order to satisfy a group of DU rules. For DU rules combined with an AND 

operator, these delegators must agree simultaneously. By selecting a single element from 

each rule contract and concatenating with each element of the other rule contract, we 

determine all possible combinations that can satisfy both of the DU rules. The resulting 

elements in the temporary obligation object maintains an OR relationship. Each of them can 

satisfy both DU rule simultaneously. That is why we create a separate policy obligation for 

each of these elements (Step e-i).   

The covering and pruning algorithms are employed in cases where two separate rule 

contracts contain the same delegator. In such cases, instead of concatenating the delegator 

with another delegator, it is sufficient to list the same delegator only once because it can 

alone satisfy both rules. Covering algorithm is used to discover these cases between two rule 

contracts. 
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Covering algorithm: 

� To determine whether an element of a rule contract covers another element of another 

rule contract: 

o If there is a single delegator contained in the first element and that delegator is 

identical to the delegator contained in the second element:  

� The first element is said to cover the second element. 

� If the delegator in second element has a re-delegation value smaller 

than that of first element, the re-delegation value in the first element is 

changed to that value. 

o If the first element contains multiple delegators (this element has already been 

concatenated with another rule contract element): 

� If any of the delegators contained in the first element equals to the 

delegator contained in the second element 

• The first element is said to cover the second element.  

• If the delegator in the second element has a re-delegation value 

smaller than that of first element, the re-delegation value in the 

first element is changed to that value.  

 

When an element of the rule contract (the first element) is said to cover another 

element (the second element), the following pruning algorithm is applied:  

Pruning Algorithm 

o Instead of concatenating the first and second elements, place the first element 

into the temporary obligation object alone.  
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o In temporary obligation object, check each previous element, except the one 

added in the previous step. 

o If any of the previous elements contains the first element, remove that 

element. 

 

The pruning algorithm removes any redundant elements in the temporary obligation 

object. The pruning process checks all the previously concatenated elements. If a previous 

element has the delegator that is discovered to satisfy both rules, we delete that previous 

element. The deleted element is apparently created before we discover that the delegator it 

contains can satisfy both DU rules simultaneously. As a result, the deleted element has the 

delegator that has the ability to satisfy both DU rules and, in addition, it has another delegator 

due to the earlier concatenation. Since only a single delegator is sufficient to satisfy both 

rules, the process of concatenation was completely unnecessary; therefore, pruning this 

element is viable.      

Example 22: 
Assume we have a collaboration policy that has four DU rules: (R1, R2, R3, R4). The 
collaboration request fails the first policy evaluation; therefore, we select the DU rules that 
can change the policy decision. After the selection process, we end up with two sets of rules: 
(R1, R2, R3); (R4). In order to convert policy decision to permit, either R1, R2 and R3 
simultaneously must be satisfied, or R4 alone must be satisfied by the failing collaboration 
request.  
 
Upon evaluating the DU rules against the collaboration request, we obtain the following rule 
contracts: 
 
Rule Contract for R1 (RC1): {path: 2, (3, unbounded), (5, unbounded)}  
Rule Contract for R2 (RC2): {path: 2, (2, unbounded), (5, unbounded)} 
Rule Contract for R3 (RC3): {path: 2, (3, 6), (6, 6)} 
Rule Contract for R4 (RC4): {path: 2, (2, 6), (3, 6)} 
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We start with the first set. Our algorithm calls for computing the dot product between R1 and 
R2.The resulting temporary policy obligation is shown below.  
 
Temporary Policy Obligation  = {path:2,  
           (3, unbounded)(2, unbounded),   
                (3, unbounded)(5, unbounded),   
                (5, unbounded)(2, unbounded),   
                (5, unbounded)(5, unbounded)} 
 
Each row of the temporary policy obligation shows a single concatenated element, except 
first row, which shows the path ID. While computing the final element, row 5, the covering 
algorithm discovers that the delegator 5-edges away, (5, unbounded) element, can satisfy 
both R1 and R2 rules alone. Consequently, the pruning algorithm is invoked. The pruning 
algorithm determines that all earlier elements containing this delegator, i.e. the (5, 
unbounded) element, must be erased because they have unnecessary additional delegators.  
After the pruning, the policy obligation is shown below: 
  
Temporary Policy Obligation= {path:2,  
          (3, unbounded)(2, unbounded),   
            (5, unbounded)} 
 
The algorithm continues with computing the dot product of Temporary Policy Obligation 
Object with R3 
 
Temporary Policy Obligation = {path:2, 
              (3, unbounded)(2, unbounded)(3, 6),  
              (3,unbounded)(2,unbounded)(6, 6), 
          (5, unbounded)(3, 6),  
              (5, unbounded)(6, 6)}  
 
The above temporary obligation object shows the result of computing te dot product without 
any pruning, for illustrative purposes. During the algorithm execution, while computing the 
second row, the covering algorithm discovers that the element (3, unbounded)(2, unbounded) 
covers the element (3, 6). The delegator located 3-edges away is already listed in the element 
(3, unbounded)(2, unbounded) and in the element (3, 6). Therefore, the first element can 
satisfy the second rule as well. However, the re-delegation limit of the second element 
(which is 6) is smaller than that of the first element (which is unbounded); thus, the first 
element becomes (3, 6)(2, unbounded). Consequently, the pruning algorithm is invoked, but 
since there are no previous elements containing the (3, unbounded)(2, unbounded) element, 
no pruning is performed. Finally, the concatenation process for the (3, unbounded)(2, 
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unbounded) element is terminated (stated in the step b-i-3 in the obligation generation 
algorithm) because it has been discovered that the element (3, unbounded)(2, unbounded) is 
alone sufficient to satisfy both participants of the dot product. Thus, it should not further be 
concatenated with any additional elements. The algorithm continues with element (5, 
unbounded), at row 4.  
 
After the pruning: 
 
Temporary Policy Obligation: {path:2,  
        (3, 6)(2, unbounded), 
         (5, unbounded)(3, 6),  
          (5, unbounded)(6, 6)} 
 
Since all the rules are exhausted in this set, the final policy obligations below are generated: 
(3, 6)(2, unbounded)(5, unbounded)(3, 6)Policy Obligation 3= {path:2, (5, unbounded)(6, 6)} 
 
Each of above policy obligations alone stands to satisfy the collaboration policy. The first 
obligation requires both of the delegator 3 edges away and the delegator 2 edges away to 
delegate their credentials to the delegatee. The second obligation requires both the delegator 
5 edges away and the delegator 3 edges away to delegate. Finally, the third obligation 
requires both the delegator 5 edges away and the delegator 6 edges away to delegate. 
 
After applying the same procedure for the second set of DU rules, (R4), we obtain the 
following policy obligations. Note that since there was only a single rule in this set, we 
skipped generating the dot products between the rule contracts. We generated a separate 
policy obligation for each delegator inside the rule R4’s contract   
 
Policy Obligation 4 = {path:2, (2, 6)} 
Policy Obligation 5 = {path:2, (3, 6)} 
 
The fourth obligation requires only a single delegator: the delegator 2 edges away; the fifth 
obligation also requires a single delegator:  the delegator 3 edges away. � 

 

Having processed the rule contracts, we obtain multiple policy obligation objects. In 

order to ensure that there is no redundancy among these objects, we apply the covering 

algorithm among policy obligation objects one more time. (Covering algorithm is presented 
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above.) If the two obligations are found to cover one another, we remove the redundant 

obligation objects as follows: 

 

Policy Obligation Pruning Algorithm:  

1. For two policy obligation objects, such that the first obligation is found to cover the 

second obligation: 

a. Remove the first obligation object 

b. Replace the second element’s re-delegation distance with that of the first 

element if the first element’s re-delegation distance is smaller.  

The above pruning algorithm differs from the earlier pruning algorithm we presented. The 

above algorithm prunes the redundant policy obligations, whereas the earlier algorithm 

prunes the redundant element across the rule contracts. Each policy obligation stands on its 

own to satisfy the collaboration policy. Hence, separate policy obligations maintain an OR 

relationship among each other. A collaboration request has to satisfy only a single obligation. 

As a result, when we discover two obligations such that the first one covers the second one, 

we remove the first one because the first obligation has more delegators listed than the 

second obligation. To reduce the number of required delegators, we remove the first 

obligation.         

 
Example 23: (Continuing from Example 1) 

At the end of Example 1, we obtained the following obligations: 
(3, 6)(2, unbounded)(5, unbounded)(3, 6)Policy Obligation 3 = {path: 2, (5, unbounded)(6, 
6)} 
Policy Obligation 4 = {path: 2, (2, 6)} 
Policy Obligation 5 = {path: 2, (3, 6)} 
The covering algorithm discovers that the first obligation covers the fourth and the fifth 
obligations; therefore, the first obligation can be removed. The second obligation covers the 
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fifth obligation; hence, the second obligation is removed.  The final policy obligations are 
listed below: 
 
Policy Obligation 3= {path: 2, (5, unbounded)(6, 6)} 
Policy Obligation 4 = {path: 2, (2, 6)} 
Policy Obligation 5 = {path: 2, (3, 6)}. � 
 
 

The resulting policy obligation objects are attached to the policy decision. The permit 

decision along with the obligations is returned to the PEP. This concludes the evaluation of 

DU rules. 

 

5.2.2 Evaluation of Type DD Rules 

The evaluation of type DD rules occurs last, after the evaluation of type L, U and DU 

rules. The evaluation of DD rules occurs only when the PEP determines that the authorizing 

peer can join the collaboration. The result of the DD rules does not change the decision over 

whether the authorizing peer can join the collaboration. The DD rules only determines, after 

joining the collaboration, whether the authorizing peer should allow downstream delegation 

of its credentials to other collaborative peers. The authorizing peer’s decision to delegate its 

credentials affects the requesting peers. A requesting peer, which discovered that its own 

credentials are not sufficient to join the collaboration, may request the delegation of 

credentials so that it can join the collaboration. In such cases, the authorizing peer’s decision 

whether or not to delegate affects the requesting peer’s ability to join the collaboration.  

All of the collaboration requests are evaluated against the DD rules included in the 

collaboration policy. To determine whether the collaboration request matches any DD rule, 

each of the XACML requests contained within a collaboration request is examined. If an 

XACML request has a subject element with a downstream interaction with the authorizing 

peer, and the XACML request’s resource element indicates the authorizing peer’s 
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credentials, and the XACML request’s action element indicates the “delegate” action, then 

the XACML request should match a DD rule. Of course, if there is no DD rule in the 

collaboration policy, then it is concluded that the XACML request does not match any of the 

rules. This means that the delegation of requested credentials is not allowed under any 

circumstances. Once a matching DD rule is found, the collaboration request, more specifically 

the matching XACML requests contained in the collaboration request, is evaluated against 

the matching rules. 

   For the remainder of this section, we call the requesting peer (i.e. subject of the 

matching XACML request) that requests the authorizing peer’s credentials the delegatee, and 

we call the authorizing peer the delegator. If there are any peers that must relay the 

credentials from the delegator to the delegatee, they are called intermediate peers. The PDP 

retrieves the interaction type between the delegator and the delegatee, and determines the 

number of edges (i.e. the distance) between the delegator and the delegatee. If the distance 

exceeds the delegation distance set by the DD rule, the XACML request returns a deny 

decision. Otherwise, the DD rule starts evaluation.  

A DD rule has two inner predicates, each of which states the access requirements sought 

from a delegatee and the intermediate parties. The delegatee is evaluated against the access 

requirements given by the first inner-predicate of the DD rule. The intermediate peers are 

evaluated against the access requirements given by the second inner-predicate of the DD rule. 

In order to return a permit decision from the DD rule, both inner-predicates must evaluate to 

true. The XACML request that matches the DD rule has the delegatee as its subject. 

Therefore, the attributes of the delegatee can be retrieved from its XACML request, and they 

are applied to the first inner predicate of the DD rule.  
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If there are any intermediate peers, however, their XACML requests (hence their 

attributes) must be retrieved separately. The PDP first identifies the intermediate peers that 

must be involved in relaying the credentials. To accomplish this, the PDP looks up the 

interaction attribute of the delegatee. This attribute not only indicates the interaction type but 

also the upstream path ID that the delegatee belongs to and the number of hops between the 

delegatee and the authorizing peer (i.e. the delegator). The PDP retrieves the sub-

collaboration graph that is sent by the CLM, and retrieves the upstream path that contains the 

delegatee. The peers between the delegatee and the delegator are identified as intermediate 

peers. The PDP then searches for the XACML requests that belong to the intermediate peers. 

The collaboration request must contain the intermediate peer’s XACML requests, because 

each collaboration request contains all downstream peers, and the delegatee and the 

intermediate peers are downstream peers. Recall that while preparing the collaboration 

requests, we grouped the peers based on their upstream paths; however, we left a single 

group of downstream peers. Once the XACML requests belonging to the intermediate peers 

are found, their attributes are evaluated against the second inner-predicate of the DD rule. If 

an intermediate XACML request cannot be found, it is evaluated to deny.  

Unlike type DU rules, the type DD rules are not evaluated in a preemptive manner. The 

type DD rules are evaluated only when there is a matching XACML request inside the 

collaboration request. Therefore, there is no need to seek for potential delegatees or 

intermediate peers. The result of each DD rule is stored in a rule contract object. The rule 

contract only contains a single delegatee, the intermediate peers between the delegatee and 

the authorizing peer, and the name of the credentials that are being delegated.  
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When there are multiple DD rules that manage delegation of the requested credentials 

(they each match the same delegatee’s XACML request), each of the rules is evaluated 

separately. The rule results are combined with respect to the rule combining logic of the 

policy. When the combined result is permit, it is determined that the delegation of the 

credentials is allowed. 

When multiple DD rules match the same XACML request, the rule contract with the 

smallest delegation distance replaces the other rule contracts. In other words, only the rule 

contract with the smallest delegation distance is used to generate a policy obligation object. 

The other rule contracts are discarded. All rule contracts have the same delegatee and the 

same credentials that are being delegated; however, the rule contracts only have different 

delegation distances. The rule contract with the smallest delegation distance becomes a 

policy obligation. The policy obligation object contains the identities of the authorized 

delegatee, the intermediate parties and the delegated credentials.  

Each XACML request that matches a type DD rule is evaluated separately, in the manner 

described above. A separate policy obligation for each matching XACML request is 

generated. Once all XACML requests are exhausted, the evaluation of a single collaboration 

request concludes.  

Since a single collaboration request already contains the entire downstream peers, it is 

sufficient to only evaluate a single one of them. The resulting policy obligations are sent to 

the PEP. This concludes the evaluation of the proposed collaboration.  
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Chapter 6:  
The System Architecture 
 
 

Our architecture consists of four modules: Collaboration Locator Module (CLM), 

Authorization Management Module (AMM), Policy Enforcement Point (PEP), and Policy 

Decision Point (PDP) (Figure 6.1).  

 

Figure 6.1 The system architecture. The shaded boxes correspond to our contributions.   

 

The CLM and AMM modules are designed to be incorporated into the collaboration 

management framework. The collaboration management framework deals with various 
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aspects of collaboration management, such as the design and the choreography of the 

collaboration, the discovery of the services that partake in the collaboration, the security, and 

the execution of the collaboration. In practice, each of these aspects is individually built as 

separate autonomous modules in order to simplify the architectural design, and the 

collaboration management engine is regarded as the composition of these modules. For 

example, existing BPEL [OASIS05] engines can execute a collaboration and deal with fault 

recovery. Likewise, existing choreography editors enable describing and building 

collaborations. We loosely describe the collaboration management framework as the 

collection of all these managerial aspects. 

Our work focuses only on the access control aspects of collaboration management. 

Rather than adopting a holistic approach, we circumscribe our work only to the access 

control management due to the variety and the complexity of distinct managerial aspects. As 

a result, we designed our modules, the CLM and the AMM, as standalone architectural 

modules that only tend to the access control aspects of the collaboration framework. They are 

built such that they can be plugged into an existing collaboration management framework, so 

long as the collaboration engine can create and handle the input/output messages expected by 

the AMM and CLM modules. The AMM and the CLM modules are built as standalone web 

services that can exchange SOAP messages. Any collaboration engine that has the ability to 

contact a web service and to generate/process input/output variables could easily employ the 

AMM and CLM modules.  

The CLM and AMM modules require a collaboration choreography document. The 

choreography document describes the collaboration as an ordered collection of the 

interactions, where each interaction is a peer-to-peer data exchange between two services. In 
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our work, we used the Web-Services Choreography Description Language (WS-CDL) 

[W3C05] to create choreography documents. The WS-CDL standard offers a means by 

which the rules of participation within a collaboration can be clearly defined and jointly 

agreed to.  

The CLM and AMM modules require the choreography document for accomplishing the 

security evaluations over the collaboration. Upon completing the security evaluations, the 

CLM and AMM modules determine the feasibility of the collaboration from a security 

standpoint.  

The Policy Enforcement Point (PEP) and Policy Decision Point (PDP) modules are 

designed to evaluate and prevent security threats against a service that is joining the 

collaboration. The PEP and PDP modules do not focus on the overall security of the 

collaboration. Instead, they aim to protect the service from the security threats. They are 

designed with the objective in mind that they can be easily plugged into a service’s existing 

security system. It is expected that each service would already belong to an existing security 

domain, and the service has an access control system. The existing access control system is 

likely to be geared towards evaluating standalone access requests, which are not part of any 

collaboration. It is important for us to design the PEP and PDP modules such that they can be 

incorporated into the existing security system with no disruption.  

As a result, we designed and built the PEP as a standalone web service that can interact 

with external world via SOAP messages, and it can interact with the existing security system 

(as explained in Chapter 1). The PDP module, unlike the PEP, is not exposed to external 

world; it can only be contacted within the security domain it belongs to. The PEP is designed 

as a gatekeeper among the service’s home domain, the collaboration management engine, 
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and the other collaborative peers; the PEP receives collaboration proposals, contacts other 

peers’ PEPs for examining their requests, invokes the PDP to evaluate the collaboration 

proposal, and sends the final decision back to the collaboration management engine, more 

specifically to the AMM. 

Each collaborative peer (i.e. service) joining the collaboration must have separate PEP 

and PDP modules installed in its home organization. Since the PEP is designed as a web 

service, the peer should have the ability of running web services via a SOAP engine, such as 

Axis. 

 In this chapter, we first present the mechanics of each module, and then we discuss the 

interaction patterns among the modules.  

6.1 The Collaboration Locator Module 

The Collaboration Locator Module (CLM) is responsible for processing the collaboration 

choreography document. The choreography document, written in Web Services-

Choreography Description Language (WS-CDL) [W3C05] – an XML-based choreography 

language, describes a collaboration as a composition of peer-to-peer interactions that take 

place using a jointly agreed set of ordering and constraint rules. In our framework, the peers 

correspond to the services, and interactions correspond to programmatic data exchanges 

between the services. The CLM’s main responsibility is to process the choreography 

document and examine the interactions among the services from a security standpoint. Below 

we briefly discuss the WS-CDL standard in to order to familiarize the reader.  

The WS-CDL notation has various elements to describe collaborations such as 

interaction, participantTypes, roleTypes and more. (The element names taken from WS-CDL 

notation are shown in italics.) Since the CLM’s job is to examine interactions between the 
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services, it focuses on roleTypes and interaction elements. A roleType element conveys a 

collection of behaviors that must be exposed by a participant (i.e. a service). Each roleType 

element is assigned to a specific service. A service has multiple operations, where each 

operation is a separately invocable programming method. The service’s operations are 

specified in a unique WSDL document. A roleType element specifies a behavior by 

referencing the assigned service’s WSDL document. A behavior is explicitly linked to one of 

the operations listed in the service’s WSDL document. 

The interaction elements are the basic building blocks of WS-CDL documents. An 

interaction element shows the data exchange between two roleTypes. An interaction element 

conveys three important pieces of information for our purposes: two service operations, each 

of which implements one of the two roles, the data exchanged by each operations, and the 

direction of data flow. An interaction element also contains other information, such as fault 

recovery and synchronization issues.      

For each service that plays a role in the choreography, the CLM is responsible for 

generating a sub-collaboration graph. The sub-collaboration graph informs the service about 

what type of interactions it would engage in upon joining the collaboration. A sub-

collaboration graph only includes the parts of the collaboration that are related to the service: 

the name of the other services that interact with the service, the interaction types, and the data 

exchanged. In other words, for a specific service, the sub-collaboration graph only includes 

peers that interact with the specified service. The remaining parts of the collaboration are left 

outside of the sub-collaboration graph.   

Unless there is a limit over the interaction types to be included in a sub-collaboration 

graph, the sub-collaboration graph would become an approximation of or an identical copy of 
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the entire collaboration graph, because each service eventually has an indirect interaction 

with another service. To prevent this situation, we expect the services to set their limits on 

the interaction types to be included in their sub-collaboration graphs. For example, a service 

may set its limit to examine the peers that have a direct interaction; or the service may 

request to examine other services that have indirect interactions, but less than 5 edges away. 

In the latter case, the sub-collaboration graph only includes the services that are at most 5 

edges away. We call this limit the evaluation radius, the discussion of which is presented in 

Section 6.1.3 in detail. Each service must specify an evaluation radius for their upstream and 

downstream directions. The values of the upstream and downstream radiuses may be 

different.  

The CLM builds a sub-collaboration graph for each service that plays a role in the 

collaboration. The sub-collaboration graph is generated in two separate phases: one for the 

upstream direction and one for the downstream direction. In both phases, the same generation 

algorithm is used. The final sub-collaboration graph is composed of results from both 

directions (Figure 6.2). 

In order to generate a sub-collaboration graph for a specific service, the CLM follows the 

following steps. Let us call this service the owner of the sub-collaboration graph, to avoid 

confusion. The CLM selects a direction and obtains the evaluation radius in that direction. 

The CLM checks each roleType element of the choreography document, and marks the roles 

that are assigned to the owner service. It is possible that an owner service is capable of 

tackling multiple different roles in the collaboration (through different service operations); 

thus the owner service may be assigned to multiple roles. In such cases, the owner service 
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has multiple graphs generated for each role. Each sub-collaboration graph has a unique 

identification number and only pertains to a single roleType.  

For each role assigned to the service, the CLM identifies all the activities involved with 

the roleType. The WS-CDL defines various types of activities that must be performed by a 

specific role. In our implementation, we are only interested in activities that require an 

interaction between two services: the interaction activity type in WS-CDL notation. If an 

activity is solely accomplished by the service itself without engaging in any interactions with 

another peer, then the CLM does not analyze this activity and does not include it in the sub-

collaboration graph. Instead, the CLM marks the activities that are interactions between two 

peers. This type of activities is described by the interaction element of the WS-CDL syntax. 

Thus, the CLM searches for the interaction elements that pertain to the specific roleType. 

Some of the information conveyed by an interaction element are: the names of the services 

involved, the names of the services’ operations that would handle the exchange (referring to 

the operation types in WSDL), the direction of the data flow, and exchanged data types.  

The CLM selects the interactions based on their data flow direction. If the sub-

collaboration graph is generated for the upstream direction, then the CLM is interested in 

interactions in which the data flows into the owner service. If the sub-collaboration graph is 

generated in the downstream direction, the CLM is interested in interactions in which the 

data flows out of the owner service. By processing the selected interaction elements, the 

CLM identifies the services that are exchanging data with the owner service. We call these 

services interaction partners.  
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Figure 6.2. The sub-collaboration graph for Service A. Only shaded nodes are included in the sub-
collaboration graph of Service A.    

 

It is possible that the owner service may have multiple interactions with the same 

interaction partner. In such cases, the CLM examines whether the interactions are duplicates 

of each other, or are different. This is done from the perspective of the owner service. If two 

interactions have the same data exchange and use the same operation of the owner service, 

they are determined to be duplicates. If two interactions have a different data exchange or use 

different operations of the owner service, they are determined to be different. When 

determining duplicity, we do not distinguish between the operations of the interaction 

partner. Even if the operations of the interaction partner are different, when the same 

operation and data is used by the owner service, we conclude that two interactions are 

duplicates of each other. When two interactions are found to be duplicates of each other, only 

one of them is included in the sub-collaboration graph. If the interactions are different, each 

of the interactions is listed separately. Thus, the same interacting partner appears as many 

Service AService A
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times as the number of different interactions in the same graph. For example, in Figure 6.3, 

Service C has two original interactions with Service B; therefore, Service B appears twice in 

the sub-collaboration graph of Service C.  

The reason for not distinguishing between the operations of an interaction partner is that 

each operation has the same credentials, which are inherited from the service, and thus the 

operations are indistinguishable to the external world. From Service C’s perspective, in 

Figure 6.3, all of Service B’s operations are equal in the sense that they have the same 

credentials. On the other hand, C may have fine-grained access control rules associated with 

each of its own operations, such as B is allowed access to an insensitive operation, while it is 

not allowed for a sensitive operation. This kind of fine-grained policy is not the norm; 

nevertheless our access control model allows them as exceptional cases. Therefore, when we 

generate the sub-collaboration graphs, we inform the owner service about which of its 

operations is engaged in an interaction with another service.      

 

 

Figure 6.3 The multiple interactions between two services. From Service C’s perspective 2 original 
interactions: OpC1—OpB1 and OpC2—OpB3. From Service B’s perspective 3 original interactions: 
OpB1—OpC1 and OpB2—OpC1 and OpB3—OpC2 

 

Once an original interaction is found (non-duplicate), the CLM lists the following data in 

the sub-collaboration graph: the interacting partner’s name, its interaction type, and the name 

of the owner service’s operation. For each separate interaction, a unique path ID is assigned. 
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The path ID is later used to figure out which services are consecutively connected to each 

other in the sub-collaboration graph.   

Once the interaction partners are identified, the CLM repeats the above steps recursively 

for each interaction partner: the CLM searches for the roleType elements that the interaction 

partner is assigned to, processes the interaction elements pertaining to these roleTypes, and 

finds the interaction partners of the interaction partner. This recursive process continues until 

it reaches the evaluation radius of the owner service, or until it finds a service that does not 

have any interaction elements.  

During the recursive execution, there are a few differences. First, the path ID generated 

by the owner service is passed onto the interaction partner and later to its own partners. Thus, 

the services that are on the same path are identified. Second, if the interaction partner has 

multiple interactions with another service (let’s call it the third service for brevity), only one 

of these interactions is listed in the sub-collaboration graph, even when the interactions are 

different (Figure 6.4). As explained above, two interactions between two services can differ 

when either the data exchange or the set of service operations is different from each other. 

However, representing these interactions multiple times in the sub-collaboration graph does 

not help the owner of the sub-collaboration graph. From the owner’s perspective, it has an 

indirect interaction with the third service through its interaction partner. The owner service 

has no control or knowledge over the domains of neither its interacting partners nor the third 

service. Thus, the owner service cannot possibly distinguish these multiple interactions, 

which are going on between the interacting partner and the third service. Thus, from the 

owner service’s perspective, the multiple interactions are indistinguishable in the security 

threat they pose against the owner service. This is the reason why the sub-collaboration graph 



 143

includes only one of these interactions. Of course, programmatically, we can easily list the 

multiple interactions; however, we are not convinced if this significantly boosts the owner 

service’s security evaluations.               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 Multiple interactions. From Service C’s perspective, it has two interactions with Service B; 
Service B has a single interaction with Service A. Service C is not aware of the details of the interaction 
between Service A and Service B such as the operation names.  

 

In order to complete the sub-collaboration graph, the above process is repeated in both 

directions separately, upstream and downstream. The CLM generates multiple sub-
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collaboration graphs if the owner service plays multiple roles in the collaboration. Each sub-

collaboration graph shows all the services that are within the owner service’s evaluation 

radius and interacts with the owner service. Each sub-collaboration graph is assigned a 

unique identification number.  The resulting sub-collaboration graphs are sent to the owner 

service (discussed in Section 6.5, message#4). 

6.2 The Authorization Management Module 

The Authorization Management Module (AMM) has two main responsibilities: collecting 

services’ decisions over the collaboration proposal and determining whether the collaboration 

is feasible under these decisions.  

Each service that is proposed to join the collaboration must evaluate its security policies 

and respond back to the AMM with its policy decision. The decision could either be permit 

or deny. The deny decision indicates that, for security reasons, the service refuses to join the 

collaboration. The permit decision comes in two flavors: either with policy obligations, or 

without any obligations. The AMM is responsible for ensuring that all services have turned 

in their policy decisions before it starts analyzing the decisions. If one of the policy decisions 

does not arrive before the designated time-out (10 seconds in current implementation), the 

AMM considers the missing decision as deny.  

If a policy decision is deny, the AMM determines that the current collaboration is 

infeasible as it is. The AMM records the deny decision and the sender service’s name. 

Although it is beyond the scope of our current work, it is possible that the AMM would make 

some adjustments to the current collaboration in order to redeem it to a feasible status, such 

as replacing the refusing service with another one, or replacing another service that fails to 

meet the sender service’s access requirements.  
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If a policy decision is permit with no obligations, the AMM simply records the message 

and the service name, and continues with the remaining policy decisions. If the message is 

permit with policy obligations, the AMM starts evaluating the feasibility of the carried 

obligations. 

A policy obligation states that only when the obligation is satisfied, the promised permit 

decision is granted. In our framework, a policy obligation indicates that the delegation of 

credentials between two services is necessary. (See Chapter 4.) 

A policy obligation is only satisfied when the delegator agrees to delegate its credentials 

to the delegatee through the designated intermediate services. Otherwise, the obligation fails 

and the requested service revokes its permit-with-obligation decision, leading to the failure of 

the current collaboration. 

For each policy decision with obligations, the AMM extracts the set of obligations. A 

policy decision can have multiple obligations. Each obligation belongs to a specific sub-

collaboration and a path within that sub-collaboration (indicated by sub-collaboration ID and 

the path IDs). (Recall that each sub-collaboration graph is generated for a specific role.) 

When multiple obligations are present, each of the obligations must be satisfied. If there are 

multiple obligations that have the same path ID and the same sub-collaboration ID, they are 

considered to be alternatives of each other; it is sufficient to satisfy only one of them. In other 

words, for each path of a sub-collaboration graph, there must be at least one feasible 

obligation.   

Recall that each policy obligation can have multiple elements, where each element 

identifies a potential delegator and the acceptable re-delegation distance for that delegator. 

When there are multiple elements, hence multiple delegators, in an obligation, all of the 
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delegators must be willing to delegate their credentials. If even one of the delegators refuses 

to delegate its credentials, the obligation fails.  

The AMM is responsible for notifying the delegators about the delegation and collecting 

their responses. To accomplish this, the AMM fetches a delegator from the obligation. The 

AMM retrieves the sub-collaboration graph that belongs to the owner of this policy 

obligation, i.e. the service who sent the policy decision and the obligation. By consulting the 

sub-collaboration graph, the AMM identifies the delegator. Moreover, by using the specific 

path ID and the allowed re-delegation distance, the AMM identifies the intermediate services 

that must also partake in the delegation, as well as the delegatee. The AMM sends messages 

to the delegator, the intermediate peers and the delegatee in order to inform them about the 

delegation. The message contents are discussed in Section 6.5.   

  For each delegator within the obligation, the AMM repeats the above steps. Once all 

parties are informed, the AMM starts waiting for the responses. (The message exchanges 

between the delegator, the intermediate parties and the delegatee is explained in Section 6.5.) 

Each delegator must return a reply stating whether or not it would like to delegate its 

credentials. This reply is either permit or deny, and it cannot have any further obligations. 

The AMM waits until all delegators return a response. Even when a single delegator refuses 

the delegation, the obligation is concluded as infeasible. 

As we stated earlier, each policy decision can carry multiple obligations. The AMM is 

responsible for assessing each obligation. In order to call a policy decision as satisfiable, at 

least a single obligation for each path ID must be feasible. Upon assessing the obligations, 

the AMM determines whether or not the policy decision is satisfiable. 
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Once all policy decisions are examined in the above manner described, the AMM 

determines whether the collaboration is ready for execution stage as it is. To start the 

execution stage, all the services that play a role in the collaboration must return a permit 

decision. If the permit decision is accompanied with the obligations, the obligations must 

found to be feasible.  

 

6.3 The Policy Enforcement Point  

Each service that plays a role in the collaboration must have the Policy Enforcement 

Point and the Policy Decision Point modules installed. The Policy Enforcement Point (PEP) 

functions as a gatekeeper for security evaluations. The PEP exchanges messages with with 

other service’s PEPs, the CLM, the AMM, and its accompanying PDP module. The PEP’s 

main objective is to protect its own domain and to evaluate the security threats associated 

with joining the collaboration. To accomplish its objective, the PEP performs several duties: 

(1) informing the CLM about the scope of the security evaluations required by, (2) collecting 

access requests from other services and consolidating them into collaboration requests, (3) 

having the PDP evaluate the collaboration request, (4) preparing the policy decision and the 

policy obligations, and (5) sending access requests to other PEPs when the mutual evaluation 

is needed.  

Several of the above duties have already been discussed in different parts of this thesis. A 

detailed discussion of (2), (3) and (4) is presented in Chapter 2. The duty listed in (5) is not 

discussed in this section because it is related to the discussion of message contents and 

interaction patterns; it can be found in Section 6.5. As a result, in this section, we solely 

focus on the duty listed in (1). In order to get a holistic view of the PEP, and how the above 
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duties are performed in an order, the reader can refer to Section 6.5 that presents all 

operations performed by the PEP, without discussing their inner mechanics.  

 

6.3.1 The Scope of a Collaboration Policy: The Calculation of Evaluation Radiuses 

The service protected by the PEP must have a collaboration policy. Each collaboration 

policy has a scope that must be calculated by the PEP. The interaction types that must be 

evaluated by a collaboration policy constitute the scope of the collaboration policy. Recall 

that each rule of the collaboration policy targets a different interaction type. The 

accumulation of all target interactions within a policy constitutes the scope of the policy. For 

example, the scope of a collaboration policy that only has rules targeting direct interactions is 

the direct interactions. Another policy having rules that targets the direct interactions and the 

indirect interactions within a 3-hop radius has a scope of direct and indirect interactions 

within a distance of 3 hops.  

In order to determine the scope of a policy, the PEP must identify which interaction types 

are required by each rule. In addition, an aggregate target must be calculated for the entire 

policy such that it includes all of the rule targets. Such an aggregate target must be conveyed 

to the CLM in order for the CLM to identify the other services that possess the indicated 

interaction types. Consequently, the CLM would generate the corresponding sub-

collaboration graphs for the service protected by this PEP.  

We call such an aggregate target the “evaluation radius” of a collaboration policy. The 

evaluation radius points to the peer services that must be evaluated by the policy. An 

evaluation radius shows which interaction types, thus which collaborative peers 

corresponding to these interactions, must be evaluated. An evaluation radius is either 

represented by a keyword or an integer value. When it is a keyword, it is one of the direct or 
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all keywords; the former shows that only the peers with a direct interaction is needed for the 

evaluation, while the latter shows that all the peers that have an indirect or direct interaction 

must be evaluated. When it is specified as an integer, it shows the maximum number of hops 

allowed between a collaborative peer and the service protected by the PEP in a specific 

direction. Any peer located beyond this distance is not required for any security evaluations.  

The PEP generates a separate evaluation radius for each direction, upstream and downstream. 

The radiuses in two directions can have different values.  

For each direction, the PEP consults the collaboration policy and collects all the required 

interaction types in that direction. To achieve this, for a specified direction, the PEP collects 

the Target elements of each rule such that the rule’s target interaction must be in the same 

direction as the specified direction.  

Recall that the Target element of a collaboration rule has the PeerLocation element 

embedded inside, and the PeerLocation element has a direction:interaction pair. The 

interaction can be a keyword, such as direct, indirect, EndRequestor, all, or it could be an 

integer showing the maximum number of hops between a requestor and the service. The 

integer form is most frequently used by the type DU or DD rules in order to limit their 

delegation distances. In our prototype, the target interactions of the DU or DD rules are limited 

with respect to their specified delegation distances regardless of their Target elements. For 

example, if the delegation distance is set to 3, no matter what the rule’s Target element 

conveys, the target interactions for this rule are the direct interaction and the indirect 

interactions within a 3-hop radius.  

Once the PEP collects all the required interaction types, it calculates the evaluation radius 

for the entire policy. The rules’ target interactions are combined in an accumulative manner; 
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the result of the combination covers the target interactions of all the rules. When the target 

interactions are represented as integers, the largest integer becomes the evaluation radius. 

When the target interactions are represented as keywords, an indirect target is assumed larger 

than a direct target, and an indirect target is assumed equal to an all target. For example, 

combination of a direct interaction target with an indirect interaction target points to all 

interactions. Finally, when a target interaction represented with a keyword is combined with 

another target interaction represented with an integer, the result is calculated as follows: if 

the first keyword is all or indirect, it is returned as the evaluation radius, if the keyword is 

direct, its value is substituted with the value of 1, and the largest integer of the two is 

returned as the evaluation radius. 

It is possible that a policy’s evaluation radius can quickly run up to large distances, or 

result in evaluation of all the collaborative peers. To be able to limit the evaluation radius, we 

use the MaximumEvaluationRadius element. When the MaximumEvaluationRadius element 

is left unspecified, it is treated as infinity; the evaluation radius calculated from the policy is 

used with no adjustment. However, when it is specified as an integer, it is compared against 

the evaluation radius calculated from the policy. The smaller of the two is chosen as the final 

evaluation radius.  

For example, if the calculated radius indicates the evaluation of all interaction types (i.e. 

direct and indirect interactions together), and if the MaximumEvaluationRadius is set to an 

integer, say 5, then the evaluation radius is adjusted to 5. Only the collaborative peers within 

a distance of 5 hops are required to be evaluated by the policy. The 

MaximumEvaluationRadius is directionless, meaning that the same value is used for limiting 

the evaluation radiuses in both directions.  
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6.4 Policy Decision Point 

The Policy Decision Point (PDP) has a single responsibility: evaluating the collaboration 

requests. The PDP is not exposed to the external world and can only be contacted by the 

PEP. The PDP module is not built as a standalone web service; it is built as a software 

module that can only accept connections from the PEP. The PDP receives the collaboration 

request from the PEP and returns the policy decision back to the PEP. For a detailed 

discussion of PDP, we refer the reader to Chapter 5.   

6.5 The Interaction Patterns Among the Modules 

Our framework regulates the interactions that can occur among the modules; it specifies 

the content and the order of the exchanged messages. Our framework is composed of two 

separate rounds of interactions among the modules.  Each round has a different message 

collection and a different message order. On an abstract level, each round has a different goal 

to achieve, and once completed, gives us a chance to review and recover from unexpected 

failures. Thus, the separate rounds allow us to capture and process the state information of 

the collaboration, and to determine the course of upcoming interactions. Even though our 

approach introduces two more layers of abstraction, it helps us design the framework in an 

efficient and error-free way.  
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6.5.1 Round-One 

 

Figure 6.5 Round One of our framework.   

 

The first round of interactions (Figure 6.5) informs the collaborative peers (the services) 

about the collaboration proposal, and collects their decisions on the proposal. At the end of 

this round, each collaborative peer sends the result of its security evaluation to the AMM. 

The AMM, then, initiates the second round of interactions (if necessary).  

The first round of interactions is initiated when the collaboration management engine 

invokes the CLM with a choreography document and the list of services that are tentatively 

assigned to each roleTypes elements. The choreography document specifies the roles that are 

played in the collaboration, the ordered interactions between the roles, the services assigned 

to the roles and so on. 
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By consulting the choreography document, the CLM identifies the services that are 

assigned to a role. For each service, the CLM contacts the service’s PEP and sends a 

collaboration proposal message (message#1). This message has the name of the 

collaboration, the requested service’s name and the URL of the AMM.  The URL of the 

AMM is passed explicitly so that the service’s PEP can return its policy decision directly to 

the AMM, which collects the results from all the PEPs and determines the course of 

upcoming interactions. The service name indicates the URL of the service that is tentatively 

assigned to a role. It is a tentative assignment because the service has not yet confirmed that 

it will play the role. In case, a service’s PEP manages access to multiple separate services 

(the PEP’s security domain owns multiple services), the name of the requested service would 

allow the PEP to distinguish among the services. The final piece of information is the name 

of the proposed collaboration. The collaboration name is used for keeping track of the 

messages exchanged for a specific collaboration. In case the PEP receives multiple 

collaboration proposals for the same service, or if it receives multiple separate collaboration 

proposals from the same CLM, the collaboration name serves as an identifier.        

For the rest of this chapter, we call a service that desires to evaluate other services an 

authorizing peer, whereas we call the services that are being evaluated the requesting peers. 

Thus, each PEP that receives the message#1 plays the role of an authorizing peer. We later 

show how an authorizing peer interacts with the requesting peers, as well as how an 

authorizing peer plays the role of a requesting peer to other authorizing peers. 

Upon receiving message#1, each PEP fetches the collaboration policy that manages 

access to the requested service. By consulting the policy, each authorizing peer’s PEP 

generates two evaluation radiuses, one in each direction. (Refer to Section 6.3.1 for more 
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detail in evaluation radiuses.) Upon calculating the evaluation radius, each authorizing peer’s 

PEP creates a message (message#2) that consists of the evaluation radius, the collaboration 

name, and the requested service name. This message is sent back to the CLM.  

For each message (message#2) received, the CLM marks the sender as an authorizing 

peer. Moreover, from each message, the CLM extracts the evaluation radiuses, consults the 

collaboration choreography, and identifies the peers that possess the requested interaction 

types. Each identified peer would play the role of a requesting peer to the marked authorizing 

peer. The CLM creates a sub-collaboration graph for each authorizing peer. In case the 

authorizing peer plays multiple roles in the collaboration, a separate sub-collaboration graph 

with a unique ID is created for each role. Since each role has a different set of behaviors, 

hence different interactions, it is likely that the sub-collaboration graphs generated per role 

differ from each other.  

In order to notify the requesting peers, the CLM sends a message (message#3) to each of 

them. This message conveys the name of the collaboration, the URL of the authorizing peer’s 

PEP, the name of the authorizing peer (i.e. the service URL), the name of the requesting peer 

(i.e. the service URL), and the sub-collaboration ID. It is possible that a requesting peer can 

appear in two different sub-collaboration graphs. This means that the authorizing peer 

interacts with the same collaborative peer while playing two different roles. 

Iteratively, for each authorizing peer, the CLM repeats the above steps: identifies all the 

requesting peers and notifies them via separate messages. The CLM also informs each 

authorizing peer about the list of requesting peers (message#4). The CLM prepares a sub-

collaboration graph for each authorizing service. Based on this graph, the CLM prepares the 

message#4 that consists of: the collaboration name, the name of the authorizing peer, the 
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names of the requesting peers, their interaction types and their sub-collaboration IDs. For 

each separate sub-collaboration graph, the message#4 repeats the names of the requesting 

peers, their interaction types and their sub-collaboration IDs. As a result, each authorizing 

peer knows how many requesting peers they have and what type of interaction each of them 

possesses. This information is recorded by the authorizing peers and by the CLM, and it is 

later used for verification.       

Once an authorizing peer receives message#4 from the CLM, it starts waiting for the 

access requests from each of its requesting peers. Since the CLM first sends the message#3 to 

the requesting peers, and then sends the message#4 to an authorizing peer, it is possible that 

some requesting peers might already send their access requests to the authorizing peer even 

before the message#4 reaches the authorizing peer. In that case, the authorizing peer’s PEP 

simply stores the received access requests and later compares them against the message#4 to 

identify which collaboration and sub-collaboration they belong to.  

All of the requesting peers must send their access requests (message#5) to the authorizing 

peer’s PEP. An access request includes the requesting peer’s credentials, the collaboration 

name, the sub-collaboration ID, name of the requesting peer, and the name of the authorizing 

peer.  

If a requesting peer fails to send its access request to the authorizing peer, the authorizing 

peer waits until the time-out expires (10 seconds in our implementation). The authorizing 

peer’s PEP creates an empty access request for each missing request.  

If the information conveyed in an access request cannot be validated against the 

information sent by the CLM (message#4), the access request is considered invalid and it is 

treated as a missing access request. 
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The CLM repeats the above steps for all of the authorizing peers: notifies the 

corresponding requesting peers and sends the sub-collaboration graphs. Since each peer that 

is assigned to a role is treated as an authorizing peer, every peer plays the role of an 

authorizing peer and the requesting peer sometime during round one. It is likely that a peer 

may play both roles simultaneously. While waiting for messages from its requesting peers, 

the authorizing peer may also receive a notification from the CLM to send its access request 

to another authorizing peer.     

Once an authorizing peer receives all of the access requests from its requesting peers, it 

starts evaluating these. (Refer to Chapter 5 for the evaluation of requests.) The resulting 

policy decision is returned to the AMM (message#6). The message#6 contains the 

collaboration name, the name of the authorizing peer, the sub-collaboration IDs and the 

policy decisions associated with each sub-collaboration ID. The policy decision is 

represented either as permit or deny. If the policy decision has any obligations, the 

obligations are immediately listed after the policy decision.  

The AMM is responsible for collecting policy decisions from each authorizing peer. 

Once the policy decisions are collected, the first round of the interactions is concluded. 
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6.5.2 Round-Two 

 
Figure 6.6  Round Two of our framework. 
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peers’ policy decision and measuring the feasibility of their obligations to join the 

collaboration.  

The second round of the interactions is started by the AMM when each peer’s policy 

decision (message#6) is collected. For each received message, AMM checks the policy 

decision, and if present, the policy obligations. For messages with deny policy decisions, the 

AMM takes no action. It simply records the result for future adjustments. For messages with 

permit decision, if there are no obligations present, the AMM takes no action and the 

message is stored away.  

For the messages with a permit decision along with policy obligations, the AMM has to 

examine the feasibility of the obligations. For each obligation, the AMM takes the following 

actions. The AMM identifies the delegator, delegatee and intermediate peers. In order to 

notify the delegatee and the intermediate peers about the delegation, the AMM creates a 

message for each of them (message#7): the name of the collaboration, the URL of the 

delegator’s PEP, the name of the delegatee or the intermediate peer (whichever one suits the 

specific message), and the name of the delegator. The collaboration name once again serves 

as an identifier. The location of the delegator’s PEP is necessary because the delegatee and 

the intermediate peers must send their delegation requests to the delegator’s PEP.  The name 

of the delegatee/intermediate peer indicates the service that receives/relays the delegated 

credentials at execution time. The name of the delegator indicates the service that owns the 

credentials that are to be delegated. 

The AMM sends a different message to the delegator’s PEP (message#8). This message 

conveys the collaboration name, the name of the delegator (in case the PEP manages multiple 

services), the name of the delegatee and the intermediate peers, and their interaction types 
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with the delegator. This message, similar to the message#4 in the first round, is recorded by 

the delegator’s PEP to validate the delegation requests that would be coming from the 

delegatee and the intermediate peers.  

Each intermediate peer and the delegatee prepare delegation requests (message#9) to be 

sent to the delegator’s PEP. The message#9 includes the collaboration name, the credentials 

of the delegatee/the intermediate peer, the name of the delegatee/the intermediate peer, and 

name of the delegator. These requests are evaluated by the delegator to determine whether or 

not to delegate the requested credentials.  

The delegator’s PEP waits until all the delegation requests are received. The delegator’s 

PEP handles the missing or late requests in the same manner as in round one. Once all the 

requests are collected, the evaluation starts. The policy decision over the delegation is stated 

either as a permit or as a deny. We do not allow for defining obligations over a delegation 

decision, since it drastically increases the complexity involved. The delegation decision from 

the delegator’s PEP to the AMM (message#10) contains the collaboration name, the 

delegator service’s name, and the delegation decision.  

For each obligation contained within a policy decision, the AMM repeats the above steps 

iteratively. When at least an obligation is found to be satisfiable for each path ID, the policy 

decision is determined to be feasible. The AMM continues with checking for the remaining 

policy decisions and their accompanying obligations until all policy decisions are exhausted.  

Once each policy decision and its obligations have been checked, the AMM determines 

the final result of the collaboration. The result in terms of a success or a failure is sent back to 

the collaboration management engine. When all policy decisions are permits and the 
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obligations are satiable, the collaboration is marked as a success. This final message 

concludes the second round of the interactions.        

6.6 The Security Analysis of Our Framework  

We discuss the security of our framework in two different aspects. First, we examine the 

message-level security, and discuss whether the messaging infrastructure introduces 

additional threats. Second, we analyze the framework under two different threat scenarios: a 

malicious peer service, and a malicious collaboration owner. In each scenario, we discuss if 

the malicious entities can introduce additional threats to the other peers in the collaboration.     

The messages between the architectural modules can reveal information about the 

collaboration graph and policy decisions of the collaborative peers. By eavesdropping on 

these messages, a malicious party can learn about the collaboration, and the relationships 

between the peer services. For example, in round two of our framework, the AMM checks a 

delegator service’s willingness to delegate its credentials to a delegatee service. A third party 

eavesdropping to the messages can determine the trust relationship between the delegator and 

the delegatee. In order to prevent such security threats, we employ message-level security. 

Each message exchanged between the modules must be encrypted by the recipient peer’s 

public key. Our prototype does not implement the message-level security; however, we leave 

it as our future work. In the current implementation, we used X.509 credentials for the 

collaborative peers. Therefore, adding encryption to a message by the recipient peer’s public 

key is not a big challenge for us. However, our framework is not only tied down to X.509 

credentials; SAML attributes, Kerberos tickets or any other attribute certificates can be 

employed. In such cases, we must ensure that each peer learns each other’s public key before 

the peer-peer evaluations start.       
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Furthermore, our framework must provide means for enforcing non-repudiation. A 

message sent by a peer service must be traced back to the sender of the message 

undoubtedly. For example, a service who accepted to join the collaboration at planning time, 

but refuses participation at run time, can be held responsible for its decision, if our 

framework has the means to prove that the service initially agreed to the collaboration. Such 

a mechanism helps preventing disputes that can occur at run time. To achieve this, we must 

incorporate signatures into the message-level security. Each peer must sign its messages with 

its private key before sending the message. Our prototype does not support this feature yet; 

we leave it as our future work.   

Our framework must be robust enough to mitigate security threats that are introduced by 

malicious parties. We have two distinct scenarios: a malicious peer service and a malicious 

collaboration owner. In the first scenario, we discuss whether having a malicious peer in the 

collaboration would introduce additional security threats. Since we plan to incorporate 

encryption and signature techniques at the message level, the malicious peer cannot forge or 

corrupt other services’ messages. Another security threat is whether a malicious party can 

learn about the other peer’s collaboration policies by examining the collaboration context and 

the peer’s decision to join the collaboration. Even though the messages are encrypted, a 

malicious peer can compare the sub-collaboration graphs that it received from the CLM. This 

threat becomes more pronounced when AMM tries to redeem an infeasible collaboration. 

The AMM replaces some peers, creates new sub-collaboration graphs and informs the 

affected peers about the changes. A malicious peer can detect the replaced peers in its own 

sub-collaboration graph. It is crucial that each service’s policies are confidential and are not 

revealed to any other parties. We plan to examine the severity of this threat as our future 
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work; however, our initial take is that it is an unlikely threat. First, if the malicious peer’s 

sub-collaboration graph is not affected by the changes, it would not receive any information 

about the replaced services. Second, even when the malicious peer is informed about the 

changes, it may take a high number of changes for the malicious peer to detect the 

relationships between other services. For example, consider a sub-collaboration graph 

consisting of ten peers, and a peer service refuses access; therefore, this service is replaced 

by another service. This replacement may be because either the replaced peer did not allow 

access to the peers in this specific sub-collaboration graph, or it did not allow access to 

another peer, which is included in the replaced peer’s sub-collaboration graph, but not in the 

sub-collaboration graph of malicious peer. Furthermore, even within the malicious peer’s 

sub-collaboration graph, the malicious peer cannot know which other peers are found 

untrustworthy by the replaced peer. It is equally likely that any of the ten peers may have 

failed the replaced peer’s collaboration policy.  

In above example, we assume the peer who refuses access declines the collaboration. 

However, this is a quite straightforward approach. We plan to incorporate more sophisticated 

methods for redeeming an infeasible collaboration graph. For example, instead of replacing 

the peer who refuses, we might replace the peer who fails to meet the access requirements of 

the authorizing peer. This would require some sort of feedback between the AMM and 

authorizing services; however, the complexity may pay off when we want to keep a specific 

service in the collaboration, which accomplishes a sensitive role in the collaboration graph.  

In the second threat scenario, we assume a malicious collaboration owner.  We are 

curious to examine whether the malicious owner can gain knowledge of trust relationships 

between the peer services. We regard this as an unlikely security threat because the owner is 
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not informed about the collaboration graph until the collaboration is deemed feasible and 

starts execution. In other words, the end user is not informed about the collaboration graph 

until a feasible graph is found. At the beginning of the planning stage, the owner describes its 

requirements from the collaboration to the planning engine. The services are selected 

according to these requirements; however, the end user is only informed when a feasible 

graph is found. In a slightly modified threat scenario, the owner may have its own service 

that partakes in the collaboration graph. The owner’s service is informed about its sub-

collaboration graph. In this case, the threat scenario becomes identical to that of a malicious 

peer service since we treat all collaborative services equally. Another security threat due to 

the collaboration owner is that by owning multiple distinct collaborations, the owner may 

gain knowledge of the peer services’ collaboration policies. This threat is not really effective 

unless the owner has his own service partaking in the collaboration. As we discussed above, 

for each collaboration, the owner is only informed about the feasible collaboration. Even 

when we assume that the owner’s service partakes in the collaboration, this is still an unlikely 

threat. First of all, the planning engine may select completely different services for different 

collaborations. Therefore, the owner’s sub-collaboration graph includes different peers each 

time. It may take a significantly high number of different collaborations to deduce any 

knowledge from the graphs. We leave this aspect as our future work.          
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Chapter 7: 
Deployment and Measurements 

 
 

In order to observe our prototype in an active computing environment, we deployed it 

using the Virtual Computing Laboratory (VCL) of NCSU. We tested our prototype with 

various choreographies and collaboration policies. In this chapter, we first explain the 

deployment process and how we collected our performance data. Later, we present the results 

and discuss them. 

7.1 Deployment 

The VCL uses image files in order to serve applications to end users. A user selects an 

image file that contains some applications, and the image is loaded to an available machine in 

the computing farm. The end user does not know the hardware features of the machine that 

he image is loaded onto. In order to deploy our prototype into the VCL test bed, we first 

reserved a base Windows XP machine, and built our prototype from scratch: we copied our 

source code, the Tomcat and the Axis engines, modified SunXACML libraries and so on, and 

compiled the system. Once we ensured that the services are performing correctly, we created 

an image file. This image file later deployed over the VCL machines we would use. Since we 

do not know the hardware specifics of the machines that our image has been loaded onto, we 

do not discuss it. Any available machine in the computing farm could have been selected. 

Due to the high-demand for the VCL resources, we tested our prototype over a small 

group of machines: 7 machines. One of the machines was deployed with both the 

Choreography Locator Module (CLM) and Authorization Management Module (AMM). 

This machine functioned as both the CLM and the AMM. The remaining machines were 
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setup as peer services that were invited to the collaboration. Each service had the Policy 

Enforcement Point (PEP) and the Policy Decision Point (PDP) installed.  

The PEP, CLM and AMM modules were exposed as web services. All services were 

deployed into a Tomcat server (5.0.28). They performed the SOAP protocol via Axis engine 

deployed in the Tomcat server.  

Once we reserved a computing node in VCL, we were informed of the IP address of the 

machine. Before we started a collaboration, we manually input the IP addresses of the peer 

services into the choreography document so that the CLM and AMM modules would contact 

the peer services. Once we completed a test run, we logged onto each machine and collected 

the performance measurements. We used the Remote Desktop Protocol in order to connect to 

a service node.  

7.2 Performance Measurements 

We measured the wall-clock time spent executing our framework. We used Java’s 

System.TimeMilliSeconds() method. For CLM and AMM modules, we measured the 

difference between the time the CLM starts parsing a choreography document and the time 

the AMM sends its feedback to the collaboration owner about the feasibility of the 

collaboration. For a service node, we measured the difference between the time it received a 

collaboration request from the CLM and the time it sent a policy response to the AMM. If a 

service node participates in the second-round of framework as a delegator (this happens 

when another peer service requests the delegation of credentials), we measured the difference 

between the time the service received the delegation request from the AMM and the time it 

sent its response back to the AMM. For a peer service that participates in the second round of 
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our framework as a delegatee, we measured the difference between the time the delegatee 

service received a notification from the AMM and the time it sent its request to the delegator. 

In order to ensure that each node has enough time to receive messages from their peers, 

we imposed a waiting period of 10 seconds. Each node waits for 10 seconds from the time it 

receives the sub-collaboration graph from the CLM to the time it starts the policy evaluation. 

This was done to ensure that each node receives all the credentials from its peers. 

Furthermore, we thought that in a network environment where nodes are not uniformly 

distanced from each other, each service might start policy evaluation at different times. 

Therefore, their execution times may be different. To prevent this, we assigned a large 

enough waiting period so that each node started processing close to the same time. Since we 

focus on measuring the policy processing time, we did not want our results be affected by 

network delays. We used another 10-second waiting period when a delegator peer receives a 

delegation request from the AMM. The delegator peer waits for 10 seconds before it starts 

evaluating the delegation request. In the meantime, the delegatee and intermediate peers must 

send their credentials to the delegator. Due to these waits, our total execution times are 

around 10-30 seconds. However, a very small fraction of these times are spent on actual 

execution. When we present our data below, we subtract the waiting periods. For each 

service, we present only the time that is spent for processing. For the CLM+AMM node, 

however, we present the entire execution including the waiting periods. We later show for 

each test case how much of the total execution time is spent on actual processing vs. waiting.     

We tested our prototype with various collaboration choreographies. We started with the 

simplest choreography and gradually increased the complexity. For a fixed choreography, we 

changed the collaboration policies as well. Each service is assigned the same collaboration 
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policy. Since the services’ interactions are different, their policy decisions are different. The 

MaximumEvaluationRadius element of a collaboration policy limits the number of 

interactions that must be evaluated by the policy. This element shows the maximum number 

of edges between an authorizing peer and a requesting peer allowable. The requesting peers 

that are beyond this value are not evaluated by the collaboration policy even when their 

interaction types match the policy. For each test run, we set this value to a different number, 

such as 1, 2, or 3. We simply call this value the radius for the remainder of this chapter.  

During a test case, for each radius value, the measurements are repeated five times. We 

did not use the data from the first measurement because it was affected by the startup cost of 

Java compiler. We present the average of the 4 measurements in each test case. Although we 

present the average values in the following section, we observed that the standard deviation 

was typically around 10% to 15% of the average values. The highest standard deviation was 

26% of the average value. All measurements are in milliseconds. 

Our test cases are geared towards understanding the differences in executing different 

rule types. Due to the small cluster on which we can run our tests, we obtain fairly small data 

sets. This restricted us from trying our prototype with larger collaboration with complex 

choreographies. Moreover, the randomness of the hardware that runs our tests made it 

difficult for us to interpret our results. Hence, our results are an introductory analysis of our 

prototype; we will not claim to build a formal analysis based on these results. Rather, we use 

the current results to gain an insight towards where our future work must be focused.    

Below we first introduce the collaboration policies we used. Later, we introduce each 

choreography graph, and present the data collected over a collaboration graph with varying 

collaboration policies. 
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7.2.1 Collaboration Policy 1 (L Policy) 

Collaboration Policy 1 consists of only Local type rules. It has two rules, combined with 

a logical AND. Both rules target any of the interaction types that are present in the 

collaboration. In other words, the rules have a target of any:any. To limit the number of peers 

that match one of the rules, we use the MaximumEvaluationRadius element. Therefore, when 

the radius is set to 1, a rule matches only direct-upstream and direct-downstream interaction 

types. When the radius is 2, a rule matches indirect-upstream, indirect-downstream 

interactions types that are 2-edges away, in addition to the direct-upstream, direct-

downstream interactions. For the remainder of this chapter, we refer to Collaboration Policy 

1 as L Policy.  

 

7.2.2 Collaboration Policy 2 (U Policy) 

Collaboration Policy 2 consists of only Underlying type rules. It has two rules combined 

with a Logical AND. Both rules targeted any of the interaction types present in the 

collaboration, via the keyword any:any. The evaluation of an Underlying rule requires 

referring to the Underlying Policy, which is part of the Underlying security system for 

standalone access requests. We specified the Underlying Policy as a separate XACML 

policy. It only has a single rule. Each service node is provided with a copy of the Underlying 

Policy in addition to its Collaboration Policy 2. We refer to Collaboration Policy 2 as U 

Policy from now on. 

7.2.3 Collaboration Policy 3 (L+U Policy) 

Collaboration Policy 3 includes two rules: one is of type Local; the other one is of type 

Underlying. The Local rule targets indirect-upstream and indirect-downstream interactions, 

whereas the Underlying rule targets direct-upstream and direct-downstream interactions. 
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Both rules are combined with a logical AND. We think Collaboration Policy 3 is a likely 

choice for the policy writers. A policy writer may want to re-use existing access requirements 

for a direct-interaction, whereas he may choose to use weaker or collaboration-tailored 

access requirements for the indirect interaction types. The Underlying Policy remained the 

same.   

 

7.2.4 Collaboration Policy 4 (L+U+D Policy) 

 

 
Figure 7. 1 Collaboration Policy 4. 

 

Collaboration Policy 4 is the most complex of all policies. It contains 4 types of rules: 

Local, Underlying, Delegation-upstream, and Delegation-downstream. The first rule is of 

type Underlying, and it targets the direct-upstream interactions only. The second rule is of 

Delegation-upstream and it targets all of the upstream interactions within the 

DelegationDistance. The third rule is of Local type and it targets all of the interactions, via 

any:any keyword. The fourth rule is of Delegation-downstream type and it targets all of the 

downstream interactions within the Delegation Distance.      

A peer with direct-upstream interaction must satisfy either the Underlying Rule or the 

Delegation-upstream rule. Otherwise the peer fails the policy. The Delegation-upstream rule 

allows the upstream-direct peer to use delegated credentials for access. Therefore, an 
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upstream-direct peer must either be authorized against the Underlying Policy, or the peer 

must receive delegated credentials from an indirect-upstream peer. 

 

7.2.5 The Collaboration Graph 1: The Simplest Case 

 

 
Figure 7.2 Collaboration Graph 1.  

 
We used 6 nodes for our choreography: 5 peer services and a single CLM+AMM node. 

Each service is connected to one another via a single interaction. The services are named by 

their appearance order in the choreography, Service 1 through Service 5 (Figure 7.2). We test 

Graph 1 with all four collaboration policies. The main purpose of our test runs in this section 

(Cases 1 through 4) is to observe how different rule types affect a service’s execution time. 

In the succeeding section, we change our collaboration graph so that we can observe the 

affect of the collaboration graph over the execution times.  

 

 

Case 1: Collaboration Policy 1 (L Policy)   

We setup the rules and the peer’s credentials such that Service 2 and Service 4 fails the L 

Policy, whereas, other services are authorized successfully. Although each service has the 
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same collaboration policy, the result of each policy differs with respect to the specific 

interactions that its service involves in. Table 7.1 shows the policy decisions for each service 

along with the name of the peers that are evaluated.  

Table 7. 1 Services’ policy decisions with L Policy over Graph 1. 

 Service 1 Service 2 Service 3 Service 4 Service 5 

Policy Decision 

Radius = 1 

Deny Permit Deny Permit  Deny 

Evaluated Peers 2 1, 3 2, 3  3, 5 4 

Policy Decision 

Radius = 2 

Deny  Deny Deny Deny Deny 

Evaluated Peers 2, 3 1, 2, 3 1, 2, 4, 5 2, 3, 5 3, 4 

Policy Decision 

Radius = 3 

Deny Deny Deny Deny Deny 

Evaluated Peers 2, 3, 4 1, 3, 4, 5 1, 2, 4, 5 1, 2, 3, 5 2, 3, 4 

 

In this test run, we aim to collect the execution time spent for L Policy. Since L Policy is 

the simplest policy type we specified, we will use the results from this section later as a 

reference point. Moreover, we aim to observe the affect of increasing radius over the 

execution times.  

 

Table 7.2 The service execution times with L Policy over Graph 1.  

 Service 1 Service 2 Service 3 Service 4 Service 5 CLM+AMM 

Radius 1 414  582  504.25 582.25 398.5 10992 

Radius 2 656  812.5 840 781.25 629.25 11207 

Radius 3 707  949.25 851.25 945.5 707 11316.25 
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For each service, the time it takes to evaluate the policy and return a response to the CLM 

increases with the radius. This is expected because the bigger radius means evaluating more 

collaborative peers. For Service 3, the increase from radius 2 to 3 does not make a big 

difference because the radius 2 already covers all the peers that are present in the 

collaboration. When we compare the differences in performance, we notice that evaluating 

more peers does not linearly increase the response time (Table 7.3). In order to understand 

the effects of adding more peers, we will later test with different choreographies.  

Table 7.3 The difference in execution times with changing radiuses. The first row shows the difference 
between the radius of 1 and radius of 2; the second row shows the difference between the radius of 2 and 
radius of 3. All results are in milliseconds.  

Service 1 Service 2 Service 3 Service 4 Service 5 

∆ Time   ∆ Peers 

242 +1 

     51         +1 

∆ Time   ∆ Peers 

230.5 +1 

    136.75       +1 

∆ Time   ∆ Peers  

335.75 +2 

11.25          0 

∆ Time   ∆ Peers 

199 +1 

164.25       +1 

∆ Time   ∆ Peers 

230.75 +1 

77.75           +1 

 
 

Case 2: Collaboration Policy 2 (U Policy) 

In order to see whether the rule types affect the performance, we kept the same 

choreography; however, we used U Policy this time. The service’s policy decisions and the 

number of peers evaluated by each service are presented in Table 7.4. The execution times 

are presented in Table 7.5. 
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Table 7. 4 The policy decision for each service with U Policy over Graph 1. 

 Service 1 Service 2 Service 3 Service 4 Service 5 

      

Policy Decision 

Radius = 1 

Deny Permit Deny Permit  Deny 

Evaluated Peers 2 1, 3 2, 3  3, 5 4 

Policy Decision 

Radius = 2 

Deny  Deny Deny Deny Deny 

Evaluated Peers 2, 3 1, 2, 3 1, 2, 4, 5 2, 3, 5 3, 4 

Policy Decision 

Radius = 3 

Deny Deny Deny Deny Deny 

Evaluated Peers 2, 3, 4 1, 3, 4, 5 1, 2, 4, 5 1, 2, 3, 5 2, 3, 4 

 

 

Table 7.5 Service execution times for U Policy over Graph 1. 

 Service 1 Service 2 Service 3 Service 4 Service 5 CLM+AMM 

Radius 1 453.25 656.5 527.5 636.75 453 11000.75 

Radius 2 597.5 874.75 831.75 773.75 617.5 11175.75 

Radius 3 808.5 1000.25 957.5 945.5 828.25 11359.5 

    

As with L Policy, the policy evaluation time increases with increasing radius (Table 7.5). 

Moreover, the overhead of accessing Underlying Policy also shows up in the results. The 

difference between the results of L Policy and the results of U Policy is calculated as follows: 

for a fixed radius, the execution time of L Policy is subtracted from the execution time of U 

Policy. This is repeated for each radius and for each service (Figure 7.3). The time 

differences are sometimes negative, meaning that U Policy is evaluated faster than L Policy 
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However, for the majority, the evaluation of U Policy takes longer than that of L Policy. This 

overlaps with our expectations because Underlying type rules requires evaluation of the 

Underlying Policy, causing an additional layer of policy evaluation. The anomaly observed in 

radius 2 might be due to a change in the VCL, such as the nodes were only dedicated to run 

our test scenario. As we discussed before, we do not know which machine our image is 

loaded onto. Moreover, it may be a server that simulates multiple images concurrently. 

Therefore, at a specific time, we might have gotten a machine solely dedicated to our image.   

We also aim to understand how increasing the radius (i.e. increasing the number of peers 

evaluated) affects the execution time. However, as shown in Table 7.6, we did not observe a 

regular repeating pattern. We decide that the obtained results are not conclusive enough to 

make a decision in this issue.     

Table 7.6 The difference between the execution time for changing radiuses with U Policy. The first row 
shows the difference between the radius of 1 and the radius of 2; the second row shows the difference 
between the radius of 2 and radius of 3. All results are in milliseconds.  

Service 1 Service 2 Service 3 Service 4 Service 5 

∆ Time   ∆ Peers 

144.25    +1 

  211         +1 

∆ Time   ∆ Peers 

218.25    +1 

 125.5        +1 

∆ Time   ∆ Peers  

304.25      +2 

125.75         0 

∆ Time   ∆ Peers 

   137        +1 

 171.75     +1 

∆ Time   ∆ Peers 

  164.5     +1 

 210.75       +1 
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Figure 7.3 The difference in execution times with respect to L Policy and U Policy. The services are listed 
on the x-axis. Each service has a cluster of three bars. Each bar shows the difference in execution times 
for a fixed radius: first bar is for the radius 1; second bar is for the radius 2 and so on. A bar shows the 
difference that is calculated by subtracting the result of L Policy from the result of U Policy. 

 

Case 3: L+U Policy 

We tested the same choreography with L+U Policy. Our purpose is to see the affect of 

combined L and U type rules over the execution time. The services’ policy decisions are 

presented in Table 7.7. The execution times are presented in Table 7.8. 
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Table 7. 7 The policy decision for each service with L+U Policy over Graph 1.  

 Service 1 Service 2 Service 3 Service 4 Service 5 

      

Policy Decision 

Radius = 1 

Deny Permit Deny Permit  Deny 

Evaluated Peers 2 1, 3 2, 3  3, 5 4 

Policy Decision 

Radius = 2 

Deny  Deny Deny Deny Deny 

Evaluated Peers 2, 3 1, 2, 3 1, 2, 4, 5 2, 3, 5 3, 4 

Policy Decision 

Radius = 3 

Deny Deny Deny Deny Deny 

Evaluated Peers 2, 3, 4 1, 3, 4, 5 1, 2, 4, 5 1, 2, 3, 5 2, 3, 4 

 

Table 7.8 Service execution times with L+U Policy over Graph 1. 

 Service 1 Service 2 Service 3 Service 4  Service 5 CLM+AMM 

Radius 1 425.75 617.25 542.75 632.75 452.75 10972.75 

Radius 2 691.5 789 839.75 773.75 706.75 11179.5 

Radius 3 761.5 972.25 867.25 945.5 769.25 11316.75 

 

We compare the results that are obtained from L+U Policy with that of U Policy and of L 

Policy. We set the results of L Policy as our reference point and subtract them from the 

results of U Policy and L+U Policy separately. The Figure 7.4 shows the differences in 

execution times for a fixed radius of 3. The results show that L+U Policy has faster execution 

time than U Policy; however, L+U Policy performs slower than L Policy. This correlates 

with our expectations. In L+U Policy, the Underlying rule is only used for the direct 

interaction types, whereas in U Policy, all peers are evaluated against the Underlying rules. 



 177

Moreover, this shows that L+U policy has no additional overhead due to combined L and U 

type rules. 
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Figure 7.4 The comparison of results for the radius of 3. The services are listed on the x-axis. Each service 
has two bars. The first bar shows the difference between L Policy and U Policy; second bar shows the 
difference between L Policy and L+U Policy. All results are measured for radius 3. 

 
 

Case 4: L+U+D Policy   

We finally tested the Graph 1 with L+U+D Policy. We earlier set up the service’s 

credentials such that Service 2 and Service 4 cannot satisfy the Underlying Rule. However, 

they both can satisfy the Delegation-upstream Rule. Therefore, for example, Service 3 

evaluates its Delegation-upstream rule, and returns a permit decision with obligation. The 

obligation requires Service 1 to delegate its credentials to Service 2 at run-time. Note that 

Service 5 also returns a permit decision with obligation. Service 5 would require Service 3 to 

delegate its credential to service 4. In the second round of our framework, the AMM would 

seek the feasibility of this obligation. It would inform Service 1/Service 3 about the 

delegation and ask Service 1/Service 3 to evaluate its collaboration policy once more. Service 
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1/Service3 would evaluate its Delegation-downstream rule and determine whether or not 

delegating its credential. We setup service credentials such that Service 4 can satisfy the 

Delegation-downstream rule, whereas Service 2 cannot. Therefore, Service 1 does not 

delegate its credential, whereas Service 3 accepts to delegate it. Service 1’ rejection of 

delegation would result in failure to meet Service 3’s obligation. The AMM would determine 

that the current collaboration is infeasible for execution.  

All services are setup such that their credentials can satisfy the Local Rule successfully. 

Therefore, the Underlying rule type and the Delegation-upstream rule dictate a policy 

decision. We present the policy decisions for each service in Table for radiuses 2 and 3.  

We start taking measurements from a radius of 2 because Delegation-upstream rule is 

ineffective for a radius of 1, which basically means no delegation at all. The 

DelegationDistance is set according to the evaluation radius. When 

MaximumEvaluationRadius is 2, the Delegation-upstream rule has a DelegationDistance of 

2. When the MaximumEvaluationRadius is 3, the DelegationDistance is set to 3. We repeat 

the measurements for radiuses of 2 and 3. 

For this test case, we want to observe the effect of Delegation-upstream rule (i.e. 

obligation processing) over the execution time. In order to do that, we compare our results 

from L+U+D Policy with L+U Policy. Moreover, we want to observe the time spent in the 

second-round of our framework.  
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Table 7. 9 The policy decision for each service with L+U+D Policy over Graph 1.  

 Service 1 Service 2 Service 3 Service 4 Service 5 
Policy Decision 
Radius = 2 

Permit Permit Permit 
Obligation:  
Delegator: 1 
Delegatee: 3 

Permit  Permit  
Obligation:  
Delegator: 3 
Delegatee: 4 

Policy Decision 
Radius = 3 

Permit Permit Permit 
Obligation:  
Delegator: 1 
Delegatee: 3 

Permit Permit 
Obligation:  
Delegator: 1 
Delegatee: 3 

 
  

Table 7.10 Service execution times for L+U+D Policy.  

 Service 1 Service 2 Service 3 Service 4 Service 5 CLM+AMM 

 

Radius 2      Total Time: 

31484.25 

1st Round 648.5 812.5 867 785 644.5  

2nd Round 54.75 4 105.5 7.5 0  

Radius 3      Total Time: 

31605.25 

1st Round 746 976.5 918 972.75 765.5  

2nd Round 55 7.75 109.5 11.75 0   

  

As seen from Table 7.10 and Figure 7.5, all service’s performed similar to Case 3, which 

tested L+U Policy. In the first-round, the difference is mainly expected in the results of 

Service 3 and Service 5 because they evaluate the Delegation-upstream rules in addition to 

the other rules. As seen in Table 7.9, only Service 3 and Service 5 evaluate the obligations. 

However, our results show that the evaluation of Delegation-upstream rule does not affect the 

execution time significantly.  Note that the AMM receives two obligations to determine their 

feasibility, from Service 3 and Service 5. The AMM evaluates the obligations sequentially. 
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This affects the overall performance of AMM. Due to the waiting periods at each delegator, 

the AMM’s overall execution gets delayed by 20 seconds. We should modify our code to 

evaluate the obligations in a parallel manner to reduce this time. 
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Figure 7.5 Execution time comparison between L+U Policy and L+U+D Policy. Each service has a cluster 
of 4 bars. First bar shows the execution time of Policy 3 with a radius of 2; second bar shows the 
execution time of Policy 4 with a radius of 2; third bar shows the execution time of Policy 3 with a radius 
of 3; fourth bar shows the execution time of Policy 4 with a radius of 3.  

 

For both radiuses, the second-round is only dominated by the delegator service’s 

evaluation speed (Services 1 and Service 3). The time for preparing and sending the 

delegation request to the respective delegators were almost negligible: less than 12 ms in all 

cases. Service 3 responded slower than Service 1. This may be because the permit decision 

takes longer than the deny decision to evaluate. 
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7.2.6 Collaboration Graph 2: 1-Branch 

 

 
Figure 7.6 The Collaboration Graph 2.   

 

We altered the collaboration graph as follows. We added a branch after Service 3. This 

increased the total node number to 6. The added node is called Service 6. At run time, 

Service 3 either interacts with Service 6 or Service 4. However, at planning we have no 

knowledge of which interaction is going to occur; therefore, we included both interactions in 

the collaboration graph and treated them as though they both are going to be performed. This 

was a cautious approach; nevertheless, it was necessary since our focus is on security.  

We repeated the L+U Policy and L+U+D Policy with the new choreography. For the 

remainder, we change our choreography three more times, and each time we repeat L+U 

Policy and L+U+D Policy. For each test run, we only use a radius of 2 and 3, since radius of 

1 is meaningless for L+U+D Policy. For the remainder of this chapter, we focus on 

understanding the affects of different collaboration graphs. 
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Case 5: L+U Policy 

Case 5 tests L+U policy over Graph 2. Due to the additional branch in Graph 2, each 

service must conduct a higher a number of peer-peer evaluations than they did over Graph 1. 

We aim to observe the effect of higher number of peer-peer evaluations in execution times. 

Therefore, we compare L+U Policy over Graph 1 and Graph 2. 

Table 7. 11 The policy decision for each service with L+U Policy over Graph 2.  

 Service 1 Service 2 Service 3 Service 4 Service 5 Service 6 
Policy 
Decision 
Radius = 2 

Deny  Deny Deny Deny Deny Deny 

Evaluated 
Peers 

2, 3 1, 3, 4, 6 1, 2, 4, 5, 6 2, 3, 5 3, 4, 6 2, 3, 5 

Policy 
Decision 
Radius = 3 

Deny Deny Deny Deny Deny Deny 

Evaluated 
Peers 

2, 3, 4, 6 1, 3, 4, 5, 6 1, 2, 4, 5, 6 1, 2, 3, 5 2, 3, 4, 6 1, 2, 3, 5 
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     Figure 7.7 Service execution times for Policy 3 over Graph 1 and Graph 2. The results from Service 6 
is not shown below because Service 6 does not exist in Graph 1. For each service, first bar shows the 
execution time for radius 2 over Graph 1; second bar shows execution time for radius 2 over Graph 2; 
third bar shows execution time for radius 3 over Graph 1; fourth bar shows execution time for radius 3 
over Graph 2. 
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For Radius 2, we expect the results to be similar to that of Graph 1. When the evaluation 

radius is set to 2, Service 1 and Service 4 have no increase in the number peer-peer 

evaluations due to the added branch. Therefore, their performances should remain unaffected, 

whereas all other services must execute slightly slower than Case 3 because they all conduct 

a higher peer-peer evaluation. The results overlap with our expectations, as shown in Figure 

7.7. For radius 3, we expect an increase in the execution time of all peers because all of them 

evaluate a higher number of peers than that of Case 3 and that of radius 2. The results again 

support our expectations. 

 

 Case 6: L+U+D Policy 

Case 6 is a test run of L+U+D Policy over Graph 2. In Case 6, we aim to observe how 

much evaluation of Delegation-upstream rules affects the execution time. In order to this, we 

compare results of L+U+D Policy with the L+U Policy over the Graph 2. Each services 

policy decisions are presented in Table 7.12. 

Table 7. 12 The policy decision for each service with L+U+D Policy over Graph 2.  

 Service 1 Service 2 Service 3 Service 4 Service 5 Service 6 
Policy 
Decision 
Radius = 2 

Permit Permit Permit 
Obligation:  
Delegator: 1 
Delegatee: 3 

Permit  Permit  
Obligation:  
Delegator: 
3 
Delegatee: 
4 

Permit 

Policy 
Decision 
Radius = 3 

Permit Permit Permit 
Obligation:  
Delegator: 1 
Delegatee: 3 

Permit Permit 
Obligation:  
Delegator: 
1 
Delegatee: 
3 

Permit 

 

Service 1, Service 2, Service 4, and Service 6 are already returning permit results; they do 

not evaluate their Delegation-upstream rules. Therefore, their execution times must be 
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identical to that of L+U Policy. Only Service 3 and Service 5 evaluate their Delegation-

upstream rules. However, we do not expect a significant difference in the results of Service 3 

and Service 5 because from the earlier test runs, we observed that evaluating Delegation-

upstream rule does not severely impact the execution time. 

Table 7.13 Service execution times with L+U+D Policy over Graph 2. 

 Service 1 Service 2 Service 3 Service 4 Service 5 Service 6 CLM+AMM 

Radius 2       Total Time: 

31820.25 

1st Round 668 1105.5 1173 883 941.5 879  

2nd Round 50.5 7.75 120 5 0 0  

Radius 3       Total Time: 

32136.75 

1st Round 1109.5 1461.25 1304.5 1167.75 1199.25 1086  

2nd Round 50.5 7.75 97.25 3.75 0 0  
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Figure 7.8 Service execution times for L+U Policy and L+U+D Policy over Collaboration Graph 2. The x-
axis shows Services 1 through 6 and the CLM+AMM. For each service, first bar shows the execution time 
for radius 2 with L+U Policy; second bar shows execution time for radius 2 with L+U+D Policy; third bar 
shows execution time for radius 3 with L+U Policy; fourth bar shows execution time for radius 3 with 
L+U+D Policy. 

 

The results obtained overlap with our expectations. As seen from Figure 7.8, Service 1, 2, 

4 and 6 obtains almost identical results to that of L+U Policy. Service 5 and Service 3 are not 

severely impacted by the evaluation of Delegation-upstream rules.   

For the second-round measurements, we obtain results almost identical to that of Policy 

L+U+D over Graph 1. The delegatees spend negligible time to prepare and send their 

delegation requests, whereas the delegators dominate the time spent in round-two. For both 

radiuses, permit decision from Service 3 takes twice as much as deny decision from Service 

1.  Service 1 and Service 3 sequentially spends 20 seconds in waiting periods before they 

start evaluating the delegation requests. This causes an additional 20 sec delay, on top of 10 

second spent in the first-round, in the execution time of CLM+AMM.       
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Our conclusion from Case 6 is that adding a branch slows the overall execution time 

down, and the evaluation of Delegation-upstream rules does not have a visible affect on the 

execution times. 

 

7.2.7 Collaboration Graph 3: Double Branching Effect 

 

 
Figure 7.9 The Collaboration Graph 3. 

 

We changed our choreography by adding another branch. The branch is added to the 

node of Service 1. As a result, Service 1 and Service 3 are connected with a direct 

interaction. The added branch creates new connections between services that are previously 

not connected or their connections were beyond the evaluation radiuses. Such as service 1 

and Service 5 are now connected when the evaluation radius is set to 3. This should increase 

the evaluation time for the services because they should evaluate more peers than in earlier 

cases. We analyzed the new choreography with L+U Policy and L+U+D Policy. 
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Case  7: L+U Policy 

In Case 7, we test L+U Policy over Graph 3. We compare our results with that of L+U 

policy over Graph 2. We aim to see how much the additional branch affects the execution 

time. The service policy decisions are presented in Table 7.14. 

Table 7. 14 The policy decision for each service with L+U Policy over Graph 3.  

 Service 1 Service 2 Service 3 Service 4 Service 5 Service 6 
Policy 
Decision 
Radius = 2 

Deny  Deny Deny Deny Deny Deny 

Evaluated 
Peers 

2, 3, 4, 6 1, 3, 4, 6 1, 2, 4, 5, 6 1, 2, 3, 5 3, 4, 6 1, 2, 3, 5 

Policy 
Decision 
Radius = 3 

Deny Deny Deny Deny Deny Deny 

Evaluated 
Peers 

2, 3, 4, 5, 6 1, 3, 4, 5, 6 1, 2, 4, 5, 6 1, 2, 3, 5 1, 2, 3, 4, 6 1, 2, 3, 5 
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Figure 7.10 Service execution times for L+U Policy over Graph 2 and Graph 3. The x-axis shows Services 
1 through 6. For each service, first bar shows the execution time for radius 2 over Graph 2; second bar 
shows execution time for radius 2 over Graph 3; third bar shows execution time for radius 3 over Graph 
2; fourth bar shows execution time for radius 3 over Graph 3. 

 

All services should be affected by the second branch because it increases the number of 

peer-peer evaluations for each service (Table 7.14). For Radius 3, the worst-case scenario 
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occurs and each service evaluates all other services present in the collaboration. This causes 

cause slower execution times than that of Graph 1 (Figure 7.10). 

 

Case 8: L+U+D Policy 

Case 8 tests L+U+D Policy over Graph 3, and compares the results with results of L+U 

Policy over the same graph, Graph 3.   

Table 7. 15 Service policy decisions with L+U+D Policy over Graph 3. 

 Service 1 Service 2 Service 3 Service 4 Service 5 Service 6 
Policy 
Decision 
Radius = 2 

Permit Permit Permit 
Obligation:  
Delegator: 1 
Delegatee: 3 

Permit  Permit  
Obligation:  
Delegator: 3 
Delegatee: 4 

Permit 

Policy 
Decision 
Radius = 3 

Permit Permit Permit 
Obligation:  
Delegator: 1 
Delegatee: 3 

Permit Permit 
Obligation:  
Delegator: 1 
Delegatee: 3 
 
Obligation: 
Delegator: 1 
Delegatee: 4 

Permit 

 

In this test run, we are interested in comparing L+U+D Policy results with L+U Policy 

results over the same graph because L+U+D Policy has a high number of obligations when 

the radius is set to 3 (3 obligations), (Table 7.15). We want to see how increase in obligations 

affects the execution time.    
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Table 7.16 Service execution times with L+U+D Policy over Collaboration Graph 3.  

 Service 1 Service 2 Service 3 Service 4 Service 5 Service 6 CLM+AMM 

Radius 2       Total Time: 

32019.5 

1st Round 1199.25 1206.75 1261.75 1202.75 949 1199  

2nd Round 50.75 12 136.5 7.5 0 0  

Radius 3       Total Time: 

22251.75 

1st Round 1585.75 1386.75 1367 1332 1785.25 1308.5  

2nd Round 50.75 3.75 0 0 0 0  

   

Since Services 1, 2, 4 and 6 do not evaluate their Delegation-upstream rule, their 

execution times must be similar to their results from L+U Policy over Graph 3. This is 

supported by the data collected. The Services 3 and 5 evaluate Delegation-upstream rule in 

addition to the Local and Underlying rules. However, as before, the evaluation of Delegation-

upstream rule does not affect their performance severely (Figure 7.11).  
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Figure 7.11 Service execution times for Policy 3 and Policy 4 over Collaboration Graph 3. The x-axis 
shows Services 1 through 6 and the CLM+AMM. For each service, first bar shows the execution time for 
radius 2 with Policy 3; second bar shows execution time for radius 2 with Policy 4; third bar shows 
execution time for radius 3 with Policy 3; fourth bar shows execution time for radius 3 with Policy 4. 

 

Note that in the second-round of radius 3, we have only a single obligation that is being 

evaluated. When radius is set 2, the AMM first checks the feasibility of Service 5’s 

obligation. This requires Service 4 to send a delegation request to Service 3. As before, 

Service 3 grants this request. The AMM then evaluates the feasibility of Service 3’s 

obligations, which requires Service 1 to delegate to Service 2. However, when we set our 

radius to 3, the second-round results change. The Service 5’s obligation is never evaluated. 

This is because the AMM first receives the Service 3’s obligation. The AMM, therefore, first 

checks the feasibility of Service 3’s obligation. Once Service 1 declines the delegation 

request, the AMM determines that the collaboration is infeasible as it is. It terminates the 

second-round before checking the feasibility of Service 5’s obligation. Therefore, the time 

spent for the waiting period is only 10 seconds, instead of 20. This is why for radius 3, the 

CLM+AMM has a 10 seconds faster execution time than the execution time of radius 2.  
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7.2.8 Collaboration Graph 4: Same Service Multiple Appearance 

 

 

Figure 7.12 Collaboration Graph 4. 

 

We changed the choreography such that Service 3 takes over the responsibility of Service 

5, and appears twice in the choreography. Even though Service 3 and Service 5 accomplish 

different tasks, we assumed that Service 3 had the functionality to accomplish both tasks. 

This assumption is rooted in the fact that services usually have multiple operations advertised 

in their WSDL files, and each operation can be utilized for different functionalities. 

Therefore, a service may be selected to join a collaboration with two different operations.  As 

a result, we wanted to observe the effect of having a service multiple times in a single 

collaboration. Below, we only present the results pertaining to Service 3, and skip other 

services’ results because their results must be identical to that of Graph 3.   
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Case 9: L+U Policy    

Although we expected a drastic change in Service 3’s performance, it remains almost the 

same. This is because Service 3 evaluates two separate sub-collaboration graphs (a sub-

collaboration graph for each appearance of Service 3); however, after evaluating the first sub-

collaboration graph, Service 3 returns a deny decision and terminates its evaluation. 

Therefore, the results collected in this round are not different than that of Case 7, where we 

tested L+U Policy over Graph 2.  

 

Case 10: L+U+D Policy     

Service 3 should evaluate a permit decision with 3 obligations: the first obligation is due 

to the first appearance of Service 3 in Graph 4; the second and third obligations are due to the 

second appearance of Service 3 in Graph 4 (formerly Service 5). Service 3 evaluates the three 

obligations sequentially. This is unlike the previous case, where Service 5 evaluated two 

obligations in parallel with Service 3. We are interested in how evaluating 3 Delegation-

upstream rules in sequential affects the execution time of Service 3.   

Table 7.17 Service 3’s policy decision with L+U+D Policy over Graph 4. 

 Service 3 
Policy Decision 
Radius = 2 

Permit 
Obligation:                     Obligation: 
Delegator: 1                    Delegator: 3 
Delegatee: 3                    Delegatee: 4 

Policy Decision 
Radius = 3 

Permit 
Obligation:                       Obligation: 
Delegator: 1                      Delegator: 1 
Delegatee: 3                      Delegatee: 3 
 
                                          Obligation: 
                                          Delegator: 1 
                                          Delegatee: 4 
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Table 7.18 Service execution times with L+U+D Policy over Graph 4. 

 Service 3 

Radius 2  

1st Round 1617.25 

2nd Round 0 

Radius 3  

1st Round 2187.25 

2nd Round 0 

 

For radius 2, the execution time increased by 355.5 ms (28%); for radius 3, the execution 

time increased by 820.25ms (60%), (Figure 7.13). For radius 2, Service 3 had one additional 

obligation, whereas for radius 3, Service 3 had two additional obligations. The increase in 

number of obligations is reflected proportionally in the execution time. This is expected 

because our algorithm evaluates the obligations in a sequential manner. However, in our 

earlier test runs, we have not observed a significant change in execution times due to the 

obligations. In order to understand if this case is an anomaly due to a change in our execution 

environment, we conduct one more test case.     
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Figure 7.13 Service execution times for L+U+D Policy over Collaboration Graph 4 and Collaboration 
Graph 3. The x-axis shows Service 3 only. First bar shows the execution time for radius 2 over Graph 3; 
second bar shows execution time for radius 2 over Graph 4; third bar shows execution time for radius 3 
over Graph 3; fourth bar shows execution time for radius 3 over Graph 4.  

 

7.2.9 Collaboration Graph 5: Multiple Interactions 

 

 

 

Figure 7.14 The Collaboration Graph 5. 
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 Graph 5 includes multiple interactions between the same two services. This use case 

happens when a service has multiple operations defined in its WSDL. Such a service can 

have multiple interactions with another service. We also maintained that Service 3 appears 

twice in the collaboration graph.  

A service identifies an interaction as original when the service’s operation interacts with 

another service that the operation has not interacted before. For example, between Service 2 

and Service 3, there appears to be 3 interactions. However, from Service 3’s perspective, 

there are only two original interactions: op3.1 interacts with op2.1; op3.2 interacts with 

op2.2. The interaction between op3.2 and op2.1 is not original for security purposes because 

all operations of Service 2 inherit the same credential from Service 2. op3.2 already listed 

Service 2 in its list of interaction partners due to op2.2, therefore, listing Service 2 again due 

to the interaction with op2.1 is not going to benefit the security evaluations. (For a full 

explanation of this issue, reader may refer to Chapter 6 – Discussion of the CLM.) Likewise, 

from Service 2’s perspective, there are two original interactions with Service 3. As a result of 

multiple interactions, all services have twice as much peer-peer evaluation as the previous 

choreographies. We observe the affect of increased interactions over the execution time. 

 

 

 

 

 

 

 



 196

Case 11: L+U Policy   

Table 7. 19 The policy decision for each service with L+U Policy over Graph 5.  

 Service 1 Service 2 Service 3 Service 4 Service 6 
Policy 
Decision 
Radius = 2 

Deny  Deny Deny Deny Deny 

Evaluated 
Peers 

2, 3, 4, 6 1, 3, 4, 6 1, 2, 4, 6 1, 2, 3, 5 1, 2, 3 

Policy 
Decision 
Radius = 3 

Deny Deny Deny Deny Deny 

Evaluated 
Peers 

2, 3, 4, 6 1, 3, 4, 6 1, 2, 4, 6 1, 2, 3 1, 2, 3 

 

Due to the increased peer-peer evaluations, all services’ execution times should increase 

significantly. We compare results of L+U policy with Case 9, where L+U Policy is tested 

over Graph 4. As Figure 7.15 shows, the execution times almost doubles. This overlaps well 

with our expectations. Note that for Service 3, over the Graph 5, the change from radius 2 to 

radius 3 does not make a big impact over the execution time. This is because Service 3’s first 

appearance in the graph already evaluates all of its peers with a radius of 2. Also note that 

second appearance of Service 3 (formerly Service 5) is not evaluated at all because after 

evaluating its first appearance Service 3 returns a deny decision to the AMM, and terminates 

its policy evaluation.  
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Figure 7.15 Service execution times for L+U Policy over Collaboration Graph 5 and Collaboration Graph 
4.  Service 5 is not shown because it is not included in Graph 5. For each service, first bar shows the 
execution time for radius 2 over Graph 4; second bar shows execution time for radius 2 over Graph 5; 
third bar shows execution time for radius 3 over Graph 4; fourth bar shows execution time for radius 3 
over Graph 5. 

    

Case 12: L+U+D Policy 

In this case, the number of obligations that are evaluated by Service 3 is significantly 

higher than that of the previous cases (Table 7.21). We are mainly interested in how this 

increase affects the execution time of Service 3.  
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Table 7. 20 Service policy decisions with L+U+D Policy over Graph 5. 

 Service 1 Service 2 Service 3 Service 4 Service 6 
Policy 
Decision 
Radius = 2 

Permit Permit Permit 
 
Obligation:                         Obligation: 
Delegator: 1                       Delegator: 3 
Delegatee: 3                       Delegatee: 4 
 
Obligation:                        Obligation:   
Delegator: 1                      Delegator: 3 
Delegatee: 3                      Delegatee: 4 
 

Permit  Permit 

Policy 
Decision 
Radius = 3 

Permit Permit Permit 
Obligation:                         Obligation:   
Delegator: 1                       Delegator: 3 
Delegatee: 3                       Delegatee: 4 
 
Obligation:                         Obligation: 
Delegator: 1                       Delegator: 3 
Delegatee: 3                       Delegatee: 4 
 
Obligation:                         Obligation:  
Delegator: 3                       Delegator: 3 
Delegatee: 4                       Delegatee: 4 
 

Permit Permit 

    

Table 7.21 Service execution times with L+U+D Policy over Graph 5.  

 Service 1 Service 2 Service 3 Service 4 Service 6 CLM+AMM 

Radius 2       

1st Round 1613.25 1492.25 2496.25 1523.75 1562.5 22980.5 

2nd Round 54.75 3.75 0 0 0  

Radius 3       

1st Round 2418 1898.25 3656.25 1629 1730.5 24160 

2nd Round 46.75 4 0 0 0  

 

We compare the current results with that of Case 10, where we use L+U+D Policy over 

Graph 4. The only difference between Graph 5 and Graph 4 is the multiple interactions. Over 

Graph 5, Service 3 has 4 obligations with radius 2. Over Graph 5, Service 3 has 6 obligations 

with radius 3. Over Graph 4, Service 3 has 2 obligations with radius 2. Over Graph 4, Service 
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3 has 3 obligations with radius 3. As seen in Figure 7.16, for radius 2, the Service 3’s 

execution time is increased by 50%, whereas, for radius 3, the execution time is increased by 

67%. These results make us realize that a significant increase in the number of obligations 

affects the execution time significantly as well.       
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Figure 7.16 Service 3 execution times for L+U+D Policy over Graph 4 and Graph 5.  For each service, 
first bar shows the execution time for radius 2 over Graph 4; second bar shows execution time for radius 
2 over Graph 5; third bar shows execution time for radius 3 over Graph 4; fourth bar shows execution 
time for radius 3 over Graph 5. 

 

7.3 Performance Conclusion 

Our tests showed us that there are two significant variables dictating a service’s execution 

time: the number of peer-peer evaluations and the Delegation-upstream rules (i.e. the 

obligations). The number of peer-peer evaluations I all cases increased the execution time 

significantly. Our data does not allow us to determine the nature of this increase whether it is 

linear or non-linear with the number of peer-peer evaluations. We must conduct experiments 

over a larger cluster so that the number of service nodes can increase significantly. 
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We also understood that Delegation-upstream rules could be effective over the execution 

time. This effect does not show up for small number of obligations such as one or 2. 

However, when we increase the number of obligations to 6, we realized that the processing 

of the obligations almost took up half of the execution time.  

Finally, we observed that utilizing different type of rules combined in a policy did not 

cause any additional overhead. For U type rules, evaluating an additional policy clearly 

affects the execution time. In order to get a realistic view, we should conduct more 

experiments such that different Underlying security mechanisms are used.   

Overall, we concluded that we must conduct tests with more complicated collaborations 

that span tens if not hundreds of service nodes. This would give a glimpse of real-life 

collaboration scenarios that occurs in scientific application domain. However, our initial 

results are promising in that they are almost insignificant compared with the actual execution 

time expected from a collaboration. In scientific application domain, the collaborations are 

expected to run at least for hours. Therefore, the overhead we introduced into the planning 

stage is miniscule. Moreover, this overhead is quite desirable when considering that an 

access failure arises hours after a collaboration starts executing, forcing the end user to repeat 

the entire planning and execution stages.    
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Chapter 8: 
Conclusions and Future Work 
 
 

Dynamic collaborations provide the ideal computing environments, in which otherwise 

unsolvable tasks can be tackled by combining available services from different domains. The 

users can harness services on-demand, based on their needs, and avoid issues, such as 

software writing and maintenance, low performance, and storage, which can all be handled 

by individual services. The service-oriented architecture provides the essential infrastructure 

that allows services to collaborate with each other. The emerging Web-Services standards 

bring openness and ease of collaboration into the computing field. 

The reflections of this change are felt at various levels, including our personal lives. We, 

as end users, have started to take it granted that, for example, an online apartment search 

engine must use Google Maps in order to show us not only the features of a rental property, 

but also its location in the city. The lack of such combined services drives the end user away 

with frustration although even a naïve end user can copy a property’s address and past it into 

the Google Maps search bar in a few seconds. This usage trend indicates us that 

connectedness and collaboration among the services are becoming the norm.       

However, the highly appreciated benefits of collaboration come with the cost of more 

complicated security and trust problems. Our work focuses on these issues from an access 

control standpoint. We have two prime research questions: How can a service owner 

determine it is safe to join a collaboration ?; How can an end user determine if a 

collaboration is feasible for execution from security perspective ? 
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What makes collaborations different from traditional one-one relationships is that a 

collaboration requires multiple interactions among all of its participants. It is impossible to 

isolate a participant from a certain group of other participants because, by definition, a 

collaboration is built so that the participants can interact and share with each other. Even 

when two participants are not explicitly interacting, which is to say there is no direct data 

exchange between them, they in fact interact indirectly through other participants that have 

direct connections with them. This taught us that a service owner who joins the collaboration 

must consider the entire collaboration context, not just one or two interactions that his service 

is explicitly involved in.  

This realization motivated us to understand the nature of interactions within a 

collaboration. We developed a model for interactions and classified them with respect to the 

different security threats that they introduce to a service. This naturally lent itself to 

developing an access control model and policy model that allows for specifying unique 

access requirements for different interaction types. We believe that our model is the first one 

that is tailored for dynamic collaborations.  

A natural extension of our findings is to understand how this knowledge can be used in a 

framework so that collaborations can be built dynamically and execute without security 

failures, which becomes our second prime research question. As a solution we developed an 

access control framework that can be integrated into a collaboration engine. Service owners 

are informed about the collaboration context and they perform their own peer-peer trust 

evaluations. By moving the peer-peer trust evaluations into the planning stage, our 

framework mitigates the security failures. In addition, our framework increases services’ 
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willingness to join a collaboration because they have full control over how their interactions 

(hence their data) are propagated across the collaboration.  

We believe that our work is practical not only in scientific application domain, but also in 

the e-commerce domain. An emerging problem in this domain is the intellectual property and 

confidentiality issues, and the conflict of interest scenarios that often occur between rival 

companies. In such scenarios access control is geared towards ensuring that business 

practices are translated to the virtual domain, such as honoring partnership agreements, 

licenses, or refraining from interactions with a rival company. Our access control model can 

express and enforce these concerns. In fact, as our future work, we plan to show how conflict 

of interest scenarios can be detected in a collaboration. We will demonstrate that such 

detection cannot be done without analyzing the collaboration context.   

8.1 Future Work 

We are interested in understanding the overhead of our security evaluations over the 

execution time. Our initial findings show that the number of peer-peer evaluations increases 

the execution time proportionally. Parallel execution techniques must be researched in this 

area. Moreover, large collaborations can have slower execution times due to large number of 

obligations that must be processed. Our initial experiments showed that when the number of 

obligations that must be processed by a service increases significantly, the processing time of 

the obligations becomes a significant overhead. Finally, we should experiment with large 

collaborations that span tens of services, scattered across the network. This would give us a 

realistic idea about the overhead. 

Another future work area is redeeming an infeasible collaboration. Currently, we only 

determine whether a collaboration is ready for execution. We do not make any suggestions 
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over what changes must be made in order to redeem the collaboration. This includes giving 

feedback to the planning engine so that different services can be assigned to the tasks. An 

important question is if a service owner refuses participation due to an un-trusted peer, 

should we replace the service refusing to partake or the un-trusted peer. The answer is 

dependent upon the collaboration: if one these services are absolutely necessary for the 

collaboration, then the other one can be replaced; alternatively, if one of the services has may 

interactions with other peers and they are all authorized, replacing the peer with less 

interactions would be more meaningful. We should understand what other variants are 

important in making this decision. Once this issue is studied, we can develop methods for 

optimizing the time spent in redeeming an infeasible collaboration graph. The redemption 

process may require multiple steps in which a different service may be replaced. In order to 

minimize this process, adequate optimization methods must be studied.  

Another future work area is to determine the feedback given to the service owners. 

Currently, we give no feedback apart from the collaboration is ready for execution or not. We 

must research on this subject to understand if giving more detailed feedback is beneficial.  

The final research area is to determine how we can leverage our framework to detect and 

eliminate conflict of interest scenarios in collaborations. Currently, the conflict of interest is 

widely studied in homogenous collaborations where all participants belong to the same 

security domain. The conflicts can be detected and prevented by a central policy. In 

heterogeneous, dynamic collaborations this cannot be achieved; each service has a different 

confidential policy. Our framework already allows each service owner to evaluate the 

collaboration context to determine access. We are curious to see whether a service’s 

collaboration policy can express access requirements such that these requirements detect and 
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prevent the conflicts within a collaboration. As a result, the collaboration policies not only 

protects the service from unauthorized accesses during the collaboration, but also detects 

possible conflict scenarios.   
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