
ABSTRACT

WEBSTER, RAYMOND ANTHONY. Spatial Modeling of Detection and Abundance from Count

Surveys of Animal Populations. (Under the direction of Kenneth H. Pollock.)

When analyzing data from surveys of animal populations, it has been common in the past to ig-

nore important factors such as variation in animal detection probabilities across space, and spatial

dependence in animal density. We present a unified framework for modeling animal survey data

collected at spatially replicated survey sites in the form of repeated counts, “removal” counts, or

“capture” history counts, that simultaneously models spatial variation in density and variation in

detection probabilities due to changes in covariates across the landscape. The models have a com-

plex hierarchical structure that makes them suited to Bayesian analysis using Markov chain Monte

Carlo (MCMC) algorithms. To ensure that these algorithms are computationally efficient, we use

conditional autogressive (CAR) models for modeling spatial dependence.

We apply our models to two examples of animal survey data. In the first, an intensive re-

peated count survey of juvenile Coho Salmon in McGarvey Creek, Northern California, we de-

tected moderate spatial dependence in density, and models which account for spatial dependence

produced more precise predictions at unsurveyed habitat units, and thus more precise estimates of

total stream abundance, than models which assumed spatial independence. Through a small sim-

ulation study, we show that ignoring heterogeneity in detection probabilities can lead to significant

underestimation of total abundance. However, inclusion of heterogeneity using a random effect in

the detection component of the model can lead to problems in Bayesian MCMC modeling for typi-

cal survey designs, and for this reason we stress the importance of accounting for heterogeneity by

incorporating covariates in modeling detection probability.

In our second example, we consider a large survey of birds in the Great Smoky Mountains Na-

tional Park. We fit models to the three types of survey data, repeated counts, “removal” counts,

and “capture” history counts. Our methods lead to maps of predicted relative density which are

an improvement over those that would follow from ignoring spatial dependence. Modeling shows

that variation in detection probability can also affect inference, particularly when a species is rela-

tively difficult to detect. Our work also highlights the importance of good survey design for bird

species modeling. We point out that these types of bird survey data, particularly removal and

capture-recapture counts (which require individual birds to be identified), are prone to errors in

bird identification. Although we obtain similar results for all three types of survey data, which



implies that the effect of identification errors may be small, the consequences of such errors in the

data requires further investigation.

Finally, we present parametric models for combined distance and capture-recapture survey data

from both line and point transect surveys that allow for two types of animal movement: perma-

nent avoidance or attraction to a transect, or temporary displacement of animals in the vicinity of

a transect. The models have a simple form, with parameters that quantify the impact transects and

observers have on local density. We combine these density models with logistic-linear models for

detection probability using the likelihood framework of Borchers et al. (1998) for combined dis-

tance and capture-recapture data. This allows us to separately estimate the parameters of both the

density and detection components of the model, which is not possible using the standard methods

of distance sampling. Through a simulation study, we show that, provided sufficient animals are

detected, the model parameters have little bias, and lead to improved estimates of density over a

simple uniform density model, particularly for line transect surveys. Model selection by AIC gen-

erally chooses the correct density model. We apply our models to the Great Smoky Mountains bird

survey data, and find some evidence of observer effects on local bird density.
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Chapter 1

Introduction

1.1 Count Surveys of Animals when Detection is Imperfect

1.1.1 Background

Animal populations are often surveyed by sampling plots within a region of interest and counting

the total number of animals detected within each sampled plot. Plots may range in size from small

marked quadrats for some insects or pools in a stream for riverine fish (e.g., Coho Salmon, Hankin

and Reeves, 1988), to large swaths of land or sea covered in aerial surveys of large mammals (e.g.,

Florida manatee, Craig et al., 1997), and are generally selected by simple, systematic or stratified

random sampling. For certain animal species, it may be more convenient to survey the population

using point or transect counts. When counting at a fixed point, some detection device such as an

observer or set of traps is located at the point, while with line transects, observers traverse a fixed

transect, or a series of detection devices such as traps are located along the length of the transect. In

both cases, the animals that are detected within a fixed time interval are counted. Examples include

the North American Breeding Bird Survey (Royle et al., 2002) and brushtail possum monitoring in

New Zealand (Forsyth et al., 2006).

Although there is less information in data collected from count surveys compared to capture-

recapture methods for monitoring animal populations (see Section 1.2), they can be more suitable

for animals which are difficult to mark, such as juvenile fish, or to capture, as is the case for many

bird species (e.g., Lichstein et al., 2002). Also, without the need to capture, mark and recapture

individual animals, count surveys will be relatively inexpensive.

In some surveys the goal is to make a complete count of the total number of animals within

1



Chapter 1. Introduction 2

each sampled plot or within a specified area surrounding a point or transect, and such plot totals

will lead directly to estimates of abundance (population size) or density (animals per unit area) for

the entire monitoring region (see Seber, 1982). In almost all situations, however, detection will be

imperfect. That is, the probability that an individual animal will be seen during a count survey

is less than 1. Some animals may be hidden from the observer by vegetation, terrain, or even by

other animals (e.g., when animals form herds). When animals are detected by sound or movement

(e.g., counts of certain birds) then those animals which are silent or do not move during the sur-

vey period will not be detected. The result of this imperfect detection is that not all animals will

be observed in a single count of a plot, and the counts themselves will only provide an index of

animal abundance. Although such indices have been widely used without careful study, there is

an implicit assumption that density is linearly related to the index. However, detection probabil-

ity will be a function of many factors, including environmental variables (e.g., climate, vegetation

density) and diurnal, seasonal and observer effects, and failure to account for such heterogeneity

in detection will make valid comparisons of count indices over time or space difficult (Johnson,

1995; Barker and Sauer, 1995). Also, for some indices, the relationship with abundance is intrin-

sically nonlinear (e.g., Forsyth et al., 2006). It is, therefore, important to obtain information about

detection probability as part of an animal population survey. By estimating detection probability,

we will be able to directly estimate density or abundance without having to make the additional

assumptions required to interpet count-based indices of abundance correctly.

1.1.2 Repeated Counts and Removal Sampling at a Single Site

One approach to estimating detection probability is to make independent, repeated counts of the

animals at a site (i.e., a plot, point or transect). First, let us suppose that the counts are made in

quick succession, allowing us to reasonably assume that the population is closed, i.e., that there

is no immigration, emigration, births or deaths during the survey period. Two other important

assumptions are that no errors are made in the counting, e.g., an individual animal’s species is

correctly identified and no animals are counted more than once, and that the counting process does

not affect behavior and thereby bias future counts. If we further assume that detection probability

does not vary across the repeated counts, the counts for an individual site can be thought of as being

a simple random sample from a binomial distribution with parameters N, the true site abundance,

and p, the detection probability at that site. If we observe T independent counts, y1, . . . , yT , then
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our model is:

yj|N, p ∼ Bin(N, p),

for j = 1, . . . , T. In this simple case we can estimate the two parameters using either method of

moments estimators (MMEs), or maximum likelihood (Johnson and Kotz, 1969). The former are

given by

Ñ =
ȳ2

ȳ − s2
, (1.1)

p̃ =
ȳ

Ñ
= 1 − s2

ȳ

where ȳ = ∑
T
j=1 yj/T and s2 = ∑

T
j=1(yj − ȳ)2/(T − 1) are the usual estimators of the mean and

variance of the sample of counts, while the maximum likelihood estimators (MLEs) are found by

maximizing

L(Y|N, p) =
T

∏
j=1

N!

(N − yj)!yj!
pyj(1 − p)N−yj

=
N!T

∏
T
j=1(N − yj)!yj!

py.(1 − p)TN−y., (1.2)

where Y = [y1, . . . , yT ] is our data vector, and y. = ∑
N
j=1 yj. As given in Johnson and Kotz (1969),

this maximization can be reduced to solving

M−1

∑
k=1

(N̂ − k) fk = −T log

(
1 − ȳ

N̂

)

p̂ =
ȳ

N̂
,

where fk = ∑j I(yj > k), with I(.) being the indicator function taking value 1 if the argument is

true and zero otherwise, and M = max(y1, . . . , yT) .

An approximate expression for the asymptotic variance of N̂ is also given in Johnson and Kotz

(1969), and by substituting different values for N, p, and T into this expression it becomes clear

that n will not be precisely estimated unless p or T are very large. Asymptotically, Ñ is slightly less

efficient than N̂. In fact, both the MMEs and the MLEs are known to be very unstable, with small

changes in the data producing large shifts in the estimates of N and p. For the MMEs, instability

occurs when s2 is close to ȳ, and so the denominator of (1.1) is close to zero and N is likely to be
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overestimated. If ȳ/s2 < 1, then Ñ < 0 and p̃ < 0 and so the estimates are invalid. Olkin et al.

(1981) showed that for MLEs, instability also occurs when ȳ/s2 < 1.

Some authors have approached the instability as a modeling problem, as the binomial model

does not allow for hetergeneity in p across the repeated counts or between individual animals.

When such heterogeneity exists, the variance will be greater than that expected under the binomial

model, and the condition ȳ/s2 < 1 is more likely to be true. Routledge (1981) and others have

examined ways of allowing for such overdispersion in the model by using two sets of repeated

count surveys with differing degrees of efficiency to estimate the dispersion parameter. However,

they concluded that not only are such estimates dependent on the dispersion parameter being the

same in both sets of surveys, but they are extremely imprecise even when this assumption is true.

Olkin et al. (1981) and Carroll and Lombard (1985) instead proposed modifications to the MMEs

and MLEs to make them more stable, and their estimators appear to perform quite well in many

situations. However, when p is small, even these estimators have a tendency to overestimate p and

underestimate N (Casella, 1986).

In undertaking a repeated count survey of a plot, point or transect we are sampling with re-

placement. An alternative counting method is removal sampling, in which the animals seen on

each occasion are removed from the population to be counted on subsequent occasions. Removal

sampling may be more appropriate for sampling animal pest species, which are killed upon cap-

ture on each sampling occasion (e.g., Forsyth et al., 2006). Also, some riverine fish populations

are monitored using electrofishing, in which an electric current is run through a part of a stream

temporarily stunning some of the fish, and the biologist temporarily removes these fish from the

stream until completion of the survey. Removal methods have long been part of the animal popu-

lation modeling literature, starting with Zippen (1956). For estimation of N, removal methods are

statistically equivalent to the trap response model of the capture-recapture literature (see Pollock

et al., 1990, and Section 1.2 below), although biologically they are distinctly different. If we also as-

sume a binomial model for the removal data, again denoted by Y = [y1, . . . , yT ]′, our count model

will be:

yi|N, p ∼ Bin(N − Mj, p),

where Mj = ∑j<j′ yj′ is the number of animals removed prior to occasion j, with M1 = 0. Also, let

M. = MT+1 − yT , the number of unique animals detected prior to the final occasion. The likelihood
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for this model is given by

L(Y|N, p) =
T

∏
j=1

(N − Mj)!

(N − Mj − yj)!yj!
pyj(1 − p)N−Mj−yj

=
N!

(N − MT+1)! ∏
T
j=1 yj!

pMT+1(1 − p)TN−M.−MT+1 (1.3)

which is the same as that given by Zippen (1956) using a multinomial specification for the removal

data, and the same as the component of the likelihood involving N for the trap response model of

the capture-recapture literature (Section 1.2). Zippen (1956) provides equations to solve for finding

the MLEs, and discusses the properties of these estimators. Two things are of particular interest.

The first is that when N < 200, a relatively large proportion of the population must be captured for

precise estimation of N, implying that either p must be high (so most animals are captured quickly)

or the number of occasions T must be large. Also, in some cases the removal method will ‘fail’ in

the sense that we cannot obtain valid estimates of the parameters. The condition for failure is given

in Seber (1982) as
T

∑
j=1

(T + 1 − 2j)yj < 0 . (1.4)

For example, it follows from (1.4) that counts must decrease on average over the T occasions for

estimation of N and p to be valid. Seber (1982) notes that the probability of failure decreases with

increasing N and increasing p. As with a sample of counts, in removal sampling we must also

assume that p is the same for all animals, and we cannot relax the assumption that p is constant

across the sampling occasions without imposing other constraints on the parameters (Pollock et al.,

1990).

Comparing removal and repeated count sampling of an individual plot or point, we note that

while we will never fail to find parameter estimates from repeated counts, when it succeeds, the

removal sampling estimator is stable and will almost always produce more precise estimates of N

than repeated counts for the same p and T. Although this makes removal sampling seem much

more appealing statistically, for many animal species count sampling will be more appropriate

for practical reasons. For example, capturing or killing animals for removal may be more costly

than undertaking a count, and as we have already noted, animals such as birds may be difficult

to capture. Also, some species may be adversely affected by the removal process, which may

be undesirable for animal welfare or conservation reasons. For example, with fish monitoring in
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streams, removal sampling using electrofishing may harm or kill smaller fish of some species.

1.1.3 Extension of Models to Spatially Replicated Sites

Many of the problems discussed above for data from a single site can be overcome by combining

information across the multiple sampling sites. As noted by Royle (2004), we are rarely interested

in precise estimation of N at a single sampling site, as the animals at each site represent only a

small fraction of the population being surveyed. Instead, the focus of a survey of an animal species

is more frequently on estimation of the abundance of animals across a region. One approach could

be to compute an estimate of total abundance from estimates of abundance at a random sample of

individual sites in the region of interest. These could be calculated using a stable count estimator

such as those of Olkin et al. (1981) or Carroll and Lombard (1985) for count data, or the removal

method (Zippen, 1956). However, animal populations are often sparsely distributed and many

sites will have few or no animals present. In such cases, even the stable count estimators will

perform poorly for some sites (Casella, 1986) and the removal method is likely to fail, especially

if p is low. Instead, by combining the data from the sampled sites we can extend the site-specific

binomial models described above to estimate regional level abundance or density from our count

data, without experiencing the same stability problems and with the scope to fit models with more

flexible assumptions than those for data from a single site.

In our work we develop further the modeling framework of Royle (2004) for repeated count

data and Wyatt (2002) and Forsyth et al. (2006) for removal data from independent sampling sites,

and Wyatt (2003) for spatially correlated sites. We begin in this section by reviewing models for

independent sites, while in Chapter 2 we discuss modifications to these models to incorporate site-

level covariates in the modeling of animal density and detection probability, and to model spatial

dependence in animal density across the monitoring region.

The most general model we can consider with closed population repeated count and removal

data is one in which abundance varies across sites, and detectability varies across sites and between

the independent counts within a site. Although with count data we cannot allow for heterogeneity

in detection probability between individual animals, by allowing p to vary between the sampling

occasions within a site, we are in part addressing the concerns outlined in Routledge (1981) regard-

ing the effect of heterogenteity in p on estimation.

Suppose we draw a sample of L sites, and make Ti independent counts of animals at site i. We

now denote the abundance at site i by Ni and the detection probability at site i on occasion j by
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pij, i = 1, . . . , L and j = 1, . . . , Ti. Let T = maxi Ti. For both repeated count and removal data, we

observe a data matrix Y with ith row Yi = [yi1, . . . , yiT ], where yij is the number of animals seen on

occasion j at site i, and yij is an empty cell (‘missing data’ for computational purposes) for j > Ti.

By first modeling yij as

yij|Ni, pij ∼ Bin(Ni, pij)

we can generalize Equation (1.2) to write the full likelihood for repeated count data as

L(Y|N, p) =
L

∏
i=1

Ti

∏
j=1

Ni!

(Ni − yij)!yij!
p

yij

ij (1 − pij)
Ni−yij . (1.5)

For removal data, our binomial model is

yij|Ni, pij ∼ Bin(Ni − Mij, pij),

and the generalization of the single-site removal likelihood, Equation (1.3), is given by

L(Y|N, p) =
L

∏
i=1

Ni!

(Ni − Mi,Ti+1)! ∏j yij!

Ti

∏
j=1

p
yij

ij (1 − pij)
Ni−Mij−yij ,

where Mij = ∑j<j′ yij′ , with Mi1 = 0, i = 1, . . . , L. Here N = [N1, . . . , NL]′ and p is a matrix of the

same form as Y with rows pi = [pi1, . . . , piTi
]. In both cases we have L + ∑i Ti parameters for only

∑i Ti counts and clearly estimation is impossible. For repeated count data, Royle (2004) considered

a simpler version of our model with p equal for all sites on all occasions, but he notes that even

with this reduction to L + 1 parameters, past research suggests that estimation is likely to be highly

unstable. This is particularly true since we are counting animals at multiple sites, and with the

natural tendency of many species to cluster, data may be sparse, with many sites with few or no

animals either present or detected.

The approach taken by a number of authors to reducing the parameter space is to consider

the Ni and pij as being samples from some parametric distributions. When we have data from

independent sites and we are not attempting to model covariates or spatial dependence, the Ni are

typically given a Poisson distribution, or to account for likely overdispersion in the Ni due to the

clustering of animal populations, a Poisson-gamma mixture. Thus in the latter case we have

Ni|λi ∼ Poisson(λi), (1.6)
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λi|aλ, bλ ∼ Gamma(aλ, bλ).

Note that unconditionally, Ni has a negative binomial distribution, with probability mass function

℘(Ni|aλ, bλ) =



 Ni + aλ − 1

aλ − 1




(

1

bλ + 1

)Ni
(

bλ

bλ + 1

)aλ

, Ni = 0, 1, . . . (1.7)

In our work, the symbol ℘ is used to denote the density or probability mass function of a random variable,

in order to clearly distinguish it from detection probability, p. A Poisson-gamma or negative binomial

model was considered by Wyatt (2002) and Dorazio et al. (2005) for removal data and by Royle

(2004) for repeated counts, and it has also been proposed for count data with perfect detection in

modeling disease rates across spatially replicated regions (see Banerjee et al., 2004).

In modeling detectability, most authors make the simplifying assumptions that either pij = p,

that is, detectability is constant for all sites on all occasions (Royle, 2004), or that pij = pi and so only

varies between sites (Wyatt, 2002; Dorazio et al., 2005). In the constant detectability case, maximum

likelihood estimation can proceed by first integrating out the ‘nuisance’ parameters Ni. With the

negative binomial model (1.7) for Ni, this gives a likelihood function for repeated count data of:

L(Y|aλ, bλ, p) =
L

∏
i=1

∞

∑
Ni=Mi





Ni!

Ti℘(Ni|aλ, bλ)

∏
Ti
j=1(Ni − yij)!yij!

py.i(1 − p)Ti Ni−yi.




 ,

where yi. = ∑j yij and Mi = max(yi1, . . . , yiTi
).

Defining Mi. = Mi,Ti+1 − yiTi
, for removal sampling we have

L(Y|aλ, bλ, p) =
L

∏
i=1

∞

∑
Ni=Mi

{
Ni!℘(Ni|aλ, bλ)

(Ni − Mi,Ti+1)! ∏j yij!
pMi,Ti+1(1 − p)Ti Ni−Mi.−Mi,Ti+1

}
.

It is generally not difficult to maximize this likelihood numerically, and Royle (2004) found that,

for his examples, it was possible to restrict the integration of Ni to a summation with a large, finite

upper bound without affecting the MLEs.

In the models where detectability is not constant, we can assume the pij are also sampled from a

distribution. A natural choice is the beta distribution, and Wyatt (2002) used this to model pij = pi.

More generally, we can build a model for pij by using a hierarchy of beta distributions:

pij|νi, bp1 ∼ Beta
(
νibp1, (1 − νi)bp1

)
,
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νi|ap, bp ∼ Beta(ap, bp).

Note that we have parameterized the distribution of pij in terms of its mean, νi, and then modeled

these site means as a sample from a beta distribution with different parameters. While it seems

natural to develop models in this hierarchical framework, maximum likelihood estimation becomes

increasingly unappealing due to the need to numerically evaluate the integrals that arise from this

approach. Thus for this model, the likelihood for count data becomes

L(Y|aλ, bλ, bp1, ap, bp) =
L

∏
i=1

∞

∑
Ni=Mi

{
Ti

∏
j=1

(1.8)

∫ 1

0

Ni!℘(Ni|aλ, bλ)

(Ni − yij)!yij!
p

yij

ij (1 − pij)
Ni−yij

{∫ 1

0
℘(pij|νi, bp1)℘(νi|ap, bp)dνi

}
dpij

}
,

while that for removal data has an equally complex form. For models of such hierarchical complex-

ity, maximum likelihood is no longer a feasible method of parameter estimation, and we instead

turn to Bayesian hierarchical modeling which provides a more natural, albeit computationally in-

tensive, framework for these models. A brief introduction to Bayesian hierarchical modeling is

provided in Section 1.4.

We now return to the focus of the modeling, the distribution of abundance. We note that if

the Ni follow a negative binomial distribution of form (1.7), then the expectation of Ni is given by

aλ/bλ. If the sites are a random sample of plots each of known area, Ai say, then this suggests the

following possible estimator for overall abundance, which we denote by N:

N̂ =
A

∑i Ai

âλ

b̂λ

,

where A is the total area of the region from which the plots are sampled. If the sampled sites are

points or transects, then to estimate total abundance we must be able to define an area around each

site beyond which we do not sample, for example a circle around a point or a strip surrounding a

transect. Where there is no clear sampling region around a site, we are back in the situation where

we are estimating an index of abundance or density, but unlike the indices based on the raw counts,

indices estimated in this way do allow for varying detectability and so would be more reliable for

monitoring population trends or for other comparisons.

Although the individual site abundances are often not of interest themselves, their distribution

and its moments could be estimated using an empirical Bayes procedure as proposed by Royle
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(2004). This involves plugging the estimates of the parameters into P(Ni = k|θ) expanded using

Bayes’ theorem, where θ is the parameter vector for a given model. Because of the complexity of our

models, we prefer a fully Bayesian approach, from which posterior distributions of the individual

Ni and pij follow automatically (see Section 1.4).

In this section we have described methods based on a binomial model for estimating abundance

at a site from a sequence of independent counts and from removal sampling data when detection is

imperfect, and we have reviewed generalizations of the models to spatially replicated sites. For the

single site case, estimation from a sample of counts is imprecise and is affected by the assumptions

we need to make on detection probability. By shifting focus to estimation of total abundance or

mean density across a monitoring region, the imprecision of estimates at the site level is no longer

of such importance, and by combining information across multiple sites, we can model detectability

in a much more flexible and realistic way.

Further improvements to the estimation can be made by modeling the relationship between

density and covariates measured at each sampling site, and between detectability and covariates

at sites and on sampling occasions within sites. Covariates can be incorporated into the density

component by replacing the gamma component of the Poisson-gamma mixture with a lognormal

model, for example,

log(λi) = µi + φi

Here φi is a zero-mean Gaussian error term and µi represents the covariate model, for example, µi =

X′
iα, where Xi is the vector of covariates measured on unit i and α is the corresponding parameter

vector. Similarly in the detection model we can employ a logistic-normal model in place of the beta,

logit(pij) = νij + ǫi + ηij,

where νij is a covariate function, and ǫi and ηij are respectively between and within unit Gaussian

errors. Such covariate models have been considered by Wyatt (2003), Forsyth et al. (2006) and oth-

ers, and we discuss this approach further in Chapter 2. Further, we can model spatial correlation in

animal density through the error term φi. We introduce possible spatial models in Section 1.5 and

discuss their application in subsequent chapters. By making use of covariate and spatial informa-

tion, we not only improve estimation at the sites which we have monitored, but we can also predict

density at unmonitered sites. This can improve estimates of total abundance or mean density, and

lead to the creation of maps showing how animal density varies spatially across the monitoring
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region.

Although the modeling framework we have presented is quite flexible, count and removal data

nevertheless generally yield less information than the individual capture histories generated in a

capture-recapture monitoring study. For example, we are unable to model heterogeneity in detec-

tion (or capture) probabilities of individual animals or incorporate covariates measured on individ-

ual animals into our models. We are, therefore, particularly interested in how closed population

abundance estimation from repeated count and removal data compares to estimates from capture-

recapture studies of the same populations. Based on our understanding of the single-site models,

we would also anticipate removal sampling to give more precise estimates than repeated count

sampling. However, when sampling sparse populations we can expect data from many sites to

individually meet the failure criterion for removal studies, Equation (1.4), and it is unclear what

effect this will have on parameter estimates which are essentially averages across all sites. An in-

troduction to closed population capture-recapture models is given in Section 1.2, and a comparison

of repeated count, removal and capture-recapture methods for multiple site data is presented in

Chapter 3.

1.2 Closed Population Capture-Recapture Models

1.2.1 Background

Although the repeated count and removal modeling of Section 1.1 provides a quite flexible frame-

work for abundance estimation for closed animals populations surveyed at multiple sites, there are

important limitations on this type of modeling. In particular, we cannot model heterogeneity in

detection probabilities between individual animals since counts do not distinguish between indi-

viduals. Also, in practice it may be difficult to separate variability in detection from that due to

abundance, particularly for very sparse data or when detection probabilities are low. For example,

if we observe many site counts similar to [0, 1, 1], in estimation it is difficult to distinguish whether

such counts are due to high abundance with very low detectability, or vice versa, and for single site

models at least, there is a tendency to overestimate p and underestimate N (Casella, 1986).

Capture-recapture studies, like repeated count and removal surveys of animal populations, in-

volve collecting data at the same sites on several occasions. However, in these studies individual

animals are tracked across the sampling occasions, thus providing more information on detectabil-

ity than count surveys and overcoming many of the limitations of count data. Typically, on the first
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sampling occasion a sample of animals at a site is ‘captured’ (although for some species, this may

require accurate tracking of animals rather than physical capture), the animals are marked and the

marks are recorded, and then the sample is released at the capture site. On the second occasion,

another sample is drawn, newly captured animals are marked and their marks are recorded, pre-

viously captured animals are recorded as being recaptured, and the sample is then released. This

process is repeated for each sampling occasion, and over the course of the study a capture-history

is constructed for each animal caught at least once. For example, for a study with four occasions, an

animal only captured on the final occasion will have history denoted by 0001, while one captured

on the first and second occasions has history 1100.

There are important general assumptions we must make in capture-recapture modeling that are

related to the assumptions of repeated count and removal data. First, although open population

models exist and are widely used (see Pollock et al., 1990), for comparison with count models we

only consider those models that satisfy the closure assumption, that is, that there is no immigra-

tion, emigration, births or deaths during the survey period. We must also assume that animals

do not lose their marks and that all marks are correctly recorded. For a detailed discussion of

these assumptions, see Otis et al. (1978). Further, we assume that all animals are captured indepen-

dently on each occasion, which is also an implicit assumption of the binomial count models. The

capture-recapture literature covers a set of closed population models, each with their own assump-

tions regarding whether detection (or capture) probability varies with time or occasion, behavioral

response to capture, between individual animals, or combinations of these three factors. What fol-

lows is a brief review of these models, largely based on Otis et al. (1978) and the later references

that build upon it.

1.2.2 Modeling Capture-Recapture Data at a Single Survey Site

We assume that observations are recorded on T sampling occasions as before. If the population

size is N, the most general model we consider is that with detection probability pjk for the kth

individual observed on occasion j, j = 1, . . . , T and k = 1, . . . , N. Our observed data consist of

values xjk, where xjk = 1 if animal k is captured on occasion j, and 0 otherwise. Most generally we

can think of these as coming from a Bernoulli distribution,

xjk|pjk ∼ Bern(pjk), (1.9)
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although as we shall see, for particular capture-recapture models, this general form for the data

model can be simplified. Together with the assumption of independence of capture, we can use

(1.9) to construct the likelihood for a particular model. Note that animals for which xjk = 0 for all j

are not observed during the course of the survey.

The simplest closed population capture-recapture model, denoted by M0, assumes that detec-

tion probability, p, does not vary with time, in response to capture, nor with the individual animal,

that is pjk = p for j = 1, . . . , T and k = 1, . . . , N. As with other models for which there is no

heterogeneity in detection between individuals, we can aggregate the data into counts of animals

with each unique capture history. We denote the total number of animals with history ω by Xω.

For example, for a survey with four sampling occasions, X1100 is the number of animals that were

seen on the first two occasions but not thereafter. It follows from (1.9) that these counts will have a

multinomial distribution, and for model M0, the likelihood is given by

L(Xω|N, p) =
N!

∏ω Xω !(N − MT+1)!
pn.(1 − p)TN−n..

MT+1 denotes the number of unique animals detected during the entire survey, and n. = ∑j nj,

where nj is the count of animals captured on occasion j. Note that nj = yj in the notation of repeated

count modeling for a single site, and the component of this likelihood involving p is identical to

the single site repeated count likelihood, Equation (1.2).

When detection probability varies across sampling occasions (model Mt), the likelihood has a

similar form. Here we wish to estimate N and a vector of probabilities p = [p1, . . . , pT ].

L(Xω|N, p) =
N!

∏ω Xω !(N − MT+1)!

T

∏
j=1

p
nj

j (1 − pj)
N−nj .

A particularly relevant case for our work is the behavioral response model, Mb. In this model,

the detection probability takes the value p for animals that have never been captured, and a differ-

ent value, c say, for those previously captured. The likelihood is given by

L(Xω|N, p, c) =
N!

∏ω Xω !(N − MT+1)!
pMT+1(1 − p)TN−MT+1−M. (1.10)

×cm.(1 − c)M.−m..

Here m. = ∑
T
j mj, where mj is the number of previously marked animals caught on occasion j, and
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M. = ∑
T−1
j=1 Mj, where Mj is the number of unique animals caught prior to occasion j, with M0 = 0.

It is clear from (1.10) that when there is a behavioral response to capture, the recaptures give no

information about N, although we note that for some generalizations of this model, recaptures

do contribute to estimation of N (Norris and Pollock, 1995). This model is, therefore, statistically

equivalent to the single site removal model for estimation of abundance, and comparing (1.10)

with (1.3), we can see that the component of the two likelihoods involving N are identical. As

mentioned when we examined the removal model, it is difficult to extend this model to allow p

and c to vary across occasions, model Mtb, without placing further constraints on the probability

parameters (Pollock et al., 1990).

The remaining closed population models allow for heterogeneity in detection probabilities be-

tween individual animals. A model allowing for such heterogeneity is denoted by Mh, while in-

dexes b and t are added to denote generalizations to account for behavior and occasions. Clearly a

model which attempts to estimate a different pjk for every animal on every occasion will be over-

parameterized without additional assumptions, and the capture-recapture literature contains many

attempts to deal with this problem. For model Mh, the jackknife estimators of Burnham and Over-

ton (1978) and the moment estimator of Chao (1987) are robust to heterogeneity and have been

quite widely used. Chao et al. (1992) also proposed a moment estimator for model Mth, while Otis

et al. (1978) developed a ‘generalized removal’ estimator for model Mbh.

Other authors have tackled this problem by assuming that the pjk form a random sample from

some distribution. For example, for model Mh, which allows heterogeneity between individuals

only, one possibility is to suppose that the pk are drawn from a beta distribution, which has been

used with some success by Dorazio and Royle (2003). Coull and Agresti (1999) instead suggested

logistic-normal models of the kind we discussed for modeling p for count and removal data. Sim-

ilar approaches, both parametric and non-parametric, have been suggested for models Mbh and

Mth. As an alternative to continuous distributions, finite mixture models have been proposed for

the distribution of probabilities for models Mh and its extensions, Mbh, Mth, Mtbh, (Norris and Pol-

lock, 1995, 1996; Pledger, 2000). Using the notation of Pledger (2000), animals are assumed to come

independently from group a with probability πa, a = 1, . . . , A. The logit of the capture probability

for an animal from group a on occasion j with behavioral response b (newly captured or previously

captured) is then expressed as a linear function of parameters for group, occasion, behavior and

their interactions. A multinomial likelihood can be constructed as for the simpler models discussed

above, with an integration over the group allocations.
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Link (2003) notes that estimation of N for a closed population is essentially the same as esti-

mating the probability that an animal is unobserved during the survey period. The models for

heterogeneity in detection probability that we have reviewed attempt to do this by estimating the

distribution of the pjk from a model fitted to data which come from observed animals only. Link

(2003) shows that different modeling approaches can fit the observed data equally well yet produce

quite different estimates of the probability that an animal is unobserved, and hence quite different

estimates of N. This is a particularly worrisome feature of these models, and for our work we seek

alternative approaches to modeling heterogeneity. One such approach is to model heterogeneity in

detection probability by making pjk a function of covariates measured on the individual animals.

Examples of such covariates include animal characteristics (weight, sex, age) or the distance of the

animal from the observer. If we assume that covariates are the only source of capture heterogeneity

in our model, we can apply the logistic regression models of Huggins (1989) and Alho (1990). These

authors condition on the observed values of the covariates, but the conditional likelihood that re-

sults does not include N and it must be estimated using other methods (see also Pollock, 2002).

We do not consider this conditional approach in our work as it does not fit within our hierarchical

framework for modeling data from multiple sites. Instead we can make use of the full multinomial

likelihood constructed by Borchers et al. (1998). Consider the case of a single covariate, x, which

(following Borchers et al., 1998) we assume has a distribution with density ℘(x|θx) dependent on

parameters θx. For animal k, x has measurement xk, and we write the capture probability as a

parametric function of x, pjk = pj(xk|θp). Usually this function is also of linear logistic form, e.g.,

logit(pjk) = α + βxk. Now denote the probability that an animal is seen at least once by g(x|θp). It

follows from the original Bernoulli model, (1.9), that

g(x|θp) = 1 −
T

∏
j=1

{
1 − pj(x|θp)

}
.

The full likelihood can now be written as

L(Z, x|θx, θp) =
N!

MT+1!(N − MT+1)!
(1 − p.)N−MT+1

×
MT+1

∏
k=1

{
T

∏
j=1

p
zjk

jk (1 − pjk)
1−zjk

}
℘(xk),

where for clarity we have suppressed the conditioning on the parameters on the right hand side.
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Here p. is the expected probability that an animal is observed at least once during the survey, and

is given by

p. =
∫

P(animal detected|x)℘(x)dx

=
∫

g(x)℘(x)dx.

This integral must be evaluated numerically which has the potential to cause computational diffi-

culties in maximizing the likelihood. Pollock (2002) also points out that, depending on the param-

eterization of ℘(x) and g(x), there may be many parameters and consequent problems with iden-

tifiability and estimation. However, when it does work, this can be an extremely useful method for

estimating N while allowing for heterogeneity in capture due to covariates.

In this section we have reviewed capture-recapture models for closed populations sampled at a

single survey site. Our focus has been on the models and methods of which we will make use of in

later chapters when we develop extensions of these models to account for capture-recapture data

from spatially replicated sites.

1.2.3 Marking and Identification Errors in Animal Surveys

The assumption of no misidentification or loss of marks in capture-recapture is an important one.

For example, if marks are lost, then recaptured animals will be incorrectly identified as new cap-

tures and population estimates will be positively biased (Pollock et al., 1990). Animal misidentifica-

tion is particularly problematic with natural marks, which may be similar for different individuals

or may change with time. Some methods of marking are more likely to lead to errors than others.

In surveys of bird species, one approach is to divide an observation period of 10 minutes at each

site into three smaller intervals of time, and a three-period capture history is recorded for each bird

observed during the 10 minutes (Alldredge, 2004), e.g., a capture history of 101 if the bird was seen

in the first and third interval but not the second. The ‘marking’ here is simply the observer attempt-

ing to track each bird over the course of the observation period, something which is particularly

prone to error when birds move quickly or are identified by sound alone.

We may however, expect repeated count and removal surveys to be less affected by these types

of errors as they do not require individuals to be distinguished across the multiple sampling oc-

casions. It is possible, therefore, that when such marking errors are serious, count and removal

survey data will lead to less biased parameter estimates than capture-recapture data. However,
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repeated count surveys are themselves subject to other errors in the counting process – animals can

be counted more than once on a single survey occasion, two individuals seen separately can be

identified as the same animal (both similar to marking errors), or, particularly when density is high

at a site, it may be difficult to make an accurate count of the observed animals.

Perhaps least prone to error will be presence-absence surveys (Section 1.3 below), as they simply

require at least one member of the species to be correctly identified at a site. Thus data from the

surveys which in theory yield the least information (presence-absence), will be the most reliable,

while data from surveys which yield the most information (capture-recapture), may be the least

reliable. It will be interesting, therefore, to examine the effect of errors on parameter estimates for

the three types of animal surveys. In particular, we can compare site occupancy estimates for all

four survey types, and individual detection and abundance estimation for repeated count, removal,

and capture-recapture surveys when there is error in the marking or counting processes. While we

note that measurement errors are likely to affect our modeling in Chapters 3 and 4, detailed analysis

of their effects is left for future work.

1.3 Presence-Absence Surveys with Imperfect Detection

1.3.1 Background

The principle advantage that repeated count and removal surveys of animals have over closed pop-

ulation capture-recapture methods is their relatively low cost. Nevertheless, in large-scale species

surveys or in surveys of animals that are expensive to find, even surveys based on counts can be

very costly to undertake. Presence-absence surveys, on the other hand, can be much less expensive

as they require the identification of no more than one animal of the species of interest to establish

presence. The goal of a repeated count, removal or capture-recapture study is usually to estimate

abundance or density, or map spatial variation in density across a region. With a presence-absence

survey, we are instead trying to establish the spatial range of a species. For rare and endangered

species, establishing presence at a location can be important for species management and protec-

tion, while for pest species, control operations may be more effective when they target areas of

known species presence.

The result of a presence-absence survey is often a map showing sites at which the species is

present. However, as with count data, detection of individual animals is almost always imperfect –

an individual may be present, but remain undetected during the survey period. The consequence of
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this for presence-absence surveys is that while detection implies presence of the species (assuming

no misidentification), failure to detect a species at a site does not necessarily mean that the species

is absent. Therefore, any method that aims to estimate occupancy probabilities or predict presence,

must also account for the probability of detecting the species at a site.

Some authors have tried to deal with detection by attempting to ensure, through study design,

that species detection probabilities are as close to 1 as possible. For example, in analysing point

observations of bird species, Shriner (2001) excluded data beyond a certain distance of the observer

and assumed that within that distance, detection of individual birds was perfect. Others such as

Stauffer et al. (2002) recommend making sufficient repeated observations of a site so that species

detection is almost certain if the species is present. Such approaches risk wasting information or

resources with no guarantee that the issue of detection has been adequately dealt with.

Bayley and Peterson (2001) instead used an empirical Bayesian approach to estimate the proba-

bility that a site is occupied by a species when no animals were observed at that site. They began by

estimating detection probabilities and modeling species abundance as a function of habitat covari-

ates using independent field data. These models were then used to predict abundance at each site

sampled in the current survey, and these predictions became empirical priors for estimating site

occupancy probabilities using Bayes’ Theorem. Their methods are appealing when the field data

already exists, since less sampling effort will be required if we do not need to estimate detection

probabilities during the current survey. However, when useful data do not exist, we must turn

to survey designs and models which permit estimation of detectability from the current presence-

absence survey data.

Of particular interest in the present context are presence-absence surveys in which the sampled

sites are repeatedly surveyed for the presence of a species, since such survey designs can be thought

of as a special case of the repeated count designs examined in Section 1.1. Geissler and Fuller (1986)

proposed using these surveys to estimate the proportion of sites which are occupied as a useful

statistical measure of the range of a species. Their ideas were developed into a cohesive presence-

absence modeling framework by MacKenzie et al. (2002). In the remainder of this section we review

this framework and examine its connections to repeated count modeling.

1.3.2 Estimating Site Occupancy

Previously we showed that with repeated count and removal data, we are able to estimate the

probability of detecting an individual by making multiple independent observations at a site and
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assuming a binomial model for the observed counts. Although estimators exist for data from a sin-

gle site, more flexible and stable modeling can be undertaken using data from spatially replicated

sites. For presence-absence sampling, we can again obtain information about detection probabil-

ity (this time of the species) by repeatedly observing a site, but although it is possible to estimate

abundance from single-site count data, in order to estimate site occupancy probabilities, we now

require data from multiple sites.

In presence-absence surveys, rather than animal abundance or density, we are interested in

estimating the proportion of sites occupied, or the mean site occupancy probability, as a measure

of the status of a species. Using the notation of MacKenzie et al. (2002), we denote the probability

that site i is occupied by ψi = P(Ni > 0), where Ni is again the animal abundance at site i. As

before, suppose we have a sample of L sites from a region, and site i is observed on Ti occasions. In

presence-absence surveys, instead of recording a count yij of animals observed at site i on occasion

j, we record zij = I(yij > 0), with I(.) being the indicator function taking value 1 if the argument

is true and 0 otherwise. That is, zij takes the value 1 if the species was detected, and 0 otherwise.

Now let ρij be the probability of detecting the species at site i on occasion j. Then given that a site is

occupied, that is, one or more individuals are present (Ni > 0), our observations follow a Bernoulli

distribution,

zij|ρij, (Ni > 0) ∼ Bern(ρij). (1.11)

Let Z be the full matrix of observations with rows of unequal length Zi = [zi1, . . . , ziTi
]. Based on

the parameters ρi = [ρi1, . . . , ρiTi
] and ψi we can construct the likelihood component for site i under

the Bernoulli model (1.11) for occupied sites. As recognised by MacKenzie et al. (2002), who used

an equivalent capture-recapture framework to derive the likelihood, this depends on whether the

species has been detected or not over the entire survey. For a site at which at least one animal was

seen, we have

L1(Zi|ρi, ψi) = ψi

Ti

∏
j=1

ρ
zij

ij (1 − ρij)
1−zij .

For sites with no animals observed, the species was either present but undetected or the species

was absent, leading to a likelihood with two components,

L2(Zi|ρi, ψi) = ψi

Ti

∏
j=1

(1 − ρij) + (1 − ψi).
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If animals are detected at L. sites, the full likelihood is given by

L(Z|ρ, ψ) =
L.

∏
i=1

L1(Zi|ρi, ψi) ×
L

∏
i=L.+1

L2(Zi|ρi, ψi)

where ρ is the matrix with ith row given by ρi. As it stands, this model is overparameterized and

additional information or assumptions are required for parameter estimation. MacKenzie et al.

(2002) put restrictions on the parameters. In particular, they assumed that occupancy probabili-

ties were constant, ψi = ψ, across the sites, and species detection varies only across the sampling

occasions, that is ρij = ρj. This reduces the full likelihood to

L(Z|ρ, ψ) =

{
ψL.

Ti

∏
j=1

ρ
z.j
j (1 − ρj)

L.−z.j

}
(1.12)

×
{

ψ
Ti

∏
j=1

(1 − ρj) + (1 − ψ)

}L−L.

,

where in this case ρ = [ρ1, . . . , ρTmax ], with Tmax = max(T1, . . . , TL), and z.j = ∑i zij. Thus for this

model the statistics (z.1, . . . , z.Tmax , L.) are sufficient for the parameters, and maximization of (1.12)

is generally straightforward. MacKenzie et al. (2002) suggest using a nonparametric bootstrap

procedure for calculating standard errors for this model.

This model is very restrictive, however. In particular, there will always be heterogeneity in de-

tection probability between sites due to spatial variation in abundance. One approach to allowing

for heterogeneity is to model ψi and ρij as functions of covariates, using a logistic link function

as discussed in MacKenzie et al. (2002). A summary statistic of site occupancy could then be the

average of the ψ̂i. Another possibility is to assume the ψi and ρij are samples from some paramet-

ric distribution, for example the beta distribution as we did for pij for count and removal models

in Section 1.1, or to apply the finite mixture models proposed for capture-recapture modeling of

heterogeneity in detection (Section 1.2, Pledger, 2000). We can also allow for both covariates and

random effects using a logistic-normal. For example, for ψi we may have

logit(ψi) = µi + φi

where µi is the covariate model, e.g., µi = X′
iα, and φi is a zero-mean Gaussian error term. We

can also model spatial dependence in occupancy through the φi term as we did for count data
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(described in Section 1.5). Such models allow us to predict the occupancy probabilities of sites at

which no animals were observed and at unsurveyed sites. The complexity of these models means

a likelihood approach is again no longer feasible, but by specifying the models hierarchically, we

can instead use Bayesian hierarchical modeling for parameter estimation (Section 1.4). However,

because there is less information in presence-absence data than count data, we will almost cer-

tainly need to sample more sites and use more sampling occasions in order to get good parameter

estimates from such complex models.

1.3.3 Count Modeling and Site Occupancy Estimation

Previously we considered the case examined by MacKenzie et al. (2002) where ψ is constant and

ρij = ρj, that is, species detection varies only across the sampling occasions. Another interesting

model is where ψ is also constant but ρij = ρi. Setting aside for now covariate models or assump-

tions about the distribution of parameters, with a ρi associated with each site, this model is more

difficult to fit, particularly for sparse data. However, it is informative to examine this model as it

provides a link to the repeated count models of Section 1.1. In that section we discussed the model

for count data examined by Royle (2004) in which individual animal detection probability p is con-

stant across all sites on all occasions. That author’s approach was to place a distribution (such as

the negative binomial) on the site abundances Ni and integrate Ni out of the likelihood. With count

data, we are also able to estimate occupancy probabilities, and for the negative binomial model the

proportion of sites occupied follows from Equation (1.7) as

ψ = P(Ni > 0) = 1 − P(Ni = 0)

= 1 −
(

bλ

bλ + 1

)aλ

.

An estimate, ψ̂, will follow automatically from the MLEs for aλ and bλ. If a key goal of species

monitoring is the estimation of ψ, the question arises, what do we gain by having count data rather

than presence-absence data? We approach this by reconsidering the likelihood for the p constant

model for count data. For illustration purposes, we do not place a distribution on Ni, but treat

these as parameters to be estimated. Now, rather than writing the full likelihood as a version of

Equation (1.5), we split it into two components, one for sites at which at least one animal was seen,

and another for sites where no animals were seen (thus yij = 0, j = 1, . . . , Ti). For each of the L.
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sites at which the species was detected, the likelihood component is

L1(Yi|Ni, p, ψ) = ψ
Ni!

Ti

∏j(Ni − yij)!yij!
pyi.(1 − p)Ti Ni−yi. ,

while for sites with no animals detected, the likelihood component simplifies to

L2(Yi|Ni, p, ψ) = ψ(1 − p)Ti Ni + (1 − ψ). (1.13)

This leads to a full likelihood of

L(Y|N, p, ψ) =
L.

∏
i=1

L1(Yi|Ni, p, ψ) ×
L

∏
i=L.+1

L2(Yi|Ni, p, ψ) (1.14)

= ψL.
L.

∏
i=1

Ni!
Ti

∏j(Ni − yij)!yij!
pyi.(1 − p)Ti Ni−yi.

×
L

∏
i=L.+1

{
ψ(1 − p)Ti Ni + (1 − ψ)

}
.

Now let us return to modeling presence-absence data only. As pointed out by Royle and Nichols

(2003), the model with constant species detection probability ρ across sites is unrealistic as it ignores

the fact that the species is more likely to be detected at a site with more animals present. In fact, for

constant individual detection probability, p, species detection is related to site abundance, Ni, by

ρi = 1 − (1 − p)Ni . (1.15)

Therefore, the presence-absence model that corresponds to the count model with p constant and

abundance varying across sites is the model with species detection, ρi, varying across sites. The

likelihood for this presence-absence model is

L(Z|ρ, ψ) = ψL.
L.

∏
i=1

ρ
zi .
i (1 − ρi)

Ti−zi . (1.16)

×
L

∏
i=L.+1

{
ψ(1 − ρi)

Ti + (1 − ψ)
}

,

where zi. = ∑j zij. We note that in both cases, information about detection probabilities and abun-

dance only comes through the first component of the likelihoods, since data from the L − L. sites

at which nothing was detected tell us nothing about these parameters. We can see that for both
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count and presence-absence data, the only information about ψ from the first component of the

likelihoods is L., the number of sites at which the species was observed. But from Equation (1.15),

the second components of both (1.14) and (1.16) are mathematically identical, since

(1 − p)Ti Ni = (1 − ρi)
Ti .

The only additional information about ψ from count data in the second component, therefore,

comes through p, and since there is more information about p in the count data, we would ex-

pect ψ to be more precisely estimated when we use the count data rather than the presence-absence

data. In general, when estimating p from binomial data, precision will be greater for larger N. This

implies that for our estimation problem, we can expect the gain in precision from using count data

over presence-absence data to estimate ψ to be greater when the Ni, and, therefore, the observed

counts, are larger. We plant to revisit this problem in more detail in future work.

The relationship (1.15) is the link between repeated count models and presence-absence models.

Royle and Nichols (2003) exploited this relationship in an attempt to estimate abundance from

presence-absence data alone by taking the same approach that Royle (2004) took for count data:

construct a likelihood from the data parameterized in terms of p and Ni, give the Ni a parametric

distribution such as the Poisson or negative binomial, and integrate out the nuisance Ni. Except

for the model for the data (Bernoulli instead of binomial) the procedure is exactly as for repeated

count data. As with the likelihoods for count data from the previous section, their likelihood did

not explicitly include occupancy parameters as estimates of ψi follow directly from P(Ni > 0), for

example Equation (1.13) for the negative binomial distribution. Given detection probabilities of

p > 0.3, they found that fitting models with a Poisson distribution for abundance was possible for

sufficiently large data sets (e.g., L = 100, Ti = T = 5), but modeling with the more realistic negative

binomial distribution was extremely unstable. For smaller p, much larger samples were required

for estimation, even with the Poisson model. Our view is that although it may be possible in some

cases to get useful estimates of abundance from presence-absence data, it would be inadvisable to

design a presence-absence survey for the purpose of estimating abundance.
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1.4 Bayesian Hierarchical Modeling

1.4.1 Background

The complexity of many of the models presented in the previous sections means that standard

maximum likelihood estimation is not feasible, as we illustrated with Equation (1.8) in Section

1.1. However, we have constructed these models with a hierarchical structure that makes them

particularly suitable for Bayesian modeling using Markov Chain Monte Carlo (MCMC) algorithms.

In this section we present a short review of Bayesian modeling as it relates to our work. For a

detailed overview we refer the reader to Gelman et al. (2004), while Link et al. (2002) has a nice

introduction to Bayesian MCMC modeling aimed at wildlife scientists.

In Bayesian modeling, the goal is to compute the form of the distribution of the parameters,

given the data and some prior information. The distribution thus determined is known as the

posterior distribution, and for a parameter vector θ and data Y, this is found by solving the equation

℘(θ|Y) =
℘(Y|θ)℘(θ)∫
℘(Y|θ)℘(θ)dθ

, (1.17)

where ℘(θ|Y) is the posterior density, ℘(Y|θ) is the likelihood of the data and ℘(θ) is a prior density

through which previous knowledge about θ can be incorporated.

The main philosophical difference between Bayesian and traditional frequentist modeling is

our ability to incorporate prior information about the parameters into Bayesian modeling. Instead

of ignoring relevant previous research and expert opinion, making use of such information in the

analysis of present data seems very appealing, particularly when the amount of data is not large,

which is almost always the case in wildlife population research. There is a large element of sub-

jectivity in specifying informative priors for model parameters, as we must decide exactly how to

weight past knowledge relative to the present data, that is, determine how important or relevant

this information is in the context of the present study. It is important, therefore, that any informa-

tive priors are clearly justified by the analyst. Many authors instead avoid the issue of subjectivity

by choosing non-informative or vague priors for the parameters in what Link et al. (2002) calls

an objective Bayesian analysis. In this case the analysis focuses on the information contained in

the present data, with the form of the posterior being approximately determined by the likelihood

alone. However, even choosing a non-informative prior requires some care. There are usually

several alternatives and in some situations the choice may affect model inference, e.g., variance
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parameters for hierarchical models (Gelman, 2006). Therefore, it is advisable to test the robustness

of any analysis to different choices of prior.

Regardless of whether priors are informative or not, for most useful models, and certainly the

ones of interest in our work, the solution to Equation (1.17) does not have a closed form and in-

stead we rely on MCMC algorithms to generate samples from the posterior distributions of the

parameters. For many of the models we consider, we can use the WinBUGS software for Bayesian

hierarchical modeling using MCMC methods (Spiegelhalter et al., 2003). Where use of this soft-

ware is not be possible for a particular model, we will write our own algorithms based on Gibbs

sampling (Geman and Geman, 1984) and the Metropolis-Hastings algorithm (Hastings, 1970). We

now review these methods.

1.4.2 Markov Chain Monte Carlo Methods

Bayesian analysis of complex hierarchical modeling relies on the computationally intensive MCMC

methods which aim to generate samples from the posterior distribution of the parameters. Once

these algorithms have converged, with sufficiently large samples we may compute any statistic

from the posterior distribution such as posterior means, standard deviations, quantiles, correlations

between the parameters, or the form of posterior densities themselves (for example, using kernel

density estimation).

Suppose we have a parameter vector of length d, θ = [θ1, . . . , θd], and data Y. Gibbs sampling

depends on being able to sample from the full conditional distributions, ℘(θi|θ−i, Y), i = 1, . . . , d,

where

θ−i = [θ1, . . . , θi−1, θi+1, . . . , θd].

When this is possible, the algorithm will generally proceed very efficiently compared to some

alternatives. Gibbs sampling begins with the specification of a vector of starting values, θ =

[θ
(0)
1 , . . . , θ

(0)
d ] and then proceeds as follows for iterations b = 1, . . . , B:

Sample θ
(b)
1 from ℘(θ1|θ(b−1)

2 , θ
(b−1)
3 , . . . , θ

(b−1)
d , Y)

Sample θ
(b)
2 from ℘(θ2|θ(b)

1 , θ
(b−1)
3 , . . . , θ

(b−1)
d , Y)

. . .

Sample θ
(b)
d from ℘(θd|θ(b)

1 , θ
(b)
2 , . . . , θ

(b)
d−1, Y).

Under mild conditions, θ = [θ
(b)
1 , . . . , θ

(b)
d ] will converge in distribution to a sample from the joint

posterior distribution, ℘(θ|Y) (Geman and Geman, 1984).
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For many models, including ours, it will not be possible to write down the form of the full

conditional distributions for all d parameters. Nevertheless, we will be able to write down the full

conditional up to a constant of proportionality, since from (1.17), ℘(θ|Y) ∝ ℘(Y|θ)℘(θ). This fact

is exploited by the Metropolis-Hastings algorithm to generate samples from the posterior distri-

bution. Consider again the case of a d dimension parameter vector θ. In the Metropolis-Hastings

algorthim we begin by specifying a candidate density q(θ∗|θ(b−1)) which is valid for the full sup-

port of θ(b−1). At each iteration, a sample is drawn from the candidate distribution and examined

to see how plausible it is as a draw from the posterior compared to the parameter value from the

previous iteration, and then accepted or rejected as the value for the current iteration. Again for

iterations b = 1, . . . , B, the algorithm has the following form:

Sample θ∗ from q(θ∗|θ(b−1))

Compute

r =
℘(Y|θ∗)℘(θ∗)q(θ(b−1)|θ∗)

℘(Y|θ(b−1))℘(θ(b−1))q(θ∗|θ(b−1))

If r ≥ 1, let θ(b) = θ∗.

If r < 1, let θ(b) = θ∗ with probability r and θ(b) = θ(b−1) with probability (1 − r).

Again, under mild conditions, a sample generated using Metropolis-Hastings will converge to a

sample from the joint posterior distributions (Hastings, 1970). When the candidate density is sym-

metric, that is q(θ∗|θ(b−1)) = q(θ(b−1)|θ∗), the ratio r simplifies and we have the Metropolis algo-

rithm. An example would be if θ∗ ∼ N(θ(b−1), Σ). For this and any other candidate density, we

must specify additional parameters (here it is the matrix Σ) and the choice of these will determine

how frequently candidate values are accepted for both the Metropolis and Metropolis-Hastings al-

gorithms. If new values are accepted too frequently, the samples will be highly correlated and the

sample space will be traversed very slowly. Conversely, if most values are rejected, the samples

will hardly change at all. In practice, we may need to try different values of the parameters of q(.)

to achieve an optimal rejection rate.

In many instances, full conditionals will be available for some parameters but not for others.

When this is the case, the Metropolis-Hastings algorithm can be inserted as a single step within the

Gibbs sampler for each of the parameters for which direct sampling from the full conditional is not

possible. See Gelman et al. (2004) for a more detailed discussion.

Whichever MCMC algorithm or combination of algorithms is used, we must take care to ensure
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that the algorithms converge and that we only analyze samples generated after convergence. Con-

vergence itself can be determined by generating samples from multiple Markov chains, begun with

widely dispersed initial values, and comparing the behavior of the chains. We can do this visually

by making simultaneous plots of the values of the multiple chains for each parameter, with good

mixing of the chains implying convergence. In addition we can also compute the Gelman-Rubin

scale-reduction factor (Gelman and Rubin, 1992), which compares variation within the chains to

variation across the chains. Convergence will lead to values of this factor close to 1.

We have already mentioned that we can use the samples that are generated following conver-

gence of the algorithms to calculate posterior summary statistics. In particular, the posterior mean

or median is often used as a point estimate of a parameter, with uncertainty in the value measured

by the posterior standard deviation or a pair of quantiles (e.g., 2.5% and 97.5%). The precision of

the posterior means can be estimated using the methods of time series analysis which allow for

correlation in the series of generated values, for example by estimating the spectral density at zero

(see Monahan, 2001).

1.4.3 Model Selection

One of the goals of model fitting will be to select a “best” model from a set of competing mod-

els. When fitting models using maximum likelihood estimation, the Akaike Information Criterion

(AIC) is often used for comparing models the fit of a selection of models (Akaike, 1973). It is calcu-

lated as

AIC = −2 log {maxθL(Y|θ)} + 2pθ

where maxθ L(Y|θ) is the likelihood of the data maximized with respect to the parameter vector

θ and pθ here is the number of parameters in the model. The first term in the AIC is a measure

of the goodness of fit of the model, while the second term penalizes more complex models. For

Bayesian modeling, a Bayesian version of the AIC statistic has also been proposed. Let D(θ) =

−2 logL(Y|θ) be the deviance statistic. We compute this for every value of the parameter vector θ

generated by the MCMC algorithms following convergence, and from these samples, we compute

D̄, the posterior mean. Gosky (2004) suggested using AIC = D̄ + 2pθ as a measure of model fit. He

applied it to standard closed-population capture-recapture models and found to to work very well.

However, we note that such models lack the complex mixed-effects structure of those we consider,

and neither version of the AIC has formal theoretical justification for such models.
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Alternatively, Spiegelhalter et al. (2002) proposed a generalization of the AIC for Bayesian mod-

eling called the Deviance Information Criterion (DIC). Like the AIC, the DIC is the sum of two

components, one measuring model fit and the other, model complexity. Let D(θ) = −2 logL(Y|θ)

be the deviance statistic. In the DIC, the model fit is measured by D̄, the posterior mean of the de-

viance statistic. The complexity is measured by the effective number of parameters pD, calculated

as pD = D̄ − D(θ̄), the difference between D̄ and D(θ̄), the deviance evaluated at the posterior

mean of the parameter vector. This gives

DIC = D̄ + pd = D(θ̄) + 2pd

D(θ) can be computed at each iteration of the MCMC algorithm and its posterior expectation es-

timated, as for other parameters, by averaging the generated values after convergence of the algo-

rithm. D(θ̄) is easily computed from the estimated posterior means of the model parameters.

Spiegelhalter et al. (2002) discuss how the DIC can be affected by choice of which part of the

likelihood to focus on. A practical approach, and the one taken by WinBUGS, is to calculate the

likelihood as a function of the “parent nodes” of the data, the parameters of which the data are

directly a function. For example, for repeated count data where yij ∼ Bin(Ni, pi), the parent nodes

are Ni and pi, and at each iteration of the MCMC algorithm we compute

logL(Y|N, p) = log

{
L

∏
i=1

Ti

∏
j=1

(
Ni

yij

)
p

yij

i (1 − pi)
Ni−yij

}
.

Computing a more complete version of the likelihood is impractical for the same reasons maximum

likelihood estimation is difficult, since we must numerically integrate out the parameters Ni and pi

from the likelihood.

Although the DIC appears to work well in many situations, problems can arise for some mixed

effects models, including those we consider here. For these models it is possible for the effective

number of parameters to be negative (Spiegelhalter et al., 2002) and more complex models are

rewarded rather than penalized. In such cases the DIC criterion breaks down as a model selection

tool. Other versions of the DIC have been proposed for mixed-effects models by Celeux et al.

(2006), but the authors were unable to make clear recommendations based on the performance of

their proposals in a simulation study. Their versions of the DIC require further study.
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Alternatively, some authors have considered cross-validation for model fit checking. Each ob-

servation is removed in turn and predicted from a model fitted to the remaining data, and then

these predicted values are compared to the observed data. Stern and Cressie (2000) discuss meth-

ods for predictive model checking for count data models similar to those we have examined. How-

ever, in our models detection is imperfect and we do not have any direct observations of density

or abundance to compare with prediction. Wyatt (2003) instead compared the cross-validation pre-

dictions with estimates from the model fitted to the full data, but the closeness of predictions from

reduced data to that from the full data may not be very informative if the full data estimation is

poor. Further, with large data sets, fitting Bayesian hierarchical models can be time consuming, and

refitting a model again for each observation will be impractical.

Gelfand and Ghosh (1998) proposed a criterion based on the minimizing a posterior predictive

loss function. Their criterion is more general than the DIC of Spiegelhalter et al. (2002), and with an

appropriate choice of loss function, will not suffer the problem of a negative penalty term for com-

plex hierarchical models. Further, unlike cross-validation methods, it is computationally efficient

to compute within an MCMC algorithm for Bayesian modeling. Suppose we observe data vector

Y = [y1, . . . , yL] and that Yrep is a replicate vector generated under the same underlying model as

Y. Gelfand and Ghosh (1998) proposed constructing a loss function based on the weighted sum of

one penalty term for departures from the observed value, and another penalty term for departures

from the replicate. They give weights k and 1 to these terms respectively, and consider different

values of k. A common choice of loss function is the square predicted error loss, and Gelfand and

Ghosh (1998) show when this is minimized their criterion becomes

DGG =
k

k + 1

L

∑
i=1

(µi − yi)
2 +

L

∑
i=1

σ2
i

=
k

k + 1
G + P,

where µi = E(y
rep
i |Y) and σ2

i = var(y
rep
i |Y). These predictive means and variance are easily com-

puted from the posterior samples of y
rep
i , which themselves are easily generated at each MCMC

iteration using the values of the model parameters for that iteration. The terms G and P are respec-

tively a measure of model fit and a penalty for model complexity, and so DGG is of the same form

as the AIC and DIC. Gelfand and Ghosh (1998) show that their criterion is little affected by the
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choice of weighting parameter, k, and by choosing k = ∞, the criterion simplifies to

DGG = E

[
L

∑
i=1

(y
rep
i − yi)

2|Y
]

.

Alternatively, Ghosh and Norris (2005) use the mean square predicted error loss function (MSPE)

on the log-scale for selecting models for heterogeneity in detectibility for capture-recapture data.

We use this loss function as the basis for a criterion for model selection in Chapter 2, when we

compare models fitted to data from a repeated count survey of the fish population in a stream.

1.5 Models for Spatially Correlated Animal Species Data

1.5.1 Background

Until recently, modeling of the spatial distribution of animal species was done using by assum-

ing independent observation and applying regression-type models relating species abundance or

presence to ecological covariates, e.g., habitat and climate variables (see Guisan et al., 2002, for a

review). As discussed in Gelfand et al. (2006), this modeling assumes that environmental variables

are the principle factors affecting species distribution, and that species have reached equilibrium

with respect to these variables, something which is rarely true. Factors such as species dispersal,

competition with other species, and population dynamics also influence the distribution of animals,

and can to lead to spatial clustering in the distribution of animal populations which is unexplained

by environmental variables alone, something ignored by regression models. Failure to account for

this spatial dependence in modeling animal survey data can exaggerate the effects of covariates and

lead to misleading estimates of the precision of predicted values at unsurveyed locations. In this

section we begin by describing how spatial dependence can be included in the modeling frame-

work we have outlined previously for surveys of animals population, and go on to review some of

the more important spatial models which have been proposed for animal survey data.

As before, we assume that survey data are collected at L sites within a monitoring region. Recall

that the first part of modeling site abundances for repeated count data was to assume that they

follow a Poisson distribution with mean λi (Equation (1.6)) for site i. The next stage, which allowed

for likely overdispersion in the site abundances, was to model the λi as coming from a gamma

distribution. The standard approach for introducing both covariates and a spatial component into
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the model is from Diggle et al. (1998), and replaces the gamma model with a lognormal model,

log(λi) = µi + φi. (1.18)

The term µi represents the covariate model, e.g., a linear function of environmental variables, µi =

X′
iα. φi is a zero-mean Gaussian random error, and spatial dependence in the site abundances is

modeled only through specifying a covariance model for the multivariate normal vector of the

errors, φ = [φ1, . . . , φL]′.

Similarly, we can incorporate spatial structure into models for presence-absence data by speci-

fying a model for the site occupancy probabilities, ψi. In this case we use the logistic link function,

as suggested by Diggle et al. (1998) for binary data in general,

logit(ψi) = µi + φi, (1.19)

where the terms on the right hand side have the same interpretation as before.

Modeling the spatial dependence through the random error term in a linear model is not the

only approach available. For example, Gelfand et al. (2003) note that in some applications, fitting

regression-type covariate models with fixed coefficients may not be appropriate. Instead they pro-

pose models in which the parameters of the covariate model are themselves a function of spatial

location, while the φi are independent. While noting the potential usefulness of such models, we

do not consider them further in our work.

In the remainder of this section we review two approaches to modeling spatial dependence

which have been used for animal survey data, and discuss their advantages and disadvantages. A

third method, spectral modeling, has recently been proposed by Wikle (2002) as an efficient way

of modeling spatial dependence in animal count data, but at least for now, we do not consider this

method in detail. There is a vast and ever expanding body of literature on spatial models, and our

goal here is simply to provide an elementary introduction to some important models which are

relevant to our work, largely based on Cressie (1993) and Banerjee et al. (2004). For geostatistical

models in particular, much research has been done on developing generalizations which relax in

some way the assumptions of the models we present, such as assumptions of stationarity and

isotropy. While noting its existence and importance, it is beyond our scope to examine this research

here.
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1.5.2 Geostatistical Models

In geostatistical modeling, the data we gather are thought of as a realization of a random process,

{Z(s) : s ∈ D} observed at some fixed set of locations {s1, . . . , sL}, where D is a fixed subset of

d-dimension Euclidian space. In animal population modeling, d is typically 2, although we also

consider the case of d = 1 when modeling the distribution of fish in streams. If Z(s) has constant

mean for all s in D, and the covariance of the process at two locations cov(Z(s1), Z(s2)) is a function

only of the separation vector h = s1 − s2, that is,

cov(Z(s1), Z(s2)) = C(h)

for some function C(.), then as defined by Cressie (1993), the process Z(s) is called second-order

(or weakly) stationary. Further, if C(h) is a function only of the euclidian distance between two

locations, r = ‖h‖, then we say the process is isotropic. Isotropic models have been widely used

largely because they are relatively straightforward to fit and are easy to iterpret, and for this reason

we focus on this class of geostatistical model for modeling the spatial dependence in the component

φ of our animal population models. Nevertheless, isotropy is not always a reasonable assumption.

It may be that due to factors such unmeasured ecological covariates or patterns of animal disper-

sal, spatial dependence is stronger over the same distance in some directions than others and it is,

therefore, important to check the validity of the isotropy assumption (see Cressie, 1993, for exam-

ples).

Models for spatial processes are usually defined in terms of the semivariagram, γ(s1 − s2) =

0.5var(Z(s1), Z(s2)), which for isotropic models can be written as γ(‖h‖), or for greater simplicity,

γ(r). We only consider models with valid semivariograms (see Cressie, 1993, for conditions for

validity) and corresponding covariance functions, C(r). Although models are usually defined in

terms of the semivariogram, for ease of interpretation, we present the covariance functions for a

selection of useful models.

Spherical

C(r) =






σ2
τ + σ2

φ r = 0

σ2
φ

{
1 − 3

2
r
a + 1

2

(
r
a

)3
}

0 < r ≤ a

0 r > a
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The three parameters of this function are commonly known as the nugget, partial sill, and range.

The nugget, σ2
τ represents microscale variation or variation due to measurement error in the spatial

process. The parameter σ2
φ is the partial sill, while σ2

τ + σ2
φ is known as the sill. It is the range param-

eter, a, that determines the rate of decay of spatial dependence with distance, and for the spherical

model, there is assumed to be no spatial dependence between sites when they are separated by a

distance greater than a. We note that the spherical model is valid for d = 1, 2 or 3 dimenstions, and

so is applicable to modeling data from surveys of animal populations.

Exponential

C(r) =





σ2

τ + σ2
φ r = 0

σ2
φ exp(−r/a) r > 0

Unlike the spherical model, the range parameter a does not represent the absolute range of non-

zero spatial dependence since the spatial covariance only approaches 0 as distance r goes to infin-

ity. Therefore, a represents the rate of exponential decay in the strength of the dependence with

increasing distance between two points. In particular, we note that C(r) goes to zero as a goes to

zero, leading to the case of spatial independence. Royle et al. (2002) applied the exponential model

to point count data from bird surveys, while a spectral approximation to this model was fitted by

Wikle (2002) to similar data. This model is included in the GeoBUGS add-on to WinBUGS (Thomas

et al., 2002).

Gaussian

C(r) =





σ2

τ + σ2
φ r = 0

σ2
φ exp(−r2/a2) r > 0

The Gaussian model is very similar in form to the exponential, and in practice it can be difficult to

distinguish differences in fit when these models are applied to the same data. The Gaussian model,

however, yields a ‘smoother’ spatial process. Smoothness refers to the continuity of the process,

and the underlying nature of a process may mean a smoother or less smooth spatial model is more

meaningful in a physical or biological sense.
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Matérn

C(r) =





σ2

τ + σ2
φ r = 0

σ2
φ

(2
√

νr/a)ν

2ν−1Γ(ν)
Kν(2

√
νr/a) r > 0

Kν is the modified Bessel function of order ν, where the additional parameter ν specifies how

smooth the spatial process is. The Matérn is really a class of models, with the exponential (ν = 1/2)

and Gaussian (ν = ∞, the smoothest model) as special cases.

We now describe how these spatial models can be incorporated into the hierarchical framework

for modeling animal populations. Recall that we introduced the spatial modeling through the log

of density of animals at a site. Using the notation introduced above for spatial process Z, we now

write the model for density, λ, as a function of spatial location s

log(λ(s)) = µ(s) + Z(s).

As before µ(s) is a covariate (or trend) model, for example, µ(s) = X(s)′α. Z(s) represents the

spatial process, which we decompose into two independent components, the first analagous to the

measurement error described above, τ(s), and the other, a spatially dependent component, φ(s),

Z(s) = τ(s) + φ(s).

Suppose we collect data at L locations, s1, . . . , sL. We denote the realizations of Z(s) at these loca-

tions by Z = [Z1, . . . , ZL]′, where Zi = τi + φi. Now assume that Z(s) is a zero mean, Gaussian

process with isotropic covariance structure following one of the models described above. The vec-

tor Z will then be multivariate normal,

Z|σ2
τ , σ2

φ, a, ν ∼ MVN(0, σ2
τI + σ2

φV)

where V is an L × L covariance matrix with the ii′ element defined by C(rii′) = C(‖si − si′‖),

i, i′ = 1, . . . , L. We prefer to work with the components of the spatial process, that is,

τ|σ2
τ ∼ MVN(0, σ2

τI),

φ|σ2
φ, a, ν ∼ MVN(0, σ2

φV),
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where τ = [τ1, . . . , τL]′ and φ = [φ1, . . . , φL]′. These models define the final level in the hierarchy

of our models for animal population data. In fact, we will assume in our work that τ = 0 since in

practice it can be very difficult to distinguish this term from φ. These terms occur far from the data

in the model hierarchy, and it is our experience that there is unlikely to be sufficient information to

separate the parameters of the two processes, particularly since animal population data is typically

sparse and we are simultaneously attempting to model random effects in the detection component

of the models.

There is an important practical limitation in using geostatistical models within Baysesian MCMC

modeling. At each step of the algorithm we must sample from the full conditional for φ, which re-

quires computing the inverse of an L × L covariance matrix. In practice, we can actually solve a

system of L equations, but this still becomes an enormous drain on computer time when L is large

and the operation must be repeated for thousands of MCMC iterations. Things look even worse

when our goal is spatial prediction (“kriging”, Cressie, 1993; Diggle et al., 1998) at a large num-

ber of unsurveyed locations. (We will return to the problem of spatial prediction in Chapter 3.)

One possibility is to consider models that lead to covariance matrices with sparse structure, that

is, those that have many zero elements. Such matrices require less computer memory to store and

efficient algorithms exist for operating upon them (see for example Monahan, 2001). The statistical

software R (Ihaka and Gentleman, 1996) includes the SparseM library for storing and performing

operations on sparse matrices (Koenker and Ng, 2004). The only one of the isotropic models we

have described which naturally leads to such sparse structure is the spherical model, since when

the distance between two locations is greater than the range, a, the corresponding element in the

covariance matrix will be 0. The degree of sparseness will be a function of how quickly spatial de-

pendence declines with distance and of the geographical spacing of the survey locations. We con-

sidered using the spherical covariance function for Bayesian MCMC modeling of large data sets,

in particular a bird survey data set with observations at over 3000 locations in the Great Smoky

Mountains National Park (Shriner, 2001; Lichstein et al., 2002) in Chapter 3, although we found the

models of the following section to be more suitable.

1.5.3 Conditional Autoregressive Models

Much recent interest in spatial modeling has focused on conditional autoregressive (CAR) models

(Besag, 1974), largely due to their ease of implementation within a Bayesian hierarchical modeling

framework. Unlike geostatistical models, which required a full unconditional multivariate normal
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specification for the distribution of φ, in CAR models the distribution of each φi is defined con-

ditional on φ−i = [φ1, . . . , φi−1, φi+1, . . . , φL]′. Specifically, in a CAR model φi is assumed to be

normally distributed with the mean defined to be the weighted average of the elements of φ−i.

Following Banerjee et al. (2004) we begin by defining a symmetric L × L matrix of weights, W, with

elements wii′ . The simplest case would be to let wii′ = 1 if sites i and i′ are ‘neighbors’, and zero

otherwise. Alternatively, we may wish the weights to reflect the different distances between sites

(or the site centers), and choose wii′ = 1/rii′ , where rii′ is the Euclidean distance of site i from site i′.

Definition of the neighborhood weight structure is the key factor in specifying a CAR model, and

care must be taken depending on the nature of the sampling units. We return to this point a little

later.

Now define wi. = ∑
L
i′=1 wii′ , the row totals of W. A ‘proper’ Gaussian CAR model then follows

by defining the distribution of φi conditionally as

φi|φ−i, γ, σ2
φ ∼ N

(
γ ∑

i′ 6=i

wii′

wi.
φi′ ,

σ2
φ

wi.

)
. (1.20)

The parameter γ in (1.20) is interpreted as a measure of the strength of the spatial correlation, with

γ = 0 implying independence and higher values of |γ| leading to greater positive or negative

correlation. We note that the weights not only define the mean of the conditional distribution,

but also that when wi., the sums of the neighbors’ weights for a site, is large (perhaps because

that site is far from other sites), its conditional variance will be larger than if wi. is small. Thus the

neighborhood structure also ultimately affects the precision with which site abundance is estimated

and the precision of predictions at unsampled sites. Unconditionally, ℘(φ), the probability density

of φ, is given by

℘(φ|γ, σ2
φ) ∝ exp

{
− 1

2σ2
φ

φ′M−1 (I − γC) φ

}
, (1.21)

where M is a diagonal matrix with ith diagonal element 1/wi., and C = MW, the scaled weight

matrix (Banerjee et al., 2004). Equation (1.21) specifies the kernel of a multivariate normal distribu-

tion with mean vector 0 and covariance matrix Σφ = σ2
φ(I − γC)−1M. With weights defined above,

Σ
−1
φ = M−1 (I − γC) will be symmetric, and provided that |γ| < 1, it will also be non-singular

and Σφ will be a valid covariance matrix. In this case, (1.20) defines a proper prior distribution in

Bayesian hierarchical modeling (Banerjee et al., 2004), and hence this model specification is known

as a proper Gaussian CAR model.
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There are some problems in intepretation of this model. Banerjee et al. (2004) illustrate that

values of γ close to 1 do not necessarily imply high correlation, and so γ cannot be interpreted in

the same way as a correlation coefficient. Further, the proper CAR model, (1.20), gives the condi-

tional mean of φi as a proportion of a weighted average of its neighbors, which itself makes precise

interpretation unclear. For these reasons, an alternative model, known as the intrinsic CAR model,

omits γ, leading to the mean of φi being expressed directly as a weighted sum of its neighbors,

φi|φ−i ∼ N

(

∑
i′ 6=i

wii′

wi.
φi′ ,

σ2
φ

wi.

)
. (1.22)

However, examination of Equation (1.22) shows that it is not a proper prior for Bayesian modeling.

Here ℘(φ) has kernel

℘(φ|σ2
φ) ∝ exp

{
− 1

2σ2
φ

φ′M−1 (I − C) φ

}
.

This again appears to be the kernel of a multivariate normal distribution with mean vector 0, but

this time with covariance matrix Σφ = σ2
φ(I−C)−1M. However, M−1(I−C) is now singular and so

Σφ does not exist. Nevertheless, as the posterior distribution of φ is still proper in many situations

(Sun et al., 1999), this simpler CAR model is also worth consideration.

CAR models are particularly well suited to survey regions which are divided into large con-

tiguous units and we collect data from every or almost every unit in the region. Thus these models

have proved useful in disease modeling when the data consists of counts of disease cases within

each county of a state, or region of a country (e.g. Pascutto et al., 2000; Gelfand and Vounatsou,

2003). Here it is relatively clear how to define the neighborhood structure, with a unit’s neighbors

typically defined to be adjacent units only. When a count is obtained at a point or a transect, or

when the sampled plots comprise just a small fraction of the entire survey region, much more care

is required when defining the neighborhood weights. A possible approach is that of Lichstein et al.

(2002). These authors began by fitting a model without spatial dependence to point count data and

examining the empirical semivariogram (Cressie, 1993) of the residuals to estimate the distance

at which spatial correlation between two points is approximately zero. A survey point’s ‘neigh-

bors’ were then defined to be those points closer than the estimated range, and these were given

weights inversely proportional to the distance or the square of the distance from the survey point.

The choice of weighting function is intuitive, but somewhat arbitrary, although this may not be so

important in a proper CAR model, where the strength of spatial dependence is also determined
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by γ. Ideally one would check the robustness of estimates to the choice of weights, or if possible

use a model selection procedure to choose the weighting function from a set of candidates, as per

Lichstein et al. (2002).

As with geostatistical models, we are able to perform prediction at unmonitored sites. For

CAR models this proceeds in a quite different way than kriging for geostatistical models, but is

computationally straightforward when part of a Bayesian MCMC modeling. In the case where the

survey region is divided into contiguous subregions, all units, whether surveyed or not, must be

included in the CAR modeling in order that the neighborhood structure be correctly defined. When

survey sites are points or transects, we can define a set of additional sites (e.g., on a regular grid) at

which we wish to make predictions. Again the neighborhood structure will be defined for the full

set of sampled and unsampled points.

In the Chapter 2 we apply a proper CAR model to allow for spatial dependence in the popu-

lation distribution of stream-dwelling fish sampled using a repeated count survey. In Chapter 3

we examine a variation of the standard CAR models due to Hrafnkelsson and Cressie (2003) for

modeling spatial dependence in a large bird survey data set.
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Chapter 2

Bayesian Spatial Modeling of Data from Unit-Count

Surveys of Fish in Streams

Raymond A. Webster, Kenneth H. Pollock and Sujit K. Ghosh

ABSTRACT

We describe a framework for spatial modeling of data from surveys of stream dwelling fish species in which

repeated counts are made of animals within a sample of habitat units. Using Bayesian modeling with Markov

chain Monte Carlo (MCMC) algorithms, we are able to estimate fish population size from repeated count

survey data while allowing fish detection probabilities to vary across the stream. We propose the use of con-

ditional autoregressive (CAR) models for modeling the spatial dependence of density across the habitat units

of the stream. The spatial dependence model can be used along with covariate models for density and de-

tection to predict density at unsampled units, and thereby estimate total fish abundance across the stream.

We apply these models to data sampled from an intensive repeated count survey of juvenile Coho Salmon in

McGarvey Creek, Northern California. Moderate spatial dependence in fish density was detected, and models

which account for spatial dependence produced more precise predictions at unsurveyed units, and thus more

precise estimates of total stream abundance, than models which assumed spatial independence. Through a

small simulation study, we show that ignoring heterogeneity in detection probabilities can lead to significant

underestimation of total abundance. However, inclusion of heterogeneity using a random effect in the detec-

tion component of the model can lead to problems in Bayesian MCMC modeling for typical survey designs,

and for this reason we stress the importance of accounting for heterogeneity by incorporating covariates in

modeling detection probability.

45
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2.1 Introduction

Population surveys of stream-dwelling fish often involve dividing the stream into discrete units,

drawing a sample of these units, and counting the number of individual fish in each unit of the sam-

ple. These units can be physical habitat units such as pools and runs (e.g., juvenile Coho Salmon,

Brakensiek, 2002) or sampling units defined only for the purposes of the survey, for example sec-

tions of the stream of a specified length (e.g., sea trout, Wyatt, 2003). Stream surveys are typically

conducted using either multiple snorkel dives or multiple-pass electrofishing. In snorkel dives, a

diver or a team of divers makes a pass through the unit and a count of the total fish seen on the pass

is recorded. Electrofishing involves running a low level electrical current through the unit which

temporarily stuns the fish, and the number of stunned fish is recorded.

The goals of stream fish surveys include assessment of the distribution of fish, determining the

factors that influence fish density, and estimation of population size. In general the whole pop-

ulation of a unit is not observed on a single pass and therefore to achieve these goals through

statistical modeling, we also require information about the probability of detection of individual

fish (Thompson, 2002). This is provided by using a two-stage sampling design, in which the first

stage is the selection of the units from the stream, and the second stage involves making indepen-

dent, repeated passes of the survey units. When the survey is conducted using snorkel dives, this

requires a sequence of independent dive counts to be made of the population of fish in each of

the units selected in the first stage. A possible approach to estimating abundance and detection

probability for each unit is to assume a binomial model for the unit counts, and use either method

of moments or maximum likelihood estimators (Johnson and Kotz, 1969). This method requires

us to assume that the fish population is closed to births and deaths, immigration and emigration

over the course of the survey, but this is reasonable when the repeated passes are made in quick

succession as is generally the case in these types of surveys. However, estimation of both binomial

parameters (population size and detection probability) from a single sample of counts can be highly

unstable, with small changes in the data producing large shifts in the estimates of abundance and

detection probability. Although more stable estimators exist, e.g., Carroll and Lombard (1985) and

Olkin et al. (1981), they are not without problems of their own, particularly for the sparse data that

results when population density is low in a unit (Casella, 1986).

Alternatively, we could use multiple-pass electrofishing, which is a removal method of sam-

pling as the fish stunned on a pass are effectively removed from the population for subsequent
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passes before being returned to the stream. In this case, maximum likelihood-based removal esti-

mators can be used to estimate population size for an individual unit (Zippen, 1956; Seber, 1982),

and this estimation will generally be much more stable and precise than estimation from a sequence

of counts made with replacement. However, this type of removal estimation will sometimes fail

to produce sensible estimates for particular units, especially when the population is sparsely dis-

tributed or when detection probabilities are low (Seber, 1982). Also, both removal and multiple

count estimators generally require quite restrictive assumptions on the detection probability, for

example, that it does not vary across the multiple passes (Routledge, 1981; Pollock et al., 1990).

Recently a number of authors have proposed hierarchical models for multiple-pass surveys of

animal populations that, instead of separately estimating parameters for individual units, combine

the information from all surveyed units, leading to more stable estimation and the potential for

more flexible modeling. As with a sample from a single unit, these models typically assume a bi-

nomial distribution for the observed counts for a unit, with parameters being the unit abundance

and detection probability. For removal sampling from independent units, Wyatt (2002) modeled

the removals as having a binomial distribution, while Royle (2004) did the same for multiple count

data. Dorazio et al. (2005) described an equivalent multinomial specification for removal data. In

the next level of the model hierarchy, parametric models are formulated for the binomial param-

eters themselves. Thus instead of estimating abundance and detection separately for each unit,

the parameters of their respective distributions are estimated using the information from the entire

data set. The most common model for unit abundances is the negative binomial or, equivalently,

the Poisson-gamma mixture, which has the advantage over the simple Poisson model of allowing

for the overdispersion, where the variance is greater than the mean. Due to the clustered nature of

wildlife populations, overdispersion is almost always present in counts of animals.

Hierarchical models can be easily adapted to include covariates in both the abundance and the

detection models and to allow for spatial dependence of density across units. For the abundance

component of the model, Wyatt (2003), Royle et al. (2002), and Forsyth et al. (2006) all use a log-

linear model to incorporate covariates, while logistic models are routinely used to relate detection

or capture probability to covariates when sampling from animal populations (Pollock, 2002; Wyatt,

2003; Royle, 2004; Forsyth et al., 2006). Additonal heterogeneity in the parameters can be allowed

for by including additive Gaussian error terms in the models. Although we show in our work

that allowing for heterogeneity in the detection model is important, it can be difficult to model

when there is also a random effect in the animal density component of the model. Therefore, our
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preference is to allow for variation in detection probability through a covariate model only.

Spatial models can give us insight into the patterns in the distribution of fish within a stream

or across a region and are important for prediction and mapping the distribution of animals. Fur-

ther, when modeling the relationship between density and covariates, ignoring spatial correlation

will tend to exaggerate the effects of covariates on density. A number of authors discuss models

that account for spatial correlation in count data, although few simulateously allow for imperfect

detectability of animals. Royle et al. (2002) used an exponential covariance function (see Cressie,

1993) for bird counts, while Wikle (2002) discusses a more computationally efficient way of fitting

similar geostatistical models. For other types of spatial count data drawn from discrete units or

areas, for example disease modeling, conditional autoregressive (CAR) models have been used for

some time (see Banerjee et al., 2004); Lichstein et al. (2002) apply a CAR model to bird point counts.

For stream fish data, Wyatt (2003) incorporates estimation of detectability into a model with a sim-

ple autoregressive structure for the spatial dependence for modeling density at stream sections of

50m length.

Parameter estimation for the complex hierarchical models that we explore in this paper can be

carried out within a Bayesian framework using Markov chain Monte Carlo (MCMC) algorithms.

Only for the simplest models can we estimate parameters using maximum likelihood estimation

(e.g., Royle, 2004; Dorazio et al., 2005). In other cases computing the likelihood involves nu-

merically integrating out ‘nuisance’ parameters, which makes finding maximum likelihood esti-

mates impractical. On the other hand, within a Bayesian framework, MCMC algorithms based on

Gibbs sampling (Geman and Geman, 1984) and Metropolis-Hastings (Hastings, 1970) are relatively

straightforward to apply for the hierarchical models considered in this paper. A nice introduction

to Bayesian MCMC modeling for ecologists is provided by Link et al. (2002). The software pack-

age WinBUGS (Spiegelhalter et al., 2003), with GeoBUGS (Thomas et al., 2002) for spatial model-

ing, can be used for most models, avoiding the need for programming. However, care must be

taken in using Bayesian MCMC. Bayesian modeling requires the specification of prior distribu-

tions for the parameters, through which we may choose to incorporate past knowledge. Even if we

largely avoid using prior information by choosing vague or non-informative priors, in certain cases

the results may not be robust to varying the particular form of prior (Gelman, 2006). At present,

model selection can be much more difficult in a Bayesian framework. Often we may wish to choose

the ‘best’ model from a set of plausible, competing models for a data set, and although Bayesian

model selection criteria exist (e.g., Spiegelhalter et al., 2002), most are not well suited to the complex
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mixed-effects models that we examine. However, versions of the posterior predictive loss criterion

of Gelfand and Ghosh (1998) have proved useful for mixed models (e.g., Ghosh and Norris, 2005),

and we apply such a criterion in this work. The application of Bayesian MCMC algorithms is per-

haps the only practical approach available and a number of authors have successfully fitted models

in this way to count and removal data, e.g., Royle et al. (2002) for avian points counts, Wyatt (2003)

for fish removal data, and Forsyth et al. (2006) for brushtail possum removal data.

We give an overview of the hierarchical modeling framework for multiple pass repeated count

and removal survey data from a sample of habitat units. Although the framework is the same for

both types of sampling, we focus on repeated count surveys. These surveys have received less at-

tention in the literature, yet the single-site research implies that analysis may be more difficult. We

propose the application of CAR models for modeling spatial dependence in the unit abundances

for surveys of stream fish populations. We also discuss Bayesian MCMC methods for estimation

and prediction along with approaches to Bayesian model selection and their limitations for our

models. As an example, we apply the models to an intensive multiple count survey of juvenile

Coho Salmon in McGarvey Creek, Northern California. This example illustrates some of the po-

tential problems in parameter estimation. In particular, when few passes are made of each unit, it

can be difficult to distinguish heterogeneity in density from heterogeneity in detection probability

by means of including random effects in both components of the model. Nevertheless, through a

simulation study we demonstate the importance of allowing for heterogeneity in detection proba-

bility, particularly with respect to estimating total stream abundance. We recommend that this be

done by including covariates in the detection model.

2.2 Hierarchical Models for Multiple Count Data

2.2.1 Modeling Abundance and Detection

Suppose we sample L habitat units from a stream, and for unit i, we make Ti independent counts

of the fish population and let T = maxi Ti. From our survey, we observe a data matrix Y with rows

Yi = [yi1, . . . , yiT ], where yij is the number of animals seen on occasion j at site i, where j = 1, . . . , Ti

and i = 1, . . . , L, and yij is an empty cell (‘missing data’ for computational purposes) for j > Ti.

In addition to the independence of the multiple counts, we assume that the population in each

unit is closed to immigration, emigration, births and deaths. The counts for each unit can then be

assumed to be conditionally independent binomial random variables, with the exact form of the
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model depending on whether we have repeated count or removal data. If the population in unit i

prior to any removals is Ni and the probability of detecting an individual in this unit on pass j is

pij, for count data we have

yij|Ni, pij ∼ Binomial
(

Ni, pij

)
. (2.1)

For removal data, we need only replace Ni in (2.1) with Ni − Mij, where Mij = ∑
j−1
j′=1 yij′ is the

number of removals prior to occasion j, with Mi1 = 0. The removal version has been used by Wyatt

(2002) and Forsyth et al. (2006), while a less general formulation of Equation (2.1) was considered

by Royle (2004) for repeated count data.

Turning to models for population size, we model the unit abundances, Ni, as

Ni|λi ∼ Poisson(λi),

and we allow for different sized units by writing λi = Aidi, where Ai is the surface area of the unit

and di the mean density of fish per unit of area. To incorporate covariates and spatial correlation,

we follow Diggle et al. (1998) and subsequent authors by modeling the natural logarithm of density

as the sum of a trend function µi and a zero-mean Gaussian process φi

log(di) = µi + φi. (2.2)

µi can either be modeled as a linear function of covariates, µi = X′
iα say, or a non-linear function

of covariates, µi = g(Xi, α), where Xi is the vector of covariates measured on unit i and α is the

corresponding parameter vector.

In some cases the log link function used in Equation (2.2) is not the most realistic choice. For

example, there may exist a maximum possible density due to constraints on available food in a

habitat unit. The log-normal model for mean abundance is not appropriate in this case as density

di is unconstrained. In order that it not exceed some maximum, K say, a logistic model can be used:

log

(
di

K − di

)
= µi + φi

⇒ di =
K

1 + exp(−µi − φi)

In practice, it may only be possible to fit the logistic model in high density situations when at least

some of the units are near carrying capacity. In those cases it may also be preferable to also model
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K as a function of resource variables.

The second component of our modeling involves constructing a model for detection probability,

pij. Detection probability will vary between units, as did abundance, and we wish to allow for

such heterogeneity. While some authors have made use of random effects models for detection

probability, e.g., beta models (Wyatt, 2002) and logistic-normal models (Wyatt, 2003; Forsyth et al.,

2006), in our experience it can be difficult to distinguish random variation in detection from that

due to abundance unless there are many passes or a very large number of survey units, which is

often not possible for surveys of riverine fish. Instead, our preference is to model heterogeneity in

detection through a covariate model alone. Employing the logit link function, we can express the

detection probability for unit i on pass j, pij in terms of a covariate function,

logit(pij) = νij, (2.3)

where νij is some linear or non-linear function of covariates measured on pass j of unit i. In many

situations, covariate values will vary between but not within the units, and we can write pij = pi

and thus νij = νi. In this case we may employ a linear regression model, νi = Z′
iβ, with a covariate

vector for unit i of Zi and parameter vector β. The effect that ignoring heterogeneity in detection

has on estimates of abundance and other model parameters is examined in a simulation study in

Section 2.6.

2.2.2 Spatial Modeling of Fish Density

Spatial dependence in fish densities may be present due to unmeasured covariates or because of

some underlying biological process. For example, when some species colonize a stream, the popu-

lation may intially cluster around a small number of units of high quality habitat. As the population

grows, fish will disperse throughout the stream, but may be more likely to settle in suitable habi-

tat closer to the original units than those further away. Accounting for the spatial dependence in

our model, we not only gain a better understanding of how fish populations are distributed in a

stream, but we also improve parameter estimates when modeling the relationship between density

and measured covariates, and improve the accuracy and precision of predictions at unmonitored

locations. The latter is particularly important if we wish to map fish density, at both local and

regional scales (see Discussion, Section 2.7).

Following Diggle et al. (1998), we introduce the spatial dependence through modeling the
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Gaussian error term φi of the abundance component of the model. For point count data in two-

dimensional continuous space, the most common approach is to assume an isotropic geostatistical

model, such as the exponential model or the Matérn class of models (Cressie, 1993), which define

a parametric form for the covariance between values of φi at different locations (e.g., Royle et al.,

2002; Wikle, 2002). If we write φ = [φ1, . . . , φL]′, then in a Gaussian geostatistical model, φ has a

multivariate normal distribution,

φ ∼ MVN(0, Σφ).

The elements of Σφ, the covariances between values at different sites, are expressed as a decreasing

function of the distance between two sites, cov(φi, φ′
i) = C(rii′) say, where rii′ is the Euclidean

distance between units i and i′. Stream data is essentially in one-dimensional space, but this does

not pose any problems as instead of Euclidean distance we can work with the total linear stream

distance between two units, that is, the distance between the centers of two units measured by

following the line of the stream. Further, we will not concern ourselves here with anisotropty, i.e.,

strength of spatial dependence varying with direction.

An alternative and more suitable approach for data from contiguous units or areas is to fit

Gaussian conditionally autoregressive (CAR) models (Besag, 1974). These have been used for some

time for spatial modeling of regional disease rates and other medical data (e.g., Pascutto et al., 2000;

Gelfand and Vounatsou, 2003), but have seen only limited use in wildlife applications. The essence

of these models is that conditionally each φi is a weighted average of the values in neighboring

units. Following Banerjee et al. (2004) we begin by defining a symmetric L × L matrix of weights,

W, with elements wii′ . The simplest case would be defining wii′ = 1 if units i and i′ are adjacent,

and zero otherwise. When the units are pools or runs in a stream, it may be that one neighboring

habitable unit is closer than another, with sections of uninhabitable stream between them, and in

this case we could choose wii′ = 1/rii′ for neighboring units and zero otherwise, giving the closer

neighbor greater weight. Now define wi. = ∑
L
i′=1 wii′ , the row totals of W, and let the vector φ that

omits φi be given by

φ−i = [φ1, . . . , φi−1, φi+1, . . . , φL]′.

A proper Gaussian CAR model then follows by defining the distribution of φi conditionally as

φi|φ−i ∼ N

(
γ ∑

i′ 6=i

wii′

wi.
φi′ ,

σ2
φ

wi.

)
. (2.4)
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One of the most attractive features of this model is its ease of implementation as part of an MCMC

algorithm for Bayesian hierarchical modeling. Unlike the parametric geostatistical models dis-

cussed above, using Equation (2.4) as a prior distribution leads to a full conditional distribution

for φi that allows updates in Gibbs sampling to be done without requiring the inversion of large

matrices, making the algorithm much more efficient for large data sets.

The parameter γ appears to have an appealing interpretation as a measure of the strength of the

spatial dependence. However, as Banerjee et al. (2004) illustrate, even values of γ close to 1 do not

necessarily imply high autocorrelation, and so meaningful intepretation of γ is difficult. Further,

the proper CAR model (2.4) gives the conditional mean of φi as a proportion of a weighted average

of its neighbors, which itself makes interpretation difficult. For these reasons, an alternative model,

known as the intrinsic CAR model, fixes γ = 1, leading to each φi being expressed simply as a

weighted sum of its neighbors. Nevertheless, γ = 0 does imply spatial independence, and inclu-

sion of this parameter does allow for varying degrees of spatial correlation and we include γ in our

models.

We note briefly here that some authors (e.g., Royle et al., 2002; Wikle, 2002) include an additional

spatially independent error term, τi, in the density model

log(di) = µi + τi + φi.

where τi are independent, identically distributed Gaussian random variables with mean 0 and vari-

ance σ2
τ . This term can be thought of as accounting for between unit hetereogeneity (Banerjee et al.,

2004) or for such factors as observer differences (Wikle, 2002). However, distinguishing between

φi and τi in practice can be difficult and we do not consider this model any further, although in

Section 2.5 we compare models with spatial structure, log(di) = µi + φi, with those with spatial

independence, log(di) = µi + τi.

2.3 Bayesian MCMC Modeling and Model Selection

In Bayesian modeling, the goal is to compute the form of the distribution of the model parameters

given the data and some prior information. The distribution thus determined is known as the
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posterior distribution and for a parameter vector θ, this is found by solving the equation

℘(θ|Y) =
℘(Y|θ)℘(θ)∫
℘(Y|θ)℘(θ)dθ

, (2.5)

where ℘(θ|Y) is the joint posterior density, ℘(Y|θ) is the likelihood of the data and ℘(θ) is a prior

density through which prior knowledge about θ can be incorporated. The idea of allowing pre-

vious research and expert opinion to inform our understanding of the present data seems very

appealing, particularly when the present information is poor as is often the case in wildlife popu-

lation research. However, deciding how much weight to give to these two sources of information

is an inherently subjective process, and clear justification must be given for any informative pri-

ors. In cases where there is no useful prior information about a parameter, or if we wish the focus

of our analysis to be on the information contained in the present data alone, we can select non-

informative or vague priors so that the form of the posterior is approximately determined by the

likelihood alone. This is the approach we take in the present work. See Gelman et al. (2004) for a

discussion on the practicalities of prior specification.

For most useful models, the solution to Equation (2.5) does not have a closed form. Instead,

we can use MCMC algorithms such as Gibbs sampling (Geman and Geman, 1984), Metropolis-

Hastings (Hastings, 1970), and slice sampling (Neal, 2003) to generate samples from the posterior

distributions of the parameters. As an example, a common approach is to combine Gibbs sampling

with Metropolis steps for certain parameters. Suppose we have parameter vector θ = [θ1, θ2]
′ and

data Y. From Bayes’ theorem, Equation (2.5) the posterior distribution of θ will be given by

℘(θ1, θ2|Y) ∝ ℘(Y|θ1, θ2)℘(θ1, θ2)

where again ℘(Y|θ1, θ2) is the likelihood and ℘(θ1, θ2) the prior density. Assuming independent

priors, ℘(θ1, θ2) = ℘(θ1)℘(θ2) the full conditional for θ1 is given by

℘(θ1|Y, θ2) ∝ ℘(Y|θ1, θ2)℘(θ1)

and that for θ2 has the same form. If the right hand side of this equation is the kernel of a density

with closed form, then ℘(θ1|Y, θ2) is known and at step b of the MCMC algorithm, we generate θ
(b)
1

as a random sample of size 1 from the distribution with density ℘(θ1|Y, θ
(b−1)
2 ). If the full condi-

tional for θ2 also has closed form, then the bth sample is generated randomly from ℘(θ2|Y, θ
(b)
1 ).
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Now suppose the density for θ2 does not have closed form. Instead of sampling from the full con-

ditional, we can insert a Metropolis step into the algorithm. Let q(x|θ(b−1)
2 ) be a density valid for

all possible values of θ
(b−1)
2 such that q(x|θ(b−1)

2 ) = q(θ
(b−1)
2 |x). Then the Metropolis step proceeds

as follows: (1) Sample θ∗2 from q(x|θ(b−1)
2 ); (2) Compute the ratio

r =
℘(Y|θ(b)

1 , θ∗2 )℘(θ∗2 )

℘(Y|θ(b)
1 , θ

(b−1)
2 )℘(θ

(b−1)
2 )

;

(3) Let θ
(b)
2 = θ∗2 with probability min(r, 1) and θ

(b)
2 = θ

(b−1)
2 otherwise. In theory, samples gener-

ated from such an MCMC algorithm will converge to the posterior distributions of the parameters,

although choosing the proposal density q and its parameters in Metropolis steps requires some care

(see Gelman et al., 2004)

After discarding data generated prior to convergence of the algorithms (the “burn-in” period),

the MCMC samples can be used to estimate posterior summary statistics such as means, standard

deviations, quantiles or the form of densities themselves (for example, using kernel density esti-

mation). The precision of the posterior means can be estimated using the methods of time series

analysis which allow for correlation in the series of generated values, for example by estimating the

spectral density at zero (see Monahan, 2001). Convergence itself can be determined by generating

samples from multiple Markov chains begun with widely dispersed initial values and compar-

ing the behavior of the chains. This can be done by simultaneous plots of the values of chains

for each parameter, with good mixing of the chains implying convergence. In addition we can

also compute the Gelman-Rubin scale-reduction factor (Gelman and Rubin, 1992), which compares

variation within the chains to variation across the chains. Convergence will lead to values of this

factor close to 1.

We would also like to be able to select a model from a set of competing models, but although

Bayesian model selection criteria exist, they can behave poorly for the types of models we are ex-

amining. The Akaike Information Criterion (AIC) is typically used for comparing models fitted by

maximum likelihood estimation, and is computed by adding a penalty term for model complexity

to the deviance evaluated at the MLEs (Akaike, 1973). A Bayesian version of the AIC statistic has

been proposed by replacing the MLEs with the posterior means of the parameters (Gosky, 2004),

but neither criterion has a formal theoretical justification for complex hierarchical models. Alterna-

tively, Spiegelhalter et al. (2002) proposed a generalization of the AIC for Bayesian modeling called
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the Deviance Information Criterion (DIC). Although the DIC appears to work well in many situ-

ations, it has undesirable properties for mixed effects models, including those we consider here).

In particular, the DIC penalty term can become negative (Spiegelhalter et al., 2002) and thus more

complex models are rewarded.

Gelfand and Ghosh (1998) proposed a criterion based on the minimizing a posterior predic-

tive loss function. Their criterion is more general than the DIC of Spiegelhalter et al. (2002), and

with an appropriate choice of loss function, will not suffer the problem of a negative penalty term

for complex hierarchical models. It is also computationally efficient to calculate within an MCMC

algorithm for Bayesian modeling. For our model comparisons, we adopt the mean square pre-

dicted error loss function (MSPE) on the log-scale used by Ghosh and Norris (2005) for selecting

competing models with heterogeneity in detectability for capture-recapture data. Recall that in

modeling repeated count data from multiple sites, we assume a binomial model for the counts,

yij ∼ Bin(Ni, pi), i = 1, . . . , L, j = 1, . . . , Ti. Again denoting the full observed data matrix by Y, we

define Yrep to be a replicate of Y predicted under the same model. These replicates are easily gen-

erated within our MCMC algorithm by sampling from the posterior distribution ℘(Yrep|Y), that is,

at the bth MCMC iteration, values y
rep
ij are sampled from a binomial distribution with parameters

N
(b)
i and p

(b)
i , the current values of those parameters. We use the MSPE loss function to measure

departures of Yrep from Y. For our models we compute the MSPE on the log-scale as

MSPE =
1

∑
L
i=1 Ti

L

∑
i=1

Ti

∑
j=1

[
log(y

rep
ij + 0.5) − log(yij + 0.5)

]2
. (2.6)

The factor of 0.5 added to each value was suggested by Ghosh and Norris (2005) to avoid comput-

ing the logarithm of 0 when no animals are observed. Finally, the criterion itself is given by the

posterior predictive expectation of the MSPE,

DGG = E[MSPE|Y], (2.7)

which we estimate as for any other model parameter, by computing the posterior mean of the

MCMC samples of MSPE following convergence of the algorithm.
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2.4 Prediction of Abundance at Unsurveyed Units

One of the goals of this type of monitoring is prediction of mean density or probability of fish

presence for unmonitored sites within streams or, if modeling at a regional level, at unmonitored

streams. With CAR models applied to discrete units, provided that covariate measurements are also

available at unmonitored locations, estimation of density at these locations can be undertaken as a

natural part of the MCMC algorithm. Suppose that we are using Gibbs sampling, with Metropolis

steps when the full conditional distributions do not have closed form. Consider the full conditional

distribution of Ni, the abundance in unit i of a stream. If data Yi are available for site i, and Ai is

the surface area of the unit i and di the fish density, this is given by

℘(Ni|Yi, pi, di) ∝ ℘(Yi|Ni, pi)℘(Ni|di)

where ℘(Yi|Ni, pi) is the likelihood component for site i and ℘(Ni|di) is the Poisson(Aidi) density.

We note that the full conditional of the unit densities is a function of the density covariate matrix,

X, and the prediction of Ni will also depend on covariate values, and thus we also require these

to be measured at the unmonitored units. Here the full conditional for Ni does not have the form

of a familiar distribution and we would update Ni at each iteration using a Metropolis-Hastings

step. However, if no data are available for a unit, then the full conditional is just ℘(Ni|di) and we

update Ni by drawing a sample from a Poisson distribution with mean Aidi, using the value of di

from the previous iteration. Thus the posterior distribution of abundances at units with no data

follow from the MCMC algorithm in the same way as that for other unit abundances and all model

parameters. In fact, sites for which no animal survey data were recorded should not be excluded

from the modeling. Even though models with gaps in the neighborhood structure can be fitted,

estimation of abundance at points adjacent to an unsurveyed unit may be improved by making use

of its correlation with units on the other side of the gap, this correlation being induced through its

direct dependence on the unsurveyed neighbor.

2.5 Example: Juvenile Coho Salmon in McGarvey Creek

In the summer of 2003, a team from Humboldt State University undertook an intensive repeated

count survey of juvenile Coho Salmon in McGarvey Creek, a tributary of the Klamath River, North-

ern California (Hankin, 2004). The surveyed part of McGarvey Creek comprised 206 habitable units
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(167 pools and 39 runs) spaced over a 3.6 km section of the stream. Sixty-five units were monitored

with 3 passes, and 133 with a single pass. For the remaining 8 units, only incomplete counts were

obtained for logistical reasons, and these units were considered unsurveyed in the modeling. Each

unit had its surface area, Ai, estimated by multiplying its length by the mean of three measures of

its width. Note that, although unavailable for this example, precise measurements of surface area

for some units could be used to account for the measurement error in the area estimates in our

models. In our work, we assume that all covariates are measured without error. As well as sur-

face area, the Humboldt crew recorded two other habitat variables, unit cover class and maximum

unit depth. The cover score is an ordinal variable with values 1 (high cover), 2 (moderate), and 3

(low). Units with higher cover are thought to be more suitable habitat for juvenile coho and so we

included cover as a covariate for density model, leading to the µi component of Equation (2.2), the

model for log(di), having the following form:

µi = α0 + α1C2i + α2C3i.

Here C2i and C3i are dummy variables taking the value 1 for units with cover class 2 or 3 respec-

tively and zeros otherwise. Because it is plausible that juvenile Coho are harder to detect at greater

depths where visibility may be poorer, we examined a model which allowed unit detection proba-

bility pi to vary with maximum unit depth. Thus νij = νi in Equation (2.3), and we write

νi = β0 + β1Di,

where Di is the measured maximum depth of unit i.

For comparison, we fit a sequence of models of increasing complexity to the McGarvey Creek

data: (1) no covariates (α1 = α2 = β1 = 0); (2) cover as density covariate, no covariate for detectabil-

ity (β1 = 0); (3) cover as density covariate, depth as detectability covariate. For each of these three

models, we fitted both spatial independence and spatial dependence versions. To model spatial

dependence, we used a proper CAR model with neighbor weights equal to 1. We also looked at

models with weights inversely proportional to the distance between unit centers, but found no

apparent difference in parameter estimates nor model fit, and do not present these results here.

We attempted to fit models with random effects in detection, but we encountered some problems

which we discuss below.

As well as the model parameters, we also estimated the unit occupancy rate (MacKenzie et al.,
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2002), ψ = ∑
L
i=1 I(Ni > 0)/L at each iteration of the Bayesian modeling, where I(x) takes the value

1 when x is true and zero otherwise, and total abundance as N = ∑
L
i=1 Ni. This estimate includes

predictions at the eight unsurveyed sites, which for our example, where detection probability is

high, are the greatest source of uncertainty in total abundance. As a summary statistic for detection,

we computed the p̄, the average of the pi, although we note that for models with β1 = 0, detection

does not vary across units.

Bayesian MCMC model fitting was done using WinBUGS 1.4.1 (Spiegelhalter et al., 2003). We

chose independent, non-informative proper priors for the parameters. In particular, we used a

Uniform(0,20) prior for σφ in the CAR model and στ in the spatial independence model, the proper

CAR correlation parameter γ had a Uniform(-1,1) prior, and all other parameters had N(0,0.001)

priors. As a check, alternative priors were tried for some models, such as a beta prior for p in

Models 1 and 2, and a vague gamma prior for 1/σ2
φ, but these had little effect on the posterior

distributions of the parameters. For model selection, we computed the criterion of Gelfand and

Ghosh (1998) based on the mean mean square predicted error loss, Equations (2.6) and (2.7).

Three chains with different starting values were run for each model and convergence was as-

sessed using the Gelman-Rubin statistic and by examining the behavior of the trace plots of the

chains. The number of iterations required for convergence (the burn-in period) varied from model

to model, as did the total number of iterations. Our aim was to generate sufficiently large sam-

ples so that posterior means of parameters were precisely estimated. Due to auto-correlation in

the chains, particularly for the more complex models, up to one million iterations were required

following burn-in for some models. We monitored the precision of the MCMC estimates of the

parameters using estimates of the spectral density of the chains at 0. Gelman-Rubin statistics and

MCMC precision estimates (not presented here) were computed using the functions in the coda

package version 0.9-1 for R (Plummer et al., 2004).

Posterior means of parameters with 95% credible intervals (the 2.5% and 97.5% quantiles of the

posterior distribution) are presented in Table 2.1. In order to see more clearly the effect of cover class

on Coho density, we computed estimates of the percentage difference in density between classes

from α0, α1 and α2 at each iteration of the MCMC algorithm. The comparisons of cover classes 1

and 2, and of 1 and 3 are given by 100(eα1 − 1) and 100(eα2 − 1) respectively, while 100(eα2−α1 − 1)

compares classes 2 and 3. Posterior means and 95% credible intervals are given in Table 2.2. For

all models, while the evidence for a difference between cover classes 1 and 2 is not great, mean

density in cover classes 1 and 2 is significantly higher than cover class 3. This is true for both
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Table 2.1: Posterior means and 95% credible intervals of parameters for modeling of McGarvey
Creek data for both spatial independence and spatial dependence models, along with DGG model
selection statistics for each of the fitted models.

Spatial independence Proper CAR

parameter Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

α0 –1.49 –0.98 –0.92 –1.45 –1.13 –1.09
(–1.66,–1.31) (–1.38, –0.58) (–1.33,–0.51) (–1.71,–1.20) (–1.51, –0.76) (–1.48,–0.70)

α1 – –0.35 –0.41 – –0.21 –0.26
(–0.80, –0.10) (–0.87,0.04) (–0.56, 0.14) (–0.62,0.11)

α2 – –0.79 –0.88 – –0.54 –0.61
(–1.24,–0.35) (–1.34,–0.43) (–0.92,–0.17) (–1.01,–0.21)

γ – – – 0.82 0.79 0.77
(0.64,0.93) (0.59, 0.92) (0.54,0.91)

σ2
φ – – – 0.91 0.92 0.96

(0.60,1.33) (0.60, 1.34) (0.62,1.41)

σ2
τ 0.89 0.82 0.82 – – –

(0.67,1.17) (0.61,1.08) (0.61,1.09)

β0 1.10 1.10 2.02 1.12 1.11 1.63
(0.74,1.44) (0.72, 1.43) (1.24,2.73) (0.78,1.43) (0.78, 1.42) (0.72,2.43)

β1 – – –1.20 – – –0.63
(–2.06,–0.26) (–1.59,0.44)

p̄ 0.75 0.75 0.77 0.75 0.75 0.77
(0.68,0.81) (0.67,0.81) (0.70,0.82) (0.69,0.81) (0.68,0.80) (0.70,0.82)

ψ 0.91 0.91 0.91 0.92 0.92 0.91
(0.89,93) (0.90,0.93) (0.89,0.93) (0.90,0.94) (0.90,0.94) (0.89,0.93)

∑ Ni 2490 2600 2700 2450 2520 2530
(2260,2820) (2310, 3050) (2380,3200) (2260,2710) (2300,2810) (2310,2850)

DGG 0.123 0.123 0.108 0.124 0.124 0.113
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Table 2.2: Posterior means and 95% credible intervals for percentage differences in Coho density
between the three cover classes.

Spatial independence Proper CAR

parameter Model 2 Model 3 Model 2 Model 3

1-2 46 55 25 32
(–9,123) (–3,139) (–13,75) (–11,87)

1-3 127 148 75 88
(42,247) (54,282) (18,151) (24,176)

2-3 57 61 41 44
(15,112) (17,117) (8,81) (10,86)

independence and CAR versions of the models, but it is clear from Table 2.2 that the magnitude

of the effect appears stronger when we do not account for spatial dependence. For example, in

Model 3, ignoring spatial dependence would lead us to believe that density is 148% (95% CI: 54-

282) greater in class 1 units than class 3 units, while this is reduced to only 88% (24-176) when we

account for spatial dependence.

Based on the posterior distribution of β1 under the CAR model, there appears to be no evi-

dence that the logit of detection is linearly related to the maximum depth of a unit (Table 2.1), with

the credible intervals for this parameter including zero for all Model 3. As with the density com-

ponent of the model, the estimated coefficient of depth is attenuated when we allow for spatial

dependence, from –1.20 to –0.63. Not surprisingly for a stream with good abundance and high

detectability, the estimates of occupancy rates, ψ were both high (0.91-0.92) and quite precise. The

mean individual detection probability, p̄, was consistently estimated to be around 0.75 (Table 2.1),

although it was slightly higher for Model 3. When detection is estimated to be lower, the estimate

of abundance generally becomes higher.

Given these results, it is interesting that the model selection criterion based on the mean square

predicted loss, DGG, selects Model 3 as the best model. The parameter β1 does not appear signifi-

cantly different from zero under a CAR model, yet it appears that there is some type of heterogene-

ity in detection and at least in terms of prediction, Model 3 is the best of those we consider. It is also

somewhat surprising that DGG barely distinguishes Models 1 and 2 when the cover class otherwise

appears to be an important predictor of fish density (Table 2.2). The posterior means and credible

intervals for the spatial dependence parameter, γ, show that there is significant spatial dependence
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Table 2.3: Posterior means and 95% credible intervals for abundance estimated at the eight unsur-
veyed sites for spatial independence and CAR versions of Model 3.

unit number Spatial independence Proper CAR

42 67 22
(6,269) (2,78)

66 44 26
(4,180) (3,89)

71 21 17
(1,82) (2,56)

85 69 43
(6,279) (6,142)

108 41 55
(4,167) (9,177)

124 34 32
(3,135) (4,105)

130 16 12
(1,66) (1,39)

170 9 15
(0,37) (1,50)

in unit density across the stream, but we found that the DGG values for the CAR models are no bet-

ter than those for the spatial independence models. However, this result is not surprising. When

detection probability is high as it is here, it is not difficult to get very good estimates of Ni, the

unit abundances, and prediction at surveyed units will be little improved by accounting for spatial

dependence. Prediction at unsurveyed units will improve greatly, however (see Table 2.3), but these

units contribute nothing to the calculation of DGG.

As we have noted, with high detection probabilities, estimation of Ni at surveyed sites will be

quite precise and, therefore, the greatest factor affecting the estimate of abundance in this example

was the prediction at the eight unmonitored sites. It is, therefore, important that we are able to

make these predictions as precise as possible. To illustrate how accounting for spatial dependence

improves prediction at unmonitored sites, Table 2.3 compares estimates of abundance at these sites

computed from versions of Model 3 which assume either spatial independence or use a CAR model

for spatial dependence. Although for either model these estimates were not particularly precise,

the 95% credible intervals are nevertheless somewhat narrower for the models in which spatial

dependence was accounted for. Also, the posterior means themselves are quite different between
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the independence and the CAR models, illustrating the influence that neighboring units have on

prediction when a spatial model is used.

An important goal of modeling fish populations is creation of maps showing the spatial dis-

tribution of fish across the stream or region. Figure 2.1 shows schematic maps of φi, the spatially

dependent errors in the density model, and λi, expected unit abundances for the CAR version of

Model 3. Colored lines show the density at each unit, with the thickness of the line representing

the length of the unit. Lighter colors represent higher fish density. Black bars show uninhabitable

areas of stream, mainly runs. The map of the posterior means of the φi shows that after allowing

for cover class effects and unit area, there are clusters of high density around 1250 m, between 1750

and 2000 m, and from around 2250-3000 m along the stream. Precision of the map values is lower

at the ends of the stream, as shown in the sd(φi) map. Translating back to the scale of abundance,

there are small patches of high abundance at 1100-1500 m, 1750 m, 2300 m and 2750 m. The map of

posterior standard deviations of the λi shows brighter colored lines for the eight units at which no

data was collected and predicted was required.

Finally, we note that we attempted to fit models which included random effects in the detection

component of the model. We found that it not only was very difficult to distinguish the different

sources of variation (the MCMC values were highly negatively correlated), but that the models

were less stable, converging more slowly and being more sensitive to choices of starting values,

prior distributions and algorithms. The DGG statistics were around 0.16 for these models, showing

that they also provided a poorer fit to the data. The difficulty in distinguishing between the two

sources of variation is perhaps not so surprising when we consider that information about detection

comes only from the 65 units with three passes. It appears that with so few repeated passes, we

require a larger sample of units to estimate well the detection component of the model. Although

we do not recommend models with random effects in the detection probability model, such random

variation is certainly present, and in the following section we present a small simulation study in

which we attempt to determine how failure to explicitly model this variation affects estimation of

other model parameters and total abundance.

2.6 Simulation Study

In the example in the preceeding section we fitted models to repeated count data of fish in stream

habitat units. Some additional modeling showed that we can have difficulty distinguishing whether
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Figure 2.1: Maps of the posterior means of the residuals φi, expected unit abundances, λi, and their
standard deviations for McGarvey Creek.
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variation in the data is due to variation in abundance or detection probability. We chose to omit

random effects in the detection model for our example, but it is unclear what effect this has on

estimation of model parameters and total stream abundance. If there is an effect, its magnitude is

almost certainly a function of the amount of random variation in detection probability across the

stream. Further, we are interested in how estimation of parameters and abundance are in these

circumstances affected by study design (for example, number of passes per unit), and detection

probabilities. When detection probabilities are high, as was the case for McGarvey Creek, the ob-

served counts are relatively consistent and close to the true abundance. Estimation of abundance

under lower detection probabilities is less precise and likely to be more affected by ignoring ran-

dom effects. In this section we present the results of a simulation study based on the results of

the McGarvey modeling which aims to examine these issues. For a selection of study designs, we

compare estimation of model parameters, mean detection probability, and abundance for models

which assume no random variation in p when it is in fact present.

We generated data under the model without covariates in either the density or detection com-

ponents, that is, µi = µ in Equation (2.2) and νij = ν in Equation (2.3) for i = 1, . . . , L habitat units.

As before, we include a spatially dependent between-unit random effect, φi, in the density model.

For the detection model, we also add a Gaussian random effect, ǫi, and this model becomes

logit(pi) = ν + ǫi,

where ǫi ∼ N(0, σ2
ǫ ). The random effect for density, φi, followed a proper Gaussian CAR model

with weights equal to 1 for adjacent units and 0 otherwise.

The values of most of the parameters in the simulations were chosen to broadly reflect the

results of the McGarvey Creek modeling. The density parameter µ was fixed at 1.5, which leads

to moderate fish densities similar to McGarvey Creek, while σ2
φ = 0.7, a value based on the results

of our additional modeling with detection random effects. The value of ν was set as either 0, or 1,

which corresponds to mean detection probabilities of 0.5 and around 0.7. We attempted to perform

simulations with even lower values of detection probability, but convergence was prohibitively

slow due to the sparse data generated when detection is difficult. The random variation in ǫi was

given either a ‘low’ value of σ2
ǫ = 0.7 (based on our additional modeling) or a ‘high’ value of 1.5, to

examine the effect the degree of variation has on estimation.

We looked at survey designs with L = 200 contiguous survey units, and therefore similar in
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size to the McGarvey Creek survey. For simplicity, units were equally spaced and of equal size. In

our simulated designs, every second unit was surveyed with a single pass, and the remainder had

either three (as per McGarvey Creek) or five passes, the latter being possibly the largest practical

value for most stream fish surveys, while still allowing us to examine the effect of the number of

passes on estimation.

For each combination of factors that we consider, we simulated data from B = 125 streams –

with Bayesian MCMC modeling, any greater number of simulations would be impractical. The

true fish abundances we generated were the same for all combinations of parameters we consid-

ered, while the detection probabilities only varied with ν and σ2
ǫ . For each stream, we stored the

posterior mean as a point estimate of the parameter along with the posterior standard deviation.

The performance of the parameter estimators was measured by calculating estimates of the abso-

lute bias and mean square error (MSE) for each parameter from the posterior means. As each stream

had a unique true population size and set of unit detection probabilities, bias and MSE calculations

were not possible for abundance and detection probability estimators. Instead, we calculated the

mean difference of the posterior mean from the true population size, N, and the mean difference

from the true stream mean detection probability, p̄ = ∑
L
i=1 pi/L, in order to determine how abun-

dance and detection are affected by different values of the parameters. We also present the average

of the posterior standard deviations of N and p̄.

Convergence of the MCMC algorithms for each simulation was checked by examining Gelman-

Rubin scale-reduction factor (Gelman and Rubin, 1992) for each parameter. For some combinations

of parameters, particularly when ν = 0, MCMC algorithms did not converge for certain streams.

To minimize the impact convergence failure would have on the results, we excluded the results of

25 streams for which the Gelman-Rubin factor was greater than 1.15 for at least one set of simula-

tions, and so results are based on 100 simulations only. Although these streams are not omitted at

random, omitting the same 25 streams for all simulations means comparisons between the simula-

tions should not be significantly affected. Examination of the results from the omitted streams for

cases when models did converge show that their omission has only a small effect on the absolute

values of the bias and MSE estimates.

The results of the simulations are presented in Tables 2.4 and 2.5. It is clear from Table 2.4 that

biases in the estimators of µ and ν are a functions of both detection probability and heterogeneity in

detection. There is a negative bias in the estimator of µ, and although this is small when σ2
ǫ = 0.7,

no larger than –0.05, it is substantially worse, up to –0.26, when σ2
ǫ = 1.5. The bias is around twice
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Table 2.4: Estimates of absolute bias and mean square error (MSE) from 100 simulations of data
from surveys of L = 200 units, Ti = 3 or 5 passes per unit for 100 units, and Ti = 1 pass for 100
units. In all simulations, µ = 1.5, σ2

φ = 0.7 and γ = 0.85.

parameter Ti = 3 Ti = 5

σ2
ǫ = 0.7 σ2

ǫ = 1.5 σ2
ǫ = 0.7 σ2

ǫ = 1.5

bias MSE bias MSE bias MSE bias MSE

µ –0.021 0.017 –0.14 0.017 –0.014 0.016 –0.099 0.015

ν = 1 γ –0.066 0.008 –0.15 0.015 –0.064 0.008 –0.15 0.014

σ2
φ 0.13 0.028 0.44 0.042 0.13 0.028 0.42 0.041

ν –0.023 0.025 –0.034 0.041 –0.057 0.011 -0.17 0.022

µ –0.042 0.028 –0.26 0.021 –0.036 0.021 –0.20 0.019

ν = 0 γ –0.12 0.013 –0.26 0.022 –0.12 0.012 –0.26 0.020

σ2
φ 0.31 0.040 0.91 0.074 0.29 0.038 0.88 0.067

ν 0.040 0.048 0.25 0.050 0.019 0.024 0.11 0.028

Table 2.5: Mean relative deviations from true values and standard deviations of N̂ and ˆ̄p from 100
simulations of data from surveys of L = 200 units, Ti = 3 or 5 passes per unit for 100 units, and
Ti = 1 pass for 100 units. The mean of the 100 true N values was 1279, while the mean of the p̄ was
0.71 (σ2

ǫ = 0.7) and 0.67 (σ2
ǫ = 1.5) for ν = 1 and 0.50 (both values of σ2

ǫ ) for ν = 0.

parameter Ti = 3 Ti = 5

σ2
ǫ = 0.7 σ2

ǫ = 1.5 σ2
ǫ = 0.7 σ2

ǫ = 1.5

dev sd dev sd dev sd dev sd

N –20 52 –87 55 –13 36 –44 42
ν = 1

p̄ 0.012 0.029 0.049 0.031 0.006 0.019 0.022 0.023

N 11 161 –121 117 5 95 –53 86
ν = 0

p̄ 0.009 0.054 0.060 0.050 0.004 0.034 0.026 0.034
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as great for the lower value of ν. Bias in the ν estimator itself depends more on the true value of ν:

when ν = 1, bias is always small and negative and is not greatly affected by changes in σ2
ǫ , whereas

a positive bias is present when ν = 0 that increases dramatically from a low value (< 0.05) to a

very high value (up to 0.25) as σ2
ǫ increases from 0.7 to 1.5. MSEs for these parameters increase as

mean detection probability decreases, as we might expect, but are unaffected by σ2
ǫ . Increasing the

number of passes, Ti, from 3 to 5 provides additional information on the detection component of

the model and thereby reduces the bias and MSE of ν.

It is less meaningful to consider the bias in σ2
φ when heterogeneity in detection is not modeled.

Estimates of σ2
φ are necessarily larger than the true value as this parameter must account for all

sources of variation, not just that in density. Thus, our results show that the ‘bias’ in the estimator

increases as σ2
ǫ increases as we expect. More interesting is the negative bias in the estimator of γ, the

spatial dependence parameter. Although this parameter is intrinsically difficult to interpet, the fact

that it is consistently underestimated and that the degree of underestimation depends on ν and σ2
ǫ is

of concern as it directly affects the quality of prediction and mapping of fish density. As ν decreases,

we have less precise information about the density component of the model, and consequently

less information for estimating the strength of spatial correlation. In our model, increasing σ2
ǫ

creates additional noise in the density model, making it more difficult to model spatial dependence.

Increasing the number of passes has no effect on the bias and MSE of γ, although increasing L

would certainly improve the estimation of γ.

In Table 2.5 we examine how the estimators of abundance and mean detection probability vary

across the simulations. When variation in detection across the stream is low (σ2
ǫ = 0.7), the es-

timates of N and p̄ are very close to the true values on average. The average true N for the 100

simulated streams was 1279, and a mean deviation from true N of up to 20 is less than 2%, very

small relative to the size of the standard deviations. However, estimates of N shift much further

from the truth when σ2
ǫ increases to 1.5. In this case there is a significant underestimation of abun-

dance and an overestimation of detection probability. This is the most important result of our

simulation study: unmodeled heterogeneity in detection probability can lead to underestimation

of abundance. We note also, though, that by increasing the number of passes from 3 to 5 for the

multiple-pass units, we can mitigate to some extent the magnitude of underestimation. Finally, the

results of Table 2.5 show that the standard deviations are larger when ν is lower, and decrease as

the number of passes increase, as expected.
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2.7 Discussion

Bayesian hierarchical modeling provides a very flexible framework for modeling data from re-

peated count and removal surveys of multiple habitat units in streams. At the local level, covariates

measured on individual units are easily incorporated into models for density and detection, and

spatial models can be used to allow for small-scale spatial dependence in the distribution of unit

densities. We considered conditional autoregressive models for modeling the spatial structure.

Although there are questions concerning the interpretation of the correlation parameter in these

models (Banerjee et al., 2004), these models are structurally intuitive and, importantly, lead to fast

MCMC algorithms for Bayesian modeling. Unlike the simpler autoregressive model used by Wyatt

(2003), it is straightforward, through definition of the weight matrix, to allow the strength of cor-

relation between neighboring units to be dependent on their relative distances, which is appealing

when the nearest neighboring habitat units may be separated by stretches of uninhabitable stream.

CAR models are not generally used for prediction, but if covariates are available for unsurveyed

units, and these units are included when defining the correlation structure via the weight matrix,

then we may predict density or abundance in these units. Further, prediction will be more precise

than if the spatial dependence had been ignored, and this will in turn lead to greater precision in

estimates of overall abundance in the surveyed stream.

While it is straightforward to construct complex hierarchical models for count and removal

data, depending on the study design, there may be a practical limitation on model complexity.

Surveys of riverine fish abundance typically use relatively few passes per unit, which makes it

difficult to model random variation in the detection component of our models. As an alternative,

we considered models for which heterogeneity in detection appeared in the model only through

covariates. Our simulations show that applying this more restricted model can lead to significant

underestimation of abundance when a large degree of heterogeneity remains unaccounted for. This

demonstrates the importance of gathering as much data as possible on variables which may affect

detection probability and including these variables as covariates in the detection component of the

model. By doing this we will reduce the amount of residual variation and mitigate any impact this

may have on abundance estimation. While increasing the number of passes for some units can also

improve estimation of N, in designing a survey this would likely be at the expense of the number

of units to be sampled, L.

Much of the capture-recapture literature deals with how to model heterogeneity in detection
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probabilities between individal animals (e.g. Burnham and Overton, 1978; Norris and Pollock, 1996;

Shriner, 2001; Dorazio and Royle, 2003). Although such heterogeneity is almost certainly present

to some degree, we are unable to model it using data from a repeated count survey as individual

animals are not identified. Even if we could attempt such modeling, Link (2003) demonstrates that

the results are highly model dependent, even when alternative models fit equally well.

We have presented a framework for the modeling of repeated count data observed at the level

of the habitat unit, incorporating covariates measured on individual units and allowing for small-

scale spatial dependence. We can easily extend the models for density to two-stage sampling

schemes designed for regional monitoring of fish density. In such monitoring, individual streams

or segments of streams are first selected, and then habitat units within these streams are surveyed

as for the single stream situation described above. Many covariates cannot be measured at the fine

scale of an individual unit, yet variables such as landscape, soil and climate characteristics will be

available on a coarser scale from existing data or from Geographic Information System databases.

Further, we may expect average densities in nearby streams to be similar relative to densities in

far apart streams, even allowing for measured covariates. This could be due to unknown or un-

measured covariates or, for migratory fish species, due to the patterns of fish migration across the

stream network. We suggest adding an additional error term to the log-linear model to account for

this large-scale spatial dependence. Suppose we sample S streams and in stream s we survey Ls

habitat units. On unit i of stream s we measure the covariate vector Xsi, while for stream s itself

we have the additional covariate vector Zs. Finally, denote the random error component associated

with stream s by ηs. Thus we extend Equation (2.2) to log(dsi) = µsi + φsi + ηs for i = 1, . . . , Ls,

s = 1, . . . , S. We assume ηs is Gaussian with mean zero, and that it is independent of φsi. As before,

the mean process µsi will be a function of the covariate vectors and a parameter vector α say. In

the case that this function is linear, we can partition the parameters into two vectors, αx associated

with Xsi and αz associated with Zs and write µsi = X′
siαx + Z′

sαz. As with the small-scale error term,

we must construct a model for the correlation structure of the vector η. Again, a CAR model is one

possibility when the stream system is divided into discreet sampling units.

In some situations we may only have presence-absence data rather than counts, i.e., instead of

a sequence of counts of animals seen in each unit, we have a sequence of zeros and ones, with

ones denoting that at least one animal was seen. Presence-absence surveys may be prefered be-

cause such data may be inexpensive to collect compared to other methods, or where individuals

cannot be distinguished reliably for the purpose of counting. MacKenzie et al. (2002) constructed
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the likelihood for data from independent units, and focused on estimating the probability a unit

is occupied (ψi for unit i) and the probability of detecting at least one animal on one survey pass

of a unit (ρi, say). We note that by using a logit link function as we have done for individual de-

tection probability, models incorporating covariates and, for ψ, spatial dependence, can be fitted

using the Bayesian approach we have outlined above. However, because there is less information

in presence/absence data, we expect that the number of units sampled and the number of repeated

passes made on each unit will have to be large in order to obtain good estimates and distinguish

different sources of variation. Royle and Nichols (2003) noted that ρi is a function of individual

detection probability pi and unit abundance Ni: ρi = 1 − (1 − pi)
Ni . By exploiting this relation-

ship, they use maximum likelihood estimation to estimate abundance from presence/absence data

collected at independent sites. We could do likewise, once again applying the log-linear model for

density and the logit model for detection to allow for covariates and spatial dependence. However,

it is clear from the work of Royle and Nichols (2003) that very large sample sizes and many passes

of each unit are required for estimation, and even then more complex models, akin to those we

have examined, can be very unstable.

Bayesian hierarchical spatial modeling of count and removal surveys of stream dwelling fish can

be extremely useful in helping understand the relationship between fish density and environmental

variables while allowing for spatial dependence. Using such models can improve our ability to

predict fish density at unsurveyed locations, and thereby aid fisheries scientists in understanding

the distributional status of fish species by allowing us to produce spatial maps of predicted density

across an individual stream or a regional network of streams. For removal data, Wyatt (2003)

reviewed similar models for mapping abundance in streams divided into sections of fixed width,

using GIS data as covariates. We have shown how modeling can proceed when the survey units are

habitat units such as pools and runs by using CAR models for spatial dependence. Such models

are flexible enough to account for varying distances between the habitat units, and the larger scale

GIS covariates that were the focus of Wyatt’s work can be easily incorporated when the streams or

sections of streams which contain the habitat units are themselves units of sampling at a regional

level.
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Chapter 3

Bayesian Spatial Modeling of Data from Bird Surveys

Raymond A. Webster, Kenneth H. Pollock, and Theodore R. Simons

ABSTRACT

When analyzing data from large bird surveys, it has been common in the past to ignore important factors such

as variation in bird detection probabilities across space, and spatial dependence in bird density. We present a

unified framework for modeling bird survey data collected at spatially replicated survey sites in the form of

repeated counts, “removal” counts, or “capture” history counts, that simultaneously models spatial variation

in bird density and variation in detection probabilities due to changes in covariates across the landscape.

The models have a complex hierarchical structure that makes them suited to Bayesian analysis using Markov

chain Monte Carlo (MCMC) algorithms. In order to ensure that these algorithms are computationally efficient,

we use a form of conditional autogressive model proposed by Hrafnkelsson and Cressie (2003) for modeling

spatial dependence. We apply our models to survey data for three bird species in the Great Smoky Mountains

National Park. Our methods lead to maps of predicted relative density which are an improvement over those

that would follow from ignoring spatial dependence. Modeling shows that variation in detection probability

can also affect inference, particularly when a species is relatively difficult to detect. Our work also highlights

the importance of good survey design for bird species modeling. We briefly discuss extensions of the models

to include temporal effects or allow for multiple species. We point out that these types of bird survey data,

particularly removal and capture-recapture counts (which require individual birds to be identified), are very

prone to errors in bird identification. Although we obtain similar results for all three types of survey data,

which provides indirect evidence that the effect of such errors may be small, the consequences of identification

errors in the data requires further investigation.
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3.1 Introduction

The analysis of data from large surveys of bird populations is often based on models which make

simplifying assumptions and ignore important aspects of the survey design. The goals of such

bird surveys include the estimation of density, mapping the distribution of animals across a region,

and modeling the relationships between bird density and habitat variables such as elevation and

vegetation. Although bird surveys typically involve making observations on many line or point

transects (“survey sites”), data are often aggregated over all sites for analysis (Farnsworth et al.,

2002; Alldredge, 2004) or the analysis ignores spatial structure in the data by assuming survey sites

are spatially independent (Shriner, 2001). Ignoring spatial dependence will influence estimates

of the effects of any covariates on bird density (Cressie, 1993), while accounting for such depen-

dence can lead to improved prediction of density at unsurveyed locations. Further, uncertainty

in the detection of animals has either been ignored or dealt with in an ad-hoc manner (Shriner,

2001; Lichstein et al., 2002). Detection probability will vary across the landscape, with the time of

the year, according to the local weather conditions, and with individual observers and between

different bird species. Not allowing for such variation may lead to over or underestimation of

relative bird density at some locations, affecting inference from fitted models, or resulting in mis-

leading comparisons of bird species populations or inaccurate assessment of population changes

over time. We present a unified modeling framework for the analysis of repeated count, removal

and capture-recapture data from bird surveys carried out at spatially replicated sites that allows

for imperfect detection and spatial dependence in the data.

While some surveys involve a simple count of birds of each species along a line transect or at a

point transect (Royle et al., 2002; Wikle, 2002), count data alone are not sufficient to distinguish vari-

ation in density from variation in detectability. In our work, we consider three other types of survey

data gathered by making a sequence of independent observations during multiple survey periods

at each site: repeated counts, in which all birds seen or heard are counted in each survey period;

“removal” counts, which differ from repeated counts in that individual birds observed in previous

periods are not counted in the current period; and “capture-recapture” data, in which observed

birds are again identified individually and a record is kept of whether an individual was observed

in each survey period or not. There is great potential for errors in such surveys, particularly when

individuals are identified by sound, but although we discuss this throughout our work, the models

we present assume that observations are made without error. We also assume that the population
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is closed to births, deaths, immigration, and emigration during the course of the survey of a single

survey site, which are reasonable assumptions as repeated observations are usually made within

a very short time period (e.g., 10 minutes for Farnsworth et al., 2002; Alldredge, 2004). Given this,

we can make use of binomial models for repeated count and removal data from multiple survey

sites, and in a hierarchical framework, combine these with Poisson-lognormal mixture models for

relating abundance to covariates. Royle (2004) and Webster et al. (2006) describe this hierarchical

framework for repeated count data, while Wyatt (2002), Dorazio et al. (2005), and Forsyth et al.

(2006) apply similar models to removal data.

Closed population capture-recapture models have been extensively studied (see, for example,

Otis et al., 1978; Pollock et al., 1990), including those which attempt to model heterogeneity in

detectability between individual animals (e.g., Chao, 1987; Norris and Pollock, 1996; Coull and

Agresti, 1999; Pledger, 2000; Dorazio and Royle, 2003). In the surveys of multiple sites that form

the focus of our work, we only model such heterogeneity by allowing for site differences due to

covariates or for changes in detectability across the multiple survey periods for each site using

a logistic-linear model. This approach is similar to that taken by Huggins (1989) and Alho (1990),

who considered logistic models with covariates measured on individual animals, and in Section 3.2

we show that this allows us to fit capture-recapture models within the same framework as models

for repeated count and removal data. Modeling heterogeneity between individuals within sites as

a random effect is a more difficult problem, and as shown by Link (2003), is highly dependent on

the choice of model. We do not consider this class of heterogeneity models in our work.

The complexity of these models makes them difficult to fit using maximum likelihood esti-

mation, but their hierarchical structure means that they are relatively easily implemented using

Bayesian modeling with Markov chain Monte Carlo (MCMC) algorithms, for example, by combin-

ing Gibbs Sampling (Geman and Geman, 1984) with Metropolis-Hastings steps (Hastings, 1970).

Accounting for spatial structure with large data sets requires specifying models that lead to effi-

cient MCMC algorithms. Algorithms based on conditional autoregressive (CAR) models (Besag,

1974) are much faster than those for geostatistical models described by Cressie (1993) and used

by Royle et al. (2002) for modeling bird count data. Lichstein et al. (2002) used a CAR model for

modeling bird survey data, but their approach required fitting preliminary geostatistical models

to estimate the distance at which spatial dependence between two points becomes negligible. In

Section 3.3 we propose the use of a variation of standard CAR models for spatial modeling in two-

dimensional space (Hrafnkelsson and Cressie, 2003), in which this distance becomes a parameter



Chapter 3. Bayesian Spatial Modeling of Data from Bird Surveys 81

of the models.

In Section 3.4 we apply the models to part of a large bird survey data set from the Great Smoky

Mountains National Park. The data are in the form of capture-histories at multiple sites, and from

this we also extract the appropriate statistics for repeated count and removal analysis of the data.

To illustrate the application to the different types of survey data, we fit the hierarchical spatial

models to all three versions of the data. A comparison of the three methods is particularly inter-

esting given that it is likely that identification errors exist, but will have a lesser effect when data

are aggregated in the form of counts than when we require individuals to be distinguished for

analysis using capture-recapture models. These data were analyzed previously by Shriner (2001),

Farnsworth et al. (2002), and Alldredge (2004), while Lichstein et al. (2002) looked at a similar data

set from the adjacent Pisgah National Forest, North Carolina. Previous analyses have focused on

certain aspects of the modeling while neglecting others. Shriner (2001) modeled presence-absence

data, but attempted to remove the problem of estimation of detection by assuming that birds within

a certain radius of the observer had detection probabilities of 1, with birds detected beyond this ra-

dius excluded from the modeling. This author also ignored spatial dependence in her analysis and

predicted presence at unobserved sites from covariate models alone. Farnsworth et al. (2002) did

consider detection in removal versions of the data, but the data were aggregated over all sites and

so the spatial structure was lost. A CAR model was used by Lichstein et al. (2002) to model spatial

dependence in count data, but only total site counts of unique individuals were used rather than

repeated counts, and as with Shriner (2001), a cut-off radius was used in an attempt to ensure that

detection was perfect within this radius. Finally, Alldredge (2004) examined sources heterogeneity

in detection probability for the capture-recapture data, but the spatial locations of the observations

were ignored. Our modeling framework allows us to simultaneously model all components of the

data structure, including covariates, detection probabilities, and spatial dependence.

In Section 3.2 we describe our hierarchical models for bird density and detection probability,

while we discuss spatially modeling of bird survey data in Section 3.3. We present detailed anal-

yses of data for selected species from the Great Smoky Mountains bird survey, including maps of

the spatial distribution of relative bird density. Finally, the implications of our work and possible

avenues of future research are discussed in Section 3.5.
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3.2 Population and detection models

Bird survey data are often collected as a sequence of independent repeated counts, “removal”

counts, or “capture-recapture” data at multiple survey locations throughout a large area of interest.

Our use of quotation marks here is to indicate that the data conforms to this particular type, even

though birds are generally neither physically removed nor captured. In each of the three cases, the

data at each survey site can be summarized in the form of a vector of animal counts, the form and

distribution of which depends on the survey design. Suppose we survey L sites, and make T inde-

pendent observations at each site. Further, we assume that these T observations are made within a

short enough space of time that the population is closed to migration, births, and deaths. Let Ni be

the “abundance” of animals at survey site i, and pij the probability an animal is detected at site i on

occasion j. In fact, in most situations Ni is a measure of relative abundance, as we discuss below.

In a repeated count survey, a record is kept of the number of animals observed at a site on

each of the T survey periods and these counts are assumed to be made independently at each

site. A removal survey differs only in that birds observed in one period are “removed” from the

population to be counted on subsequent periods at each site. Such a survey rarely involves actual

removal of birds, and instead we assume that it is possible to track individual birds over the T

survey periods. Let yij be the observed bird count site i for period j, so that at each site we observe a

data vector Yi = [yi1, . . . , yiT ]′. For both repeated count and removal data, we can apply a binomial

model to the observed counts. For i = 1, . . . , L and j = 1, . . . , T,

yij|Ni, pij ∼ Bin(Ni − Mij, pij), (3.1)

where Mij = ∑j<j′ yij′ is the number of animals removed prior to occasion j, with Mi1 = 0. For

count data, Mij = 0 for j = 1, . . . , T as no animals are removed during the T survey occasions. This

binomial model has been used by Royle (2004) for multiple-site count data, and by Wyatt (2002)

and Forsyth et al. (2006) for removal data.

In surveys that yield the capture-recapture type of data, a record is kept of whether each ob-

served bird was detected in a given survey period or not. Our data, therefore, consist of values

xjk, where xjk = 1 if bird k is seen or heard (“captured”) in period j, and 0 otherwise. For our

models, which allow detection probability to vary between sites and between periods within a

site, we can summarize the capture histories of animals as a vector of counts for each site, with

each count being the number of animals with a particular unique capture history (Otis et al., 1978).
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For example, for T = 3 periods, there are 8 possible capture histories, ω = 111, 110, 101, 100,

011, 010, 001 and 000. Let the number of animals with history ω at site i be denoted by Xiω, and

let Xiω = [Xi,111, Xi,110, . . . , Xi,000] for the three period example. If πiω = [πi,111, πi,110, . . . , πi,000],

where

πi,111 = P(ω = 111) = pi1 pi2 pi3,

πi,110 = P(ω = 110) = pi1 pi2(1 − pi3),

...

πi,000 = P(ω = 000) = (1 − pi1)(1 − pi2)(1 − pi3),

then Xiω has a multinomial distribution given by

Xiω|Ni, piω = Multinomial(Ni, πiω). (3.2)

Note that Xi,000 is unknown since animals with capture history 000 are unobserved, and in con-

structing a likelihood function, we replace this with Xi,000 = Ni − ∑ω 6=000 Xiω.

Although the data models differ for count, removal and capture-recapture data, in all three cases

the distribution of the data at a site depends on the same set of parameters, Ni and pi1, . . . , piT for

i = 1, . . . , L. The next step in our hierarchical modeling is to specify models for these parameters.

For Ni we use a Poisson-lognormal mixture to model variation in abundance across the sites as

a function of covariates and spatially dependent Gaussian errors (see Diggle et al., 1998; Banerjee

et al., 2004) As well as being very flexible, this mixture model allows for over-dispersion in the site

abundances, which is generally present in animal data due to the clustering of animal populations.

The model is as follows:

Ni|λi ∼ Poisson(λi) (3.3)

log(λi) = µi + φi

Here φi is a zero-mean Gaussian error term through which we model spatial dependence (Section

3.3) and µi represents the covariate model, most commonly of linear form, µi = X′
iα, where Xi here

represents the vector of covariates measured on unit i, and α is the corresponding parameter vector.

In the case where the animals are observed within a well-defined area around the survey transect,
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we may replace λi in Equation (3.3) with Aiλi, where Ai is the surveyed area around transect i,

and λi becomes the density of birds per unit area. In most line and point transect surveys, how-

ever, there is no clear boundary beyond which birds are unobservable. The Ni and λi in this case

correspond to measures of relative abundance and density, and by allowing detection probability

to vary between sites, we can still make appropriate inference on the parameters of the covariate

model and of variation in density across space, between species, or over time.

In the detection model we use a linear logistic model to allow for variation in detection due to

covariates,

logit(pij) = νij,

where νij is a function of covariates that vary between sites and across the T periods within the

sites. For example, if we have values of the covariates at each of the L sites and we fit a linear

model, then νij = Z′
iα, where Zi is the covariate vector for site i, and β is a vector of parameters.

In this work we do not consider models which allow for a random effect in the detection model as

per Forsyth et al. (2006). Our experience is that it can be difficult to distinguish variation in animal

density from that due to detectability, particularly when there are few survey periods (i.e., T is

small, common for bird surveys), and attempting to do so does not improve the fit of the models.

Because of their complexity and hierarchical structure, we use Bayesian modeling to make in-

ference on the model parameters. In Bayesian modeling, the goal is to compute the form of the

distribution of the parameters given the data and some prior information. The distribution thus

determined is known as the posterior distribution and for a parameter vector θ, this is found by

solving the equation

℘(θ|Y) =
℘(Y|θ)℘(θ)∫
℘(Y|θ)℘(θ)dθ

,

where ℘(θ|Y) is the joint posterior density, ℘(Y|θ) is the likelihood of the data and ℘(θ) is a prior

density through which prior knowledge about θ can be incorporated. This requires specification

of prior distributions for the parameters, which may be informative, allowing for past knowledge,

or non-informative, in which case we wish them to have little effect on the inference. The idea of

allowing previous research and expert opinion to inform our understanding of the present data

seems very appealing, particularly when the present information is poor as is often the case in

wildlife population research. However, deciding how much weight to give to these two sources

of information is an inherently subjective process, and clear justification must be given for any

informative priors. In cases where there is no useful prior information about a parameter, or if
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we wish the focus of our analysis to be on the information contained in the present data alone,

we can select non-informative or vague priors so that the form of the posterior is approximately

determined by the likelihood alone. This is the approach we take in the present work. We discuss

our particular choice of prior distributions in more detail in our example in Section 3.4.

For the models presented in our work, we use MCMC algorithms based on Gibbs sampling

(Geman and Geman, 1984) with Metropolis or Metropolis-Hastings steps (Hastings, 1970) to gen-

erate samples from the posterior distributions of the parameters. After discarding data generated

prior to convergence of the algorithms (the ‘burn-in’), the MCMC samples can be used to estimate

posterior summary statistics such as means, standard deviations, quantiles or the form of densi-

ties themselves (for example, using kernel density estimation). For a discussion of convergence

assessment and other diagnostics, we refer the reader to Gelman et al. (2004). As a simple model

diagnostic, we perform a cross-validation by re-fitting models with 10% of sites omitted, and cre-

ating plots comparing the observed values of a summary statistic at the omitted sites with the cor-

responding predictions and their 95% prediction intervals. We would expect 95% of the observed

values to fall inside the credible intervals, and failure of this would be evidence that the model is

inconsistent with the data. As we have multiple observations at a site, we chose the mean count at

a site for repeated count data, and the total number of unique observed birds for removal data and

capture-recapture data, as the site summary statistics for prediction.

3.3 Spatial Models

The hierarchical structure of the models described in the previous section makes them particularly

suitable for Bayesian modeling using MCMC algorithms. However, for these algorithms to be com-

putationally efficient for large data sets, we must take care in our choice of model for the spatial

dependent random effect, φi. The most intuitive approach would be to use a standard geostatis-

tical model to describe the spatial structure, such as an exponential or the more general Matérn

model. Within a Gibbs sampling algorithm, however, updates require the inversion of L × L matri-

ces, which creates an impractical computational burden when L is large. One common covariance

model, the spherical (Cressie, 1993), leads to a covariance matrix with sparse structure, and we

considered this for modeling φi. However, we found that even this model could be prohibitively

slow and obtaining convergence of the MCMC algorithms was also difficult.

A more practical alternative is to use conditional autoregressive (CAR) models (Besag, 1974),
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which have become popular in recent years because MCMC iterations are very efficient to perform

due to the conditional nature of the model specification. In a CAR model, φi is assumed to be

normally distributed with the mean defined to be the weighted average of the elements of the

vector of errors with the ith omitted, φ−i = [φ1, . . . , φi−1, φi+1, . . . , φL]′. Following Banerjee et al.

(2004) we begin by defining a symmetric L × L matrix of weights, W, with elements wii′ . Now

define wi. = ∑
L
i′=1 wii′ , the row totals of W. A ‘proper’ Gaussian CAR model then follows by

specifying the distribution of φi conditionally as

φi|φ−i, γ, σ2
φ ∼ N

(
γ ∑

i′ 6=i

wii′

wi.
φi′ ,

σ2
φ

wi.

)
. (3.4)

Unconditionally, ℘(φ), the joint probability density of the vector φ = [φ1, . . . , φL]′, is given by

℘(φ|γ, σ2
φ) ∝ exp

{
− 1

2σ2
φ

φ′M−1 (I − γC) φ

}
, (3.5)

where M is a diagonal matrix with ith diagonal element 1/wi., and C = MW, the scaled weight

matrix (Banerjee et al., 2004). Equation (3.5) specifies the kernel of a multivariate normal distri-

bution with mean vector 0 and covariance matrix Σφ = σ2
φ(I − γC)−1M. Let τφ = 1/σ2

φ be the

precision parameter of the model. With weights defined above, Σ
−1
φ = τφM−1 (I − γC) will be

symmetric, and provided that |γ| < 1, this matrix will also be non-singular and Σφ will be a valid

covariance matrix. In this case, (3.4) defines a proper prior distribution in Bayesian hierarchical

modeling (Banerjee et al., 2004), and hence this model specification is known as a proper Gaussian

CAR model.

The parameter γ governs the strength of spatial dependence, with a value of zero leading to

independence of the φi. However, it is difficult to interpret the magnitude of a non-zero γ in any

meaningful way as we can for a correlation coefficient (e.g., Banerjee et al., 2004), and in general

any degree of spatial dependence will lead to a large value for γ. For this reason, some authors

prefer to fix γ = 1, leading to what is known as an intrinsic CAR model (Banerjee et al., 2004).

As each value of φi is a function of its neighbors, the CAR model has been most widely used

when the survey region is divided into contiguous subregions because in such cases the neigbor-

hood structure is relatively straightforward to define. For example, the simplest case would be

to let wii′ = 1 if sites i and i′ share a common boundary, and zero otherwise. When the data are

observed at points in continuous space, more care must be taken in specifying the neighborhood
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structure. A convenient approach, and the one we take here, was proposed by Hrafnkelsson and

Cressie (2003), who introduced a neighborhood radius (which we call dmax) as an additional model

parameter: points within dmax of a survey point are considered neighbors of that point and are as-

signed positive weights, with the magnitude of the weight being a decreasing function of distance

from the survey point.

Let rii′ be the Euclidean distance of site i from site i′, and let δ be the magnitude of the spatial

dependence at rii′ = dmax. Hrafnkelsson and Cressie (2003) defined the weights, wii′ , assuming a

minimum distance between two points of 1 unit. For an arbitrary minimum distance, rmin, let

ψ = − log(δ)

log(dmax/rmin)
.

Then the wii′ for site i are given by

wii = 0, i = 1, . . . , L

wii′ = r
−ψ
ii′ , rii′ ≤ dmax

wii′ = 0, rii′ > dmax.

The parameter δ is fixed at a low value so that the drop in the function relating weight to dis-

tance between points is not steep. We follow Hrafnkelsson and Cressie (2003) by setting δ = 0.05.

Depending on the value of dmax, some points may be without neighbors and would need to be

excluded from the analysis unless additional unsurveyed points were added to the observed data

and prediction made at these points. When fitting a model with covariates, that approach would

require covariate measurements at each of the unsurveyed points, which may not always be avail-

able. Alternatively, we could set a lower bound on dmax (dL, say) such that at most only a small

number of points have no neighbors within this distance. We do this in our example in Section 3.4.

Hrafnkelsson and Cressie (2003) also demonstrate that if the underlying spatial model is in fact

of geostatistical form, such as a Matérn model (Cressie, 1993), then the above CAR specification is

likely to be a good approximation. This is an attractive feature if one feels more comfortable with

using geostatistical models for data in continuous space. The Matérn model in particular includes

a smoothness parameter governing the continuity of spatial process, and the work of Hrafnkelsson

and Cressie (2003) implies that using their modified CAR model will also allow for the degree of

smoothness of a given underlying spatial process.
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3.4 Example: Great Smoky Mountains Bird Survey

An extensive multi-species survey of the bird population of the Great Smoky Mountains National

Park was carried out from 1996 to 1999. Over 3000 point survey sites were positioned around low-

use hiking trails and a survey of the bird population was conducted at each of these locations. The

survey at each point lasted 10 minutes during which time an observer would attempt to record

all the birds that were seen or heard. A three-period capture history for each individual bird was

created by dividing the observation period into three smaller intervals, the first of 3 minutes, the

second of 2 minutes and the third of 5 minutes duration, and a record was kept of whether an

individual bird was observed in each of these intervals or not. This survey design also allows us to

compute the count statistics required for analysis by repeated count and “removal” survey models.

We restrict ourselves to analyzing data from 1750 survey points monitored in 1997, the first year

for which a full survey was conducted (the 1996 survey covered a smaller area of the park than

subsequent surveys), and focus on three species as examples: the Black-throated Green Warbler

(BT), Ovenbird (OB) and Black and White Warbler (BL). The first two are common and easy to

detect - the data we analyzed had 1445 distinct BT and 1615 OB recorded. BL is less abundant and

more difficult to detect, with only 469 individuals observed in 1997. Our main interests in analysing

this data set include exploring the relationships between density and habitat characteristics and

determining if failure to allow for factors affecting detection probability affects model inference,

and in developing maps predicting density of a species across the park. Our analyses will also

improve upon the methods of that Shriner (2001), Lichstein et al. (2002) and others have applied

to these and similar survey data. The most important factors affecting density can be summarized

with two variables, elevation and topographic relative moisture index (TRMI). The latter is an index

based on forest moisture gradients and has been shown to be related to forest species composition

(Pinder et al., 1997), and we use it here instead of more complex categorical variables for forest

composition. Using a simple linear model, we model the relative bird density at the ith point

transect using

log(λi) = α0 + α1Ei + α2TRMIi + φi,

where Ei and TRMIi are respectively, the elevation and TRMI values for the ith site. The survey

sites are not surrounded by a clearly-defined area beyond which we cannot detect birds. This

means that ‘density’ at a transect, λi, should be interpreted as an index of relative bird density as

noted in Section 3.2. The term φi represents the spatially dependent error which we model using
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the proper CAR model of Section 3.3.

Given this model, we fit a sequence of three increasingly complex logistic models for detection

probability. We begin with a base model with no covariates, then allow for seasonal effects, and

finally for local conditions at a point at the time the survey was taken.

Model 1 logit(pij) = log(Tj) + β0

Model 2 logit(pij) = log(Tj) + β0 + β1Si

Model 3 logit(pij) = log(Tj) + β0 + β1Si + β2Ai + β3Qi + β4C1i + β5C2i

The term log(Tj) is an offset, where Tj = 3, 2 or 5 minutes for period j = 1, 2 or 3, respectively. This

allows the probability of detection to vary with the duration of survey period in such a way that

the odds ratios are proportional to the ratios of the period lengths, Tj. Si takes the value 0 if a point

was surveyed prior to June 21, and 1 otherwise, and thus represents a contrast between detection

probabilities in spring and summer. We expect this to be important as the activity of birds, and,

therefore, their chance of being detected, changes between seasons, and the sites were surveyed at

different times from spring to summer. The remaining variables in Model 3 allow for effects of local

conditions on detection probability. Ai is the air temperature at transect i, while Qi takes the value

0 for no measured background noise (e.g., due to wind, water) and 1 otherwise. C1i and C2i take the

values 1 for moderate and high cloud cover respectively, and 0 for low cloud cover. All continuous

variables (elevation, TRMI and air temperature) were standardized prior to analysis.

Our MCMC algorithm is detailed in Appendix B. We used non-informative uniform prior dis-

tributions for the covariate coefficients in both the density and detection models, and a flat prior

for the spatial neighborhood radius dmax. This parameter was constrained to be greater than

dL = 0.5km, which led us to exclude only 24 survey sites for having no neighbors within dis-

tance dL. We sampled values from the posterior of τφ = 1/σ2
φ, for which we used a prior density

of ℘(τφ) ∝ τ−3/2
φ , which corresponds to a uniform prior on σφ as recommended by Gelfand et al.

(2006), although with our large sample sizes the exact choice of prior was not important. We gener-

ally ran between 10000 and 20000 iterations following a burn-in period for BT and OB models, and

at least twice as many when modeling the more sparse BL data.

Figure 3.1 shows the posterior means and 95% credible intervals of the coefficients of elevation

and TRMI in the density model (α1, α2), and as a relative measure of detectability, the mean detec-

tion probability for the first 3-minute survey period, averaged over all L survey sites (p̄3). Full tables

of posterior means and credible intervals are presented in Appendix A. Considering first the more

abundant species, BT and OB, for both there is a clear negative relationship between density and
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Figure 3.1: Posterior means (solid lines) and 95% credible intervals for selected parameters for (a)
Black-throated Green Warbler (b) Ovenbird and (c) Black and White Warbler, for count(C), removal
(R) and capture-recapture (CR) data, and for detection Models 1 (•), 2 (�) and 3 (N).
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Figure 3.2: Posterior means (solid lines) and 95% credible intervals for selected parameters for (a)
Black-throated Green Warbler (b) Ovenbird and (c) Black and White Warbler, for count(C), removal
(R) and capture-recapture (CR) data, and for detection Models 1 (•), 2 (�) and 3 (N).



Chapter 3. Bayesian Spatial Modeling of Data from Bird Surveys 92

elevation, and thus these species are more abundant at lower elevations. BT density is positively

related to TRMI, while the relationship is negative for OB, although in both cases the magnitude

of the coefficients and the wide credible intervals (they almost include 0 for BT) show that TRMI

is a less important predictor than elevation. The coefficients of elevation and TRMI are consistent

across the three types of data, repeated count, removal, and capture-recapture, with only small

differences between the three detection models for each data type. Detection probabilities were

higher in summer than in spring for BT (β1 significantly greater than 0, Appendix A), while the

importance of season is less clear for OB. There is evidence, however, from all three versions of the

data that local noise at the time of the survey decreases the probability of detection of OB (β2 < 0,

Appendix A). Accounting for these detection effects does not appear to affect the estimation of the

density coefficients for these species.

It is also interesting that, although the values of the density coefficients are similar between

models for the three types of data, there are differences in the detection probabilities for repeated

count, removal and capture-recapture models for BT and OB. In particular, detection probabilities

(as illustrated by p̄3 in Figure 3.1) are higher on average for the capture-recapture model. Given

the difficulty in distinguishing individual birds in this survey, we think it is likely that errors in the

data would be most serious for capture-recapture data. If this is the case, the higher probabilities

imply that observers are mistaking multiple birds for the same bird across the three survey periods,

and, therefore, they record too few distinct individuals.

In Figure 3.2, we examine the posterior means and credible intervals of the three parameters

of the spatial model for the φi, σ2
φ, dmax and γ. For BT and OB it is apparent that the conditional

variance parameter, σ2
φ, is highest for count data and lowest for capture-recapture data, which we

might expect, given that count data contains the least information about detection probabilites and

capture-recapture is the most informative in this respect. But we also see that the although the

parameter γ moves within a narrow range, the posterior means tend to be higher when those of

σ2
φ are lower. The correlation between these parameters became apparent when we examined their

MCMC values. Perhaps less clear is that dmax, particularly for BT, appears to be higher when σ2
φ is

higher, and, therefore, is negatively correlated with γ. It is possible that with these types of data,

we should reduce the number of parameters in the spatial model.

In fact, we were forced to simpifly the spatial model when modeling the sparse BL data. Con-

vergence of the BL models was much more difficult. Fewer birds were observed and, from our

previous experience with fitting models to similar datasets, convergence of MCMC alogrithms can



Chapter 3. Bayesian Spatial Modeling of Data from Bird Surveys 93

be much slower when detection probabilities are relatively low and the number of observation pe-

riods at each sampling site is small (recall T = 3 here). Given the apparent convergence difficulties,

and that even in case of BT and OB the spatial model may be over-parameterized, we chose to sim-

plify the model by fixing γ = 0.995 in the proper CAR model, similar to the posterior mean values

for BT and OB. This is close to an intrinsic CAR model, but setting up an algorithm directly for such

a model is more difficult when dmax is a parameter, as its full conditional density would now de-

pend on the improper joint prior density for the residual vector φ (Appendix B). This simplification

improved matters, but even then, for some of the more complex detection models with repeated

count and removal data, the algorithms apparently failed to converge. No results are presented in

the figures and tables for the cases for which convergence was uncertain.

From Figure 3.1c we can see that again BL density decreases with increasing elevation, and the

coefficient of elevation, α1, has similar posterior means to BT and OB. TRMI seems to be a more

important variable for this species, however, with a much larger, negative value for the posterior

mean of α2. As expected, the estimated detection probabilities were lower for BL than for the

other bird species. When the MCMC algorithms converged, Figure 3.2c shows that although the

parameter σ2
φ has a fairly similar posterior distribution for all three species (although somewhat

lower values are seen for BL with capture-recapture data), the values of dmax are much higher. This

would imply that even quite distant survey points (up to 2 km away) directly influence density at

a given location. However, we have no plausible biological explanation as to why this may be the

case.

For the capture-recapture models applied to BL data, the only ones for which the algorithms

converged for all three detection models, there is some evidence that allowing for variation in de-

tection probability due to covariates affects the results for the detection component of the model

(Figure 3.1c). In particular, the posterior mean and credible intervals for α1, the elevation coeffi-

cient, are slightly higher under detection Models 2 and 3 than with Model 1. The effect is not large

but no effect at all was apparent for the easier-to-detect species, BT and OB. A clearer corresponding

decrease in average detection probabilities are also apparent when detection probabilities are not

constant across the survey sites. There is some evidence of a relationship between detection prob-

ability and season (Table 3.3, Appendix B), and accounting for this relationship has some affect on

our inference on the detection model.

Figures 3.3-3.5 give the results of a cross-validation exercise to assure ourselves that the models

are consistent with the observed data. For the Black-throated Green Warbler (BT) data, detection
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Figure 3.3: Comparison of posterior means (solid line) and 95% prediction intervals (dashed lines)
with observed values (circles) of ȳi, the weighted mean count at site i, for 10% of the survey sites
when the models are fitted to repeated count data with these sites omitted for the Black-throated
Green Warbler (BT).
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Figure 3.4: Comparison of posterior means (solid line) and 95% prediction intervals (dashed lines)
with observed values (circles) of yi., the number of unique birds detected at site i, for 10% of the sur-
vey sites when the models are fitted to removal data with these sites omitted for the Black-throated
Green Warbler (BT).
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Figure 3.5: Comparison of posterior means (solid line) and 95% prediction intervals (dashed lines)
with observed values (circles) of yi., the number of unique birds detected at site i, for 10% of the
survey sites when the models are fitted to capture-recapture data with these sites omitted for the
Black-throated Green Warbler (BT).

Model 1 was re-fitted with a random sample of 10% of the observations removed, that is, 175 of the

original 1750 survey sites were treated as if no count data were available. The ‘missing’ counts were

predicted using the re-fitted model, and for each of these 175 survey sites we computed posterior

means and 95% prediction intervals of the weighted average of the three counts for repeated count

data, and the total of the three counts for removal data and capture-recapture data. That is, for

i = 1, . . . , 175, for the repeated count model we computed

ȳi =
∑

3
j=1 Tjyij

∑
3
j=1 Tj

,

while for removal and capture-recapture models we calculated

yi. =
3

∑
j=1

yij.

The figures show comparisons of these predicted statistics with the corresponding observed values

for the 175 prediction sites. For clarity of presentation, we plot the values sorted by posterior

mean, and the x-axis just represents the site index (1 to 175) of the sorted means. In each figure,
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the solid blue line represents the posterior mean of the predicted values, and the dashed lines

the corresponding lower and upper 95% prediction intervals, although the former was 0 for all

models and all prediction locations. The solid circles are the observed values, and our interest

lies in whether these fall within the credible intervals. In all three cases, few prediction intervals

fail to include the corresponding observation, and thus there is no evidence that our models are

inconsistent with the observed data. This was also true for the other species and detection models

that we examined.

One of the most important goals of fitting spatial models to animal survey data is to produce

maps of the population distribution in some region of interest. In the case of the bird survey, we

are interested in mapping bird density across the Great Smoky Mountains National Park. Although

our models do not allow us to directly estimate density, the Poisson intensity λ from Equation (3.3)

provides an index of relative density, and maps of predicted values of λ will show how animal

density varies across the region. Also of interest are maps of the spatially dependent error process,

φ, which show patterns of spatial variation once we have allowed for covariates in the density

model. This can give us insight into other factors that may affect animal distribution, such as

covariates that have not already been included in the model.

As examples of the type of maps that can be produced by fitting the models we have presented

in our work, we generated prediction maps of bird distribution by fitting detection Model 1 to the

repeated count data for each of the three species. The original 1997 survey locations were aug-

mented with a regular grid of 7683 sites spaced 500 m apart within the boundaries of the Great

Smoky Mountains National Park. Values of elevation and TRMI at these prediction locations were

extracted from a Geographic Information System (GIS) database, and are shown in Figure 3.6. Al-

though it was technically straightforward to modify our MCMC algorithm (Appendix B) to include

prediction on the grid, our algorithm runs too slowly for this to be practical. Instead, we used the

WinBUGS package (Spiegelhalter et al., 2003) to fit a simplified version of our Bayesian model. The

neighborhood radius parameter, dmax, was fixed to be approximately the value of the posterior

mean from our original modeling, i.e., 750 m for BT and OB, and 2000 m for BL, while we used an

intrinsic CAR prior (i.e., γ = 1) since the posterior means of γ were always close to 1 for BT and

OB. (We are concerned that the intrinsic CAR prior leads to improper posterior distributions (see

Sun et al., 1999), and it is our intention to verify the results of the mapping by re-fitting the models

with a proper CAR prior in future work.)
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Figure 3.6: Elevation (meters above sea level) and TRMI at the 7683 grid locations used for predic-
tion maps of bird distribution.
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Figure 3.7 shows prediction maps of the distribution of BT. From the results in Table 3.1, Ap-

pendix B, elevation is the more important of the two covariates (recall that the covariates were

standardized prior to analysis) and without allowing for spatial dependence, we would expect a

map of predicted intensity, λ, to largely mimic the map of elevation in Figure 3.6. Although this

species is not predicted to be abundant at higher altitudes, at lower altitudes we predict only three

patches of high density (pink), in the west, south-east, near the eastern part of the northern bound-

ary. There are also some areas of moderate density (yellow), notably in the central north and just

east of the south-eastern high density patch. The map of predicted φ shows that, allowing for el-

evation and TRMI, we predict a patch of much higher than average density in the south-eastern

section of the park, along with a few other high density regions, including a large area near the

park’s center. Identification of these areas of relatively high density may help the biologist to better

understand the factors affecting the distribution of this species. It is important when attempting

to interpret the prediction maps to consider the adjacent maps of standard deviation (sd) of pre-

diction. The map of sd(λ̂) shows that the regions of highest intensity are also those of greatest

uncertainty in prediction, something we would expect from the lognormal model for intensity, λ.

Of even more interest in this case is the map of standard deviation of φ. The areas where prediction

is precise (green) show up as a network of lines, which in fact correspond to the trails upon which

the survey points were located. That is, we only have precise prediction in the neighborhood of

the original survey sites. This has very important implications for survey design. If the goal is to

create precise maps of a large region such as the Smoky Mountains National Park, then we should

strive to locate the survey points throughout the region, rather than clustering them within narrow

corridors such as trails, as was the case for the current survey.

The predicted distribution of OB is shown in Figure 3.8. This species appears to be concentrated

in the south-western region of the park, according to the prediction map of λ, but this region con-

tains few survey points, and again with the exception of areas close to survey trails, prediction is

very imprecise (maps of sd(λ̂) and sd(φ̂)).

Finally, Figure 3.9 gives maps of the predicted distribution of the less abundant BL species.

From the map of λ̂, this species appears to be found mainly in the park’s southern areas of low

elevation. The exception to this is the south-east section of the park, in which we predict BL to be

largely absent, in contrast to the high density predicted for BL in the same area. Again, the lack

of precision in prediction away from the survey sites implies that we must interpret the prediction

maps with great caution.
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Figure 3.7: Maps of predicted Poisson intensity, λ̂ and its standard deviation (top), and the pre-
dicted spatial error process, φ̂ and its standard deviation (bottom) derived from fitting detection
Model 1 to repeated count data for the Black-throated Green Warbler (BT).
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Figure 3.8: Maps of predicted Poisson intensity, λ̂ and its standard deviation (top), and the pre-
dicted spatial error process, φ̂ and its standard deviation (bottom) derived from fitting detection
Model 1 to repeated count data for the Ovenbird (OB).
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Figure 3.9: Maps of predicted Poisson intensity, λ̂ and its standard deviation (top), and the pre-
dicted spatial error process, φ̂ and its standard deviation (bottom) derived from fitting detection
Model 1 to repeated count data for the Black and White Warbler (BL).
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3.5 Discussion

In this work, we have described a framework for spatial modeling of closed-population bird sur-

vey data, where the observations come from repeated counts, removal counts or capture-recapture

data recorded at multiple sites within the survey region. The models simultaneously allow for vari-

ation in detection probability and for spatial dependence in distribution of birds, and thereby lead

to more reliable inference on the causes of variation in bird density across the landscape. When

covariates are available at unsurveyed locations, these models will lead to improved mapping of

birds species distribution. We have found some evidence that for the Black and White Warbler, the

hardest to detect species of those we examined, allowing for heterogeneity in detection probabilities

by incorporating covariates in the detection model affects not only the mean detection probability

across the survey region, but also affects the estimates of coefficients in the density component of

the model. Although the effect was not strong in this case, we believe that in general it is very im-

portant to account for variation in detection probability across a region when attempting to model

the relationship between bird density and covariates, or when producing maps of relative density

from spatial models.

We have also shown how allowing for spatial dependence will improve the mapping of bird

distribution. If we had simply fitted a covariate model for density and assumed independence

of observations as did Shriner (2001), we would have found that our maps largely reflected the

negative relationship with elevation for the three species we considered. Accounting for further

variables would have refined the maps somewhat, but even without this, modeling spatial depen-

dence allowed us to identify apparent clusters of birds, along with regions of low density, that

would not have been predicted by our covariate models alone.

Our mapping exercise also highlighted the importance of good survey design. The Smoky

Mountains survey was conducted mainly along high-use trails, and although many sites were sur-

veyed each year, they tended to be relatively close together. Not only does such site location raise

concerns of bias, but it also meant that large areas of the park went unsurveyed. The precision

of our prediction maps was very much dependent on the design - precision was only good if we

were predicting values close to a survey site. While it may be impractical in difficult terrain to lay

a regular grid of survey points across a region of interest, ensuring more even coverage is clearly

important for good spatial prediction of bird density.
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In many instances, the bird population is surveyed over a number of years, and we may there-

fore wish to add a temporal component to the models presented in this work. Banerjee et al. (2004)

review extentions of CAR models to allow for temporal effects and for spatio-temporal interactions.

They present examples of both aligned data, when the same survey sites are monitored over time,

and misalignment across years, when the sites change over time. The Smoky Mountain survey

data, for example, come from some sites that were monitored every year and others that were not.

We also restricted ourselves in this work to single-species modeling. Extending the models to al-

low for multiple species is also possible, either through adding species into the covariate model, or

through a multivariate conditional autoregressive (MCAR) specification (Gelfand and Vounatsou,

2003; Banerjee et al., 2004). Modeling the diversity of species can also be fitted into our framework.

Instead of counts of the number of individual animals, our data would be based on counts of the

number of unique species observed at each survey site, and modeling could otherwise proceed as

before. It may even be possible to combine diversity and abundance modeling in a single model,

although the complexity of such a model and the quantity of data that would need to be analyzed

may mean such an exercise is difficult in practice.

There are some important assumptions implicit in our models, some of which are quite ques-

tionable given the manner in which bird survey data are gathered. We have already discussed the

assumption of population closure, and we believe that this is reasonable provided that the survey is

designed appropriately, with repeated survey periods being made in quick succession. Of greater

concern is the high chance of errors being made in detecting and identifying individual birds. In

capture-recapture bird surveys of the type we have discussed, birds are generally not marked, and

the accuracy of the capture histories depends entirely on an observer’s ability to correctly identify

and distinguish individual birds over the T survey periods. This is an extremely difficult task,

particularly given that birds are often observed in dense forest and that many species are identified

by sound alone. One might suppose, however, that a repeated count survey would be less prone

to error, as an observer needs only to track the individuals within each period in order to pro-

duce a count, which should be easier than identifying individuals across all T periods. Therefore,

although repeated count data may lead to lesser precision in parameter estimates than capture-

recapture, the lesser bias induced by identification errors may mean that this method is preferable.

We plan to investigate the effects of data errors on bird survey models in future work. We note,

however, that the results of our analyses were very similar for all three types of data, implying that

if errors exist (and we are certain they do), their effect is much the same regardless of the form of
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the data being analyzed.

We have not considered presence-absence modeling in this work in order to focus on comparing

methods that model factors affecting bird density. We note, however, that hierarchical presence-

absence models can be constructed in a similar way to those we discussed in Section 3.2 by mod-

eling the probability that at least one bird is detected rather than some measure of the number of

detectable birds, N. But since N (and Poisson intensity, λ) are not direct measures of absolute abun-

dance or density within some well-defined area around a survey site, meaningful interpretation of

“presence” or “absence” is difficult in this context. Combining distance and detection data as per

Borchers et al. (1998) and Webster and Pollock (2006) allows us to estimate absolute density, and

provided we can sensibly define areas over which we wish to conclude a species is present or not,

these methods may allow us to consider presence-absence modeling of bird survey data of the kind

we have examined here.
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Table 3.1: Posterior means and 95% credible intervals of parameters for modeling of BT data.

Count Removal Capture-Recapture

parameter Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

α0 –0.50 –0.51 –0.50 –0.48 –0.47 –0.47 –0.50 –0.51 –0.47
(–0.70,–0.33) (–0.70, –0.33) (–0.69,–0.33) (–0.68,–0.29) (–0.67, –0.30) (–0.65,–0.31) (–0.67,–0.33) (–0.69, –0.34) (–0.64,–0.31)

α1 (Elev) –0.69 –0.70 –0.70 –0.67 –0.67 –0.66 –0.66 –0.67 –0.65
(–0.87,–0.52) (–0.86, –0.54) (–0.85,–0.54) (–0.83,–0.51) (–0.83, –0.50) (–0.81,–0.53) (–0.81,–0.51) (–0.82,–0.52) (–0.78,–0.52)

α2 (TRMI) 0.082 0.077 0.079 0.073 0.078 0.075 0.081 0.076 0.080
(0.008, 0.161) (0.010, 0.147) (0.017,0.150) (0.006, 0.141) (0.016, 0.146) (0.000,0.143) (0.020,0.152) (0.008,0.140) (0.005,0.151)

γ 0.994 0.995 0.995 0.995 0.996 0.995 0.996 0.996 0.996
(0.989,0.997) (0.990, 0.998) (0.989,0.998) (0.989,0.998) (0.991,0.998) (0.990,0.998) (0.992,0.998) (0.991,0.998) (0.993,0.998)

dmax 0.75 0.72 0.70 0.82 0.71 0.76 0.68 0.72 0.68
(0.61,0.97) (0.61, 0.94) (0.58,0.91) (0.67,1.00) (0.59, 0.97) (0.60,1.09) (0.60,0.88) (0.58,0.95) (0.60,0.84)

σ2
φ 3.2 3.0 2.8 2.5 2.1 2.2 2.2 2.3 1.9

(1.8,4.8) (1.7, 4.7) (1.5,4.5) (1.6,3.9) (1.3, 3.3) (1.3,3.4) (1.4,3.4) (1.2,3.5) (1.0,3.3)

β0 –0.60 –0.66 –0.75 -0.75 –0.82 –0.84 –0.49 –0.54 –0.66
(–0.70,–0.50) (–0.79, –0.55) (–0.94,–0.52) (–0.87,–0.63) (–0.96, –0.68) (–1.20,–0.55) (–0.56,–0.42) (–0.62,–0.46) (–0.87,–0.44)

β1 (Season) – 0.27 0.23 – 0.31 0.32 – 0.26 0.28
(0.06,0.52) (0.01,0.46) (0.03,0.59) (0.03,0.65) (0.08,0.43) (0.06,0.51)

β2 (Temp) – – 0.06 – – 0.04 – – 0.04
(–0.04,0.17) (–0.12,0.17) (–0.05,0.13)

β3 (Noise) – – 0.10 – – –0.03 – – 0.16
(–0.10,0.29) (–0.25,0.21) (0.00,0.34)

β4 (Cloud1) – – –0.06 – – –0.23 – – –0.14
(–0.28,0.16) (–0.58,0.16) (–0.36,0.08)

β5 (Cloud2) – – 0.10 – – 0.25 – – 0.09
(–0.11,0.31) (–0.10,0.65) (–0.14,0.33)

p̄ (3 min) 0.62 0.62 0.62 0.59 0.59 0.59 0.65 0.65 0.65
(0.60,0.65) (0.60,0.65) (0.60,0.65) (0.56,0.61) (0.56,0.62) (0.56,0.62) (0.63,0.66) (0.63,0.67) (0.63,0.66)

p̄ (2 min) 0.52 0.52 0.52 0.49 0.49 0.49 0.55 0.55 0.55
(0.50,0.55) (0.50,0.55) (0.50,0.55) (0.45,0.52) (0.46,0.52) (0.46,0.52) (0.53,0.57) (0.54,0.57) (0.53,0.57)

p̄ (5 min) 0.73 0.73 0.73 0.70 0.70 0.70 0.75 0.76 0.75
(0.71,0.75) (0.71,0.75) (0.71,0.75) (0.68,0.73) (0.68,0.73) (0.68,0.73) (0.74,0.77) (0.74,0.77) (0.74,0.77)



C
h

ap
ter

3.
B

ay
esian

S
p

atial
M

o
d

elin
g

o
f

D
ata

fro
m

B
ird

S
u

rv
ey

s
107

Table 3.2: Posterior means and 95% credible intervals of parameters for modeling of OB data.

Count Removal Capture-Recapture

parameter Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

α0 –0.61 –0.62 –0.61 –0.61 –0.59 –0.61 –0.64 –0.61 –0.63
(–0.89,–0.40) (–0.86, –0.40) (–0.83,–0.41) (–0.81,–0.42) (–0.80,–0.38) (–0.82,–0.41) (–0.87, –0.44) (–0.83, –0.40) (–0.84,–0.43)

α1 (Elev) –0.72 –0.68 –0.72 –0.70 –0.67 –0.72 –0.70 –0.67 –0.72
(–0.92,–0.51) (–0.91, –0.42) (–0.90,–0.50) (–0.91,–0.48) (–0.86,–0.47) (–0.92,–0.51) (–0.90,–0.48) (–0.87,–0.44) (–0.92,–0.53)

α2 (TRMI) –0.12 –0.11 –0.12 –0.10 –0.10 –0.12 –0.11 –0.11 –0.11
(–0.19, –0.05) (–0.19,–0.05) (–0.18,–0.05) (–0.16,–0.04) (–0.17,–0.05) (–0.19,–0.05) (–0.18,–0.04) (–0.17,–0.05) (–0.17,–0.04)

γ 0.995 0.996 0.996 0.996 0.996 0.996 0.996 0.997 0.997
(0.992,0.998) (0.993, 0.998) (0.991,0.998) (0.993,0.998) (0.993,0.998) (0.993,0.998) (0.993,0.998) (0.993,0.999) (0.994,0.998)

dmax 0.66 0.67 0.66 0.60 0.68 0.66 0.65 0.66 0.59
(0.53,0.82) (0.53, 0.81) (0.58,0.76) (0.52,0.75) (0.54,0.79) (0.54,0.76) (0.53,0.78) (0.54,0.78) (0.52,0.76)

σ2
φ 3.9 3.7 3.7 3.2 2.9 3.2 3.3 2.9 3.2

(2.6,5.7) (2.2,5.2) (2.2,5.7) (2.0,5.4) (1.9,4.2) (2.1,4.5) (2.2,4.6) (1.8,4.3) (2.2,4.4)

β0 –0.48 –0.44 –0.37 –0.52 –0.52 –0.46 –0.35 –0.33 –0.36
(–0.58,–0.38) (–0.54, –0.33) (–0.58,–0.18) (–0.63,–0.41) (–0.63,–0.40) (–0.77,–0.18) (–0.41,–0.28) (–0.41,–0.26) (–0.53,–0.18)

β1 (Season) – –0.26 –0.42 – –0.08 –0.24 – –0.10 –0.15
(–0.56, 0.01) (–0.69,–0.18) (–0.41,0.25) (–0.69,0.16) (–0.29,0.10) (–0.38,0.08)

β2 (Temp) – – 0.07 – – 0.03 – – –0.01
(–0.03,0.17) (–0.11,0.16) (–0.08,0.08)

β3 (Noise) – – –0.21 – – –0.26 – – –0.16
(–0.37,–0.03) (–0.52,–0.04) (–0.31,–0.02)

β4 (Cloud1) – – 0.16 – – 0.39 – – 0.21
(–0.10,0.39) (0.10,0.71) (0.00,0.38)

β5 (Cloud2) – – 0.06 – – 0.03 – – 0.18
(–0.17,0.31) (–0.28,0.32) (–0.01,0.36)

p̄ (3 min) 0.65 0.64 0.64 0.64 0.64 0.63 0.68 0.68 0.68
(0.63,0.67) (0.62,0.67) (0.61,0.66) (0.61,0.67) (0.61,0.66) (0.60,0.66) (0.67,0.69) (0.66,0.69) (0.66,0.69)

p̄ (2 min) 0.55 0.55 0.54 0.54 0.54 0.53 0.59 0.58 0.58
(0.53,0.58) (0.52,0.57) (0.51,0.56) (0.51,0.57) (0.51,0.57) (0.50,0.56) (0.57,0.60) (0.57,0.60) (0.56,0.60)

p̄ (5 min) 0.76 0.75 0.74 0.75 0.74 0.74 0.78 0.78 0.78
(0.74,0.77) (0.73,0.77) (0.72,0.76) (0.73,0.77) (0.72,0.77) (0.71,0.76) (0.77,0.79) (0.76,0.79) (0.76,0.79)
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Table 3.3: Posterior means and 95% credible intervals of parameters for modeling of BL data.

Count Removal Capture-Recapture

parameter Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

α0 –1.74 –1.75 –1.73 –1.65 –1.62
(–2.03,–1.48) (–2.03,–1.49) (–1.93,–1.54) (–1.83,–1.48) (–1.81,–1.44)

α1 (Elev) –0.71 –0.72 –0.78 –0.75 –0.74
(–0.93,–0.51) (–0.92,–0.52) (–0.95,–0.62) (–0.91,–0.58) (–0.90,–0.57)

α2 (TRMI) –0.22 –0.22 –0.22 –0.21 –0.22
(–0.33,–0.12) (–0.31,–0.13) (–0.34,–0.12) (–0.29,–0.13) (–0.32,–0.10)

γ = 0.995

dmax 2.10 1.78 1.47 1.21 1.02
(1.32,2.97) (1.28,2.75) (1.26,1.79) (1.05,1.45) (0.90,1.17)

σ2
φ 4.04 3.34 1.77 1.52 1.42

(1.85,7.70) (1.95,6.18) (1.12,2.51) (0.72,2.40) (0.76,2.21)

β0 –0.98 –0.98 –0.87 –0.86 –0.66
(–1.13,–0.84) (–1.14,–0.84) (–0.99,–0.74) (–0.99,–0.73) (–0.93,–0.36)

β1 (Season) – – – –0.99 –1.21
(–1.86,0.06) (–2.05,–0.51)

β2 (Temp) – – – – 0.04
(–0.10,0.18)

β3 (Noise) – – – – –0.20
(–0.48,0.07)

β4 (Cloud1) – – – – 0.05
(–0.29,0.39)

β5 (Cloud2) – – – – –0.18
(–0.54,0.15)

p̄ (3 min) 0.53 0.53 0.56 0.50 0.49
(0.49,0.56) (0.49,0.56) (0.53,0.59) (0.45,0.57) (0.44,0.54)

p̄ (2 min) 0.43 0.43 0.46 0.41 0.39
(0.39,0.46) (0.39,0.46) (0.43,0.49) (0.36,0.47) (0.36,0.44)

p̄ (5 min) 0.65 0.65 0.68 0.62 0.61
(0.62,0.68) (0.61,0.68) (0.65,0.70) (0.57,0.69) (0.56,0.66)
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Appendix B

Here we present our MCMC algorithms for the analyses of Section 3.4 for count and removal data.

The algorithm for capture-recapture data differs only in the likelihood component, with the multi-

nomial model of Equation (3.2) replacing the binomial model of Equation (3.1). The algorithms are

based on Gibbs sampling, in which at each iteration we sample from the full conditional distribu-

tion of a parameter conditional on the most recent values of all other parameters. For our models

the full conditional distributions for most parameters do not have a familiar form, and we instead

employ Metropolis or Metropolis-Hastings steps to update these parameters. For our algorithm,

for i = 1, . . . , L, we write the full model for count and removal data as:

yij|Ni, β, Zi ∼ Bin(Ni − Mij, pij)

Ni|ui ∼ Poisson(eui )

where

logit(pij) = log(Tj) + Ziβ,

and ui is modeled using a proper Gaussian CAR prior,

ui|Xi, α, τφ, γ, dmax ∼ N

(
Xiα + γ ∑

i′ 6=i

wii′

wi.
(ui′ − Xi′α),

1

wi.τφ

)
.

The CAR weights wii′ are functions of dmax as defined in the text and Mij = ∑j<j′ yij′ is the number

of animals removed prior to occasion j, with Mi1 = 0. For count data, Mij = 0 for j = 1, . . . , T as

no animals are removed during the T survey occasions.

The joint posterior distribution of the parameters is given by

℘(α, β, γ, dmax, τφ|Y, X, Z) ∝ ℘(Y|N, β, Z)℘(N|u)℘(u|α, X, γ, dmax, τφ)℘(α, β, γ, dmax, τφ).

We choose independent priors for α, β, γ ,dmax and τφ, and so

℘(α, β, γ, dmax, τφ) = ℘(α)℘(β)℘(γ)℘(dmax)℘(τφ).

For the tth update, we use the following steps.

Step 1
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For i = 1, . . . , L, sample N
(t)
i from ℘(Ni|Yi, u

(t−1)
i , p

(t−1)
i ) where pi = [pi1, pi2, pi3] with

logit(pij) = log(Tj) + Ziβ,

using a Metropolis-Hastings step with a negative binomial candidate and tuning parameter rn:

• Generate N∗
i from q(x|N(t−1)

i ), the NegBin
(

rn, rn/(rn + N
(t−1)
i )

)
density.

• Calculate

r =
℘(Yi|N∗

i , β(t−1), Zi)℘(N∗
i |u

(t−1)
i )q(N

(t−1)
i |N∗

i )

℘(Yi|N(t−1)
i , β(t−1), Zi)℘(N

(t−1)
i |u(t−1)

i )q(N∗
i |N

(t−1)
i )

• Let N
(t)
i = N∗

i with probability min(r, 1), otherwise N
(t)
i = N

(t−1)
i .

Step 2

For i = 1, . . . , L, sample u
(t)
i from ℘(ui|N(t)

i , u
(t)
1 , . . . , u

(t)
i−1, u

(t−1)
i+1 , . . . , u

(t−1)
L , γ(t−1), d

(t−1)
max , τ

(t−1)
φ )

using a Metropolis step with a Gaussian candidate with tuning parameter au:

• Generate u∗
i from q(x|u(t−1)

i ), the N
(

u
(t−1)
i , au

)
density.

• Calculate

r =
℘(N

(t)
i |u∗

i )℘(u∗
i |u

(t)
1 , . . . , u

(t)
i−1, u

(t−1)
i+1 , . . . , u

(t−1)
L , γ(t−1), d

(t−1)
max , τ

(t−1)
φ )

℘(N
(t)
i |u(t−1)

i )℘(u
(t−1)
i |u(t)

1 , . . . , u
(t)
i−1, u

(t−1)
i+1 , . . . , u

(t−1)
L , γ(t−1), d

(t−1)
max , τ

(t−1)
φ )

• Let u
(t)
i = u∗

i with probability min(r, 1), otherwise u
(t)
i = u

(t−1)
i .

Step 3

Sample α(t) from the full conditional

℘(α(t)|u(t), X, γ(t−1), d
(t−1)
max , τ

(t−1)
φ ) ∝ ℘(u(t)|α(t−1), X, γ(t−1), d

(t−1)
max , τ

(t−1)
φ )℘(α(t−1)).

Here we choose a flat prior, so ℘(α(t−1)) ∝ 1, leading to a Gaussian full conditional,

℘(α(t)|u(t), X, γ(t−1), d
(t−1)
max , τ

(t−1)
φ ) = MVN

(
(X′

Σ
(t−1)
φ X)−1X′

Σ
(t−1)
φ u(t), (X′

Σ
(t−1)
φ X)−1

)
,

where Σφ is a function of γ and (through C, the standardized weight matrix) dmax.

Step 4

Again choosing a uniform prior, ℘(α(t−1)) ∝ 1, sample β(t) from its full conditional, ℘(Y|N, β, Z),

using a Metropolis step with a Gaussian candidate with tuning parameter aβ:
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• Generate β∗ from q(x|β(t−1)), the MVN
(

β(t−1), aβI
)

density.

• Calculate

r =
℘(Y|N(t), β∗, Z)

℘(Y|N(t), β(t−1), Z)

• Let β(t) = β∗ with probability min(r, 1), otherwise β(t) = β(t−1).

Step 5

Choosing a prior of ℘(τφ) ∝ τ−3/2
φ (equivalent to a uniform prior for σφ), sample τ

(t)
φ from the full

conditional,

℘(τφ|X, u(t), α(t), γ(t−1), d
(t−1)
max ) = Gamma



 L − 1

2
,

1

0.5(u − Xα)′Σ(t−1)
φ (u − Xα)



 .

Step 6

With a uniform prior, we sample values from the full conditional ℘(γ|u, α, τφ) ∝ ℘(u|X, α, γ, dmax, τφ)

using a Metropolis step. As γ must lie within (−1, 1), we simulated values of θ = logit((γ + 1)/2)

using a Gaussian candidate, with tuning parameter aγ.

• Generate θ∗ from q(x|θ(t−1)), the N(θ(t−1), aγ) density, and compute γ∗ = logit−1(θ∗)

• Calculate

r =
℘(u(t)|X, α(t), γ∗, d

(t−1)
max , τ

(t)
φ )

℘(u(t)|X, α(t), γ(t−1), d
(t−1)
max , τ

(t)
φ )

• Let γ(t) = γ∗ with probability min(r, 1), otherwise γ(t) = γ(t−1).

Step 7

With a uniform prior, we use a Metropolis-Hastings step to sample values from the full conditional

p(dmax|u, α, τφ) ∝ ℘(u|X, α, γ, dmax, τφ). Because we add the constraint dmax > dl in order to en-

sure the number of isolated points is small, we simulate values of D = dmax − dl using a gamma

candidate with mean D and variance, ad, the tuning parameter.

• Generate D∗ from q(x|D(t−1)), the Gamma
(

D(t−1)

ad
, ad

D(t−1)

)
density, and compute d∗max =

D∗ + dl

• Calculate

r =
℘(u(t)|X, α(t), γ(t), d∗max, τ

(t)
φ )q(D(t−1)|D∗)

℘(u(t)|X, α(t), γ(t), d
(t−1)
max , τ

(t)
φ )q(D∗|D(t−1))

• Let d
(t)
max = d∗max with probability min(r, 1), otherwise d

(t)
max = d

(t−1)
max .
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Chapter 4

Modeling Observer Effects on Animal Density and

Detection for Combined Distance and

Capture-Recapture Data

Raymond A. Webster and Kenneth H. Pollock

ABSTRACT

The estimation of animal density using the methods of distance sampling generally ignores the effects of

survey transects or observers on local animal density or detection probability. Typically, animal density is

assumed to be uniform around the transect, which fails to allow for attraction or avoidance of the transect

by some animal species, while detection probability must be perfect on the transect, something that is un-

likely to be true for many species. We propose parametric models for application to combined distance and

capture-recapture survey data from both line and point transect surveys that allow for two types of move-

ment: permanent avoidance or attraction to a transect, or temporary displacement of animals in the vicinity of

a transect. The models have a simple form, with parameters that quantify the impact transects and observers

have on local density. We combine these density models with logistic-linear models for detection probability

using the likelihood framework of Borchers et al. (1998) for combined distance and capture-recapture data.

This allows us to separately estimate the parameters of both the density and detection components of the

model, which is not possible using distance sampling models alone. Through a simulation study, we show

that provided sufficient animals are detected, the model parameters have little bias, and lead to improved

estimates of density over the simple uniform model, particularly for line transect surveys. Model selection by
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AIC generally chooses the correct density model. We apply our models to a point transect survey of birds in

the Great Smoky Mountains National Park, and find some evidence of observer effects on local bird density.

4.1 Introduction

Distance sampling (Buckland et al., 2001) has been widely used to estimate animal density from

line and point transects, but standard distance models require some restrictive and often unrealistic

assumptions. Two important assumptions are that that the distribution of animals is uniform about

the transect, and the probability of detecting an animal is 1 on the transect. Regarding the first

assumption, movement away from (avoidance) or towards (attraction) the observer or transect

prior to detection will affect the local density of animals during the survey, leading to departures

from a uniform density near the transect. When the methods of distance sampling are used, this

results in negative biases in estimators of animal density when there is avoidance of the observer,

while attraction will cause positive bias in density estimation (Buckland et al., 2001).

While the assumption of perfect detection probability on the transect may be reasonable for

many large, easily detected animal species, it is unlikely to hold for small mammals, insects and

birds. Some animals may become more or less active in the vicinity of the observer, positively or

negatively affecting their detection probabilities. For example, some bird species tend to fall silent

when an observer is near, while others may increase their singing. As discussed in Buckland et al.

(2001), if detection is imperfect on the transect, then distance sampling models will produce density

estimators with negative bias.

It is not possible from the distance data alone to distinguish observer effects on detection from

those on density because both lead to fewer detection distances close to the transect than expected

under the usual assumptions of distance sampling. In order to allow for these effects when esti-

mating animal density, we require additional information. Past approaches have used auxiliary

survey data to correct for the effect of movement and imperfect detection at zero distance within

the general distance sampling framework (Turnock and Quinn, 1991; Buckland and Turnock, 1992).

For some animal species, however, it is possible to record multiple detection data, either in form

of double counts or capture-recapture data, along with distances from the observer. With capture-

recapture methods, animals are observed over multiple independent survey periods, and a record

is kept of whether each observed animal was detected in a given survey period or not (Pollock et al.,

1990). In double counting, two observers independently record whether they detect an individual
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animal or not, and therefore such a survey yields data of the same type as a two-period capture-

recapture survey. It is this type of data that is the focus of our work. Such data can be analyzed

using the likelihood approach of Borchers et al. (1998), which does not require perfect detection on

the transect and is flexible enough to accommodate models more general than the uniform density

function for the density of detectable animals.

We propose two alternatives to the uniform density for the distribution of animals. The first,

based on the Gaussian density, assumes that animals avoid the transect even in the absence of an

observer, and so there is permanently lower or higher density around the transect. This is likely

when a transect is a trail, road, or ridge or some other feature with physical characteristics which

affect animal density. The second case is when the observer causes non-random movement of the

animals prior to detection, the situation that has been more frequently examined in the literature

(see Buckland et al., 2001; Turnock and Quinn, 1991). For this case, we propose a probability density

function for animal distances based on the “Mexican hat” function, which has a mode due to move-

ment towards or away from the observer prior to detection. Our models are appealing because the

parameters have direct interpretations, quantifying the effects that transects and observers have on

local density in terms of their magnitude and range.

For modeling the relationship between detection probability and distance, we apply logistic-

linear models, which have been proposed in the capture-recapture literature for modeling hetero-

geneity in capture probability due to covariates (e.g., Huggins, 1989; Alho, 1990). We consider

either a simple linear relationship between the logit of detection probability and distance, or a

more flexible quadratic model. The quadratic model may account for transect effects on detectabil-

ity as it allows detection probability to initially increase with increasing distance from the transect

before finally decreasing to zero at larger distances. Such models would violate the assumptions

of distance sampling, which require detection functions to be monotonic, decreasing, with perfect

detectability on the transect (Buckland et al., 2001). The logistic framework also allows covariates

other than distance to be easily incorporated into the models of detection probability. The linear

and quadratic are certainly not the only plausible models, and different types of models may better

capture the effects of transects on detection probability. However, we restrict ourselves to these

simple models in order to focus attention on our models for local density.

We begin by presenting our new parametric models for accounting for observer and transect

effects on animal density for line and point transects in Section 4.2. This is followed by a brief re-

view of logistic models for detection probability (Section 4.3) and a discussion of how the density
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and detection models can be incorporated into a single likelihood for parameter estimation from

capture-recapture data as per Borchers et al. (1998) (Section 4.4). In Section 4.5, we present the

results of a simulation study to investigate the properties of parameter estimators, particularly esti-

mators of abundance and density. We also consider how well Akaike’s Information Criterion (AIC)

(Akaike, 1973) can select the correct model of the three density models, the uniform, Gaussian, and

Mexican hat. An application of the models to point transect data from a large bird population sur-

vey of the Great Smoky Mountains National Park is presented in Section 4.6, which is followed by

a discussion of the implications of our work in Section 4.7.

4.2 Modeling Observer Effects on Animal Density

4.2.1 Animal Distribution Models for Line Transects

In general, line transect sampling (Buckland et al., 2001) assumes that animals are uniformly dis-

tributed in two-dimensional space around the line transect. As such surveys require perpendicular

distances from the transect to be recorded, it follows that the distribution of distances is also uni-

form. If x denotes the distance of a randomly selected animal from the population within distance

W of the line transect, the probability density function (pdf) of x is

℘u(x) =
1

W
, 0 ≤ x ≤ W (4.1)

However, for many animal species, transects are often located for convenience along trails, roads

or other features which permit easier access for observers. Although we do not advocate non-

random placement of transects if it can be avoided, such surveys are relatively common, and unless

the entire population of interest is located in the vicinity of potential transects, such non-random

placement will lead to biased estimates of animal density. Animal density is likely to be higher or

lower around trails or roads than in more typical habitat. For example, for birds, some raptors may

be attracted to roads because of the presence of animals killed by vehicles, while other species will

prefer less modified habitat than that found along roadsides.

We propose a modified version of (4.1) based on adding a constant times the Gaussian pdf to

the numerator of Equation (4.1) which allows for density to be higher or lower in the vicinity of the
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Figure 4.1: Comparison of the uniform, Gaussian and Mexican hat animal density functions within
distance W = 250 m of a line transect for strong avoidance over a short distance (α = −1/φ(0),
σ = 25) and moderate avoidance over a long distance from the transect (α = −1/2φ(0), σ = 50).
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Figure 4.2: Comparison of the uniform, Gaussian and Mexican hat animal density functions within
distance W = 250 m of a line transect for strong attraction over a short distance (α = 1/φ(0),
σ = 25) and moderate attraction over a long distance from the transect (α = 1/2φ(0), σ = 50).
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transect but uniform at greater distances:

℘g(x) =
1 + αφ

(
x
σ

)

W + ασ
[
Φ
(

W
σ

)
− 1

2

] , 0 ≤ x ≤ W (4.2)

where φ(x) and Φ(x) are the standard normal pdf and distribution function respectively. The

parameter α controls the magnitude of the effect of the trail or road on density on the transect,

while σ is a scale parameter that determines how far into the habitat there is an effect on animal

density. For greater density at and around the transect, α > 0, while α < 0 means there are

fewer animals near the transect than we would expect under a uniform distribution. When α = 0,

Equation (4.2) reduces to the uniform density, Equation (4.1). Note that σ > 0 and for ℘g(x) ≥ 0

we require α ≥ −1/φ(0). The denominator of (4.2) is a constant, the form of which ensures that
∫W

0 ℘g(x)dx = 1.

Although the Gaussian model allows for the long term effects transects on density, an estimator

of density based on this model will still be a biased due to density within distance W of the tran-

sects being unrepresentative of the entire survey region. We consider this problem further in the

Discussion, Section 4.7.

The other important case is when the observer rather than the transect affects local density, with

movement of animals towards or away from the observer prior to detection. This time we modify

the uniform density model by adding a component based on the Mexican hat function, which has

a mode to the right of x = 0. Like the Gaussian pdf, the 1-dimensional Mexican hat function has

two parameters and has the following form:

m(x) =

(
1 − x2

σ2

)
e−x2/2σ2

. (4.3)

As with the Gaussian model, the Mexican hat pdf of distances is formed by adding a constant, α,

times Equation (4.3) to the uniform pdf, and dividing by a factor that ensures integration to 1:

℘m(x) =
1 + α

(
1 − x2

σ2

)
φ
(

x
σ

)

W
[
1 + αφ

(
W
σ

)] , 0 ≤ x ≤ W. (4.4)

The parameter α determines the strength of the movement of animals towards or away from the ob-

server, while the scale parameter σ has a similar interpretation as in the Gaussian model, measuring
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the range of influence of the observer. In the Mexican hat model, for ℘m(x) ≥ 0 we require

− 1

φ(0)
≤ α ≤ 1

2φ(
√

3)
,

and as before, the denominator is a constant ensuring that
∫W

0 ℘m(x)dx = 1. Equation (4.4) uses

a version of the Mexican hat function which integrates to 0 over the range (0, ∞). This is a very

attractive feature when modeling the change in density due to movement, as it means the increase

in animal density in one direction (towards or away from the observer) is exactly matched by a

decrease in the other direction.

Figures 4.1 and 4.2 compare the three density models for positive and negative values of α

respectively and for two values of σ. Strong local avoidance over a relatively short distance, and

weaker avoidance over a long distance are shown in Figure 4.1, while Figure 4.2 gives similar

graphs for attraction.

4.2.2 Animal Distribution Models for Point Transects

Point transects are particularly common in bird population surveys, and again the methods of

distance sampling typically assume a uniform distribution of animals in two-dimensional space.

As given in Buckland et al. (2001), this leads to a form for the pdf of radial distance, r, of animals

within W of the observer of

℘u(r) =
2r

W2
, 0 ≤ r ≤ W. (4.5)

Here r2 = x2 + y2 where x and y are the distances of an animal from the observer along the north-

south and east-west axes respectively. Equation (4.5) means that the probability of an animal oc-

curring increases linearly with distance from the point, due to the greater area that surrounds the

point within larger distances.

The Gaussian model is less likely to be useful for point transects, as it attempts to model the

effect of a permanent modification to the habitat surrounding the transect, something which is

unlikely to occur in a circular pattern about a point. Nevertheless, we present a Gaussian model

for point transects that, as with Equation (4.2), is derived by modifying the uniform model, and is

characterized by the pdf

℘g(r) =
2r
[
1 + αφ

(
r
σ

)]

W2 + 2ασ2
[
φ(0) − φ

(
W
σ

)] , 0 ≤ r ≤ W. (4.6)
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Figure 4.3: Comparison of the uniform, Gaussian and Mexican hat animal density functions within
distance W = 250 m of a point transect for strong avoidance over a short distance (α = −1/φ(0),
σ = 25) and moderate avoidance over a long distance from the transect (α = −1/2φ(0), σ = 50).
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Figure 4.4: Comparison of the uniform, Gaussian and Mexican hat animal density functions within
distance W = 250 m of a point transect for strong attraction over a short distance (α = 1/φ(0),
σ = 25) and moderate attraction over a long distance from the transect (α = 1/2φ(0), σ = 50).



Chapter 4. Modeling Observer Effects on Animal Detection and Density 123

As for the case of line transects, α > 0 leads to a peak in density and α < 0 to a trough in density

around the observer, while α = 0 gives ℘g(r) = ℘u(r). For ℘g(r) > 0 we again require α >

−1/φ(0).

More realistic for point transects, where movement towards or away from the observer might

be expected prior to detection, is a pdf for density based on the 2-dimensional form of the Mexican

hat function. This is usually written as

m(x, y) =

(
2 − x2 + y2

σ2

)
e−(x2+y2)/2σ2

.

Using r2 = x2 + y2 to write this in terms of r, the function becomes

m(r) =

(
2 − r2

σ2

)
e−r2/2σ2

∝

(
1 − r2

2σ2

)
φ
( r

σ

)
. (4.7)

We propose using (4.7) to model the deviation from the uniform density due to observer effects for

point transects. The Mexican hat model for animal density about a point transect is therefore

℘m(r) =
2r
[
1 + α

(
1 − r2

2σ2

)
φ
(

r
σ

)]

W2
[
1 + αφ

(
W
σ

)] , 0 ≤ r ≤ W. (4.8)

The bounds for α that must be satisfied in order that ℘m(r) ≥ 0 over the range [0, W] now become

− 1

φ(0)
≤ α ≤ 1

φ(2)
.

We can see from Figures 4.3 and 4.4 that unless σ is large relative to W, the deviations from the

uniform model will not be great due to the small proportion of the population that is close to a

point transect. One consequence of this is that precise estimation of the density parameters may be

more difficult. However, this may not matter so much because when estimating population size or

density, the effect of allowing for transect or observer effects on local density will be less marked for

point transects than line transects. Looking at it another way, ignoring observer effects by assuming

uniformity may be less important when estimating abundance from point transect data than data

from line transects.
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4.3 Modeling Detection Probability

The key to being able to separate the detection and density components of the model is the ad-

ditional information we have on detection through the capture-recapture data. Unlike standard

distance sampling models, we are not restricted to assuming perfect detection on the transect, nor

that detection probability decreases monotonically with distance. Instead, we are able to entertain

a much wider class of models for modeling the relationship between detectability and distance. In

our work we consider simple logistic-linear models relating an animal’s detection probability to

its distance from the observer. We assume that the distance of each animal is recorded once, and

that the local population is closed to immigration and emigration, births and deaths during the

observation period.

Let pjk denote the detection probability of the kth observed animal on capture occasion j, j =

1, . . . , T. The simplest model we consider assumes pjk is a linear function of distance alone, i.e.,

logit(pjk) = a0 + a1rk

where here we use rk to denote either the perpendicular distance of animal k from the observer for

line transects, or the radial distance for point transects. For this model we require a1 < 0 so that

detection probability decreases linearly with increasing distance on the logit scale.

When the observer has an effect on detection, either making animals easier or more difficult

to detect by his or her presence, the linear model just described may be too simplistic. Instead, a

quadratic model can incorporate features of the relationship we would expect when the observer

affects detectability. When animals are more difficult to detect near the observer, we may expect

the detection probability to initially increase with increasing distance before decreasing as before.

When the observer causes nearby animals to be more easily detected, there may be a sharper peak

at r = 0 in the relationship between detection probability and distance than we might expect from

a linear model. This is illustrated with some examples in Figure 4.5. The model is given by

logit(pjk) = a0 + a1rk + a2r2
k

where this time we require a2 < 0.

Another attractive feature of our models is that they can easily incorporate other covariates

recorded on the individual animals (e.g., sex, age) or characteristics of the transect location when
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Figure 4.5: Examples of linear-logistic models where detection probability is a function of distance
from the transect.

data come from multiple transects (e.g., vegetation, altitude, noise). We can also allow pkj to vary

across the T capture occasions, which we do in the example in Sections 4.5 and 4.6 when the T = 3

survey occasions are of different duration. However, such a limited class of detection functions

may not be appropriate in all situations. Further, unlike our density models, the effect of tran-

sects or observers on detection probability is not directly quantified by the model parameters, and

interpretation is more difficult. We discuss this further in Section 4.7.

4.4 Maximum Likelihood Estimation

For each distinct animal observed during the study, our data consist of a “capture” history for

that animal (actually a detection history, as animals are not physically captured in a survey), and a

measure of the distance of each animal from the transect. We assume that observations are recorded
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on T sampling occasions, and that the population is closed over the sampling period. Let the true

population size within distance W of the transects be denoted by N and let pjk be the detection

probability of the kth individual observed on occasion j, j = 1, . . . , T and k = 1, . . . , M, where M

is the number of unique animals detected during the survey. The detection data are written as zjk,

where zjk = 1 if animal k is detected on occasion j, and 0 otherwise. Most generally we can think

of these as coming from a Bernoulli distribution,

zjk|pjk ∼ Bernoulli(pjk). (4.9)

Together with the assumption of independence of detections, we can use Equation (4.9) to construct

the likelihood for our models. Note that animals for which zjk = 0 for all j are not observed during

the course of the survey.

We make use of the full multinomial likelihood constructed by Borchers et al. (1998) for capture-

recapture data when detection probability is a function of covariates. Consider the general case of

a single covariate, x (for example, distance), which (following Borchers et al., 1998) we assume has

a distribution with density ℘(x|θx) dependent on parameters θx. For animal k, x has measurement

xk, and we write the capture probability as a parametric function of x, pjk = pj(xk|θp) (in our case,

this has logistic-linear form as in Section 4.3). Now denote the probability that an animal is seen at

least once by g(x|θp). It follows from the original Bernoulli model, (4.9), that

g(x|θp) = 1 −
T

∏
j=1

{
1 − pj(x|θp)

}
.

For our models, this corresponds to the detection function in the distance sampling literature, ex-

cept this function no longer requires the restriction that g(0) = 1. From Borchers et al. (1998), the

full likelihood can now be written as

L(Z, x|θx, θp) =
N!

M!(N − M)!
(1 − p.)N−M

×
M

∏
k=1

{
T

∏
j=1

p
zjk

jk (1 − pjk)
1−zjk

}
℘(xk),

where for clarity we have suppressed the conditioning on the parameters on the right hand side.

Here p. is the expected probability that an animal is observed at least once during the survey, and
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is given by

p. =
∫

P(animal detected|x)℘(x)dx

=
∫

g(x)℘(x)dx.

This integral must be evaluated numerically, which has the potential to cause computational diffi-

culties in maximizing the likelihood. However, for our examples and simulations, we have found

few problems in evaluating the integral provided that the number of observed animals is suffi-

ciently large and that good starting values for the numerical optimization algorithm are chosen

when maximizing the likelihood. Pollock (2002) points out that there may also be problems with

identifiability and estimation. Whether this is the case or not is of particular interest to us. The

information on animal density is relatively poor, as it essentially comes from the histogram of ob-

served distances (see Figure 4.6 below for examples), which reflects the combined density and de-

tection processes. Therefore, in order to estimate the parameters of ℘(x|θx) and distinguish effects

of density from those of detection, we require good information from the detection component of

the model from the capture history data. We examine this in the simulation study that follows.

4.5 Simulation Study

For both line and point transects we generated a population of N distances from either a Gaussian

or Mexican hat density model with W = 250 m (the choice of W is arbitrary, but this matches

the value used in Section 4.6). In the simulation study, animals were detected over T = 3 survey

period according to a linear function shown in Figure 4.5, with a0 = 2 and a1 = −0.06. Reflecting

the design of the particular bird surveys used in the following section, we also allowed the duration

of each survey period to vary, with 3 minutes for the first, 2 for the second and 5 for the final period

by including the logarithm of the duration as an offset term. The full logistic model was

logit(pjk) = log(tj) + a0 + a1rk,

where tj = 3, 2, or 5 minutes. We also did some simulations based on a quadratic model, but the

results were quite similar in terms of bias and precision, and we only briefly discuss these below.

The density models had parameter values of α = −1/φ(0), −1/2φ(0) and 1/2φ(0) and σ = 25 or
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50, giving a range of observer effects on local density. For each parameter, we computed estimates

of the bias and standard deviation of the estimators. We also computed Akaike’s Information Cri-

terion (AIC, Akaike, 1973) for each model, and from these we calculated the proportion of times the

correct density model was chosen as a measure of our ability to distinguish the uniform, Gaussian

and Mexican hat models in different circumstances. For each combination of underlying models

and parameter values, we generated 200 simulated data sets.

We found it necessary to impose some restrictions on our simulations. From preliminary simu-

lations, we have found that the population N within distance W of the line or point transect must

be large enough to yield in the order of 1000 detected individuals for consistent convergence of

maximization algorithms to occur when maximizing the likelihood. Particularly for point tran-

sects, the likelihood surface is quite flat and sometimes algorithms will apparently converge to a

local maximum or not converge at all, depending on the choice of starting values. In fitting models

to real data, we can try different starting values and examine in detail the characteristics of the

likelihood surface in order to ensure that it is indeed maximized. In a simulation study it is im-

practical to examine each maximization in such detail, and we therefore choose a large N for our

simulations, 7500 for line transects and 15000 for point transects. This does not necessarily imply

our methods are limited to such large local populations, but rather that when animal densities are

relatively low, we must take more care in fitting our models. We also restricted the range of α,

the attraction/avoidance parameter to be negative when the true value was negative, and positive

when the true value was also positive. Our preliminary simulations showed some tendency for

apparent convergence to a local maximum with α̂ with the incorrect sign. This is not a particularly

limiting restriction as in many instances it is known in advance whether a species avoids or is at-

tracted to observers or transects. Again, even if there is uncertainly in practice, we are able to take

more time in examining the fitted models when applied to real rather than simulated data.

4.5.1 Line Transects

Results of the line transect simulations are given in Tables 4.1, 4.2 and 4.3. Table 4.1 gives estimates

of absolute bias and standard deviations for the estimators of the density and detection parameters

under both Gaussian and Mexican hat density models. For most combinations of α and σ, bias in all

estimators is very low and the standard deviation is low relative to the true value of the parameter.

Performance of the Gaussian estimation is somewhat poorer than that of the Mexican hat. Bias and

standard deviation are consistently higher, particularly when α = 1/2φ(0) for both σ = 25 and 50
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and also α = −1/2φ(0) for σ = 25. The reason for the poorer performance of the Gaussian model

in general is that when this model holds for given parameter values, a smaller proportion of the

population is closer to the observer than is the case with the Mexican hat, as animals are displaced

some distance under the latter model rather than removed entirely. Therefore, fewer birds end up

being detected under a Gaussian model, and there are less data available for estimation. We shall

see that this effect is even more striking for point transect data.

As the goal of a bird survey is estimation of abundance or animal density, the effect of ignoring

observer effects and assuming uniformity of density is of greatest interest. Table 4.2 shows the rela-

tive bias in the estimator of N for our models when the underlying true model is either Gaussian or

Mexican hat. If the Gaussian model holds true, then for our simulations, relative biases as large as

–0.64 occur when we mistakenly assume a uniform model. N is underestimated when α is negative

(avoidance) and overestimated when α is positive (attraction). Biases of up to magnitude 0.36 are

estimated when the uniform model is fitted to distance data which have a Mexican hat distribution,

smaller than for the Gaussian due to many displaced animals still being within detectable distances

under this model. Also, the standard deviation of the estimators under the uniform model is con-

sistently much lower than that for the true model: not only can misspecification of the density

model lead to large biases in estimation of abundance and density, but very misleading estimates

of the precision of parameter estimates will also be obtained.

Table 4.3 shows the proportion of times each of the three alternative density models were se-

lected as “best” by having the lowest AIC value. The AIC easily distinguishes the uniform as a

poorer fit for these simulations, correctly failing to select this model almost all of the time. It is

more difficult to distinguish the fits of the Gaussian and Mexican hat models. When σ = 25, the

Gaussian model is correctly chosen a majority of the time (from 0.62 to 0.82) but when σ = 50,

the AIC selects the Gaussian and Mexican hat models almost equally as often. When the Mexican

hat is the true density, it is selected 0.88-0.98 of the time for σ = 25 and 0.7-0.8 of the time when

σ = 50. The changing AIC performance with σ and, to a lesser degree, α, is likely to be as much a

function of sample size as the values of these parameters. As σ increases, a smaller proportion of

the population has high detection probabilities from being close to the transect, particularly for the

Gaussian model. We verified this with some supplementary simulations with different values of N

(not presented here).
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Table 4.1: Estimates of absolute bias and standard deviation (sd) for the detection and density pa-
rameters from 200 simulations of data from either Gaussian (℘g) or Mexican hat (℘m) model of an-
imal density in the vicinity of line transects. The detection model was linear (a0 = 2.0, a1 = −0.06),
W = 250 m and true N = 7500.

true σ = 25 50

density α = −1/φ(0) −1/2φ(0) 1/2φ(0) −1/φ(0) −1/2φ(0) 1/2φ(0)

bias sd bias sd bias sd bias sd bias sd bias sd

α 0.003 0.007 –0.014 0.11 0.12 0.33 0.002 0.004 –0.10 0.31 0.71 2.19

℘g σ 0.2 1.4 1.4 5.6 0.4 6.1 3.2 9.5 9.6 26.3 –0.1 20.7

a0 0.00 0.09 0.00 0.07 0.01 0.06 0.03 0.16 0.01 0.10 0.00 0.07

a1 0.000 0.001 0.000 0.001 0.000 0.001 –0.001 0.003 0.000 0.002 0.000 0.002

α 0.005 0.004 0.004 0.092 0.024 0.13 0.004 0.008 –0.018 0.11 0.035 0.22

℘m σ 0.1 0.8 0.0 2.4 0.2 1.5 0.5 3.1 1.6 7.1 –0.5 5.4

a0 –0.01 0.07 –0.00 0.07 0.00 0.06 0.00 0.11 0.01 0.08 0.00 0.07

a1 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.002 0.000 0.002 0.000 0.020

Table 4.2: Comparisons of estimates of relative bias and standard deviation (sd) of N̂ when fitting
the uniform, Gaussian and Mexican hat densities to 200 simulated data sets from either the Gaus-
sian (℘g) or Mexican hat (℘m) model of animal density in the vicinity of line transects. The detection
model was linear (a0 = 2.0, a1 = −0.06), W = 250 m and true N = 7500.

true σ = 25 50

density α = −1/φ(0) −1/2φ(0) 1/2φ(0) −1/φ(0) −1/2φ(0) 1/2φ(0)

bias sd bias sd bias sd bias sd bias sd bias sd

℘̂u –0.37 110 –0.18 130 0.17 170 –0.64 80 –0.29 130 0.23 170

℘g ℘̂g 0.01 320 0.02 490 –0.01 390 0.08 1750 0.08 1730 –0.01 870

℘̂m –0.23 230 –0.08 510 0.07 410 –0.08 2110 0.04 1940 0.03 940

℘̂u –0.05 130 –0.03 140 0.03 160 –0.36 110 –0.19 130 0.21 180

℘m ℘̂g 0.25 250 0.12 210 –0.12 190 0.34 760 0.17 690 –0.13 450

℘̂m 0.00 160 0.00 160 0.00 170 0.01 610 0.02 630 0.00 440
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Table 4.3: Proportions of times the uniform, Gaussian, and Mexican hat density models were se-
lected using AIC for 200 simulations of data from either the Gaussian (℘g) or Mexican hat (℘m)
model of animal density in the vicinity of line transects. The detection model was linear (a0 = 2.0,
a1 = −0.06), W = 250 m and true N = 7500.

true σ = 25 50

density α = −1/φ(0) −1/2φ(0) 1/2φ(0) −1/φ(0) −1/2φ(0) 1/2φ(0)

℘̂u 0.00 0.00 0.00 0.00 0.00 0.03

℘g ℘̂g 0.82 0.615 0.62 0.565 0.425 0.46

℘̂m 0.18 0.385 0.38 0.435 0.575 0.51

℘̂u 0.00 0.00 0.00 0.00 0.00 0.00

℘m ℘̂g 0.02 0.12 0.085 0.20 0.29 0.305

℘̂m 0.98 0.88 0.915 0.80 0.71 0.695

4.5.2 Point Transects

With point transects, a smaller proportion of animals are within the region of high detection prob-

ability surrounding the observer. Because the ‘interesting’ part of the Gaussian and Mexican hat

densities are close to the observer, we can expect estimation and model selection to be poorer than

for line transects. This is also why we needed to choose a larger N for the point transect simulations

– a smaller choice of N leads to many convergence problems in estimation. Even with this larger

population size within W of the observer, biases and standard deviations for the density parame-

ters, α and σ (Table 4.4) are generally greater than for line transects. This is not true for the detection

parameters α0 and α1 but these are morey a function of the number of detected animals, and thus

the number of distance observations, and we have chosen N to yield similar sample sizes for both

line and point transects. As with line transects, biases and standard deviations are greatest when

σ = 50 and α > −1/φ(0) and α = 1/2φ(0) with σ = 25. When α > 0 there is a much larger range

of possible estimates, so we may at least expect more variation in this case.

When σ = 25 and, therefore, the effect of the transect or observer extends a relatively moderate

distance into the habitat, the bias in the estimator of N for the uniform model (Table 4.5) is much

smaller than for the corresponding line transect simulations. We anticipated this due to the fact that

a smaller proportion of the population is close to a point transect than a line transect. The relative

bias estimates in the uniform for σ = 25 range in absolute value from 0.02 to 0.23, compared to

0.03 to 0.37 for line transects (Table 4.2). When σ increases to 50, large biases appear in the uniform

estimators of abundance (0.19-0.56), and the values are now similar to the value for line transects.
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Table 4.4: Estimates of absolute bias and standard deviation (sd) for the detection and density
parameters from 200 simulations of data from either Gaussian (℘g) or Mexican hat (℘m) model
of animal density in the vicinity of point transects. The detection model was linear (a0 = 2.0,
a1 = −0.06), W = 250 m and true N = 15000.

σ = 25 50

α = −1/φ(0) −1/2φ(0) 1/2φ(0) −1/φ(0) −1/2φ(0) 1/2φ(0)

bias sd bias sd bias sd bias sd bias sd bias sd

α 0.032 0.056 –0.09 0.27 0.22 0.61 0.010 0.022 –0.11 0.29 0.64 1.31

℘g σ 0.7 2.3 0.9 9.1 1.3 9.3 4.2 10.6 5.6 26.2 1.5 19.9

a0 0.01 0.10 0.01 0.10 –0.01 0.09 0.02 0.18 0.02 0.15 –0.02 0.10

a1 0.000 0.001 0.000 0.002 0.000 0.002 –0.001 0.003 0.000 0.003 0.000 0.002

α 0.042 0.081 –0.08 0.32 0.11 0.38 0.015 0.030 –0.09 0.22 0.22 0.52

℘m σ 0.3 1.5 –0.1 5.5 0.8 6.8 1.3 5.3 4.7 20.9 1.1 11.0

a0 0.00 0.08 0.00 0.08 0.00 0.08 0.01 0.15 0.02 0.12 –0.01 0.10

a1 0.000 0.001 0.000 0.001 0.00 0.001 0.000 0.002 0.000 0.002 0.000 0.002

Table 4.5: Comparisons of estimates of relative bias and standard deviation (sd) of N̂ when fit-
ting the uniform, Gaussian and Mexican hat densities to 200 simulated data sets from either the
Gaussian (℘g) or Mexican hat (℘m) model of animal density in the vicinity of point transects. The
detection model was linear (a0 = 2.0, a1 = −0.06), W = 250 m and true N = 15000.

true σ = 25 50

density α = −1/φ(0) −1/2φ(0) 1/2φ(0) −1/φ(0) −1/2φ(0) 1/2φ(0)

bias sd bias sd bias sd bias sd bias sd bias sd

℘̂u –0.23 360 –0.12 130 0.12 470 –0.56 270 –0.28 340 0.27 510

℘g ℘̂g 0.01 1020 0.02 1510 –0.02 1270 0.12 4200 0.09 4370 –0.04 2250

℘̂m –0.11 850 –0.04 1820 0.04 1290 –0.01 4620 0.04 4480 –0.01 2320

℘̂u –0.03 390 0.02 410 0.02 440 –0.34 310 –0.18 380 0.19 490

℘m ℘̂g 0.11 560 0.05 640 –0.05 650 0.22 2270 0.16 3890 –0.09 1630

℘̂m 0.01 450 0.01 520 0.00 590 0.04 1940 0.08 3850 –0.03 1640
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Table 4.6: Proportions of times the uniform, Gaussian, and Mexican hat density models were se-
lected using AIC for 200 simulations of data from either the Gaussian (℘g) or Mexican hat (℘m)
model of animal density in the vicinity of point transects. The detection model was linear (a0 = 2.0,
a1 = −0.06), W = 250 m and true N = 15000.

true σ = 25 50

density α = −1/φ(0) −1/2φ(0) 1/2φ(0) −1/φ(0) −1/2φ(0) 1/2φ(0)

℘̂u 0.00 0.005 0.015 0.00 0.00 0.07

℘g ℘̂g 0.60 0.54 0.480 0.48 0.315 0.37

℘̂m 0.40 0.45 0.505 0.52 0.685 0.56

℘̂u 0.00 0.005 0.005 0.00 0.00 0.00

℘m ℘̂g 0.21 0.335 0.30 0.28 0.435 0.385

℘̂m 0.79 0.66 0.695 0.72 0.565 0.615

Biases in N for the correct model (Gaussian or Mexican hat) are again low when σ = 25, but are

somewhat larger for point transects when σ = 50, up to 0.09 for the Gaussian and 0.08 for the

Mexican hat model.

As expected, selection of the correct model using AIC is more difficult for point transect data

(Table 4.6) than line transect data (Table 4.3). When σ = 25, the Mexican hat model is selected

almost as often as the Gaussian when the latter model is in fact correct; when σ = 50 the Mexican

hat is even more likely to be selected than the correct Gaussian model. This may not be of concern,

as our simulations show that bias in N is actually lower for the incorrect Mexican hat model in this

case (Table 4.5). The Mexican hat model fares better, being selected a majority of the time for all

parameter values. Perhaps most importantly, the uniform model is again almost never selected for

point transect data.

We also undertook some simulations using a quadratic model to examine if decreased detection

near the observer could be distinguished from observer effects on local density. With detected

animals of around 1000 or more, we found that the parameters of the detection model were again

estimated precisely and with relatively little bias when the correct model was being fitted. This led

to estimates of the density parameters that are similar in terms of bias and precision to those for the

linear case discussed above.
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Table 4.7: Parameter estimates and parametric bootstrap standard errors from fitting models to

the black throated green warbler data, assuming avoidance of observers. W = 250m and d̂ is the

estimated bird density in individuals/km2.

Linear detection Quadratic detection

Uniform Gaussian Mexican hat Uniform Gaussian Mexican hat

value sd value sd value sd value sd value sd value sd

d̂ 40.7 0.7 41.7 1.12 40.8 0.7 38.3 0.6 39.0 0.7 38.3 0.7

α̂ – –2.49 0.25 –2.37 0.24 – –2.49 0.17 –2.39 0.19

σ̂ – 7.9 1.8 17.1 1.6 – 7.5 1.5 16.8 1.6

â0 2.21 0.08 2.22 0.10 2.21 0.08 0.25 0.16 0.28 0.15 0.26 0.19

â1 × 102 –5.77 0.10 –5.81 0.13 –5.77 0.10 0.40 0.43 0.31 0.45 0.36 0.56

â2 × 104 – – – –3.95 0.29 –3.92 0.32 –3.93 0.37

AIC 1076.8 1061.0 1024.9 898.7 894.4 855.8

4.6 Application to Bird Survey Data

We applied our models to capture-recapture survey data from a large survey of bird populations

in the Great Smoky Mountains National Park from 1996 to 1999. Over 3000 point transects were

surveyed in the study, although we restrict ourselves to data from the first year in which a full

survey was undertaken, 1997. At each point the survey lasted 10 minutes during which time an

observer would attempt to record all the birds that were seen or heard. The observation period

was divided into three smaller intervals, the first of 3 minutes, the second of 2 minutes, and the

third of 5 minutes duration, and the observer attempted to keep track of all birds throughout the

three intervals. For example, if a bird was seen or heard in the first interval, the observer would

then try to detect the same bird in the succeeding two intervals. The intervals in which the bird

was observed were recorded, leading to a three-period capture history for each bird, e.g., 101 if

the bird was detected in the first and third intervals, but not the second. Along with the capture

histories, the distance of each bird from the observer was estimated at first detection. The data

we analyze here have been aggregated over all point transects, although we discuss more general

models which allow for between transect spatial variation in Section 4.7.

Table 4.7 gives the parameter estimates for the Black-Throated Green Warbler, one of the more

abundant species detected in the survey. It is uncertain whether this species avoids or is attracted

to observers, and we therefore fitted two sets of models, first ensuring that α < 0 when maximizing
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the likelihood, and again with α > 0. The parameter estimates for the density model in the latter

case were quite implausible, implying that birds were attracted to the observer in large numbers

from over 100 m away. Table 4.7, therefore, gives the more realistic results we obtained from an

avoidance model. Standard deviations were estimated using a parametric bootstrap: 50 data sets

were generated under each of the fitted models and the standard deviations of the resulting pa-

rameter estimates were computed. Although the results show that the Mexican hat model with

a quadratic detection function was the best fitting model according to its AIC, the difference be-

tween the 6 models in terms of the estimate of density is very small. Based on the results of our

simulations, the effect of incorrectly assuming a uniform density on estimation of animal density

should not be great with σ̂ ≈ 17 for the Mexican hat model. The results here support this, with

density estimates for the uniform being virtually identical to the Mexican hat for both linear and

quadratic models. Nevertheless, the values of the density model parameters are themselves inter-

esting. Taking the Mexican hat model density and quadratic detection model, we can infer that

observers have a strong effect on local density (α̂ = −2.39, sd=0.19), and with σ̂ = 16.8 (sd=1.6)

birds within approximately 25 metres are displaced to further distances from the observer (based

on Figure 4.3 with σ = 25).

Although the Mexican hat/quadratic model appears to be the best of those we considered, in

fact none of the models fit the observed distance data very well. Figure 4.6 compares the histogram

of observed distance with the estimated probability density function of observed distances for both

linear and quadratic detection models. We can see why the Mexican hat and Gaussian models

provide a better fit than the uniform model, as fewer birds were observed at very short distances

than expected under the uniform model. From 25 to 75 m, however, many more birds were ob-

served than predicted under all three density models for both linear and quadratic detection, while

fewer than expected birds were detected at greater distances. Either a quadratic detection model

is too inflexible to model the relationship between detection probability and distance, or for these

data, the density models do not have the correct shape. In fact, in terms of the AIC, the Gaussian

and Mexican hat attraction models for density provided better fits than the avoidance model, but

as noted above, the parameters estimates were not sensible. We analyzed data from a number of

other bird species from the same point transect survey and the results, including examination of

model fit, were very similar. Part of the problem here is almost certainly due to the small amount

of information on local density contained in the distance data. Essentially, that information comes
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Figure 4.6: Comparison of histogram of observed distances with estimated density under linear
and quadratic detection models fitted to Black Throated Green Warbler survey data.

from the left hand side of the histograms in Figure 4.6, where few animals are detected. Compli-

cating matters in this case is that there are quite possibly serious errors in both the recording of

detections of individual birds, and in the estimation of distances. Birds are generally recorded by

sound alone, making it difficult to distinguish individuals and to record accurate measurements of

distances from the observer. The effect of measurement errors is unclear and requires further study.

4.7 Discussion

Distance sampling surveys typically assume that the density of animals about a line or a point tran-

sect is uniform. We have presented models which can be used to allow for types of non-uniformity

due to attraction towards or avoidance of a transect or observer for both line and point transects

when we have both distances and capture histories for observed animals. For line transects, our



Chapter 4. Modeling Observer Effects on Animal Detection and Density 137

simulation study shows that assuming uniformity when there is avoidance or attraction can lead to

large biases in estimates of abundance or density, and an overly optimistic assessment of the pre-

cision of such estimates. The consequences of incorrectly assuming uniformity are less serious for

point transect estimation unless transect and observer effects are very large, due to fewer animals

being seen at the short distances over which transects may affect bird behavior.

In our simulation study and our application, we examined estimation of abundance or mean

density within a distance W of the transect. When using the Gaussian model, however, we must

be more careful when attempting to extrapolate a density estimate to the entire region of interest.

Under the uniform and Mexican hat models, birds are not generally displaced beyond W of the

transect, and so estimates of mean density can be reasonably applied to the entire survey region,

provided of course that there is no other source of bias due to the location of the transects. But in

the Gaussian case, when birds are permanently displaced around the transect, the fact that most

of the region within which a survey is undertaken will not be within W of a transect will mean

that some adjustment must be made. One straightforward approach is to examine the estimated

Gaussian density function and estimate the proportion of the area within W for which this function

approximates a uniform density (i.e., is horizontal in the case of line transects). From this and

our original estimate of abundance within distance W of the transects, we can estimate the mean

density for the region for which animal density is unaffected by the transects.

Our density models are appealing in their simplicity and in the ease with which the parameter

values can be interpreted. They do require a fairly large amount of data for estimation, but given

this, the estimators should be relatively unbiased and the effects of transects on density should be

distinguishable from changes in detection probability with distance. In numerically maximizing

the likelihood, care must be taken to ensure that the algorithms have correctly converged to the

maximum, and we recommend fitting models with various starting values to check this. Our data

analysis in Section 4.6 also highlights some of the estimation problems that can arise when informa-

tion on density near the observer is poor, as is the case with point transects. Errors in both animal

detections and in distance measurement will also complicate the fitting and interpretation of our

models.

A drawback of our density models is that they have very particular shapes which may not be

suitable for all species of animals. Future work should consider alternative models, but preferably

ones which do not unduly sacrifice interpretability for complexity. We have focused less attention

on our choice of detection model, but we note that it should be possible to develop models which
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allow for observer effects more explicitly than polynomial models are able to do. For example, we

could consider a parametric model for detection with parameters that measure the strength and

range of observer effects in a similar manner to our density models. An interesting observation

from our simulation studies, particularly for quadratic models, is that when the fitted model is cor-

rect, both density and detection parameters are generally estimated with little bias. The implication

of this is that with sufficient data, it is possible to distinguish transect effects on density from those

on detection probability. It would be useful to confirm this by examining a wider range of detection

models.

Our analyses have been based on aggregating data from multiple line or point transects. Con-

ceptually, it is straightforward to extend the models to allow for spatial variation in animal density.

This approach would follow the same route as that taken by various authors in modeling spatially

replicated repeated count or removal data (e.g., Royle, 2004; Webster, Pollock and Ghosh, 2006;

Webster, Pollock and Simons, 2006), for example, with a Poisson-lognormal mixture model for

the values of N at each transect, incorporating both covariate and spatial effects. Such a complex

model would inevitably require Bayesian hierarchical modeling using Markov chain Monte Carlo

algorithms. This approach is worthy of investigation, as it would lead directly to maps of animal

density. However, with a complex form for the likelihood, and numerical integrations at each step

of the algorithm, fitting such models in practice may be difficult.
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