
ABSTRACT

LIU, XIAONI. New Methods Using Levene Type Tests For Hypotheses About

Dispersion Differences. (Under the direction of Professors Dennis Boos and Cavell

Brownie).

Testing equality of scale arises in many research areas including clinical data

analysis. In contrast to procedures for tests on means, tests for variances derived

assuming normality of the parent populations are highly non-robust to non-normality.

Levene type tests are well known to be robust tests for equality of scale for the one-

way design; the current standard test uses the ANOVA F test on absolute deviations

from the sample medians. We first develop a new modified version of the standard

Levene test that improves its null performance and power. Applying a Box-Andersen

correction to the ANOVA F test further improves the performance.

We also extend the robust Levene type tests to the two-way design with one

observation per cell, the randomized complete block design (RCB). Currently, the

available Levene type tests for RCB designs employ either standard ANOVA F tests

on the absolute values of ordinary least squares (OLS) residuals, or weighted least

squares (WLS) ANOVA F tests on the OLS residuals. These two tests can be liberal,

especially under non-normal distributions. Instead, we use OLS ANOVA F tests on

the absolute values of residuals obtained from models fit by least absolute deviation

(LAD) estimation and by Huber Proposal 2 M-estimation. We also apply bootstrap



methods to these Levene type tests and compare these tests in terms of robustness

and power using simulation.
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Chapter 1

The Modified LevMed Test for a

One-Way Design

1.1 Introduction

Testing equality of variances is of interest in many applications including quality

control in industry, development of educational methods, and studies on variability

in biological populations. Even in clinical research, comparing variability can be as

important as comparing averages. Zwinderman and Cleophas (2005) summarized the

main applications of variance tests in clinical research and gave some situations where

variability is more relevant than means in clinical data analysis. For example, it is

important to compare variability in response for different formulations of a drug, es-

pecially for drugs with small therapeutic windows. Tests for equality of variances can
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also be used to compare variability in patient characteristics for different treatment

groups.

Another context in which homogeneity of variances is tested is as a preliminary to

some standard statistical procedures. For example, the F test for equality of variances

is sometimes suggested in order to decide whether to use the pooled variance t-test

or the unequal variance Welch t-test to test equality of two means. In general, it is

recommended not to use this preliminary test approach, partly because normal theory

tests for means, such as the pooled t test, are robust to non-normality, whereas normal

theory tests for variances, such as the F test, are highly sensitive to departures from

normality. So typically, it is better to decide whether to use the pooled variance

t-test or the unequal variance Welch t-test based on other grounds, such as whether

the groups were randomly assigned or not.

1.1.1 Normal Theory Tests

The common normal theory variance tests include the F test for two populations,

Bartlett’s test (Bartlett, 1937) and Hartley’s test (Hartley, 1950b) for k (k ≥ 2) popu-

lations. Let {Xi1, · · · , Xini
, i = 1, · · · , k} represent k independent samples, where for

the ith sample, {Xij, j = 1, · · · , ni}, the sample members are iid normally distributed,

N(µi, σ
2
i ). In this situation, s2

i = 1
ni−1

∑ni

j=1(Xij −X i)
2 is the sample variance for the

ith sample and N =
∑k

i=1 ni.
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The F Test for k = 2 Populations

The F test is the classical normal theory test to compare variability of two pop-

ulations. For the alternative hypothesis H1 : σ2
1 6= σ2

2, we use the F test statistic

F =
s2
1

s2
2

(1.1)

and reject the null hypothesis when F is greater than the 100(1 − α/2)th percentile

or less than 100(α/2)th percentile of the F distribution with n1−1 and n2−1 degrees

of freedom, where n1 and n2 are sample sizes for the two groups.

Bartlett’s Test for k ≥ 2 Populations

The normal theory likelihood ratio statistic for testing H0 : σ2
1 = · · · = σ2

k is

B = (N − k) ln s2
p −

k∑

i=1

(ni − 1) ln s2
i , (1.2)

where s2
p =

∑k
i=1(ni − 1)s2

i /(N − k) and N =
∑k

i=1 ni. A correction factor is

C = 1 +
1

3(k − 1)

(
k∑

i=1

1

ni − 1
− 1

N − k

)
. (1.3)

Bartlett’s test statistic is the bias-corrected statistic:

Bc = B/C (1.4)
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The null hypothesis is rejected when Bc is greater than the 100(1 − α)th percentile

of the chi-squared distribution with (k − 1) degrees of freedom.

Hartley’s Test for k ≥ 2 Populations

Hartley (1950b) proposed the maximum F -ratio as a short-cut test for homogene-

ity of variances for unbalanced designs under the normal distribution. Suppose s2
max

is the largest sample variance and s2
min is the smallest sample variance among the k

sample variances.

Hartley’s test statistic is

F =
s2
max
s2
min

. (1.5)

The null hypothesis is rejected when F is greater than the 100(1− α)th percentile of

the Fmax distribution (Hartley, 1950b) with k and n−1 degrees of freedom assuming

balanced designs.

The F test and Bartlett’s test are the most popular normal theory tests taught

in elementary statistical courses. In particular, Bartlett’s test has good power under

normality, even for unequal sample sizes. However, it is well known to be highly

sensitive to non-normality (Box, 1953). Therefore, it is not recommended to be used

except when the data are known to be normally distributed.
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1.1.2 Robust Variance Tests

The non-robustness of normal theory tests for equality of variances results because

test statistics are not asymptotically distribution-free but depend on the kurtosis of

the parent distribution. Thus, in the past 50 years, a number of tests have been

proposed to solve this problem, that is, to be Type I error robust to non-normality.

To paraphrase Boos and Brownie (2004), the three approaches used to construct

robust tests are:

1. to use an estimate of kurtosis to adjust the normal-theory test procedures (Box

and Andersen, 1955, Shoemaker, 2003)

2. to replace the observations in the original data set by scale variables such as

the absolute deviations from the mean or median followed by the ANOVA test

on the new data set (Levene, 1960, Miller, 1968, Brown and Forsythe, 1974);

a related procedure is to perform ANOVA on the jackknife pseudo-values of a

scale variable such as the log of the sample variance (Miller, 1968)

3. to get p values for a given test statistic with a resampling method (Box and

Andersen, 1955, Boos and Brownie, 1989).

Among the three approaches, we recommend the second approach in which t or

F tests on the scale variables are used to test homogeneity of variances or scale

for the original variables. The resulting tests are not only simple to implement but

also robust to non-normality, even in small samples. Levene (1960) was the first to
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propose procedures using the one-way ANOVA F test on the new variables Yij =

|Xij −X i|, or more generally, Yij = g(|Xij −X i|), where g is monotonically increasing

on (0,∞). Miller (1968) showed that Yij = |Xij −X i| is asymptotically incorrect for

asymmetric populations, but that using the median instead of the mean to center

the spread variables is asymptotically correct. Brown and Forsythe (1974) formally

studied this modification of Levene’s method where the median was used instead

of the mean to center the variables. The one-way ANOVA F test on the spread

variables, Zij = |Xij −Mi|, where Mi is the sample median of ith group, is referred to

in the literature as the Brown-Forsythe test (e.g. SAS PROC GLM) or as Lev1:med

(Conover et al., 1981; Boos and Brownie, 1989, 2004). We will refer to it here as the

LevMed test. Brown and Forsythe (1974) and Conover et al. (1981) studied the small

sample properties of the LevMed test and demonstrated that it had satisfactory Type

I and Type II error properties for many distributions. However, Boos and Brownie

(1989), Lim and Loh (1996), and Shoemaker (2003) have noted that the LevMed test

can be conservative with loss of power. Boos and Brownie (1989) concluded that

null performance of the LevMed test will be generally good for sample sizes greater

than or equal to 8. However, for small and odd sample sizes, the test is extremely

conservative because of zero values of the scale variables inflating the estimate of

within-group variance in the denominator of the F statistic.

Layard (1973) developed the k-sample generalization of Miller’s two-sample jack-

knife test based on sample variances. Brown and Forsythe (1974) showed that it was
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not as good as the LevMed test in terms of robustness. Boos and Brownie (1989)

applied the bootstrap technique to the LevMed test and to other tests for equality of

scale. The bootstrap version of the LevMed test performs better than the LevMed

test in terms of robustness and power, especially for small sample sizes. However,

these methods based on resampling are computationally more complicated than the

LevMed test, which can be performed with standard software.

Our aim is to propose a new test for equality of scale that is based on the LevMed

test, is simple to compute, and also performs better for small samples than the

LevMed test. The chapter is organized as follows. Section 2 defines the model,

describes the LevMed test in detail, introduces the modified LevMed test and sum-

marizes the results from preliminary simulations on the LevMed variables and the

modified LevMed variables. The asymptotic properties and small sample problems

of the LevMed test are introduced briefly. Section 3 describes the simulation results

for the performance of the modified LevMed test including the null performance and

power. This section also introduces some other tests and compares them to the mod-

ified LevMed test. Section 4 gives an example in which some of the robust tests are

compared. Section 5 compares the modified LevMed test to the Hines LevMed test

(Hines and Hines, 2000). Section 6 presents some conclusions.
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1.2 The LevMed Test and the Modified LevMed

Test

1.2.1 Model

Let {Xi1, · · · , Xini
, i = 1, · · · , k} represent k independent samples, where for the

ith sample, {Xij, j = 1, · · · , ni}, the sample members are iid with distribution func-

tion Gi(x) = G0((x − µi)/σi). Let N =
∑k

i=1 ni be the total sample size. We

assume that G0(x) has mean 0 and variance 1, and finite fourth moment. To test

homogeneity of variances, the null hypothesis is H0 : σ2
1 = · · · = σ2

k or equiva-

lently H0 : σ1 = · · · = σk, where G0 and µi are unknown. Under the location-

scale family assumption, any other scale parameter such as the mean absolute de-

viation from the median is related to the standard deviation by E|Xij − θi| = cσi,

i = 1, . . . , k, for some constant c. For example, if G0 is the standard normal distri-

bution, E|Xij − θi| =
√

2/πσi = .798σi, and here c = 0.798. Thus, a test for equality

of scale parameters is represented as H0 : cσ1 = · · · = cσk, which is equivalent to the

null hypothesis of equality of standard deviations or of variances.
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1.2.2 The LevMed Test

Definition

Let Zij = |Xij − Mi|, where Mi is the sample median for the ith group. The

LevMed test is based on the one-way ANOVA statistic:

F =

∑k
i=1 ni(Zi· − Z ··)

2/(k − 1)
∑k

i=1

∑ni

j=1(Zij − Zi·)2/(N − k)
(1.6)

where Zi· =
∑ni

j=1 Zij/ni and Z ·· =
∑k

i=1

∑ni

j=1 Zij/N . The critical values of F in

(1.6) are obtained from the F distribution with k − 1 and N − k degrees of freedom.

Asymptotic Properties of the Mean Absolute Deviation from the Sample

Median

Here we use the M-estimator method to illustrate the asymptotic validity of com-

paring the LevMed F statistic to an F distribution. Basically, we demonstrate that

the denominator of the F statistic is estimating the common variance of the spread

variables under the null hypothesis. Miller (1968) was the first to give a related

asymptotic argument. To make the notation simpler, we work with a single sample

and just one subscript. Let X1, · · · , Xn be iid from distribution F , where F has den-

sity f , mean µ, median θ1, and the basic LevMed scale parameter is E|Xi − θ1| = θ2,

and var(|Xi − θ1|) = θ3. We show that n times the asymptotic variance of the sample

mean absolute deviation from the sample median is θ3.
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Following the notation in Stefanski and Boos (2002), the estimators of interest

satisfy
∑n

i=1 ψ(Xi, θ̂) = 0, where

ψ(Xi, θ) =





1
2
− I(Xi ≤ θ1)

|Xi − θ1| − θ2

(Xi − θ1)
2 − θ2

2 − θ3




. (1.7)

Note that θ̂3 is the sample variance of the basic spread variables |Xi − θ̂1|. After

making some calculations, we have

A(θ0) = E[−ψ′(X1, θ0)] =





f(θ1) 0 0

0 1 0

2µ1 − 2θ1 2θ2 1




, (1.8)

B(θ0) = E[ψ(X1, θ0)ψ(X1, θ0)
T ], (1.9)

V(θ0) = A(θ0)
−1B(θ0){A(θ0)

−1}T . (1.10)

The (2, 2) element of equation (1.10) is the asymptotic variance of
√
nθ̂2:

v22 = µ′

2 − 2µθ1 + θ2
1 − θ2

2 (1.11)
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where µ′

2 = E(X2
i ). If the LevMed variable Zi = |Xi − θ̂1| is a correct “spread

variable,” we need v22 = θ3. On the other hand, expanding the definition of θ3, we

have

θ3 = E(Xi − θ1)
2 − θ2

2 = µ′

2 − 2µθ1 + θ2
1 − θ2

2, (1.12)

which is the same as v22. Thus, Zi is an appropriate spread variable to be used in t

or F statistics.

Shortcomings of the LevMed Test

Monte Carlo studies carried out by Conover et al. (1981) demonstrated the Type

I and Type II error robustness of the LevMed procedure for moderate sample sizes.

Boos and Brownie (1989) mentioned that when the sample size is odd and less than 8,

the test can be extremely conservative, because zero values of Zij inflate the estimate

of within-group variance in the denominator of the F statistic in equation (1.6).

Subtracting the sample median also causes correlation among the Zij within the

same group. To solve these problems due to subtracting the sample median (instead

of the true but unknown median), when sample sizes are odd and small, O’Brien

(1978) suggested deletion of one observation randomly from each group, and Conover

et al. (1981) suggested deletion of the middle observation in each group. O’Brien’s

suggestion leads to many possible outcomes for the same data set, and the idea of

Conover et al. can lead to liberal tests. Instead, we propose in the next section,
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deleting the smallest ordered Zi. A similar but different proposal was given in Hines

and Hines (2000).

1.2.3 The Modified LevMed Test

We propose a modification of the LevMed test with the goal of improving perfor-

mance when sample sizes are small (n < 10). For the ith sample, let Zi(1), · · · , Zi(ni)

represent the ordered LevMed variables. The conservative behavior of the LevMed

test for ni small and odd, i = 1, · · · , k, is explained in part by noting that Zi(1)

must be 0, and consequently the Zij tend to be negatively correlated and have an

inflated variance. Each of these properties will lead to conservative performance of

the ANOVA F test. When ni is even, a consequence of defining Mi as the average of

the two middle Xij values is that Zi(1) = Zi(2). In small samples, Zi(1) = Zi(2) results

in the within sample variance of Zij being too small, and liberal behavior of the F

test.

Our solution is to delete Zi(1) in each sample and carry out the ANOVA F test on

the reduced set of Zij. The modified LevMed test (MLM) is carried out as follows:

1. Sort the set of the LevMed variables {Zij} within each sample, giving Zi(1), · · · , Zi(ni).

2. Delete Zi(1) from each sample.

3. The remaining scale variables are the set of modified scale variables. We denote

them as {Z∗

ij, j = 1, · · · , ni − 1, i = 1, · · · , k}.
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Similar to the LevMed test, the modified LevMed test is based on the one-way

ANOVA statistic:

F ∗ =

∑k
i=1(ni − 1)(Z

∗

i· − Z
∗

··
)2/(k − 1)

∑k
i=1

∑ni−1
j=1 (Z∗

ij − Z
∗

i·)
2/(N − 2k)

(1.13)

where Z
∗

i· =
∑ni−1

j=1 Z∗

ij/(ni−1) and Z
∗

··
=
∑k

i=1

∑ni−1
j=1 Z∗

ij/(N−k). The critical values

of F ∗ are obtained from the F distribution with k−1 and N −2k degrees of freedom.

The main step of the Levene type tests is to perform the one-way ANOVA test on

a scale variable such as the absolute deviation from the mean or the median. Such

scale variables are not normally distributed, which violates the normally-distributed

assumption of the ANOVA F test. However, the ANOVA F test has been shown to

be robust to non-normality due to the Central Limit Theorem. Box and Andersen

(1955) proposed a correction to the degrees of freedom of the ANOVA F test based

on permutation theory, which can improve the robustness of the ANOVA F test for

means. The main idea of this correction is to match the fourth sample moment of

the permutation test statistic to that of an F variable to get a correction factor by

which the degrees of freedom in the original ANOVA F test are multiplied.

Therefore, another test procedure is obtained by applying the Box-Andersen de-

grees of freedom correction to the one-way ANOVA F test on the modified LevMed

variables. We call this variation of the modified LevMed test the MLM-BA test which

is also based on the ANOVA statistic, F ∗ in the formula (1.13). When k = 2 and
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n1 = n2 = 3, we can’t adjust the degrees of freedom of the ANOVA F test. In other

cases, we can adjust the degrees of freedom of the one-way ANOVA F test. Therefore,

except when k = 2, and n1 = n2 = 3, the critical values of F ∗ are obtained from the

F distribution with d× (k− 1) and d× (N − 2k) degrees of freedom, where d relates

to the estimated kurtosis (Box and Andersen, 1955), and it is given by

d = 1 +
N + 1

N − 1

c2
(N−1 + A)−1 − c2

,where A =
N + 1

2(k − 1)(N − k)

(
k2

N
−

k∑

i=1

1

ni

)
.(1.14)

Here c2 is the estimated kurtosis for the whole sample, c2 = k4/k
2
2, where

k4 =
N(N + 1)S4 − 3(N − 1)S2

2

(N − 1)(N − 2)(N − 3)
, k2 =

S2

N − 1
,

and

Sr =
k∑

i=1

ni∑

j=1

(Xij −X)r

where X is the overall mean of all N observations. For balanced designs with n1 =

n2 = · · · = nk, we can simplify the formula (1.14) to

d = 1 +
N + 1

N − 1

c2
N − c2

.
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1.2.4 Small Sample Properties of the LevMed and Modified

LevMed Variables

The LevMed test and the modified LevMed test are based on comparing the

one-way ANOVA F statistic to an F distribution. For the usual F statistic based

on sample means and variances, the main underlying assumptions are equality of

variances, independence of observations within samples, and normality of the obser-

vations. Various studies have focused on determining the impact of failures of these

assumptions. The effect of inequality of variances is fairly mild if the sample sizes

are roughly equal (Box, 1954). The effect of negative correlation within samples is

that the sample variance divided by sample size overestimates the variance of the

corresponding mean (Box, 1954), causing the test to be liberal. The F statistic is

fairly robust to deviations from normality. In general, kurtosis larger than the normal

distribution kurtosis causes the resulting test to be conservative (Box and Andersen,

1955). Skewness causes the numerator and denominator of the F statistic to be

correlated.

With spread variables used in the F statistics, we also have to worry about the

bias of the mean estimates and whether the sample variances of the variables di-

vided by sample size overestimate the variances of the estimated means due to the

correlation induced within samples by estimating the median. Thus, in the next sub-

sections we focus on these latter two concerns as well as on whether the numerator

and denominator of the F statistics are correlated.
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Sample Means and Variances of LevMed and Modified LevMed Variables

In the usual one-way ANOVA F test, given independent samples {Xij, j = 1, . . . , ni},

i = 1, · · · , k, the sample means X i and the sample variances s2
i are the building blocks

of the F statistic. For the usual ANOVA F test, we have E(X i) = µi (mean unbi-

asedness), and var(X i) can be estimated by s2
i /ni (unless there is correlation within

samples). Actually, we use the pooled estimate of variance s2
P
/ni. In a previous sec-

tion, we showed that for the ith sample, asymptotically the sample variance of the

LevMed Zij divided by the ith sample size, ni, estimates the variance of the mean

of the Zij, var(Zi·). Here we explore by simulation how well this property holds in

small samples. In addition we study the small sample bias of the sample mean of

the LevMed and the modified LevMed variables. The bias itself is not the concern,

but the fact that the bias changes with sample size is a problem for data sets where

the ni are small and different. Thus, under a null hypothesis of equal scale, if the

bias is different for different sample sizes, then given unbalanced data, the numerator

of the F statistic will tend to be proportional to a variable more like a noncentral

chisquared distribution than the required central chisquared distribution.

Suppose that we draw a small sample {Xj, j = 1, · · · , n} from a population with

known distribution. The sample median is θ̂1. The LevMed variables are {Zj =

|Xj− θ̂1|, j = 1, · · · , n} and the modified LevMed variables are {Z∗

j , j = 1, · · · , n−1}.

In the Monte Carlo simulation, we generate S = 10, 000 such samples. For the ith

Monte Carlo sample, let µ̂i be the sample mean of the Z or Z∗, and let s2
i be the sample



17

variance of the Z or Z∗. The average over replicates of µ̂i is µ̂ = (1/S)
∑S

i=1 µ̂i. This

estimates E
(
(1/n)

∑n
j=1 |Xj − θ̂1|

)
, which in turn should estimate θ2 = E|X1 − θ1|,

the mean absolute deviation from the true median θ1.
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Figure 1.1: Left Side: Monte Carlo Estimates of Expectations of the Sample Means
for each of the scale variables, Z and Z∗ versus Sample Size. Right Side: Monte Carlo
Estimates (n ∗ s2

bµ)/s2 for Z and Z∗ versus Sample Size. ◦ ◦ ◦ LevMed Scale or Z,

+++ Modified LevMed Scale or Z∗

The left panels of Figure 1.1 give these average estimates µ̂ versus sample size

for three different distributions, the standard normal, uniform(0,1), and extreme
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value(0,1) distributions. The horizontal line is for the desired target θ2. Clearly the

“+” symbols for the modified LevMed variable are much more stable as n changes

than the LevMed variable represented by open circles. For example, the values esti-

mated by the mean of the LevMed variables at n = 3 and n = 6 are quite different,

whereas the corresponding values for the modified LevMed variables are quite close.

By n = 10 both sets of means are fairly stable, although the means of the modi-

fied variables, Z∗ are closer on average to the true values of θ2, 0.80, 0.25, and 0.97,

respectively, for the three distributions.

The average of the sample variances is s2 = (1/S)
∑S

i=1 s
2
i . We also obtain the

Monte Carlo sample variance of the µ̂i, s
2
bµ = (S − 1)−1

∑S
i=1(µ̂i − µ̂)2. This latter

quantity estimates var(µ̂i), the true variance of the mean estimate. Validity of the

F test requires that var(µ̂i) be estimated by s2/n for each sample. Thus, we want

s2 ≈ n ∗ s2
bµ . To examine whether this relationship holds, we calculated the ratio

(n ∗ s2
bµ)/s2 for each of the two scale variables for each sample size and distribution.

If this ratio is less than one, then the sample variances are too large on average, and

we might extrapolate that the denominator of the F statistic will be too large on

average.

The right panels of Figure 1.1 give these ratios for the three distributions. The

horizontal line is for the target value of 1. Again, we see that the modified LevMed

variables are more stable as n changes and also closer to the target value than the

original LevMed variables. Convergence of both ratios to 1 is slower for the uniform
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distribution than for the other two distributions. The LevMed ratio is especially low

for n = 3. This can be anticipated due to the single 0 value inflating the sample

variance.

Correlation within the Samples

In the usual one-way ANOVA F test, one of the assumptions is that the observa-

tions within samples are independent. In this part, we focus on the correlation within

the samples for the scale variables Z and Z∗.

In the simulation, the distributions are again normal, uniform, and extreme value.

The sample sizes configurations are: (I) n=3, (II) n=4, (III) n=5, (IV) n=6, (V)

n=20 and (VI) n=100. The number of Monte Carlo replications is S=10,000. The

within-sample correlation estimates are summarized in Table 1.1. We compute these

entries as follows. First, we generate a sample {X1, · · · , Xn}, then center them to

get the LevMed variables, {Zj, j = 1, · · · , n} , or the modified LevMed variables,

{Z∗

j , j = 1, · · · , n− 1}. After that, we calculate the correlation between every pair of

scale variables and get the average. For example, when n = 3, we generate a random

sample, {X1, X2, X3}. After centering, we get the LevMed variables, {Z1, Z2, Z3}.

After that, we compute estimated correlations across all S samples between Z1 and

Z2, between Z1 and Z3 and between Z2 and Z3. The average of the 3 estimated

correlations is the entry for LevMed under n = 3.

The entries labeled LevMed(θ1) are results for the LevMed variable using true



20

medians instead of sample medians to calculate the Z values. As we expect, the

correlation estimates for the LevMed(θ1) are essentially 0 for all the cases. For small

sample sizes, both the LevMed variables and the modified LevMed variables lead to

negative within-sample correlations. The effect of negative correlation within samples

is that the sample variance divided by sample size overestimates the variance of the

corresponding mean, causing the test to be conservative. It is apparent that the

within-sample correlations are more strongly negative for the LevMed variables than

for the modified variables, for n odd and small.

Table 1.1: Estimates of Correlations within Samples for the Scale Variables

Sample Size
Distribution Test n=3 n=4 n=5 n=6 n=20 n=100
Normal LevMed(θ1) 0.00 0.00 0.01 0.00 0.00 0.00

LevMed −0.21 −0.01 −0.07 −0.02 0.00 0.00
MLM −0.15 −0.07 −0.04 −0.02 0.00 0.00

Uniform LevMed(θ1) 0.00 0.00 0.00 0.00 0.00 0.00
LevMed −0.29 −0.05 −0.12 −0.04 −0.01 0.00
MLM −0.25 −0.16 −0.10 −0.06 −0.01 0.00

Extreme LevMed(θ1) 0.00 0.00 0.00 0.00 0.00 0.00
Value LevMed −0.18 0.00 −0.06 −0.02 0.00 0.00

MLM −0.12 −0.05 −0.03 −0.02 0.00 0.00
LevMed(θ1) is LevMed using known medians. Entries are based on 10,000
replications and have standard error ≤ 0.01.

Correlation between the Numerator and Denominator of the F Statistics

We also assess the correlation between SSR and SSE based on each of the two scale

variables because under the usual ANOVA assumptions, these two sums of squares

are independent. Here, SSR is the between-group or numerator sum of squares,
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and SSE is the within-group or denominator sum of squares, for the F statistic.

For example, for the LevMed variables {Zij, i = 1, · · · , k; j = 1, · · · , ni}, SSR is

∑k
i=1 ni(Zi· − Z ··)

2, and SSE is
∑k

i=1

∑ni

j=1(Zij − Zi·)
2, where Zi· =

∑ni

j=1 Zij/ni and

Z ·· =
∑k

i=1

∑ni

j=1 Zij/N . Thus the F statistic (1.6) can be written as

F =
SSR/df(SSR)

SSE/df(SSE)
. (1.15)

In the simulation, the distributions are again normal, uniform, and extreme value.

The sample size configurations are: (I) n=3, (II) n=4, (III) n=5, (IV) n=6, (V) n=20

and (VI) n=100. The group size configurations are: (i) k=2, (ii) k=4 and (iii) k=8.

The number of Monte Carlo replications is S=10,000. The correlation estimates

between SSR and SSE are summarized in Table 1.2. The entries labeled LevMed(θ1)

are results for the LevMed variable using true medians instead of sample medians.

The point is that skewness of the variables will cause some amount of correlation, but

the best we might hope for is the correlation present when we use known medians.

For all distributions at n = 3, the correlations for the modified LevMed variables

are closer to the correlations of the known median case than are the original LevMed

variables. This reverses at the normal and uniform for n = 4. Generally, the correla-

tions are a little closer for the modified variables, but we have trouble drawing strong

conclusions from this table.
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Table 1.2: Estimates of Correlation between SSR and SSE

Sample Size
Distribution k Test n=3 n=4 n=5 n=6 n=20 n=100
Normal 2 LevMed(θ1) 0.12 0.11 0.11 0.08 0.05 0.03

LevMed 0.38 0.10 0.26 0.07 0.06 0.03
MLM 0.23 0.17 0.18 0.10 0.06 0.03

4 LevMed(θ1) 0.15 0.14 0.12 0.13 0.08 0.03
LevMed 0.47 0.12 0.29 0.14 0.10 0.03
MLM 0.26 0.22 0.19 0.17 0.10 0.03

8 LevMed(θ1) 0.17 0.14 0.14 0.13 0.08 0.03
LevMed 0.48 0.10 0.29 0.14 0.09 0.03
MLM 0.27 0.21 0.18 0.17 0.08 0.03

Uniform 2 LevMed(θ1) −0.28 −0.25 −0.25 −0.23 −0.15 −0.06
LevMed 0.12 −0.21 0.03 −0.17 −0.07 −0.04
MLM 0.09 −0.15 0.00 −0.12 −0.07 −0.04

4 LevMed(θ1) −0.34 −0.32 −0.30 −0.27 −0.16 −0.09
LevMed 0.15 −0.27 0.03 −0.22 −0.09 −0.08
MLM 0.11 −0.19 −0.03 −0.16 −0.09 −0.08

8 LevMed(θ1) −0.38 −0.36 −0.33 −0.32 −0.19 −0.09
LevMed 0.18 −0.29 0.04 −0.23 −0.11 −0.09
MLM 0.13 −0.21 −0.02 −0.16 −0.10 −0.09

Extreme Value 2 LevMed(θ1) 0.58 0.51 0.49 0.44 0.29 0.12
LevMed 0.65 0.35 0.50 0.37 0.24 0.10
MLM 0.53 0.48 0.45 0.41 0.24 0.10

4 LevMed(θ1) 0.63 0.60 0.53 0.51 0.32 0.17
LevMed 0.74 0.47 0.54 0.43 0.28 0.14
MLM 0.64 0.59 0.48 0.48 0.28 0.14

8 LevMed(θ1) 0.64 0.60 0.55 0.55 0.35 0.17
LevMed 0.77 0.45 0.59 0.47 0.30 0.14
MLM 0.65 0.59 0.53 0.51 0.30 0.14

LevMed(θ1) is LevMed using true medians. Entries are based on 10,000
replications and have standard error from 0.007 to 0.026.

Discussion

The simulation results of the previous subsections suggest that an F statistic

calculated on the modified LevMed variables may perform better than that based on
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the original LevMed variables. However, because there are a number of competing

aspects, we proceed to a direct comparison of the test procedures in the next section.

1.3 Simulations

1.3.1 Other Tests for equality of variances or Scale

Our goal in this section is to compare by simulation the modified LevMed proce-

dures including the MLM test and the MLM-BA test to the classical LevMed pro-

cedure and to some other tests for equality of variances or scale. Because it is well

known that normal-theory tests such as Bartlett’s test are sensitive to non-normality,

and these have been reported on extensively elsewhere, we will not consider nonrobust

normal-theory tests here. The other robust tests used in our simulation are defined

in the next few subsections.

Shoemaker’s Test

Shoemaker (2003) proposed a new homogeneity of variances test that is robust to

non-normality. Let s2
i be the sample variance of the ith sample, {Xij, j = 1, · · · , ni},

and qi = ln(s2
i ). Shoemaker (2003, p. 107) suggests

χ2 =
k∑

i=1

(qi − q)2

1
ni−1

(
bµ4

bσ4 − ni−3
ni

) , (1.16)
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where µ̂4 =
∑

i

∑
j(Xij − X i)

4/N and σ̂2 =
∑

i(ni − 1)s2
i /N . The denominator

of (1.16) is an estimate of var(qi) designed for small samples. Shoemaker (2003)

suggested using the harmonic mean of ni’s, nh = k
1

n1
+ 1

n2
+···+ 1

nk

instead of individual

ni in the formula (1.16). The critical values of χ2 are obtained from a chi-squared

distribution with k − 1 degrees of freedom.

Procedure Based on Gini’s Mean Difference

Miller (1968) proposed a general method of constructing spread variables to be

used in the ANOVA F statistic based on jackknife pseudo-values. Here we use the

Miller idea with a well-known scale estimator, Gini’s mean difference, which is highly

efficient across a range of distributions (e.g., see Johnson and Kotz, 1970, p. 67).

For two independent observations from the ith group, Gini’s mean difference scale

parameter is θi = E|Xi1 −Xi2|. It is unbiasedly estimated by the U -statistic

θ̂i =
1(
ni

2

)
∑

j<k

|Xij −Xik|

or by the simpler to compute L-statistic version

θ̂i =
1(
ni

2

)
ni∑

j=1

(2j − ni − 1)Xi(j),

where Xi(1) ≤ Xi(2) ≤ . . . ≤ Xi(ni) are the ordered values of the ith sample.
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To implement the Miller method, define the pseudo-values for the ith sample as

uij = niθ̂i − (ni − 1)θ̂i,−j,

where the notation θ̂i,−j refers to the estimator in the ith group with Xij removed

from the sample. The Gini test is then based on the one-way ANOVA F statistic of

the new variables,

FGINI =

∑
i ni(ūi· − ū··)

2/(k − 1)∑
i

∑
j(uij − ūi·)2/

∑
i(ni − 1)

(1.17)

where ūi =
∑
uij/ni and ū·· =

∑∑
uij/N . The critical values of FGINI are obtained

from the F -distribution with k − 1 and N − k degrees of freedom.

Bootstrap Version of the LevMed Test

Boos and Brownie (1989) introduced the bootstrap technique for tests of scale

equality. Basically, the idea is to resample from the pooled set of residuals obtained

by subtracting group trimmed means within each sample. In the simulations of the

next subsection, we include a bootstrap version of LevMed. That is, the p-values

for the LevMed F statistic are obtained from a bootstrap resample procedure rather

than from the F distribution. Details may be found in Boos and Brownie (1989) or

Lim and Loh (1996).
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1.3.2 Null Simulations

Comparison with Other Tests for Variances

We compare the Type I error robustness of the modified LevMed (MLM) test and

the MLM-BA test to the other four tests: the LevMed test (LM), Shoemaker’s (SH)

test, the F test on pseudo-values based on Gini’s mean difference (Gini), and the

bootstrap version of LevMed (BLM). The three distributions are: (1) Normal (0,1),

(2) Uniform (0,1), and (3) Extreme Value (0,1). The group size configurations are: (i)

k=2, (ii) k=4, and (iii) k=8. In the balanced design, the sample size configurations

are: (I) n = 3, (II) n = 4, (III) n = 5, (IV) n = 6, (V) n = 7, (VI) n = 8, (VII)

n = 9, (VIII) n = 10, (IX) n = 20, and (X) n = 100. We use S=1,000 Monte Carlo

replications. For BLM, the bootstrap replication size is B = 499. The nominal Type

I error rate is 0.05.

We summarize the results in Tables 1.3-1.5 for the three distributions, respectively.

Note that we only report two decimal places in the tables because the standard error

of the entries is approximately
√

(.95)(.05)/1000 = .007.

Tables 1.3-1.5 show that all six tests except Shoemaker’s test and LevMed for

n = 4 are conservative. Shoemaker’s test is liberal for many cases. At the bottom of

these three tables we have calculated a column mean and the mean absolute deviation

from .05, MAD = (1/30)
∑ |entry − .05|. The column mean shows that the new

modified LevMed (MLM) is less conservative on average compared to the LevMed

test, but it is not as good as the bootstrapped version. The procedure based on Gini’s
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Table 1.3: Estimated Levels for the Normal Distribution, α = 0.05

k n LevMed MLM MLM-BA BLM SH Gini

2 3 0.00 0.05 0.05 0.01 0.07 0.00
2 4 0.07 0.04 0.04 0.03 0.05 0.03
2 5 0.01 0.04 0.05 0.05 0.07 0.03
2 6 0.05 0.04 0.04 0.04 0.05 0.03
2 7 0.02 0.05 0.05 0.05 0.05 0.05
2 8 0.04 0.04 0.04 0.05 0.06 0.04
2 9 0.03 0.04 0.05 0.05 0.06 0.04
2 10 0.03 0.04 0.04 0.05 0.06 0.04
2 20 0.04 0.04 0.04 0.04 0.05 0.04
2 100 0.06 0.06 0.06 0.06 0.06 0.06

4 3 0.00 0.04 0.04 0.03 0.10 0.00
4 4 0.07 0.03 0.04 0.05 0.07 0.02
4 5 0.00 0.04 0.04 0.04 0.05 0.01
4 6 0.03 0.02 0.03 0.04 0.05 0.02
4 7 0.01 0.03 0.04 0.05 0.05 0.02
4 8 0.03 0.03 0.04 0.04 0.04 0.03
4 9 0.01 0.05 0.05 0.05 0.04 0.03
4 10 0.04 0.05 0.06 0.07 0.06 0.05
4 20 0.03 0.04 0.05 0.05 0.07 0.04
4 100 0.04 0.04 0.04 0.05 0.04 0.04

8 3 0.00 0.03 0.03 0.03 0.12 0.00
8 4 0.06 0.02 0.02 0.05 0.08 0.00
8 5 0.00 0.04 0.04 0.04 0.07 0.02
8 6 0.03 0.03 0.03 0.05 0.07 0.01
8 7 0.01 0.04 0.04 0.05 0.06 0.03
8 8 0.03 0.04 0.04 0.06 0.06 0.03
8 9 0.01 0.03 0.03 0.04 0.04 0.02
8 10 0.04 0.05 0.05 0.06 0.05 0.03
8 20 0.03 0.04 0.04 0.05 0.06 0.03
8 100 0.04 0.04 0.04 0.05 0.06 0.04

Column Mean 0.029 0.039 0.040 0.046 0.061 0.028
MAD from .05 0.025 0.012 0.011 0.007 0.013 0.023

Note: Entries based on 1,000 replications. Standard error of main

entries ≤ (.88 ∗ .12/1000)1/2 = .01. “MAD from .05” is the mean
absolute deviation from .05. Standard error of summary statistics
in the last two rows range from .001 to .004.
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Table 1.4: Estimated Levels for the Uniform distribution, α = 0.05

k n LevMed MLM MLM-BA BLM SH Gini

2 3 0.00 0.03 0.03 0.02 0.06 0.00
2 4 0.09 0.05 0.06 0.05 0.05 0.04
2 5 0.01 0.04 0.04 0.04 0.04 0.03
2 6 0.04 0.04 0.03 0.04 0.04 0.03
2 7 0.01 0.04 0.04 0.05 0.04 0.03
2 8 0.04 0.04 0.04 0.05 0.04 0.04
2 9 0.02 0.03 0.03 0.04 0.04 0.04
2 10 0.04 0.04 0.04 0.05 0.04 0.04
2 20 0.04 0.05 0.05 0.06 0.06 0.06
2 100 0.04 0.04 0.04 0.05 0.05 0.05

4 3 0.00 0.02 0.02 0.01 0.10 0.00
4 4 0.09 0.02 0.02 0.06 0.06 0.01
4 5 0.00 0.01 0.01 0.02 0.05 0.01
4 6 0.03 0.02 0.02 0.03 0.05 0.02
4 7 0.00 0.03 0.03 0.04 0.05 0.03
4 8 0.03 0.03 0.03 0.04 0.04 0.03
4 9 0.01 0.03 0.03 0.04 0.04 0.03
4 10 0.02 0.02 0.02 0.04 0.04 0.02
4 20 0.03 0.03 0.03 0.04 0.04 0.03
4 100 0.05 0.06 0.06 0.07 0.06 0.05

8 3 0.00 0.01 0.01 0.01 0.14 0.00
8 4 0.07 0.01 0.02 0.06 0.10 0.01
8 5 0.00 0.01 0.01 0.01 0.08 0.01
8 6 0.02 0.01 0.01 0.03 0.06 0.01
8 7 0.00 0.02 0.02 0.03 0.06 0.02
8 8 0.02 0.01 0.01 0.04 0.04 0.01
8 9 0.00 0.01 0.01 0.02 0.04 0.01
8 10 0.01 0.02 0.02 0.04 0.04 0.02
8 20 0.02 0.03 0.03 0.04 0.06 0.03
8 100 0.03 0.04 0.04 0.05 0.04 0.04

Column Mean 0.025 0.028 0.028 0.039 0.055 0.025
MAD from .05 0.031 0.023 0.023 0.014 0.014 0.026

Note: Entries based on 1,000 replications. Standard error of main

entries ≤ (.86 ∗ .14/1000)1/2 = .01. “MAD from .05” is the mean
absolute deviation from .05. Standard error of summary statistics
in the last two rows range from .001 to .004.
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Table 1.5: Estimated Levels for the Extreme Value distribution, α = 0.05

k n LevMed MLM MLM-BA BLM SH Gini

2 3 0.00 0.05 0.05 0.03 0.10 0.00
2 4 0.08 0.03 0.05 0.03 0.08 0.03
2 5 0.01 0.04 0.05 0.04 0.07 0.03
2 6 0.04 0.03 0.05 0.05 0.07 0.04
2 7 0.03 0.06 0.06 0.07 0.08 0.06
2 8 0.04 0.05 0.06 0.05 0.07 0.05
2 9 0.03 0.06 0.07 0.06 0.08 0.05
2 10 0.03 0.03 0.04 0.04 0.06 0.04
2 20 0.04 0.05 0.06 0.05 0.08 0.05
2 100 0.04 0.04 0.04 0.04 0.05 0.04

4 3 0.00 0.03 0.05 0.03 0.11 0.00
4 4 0.07 0.03 0.04 0.05 0.06 0.02
4 5 0.01 0.02 0.03 0.03 0.07 0.02
4 6 0.03 0.03 0.04 0.05 0.08 0.04
4 7 0.01 0.03 0.04 0.04 0.06 0.03
4 8 0.04 0.05 0.06 0.06 0.09 0.05
4 9 0.03 0.05 0.06 0.06 0.06 0.05
4 10 0.04 0.05 0.06 0.06 0.08 0.05
4 20 0.04 0.04 0.04 0.05 0.06 0.05
4 100 0.05 0.05 0.05 0.05 0.05 0.05

8 3 0.00 0.04 0.05 0.04 0.13 0.00
8 4 0.09 0.04 0.04 0.08 0.11 0.02
8 5 0.00 0.03 0.04 0.04 0.08 0.02
8 6 0.04 0.04 0.04 0.06 0.08 0.02
8 7 0.01 0.04 0.05 0.05 0.07 0.04
8 8 0.03 0.03 0.04 0.05 0.06 0.03
8 9 0.01 0.03 0.04 0.05 0.05 0.03
8 10 0.04 0.05 0.05 0.06 0.06 0.04
8 20 0.03 0.05 0.05 0.05 0.06 0.04
8 100 0.04 0.05 0.05 0.05 0.05 0.05

Column Mean 0.032 0.041 0.047 0.049 0.074 0.035
MAD from .05 0.024 0.011 0.007 0.008 0.024 0.016

Note: Entries based on 1,000 replications. Standard error of main

entries ≤ (.87 ∗ .13/1000)1/2 = .01. “MAD from .05” is the mean
absolute deviation from .05. Standard error of summary statistics
in the last two rows range from .001 to .004.
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mean difference is the most conservative overall but appears to be slightly better than

the LevMed test for the extreme value distribution. An important conclusion from

these tables is that the new modified LevMed (MLM) is a definite improvement over

the established LevMed procedure for sample sizes n = 3 to n = 5. That was our

original goal for creating the modified procedure. Results from the MLM-BA test are

similar to the results from the MLM test for the normal distribution and the uniform

distribution. Under the extreme value distribution, the MLM-BA test improves the

performance of the MLM test, which shows that the Box-Andersen correction plays

an important role for skewed distributions. The good point is that the MLM-BA test

performs as well as the bootstrapped version, BLM.

Table 1.6 summarizes some results for unbalanced designs. The results for the

unbalanced designs are consistent with those for the balanced design. The modified

LevMed test also improves the null performance under the unbalanced design, espe-

cially for the normal and extreme value distributions. At the bottom of the table

we have also calculated a column mean and the MAD from .05. The column mean

shows that the modified LevMed test is less conservative on average compared to the

LevMed test, especially for the normal and extreme value distributions. The MAD

from .05 shows that the modified LevMed test can lead to estimates of significance

levels closer to the nominal rate than the LevMed test. Table 1.6 does not include

results for the MLM-BA test because it leads to results similar to the MLM test.
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Table 1.6: Estimated Levels of Nominal 0.05 tests for Unbalanced Designs

Distribution
Sample Size Normal Uniform Extreme Value

LevMed MLM LevMed MLM LevMed MLM
(5,15) 0.02 0.05 0.02 0.04 0.02 0.04
(3,4) 0.04 0.05 0.04 0.04 0.04 0.04
(3,8) 0.01 0.04 0.04 0.02 0.02 0.05
(4,7) 0.03 0.03 0.03 0.03 0.04 0.04
(5,20) 0.03 0.04 0.07 0.05 0.02 0.06
(6,19) 0.04 0.04 0.04 0.03 0.03 0.04

(5,5,15,15) 0.01 0.04 0.02 0.02 0.03 0.06
(5,5,5,15) 0.00 0.04 0.01 0.03 0.01 0.05

(5,15,15,15) 0.02 0.05 0.02 0.03 0.03 0.05
(3,3,4,4) 0.03 0.02 0.03 0.03 0.03 0.05
(3,3,3,4) 0.01 0.04 0.01 0.01 0.01 0.04
(3,4,4,4) 0.05 0.03 0.05 0.02 0.05 0.04
(4,4,7,7) 0.03 0.04 0.02 0.02 0.04 0.04
(4,4,4,7) 0.04 0.03 0.04 0.03 0.04 0.03
(4,7,7,7) 0.01 0.03 0.01 0.03 0.02 0.03
(3,3,8,8) 0.02 0.04 0.02 0.01 0.01 0.05
(3,3,3,8) 0.01 0.05 0.01 0.02 0.01 0.05
(3,8,8,8) 0.03 0.04 0.03 0.02 0.03 0.06

(5,5,5,5,15,15,15,15) 0.01 0.04 0.01 0.01 0.02 0.06
(5,5,5,5,5,5,5,15) 0.00 0.03 0.00 0.01 0.01 0.06

(5,15,15,15,15,15,15,15) 0.02 0.04 0.00 0.02 0.02 0.04
Column Mean 0.021 0.037 0.024 0.025 0.025 0.047

MAD from 0.05 0.029 0.013 0.027 0.025 0.025 0.009

Entries are based on 1,000 replications. Standard Error of individual entries
≤ (.93 ∗ .07/1000)1/2 = 0.01

Relationship between the Estimated Type I Error Rates and Sample Sizes

and Number of Groups

To further illustrate the comparison between the LevMed test and the new modi-

fication, we have increased the Monte Carlo sample size to S=10,000 replications and

made a series of plots of the Estimated Type I error versus sample sizes per group
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with the LevMed on the left and the new modification on the right. Figures 1.2-1.4

are for the normal distribution, the uniform distribution, and the extreme value dis-

tribution, respectively. Figures 1.2-1.4 are at the end of the chapter due to space

considerations.

The plots for the modified LevMed test are much more stable than those for the

LevMed test. The ranges of the estimated levels (from 0.02 to 0.05) for the modified

LevMed test are much smaller than the ranges of the LevMed test (from 0 to 0.07) for

small sample sizes. As k increases, both the LevMed test and the modified LevMed

test become more conservative for small sample sizes.

Finally, we give two more pages of plots at the end of the chapter to illustrate

better how the Type I error rates of the modified LevMed procedure change as k

increases. In Figure 1.5 we have taken the data from Figures 1.2-1.4 and put the

graphs for a given distribution on the same row with k increasing as we move from

left to right. In addition we have used a local smoother to track the trend as sample

size increases. In Figure 1.6 we have put the local smoothers for all three group

numbers, k = 2, k = 4, and k = 8, on the same plot but without the individual

points. In both sets of plots we can see that an increase in k causes the procedure to

be more conservative.
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1.3.3 Power

We now compare the power of the modified LevMed test (MLM) and the MLM-

BA test to power of the other 4 tests. The sample size configurations are n=3, 4, 5, 6,

7, 8, 9, 10, and 20. The variance configurations are (1:4), (1:8), (1:6:11:16), (1:1:1:16),

(1:1:1:8:8:8:16:16) and (1:1:1:1:1:1:16:16). We use S=1,000 Monte Carlo replications

with the nominal rate equal to 0.05. The results are summarized in Tables 1.11-1.13

at the end of the chapter.

In these tables we see important power gains at n = 3, 5, 7, and 9 for the modified

LevMed procedure compared to LevMed. When sample sizes reach n = 20 all the

procedures are similar in power. A very crude summary is to take the mean of the

columns for each table. The results are summarized in Table 1.7. The underline

emphasizes the most powerful test for every distribution. Thus, the modified pro-

cedure has an overall gain in power of about .05 when compared to LevMed, and

the bootstrapped LevMed has an average .02 gain in power compared to the mod-

ified procedure. Amazingly, the MLM-BA test generally has higher power than the

bootstrapped LevMed test and the MLM-BA test is much simpler to perform, which

indicates that the Box-Andersen correction can improve the power of the modified

LevMed test. The Gini procedure has power in between the LevMed and the modified

LevMed procedure. The Shoemaker procedure has good power, but the comparison

is unfair due to its inflated Type I error.
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Table 1.7: Comparison of Average Power Among the Six Tests

Distribution
Test Normal Uniform Extreme Value
LevMed 0.48 0.53 0.43
MLM 0.53 0.57 0.48
MLM-BA 0.56 0.60 0.52
BLM 0.55 0.59 0.50
SH 0.54 0.61 0.51
Gini 0.51 0.59 0.45

Note: Entries based on the results of Table 1.11-1.13.

Standard error of entries ≤ 0.002.

1.4 Example

Phadke et. al (1983) reported on an off-line quality control experiment in the

fabrication of integrated circuit chips. We will use part of the data to illustrate the 6

tests used in the simulations.

In order to choose process conditions to minimize variance in contact window

sizes of integrated circuit chips, Phadke et. al (1983) conducted an experiment with

18 combinations of levels of factors. For every experimental unit (of 18 experimen-

tal units), there are 5 specific measured locations such as “Top,” “Bottom,” “Left,”

“Right,” and “Center” locations. Most of the experimental units have 10 observa-

tions (2 measurements for every location) except units 5, 15 and 18 which have 5

observations (only 1 measurement for every location). We use part of the “pre-etch”

window size data to compare the six tests. In our example, if we use the experimen-

tal units 1-4, then k = 4 and if we use experiments 1-8, then k = 8. If we use the

first 3 observations for every experimental unit, then n = 3, and the experimental
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unit is measured at the “Top,” “Center,” “Bottom,” locations. If we use the first

4 observations for every experimental unit, then n = 4, and the experimental unit

is measured at the “Top,” “Center,” “Bottom,” and “Left” locations. When n = 5,

the experimental unit is measured at the “Top,” “Center,” “Bottom,” “Left,” and

“Right” locations.

Table 1.8 summarizes the data including the mean and the sample standard devi-

ation for every case. The standard deviation is a measure of variation within a chip

and not between chips produced under the same factor settings.

Table 1.8: Summary Statistics of Data from Off-Line Quality Control Study

Statistic Mean SD
Size n=3 n=4 n=5 n=3 n=4 n=5
h=1 2.53 2.53 2.52 0.10 0.08 0.07
h=2 2.72 2.69 2.66 0.05 0.07 0.10
h=3 2.77 2.72 2.64 0.06 0.12 0.19
h=4 2.10 2.07 2.08 0.10 0.10 0.09
h=5 1.91 1.88 1.87 0.15 0.13 0.12
h=6 2.54 2.52 2.52 0.03 0.05 0.04
h=7 2.03 2.02 2.02 0.07 0.06 0.05
h=8 3.42 3.34 3.28 0.26 0.27 0.26
h=9 2.99 2.91 2.88 0.08 0.18 0.17
h=10 2.57 2.54 2.51 0.11 0.10 0.11
h=11 3.24 3.23 3.21 0.07 0.06 0.06
h=12 3.29 3.28 3.24 0.07 0.06 0.09
h=13 2.59 2.58 2.58 0.03 0.03 0.03
h=14 2.28 2.26 2.27 0.15 0.13 0.11
h=15 2.49 2.47 2.46 0.03 0.04 0.04
h=16 2.64 2.66 2.64 0.10 0.09 0.08

From Table 1.9, we can see that the MLM test, the MLM-BA test and the BLM

test produce similar results. The SH test and the Gini test lack power for small
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Table 1.9: P-Values for tests of equality of within chip variance using subsets of data
from an Off-Line Quality Control Study

k=4 k=8 k=16
Test n=3 n=4 n=5 n=3 n=4 n=5 n=3 n=4 n=5
LevMed 0.83 0.87 0.32 0.37 0.03 0.18 0.73 0.07 0.13
MLM 0.63 0.90 0.18 0.04 0.12 0.09 0.29 0.24 0.03
MLM-BA 0.63 0.90 0.13 0.04 0.10 0.07 0.29 0.23 0.03
BLM 0.59 0.86 0.12 0.04 0.05 0.06 0.11 0.09 0.01
SH 0.67 0.84 0.41 0.51 0.54 0.17 0.80 0.61 0.18
Gini 0.83 0.92 0.28 0.37 0.19 0.10 0.73 0.39 0.06

sample sizes because they can’t detect difference in variances for the case with k = 8

and n = 3 or the case with k = 8 and n = 4. The LevMed test does not detect

heterogeneity of variances for the case with k = 8 and n = 3, while the MLM test

and the BLM test provide evidence of variance heterogeneity. On the other hand, the

MLM test misses the heterogeneity of variances for the case with k = 8 and n = 4,

while the LevMed test and the BLM test can detect it. This is in part because the

LevMed test tends to be liberal and consequently has more power than the MLM test

for small and even sample sizes. In contrast, the MLM test has more power than the

LevMed test for the small and odd sample sizes because it avoids the conservative

behavior shown by the LevMed test for n = 3 and n = 5.
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1.5 Comparison with the Hines LevMed Test (Hines

and Hines, 2000)

Hines and Hines (2000) proposed a modification of the LevMed test (the Hines

LevMed test) by removing linear dependencies (structural zeros) among the LevMed

variables, which is similar to our Modified LevMed test. Suppose that (Zi(1), · · · , Zi(ni))

are the ordered LevMed variables for the ith group. If the sample size ni is odd,

the Hines LevMed test deletes the smallest value, Zi(1) = 0. If the sample size is

even, then Zi(1) = Zi(2) and the pair of values Zi(1) and Zi(2) is replaced by the pair

(Zi(2) −Zi(1))/
√

2 ( = 0) and (Zi(2) +Zi(1))/
√

2. The resulting structural zero is then

deleted. ANOVA is then applied to the remaining Z values. When the sample size

is odd for all k groups, the Hines test is the same as the MLM test. When any of

the sample sizes is even, the smallest Z value for that group is (Zi(1) + Zi(2))/
√

2 for

Hines LevMed, compared to (Zi(1) + Zi(2))/2 for the MLM procedure.

To further illustrate the comparison between the modified LevMed and the Hines

test, we have made a series of plots of the estimated Type I error versus sample sizes

per group with the Hines test on the left and the MLM on the right. Figures 1.7-

1.9 are for the normal distribution, the uniform distribution, and the extreme value

distribution, respectively. These three figures are at the end of the chapter due to

space considerations. For n odd, the Hines and MLM tests are the same, but for n

even and small, estimated levels are noticeably greater for the Hines test. For small
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Table 1.10: Comparison of Estimates of Levels between the Modified LevMed test
and Hines test for Even Sample Sizes

Distribution
k n Normal Uniform Extreme Value

Hines MLM Hines MLM Hines MLM
2 4 0.07 0.04 0.09 0.05 0.07 0.03
2 6 0.05 0.04 0.06 0.04 0.05 0.03
2 8 0.05 0.04 0.05 0.04 0.06 0.05
2 10 0.04 0.04 0.06 0.04 0.04 0.03
2 20 0.04 0.04 0.05 0.05 0.05 0.05
2 100 0.06 0.06 0.05 0.04 0.04 0.04
4 4 0.07 0.03 0.08 0.02 0.07 0.03
4 6 0.05 0.02 0.04 0.02 0.06 0.03
4 8 0.04 0.03 0.04 0.03 0.06 0.05
4 10 0.06 0.05 0.03 0.02 0.06 0.05
4 20 0.05 0.04 0.04 0.03 0.04 0.04
4 100 0.04 0.04 0.06 0.06 0.05 0.05
8 4 0.06 0.02 0.06 0.01 0.09 0.04
8 6 0.05 0.03 0.03 0.01 0.06 0.04
8 8 0.06 0.04 0.03 0.01 0.05 0.03
8 10 0.06 0.05 0.02 0.02 0.06 0.05
8 20 0.04 0.04 0.04 0.03 0.05 0.05
8 100 0.04 0.04 0.04 0.04 0.05 0.05
Column Mean 0.052 0.038 0.048 0.031 0.056 0.041

MAD from 0.05 0.006 0.013 0.014 0.020 0.009 0.009
Entries are based on 1,000 replications. Standard Error
of individual entries ≤ (.91 ∗ .09/1000)1/2 = 0.01

n, levels of MLM are consistently conservative, whereas levels of the Hines test show

an oscillating pattern with peaks when n is even. Although similar to the odd/even

pattern for levels of LevMed (Figures 1.2 - 1.4), the Hines modification is clearly an

improvement over LevMed.

The plots for the modified LevMed test are more stable than those for the Hines

test. The ranges of the estimated levels (from 0.02 to 0.05) for the modified LevMed
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test are much smaller than the ranges of the Hines Levene test (from 0.02 to 0.09)

for the small sample sizes.

Because the Hines test is the same with the MLM test for odd sample sizes, Table

1.10 presents levels for the MLM and Hines tests only for even sample sizes. When

n = 4, the Hines test is liberal under all the three distributions. Under the normal

distribution and the uniform distribution, as k, the number of groups, increases, the

Hines test holds its levels better than MLM which becomes more conservative. Under

the extreme value distribution, the Hines test tends to be liberal while the MLM test is

conservative. Except at the extreme value distribution, based on the MAD summary,

the Hines test appears to hold its level better than the MLM test for n small and

even.

We also compare the Hines test to the other tests in terms of power by simulation.

Using the same seeds, Monte Carlo samples were generated for the 30 non-null cases

summarized in Table 1.7 for the six other tests. Power was obtained for each case

for the Hines test and average power was calculated. The resulting average powers

under the normal distribution, the uniform and the extreme value for the Hines test

are 0.55, 0.59 and 0.49, respectively. Compared to the MLM test, the Hines has

slightly greater power for the normal distribution and the uniform distribution due

to its liberal performance for n even and small. However, it does not perform as well

as the MLM-BA test in terms of power.
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1.6 Conclusion

This chapter demonstrates that the modified LevMed (MLM) test can yield valid

levels and good power for most configurations studied. The MLM test performs

well for small and odd sample sizes, where the shortcomings of the LevMed test are

most pronounced. MLM, which differs from the Hines test only if some ni are even,

performs better than the Hines test under skewed distributions, in this case. Although

the modified LevMed test is inferior to the BLM test in terms of level and power, it

is much simpler than the BLM test. The Box-Andersen correction can improve the

power of the Modified LevMed test, especially for skewed distributions. In general

we believe the modified LevMed procedure is a good test for homogeneity of scale.
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1.7 Appendix
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Figure 1.2: Estimated levels versus sample sizes for the normal distribution. Standard
deviations of plotted values are bounded by (40000)−1/2 = .005.
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Modified LevMed Test, Uniform Distribution, k=8

Figure 1.3: Estimated levels versus sample sizes for the uniform distribution. Stan-
dard deviations of plotted values are bounded by (40000)−1/2 = .005.
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Figure 1.4: Estimated levels versus sample sizes for the extreme value distribution.
Standard deviations of plotted values are bounded by (40000)−1/2 = .005.
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Figure 1.5: Plots of estimated Type I error rates versus sample size for the modified
LevMed procedure local smoother added.
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Figure 1.6: Local smoother of estimated Type I error rate versus sample size for the
modified LevMed procedure.
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Figure 1.7: Estimated levels versus sample sizes for the normal distribution. Standard
deviations of plotted values are bounded by (40000)−1/2 = .005.
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Figure 1.8: Estimated levels versus sample sizes for the uniform distribution. Stan-
dard deviations of plotted values are bounded by (40000)−1/2 = .005.
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Figure 1.9: Estimated levels versus sample sizes for the extreme value distribution.
Standard deviations of plotted values are bounded by (40000)−1/2 = .005.
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Table 1.11: Estimated Power for the Normal Distribution, α = 0.05.
k n Variance LevMed MLM MLM-BA BLM SH Gini

2 3 (1,4) 0.00 0.08 0.08 0.04 0.14 0.00
2 4 (1,4) 0.12 0.07 0.08 0.07 0.17 0.06
2 5 (1,4) 0.04 0.13 0.15 0.14 0.22 0.11
2 6 (1,4) 0.16 0.17 0.18 0.16 0.26 0.17
2 7 (1,4) 0.11 0.19 0.22 0.23 0.28 0.19
2 8 (1,4) 0.24 0.26 0.28 0.27 0.36 0.27
2 9 (1,4) 0.21 0.30 0.32 0.31 0.37 0.30
2 10 (1,4) 0.30 0.33 0.35 0.33 0.42 0.35
2 20 (1,4) 0.72 0.74 0.76 0.74 0.84 0.79

2 3 (1,8) 0.00 0.08 0.08 0.07 0.21 0.00
2 4 (1,8) 0.21 0.15 0.16 0.13 0.30 0.13
2 5 (1,8) 0.06 0.18 0.23 0.24 0.41 0.18
2 6 (1,8) 0.28 0.29 0.33 0.29 0.49 0.30
2 7 (1,8) 0.24 0.36 0.41 0.41 0.56 0.37
2 8 (1,8) 0.43 0.47 0.53 0.48 0.65 0.49
2 9 (1,8) 0.47 0.57 0.62 0.61 0.73 0.58
2 10 (1,8) 0.61 0.65 0.69 0.64 0.76 0.68
2 20 (1,8) 0.95 0.96 0.97 0.96 0.98 0.97

4 3 (1,6,11,16) 0.00 0.08 0.10 0.10 0.26 0.00
4 4 (1,6,11,16) 0.19 0.10 0.12 0.14 0.36 0.08
4 5 (1,6,11,16) 0.06 0.20 0.21 0.25 0.48 0.17
4 6 (1,6,11,16) 0.26 0.26 0.28 0.29 0.59 0.23
4 7 (1,6,11,16) 0.21 0.36 0.39 0.41 0.70 0.35
4 8 (1,6,11,16) 0.43 0.48 0.50 0.50 0.77 0.48
4 9 (1,6,11,16) 0.47 0.61 0.62 0.64 0.88 0.64
4 10 (1,6,11,16) 0.62 0.69 0.72 0.69 0.92 0.70
4 20 (1,6,11,16) 1.00 1.00 1.00 1.00 1.00 1.00

4 3 (1,1,1,16) 0.00 0.19 0.29 0.23 0.17 0.00
4 4 (1,1,1,16) 0.38 0.27 0.42 0.28 0.16 0.23
4 5 (1,1,1,16) 0.29 0.46 0.59 0.57 0.27 0.45
4 6 (1,1,1,16) 0.60 0.62 0.72 0.64 0.33 0.61
4 7 (1,1,1,16) 0.68 0.76 0.83 0.81 0.45 0.77
4 8 (1,1,1,16) 0.82 0.85 0.88 0.86 0.53 0.85
4 9 (1,1,1,16) 0.84 0.89 0.92 0.91 0.58 0.89
4 10 (1,1,1,16) 0.92 0.93 0.95 0.94 0.71 0.94
4 20 (1,1,1,16) 1.00 1.00 1.00 1.00 0.99 1.00

Note: Entries based on 1,000 replications. Standard deviation ≤ (4000)−1/2 = .016.
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Table 1.11 Continued

k n Variance LevMed MLM MLM-BA BLM SH Gini

8 3 (1,1,1,8,8,8,16,16) 0.00 0.11 0.13 0.18 0.32 0.00
8 4 (1,1,1,8,8,8,16,16) 0.33 0.19 0.22 0.25 0.40 0.11
8 5 (1,1,1,8,8,8,16,16) 0.13 0.39 0.42 0.45 0.62 0.30
8 6 (1,1,1,8,8,8,16,16) 0.57 0.62 0.65 0.62 0.75 0.56
8 7 (1,1,1,8,8,8,16,16) 0.58 0.78 0.79 0.79 0.85 0.73
8 8 (1,1,1,8,8,8,16,16) 0.83 0.86 0.87 0.86 0.92 0.85
8 9 (1,1,1,8,8,8,16,16) 0.87 0.95 0.95 0.95 0.96 0.93
8 10 (1,1,1,8,8,8,16,16) 0.95 0.97 0.97 0.97 0.98 0.97
8 20 (1,1,1,8,8,8,16,16) 1.00 1.00 1.00 1.00 1.00 1.00

8 3 (1,1,1,1,1,1,16,16) 0.01 0.22 0.29 0.30 0.12 0.01
8 4 (1,1,1,1,1,1,16,16) 0.54 0.45 0.53 0.45 0.13 0.35
8 5 (1,1,1,1,1,1,16,16) 0.52 0.72 0.78 0.76 0.21 0.66
8 6 (1,1,1,1,1,1,16,16) 0.79 0.82 0.86 0.81 0.32 0.81
8 7 (1,1,1,1,1,1,16,16) 0.88 0.93 0.94 0.94 0.45 0.93
8 8 (1,1,1,1,1,1,16,16) 0.96 0.97 0.98 0.97 0.56 0.97
8 9 (1,1,1,1,1,1,16,16) 0.99 0.99 0.99 0.99 0.67 0.99
8 10 (1,1,1,1,1,1,16,16) 0.99 0.99 0.99 0.99 0.74 0.99
8 20 (1,1,1,1,1,1,16,16) 1.00 1.00 1.00 1.00 1.00 1.00

Note: Entries based on 1,000 replications. Standard deviation ≤ (4000)−1/2 = .016.
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Table 1.12: Estimated Power for the Uniform Distribution, α = 0.05.
k n Variance LevMed MLM MLM-BA BLM SH Gini

2 3 (1,4) 0.00 0.06 0.06 0.04 0.14 0.00
2 4 (1,4) 0.18 0.10 0.12 0.10 0.16 0.10
2 5 (1,4) 0.03 0.13 0.14 0.14 0.20 0.15
2 6 (1,4) 0.19 0.19 0.20 0.20 0.27 0.20
2 7 (1,4) 0.14 0.25 0.26 0.28 0.34 0.29
2 8 (1,4) 0.30 0.33 0.35 0.33 0.45 0.42
2 9 (1,4) 0.28 0.37 0.38 0.41 0.52 0.50
2 10 (1,4) 0.39 0.43 0.45 0.43 0.58 0.55
2 20 (1,4) 0.85 0.87 0.87 0.87 0.96 0.94

2 3 (1,8) 0.00 0.07 0.07 0.04 0.22 0.00
2 4 (1,8) 0.25 0.17 0.19 0.16 0.31 0.16
2 5 (1,8) 0.08 0.21 0.25 0.27 0.43 0.26
2 6 (1,8) 0.38 0.38 0.41 0.38 0.58 0.45
2 7 (1,8) 0.32 0.45 0.50 0.50 0.67 0.55
2 8 (1,8) 0.56 0.60 0.64 0.58 0.77 0.69
2 9 (1,8) 0.57 0.66 0.69 0.69 0.85 0.76
2 10 (1,8) 0.74 0.78 0.81 0.78 0.91 0.87
2 20 (1,8) 0.99 0.99 0.99 1.00 1.00 1.00

4 3 (1,6,11,16) 0.00 0.05 0.05 0.05 0.22 0.00
4 4 (1,6,11,16) 0.25 0.14 0.15 0.20 0.38 0.11
4 5 (1,6,11,16) 0.03 0.18 0.19 0.24 0.51 0.18
4 6 (1,6,11,16) 0.32 0.34 0.35 0.38 0.74 0.38
4 7 (1,6,11,16) 0.25 0.44 0.44 0.51 0.82 0.53
4 8 (1,6,11,16) 0.56 0.61 0.63 0.62 0.93 0.73
4 9 (1,6,11,16) 0.56 0.73 0.74 0.78 0.97 0.83
4 10 (1,6,11,16) 0.77 0.83 0.84 0.82 0.99 0.91
4 20 (1,6,11,16) 1.00 1.00 1.00 1.00 1.00 1.00

4 3 (1,1,1,16) 0.00 0.15 0.25 0.20 0.12 0.00
4 4 (1,1,1,16) 0.41 0.33 0.45 0.35 0.17 0.31
4 5 (1,1,1,16) 0.34 0.52 0.65 0.61 0.25 0.58
4 6 (1,1,1,16) 0.67 0.71 0.80 0.70 0.37 0.75
4 7 (1,1,1,16) 0.76 0.83 0.88 0.88 0.51 0.87
4 8 (1,1,1,16) 0.87 0.89 0.92 0.90 0.67 0.93
4 9 (1,1,1,16) 0.92 0.94 0.96 0.96 0.77 0.96
4 10 (1,1,1,16) 0.97 0.97 0.98 0.98 0.87 0.98
4 20 (1,1,1,16) 1.00 1.00 1.00 1.00 1.00 1.00

Note: Entries based on 1,000 replications. Standard deviation ≤ (4000)−1/2 = .016.
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Table 1.12 Continued

k n Variance LevMed MLM MLM-BA BLM SH Gini

8 3 (1,1,1,8,8,8,16,16) 0.00 0.06 0.06 0.10 0.30 0.00
8 4 (1,1,1,8,8,8,16,16) 0.39 0.22 0.24 0.33 0.48 0.15
8 5 (1,1,1,8,8,8,16,16) 0.11 0.41 0.42 0.49 0.70 0.39
8 6 (1,1,1,8,8,8,16,16) 0.63 0.63 0.65 0.67 0.89 0.68
8 7 (1,1,1,8,8,8,16,16) 0.67 0.84 0.85 0.89 0.98 0.90
8 8 (1,1,1,8,8,8,16,16) 0.91 0.94 0.95 0.95 0.99 0.97
8 9 (1,1,1,8,8,8,16,16) 0.95 0.98 0.98 0.98 1.00 0.99
8 10 (1,1,1,8,8,8,16,16) 0.99 0.99 1.00 0.99 1.00 1.00
8 20 (1,1,1,8,8,8,16,16) 1.00 1.00 1.00 1.00 1.00 1.00

8 3 (1,1,1,1,1,1,16,16) 0.00 0.18 0.24 0.25 0.10 0.00
8 4 (1,1,1,1,1,1,16,16) 0.58 0.45 0.53 0.49 0.14 0.38
8 5 (1,1,1,1,1,1,16,16) 0.51 0.70 0.75 0.74 0.22 0.72
8 6 (1,1,1,1,1,1,16,16) 0.87 0.89 0.92 0.89 0.40 0.90
8 7 (1,1,1,1,1,1,16,16) 0.91 0.96 0.97 0.96 0.58 0.97
8 8 (1,1,1,1,1,1,16,16) 0.99 0.99 0.99 0.99 0.77 1.00
8 9 (1,1,1,1,1,1,16,16) 1.00 1.00 1.00 1.00 0.89 1.00
8 10 (1,1,1,1,1,1,16,16) 1.00 1.00 1.00 1.00 0.95 1.00
8 20 (1,1,1,1,1,1,16,16) 1.00 1.00 1.00 1.00 1.00 1.00

Note: Entries based on 1,000 replications. Standard deviation ≤ (4000)−1/2 = .016.
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Table 1.13: Estimated Power for the Extreme Value Distribution, α = 0.05.
k n Variance LevMed MLM MLM-BA BLM SH Gini

2 3 (1,4) 0.00 0.06 0.06 0.04 0.16 0.00
2 4 (1,4) 0.13 0.08 0.09 0.08 0.20 0.07
2 5 (1,4) 0.02 0.09 0.12 0.12 0.22 0.09
2 6 (1,4) 0.15 0.15 0.19 0.16 0.27 0.14
2 7 (1,4) 0.10 0.17 0.19 0.21 0.29 0.17
2 8 (1,4) 0.18 0.20 0.24 0.21 0.32 0.21
2 9 (1,4) 0.19 0.26 0.31 0.28 0.36 0.27
2 10 (1,4) 0.28 0.30 0.34 0.31 0.42 0.31
2 20 (1,4) 0.57 0.59 0.62 0.60 0.65 0.61

2 3 (1,8) 0.00 0.09 0.09 0.07 0.28 0.00
2 4 (1,8) 0.18 0.11 0.14 0.10 0.34 0.10
2 5 (1,8) 0.06 0.18 0.22 0.21 0.41 0.18
2 6 (1,8) 0.25 0.25 0.31 0.25 0.48 0.26
2 7 (1,8) 0.22 0.31 0.40 0.37 0.52 0.32
2 8 (1,8) 0.36 0.38 0.47 0.40 0.60 0.40
2 9 (1,8) 0.43 0.49 0.58 0.53 0.66 0.51
2 10 (1,8) 0.51 0.55 0.62 0.55 0.68 0.55
2 20 (1,8) 0.89 0.89 0.91 0.90 0.92 0.90

4 3 (1,6,11,16) 0.00 0.09 0.11 0.10 0.29 0.00
4 4 (1,6,11,16) 0.19 0.11 0.13 0.14 0.38 0.07
4 5 (1,6,11,16) 0.05 0.15 0.19 0.20 0.45 0.14
4 6 (1,6,11,16) 0.24 0.24 0.27 0.26 0.55 0.22
4 7 (1,6,11,16) 0.20 0.34 0.38 0.39 0.64 0.33
4 8 (1,6,11,16) 0.33 0.37 0.42 0.39 0.68 0.37
4 9 (1,6,11,16) 0.36 0.48 0.52 0.52 0.73 0.47
4 10 (1,6,11,16) 0.49 0.54 0.58 0.55 0.79 0.54
4 20 (1,6,11,16) 0.95 0.96 0.97 0.96 0.97 0.95

4 3 (1,1,1,16) 0.00 0.15 0.27 0.23 0.18 0.00
4 4 (1,1,1,16) 0.32 0.23 0.38 0.24 0.21 0.20
4 5 (1,1,1,16) 0.26 0.42 0.57 0.52 0.30 0.39
4 6 (1,1,1,16) 0.55 0.55 0.69 0.60 0.36 0.54
4 7 (1,1,1,16) 0.58 0.66 0.77 0.73 0.44 0.68
4 8 (1,1,1,16) 0.72 0.74 0.82 0.77 0.55 0.75
4 9 (1,1,1,16) 0.79 0.84 0.90 0.87 0.58 0.83
4 10 (1,1,1,16) 0.87 0.88 0.92 0.90 0.67 0.88
4 20 (1,1,1,16) 1.00 1.00 1.00 1.00 0.93 1.00

Note: Entries based on 1,000 replications. Standard deviation ≤ (4000)−1/2 = .016.
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Table 1.13 Continued

k n Variance LevMed MLM MLM-BA BLM SH Gini

8 3 (1,1,1,8,8,8,16,16) 0.00 0.10 0.12 0.18 0.33 0.00
8 4 (1,1,1,8,8,8,16,16) 0.30 0.19 0.21 0.23 0.42 0.12
8 5 (1,1,1,8,8,8,16,16) 0.15 0.35 0.38 0.40 0.55 0.26
8 6 (1,1,1,8,8,8,16,16) 0.45 0.46 0.51 0.47 0.69 0.43
8 7 (1,1,1,8,8,8,16,16) 0.45 0.63 0.67 0.67 0.73 0.59
8 8 (1,1,1,8,8,8,16,16) 0.68 0.72 0.75 0.72 0.81 0.68
8 9 (1,1,1,8,8,8,16,16) 0.73 0.83 0.86 0.85 0.85 0.79
8 10 (1,1,1,8,8,8,16,16) 0.85 0.88 0.91 0.88 0.88 0.85
8 20 (1,1,1,8,8,8,16,16) 1.00 1.00 1.00 1.00 0.98 1.00

8 3 (1,1,1,1,1,1,16,16) 0.01 0.20 0.26 0.29 0.16 0.01
8 4 (1,1,1,1,1,1,16,16) 0.47 0.37 0.47 0.38 0.18 0.30
8 5 (1,1,1,1,1,1,16,16) 0.40 0.59 0.67 0.64 0.24 0.53
8 6 (1,1,1,1,1,1,16,16) 0.75 0.77 0.84 0.78 0.35 0.73
8 7 (1,1,1,1,1,1,16,16) 0.77 0.85 0.90 0.88 0.40 0.81
8 8 (1,1,1,1,1,1,16,16) 0.90 0.91 0.94 0.93 0.50 0.89
8 9 (1,1,1,1,1,1,16,16) 0.94 0.96 0.98 0.98 0.59 0.95
8 10 (1,1,1,1,1,1,16,16) 0.97 0.98 0.98 0.98 0.64 0.97
8 20 (1,1,1,1,1,1,16,16) 1.00 1.00 1.00 1.00 0.94 1.00

Note: Entries based on 1,000 replications. Standard deviation ≤ (4000)−1/2 = .016.
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Chapter 2

New Methods Using Levene Type

Tests for RCB Design

2.1 Introducation

Chapter 1 develops new methods using Levene type tests to test equality of dis-

persion for the one-way design. It is easy to extend these tests to the two-way design

with more than one observation per cell. However, in the randomized complete block

design (RCB), a two-way design with only one observation per cell, the situation is

more complicated. Suppose we have independent observations from t treatments in

b blocks. Let Yij be the observation in the ith block from the jth treatment. Table

2.1 shows the format of the data array for the RCB design.
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Table 2.1: Data Array for the RCB Design

Trt 1 Trt 2 . . . Trt t
Block 1 Y11 Y12 . . . Y1t

Block 2 Y21 Y22 . . . Y2t
...

...
...

...
...

Block b Yb1 Yb2 . . . Ybt

2.1.1 Model

Assuming a fixed effects model and homogeneity of variance, the RCB model is

given by:

Yij = µ+ αi + τj + σeij, i = 1, · · · , b, j = 1, · · · , t, (2.1)

where αi represents the effect of the ith block under the constraint
∑b

i=1 αi = 0, τj

the effect of the jth treatment under the constraint
∑t

j=1 τj = 0, σ > 0 and the

eij’s are iid with mean 0 and variance 1. The ANOVA for this model assumes that

the variance of Yij is constant across blocks and treatments. When variances are not

constant across blocks and treatments, by replacing σ in (2.1) by σij, the new RCB

model can be formularized as:

Yij = µ+ αi + τj + σijeij, i = 1, · · · , b, j = 1, · · · , t, (2.2)

where αi represents the ith block effect with
∑b

i=1 αi = 0, τj the jth treatment effect

and
∑t

j=1 τj = 0, and eij’s are iid with mean 0 and variance 1.
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Under (2.2), the expectation of Yij satisfies:

E(Yij) = µ+ αi + τj, i = 1, · · · , b, j = 1, · · · , t. (2.3)

Note that (2.3) is an additive model. Similarly, we can also propose a model for

the standard deviation of Yij that parallels the additive model for means (2.3),

σij = σ + φi + θj, i = 1, · · · , b, j = 1, · · · , t, (2.4)

where φi represents the ith block effect on standard deviation with the constraint

∑b
i=1 φi = 0, θj represents the jth treatment effect on standard deviation with

∑t
j=1 θj = 0, and σij > 0 for any i = 1, · · · , b, j = 1, · · · , t.

If θj 6= 0 for some j, then the standard deviation of Yij is not constant across

treatments. If φi 6= 0 for some i, then the standard deviation of Yij is not constant

across blocks. Therefore, we have two sets of hypotheses:

HT0 : θj = 0, j = 1, · · · , t, vs. HT1 : θj 6= 0 for some j;

HB0 : φi = 0, i = 1, · · · , b, vs. HB1 : φi 6= 0 for some i.
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2.1.2 Normal-Theory Tests

All of the normal-theory tests introduced in this section are only for testing the

homogeneity of column variances (treatment effects on variance) assuming equality

of row variances (no block effects on variance). In other words, these normal-theory

tests are used to test HT0 assuming HB0 is true.

Box (1954b), Graybill (1954), Hartley (1950a) and Russell and Bradley (1958) dis-

cussed tests of the heterogeneity of variances for the RCB design with the assumption

of normality. Russell and Bradley (1958) derived the likelihood ratio test for the case

of only three treatments. Han (1969) proposed two test procedures to test the homo-

geneity of column variances in a two-way design, the multiple correlation test and the

Fmax test. The multiple correlation test is an exact test under normality for designs

with b > t, where t is the number of treatments and b is the number of blocks. The

procedure can be described as follows. Replace the t observations in the ith block by

the ith block mean, Y i. =
Pt

j=1
Yij

t
. The equality of variability across treatments can

be concluded if and only if R, the multiple correlation coefficient between the block

means Y i. and any (t− 1) mean-adjusted observations, Yij − Y i., for j = 2, · · · , t, is

zero. The test statistic is:

FHan =

(
b− t

t− 1

)(
R̂2

1 − R̂2

)
, (2.5)

where R̂ is the empirical estimation of R by using b blocks as individuals. The equality
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of variability across treatments will be rejected at level α if the test statistic is larger

than the 100(1 − α) percentile of the F distribution with t − 1 and b − t degrees of

freedom. O’Neil and Mathews (2002) noted that Han’s test for HT0 requires HB0 to

be true.

Han’s test performs well for testing HT0 assuming HB0 is true under normality.

However, Han’s test is dependent on the parameters αi in (2.2) because the sample

multiple correlation R̂ is related to the values of the αi. Shukla (1972) developed a

new test based on Han’s test that is invariant to the parameters αi.

Han’s test (Han, 1969) and Shukla’s test (Shukla, 1972) are valid under normal-

ity, but very sensitive to non-normality. In addition, when applying Han’s test and

Shukla’s test for equality of variances across treatments, we need to assume no block

effects on variance.

O’Neil and Mathews (2002) developed a weighted least squares modification of the

Levene type test (WLS Levene test) for the RCB design that is more robust than the

OLS Levene test. These two methods using Levene type tests are not only invariant

to the mean parameters αi and τj, but also able to test equality of variances across

treatments without the assumption of equality of variability across blocks. These two

methods will be described in detail in the following sections.
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2.2 Levene Type Tests for the Two-Way RCB De-

sign

From (2.2), we have E|Yij − µ − αi − τj| = σijE|eij| = cσij where c is free of

σij. With this relationship, an RCB ANOVA on the absolute values of the residuals,

|rij| = |Yij − Ŷij| where Ŷij’s are the fitted values from a particular fitting method,

will provide tests of HT0 and HB0. We now discuss how to fit the model in order to

obtain the residuals, rij.

2.2.1 Existing Methods

Two current methods for testing HT0 and HB0, the OLS Levene test and the

WLS Levene test, are based on residuals rij, where the Ŷij are obtained by fitting

(2.2) using ordinary least squares. Standard ANOVA on the absolute value of the

OLS residuals is referred to as the OLS Levene test, whereas a weighted ANOVA on

the OLS residuals (O’Neil and Mathews, 2002) is referred to as the WLS Levene test.

OLS Levene Test

The ordinary least squares Levene test (OLS Levene test) is performed as follows:

1. Use the ordinary least squares method (OLS) to fit the model (2.2) and get the

fitted values, Ŷij = µ̂+ α̂i + τ̂j.

2. Get the absolute values of the OLS residuals, |rij| = |Yij − Ŷij|.
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3. Perform the two-way ANOVA F test on the absolute values of the OLS residuals,

|rij|.

Actually, there are two F tests, one for blocks and one for treatments. Since they

are interchangeable with the same properties, we just refer to the test for treatments

as the “OLS Levene test”.

The simulation results from the next section show that the OLS Levene test for

treatments performs well for the normal distribution except when b is small. Similarly,

the test for blocks perform well except when t is small. The OLS Levene test is

however, highly sensitive to non-normality due to its non-robust estimation method.

In fact, the OLS Levene test is a generalization of Levene’s test (1960) using absolute

deviations from the mean in the one-way model. Miller (1968) showed that this Levene

test (Levene, 1960) is not asymptotically distribution-free. Therefore, it makes sense

that the OLS Levene test is not fully appropriate here either.

WLS Levene Test

O’Neill and Mathews (2002) developed a WLS Levene test for two-way designs

based on the OLS residuals, rij = Yij − Ŷij. Compared to the OLS Levene test, the

only difference is in the third step in which WLS F tests are performed instead of

the two OLS F tests on the absolute residuals. The WLS F -value for testing HT0

or HB0 in an RCB design is simply FWLS = m × FOLS, where m can be obtained

from Table 1 in O’Neill and Mathews (2002). Consider, for example, a study with
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b = 3 and t = 8. In this situation, the appropriate WLS F -value for testing HT0 is

FT ;WLS = m×FT ;OLS, where m = 0.537. Similarly, the appropriate WLS F -value for

testing HB0 is FB;WLS = m × FB;OLS, where m = 0.876 can be obtained from Table

1 by switching the values of b and t.

O’Neill and Mathews (2002) gave the formula to get the multiplier m for the

WLS Levene test. The weights are based on the covariance matrix for the |rij|,

assuming normality of rij. There are three distinct correlations in the correlation

matrix of the standardized residuals, rij. They are ρ1 = −1/(t−1) for the correlation

between any two residuals in the same block, ρ2 = −1/(b − 1) for the correlation

between any two residuals in the same treatment, and ρ3 = 1/[(b − 1)(t − 1)] for

the correlation between any two residuals in different blocks and different treatments.

Based on the correlation matrix of residuals, we can calculate the variance-covariance

matrix, V, for the absolute values of residuals, |rij|. The diagonal elements of V

are the same, ω0 = 1 − 2/π, and there are three distinct off-diagonal elements, ωi =

(2/π)[(1 − ρ2
i )

1/2 + ρi sin
−1(ρi) − 1], i = 1, 2, 3.

With some calculation, the appropriate WLS F -value for testing HT0 in the ran-

domized block design is simply FT ;WLS = m× FT ;OLS, where

m =
ω0 − ω1 − ω2 + ω3

ω0 − ω1 + (b− 1)(ω2 − ω3)
. (2.6)
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Also, the multiplier m to test TB0 is

m =
ω0 − ω2 − ω1 + ω3

ω0 − ω2 + (t− 1)(ω1 − ω3)
. (2.7)

The WLS Levene test is more robust than the OLS Levene test, but it is still not

sufficiently robust to non-normality.

2.2.2 New Methods

The OLS Levene test and the WLS Levene test are not Type I error robust enough

due to their using OLS for fitting the mean parameters. We develop new methods

based on Levene type tests for the two-way RCB design by applying robust estimation

methods in fitting the model (2.2). The least absolute deviation method (LAD) and

Huber M-estimation method are good choices.

LAD Levene

The least absolute deviation method is suggested because it is the natural gen-

eralization to the linear model of using medians for location estimation. The LAD

estimation is a mathematical optimization technique similar to OLS. However, the

OLS is not as robust as the LAD, where the parameters are estimated through mini-

mization of the sum of the absolute values of residuals,
∑b

i=1

∑t
j=1 ρ(Yij−µ−αi−τj),

where ρ(z) = |z|. The difference between OLS and LAD is that ρ(z) = |z| in LAD

instead of ρ = 1
2
z2 in OLS. As pointed out by Huber (1981), a robust regression
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estimation requires ψ(z) = ρ′(z) to be bounded. Obviously, LAD is more robust than

OLS.

The LAD Levene test is performed as follows:

1. Use the least absolute deviation method (LAD) to fit (2.2) and get the fitted

values, Ŷ L
ij = µ̂L + α̂i + τ̂L

j .

2. Get the absolute values of the LAD residuals, |rL
ij| = |Yij − Ŷ L

ij |.

3. Perform the two-way ANOVA F tests on the absolute values of the residuals,

|rL
ij|.

The LAD estimation is robust to outliers but the solutions are not unique. LAD

estimators are not stable because the ρ-function |z| is not strictly convex in z. In the

simulations, we use the quantreg package of R (Koenker, 2004) to perform the LAD

regression. The LAD Levene test is a robust test but is conservative in situations

with small b or t. Good performance of the MLM test in Chapter 1 suggests deletion

of zero values from the set of |rH
ij |. Unfortunately, it is not obvious how to delete

the zero values in rL
ij since different solutions result in different rL

ij = 0. In addition,

deleting multiple zeros will cause unbalanced problem with F tests.

Huber Levene

Huber (1973) introduced robust M-estimation in regression. Here, we use Huber’s

Proposal 2 M-estimation method (Huber, 1964, 1973; Carroll, 1980) to estimate the
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mean parameters in Model (2.2).

It’s well known that the OLS estimates minimize
∑b

i=1

∑t
j=1 ρ(Yij − µ− αi − τj),

where ρ(z) = 1
2
z2 and its influence function ψ(z) = z is unbounded. The quadratic

form of ρ and unboundedness of the influence function result in OLS’s non-robustness

to outliers and non-normality. Huber M-estimation just generalizes OLS by replacing

the quadratic function ρ(z) = 1
2
z2 by

ρ(z) =






z2/2 if |z| ≤ k

|z| if z > k

Huber’s influence function is ψ(z) = ρ′(z) = max(−k, min(z, k)), which is a bounded

function. Huber Proposal 2 M-estimation solves the equations (2.8) and (2.9) simul-

taneously subject to the constraints,
∑b

i=1 αi = 0, and
∑t

j=1 τj = 0:

b∑

i=1

t∑

j=1

ψ((Yij − Xij
Tβ)/σ)Xij = 0 (2.8)

(bt− (b+ t− 1))−1

b∑

i=1

t∑

j=1

ψ2((Yij − Xij
Tβ)/σ) = EΦψ

2(Z) (2.9)

where β = (µ, α1, · · · , αb, τ1, · · · , τt)T and Xij is the design vector such that Xij
Tβ =

µ+ αi + τj. Z in (2.9) is a standard normal random variable.

In this paper, we use Huber’s Proposal 2 method with k = 1. The Huber Levene
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test is performed as follows:

1. Use the Huber Proposal 2 M-estimation method (Huber, 1964) to fit the model

(2.2) and get the fitted values, Ŷ H
ij = µ̂H + α̂H

i + τ̂H
j .

2. Compute the absolute values of the Huber residuals, |rH
ij | = |Yij − Ŷ H

ij |.

3. Perform the two-way ANOVA F test on the absolute values of the residuals,

|rH
ij |.

Bootstrap Versions

We also apply the bootstrap technique to the four tests in the two-way design.

The bootstrap procedure here can be illustrated with the bootstrap version of the

LAD Levene test (BLAD). The BLAD test is carried out as follows.

1. Apply the LAD Levene test to the data {Yij} to get the test statistic for blocks,

TL
1 and the test statistic for treatments, TL

2 .

2. Use Huber Proposal 2 M-estimation to fit model (2.2) and get the residuals

rH
ij = Yij − Ŷ H

ij , i = 1, · · · , b, j = 1, · · · , t, where Ŷ H
ij are the fitted values.

3. Initialize A1 = A2 = 0.

4. Draw N = bt bootstrap errors r∗ij with replacement from the set of residuals

ϕ = {rH
ij : i = 1, · · · , b, j = 1, · · · , t}. Construct a bootstrap data set, Y ∗

ij =

Ŷ H
ij + r∗∗ij , where r∗∗ij =

r∗ij√
(t−1)×(b−1)/(bt)
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5. Apply the LAD Levene test to the data set {Y ∗

ij} to get the bootstrap statistics

TL∗

1 for blocks, and TL∗

2 for treatments. If TL∗

1 > TL
1 , increment A1 to A1 + 1.

If TL∗

2 > TL
2 , increment A2 to A2 + 1.

6. Repeat steps 4 and 5 a total of B = 499 times. The bootstrap p-value for block

is given by A1/B, and the p-value for treatments is given by A2/B.

In the same way, we obtain the bootstrap version of the OLS Levene test (BOLS

test). The only differences are in Step 1 and Step 5. In these two steps, we compute

the OLS Levene test statistic instead of the LAD Levene test statistic. Similarly, for

the bootstrap version of the Huber Levene test (BH), we compute the Huber Levene

test statistic in steps 1 and 5. Note that we need not consider the bootstrap version

of the WLS Levene test because it is identical to the BOLS test.

2.3 Simulation

The goal of this section is to compare by simulation the four Levene type tests,

the LAD Levene test, the OLS Levene test, the WLS Levene test and the Huber

Levene test, in terms of robustness and power. In the simulation, we also include the

bootstrap versions of these tests, namely the bootstrap version of the LAD Levene

test (BLAD), the bootstrap version of the OLS Levene test (BOLS) and the bootstrap

version of the Huber Levene test (BH). We consider three distributions for the errors

eij in (2.2): (1) Normal (0,1), (2) t3 distribution, and (3) Extreme Value. Distributions
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(2) and (3) have been transformed so that all three distributions have mean 0 and

variance 1. We use S=10,000 Monte Carlo replications for the four non-bootstrap

tests. For the three bootstrap tests, we use S=1,000 Monte Carlo replications. The

bootstrap replication size is B = 499. The nominal Type I error rate is 0.05.

For the simulation, we need to give the parameter configurations for (2.2). How-

ever, because the test results are invariant to the mean parameters αi and τj, and we

list the b and t combination without specifying the mean parameters.

(1) b = 5, t = 3; (2) b = 5, t = 4; (3) b = 8, t = 3;

(4) b = 8, t = 4; (5) b = 15, t = 3; (6) b = 15, t = 4.

For a given data set, there are two tests of hypothesis: HT0 vs HT1, which tests

for treatment effects on variance, and HB0 vs HB1, which tests for block effects on

variance. We assess null performance and power of the different test procedures in

the four situations as follows:

1. HT0 and HB0 are both true.

Null performance is assessed for testing HT0 when HB0 is true, and for testing

HB0 when HT0 is true.

2. HT0 is true and HB0 is false.

Null Performance is assessed for testing HT0 when HB1 is true.

Power under an alternative HB1 is assessed when HT0 is true.

3. HT0 is false and HB0 is true.
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Power under an alternative HT1 is assessed when HB0 is true.

Null Performance is assessed for testing HB0 when HT1 is true.

4. HT0 and HB0 are both false.

Power under an alternative HT1 is assessed when HB0 is false, and power under

an alternative HB1 is assessed when HT0 is false.

As we have chosen combinations of (b, t) that are not symmetric, the tests of HT0

vs HT1 and HB0 vs HB1 in the different scenarios do not represent duplication but

provide information about situations where the values of b and t are switched.

2.3.1 Situation I: HT0 and HB0 Both True

In this situation, we estimate the Type I error rate for each hypothesis test given

that the other null is true. In Table 2.2, we summarize results for the four tests that

obtain p-values from the F distribution. The left half summarizes levels for testing

HB0 given absence of treatment effects on variance, and the right half summarizes

levels for testing HT0 when there are no block effects on variance. From Table 2.2, the

LAD Levene test is conservative, especially for extreme situations with a large number

of blocks, b, and small number of treatments, t when testing HB0. For example, the

Type I error rates are much less than .05 for tests of HB0 when t is small. The OLS

Levene test is liberal with unsatisfactory levels except in the case of test of HT0 when

b is large (b = 15). The WLS Levene test is somewhat liberal under the non-normal

distributions, particularly when testingHB0 for b large and t small. The Huber Levene
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Table 2.2: Estimated Levels of Variance Tests in the RCB Design.

Distri- HB0 vs HB1 HT0 vs HT1

bution b t LAD OLS WLS Huber LAD OLS WLS Huber
Normal 5 3 0.000 0.126 0.021 0.007 0.022 0.089 0.058 0.061

5 4 0.005 0.105 0.043 0.074 0.012 0.081 0.039 0.054
8 3 0.000 0.194 0.017 0.002 0.036 0.071 0.054 0.052
8 4 0.002 0.140 0.047 0.082 0.027 0.068 0.044 0.047
15 3 0.000 0.362 0.013 0.000 0.047 0.059 0.049 0.052
15 4 0.000 0.202 0.049 0.094 0.039 0.061 0.052 0.052

Column Mean 0.001 0.188 0.032 0.043 0.031 0.072 0.049 0.053
MAD from 0.05 0.049 0.138 0.018 0.040 0.020 0.022 0.005 0.004

t3 5 3 0.000 0.230 0.056 0.005 0.023 0.099 0.059 0.053
5 4 0.010 0.170 0.068 0.069 0.015 0.112 0.059 0.050
8 3 0.001 0.412 0.113 0.002 0.033 0.074 0.053 0.040
8 4 0.009 0.280 0.111 0.075 0.026 0.090 0.058 0.042
15 3 0.001 0.740 0.241 0.005 0.039 0.065 0.057 0.042
15 4 0.010 0.529 0.228 0.093 0.039 0.075 0.061 0.042

Column Mean 0.005 0.394 0.136 0.042 0.029 0.086 0.058 0.045
MAD from 0.05 0.045 0.344 0.086 0.038 0.021 0.036 0.008 0.006

Extreme 5 3 0.000 0.169 0.027 0.006 0.025 0.095 0.060 0.063
Value 5 4 0.009 0.141 0.057 0.089 0.018 0.100 0.054 0.061

8 3 0.000 0.319 0.045 0.001 0.039 0.076 0.057 0.052
8 4 0.004 0.218 0.074 0.096 0.031 0.091 0.061 0.055
15 3 0.000 0.603 0.093 0.001 0.045 0.070 0.059 0.054
15 4 0.003 0.389 0.125 0.118 0.037 0.083 0.069 0.050

Column Mean 0.003 0.307 0.070 0.052 0.033 0.086 0.060 0.056
MAD from 0.05 0.047 0.257 0.030 0.049 0.018 0.036 0.010 0.006
Note: Individual entries are based on 10,000 replications and have standard
error ≤ 0.005.
OLS: OLS mean-based Levene Test; LAD: LAD Levene Test;
WLS: WLS mean-based Levene Test; Huber: Huber Levene Test

test has better null performance than LAD, OLS and WLS, and but it displays the

oscillation in level seen with LevMed for even and odd sample sizes in the one-way

design. Note that for testing HT0, the number of blocks, b, can be thought of as the

“sample size,” while for the test of HB0, t = 3 and t = 4 are analogous to the n odd



72

and n even sample sizes in the one-way layout. In this table, we also calculate the

column mean and MAD from .05 for every distribution. The column mean and the

MAD from .05 show that the Huber Levene test performs better than the other three

tests.

Table 2.3: Estimated Levels of Variance Tests (Bootstrap Versions) in the RCB Design

Distri- HB0 vs HB1 HT0 vs HT1

bution b t BLAD BOLS BH BLAD BOLS BH
Normal 5 3 0.034 0.023 0.044 0.039 0.048 0.046

5 4 0.043 0.040 0.049 0.052 0.043 0.048
8 3 0.033 0.003 0.030 0.047 0.054 0.055
8 4 0.038 0.032 0.034 0.049 0.044 0.051
15 3 0.018 0.001 0.020 0.054 0.044 0.057
15 4 0.033 0.051 0.058 0.047 0.054 0.062

Column Mean 0.033 0.025 0.039 0.048 0.048 0.053
MAD from 0.05 0.017 0.025 0.014 0.004 0.005 0.005

t3 5 3 0.046 0.025 0.041 0.046 0.042 0.042
5 4 0.053 0.034 0.039 0.065 0.048 0.045
8 3 0.048 0.011 0.043 0.057 0.051 0.056
8 4 0.068 0.036 0.048 0.048 0.056 0.056
15 3 0.034 0.002 0.052 0.038 0.039 0.045
15 4 0.054 0.043 0.042 0.043 0.031 0.033

Column Mean 0.051 0.025 0.044 0.050 0.045 0.046
MAD from 0.05 0.008 0.025 0.007 0.008 0.008 0.008

Extreme 5 3 0.031 0.022 0.038 0.042 0.037 0.038
Value 5 4 0.044 0.032 0.037 0.057 0.045 0.047

8 3 0.033 0.007 0.039 0.037 0.053 0.051
8 4 0.055 0.052 0.057 0.054 0.043 0.045
15 3 0.023 0.001 0.032 0.053 0.052 0.054
15 4 0.048 0.061 0.066 0.056 0.048 0.049

Column Mean 0.039 0.029 0.045 0.050 0.046 0.047
MAD from 0.05 0.013 0.025 0.013 0.007 0.005 0.004
Note: Individual entries are based on 1,000 replications and B=499
Bootstrap resamples.
BLAD: Bootstrap version of LAD Levene Test
BOLS: Bootstrap version of OLS mean-based Levene Test
BH: Bootstrap version of Huber Levene Test
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In Situation I, we also compare by simulation the bootstrap versions of the tests,

namely the BLAD test, the BOLS test and the BH test. The results are summarized

in Table 2.3. In the extreme situations, the BOLS test is conservative especially

when “sample size,” is small and odd, i.e., the test of HB0 when t = 3. In contrast,

the BLAD test and the BH test perform well in this situation. In terms of the

column mean and the MAD from .05, the BH test outperforms the other two tests.

Comparing this table to Table 2.2, we see that the bootstrap technique results in

substantial improvement in the null performance of the original tests.

2.3.2 Situation II: HT0 True, HB0 False

This section aims to estimate levels of the test for treatment effects on variance

in the presence of block effects on variance. In addition, it aims to estimate power of

the test of HB0 vs HB1 given that HT0 is true.

We use the following parameter configurations for Model (2.4), each with θi =

0, i = 1, · · · , t,:

(1) b = 5, t = 3, φ = (0.6, 0.4,−0.3,−0.5,−0.2);

(2) b = 5, t = 4, φ = (−0.5, 0.5, 0.4, 0,−0.4);

(3) b = 8, t = 3, φ = (−0.2, 0.3, 0.8,−0.9, 0.5,−0.8, 0.6,−0.3);

(4) b = 8, t = 4, φ = (−0.5, 0.5, 0.4, 0.2, 0.6,−0.8,−0.3,−0.1);

(5) b = 15, t = 3, φ = (0, 0.9,−0.7, 0.6,−0.3,−0.7, 0.5,−0.45, 0.45,−0.79, 0.79,

0.4,−0.2,−0.5, 0);
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Table 2.4: Estimated Levels for Tests across Treatments and Power for Tests across
Blocks in the RCB Design

Distri- HB0 vs HB1 HT0 vs HT1

bution b t LAD OLS WLS Huber LAD OLS WLS Huber
Norm 5 3 0.000 0.220 0.040 0.004 0.022 0.091 0.055 0.052

5 4 0.024 0.220 0.101 0.147 0.014 0.079 0.038 0.044
8 3 0.001 0.549 0.114 0.004 0.044 0.088 0.066 0.044
8 4 0.028 0.429 0.196 0.244 0.031 0.070 0.045 0.042
15 3 0.002 0.891 0.253 0.009 0.043 0.070 0.060 0.047
15 4 0.079 0.854 0.486 0.499 0.037 0.071 0.056 0.044

Column Mean 0.022 0.527 0.198 0.151 0.032 0.078 0.053 0.046
MAD from 0.05 0.018 0.028 0.009 0.005
t3 5 3 0.000 0.300 0.084 0.004 0.021 0.112 0.063 0.046

5 4 0.026 0.263 0.120 0.117 0.014 0.131 0.066 0.050
8 3 0.005 0.647 0.223 0.010 0.033 0.100 0.075 0.037
8 4 0.040 0.498 0.244 0.182 0.025 0.109 0.073 0.040
15 3 0.013 0.939 0.473 0.027 0.038 0.080 0.067 0.037
15 4 0.107 0.904 0.603 0.348 0.038 0.101 0.082 0.041

Column Mean 0.032 0.592 0.291 0.115 0.028 0.106 0.071 0.042
MAD from 0.05 0.022 0.056 0.021 0.008
Extreme 5 3 0.000 0.264 0.058 0.006 0.024 0.097 0.058 0.051
Value 5 4 0.027 0.254 0.114 0.151 0.016 0.110 0.057 0.060

8 3 0.001 0.612 0.162 0.005 0.036 0.100 0.076 0.045
8 4 0.033 0.499 0.238 0.235 0.032 0.101 0.068 0.049
15 3 0.003 0.933 0.388 0.013 0.040 0.084 0.071 0.044
15 4 0.067 0.907 0.595 0.440 0.037 0.097 0.082 0.048

Column Mean 0.022 0.578 0.259 0.142 0.031 0.098 0.069 0.050
MAD from 0.05 0.019 0.048 0.019 0.004
Note: Individual entries are based on 10,000 replications and have standard
error ≤ 0.005.
OLS: OLS mean-based Levene Test; LAD: LAD Levene Test;
WLS: WLS mean-based Levene Test; Huber: Huber Levene Test

(6) b = 15, t = 4, φ = (0.1, 0.3, 0.7, 0.1, 0.4,−0.9, 0.8, 0.23, 0.4,−0.23, 0.6,

− 0.6,−0.5,−0.7,−0.7).

We summarize the results for the four Levene type tests in Table 2.4. We have

calculated the column mean for levels and power under different distributions. We
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Table 2.5: Estimated Levels for Bootstrap Tests across Treatments and Power for
Bootstrap Tests across Blocks in the RCB Design

Distri- HB0 vs HB1 HT0 vs HT1

bution b t BLAD BOLS BH BLAD BOLS BH
Norm 5 3 0.075 0.028 0.044 0.056 0.053 0.043

5 4 0.105 0.091 0.097 0.060 0.049 0.058
8 3 0.142 0.013 0.097 0.053 0.046 0.043
8 4 0.171 0.126 0.136 0.043 0.037 0.034
15 3 0.139 0.001 0.100 0.060 0.058 0.057
15 4 0.351 0.267 0.293 0.051 0.056 0.062

Column Mean 0.164 0.088 0.128 0.054 0.050 0.050
MAD from 0.05 0.006 0.006 0.010

t3 5 3 0.083 0.024 0.041 0.039 0.035 0.025
5 4 0.085 0.057 0.059 0.055 0.041 0.037
8 3 0.151 0.020 0.105 0.055 0.060 0.053
8 4 0.168 0.085 0.104 0.044 0.043 0.034
15 3 0.159 0.001 0.144 0.046 0.040 0.045
15 4 0.293 0.154 0.188 0.043 0.045 0.038

Column Mean 0.157 0.057 0.107 0.047 0.044 0.039
MAD from 0.05 0.006 0.009 0.012

Extreme 5 3 0.082 0.019 0.045 0.040 0.039 0.040
Value 5 4 0.086 0.078 0.084 0.050 0.055 0.045

8 3 0.121 0.018 0.097 0.048 0.044 0.042
8 4 0.167 0.164 0.153 0.050 0.041 0.040
15 3 0.137 0.002 0.114 0.049 0.061 0.054
15 4 0.284 0.255 0.268 0.060 0.054 0.042

Column Mean 0.146 0.089 0.127 0.050 0.049 0.044
MAD from 0.05 0.004 0.008 0.008
Note: Individual entries are based on 1,000 replications and B=499
Bootstrap resamples.
BLAD: Bootstrap version of LAD Levene Test
BOLS: Bootstrap version of OLS mean-based Levene Test
BH: Bootstrap version of Huber Levene Test

only calculate the MAD from .05 for estimated levels. In the presence of block effects

on variance, estimated levels for testing HT0 in Table 2.4 are similar to those in

Table 2.2. This shows that inequality of variances across blocks has little effct on the
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estimated levels for the test of treatment effects on variance. As for power, the OLS

and the WLS tests have higher power than the other tests, but the comparison is

unfair due to their inflated type I error rates. The LAD Levene test is conservative

with loss of power. The Huber Levene test has higher power than the LAD Levene

test.

Table 2.5 summarizes the results for the bootstrap tests, BLAD, BOLS and BH.

Estimated levels for all three tests are similar to those in Table 2.3 for the test of

HT0. The BLAD test has a little higher power than the BH test. Power is low for

BOLS, particularly when t = 3. In fact, the BOLS test has less power than the Huber

Levene test which can achieve power close to BLAD.

2.3.3 Situation III: HT0 False, HB0 True

In this section, we estimate levels for the test of HB0 vs HB1 in the situation where

treatments affect variance. Also, we assess power for the test of HT0 vs HT1 given that

HB0 is true. We consider the following parameter configurations, for Model (2.4), all

of which include φi = 0, i = 1, · · · , b,:

(1) b = 5, t = 3, θ = (0,−0.4, 0.4);

(2) b = 5, t = 4, θ = (−0.4,−0.1, 0.3, 0.2);

(3) b = 8, t = 3, θ = (−0.7, 0.1, 0.6);

(4) b = 8, t = 4, θ = (0, 0.5,−0.8, 0.3);

(5) b = 15, t = 3, θ = (−0.4, 0, 0.4);
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Table 2.6: Estimated Levels for Tests across Blocks and Power for Tests across Treat-
ments for the RCB Design

Distri- HB0 vs HB1 HT0 vs HT1

bution b t LAD OLS WLS Huber LAD OLS WLS Huber
Norm 5 3 0.000 0.180 0.036 0.010 0.038 0.133 0.088 0.090

5 4 0.006 0.109 0.041 0.068 0.028 0.126 0.069 0.087
8 3 0.001 0.376 0.065 0.006 0.148 0.227 0.184 0.181
8 4 0.006 0.162 0.044 0.067 0.117 0.290 0.223 0.206
15 3 0.000 0.531 0.052 0.002 0.210 0.246 0.220 0.245
15 4 0.002 0.410 0.094 0.060 0.614 0.782 0.750 0.767

Column Mean 0.003 0.295 0.055 0.036 0.193 0.301 0.256 0.263
MAD from 0.05 0.048 0.245 0.015 0.030

t3 5 3 0.000 0.187 0.075 0.008 0.033 0.127 0.078 0.065
5 4 0.012 0.279 0.084 0.068 0.022 0.146 0.080 0.074
8 3 0.001 0.588 0.224 0.005 0.117 0.225 0.173 0.124
8 4 0.010 0.372 0.157 0.069 0.089 0.250 0.184 0.137
15 3 0.001 0.813 0.338 0.006 0.151 0.195 0.171 0.147
15 4 0.011 0.763 0.432 0.071 0.481 0.644 0.603 0.538

Column Mean 0.006 0.500 0.218 0.038 0.149 0.265 0.215 0.181
MAD from 0.05 0.044 0.450 0.168 0.032

Extreme 5 3 0.000 0.219 0.046 0.009 0.038 0.130 0.078 0.083
Value 5 4 0.009 0.146 0.052 0.076 0.025 0.152 0.085 0.097

8 3 0.000 0.462 0.122 0.005 0.136 0.241 0.194 0.160
8 4 0.008 0.265 0.087 0.083 0.099 0.293 0.223 0.183
15 3 0.000 0.690 0.169 0.002 0.184 0.247 0.221 0.198
15 4 0.008 0.593 0.247 0.081 0.548 0.754 0.721 0.660

Column Mean 0.004 0.396 0.121 0.043 0.172 0.303 0.254 0.230
MAD from 0.05 0.046 0.346 0.072 0.037
Note: Individual entries are based on 10,000 replications and have standard
error ≤ 0.005.
OLS: OLS mean-based Levene Test; LAD: LAD Levene Test;
WLS: WLS mean-based Levene Test; Huber: Huber Levene Test

(6) b = 15, t = 4, θ = (0.8,−0.9, 0.3,−0.2).

We summarize the results for the four non-bootstrap tests in Table 2.6. We

have calculated column mean for levels and power under different distributions. We

calculate the MAD from .05 only for estimated levels. Estimated levels in Table 2.6 for
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Table 2.7: Estimated Levels for Bootstrap Tests across Blocks and Power for Boot-
strap Tests across Treatments in the RCB Design

Distri- HB0 vs HB1 HT0 vs HT1

bution b t BLAD BOLS BH BLAD BOLS BH
Norm 5 3 0.053 0.042 0.079 0.073 0.073 0.070

5 4 0.051 0.034 0.039 0.078 0.072 0.064
8 3 0.082 0.038 0.103 0.198 0.175 0.197
8 4 0.060 0.024 0.029 0.154 0.192 0.188
15 3 0.044 0.006 0.076 0.235 0.218 0.254
15 4 0.049 0.031 0.029 0.656 0.737 0.791

Column Mean 0.057 0.029 0.059 0.232 0.245 0.261
MAD from 0.05 0.009 0.021 0.027

t3 5 3 0.063 0.039 0.062 0.067 0.067 0.060
5 4 0.053 0.029 0.036 0.081 0.061 0.065
8 3 0.071 0.046 0.076 0.152 0.123 0.124
8 4 0.065 0.034 0.038 0.135 0.130 0.149
15 3 0.052 0.011 0.059 0.166 0.144 0.159
15 4 0.054 0.038 0.026 0.545 0.518 0.583

Column Mean 0.060 0.033 0.050 0.191 0.174 0.190
MAD from 0.05 0.010 0.017 0.016

Extreme 5 3 0.052 0.033 0.065 0.079 0.072 0.074
Value 5 4 0.041 0.031 0.035 0.076 0.076 0.079

8 3 0.066 0.031 0.083 0.176 0.165 0.162
8 4 0.063 0.044 0.045 0.158 0.191 0.182
15 3 0.033 0.009 0.066 0.204 0.209 0.222
15 4 0.054 0.035 0.037 0.567 0.651 0.682

Column Mean 0.052 0.031 0.055 0.210 0.227 0.234
MAD from 0.05 0.010 0.020 0.016
Note: Individual entries are based on 1,000 replications and B=499
Bootstrap resamples.
BLAD: Bootstrap version of LAD Levene Test
BOLS: Bootstrap version of OLS mean-based Levene Test
BH: Bootstrap version of Huber Levene Test

testing HB0 are similar to those in Table 2.2. It appears that inequality of variances

across treatments results in slightly higher estimated levels for the test of equality

of variances across blocks except for Huber Levene. As for power, the OLS and the
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WLS test have higher power than the other tests, but the comparison is unfair due to

their inflated type I error rates. The Huber Levene test achieves a little higher power

than the LAD Levene test.

Table 2.7 summarizes the results for the bootstrap tests, BLAD, BOLS and BH.

These tests have estimated levels similar to those in Table 2.3. It also shows that

inequality of variances across treatments increases estimated levels of tests for a block

effect on variance for all the boostrap tests. The BH test has a little higher power

than the BLAD test.

2.3.4 Situation IV: HT0 and HB0 Both False

In this section, we estimate the power of the test for block effects on variance

given that treatment effects on variance are present, and vice versa.

We use the following parameter configurations for Model (2.4):

(1) b = 5, t = 3, θ = (0,−0.4, 0.4), φ = (0.6, 0.4,−0.3,−0.5,−0.2);

(2) b = 5, t = 4, θ = (−0.4,−0.1, 0.3, 0.2), φ = (−0.5, 0.5, 0.4, 0,−0.4), ;

(3) b = 8, t = 3, θ = (0.6,−0.2,−0.4), φ = (−0.2,−0.3,−0.3, 0.8,−0.5, 0.2, 0.6,−0.3);

(4) b = 8, t = 4, θ = (0, 0.8,−0.5,−0.3), φ = (−0.4, 0.5,−0.4,−0.2,−0.2, 0.8,−0.1, 0);

(5) b = 15, t = 3, θ = (−0.4, 0, 0.4),

φ = (0, 0.9,−0.4, 0.1,−0.3,−0.5, 0.5,−0.45, 0.45,−0.39, 0.39, 0.4,−0.2,−0.5, 0);

(6) b = 15, t = 4, θ = (0.7, 0,−0.4,−0.3),

φ = (0.1, 0.47, 0, 0.4, 0.8,−0.3, 0.23, 0.4,−0.23,−0.47,−0.1,−0.5,−0.3,−0.5).
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Table 2.8: Estimated Power of Tests in the RCB Design

Distri- HB0 vs HB1 HT0 vs HT1

bution b t LAD OLS WLS Huber LAD OLS WLS Huber
Norm 5 3 0.000 0.258 0.058 0.009 0.037 0.129 0.082 0.075

5 4 0.024 0.218 0.094 0.134 0.027 0.124 0.066 0.073
8 3 0.001 0.499 0.106 0.006 0.093 0.148 0.113 0.093
8 4 0.022 0.347 0.128 0.165 0.087 0.207 0.150 0.136
15 3 0.002 0.885 0.267 0.012 0.164 0.190 0.168 0.145
15 4 0.031 0.690 0.287 0.244 0.377 0.513 0.477 0.473

Column Mean 0.013 0.483 0.157 0.095 0.131 0.219 0.176 0.166

t3 5 3 0.000 0.341 0.108 0.008 0.032 0.140 0.086 0.061
5 4 0.026 0.271 0.122 0.107 0.023 0.166 0.084 0.065
8 3 0.003 0.631 0.235 0.008 0.071 0.165 0.124 0.070
8 4 0.029 0.476 0.224 0.132 0.068 0.203 0.148 0.097
15 3 0.011 0.941 0.510 0.026 0.127 0.175 0.155 0.104
15 4 0.041 0.844 0.528 0.179 0.269 0.411 0.374 0.300

Column Mean 0.018 0.584 0.288 0.077 0.098 0.210 0.162 0.116

Extreme 5 3 0.000 0.296 0.072 0.009 0.035 0.131 0.081 0.070
Value 5 4 0.024 0.249 0.106 0.134 0.026 0.149 0.078 0.082

8 3 0.001 0.556 0.157 0.006 0.086 0.160 0.124 0.088
8 4 0.024 0.419 0.181 0.158 0.073 0.209 0.154 0.120
15 3 0.004 0.924 0.401 0.014 0.146 0.195 0.173 0.127
15 4 0.029 0.774 0.415 0.218 0.318 0.496 0.459 0.395

Column Mean 0.014 0.536 0.222 0.090 0.114 0.223 0.178 0.147
Note: Individual entries are based on 10,000 replications and have standard
error ≤ 0.005.
OLS: OLS mean-based Levene Test; LAD: LAD Levene Test;
WLS: WLS mean-based Levene Test; Huber: Huber Levene Test

We summarize the results for the four tests in Table 2.8 with column means

listed. Assuming difference in variances due to treatments, the OLS Levene test and

the WLS Levene test achieve much higher power than the other two tests. However,

the comparison is unfair due to their inflated type I error rates. The Huber Levene

test has higher power than the LAD Levene test. Assuming inequality of variances

across blocks, the OLS Levene test achieves the highest power. The Huber Levene



81

test and the WLS Levene test perform equally well and are more powerful than the

LAD Levene test.

Table 2.9 summarizes the results for the bootstrap version of variance tests, BLAD,

BOLS test, and BH. From Table 2.9, the BLAD test performs better than the other

two tests, especially in the extreme situations (testing HB0 with small t and large b).

The BOLS test performs poorly in the extreme situations. Overall, the BH test is a

little less powerful than BLAD.

2.3.5 Summary of Simulation Results

In general, the LAD Levene test is a very conservative test with loss of power. The

OLS Levene test is liberal especially for non-normality or extreme situations (with

small t for testing HB0 or with small b for testing HT0). At the same time, the OLS

Levene test has very high power, but this is not fair due to its highly inflated type

I error rates. In terms of null performance, the WLS Levene performs well under

normality and is a little liberal under non-normality, but it performs very poorly in

extreme situations (with small t for testing HB0 or with small b for testing HT0). The

Huber Levene test performs better than the other three tests. The Huber Levene test

is not as good as the WLS Levene test in terms of power, but the WLS Levene has

inflated type I error rates. The Huber Levene test is more powerful than the LAD

Levene. The bootstrap can greatly improve the performance of all of the tests in

terms of null performance and power. However, the bootstrap versions of the tests
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Table 2.9: Estimated Power of Bootstrap Tests in the RCB Design

Distri- HB0 vs HB1 HT0 vs HT1

bution b t BLAD BOLS BH BLAD BOLS BH
Norm 5 3 0.078 0.040 0.077 0.061 0.073 0.060

5 4 0.106 0.085 0.098 0.075 0.073 0.075
8 3 0.137 0.062 0.135 0.203 0.152 0.163
8 4 0.150 0.101 0.099 0.297 0.252 0.311
15 3 0.096 0.009 0.118 0.213 0.174 0.182
15 4 0.173 0.147 0.144 0.515 0.514 0.576

Column Mean 0.123 0.074 0.112 0.227 0.206 0.228

t3 5 3 0.097 0.041 0.054 0.057 0.041 0.034
5 4 0.093 0.069 0.071 0.065 0.053 0.049
8 3 0.112 0.073 0.105 0.163 0.126 0.123
8 4 0.148 0.085 0.076 0.257 0.166 0.212
15 3 0.114 0.015 0.116 0.160 0.128 0.135
15 4 0.147 0.090 0.086 0.382 0.319 0.393

Column Mean 0.119 0.062 0.085 0.181 0.139 0.158

Extreme 5 3 0.087 0.030 0.053 0.052 0.062 0.055
Value 5 4 0.095 0.065 0.070 0.059 0.068 0.056

8 3 0.094 0.058 0.112 0.197 0.158 0.156
8 4 0.153 0.113 0.109 0.272 0.265 0.287
15 3 0.118 0.010 0.121 0.198 0.179 0.188
15 4 0.168 0.151 0.146 0.422 0.435 0.476

Column Mean 0.119 0.071 0.102 0.200 0.195 0.203
Note: Individual entries are based on 1,000 replications and B=499
Bootstrap resamples.
BLAD: Bootstrap version of LAD Levene Test
BOLS: Bootstrap version of OLS mean-based Levene Test
BH: Bootstrap version of Huber Levene Test

are much more complicated. The BLAD test and the BH perform much better than

the BOLS test. From these tables, we also see that inequality of one set of variances

has only a small effect on tests of the other set of variances.
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2.4 Example

Swinderman and Cleophas (2005) proposed that it is important to compare vari-

ability among subjects in drug response for different formulations. Sometimes, com-

paring variability is more important than comparing means, especially for drugs with

small therapeutic window sizes. The goal of a bioequivalence study in pharmaceutical

research is to demonstrate that a new formulation is equivalent to an existing formu-

lation. Usually, the mean response is regarded as the main criterion for comparison

formulations.

Table 2.10: Part of Dataset GN24 on the FDA Website

CMAX Subject Huber
Subject Sequence A B C D Mean Mean

4 ABDC 1.571 1.393 1.199 1.682 1.461 0.172

5 ABDC 1.491 1.791 1.747 1.695 1.681 0.097

6 ABDC 1.643 2.136 1.708 1.958 1.861 0.195

10 CABD 1.984 1.284 2.123 2.200 1.898 0.265

11 CABD 2.004 2.077 1.778 1.712 1.893 0.146

12 CABD 1.983 1.445 2.646 1.895 1.992 0.314

16 DCAB 1.339 1.578 1.228 1.479 1.406 0.132

17 DCAB 1.389 1.348 2.038 1.467 1.561 0.194

18 DCAB 1.436 1.359 1.400 1.080 1.319 0.111

22 BDCA 1.883 1.716 1.713 1.792 1.776 0.068

23 BDCA 2.375 2.144 2.615 2.199 2.333 0.153

24 BDCA 1.507 1.562 1.264 1.199 1.383 0.150

Treatment Mean 1.717 1.653 1.788 1.697
Huber Mean 0.103 0.222 0.224 0.116

Data source: Data Set GN24 from
http://www.fda.gov/cder/bioequivdata/
Huber Mean: Average of the absolute values of Huber residuals.

The FDA website (http://www.fda.gov/cder/bioequivdata/) lists data sets from
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a number of bioequivalence studies. We use part of the data set GN24 to illustrate

the seven tests compared by simulation in earlier sections. The GN24 study com-

pared anticonvulsant drugs on 24 subjects, including 12 males and 12 females. The

experimental design is a four-period crossover design with 4 treatments including two

reference treatments, A and D, and two test treatments, B and C. There are four dif-

ferent sequences: ABDC, CABD, DCAB and BDCA. Data set GN24 includes three

pharmacokinetic (PK) parameters, the maximum plasma concentration (CMAX),

the area under the plasma concentration-time curve from time zero to time infinity

(AUCINF) and the area under the plasma concentration-time curve from time zero to

time of last measurable concentration (AUCLAST). For illustration, we use a subset

of the data consisting of the values for the PK parameter, CMAX, from only the male

subjects (SEX=1). Table 2.10 lists all the data in our example. For the crossover

design, the full model includes effects for period, treatment and subject. For illus-

tration, we ignore the period and sequence effects. The subject effect is regarded as

a block effect, leading to the two-way RCB design considered in this chapter. The

null hypothesis of interest is that there are no treatment effects on variability in drug

response, or HT0: θj = 0, j = 1, · · · , 4. We can also test for the presence of subject

effects on variability in drug response, or HB0: vs HB1, though this test is of less

interest.

In this example, we consider the following two scenarios:

Scenario 1:
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It includes 10 male subjects with b = 10 and t = 4. The two male subjects excluded

are subject 18 and subject 22 randomly in Table 2.10

Scenario 2:

It includes all male subjects with b = 12 and t = 4. Table 2.10 lists all the data used

in this scenario.

Table 2.10 also summarizes the mean of CMAX for every treatment (Treatment

Mean) and the mean of CMAX for every subject (Subject Mean). “Huber Mean” in

Table 2.10 shows the average of the absolute values of Huber residuals across subjects

or treatments.

From Table 2.11, we can see that none of the tests detect subject effects on vari-

ance. In Scenario 2, there is no evidence that formulations differ with respect to their

effect on variability in drug response. However, in Scenario 1, p-values for the OLS

Levene test, the WLS Levene test, and the BOLS test are each < .05, and are ≤ .10

for the other tests. There are two explanations for this result. One is that the OLS

Levene test and the WLS Levene test are more powerful than the other tests. The

other is that the OLS Levene and the WLS Levene test are liberal tests. Based on

the results from the simulations and comparing the results between the two scenarios,

the second explanation seems more reasonable.
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Table 2.11: P-Values for Variance Equality across Blocks and Variance Equality across
Treatments

t=4
b=10 b=12

BL TR BL TR
OLS 0.54 0.02 0.35 0.08

WLS 0.76 0.03 0.63 0.10

LAD 0.87 0.10 0.77 0.26

Huber 0.70 0.05 0.63 0.11

BLAD 0.79 0.08 0.63 0.25

BOLS 0.90 0.03 0.88 0.08

BH 0.76 0.05 0.74 0.10

LAD: LAD Levene Test
OLS: OLS mean-based Levene Test
WLS: WLS mean-based Levene Test
Huber: Huber Levene Test
BLAD: Bootstrap version of LAD Levene Test
BOLS: Bootstrap version of OLS Levene Test
BH: Bootstrap version of Huber Levene Test

2.5 Conclusion

This chapter introduces some new variance tests for the two-way RCB design

including the LAD Levene test, the Huber Levene test, the BLAD test, the BOLS

test and the BH test. Among the simple tests, the Huber Levene test performs best

in terms of null performance and power. The LAD Levene test is a very conservative

test. The bootstrap technique can greatly improve the performance of these tests.

The BLAD test and the BH test perform very well, compared to the BOLS test.

The BOLS test is not recommended due to its highly conservative performance. The

Huber Levene test does not perform as well as the BH test in extreme situations, but
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it is much simpler to compute. In general, the Huber Levene test is recommended for

use in the two-way RCB design.
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