

ABSTRACT

ALTUNAY, MINE. Collaboration Policies: Access Control Management in SOA-based
Dynamic Collaborations. (Under the direction of Gregory T. Byrd.)

Service-oriented architectures change the computing paradigm by providing easily

accessible services and by promoting collaborations among the provided services. The

services can be harnessed with other services to create more powerful services. Ideally, the

end user expects to select from an existing service pool, mix-and-match services, and come

up with original applications that are tailored to his unique needs.

A collaboration is a collection of services that harnessed together to achieve a common

goal. During run-time, each service is expected to interact with multiple peer services. An

interaction occurs in the form of a data exchange between two peer services. Although

collaboration significantly helps tackling difficult problems, it also leads to the increased

exposure of a service. First, the collaborations are often short-termed and dynamically built

based on end-user’s demands. Therefore, there may not be established trust relationships

among peers. Second, during run time, a service becomes exposed to the all of the

collaborative peers. The interactions within the collaboration are not isolated from one

another. Instead, each interaction consecutively follows one another in order to propagate

data among multiple parties. As a result, a service is not only exposed to the peers with

which it directly interacts, but also exposed to other peers due to indirect interactions.

We approach the access management from a service owner’s perspective. We first study

the type of interactions that are present in a collaboration. Based on the identified interaction

types, we discuss the security threats that can arise with each interaction type. Our access

control model aims to mitigate these security threats. Our access control model is designed to

evaluate a collaboration context, and it recognizes the multitude of information present

within a collaboration context: varying interactions, different peers engaged in these

interactions, and the actions taken by each of these peers.

In order to express access requirements from a collaboration, we designed collaboration

policies. A collaboration policy contains access rules that are specified to evaluate the

collaboration context. A service owner can associate each access rule with a specific

interaction type. As a result, different peers with different interaction types are applied

against different access requirements. In other words, our access control model varies access

requirements from a collaborative peer depending on the collaboration context.

We encompass our work inside a framework. We develop a system architecture where

each service that is invited into the collaboration can use its own collaboration policy to

reach a decision. These evaluations are carried out as peer-peer trust evaluations. Our

framework provides a message infrastructure that is used to carry out these evaluations.

Moreover, the results of the security evaluations are collected and are used to determine the

feasibility of the collaboration. We determine a collaboration is feasible when each

collaborative service is willing to join the collaboration as a result of its security evaluations.

Our work aims to provide a secure and autonomous computing environment, and it aims

to promote collaboration among services. We do this by enabling service owner’s with

necessary means to protect themselves, and by encompassing these decisions into a

framework.

COLLABORATION POLICIES: ACCESS CONTROL MANAGEMENT IN SOA-
BASED DYNAMIC COLLABORATIONS

by
MINE ALTUNAY

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

COMPUTER ENGINEERING

Raleigh, NC

2007

APPROVED BY

 Eric Rotenberg Douglas S. Reeves

 Ralph A. Dean Gregory T. Byrd

 Co-Chair of Advisory Committee Chair of Advisory Committee

 ii

BIOGRAPHY

Mine Altunay was born in Turkey, on September 9, 1979. She attended Bursa Science

and Math High School, and later graduated from Bilkent University with a Bachelor of

Science Degree in Electrical and Electronics Engineering, 2001. Immediately after

graduation, she moved to the U.S.A. to purse graduate studies in Computer Engineering

at North Carolina State University.

 iii

ACKNOWLEDGEMENTS

There are a few people, without whom I could not have completed this body of work. I

would like to take this opportunity to express my deep gratitude and thanks to those. Dr.

Greg Byrd and Doug Brown contributed immensely to my education, not only in academic

terms, but also other aspects of life. I cannot thank them enough for their availability,

accessibility and patience. My family was the strongest driving force behind me that enabled

me to complete this work; without their support, I could not have possibly been where I am

today. My mother, my aunt, Gulcan Ozer, my uncle, Kadir Ozer, and my sister are the people

that I cannot thank enough. Sarah Timberlake was not only a friend, but she was my

extended family here; she is no different than a sister in my heart.. Also, I like to thank my

aunt for making me believe that I can achieve anything I want (and also I can graduate within

6 short months). I am very blessed that I have such great role models and have such a

wonderful family.

There are several friends, family members, professors, and fellow graduate students that

helped me in so many ways. I cannot list all the names in this restricted space, but I am

thankful to all of them.

 iv

TABLE OF CONTENTS

LIST OF TABLES... vi
LIST OF FIGURES ... viii
1. Introduction... 1

1.1 Contributions of the Work .. 7
2. Background and Related Work... 11

2.1 Background and Assumptions .. 11
2.2 Interaction Types .. 17
2.3 Security Issues and the Related Work .. 21

2.3.1 Workflow Authorization Management ... 22
2.3.2 Conflict of Interest ... 25
2.3.3 Delegation of Rights .. 29
2.3.4 Business Regulations and Partnerships.. 32

3. Collaboration Policies... 33
3.1 Access Control Model... 33
3.2 Collaboration Policy Model.. 40

3.2.1 Policy Model Requirements.. 41
3.2.2 Collaboration Policy Model.. 42

3.3 The Collaboration Policy Syntax .. 50
3.3.1 Combination Logic ... 50
3.3.2 Maximum Evaluation Radius ... 51
3.3.3 Access Rule Syntax... 51

3.4 Access Rule Types.. 59
3.4.1 Underlying (U) Rule Type .. 60

3.5 The Collaboration Policy Implementation.. 63
3.5.1 Collaboration Request Model ... 64
3.5.2 Collaboration Rules .. 70
3.5.3 Collaboration Rule Types: Local and Underlying .. 71

4. Delegation of Credentials ... 78
4.1 Delegation-upstream (DU) Rule Type... 79
4.2 Delegation-downstream (DD) Rule Type.. 83
4.3 Implementation of Delegation-upstream (DU) Rules.. 88
4.4 Implementation of Delegation-downstream (DD) Rules... 92

5. Evaluation of Collaboration Policies ... 98
5.1 Preparation of Collaboration Requests ... 99
5.2 Evaluation of the Collaboration Request .. 106

5.2.1 Evaluation of Type DU Rules.. 112
5.2.2 Evaluation of Type DD Rules.. 129

6. The System Architecture... 133
6.1 The Collaboration Locator Module .. 136
6.2 The Authorization Management Module.. 144
6.3 The Policy Enforcement Point .. 147

 v

6.3.1 The Scope of a Collaboration Policy: The Calculation of Evaluation Radiuses
………………………………………………………………………………148

6.4 Policy Decision Point.. 151
6.5 The Interaction Patterns Among the Modules .. 151

6.5.1 Round-One.. 152
6.5.2 Round-Two ... 157

6.6 The Security Analysis of Our Framework .. 160
7. Deployment and Measurements.. 164

7.1 Deployment... 164
7.2 Performance Measurements.. 165

7.2.1 Collaboration Policy 1 (L Policy) ... 168
7.2.2 Collaboration Policy 2 (U Policy)... 168
7.2.3 Collaboration Policy 3 (L+U Policy).. 168
7.2.4 Collaboration Policy 4 (L+U+D Policy)... 169
7.2.5 The Collaboration Graph 1: The Simplest Case ... 170
7.2.6 Collaboration Graph 2: 1-Branch.. 181
7.2.7 Collaboration Graph 3: Double Branching Effect .. 186
7.2.8 Collaboration Graph 4: Same Service Multiple Appearance........................ 191
7.2.9 Collaboration Graph 5: Multiple Interactions... 194

7.3 Performance Conclusion... 199
8. Conclusions and Future Work .. 201

8.1 Future Work .. 203
REFERENCES ... 206

 vi

LIST OF TABLES

 Page

Chapter 7

 Table 7.1 Services’ policy decisions with L Policy over Graph 1………………….171

 Table 7.2 The service execution times with L Policy over Graph 1………………..171

 Table 7.3 The difference in execution times with changing radiuses………………172

 Table 7.4 The policy decision for each service with U Policy over Graph 1……....173

 Table 7.5 Service execution times for U Policy over Graph 1……………………..173

Table 7.6 The difference between the execution time for changing radiuses with U
Policy. ………………………………………………………………………………174

Table 7.7 The policy decision for each service with L+U Policy over Graph 1…....176

Table 7.8 Service execution times with L+U Policy over Graph 1………………...176

Table 7.9 The policy decision for each service with L+U+D Policy over Graph 1
………………………………………………………………………………………179

Table 7.10 Service execution times for L+U+D Policy…………………………….179

Table 7.11 The policy decision for each service with L+U Policy over Graph 2…..182

Table 7.12 The policy decision for each service with L+U+D Policy over Graph 2
………………………………………………………………………………………183

Table 7.13 Service execution times with L+U+D Policy over Graph 2……………184

Table 7.14 The policy decision for each service with L+U Policy over Graph 3…..187

Table 7.15 Service policy decisions with L+U+D Policy over Graph 3…………...188

Table 7.16 Service execution times with L+U+D Policy over Collaboration Graph 3.
………………………………………………………………………………………189

 vii

Table 7.17 Service 3’s policy decision with L+U+D Policy over Graph 4………...192

Table 7.18 Service execution times with L+U+D Policy over Graph 4……………193

Table 7.19 The policy decision for each service with L+U Policy over Graph 5…..196

Table 7.20 Service policy decisions with L+U+D Policy over Graph 5…………...198

Table 7.21 Service execution times with L+U+D Policy over Graph 5……………198

 viii

LIST OF FIGURES

 Page

Chapter 1

 Figure 1.1 Our framework………………………………………………………….…8

Chapter 2

 Figure 2.1 Phases of workflow construction and execution…………………………12

Figure 2.2 Collaboration scenario……………………………………………………18

Chapter 3

 Figure 3.1 The collaboration request for Service 3…………………………………..37

Figure 3.2 Fine-grained collaboration request for Service 3………………………...40

Figure 3.3 The Policy model…………………………………………………………45

Figure 3.4 The collaboration policy stated in Example 1…………………………....46

Figure 3.5 The collaboration policy stated in Example 2……………………………47

Figure 3.6 The collaboration policy stated in Example 2……………………………48

Figure 3.7 The collaboration policy stated in Example 2……………………………49

Figure 3.8 A sample collaboration request implemented with XACML access
requests………………………………………………………………………………66

Chapter 4

Figure 4.1 Delegation of credentials scenario………………………………………..85

 ix

Chapter 5

Figure 5.1 The collaboration request created by service A’s PEP………………….106

Figure 5.2 The evaluation of a collaboration proposal……………………………..111

Figure 5.3 The evaluation of a failing collaboration request against a Du rule…….116

Chapter 6

Figure 6.1 The system architecture……………………….………………………...133

Figure 6.2 The sub-collaboration graph for Service A…...………………………...140

Figure 6.3 The multiple interactions between two services………………………...141

Figure 6.4 Multiple interactions…………………………………………………….143

Figure 6.5 The Round-One of our framework……………………………………...152

Figure 6.6 The Second-Round of our framework…………………………………..157

Chapter 7

 Figure 7.1 Collaboration Policy 4.………………………………………………….169

Figure 7.2 Collaboration Graph 1…………………………………………………..170

Figure 7.3 The difference in execution times with respect to L Policy and U

Policy……………………………………………………………………………….175

Figure 7.4 The comparison of results for the radius of 3…………………………...177

Figure 7.5 Execution time comparison between L+U Policy and L+U+D Policy…180

Figure 7.6 The Collaboration Graph 2……………………………………………...181

Figure 7.7 Service execution times for Policy 3 over Graph 1 and Graph 2……….182

 x

Figure 7.8 Service execution times for L+U Policy and L+U+D Policy over
Collaboration Graph 2………………………………………………………………185

Figure 7.9 The Collaboration Graph 3……………………………………………...186

Figure 7.10 Service execution times for L+U Policy over Graph 2 and Graph 3….187

Figure 7.11 Service execution times for Policy 3 and Policy 4 over Collaboration
Graph 3……………………………………………………………………………...190

Figure 7.12 Collaboration Graph 4…………………………………………………191

Figure 7.13 Service execution times for L+U+D Policy over Collaboration Graph 4
and Collaboration Graph 3………………………………………………………….194

Figure 7.14 The Collaboration Graph 5…………………………………………….194

Figure 7.15 Service execution times for L+U Policy over Collaboration Graph 5 and
Collaboration Graph 4………………………………………………………………197

Figure 7.16 Service 3 execution times for L+U+D Policy over Graph 4 and Graph 5
………………………………………………………………………………………199

 1

Chapter 1:
Introduction

The service-oriented architecture [W3C04] provides a computational environment that is

not constrained by geographical or organizational proximity. The computational environment

contains various services that are drawn from different organizations and are provided for the

end users. A service is the smallest building block of the service-oriented architecture, and

each service provides a particular functionality. The end user has a variety of choices for his

needs; he can select a single service, or combine multiple services in various ways.

The service-oriented architecture promotes collaboration among the services. Services are

expected to cooperate and interact with each other, and they are harnessed together to create

non-trivial applications. In order to fully realize service-oriented architectures, uniform

patterns of interactions between services must be developed. To satisfy this need, bodies such

as OASIS [OASIS] and W3C [W3C] have defined several standards. These standards define

the interaction patterns among services at various layers: from the transport layer message

exchange to the upper layer business execution logic.

Collaboration among services is achieved with the help of the Web-Services standards

and service-oriented computing principles. Before the adoption of service-oriented

architecture, each organization typically built applications with its own proprietary

technologies. Interaction among different organizations and their applications were

burdensome, if not impossible. Inter-organizational interaction usually required a significant

 2

amount of work and modifications to the existing applications. As a result, inter-

organizational collaboration and interoperability were usually avoided or neglected.

The adoption of service-oriented architecture and the Web-Services standards has

changed this situation. Applications that were once only accessed through proprietary

technologies become services that are accessible via the Web-Services standards. The

adoption of uniform practices results in interoperability across organizational domains. A

service can still be implemented and built in domain-specific technologies; however, the

Web-Service standards describe a uniform way of interacting with the specific service. As a

result, a service can be exposed to the external world, beyond its own domain. The end user

is no longer expected to be a member of the service’s organization. Anyone who has the

means to access the service and can bear the consequences of using the service (such as,

paying a fee for the service) can become an end user.

This new computing paradigm triggered what we now call Web 2.0 [O’Reil05]. The term

Web 2.0 points to the change from the earlier web (Web 1.0), where applications usually aim

to disseminate static data and have one-way interaction with the end user. Web 2.0, on the

other hand, distinguishes itself by allowing two way service-user and service-service

interactions. Several organizations are already participating in Web 2.0 by providing their

services. For example, Google, Yahoo!, and Flickr provide their services via open APIs. An

end user can use the provided services in his own application, mix and match services, and

custom-tailor his application to his own needs. The resulting end user application usually

contains services drawn from different organizations, blending and mixing disparate services.

This type of application is called a mash-up due to its generation process. For example, a

simple mash-up application can combine Google Maps API with Yahoo shopping API to

 3

provide the end user with a more sophisticated shopping tool, which shows the goods and

their locations with respect to the user’s location. The organizations that provide their APIs

are content with this new usage scenario because their services are used in creative ways and

even promoted to newer markets through the mash-up. Moreover, the end user’s creativity

teaches them new usage scenarios for their services, hence, enhancing their services for the

market trends in a faster manner.

The service-oriented architectures are instrumental not only for creating mash-ups, but

for numerous other application domains, such as scientific applications in bioinformatics or

physics domains. A single scientific application is challenging to be fully home-made, and

can be realized through combining services from different organizations, companies, or

different laboratories. Scientific applications benefit from the service-oriented architectures

in the same way the mash-ups do; however, scientific applications are usually realized

through more sophisticated technologies, workflow management tools [WFMC]. In our

work, we focus more on the workflow management tools due to their wide-spread adoption

for large collaborations and the established prior research on them. Although our work is

independent of a specific collaboration technology, we show the details of our architecture on

the basis of workflow management tools. (We discuss the workflow management tools in

Chapter 2.)

Although different application domains benefit from the service-oriented architectures in

different manners, their ultimate goal is the same: achieving collaboration among the

services. The collaboration is a collection of services that work together to achieve a specific

goal on behalf of the end user. The end user is regarded as the person or the entity that has

triggered the collaboration. The collaboration of the services provides an advantage to tackle

 4

significant problems; however, it causes security issues, which are the main focus of this

work.

In service-oriented architectures, a service has a large and a heterogeneous user pool. The

service, in fact, is designed to reach end users that are beyond its organizational boundaries.

This is significantly different from before the adoption of service-oriented architectures.

Then each service or the application had a limited and pre-determined user list. The user list

usually consisted only of the members of the application’s own domain. Since the

applications were rarely exposed outside of their own domains, limiting the user list to the

members of the organization was viable.

The service-oriented architecture leads to increased exposure of services. A service is not

only exposed to the end users outside of its home domain, but it also expected to interact with

other services. The access control becomes more complicated because the end user and the

other collaborative services belong to separate security domains. These domains do not share

a pre-established framework for identification, authentication, and authorization.

Furthermore, there may not be pre-established trust among these domains. Assuming

existence of pre-established trust is not realistic because the services are combined in

arbitrary ways and often on-demand. A collection of the services may include services owned

by rival companies, or separated by corporate firewalls, or otherwise inhibited from working

collaboratively.

Furthermore, a service that is involved in the collaboration is affected by the other

collaborative services, even when these collaborative services are not directly interacting

with the service. In other words, they can still indirectly interact with each other via other

services. Security threats, such as viruses, Trojan Horses, or corrupted data, may travel to the

 5

service through the indirect interactions within the collaboration. As a result, it is insufficient

to circumscribe the security evaluations to the collaborative services that are explicitly

interacting with the service or to the end user. The service involved in the collaboration must

assess the security threats introduced by several parties, including the end user and the

collaborative services.

Managing access control for a single service within the collaboration is challenging. The

security threats are introduced by multiple parties: the end user as well as the collaborative

services. Moreover, each of these parties has a different interaction with the service

throughout the collaboration. To address the security challenges, an access control

mechanism must (1) have a model of the collaboration, (2) distinguish between the

interactions occurring in the collaboration, and (3) evaluate the involved parties accordingly.

These are non-existent in the current access control models, which are built for interactions

between a single service and a single end user. They cannot assess and detect the security

threats unique to a collaboration. Our work addresses this challenge. We identify and analyze

the security threats associated with collaborations. We provide the necessary tools to

eliminate the identified threats. Based on the characteristics of ad-hoc and dynamic

collaborations, we have identified the following list of security requirements.

Peer-level mutual trust evaluations. Collaborations require several services to interact

with each other. These interactions often lead to unconsidered security consequences, such as

direct or indirect accesses to a service by its peer services. A service may have reservations

about joining a proposed collaboration due to the unexamined interactions. In order to

address these reservations, each service must be able to evaluate a proposed collaboration.

Each service must evaluate the potential access requests that would occur throughout the

 6

collaboration and determine whether they constitute a security threat. This leads to peer-peer

trust evaluations among the services and the end user. A collaboration framework that

enables and incorporates the peer-level trust evaluations eliminates the unforeseen security

violations, and reduces the reluctance towards service’s participation into the collaborations.

Decentralized authorization framework. Each service participating in a collaboration may

have domain-specific security policies and requirements that are confidential [KM03]. Thus,

the collaboration framework should have a decentralized access control management such

that each service must independently evaluate the collaboration and reach a decision over

whether to join the collaboration. Moreover, the collaboration framework should not assume

any prior knowledge about the security policies governing the collaborative services, because

the collaborations are built dynamically, and services are not expected to reveal their security

policies to other parties.

Context-based, collaboration-aware access control model. Classical identity-based

models or the families of role-based (RBAC) [San96] and task-based (TBAC) [TS93] access

control models assume that a service owner has prior knowledge of the user pool. This

assumption is not adequate for today’s highly dynamic, market-oriented web services

paradigm, wherein the services are offered to anyone with the necessary credentials.

Proposed access control models based on trust management [BFIK99] address this problem.

However, trust management-based access control models still need to be incorporated with a

high level abstraction that encompasses the requirements of multi-party collaborations. The

new access control model must be designed for evaluating access requests based on the

context of a collaboration.

 7

Our work aims to promote dynamic, on-demand collaborations among services by

addressing the access control issues. We aim to enable the services to protect themselves

against the security threats that can occur within the collaborations. Each service is enabled

to evaluate a proposed collaboration context and to make its own decision on whether to join.

A service evaluates the proposed collaboration in terms of the access requests that are going

to happen during the collaboration execution. When the service determines that these access

requests are authorized and do not constitute a threat, it joins the collaboration. Otherwise, it

declines the collaboration. Our work incorporates the services’ responses into an access

control management framework. Based on the services’ responses, our framework

determines whether the current collaboration is feasible for execution.

1.1 Contributions of the Work

Our work has two main contributions: it provides a service with necessary means to

express and evaluate its trust requirements from a proposed collaboration (collaboration

policies), and it provides an access control management framework that takes these

evaluations into consideration (Figure 1.1).

We developed an access control model (Chapter 3) tailored for collaborations. Our model

can be used to evaluate arbitrary collaborations, and is independent of the technology that is

used to create a collaboration. Our access control model views a collaboration as the

collection of interactions among the services and the end user. The access control model

interprets these interactions from the viewpoint of a specific service, which is protected by

the access control model. The interpretation of these interactions, and hence the

collaboration, is different for each service. For example, the same interaction may be

interpreted and evaluated differently by two different services’ access control models; this is

 8

due to the different roles played by each of these services within the collaboration. The

model allows defining varying access requirements based on these interactions. The

collaborative services or the end user that request access over a certain service can be applied

to different access requirements based on the collaboration context and their interactions with

the requested service. Moreover, our access control model deals with special cases that are

Collaboration
Engine

Bilateral
Trust

Evaluations

Organization 1

Collaboration
Policy Engine

Service 1

Organization 2

Collaboration
Policy Engine

Service 2 Organization 3

Collaboration
Policy Engine

Service 3

Collaboration Proposals
& Service Responses

End User

Service1

Service2

Service3

Collab.
Engine

Collaboration
Feasibility

Collaboration
Engine

Bilateral
Trust

Evaluations

Organization 1

Collaboration
Policy Engine

Service 1

Organization 1

Collaboration
Policy Engine

Service 1
Collaboration
Policy Engine

Service 1

Organization 2

Collaboration
Policy Engine

Service 2

Organization 2

Collaboration
Policy Engine

Service 2

Collaboration
Policy Engine

Service 2 Organization 3

Collaboration
Policy Engine

Service 3

Organization 3

Collaboration
Policy Engine

Service 3
Collaboration
Policy Engine

Service 3

Collaboration Proposals
& Service Responses

End User

Service1

Service2

Service3

Collab.
Engine

Service1

Service2

Service3

Collab.
Engine

Collaboration
Feasibility

Figure 1.1 Our Framework. The contributions of our work: the collaboration policy engine at
each service’s security domain; the collaboration engine, a module that manages access control
within the collaboration; the communication infrastructure among the autonomous modules.

 9

likely to occur during collaboration, such as the delegation of rights and conflict of interest

scenarios.

Based on our access control model, we developed a policy language: collaboration

policies (Chapter 3 and Chapter 4). The collaboration policies enable services to express their

trust requirements from the collaboration. A collaboration policy includes access control

rules designed for different interaction types occurring within a collaboration. In order to

ease the adoption of the collaboration policies, we built them as enhancements over an

existing and widely-used access control language, XACML [XACML05]. We enhanced the

XACML existing syntax in order to fit the collaboration policy syntax. We implemented the

tools that can evaluate and enforce the collaboration policies. Likewise, these tools are built

by using an open source XACML implementation provided by Sun [Sun05].

Our access control management framework (Chapter 5) views services as equal peers,

and enables them to carry out their own trust evaluations with one another. Our framework

defines uniform message patterns among the collaborative services and the end user so that

the trust evaluations can be carried out. Our framework uses the result of the peer-peer trust

evaluations in order to determine whether the collaboration is feasible for execution.

Our work contributes to the services and to the end users who want to build

collaborations and make use of the service-oriented architecture. We enable the services to

conduct their own security evaluations before joining a collaboration. Thus, our work

increases the services’ willingness to participate into the collaborations. Services that find the

collaboration insecure refuse to join. On the other hand, we enable the end user to determine

the feasibility of his proposed collaboration. The end user is saved from trying to execute a

 10

collaboration that was not agreed upon by all parties; thus, he is saved from run-time security

failures.

In the rest of this paper, we first present the background of our research and the related

literature in Chapter 2. We then discuss our access control model and policy model in

Chapter 3. Chapter 3 also present the syntax and implementation details of collaboration

policies. We continue with a special case that can occur within a collaboration: delegation of

credentials. Chapter 4 discusses how we deal with delegation of credentials within a

collaboration. We present our policy evaluation mechanism in Chapter 5. Our framework that

encompasses our work is discussed in Chapter 6. In Chapter 7, we present the run time

performance results of our framework and discuss the conclusion from the data collected. We

conclude in Chapter 8.

 11

Chapter 2:
Background and Related Work

In this chapter, we first present the underlying assumptions of our work and familiarize

the reader with the necessary background material. Then, we present and discuss prior

research that is closely related to our work.

2.1 Background and Assumptions

A collaboration can be realized via many technologies. Mash-up applications typically

use AJAX [AJAX], which uses JavaScript as the glue code between the services. Scientific

applications, on the other hand, employ workflow management tools that have more formal

and sophisticated execution environments. The workflow tools, for example, provide

graphical-user interfaces that allow for selection of services, and generate documents

explaining the combination of the services and their execution. Both approaches embody the

service-oriented architecture and employ the same Web-Services standards; however, they

realize them through different technologies.

Our work addresses the service-oriented computing principles and the existing standards,

and we do not limit ourselves to any specific technology. However, we focus more on the

workflow management tools, due to their widespread adoption and the breadth of existing

literature.

Workflow management tools model a collaboration as an ordered collection of tasks. A

workflow task represents the smallest unit of work that must be accomplished. When all the

tasks are accomplished, the collaboration reaches its goal. In a service-oriented workflow, a

service is assigned to accomplish each task. The data flows among the workflow tasks such

 12

that once a service accomplishes its task, the service forwards its output to another service

that is responsible for the next task. As a result, a collaboration can also be modeled as an

ordered set of interactions among the services. For the rest of our paper, we refer to and

illustrate a collaboration as a directed acyclic graph. (Our implementation currently does not

support directed cyclic graphs; we leave that as future work.) Each node of the graph

indicates a service. The arc between two nodes indicates the data exchanged between two

services. The direction of the arc is same as the direction of the dataflow. When we refer to

an interaction, we mean a specific data exchange between two services. An interaction is

represented by an arc of the graph.

Figure 2.1 The phases of workflow construction and execution. The collaboration context evaluation is
performed in planning stage. It includes all peer-peer trust evaluations. Service-level access control
indicates the access control checks that are done when a service receives a standalone “traditional” access
request. The collaboration context evaluation includes the service-level access control checks in addition
to the other peer-peer trust evaluations that are not part of the service-level access control checks. In
execution phase, the result of the collaboration context evaluation can be verified; however, it does not
have to be performed again, indicated by the dashed lines. In execution time, only service-level access
control checks are performed.

Service-Level
Access Control

Collaboration
Context Eval.

Planning
Service Selection &
Collaboration Eval

Design and
Choreography

Service-Level
Access Control

Collaboration
Context Eval.

Execution

Service-Level
Access Control

Service-Level
Access Control

Collaboration
Context Eval.

Service-Level
Access Control

Collaboration
Context Eval.

Planning
Service Selection &
Collaboration Eval

Design and
Choreography

Service-Level
Access Control

Collaboration
Context Eval.

Execution

Service-Level
Access Control

 13

Figure 2.1 shows a very high-level view of the stages involved in constructing and

executing a workflow. The management of the stages is performed by a workflow engine. In

the Design and Choreography phase, a complex business process or application is expressed

in terms of interacting tasks. In the Planning phase, the services which meet the operational

requirements of the design are chosen, and the interactions among the services – in other

words, the required collaborations – are identified. In the Execution phase, services perform

their assigned tasks, and messages are passed among them to carry out the workflow

operations.

In many workflow environments, security evaluations are delayed until the execution

stage. A service evaluates its security policies when it is invoked at run time. The requested

service evaluates its invoker, which is the service that has accomplished the preceding task,

and the requested service determines whether to grant access. There are multiple problems

with this approach. First, if the requested service refuses access, it leads to the breakdown of

the workflow at execution time, and eventually forces re-planning and re-execution. For large

workflows with numerous services, re-executing the workflow until it successfully completes

is unaffordable, not to mention very inefficient. The second problem is that the security

evaluation does not inform the services about the collaboration context. An access request

only contains information about the requestor service and the requested service: the other

services that are present in the collaboration are not conveyed in the access request.

Therefore, the requested service is not aware of the interactions that have led to the current

request, nor the interactions that must occur afterwards. Left unevaluated, the remaining

interactions present in the collaboration can cause security breaches, such as data propagated

from or into un-trusted domains, Trojan horses, or conflict of interest scenarios.

 14

As a solution, we incorporate the security evaluations into the planning stage (Figure

2.1). Our security evaluations do not involve the discovery and selection of suitable services.

We assume that discovery and service selection has already been performed by the planning

engine. After the planning engine finds suitable services that meet the functional

requirements of the collaboration, our framework receives the name of the selected services

and the collaboration graph as its inputs. Our work provides the means for conducting

security evaluations among the selected services; therefore, it addresses the access control

management for a group of selected services. In our framework, services are presented with

the collaboration context during the planning stage. The collaboration context represents the

interactions occurring in the collaboration and the services that are involved in these

interactions. For a requested service, the collaboration context not only includes the explicit

interaction between the requestor service and the requested service, but also it contains other

interactions that leads to or succeed this explicit interaction. If the same service is involved in

multiple separate interactions, the collaboration context contains all the interactions that can

affect the security of a service. Each service receives a different collaboration context

because each context is circumscribed to the interactions that affect the security of a specific

service. In Chapter 6, we explain how we create the collaboration context and communicate

this with the services.

Based on the collaboration context, the service can distinguish between its peer services,

and it can evaluate them accordingly. Each service applies its collaboration context against

its collaboration policy. During this evaluation, a service conducts peer-peer trust evaluations

with the services within its context. The trust evaluations allow a service to determine

whether to provide access to its peer or not. For example, a service may deny access to

 15

another service if one of the preceding interactions is deemed to be insecure. These trust

evaluations are preliminary authorization checks among the services.

When a service discovers that it would not grant access to any of its peer services, it

declines the collaboration. The planning stage completes when all services agree on

participating in the collaboration. Only then does the execution stage start. As a result, the

execution stage has a higher chance of successful completion.

During the execution stage, the collaboration context can be evaluated again in order to

ensure that the collaboration has not been changed since the planning stage. The execution

stage is beyond the scope of our work; however, this can be accomplished if each service

stores a copy of the collaboration context from the planning stage, and compares it with the

access requests received at run-time. The service-level access requests during the execution

stage (Figure 2.1) refer to the accesses that are made during the execution stage. These run

time access requests do not carry any additional information about the collaboration context.

They are traditional access requests in the sense that they only carry information about the

requestor service and the requested service. Note that the service-level access requests are

also represented inside the collaboration context; therefore, they are already evaluated during

the planning stage. We recognize that the collaboration context can contain information that

cannot be captured from the run time access requests. As a result, ensuring that the

collaboration has not been changed between planning and the execution could become

challenging. We leave this as an open question and later discuss it among our future work.

The final problem with the current security evaluation is that it is only unidirectional: the

security evaluation is only performed by the requested service to determine whether the

requestor service is authorized or not. It does not evaluate the requestor service’s trust in the

 16

requested service. In other words, there is not a bilateral trust evaluation between the

requestor and the requested service. This is a problem in a collaboration because neither

service has a prior knowledge of each other. In fact, the services are collaborating with each

other only because the collaboration owner selected them. Therefore, the services may not

have an established trust in each other.

To remedy this situation, we allow bilateral peer-peer trust evaluations among the

services. At the planning stage, each service receives a different collaboration context. Each

service evaluates the interactions in the context against its collaboration policy. These

interactions are different with respect to each service. (We discuss the interaction types in the

next section.) As a result, each service can evaluate all of its peer services, and may also be

evaluated by other peers.

Our work focuses on the planning stage, and does not make any modifications to the

remaining workflow stages. We assume that a suitable service for each task is earlier found

during the service discovery stage. We focus solely on the security evaluations among the

selected services. Once we ensure that the selected services agree to the proposed

collaboration, they can be bound to their tasks and the execution stage can start. However,

the implementation of the service binding and the execution stage is beyond the scope of our

work. We only forward the name of the services that agree to join the collaboration to the

execution stage. The actual service binding and the execution occur in this stage.

We assume that a service is the provision of any kind of facility to the public, such as

computing power, storage, or simple remote code invocation. A service is not limited to its

domain boundaries. We assume that the services are exposed over a network, and utilize the

current Web-Service standards such as WSDL [WSDL1.1] and SOAP [SOAP]. Each

 17

service’s collaboration policy is private, and is not divulged to other services, or to the

workflow engine. Each service has access credentials that can be evaluated by its peers for

authorization and authentication purposes. These credentials are assumed to belong to the

actual service owner. We model a service’s credentials similar to the proxy credentials

[Wel03] defined by Welch et al. such that a service has the same rights and privileges as that

of its owner. For example, a service may invoke other services that its owner is authorized

for. Furthermore, due to the heterogeneity of the services involved in the collaboration, we

do not assume that a service has prior knowledge of other peer services that are present in the

collaboration.

2.2 Interaction Types

Within a collaboration, each service interacts with a number of peer services. An

interaction involves the data exchange between two services. The interactions among the

services are crucial for the security evaluations. Therefore, below we examine these

interactions in two different categories: direct and indirect. Later, we refine these two

categories with respect to the direction of the dataflow: upstream and downstream. As a

result, we introduce four different types of interactions: direct-upstream, direct-downstream,

indirect-upstream, and indirect-downstream.

 18

Figure 2.2 Collaboration scenario.

Direct interactions occur between the services that exchange data with each other without

relaying the data through other services. Such services are called direct neighbors. For

example, services A and B in Figure 2.2 have a direct interaction. Any direct interaction

between services is a bilateral relationship, even when the dataflow seems to be one-sided.

To illustrate this, refer to Figure 2.2, where each service accomplishes a unique task labeled

by its name. The arcs between the services indicate the dataflow. The direct interaction

between Service A and B is seemingly one-sided: Service A presents an input file to Service

B for invocation and B determines if it trusts A for access. However, there are actually two

relationships: (1) A determines that it trusts B and agrees to share a copy of its result file, and

(2) B determines that it trusts A for invocation with the specified input file.

Both of Service A’s and Service B’s access requests involve risk. From A’s perspective,

B could be a rival company with whom A is not willing to share its results; from B’s

perspective, A could be a malicious user who sends a Trojan horse. Existing access control

models such as TrustMaker [BFIK99], RBAC [San96] or password-based schemes, are

geared towards assessing the trustworthiness of the requestor. The reverse trust evaluation –

Service A Service B Service C

Workflow
Engine

Workflow
Requestor

Document A Document B

Service AService A Service BService B Service CService C

Workflow
Engine

Workflow
Requestor

Document ADocument A Document BDocument B

 19

i.e., the trustworthiness of the requested service from the requestor’s viewpoint – is not

explicitly modeled. Instead, it is assumed that the invoking party implicitly makes a trust

evaluation before launching its request. This implicit modeling does not work in a multi-

party collaboration because a third party, the collaboration owner, selects the participating

services and requests them to interact with each other. The selection of collaborating services

does not necessarily equate to the existence of trust between the services. As we illustrate in

above example, the collaboration owner has selected Service A and Service B to interact with

each other. However, this does not guarantee that B does not possess any security threats to

A, vice versa. As a result, the bilateral nature of direct interactions must be recognized, and

interacting services must be allowed to perform bilateral authorization checks on each other

[ABBD2-05].

Indirect interactions occur between services that exchange data with the help of

intermediate services. The intermediate services relay the data between the interacting

services. Two services with an indirect interaction are also called indirect neighbors. The

Services A and C in Figure 2 are indirect neighbors. There are several reasons why indirect

interactions must be carefully evaluated.

(1) Confidential documents or the results of a sensitive service are typically passed

among several peers throughout a collaboration; thus even an indirect neighbor might have

access to confidential data. Furthermore, partnership agreements and competition among

businesses may prevent them from doing business with certain organizations. Even when

such interactions are safe from a security standpoint, the higher-level business logic may

forbid them. In addition, some peers in a workflow graph may introduce security threats to

the other peers due to the security breaches within their own domains. An access request that

 20

has traveled through an un-trusted security domain may infect the other peers that are on the

same workflow path.

(2) Indirect neighbors can cause conflict of interest scenarios that cannot be caught by

only inspecting the direct neighbors. An indirect neighbor involved with an access request

may cause fraud and should not be allowed indirect access.

(3) A workflow chain may require or allow delegation of rights between services.

Delegated rights may have to travel through several disparate security domains and may be

handled by intermediate peers until utilized for an access request. A service that receives an

access request with delegated credentials may want to evaluate the trustworthiness of the

intermediate parties as well as the peer that launched the access request. Likewise, the

riginal owner of the delegated rights may also put trust requirements on the intermediate

parties in order to prevent abuse of its rights.

We further refine direct and indirect interactions with respect to the direction of the

dataflow: upstream and downstream interactions. A service experiences an upstream

interaction with another service when the first service is the recipient of the data exchange

and the second service is the sender. For example, Service B has a direct-upstream

interaction with Service A in Figure 2.2. On the other hand, when the data flows out of the

first service into the second service, the first service has a downstream interaction with the

second service. The Service A in Figure 2.2 has a direct-downstream interaction with the

Service B. We refine both direct and indirect interactions with respect to the direction of the

dataflow, resulting in four kinds of interactions: direct-upstream, direct-downstream,

indirect-upstream, indirect-downstream.

 21

Refining an interaction with respect its dataflow is important for a few reasons. First of

all, the dataflow indicates the sender and the recipient services in an interaction. Although the

two services participate in the same interaction type, the roles they play in these interactions

are different. Typically, the sender service (Service A in Figure 2) is the requestor that

invokes the requested service. The recipient (Service B) is the requested service that would

accomplish the next task in the workflow. Second, due to the flow of the data, the security

threats associated with the services are different. Service A, due to the downstream

interaction, is concerned about revealing its output document to Service B. B is concerned

about allowing A to invoke. Therefore, informing a service only about the interaction type

such as direct or indirect is not sufficient. The service must also be informed about the

direction of the dataflow because based on the direction of the dataflow, the service’s access

requirements from its interaction partner differ. Later, when we introduce our access control

model, we discuss how different types of interactions can be evaluated.

2.3 Security Issues and the Related Work

We present the related work in four sections. First, we discuss the existing workflow

authorization management frameworks. We then discuss the delegation of rights and the

conflict of interest, respectively – their characteristics within a multi-party workflow and the

shortcomings of the existing work to capture these characteristics. Conflict of interest and

delegation of credentials are well-studied research problems in the literature; however, most

of the existing work studies them either outside of the workflows, or within established

homogeneous communities. We believe that these two research problems frequently occur in

collaborations, and they have special characteristics due to the multiple autonomous security

domains involved. We demonstrate that these characteristics cannot be captured within

 22

existing models. Finally, we discuss the implications of multi-party collaborations on the

current business models and regulations. We present how current government regulations and

legal contracts may hold each collaborator responsible for the consequences of their

interactions with other parties.

2.3.1 Workflow Authorization Management

There are several workflow authorization frameworks proposed [AH96, HA99, Kno00].

These frameworks are designed to manage workflow authorization within a single security

domain, such as within a large organization. The existing work focuses on selecting suitable

services or human subjects that can perform the workflow tasks. A central workflow

authority defines the access rules that must be satisfied by a candidate service or a human to

perform a task. Since these frameworks have a single-domain model, they omit peer-to-peer

trust relationships, which is one of the focuses of our work. Every workflow participant is a

member of the same security domain, and there is established trust between the participants.

Furthermore, there is a central security governing the entire security domain. The participants

do not have separate policies to protect themselves; the participants are supposed to trust and

follow the central security policy. The above frameworks target to assign the services to the

tasks with respect to the central security policy. Another contribution of the above

frameworks is to synchronize accesses to workflows tasks with respect to the workflow

progression. In other words, no workflow participant can execute a task before the workflow

reaches a certain state.

Other approaches by Bertino [BFA97], Tan [TCG04], and Hung [HK03] are similar to

the above frameworks in that they use authorization constraints to define which services may

 23

be used for executing a workflow task. They rather focus on extending RBAC models to

express the authorization constraints over the workflow tasks.

Kang [KPF01] recognizes the inter-organizational, distributed nature of new-generation

workflows and adopts a multi-domain security model. However, Kang’s model requires a

pre-established trust relationship between the disparate security domains. Kang uses the

RBAC model, and assumes that a central workflow engine can access each service’s security

policy so that the workflow engine can determine which services may interact with other

services. This type of preparatory communication results in pre-established relationships

among the security domains. In other words, before the collaboration is even conceived, the

security domains communicate with each other in order to gain an understanding of one

another’s security policies. The main drawback of Kang’s work is that it does not allow

building dynamic workflows, where the workflow engine should not require prior knowledge

about the internal security policies of participants.

Koshutanski [KM03] proposes an authorization framework for ad-hoc workflows. Based

on the collaboration owner’s request, a workflow engine dynamically selects suitable

services to perform tasks. Koshutanski assumes that none of the services publicly announces

their access control policies. Koshutanski’s key contribution is an authorization mechanism

between the collaboration owner and the services. Instead of sending access policies at the

data-level (i.e., publicly exposing the policies), each service sends a mobile process to the

collaboration owner. The mobile process must be executed in the owner’s domain, and it

determines whether the owner is authorized to access the service. The mobile code is

assumed to access the credentials stored within the owner’s domain so that an access decision

can be reached. The reliance on mobile code introduces other security issues, such as how the

 24

workflow owner’s domain can verify the mobile code, and how the mobile code should

retrieve all the required credentials. Koshutanski’s framework neglects the peer-level trust

evaluations between services, and focuses on authorizing the owner to each service

individually.

The WAS framework [KKHK03] adopts a multi-domain security model and targets grid-

based computing environments. The WAS framework assumes pre-established trust

relationships between the domains. The WAS engine functions as a trusted third party

between the service owners and the collaboration owner. Each service owner informs the

WAS engine about his service, and delegates the access rights over the service to the WAS

engine. Upon building a workflow, the WAS server determines which services are

participating in the workflow. The WAS engine delegates the access right associated with

these services to the parties that would request access during the execution stage. WAS

framework can function well in small grid communities, where prior trust and community-

wide policies can be established. However, it is not well suited for ad-hoc distributed

workflow models.

Shehab [SBG05] also addresses the security issues of multi-domain collaborations. This

framework assumes that there are cross-domain role mappings, and each domain is aware

which mappings are forbidden or authorized. In addition, formation of the cross-domain

mappings is not within the scope of their work, and assumed to be handled priorly. Their

approach is focused on tracking the history of an access request, which is a list of the

domains that are visited until the access request. All the domains that are involved with an

access request can be evaluated at access decision time. Their approach is similar to ours in

that they allow a workflow participant to check the direct or indirect domains involved with

 25

an incoming access request. However, they differ in their assumption of cross-domain role-

mappings. They state that domains must somehow consult each other and generate role-

mappings. Our proposed framework does not require pre-defined mappings between

domains, formation of which require exposure of policies between the domains and an

established trust relationship. Instead, our approach focuses on expression and evaluation of

collaboration policies such that, without public exposure, each domain can examine the

history of an access request. As a result, their framework has a rather straightforward

approach at detecting illegitimate access requests that traveled through unauthorized

domains; each service has a complete list of forbidden mappings between domains and an

access request that includes a forbidden link is denied access.

2.3.2 Conflict of Interest

In collaborations, conflict of interest usually occurs due to the high number of

collaborative services, especially when the services perform sensitive tasks. A malicious

service, which is assigned to perform multiple sensitive tasks, may deliberately modify the

outcome of one of the tasks to provide benefit. Furthermore, a malicious service may

deliberately provide corrupted information to its peers in order to affect the outcome of other

sensitive tasks. Therefore, the conflicts may affect the collaboration owner, as well as the

services. As a result, the detection and prevention of conflicts within workflows remains a

significant research problem.

One of the early works in the conflict of interest area is that of Saltzer and Schoreder

[SS75]. They argued that assigning multiple entities to specific tasks reduces the likelihood

of fraud. This argument later led to a concept known as separation of duties. Most of the

latest work [CW87, BFA99, San88, San90, HQ03, KS01, BE01] in this area studies the

 26

conflict of interest problem within a single security domain, such as a large organization. The

services or humans perform the tasks, and they all belong to the same domain. The

permissions to execute workflow tasks are centrally defined and regulated; thus, the

complexity of the problem is reduced, and unauthorized accesses can be caught centrally.

There are two reasons for the reduction in the complexity: first, the services belong to the

same security domain and are assumed trust one another; second, a single central policy per

collaboration is sufficient for preventing the conflicts. A service does not have its own policy

for protecting from the conflicts. Rather, the service trusts the central policy that its

successful enforcement would also protect the service’s interest. The work in this area

focuses on assigning services to workflow tasks such that the there would be no conflict of

interest among the services and the collaboration owner. Typically, a central security policy

dictates how to select services for each workflow task.

We, on the other hand, study the conflicts within a multi-domain model. Our multi-

domain model assumes that each service has a distinctive view of a conflict and accordingly

has a different policy to protect itself. These views and policies may not overlap or comply

with that of other domains. This is radically different than single-domain approach, which

assumes a common understanding of a conflict and accordingly requires a single policy. We,

on the other hand, focus on the conflicts that may arise in a workflow participant’s domain

due to the unexamined direct or indirect interactions with other services. Such conflicts are

not necessarily considered as violations by other services or by the collaboration owner. Note

that above approaches have a central policy that defines what a conflict is from the

collaboration owner’s perspective (i.e. the large organization). When the services are selected

according to the central policy, there should not be any conflicts at all.

 27

We believe that the single-domain approach is fitting when there is an established trust

relationship between the involved parties and they agree on what constitutes a conflict. Each

party would be assured that its interests would also be protected by enforcement of the

central policy. However, in the absence of an established trust relationship, this cannot be

guaranteed. Each workflow participant must enforce its own collaboration policies to ensure

that the proposed workflow does not violate their policies.

In particular, Sandhu [San88, San90] proposed that the roles that are allowed to execute

tasks (called transactions in the original paper) must be specified in such a way that a user

may be allowed to execute only a single task in a workflow. Bertino [BFA99] proposed a

formal language that defines the access control constraints within a workflow context.

Bertino’s framework allows a security officer to define the conflicts between tasks and how

these conflicts are reflected as constraints on the task execution rights given to the roles.

(Roles here refers to the role types defined within the organization. Each role has assigned

permissions to access the organization’s resources. Services as well as human participants are

assigned to specific roles.) During the execution of a specific workflow instance, the history

of events in a workflow is captured, and the services’ rights to execute tasks are dynamically

adjusted based on the history of events and the workflow constraints. For example, a typical

constraint is that a manager role that has accessed a task to create a loan application can no

longer access another task that determines the outcome of the application in the same

workflow instance.

Knorr [KS01] designed a workflow management tool that helps security officers to

analyze the consistency of access constraints through graphical modeling. His Simple

Separation of Duties Language (SSoD Language), which is used to express constraints, is

 28

similar to the constraint language proposed by Bertino, in that both languages express

constraints based on task abstractions.

Botha [BE01] argued that identifying conflicts between tasks is not sufficient to detect all

possible conflict scenarios. He proposed that in addition to specifying conflicting tasks,

conflicting entities must also be specified. Conflicting entities would capture scenarios such

as: John cannot execute a task that is conflicting with another task that has been performed

by Jack because John and Jack are brothers.

Huang [HQ03] explicitly uses conflict of interest classes, where each conflict class

identifies the conflicting tasks of a workflow. A workflow participant is allowed to perform a

single task from each conflict class. At the planning stage, suitable services are selected with

respect to the conflict of interest classes defined for a workflow. A web service that is

functionally capable of executing two tasks of a workflow is selected for only one of these

tasks, when the two tasks are in the same conflict class. Huang demonstrates how conflict

classes within a workflow can be expressed in WS-Policy, and how the security policy of the

workflow is conveyed so that the service discovery and selection would incorporate the

conflict classes.

Huang’s approach is closest to ours in that it assumes multiple security domains. Each

service belongs to a different security domain. However, his approach omits the examination

of peer-level conflicts, and adopts the view of a collaboration owner to prevent conflicts. In

other words, Huang’s work assumes that there is a single policy to detect the conflicts. This

policy is defined by the collaboration owner, and it only reflects the view of a conflict from

the collaboration owner’s perspective. This approach neither enforces the individual policies

of the services, nor protects them against conflicts among the services.

 29

2.3.3 Delegation of Rights

Delegation of rights usually occurs within a multi-party collaboration. A peer service (the

delegator) delegates its credentials (i.e. rights) to another service (the delegatee). The

delegation occurs typically between peers that have established trust relationships. The

delegation is performed in order to prevent an authorization failure and to complete the

workflow execution. The delegatee lacks the necessary credentials to access another service,

and the delegator provides its own credentials to prevent the access failure. It is possible that

multiple intermediate services may relay the delegated credentials until they reach the

delegatee.

Several delegation frameworks assume a single-domain security model and specify

centrally enforced delegation policies [ZAC01, ZAC02, WK05]. This model is insufficient

to meet the needs of a multi-domain model, which is the focus of our work.

First of all, each party (i.e. the delegator, the delegatee, the requested service) that is

involved with a delegation may belong to disparate domains, and has a separate delegation

policy. From a delegator’s standpoint, the delegation policy must specify the access rules for

prospective delegatees and the treatment of received rights by the delegatees, such as re-

delegation depth and width. Conversely, from a service owner’s standpoint, the delegation

policy must specify whether access with delegated credentials are accepted, and the access

rules over the delegatees. In other words, the service owner must determine whether the

delegatees constitute a security threat against the service’s domain. A delegator, on the other

hand, is more interested in preventing the abuse of its rights.

In a multi-domain security model, these policies may not overlap, or may contradict with

each other. For example, a delegatee that is evaluated as trustworthy by a delegator may be

found to be un-trustworthy by a service owner. Likewise, a service owner may accept an

 30

access request from a delegatee that is abusing the delegated rights, and violating the policies

of the delegator, as long as such violations do not cause a harm to the service’s domain.

Unless disparate security domains have access to each other’s policies, they have no

means to know or enforce each other’s policies. Furthermore, even when we assume they

have access to each other’s policies, even though this is an unrealistic assumption for ad-hoc

distributed workflows, they may not have sufficient motivation to protect each other’s best

interest.

Zhang’s policy language (RDM2000) [ZAC01, ZAC02] introduces a set of relations into

RBAC96 and RDBM0. The can_delegate relation defines the delegating role and the

conditions on the delegated role along with the maximum re-delegation depth. Similarly,

can_revoke relation specifies who is eligible to revoke a delegated right. A central security

officer must specify these relations and enforce them each time a request for delegation and

revocation is made. Note that a delegator must send a request to the central security officer to

delegate its rights to a delegatee, an approach called administrator-directed delegation

[LN99].

Wainer [WK05] separates the object rights from delegation rights: the former indicate the

access rights on an object, whereas the latter show the right to delegate the object rights to

another entity. A central authority decides to accept delegations and controls re-delegations

by checking three properties: (1) the delegator must have the right to delegate, (2) the

delegatee must satisfy all the constraints in order to receive the delegated rights, and (3) the

generic constraints must not be violated. (These generic constraints specify the additional

organizational policies on the delegation.) This approach, like Zhang’s, is administrator-

directed.

 31

Both Wainer and Zhang’s approaches adopt the single-domain model and specify a single

delegation policy per domain. Since all the parties belong to same domain, a central security

officer can enforce the policy and prevent any violations.

Other delegation frameworks with multi-domain security models [KFP01, PWFK+02]

suffer from their dependence on pre-established trust relationships between the domains.

Kagal’s framework [KFP01] models two distinctive security domains: the delagator’s and

the service owner’s. It assumes that a delegatee and a delegator reside in the same security

domain, and are therefore controlled by the same central security officer. Kagal adopts an

administrative directed approach. Each time a delegatee requires access to a remote service,

the security officer in the delegatee’s domain examines the request, and sends an approval

message to the security officer in the requested service’s domain. The security officer at the

requested service’s domain must verify that the remote access request is indeed approved by

the delegatee’s security officer.

A similar approach is presented in the Community Authorization Service (CAS)

[PWFK+02], where a central CAS server delegates access rights to Virtual Organization

(VO) [FKT01] members. Through these delegated rights, the members may access

distributed resources of a VO. The VO resources may reside in any organization that is a

member of the VO. Each time CAS server delegates access rights to a VO member, the

delegated rights are inserted into the delegatee’s X.509 credentials as extensions. When an

access request occurs, the security officer in the requested resource’s domain checks the

delegatee’s X.509 credential, and grants access to the object if it complies with the delegated

rights.

 32

2.3.4 Business Regulations and Partnerships

The same rules governing brick and mortar businesses also govern the businesses that

offer their services in cyberspace. Businesses pick their collaborators based on their

partnership logic, rivalry, and government regulations. Although, currently, business

functions such as selecting partners, contract building, and quality of service enforcement are

not fully automated, the growing support technologies will soon turn these obstacles into

added benefits of doing business on the Internet. Security and trust are two inseparable

decision factors shaping businesses’ everyday functions. The lack of necessary tools to

incorporate security and trust into the collaboration decisions prevent building dynamic

collaborations. Businesses are often reluctant to join a collaboration for fear of interacting

with parties that are rivals or blacklisted organizations.

Government regulations, such as Health Insurance Portability and Accountability Act

(HIPAA) [HIPAA03], put further restrictions on businesses’ choice of partners. For example,

HIPAA defines every organization that exchanges confidential patient reports with each

other as partners and holds them responsible for each other’s actions. Another example is

licensing contracts that strictly define how to distribute and use a service [BP02]. A licensee

that uses the licensed service must be careful about how the result of service is propagated

and used in a collaboration chain. Some licenses may strictly forbid using their services in

certain countries or for certain purposes. It is the licensee’s responsibility to ensure that none

of the rules of engagement are violated.

The fear of unknowingly breaking regulations that may lead to litigation or lost profit can

prevent businesses from joining dynamic on-demand collaborations. Without dynamic

heterogeneous collaborations, the true benefit of service oriented computing, which is to help

discovering and connecting with previously unknown services, may never be realized.

 33

Our collaboration policy-based framework allows businesses to define access control

rules on their direct or indirect neighbors so that an illegal chain of interaction can be

detected at the workflow planning stage. A service may put additional restrictions on its

partners’ identities based on the level of interaction required and the service being offered.

This added assurance would promote the willingness of service owners to join collaborations.

 33

Chapter 3:
Collaboration Policies

A collaboration policy is used to determine whether or not to provide a service to a

proposed collaboration. In order to accomplish this, the collaboration policy models the

collaboration as a collection of collaborative peers that are interacting with each other to

achieve a common goal. The collaboration policy [ABBD05] states the trust requirements

sought from the collaborative peers. The collaborative peers and the interactions among these

peers are evaluated against the stated trust requirements.

Definition 1: Collaboration Policy (CP) is a collection of access control rules, each of which
represents the trust requirements sought from a collaborative peer included in a proposed
collaboration. The peers are applied to the access rules with respect to their interactions
inside the collaboration. A policy decision is “permit” or “deny”, where permit means joining
the collaboration, and deny means declining the collaboration. Boolean logic operators are
used to combine the results of access rules.

For the remainder of this chapter, we discuss our access control model and accompanying

collaboration policy model, then present the syntax of collaboration policies, and finally

discuss the implementation of the collaboration policies. The discussion of our access control

model and the policy model aim to explain why we need a model specifically designed for

services provided to the collaborations. The succeeding sections present the complete policy

syntax and the implementation details.

3.1 Access Control Model

Before delving into our discussion, let us introduce some terminology. A subject is an

entity that requests access. A subject can also be called a requestor. An object is a resource

 34

that is being requested. An action is an activity that is to be performed on the object. A

collaborative peer is a service. A collaborative peer is being proposed to join the

collaboration. The collaborative peer uses its collaboration policy to determine whether to

accept the proposal. When the collaboration is built and enacted, the collaboration is realized

by the interactions among the collaborative peers. During the collaboration, a collaborative

peer can act both as a subject and an object. When the collaborative peer requests access to

another peer (for example, invoking another peer, or sending data, or consuming output data

of another peer) within the collaboration, the collaborative peer acts as a subject, while the

requested peer acts as an object.

Our access control model is designed to evaluate an “access request” that represents an

invitation to the collaboration. When the service “grants the access request”, the service joins

the collaboration. When the service “denies the access request”, it declines the invitation. The

“access request”, in our model, represents the collaboration and all the interactions contained

within the collaboration. By granting access to the collaboration, all of the collaborative

peers that must interact with the provided service are granted access. In other words, the

“access request” represents all of the accesses that are going to be performed by the

collaborative peers once the collaboration is built. We call this “access request” a

collaboration request. This is not just a syntactical change; it reflects that a collaboration

request differs from a traditional access request. A traditional access request represents a

single interaction between a subject and an object, whereas a collaboration request indicates

all the interactions that are contained within the proposed collaboration. In order to join the

collaboration, the service must simultaneously accept all of the interactions within the

collaboration request.

 35

Upon joining the collaboration, a service will interact with various collaborative peers.

Each of these interactions introduces a different security threat to the service. Hence, each of

the peers that interact with the service must be applied to the security evaluations. Moreover,

the access requirements sought from these peers may change with respect to their interaction

types.

In order to accomplish this, a collaboration request consists of multiple subjects (i.e.

collaborative peers), their interactions with the requested service, and the requested actions

over the service. The interaction types are used as a differentiator among the subjects. A

subject that is involved in a certain interaction type may be applied to different access

requirements than another subject that is involved with a different interaction type. A key

point of the collaboration request is that due to the varying interaction types, each subject

maybe involved with a different action over the same service. For example, consider a

collaboration involving three services (Services A, B, and C), where the Service A invokes

Service B and passes its results to Service B. Later, Service B must send its results to Service

C, and invoke it. From Service B’s perspective, the interactions with Service A and Service C

are different: Service A invokes Service B and passes input arguments, whereas, Service C

consumes the output generated by Service B. The first interaction can be represented as an

“invoke” request from “Service A” over “Service B”, whereas the second interaction can be

represented as a “consume” request from “Service C” over “Service B”. Although both

interactions are related to Service B, the specific actions taken in each of them are different,

as well as, the subjects taking these actions. More importantly, Service B must approve both

interactions simultaneously in order to join this collaboration.

 36

Existing access control models are designed to evaluate what we call traditional access

requests. A traditional access request represents a single interaction. Each request is typically

evaluated alone and an individual policy decision is generated. The request consists of a

subject, an object and an action entity. Recent research [ACDV+, XACML05] has introduced

variations to this model such that the access request includes additional entities such as an

environment entity. The environment entity is evaluated as part of the access request so that

additional attributes of the request such as the date, the time, and the location of the request

(when the requestors are mobile) can be evaluated. Therefore, the access request is defined as

four-tuple of a subject, an object, an action, and an environment entity.

Furthermore, there has been other work that introduces multiple subject entities into a

single request. The XACML [XACML05] framework, specifically, allows for this. The

reasoning is that when multiple subjects pertain to the same access request, they must be

evaluated simultaneously. The most common use-case scenarios are seen in the financial

sector, where two or more subjects must be involved with a specific request to prevent any

conflict of interest. The XACML model, however, does not allow for multiple action entities.

Moreover, it only allows for multiple resource entities under certain circumstances: when the

resources have a hierarchical tie such that accessing a higher level resource allows accessing

a lower level one, then the multiple resources can be included in a single request. This

situation is often observed when a request pertains to system directories or files.

A collaboration request, on the other hand, conveys information that is not conveyed in a

traditional access request. The collaboration request represents all of the interactions that

involve the service as part of the collaboration. In other words, the collaboration request

presents a limited snapshot of the collaboration as it relates to the service being contributed.

 37

The collaboration request includes 4 pieces of information: the subjects (i.e. the

collaborative peers), the interaction types, the actions, and the object (i.e. the provided

service). The collaboration request maintains the association among a subject, its interaction

type with the object, and the associated action (Figure 3.1).

Figure 3.1 The collaboration request for Service 3.

Each subject is distinguished from each other by their interaction types. The subjects that

have the same interaction type with the service are applied to the same access requirements.

Service 3Service 1 Service 2 Service 6
Service 5

Service 4

Interaction: indirect-
upstream

Subject: Service 1
Action: invoke
Object: Service 3

Interaction: direct-
upstream

Subject: Service 2
Action: invoke
Object: Service 3

Interaction: direct-
downstream

Subject: Service 4
Action: consume
Object: Service 3

Interaction: direct-
downstream

Subject: Service 5
Action: consume
Object: Service 3

Interaction: direct-
downstream

Subject: Service 5
Action: consume
Object: Service 3

Interaction: direct-
downstream

Subject: Service 4
Action: consume
Object: Service 3

Collaboration Request for Service 3:

Interaction Types:
indirect-upstream
direct-upstream
direct-downstream
direct-downstream
indirect-downstream
indirect-downstream

Subjects:
Service 1
Service 2
Service 4
Service 5
Service 6
Service 6

Actions:
invoke
invoke
consume
consume
consume
consume

Object:
Service 3

Service 3Service 1 Service 2 Service 6
Service 5

Service 4

Interaction: indirect-
upstream

Subject: Service 1
Action: invoke
Object: Service 3

Interaction: direct-
upstream

Subject: Service 2
Action: invoke
Object: Service 3

Interaction: direct-
downstream

Subject: Service 4
Action: consume
Object: Service 3

Interaction: direct-
downstream

Subject: Service 5
Action: consume
Object: Service 3

Interaction: direct-
downstream

Subject: Service 5
Action: consume
Object: Service 3

Interaction: direct-
downstream

Subject: Service 4
Action: consume
Object: Service 3

Collaboration Request for Service 3:

Interaction Types:
indirect-upstream
direct-upstream
direct-downstream
direct-downstream
indirect-downstream
indirect-downstream

Subjects:
Service 1
Service 2
Service 4
Service 5
Service 6
Service 6

Actions:
invoke
invoke
consume
consume
consume
consume

Object:
Service 3

Collaboration Request for Service 3:

Interaction Types:
indirect-upstream
direct-upstream
direct-downstream
direct-downstream
indirect-downstream
indirect-downstream

Subjects:
Service 1
Service 2
Service 4
Service 5
Service 6
Service 6

Actions:
invoke
invoke
consume
consume
consume
consume

Object:
Service 3

 38

However, the subjects that have different interaction types are applied to different access

requirements. Therefore, the access requirements sought from the subjects are not uniform.

There are two actions defined in our model: invoke and consume. The invoke action is

used by any collaborative peer that has an upstream interaction with the service. Any

collaborative peer that has a downstream interaction with the service uses the consume

action.

The collaboration request contains a single object: the service provided to the

collaboration. However, as an exceptional case, when a service has a composite nature, we

allow for defining multiple object elements within a single collaboration request (Figure 3.2).

A service is generally regarded as synonymous with a single web service (or a single

program implementation); however, in many cases, this is not true. Services are composite of

several resources, including but not limited to multiple web services orchestrated together,

databases, file systems and so on. The service, which is exposed to the external world, is

realized through the interactions among all of its resources. Therefore, in practice, a service

is rarely a single concrete object, but rather a composite abstraction. We call such services

with multiple resources as composite services. Each resource of the composite service may

have different access requirements. In such cases, the collaboration request can have multiple

object entities, each of which represents a specific resource of the service. In other words, the

collaboration request does not have a single object entity representing the service. As shown

in Figure 3.2, Service C has multiple resources: it has three operations implemented as web

services, a database, and two outcome documents. Each of the resources has different access

requirements. The interaction between Service 3 and Service 2 can be represented as an

“execute” request over the “opInvoke” by “Service 2”, whereas the interaction between

 39

Service 3 and Service 4 can be represented as a “read” request over the “Output Doc 1” by

“Service 4”. As seen, the collaboration and its interactions affect each resources of Service C

differently. In this case, the collaboration request can list each of these resources as a

separate object entity. This is a fine-grained approach.

When the fine-grained approach is taken, it is also possible to further refine action entity

of the collaboration request model. Rather than just using two action types, invoke and

consume, more refined action types can be used. Our access control model does not restrict

the refined action types. However, the actions must be meaningful over the resources

included in the collaboration request. In Chapter 5, we show how this type of request can be

prepared in detail.

A service must evaluate and accept the entire collaboration request, all of the subject and

action entities (and the object entities, if it adopts the fine-grained approach) listed within the

collaboration request, before committing to the collaboration. Once the service joins the

collaboration, the service must grant access to all of its peers through their designated

interactions. Consequently, the service would become exposed to the collaborative peers

such that it would become impossible to isolate and protect the service from untrustworthy

peers. Therefore, it is crucial that the collaboration request must be evaluated in a

comprehensive manner. The entire collaboration request must be evaluated against the

collaboration policy. Evaluating the parts of the collaboration request separately, such as

evaluating each subject separately, can lead to undetected security breaches. The

comprehensive evaluation approach eliminates security risks that cannot be detected by

examining individual interactions or peers. (We later have a detailed discussion of how the

 40

lack of a comprehensive approach results in conflict of interest issues. The reader can refer to

Chapter 2 for a detailed discussion of our comprehensive evaluation method.)

Figure 3.2 Fine-grained collaboration request for Service 3.

3.2 Collaboration Policy Model

The nature of our access control model calls for a policy model that can tackle the

multitude of information conveyed. We identified two main requirements of the policy

model. We first discuss the requirements and then introduce our policy model. Finally, we

present sample policies in Section 3.2.3.

Interaction: direct-
downstream

Subject: Service 4
Action: read
Object: Output Doc 1

Interaction: direct-
downstream

Subject: Service 4
Action: read
Object: Output Doc 1

Interaction: indirect-
upstream

Subject: Service 1
Action: invoke
Object: opInvoke

Interaction: direct-
upstream

Subject: Service 2
Action: invoke
Object: opInvoke

Interaction: direct-
downstream

Subject: Service 5
Action: read
Object: Output Doc 2

Interaction: direct-
downstream

Subject: Service 5
Action: read
Object: Output Doc 2

Service 1 Service 2 Service 6

Service 5

Service 4
Service 3’s
Output Doc 1

Service 3’s
Output Doc 2

opInvoke

op3.2

op3.3
DB

Collaboration Request for Service 3:

Interaction Types:
indirect-upstream
direct-upstream
direct-downstream
direct-downstream
indirect-downstream
indirect-downstream

Subjects:
Service 1
Service 2
Service 4
Service 5
Service 6
Service 6

Objects:
opInvoke
opInvoke
Output Doc 1
Output Doc 2
Output Doc 1
Output Doc 2

Actions:
invoke
invoke
read
read
read
read

Interaction: direct-
downstream

Subject: Service 4
Action: read
Object: Output Doc 1

Interaction: direct-
downstream

Subject: Service 4
Action: read
Object: Output Doc 1

Interaction: indirect-
upstream

Subject: Service 1
Action: invoke
Object: opInvoke

Interaction: direct-
upstream

Subject: Service 2
Action: invoke
Object: opInvoke

Interaction: direct-
downstream

Subject: Service 5
Action: read
Object: Output Doc 2

Interaction: direct-
downstream

Subject: Service 5
Action: read
Object: Output Doc 2

Service 1 Service 2 Service 6

Service 5

Service 4
Service 3’s
Output Doc 1

Service 3’s
Output Doc 2

opInvoke

op3.2

op3.3
DB

Collaboration Request for Service 3:

Interaction Types:
indirect-upstream
direct-upstream
direct-downstream
direct-downstream
indirect-downstream
indirect-downstream

Subjects:
Service 1
Service 2
Service 4
Service 5
Service 6
Service 6

Objects:
opInvoke
opInvoke
Output Doc 1
Output Doc 2
Output Doc 1
Output Doc 2

Actions:
invoke
invoke
read
read
read
read

Collaboration Request for Service 3:

Interaction Types:
indirect-upstream
direct-upstream
direct-downstream
direct-downstream
indirect-downstream
indirect-downstream

Subjects:
Service 1
Service 2
Service 4
Service 5
Service 6
Service 6

Objects:
opInvoke
opInvoke
Output Doc 1
Output Doc 2
Output Doc 1
Output Doc 2

Actions:
invoke
invoke
read
read
read
read

 41

3.2.1 Policy Model Requirements

The first requirement is that a collaboration policy must be able to distinguish among the

collaborative peers with respect to their interactions with the service. The peers must be

applied to different access requirements based on their interaction types. Moreover, the

collaboration policy must combine the evaluation result of each collaborative peer to

generate a final policy outcome. While combining the peers’ evaluation results, the

interaction types must be taken into account. For example, a collaboration policy must be

able to state that access to a service is allowed as long as all the peers with a direct

interaction type are trustworthy and all collaborative peers with an indirect interaction type

do not belong to a rival company. As seen, the peers with indirect interaction types do not

have to be trustworthy; however, they should not belong to a certain organization. The

collaboration policy must be able to apply the peers to different access requirements based on

their interaction types, and combine the results to reach a final decision.

The second requirement is that the collaboration policy must be easily integrated into an

existing access control system. A collaboration policy is an upper layer access rule

collection. It is called an “upper-layer” rule collection because collaboration policies are

designed to co-exist with the access control policies that are traditionally designed to

evaluate standalone access requests. The existing access control policies (also called

underlying policies) handle the access requests that are standalone and are not part of any

collaboration. It is imperative that: first, collaboration policies must not disrupt the existing

access control system; second, collaboration policies must be easily augmented to the

existing system; third, the collaboration policies may make use of existing policies whenever

desirable. The third requirement aims to promote policy re-use among the collaboration

policies and the existing policies. Although the collaboration policies are specifically

 42

designed with collaborations in mind, a policy writer must easily be able to refer to the

existing policies in order to re-use them for collaboration decisions. An efficient method that

provides policy re-use between underlying and collaboration policies is essential. As a result

of achieving this affect, collaboration policies would be regarded as a complementary and an

easy-to-adopt security feature.

3.2.2 Collaboration Policy Model

 We model a collaboration policy as the smallest building block of the security system

that makes access decisions for a service provided to the collaborations. There can be

multiple such blocks; each collaboration policy manages access to a different service. In

other words, for each service that can be offered to collaborations, there must be a specific

collaboration policy. A service owner who offers multiple of his services to the collaboration

must separately evaluate each service’s collaboration policy.

Within a collaboration policy, an access rule is the smallest building block that states the

access requirements sought from a collaborative peer. Each rule is designed to evaluate a

specific interaction type. In order to distinguish between the peers, each rule is incorporated

with a target interaction type. The target interaction can be one of the four distinctive

interactions: upstream-direct, upstream-indirect, downstream-direct, and downstream-

indirect. When desired, these interaction types can be further refined. (We discuss this in

Section 1.3.1) In addition, each rule is designed for a specific action and object. The action is

determined with respect to the target interaction of this rule. When the rule targets upstream

interactions, the action is set to invoke, whereas, when the rule targets downstream

interactions, the action is consume. The object is the service being provided to the

collaboration.

 43

A collaborative peer is evaluated against a specific rule when the peer possesses the

designated interaction type. The peer must also possess the action and object entities that

match the rule’s target. In a proposed collaboration, there can be multiple separate peers that

possess the target interaction type of a specific rule. Each peer is evaluated by the matching

rule separately. The final result of the rule is determined in a deny-overrides manner. When

a single peer fails the rule, the result of the rule becomes deny, even if all other matching

peers satisfy the rule. For example, consider a rule that states that all peers with an upstream-

indirect interaction must belong to a certain trusted organization. There are likely to be

multiple peers in a given collaboration matching this rule. The rule result must become a

deny decision when even a single peer belongs to another un-trusted organization, although

all other peers belong to the specified trusted organization.

The result of each rule is combined with respect to a pre-defined combination logic. The

name of the combination algorithm must be explicitly stated in each policy. The result of the

combination algorithm constitutes the final decision over contributing service to the

collaboration. It is possible that a rule’s result may be a permit decision with obligations. The

obligation refers to the future activities that must be performed by the subject. The rule result

is contingent upon the subject satisfying the obligation. In such cases, the rule’s obligations

are propagated through the policy decision. We discuss obligations and how they are

represented within a policy decision in Chapter 4.

Rule Types:

In order to meet our second requirement (the policy re-use between underlying and

collaboration policies), we designed two rule types: Local (L) and Underlying (U). A rule

 44

type conveys information about the manner in which the rule is evaluated. This information

is used in addition to the access requirements stated inside the rule. The Local (L) rule type

indicates that the rule is locally contained within the collaboration policy. In other words, all

the access requirements associated with this rule are locally stored inside the rule; therefore,

the rule does not make any references to external rules or policies.

The Underlying (U) rule type indicates that the access requirements associated with this

rule are stored in an underlying policy (Figure 3.3). The Underlying (U) rule type is used to

provide the re-use between underlying policies and collaboration policies. Instead of re-

stating rules from underlying policies, the service owner simply creates a collaboration rule

of Underlying type. The type Underlying rules do not have their own access requirements;

they only refer to other policies. During the collaboration policy evaluation, their results are

determined by the underlying policy decision (as we later show this in detail).

We designed two more rule types in order to deal with delegation of credentials:

Delegation-downstream (DD), and Delegation-upstream (DU). The Delegation-upstream

(DU) rule type is used when a service is accessed with delegated credentials. The Delegation-

downstream (DD) rule is used when a service’s credentials are delegated to other parties.

Peers that have established trust relationships can join the same collaboration simultaneously.

One of these peers may delegate its credentials to one of its trusted peers. In such cases,

above rules types evaluate the access requests pertaining to the delegated credentials. We

discuss the details of rule types, their syntaxes and implementation issues in succeeding

sections.

 45

Figure 3.3 The Policy Model. The Underlying rules accomplish the policy re-use. The Local rules are
tailored for collaborations.

Local Rule

…

Underlying Rule

Collaboration Policy

Service 2 Service 1
Access Control List:
Alice execute
Bob execute

Underlying Policy

Policy
Enforcement

Point

Alice
Service 4

Service 2

Service 1

Service 3

Service 5 Standalone
“Traditional”
Access Request

Collaboration
Request

Local Rule

…

Underlying Rule

Collaboration Policy

Local Rule

…

Underlying Rule

Collaboration Policy

Service 2 Service 1
Access Control List:
Alice execute
Bob execute

Underlying Policy
Service 1
Access Control List:
Alice execute
Bob execute

Underlying Policy

Policy
Enforcement

Point

Alice
Service 4

Service 2

Service 1

Service 3

Service 5Service 4

Service 2

Service 1

Service 3

Service 5 Standalone
“Traditional”
Access Request

Standalone
“Traditional”
Access Request

Collaboration
Request

 46

Sample Policies:

Below we present sample collaboration policies in plain language in order to illustrate

our policy and access control model better. The service below refers to the service that is

provided to the collaboration. Each example stands on its own.

Example 1: The service can only be provided to a collaboration where: all collaborative
peers that have an upstream-direct interaction with the service must be members of
“Organization Y”; and all collaborative peers that have a downstream-direct interaction with
the service must have credentials from the “Better Business Bureau”.

Figure 3.4 The collaboration policy stated in Example 1. The access rules are shown as individual blocks
consisted of three bars: target, type and conditions elements. The connection among the rules indicates
the logical combination of the rule results.

 47

Example 2: The service can only be provided to a collaboration where: all collaborative

peers with an upstream interaction (upstream-direct or upstream-indirect) with the service
must have credentials from the “Better Business Bureau”; and all collaborative peers that
have an upstream-direct interaction with the service must already have authorization
according to the underlying policies.

Figure 3.5 The collaboration policy stated in Example 2. The Underlying rule has no access conditions
since it merely indicates that the matching collaborative peer must be authorized by the underlying
policies (indicated by the dashed lines).

Target
Type =
Local

Conditions

upstream:any

Target
Type =

Underlying

Conditions

upstream:direct

Must be members of
“Better Business Bureau”

Must be authorized as
a standalone requestor

by the underlying policies

AND

Target
Type =
Local

Conditions

Target
Type =
Local

Conditions

upstream:any

Target
Type =

Underlying

Conditions

upstream:direct

Must be members of
“Better Business Bureau”

Must be authorized as
a standalone requestor

by the underlying policies

AND

 48

Example 3: The service can only be provided to a collaboration where: all collaborative
peers that have an upstream-direct interaction or a downstream-direct interaction with the
service must be authorized by the underlying policies; and all collaborative peers that have a
downstream-indirect interaction or an upstream-indirect interaction with the service must
have credentials from the “Better Business Bureau”.

Figure 3.6 The collaboration policy stated in Example 3. The Underlying rules have no access conditions
since they merely indicate that the matching collaborative peer must be authorized by the underlying
policies (indicated by the dashed lines).

Target
Type =

Underlying

Conditions

downstream:direct

Must be authorized
by the underlying policies

Target
Type = Local

Conditions

downstream:indirect

Must be a member of “Better Business Bureau”

Target
Type =

Underlying

Conditions

upstream:direct

Must be authorized
by the underlying policies

Target
Type = Local

Conditions

upstream:indirect

Must be a member of “Better Business Bureau”

AND

AND

AND

Target
Type =

Underlying

Conditions

downstream:direct

Must be authorized
by the underlying policies

Target
Type = Local

Conditions

downstream:indirect

Must be a member of “Better Business Bureau”

Target
Type = Local

Conditions

downstream:indirect

Must be a member of “Better Business Bureau”

Target
Type =

Underlying

Conditions

upstream:direct

Must be authorized
by the underlying policies

Target
Type = Local

Conditions

upstream:indirect

Must be a member of “Better Business Bureau”

Target
Type = Local

Conditions

upstream:indirectTarget
Type = Local

Conditions

upstream:indirect

Must be a member of “Better Business Bureau”

AND

AND

AND

 49

Example 4: The service can only be provided to a collaboration where: all collaborative
peers that have an upstream-direct interaction with the service must already have
authorization according to the underlying policies; all collaborative peers that have a
downstream-direct interaction with the service must be members of “Organization Y”; all
collaborative peers that have a downstream-indirect interaction or an upstream-indirect
interaction with the service must have credentials from the “Better Business Bureau”.

Figure 3.7 The collaboration policy stated in Example 4. The Underlying rule has no access conditions
since it merely indicates that the matching collaborative peer must be authorized by the underlying
policies (indicated by the dashed lines).

Target
Type = Local

Conditions

downstream:direct

Must be a member of “Organization Y”

Target
Type = Local
Conditions

downstream:indirect

Must be a member of “Better Business Bureau”

Target
Type =

Underlying

Conditions

upstream:direct

Must be authorized
by the underlying policies

Target
Type = Local
Conditions

upstream:indirect

Must be a member of “Better Business Bureau”

AND

AND

AND

Target
Type = Local

Conditions

downstream:direct

Must be a member of “Organization Y”

Target
Type = Local
Conditions

downstream:indirect

Must be a member of “Better Business Bureau”

Target
Type = Local
Conditions

downstream:indirect

Must be a member of “Better Business Bureau”

Target
Type =

Underlying

Conditions

upstream:direct

Must be authorized
by the underlying policies

Target
Type = Local
Conditions

upstream:indirect

Must be a member of “Better Business Bureau”

Target
Type = Local
Conditions

upstream:indirectTarget
Type = Local
Conditions

upstream:indirect

Must be a member of “Better Business Bureau”

AND

AND

AND

 50

3.3 The Collaboration Policy Syntax

A collaboration policy consists of three elements: combination logic, maximum

evaluation radius, and access rules. Below we present each element respectively. Note that

whenever we refer to an element of our syntax, we represent them in italics.

3.3.1 Combination Logic

The combination logic element states the name of the algorithm that is used to combine

the rule results. We provide a Boolean rule-combining algorithm in our implementation. This

algorithm takes the Boolean operators and the access rules as its inputs, and combines the

rule results accordingly. The policy writer must set the CombinationLogic element to the

name of the rule-combining algorithm and provide the inputs. It is possible to define different

algorithms in addition to the Boolean combining algorithm we provide. The policy writer can

implement custom-made algorithms and point the CombinationLogic element to a specific

algorithm name.

In fact, as we discuss in Section 1.5, our policy implementation is based on the XACML

specification. We modified and enhanced the XACML specification as deemed necessary.

The XACML specification also supports an element named RuleCombiningAlgId, which

does the same job as the CombinationLogic. The XACML implementation provides a few

rule-combining algorithms, such as deny-overrides, permit-overrides, first-matching-rule, etc.

Since our implementation is based on that of XACML, the policy writer, in addition to the

Boolean algorithm we provide, can also reference these rule-combining algorithms.

 Definition 12: The CombinationLogic element equals to the name of the combination
algorithm that combines the rule results and generates a policy decision.

 51

3.3.2 Maximum Evaluation Radius

Definition 13: The MaximumEvaluationRadius element has an integer value. This value
indicates the maximum number of edges between a collaborative peer and the service within
the collaboration; any peers beyond this distance are not applied to the collaboration policy.

In large collaborations, the number of collaborative peers that match a rule’s designated

interaction type increases significantly. Especially, when a rule is designed for the indirect-

upstream or the indirect-downstream interaction types, the number of matching peers

increases with the collaboration complexity. As a limiting measure, the service owner can set

the MaximumEvaluationRadius element to an integer. This integer indicates the maximum

number of edges between a collaborative peer and the service such that only the peers whose

distances from the service are equal or smaller than this value are applied to the collaboration

policy. There can be peers in the proposed collaboration that are beyond this set distance;

these peers are exempted from the policy evaluation. If the MaximumEvaluationRadius

element is not included in a policy, an effective radius of infinity is used.

3.3.3 Access Rule Syntax

 Definition 2: An Access Rule (AR) = {Target, Type, Conditions}, is the minimum building
block in a collaboration policy that communicates the access requirements sought from a
collaborative peer based on the peer’s interactions within the collaboration. Each rule has a
target interaction type, and only evaluates the peers that possess the target interaction. The
access rule evaluates to either “access” or “deny”.

An access rule consists of three elements: Target, Type, and Conditions. The Target

element determines which collaborative peers, and their corresponding interactions, must be

evaluated by this rule. The unmatched peers are not applied to the rule.

Definition 3: Target = {PeerLocation, Object, Action}. Target element determines the

collaborative peers and their interaction types that must be evaluated by the rule.
PeerLocation indicates the specific interaction type, Object indicates the requested resource,

 52

and Action indicates the requested permission over the Object. The Object element can either
be the requested service name, or a resource component of the requested service.

The PeerLocation element indicates the interaction type that a collaborative peer should

possess in order to be evaluated against the rule. The PeerLocation element can be

represented in two ways: either as a direction:interaction pair, or by the keyword EndUser.

In the former case, the direction could either be upstream (up) or downstream (down). The

interaction element indicates the interaction type that must exist between the service and the

collaborative peer (i.e. the subject). The interaction element is either one of the keywords

direct, indirect, and any, or alternatively, the interaction element could be an integer. The

keywords direct/indirect respectively state that only a requesting peer with a direct/indirect

interaction can be evaluated against the rule. The keyword any states that any peer, regardless

of its interaction type, must be applied to this rule. When the interaction element is an

integer, it indicates the number of edges between the service and the collaborative peer (i.e.

the subject) within the collaboration.

Instead of a direction:interaction pair, the keyword EndUser can be used. The EndUser

indicates that the collaboration owner, which is the entity on whose behalf the collaboration

is initiated, must be evaluated against this rule, regardless of the interaction type shared

between the service and the collaboration owner. The evaluation of the collaboration owner

is performed when the collaboration owner is present in the collaboration such that there is a

service present in the collaboration that belongs to the collaboration owner. If the

collaboration owner has no services in the collaboration, this evaluation must happen through

the workflow engine. The service must notify the workflow engine about its desire to

evaluate the collaboration owner, and the workflow engine urges the collaboration owner to

 53

send his credentials to the service. Our implementation currently does not support this second

operation mode. However, it can be implemented as the future work.

Definition 4: PeerLocation, indicates the interaction type and the relative location of a
requesting peer with respect to the author. It is represented either as a direction:interaction
pair or by the keyword EndUser

Definition 5: The interaction indicates the interaction type of a collaborative peer. It is

one of the keywords direct, indirect, and any, or it can also be specified as an integer. When
specified as an integer, it indicates the umber of edges between the collaborative peer and the
service within the collaboration.

Definition 6: Direction indicates the relative location of a collaborative peer with respect

to the service. It is either upstream (up), or downstream (down).

Definition 7: A collaborative peer is in the Upstream Direction of the service when there

exists a directed walk W between the peer and the service such that W= v0, e1, v1, …, en ,V ,
where V represents the service; v represents collaborative peers; e represents the data
exchanged between two services such that the data is sent from the service on the left side of
e to the service on the right side of e. If a collaborative peer is a member of W, it is in the
upstream direction of the service.

Definition 8: A collaborative peer is in the Downstream Direction of the service when

there exists a directed walk W between the collaborative peer and the service such that W=
V, e1 , v1 , …, en , vn , where V represents the service; v represents collaborative peers; e
represents the data exchanged between two services such that the data is sent from the
service on the left side of e to the service on the right side of e. If a collaborative peer is a
member of W, it is in the downstream direction of the service.

The Conditions element of an access rule states the access requirements sought from a

collaborative peer. The access requirements are represented as a predicate. During rule

evaluation, the matching collaborative peer is applied against the predicate. The result of the

predicate is used to determine the rule’s result.

 Definition 9: An Attribute is a characteristic of an entity, such as a subject, an object, or
an action. Each attribute has a name and a value.

Definition 10: A Predicate, P: (F(e) = v), is a Boolean-valued function, where e denotes a

variable, F denotes the predicate function that e must be applied to, and v denotes the desired
outcome of F. When the result of F equals to v, the result of the predicate becomes true,

 54

otherwise becomes false. F could be any arbitrary function. The variable e typically
represents attributes of entities such as subject, object, or action. It is also possible that e
could be another predicate. When e is defined as another predicate, first, the value of e is
calculated, and then this value passed as a variable to the F. This situation results in iterative
evaluation of at least two predicates (or more, depending on the number of variables). It is
usually used to express complicated access requirements.

Definition 11: The Conditions element states the access requirements sought from a
collaborative peer. The Conditions element is represented as a predicate, whose value is
either true or false. A true evaluation is associated with “access”, and false evaluation is
associated with “deny”.

Each entity, a subject, an object, or an action entity, has several attributes. In order to

distinguish among the attributes, one of the keywords Subject, Object, or Action is used.

These keywords represent which entity in the collaboration request owns the attribute. The

predicate function (F) takes advantage of these keywords when it has to check an attribute

used by different entities.

Example 5:

AC: {
 (Subject.X509OrgNameAttr = “OrganizationNameX”)
}

Above access condition (AC) states that the subject entity must have an attribute named
X509OrgNameAttr with a value equal to “OrganizationNameX”. The variable e is the
Subject.X509OrgNameAttribute. The predicate function F is trivial, it is the identity
function, so it is not shown above explicitly. v is the desired outcome of F, which is
OrganizationNameX. It is possible to define complex predicate functions (F) that take
multiple variables as its input; here, we opt to show the simplest case for brevity. In the
remaining examples, unless we explicitly indicate F, the reader can assume that F is trivial
and it is equal to the identity function.

As it is observed in above example, we used an attribute that is created based on the

subject’s X.509 credential. Of course, this is not mandatory, and only for illustrative

purposes. An access condition can choose to use any attributes. However, the common

 55

practice is to use attributes that are already conveyed by the well-adopted credentials, tickets

or keys. In other words, it is good practice to look for attributes that can easily be extracted

and generated based on the existing technologies. Existing access control systems typically

employ X.509 credentials [IETF99], Kerberos tickets [Kerberos], SAML tokens [OASIS05-

2], or user name-password pairs. In our framework, any of these keys, tokens or credentials

can be employed. A policy writer can refer to these credentials, keys or tokens in order to

retrieve the attributes of a collaborative peer. We do not limit the policy writer for specifying

any of these attributes. A policy, for example, may require checking the security domain of a

requestor by retrieving the requestor’s SAML token issued by a trusted server, or by

retrieving the requestor’s X.509 credential. In the current prototype, we tested with X.509

credentials; however, we plan to demonstrate our framework with different type of

technologies, such as SAML tokens, in future.

Example 6:
AR1: { { up: direct, Service C, invoke}, L,

Conditions: {
(Subject.X509DistName = “Alice”)

}
 }

Above access rule (AR1) targets the collaborative peers with an upstream direct interaction
with Service C, and they request to invoke Service C. The Conditions element states that any
collaborative peer applied against this rule must have an X509DistName attribute with a
value equal to Alice.

Example 7:
AR2: { { up: 2, Service C, invoke}, L,

Conditions: {
(Subject.X509OrgNameAttribute = “Organization Y”)

}
 }

Above access rule (AR2) targets collaborative peers that are in upstream direction of Service
C, and are 2 edges away from Service C. Note that instead of an interaction type, the service

 56

owner states the exact distance between a collaborative peer and the Service C. Therefore,
this rule does not apply to any peer that has a direct interaction, or has an indirect interaction
with a distance bigger than 2 edges.

Since we conclude the basics of our syntax here, below we present sample collaboration

policies. The policies below only include the basic rule type Local (L). Later, once we

discuss rule types in more detail, we present how our syntax is augmented with additional

elements.

Example 8:
CP1 :

{
CombinationLogic= “AND”

AR { { down: direct, Service C, consume}, L,

Conditions: {
(Subject.X509OrgNameAttribute = “Organization Y”)

}
}

AR { { up: direct, Service C, invoke}, L,

Conditions: {
(F (Subject.X509DistName = “Alice”)

}
}

}

Above policy (CP2) has two access rules (each indicated by AR). The rules are combined
with a Boolean AND operator, as indicated in CombinationLogic element. The
MaximumEvaluationRadius is not specified; therefore, any collaborative peers matching the
above rules must be evaluated. The policy states that in order to contribute Service C to a
collaboration: the direct downstream peers (note that there could be multiple direct
downstream peers) must be members of Organization Y; the direct upstream peers, on the
other hand, can only be an entity with the name Alice. Note that this policy has no
requirements from the peers that have an indirect interaction with the Service C. Instead, the
policy only expresses access requirements from peers with direct-upstream and direct-
downstream interactions.

Example 9:

 57

CP3 :
{
 CombinationLogic= “AND”

AR { { up: indirect, Service C, invoke}, L,
Conditions: {

(Subject.X509OrgNameAttribute = “Organization Y”)
}

}

AR { { up: direct, Service C, invoke}, L,
Conditions: {

(Subject.X509DistName = “Alice”)
}

}
}

Above policy (CP3) has two access rules. The rules are combined with a Boolean AND
operator. The MaxiumumEvaluationRadius is not specified. (Note how drastically the
number of peers matching the first rule can increase with a large collaboration. In next
example, we show how to remedy this situation.) The policy states that in order to contribute
Service C to a collaboration: the upstream indirect neighbors must be members of
Organization Y; the upstream direct neighbors must be entities with a name equal to Alice.
This policy does not have any requirements from the downstream peers. This could be
because the service owner does not think that the downstream peers constitute a security
threat against the Service C.

Example 10:
CP4 :

{
 CombinationLogic= “AND”

MaximumEvaluationRadius= 3

AR { { up: indirect, Service C, invoke}, L,

Conditions: {
(Subject.X509OrgNameAttribute = “Organization Y”)

}
}

AR { { up: direct, Service C, invoke}, L,

 58

Conditions: {
(Subject.X509DistName = “Alice”)

}
}

}

Above policy (CP4) has two access rules, combined with a Boolean AND operator. CP4
differs from CP3 of Example 5 due to its MaximumEvaluationRadius, set to 3. As a result,
the collaborative peers that must be applied to the first rule is limited. Although the first rule
targets any peer with an indirect interaction type, the MaximumEvaluationRadius exempts
the peers that are located more than 3-edges away from the Service C. Therefore, only the
peers with a distance of 2-edges or 3-edges are applied to the first rule, of course given that
they must be in the upstream direction of Service C.

Example 11:
CP5 :

{
 CombinationLogic= “AND”

MaximumEvaluationRadius= 3

AR { { up: any, Service C, invoke}, L,

Conditions: {
(F (Subject.X509OrgNameAttribute = “Organization Y”)

}
}

AR { { up: direct, Service C, invoke}, L,

Conditions: {
(F (Subject.X509DistName = “Alice”)

}
}

}

Above policy (CP5) is almost identical to the CP4 of Example 6. However, the first access
rule of CP5 uses the any keyword to indicate its target interactions, whereas the first rule of
CP4 uses the indirect keyword. As a result of this difference, the collaborative peers with a
distance of 1-edge, 2-edges or 3-edges away from the Service C are applied to the first rule of
CP5. On the other hand, the peers with 2-edges or 3-edges away from the Service C are
applied to the first rule of CP4. Due to this difference, in CP5, the upstream peers with direct
interaction type are applied to both the first rule and the second rule. Thus, an authorized

 59

upstream peer with direct interaction must belong to the Organization Y, and also has a name
attribute equal to Alice.

3.4 Access Rule Types

There are four types of access rules defined for collaboration policies: Local (L),

Underlying (U), Delegation-downstream (DD), and Delegation-upstream (DU). In this

chapter, we only discuss the Underlying and the Local rule types. The Delegation-upstream

and Delegation-downstream rule types are discussed in the succeeding chapter due to their

complexity.

A rule type communicates information about the manner in which a rule must be

evaluated. This information is in addition to the access requirements stated within the rule.

The Local (L) type indicates that the rule is locally contained within the collaboration policy.

All access requirements associated with this rule are locally stored inside the rule; therefore,

the rule does not make any references to external rules or policies. The Underlying (U) type,

on the other hand, indicates that the rule refers to external policies during its evaluation. The

access requirements associated with this rule are stored in an external policy, typically in

underlying policies. The Underlying (U) rule type is used to provide the re-use between

underlying policies and collaboration policies. If a rule lacks an explicit rule type, its type is

defaulted to the Local (L). We discuss the details of rule types, their syntaxes and

implementation issues in succeeding sections.

The Local rule type fully conforms to the policy syntax we introduced in the earlier

sections. Its syntax is identical to the syntax presented in the Definition 2. The Local rule

type can be regarded as a generic rule type with the simplest syntax, and it is most commonly

used in collaboration policies. In this section, we rather focus on the Underlying rule type,

which has a slightly different syntax.

 60

3.4.1 Underlying (U) Rule Type

The Underlying (U) rule type allows a collaboration rule to refer to another policy. The

referred policy is different from the collaboration policy that contains the rule. The referred

policy does not have to be another collaboration policy; it can be an arbitrary access control

policy. A rule of this type indicates that the access requirements associated with this rule are

stored inside the referred policy, not inside the collaboration policy that contains the rule.

Therefore, the rule’s result is determined by the referred policy.

This rule type is designed to provide the re-use between the underlying policies and the

collaboration policies. As we discussed in our policy model, we model a collaboration policy

as an upper-layer access control policy. The other access control policies that are not

designed to evaluate collaborations are modeled as lower-level policies. These lower-level

policies already exist in almost every security system and they are designed to evaluate

standalone access requests. We call these policies as underlying policies. A service owner

can re-use some of the access requirements that are already stated in underlying policies in

his collaboration policy. The resulting collaboration policy is a medley of access rules; some

rules are stated only for evaluating collaborations, and some rules have access requirements

taken from the underlying policy. This situation is observed when the underlying policies are

necessary and sufficient to express some of the access requirements; thus, they must be

included in the collaboration policies.

However, to achieve this effect, the service owner should not be enforced to re-iterate all

of the access requirements taken from the underlying policy in his collaboration policies.

First, this would not be an efficient solution. Second, the desired access requirements may be

spread across multiple underlying policies. Third, the underlying policies may be difficult to

 61

convert into the collaboration policy syntax. An Underlying (U) type collaboration rule is

designated to address this problem. That is why we call this rule type as Underlying (U).

(From now on, we call this rule type as type U for brevity.)

Definition 12: A type Underlying (U) collaboration rule has an empty Conditions
element. A collaborative peer that matches the Target of this rule must be evaluated against
an underlying policy. The policy decision returned from the underlying policy determines the
result of this rule.

The Target element of a type U rule indicates which collaborative peers must be

evaluated against this rule. Since a type U rule refers to an underlying policy for its access

requirements, the matching collaborative peers are, in effect, evaluated by the underlying

policy. The result returned from the underlying policy determines the outcome of the type U

rule.

In order to evaluate type U rules, the collaboration policy engine must be given the

location of the underlying policy engine that enforces the underlying policies. During the

evaluation of a type U rule, the collaboration policy engine contacts the underlying policy

engine. The collaboration policy engine creates a new access request. The new request

complies with the request model expected by the underlying policy engine. Our collaboration

policy engine, the prototype, is already configured to create requests complying with some of

the well-known request models such as that of XACML model, and it can easily be

configured for other request models. While creating the new access request, the collaboration

policy module may eliminate some of the information that is not meaningful to the

underlying policy engine, such as the interaction type of a collaborative peer. The new access

request still contains the attributes of the collaborative peer. The result returned from the

underlying policy engine is treated as though it is generated by the type U collaboration rule.

 62

An advantage of our evaluation scheme is that the underlying policy engine carries out

the actual evaluation of the new request; thus, the collaboration policy is isolated from the

details of the lower-level security system. Consider that most underlying security systems

have complicated legacy-like structures. It is possible that there may be multiple underlying

policies, each located in different places, even built in different languages. As a result, the

evaluation of the underlying policy could be a challenge in and of itself. However, since we

delegate this responsibility to the underlying policy engine, the job of the collaboration

policies significantly eases. Furthermore, our solution frees the service owner from

replicating the underlying structure at an upper layer, which leads to the data pollution.

Example 12:
CP6 : {

 CombinationLogic= “AND”

AR { {up:any, Service C, invoke}, U, Conditions: ∅ }
}

CP6 states that any upstream peers with a direct or indirect interaction type must be evaluated
against the underlying policy. In other words, each upstream collaborative peer, regardless of
its interaction type, must be authorized as though it requested the Service C standalone, not
part of a collaboration.

Example 13:
CP7 : {

CombinationLogic= “AND”
MaximumEvaluationRadius= “3”

AR { { up: direct, Service C, execute }, U, Conditions: ∅ }

AR { { up: indirect, Service C, execute}, L,

Conditions: {
(Subject.X509OrgNameAttr = “Organization Y”)

 63

}
}

}

CP7 states that all upstream collaborative peers with a direct interaction type must be
evaluated against the underlying policy. Therefore, these peers are subject to the access
requirements that are expected of the standalone requestors. The upstream collaborative peers
with an indirect interaction, on the other hand, must only be members of “Organization Y”.

3.5 The Collaboration Policy Implementation

Due to the difficulties involved with promoting and implementing a new access control

language, we selected an existing language and enhanced its syntax and implementation to

meet the requirements of our collaboration policies.

The XACML (eXtensible Access Control Markup Language) framework provides an

XML-based meta-language to represent access control policies, an extendable policy engine

to evaluate and enforce the policies, and a simple model of access requests and access

decisions that can be easily exchanged over the wire. Sun’s implementation of the XACML

framework [Sun05] provides an open source Java library, which makes it possible to realize

and enhance Sun’s framework. A custom-built XACML engine, based on Sun’s Java

libraries, can be exposed as a web service so that it can easily communicate with other

services for authorization purposes. Since we focus on web services collaborating with each

other in a dynamic manner, being able to expose a policy module as a web service and to

exchange access requests and the policy decisions in a uniform XML-based message format

is essential for us. Finally, our experience from our earlier work [ABBD2-05] (incorporating

a custom-built XACML engine into the Globus Toolkit (GT) [FK97]) motivated us to adopt

the XACML framework as our foundation.

 64

In order to implement the collaboration policies, we have enhanced the existing XACML

syntax and its implementation, when necessary. In the following sections, we discuss each of

these enhancements and their implementation details.

 3.5.1 Collaboration Request Model

A collaboration request consists of prospective collaborative peers, their interactions with

the requested service, and their resulting actions over the service. A key point of a

collaboration request is that it includes multiple collaborative peers, each acting in different

interaction types with the service. As a result, each peer may be involved in a different action

over the same service.

A typical XACML access request consists of a subject, a resource and an action.

XACML, however, also recognizes the situations in which multiple subjects pertain to a

single access request and each subject acts in different capacities; therefore, each subject

must be evaluated accordingly. XACML uses an attribute, namely subject-category, to

differentiate between these subjects. An XACML policy, for example, can include two

separate access rules: each targets a different subject-category attribute, and each rule

correspondingly has different access requirements on the matching subjects. Each access rule

target must explicitly indicate its target subject-category, so that only the matching subjects

would be evaluated by the rule. Since an XACML access request can only have a single

action element and a single resource element, there are no action-category or resource-

category attributes. (XACML allows for multiple resources under special circumstances,

such as when there is a resource hierarchy, e.g. a hierarchical file system; however, it is a

special case [MULT].)

 65

An XACML access request with multiple subjects, which we call a composite XACML

request, would be evaluated in the same manner as any other XACML request with a single

subject: the access request is checked against each rule contained in the XACML policy and

is evaluated against the rules that they match. However, once the composite XACML request

matches a rule, the rule’s access condition must only be evaluated against the intended

subject-category. To achieve this, the rule’s access condition must explicitly indicate the

subject-category attribute. Otherwise, the rule’s conditions would be applied to on

unintended subject and may be incorrectly false. For example, a composite XACML request

has two subjects: a manager and a loan approver. There are two categories for each subjects.

In order to return a permit decision, the manager and the loan approver must be applied to

two different rules simultaneously. Each rule has the intended subject-category expressed in

its access condition element. During evaluation, the composite request matches both rules.

The first rule, intended for the manager, must only check the attributes of the manager

contained in the XACML request. If the rule tries to evaluate the unintended subject, the

loan-approver, it may return a false result.

The subject-category attributes of XACML standard would have eased our job of

expressing collaboration requests in the XACML access request model. However, XACML

access request model allows a single action element to be defined per each access request. In

a collaboration request, it is possible that different collaborative peers may request different

actions over the same service due to their interaction types. Consider that a collaborative peer

that possesses an upstream direct interaction type with the service may request an “invoke”

action over the service, whereas, another collaborative peer that possesses a downstream

 66

direct interaction type with the same service may request a read action over the service’s

outcome.

In order to fit our collaboration request model into the XACML request model, we chose

to create a separate XACML access request for each of the collaborative peers (Figure 3.8).

The XACML requests are combined to form a single collaboration request. Each access

request has a single subject, resource (corresponds to object in our terminology) and action

element. Since XACML does not allow for an additional element for indicating interaction

types, we incorporated the interaction as a sub-element of subject element. As discussed in

Chapter 5, the interaction types are implemented as attributes of a subject element and passed

into the XACML context. Since we create a separate XACML request for each collaborative

peer, we did not have to use multiple subjects in a XACML request. Thus, we do not enforce

using subject-categories in collaboration policies. As a result, we did not have to incorporate

subject-categories into our policy syntax, and we relieved the service owner from

incorporating subject-categories into his policies.

 Figure 3.8 A sample collaboration request implemented with XACML access requests.

<Collaboration Request 1>

<XACML Request 1>
<Subject>

<Interaction>
<Resource>
<Action>

</XACML Request 1>

<XACML Request 2>
<Subject>

<Interaction>
<Resource>
<Action>

</XACML Request 2>
…

 67

The evaluation of a collaboration request is different from that of an XACML request.

Below we first discuss the evaluation of an XACML request without any modifications. We

later discuss how we implemented the evaluation of collaboration requests.

In XACML framework, an XACML request is first checked against all available policies.

Only a single XACML policy must match the request. Within the matched policy, the request

is then checked against all the access rules. Each access rule that matches the request

evaluates the request. A rule’s result can be one of the permit, deny, inapplicable, or

undetermined decisions. The results of evaluated rules are combined with respect to the rule-

combining logic stated in the policy. The evaluation is performed by the Sun’s

implementation of Policy Decision Point (PDP).

In order to evaluate a collaboration request, we initially thought of separately evaluating

each XACML request contained within the collaboration request. We could use the existing

Policy Decision Point (PDP) implementation of Sun. However, combining the results of

XACML requests would be troublesome. First, collaboration policies may combine their rule

results in non-trivial manners. The rule-combining logic is only presented in the

collaboration policy and directly accessed by the PDP. Once an XACML request is

evaluated, its result has not yet been combined with any other XACML requests. The only

entry point to the Policy Decision Point (PDP) is to invoke it with an XACML request. We

could have modified the PDP implementation such that we can combine the XACML results

out of the PDP. However, this would not be an elegant solution. It would be inefficient

because the PDP is designed to the combination if the requests were provided

simultaneously.

 68

Moreover, we realized that separately evaluating XACML requests might lead to the loss

of information pertaining to the collaboration context. This would have led to undetected

conflict of interest scenarios. Consider that a policy states that no two upstream-indirect peers

may belong to the same organization in order to prevent any conflict of interest scenarios. In

a collaboration with two such indirect-upstream peers, the conflict of interest may go

undetected. Assume that these two peers belong to the same trusted organization. They

satisfy all their matching rules, but fail the conflict of interest principle. When we combine

their results out of the PDP, this may go undetected. Our current prototype does not support

detecting conflict of interest scenarios; however, we leave this as future work, and want to

design our existing implementation for easily incorporating this feature in future.

In order to evaluate a collaboration request against the collaboration policy, we modified

the XACML framework as follows. We modified the PDP so that it evaluates all of the

XACML requests before returning a policy decision. Each XACML request is iteratively

evaluated against the policy rules. Each rule only evaluates a matching access request, or

returns an inapplicable result if there is no matching XACML request found. Separate access

requests that share the same interaction types can match the same access rule during their

evaluations. For example, there are likely to be multiple peers that possess the indirect

interaction with the requested service; hence, they each match against the same access rule

during their evaluations. In these cases, we determine the rule result in a deny-overrides

manner. In other words, if one matching access request fails to pass the access rule, even if

all other matching requests satisfy the rule, we determine the rule result as deny. Once each

access request is evaluated, we resume to regular XACML implementation, which already

provides ways to combine rule results to produce a policy result.

 69

Moreover, we enhanced the matching algorithm between a request and a collaboration

policy. Existing XACML standard requires each policy to have a Target element. The Target

element consists of three elements: subjects, resources, and actions elements. A subjects,

element can iteratively contain multiple subject elements. Note that subjects and subject are

two different element names. Likewise, the resources and the actions elements can have

multiple resource and action elements. The lowest level elements (e.g. subject elements) have

a Boolean OR relationship. An XACML request, for example, matching one of the subject

elements contained within the subjects element is considered to be a match. In order for the

policy to match the entire request, the resource and action elements of the request must also

match with the policy Target. Furthermore, when we tested Sun’s XACML implementation

with an XACML access request that includes two different subjects, we realized that the

request matches an XACML policy as long as one of the subjects matches the policy target,

even when the other subject does not match the policy target.

Since we have multiple XACML requests embedded inside a collaboration request, it is

crucial for us to ensure that not only one of the requests, but all of them separately match a

collaboration policy. Otherwise, a collaboration request may end up matching a collaboration

policy that is not fit to evaluate the collaboration request. In those cases, one of the

collaborative peers and their interaction types contained in the collaboration request may not

be covered within the collaboration policy. To prevent such situations, we slightly modified

the XACML framework: we imposed a Boolean AND relationship such that unless all

XACML requests contained in the collaboration request match the policy, we regarded it a

mismatch between the collaboration request and the policy.

 70

3.5.2 Collaboration Rules

Each collaboration rule has a Target element that defines which collaborative peers must

be applied to the rule. Recall that Target element has three elements PeerLocation, Object

and Action. Fortunately, XACML rule syntax allows for defining a target element for an

XACML rule; the XACML standard defines the target element as a composite of subject,

resource and action elements. We decided to use existing resource and action elements with

no modification; therefore, they would respectively correspond to our Object and Action

elements.

However, for the PeerLocation element, we had to enhance XACML standard. Each

collaboration rule is required to define their target peer either with a direction:interaction

pair (e.g., up:indirect, down:any), or with a direction:distance pair (e.g., up:2, down:3), or

with the EndUser keyword. In order to implement these keywords, we modified the Sun’s

XACML implementation. The rule target and policy target matching mechanisms are

modified to recognize these keywords and they match the incoming collaboration requests

accordingly. In our implementation, the keyword any, when placed to indicate the direction,

matches both directions. When any is used in the place of an interaction type, it matches all

interaction types. The keyword direct, when compared with an integer, is treated as integer

value of one. For example, an upstream collaborative peer with a direct interaction type

would match with any rule Target element covering the upstream direction and the direct

interaction type. Examples of matching rule Target elements are: up:1, up:direct, up:any,

any:any, any:1, any:direct. For other keywords, we seek for an absolute match between the

collaboration request (or the XACML requests contained within the collaboration request)

and a rule or a policy Target element.

 71

3.5.3 Collaboration Rule Types: Local and Underlying

Each collaboration rule must include a Type element. The lack of a rule type indicates

that the rule type is Local (L). The XACML standard does not use any type information

associated with an access rule. In order to introduce rule types, we enhanced the Sun’s

XACML implementation by adding the type information to a rule instance. We realized that

the Local type rules have a similar syntax to that of XACML access rules, except that Local

type rules have different Target and Type elements. Since we already covered how we

incorporated the Target and the Type elements into XACML standard, we do not discuss

Local type rules here separately. Instead, we present an example of Local type rule and focus

on type U rules. The discussion of Delegation-upstream and Delegation-Downstream rules is

presented in Chapter 4.

Example 14:
<Rule RuleId="LocalRule1" RuleType="urn:collaboration:L" Effect="Permit">
 <Target>
 <Subjects>
 <Subject>
 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue

 DataType="http://www.w3.org/2001/XMLSchema#string">
 up:any</AttributeValue>
 <SubjectAttributeDesignator
 DataType="http://www.w3.org/2001/XMLSchema#string"
 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"/>
 </SubjectMatch>
 </Subject>
 </Subjects>
 <Resources>
 <AnyResource/>
 </Resources>
 <Actions>
 <AnyAction/>
 </Actions>
 </Target>

 <Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 72

 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">
 <SubjectAttributeDesignator

 DataType="http://www.w3.org/2001/XMLSchema#string"
 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:X509:DN"/>
 </Apply>
 <AttributeValue

 DataType="http://www.w3.org/2001/XMLSchema#string">Alice</AttributeValue>
 </Condition >
</Rule>

Above Local type rule targets toward upstream peers with all interaction types. The rule’s
Target element has a subject element that indicates that the peers in upstream direction with
all interaction types match this rule (specifically the SubjectMatch element). The rule’s
access requirements are shown in the Condition element. The predicate in the Condition
element has a single variable, a string-equal function. The input variable is conveyed by the
Apply element inside the Condition element. Apply element states that the subject’s attribute
with the indicated AttributeId must be passed as a variable to the predicate function. This
specific predicate function would find the value of the indicated attribute and return the
value. If returned value is equal to the desired value (indicated as “Alice”), the predicate
evaluates to true.

Type U Collaboration Rules

A type Underlying (U) collaboration rule indicates that any collaborative peer that

matches this rule must be evaluated by the underlying policy engine. The decision returned

from the underlying policy engine is treated as though it is the result of the type U rule. A

type U rule has an empty Conditions element.

Before we set out to modify XACML standard, we explored if there was a way to

introduce this rule type with the minimum amount of modifications. We realized that

XACML standard adopts a flexible approach when it comes to introducing new attribute

types or combining algorithms, or custom-made finder modules. For example, a service

owner is allowed to define new attribute types and to include them in his policy. Likewise, he

can define new combining algorithms for calculating policy results. Correspondingly, the

Sun’s XACML implementation leaves several points of entry for developers who like to

 73

enhance the existing implementation and introduce custom-designed types. One of such entry

points is Finder modules. Finder modules come in three flavors: attribute finder, resource

finder and policy finder. An attribute finder searches an incoming access request and

retrieves the attribute values that are requested by the XACML policy. In case a developer

knows ahead of time that an incoming access request would not include the specified

attribute type, he can design a custom-made attribute finder module that searches alternative

locations to grab the specified attribute value. For example, after introducing a new attribute

type, only meaningful to the service owner, it is likely that the incoming access request

cannot have the new attribute readily available. In this scenario, a developer can overwrite

existing attribute finder module and provides alternative methods to retrieve the value of his

custom-designed attribute.

The resource finder module deals with finding the resources that are included within an

access request, but are not included in a policy. This situation is most likely to occur when

there is a hierarchy of multiple resources. Finally, policy finder module allows for searching

for policies in alternative ways. A Policy Decision Point (PDP) module embedded with a

custom-designed policy finder module can retrieve a matching policy for the request. The

policy finder module is most useful when policies are placed into the security system in an

ad-hoc manner, or they are placed at alternative locations. XACML standard states that only

a single matching policy for each request must be returned.

For our purposes, we need to provide a service owner with an easy and efficient way to

write a collaboration rule such that, when included in a policy, this rule indicates that

whichever access request matches the rule must be evaluated by the underlying policy

engine. We expect that a service owner would like to re-use existing access conditions over

 74

some of his collaborative peers. For example, it is likely to define new access rules over an

indirect neighbor or a neighbor involved in a delegation; however, it is also likely that

existing underlying access control policies might still be sufficient to evaluate a direct

neighbor. We do not purport to force a service owner to specify each and every access rule

from scratch. Instead, we view the collaboration policy as an upper layer policy that can re-

use the policies that are already defined and used at the lower level.

We first explored whether we can allow such rule re-use without introducing a special

rule type. Policy finder module stands as the most promising solution since we desired a way

of retrieving the underlying policy decision. As a first solution, we deliberated to write a new

policy finder module that, in addition to the Sun’s basic policy finder module, could point to

the underlying policy or policies, if there are multiple of them. Whenever a collaborative peer

is evaluated, the collaboration policy engine would first search for the collaboration policy by

using the basic policy finder module. If no matching rules are found for the peer, the

collaboration engine then would employ the new policy finder module to retrieve the

matching underlying policy. For the collaborative peers that must be evaluated by the

underlying policy, it is essential that the collaboration engine must not find any matching rule

inside the collaboration policy.

The problems with this approach are twofold. First, we need to ensure that the

collaboration policy does not match the incoming request. If the policy writer mistakenly

covers the incoming access request in the collaboration policy’s Target element or includes a

rule that matches the peer, then the access request would match two policies: the

collaboration policy and the underlying policy, which is an error in our framework, and in the

 75

XACML framework, too. Since this method requires exclusion of type U rules from the

collaboration policy, we thought this approach could be prone to mistakes.

Second problem is that once the underlying policy’s result is returned, this result might

still need to be combined with the result of the collaboration policy. Since the policy results

are directly returned to the collaboration policy engine, combining the underlying policy

result and the collaboration policy result would have had to occur outside of any policy

context. In the case that the combining algorithm between two (or more policies, if there are

multiple underlying policies or collaboration policies) policies is complicated, this would

have been burdensome for the policy engine. Consider that a service owner states that he

would like to evaluate his direct neighbors in either direction against the underlying policy as

if they are standalone requestors. However, if the upstream direct neighbor fails to satisfy the

underlying policy, the service owner is still willing to permit access if the direct neighbor

receives delegated credentials from a two-hops away upstream neighbor, given of course that

the indirect upstream neighbor has the authorized credentials and the direct neighbor is not

member of a rival organization. Above scenario contains Delegation-upstream rule types;

however, the discussion of the delegation is beyond the scope of our discussion right now.

Instead, this example is to illustrate that the result of an underlying policy decision can be

combined with the result of the collaboration policy in non-trivial manners.

As an alternative solution, we deliberated to employ a policy set such that it includes the

collaboration policy and all underlying policies related to the service. By defining a policy-

combining algorithm, we could have gotten rid of policy result combination problem.

However, literally including all the underlying policies inside the policy set defeats our

purpose of providing an easy method to re-use underlying policies. After all, we set ourselves

 76

for not forcing the service owner to repeat the underlying policies over and over again.

Moreover, it is possible that there could be multiple underlying policies, or even multiple

policy sets, that manage standalone access requests to a service. We certainly did not want to

replicate a complicated underlying system at the collaboration policy level.

As our final solution, we retreat to using rule type Underlying (U). This solution required

a service owner to simply specify a rule with an appropriate Target element and label the rule

type as Underlying, with an empty Conditions element. In order to evaluate a type U rule, we

modified the Sun’s implementation as follows. Inside the Rule class, that is used to evaluate

and determine a rule result, we placed a software hook. When an access request is applied

against a rule type U, the hook acts as a policy evaluation agent. The software hook contacts

the underlying policy engine, creates a new access request based on the one being evaluated,

and sends the new request to the underlying policy engine. The newly created access request

has a message content that is compatible with the underlying policy engine’s expectations.

Recall that an access request inside a collaboration request has interaction types, distances

and other attributes that are not understandable, nor desired by an underlying policy. The

software hook acts as if it is a policy evaluation point (PEP) for the underlying policy module

and makes sure that the newly created request fully complies with the underlying policy

model. The result returned from the underlying module is treated as the result of type U rule.

Example 15:
<Rule RuleId="RuleU1" RuleType="urn:collaboration:U" Effect="Permit">
 <Target>
 <Subjects>
 <Subject>
 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue
 DataType="http://www.w3.org/2001/XMLSchema#string">
 any:direct

</AttributeValue>

 77

 <SubjectAttributeDesignator
 DataType=http://www.w3.org/2001/XMLSchema#string

 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"/>
 </SubjectMatch>
 </Subject>
 </Subjects>
 <Resources>
 <AnyResource/>
 </Resources>
 <Actions>
 <AnyAction/>
 </Actions>
 </Target>
</Rule>

Above example illustrates a type U rule that requires every direct neighbor in each direction
to be evaluated with respect to the underlying policies. In other words, each direct neighbor
would be subject to the same access control checks as if their access request is not part of a
collaboration, rather a standalone request. Note that this rule has no Conditions element. The
specified permit effect of this rule is only taken when there is a permit decision returned by
the underlying policy.

 78

Chapter 4:
Delegation of Credentials

In our framework, the delegation of credentials occurs when a peer discovers that it does

not have the necessary credentials to join the collaboration. This peer must have failed to

pass the access requirements of another peer, and hence, would not likely to join the

collaboration. The peer with insufficient credentials can ask other collaborative peers to

delegate their credentials. The act of delegation occurs when the peer with insufficient

credentials (the delegatee) finds another peer (the delegator) who is willing to delegate its

credentials. It is likely that the delegatee and the delegator have a pre-established trust

relationship even before joining the collaboration. For example, they may belong to the same

organization, or to organizations that are business partners. The delegation of credentials is a

rare case; nevertheless, it can occur when such peers join the collaboration together.

Therefore, we designed our framework to allow for it.

We designed two rule types that deal with the delegation of credentials: Delegation-

upstream (DU) and Delegation-downstream (DD). The Delegation-upstream (DU) rule type is

used when a service allows itself to be accessed with delegated credentials. The Delegation-

downstream (DD) rule is used when a service’s credentials are delegated to other parties. For

the remainder of this chapter, we first discuss our motivation for designing DU and DD rule

types. During this discussion, we introduce each rule’s syntax. As we show later, the DU and

DU type rules have a slightly different syntax than that of Local rules. Finally, we discuss the

implementation details of two rule types.

 79

4.1 Delegation-upstream (DU) Rule Type

The Delegation-upstream (DU) rule type is syntactically and semantically different from

Local and Underlying rule types. This rule type is designed for cases in which a subject (i.e. a

collaborative peer) may be allowed to access the object (i.e. the provided service) with

delegated credentials, rather than using its own credentials.

It is possible that the delegated credentials can be relayed through intermediate parties. In

such cases, the delegator forwards its credentials to an intermediate party, and the

intermediate party (or parties) relays the credentials to the designated delegatee. It is possible

that the intermediate parties can also use the received credentials for their own access

purposes. However, as we discuss below, the intermediate parties and their usage of received

credentials are beyond the scope of Delegation-upstream (DU) rules. A malicious

intermediate party may use the delegated credentials for unintended purposes (i.e. the

purposes other than the original purpose for which the delegator agreed to delegate its

credentials). However, type DU rules are not designed to prevent such situations. A DU rule is

only designed to protect the requested object: whether or not accessing the object (i.e. the

service) with delegated credentials poses a security threat to the requested object’s security

domain. (Later, we show that Delegation-downstream type rules can be used to prevent the

abuse of credentials.) In order to protect the requested object, a type DU rule states the access

requirements sought from each of the parties that is involved with the delegated credentials:

the delegator, the intermediate parties and the delegatee. These access requirements are

specified from the viewpoint of the object’s owner. Therefore, they do not aim to regulate the

intermediate parties’ or the delegatee’s treatment of the delegated credentials. In fact, the

owner of the requested object may not be even aware of the circumstances under which the

delegator agreed to the delegation.

 80

Our motivation for designing type DU rule is to enable a service owner to place access

requirements over the parties involved with the delegated credentials. The delegator exercises

his discretion over whether or not to delegate its credentials to another party, and if so, under

which circumstances should the delegation occur. The delegated credentials naturally provide

access to a set of services. However, at the time of the delegation, the owner of these services

may have no means to prevent an undesired delegation that has taken place between a

delegator and a delegatee. A delegatee that poses a security risk to the service owner may be

deemed as trustworthy by the delegator. The delegator’s trust in the delegatee does not

equate to the service owners’ trust in the delegatee, especially when the delegatee and the

service owner belong to different organizations. Moreover, the intermediate parties handle

the credentials, and hence they can introduce security threats such as viruses, Trojan horses

and so on. Likewise, the delegator’s trust in the intermediate parties does not guarantee the

service owner’s trust in them. Instead, the service owner must be enabled to carry its own

security evaluation over each of these parties and to reach a decision over whether or not to

allow access with delegated credentials. A type DU rule is used to eliminate such security

risks by allowing the service to exercise access control over the parties involved with the

delegated credentials.

Definition 13: The rule type Delegation-upstream (DU) indicates that accessing the
requested service with delegated credentials is allowed as long as the Conditions element of
this rule evaluates to true. The Conditions element of this rule places access requirements
over the parties involved with the delegated credentials: the owner of the delegated
credentials (i.e. the delegator), any intermediate parties relaying the credentials, and the final
recipient of the delegated credentials (i.e. the delegatee).

A type DU rule’s syntax differs from Local and Underlying rule types in two ways: First,

the Conditions element of a DU rule uses a special predicate, namely delegation-upstream

 81

predicate, Second, this rule type optionally includes an additional element, namely

DelegationDistance (DelDist). (Note that for the remainder of this chapter, whenever we

refer to the elements of the rule syntax, we show them in italics.)

The delegation-upstream predicate contains three inner-predicates. These inner-predicates

are used to convey the access requirements sought from the delegatee, the delegator, and the

intermediate peers. All three inner predicates must evaluate to true in order to return a true

decision from the delegation-upstream predicate. If a service owner does not require placing

access requirements over one of these parties, he can leave the corresponding inner predicate

unspecified.

When specified, the DelDist element is located between the Type element and Conditions

element of the rule, causing the access rule to have four elements instead of three.

Definition 14: The DelegationDistance, DelDist, element shows the maximum number of
times the credentials may have been relayed until they reach the delegatee. A
DelegationDistance of 1 indicates that the credentials have been relayed directly from the
delegator to the delegatee. Any DelegationDistance bigger than one indicates the presence of
intermediate parties between the delegator and the delegatee.

A collaborative peer with delegated credentials can only be allowed access when a DU

rule evaluates to true. If the collaboration policy does not include any DU type rules targeting

this peer, then the peer is denied access. Moreover, if the DelDist element is specified, the

number of times that the credentials have been relayed must not exceed the value of the

DelDist element. Otherwise, the collaborative peer is denied access. If the DelDist element is

not specified, its value is assumed to be infinity.

Example 16:

CP8: {
CombinationLogic= “OR”

 82

MaximumEvaluationRadius= 3

AR { {up:direct, Service C, invoke}, DU , 2,
Conditions:{

Delegation-Upstream{
(Subject.X509OrgName = “Organization Y”)

 (Subject.X509DistName = “Alice”)
 (Subject.X509OrgName = “Organization Y”)

}
 }

}

AR { {up:direct, Service C, invoke}, U, Conditions: ∅ }

}

CP8 has two access rules: a type U (Underlying) rule and a type DU rule. The type U rule
states that any peer with the direct-upstream interaction must be evaluated against the
underlying access control policies. The type DU rule states that the delegatee must have a
name equal to Alice (the second inner predicate), and the delegator and the intermediate
parties involved in the delegation must be members of Organization Y (the first and third
inner predicates). Moreover, the credentials must have been relayed only twice, meaning that
there can only be a single intermediate party involved. Due to the combination logic above,
the Boolean OR operator, a collaborative peer with the direct-upstream interaction has two
options to satisfy the collaboration policy: the peer can either satisfy the U type rule by
passing the access requirements specified for standalone service requestors, or the peer can
use the delegated credentials in order to satisfy the type DU rule.

Example 17:
CP9: {

CombinationLogic= “OR”
MaximumEvaluationRadius= “3”

AR { {up:direct, Service C, execute}, DU , 2,

Delegation-Upstream{
(Subject.X509OrgName = “Organization Y”)

 (FUP (Subject.X509DN) = “Permit”)
 (Subject.X509OrgName = “Organization Y”)

}
OR

 83

AR { {up:direct, Service C, execute}, U, Conditions: ∅ }
}

Example 2 is presented to show how a service owner can define specialized predicate
functions and how varying inner predicates over delegation entities can be harnessed. CP9 is
almost identical to CP8. The only difference between CP9 and CP8 is their second inner-
predicates within their type DU rules. Unlike CP8, CP9 uses a special predicate function, FUP.
CP9 states that the delegator must be applied to FUP and the outcome of FUP must equal to
permit. The predicate function FUP indicates that the delegator entity must be evaluated
against the underlying policy. FUP function is a special function that serves the same purpose
as Underlying rule types. Inside a type DU rule, when a service owner wants an entity to be
evaluated against the underlying policies, it employs FUP function. This is because we cannot
define a type Underlying rule inside a type DU rule in a nested fashion. Allowing nested rules
increases the complexity of our syntax, and the likelihood of mistakes made by a policy
writer. As a solution, we defined a special predicate function (FUP) that does not violate our
syntax and also provides the desired functionality. FUP predicate function is evaluated in an
identical way as an Underlying rule type. The collaboration policy engine creates a new
access request and routes it to the underlying policy engine, and finally retrieves the outcome
of underlying policy. When this outcome is equal to Permit, FUP would return a true result to
the delegation-upstream predicate. (The implementation details of FUP are explained in
Section 3.1.5)

4.2 Delegation-downstream (DD) Rule Type

The type Delegation-downstream (DD) rules are evaluated when a collaborative peer

wishes to obtain another peer’s credentials. Type Delegation-downstream (DD) rules are

designed to regulate the delegation of credentials. A delegator evaluates its Delegation-

downstream (DD) type rules to determine whether to delegate its credentials. The Delegation-

downstream (DD) rule evaluates the delegatee, and any intermediate parties if they exist. If

the rule evaluates to permit, the delegator delegates its credentials via the intermediate

parties. The goal of the (DD) rule is to prevent the abuse of credentials. It achieves this by

allowing the delegation of credentials only to the trusted delegatees and intermediate parties.

Definition 16: The rule type Delegation-downstream (DD) indicates that the downstream
delegation of the service’s credentials is allowed as long as the Conditions element of this
rule evaluates to true. The Conditions element of this rule places access requirements over

 84

the parties involved with the delegation of the service’s credentials: the final recipient of the
delegated credentials (i.e. the delegatee) and the intermediate parties relaying the credentials.

The credentials must be propagated through the intermediate peers when the delegator

and the delegatee do not have an edge between one another in the collaboration graph. It is of

course possible that the delegator can send its credentials directly to the delegator, even when

they do not share an edge in the collaboration graph. This can either happen outside of the

collaboration context, or by adding a new edge between the delegator and the delegatee in the

existing graph. We do not allow for either of these approaches. First, we are only interested

in managing the delegation within the collaboration context; we have no control outside of

the collaboration context. Second, adding a new edge to the collaboration graph would cause

complications. The new edge causes new connections between the peers that were not

connected before. Since this may happen when some peers have already finished evaluating

their peers, these peers would have to re-evaluate the entire collaboration. Needless to say,

due to the new connections, the number of peers that must be evaluated by a single peer

increases significantly because the number of peers that are connected increases. Due to these

reasons, we restrict a delegator to delegate its credentials only along the existing edges in the

collaboration graph.

The delegator states the access requirements sought from the delegatee and the

intermediate parties inside the DD rule. Since the delegator itself is a service, the DD rule

governing the delegation of the delegator’s credential must be present in its collaboration

policy. Absence of a type DD rule indicates that the credentials cannot be delegated to any

other party.

 85

The Delegation-downstream (DD) rule type can be thought as the complement of the

Delegation-upstream (DU) rule type (Figure 4.1). The former is evaluated when the

delegator’s credentials are delegated to another party; therefore, it communicates the

delegator’s access requirements for the delegatee and the intermediate peers. The latter is

evaluated when a service is accessed with delegated credentials; therefore, it communicates

the requested service’s access requirements for the delegatee, the delegator and the

intermediate peers.

Figure 4.1 Delegation of credentials scenario.

Having come from two different viewpoints, the access requirements included in a type

DD rule and a DU rule can be completely different even when they pertain to the same

service. The DD rule aims to protect the delegated credential, hence the delegator, while the

DU rule aims to protect the service requested using the delegated credentials. As shown

 86

Figure 4.1, the delegator and the requested service are two separate peers; they are likely to

belong to separate organizations and have different policies.

There might be ideal situations, in which the DD rule and the DU rule are identical. In

such cases, when the delegator allows delegation of its credentials, the requested service does

not need to make any security evaluation of its own because the requested service would trust

the delegator to have already deemed all parties involved in the delegation as secure and

suitable. In a reverse example, the delegator may show some leeway in delegating its

credential (such as not being explicit in which ways the credentials can be used), believing

that eventually the requested service would detect all forbidden access requests and deny

them. However, these types of situations are the exception, rather than the norm. As long as a

delegator and the requested service belong to different security domains and have different

security policies, it is highly unlikely that such a complete overlap would occur. Advocating

otherwise may put an undue trust in a credential owner or in a service owner. We believe that

employing separate DD and DU rules prevents such security breaches.

A type DD rule syntactically differs from all other rule types. First, the Conditions

element of the rule has a special predicate, namely Delegation-downstream predicate.

Second, the rule can optionally include an additional element, namely the

DelegationDistance (DelDist) element (defined in Definition 14). Third, the Target element

of this rule must have the name of the service’s credentials as its object and “delegate” as its

action. When specified, the DelDist element is located between the Type element and

Conditions element of the rule, causing the access rule to have four elements instead of three.

If the DelDist element is left unspecified, it is treated as infinity.

 87

The Delegation-downstream predicate contains two inner-predicates. These inner-

predicates are used to convey the access requirements sought from the delegatee and the

intermediate peers, respectively. Both inner predicates must evaluate to true in order to return

a true decision from delegation-downstream predicate. If a service owner does not have any

access requirements from one of these parties, he can leave the corresponding inner predicate

unspecified.

The delegatee authorized by a DD rule is the final recipient of the delegated credentials,

and it is the only party authorized for using the credentials for access purposes. The

intermediate parties are only authorized for relaying the credentials between the delegator

and the delegatee. A type DD rule does not express any additional requirements regarding the

re-delegation of the service’s credentials from the delegatee to other parties for access

purposes. For the reasons related to the difficulties of enforcing re-delegation requirements

and the architecture of our framework, we did not design DD rule types to convey information

about re-delegation of credentials. We discuss our reasons in Section 3.1.5 when we show the

implementation of collaboration policies.

Example 18:

CP10: {
CombinationLogic= “AND”
MaximumEvaluationRadius= 2

AR { {down:any, ServiceCert, delegate}, DD , 1,

Delegation-Downstream {
 (Subject.X509DistName = “Alice”)
 (null)
 }
 }
}

 88

CP10 states that any downstream collaborative peer can request the delegation of the
ServiceCert. The delegation is granted as long as the downstream peer’s name equals to
“Alice”. Note that the DelegationDistance (DelDist) element is set to 1; it indicates that there
should not be any intermediate peers involved with this delegation. Therefore, the delegatee
(i.e. the peer with name “Alice”) is the final recipient of the ServiceCert.

Example 19:
CP11: {

CombinationLogic= “None”
MaximumEvaluationRadius= “2”

AR { {down:any, ServiceCert, delegate}, DD , 5,

Delegation-Downstream {
 (Subject.X509DN = “Alice”)
 (Subject.X509OrgName = “Organization Y”)
 }
 }
}

CP11 states that the downstream delegation of ServiceCert is allowed as long as a downstream
collaborative peer with name Alice wishes to obtain the credentials. The DelegationDistance
element indicates that the credentials can only be relayed 5 times before arriving at the
delegatee. Moreover, the intermediate parties that relay the credentials must be members of
Organization Y.

4.3 Implementation of Delegation-upstream (DU) Rules

A type DU rule differs from type U or L rule in that it can place access requirements over

multiple collaborative peers that are involved with delegation. Each type U or type L rule is

designed for a specific interaction type. A type DU rule, on the other hand, can

simultaneously target up to three specific interaction types that are involved in the delegation

process. A delegatee is a collaborative peer that possesses a direct-upstream interaction type

with the requested service. (We accept that, albeit a rare case, a peer with upstream-indirect

 89

interaction type can use delegated credentials during peer-peer evaluations. Although, our

framework can handle these cases, we rather focus on the cases that involve a delegatee with

the direct interaction type. Later in Chapter 5, we discuss why we care more about the

delegatees with direct interactions.) A delegator and an intermediate peer possess an indirect-

upstream interaction type with the requested service.

In order to state specific access requirements for the parties involved with the delegation,

a type DU rule employs a special predicate, delegation-upstream. Delegation-upstream

predicate consists of three inner predicates that, respectively, check the conditions over a

delegatee, a delegator and an intermediate peer(s).

In order to implement delegation-upstream predicate, we introduced a new function,

namely delegation-upstream function, into Sun’s XACML implementation. Since XACML

standard welcomes contributing new functions or attribute types, our addition did not cause

any disruption. Each inner-predicate consists of a predicate function, input variables, and a

value that defines the desired outcome of the predicate function. A service owner is free to

set any of these three items while defining each inner-predicate.

 During the evaluation of a DU rule, all three inner predicates are combined with a logical

AND. The service owner does not have to explicitly set any combining algorithm to bind the

inner-predicate results. The delegation-upstream function requires each inner-predicate to

return a true outcome in order to return a true outcome for the delegation-upstream predicate.

The result of a type DU rule is different from other rule results. The rule result contains

the identities of the delegatee, the delegator, and the intermediate peers. This information is

checked when the actual access is allowed at run-time. At run-time, if the peers involved in

the delegation are different from the peers stated in the rule contract, the service refuses

 90

permitting access. A detailed discussion of rule contracts and policy obligations is presented

in Chapter 5.

Finally, a type DU rule has a third element, DelegationDistance (DelDist), placed

between the Type and the Conditions elements. In case a DU rule does not specify any values

for the delegation distance, our implementation assumes infinity as the delegation distance.

In order to implement DelDist element, we followed a similar approach to that of Type

element’s implementation: we modified the Rule class in Sun’s implementation and added a

new instance variable for showing the delegation distance. The delegation distance shows the

number of times the credentials can be relayed. If the number of edges between the delegator

and the delegatee exceeds this number, a deny result is returned from the DU rule.

A peer that is involved with the delegation of credentials can also be subjected to type L

and type U rules as part of the collaboration policy, as well as being evaluated by a DU rule.

The result of the collaboration policy depends on such a peer’s ability to satisfy all of the

matching rules. For example, a peer involved in a delegation may satisfy the conditions

stated in a type DU rule; however, if this peer fails to satisfy a matching type L rule, the

outcome of the collaboration policy would be deny. (The complete overview of the policy

evaluation is discussed in Chapter 5.)

Example 20:
<Rule RuleId="Delegation1" RuleType="urn:collaboration:Du" DelDist="2"
 Effect="Permit">
 <Target>
 <Subjects>
 <Subject>
 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">

 up:any</AttributeValue>
 <SubjectAttributeDesignator

 91

 DataType="http://www.w3.org/2001/XMLSchema#string"
 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"/>
 </SubjectMatch>
 </Subject>
 </Subjects>
 <Resources>
 <AnyResource/> </Resources>
 <Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue
 DataType="http://www.w3.org/2001/XMLSchema#string">

Request
 </AttributeValue>
 <ActionAttributeDesignator

 DataType="http://www.w3.org/2001/XMLSchema#string"
 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 <Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:delegation-upstream">
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-
 only">
 <SubjectAttributeDesignator
 DataType="http://www.w3.org/2001/XMLSchema#string"
 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:X509:ON"/>
 </Apply>
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">

 Organization Y
 </AttributeValue>

 </Apply>

 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-
 only">
 <SubjectAttributeDesignator
 DataType="http://www.w3.org/2001/XMLSchema#string"
 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:X509:DN"/>
 </Apply>
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">

 TrustedPeer
 </AttributeValue>

 </Apply>
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">

 92

 null
 </AttributeValue> </Condition >
</Rule>
Above type DU rule has a delegation distance of 2. Each inner-predicate is surrounded by an
Apply element within the Condition element. The final inner predicate has a null value; thus,
it is shown by a null-valued AttributeValue element. Within each Apply element (i.e. each
inner predicate), there is a function, an input variable, and the desired value of the function
outcome. Also, note that the Condition element has the predicate delegation-upstream. The
DU rule communicates that: the delegator must be a peer named TrustedPeer, which is proved
by its X.509 credential; the delegatee must be a member of Organization Y; the intermediate
peers could be any peers, shown by the null attribute value passed in the place of the third
inner-predicate.

4.4 Implementation of Delegation-downstream (DD) Rules

A type Delegation-downstream (DD) rule is used to determine whether or not to delegate

credentials to a downstream peer. An access request that has the requested credentials as its

object and “delegate” as its action matches a type DD rule. The collaborative peer who

desires to receive the credentials, the delegatee, launches the access request. The service that

receives the request, the delegator, evaluates the DD rule.

A type DD rule is very similar to a type DU rule in terms of implementation purposes. A

significant difference lies in the predicate employed by type DD rules: delegation-

downstream. The delegation-downstream predicate takes two inner-predicates as input. The

first one expresses access requirements sought from a delegatee and the second one expresses

access requirements sought from the intermediate peers involved. The inner predicates are

bound with an implicit Boolean AND operator. As with delegation-upstream predicate, the

order of the inputs passed into the delegation-downstream predicate is crucial. The service

owner can select any predicate functions, attribute types and outcome values to form inner-

predicates. Like delegation-upstream predicate, an inner-predicate can be left null, in case the

evaluation of the corresponding peer is not necessary.

 93

A type DD rule has a third element DelegationDistance (DelDist). DelDist element is

implemented identically to that of the DU rule.

The DD rule does not convey any information about the re-delegation of the credentials.

By re-delegation, we mean that the delegatee would further relay credentials to other parties.

Programmatically, implementing this feature into DD rule type would not be burdensome. We

could have added another inner predicate that conveys the access requirements sought from

peers that receives the credentials through re-delegation. However, we realized that

enforcement of this feature at run-time would be complicated. As we will present in Chapter

6, our framework allows the delegation of credentials only once during a single

collaboration; it is impossible to re-delegate the same credentials during the same

collaboration. The evaluation of collaboration policies occurs at the planning stage in order to

decide which peers must be allowed to join the collaboration. The type DD rules are evaluated

when a peer lacks the authorized credentials to join the collaboration. The framework allows

a delegation between the delegator and the delegatee. However, this happens only once. If

there were another peer who requires the re-delegation of the credentials from the delegatee,

this peer would already be dismissed from the current collaboration due to the insufficient

authorization. Thus, before the collaboration finishes the planning stage, all the peers joined

the collaboration already have the required credentials to accomplish the tasks that they are

assigned. Therefore, they would not be allowed for re-delegation. However, re-delegation of

the credentials can occur in a subsequent collaboration. In that case, in order to enforce the

DD rule from the initial collaboration, we must record and evaluate the state information from

the first collaboration. The delegatee who acts as a re-delegator in the second collaboration

must contact the original owner of the credentials and notify him about the re-delegation.

 94

Consequently, the original owner must re-evaluate DD rule, specifically its third predicate

over the re-delegation recipients, and reach a decision. Since we currently do not record such

kind of state information across collaborations, we chose not to implement this feature. As a

result, our current implementation works for the delegation cases in which a delegatee is the

final receiver of the delegated credentials.

In order to ensure that the delegatee is the final recipient, we tie down each delegation to

a specific collaboration graph. As we show in Chapter 6, each collaboration has a unique ID

number. When the delegation of credentials occurs the delegator can embed this number into

the credential, for example into the extensions field of an X.509 credential. During the

delegation, the delegator can create a proxy credential [Vel03], embed the name of the

delegatee, the collaboration ID, and its own name, and finally sign and delegate this

credential. Since we use a collaboration ID per delegation, the revocation of delegated

credentials is not required. We have not implemented this feature in our prototype. In other

words, when the credentials are delegated, collaboration ID is not embedded into the

delegated credentials. This is because our work so far focuses on the planning stage, not on

the run-time creation of delegated credentials.

By tying a specific delegation collaboration ID, we can limit the abuse of the delegated

credentials. For example, consider the case that a delegatee abuses the delegated credentials

for accessing an unintended service, which results in financial charges to the delegator. By

using the collaboration ID, the delegator can prove that the delegated credentials are abused

because they are only valid within a specific collaboration context. We recognize that there

can be other consequences of credential abuse that do not result in financial charges, such as

accessing confidential files. Our framework does not address such situations currently.

 95

Addressing such situations may require an additional mechanism that ensures that delegatee

uses the delegated credentials only for intended purposes. This requires support within the

domain of the requested object. In other words, the service that is accessed by the delegatee

must honor the original intentions of the delegator and enforce them. However, in distributed

environments, there is not an easy way of verifying that the requested object’s domain honors

the delegator’s intentions, especially when there is no established trust between the parties, or

one of the parties behaves maliciously. We recognize that this is a challenging problem and it

has significant similarities to the Digital Rights Management issues (DRM) [DRM]. The

DRM also deals with ensuring that parties who receive copyrighted material honors the

intentions of the original party that gave them access to the material. We leave this as our

future work.

Finally, the result of a DD rule stores additional information that identifies the delegatee

and the intermediate peers involved. This information stored in a special object called rule

contract. Since collaboration policies are first evaluated during the planning stage, a

delegator must store the results of its collaboration policies and the accompanying rule

contracts until run-time. If the peers involved with the delegation at run-time differs from the

authorized peers at planning time, the delegator refuses to delegate its credentials. (We

discuss rule contracts in Chapter 5.)

Example 21:

<Rule RuleId="Delegation2" RuleType="urn:collaboration:Dd" DelDist="2"
 Effect="Permit">
 <Target>
 <Subjects>
 <Subject>
 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">

 down:any</AttributeValue>

 96

 <SubjectAttributeDesignator
DataType="http://www.w3.org/2001/XMLSchema#string"

 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"/>
 </SubjectMatch>
 </Subject>
 </Subjects>
 <Resources>
 <Resource>
 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">

X509Credential
</AttributeValue>
<ResourceAttributeDesignator

DataType="http://www.w3.org/2001/XMLSchema#string"
 AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"/>
 </ResourceMatch>
 </Resource>
 </Resources>
 <Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">
delegate

 </AttributeValue>
 <ActionAttributeDesignator

DataType="http://www.w3.org/2001/XMLSchema#string"
 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 <Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:delegation-downstream">
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-
 only">
 <SubjectAttributeDesignator
 DataType="http://www.w3.org/2001/XMLSchema#string"
 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:X509:DN"/>
 </Apply>
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">

 TrustedPeer
 </AttributeValue>

 </Apply>
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-

 97

 only">
 <SubjectAttributeDesignator
 DataType="http://www.w3.org/2001/XMLSchema#string"
 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:X509:ON"/>
 </Apply>
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">

 Organization Y
 </AttributeValue>
</Apply> </Condition >

</Rule>

Above type DD rule indicates that the credentials can be delegated to a delegatee through a
single intermediate party because the DelDist element’s value is 2. The delegatee must be a
TrustedPeer as indicated by its X.509 distinguished name, and any intermediate peer must be
a member of Organization Y.

 98

Chapter 5:
Evaluation of Collaboration Policies

Two software modules perform evaluation of a collaboration policy: the Policy

Enforcement Point (PEP) and the Policy Decision Point (PDP). The PEP plays the role of a

gatekeeper; it receives the collaboration request, sends it to the PDP and enforces the

decision returned from the PDP. The PDP, on the other hand, is responsible for generating a

policy decision for each collaboration request. The PDP does not contact any requestor

directly; it is the PEP’s responsibility to interact with the requestors and with the external

world. In fact, the PDP module has no point of contact outside of its security domain. In our

framework, each collaborative peer has a PEP module and a PDP module. Once a policy

decision is made, the PEP sends the result to the Collaboration Locator Module (CLM). If a

policy decision is a permit with policy obligations, then the PEP further processes these

obligations and sends the obligations along with the decision to the CLM. The policy

obligations indicate that granting access at run-time is dependent upon fulfilling the stated

policy obligations. Otherwise, the access will be denied.

In this chapter, we discuss the several steps involved with collaboration policy

evaluation. We start with the preparation of collaboration requests (by PEP module). Later,

we discuss the evaluation of a collaboration request (by the PDP module). Finally, we discuss

the policy obligations and their preparation (by PEP module).

In order to avoid any confusion, for the rest of this chapter, we call a peer that desires to

evaluate his collaborative peers an authorizing peer. The peers that are being evaluated by

the authorizing peer are called requesting peers. During security evaluations, each peer plays

 99

both the role of an authorizing peer and the role of a requesting peer. In this chapter, we

discuss the policy evaluation mechanisms from the perspective of an authorizing peer to

simplify our discussion.

5.1 Preparation of Collaboration Requests

A collaboration policy evaluates the collaborative peers based on their interaction types.

The peers that possess the interaction types indicated in the collaboration policy must be

evaluated against the policy. However an authorizing peer does not know which one of the

collaborative peers exhibits these interactions. Thus, the authorizing peer must ask the

Collaboration Locator Module (CLM) to identify the corresponding peers for the specific

collaboration. To achieve this, the authorizing peer’s PEP module sends the interaction types

required by its collaboration policy to the CLM. (How this is done is explained in detail in

Chapter 6, in Section 6.1.) The CLM then consults the collaboration (the choreography of the

collaboration, more specifically) and identifies the peers that correspond to the required

interactions.

The CLM is responsible for sending a message to each of the requesting peers’ PEP

modules, and another message to the authorizing peer’s PEP module to trigger the security

evaluations. (The message content and the complete system architecture with order of the

messages are discussed in Chapter 6.) The requesting peers’ PEP modules are informed about

the location of the authorizing peer’s PEP and are notified to send their access requests. The

authorizing peer’s PEP is also informed about the identities of the requesting peers and their

interaction types. The security evaluations start once each requesting peer’s PEP receives a

message from the CLM.

 100

Each requesting peer’s PEP sends an access request to the authorizing peer’s PEP. A

request consists of the requesting peer’s credentials, the name of the collaboration and the

name of the authorizing peer. These initial access requests do not conform to the XACML

access request model, nor do they conform to collaboration request model. It is the job of the

authorizing peer’s PEP to convert these initial requests into the collaboration request format.

We made this design choice for a few reasons. First, we want the initial access requests to

have a uniform and simple message structure. Second, we want the message formats to be

independent of any specific access control model. Each peer’s PEP module converts these

messages into whichever access control model its domain employs. As a result, the

requesting peers require minimal knowledge about the access control model of the

authorizing peer. Moreover, our framework can accommodate peers that have different

access control models, other than our collaboration model.

The authorizing PEP receives an initial request from each of its requesting peers, and

converts these requests into a collaboration request. A collaboration request consists of

multiple XACML requests, each of which pertains to a specific requesting peer. (This is

discussed in detail in Chapter 3, Section 3.5.1.) The PEP must first create an XACML

request for each of the requesting peers, and later collect these requests into a collaboration

request and send the collaboration request to the Policy Decision Point (PDP).

It is possible that a requesting peer has multiple separate interactions with the authorizing

peer. In that case, each of the interactions is listed separately by the CLM, and the

authorizing peer is informed of each of these interactions. The authorizing peer creates as

many XACML requests as the number of separate interactions possessed by the requesting

peer.

 101

To convert the initial requests into the XACML format, the PEP first processes each

received request. For each request, the PEP creates the attributes that are sought by the PDP,

and extracts the corresponding values from the request. At this step, the PEP must be aware

of which attributes are sought by the PDP. Although missing attributes can later be retrieved

by the PDP (we show how this can be done in Chapter 3.5.3 – Type U Collaboration Rules),

the PEP aims to reduce the burden on the PDP. It is highly likely that the attribute values are

extracted from the credentials accompanying the request. For example, if the PDP requires an

attribute showing the X.509 distinguished name of a subject, the PEP first creates the

attribute and then extracts the value of the attribute from the X.509 credential. Once all

attributes and their values are created, the XACML access request can be built. This step may

include creating multiple attributes, each of which belongs to a different element of the

collaboration request, such as the subject or action elements.

The PEP creates the subject, resource and action elements for each XACML request, and

attaches the bags of corresponding attributes to each of these elements. In our current

prototype, we defined a special subject attribute that shows the interaction type shared

between a requesting peer and the authorizing peer. The PEP creates this attribute for each

requesting peer and sets its value to each requesting peer’s interaction type. By examining

this attribute, the PDP can determine which requesting peer matches which rules. If there are

other attributes required by the collaboration policy, these attributes are also created by the

PEP and attached to the subject element.

The action element has a single attribute; it shows the name of the action requested by the

requesting peer, either invoke or consume. When a requesting peer has an upstream

interaction with the authorizing peer, its action element is set to invoke, whereas, when a

 102

requesting peer has a downstream interaction with the authorizing peer, its action element is

set to consume. Finally, the resource element is set to the name of the authorizing peer.

It is possible that the PEP can define the resource and action elements at a desired level

of granularity. It is the job of the authorizing peer to determine the desired level of

granularity and to configure the PEP accordingly. The PEP can be configured to adopt either

a fine-grained or a coarse-grained approach. When the authorizing peer is a service that is

composite of multiple resources (such as multiple orchestrated web services, databases, files,

etc.), the fine-grained approach can be employed. In this approach, the PEP determines the

interaction types of each requesting peer with the authorizing peer. Based on the interaction

type, the PEP determines which resource of the service is accessed by the requesting peer.

Consequently, the PEP sets the resource element to indicate the resource that gets accessed.

When there are multiple resources of the service that are accessed by the same requesting

peer, a separate XACML request with a different resource element is created. In other words,

there may be multiple XACML requests correspond to the same requesting peer with

different resource elements. Alternatively, when a coarse-grained approach is taken, the PEP

sets the resource element of an XACML request to the authorizing peer’s name (more

specifically, to the URL of the service). Different collaborative peers each with different

interaction types have the same resource element: the authorizing peer’s name. In this

approach, a single XACML request is created for each collaborative peer. For example,

assume that the authorizing peer is a service that generates three disparate output documents.

Each output document is accessed by a different peer with a downstream interaction.

Furthermore, the access requirements for each document are different. In fine-grained

approach, for each downstream peer, the PEP sets a different resource element indicating one

 103

of the output documents. In the coarse-grained approach, the PEP sets the resource element

to the authorizing peer’s name, and all downstream peers’ XACML requests have the same

resource element.

Likewise, the action element of an XACML request can be set at a desired level of

granularity. Our framework does not restrict the action types that can be used within a policy

when fine-grained approach is taken. However, the actions must be meaningful over the

resources that are already used in XACML requests. Continuing with the above example, the

action element of the XACML requests can be read action. Notice that in a coarse-grained

approach, each XACML request has the same action element, consume.

Once all of the received requests are converted into the XACML format, the PEP starts

converting them into the collaboration request format. Earlier we said that a collaboration

request is the collection of all the XACML requests received from the requesting peers.

However, when necessary, the XACML requests can be divided into groups, and for each

group a separate collaboration request is created. As we discuss in the next section, a

collaboration request may result in a permit decision with accompanying obligations, which

are to be fulfilled by the requesting peers at run-time. An obligation pertains to a group of

requesting peers. Therefore, if the PEP can, in advance, group the peers that are likely to be

covered in the same obligation, the generation and process of obligations would be much

easier. This is not a requirement; rather, it is an optimization performed by the PEP.

In our framework, there are two rule types that may cause obligations over a policy

decision: type DU rules and type DD rules. For both rules, an obligation corresponds to the

requesting peers that have consecutively direct interactions with one another. In other words,

the peers that are covered in the same obligation constitute a directed walk that either

 104

originates from the authorizing service, or terminates at the authorizing service. In other

words, these requesting peers are on the same path. For type DU rules, an obligation covers

peers that are on the same upstream path, where the path terminates at the authorizing peer.

For type DD rules, an obligation covers peers that are on the same downstream path, where

the path originates from the authorizing peer. Since an obligation covers the peers that are on

the same path, if we group and evaluate the peers on a path-by-path basis, the generation and

processing of the obligation would be much easier. (Section 5.2.1 discusses the obligations

and demonstrates how the PEP generates a policy obligation from a policy decision.)

As a result, in our prototype, we divided the XACML requests into groups based on their

paths. The upstream neighbors that are located on the same path are grouped together.

However, the downstream neighbors are kept in a single aggregate group. A single group of

upstream peers is merged with the group of the downstream peers; the resulting group of

XACML requests becomes a single collaboration request. In an iterative fashion, we create

as many collaboration requests as the number of upstream paths terminating at the

authorizing peer.

The reason for not separating downstream paths is due to our system architecture. A

collaboration policy first evaluates its DU rules (first round of our framework) and then, if the

need arises, the policy evaluates its type DD rules later (second round of our framework).

Therefore, in the first evaluation of the policy, there is no need to group downstream peers

because they would not be applied to any type DD rules. Therefore, there cannot be any

obligations generated over the downstream peers.

Finally, in a single collaboration request, we merge each group of upstream peers with all

of the downstream peers because we do not want to cause any false-negative policy

 105

decisions. A single collaboration policy contains rules over requesting peers in any

interaction types. If we were to evaluate each upstream group alone (without the downstream

group), this might cause the policy to result in a false deny decision, due to the missing

downstream requesting peers. Even though this is a small possibility, we choose to be overly

cautious and include the downstream group each time we create a collaboration request.

Once the collaboration requests are prepared, they are sent to the PDP for evaluation. In

order to join the proposed collaboration, each collaboration request must return a permit

decision. Otherwise, the authorizing peer refuses to join the collaboration. In our prototype,

the PDP evaluates each request sequentially; however, this can be optimized to evaluate all

requests in parallel. The PDP returns a policy decision to the PEP only after it evaluates all of

the collaboration requests. In the next section, we discuss how evaluation of a single

collaboration request is accomplished. (Figure 5.2 shows the process diagram for evaluating

collaboration requests.) Figure 5.1 shows the collaboration requests that are created by

Service A’s PEP.

 106

Figure 5.1 The collaboration requests created by Service A’s PEP. The requesting services are shown in
the sub-collaboration graph that is sent to Service A by the CLM. Note that 4 collaboration requests are
created for each upstream paths.

5.2 Evaluation of the Collaboration Request

There are three significant issues in the evaluation of a collaboration request: first, the

composite structure of the collaboration request; second, the evaluation order of the

Service A

Upstream Path 1
Upstream Path 2
Upstream Path 3
Upstream Path 4
Downstream Path 1

Collaboration Request 1 = Upstream Path 1 + Downstream Path 1
Collaboration Request 2 = Upstream Path 2 + Downstream Path 1
Collaboration Request 3 = Upstream Path 3 + Downstream Path 1
Collaboration Request 4 = Upstream Path 4 + Downstream Path 1

Service AService A

Upstream Path 1
Upstream Path 2
Upstream Path 3
Upstream Path 4
Downstream Path 1

Upstream Path 1
Upstream Path 2
Upstream Path 3
Upstream Path 4
Downstream Path 1

Collaboration Request 1 = Upstream Path 1 + Downstream Path 1
Collaboration Request 2 = Upstream Path 2 + Downstream Path 1
Collaboration Request 3 = Upstream Path 3 + Downstream Path 1
Collaboration Request 4 = Upstream Path 4 + Downstream Path 1

 107

collaboration rules; third, the policy obligations introduced by the type DU and type DD rules.

We discuss them respectively in this section and the next sections.

 Upon receiving a collaboration request, the PDP finds the matching collaboration policy

for the collaboration request. To achieve this, the PDP must first find a matching policy for

each XACML request contained inside the collaboration request. A matching policy must

have a Target element that matches the subject, resource and action elements of an XACML

request. When a policy simultaneously matches all the XACML requests, the policy is

determined to match the collaboration request. Since each XACML request has a different

subject and action element (and different resource elements if fine-grained approach is

taken), it is crucial that the found policy simultaneously match all of the XACML requests.

The PDP starts evaluating the collaboration request against the policy. The evaluation

order of the rule types is: first Underlying(U) and Local(L) rule types, second Delegation-

upstream rule type, and third Delegation-downstream rule type are evaluated (Figure 5.2).

Each rule only evaluates the XACML requests that are matching its Target element.

Since the collaboration request has multiple XACML requests inside, a rule must first

determine which of the XACML requests it matches. A rule is determined to match an

XACML request if the XACML request’s subject, resource and action elements match the

rule’s Target element. If the rule does not match any of the XACML requests, its result

remains as “inapplicable”. When a rule matches more than one XACML request, each

XACML request is evaluated separately. The rule’s result is calculated in a deny-overrides

manner: if a single XACML request fails the rule, then the rule result becomes a failure. To

illustrate our logic, consider that a type L rule states that none of the peers (direct or indirect,

upstream or downstream) can belong to a rival organization. Even when all peers except a

 108

single one come from trustworthy organizations, this rule result must evaluate to deny

because one of the collaborative peers does not evaluate to true.

Once all the L and U type rules are evaluated, the policy result is computed with respect

to the rule-combining algorithm stated in the policy. If a policy result is permit, the PDP

stops evaluation of the collaboration request. Note that in this case, DU rules are not evaluated

at all. However, if the policy result is deny, then the collaboration request is marked as a

failing request, and the evaluation of type DU rules starts

At the end of the evaluation of type DU rules, which we explain in detail in the next

section, the policy decision for the failing request may be changed to permit with some

obligations. If the failing request returns a deny decision from the evaluation of DU rules, the

PDP finalizes the decision for this specific request as deny. This result cannot be changed.

Since each collaboration request pertaining to the same collaboration proposal must return a

permit decision, the PDP terminates evaluating any more collaboration requests belonging to

this collaboration. The PDP returns a deny decision to the PEP. The PEP conveys to the

collaboration (to the CLM, more specifically) that the authorizing peer cannot join the

proposed collaboration.

If all collaboration requests pertaining to the same collaboration return permit decisions,

the PDP returns a permit result to the PEP. The PEP determines that the authorizing peer can

join the collaboration. However, the PEP does not convey this result to the collaboration (the

CLM module) right away. Instead, the PEP asks the PDP to start evaluating the DD rules. All

collaboration requests are evaluated once again by the PDP, but only against the type DD

rules this time. Once the PDP reaches a decision over the result of the DD rules, it sends its

result back to the PEP. Only then does the PEP sends its decision to the collaboration (to the

 109

CLM module). Since all the collaboration requests have already returned a permit decision,

the PEP determines that the authorizing peer can join the collaboration. Furthermore, if the

evaluation of DD rules allows any delegation of the authorizing peer’s credentials, this is also

conveyed to the CLM. We discuss the evaluation details of the type DD rules in Section 5.2.2.

 There are a few reasons for the evaluation order of our rule types. Type DU rules allow

access with delegated credentials. For a failing collaboration request that just returned a deny

decision, evaluation of type DU rules may switch the policy result to permit by considering

the delegated credentials for access. For example, a requesting peer who cannot meet the

access conditions imposed by type L or U rules, may satisfy a type DU rule. Consequently,

the requesting peer is allowed access, and the result of the policy is switched to a permit.

However, this permit is dependent upon fulfilling the policy obligation: the requesting peer

must use the delegated credentials for access, not its own credentials since they already failed

the type L and U rules.

The reason for delaying the evaluation of DU rules is that a DU rule comes with

obligations that must later be fulfilled. In order not to impose any unnecessary obligations, a

collaboration request is first evaluated against the collaboration policy that is stripped of its

DU rules. If the result is deny, only then is the collaboration request evaluated against the

type DU rules. By delaying the evaluation of DU rules after the evaluation of L and U type

rules, we ensure that the final policy decision contains the minimum number of obligations.

The evaluation of type DD rules occurs after the evaluation of type DU rules. A type DD

rule determines whether to delegate the authorizing peer’s credentials to a requesting peer.

The result of this evaluation is stored separately, and it does not affect the authorizing peer’s

decision on joining the collaboration. The result of DD rules only determines whether the

 110

authorizing peer delegates its credentials to a requesting peer upon joining the collaboration.

The authorizing peer can still decide to join the collaboration even when it refuses delegation

of its credentials.

The reason for delaying the evaluation of DD rules is that an authorizing peer first must

determine whether it joins the collaboration or not, which means having satisfied L, U and

DU rules. If the collaboration request already fails the L, U and DU rules, then the peer refuses

the collaboration proposal. Therefore, the peer does not need to consider whether it is willing

to delegate its credentials to a collaborative peer, which results in skipping evaluation of DD

rules.

For the rest of this chapter, we follow the progress of the policy evaluation. We first

discuss how type DU rules are evaluated and their corresponding obligations are generated.

Then, we discuss how type DD rules are evaluated and their corresponding obligations are

created.

 111

Figure 5.2 The evaluation of a collaboration proposal. The shaded boxes indicate the decision points.

L rule fetches an XACML request

L rule evaluates the matching XACML request

Does L rule matches the XACML request ?

More XACML requests ?

yes

More L Rules
in the policy ?

no

no

yes

yes

Is result deny ?

yes

no

U rule fetches an XACML request

U rule evaluates the matching XACML request

Does U rule matches the XACML request ?

More XACML requests ?

yes

More U Rules
in the policy ?

no

no

yes

yes

Is result deny ?

yes

Combine the results of U and L rules

Is result permit ?

Are there any more collaboration requests ?

Mark the collaboration request as failing

no

no

yes

no
Move onto the next collaboration request

Fetch a collaboration request

Fetch an L rule from the policy

Fetch an L rule from the policy

yes

L rule fetches an XACML request

L rule evaluates the matching XACML request

Does L rule matches the XACML request ?

More XACML requests ?

yes

More L Rules
in the policy ?

no

no

yes

yes

Is result deny ?

yes

no

U rule fetches an XACML request

U rule evaluates the matching XACML request

Does U rule matches the XACML request ?

More XACML requests ?

yes

More U Rules
in the policy ?

no

no

yes

yes

Is result deny ?

yes

Combine the results of U and L rules

Is result permit ?

Are there any more collaboration requests ?

Mark the collaboration request as failing

no

no

yes

no
Move onto the next collaboration request

Fetch a collaboration request

Fetch an L rule from the policy

Fetch an L rule from the policy

yes

Are there any failing collaboration requests ?

Collaboration is authorized

Are there any DU rules in the policy ?
Collaboration is NOT authorized,
refuse the collaboration

yes

no

yes

no

Store deny in
collaboration decision

Fetch a failing collaboration request

Fetch a DU rule

Evaluate the request against the DU rule

Are there any more DU rules in the policy ?

Combine the results of DU rules

Is the result permit ?

no

no
yes

no

Are there any more failing collaboration requests ? yes

yes

Return the decision
to the CLM

Terminate execution

Point A,
Continued on

next page

Are there any failing collaboration requests ?

Collaboration is authorized

Are there any DU rules in the policy ?
Collaboration is NOT authorized,
refuse the collaboration

yes

no

yes

no

Store deny in
collaboration decision

Fetch a failing collaboration request

Fetch a DU rule

Evaluate the request against the DU rule

Are there any more DU rules in the policy ?

Combine the results of DU rules

Is the result permit ?

no

no
yes

no

Are there any more failing collaboration requests ? yes

yes

Return the decision
to the CLM

Terminate execution

Point A,
Continued on

next page

Point A,
Continued on

next page

 112

Figure 5.2 (continued).

5.2.1 Evaluation of Type DU Rules

Each failing collaboration request is evaluated by the type DU rules. The PDP first

determines whether there are any DU rules in the policy that can switch the policy outcome

from deny to permit. Then, the PDP evaluates the failing collaboration request against the DU

rule(s) in order to see if the current request can indeed satisfy the DU rule(s). A failing

collaboration request that cannot satisfy the DU rule(s) would return a deny decision to the

PEP. If there are no DU rules found in the policy, a deny decision over the collaboration

request is returned to the PEP. The deny decision for a single collaboration request

terminates the entire evaluation process. (See Figure 5.2)

Are there any DD rules in the policy ?

Fetch ALL of the collaboration requests

Fetch a collaboration request

Fetch a DD rule

Evaluate the request against the DD rule

Are there any more DD rules in the policy ?

Combine the results of DD rules

Store the result into the policy decision

no

Are there any more collaboration requests ?
yes

yes

Return the policy decision to the PEP

Terminate execution

no

yes

Point A,
Continued from
previous page

Are there any DD rules in the policy ?

Fetch ALL of the collaboration requests

Fetch a collaboration request

Fetch a DD rule

Evaluate the request against the DD rule

Are there any more DD rules in the policy ?

Combine the results of DD rules

Store the result into the policy decision

no

Are there any more collaboration requests ?
yes

yes

Return the policy decision to the PEP

Terminate execution

no

yes

Point A,
Continued from
previous page

Point A,
Continued from
previous page

 113

A crucial point is that not all of the type DU rules are evaluated: only the DU rules that can

change the policy result from deny to permit are evaluated. This is due to the obligations

caused by the DU rules. If a DU rule is not absolutely necessary to switch the policy decision,

then it should not be evaluated; thus, it cannot cause any unnecessary obligation over the

policy decision. The selection of DU rules that are necessary to change the policy outcome is

discussed below.

Selection of Du rules

The rules of a collaboration policy are combined with Boolean operators: AND and OR

operators. Once all rules reach a decision, their results are combined with respect to the rule-

combining algorithm stated in the policy.

In order to select the DU rules that can switch the policy decision, we perform the rule-

combining algorithm. Since we have the results of L and U rules from the earlier evaluation,

we substitute them into the combining logic. If there are any type DD rules within the policy,

they are skipped during this combination process.

When the combining operation between two rules is an AND operator, we compute their

combined result as follows:

1. If both rules are of type DU, return a set of both rule names as the combination result.

2. If only one of the rules is of type non-DU and has a result of Deny, return Deny.

3. If only one of the rules is of type non-DU and has a result of Permit, return a single set

with DU rule’s name.

4. If none of the rules are of type DU, return the logical combination of their results.

 114

When the combining operation between two rules is an OR operator, we compute their

combined result as follows:

1. If both rules are of type DU, return two separate result sets; each set has one DU rule’s

name

2. If only one of the rules is of type non-DU and has a result of Deny, return a single set

with DU rule’s name.

3. If only one of the rules is of type non-DU and has a result of Permit, return Permit.

4. If none of the rules are of type DU, return the logical combination of rule results.

The rule-combining algorithm proceeds until all rules are exhausted. The combination

result for DU rules eventually becomes sets of DU rule names. When these sets are combined

with other rule results, they are treated as type DU rules, in the manner explained above. Once

the rule-combining algorithm is finished, the outcome may be a permit or a deny, or sets of

DU rules. Within each set, the rules maintain an AND relationship. Among the sets, there is

an OR relationship: any set is capable of satisfying the policy alone. If the outcome of the

combining process does not contain any DU rules, we conclude that there is no DU rule that

can change the policy outcome from deny to permit. Hence, the execution of DU rules is

terminated, and deny decision for the specific collaboration request is returned to the PEP

(which leads to the refusal of the collaboration proposal). Otherwise, we conclude that the DU

rules that are contained in the combining outcome are the necessary DU rules that may switch

the policy decision from deny to permit. The evaluation of these selected DU rules then start.

 115

Evaluation of Selected DU rules

Since collaboration policies are first evaluated during the workflow planning stage, it is

likely that the actual act of delegation between the delegator and the delegatee has not yet

occurred. The act of delegation from the delegator to the requesting peer (i.e. the delegatee)

may occur later, after the planning stage or at run-time. To take advantage of this, our

framework adopts a preemptive approach with type DU rules: even before the act of

delegation occurs between the delegatee and the delegator (in fact, even before the delegator

agrees to delegate its credentials), the PDP can assess a potential delegation. The PDP does

this evaluation when a failing collaboration request is evaluated against the DU rules.

The PEP sends a failing collaboration request back to the PDP for an evaluation against

the DU rules. This second evaluation is done in a preemptive manner such that type DU rules

assess the possibility of a future delegation that has not occurred yet. A type DU rule assess

three questions in a preemptive evaluation: if there is to be a future delegation taking place,

(1) is there a suitable delegator in the collaboration (the peer must satisfy the second inner

predicate of the rule); (2) are there suitable intermediate parties that can relay the credentials

between the delegator and the delegatee (the peer must satisfy the third inner predicate of the

rule); (3) does the delegatee satisfy the access requirements expected from the delegatees (the

peer must satisfy the first inner predicate of the rule).

To evaluate a selected DU rule, the PDP selects the suitable peers based on their

interaction types (Figure 5.3). A peer that has a direct upstream interaction with the protected

service is marked as a potential delegatee; a peer that has an indirect upstream direction with

the protected peer is marked both as a potential delegator and as a potential intermediate

party. The marked peers are located on the same path so that the delegation, if it occurs later,

 116

can occur among the peers that are already connected to each other by the existing

collaboration connections. It is, of course, possible to seek delegation among the peers that

are not connected by the collaboration; however, this would increase the number of potential

delegation peers, increasing the evaluation complexity. It also may cause complications in

creating new connections along which the delegation can take place. These are the

motivating reasons for our decision in evaluating peers along an existing upstream path.

Since when we prepared the collaboration requests, we already grouped the peers based on

their paths, each collaboration request already contains peers along a single upstream path,

making it easier to evaluate DU rules.

Figure 5.3 The evaluation of a failing collaboration request against a Du rule.

Service A

Selected DU rules: DU1

DelDist = 2
Resulting Rule Contract for :
Delegator = up:3
Delegatee = up:1

Candidate
delegatee

Candidate
Delegator &
Candidate
Intermediate

Candidate
Delegator &
Candidate
Intermediate

Trusted as a delegatee
Un-trusted as a delegator
Trusted as an intermediate

Trusted as a delegator
Trusted as an intermediate

Service AService A

Selected DU rules: DU1

DelDist = 2
Resulting Rule Contract for :
Delegator = up:3
Delegatee = up:1

Candidate
delegatee

Candidate
Delegator &
Candidate
Intermediate

Candidate
Delegator &
Candidate
Intermediate

Candidate
Delegator &
Candidate
Intermediate

Candidate
Delegator &
Candidate
Intermediate

Trusted as a delegatee
Un-trusted as a delegator
Trusted as an intermediate

Trusted as a delegator
Trusted as an intermediate

 117

In our implementation, we start evaluating potential delegators with the smallest distance

from the protected service for performance reasons. If a delegator cannot play the role of an

intermediate party, the rule evaluation terminates immediately because no delegation chain

beyond that peer can be built.

The evaluation of a DU rule proceeds as follows: a potential delegatee is applied to the

first inner-predicate of the DU rule; a potential delegator is applied to the second inner

predicate; a potential intermediate party is applied to the third inner-predicate of the DU rule.

Since a potential delegator can also be treated as a potential intermediate party, it is applied

to both second and third inner predicates.

If the potential delegatee does not satisfy the first inner-predicate, the rule evaluation is

terminated and a deny result is returned for this rule. If the delegatee satisfies its predicate,

the evaluation continues with the potential delegator. If the potential delegator satisfies the

second inner-predicate, it is marked and is recorded within the rule result (more specifically,

the delegator’s identity is stored inside the rule contract, discussed in next section.). The

delegator is also evaluated against the third inner-predicate. If the potential delegator fails the

third predicate, the rule evaluation terminates. The rule result is set to permit only if has the

delegator satisfied the second inner-predicate; otherwise, if the delegator failed the second

inner-predicate, the rule result is set to deny. If the potential delegator satisfies the third

inner-predicate (with or without satisfying the second predicate), the rule evaluation

continues with another potential delegator that is one-edge away from the current potential

delegator. The new delegator is treated in the same manner. The evaluation continues until all

potential delegators within the delegation distance are exhausted. A DU rule can find multiple

 118

potential delegators in a collaboration request. Each of these delegators is marked and stored

in the rule result separately.

Although it is not required in our framework, the PDP can adopt a different evaluation

approach with DU rules. In this approach, the evaluation of a DU rule occurs after the actual

act of delegation between the delegator and the delegatee; this is different than our

preemptive approach, where the evaluation of type DU rules occurs before the delegation

actually takes place. In this alternative approach, the delegatee first obtains the delegated

credentials and attaches them to its access request. Upon receiving the request with delegated

credentials, the PEP examines the delegated credentials and extracts information to set

attribute values. The attributes of the delegator, the intermediate peers and the delegatee are

extracted from the delegated credentials. Consider, for example, a delegated X.509

credential. The PEP can extract information from the delegated credential, such as who is the

original owner of the credential, if there are any intermediate parties, and the requesting

peer’s identity. The PEP creates a separate XACML request for the delegator, the delegatee

and the intermediate parties, in the exact manner of the pre-emptive approach. The PEP

finally creates a collaboration request including all the parties involved in the delegation, and

sends it to the PDP for evaluation. The matching DU rule would evaluate the peers as they

correspond to the specific inner predicates, and a final rule result is returned. Since there is

no need to seek for potential delegators, the DU rule only evaluates a single delegator.

For a failing collaboration request, it is imperative that the request must satisfy all

selected DU rules. Otherwise, the policy result remains as deny. In our prototype, a failing

collaboration request is evaluated against all DU rules in the above fashion until the selected

DU rules are exhausted.

 119

When all DU rules are satisfied, the processing of their results can start, and subsequently

the policy obligations are generated.

The Policy Obligations

A policy obligation indicates that the permission stated in a policy decision is contingent

on mandatory actions that must later be taken by the collaborative peers. These mandatory

actions are conveyed by the policy obligation. If the collaborative peers do not take these

actions, the permission decision is revoked. There could be multiple obligations

accompanying a single policy decision. Obligations are handled in XACML framework also.

However, in XACML approach, the obligations are specified as part of the policy; they are

not derived from the evaluation context. For example, a policy writer can specify a policy

such that upon satisfying the policy, the requestor must accomplish the obligations stated in

the policy. The PEP of XACML framework is responsible for ensuring that the obligations

are honored. In our framework, obligations are not specified as part of a collaboration policy.

Instead, the obligations are dynamically derived from the collaboration context. Upon

satisfying the same collaboration policy, two collaboration requests can have different

obligations.

In our framework, policy obligations can only be generated due to type DU rules and type

DD rules. For both rules, the obligations state the identities of the delegator, the delegatee and

the intermediate peers. A type DU rule or a type DD rule’s result is only valid for a specific

delegation instance; if there are to be changes in the delegation instance at run-time, the rule

result becomes obsolete. For example, if one of the intermediate peers is replaced by a

different peer, or the delegated credentials are different from the credentials that are

 120

evaluated, the rule result becomes deny. Policy obligations record the state information

related to a specific delegation instance.

A DU rule result contains a special object, namely a rule contract. A rule contract is used

to identify the delegators that succeeded in satisfying the DU rule. The contents of a rule

contract is shown below:

Rule Contract: {Collaboration Request Path ID, (Location of the first delegator, allowed

re-delegation distance), (Location of the second delegator, allowed re-delegation distance),

*}. The star indicates that the location and re-delegation distance pairs are repeated for each

suitable delegator.

Semantically, a rule contract states that the DU rule would grant the promised access only

if one of the delegators agrees to delegate its credentials to the delegatee. The identities of

delegatee and the intermediate peers are not separately stored because the path ID along

which the delegation must take place is included in the rule contract. A delegatee has a direct

interaction with the service, and the peers in between are identified as intermediate parties

along a specific path.

For example, Rule Contract 1 = {path:1, (3, unbounded), (5, unbounded)} means either a

delegator located 3-hops away or another delegator located 5-hops away must be willing to

delegate to the delegatee which is one-hop away from the service. The delegators located 3-

hops away and 5-hops away have unbounded re-delegation distances. When a specific re-

delegation distance is defined, the delegatee that has received the credentials in a manner that

exceeds the delegation limit is refused access, even when the credentials are properly

delegated. The delegation distance is indicated by the DelegationDistance (DelDist) element

of the rule.

 121

A policy obligation object has the same content as a rule contract. However, it differs

from the rule contracts semantically.

Policy Obligation: {Collaboration Request Path ID, (Location of the delegator, allowed

re-delegation distance)*}

A policy obligation object enumerates the delegators that must be willing to delegate

their credentials. If even one of the stated delegators refuses to partake in the delegation, the

obligation is said to be unsatisfied. A rule contract, on the other hand, enumerates the

delegators, at least one of which must agree to delegate their credentials. In other words, the

list of delegators inside a rule contract maintains an OR relationship, whereas, the delegators

inside a policy obligation maintain an AND relationship. For example, a policy obligation

including two peers, such as up:3 and up:5, means that both peers must simultaneously be

willing to delegate their credentials. A rule contract that has the same content means that as

long as one of the two peers agrees to delegate their credentials, the DU rule is satisfied.

The semantic difference arises from the different usages of rule contracts and policy

obligations; a rule contract enumerates the suitable delegators for a specific rule, whereas, a

policy obligation enumerates the suitable delegators for an entire policy. In order to generate

a policy obligation, the results of the requisite DU rules and their rule contracts must be

combined and be processed according to the policy’s rule combining logic. A policy

obligation must be created such that it states all of the requisite delegators that can and must

satisfy simultaneously all of the selected DU rules. In other words, a policy obligation is a

combination of rule contracts with respect to the combining logic specified by the policy.

 122

Generation of Policy Obligations

The following algorithm is applied to generate the policy obligations for a single

collaboration request that has been evaluated against a group of selected DU rules. Recall that

when we select the DU rules, we perform the rule-combining algorithm among the rule

results. As the outcome of combining process, we obtain sets of DU rule names. Within each

set, the rules maintain an AND relationship. Among the sets, there is an OR relationship;

meaning that any set is capable of satisfying the policy alone. Below, we show how we

process these rule sets in order to generate the policy obligations.

For a set of DU rules, combined with AND operator

a. Create a temporary policy obligation object

b. Compute the dot product of two rule contracts as follows

i. For each element of the first rule contract, except the path ID element

1. Concatenate the element with each element of the second rule

contract. (Resulting element would have two separate

delegators and their re-delegation distance.)

2. Store the resulting elements inside the temporary policy

obligation object.

3. If the element of the first rule contract covers the element of

the second rule contract, apply pruning algorithm and move

onto Step (e), no more processing is required for this element

of the first contract.

c. Delete both rule contracts from step 1-a

 123

d. Select a new rule contract and move onto Step b, only this time compute the

dot product of the temporary policy obligation object with the new rule

contract. Repeat this step until all rule contracts are processed.

e. Create the final policy obligation objects

i. Create a separate policy obligation object for each element of the

temporary policy obligation object

The above algorithm determines which delegators must be willing to delegate their

credentials in order to satisfy a group of DU rules. For DU rules combined with an AND

operator, these delegators must agree simultaneously. By selecting a single element from

each rule contract and concatenating with each element of the other rule contract, we

determine all possible combinations that can satisfy both of the DU rules. The resulting

elements in the temporary obligation object maintains an OR relationship. Each of them can

satisfy both DU rule simultaneously. That is why we create a separate policy obligation for

each of these elements (Step e-i).

The covering and pruning algorithms are employed in cases where two separate rule

contracts contain the same delegator. In such cases, instead of concatenating the delegator

with another delegator, it is sufficient to list the same delegator only once because it can

alone satisfy both rules. Covering algorithm is used to discover these cases between two rule

contracts.

 124

Covering algorithm:

� To determine whether an element of a rule contract covers another element of another

rule contract:

o If there is a single delegator contained in the first element and that delegator is

identical to the delegator contained in the second element:

� The first element is said to cover the second element.

� If the delegator in second element has a re-delegation value smaller

than that of first element, the re-delegation value in the first element is

changed to that value.

o If the first element contains multiple delegators (this element has already been

concatenated with another rule contract element):

� If any of the delegators contained in the first element equals to the

delegator contained in the second element

• The first element is said to cover the second element.

• If the delegator in the second element has a re-delegation value

smaller than that of first element, the re-delegation value in the

first element is changed to that value.

When an element of the rule contract (the first element) is said to cover another

element (the second element), the following pruning algorithm is applied:

Pruning Algorithm

o Instead of concatenating the first and second elements, place the first element

into the temporary obligation object alone.

 125

o In temporary obligation object, check each previous element, except the one

added in the previous step.

o If any of the previous elements contains the first element, remove that

element.

The pruning algorithm removes any redundant elements in the temporary obligation

object. The pruning process checks all the previously concatenated elements. If a previous

element has the delegator that is discovered to satisfy both rules, we delete that previous

element. The deleted element is apparently created before we discover that the delegator it

contains can satisfy both DU rules simultaneously. As a result, the deleted element has the

delegator that has the ability to satisfy both DU rules and, in addition, it has another delegator

due to the earlier concatenation. Since only a single delegator is sufficient to satisfy both

rules, the process of concatenation was completely unnecessary; therefore, pruning this

element is viable.

Example 22:
Assume we have a collaboration policy that has four DU rules: (R1, R2, R3, R4). The
collaboration request fails the first policy evaluation; therefore, we select the DU rules that
can change the policy decision. After the selection process, we end up with two sets of rules:
(R1, R2, R3); (R4). In order to convert policy decision to permit, either R1, R2 and R3
simultaneously must be satisfied, or R4 alone must be satisfied by the failing collaboration
request.

Upon evaluating the DU rules against the collaboration request, we obtain the following rule
contracts:

Rule Contract for R1 (RC1): {path: 2, (3, unbounded), (5, unbounded)}
Rule Contract for R2 (RC2): {path: 2, (2, unbounded), (5, unbounded)}
Rule Contract for R3 (RC3): {path: 2, (3, 6), (6, 6)}
Rule Contract for R4 (RC4): {path: 2, (2, 6), (3, 6)}

 126

We start with the first set. Our algorithm calls for computing the dot product between R1 and
R2.The resulting temporary policy obligation is shown below.

Temporary Policy Obligation = {path:2,
 (3, unbounded)(2, unbounded),
 (3, unbounded)(5, unbounded),
 (5, unbounded)(2, unbounded),
 (5, unbounded)(5, unbounded)}

Each row of the temporary policy obligation shows a single concatenated element, except
first row, which shows the path ID. While computing the final element, row 5, the covering
algorithm discovers that the delegator 5-edges away, (5, unbounded) element, can satisfy
both R1 and R2 rules alone. Consequently, the pruning algorithm is invoked. The pruning
algorithm determines that all earlier elements containing this delegator, i.e. the (5,
unbounded) element, must be erased because they have unnecessary additional delegators.
After the pruning, the policy obligation is shown below:

Temporary Policy Obligation= {path:2,
 (3, unbounded)(2, unbounded),
 (5, unbounded)}

The algorithm continues with computing the dot product of Temporary Policy Obligation
Object with R3

Temporary Policy Obligation = {path:2,
 (3, unbounded)(2, unbounded)(3, 6),
 (3,unbounded)(2,unbounded)(6, 6),
 (5, unbounded)(3, 6),
 (5, unbounded)(6, 6)}

The above temporary obligation object shows the result of computing te dot product without
any pruning, for illustrative purposes. During the algorithm execution, while computing the
second row, the covering algorithm discovers that the element (3, unbounded)(2, unbounded)
covers the element (3, 6). The delegator located 3-edges away is already listed in the element
(3, unbounded)(2, unbounded) and in the element (3, 6). Therefore, the first element can
satisfy the second rule as well. However, the re-delegation limit of the second element
(which is 6) is smaller than that of the first element (which is unbounded); thus, the first
element becomes (3, 6)(2, unbounded). Consequently, the pruning algorithm is invoked, but
since there are no previous elements containing the (3, unbounded)(2, unbounded) element,
no pruning is performed. Finally, the concatenation process for the (3, unbounded)(2,

 127

unbounded) element is terminated (stated in the step b-i-3 in the obligation generation
algorithm) because it has been discovered that the element (3, unbounded)(2, unbounded) is
alone sufficient to satisfy both participants of the dot product. Thus, it should not further be
concatenated with any additional elements. The algorithm continues with element (5,
unbounded), at row 4.

After the pruning:

Temporary Policy Obligation: {path:2,
 (3, 6)(2, unbounded),
 (5, unbounded)(3, 6),
 (5, unbounded)(6, 6)}

Since all the rules are exhausted in this set, the final policy obligations below are generated:
(3, 6)(2, unbounded)(5, unbounded)(3, 6)Policy Obligation 3= {path:2, (5, unbounded)(6, 6)}

Each of above policy obligations alone stands to satisfy the collaboration policy. The first
obligation requires both of the delegator 3 edges away and the delegator 2 edges away to
delegate their credentials to the delegatee. The second obligation requires both the delegator
5 edges away and the delegator 3 edges away to delegate. Finally, the third obligation
requires both the delegator 5 edges away and the delegator 6 edges away to delegate.

After applying the same procedure for the second set of DU rules, (R4), we obtain the
following policy obligations. Note that since there was only a single rule in this set, we
skipped generating the dot products between the rule contracts. We generated a separate
policy obligation for each delegator inside the rule R4’s contract

Policy Obligation 4 = {path:2, (2, 6)}
Policy Obligation 5 = {path:2, (3, 6)}

The fourth obligation requires only a single delegator: the delegator 2 edges away; the fifth
obligation also requires a single delegator: the delegator 3 edges away. �

Having processed the rule contracts, we obtain multiple policy obligation objects. In

order to ensure that there is no redundancy among these objects, we apply the covering

algorithm among policy obligation objects one more time. (Covering algorithm is presented

 128

above.) If the two obligations are found to cover one another, we remove the redundant

obligation objects as follows:

Policy Obligation Pruning Algorithm:

1. For two policy obligation objects, such that the first obligation is found to cover the

second obligation:

a. Remove the first obligation object

b. Replace the second element’s re-delegation distance with that of the first

element if the first element’s re-delegation distance is smaller.

The above pruning algorithm differs from the earlier pruning algorithm we presented. The

above algorithm prunes the redundant policy obligations, whereas the earlier algorithm

prunes the redundant element across the rule contracts. Each policy obligation stands on its

own to satisfy the collaboration policy. Hence, separate policy obligations maintain an OR

relationship among each other. A collaboration request has to satisfy only a single obligation.

As a result, when we discover two obligations such that the first one covers the second one,

we remove the first one because the first obligation has more delegators listed than the

second obligation. To reduce the number of required delegators, we remove the first

obligation.

Example 23: (Continuing from Example 1)

At the end of Example 1, we obtained the following obligations:
(3, 6)(2, unbounded)(5, unbounded)(3, 6)Policy Obligation 3 = {path: 2, (5, unbounded)(6,
6)}
Policy Obligation 4 = {path: 2, (2, 6)}
Policy Obligation 5 = {path: 2, (3, 6)}
The covering algorithm discovers that the first obligation covers the fourth and the fifth
obligations; therefore, the first obligation can be removed. The second obligation covers the

 129

fifth obligation; hence, the second obligation is removed. The final policy obligations are
listed below:

Policy Obligation 3= {path: 2, (5, unbounded)(6, 6)}
Policy Obligation 4 = {path: 2, (2, 6)}
Policy Obligation 5 = {path: 2, (3, 6)}. �

The resulting policy obligation objects are attached to the policy decision. The permit

decision along with the obligations is returned to the PEP. This concludes the evaluation of

DU rules.

5.2.2 Evaluation of Type DD Rules

The evaluation of type DD rules occurs last, after the evaluation of type L, U and DU

rules. The evaluation of DD rules occurs only when the PEP determines that the authorizing

peer can join the collaboration. The result of the DD rules does not change the decision over

whether the authorizing peer can join the collaboration. The DD rules only determines, after

joining the collaboration, whether the authorizing peer should allow downstream delegation

of its credentials to other collaborative peers. The authorizing peer’s decision to delegate its

credentials affects the requesting peers. A requesting peer, which discovered that its own

credentials are not sufficient to join the collaboration, may request the delegation of

credentials so that it can join the collaboration. In such cases, the authorizing peer’s decision

whether or not to delegate affects the requesting peer’s ability to join the collaboration.

All of the collaboration requests are evaluated against the DD rules included in the

collaboration policy. To determine whether the collaboration request matches any DD rule,

each of the XACML requests contained within a collaboration request is examined. If an

XACML request has a subject element with a downstream interaction with the authorizing

peer, and the XACML request’s resource element indicates the authorizing peer’s

 130

credentials, and the XACML request’s action element indicates the “delegate” action, then

the XACML request should match a DD rule. Of course, if there is no DD rule in the

collaboration policy, then it is concluded that the XACML request does not match any of the

rules. This means that the delegation of requested credentials is not allowed under any

circumstances. Once a matching DD rule is found, the collaboration request, more specifically

the matching XACML requests contained in the collaboration request, is evaluated against

the matching rules.

 For the remainder of this section, we call the requesting peer (i.e. subject of the

matching XACML request) that requests the authorizing peer’s credentials the delegatee, and

we call the authorizing peer the delegator. If there are any peers that must relay the

credentials from the delegator to the delegatee, they are called intermediate peers. The PDP

retrieves the interaction type between the delegator and the delegatee, and determines the

number of edges (i.e. the distance) between the delegator and the delegatee. If the distance

exceeds the delegation distance set by the DD rule, the XACML request returns a deny

decision. Otherwise, the DD rule starts evaluation.

A DD rule has two inner predicates, each of which states the access requirements sought

from a delegatee and the intermediate parties. The delegatee is evaluated against the access

requirements given by the first inner-predicate of the DD rule. The intermediate peers are

evaluated against the access requirements given by the second inner-predicate of the DD rule.

In order to return a permit decision from the DD rule, both inner-predicates must evaluate to

true. The XACML request that matches the DD rule has the delegatee as its subject.

Therefore, the attributes of the delegatee can be retrieved from its XACML request, and they

are applied to the first inner predicate of the DD rule.

 131

If there are any intermediate peers, however, their XACML requests (hence their

attributes) must be retrieved separately. The PDP first identifies the intermediate peers that

must be involved in relaying the credentials. To accomplish this, the PDP looks up the

interaction attribute of the delegatee. This attribute not only indicates the interaction type but

also the upstream path ID that the delegatee belongs to and the number of hops between the

delegatee and the authorizing peer (i.e. the delegator). The PDP retrieves the sub-

collaboration graph that is sent by the CLM, and retrieves the upstream path that contains the

delegatee. The peers between the delegatee and the delegator are identified as intermediate

peers. The PDP then searches for the XACML requests that belong to the intermediate peers.

The collaboration request must contain the intermediate peer’s XACML requests, because

each collaboration request contains all downstream peers, and the delegatee and the

intermediate peers are downstream peers. Recall that while preparing the collaboration

requests, we grouped the peers based on their upstream paths; however, we left a single

group of downstream peers. Once the XACML requests belonging to the intermediate peers

are found, their attributes are evaluated against the second inner-predicate of the DD rule. If

an intermediate XACML request cannot be found, it is evaluated to deny.

Unlike type DU rules, the type DD rules are not evaluated in a preemptive manner. The

type DD rules are evaluated only when there is a matching XACML request inside the

collaboration request. Therefore, there is no need to seek for potential delegatees or

intermediate peers. The result of each DD rule is stored in a rule contract object. The rule

contract only contains a single delegatee, the intermediate peers between the delegatee and

the authorizing peer, and the name of the credentials that are being delegated.

 132

When there are multiple DD rules that manage delegation of the requested credentials

(they each match the same delegatee’s XACML request), each of the rules is evaluated

separately. The rule results are combined with respect to the rule combining logic of the

policy. When the combined result is permit, it is determined that the delegation of the

credentials is allowed.

When multiple DD rules match the same XACML request, the rule contract with the

smallest delegation distance replaces the other rule contracts. In other words, only the rule

contract with the smallest delegation distance is used to generate a policy obligation object.

The other rule contracts are discarded. All rule contracts have the same delegatee and the

same credentials that are being delegated; however, the rule contracts only have different

delegation distances. The rule contract with the smallest delegation distance becomes a

policy obligation. The policy obligation object contains the identities of the authorized

delegatee, the intermediate parties and the delegated credentials.

Each XACML request that matches a type DD rule is evaluated separately, in the manner

described above. A separate policy obligation for each matching XACML request is

generated. Once all XACML requests are exhausted, the evaluation of a single collaboration

request concludes.

Since a single collaboration request already contains the entire downstream peers, it is

sufficient to only evaluate a single one of them. The resulting policy obligations are sent to

the PEP. This concludes the evaluation of the proposed collaboration.

 133

Chapter 6:
The System Architecture

Our architecture consists of four modules: Collaboration Locator Module (CLM),

Authorization Management Module (AMM), Policy Enforcement Point (PEP), and Policy

Decision Point (PDP) (Figure 6.1).

Figure 6.1 The system architecture. The shaded boxes correspond to our contributions.

The CLM and AMM modules are designed to be incorporated into the collaboration

management framework. The collaboration management framework deals with various

Collaboration Engine

Collaboration
Construction &
Choreography

Collaboration Graph
(represented in WS-CDL)

Resource Discovery
&

Service Binding

Collaboration Locator
Module (CLM)

Authorization Management
Module (AMM)

Collaboration Graph
With Service Bindings

Collaboration Graph
After Security Feasibility
(in WS-CDL)

Execution

Collaboration Graph
(in BPEL)

Collaboration Graph
With Service Bindings

Peer Service 2

Collaboration Policies
PEP

peer-peer

checks
(in SOAP)

Collaboration Policies
PEP

Peer Service 1 …

SOAP
messages

SOAP
messages SOAP

messages

Collaboration Engine

Collaboration
Construction &
Choreography

Collaboration Graph
(represented in WS-CDL)
Collaboration Graph
(represented in WS-CDL)

Resource Discovery
&

Service Binding

Collaboration Locator
Module (CLM)

Authorization Management
Module (AMM)

Collaboration Graph
With Service Bindings
Collaboration Graph
With Service Bindings

Collaboration Graph
After Security Feasibility
(in WS-CDL)

Collaboration Graph
After Security Feasibility
(in WS-CDL)

Execution

Collaboration Graph
(in BPEL)
Collaboration Graph
(in BPEL)

Collaboration Graph
With Service Bindings
Collaboration Graph
With Service Bindings

Peer Service 2

Collaboration Policies
PEP

peer-peer

checks
(in SOAP)

Collaboration Policies
PEP

Peer Service 1 …

SOAP
messages

SOAP
messages SOAP

messages

 134

aspects of collaboration management, such as the design and the choreography of the

collaboration, the discovery of the services that partake in the collaboration, the security, and

the execution of the collaboration. In practice, each of these aspects is individually built as

separate autonomous modules in order to simplify the architectural design, and the

collaboration management engine is regarded as the composition of these modules. For

example, existing BPEL [OASIS05] engines can execute a collaboration and deal with fault

recovery. Likewise, existing choreography editors enable describing and building

collaborations. We loosely describe the collaboration management framework as the

collection of all these managerial aspects.

Our work focuses only on the access control aspects of collaboration management.

Rather than adopting a holistic approach, we circumscribe our work only to the access

control management due to the variety and the complexity of distinct managerial aspects. As

a result, we designed our modules, the CLM and the AMM, as standalone architectural

modules that only tend to the access control aspects of the collaboration framework. They are

built such that they can be plugged into an existing collaboration management framework, so

long as the collaboration engine can create and handle the input/output messages expected by

the AMM and CLM modules. The AMM and the CLM modules are built as standalone web

services that can exchange SOAP messages. Any collaboration engine that has the ability to

contact a web service and to generate/process input/output variables could easily employ the

AMM and CLM modules.

The CLM and AMM modules require a collaboration choreography document. The

choreography document describes the collaboration as an ordered collection of the

interactions, where each interaction is a peer-to-peer data exchange between two services. In

 135

our work, we used the Web-Services Choreography Description Language (WS-CDL)

[W3C05] to create choreography documents. The WS-CDL standard offers a means by

which the rules of participation within a collaboration can be clearly defined and jointly

agreed to.

The CLM and AMM modules require the choreography document for accomplishing the

security evaluations over the collaboration. Upon completing the security evaluations, the

CLM and AMM modules determine the feasibility of the collaboration from a security

standpoint.

The Policy Enforcement Point (PEP) and Policy Decision Point (PDP) modules are

designed to evaluate and prevent security threats against a service that is joining the

collaboration. The PEP and PDP modules do not focus on the overall security of the

collaboration. Instead, they aim to protect the service from the security threats. They are

designed with the objective in mind that they can be easily plugged into a service’s existing

security system. It is expected that each service would already belong to an existing security

domain, and the service has an access control system. The existing access control system is

likely to be geared towards evaluating standalone access requests, which are not part of any

collaboration. It is important for us to design the PEP and PDP modules such that they can be

incorporated into the existing security system with no disruption.

As a result, we designed and built the PEP as a standalone web service that can interact

with external world via SOAP messages, and it can interact with the existing security system

(as explained in Chapter 1). The PDP module, unlike the PEP, is not exposed to external

world; it can only be contacted within the security domain it belongs to. The PEP is designed

as a gatekeeper among the service’s home domain, the collaboration management engine,

 136

and the other collaborative peers; the PEP receives collaboration proposals, contacts other

peers’ PEPs for examining their requests, invokes the PDP to evaluate the collaboration

proposal, and sends the final decision back to the collaboration management engine, more

specifically to the AMM.

Each collaborative peer (i.e. service) joining the collaboration must have separate PEP

and PDP modules installed in its home organization. Since the PEP is designed as a web

service, the peer should have the ability of running web services via a SOAP engine, such as

Axis.

 In this chapter, we first present the mechanics of each module, and then we discuss the

interaction patterns among the modules.

6.1 The Collaboration Locator Module

The Collaboration Locator Module (CLM) is responsible for processing the collaboration

choreography document. The choreography document, written in Web Services-

Choreography Description Language (WS-CDL) [W3C05] – an XML-based choreography

language, describes a collaboration as a composition of peer-to-peer interactions that take

place using a jointly agreed set of ordering and constraint rules. In our framework, the peers

correspond to the services, and interactions correspond to programmatic data exchanges

between the services. The CLM’s main responsibility is to process the choreography

document and examine the interactions among the services from a security standpoint. Below

we briefly discuss the WS-CDL standard in to order to familiarize the reader.

The WS-CDL notation has various elements to describe collaborations such as

interaction, participantTypes, roleTypes and more. (The element names taken from WS-CDL

notation are shown in italics.) Since the CLM’s job is to examine interactions between the

 137

services, it focuses on roleTypes and interaction elements. A roleType element conveys a

collection of behaviors that must be exposed by a participant (i.e. a service). Each roleType

element is assigned to a specific service. A service has multiple operations, where each

operation is a separately invocable programming method. The service’s operations are

specified in a unique WSDL document. A roleType element specifies a behavior by

referencing the assigned service’s WSDL document. A behavior is explicitly linked to one of

the operations listed in the service’s WSDL document.

The interaction elements are the basic building blocks of WS-CDL documents. An

interaction element shows the data exchange between two roleTypes. An interaction element

conveys three important pieces of information for our purposes: two service operations, each

of which implements one of the two roles, the data exchanged by each operations, and the

direction of data flow. An interaction element also contains other information, such as fault

recovery and synchronization issues.

For each service that plays a role in the choreography, the CLM is responsible for

generating a sub-collaboration graph. The sub-collaboration graph informs the service about

what type of interactions it would engage in upon joining the collaboration. A sub-

collaboration graph only includes the parts of the collaboration that are related to the service:

the name of the other services that interact with the service, the interaction types, and the data

exchanged. In other words, for a specific service, the sub-collaboration graph only includes

peers that interact with the specified service. The remaining parts of the collaboration are left

outside of the sub-collaboration graph.

Unless there is a limit over the interaction types to be included in a sub-collaboration

graph, the sub-collaboration graph would become an approximation of or an identical copy of

 138

the entire collaboration graph, because each service eventually has an indirect interaction

with another service. To prevent this situation, we expect the services to set their limits on

the interaction types to be included in their sub-collaboration graphs. For example, a service

may set its limit to examine the peers that have a direct interaction; or the service may

request to examine other services that have indirect interactions, but less than 5 edges away.

In the latter case, the sub-collaboration graph only includes the services that are at most 5

edges away. We call this limit the evaluation radius, the discussion of which is presented in

Section 6.1.3 in detail. Each service must specify an evaluation radius for their upstream and

downstream directions. The values of the upstream and downstream radiuses may be

different.

The CLM builds a sub-collaboration graph for each service that plays a role in the

collaboration. The sub-collaboration graph is generated in two separate phases: one for the

upstream direction and one for the downstream direction. In both phases, the same generation

algorithm is used. The final sub-collaboration graph is composed of results from both

directions (Figure 6.2).

In order to generate a sub-collaboration graph for a specific service, the CLM follows the

following steps. Let us call this service the owner of the sub-collaboration graph, to avoid

confusion. The CLM selects a direction and obtains the evaluation radius in that direction.

The CLM checks each roleType element of the choreography document, and marks the roles

that are assigned to the owner service. It is possible that an owner service is capable of

tackling multiple different roles in the collaboration (through different service operations);

thus the owner service may be assigned to multiple roles. In such cases, the owner service

 139

has multiple graphs generated for each role. Each sub-collaboration graph has a unique

identification number and only pertains to a single roleType.

For each role assigned to the service, the CLM identifies all the activities involved with

the roleType. The WS-CDL defines various types of activities that must be performed by a

specific role. In our implementation, we are only interested in activities that require an

interaction between two services: the interaction activity type in WS-CDL notation. If an

activity is solely accomplished by the service itself without engaging in any interactions with

another peer, then the CLM does not analyze this activity and does not include it in the sub-

collaboration graph. Instead, the CLM marks the activities that are interactions between two

peers. This type of activities is described by the interaction element of the WS-CDL syntax.

Thus, the CLM searches for the interaction elements that pertain to the specific roleType.

Some of the information conveyed by an interaction element are: the names of the services

involved, the names of the services’ operations that would handle the exchange (referring to

the operation types in WSDL), the direction of the data flow, and exchanged data types.

The CLM selects the interactions based on their data flow direction. If the sub-

collaboration graph is generated for the upstream direction, then the CLM is interested in

interactions in which the data flows into the owner service. If the sub-collaboration graph is

generated in the downstream direction, the CLM is interested in interactions in which the

data flows out of the owner service. By processing the selected interaction elements, the

CLM identifies the services that are exchanging data with the owner service. We call these

services interaction partners.

 140

Figure 6.2. The sub-collaboration graph for Service A. Only shaded nodes are included in the sub-
collaboration graph of Service A.

It is possible that the owner service may have multiple interactions with the same

interaction partner. In such cases, the CLM examines whether the interactions are duplicates

of each other, or are different. This is done from the perspective of the owner service. If two

interactions have the same data exchange and use the same operation of the owner service,

they are determined to be duplicates. If two interactions have a different data exchange or use

different operations of the owner service, they are determined to be different. When

determining duplicity, we do not distinguish between the operations of the interaction

partner. Even if the operations of the interaction partner are different, when the same

operation and data is used by the owner service, we conclude that two interactions are

duplicates of each other. When two interactions are found to be duplicates of each other, only

one of them is included in the sub-collaboration graph. If the interactions are different, each

of the interactions is listed separately. Thus, the same interacting partner appears as many

Service AService A

 141

times as the number of different interactions in the same graph. For example, in Figure 6.3,

Service C has two original interactions with Service B; therefore, Service B appears twice in

the sub-collaboration graph of Service C.

The reason for not distinguishing between the operations of an interaction partner is that

each operation has the same credentials, which are inherited from the service, and thus the

operations are indistinguishable to the external world. From Service C’s perspective, in

Figure 6.3, all of Service B’s operations are equal in the sense that they have the same

credentials. On the other hand, C may have fine-grained access control rules associated with

each of its own operations, such as B is allowed access to an insensitive operation, while it is

not allowed for a sensitive operation. This kind of fine-grained policy is not the norm;

nevertheless our access control model allows them as exceptional cases. Therefore, when we

generate the sub-collaboration graphs, we inform the owner service about which of its

operations is engaged in an interaction with another service.

Figure 6.3 The multiple interactions between two services. From Service C’s perspective 2 original
interactions: OpC1—OpB1 and OpC2—OpB3. From Service B’s perspective 3 original interactions:
OpB1—OpC1 and OpB2—OpC1 and OpB3—OpC2

Once an original interaction is found (non-duplicate), the CLM lists the following data in

the sub-collaboration graph: the interacting partner’s name, its interaction type, and the name

of the owner service’s operation. For each separate interaction, a unique path ID is assigned.

Op B1

Op B2

Op B3

Op C1

Op C2

Service B Service C

Op B1

Op B2

Op B3

Op B1

Op B2

Op B3

Op C1

Op C2

Service B Service C

 142

The path ID is later used to figure out which services are consecutively connected to each

other in the sub-collaboration graph.

Once the interaction partners are identified, the CLM repeats the above steps recursively

for each interaction partner: the CLM searches for the roleType elements that the interaction

partner is assigned to, processes the interaction elements pertaining to these roleTypes, and

finds the interaction partners of the interaction partner. This recursive process continues until

it reaches the evaluation radius of the owner service, or until it finds a service that does not

have any interaction elements.

During the recursive execution, there are a few differences. First, the path ID generated

by the owner service is passed onto the interaction partner and later to its own partners. Thus,

the services that are on the same path are identified. Second, if the interaction partner has

multiple interactions with another service (let’s call it the third service for brevity), only one

of these interactions is listed in the sub-collaboration graph, even when the interactions are

different (Figure 6.4). As explained above, two interactions between two services can differ

when either the data exchange or the set of service operations is different from each other.

However, representing these interactions multiple times in the sub-collaboration graph does

not help the owner of the sub-collaboration graph. From the owner’s perspective, it has an

indirect interaction with the third service through its interaction partner. The owner service

has no control or knowledge over the domains of neither its interacting partners nor the third

service. Thus, the owner service cannot possibly distinguish these multiple interactions,

which are going on between the interacting partner and the third service. Thus, from the

owner service’s perspective, the multiple interactions are indistinguishable in the security

threat they pose against the owner service. This is the reason why the sub-collaboration graph

 143

includes only one of these interactions. Of course, programmatically, we can easily list the

multiple interactions; however, we are not convinced if this significantly boosts the owner

service’s security evaluations.

Figure 6.4 Multiple interactions. From Service C’s perspective, it has two interactions with Service B;
Service B has a single interaction with Service A. Service C is not aware of the details of the interaction
between Service A and Service B such as the operation names.

In order to complete the sub-collaboration graph, the above process is repeated in both

directions separately, upstream and downstream. The CLM generates multiple sub-

Op B1

Op B2

Op B3

Op C1

Op C2

Service B Service C

Op A1

Op A2

Op A3

Service A

Interactions from Service C’s perspective

Op B1

Op B2

Op B3

Op C1

Op C2

Service B Service C

Op A1

Op A2

Op A3

Service A

Interactions as listed in the choreography document

Op B1

Op B2

Op B3

Op C1

Op C2

Service B Service C

Op A1

Op A2

Op A3

Service A

Interactions from Service C’s perspective

Op B1

Op B2

Op B3

Op B1

Op B2

Op B3

Op C1

Op C2

Service B Service C

Op A1

Op A2

Op A3

Op A1

Op A2

Op A3

Service A

Interactions from Service C’s perspective

Op B1

Op B2

Op B3

Op C1

Op C2

Service B Service C

Op A1

Op A2

Op A3

Service A

Interactions as listed in the choreography document

Op B1

Op B2

Op B3

Op C1

Op C2

Service B Service C

Op A1

Op A2

Op A3

Service A

Op B1

Op B2

Op B3

Op B1

Op B2

Op B3

Op C1

Op C2

Service B Service C

Op A1

Op A2

Op A3

Op A1

Op A2

Op A3

Service A

Interactions as listed in the choreography document

 144

collaboration graphs if the owner service plays multiple roles in the collaboration. Each sub-

collaboration graph shows all the services that are within the owner service’s evaluation

radius and interacts with the owner service. Each sub-collaboration graph is assigned a

unique identification number. The resulting sub-collaboration graphs are sent to the owner

service (discussed in Section 6.5, message#4).

6.2 The Authorization Management Module

The Authorization Management Module (AMM) has two main responsibilities: collecting

services’ decisions over the collaboration proposal and determining whether the collaboration

is feasible under these decisions.

Each service that is proposed to join the collaboration must evaluate its security policies

and respond back to the AMM with its policy decision. The decision could either be permit

or deny. The deny decision indicates that, for security reasons, the service refuses to join the

collaboration. The permit decision comes in two flavors: either with policy obligations, or

without any obligations. The AMM is responsible for ensuring that all services have turned

in their policy decisions before it starts analyzing the decisions. If one of the policy decisions

does not arrive before the designated time-out (10 seconds in current implementation), the

AMM considers the missing decision as deny.

If a policy decision is deny, the AMM determines that the current collaboration is

infeasible as it is. The AMM records the deny decision and the sender service’s name.

Although it is beyond the scope of our current work, it is possible that the AMM would make

some adjustments to the current collaboration in order to redeem it to a feasible status, such

as replacing the refusing service with another one, or replacing another service that fails to

meet the sender service’s access requirements.

 145

If a policy decision is permit with no obligations, the AMM simply records the message

and the service name, and continues with the remaining policy decisions. If the message is

permit with policy obligations, the AMM starts evaluating the feasibility of the carried

obligations.

A policy obligation states that only when the obligation is satisfied, the promised permit

decision is granted. In our framework, a policy obligation indicates that the delegation of

credentials between two services is necessary. (See Chapter 4.)

A policy obligation is only satisfied when the delegator agrees to delegate its credentials

to the delegatee through the designated intermediate services. Otherwise, the obligation fails

and the requested service revokes its permit-with-obligation decision, leading to the failure of

the current collaboration.

For each policy decision with obligations, the AMM extracts the set of obligations. A

policy decision can have multiple obligations. Each obligation belongs to a specific sub-

collaboration and a path within that sub-collaboration (indicated by sub-collaboration ID and

the path IDs). (Recall that each sub-collaboration graph is generated for a specific role.)

When multiple obligations are present, each of the obligations must be satisfied. If there are

multiple obligations that have the same path ID and the same sub-collaboration ID, they are

considered to be alternatives of each other; it is sufficient to satisfy only one of them. In other

words, for each path of a sub-collaboration graph, there must be at least one feasible

obligation.

Recall that each policy obligation can have multiple elements, where each element

identifies a potential delegator and the acceptable re-delegation distance for that delegator.

When there are multiple elements, hence multiple delegators, in an obligation, all of the

 146

delegators must be willing to delegate their credentials. If even one of the delegators refuses

to delegate its credentials, the obligation fails.

The AMM is responsible for notifying the delegators about the delegation and collecting

their responses. To accomplish this, the AMM fetches a delegator from the obligation. The

AMM retrieves the sub-collaboration graph that belongs to the owner of this policy

obligation, i.e. the service who sent the policy decision and the obligation. By consulting the

sub-collaboration graph, the AMM identifies the delegator. Moreover, by using the specific

path ID and the allowed re-delegation distance, the AMM identifies the intermediate services

that must also partake in the delegation, as well as the delegatee. The AMM sends messages

to the delegator, the intermediate peers and the delegatee in order to inform them about the

delegation. The message contents are discussed in Section 6.5.

 For each delegator within the obligation, the AMM repeats the above steps. Once all

parties are informed, the AMM starts waiting for the responses. (The message exchanges

between the delegator, the intermediate parties and the delegatee is explained in Section 6.5.)

Each delegator must return a reply stating whether or not it would like to delegate its

credentials. This reply is either permit or deny, and it cannot have any further obligations.

The AMM waits until all delegators return a response. Even when a single delegator refuses

the delegation, the obligation is concluded as infeasible.

As we stated earlier, each policy decision can carry multiple obligations. The AMM is

responsible for assessing each obligation. In order to call a policy decision as satisfiable, at

least a single obligation for each path ID must be feasible. Upon assessing the obligations,

the AMM determines whether or not the policy decision is satisfiable.

 147

Once all policy decisions are examined in the above manner described, the AMM

determines whether the collaboration is ready for execution stage as it is. To start the

execution stage, all the services that play a role in the collaboration must return a permit

decision. If the permit decision is accompanied with the obligations, the obligations must

found to be feasible.

6.3 The Policy Enforcement Point

Each service that plays a role in the collaboration must have the Policy Enforcement

Point and the Policy Decision Point modules installed. The Policy Enforcement Point (PEP)

functions as a gatekeeper for security evaluations. The PEP exchanges messages with with

other service’s PEPs, the CLM, the AMM, and its accompanying PDP module. The PEP’s

main objective is to protect its own domain and to evaluate the security threats associated

with joining the collaboration. To accomplish its objective, the PEP performs several duties:

(1) informing the CLM about the scope of the security evaluations required by, (2) collecting

access requests from other services and consolidating them into collaboration requests, (3)

having the PDP evaluate the collaboration request, (4) preparing the policy decision and the

policy obligations, and (5) sending access requests to other PEPs when the mutual evaluation

is needed.

Several of the above duties have already been discussed in different parts of this thesis. A

detailed discussion of (2), (3) and (4) is presented in Chapter 2. The duty listed in (5) is not

discussed in this section because it is related to the discussion of message contents and

interaction patterns; it can be found in Section 6.5. As a result, in this section, we solely

focus on the duty listed in (1). In order to get a holistic view of the PEP, and how the above

 148

duties are performed in an order, the reader can refer to Section 6.5 that presents all

operations performed by the PEP, without discussing their inner mechanics.

6.3.1 The Scope of a Collaboration Policy: The Calculation of Evaluation Radiuses

The service protected by the PEP must have a collaboration policy. Each collaboration

policy has a scope that must be calculated by the PEP. The interaction types that must be

evaluated by a collaboration policy constitute the scope of the collaboration policy. Recall

that each rule of the collaboration policy targets a different interaction type. The

accumulation of all target interactions within a policy constitutes the scope of the policy. For

example, the scope of a collaboration policy that only has rules targeting direct interactions is

the direct interactions. Another policy having rules that targets the direct interactions and the

indirect interactions within a 3-hop radius has a scope of direct and indirect interactions

within a distance of 3 hops.

In order to determine the scope of a policy, the PEP must identify which interaction types

are required by each rule. In addition, an aggregate target must be calculated for the entire

policy such that it includes all of the rule targets. Such an aggregate target must be conveyed

to the CLM in order for the CLM to identify the other services that possess the indicated

interaction types. Consequently, the CLM would generate the corresponding sub-

collaboration graphs for the service protected by this PEP.

We call such an aggregate target the “evaluation radius” of a collaboration policy. The

evaluation radius points to the peer services that must be evaluated by the policy. An

evaluation radius shows which interaction types, thus which collaborative peers

corresponding to these interactions, must be evaluated. An evaluation radius is either

represented by a keyword or an integer value. When it is a keyword, it is one of the direct or

 149

all keywords; the former shows that only the peers with a direct interaction is needed for the

evaluation, while the latter shows that all the peers that have an indirect or direct interaction

must be evaluated. When it is specified as an integer, it shows the maximum number of hops

allowed between a collaborative peer and the service protected by the PEP in a specific

direction. Any peer located beyond this distance is not required for any security evaluations.

The PEP generates a separate evaluation radius for each direction, upstream and downstream.

The radiuses in two directions can have different values.

For each direction, the PEP consults the collaboration policy and collects all the required

interaction types in that direction. To achieve this, for a specified direction, the PEP collects

the Target elements of each rule such that the rule’s target interaction must be in the same

direction as the specified direction.

Recall that the Target element of a collaboration rule has the PeerLocation element

embedded inside, and the PeerLocation element has a direction:interaction pair. The

interaction can be a keyword, such as direct, indirect, EndRequestor, all, or it could be an

integer showing the maximum number of hops between a requestor and the service. The

integer form is most frequently used by the type DU or DD rules in order to limit their

delegation distances. In our prototype, the target interactions of the DU or DD rules are limited

with respect to their specified delegation distances regardless of their Target elements. For

example, if the delegation distance is set to 3, no matter what the rule’s Target element

conveys, the target interactions for this rule are the direct interaction and the indirect

interactions within a 3-hop radius.

Once the PEP collects all the required interaction types, it calculates the evaluation radius

for the entire policy. The rules’ target interactions are combined in an accumulative manner;

 150

the result of the combination covers the target interactions of all the rules. When the target

interactions are represented as integers, the largest integer becomes the evaluation radius.

When the target interactions are represented as keywords, an indirect target is assumed larger

than a direct target, and an indirect target is assumed equal to an all target. For example,

combination of a direct interaction target with an indirect interaction target points to all

interactions. Finally, when a target interaction represented with a keyword is combined with

another target interaction represented with an integer, the result is calculated as follows: if

the first keyword is all or indirect, it is returned as the evaluation radius, if the keyword is

direct, its value is substituted with the value of 1, and the largest integer of the two is

returned as the evaluation radius.

It is possible that a policy’s evaluation radius can quickly run up to large distances, or

result in evaluation of all the collaborative peers. To be able to limit the evaluation radius, we

use the MaximumEvaluationRadius element. When the MaximumEvaluationRadius element

is left unspecified, it is treated as infinity; the evaluation radius calculated from the policy is

used with no adjustment. However, when it is specified as an integer, it is compared against

the evaluation radius calculated from the policy. The smaller of the two is chosen as the final

evaluation radius.

For example, if the calculated radius indicates the evaluation of all interaction types (i.e.

direct and indirect interactions together), and if the MaximumEvaluationRadius is set to an

integer, say 5, then the evaluation radius is adjusted to 5. Only the collaborative peers within

a distance of 5 hops are required to be evaluated by the policy. The

MaximumEvaluationRadius is directionless, meaning that the same value is used for limiting

the evaluation radiuses in both directions.

 151

6.4 Policy Decision Point

The Policy Decision Point (PDP) has a single responsibility: evaluating the collaboration

requests. The PDP is not exposed to the external world and can only be contacted by the

PEP. The PDP module is not built as a standalone web service; it is built as a software

module that can only accept connections from the PEP. The PDP receives the collaboration

request from the PEP and returns the policy decision back to the PEP. For a detailed

discussion of PDP, we refer the reader to Chapter 5.

6.5 The Interaction Patterns Among the Modules

Our framework regulates the interactions that can occur among the modules; it specifies

the content and the order of the exchanged messages. Our framework is composed of two

separate rounds of interactions among the modules. Each round has a different message

collection and a different message order. On an abstract level, each round has a different goal

to achieve, and once completed, gives us a chance to review and recover from unexpected

failures. Thus, the separate rounds allow us to capture and process the state information of

the collaboration, and to determine the course of upcoming interactions. Even though our

approach introduces two more layers of abstraction, it helps us design the framework in an

efficient and error-free way.

 152

6.5.1 Round-One

Figure 6.5 Round One of our framework.

The first round of interactions (Figure 6.5) informs the collaborative peers (the services)

about the collaboration proposal, and collects their decisions on the proposal. At the end of

this round, each collaborative peer sends the result of its security evaluation to the AMM.

The AMM, then, initiates the second round of interactions (if necessary).

The first round of interactions is initiated when the collaboration management engine

invokes the CLM with a choreography document and the list of services that are tentatively

assigned to each roleTypes elements. The choreography document specifies the roles that are

played in the collaboration, the ordered interactions between the roles, the services assigned

to the roles and so on.

Requesting Service 2
PEP

Requesting Service 1
PEP

msg#3

msg#3

msg#5

msg#5

AMM

Authorizing
Service PEP

msg#1 CLM

msg#2

msg#4

msg#6
Requesting Service 2

PEP
Requesting Service 1

PEP
Requesting Service 2

PEP
Requesting Service 1

PEP

msg#3

msg#3

msg#5

msg#5

AMM

Authorizing
Service PEP

msg#1 CLM

msg#2

msg#4

msg#6

 153

By consulting the choreography document, the CLM identifies the services that are

assigned to a role. For each service, the CLM contacts the service’s PEP and sends a

collaboration proposal message (message#1). This message has the name of the

collaboration, the requested service’s name and the URL of the AMM. The URL of the

AMM is passed explicitly so that the service’s PEP can return its policy decision directly to

the AMM, which collects the results from all the PEPs and determines the course of

upcoming interactions. The service name indicates the URL of the service that is tentatively

assigned to a role. It is a tentative assignment because the service has not yet confirmed that

it will play the role. In case, a service’s PEP manages access to multiple separate services

(the PEP’s security domain owns multiple services), the name of the requested service would

allow the PEP to distinguish among the services. The final piece of information is the name

of the proposed collaboration. The collaboration name is used for keeping track of the

messages exchanged for a specific collaboration. In case the PEP receives multiple

collaboration proposals for the same service, or if it receives multiple separate collaboration

proposals from the same CLM, the collaboration name serves as an identifier.

For the rest of this chapter, we call a service that desires to evaluate other services an

authorizing peer, whereas we call the services that are being evaluated the requesting peers.

Thus, each PEP that receives the message#1 plays the role of an authorizing peer. We later

show how an authorizing peer interacts with the requesting peers, as well as how an

authorizing peer plays the role of a requesting peer to other authorizing peers.

Upon receiving message#1, each PEP fetches the collaboration policy that manages

access to the requested service. By consulting the policy, each authorizing peer’s PEP

generates two evaluation radiuses, one in each direction. (Refer to Section 6.3.1 for more

 154

detail in evaluation radiuses.) Upon calculating the evaluation radius, each authorizing peer’s

PEP creates a message (message#2) that consists of the evaluation radius, the collaboration

name, and the requested service name. This message is sent back to the CLM.

For each message (message#2) received, the CLM marks the sender as an authorizing

peer. Moreover, from each message, the CLM extracts the evaluation radiuses, consults the

collaboration choreography, and identifies the peers that possess the requested interaction

types. Each identified peer would play the role of a requesting peer to the marked authorizing

peer. The CLM creates a sub-collaboration graph for each authorizing peer. In case the

authorizing peer plays multiple roles in the collaboration, a separate sub-collaboration graph

with a unique ID is created for each role. Since each role has a different set of behaviors,

hence different interactions, it is likely that the sub-collaboration graphs generated per role

differ from each other.

In order to notify the requesting peers, the CLM sends a message (message#3) to each of

them. This message conveys the name of the collaboration, the URL of the authorizing peer’s

PEP, the name of the authorizing peer (i.e. the service URL), the name of the requesting peer

(i.e. the service URL), and the sub-collaboration ID. It is possible that a requesting peer can

appear in two different sub-collaboration graphs. This means that the authorizing peer

interacts with the same collaborative peer while playing two different roles.

Iteratively, for each authorizing peer, the CLM repeats the above steps: identifies all the

requesting peers and notifies them via separate messages. The CLM also informs each

authorizing peer about the list of requesting peers (message#4). The CLM prepares a sub-

collaboration graph for each authorizing service. Based on this graph, the CLM prepares the

message#4 that consists of: the collaboration name, the name of the authorizing peer, the

 155

names of the requesting peers, their interaction types and their sub-collaboration IDs. For

each separate sub-collaboration graph, the message#4 repeats the names of the requesting

peers, their interaction types and their sub-collaboration IDs. As a result, each authorizing

peer knows how many requesting peers they have and what type of interaction each of them

possesses. This information is recorded by the authorizing peers and by the CLM, and it is

later used for verification.

Once an authorizing peer receives message#4 from the CLM, it starts waiting for the

access requests from each of its requesting peers. Since the CLM first sends the message#3 to

the requesting peers, and then sends the message#4 to an authorizing peer, it is possible that

some requesting peers might already send their access requests to the authorizing peer even

before the message#4 reaches the authorizing peer. In that case, the authorizing peer’s PEP

simply stores the received access requests and later compares them against the message#4 to

identify which collaboration and sub-collaboration they belong to.

All of the requesting peers must send their access requests (message#5) to the authorizing

peer’s PEP. An access request includes the requesting peer’s credentials, the collaboration

name, the sub-collaboration ID, name of the requesting peer, and the name of the authorizing

peer.

If a requesting peer fails to send its access request to the authorizing peer, the authorizing

peer waits until the time-out expires (10 seconds in our implementation). The authorizing

peer’s PEP creates an empty access request for each missing request.

If the information conveyed in an access request cannot be validated against the

information sent by the CLM (message#4), the access request is considered invalid and it is

treated as a missing access request.

 156

The CLM repeats the above steps for all of the authorizing peers: notifies the

corresponding requesting peers and sends the sub-collaboration graphs. Since each peer that

is assigned to a role is treated as an authorizing peer, every peer plays the role of an

authorizing peer and the requesting peer sometime during round one. It is likely that a peer

may play both roles simultaneously. While waiting for messages from its requesting peers,

the authorizing peer may also receive a notification from the CLM to send its access request

to another authorizing peer.

Once an authorizing peer receives all of the access requests from its requesting peers, it

starts evaluating these. (Refer to Chapter 5 for the evaluation of requests.) The resulting

policy decision is returned to the AMM (message#6). The message#6 contains the

collaboration name, the name of the authorizing peer, the sub-collaboration IDs and the

policy decisions associated with each sub-collaboration ID. The policy decision is

represented either as permit or deny. If the policy decision has any obligations, the

obligations are immediately listed after the policy decision.

The AMM is responsible for collecting policy decisions from each authorizing peer.

Once the policy decisions are collected, the first round of the interactions is concluded.

 157

6.5.2 Round-Two

Figure 6.6 Round Two of our framework.

The second round of the interactions (Figure 6.6) aims to determine whether the

collaboration is feasible from the security standpoint. The peers’ decisions on joining the

collaboration and their obligations to do so are evaluated in this round. The outcome of this

round must be a conclusion over whether the choreographed collaboration is feasible for

execution or not. When an overall agreement among the peers cannot be reached, the

outcome of this round becomes negative, which signals to the collaboration management

engine that the existing collaboration cannot be performed as it is. Even though it is beyond

the scope of our work, succeeding this round, the necessary adjustments, such as replacing

some services assigned to the roles, must be made by AMM in order to create a feasible and

an overall-agreeable collaboration. Our work in this round is circumscribed to analyzing the

Delegator Service
PEP

msg#8

msg#9

AMM

msg#9

msg#7

msg#7

msg#10

Intermediate Service 2
PEP

Intermediate Service 1
PEP

Delegatee Service
PEP

msg#9

msg#7

Delegator Service
PEP

msg#8

msg#9

AMM

msg#9

msg#7

msg#7

msg#10

Intermediate Service 2
PEP

Intermediate Service 1
PEP

Intermediate Service 2
PEP

Intermediate Service 1
PEP

Delegatee Service
PEP

msg#9

msg#7

 158

peers’ policy decision and measuring the feasibility of their obligations to join the

collaboration.

The second round of the interactions is started by the AMM when each peer’s policy

decision (message#6) is collected. For each received message, AMM checks the policy

decision, and if present, the policy obligations. For messages with deny policy decisions, the

AMM takes no action. It simply records the result for future adjustments. For messages with

permit decision, if there are no obligations present, the AMM takes no action and the

message is stored away.

For the messages with a permit decision along with policy obligations, the AMM has to

examine the feasibility of the obligations. For each obligation, the AMM takes the following

actions. The AMM identifies the delegator, delegatee and intermediate peers. In order to

notify the delegatee and the intermediate peers about the delegation, the AMM creates a

message for each of them (message#7): the name of the collaboration, the URL of the

delegator’s PEP, the name of the delegatee or the intermediate peer (whichever one suits the

specific message), and the name of the delegator. The collaboration name once again serves

as an identifier. The location of the delegator’s PEP is necessary because the delegatee and

the intermediate peers must send their delegation requests to the delegator’s PEP. The name

of the delegatee/intermediate peer indicates the service that receives/relays the delegated

credentials at execution time. The name of the delegator indicates the service that owns the

credentials that are to be delegated.

The AMM sends a different message to the delegator’s PEP (message#8). This message

conveys the collaboration name, the name of the delegator (in case the PEP manages multiple

services), the name of the delegatee and the intermediate peers, and their interaction types

 159

with the delegator. This message, similar to the message#4 in the first round, is recorded by

the delegator’s PEP to validate the delegation requests that would be coming from the

delegatee and the intermediate peers.

Each intermediate peer and the delegatee prepare delegation requests (message#9) to be

sent to the delegator’s PEP. The message#9 includes the collaboration name, the credentials

of the delegatee/the intermediate peer, the name of the delegatee/the intermediate peer, and

name of the delegator. These requests are evaluated by the delegator to determine whether or

not to delegate the requested credentials.

The delegator’s PEP waits until all the delegation requests are received. The delegator’s

PEP handles the missing or late requests in the same manner as in round one. Once all the

requests are collected, the evaluation starts. The policy decision over the delegation is stated

either as a permit or as a deny. We do not allow for defining obligations over a delegation

decision, since it drastically increases the complexity involved. The delegation decision from

the delegator’s PEP to the AMM (message#10) contains the collaboration name, the

delegator service’s name, and the delegation decision.

For each obligation contained within a policy decision, the AMM repeats the above steps

iteratively. When at least an obligation is found to be satisfiable for each path ID, the policy

decision is determined to be feasible. The AMM continues with checking for the remaining

policy decisions and their accompanying obligations until all policy decisions are exhausted.

Once each policy decision and its obligations have been checked, the AMM determines

the final result of the collaboration. The result in terms of a success or a failure is sent back to

the collaboration management engine. When all policy decisions are permits and the

 160

obligations are satiable, the collaboration is marked as a success. This final message

concludes the second round of the interactions.

6.6 The Security Analysis of Our Framework

We discuss the security of our framework in two different aspects. First, we examine the

message-level security, and discuss whether the messaging infrastructure introduces

additional threats. Second, we analyze the framework under two different threat scenarios: a

malicious peer service, and a malicious collaboration owner. In each scenario, we discuss if

the malicious entities can introduce additional threats to the other peers in the collaboration.

The messages between the architectural modules can reveal information about the

collaboration graph and policy decisions of the collaborative peers. By eavesdropping on

these messages, a malicious party can learn about the collaboration, and the relationships

between the peer services. For example, in round two of our framework, the AMM checks a

delegator service’s willingness to delegate its credentials to a delegatee service. A third party

eavesdropping to the messages can determine the trust relationship between the delegator and

the delegatee. In order to prevent such security threats, we employ message-level security.

Each message exchanged between the modules must be encrypted by the recipient peer’s

public key. Our prototype does not implement the message-level security; however, we leave

it as our future work. In the current implementation, we used X.509 credentials for the

collaborative peers. Therefore, adding encryption to a message by the recipient peer’s public

key is not a big challenge for us. However, our framework is not only tied down to X.509

credentials; SAML attributes, Kerberos tickets or any other attribute certificates can be

employed. In such cases, we must ensure that each peer learns each other’s public key before

the peer-peer evaluations start.

 161

Furthermore, our framework must provide means for enforcing non-repudiation. A

message sent by a peer service must be traced back to the sender of the message

undoubtedly. For example, a service who accepted to join the collaboration at planning time,

but refuses participation at run time, can be held responsible for its decision, if our

framework has the means to prove that the service initially agreed to the collaboration. Such

a mechanism helps preventing disputes that can occur at run time. To achieve this, we must

incorporate signatures into the message-level security. Each peer must sign its messages with

its private key before sending the message. Our prototype does not support this feature yet;

we leave it as our future work.

Our framework must be robust enough to mitigate security threats that are introduced by

malicious parties. We have two distinct scenarios: a malicious peer service and a malicious

collaboration owner. In the first scenario, we discuss whether having a malicious peer in the

collaboration would introduce additional security threats. Since we plan to incorporate

encryption and signature techniques at the message level, the malicious peer cannot forge or

corrupt other services’ messages. Another security threat is whether a malicious party can

learn about the other peer’s collaboration policies by examining the collaboration context and

the peer’s decision to join the collaboration. Even though the messages are encrypted, a

malicious peer can compare the sub-collaboration graphs that it received from the CLM. This

threat becomes more pronounced when AMM tries to redeem an infeasible collaboration.

The AMM replaces some peers, creates new sub-collaboration graphs and informs the

affected peers about the changes. A malicious peer can detect the replaced peers in its own

sub-collaboration graph. It is crucial that each service’s policies are confidential and are not

revealed to any other parties. We plan to examine the severity of this threat as our future

 162

work; however, our initial take is that it is an unlikely threat. First, if the malicious peer’s

sub-collaboration graph is not affected by the changes, it would not receive any information

about the replaced services. Second, even when the malicious peer is informed about the

changes, it may take a high number of changes for the malicious peer to detect the

relationships between other services. For example, consider a sub-collaboration graph

consisting of ten peers, and a peer service refuses access; therefore, this service is replaced

by another service. This replacement may be because either the replaced peer did not allow

access to the peers in this specific sub-collaboration graph, or it did not allow access to

another peer, which is included in the replaced peer’s sub-collaboration graph, but not in the

sub-collaboration graph of malicious peer. Furthermore, even within the malicious peer’s

sub-collaboration graph, the malicious peer cannot know which other peers are found

untrustworthy by the replaced peer. It is equally likely that any of the ten peers may have

failed the replaced peer’s collaboration policy.

In above example, we assume the peer who refuses access declines the collaboration.

However, this is a quite straightforward approach. We plan to incorporate more sophisticated

methods for redeeming an infeasible collaboration graph. For example, instead of replacing

the peer who refuses, we might replace the peer who fails to meet the access requirements of

the authorizing peer. This would require some sort of feedback between the AMM and

authorizing services; however, the complexity may pay off when we want to keep a specific

service in the collaboration, which accomplishes a sensitive role in the collaboration graph.

In the second threat scenario, we assume a malicious collaboration owner. We are

curious to examine whether the malicious owner can gain knowledge of trust relationships

between the peer services. We regard this as an unlikely security threat because the owner is

 163

not informed about the collaboration graph until the collaboration is deemed feasible and

starts execution. In other words, the end user is not informed about the collaboration graph

until a feasible graph is found. At the beginning of the planning stage, the owner describes its

requirements from the collaboration to the planning engine. The services are selected

according to these requirements; however, the end user is only informed when a feasible

graph is found. In a slightly modified threat scenario, the owner may have its own service

that partakes in the collaboration graph. The owner’s service is informed about its sub-

collaboration graph. In this case, the threat scenario becomes identical to that of a malicious

peer service since we treat all collaborative services equally. Another security threat due to

the collaboration owner is that by owning multiple distinct collaborations, the owner may

gain knowledge of the peer services’ collaboration policies. This threat is not really effective

unless the owner has his own service partaking in the collaboration. As we discussed above,

for each collaboration, the owner is only informed about the feasible collaboration. Even

when we assume that the owner’s service partakes in the collaboration, this is still an unlikely

threat. First of all, the planning engine may select completely different services for different

collaborations. Therefore, the owner’s sub-collaboration graph includes different peers each

time. It may take a significantly high number of different collaborations to deduce any

knowledge from the graphs. We leave this aspect as our future work.

 164

Chapter 7:
Deployment and Measurements

In order to observe our prototype in an active computing environment, we deployed it

using the Virtual Computing Laboratory (VCL) of NCSU. We tested our prototype with

various choreographies and collaboration policies. In this chapter, we first explain the

deployment process and how we collected our performance data. Later, we present the results

and discuss them.

7.1 Deployment

The VCL uses image files in order to serve applications to end users. A user selects an

image file that contains some applications, and the image is loaded to an available machine in

the computing farm. The end user does not know the hardware features of the machine that

he image is loaded onto. In order to deploy our prototype into the VCL test bed, we first

reserved a base Windows XP machine, and built our prototype from scratch: we copied our

source code, the Tomcat and the Axis engines, modified SunXACML libraries and so on, and

compiled the system. Once we ensured that the services are performing correctly, we created

an image file. This image file later deployed over the VCL machines we would use. Since we

do not know the hardware specifics of the machines that our image has been loaded onto, we

do not discuss it. Any available machine in the computing farm could have been selected.

Due to the high-demand for the VCL resources, we tested our prototype over a small

group of machines: 7 machines. One of the machines was deployed with both the

Choreography Locator Module (CLM) and Authorization Management Module (AMM).

This machine functioned as both the CLM and the AMM. The remaining machines were

 165

setup as peer services that were invited to the collaboration. Each service had the Policy

Enforcement Point (PEP) and the Policy Decision Point (PDP) installed.

The PEP, CLM and AMM modules were exposed as web services. All services were

deployed into a Tomcat server (5.0.28). They performed the SOAP protocol via Axis engine

deployed in the Tomcat server.

Once we reserved a computing node in VCL, we were informed of the IP address of the

machine. Before we started a collaboration, we manually input the IP addresses of the peer

services into the choreography document so that the CLM and AMM modules would contact

the peer services. Once we completed a test run, we logged onto each machine and collected

the performance measurements. We used the Remote Desktop Protocol in order to connect to

a service node.

7.2 Performance Measurements

We measured the wall-clock time spent executing our framework. We used Java’s

System.TimeMilliSeconds() method. For CLM and AMM modules, we measured the

difference between the time the CLM starts parsing a choreography document and the time

the AMM sends its feedback to the collaboration owner about the feasibility of the

collaboration. For a service node, we measured the difference between the time it received a

collaboration request from the CLM and the time it sent a policy response to the AMM. If a

service node participates in the second-round of framework as a delegator (this happens

when another peer service requests the delegation of credentials), we measured the difference

between the time the service received the delegation request from the AMM and the time it

sent its response back to the AMM. For a peer service that participates in the second round of

 166

our framework as a delegatee, we measured the difference between the time the delegatee

service received a notification from the AMM and the time it sent its request to the delegator.

In order to ensure that each node has enough time to receive messages from their peers,

we imposed a waiting period of 10 seconds. Each node waits for 10 seconds from the time it

receives the sub-collaboration graph from the CLM to the time it starts the policy evaluation.

This was done to ensure that each node receives all the credentials from its peers.

Furthermore, we thought that in a network environment where nodes are not uniformly

distanced from each other, each service might start policy evaluation at different times.

Therefore, their execution times may be different. To prevent this, we assigned a large

enough waiting period so that each node started processing close to the same time. Since we

focus on measuring the policy processing time, we did not want our results be affected by

network delays. We used another 10-second waiting period when a delegator peer receives a

delegation request from the AMM. The delegator peer waits for 10 seconds before it starts

evaluating the delegation request. In the meantime, the delegatee and intermediate peers must

send their credentials to the delegator. Due to these waits, our total execution times are

around 10-30 seconds. However, a very small fraction of these times are spent on actual

execution. When we present our data below, we subtract the waiting periods. For each

service, we present only the time that is spent for processing. For the CLM+AMM node,

however, we present the entire execution including the waiting periods. We later show for

each test case how much of the total execution time is spent on actual processing vs. waiting.

We tested our prototype with various collaboration choreographies. We started with the

simplest choreography and gradually increased the complexity. For a fixed choreography, we

changed the collaboration policies as well. Each service is assigned the same collaboration

 167

policy. Since the services’ interactions are different, their policy decisions are different. The

MaximumEvaluationRadius element of a collaboration policy limits the number of

interactions that must be evaluated by the policy. This element shows the maximum number

of edges between an authorizing peer and a requesting peer allowable. The requesting peers

that are beyond this value are not evaluated by the collaboration policy even when their

interaction types match the policy. For each test run, we set this value to a different number,

such as 1, 2, or 3. We simply call this value the radius for the remainder of this chapter.

During a test case, for each radius value, the measurements are repeated five times. We

did not use the data from the first measurement because it was affected by the startup cost of

Java compiler. We present the average of the 4 measurements in each test case. Although we

present the average values in the following section, we observed that the standard deviation

was typically around 10% to 15% of the average values. The highest standard deviation was

26% of the average value. All measurements are in milliseconds.

Our test cases are geared towards understanding the differences in executing different

rule types. Due to the small cluster on which we can run our tests, we obtain fairly small data

sets. This restricted us from trying our prototype with larger collaboration with complex

choreographies. Moreover, the randomness of the hardware that runs our tests made it

difficult for us to interpret our results. Hence, our results are an introductory analysis of our

prototype; we will not claim to build a formal analysis based on these results. Rather, we use

the current results to gain an insight towards where our future work must be focused.

Below we first introduce the collaboration policies we used. Later, we introduce each

choreography graph, and present the data collected over a collaboration graph with varying

collaboration policies.

 168

7.2.1 Collaboration Policy 1 (L Policy)

Collaboration Policy 1 consists of only Local type rules. It has two rules, combined with

a logical AND. Both rules target any of the interaction types that are present in the

collaboration. In other words, the rules have a target of any:any. To limit the number of peers

that match one of the rules, we use the MaximumEvaluationRadius element. Therefore, when

the radius is set to 1, a rule matches only direct-upstream and direct-downstream interaction

types. When the radius is 2, a rule matches indirect-upstream, indirect-downstream

interactions types that are 2-edges away, in addition to the direct-upstream, direct-

downstream interactions. For the remainder of this chapter, we refer to Collaboration Policy

1 as L Policy.

7.2.2 Collaboration Policy 2 (U Policy)

Collaboration Policy 2 consists of only Underlying type rules. It has two rules combined

with a Logical AND. Both rules targeted any of the interaction types present in the

collaboration, via the keyword any:any. The evaluation of an Underlying rule requires

referring to the Underlying Policy, which is part of the Underlying security system for

standalone access requests. We specified the Underlying Policy as a separate XACML

policy. It only has a single rule. Each service node is provided with a copy of the Underlying

Policy in addition to its Collaboration Policy 2. We refer to Collaboration Policy 2 as U

Policy from now on.

7.2.3 Collaboration Policy 3 (L+U Policy)

Collaboration Policy 3 includes two rules: one is of type Local; the other one is of type

Underlying. The Local rule targets indirect-upstream and indirect-downstream interactions,

whereas the Underlying rule targets direct-upstream and direct-downstream interactions.

 169

Both rules are combined with a logical AND. We think Collaboration Policy 3 is a likely

choice for the policy writers. A policy writer may want to re-use existing access requirements

for a direct-interaction, whereas he may choose to use weaker or collaboration-tailored

access requirements for the indirect interaction types. The Underlying Policy remained the

same.

7.2.4 Collaboration Policy 4 (L+U+D Policy)

Figure 7. 1 Collaboration Policy 4.

Collaboration Policy 4 is the most complex of all policies. It contains 4 types of rules:

Local, Underlying, Delegation-upstream, and Delegation-downstream. The first rule is of

type Underlying, and it targets the direct-upstream interactions only. The second rule is of

Delegation-upstream and it targets all of the upstream interactions within the

DelegationDistance. The third rule is of Local type and it targets all of the interactions, via

any:any keyword. The fourth rule is of Delegation-downstream type and it targets all of the

downstream interactions within the Delegation Distance.

A peer with direct-upstream interaction must satisfy either the Underlying Rule or the

Delegation-upstream rule. Otherwise the peer fails the policy. The Delegation-upstream rule

allows the upstream-direct peer to use delegated credentials for access. Therefore, an

 170

upstream-direct peer must either be authorized against the Underlying Policy, or the peer

must receive delegated credentials from an indirect-upstream peer.

7.2.5 The Collaboration Graph 1: The Simplest Case

Figure 7.2 Collaboration Graph 1.

We used 6 nodes for our choreography: 5 peer services and a single CLM+AMM node.

Each service is connected to one another via a single interaction. The services are named by

their appearance order in the choreography, Service 1 through Service 5 (Figure 7.2). We test

Graph 1 with all four collaboration policies. The main purpose of our test runs in this section

(Cases 1 through 4) is to observe how different rule types affect a service’s execution time.

In the succeeding section, we change our collaboration graph so that we can observe the

affect of the collaboration graph over the execution times.

Case 1: Collaboration Policy 1 (L Policy)

We setup the rules and the peer’s credentials such that Service 2 and Service 4 fails the L

Policy, whereas, other services are authorized successfully. Although each service has the

 171

same collaboration policy, the result of each policy differs with respect to the specific

interactions that its service involves in. Table 7.1 shows the policy decisions for each service

along with the name of the peers that are evaluated.

Table 7. 1 Services’ policy decisions with L Policy over Graph 1.

 Service 1 Service 2 Service 3 Service 4 Service 5

Policy Decision

Radius = 1

Deny Permit Deny Permit Deny

Evaluated Peers 2 1, 3 2, 3 3, 5 4

Policy Decision

Radius = 2

Deny Deny Deny Deny Deny

Evaluated Peers 2, 3 1, 2, 3 1, 2, 4, 5 2, 3, 5 3, 4

Policy Decision

Radius = 3

Deny Deny Deny Deny Deny

Evaluated Peers 2, 3, 4 1, 3, 4, 5 1, 2, 4, 5 1, 2, 3, 5 2, 3, 4

In this test run, we aim to collect the execution time spent for L Policy. Since L Policy is

the simplest policy type we specified, we will use the results from this section later as a

reference point. Moreover, we aim to observe the affect of increasing radius over the

execution times.

Table 7.2 The service execution times with L Policy over Graph 1.

 Service 1 Service 2 Service 3 Service 4 Service 5 CLM+AMM

Radius 1 414 582 504.25 582.25 398.5 10992

Radius 2 656 812.5 840 781.25 629.25 11207

Radius 3 707 949.25 851.25 945.5 707 11316.25

 172

For each service, the time it takes to evaluate the policy and return a response to the CLM

increases with the radius. This is expected because the bigger radius means evaluating more

collaborative peers. For Service 3, the increase from radius 2 to 3 does not make a big

difference because the radius 2 already covers all the peers that are present in the

collaboration. When we compare the differences in performance, we notice that evaluating

more peers does not linearly increase the response time (Table 7.3). In order to understand

the effects of adding more peers, we will later test with different choreographies.

Table 7.3 The difference in execution times with changing radiuses. The first row shows the difference
between the radius of 1 and radius of 2; the second row shows the difference between the radius of 2 and
radius of 3. All results are in milliseconds.

Service 1 Service 2 Service 3 Service 4 Service 5

∆ Time ∆ Peers

242 +1

 51 +1

∆ Time ∆ Peers

230.5 +1

 136.75 +1

∆ Time ∆ Peers

335.75 +2

11.25 0

∆ Time ∆ Peers

199 +1

164.25 +1

∆ Time ∆ Peers

230.75 +1

77.75 +1

Case 2: Collaboration Policy 2 (U Policy)

In order to see whether the rule types affect the performance, we kept the same

choreography; however, we used U Policy this time. The service’s policy decisions and the

number of peers evaluated by each service are presented in Table 7.4. The execution times

are presented in Table 7.5.

 173

Table 7. 4 The policy decision for each service with U Policy over Graph 1.

 Service 1 Service 2 Service 3 Service 4 Service 5

Policy Decision

Radius = 1

Deny Permit Deny Permit Deny

Evaluated Peers 2 1, 3 2, 3 3, 5 4

Policy Decision

Radius = 2

Deny Deny Deny Deny Deny

Evaluated Peers 2, 3 1, 2, 3 1, 2, 4, 5 2, 3, 5 3, 4

Policy Decision

Radius = 3

Deny Deny Deny Deny Deny

Evaluated Peers 2, 3, 4 1, 3, 4, 5 1, 2, 4, 5 1, 2, 3, 5 2, 3, 4

Table 7.5 Service execution times for U Policy over Graph 1.

 Service 1 Service 2 Service 3 Service 4 Service 5 CLM+AMM

Radius 1 453.25 656.5 527.5 636.75 453 11000.75

Radius 2 597.5 874.75 831.75 773.75 617.5 11175.75

Radius 3 808.5 1000.25 957.5 945.5 828.25 11359.5

As with L Policy, the policy evaluation time increases with increasing radius (Table 7.5).

Moreover, the overhead of accessing Underlying Policy also shows up in the results. The

difference between the results of L Policy and the results of U Policy is calculated as follows:

for a fixed radius, the execution time of L Policy is subtracted from the execution time of U

Policy. This is repeated for each radius and for each service (Figure 7.3). The time

differences are sometimes negative, meaning that U Policy is evaluated faster than L Policy

 174

However, for the majority, the evaluation of U Policy takes longer than that of L Policy. This

overlaps with our expectations because Underlying type rules requires evaluation of the

Underlying Policy, causing an additional layer of policy evaluation. The anomaly observed in

radius 2 might be due to a change in the VCL, such as the nodes were only dedicated to run

our test scenario. As we discussed before, we do not know which machine our image is

loaded onto. Moreover, it may be a server that simulates multiple images concurrently.

Therefore, at a specific time, we might have gotten a machine solely dedicated to our image.

We also aim to understand how increasing the radius (i.e. increasing the number of peers

evaluated) affects the execution time. However, as shown in Table 7.6, we did not observe a

regular repeating pattern. We decide that the obtained results are not conclusive enough to

make a decision in this issue.

Table 7.6 The difference between the execution time for changing radiuses with U Policy. The first row
shows the difference between the radius of 1 and the radius of 2; the second row shows the difference
between the radius of 2 and radius of 3. All results are in milliseconds.

Service 1 Service 2 Service 3 Service 4 Service 5

∆ Time ∆ Peers

144.25 +1

 211 +1

∆ Time ∆ Peers

218.25 +1

 125.5 +1

∆ Time ∆ Peers

304.25 +2

125.75 0

∆ Time ∆ Peers

 137 +1

 171.75 +1

∆ Time ∆ Peers

 164.5 +1

 210.75 +1

 175

-80
-60
-40
-20

0
20
40
60
80

100
120
140

1 2 3 4 5

Services

Pr
oc

es
si

ng
 T

im
e

D
iff

er
en

ce
 (m

s)

Figure 7.3 The difference in execution times with respect to L Policy and U Policy. The services are listed
on the x-axis. Each service has a cluster of three bars. Each bar shows the difference in execution times
for a fixed radius: first bar is for the radius 1; second bar is for the radius 2 and so on. A bar shows the
difference that is calculated by subtracting the result of L Policy from the result of U Policy.

Case 3: L+U Policy

We tested the same choreography with L+U Policy. Our purpose is to see the affect of

combined L and U type rules over the execution time. The services’ policy decisions are

presented in Table 7.7. The execution times are presented in Table 7.8.

 176

Table 7. 7 The policy decision for each service with L+U Policy over Graph 1.

 Service 1 Service 2 Service 3 Service 4 Service 5

Policy Decision

Radius = 1

Deny Permit Deny Permit Deny

Evaluated Peers 2 1, 3 2, 3 3, 5 4

Policy Decision

Radius = 2

Deny Deny Deny Deny Deny

Evaluated Peers 2, 3 1, 2, 3 1, 2, 4, 5 2, 3, 5 3, 4

Policy Decision

Radius = 3

Deny Deny Deny Deny Deny

Evaluated Peers 2, 3, 4 1, 3, 4, 5 1, 2, 4, 5 1, 2, 3, 5 2, 3, 4

Table 7.8 Service execution times with L+U Policy over Graph 1.

 Service 1 Service 2 Service 3 Service 4 Service 5 CLM+AMM

Radius 1 425.75 617.25 542.75 632.75 452.75 10972.75

Radius 2 691.5 789 839.75 773.75 706.75 11179.5

Radius 3 761.5 972.25 867.25 945.5 769.25 11316.75

We compare the results that are obtained from L+U Policy with that of U Policy and of L

Policy. We set the results of L Policy as our reference point and subtract them from the

results of U Policy and L+U Policy separately. The Figure 7.4 shows the differences in

execution times for a fixed radius of 3. The results show that L+U Policy has faster execution

time than U Policy; however, L+U Policy performs slower than L Policy. This correlates

with our expectations. In L+U Policy, the Underlying rule is only used for the direct

interaction types, whereas in U Policy, all peers are evaluated against the Underlying rules.

 177

Moreover, this shows that L+U policy has no additional overhead due to combined L and U

type rules.

0

20

40

60

80

100

120

140

1 2 3 4 5

Services

Pr
oc

es
si

ng
 T

im
e

D
iff

er
en

ce
s

(m
s)

Figure 7.4 The comparison of results for the radius of 3. The services are listed on the x-axis. Each service
has two bars. The first bar shows the difference between L Policy and U Policy; second bar shows the
difference between L Policy and L+U Policy. All results are measured for radius 3.

Case 4: L+U+D Policy

We finally tested the Graph 1 with L+U+D Policy. We earlier set up the service’s

credentials such that Service 2 and Service 4 cannot satisfy the Underlying Rule. However,

they both can satisfy the Delegation-upstream Rule. Therefore, for example, Service 3

evaluates its Delegation-upstream rule, and returns a permit decision with obligation. The

obligation requires Service 1 to delegate its credentials to Service 2 at run-time. Note that

Service 5 also returns a permit decision with obligation. Service 5 would require Service 3 to

delegate its credential to service 4. In the second round of our framework, the AMM would

seek the feasibility of this obligation. It would inform Service 1/Service 3 about the

delegation and ask Service 1/Service 3 to evaluate its collaboration policy once more. Service

 178

1/Service3 would evaluate its Delegation-downstream rule and determine whether or not

delegating its credential. We setup service credentials such that Service 4 can satisfy the

Delegation-downstream rule, whereas Service 2 cannot. Therefore, Service 1 does not

delegate its credential, whereas Service 3 accepts to delegate it. Service 1’ rejection of

delegation would result in failure to meet Service 3’s obligation. The AMM would determine

that the current collaboration is infeasible for execution.

All services are setup such that their credentials can satisfy the Local Rule successfully.

Therefore, the Underlying rule type and the Delegation-upstream rule dictate a policy

decision. We present the policy decisions for each service in Table for radiuses 2 and 3.

We start taking measurements from a radius of 2 because Delegation-upstream rule is

ineffective for a radius of 1, which basically means no delegation at all. The

DelegationDistance is set according to the evaluation radius. When

MaximumEvaluationRadius is 2, the Delegation-upstream rule has a DelegationDistance of

2. When the MaximumEvaluationRadius is 3, the DelegationDistance is set to 3. We repeat

the measurements for radiuses of 2 and 3.

For this test case, we want to observe the effect of Delegation-upstream rule (i.e.

obligation processing) over the execution time. In order to do that, we compare our results

from L+U+D Policy with L+U Policy. Moreover, we want to observe the time spent in the

second-round of our framework.

 179

Table 7. 9 The policy decision for each service with L+U+D Policy over Graph 1.

 Service 1 Service 2 Service 3 Service 4 Service 5
Policy Decision
Radius = 2

Permit Permit Permit
Obligation:
Delegator: 1
Delegatee: 3

Permit Permit
Obligation:
Delegator: 3
Delegatee: 4

Policy Decision
Radius = 3

Permit Permit Permit
Obligation:
Delegator: 1
Delegatee: 3

Permit Permit
Obligation:
Delegator: 1
Delegatee: 3

Table 7.10 Service execution times for L+U+D Policy.

 Service 1 Service 2 Service 3 Service 4 Service 5 CLM+AMM

Radius 2 Total Time:

31484.25

1st Round 648.5 812.5 867 785 644.5

2nd Round 54.75 4 105.5 7.5 0

Radius 3 Total Time:

31605.25

1st Round 746 976.5 918 972.75 765.5

2nd Round 55 7.75 109.5 11.75 0

As seen from Table 7.10 and Figure 7.5, all service’s performed similar to Case 3, which

tested L+U Policy. In the first-round, the difference is mainly expected in the results of

Service 3 and Service 5 because they evaluate the Delegation-upstream rules in addition to

the other rules. As seen in Table 7.9, only Service 3 and Service 5 evaluate the obligations.

However, our results show that the evaluation of Delegation-upstream rule does not affect the

execution time significantly. Note that the AMM receives two obligations to determine their

feasibility, from Service 3 and Service 5. The AMM evaluates the obligations sequentially.

 180

This affects the overall performance of AMM. Due to the waiting periods at each delegator,

the AMM’s overall execution gets delayed by 20 seconds. We should modify our code to

evaluate the obligations in a parallel manner to reduce this time.

0

200

400

600

800

1000

1200

1 2 3 4 5

Services

Pr
oc

es
si

ng
 T

im
e

(m
s)

Figure 7.5 Execution time comparison between L+U Policy and L+U+D Policy. Each service has a cluster
of 4 bars. First bar shows the execution time of Policy 3 with a radius of 2; second bar shows the
execution time of Policy 4 with a radius of 2; third bar shows the execution time of Policy 3 with a radius
of 3; fourth bar shows the execution time of Policy 4 with a radius of 3.

For both radiuses, the second-round is only dominated by the delegator service’s

evaluation speed (Services 1 and Service 3). The time for preparing and sending the

delegation request to the respective delegators were almost negligible: less than 12 ms in all

cases. Service 3 responded slower than Service 1. This may be because the permit decision

takes longer than the deny decision to evaluate.

 181

7.2.6 Collaboration Graph 2: 1-Branch

Figure 7.6 The Collaboration Graph 2.

We altered the collaboration graph as follows. We added a branch after Service 3. This

increased the total node number to 6. The added node is called Service 6. At run time,

Service 3 either interacts with Service 6 or Service 4. However, at planning we have no

knowledge of which interaction is going to occur; therefore, we included both interactions in

the collaboration graph and treated them as though they both are going to be performed. This

was a cautious approach; nevertheless, it was necessary since our focus is on security.

We repeated the L+U Policy and L+U+D Policy with the new choreography. For the

remainder, we change our choreography three more times, and each time we repeat L+U

Policy and L+U+D Policy. For each test run, we only use a radius of 2 and 3, since radius of

1 is meaningless for L+U+D Policy. For the remainder of this chapter, we focus on

understanding the affects of different collaboration graphs.

 182

Case 5: L+U Policy

Case 5 tests L+U policy over Graph 2. Due to the additional branch in Graph 2, each

service must conduct a higher a number of peer-peer evaluations than they did over Graph 1.

We aim to observe the effect of higher number of peer-peer evaluations in execution times.

Therefore, we compare L+U Policy over Graph 1 and Graph 2.

Table 7. 11 The policy decision for each service with L+U Policy over Graph 2.

 Service 1 Service 2 Service 3 Service 4 Service 5 Service 6
Policy
Decision
Radius = 2

Deny Deny Deny Deny Deny Deny

Evaluated
Peers

2, 3 1, 3, 4, 6 1, 2, 4, 5, 6 2, 3, 5 3, 4, 6 2, 3, 5

Policy
Decision
Radius = 3

Deny Deny Deny Deny Deny Deny

Evaluated
Peers

2, 3, 4, 6 1, 3, 4, 5, 6 1, 2, 4, 5, 6 1, 2, 3, 5 2, 3, 4, 6 1, 2, 3, 5

0

200

400

600

800

1000

1200

1400

1 2 3 4 5

Services

Pr
oc

es
si

ng
 T

im
e

(m
s)

 Figure 7.7 Service execution times for Policy 3 over Graph 1 and Graph 2. The results from Service 6
is not shown below because Service 6 does not exist in Graph 1. For each service, first bar shows the
execution time for radius 2 over Graph 1; second bar shows execution time for radius 2 over Graph 2;
third bar shows execution time for radius 3 over Graph 1; fourth bar shows execution time for radius 3
over Graph 2.

 183

For Radius 2, we expect the results to be similar to that of Graph 1. When the evaluation

radius is set to 2, Service 1 and Service 4 have no increase in the number peer-peer

evaluations due to the added branch. Therefore, their performances should remain unaffected,

whereas all other services must execute slightly slower than Case 3 because they all conduct

a higher peer-peer evaluation. The results overlap with our expectations, as shown in Figure

7.7. For radius 3, we expect an increase in the execution time of all peers because all of them

evaluate a higher number of peers than that of Case 3 and that of radius 2. The results again

support our expectations.

 Case 6: L+U+D Policy

Case 6 is a test run of L+U+D Policy over Graph 2. In Case 6, we aim to observe how

much evaluation of Delegation-upstream rules affects the execution time. In order to this, we

compare results of L+U+D Policy with the L+U Policy over the Graph 2. Each services

policy decisions are presented in Table 7.12.

Table 7. 12 The policy decision for each service with L+U+D Policy over Graph 2.

 Service 1 Service 2 Service 3 Service 4 Service 5 Service 6
Policy
Decision
Radius = 2

Permit Permit Permit
Obligation:
Delegator: 1
Delegatee: 3

Permit Permit
Obligation:
Delegator:
3
Delegatee:
4

Permit

Policy
Decision
Radius = 3

Permit Permit Permit
Obligation:
Delegator: 1
Delegatee: 3

Permit Permit
Obligation:
Delegator:
1
Delegatee:
3

Permit

Service 1, Service 2, Service 4, and Service 6 are already returning permit results; they do

not evaluate their Delegation-upstream rules. Therefore, their execution times must be

 184

identical to that of L+U Policy. Only Service 3 and Service 5 evaluate their Delegation-

upstream rules. However, we do not expect a significant difference in the results of Service 3

and Service 5 because from the earlier test runs, we observed that evaluating Delegation-

upstream rule does not severely impact the execution time.

Table 7.13 Service execution times with L+U+D Policy over Graph 2.

 Service 1 Service 2 Service 3 Service 4 Service 5 Service 6 CLM+AMM

Radius 2 Total Time:

31820.25

1st Round 668 1105.5 1173 883 941.5 879

2nd Round 50.5 7.75 120 5 0 0

Radius 3 Total Time:

32136.75

1st Round 1109.5 1461.25 1304.5 1167.75 1199.25 1086

2nd Round 50.5 7.75 97.25 3.75 0 0

 185

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6

Services

Pr
oc

es
si

ng
 T

im
e

(m
s)

Figure 7.8 Service execution times for L+U Policy and L+U+D Policy over Collaboration Graph 2. The x-
axis shows Services 1 through 6 and the CLM+AMM. For each service, first bar shows the execution time
for radius 2 with L+U Policy; second bar shows execution time for radius 2 with L+U+D Policy; third bar
shows execution time for radius 3 with L+U Policy; fourth bar shows execution time for radius 3 with
L+U+D Policy.

The results obtained overlap with our expectations. As seen from Figure 7.8, Service 1, 2,

4 and 6 obtains almost identical results to that of L+U Policy. Service 5 and Service 3 are not

severely impacted by the evaluation of Delegation-upstream rules.

For the second-round measurements, we obtain results almost identical to that of Policy

L+U+D over Graph 1. The delegatees spend negligible time to prepare and send their

delegation requests, whereas the delegators dominate the time spent in round-two. For both

radiuses, permit decision from Service 3 takes twice as much as deny decision from Service

1. Service 1 and Service 3 sequentially spends 20 seconds in waiting periods before they

start evaluating the delegation requests. This causes an additional 20 sec delay, on top of 10

second spent in the first-round, in the execution time of CLM+AMM.

 186

Our conclusion from Case 6 is that adding a branch slows the overall execution time

down, and the evaluation of Delegation-upstream rules does not have a visible affect on the

execution times.

7.2.7 Collaboration Graph 3: Double Branching Effect

Figure 7.9 The Collaboration Graph 3.

We changed our choreography by adding another branch. The branch is added to the

node of Service 1. As a result, Service 1 and Service 3 are connected with a direct

interaction. The added branch creates new connections between services that are previously

not connected or their connections were beyond the evaluation radiuses. Such as service 1

and Service 5 are now connected when the evaluation radius is set to 3. This should increase

the evaluation time for the services because they should evaluate more peers than in earlier

cases. We analyzed the new choreography with L+U Policy and L+U+D Policy.

 187

Case 7: L+U Policy

In Case 7, we test L+U Policy over Graph 3. We compare our results with that of L+U

policy over Graph 2. We aim to see how much the additional branch affects the execution

time. The service policy decisions are presented in Table 7.14.

Table 7. 14 The policy decision for each service with L+U Policy over Graph 3.

 Service 1 Service 2 Service 3 Service 4 Service 5 Service 6
Policy
Decision
Radius = 2

Deny Deny Deny Deny Deny Deny

Evaluated
Peers

2, 3, 4, 6 1, 3, 4, 6 1, 2, 4, 5, 6 1, 2, 3, 5 3, 4, 6 1, 2, 3, 5

Policy
Decision
Radius = 3

Deny Deny Deny Deny Deny Deny

Evaluated
Peers

2, 3, 4, 5, 6 1, 3, 4, 5, 6 1, 2, 4, 5, 6 1, 2, 3, 5 1, 2, 3, 4, 6 1, 2, 3, 5

0
200
400
600
800

1000
1200
1400
1600
1800

1 2 3 4 5 6

Services

Pr
oc

es
si

ng
 T

im
e

(m
s)

Figure 7.10 Service execution times for L+U Policy over Graph 2 and Graph 3. The x-axis shows Services
1 through 6. For each service, first bar shows the execution time for radius 2 over Graph 2; second bar
shows execution time for radius 2 over Graph 3; third bar shows execution time for radius 3 over Graph
2; fourth bar shows execution time for radius 3 over Graph 3.

All services should be affected by the second branch because it increases the number of

peer-peer evaluations for each service (Table 7.14). For Radius 3, the worst-case scenario

 188

occurs and each service evaluates all other services present in the collaboration. This causes

cause slower execution times than that of Graph 1 (Figure 7.10).

Case 8: L+U+D Policy

Case 8 tests L+U+D Policy over Graph 3, and compares the results with results of L+U

Policy over the same graph, Graph 3.

Table 7. 15 Service policy decisions with L+U+D Policy over Graph 3.

 Service 1 Service 2 Service 3 Service 4 Service 5 Service 6
Policy
Decision
Radius = 2

Permit Permit Permit
Obligation:
Delegator: 1
Delegatee: 3

Permit Permit
Obligation:
Delegator: 3
Delegatee: 4

Permit

Policy
Decision
Radius = 3

Permit Permit Permit
Obligation:
Delegator: 1
Delegatee: 3

Permit Permit
Obligation:
Delegator: 1
Delegatee: 3

Obligation:
Delegator: 1
Delegatee: 4

Permit

In this test run, we are interested in comparing L+U+D Policy results with L+U Policy

results over the same graph because L+U+D Policy has a high number of obligations when

the radius is set to 3 (3 obligations), (Table 7.15). We want to see how increase in obligations

affects the execution time.

 189

Table 7.16 Service execution times with L+U+D Policy over Collaboration Graph 3.

 Service 1 Service 2 Service 3 Service 4 Service 5 Service 6 CLM+AMM

Radius 2 Total Time:

32019.5

1st Round 1199.25 1206.75 1261.75 1202.75 949 1199

2nd Round 50.75 12 136.5 7.5 0 0

Radius 3 Total Time:

22251.75

1st Round 1585.75 1386.75 1367 1332 1785.25 1308.5

2nd Round 50.75 3.75 0 0 0 0

Since Services 1, 2, 4 and 6 do not evaluate their Delegation-upstream rule, their

execution times must be similar to their results from L+U Policy over Graph 3. This is

supported by the data collected. The Services 3 and 5 evaluate Delegation-upstream rule in

addition to the Local and Underlying rules. However, as before, the evaluation of Delegation-

upstream rule does not affect their performance severely (Figure 7.11).

 190

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 2 3 4 5 6

Services

Pr
oc

es
si

ng
 T

im
e

(m
s)

Figure 7.11 Service execution times for Policy 3 and Policy 4 over Collaboration Graph 3. The x-axis
shows Services 1 through 6 and the CLM+AMM. For each service, first bar shows the execution time for
radius 2 with Policy 3; second bar shows execution time for radius 2 with Policy 4; third bar shows
execution time for radius 3 with Policy 3; fourth bar shows execution time for radius 3 with Policy 4.

Note that in the second-round of radius 3, we have only a single obligation that is being

evaluated. When radius is set 2, the AMM first checks the feasibility of Service 5’s

obligation. This requires Service 4 to send a delegation request to Service 3. As before,

Service 3 grants this request. The AMM then evaluates the feasibility of Service 3’s

obligations, which requires Service 1 to delegate to Service 2. However, when we set our

radius to 3, the second-round results change. The Service 5’s obligation is never evaluated.

This is because the AMM first receives the Service 3’s obligation. The AMM, therefore, first

checks the feasibility of Service 3’s obligation. Once Service 1 declines the delegation

request, the AMM determines that the collaboration is infeasible as it is. It terminates the

second-round before checking the feasibility of Service 5’s obligation. Therefore, the time

spent for the waiting period is only 10 seconds, instead of 20. This is why for radius 3, the

CLM+AMM has a 10 seconds faster execution time than the execution time of radius 2.

 191

7.2.8 Collaboration Graph 4: Same Service Multiple Appearance

Figure 7.12 Collaboration Graph 4.

We changed the choreography such that Service 3 takes over the responsibility of Service

5, and appears twice in the choreography. Even though Service 3 and Service 5 accomplish

different tasks, we assumed that Service 3 had the functionality to accomplish both tasks.

This assumption is rooted in the fact that services usually have multiple operations advertised

in their WSDL files, and each operation can be utilized for different functionalities.

Therefore, a service may be selected to join a collaboration with two different operations. As

a result, we wanted to observe the effect of having a service multiple times in a single

collaboration. Below, we only present the results pertaining to Service 3, and skip other

services’ results because their results must be identical to that of Graph 3.

 192

Case 9: L+U Policy

Although we expected a drastic change in Service 3’s performance, it remains almost the

same. This is because Service 3 evaluates two separate sub-collaboration graphs (a sub-

collaboration graph for each appearance of Service 3); however, after evaluating the first sub-

collaboration graph, Service 3 returns a deny decision and terminates its evaluation.

Therefore, the results collected in this round are not different than that of Case 7, where we

tested L+U Policy over Graph 2.

Case 10: L+U+D Policy

Service 3 should evaluate a permit decision with 3 obligations: the first obligation is due

to the first appearance of Service 3 in Graph 4; the second and third obligations are due to the

second appearance of Service 3 in Graph 4 (formerly Service 5). Service 3 evaluates the three

obligations sequentially. This is unlike the previous case, where Service 5 evaluated two

obligations in parallel with Service 3. We are interested in how evaluating 3 Delegation-

upstream rules in sequential affects the execution time of Service 3.

Table 7.17 Service 3’s policy decision with L+U+D Policy over Graph 4.

 Service 3
Policy Decision
Radius = 2

Permit
Obligation: Obligation:
Delegator: 1 Delegator: 3
Delegatee: 3 Delegatee: 4

Policy Decision
Radius = 3

Permit
Obligation: Obligation:
Delegator: 1 Delegator: 1
Delegatee: 3 Delegatee: 3

 Obligation:
 Delegator: 1
 Delegatee: 4

 193

Table 7.18 Service execution times with L+U+D Policy over Graph 4.

 Service 3

Radius 2

1st Round 1617.25

2nd Round 0

Radius 3

1st Round 2187.25

2nd Round 0

For radius 2, the execution time increased by 355.5 ms (28%); for radius 3, the execution

time increased by 820.25ms (60%), (Figure 7.13). For radius 2, Service 3 had one additional

obligation, whereas for radius 3, Service 3 had two additional obligations. The increase in

number of obligations is reflected proportionally in the execution time. This is expected

because our algorithm evaluates the obligations in a sequential manner. However, in our

earlier test runs, we have not observed a significant change in execution times due to the

obligations. In order to understand if this case is an anomaly due to a change in our execution

environment, we conduct one more test case.

 194

0

500

1000

1500

2000

2500

3

Pr
oc

es
si

ng
 T

im
e

(M
s)

Figure 7.13 Service execution times for L+U+D Policy over Collaboration Graph 4 and Collaboration
Graph 3. The x-axis shows Service 3 only. First bar shows the execution time for radius 2 over Graph 3;
second bar shows execution time for radius 2 over Graph 4; third bar shows execution time for radius 3
over Graph 3; fourth bar shows execution time for radius 3 over Graph 4.

7.2.9 Collaboration Graph 5: Multiple Interactions

Figure 7.14 The Collaboration Graph 5.

 195

 Graph 5 includes multiple interactions between the same two services. This use case

happens when a service has multiple operations defined in its WSDL. Such a service can

have multiple interactions with another service. We also maintained that Service 3 appears

twice in the collaboration graph.

A service identifies an interaction as original when the service’s operation interacts with

another service that the operation has not interacted before. For example, between Service 2

and Service 3, there appears to be 3 interactions. However, from Service 3’s perspective,

there are only two original interactions: op3.1 interacts with op2.1; op3.2 interacts with

op2.2. The interaction between op3.2 and op2.1 is not original for security purposes because

all operations of Service 2 inherit the same credential from Service 2. op3.2 already listed

Service 2 in its list of interaction partners due to op2.2, therefore, listing Service 2 again due

to the interaction with op2.1 is not going to benefit the security evaluations. (For a full

explanation of this issue, reader may refer to Chapter 6 – Discussion of the CLM.) Likewise,

from Service 2’s perspective, there are two original interactions with Service 3. As a result of

multiple interactions, all services have twice as much peer-peer evaluation as the previous

choreographies. We observe the affect of increased interactions over the execution time.

 196

Case 11: L+U Policy

Table 7. 19 The policy decision for each service with L+U Policy over Graph 5.

 Service 1 Service 2 Service 3 Service 4 Service 6
Policy
Decision
Radius = 2

Deny Deny Deny Deny Deny

Evaluated
Peers

2, 3, 4, 6 1, 3, 4, 6 1, 2, 4, 6 1, 2, 3, 5 1, 2, 3

Policy
Decision
Radius = 3

Deny Deny Deny Deny Deny

Evaluated
Peers

2, 3, 4, 6 1, 3, 4, 6 1, 2, 4, 6 1, 2, 3 1, 2, 3

Due to the increased peer-peer evaluations, all services’ execution times should increase

significantly. We compare results of L+U policy with Case 9, where L+U Policy is tested

over Graph 4. As Figure 7.15 shows, the execution times almost doubles. This overlaps well

with our expectations. Note that for Service 3, over the Graph 5, the change from radius 2 to

radius 3 does not make a big impact over the execution time. This is because Service 3’s first

appearance in the graph already evaluates all of its peers with a radius of 2. Also note that

second appearance of Service 3 (formerly Service 5) is not evaluated at all because after

evaluating its first appearance Service 3 returns a deny decision to the AMM, and terminates

its policy evaluation.

 197

0

500

1000

1500

2000

2500

3000

Service 1 Service 2 Service 3 Service 4 Service 6

Pr
oc

es
si

ng
 T

im
e

(m
s)

Figure 7.15 Service execution times for L+U Policy over Collaboration Graph 5 and Collaboration Graph
4. Service 5 is not shown because it is not included in Graph 5. For each service, first bar shows the
execution time for radius 2 over Graph 4; second bar shows execution time for radius 2 over Graph 5;
third bar shows execution time for radius 3 over Graph 4; fourth bar shows execution time for radius 3
over Graph 5.

Case 12: L+U+D Policy

In this case, the number of obligations that are evaluated by Service 3 is significantly

higher than that of the previous cases (Table 7.21). We are mainly interested in how this

increase affects the execution time of Service 3.

 198

Table 7. 20 Service policy decisions with L+U+D Policy over Graph 5.

 Service 1 Service 2 Service 3 Service 4 Service 6
Policy
Decision
Radius = 2

Permit Permit Permit

Obligation: Obligation:
Delegator: 1 Delegator: 3
Delegatee: 3 Delegatee: 4

Obligation: Obligation:
Delegator: 1 Delegator: 3
Delegatee: 3 Delegatee: 4

Permit Permit

Policy
Decision
Radius = 3

Permit Permit Permit
Obligation: Obligation:
Delegator: 1 Delegator: 3
Delegatee: 3 Delegatee: 4

Obligation: Obligation:
Delegator: 1 Delegator: 3
Delegatee: 3 Delegatee: 4

Obligation: Obligation:
Delegator: 3 Delegator: 3
Delegatee: 4 Delegatee: 4

Permit Permit

Table 7.21 Service execution times with L+U+D Policy over Graph 5.

 Service 1 Service 2 Service 3 Service 4 Service 6 CLM+AMM

Radius 2

1st Round 1613.25 1492.25 2496.25 1523.75 1562.5 22980.5

2nd Round 54.75 3.75 0 0 0

Radius 3

1st Round 2418 1898.25 3656.25 1629 1730.5 24160

2nd Round 46.75 4 0 0 0

We compare the current results with that of Case 10, where we use L+U+D Policy over

Graph 4. The only difference between Graph 5 and Graph 4 is the multiple interactions. Over

Graph 5, Service 3 has 4 obligations with radius 2. Over Graph 5, Service 3 has 6 obligations

with radius 3. Over Graph 4, Service 3 has 2 obligations with radius 2. Over Graph 4, Service

 199

3 has 3 obligations with radius 3. As seen in Figure 7.16, for radius 2, the Service 3’s

execution time is increased by 50%, whereas, for radius 3, the execution time is increased by

67%. These results make us realize that a significant increase in the number of obligations

affects the execution time significantly as well.

0

500

1000

1500

2000

2500

3000

3500

4000

3

Pr
oc

es
si

ng
 T

im
e

(m
s)

Figure 7.16 Service 3 execution times for L+U+D Policy over Graph 4 and Graph 5. For each service,
first bar shows the execution time for radius 2 over Graph 4; second bar shows execution time for radius
2 over Graph 5; third bar shows execution time for radius 3 over Graph 4; fourth bar shows execution
time for radius 3 over Graph 5.

7.3 Performance Conclusion

Our tests showed us that there are two significant variables dictating a service’s execution

time: the number of peer-peer evaluations and the Delegation-upstream rules (i.e. the

obligations). The number of peer-peer evaluations I all cases increased the execution time

significantly. Our data does not allow us to determine the nature of this increase whether it is

linear or non-linear with the number of peer-peer evaluations. We must conduct experiments

over a larger cluster so that the number of service nodes can increase significantly.

 200

We also understood that Delegation-upstream rules could be effective over the execution

time. This effect does not show up for small number of obligations such as one or 2.

However, when we increase the number of obligations to 6, we realized that the processing

of the obligations almost took up half of the execution time.

Finally, we observed that utilizing different type of rules combined in a policy did not

cause any additional overhead. For U type rules, evaluating an additional policy clearly

affects the execution time. In order to get a realistic view, we should conduct more

experiments such that different Underlying security mechanisms are used.

Overall, we concluded that we must conduct tests with more complicated collaborations

that span tens if not hundreds of service nodes. This would give a glimpse of real-life

collaboration scenarios that occurs in scientific application domain. However, our initial

results are promising in that they are almost insignificant compared with the actual execution

time expected from a collaboration. In scientific application domain, the collaborations are

expected to run at least for hours. Therefore, the overhead we introduced into the planning

stage is miniscule. Moreover, this overhead is quite desirable when considering that an

access failure arises hours after a collaboration starts executing, forcing the end user to repeat

the entire planning and execution stages.

 201

Chapter 8:
Conclusions and Future Work

Dynamic collaborations provide the ideal computing environments, in which otherwise

unsolvable tasks can be tackled by combining available services from different domains. The

users can harness services on-demand, based on their needs, and avoid issues, such as

software writing and maintenance, low performance, and storage, which can all be handled

by individual services. The service-oriented architecture provides the essential infrastructure

that allows services to collaborate with each other. The emerging Web-Services standards

bring openness and ease of collaboration into the computing field.

The reflections of this change are felt at various levels, including our personal lives. We,

as end users, have started to take it granted that, for example, an online apartment search

engine must use Google Maps in order to show us not only the features of a rental property,

but also its location in the city. The lack of such combined services drives the end user away

with frustration although even a naïve end user can copy a property’s address and past it into

the Google Maps search bar in a few seconds. This usage trend indicates us that

connectedness and collaboration among the services are becoming the norm.

However, the highly appreciated benefits of collaboration come with the cost of more

complicated security and trust problems. Our work focuses on these issues from an access

control standpoint. We have two prime research questions: How can a service owner

determine it is safe to join a collaboration ?; How can an end user determine if a

collaboration is feasible for execution from security perspective ?

 202

What makes collaborations different from traditional one-one relationships is that a

collaboration requires multiple interactions among all of its participants. It is impossible to

isolate a participant from a certain group of other participants because, by definition, a

collaboration is built so that the participants can interact and share with each other. Even

when two participants are not explicitly interacting, which is to say there is no direct data

exchange between them, they in fact interact indirectly through other participants that have

direct connections with them. This taught us that a service owner who joins the collaboration

must consider the entire collaboration context, not just one or two interactions that his service

is explicitly involved in.

This realization motivated us to understand the nature of interactions within a

collaboration. We developed a model for interactions and classified them with respect to the

different security threats that they introduce to a service. This naturally lent itself to

developing an access control model and policy model that allows for specifying unique

access requirements for different interaction types. We believe that our model is the first one

that is tailored for dynamic collaborations.

A natural extension of our findings is to understand how this knowledge can be used in a

framework so that collaborations can be built dynamically and execute without security

failures, which becomes our second prime research question. As a solution we developed an

access control framework that can be integrated into a collaboration engine. Service owners

are informed about the collaboration context and they perform their own peer-peer trust

evaluations. By moving the peer-peer trust evaluations into the planning stage, our

framework mitigates the security failures. In addition, our framework increases services’

 203

willingness to join a collaboration because they have full control over how their interactions

(hence their data) are propagated across the collaboration.

We believe that our work is practical not only in scientific application domain, but also in

the e-commerce domain. An emerging problem in this domain is the intellectual property and

confidentiality issues, and the conflict of interest scenarios that often occur between rival

companies. In such scenarios access control is geared towards ensuring that business

practices are translated to the virtual domain, such as honoring partnership agreements,

licenses, or refraining from interactions with a rival company. Our access control model can

express and enforce these concerns. In fact, as our future work, we plan to show how conflict

of interest scenarios can be detected in a collaboration. We will demonstrate that such

detection cannot be done without analyzing the collaboration context.

8.1 Future Work

We are interested in understanding the overhead of our security evaluations over the

execution time. Our initial findings show that the number of peer-peer evaluations increases

the execution time proportionally. Parallel execution techniques must be researched in this

area. Moreover, large collaborations can have slower execution times due to large number of

obligations that must be processed. Our initial experiments showed that when the number of

obligations that must be processed by a service increases significantly, the processing time of

the obligations becomes a significant overhead. Finally, we should experiment with large

collaborations that span tens of services, scattered across the network. This would give us a

realistic idea about the overhead.

Another future work area is redeeming an infeasible collaboration. Currently, we only

determine whether a collaboration is ready for execution. We do not make any suggestions

 204

over what changes must be made in order to redeem the collaboration. This includes giving

feedback to the planning engine so that different services can be assigned to the tasks. An

important question is if a service owner refuses participation due to an un-trusted peer,

should we replace the service refusing to partake or the un-trusted peer. The answer is

dependent upon the collaboration: if one these services are absolutely necessary for the

collaboration, then the other one can be replaced; alternatively, if one of the services has may

interactions with other peers and they are all authorized, replacing the peer with less

interactions would be more meaningful. We should understand what other variants are

important in making this decision. Once this issue is studied, we can develop methods for

optimizing the time spent in redeeming an infeasible collaboration graph. The redemption

process may require multiple steps in which a different service may be replaced. In order to

minimize this process, adequate optimization methods must be studied.

Another future work area is to determine the feedback given to the service owners.

Currently, we give no feedback apart from the collaboration is ready for execution or not. We

must research on this subject to understand if giving more detailed feedback is beneficial.

The final research area is to determine how we can leverage our framework to detect and

eliminate conflict of interest scenarios in collaborations. Currently, the conflict of interest is

widely studied in homogenous collaborations where all participants belong to the same

security domain. The conflicts can be detected and prevented by a central policy. In

heterogeneous, dynamic collaborations this cannot be achieved; each service has a different

confidential policy. Our framework already allows each service owner to evaluate the

collaboration context to determine access. We are curious to see whether a service’s

collaboration policy can express access requirements such that these requirements detect and

 205

prevent the conflicts within a collaboration. As a result, the collaboration policies not only

protects the service from unauthorized accesses during the collaboration, but also detects

possible conflict scenarios.

 206

REFERENCES

[ABBD05] M. Altunay, D.E. Brown, G.T. Byrd, and R.A. Dean “Trust-Based Secure
 Workflow Path Construction.” Intl. Conf. on Service-Oriented Computing, pp. 382
 395, December 2005.

[ABBD2-05] M. Altunay, D. Brown, G. Byrd, R. Dean “Evaluation of Mutual Trust
 during Matchmaking.” 6th IEEE Intl. Conf. On Peer-to-Peer Computing P2P 2005,
 Konstanz, Germany.

[ACDV+] C. A. Ardagna, M. Cremonini, E. Damiani, S.D. di Vimercati, and P. Samarati

“Supporting Location-based Conditions in Access Control Policies” 2006 ACM
Symposium on information, Computer and Communications Security (ASIACCS '06),
(2006).

[AH96] V. Atluri and W-K. Huang “An Authorization Model for Workflows.” Fifth
 European Symposium on Research in Computer Security, pp. 44-64, September 1996.

[AJAX] G. Murray “Asynchronous JavaScript Technology and XML (AJAX) with the Java

Platform.” http://java.sun.com/developer/technicalArticles/J2EE/AJAX/

[BE01] R. Botha, J. Eloff “Separation of Duties for Access Control Enforcement in

Workflow Environments.” IBM Systems Journal, Vol. 40, No. 3 (2001).

[BFA97] E. Bertino, E. Ferrari, and V. Atluri “A Flexible Model Supporting the

Specification and Enforcement of Role-Based Authorizations in Workflow Management
Systems.” 2nd ACM Workshop on Role-Based Access Control, 1997.

[BFA99] E. Bertino, E. Ferrari, and V. Atluri “The Specification and Enforcement of

Authorization Constraints in Workflow Management Systems.” ACM Transactions on
Information and System Security, 2(1):65-104, February 1999.

[BFIK99] M. Blaze, J. Feigenbaum, J. Ioannadis, A.D. Keromytis “The Role of Trust

Management in Distributed Systems Security.” In Secure Internet Programming: the
Security Issues for Mobile and Distributed Objects. Springer-Verlag (1999) 185-210

[BP02] D. Baumer and J.C. Poindexter Cyberlaw & E-Commerce. McGraw-Hill, New
 York, USA, 2002.

[CW87] D.D. Clark and D.R. Wilson “A Comparison of Commercial and Military
 Computer Security Policies” IEEE Symp. on Security and Privacy (April 1987), pp.

 207

 184–194.

[DRM] R. Safavi-Naini and M. Yung Digital Rights Management: Technologies, Issues,

Challenges and Systems. LNCS 3919, Springer-Verlag. 2006.

[FK97] I. Foster, C. Kesselman “Globus: A Metacomputing Infrastructure Toolkit.” Intl J.

Supercomputer Applications (1997) 11(2):115-128.

[FKT01] I. Foster, C. Kesselman, and S. Tuecke “The Anatomy of the Grid: Enabling

Scalable Virtual Organizations.” International J. Supercomputer Applications, 15(3),
2001.

[HA99] W-K Huang and V. Atluri “SecureFlow: A Secure Web-enabled Workflow

Management System.” 4th ACM Workshop on Role-based Access Control, October 1999.

[HIPAA03] Standards for Privacy of Individually Identifiable Health Information (HPR). 45

CFR 164.C. Federal Register (2003) 68(34):8334 – 8381.

[HK03] P.C.K. Hung and K. Karlapalem “A secure Workflow Model.” Australasian

Information Security Workshop Conference, 2003, pp. 33-41.

[HQ03] P.C.K. Hung and G-S.Qiu “Specifying Conflict of Interest Assertions in WS-Policy

with Chinese Wall Security Policy.” ACM SIGecom Exchange Vol. 4, No. 1 (May
 2003), pp. 11-19.

[IETF99] R. Housley, W. Ford, W. Polk, D. Solo “Internet X.509 Public Key Infrastructure

Certificate and CRL Profile”, 1999, http://www.ietf.org/rfc/rfc2459.txt

[Kerberos] Kerberos: The Network Authentication Protocol, http://web.mit.edu/Kerberos/

[Kno00] K. Knorr “Dynamic access control through Petri net workflows.” 16th Annual

Conference on Computer Security Applications (ACSAC’00), pp. 159-167, December
2000.

[KFP01] L. Kagal, T. Finin, and Y. Peng “A Delegation Based Model for Distributed
 Trust.” Intl Joint Conf. on Artificial Intelligence (IJCAI 2001), Workshop on
 Autonomy, Delegation and Control (Aug 2001).

[KKHK03] S-H. Kim, J. Kim, S-J. Hong, and S. Kim “Workflow-based Authorization

Service in Grid.” Fourth International Workshop on Grid Computing (GRID’03), 2003,
pp. 94-100.

 208

[KM03] H. Koshutanski and F. Massacci “An Access Control Framework for Business
Processes for Web Services.” ACM Workshop on XML Security, 2003, pp. 15-24.

[KPF01] M.H. Kang, J.S. Park, and J.N. Froscher “Access-Control Mechanisms for Inter-

Organizational Workflow.” Sixth ACM Symposium on Access Control Models and
Technologies, 2001, pp. 66-74.

[KS01] K. Knorr and H. Stormer “Modeling and Analyzing Separation of Duties in
 Workflow Environments.” 16th Intl. Conf. on Information Security (IFIP/Sec), (June
 2001), pp. 199-212

[LN99] J. Linn and M. Nystrom “Attribute Certification: An Enabling Technology for
 Delegation and Role-Based Controls in Distributed Environments.” ACM Workshop
 on RBAC (1999), pp. 121-130.

[MULT] Multiple Resource Profile of XACML v2.0

http://docs.oasis- open.org/xacml/2.0/access_control-xacml-2.0-mult-profile-spec-os.pdf

[OASIS] Organization for the Advancement of Structured Information Standards.

http://www.oasis-open.org/home/index.php

[OASIS05] Organization for the Advancement of Structured Information Standards. Web

Services Business Process Execution Language Version 2.0. Document identifier wsbpel-
specification-draft-01, 01 Sep 2005, http://www.oasis-
open.org/committees/download.php/-16944/wsbpel-specification-draft.241_proposal.doc

[OASIS05-2] Organization for the Advancement of Structured Information Standards.

“SAML V2.0”, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=security#samlv20

[O’Reil05] T. O’Reilly. “What Is Web 2.0 Design Patterns and Business Models for the
Next Generation of Software.”
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html,

(2005)

[PWFK+02] L. Pearlman, V. Welch, I. Foster, C. Kesselman, S. Tuecke “A Community

Authorization Service for Group Collaboration.” IEEE 3rd Intl. Workshop on Policies for
Distributed Systems and Networks (2002).

[San88] R. Sandhu “Transaction Control Expressions for Separation of Duties.” 4th
 Aerospace Computer Security Conf. (Dec 1988), pp. 282–286.

 209

[San90] R. Sandhu “Separation of Duties in Computerized Information Systems.” IFIP
 WG11.3 Workshop on Database Security (Sep 1990).

[San96] R. Sandhu “Role-Based Access Control Models.” IEEE Computer (1996) 29(2):34-

47

[Sun05] Sun’s XACML Implementation. http://sunxacml.sourceforge.net/

[SBG05] M. Shehab, E. Bertino, and A. Ghafoor “Secure Collaboration in Mediator-Free

Environments.” ACM Conf. on Comp. and Communications Security, Nov. 2005, pp. 58-
67.

[SOAP] Simple Object Access Protocol (SOAP). http://www.w3.org/TR/wsdl

[SS75] J.H. Saltzer and M.D. Schroeder “The Protection of Information in Computer

Systems.” Proc. of the IEEE, Vol. 63, No. 9 (1975), pp. 1278–1308.

[TCG04] K. Tan, J. Crampton, and C.A. Gunter “The Consistency of Task-Based

Authorization Constraints in Workflow Systems.” 17th IEEE Computer Security
Foundations Workshop (CSFW’04), 2004, pp. 155-169.

[TS93] R.K. Thomas, R. Sandhu “Towards a Task-based Paradigm for Flexible and

Adaptable Access Control in Distributed Applications.” ACM SIGSAC New Security
Paradigms Workshop (1992-93) 138-142.

[Wel03] V. Welch, et al., “Security for Grid Services.” 12th Intl. Symp. on High

Performance Distributed Computing, 2003.

[W3C] Word Wide Web Consortium (W3C). http://www.w3.org/

[W3C04] World Wide Web Consortium (W3C). “Web Services Architecture.” http://-

www.w3.org/TR/2004/NOTE-ws-arch-20040211, 2004.

[W3C05] World Wide Web Consortium. Web Services Choreography Description

Language Version 1.0, 9 Nov 2005, http://www.w3.org/TR/2005/CR-ws-cdl-10-
20051109/

[WFMC] Workflow Management Coalition (WfMC). http://www.wfmc.org/

[WK05] J. Wainer and A. Kumar “A Fine-Grained User-to-User Delegation Method in
 RBAC.” ACM Symp. on Access Control Models and Technologies (SACMAT 2005)

 210

 (June 2005).

[WSDL1.1] Web Services Description Language (WSDL) 1.1 http://www.w3.org/TR/wsdl

[XACML05] Organization for the Advancement of Structured Information Standards.
 Extensible Access Control Markup Language. Document identifier oasis-
 access_control-xacml-2.0-core-spec-os, 01 Feb 2005, http://docs.oasis-
 open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

[ZAC01] L. Zhang, G-J. Ahn, B-T Chu “A Rule-Based Framework for Role-Based
 Delegation.” ACM Symp. on Access Control Models and Technologies (SACMAT
 2001) (May 2001).

[ZAC02] L. Zhang, G-J. Ahn, B-T Chu “A Role-Based Delegation Framework for
 Health Care Information Systems.” ACM Symp. on Access Control Models and

Technologies (SACMAT 2002) (June 2002).

