
ABSTRACT

OKAY, IRFAN. The Additional Dynamics of the Least Squares Completions of Linear
Differential Algebraic Equations. ( Under the direction of Dr. Stephen L. Campbell. )

Differential equations of the form F (x′, x, t) = 0 with Fx′ singular arise naturally

in many applications and are generally called differential algebraic equations (DAE).

There has been an extensive amount of research on numerical solutions of DAEs in

recent years. While the classical ODE methods such as backward differentiation and

Runga-Kutta methods can be used to numerically solve DAEs, they require the problem

to have lower index or special structure.

One approach proposed for solving more general, higher index DAEs is called ex-

plicit integration (EI). The original DAE is differentiated a number of times based on cer-

tain parameters and the new system of equations is solved using nonlinear least squares

methods. The result is a computed ODE whose solutions contain the solutions of the

DAE. It is called the least squares completion (LSC). This ODE is then numerically

integrated by a classical numerical method.

The EI method is computationally efficient and can be applied to a wide class of

DAEs. However, the dynamics of the additional solutions present in the completion can

effect the numerical integration, sometimes causing the numerical solutions to move

away from the solution manifold. In this thesis, we analyze the additional dynamics

of LSCs for linear DAEs. Starting with linear constant coefficient systems, we first

examine the structure of the additional dynamics created by the standard LSC and then

introduce two methods to modify the completion process so that the LSC will have addi-

tional dynamics with desired stability characteristics. The rate of stabilized convergence

can be determined a priori by substituting an appropriate value for a parameter. We then

extend the results to linear time variable systems.
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Chapter 1

Introduction

1.1 Outline of the Thesis

Chapter 1 surveys the general DAE background and literature. The fundamental

concepts such as solvability and index are introduced. The last section describes the

least squares completion (LSC) method that we will analyze in the thesis and gives

some numerical examples to illustrate the process.

In Chapter 2-4 we study linear time invariant DAEs. In Chapter 2 we analyze the

additional dynamics of LSC defined by the standard derivative array. Using canonical

decomposition, we first identify the part of the DAE that creates the additional dynam-

ics. We then form the derivative array and solve the equations using linear algebra to

obtain an analytical formula for the completion. The eigenstructure of the completion is

analyzed to determine the nature of the additional dynamics.

In Chapter 3 and Chapter 4 we introduce two new methods to obtain LSCs with

desired additional dynamics. They are called stabilized LSC and alternative stabilized

completion. The stabilized LSC is based on forming the derivative array using stabilized

differentiation while the alternative stabilized completion uses an index one formulation

of the DAE to obtain a completion. We analyze the stability of the completions and

discuss some of the numerical issues.

In Chapter 5 and 6, we apply these two techniques to linear time varying systems.

For the extension of the stabilized LSC we use a a more general technique that com-
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bines the machinery developed in both Chapter 3 and Chapter 4. This enables us to

determine the behavior of additional dynamics without obtaining an explicit formula for

the completion which would be difficult for time variable systems. The extension of

the alternative stabilized completion to LTV systems is more straightforward. Certain

computational issues are also discussed and a comparison between two techniques is

given.

The last chapter summarizes the results we have obtained and discusses several pos-

sible future research topics. At the end of the chapter is a list of presentations and papers

where this research has appeared.

1.2 DAE Basics

A system of differential equations of the form

F (x′, x, t) = 0 (1.1)

where Fx′ = ∂F/∂x′ is identically singular and x′ = dx/dt, is called a differential-

algebraic equation(DAE). DAEs have become increasingly important in recent years as

many physical processes can be easily modeled as a nonlinear implicit system of DAEs.

Some of the well known examples include trajectory prescribed path control, systems

of rigid bodies, problems in constrained mechanics, electrical networks and chemical

reactions [9]. A classical example of a DAE arising from mechanical systems is the

equation describing the motion of a pendulum.

x′′ = λx (1.2a)

y′′ = λy − g (1.2b)

0 = x2 + y2 − L2 (1.2c)

Here g is the gravitational constant, L is the length of the pendulum, (x, y) are the

coordinates of the ball of the infinitesimal mass attached at the end of the pendulum and

λ denotes an unknown function corresponding to a Lagrange multiplier and λx is force.

The Euler-Lagrange formulation [39] of many problems in constrained mechanics give
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rise to DAEs. Note that if we introduce the velocity variables vx = x′ and vy = y′, then

(1.2) takes the form

x′ = vx (1.3a)

y′ = vy (1.3b)

v′x = −λx (1.3c)

v′y = −λy − g (1.3d)

0 = x2 + y2 − L2 (1.3e)

which is now in the standard form (1.1).

The variables x, y, vx, vy are called differential variables since their derivatives ap-

pear in (1.3) and λ is called an algebraic variable since λ′ does not appear in (1.3). In

many cases algebraic and differential variables are intertwined in a complex manner ren-

dering the equations inextricable by algebraic manipulations. Because of the singularity

condition on Fx′ , DAEs always contain pure algebraic equations called constraints. For

example the equation (1.3e) is a constraint. However, not all the constraints are given

explicitly. DAEs can also contain constraints that are revealed only after differentiating

explicitly given equations. They are called hidden constraints. For example, differenti-

ating (1.3e) once we get

xx′ + yy′ = 0 (1.4)

Then, substituting (1.3a) and (1.3b) we obtain the hidden constraint

xvx + yvy = 0 (1.5)

Working with DAEs presents analytical and numerical difficulties that are not present

when working with ODEs [9], [3]. For example the solutions of a DAE may not be

equally smooth in all components. In general, the differential variables will be the

smoother than the algebraic variables. This is because integration is being used to cal-

culate a differential variable, which a smoothing process, while differentiation is used to

reveal hidden algebraic variables and each differentiation reduces the degree of smooth-

ness by one.



4

Because of the existence of algebraic constraints, the solutions of a DAE form a

manifold called the solution manifold. Only the initial conditions that lie on the solution

manifold accept a solution to the DAE. These are called consistent initial conditions. A

particular solution of the DAE is thus a curve moving on this manifold. Under certain

conditions a DAE can be thought of as an ODE defined on the solution manifold [57].

There has been extensive research on solving (1.1) numerically. The ODE methods

such as backward differentiation and Runge Kutta methods can be applied to DAE’s [9],

[41], [51]. However, they are only suitable for lower index problems (to be defined) and

requires the problem to have a specific structure.

One general method for solving (1.1) numerically is to find an ODE whose solutions

contains the solutions of the DAE and integrate the ODE using classical ODE methods.

An ODE that contains the solutions of the DAE is called a completion. This can be done

by differentiating the original equations until the larger systems of equations can define

an ODE. The minimum number of differentiations needed to differentiate the DAE or

part of the DAE to obtain such an ODE is called the index of the DAE [21].

In our example, differentiating (1.5) we obtain

xv′x + yv′y + v2
x + v2

y = 0 (1.6)

Then substituting v′x, v
′
y from (1.3), we get

λ =
1

L2
(v2

x + v2
y − yg) (1.7)

Now substituting λ into (1.3c) and (1.3d), and differentiating the equation for λ we

arrive at the ODE

x′ = vx (1.8a)

y′ = vy (1.8b)

v′x = −(v2
x + v2

y − vyg)x (1.8c)

v′y = −(v2
x + v2

y − vyg)y − g (1.8d)

λ′ =
1

L2
(v2

x + v2
y − yg)′ (1.8e)
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Since we had to differentiate the constraint equation (1.3e) three times, the index is

3. The DAE is called higher index if the index is bigger than one. The index is in some

sense an indication of complexity of the DAE or more precisely how close it is to being

an ODE. So, for example, according to this definition, an ODE has index zero, while

a pure algebraic system will have index one. What we have called the index is more

accurately called the differentiation index. There are other type of indices but we do not

need them in this thesis.

We should note that a completion obtained this way is not unique [19]. It depends on

the equations used and the solution method. For example, a pure algebraic DAE x = t

can be differentiated once to obtain the completion x′ = 1. However, we can also add

this completion to the original equation to obtain x′ + x = t + 1, which is a different

completion of x = t.

Among some other techniques for numerically solving general DEAs are index-one

integration [42], [43], [46], and coordinate partitioning methods [1].

1.3 Solvability

Intuitively, a solution of (1.1) on an interval I is a continuously differentiable func-

tion y(t) satisfying

F (y′(t), y(t), t) = 0

for all t ∈ I . However, DAEs can exhibit aberrant characteristics in general when it

comes to the structure of solutions. Therefore we need a more precise definition of

solvability. The following definition, which is referred to as geometric solvability, will

suffice for our purposes. More technical definitions and discussions on solvability can

be found in [22].

Definition 1 Let I be an open subset of R, Ω a connected open subset of R2s+1, and

F a differentiable function from Ω to R. The DAE is solvable on I in Ω if there is an

r-dimensional family of solutions φ(t, c) defined on a connected open set I×Ω̃, Ω̃ ⊆ Rr,

such that

• φ(t, c) is defined on all of I for each c ∈ Ω̃
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• (φt(t, c), φ(t, c), t) ∈ Ω for (t, c) ∈ I × Ω̃.

• If ψ(t) is any solution with (ψ′(t), ψ(t), t) ∈ Ω, then ψ(t) = φ(t, c) for some

c ∈ Ω̃

• The graph of φ as a function of (t, c) is an (r+1)-dimensional manifold.

Basically, the definition tells us that the DAE locally has a unique solution manifold

and each solution is uniquely determined by the initial condition. Existing numerical

methods either require solutions to exist or the solution manifold to have a specific

structure to work. Some existence results have been obtained using differential geomet-

ric techniques [58], [52], [53], [55], [54], [56]. In this section, we will give a character-

ization of solvability that is also computationally verifiable [22]. For nonlinear systems

only sufficient conditions can be expected in general.

Suppose we differentiate (1.1) k times with respect to t. Then, we get the extended

system of equations

F = 0 (1.9a)
d

dt
F = 0 (1.9b)

... (1.9c)
dk

dtk
F = 0 (1.9d)

which is called a derivative array and denoted by

G = G(x′, w, x, t) = 0 (1.10)

where

w = [x(2), . . . , x(k+1)]. (1.11)

Definition 2 A system of algebraic equations

A

[
x1

x2

]
= b

is called 1-full with respect to x1 if x1 is uniquely determined for any consistent b [13].
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Now suppose that the following assumptions are satisfied for both k and k + 1 in some

neighborhood:

(A1) Sufficient smoothness of G = 0.

(A2) G = 0 is consistent as an algebraic equation.

(A3) J = [ Gx′ Gw ] is 1-full and has constant rank independent of (x′, w, x, t).

(A4) [ Gx′ Gw Gx ] has full row rank independent of (x′, w, x, t).

Given the above definitions and assumptions we have;

Theorem 1 [22], [40] Suppose that the derivative array G(x′, w, x, t) satisfies the con-

ditions (A1)–(A4) in a neighborhood. Then, the DAE (1.1) is geometrically solvable

with the solution manifold Sk, where

Sk = {(t, x)|G(v, w, x, t) = 0, for some (v, w)}

For linear systems, (A1)–(A4) is almost equivalent to solvability [16]. To illustrate

how these conditions relate to the geometric solvability, consider the linear time variable

DAE

A(t)x′ + B(t)x = f(t) (1.12)

Differentiating (1.12) k times with respect to t gives us the derivative array

J

[
x′

w

]
= −Fx + g. (1.13)

where

J =




A 0 0 · · · 0

A′ + B A 0 · · · 0

A′′ + 2B′ 2A′ + B A · · · 0
... . . . ...

. . . · · · .




,F =




B

B′

B′′

...

B(k)




, g =




f

f ′

f ′′

...

f (k)



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Suppose that assumptions (A1)–(A4) holds for (1.13). Note that we have J = [ Gx′ Gw ].

Therefore, by smoothness and 1-fullness, there exists a nonsingular smooth D such that

DJ =

[
In 0

0 C

]
(1.14)

Then, multiplying (1.13) by D we get
[
In 0

0 C

][
x′

w

]
= −DFx + Dg. (1.15)

Since the right hand side is a function of just x and t, the first block row gives us an

ODE

x′ = V T (−DFx + Dg) = h(x, t) (1.16)

where V =
[
In 0 · · · 0

]T

. On the other hand, by smoothness and constant rank

assumptions, there exists a smooth matrix function Z of maximal rank satisfying ZJ =

0. Then, together with the assumption (A4), this implies that

rank(Z) = rank(ZF) (1.17)

Therefore, the equation

0 = Z(−Fx + g) (1.18)

comprises all the constraints of the original DAE. In other words, (1.18) precisely de-

fines the solution manifold. The uniqueness of the manifold follows from the maximal-

ity of Z. Now, the solutions of the DAE are given by the solutions of the ODE with

the initial conditions defined by (1.18). Since the solutions of the ODE are uniquely

determined by the initial conditions, the solutions of the DAE are therefore uniquely

determined by the consistent initial conditions.

The above definition of solvability is also vital in that when computing a completion

of a DAE, it guarantees that the solutions of the completion will coincides with those of

the DAE on the manifold.

What is possible to prove or compute depends on the structure of the DAE. Here are

some of the important classes of DAE’s:
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• Linear time invariant DAE (LTI)

Ax′ + Bx = f(t) (1.19)

where A and B are constant and A is singular. This is one of the most basic and

well understood classes of DAEs. They have been studied extensively [10], [11].

Besides their important applications, they are also an ideal class of problems to

test and develop methods intended for more general classes of DAEs. The matrix

pencil λA+B is called regular if det (λA + B) is not identically zero as a function

of λ. The solvability of (1.19) is equivalent to the regularity of the pencil [36].

To illustrate this relationship, suppose that we want to solve (1.19) numerically

using implicit Euler starting at t0 with constant step-size h. Let tn = t0 + nh,

xn be the estimate for x(tn) and cn = c(tn) for c = f, A,B. Then, applying the

implicit Euler to (1.19) we obtain

A
xn − xn−1

h
+ Bxn = fn

which becomes

(A + hB)xn = Axn−1 + hfn

and A + hB has to be regular in order to uniquely determine xn given xn−1.

Therefore, the matrix pencil A + λB needs to be regular.

• Linear time variable DAE (LTV)

A(t)x′ + B(t)x = f(t) (1.20)

where A(t) and B(t) are matrix functions of t, and A(t) is singular possibly

for all t. Similar to the constant coefficient case, the DAE is called regular if

det (A(t) + λB(t)) is not zero as a function of λ for all t. However, the regular-

ity is no longer equivalent to solvability for linear time varying systems [9]. It

actually turns out to be quite independent.

The initial work on LTV systems was based on the standard canonical form [47],

[59], [12], [30], [50]. Later a numerical method was introduced that was based on
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a more general canonical form which covers all solvable systems [13], [14], [15],

[16]. Some applications of the numerical method can be found in [29], [31].

LTV DAEs share important structural similarities with nonlinear systems while

still benefiting from the linearity. Therefore, understanding the linear time vari-

able DAEs is a significant milestone towards the understanding of nonlinear sys-

tems.

• Semi-explicit index-1 DAE

x′ = f(x, y, t) (1.21a)

0 = g(x, y, t) (1.21b)

where gy is nonsingular. Note that if we differentiate the constraint equation

(1.21b) once we get

x′ = f(x, y, t) (1.22)

gx(x, y, t)x′ + gy(x, y, t)y′ = 0 (1.23)

Since gy is nonsingular, the system (1.23) is an ODE, therefore (1.21) has index

one. A semi-explicit index one DAE is also called a Hessenberg index-1 DAE.

• Hessenberg index-2 DAE

x′ = f(x, y, t) (1.24a)

0 = g(x, , t) (1.24b)

where (dg/dx)(df/dy) is nonsingular.

• Hessenberg index-3 DAE

x′ = f(x, y, z, t) (1.25a)

y′ = g(x, y, t) (1.25b)

0 = h(y, t) (1.25c)
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where (dh/dy)(dg/dx)(df/dz) is nonsingular. The example (1.3) is a Hessenberg

index-3 DAE. Many mechanical systems fall in this category. Hessenberg systems

are solvable [18], [41].

1.4 Least Squares Completions

In this section we will describe the least squares completion which is the basis of

the explicit integration process. We have already noted that given a derivative array

G(v, w, x, t) satisfying (A1)–(A4), there are usually many ways one can obtain an ODE

[19]. However, in order to develop efficient numerical methods that can be applied to

a wide class of DAEs, we first need an algorithm that will always produce an ODE

given a sufficiently large derivative array. The ODE should also have good smoothness

properties even though it is computed numerically pointwise.

For the nonlinear system (1.10), let H(v, w) = G(v, w, x, t) for a given (x, t). Given

an initial guess (v0, w0), we shall solve (1.10) for (v, w) numerically using the general-

ized Gauss-Newton iteration [8]

[vn+1, wn+1] = [vn, wn]− [Hv(vn, wn), Hw(vn, wn)]†H(vn, wn), (1.26)

where A†b is the minimum norm least squares solution of Ax = b [24]. Modifications

of (1.26) and other computational issues are discussed in [25], [27]. It is important to

note that (1.26) is done for each possible (x, t) so that both the terms on the right hand

side of (1.26) depend on x, t.

In [17] it is shown that under the assumptions (A1)–(A4) that if (v0, w0) is close

enough to values for a solution of (1.1) and (x, t) is close enough to being consistent,

then the iteration (1.26) converges. Let (v∗, w∗) be the limit of the iteration (1.26). Then

the limit (v∗, w∗) satisfies the least squares equation (LSE)

[Hv(v
∗, w∗), Hw(v∗, w∗)]T H(v∗, w∗) = 0 (1.27)

Note that (1.27) is not equivalent to (1.10) since [Hv Hw] does not have full row rank.

We have used H to simplify our notation but the least squares equations are actually

[Gv(v
∗, w∗, x, t), Gw(v∗, w∗, x, t)]T G(v∗, w∗, x, t) = 0 (1.28)
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Theorem 2 [20] Suppose that the derivative array G(v, w, x, t) satisfies the conditions

(A1)–(A4) on an open neighborhood of a consistent initial condition (v0, w0, y0, t0) and

let

G̃(v, w, x, t) = [Gv Gw]T G(v, w, x, t)

Then, G̃ = 0 determines locally a unique h such that

v = x′ = h(x, t) (1.29)

and (v0, x0, t0) lies on the graph of h. Moreover, the degree of smoothness of h in (x, t)

is at most one order less than that of G in (x, t).

Some computational aspects of the method are studied in [32], [33]. Lets again look

at the linear system

A(t)x′ + B(t)x = f(t) (1.30)

The analogue of (1.27) for this system will be

JT J

[
x′

w

]
= JT (−Fx + g) (1.31)

The right hand side of (1.31) is a function of just x and t. Therefore, the solutions of

this system will produce [x′, w] in terms of x and t. Since JT J is singular, there will

be generally many [x′, w] given (x, t). However, the theorem states that all of them will

return the same x′ and the dependence of x′ on x, t will be continuous.

The basic idea of [17], which is called explicit integration, is to numerically com-

pute an ODE whose solutions contain the solutions of the DAE. The LSC is the ODE

used in the explicit integration process. Using near consistent initial conditions one can

integrate the completion numerically by a classical method to estimate the solutions of

the DAE. One difficulty is the effect of additional dynamics of the completion on the

numerical integration process. If the solution manifold is not asymptotically stable in-

side the completion, then numerical results can move away from the manifold during

the integration. While some drifting can be tolerated in certain problems, it can have se-

rious consequences where the manifold represents important physical processes. In this
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thesis, we will analyze the nature of these additional dynamics and develop methods to

modify the completion process in order to obtain better additional dynamics.

Existing stabilization techniques include enforcing the constraints using certain pa-

rameters [37], [7] or numerical constraint preserving techniques of [4], [5], [26], [33].

Probably the best known in applications is Baumgarte stabilization [7]. However, these

methods either require the constraints to be explicitly known or involve problem spe-

cific numerical manipulations that carry a high computational cost. In this thesis, we

first determine the analytical structure of the additional dynamics in a LSC, then, by

incorporating the ideas of [7], [42], we modify the derivative array in a way that will

produce a completion with desired additional dynamics so that the rate of stability can

be determined a priori by inserting an appropriate value for a parameter λ.

Another important concept that is closely related to least squares solutions is gen-

eralized inverses (Moore-Penrose). We will frequently use some basic properties of

generalized inverses when calculating the LSCs. While there are various equivalent

definitions of Moore-Penrose inverse, the following definition will be sufficient for the

thesis. A detailed analysis of generalized inverses can be found in [24].

Definition 3 If A ∈ Cm×n, then the generalized inverse (Moore-Pnerose) of A is defined

to be the unique matrix A† satisfying

1. AA† = PR(A)

2. A†A = PR(A†), where PZ is the orthogonal projector onto Z.

As can be seen from this definition, a generalized inverse will be the same as the

ordinary inverse when the matrix is invertible. While it is a natural generalization of

the ordinary inverse, we don’t have (AB)† = B†A† in general. However, if P is an

orthogonal matrix, then we have (PB)† = P †B† [24]. Using this property, one can use

the singular value decomposition to calculate the generalized inverse of a matrix.

Suppose that A has the singular value decomposition

A = UT

[
D 0

0 0

]
V (1.32)
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where U and V are orthogonal and D is diagonal. Then, since the genralized inverse

just coincides with the ordinary inverse for an invertible matrix, the definition implies

A† = V T

[
D−1 0

0 0

]
U (1.33)

The next two results are some of the basic properties of generalized inverses in con-

nection with least squares solutions and will be used frequently in the rest of the thesis.

Theorem 3 [24] Suppose that A ∈ Cm×n and b ∈ Cm×n. Then the following are

equivalent

1. u is a least squares solution of Ax = b.

2. u is a solution of Ax = AA†b.

3. u is a solution of A∗Ax = A∗b, where A∗ is the conjugate transpose of A.

4. u is of the form A†b + h where h ∈ N(A), the null space of A. Also, A†b is the

minimal norm least squares solution of Ax = b.

Theorem 4 [24] Suppose that we have R(Y ) ⊆ R(X) and R(Y ∗) ⊆ R(X∗), where

R(Z) denotes the range of Z. Then

[
X 0

Y Z

]†
=

[
X† 0

−X†Y Z† Z†

]

In practice, it may not be possible to identify which part of the DAE needs to be

differentiated or how many times. While there are some techniques to determine the

index of the system [35], [48] [49], it might be necessary or practical to perform extra

differentiations to ensure the completeness of the derivative array. The next result is very

important in that respect, as it shows that the least squares completion is not changed by

extra, or reduced, differentiation. It appears in a modified form in [20].

Theorem 5 Suppose that G is a derivative array which may have been formed by dif-

ferentiating different equations in (1.1) a different number of times and with Jacobian
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J which is large enough so that assumptions (A1)–(A4) hold. Suppose that we differen-

tiated F some additional times so that we have additional equations G̃ = 0. Then the

least squares equations for this larger set of equations are

JT G = 0 (1.34a)

G̃ = 0 (1.34b)

Proof. The least squares equations for the larger derivative array Ĝ are

ĴT Ĝ =

[
JT JT

1

0 JT
2

][
G

G̃

]
= 0. (1.35)

Performing a row compression of JT we get



R ∗
0 J3

0 JT
2




[
G

G̃

]
= 0

where R is full row rank. Now the fact that the (A1)–(A4) assumptions hold for J means

that J and Ĵ have the same co-rank since the corank equals the number of constraints

defining the solution manifold. Thus the nullity of JT and ĴT are the same and the

nullity of JT is the nullity of the matrix R. Thus the matrix

[
J3

JT
2

]
is full column rank.

Hence (1.35) is equivalent to RG = 0 and G̃ = 0 which is (1.34). 2

The next two examples illustrate how to analytically calculate a LSC. Note that the

process we will describe is for analysis only. The numerical calculation of LSCs is done

differently, using specific numeric codes [17].

Example 1 Consider the following linear time variable DAE
[
0 t

0 0

][
x′1
x′2

]
+

[
−1 0

0 −1

][
x1

x2

]
=

[
f1

f2

]
, I = [−1, 1]
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Differentiating the DAE twice, we get the Jacobian

J3 =




A 0 0

A′ + B A 0

A′′ + 2B′ 2A′ + B A


 =




0 t 0 0 0 0

0 0 0 0 0 0

−1 1 0 t 0 0

0 −1 0 0 0 0

0 0 −1 2 0 t

0 0 0 −1 0 0




with

g =




f

f ′

f ′′


 =




f1

f2

f ′1
f ′2

f ′′1
f ′′2




,F =




B

B′

B′′


 =




−1 0

0 −1

0 0

0 0

0 0

0 0




, J2 =




0 t 0 0

0 0 0 0

−1 2 0 t

0 −1 0 0




We see that corank(J3) = corank(J2) = 2. Thus the least squares equation is given

by

JT
3 J3w = JT

3 (−Fx + g)

which becomes




1 −1 0 −t 0 0

−1 t2 + 2 0 t 0 0

0 0 1 −2 0 −t

−t t −2 t2 + 5 0 2t

0 0 0 0 0 0

0 0 −t 2t 0 t2




[
x′

w

]
=




0 0 −1 0 0 0

t 0 1 −1 0 0

0 0 0 0 −1 0

0 0 t 0 2 −1

0 0 0 0 0 0

0 0 0 0 t 0




(−Fx+g)

Now, performing the following elementary row operations on both sides of the equa-

tion in the given order (tR1+R4) → R4, (2R2+R4) → R4, (tR4+R1) → R1, (−tR4+

R2) → R2, (R1 + R2) → R2, we obtain
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


1 −1 0 0 0 0

0 t2 + 1 0 0 0 0

0 0 1 −2 0 −t

0 0 0 1 0 0

0 0 0 0 0 0

0 0 −t 2t 0 t2




[
x′

w

]
=




0 0 −1 0 0 −t

t 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1

0 0 0 0 0 0

0 0 0 0 t 0




(−Fx + g)

The first block row of the equation then gives us

[
1 −1

0 t2 + 1

]
x′ =

[
0 0 −1 0 0 −t

t 0 0 −1 0 0

]
(−Fx + g)

Substituting in for −Fx + g, we get

[
1 −1

0 t2 + 1

]
x′ =

[
0 0 −1 0 0 −t

t 0 0 −1 0 0

]




−




−1 0

0 −1

0 0

0 0

0 0

0 0




x +




f1

f2

f ′1
f ′2

f ′′1
f ′′2







Thus we arrive at

[
1 −1

0 t2 + 1

]
x′ = −

[
0 0

−t 0

]
x +

[
−f ′1 − tf ′′2
tf1 − f ′2

]

So the completion becomes

x′ =

[
1 −1

0 t2 + 1

]−1 (
−

[
0 0

−t 0

]
x +

[
−f ′1 − tf ′′2
tf1 − f ′2

])
(1.36)

= (1/t2 + 1)

{[
t 0

t 0

]
x +

[
(t2 + 1)(−f ′1 − tf ′′2 ) + (tf1 − f ′2)

tf1 − f ′2

]}
(1.37)
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Example 2 Lets now consider the nonlinear DAE

y′ = x (1.38a)

0 = y3 − x3 (1.38b)

The DAE is solvable with solutions x = cet, y = cet. The derivative array with k = 1 is

y′ − x = 0 (1.39a)

y3 − x3 = 0 (1.39b)

y′′ − x′ = 0 (1.39c)

3y2y′ − 3x2x′ = 0 (1.39d)

Therefore we have

J = [Gv, Gw] =




0 1 0 0

0 0 0 0

−1 0 0 1

−3x2 3y2 0 0




(1.40)

Solutions are well defined even for c = 0. However, (1.40) is 1-full and constant rank

only if x 6= 0. An easy calculation shows that from (1.39) we can calculate a completion

of (1.38) as

y′ = x (1.41a)

x′ = x (1.41b)

However, the least squares equations [Gv, Gw]T G = 0 are

y′ − x′ + 3x2(3y2y′ − 3x2x′) = 0 (1.42a)

(y′ − x) + 3y2(3y2y′ − 3x2x′) = 0 (1.42b)

y′′ − x′ = 0 (1.42c)

0 = 0 (1.42d)

Assuming that x, y are nonzero, (1.42) reduces to
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3y2y′ − 3x2x′ = 0 (1.43a)

y′ − x = 0 (1.43b)

y′′ − x′ = 0 (1.43c)

which gives us the nonlinear LSC

x′ = y2x−1 (1.44a)

y′ = x (1.44b)

which is not defined if x = 0. Note that as a set of equations, (1.38) is equivalent to

y′ = x (1.45a)

0 = y − x (1.45b)

whose LSC is given by (1.41). Thus, different formulations of a DAE can produce differ-

ent LSC’s.
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Chapter 2

Standard LSC

2.1 Canonical Forms

We will now begin our analysis of additional dynamics with the linear time invariant

DAE

Ax′ + Bx = f(t) (2.1)

where A,B are constant and A is singular. The LSC of (2.1), which is an ODE, will

have the general form

x′ = Θx + h(t) (2.2)

where Θ is constant. The eigenvalues of Θ are what determines the dynamics of the

completion, and thus the behavior of the additional dynamics. Some of these eigenvalues

comes from the original DAE and some are created by extra differentiations. In order

to identify the additional eigenvalues, it is important to write (2.1) in a way that will

expose its original dynamics. Consider the following example,

x′ = Ax + By + f(t) (2.3a)

0 = Cx + Dy + g(t) (2.3b)

where D is nonsingular so that the DAE is index one. We can write (2.3) as
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x′ = (A−BD−1C)x + f(t)−BD−1g(t) (2.4a)

y = −D−1Cx−D−1g(t) (2.4b)

This is called the state-space form for the DAE (2.3) [23]. We can now see that the dy-

namics of the DAE are determined by the ODE (2.4a), more specifically, by the eigen-

values of A−BD−1C. One completion of (2.4) can now be obtained by differentiating

the constraint (2.4b) and substituting (2.4b) for x′, which then gives

x′ = (A−BD−1C)x + f(t)−BD−1g(t) (2.5a)

y′ = −D−1C[(A−BD−1C)x + f(t)−BD−1g(t)]−D−1g′(t) (2.5b)

Writing this system in a matrix form we obtain

[
x

y

]′
=

[
A−BD−1C 0

−D−1C(A−BD−1C) 0

][
x

y

]
+

[
h1(t)

h2(t)

]
(2.6)

where h1, h2 are some functions involving f , g and g′. The eigenvalues of this ODE are

given by the eigenvalues of A−BD−1C and 0’s. Thus, we conclude that the additional

dynamics of (2.5) are given by zero eigenvalues. The implication of this is that the

additional dynamics will consist of polynomial expressions.

We will follow a similar process to analyze the additional dynamics of a LSC. The

basic idea is to separate the dynamical part of the DAE from the nondynamical part. The

dynamical part will remain invariant under the completion process, thus the additional

dynamics will come from the differentiation of the nondynamical part. However, we

don’t have to write the DAE in a semiexplicit form as in the previous example to separate

the original dynamics. Consider the following linear DAE




0 2 1

0 0 1

0 0 0


 x′ +




1 0 0

0 1 0

0 0 1


 x =




1

2

t


 (2.7)
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We can write (2.7) as

2x′2 + x′3 + x1 = 1 (2.8a)

x′3 + x2 = 2 (2.8b)

x3 = t (2.8c)

Substituting x3 = t in (2.8b), we get x2 = 2 − 1 = 1. Then, by substituting x3 and x2

in (2.8a), we get x1 = 0. Therefore, x = x(t) = (0, 1, t) is the only solution of (2.8).

That is, the solution manifold is zero dimensional and has no dynamics. Thus, (2.8) is

equivalent to a pure algebraic system. Note that in this example we have that

A =




0 2 1

0 0 1

0 0 0




is a nilpotent matrix. In general, for a nilpotent matrix N of index k, the DAE

Nx′ + x = f

has only one solution, which is given by

x = (ND + I)−1f =
k−1∑
i=0

(−1)iN if (i)

where D = d/dt. Because of this property, nilpotent matrices play a fundamental role in

our analysis of linear DAEs due to the canonical decomposition, which we will describe

shortly [36], [9], [60].

Suppose that the DAE (2.1) is regular. That is, the matrix pencil A + λB is regular.

Then, it has been shown in [36] that there exists nonsingular transformations P and Q

such that

PAQ =

[
I 0

0 N

]
, PBQ =

[
C 0

0 I

]
(2.9)

where N is nilpotent of index k. Therefore, pre-multiplication by P and the change of

variable x = Qy, transforms (2.1) to
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[
I 0

0 N

]
y′ +

[
C 0

0 I

]
y = Pf (2.10)

which can be written as

y′1 + C1y1 = f1 (2.11a)

Ny′2 + y2 = f2 (2.11b)

(2.11a) is an ODE, the general solution of which is given by

y1(t) = e−Cty0 +

∫ t

0

e−C(t−s)f1(s)ds

and the unique solution of (2.11b) is given by

y2(t) = (N
d

dt
+ I)−1f2 =

k−1∑
i=0

(−1)iN if
(i)
2 (t)

(2.11) is the form we are going to use in the analysis. Note that the solutions of (2.1)

can be obtained from those of (2.11) simply by the transformation x = Qy. However,

we don’t know yet how their LSC’s are related. Before we can proceed, we need to

establish a relationship between the LSC of the original DAE and that of its canonical

form so that (2.11) can be used to analyze the LSC of the original system. Therefore,

we will now compare the LSC of

Ax′ + Bx = f (2.12)

with the the LSC of

PAQx′ + PBQx = Pf (2.13)

We will first consider

PAx′ + PBx = Pf (2.14)

where P is invertible to start with. We might need to impose additional restrictions on

P to obtain a relationship between the LSC of (2.14) and (2.12). Suppose that (2.12) is

solvable with index k. Then, since P is invertible, (2.14) is also solvable with the same

index. Now differentiating (2.12) k times with respect to t we get the derivative array
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J

[
x′

w

]
= −Fx + g (2.15)

where

J =




A 0 0 · · · 0

B A 0 · · · 0

0 B A · · · 0
... . . . ...




,F =




B

0

0
...




, g =




f

f ′

f ′′

...




Therefore, the LSC of (2.15) is given by the first component solution of the least squares

equation (LSE)

JT J

[
x′

w

]
= JT (−Fx + g) (2.16)

Similarly, differentiating (2.14) k times with respect to t we obtain the derivative

array

P̂ J

[
x′

w

]
= −P̂Fx + P̂ g (2.17)

where

P̂ =




P 0 0 · · · 0

0 P 0 · · · 0

0 0 P · · · 0
... . . . ...




Thus, the least squares equation of (2.17) is

JT P̂ T P̂ J

[
x′

w

]
= JT P̂ T P̂ (−Fx + g) (2.18)

We are comparing (2.16) with (2.18). Suppose that P is orthogonal. Then P̂ is orthogo-

nal and (P̂ )T P̂ = I , and (2.18) reduces to (2.16). Therefore we can state the following.

Theorem 6 Suppose that the LSC of (2.12) is given by

x′ = Θx + h(t) (2.19)
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Then, the LSC of (2.13), with P orthogonal and Q invertible, is given by

y′ = Q−1ΘQx + h̃(t) (2.20)

Proof. We have already shown that an orthogonal P does not effect the LSC. To see the

effect of change of variable, let x = Qy. Then (2.19) becomes

(Qy)′ = ΘQy + h

so that

Qy′ = ΘQy + h

and finally

y′ = Q−1ΘQy + Q−1h

= Q−1ΘQy + h̃ (2.21)

2

We are now allowed to use an orthogonal P and any nonsingular Q. Since the

canonical form (2.10) is based on nonsingular P , we can not use that form. We have

to determine a similar form that can be obtained by orthogonal P and nonsingular Q.

First, by (2.10) we have

PAQ =

[
I 0

0 N

]
, PBQ =

[
C 0

0 I

]

where N is nilpotent of index k, and P, Q are nonsingular. Note that N can be taken

strictly upper triangular. Then, by Gram-Schimidt orthogonalization process, there exist

a nonsingular upper triangular matrix K such that KP is orthogonal. Thus multiplying

the equations by K we get

KPAQ = K

[
I 0

0 N

]
, KPBQ = K

[
C 0

0 I

]
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Since K is upper triangular we have

K

[
I 0

0 N

]
=

[
C1 C2

0 N1

]
, K

[
C 0

0 I

]
=

[
D1 D2

0 D3

]
(2.22)

where C1, D1, D3 are invertible. D3 is upper triangular and N1 is strictly upper triangular

and thus nilpotent. Let P̃ = KP and Q̃ = Q. Then P̃ is orthogonal and Q̃ is invertible,

and

P̃AQ̃ =

[
C1 C2

0 N1

]
, P̃BQ̃ =

[
D1 D2

0 D3

]
(2.23)

Therefore, left multiplication by the orthogonal matrix P̃ and the coordinate change

given by x = Q̃y transforms (2.1) to

C1y
′
1 = −C2y

′
2 + D1y1 + D2y2 + f11 (2.24a)

N1y
′
2 = D3y2 + f12 (2.24b)

Then, using the transformation y2 = D−1
3 z2 and relabeling the coefficients, we obtain

the system

C1y
′
1 = −C2y

′
2 + D1y1 + D2y2 + f1 (2.25a)

N1y
′
2 = y2 + f2 (2.25b)

where C1 is nonsingular and N is nilpotent and, in fact, strictly upper triangular. This

is the form we are allowed to use. We will now calculate the LSC of (2.25) , analyze its

additional dynamics and relate it back to the LSC of the original system (2.1).

Note that (2.25) now has the form

F1(x
′
1, x1, x

′
2, x2, t) = 0 (2.26a)

F2(x
′
2, x2, t) = 0 (2.26b)

Since C1 is nonsingular, F1 is index zero in the variable x1. The next theorem tells us

that the LSC of such a system can be calculated separately, with the first equation being

invariant under the LSC process.
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Theorem 7 Suppose that (2.26) is a solvable DAE which satisfies (A1)–(A4). Suppose

also that (2.26a) is index zero in x1, that is, ∂F1/∂x′1 is nonsingular. Then the least

squares completion of (2.26) consists of (2.26a) and the least squares completion of

(2.26b).

Proof. Compute the derivative array equations except first list all the derivatives of

(2.26a) and then list all the derivatives of (2.26b). Similarily when taking the Jacobians

we first partial with respect to x′1 and its higher derivatives w1 and then with respect to

x′2 and its higher derivatives w2. This modification consists of permutations of the usual

least squares equations and thus the new equations are equivalent to the old ones. The

least squares equations are then of the form


 Gx′1 Gw1 Gx′2 Gw2

0 0 G̃x′2 G̃w2




T [
G(x′1, w1, x

′
2, w2, x1, x2, t)

G̃(x′2, w2, x2, t)

]
(2.27)

=


 Φ1 0

Φ2 [G̃x′2 G̃w2 ]
T




[
G(x′1, w1, x

′
2, w2, x1, x2, t)

G̃(x′2, w2, x2, t)

]
= 0 (2.28)

where Φ1 is invertible. Thus we can perform row operations to make Φ1 = I and to

zero out Φ2 without changing the solution of the least squares equations. Thus (2.28) is

equivalent to

G(x′1, w1, x
′
2, w2, x1, x2, t) = 0 (2.29)[

G̃x′2 G̃w2

]T

G̃(x′2, w2, x2, t) = 0 (2.30)

But (2.26a) is the first block equation in (2.29) and (2.30) are the least squares equations

for (2.26b) and the theorem follows. 2

2.2 Derivative Array and the Completion

Theorem 7 tells us that the additional dynamics of the LSC are created by the nilpo-

tent system

Ny′ = y + f (2.31)
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We will now calculate the LSC of (2.31). Suppose that N has a nilpotency of index k so

that Nk−1 6= 0 but Nk = 0. Then, the k step derivative array of (2.31) becomes

Jw = −Fx + g (2.32)

where

J =




N 0 0 · · · 0

I N 0 · · · 0

0 I N · · · 0
...

0 0 0 · · · N




,F =




I

0

0
...

0




, g =




f

f ′

f ′′

...

f (k)




Then, the least squares equations are given by



NT I 0 · · · 0 0

0 NT I · · · 0 0

0 0 NT · · · 0 0
... . . . ...

0 0 0 · · · NT I

0 0 0 · · · 0 N







N 0 0 · · · 0 0

I N 0 · · · 0 0

0 I N · · · 0 0
... . . . ...

0 0 0 · · · N 0

0 0 0 · · · I N







y′

y′′

y′′′

...

y(k)

y(k+1)




(2.33)

=




NT I 0 · · · 0 0

0 NT I · · · 0 0

0 0 NT · · · 0 0
... . . . ...

0 0 0 · · · NT I

0 0 0 · · · 0 N








−




I

0

0
...

0

0




y +




f

f ′

f ′′

...

f (k−1)

f (k)








(2.34)

Let M = NT . We first multiply both sides by the following nonsingular matrix that

corresponds to a series of elementary row operations:
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K1 =




I 0 0 · · · 0 0

−M I 0 · · · 0 0

M2 −M I · · · 0 0
...

(−1)k−1Mk−1 (−1)k−2Mk−2 (−1)k−3Mk−3 · · · I 0

0 (−1)k−1Mk−1 (−1)k−2Mk−2 · · · −M I




Then (2.34) becomes




M I 0 · · · 0 0

−M2 0 I · · · 0 0

M3 0 0 · · · 0 0
...

0 0 0 · · · 0 I

0 0 0 · · · 0 0







N 0 0 · · · 0 0

I N 0 · · · 0 0

0 I N · · · 0 0
... . . . ...

0 0 0 · · · N 0

0 0 0 · · · I N







y′

y′′

y′′′

...

y(k)

y(k+1)




= −




M I 0 · · · 0 0

−M2 0 I · · · 0 0

M3 0 0 · · · 0 0
...

0 0 0 · · · 0 I

0 0 0 · · · 0 0








−




y

0

0
...

0

0




y +




f

f ′

f ′′

...

f (k−1)

f (k)








which simplifies to
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


MN + I N 0 · · · 0 0

−M2N I N · · · 0 0

M3N 0 I · · · 0 0
...

0 0 0 · · · I N

0 0 0 · · · 0 0







y′

y′′

y′′′

...

y(k−1)

y(k)




= −




M I 0 · · · 0 0

−M2 0 I · · · 0 0

M3 0 0 · · · 0 0
...

0 0 0 · · · 0 I

0 0 0 · · · 0 0







−f + y

−f ′

−f ′′

...

−f (k−1)

−f (k)




(2.35)

Now multiplying both sides by

K2 =




I −N N2 · · · (−1)k−1Nk−1 0

0 I 0 · · · 0 0

0 0 I · · · 0 0
...

0 0 0 · · · I 0

0 0 0 · · · 0 I




we get
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


I + XN 0 0 · · · 0 0

−M2N I N · · · 0 0

M3N 0 I · · · 0 0
...

0 0 0 · · · I N

0 0 0 · · · 0 0







y′

y′′

y′′′

...

y(k−1)

y(k)




(2.36)

= −




X I −N · · · (−1)k−2Nk−2 (−1)k−1Nk−1

−M2 0 I · · · 0 0

M3 0 0 · · · 0 0
...

0 0 0 · · · 0 I

0 0 0 · · · 0 0







−f + y

−f ′

−f ′′

...

−f (k−1)

−f (k)




(2.37)

where X = M +NM2 +N2M3 + · · ·+Nk−2Mk−1. Then, since I +XN is invertible,

the first block row of (2.37) gives us the ODE

(I + XN)y′ = −Xy + Xf −
k∑

i=1

(−1)iN i−1f (i) (2.38)

which is

y′ = −(I + XN)−1Xy + (I + XN)−1[Xf −
k∑

i=1

(−1)iN i−1f (i)]

= −(I + XN)−1Xy + h(t) (2.39)

(2.39) is the LSC of (2.31). Since h(t) is independent of x, the dynamics of (2.39) are

determined by the eigenvalues of the matrix −Θ where

Θ = (I + XN)−1X (2.40)

We will now examine the eigenvalues of Θ.

Lemma 1 Suppose that A is a nilpotent matrix of index k, B = AT and X = B +

AB2 + ... + Ak−2Bk−1. Then
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X(I + AX)−1 = (I + XA)−1X (2.41)

and Θ = (I + XA)−1X is nilpotent.

Proof. We can write X + XAX = X + XAX so that

X(I + AX) = (I + XA)X

Multiplying this on the left by (I + XA)−1 and on the right by (I + AX)−1 we obtain

(I + XA)−1X(I + AX)(I + AX)−1 = (I + XA)−1(I + XA)X(I + AX)−1

which gives us

(I + XA)−1X = X(I + AX)−1

Thus, we have Θ = X(I +AX)−1. Now let S = I +NM +N2M2 + ...+Nk−1Mk−1.

Noting that Nk = Mk = 0, we have

X = M + NM2 + ... + Nk−2Mk−1 = SM

and

I + NX = I + N(M + NM2 + ... + Nk−2Mk−1) = S

which implies

Θ = SMS−1

Thus, by the similarity to M = NT , Θ is nilpotent. 2

2.3 The Additional Dynamics

We will now analyze what Lemma 1 implies in terms of our original DAE (2.1).

Combining (2.39) with Theorem 7, we have proved that the LSC of (2.25) is given by

C1y
′
1 = −C2y

′
2 + D1y1 + D2y2 + f1 (2.42a)

y′2 = −X(I + AX)−1y2 + h2(t) (2.42b)
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We will first show that the solutions of (2.42) move away from the solution manifold of

(2.25). Then, we are going to apply the same argument to the original DAE and its LSC.

Now, the solution manifold of (2.25) can be expressed as

M = {(c, x2(t))|c ∈ Rd, Nx′2(t) + x2(t) = f2}

where d = n − dim(N). Suppose that y = y(t) is a solution of (2.42) and let y =

[yT
1 , yT

2 ]T . Since (2.42b) is a completion of (2.25b), x2 = x2(t) is a particular solution of

(2.42b). Therefore, y2(t) and x2(t) are two solutions of (2.42b). Thus, by substraction,

we have

(y2 − x2)
′ = −X(I + AX)−1(y2 − x2)

That is, y2 − x2 is a particular solution of the ODE

z′ = −X(I + AX)−1z

Now suppose that (0, y2(0)) is not a consistent initial value. Then, y2(0) − x2(0) 6= 0

since the set {(t, x2(t))} defines the solution manifold. Note that any solution of the

ODE z′ = Θz where Θ is nilpotent, is of the form

z(t) = (I + Θt +
1

2
Θ2t2 + · · ·+ 1

k!
Θk−1tk−1)c

Therefore since Θ = X(I + AX)−1 is nilpotent, y2(t) − x2(t) never goes to zero if

y2(0)− x2(0) 6= 0. Thus, if Θ(y2(0)− x2(0) 6= 0, then

‖y2(t)− x2(t)‖ → ∞ (2.43)

and

d(y(t),M) →∞ (2.44)

In other words, the solution of (2.42) starting near the solution manifold (but not on it)

will gradually move further away from the manifold, although at polynomial speed.

Lets now see what this means in terms of the original system. Suppose that we start

with a solvable DAE
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Ax′ + Bx = f (2.45)

Let

y′ = Θy + h(t) (2.46)

be the LSC of (2.45). Let M be the solution manifold of (2.45). Then, the set Q−1M =

{Q−1x|x ∈ M} will be the solution manifold of (2.25). Now let y = y(t) be a solution

of (2.46). Then, by Theorem 6, Q−1y will be a solution of (2.42). Then, by the foregoing

argument, we have

d(Q−1y(t), Q−1M) →∞

provided that (Q−1y)(0) is not consistent for (2.25) and ΘQ−1y(0) 6= 0. Since Q is a

constant matrix, thus bounded, this implies that

d(y(t),M) →∞

as t →∞ provided that y(0) is not consistent for (2.45) and ΘQ−1y(0) 6= 0.
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Chapter 3

Stabilized LSC

3.1 Stabilized Differentiation

In the previous section we have determined the additional dynamics of the LSC de-

fined by the standard derivative array, one that is formed by successively differentiating

the DAE. We have concluded that the solution manifold is not stable in that case if the

index is greater than 1. One way to change this outcome is to modify the derivative

array equations in some fashion before solving them in the least squares sense. A tech-

nique known as Baumgarte stabilization [7] has been used to stabilize the constraints

of ODE’s. It is based on connecting constraints using a parameter during the differ-

entiation. The parameter is later assigned an appropriate value to achieve the desired

stability. There can be technical issues in the selection process of the parameter [2],

however, Baumgarte stabilization is often used in practice.

To illustrate the idea, consider the following pure algebraic DAE

Ax + f(t) = 0 (3.1)

where A is nonsingular. Suppose that we want to embed (3.1) in an ODE as an asymp-

totically stable set. Let λ be a complex parameter. Now consider the following equation

(Ax + f(t))′ + λ((Ax + f(t)) = 0 (3.2)

This is an ODE and it contains the solutions of (3.1). Let z = z(t) be a solution of (3.2).
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Then, u = Az + f satisfies the ODE

u′ + λIu = 0 (3.3)

Therefore we have u = e−λItu0. This implies that u → 0 for any real λ > 0. But since

u = Az + f , we get Az + f → 0 and thus z(t) → x(t) since A is constant, where x(t)

is the solution of (3.1). In other words, the solutions of the completion (3.2) converge to

the solution manifold of the underlying DAE (3.1).

We want to generalize this idea for DAEs having a general structure and arbitrary

index. Consider the following system

F = 0 (3.4a)

(
d

dt
+ λ)F = 0 (3.4b)

... (3.4c)

(
d

dt
+ λ)kF = 0 (3.4d)

where F = Ax′ + Bx− f . Instead of just differentiating the DAE, we add a λ multiple

of all the previous equations. This is called stabilized differentiation. Let

D =




I 0 0 · · · 0

λ I 0 · · · 0

λ2 2λ I · · · 0
...

λk kλk−1 (k(k − 1)/2)λk−2 · · · I




. (3.5)

Then, the equations (3.4) can be expressed as

DJ

[
x′

w

]
= D(−Fy + g). (3.6)

where J,F , g are the same quantities corresponding to the standard derivative array

defined in the previous chapter. We have calculated the previous LSC using elementary

matrix operations. Because of the additional complexity created by the presence of D
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in the equation, we will employ a different technique in this section. Note that because

of the uniqueness of the LSC, the LSC of (3.4) can be also obtained as the first block

row of (DJ)†D(−Fy + g), where † denotes the Moore-Penrose inverse [24]. That is,

x′ = V T (DJ)†D(−Fy + g) (3.7)

where V T =
[

I 0 · · · 0
]
.

Theorem 8 Suppose that we have a constant coefficient DAE

Ay′ + By = f (3.8)

that is solvable of index k, with the derivative array

J

[
x′

w

]
= −Fy + g. (3.9)

Suppose that (A1)–(A4) are satisfied for this system. Let G0 be an n× (k + 1)n matrix

satisfying

G0J =
[

I 0 0 · · · 0
]

(3.10a)

G0Z = 0 (3.10b)

where Z is a matrix of maximal rank satisfying ZT J = 0. Namely, the columns of Z

form a basis for N(JT ). Then, the least squares completion of (3.8) defined by (3.9) is

y′ = G0(−Fy + g) (3.11)

Proof. Let

G0 =
[

X0 X1 X2 · · ·Xk

]

and

ZT =
[

ZT
0 ZT

1 ZT
2 · · ·ZT

k

]

Suppose that rank(Z) = a. Then corank(J) = a. By the Gram-Schmidt method,

there exists nonsingular matrices D1, D2 such that the matrices D1G and D2Z have

orthonormal set of row vectors separately, where

D1G =
[

D1X0 D1X1 D1X2 · · ·D1Xk

]
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and

D2Z
T =

[
D2Z

T
0 D2Z

T
1 D2Z

T
2 · · ·D2Z

T
k

]

Then, GZ = 0 implies

(D1G)(D2Z
T )T =

[
D1X0 D1X1 D1X2 · · ·D1Xk

] [
D2Z

T
0 D2Z

T
1 D2Z

T
2 · · ·D2Z

T
k

]T

=
[

D1X0 D1X1 D1X2 · · ·D1Xk

]




Z0D
T
2

Z1D
T
2

Z2D
T
2

...

ZkD
T
2




= D1(GZ)DT
2 = 0

Thus, the matrix [
D1G

D2Z
T

]

has an orthonormal set of row vectors. Therefore, we can find a matrix R such that

Q =




D1G

D2Z
T

R




is an orthogonal matrix. Note that the least squares completion of (3.8) is given by

y′ = J†(−Fy + g)

On the other hand, since QT Q = I , we have from [24] that

(QJ)†(−QF + Qg)

= J†QT (−QF + Qg)

J†(−F + g)
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That is, multiplying the system by Q does not change the least squares solution. Now,

in a more compact form, we can write [QJ,Q(−Fy + g)] as



D1 0 0 · · · 0 0 D1G(−F + g)

0 0 0 · · · 0 0 D2Z
T (−F + g)

M0 M1 M2 · · · · · ·


 (3.12)

Since corank(QJ) = corank(J) = a = rank(Z), which is the size of the zero block

row, we can choose R so that M1,M2, ..., Mk block row has full row rank. In this

special circumstance we have from [24] that

[
X 0

Y Z

]†
=

[
X† 0

−X†Y Z† Z†

]

Then, the first block row of (3.12) produces the least squares completion

y′ = D−1
1

[
D1G0(−Fy + g)

]

= G0(−Fy + g) (3.13)

2

3.2 Derivative Array and the Completion

We will now investigate the additional dynamics of the LSC defined by (3.4) using

this lemma. An easy calculation shows that Theorem 6 and Theorem 7 hold the same

way for the derivative array (3.4). Thus, we only need to consider the nilpotent system

Nx′ + x = f (3.14)

Suppose that N has an index of k. Then, differentiating (3.14) k times with respect to t

in the sense of (3.4), we get the derivative array

DJ

[
x′

w

]
= D(−Fx + g) (3.15)
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where

J =




N 0 0 · · · 0

I N 0 · · · 0

0 I N · · · 0
...

0 0 0 · · · N




,F =




I

0

0
...

0




, g =




f

f ′

f ′′

...

f (k)




We will apply Theorem 8 to calculate the actual completion. Therefore we need to find

a matrix G0 that satisfies

G0(DJ) =
[

I 0 0 · · · 0
]

(3.16a)

G0Z = 0 (3.16b)

where Z is a matrix of maximal rank with ZT (DJ) = 0.

Lets first write

J =




N 0 0 · · · 0

I N 0 · · · 0

0 I N · · · 0
...

0 0 0 · · · N




=




N 0 0 · · · 0

0 N 0 · · · 0

0 0 N · · · 0
...

0 0 0 · · · N




+




0 0 0 · · · 0

I 0 0 · · · 0

0 I 0 · · · 0
...

0 0 0 · · · 0




(3.17)

= JN + JI (3.18)

Since JN is block diagonal with the same diagonal block entries and the elements of D
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are the scalar multiples of I , we have that DJN = JND. Therefore,

DJD−1 = D




N 0 0 · · · 0

0 N 0 · · · 0

0 0 N · · · 0
...

0 0 0 · · · N




D−1 + D




0 0 0 · · · 0

I 0 0 · · · 0

0 I 0 · · · 0
...

0 0 0 · · · 0




D−1(3.19)

=




N 0 0 · · · 0

0 N 0 · · · 0

0 0 N · · · 0
...

0 0 0 · · · N




+ D




0 0 0 · · · 0

I 0 0 · · · 0

0 I 0 · · · 0
...

0 0 0 · · · 0




D−1 (3.20)

=




N 0 0 · · · 0

0 N 0 · · · 0

0 0 N · · · 0
...

0 0 0 · · · N




+




0 0 0 · · · 0

I 0 0 · · · 0

λI I 0 · · · 0
...

λk−1I λk−2I λk−3I · · · 0




(3.21)

=




N 0 0 · · · 0

I N 0 · · · 0

λI I N · · · 0
...

λk−1I λk−2I λk−3I · · · N




. (3.22)

Note that we have

D−1 =




I 0 0 · · · 0

−λ I 0 · · · 0

λ2 −2λ I · · · 0
...

λk kλk−1 (k(k − 1)/2)λk−2 · · · I




.

Let G0 =
[

X0 X1 X2 · · ·Xk

]
. Then, multiplying both sides of (3.22) by G0 and
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using (3.16a) we get

G0DJD−1 = G0




N 0 0 · · · 0

I N 0 · · · 0

λI I N · · · 0
...

λk−1I λk−2I λk−3I · · · N




so that

[
I 0 0 · · · 0

]
D−1 = G0




N 0 0 · · · 0

I N 0 · · · 0

λI I N · · · 0
...

λk−1I λk−2I λk−3I · · · N




and hence

[
I 0 0 · · · 0

]
= G0




N 0 0 · · · 0

I N 0 · · · 0

λI I N · · · 0
...

λk−1I λk−2I λk−3I · · · N




(3.23)

which produces the following equations

X0N + X1 + λX2 + λ2X3 + λ3X4 · · ·λk−1Xk = I (3.24a)

X1N + X2 + λX3 + λ2X4 + · · ·λk−2Xk = 0 (3.24b)
... (3.24c)

Xk−3N + Xk−2 + λXk−1 + λ2Xk = 0 (3.24d)

Xk−2N + Xk−1 + λXk = 0 (3.24e)

Xk−1N + Xk = 0 (3.24f)

XkN = 0 (3.24g)
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Multiplying each equation by −λ and adding it to the equation directly above it, we get

Xk = −Xk−1N(I − λN)−1 (3.25a)

Xk−1 = −Xk−2N(I − λN)−1 (3.25b)

Xk−2 = −Xk−3N(I − λN)−1 (3.25c)
... (3.25d)

X3 = −X2N(I − λN)−1 (3.25e)

X2 = −X1N(I − λN)−1 (3.25f)

X1 = (I −X0N)(I − λN)−1 (3.25g)

Let U = (I − λN)−1 and V = N(I − λN)−1. Then

G0 =
[

X0 X1 X2 · · ·Xk

]
(3.26)

=
[

X0 U −X0V −(U −X0V )V (U −X0V )V 2 · · ·
]

(3.27)

= X0

[
I −V V 2 −V 3 · · · (−1)k−1V k−1

]
(3.28)

+ U
[

0 I −V V 2 · · · (−1)k−2V k−2
]

(3.29)

Note that V is also nilpotent of index k since (I − λN)−1 = I + λN + λ2N2 + ... +

λk−1Nk−1.

We will use (3.16b) to determine X0. Let Z be a matrix of maximal rank satisfying

ZT (DJ) = 0. Then, multiplying (3.22) by ZT gives

ZT DJD−1 = ZT




N 0 0 · · · 0

I N 0 · · · 0

λI I N · · · 0
...

λk−1I λk−2I λk−3I · · · N




(3.30)

Let ZT =
[

ZT
0 ZT

1 ZT
2 · · ·ZT

k

]
. Then by a similar argument, (3.30) implies
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ZT
k = −ZT

k−1N(I − λN)−1 (3.31a)

ZT
k−1 = −ZT

k−2N(I − λN)−1 (3.31b)
... (3.31c)

ZT
2 = −Z1N

T (I − λN)−1 (3.31d)

ZT
1 = −Z0N

T (I − λN)−1 (3.31e)

Then for Z0 = I , Z will have maximal rank and

Z =
[

I −V V 2 · · ·V k−1
]T

.

where V = N(I − λN)−1. Therefore (3.16b) implies that GZ = 0 gives

(
X0

[
I −V V 2 −V 3 · · ·

]
+ U

[
0 I −V V 2 · · ·

])







I

−W

W 2

−W 3 · · ·







= 0

where W = V T . From this we obtain

X0 = U(W + V W 2 + · · ·+ V k−2W k−1)(I + V W + V 2W 2 + · · ·+ V k−1W k−1)−1

= UX(I + V X)−1 (3.32)

where X = W + V W 2 + V 2W 3 + ..V k−2W k−1. On the other hand we have

λ




N

I

λI
...

λk−2I

λk−1I




−




I

λI

λ2I
...

λk−1I

λkI




=




λN − I

0

0
...

0

0




(3.33)

Multiplying both sides of (3.33) by G0 and using (3.23), we get
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λI −G0F = X0(λN − I) (3.34)

so that

G0F = λI + x0(I − λN)

= λI + UX(I + V X)−1U−1 (3.35)

since U = (I − λN)−1. Therefore the LSC becomes

y′ = G0(−Fy + g) (3.36)

= [−λI − UX(I + V X)−1U−1]y + h(t) (3.37)

for some function h(t). The dynamics of this new completion is now determined by

Θ = −λI − UX(I + V X)−1U−1 (3.38)

Note that UX(I +V X)−1U−1 is similar to X(I +V X)−1 and X(I +V X)−1 is similar

to V as proved in the previous section, which is nilpotent. Thus, UX(I + V X)−1U−1

is nilpotent. Therefore the eigenvalues of Θ consists of −λ. This implies, by a similar

argument as in the previous chapter, that the additional dynamics will go to zero expo-

nentially for any λ > 0. In other words, the additional solutions will converge to the

solution manifold. Note however, that the additional dynamics are a polynomial times

an exponential since H = UX(I + V X)−1U−1 is nilpotent. That is, a typical solution

will be in the form

z(t) = e−λt(I −Ht + · · ·+ (−1)k−1

(k − 1)!
Hk−1tk−1)c0

For a numerical method, if k ≥ 2 and if Re(λ) is not big enough, this could mean that

error could grow before being damped.
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Chapter 4

Alternative Stabilized Completion

4.1 Index One Formulation

We have developed a method to obtain a LSC with desired additional eigenvalues

and thus desired additional dynamics. However, the dynamics are polynomial times

exponentials and not just pure exponentials. We will now introduce an alternative way

to obtain a stabilized completion which can give pure exponentials as the additional

dynamics. In [42], a method has been developed to obtain an index-1 system from

a general DAE. We will combine this idea with stabilized differentiation to produce

another completion with desired stability characteristics. Suppose that the linear time

invariant DAE

Ax′ + Bx = f (4.1)

is solvable. Then we have

PAQ =

[
I 0

0 N

]
, PBQ =

[
C 0

0 I

]
(4.2)

where P,Q are nonsingular. Let Ã = PAQ, B̃ = PBQ, f̃ = Pf , and J̃ denote the

Jacobian of the system

Ãx′ + B̃x = f̃ (4.3)
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Lemma 2 corank(J̃) = dim(N) = a.

Proof. Note that the rows of J̃ consists of rows of J̃I and J̃N , where J̃I is the Jacobian

corresponding to x′ + Cx = h1 and J̃N is the jacobian corresponding to Nx′ + x = h2.

J̃I obviously has full row rank, therefore it is sufficient to consider the corank of J̃N .

We then have

J̃N =




N 0 0 · · · 0

I N 0 · · · 0

0 I N · · · 0
...

0 0 0 · · · N




(k+1)×(k+1)

We claim that corank(J̃N) = dim(N). Suppose that Z̃2 is a matrix of maximal rank

with Z̃T
2 JN = 0. Let Z̃T

2 =
[

ZT
2,0 ZT

2,1 ZT
2,2 · · ·ZT

2,k

]
. Then Z̃T

2 JN = 0 implies

0 = ZT
2,0N + ZT

2,1 (4.4a)

0 = ZT
2,1N + ZT

2,2 (4.4b)
... (4.4c)

0 = ZT
2,k−1N + ZT

2,k (4.4d)

0 = ZT
2,kN (4.4e)

From this we get Z̃T
2 =

[
ZT

2,0 −ZT
2,0N ZT

2,0N
2 · · ·ZT

2,0N
k

]
. Therefore, the choice

Z2,0 = I renders Z̃2 maximal with rank(Z̃2) = dim(N). Thus we get

corank(J̃N) = corank(J̃) = dim(N) = a.

2

Now define

P̂ =




P 0 0 · · · 0

0 P 0 · · · 0

0 0 P · · · 0
... . . . ...



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Note that P̂ is also invertible. Then an easy calculation shows that

J̃ = P̂ JQ̂

Let ZT
2 = Z̃T

2 (P̂ )−1. Then, Z2 has full column rank, ZT
2 J = 0 and

rank(Z2) = rank(Z̃2)

Thus we obtain

corank(J) = corank(J̃) = dim(N) = a

Now, since [J,F ] has full row rank and ZT
2 J = 0, ZT

2 F has full row rank. Then there

exists a T2 of full column rank such that ZT
2 FT2 = 0 and rank(AT2) = d = n− a [42].

The columns of T2 set up coordinates for the solution manifold. Let Z1,0 be a matrix

whose columns form a basis for R(AT2). Define ZT
1 =

[
ZT

1,0 0 0 · · · 0
]
.

Lemma 3

[
ZT

1,0A

ZT
2 F

]
is an invertible matrix.

Proof. Suppose that

[
ZT

1,0A

ZT
2 F

]
v = 0 for some vector v. Then, we have (ZT

1,0A)v =

0 and (ZT
2 F)v = 0. (ZT

2 F)v = 0 implies v ∈ N(ZT
2 F) = R(T2) by definition.

Therefore, v = T2x for some vector x. Then, by the first part, we get (ZT
1,0AT2)x = 0 =

ZT
1,0(AT2x), which implies (AT2)x = 0 since Z1,0 is a basis for R(AT2). Then x = 0

since AT2 has full column rank. Thus, v = T2x = 0. 2

Now consider the following system.

ZT
1,0Ax′ = ZT

1,0(−Bx + f) (4.5a)

0 = ZT
2 (Fx− g) (4.5b)

The equation (4.5b) gives us all the constraints of the original DAE. Then, by the

lemma, (4.5) is a semi-explicit index one DAE with the same solutions as (4.1). Thus,

any completion of this system will be a completion of the original DAE. We can now

differentiate the constraint part in the stabilized sense to get the completion
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ZT
1,0Ax′ = ZT

1,0(−Bx + f) (4.6a)

ZT
2 (Fx− g) = −λZT

2 (Fx− g) (4.6b)

More explicitly this is
[

ZT
1,0A

−ZT
2 F

]
x′ = −

[
ZT

1,0B

λZT
2 F

]
x +

[
ZT

1,0f

λZT
2 g

]
(4.7)

As can be easily seen from the foregoing discussion, the additional eigenvalues of

this new completion are also given by −λ. Moreover, there is no nilpotent part. There-

fore, the additional dynamics are now given by pure exponentials. Again, the solution

manifold is asymptotically stable for λ > 0.

For computational reasons, we will now show that the completion (4.6) can be calcu-

lated by the least squares method. We will do this by constructing a derivative array and

showing that the LSC obtained by the derivative array produces the same completion.

We do this to avoid the derivative of Z2, which appears in the time variable case. Since

Z2 is numerically calculated, such a differentiation could produce too much numerical

error.

4.2 Computation using Least Squares

Lets first defines the following shifting operators

S =
[

0 Ikn

]
(kn)×(k+1)n

, K =
[

Ikn 0
]

(kn)×(k+1)n
, V =

[
In 0

]
n×(kn)

Let J̃ , F̃ , g̃ denote the same matrices as J,F , g with k + 1 differentiations. We then
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have the following relationships:

KJ̃ = JK (4.8)

KF̃ = F (4.9)

Kg̃ = g (4.10)

SF̃ = 0 (4.11)

Sg̃ = g′ (4.12)

Let ZT
3 = λZT

2 K + ZT
2 S. Now consider the matrix

R =




ZT
1 K

ZT
2 K

ZT
3

ZT
4




where ZT
4 are extra rows to make R invertible. We will consider the LSC of

RJw = R(−Fx + g) (4.13)

which is given by the first block row of (RJ)†R(−Fx + g) where † denotes the Moore-

Penrose inverse of the matrix inside [24]. In a compact form we have

[RJ,R(−Fx + g)] is



ZT
1,0A 0 0 · · · 0 0 ZT

1,0(Bx + f)

0 0 0 · · · 0 0 ZT
2 (Fx + g)

−ZT
2,0B 0 0 · · · 0 0 ZT

2 g′ + λZT
2 (Fx + g)

0 R1 R2 · · · · · · · · · · · ·




(4.14)

Note that

[
ZT

1,0A

−ZT
2,0B

]
=

[
ZT

1 K

ZT
3

]
J̃V T , invertible, and ZT

2 KJ̃ = 0. Thus the rows of

ZT
1 , ZT

2 , ZT
3 are linearly independent. Also, since J̃V T has n columns, we get

n = rank(




ZT
1 K

ZT
2 K

ZT
3


 J̃V T ) ≤ rank(J̃V T ) ≤ n
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Therefore,

corank(J̃V T ) = (k + 2)n− rank(J̃V T ) = (k + 1)n = dim(Z2K) + dim(Z4)

This implies that we can choose Z4 such that both R is invertible and ZT
4 (J̃V T ) = R0 =

0. In this special circumstance we have from [24] that

[
X 0

Y Z

]†
=

[
X† 0

−X†Y Z† Z†

]

so that the Moore-Penrose inverse of the block lower triangular matrix is also block

lower triangular matrix. Thus the first block row gives the LSC
[

ZT
1,0A

−ZT
2,0B

]
x′ =

[
ZT

1,0B

λZT
2 F

]
x +

[
ZT

1,0f

λZT
2 g

]
(4.15)

which is the same as

ZT
1,0Ax′ = ZT

1,0(−Bx + f) (4.16a)

ZT
2 (−Fx + g)′ = (−λI)ZT

2 (−Fx + g) (4.16b)

since ZT
2 F = ZT

2,0B.
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Chapter 5

Stabilized LSC: LTV Systems

5.1 Introduction

We have developed two methods for constant coefficient DAEs that produce LSC

with desired additional dynamics. In this chapter we will apply those techniques to the

linear time varying DAE

A(t)x′ + B(t)x = f(t) (5.1)

where A(t), B(t) are matrix functions of t and A(t) is singular possibly for all t. The

LTV analysis contains additional difficulties compared to the constant coefficient case.

For example, the stability of the system is no longer directly related to the eigenvalues.

Ensuring the smoothness of various components during calculations is also a problem

since they are done at every time and not just once. Since the derivative array equations

will now contain the derivatives of A and B, it is not feasible to obtain an explicit

formula of the completion as in the constant coefficient case. Instead, by using the

techniques developed in Chapter 3 and 4 together, we will obtain a less explicit but

more effective formulation of the completion that will enable us to identify the additional

dynamics.

Before starting our analysis, lets take a look at what happens with the standard

derivative array in the LTV case. In the LTI case we have proved that the additional

eigenvalues are equal to 0. Consider the example
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Example 3 Let α, β be parameters in the index one DAE;

x′1 = βx1 (5.2a)

0 = eαt(x1 − x2) (5.2b)

Equation (5.2) is solvable with solutions x1 = eβtc, x2 = x1 for all values of α. Here c

is an arbitrary constant. The least squares completion is

x′1 = βx1 (5.3a)

x′2 = −αx2 + (α + β)x1 (5.3b)

The eigenvalues of the system (5.3) are {β,−α}. Note that β comes from the dynamics

of the DAE but −α is from the additional dynamics of the LSC.

The example shows that the additional dynamics can be arbitrary in the LTV case if one

uses the standard derivative array.

5.2 Derivative Array and Canonical Forms

From here on, we may skip writing the variable t, while all the matrices involved will

be assumed time variable unless otherwise specified. Similarly, full rank or invertible,

will mean pointwise full rank or pointwise invertible when time variable matrices are

concerned.

We will allow λ to be time dependent in this chapter. This will turn out to be nec-

essary for certain DAEs. We will use a different notation for stabilized differentiation.

Let D = d
dt

+ λ. We now apply the operator D to (5.1) k times to get the system

F = 0 (5.4a)

DF = 0 (5.4b)
... (5.4c)

DkF = 0 (5.4d)
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where F = Ax′ + Bx− f . The derivative array (5.4) can be written as

Jw = −Fx + g (5.5)

where

J =




A 0 0 0 · · · 0

DA + B A 0 0 · · · 0

D2A + 2DB 2DA + B A 0 · · · 0

D3A + 3D2B 3D2A + 3DB 3DA + B A · · · 0
... . . . ...




,

F =




B

DB

D2B
...

DkB




, g =




f

Df

D2f
...

Dkf




with DmX = D(Dm−1X) for any matrix X .

Let S,K, V be the shifting operators defined in the last chapter and let J̃ , F̃ , g̃ de-

note the same matrices with one extra stabilized differentiation D. We then have the

following relationships

KJ̃ = JK (5.6)

KF̃ = F (5.7)

Kg̃ = g (5.8)

SF̃ = DF (5.9)

Sg̃ = Dg (5.10)

The following lemma is very important as it will be frequently used in calculations.

Lemma 4

SJ̃ = DJK −FV T + JS (5.11)
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Proof. We first have

SJ̃ =




DA + B A 0 0 · · · 0

D2A + 2DB 2DA + B A 0 · · · 0

D3A + 3D2B 3D2A + 3DB 3DA + B A · · · 0
... . . . ...




(5.12)

and

DJK =




DA 0 0 0 · · · 0

D2A +DB DA 0 0 · · · 0

D3A + 2D2B 2D2A +DB DA 0 · · · 0
... . . . ...




(5.13)

The difference of which gives

SJ̃ −DJK =




−B A 0 0 · · · 0

−DB DA + B A 0 · · · 0

−D2B D2A + 2DB 2DA + B A · · · 0
... . . . ...




(5.14)

On the other hand we have

FV T =




DB 0 0 0 · · · 0

D2B 0 0 0 · · · 0

D3B 0 0 0 · · · 0
...

...
...

... . . . ...




(5.15)

and

JS =




0 A 0 0 · · · 0

0 DA + B A 0 · · · 0

0 D2A + 2DB 2DA + B A · · · 0
... . . . ...




(5.16)

Hence the result follows. Note that DJK = J ′K + λJK. 2

This time we will calculate the completion in terms of Z1, Z2 which were defined

in the previous chapter. However, we need to prove the existence of such Z1,0, Z2 for
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time variable systems as well. We will do this by using a canonical form similar to the

one used in the previous chapter. The results we need are summed up in the following

lemma [16], [42].

Lemma 5 Suppose that the linear time variable DAE (5.1) is solvable, where A(t) is

identically singular. Then

1. There exists pointwise nonsingular matrices P (t) and Q(t) such that

PAQ =

[
Id W

0 N

]
, PBQ− PAQ′ =

[
0 0

0 Ia

]

In other words, left multiplication by P (t) and the coordinate change given by

x = Q(t)y transform (5.1) to

[
Id W

0 N

]
y′ +

[
0 0

0 Ia

]
y = P (t)f(t) (5.17)

The system Ny′2 + y2 = f2 is uniquely solvable and has only one solution for

sufficiently smooth f .

2. Let Ĵk be the jacobian of (5.17) obtained from k differentiations. Suppose that Ĵk

has constant rank. Then corank(Ĵi) = dim(G) = a for i ≥ k.

3. Let Jk be the jacobian of (5.1) with k differentiations. Then

Jk = P̂ ĴkQ̂

where P̂ , Q̂ are pointwise nonsingular matrices. Consequently, corank(Ji) = a

for i ≥ k provided that Jk has constant rank.

Note that N in (5.17) does not have to have constant rank, it is only the derivative

array that needs to have constant rank. An example where N cannot be made strictly

upper triangular is found in [9].

Now suppose that the derivative array (5.5) satisfies our basic assumptions (A1)–

(A4) from Chapter 1 with n = k. Then, there exists a smooth matrix function Z2 of full
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column rank satisfying ZT
2 J = 0. Equivalently, the columns of the matrix Z2 form a

basis for R(J)⊥. Let rank(Z2) = a. Since both ZT
2 and

[
J F

]
have full row rank, ZT

2 F
also has full row rank, which will also be a. Let T2 be a matrix function whose columns

form a basis for N(ZT
2 F). Then rank(AT2) = d. let Z1,0 be a matrix whose d columns

form a basis for R(AT2). We have a + d = n. Lets define ZT
1 =

[
ZT

1,0 0 · · · 0
]
.

Lemma 6 The matrix function

[
ZT

1,0A

ZT
2 F

]
is pointwise invertible.

Proof. Let t = t0. Suppose that

[
(ZT

1,0A)(t0)

(ZT
2 F)(t0)

]
v = 0

for some vector v. Then, we have (ZT
1,0A)(t0)v = 0 and (ZT

2 F)(t0)v = 0. (ZT
2 F)(t0)v =

0 implies v ∈ N(ZT
2 F(t0)) = R(T2(t0)) by definition. Therefore, v = T2x for some

vector x. Then, by the first part, we get (ZT
1,0AT2)(t0)x = 0 = ZT

1,0(AT2)(t0)x, which

implies (AT2)(t0)x = 0 by definition of Z1,0. But (AT2)(t0) has full column rank, thus

we get x = 0, so v = T2x = 0. 2

5.3 Calculating the Completion

We will now calculate the LSC by finding a matrix G0 that satisfies the two condi-

tions

G0J̃ =
[

I 0 0 · · · 0
]

(5.18a)

G0Z̃2 = 0 (5.18b)

where Z̃2 is a matrix of maximal rank satisfying Z̃T
2 J̃ = 0. Note that the LSC is then

given by the formula

x′ = G0(−F̃x + g̃). (5.19)

Consider the following matrix
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G0 = D

[
ZT

1 K + C1Z
T
2 K

(ZT
2 )′K + ZT

2 S + C2Z
T
2 K

]
(5.20)

We claim that suitable matrices C1, C2 and D exist such that G0 satisfies the above

conditions. Note that since corank(J̃) = corank(J), ẐT
2 K is a matrix of maximal rank

satisfying (ZT
2 K)J̃ = 0. Therefore, we can choose Z̃T

2 = ZT
2 K.

Using Lemma 4 and the fact that ZT
2 J = 0, we have

(ZT
1 K + C1Z

T
2 K)J̃ = ZT

1 KJ̃ + C1Z
T
2 KJ̃

= ZT
1 JK + C1Z

T
2 JK

= ZT
1 JK

=
[

ZT
1,0A 0 0 · · · 0

]
(5.21)

and

((ZT
2 )′K + ZT

2 S + C2Z
T
2 K)J̃ = (ZT

2 )′KJ̃ + ZT
2 (J ′K + λJK −FV T + JS) + C2Z

T
2 KJ̃

= (ZT
2 )′KJ̃ + ZT

2 J ′K − ZT
2 FV T

= (ZT
2 )′JK + ZT

2 J ′K − ZT
2 FV T

= (ZT
2 J)′K − ZT

2 FV T

= −ZT
2 FV T =

[
−ZT

2 F 0 0 · · · 0
]

(5.22)

Thus we have

G0J̃ = D

[
ZT

1 K + C1Z
T
2 K

(ZT
2 )′K + ZT

2 S + C2Z
T
2 K

]
J̃ = D

[
ZT

1,0A 0 · · · 0

−ZT
2 F 0 · · · 0

]
(5.23)

Since

[
ZT

1,0A

−ZT
2 F

]
is pointwise invertible, the choice D =

[
ZT

1,0A

−ZT
2 F

]−1

will give us the

first condition

GJ̃ =
[

I 0 0 · · · 0
]

(5.24)
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We will use the condition (5.18b) now to find C1, C2. So suppose that G0Z̃2 = 0.

Then,

(ZT
1 K + C1Z

T
2 K)Z̃2 = 0, (5.25a)

((ZT
2 )′K + ZT

2 S + C2Z
T
2 K)Z̃2 = 0 (5.25b)

From this we get

C1 = −(ZT
1 KZ̃2)(Z

T
2 K(ZT

2 K)T )−1

= −(ZT
1 K(ZT

2 K)T )(ZT
2 K(ZT

2 K)T )−1

= −(ZT
1 Z2)(Z

T
2 Z2)

−1 (5.26)

and

C2 = −((ZT
2 )′K + ZT

2 S)(ZT
2 K)T (ZT

2 K(ZT
2 K)T )−1

= −(ZT
2 )′Z2(Z

T
2 Z2)

−1 + ZT
2 SKT Z2(Z

T
2 Z2)

−1 (5.27)

Therefore, G0 is the matrix we are looking for with C1, C2, D as defined above. Thus,

we can now calculate the LSC by the formula

x′ = G0(−F̃x + g̃) (5.28)

Then we have

(ZT
1 K + C1Z

T
2 K)F̃ = ZT

1 F + C1Z
T
2 F

= ZT
1,0B + C1(Z

T
2 F) (5.29)

(ZT
1 K + C1Z

T
2 K)g̃ = ZT

1 g + C1Z
T
2 g

= ZT
1,0f + C1(Z

T
2 g) (5.30)

and
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((ZT
2 )′K + ZT

2 S + C2Z
T
2 K)F̃ = (ZT

2 )′KF̃ + ZT
2 SF̃ + C2Z

T
2 KF̃

= (ZT
2 )′F + ZT

2 (DF) + C2Z
T
2 F

= (ZT
2 )′F + ZT

2 (F ′ + λF) + C2Z
T
2 F

= (C2 + λI)(ZT
2 F) + (ZT

2 F)′ (5.31)

Similarly

((ZT
2 )′K + ZT

2 S + C2Z
T
2 K)g̃ = (C2 + λI)(ZT

2 g) + (ZT
2 g)′ (5.32)

Therefore the LSC is given by

x′ = G(−F̃ + g̃)x = D

[
ZT

1 K + C1Z
T
2 K

(ZT
2 )′K + ZT

2 S + C2Z
T
2 K

]
(−F̃x + g̃)

which becomes

x′ =

[
ZT

1,0A

−ZT
2 F

]−1 (
−

[
C1(Z

T
2 F) + ZT

1,0B

(C2 + λI)(ZT
2 F) + (ZT

2 F)′

]
x +

[
C1(Z

T
2 g) + ZT

1,0f

(C2 + λI)(ZT
2 g) + (ZT

2 f)′

])

(5.33)

Note that the formula contains the term (ZT
2 F)′ which is equal to Z ′T

2 F + ZT
2 F ′ since

Z2 is now time variable. Therefore the formula requires the calculation of Z ′
2. However,

as commented on earlier, since Z2 is calculated numerically, computing Z ′
2 directly by

differentiating Z2 can cause too much numerical error. In Chapter 4 we outlined a

process on how to calculate the alternative completion using the least squares method.

In Chapter 6 we will modify the same process for LTV systems and show how that can

be used to calculate the completion without having to differentiate Z2.

Note that the completion (5.33) can also be written as

ZT
1,0(Ax′ + Bx− f) = −C1(Z

T
2 Fx− ZT

2 g) (5.34a)

(ZT
2 Fx− ZT

2 g)′ = −(C2 + λI)(ZT
2 Fx− ZT

2 g) (5.34b)

This will be the main form we will use for our analysis.
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5.4 The Uniqueness

Note that Z1 and Z2 are not uniquely determined. However, since the LSC is unique,

this formula should not depend on the choice of Z1, Z2. The following lemma is to

confirm this fact.

Lemma 7 The LSC given by (5.34) is independent of which Z1,0, Z2 are taken.

Proof. Suppose that Ẑ1,0, Ẑ2 are two matrices with the same property as Z1,0, Z2. Since

their columns constitute a basis for the same subspaces, there exists nonsingular matrices

P (t) and Q(t) such that

ẐT
1,0 = PZT

1,0, (5.35)

ẐT
2 = QZT

2 (5.36)

P, Q are smooth if the Z matrices are. Then we get

ẐT
1 =

[
PZT

1,0 0 · · · 0
]

= PZT
1 (5.37)

Ĉ1 = −ẐT
1 Ẑ2(Ẑ

T
2 Ẑ2)

−1

= (−PZT
1 )(Z2Q

T )(QZT
2 Z2Q

T )−1

= −PZT
1 Z2(Z

T
2 Z2)

−1Q−1

= PC1Q
−1 (5.38)

Ĉ2 = −(QZT
2 )′(Z2Q

T )(QZT
2 Z2Q

T )−1 + (QZT
2 )SKT (Z2Q

T )(QZT
2 Z2Q

T )−1

= −(Q′ZT
2 + Q(ZT

2 )′)Z2(Z
T
2 Z2)

−1Q−1 + QZT
2 SKT Z2(Z

T
2 Z2)

−1Q−1

= −Q′ZT
2 Z2(Z

T
2 Z2)

−1Q−1 −Q(ZT
2 )′Z2(Z

T
2 Z2)

−1Q−1 + QZT
2 SKT Z2(Z

T
2 Z2)

−1Q−1

= −Q′Q−1 −Q[(ZT
2 )′Z2(Z

T
2 Z2)

−1 + ZT
2 SKT Z2(Z

T
2 Z2)

−1]Q−1

= −Q′Q−1 + QC2Q
−1 (5.39)
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Now substituting (5.38) and (5.39) in (5.34), we get

ẐT
1,0(Ax′ + Bx− f) = Ĉ1(Ẑ

T
2 Fx− ẐT

2 g) (5.40a)

(ẐT
2 Fx− ẐT

2 g)′ = −(Ĉ2 + λI)(ẐT
2 Fx− ẐT

2 g) (5.40b)

which implies

PZT
1,0(Ax′ + Bx− f) = PC1Q

−1(QZT
2 Fx−QZT

2 g) (5.41a)

(QZT
2 Fx−QZT

2 g)′ = −(−Q′Q−1 + QC2Q
−1 + λI)(QZT

2 Fx−QZT
2 g)(5.41b)

or

PZT
1,0(Ax′ + Bx− f) = PC1(Z

T
2 Fx− ZT

2 g) (5.42a)

Q′(ZT
2 Fx− ZT

2 g) + Q(ZT
2 Fx− ZT

2 g)′ = (Q′Q−1Q(ZT
2 Fx− ZT

2 g)

− (QC2Q
−1 + λI)Q(ZT

2 Fx− ZT
2 g)(5.42b)

This gives

PZT
1,0(Ax′ + Bx− f) = PC1(Z

T
2 Fx− ZT

2 g) (5.43a)

Q(ZT
2 Fx− ZT

2 g)′ = −Q(C2 + λI)(ZT
2 Fx− ZT

2 g) (5.43b)

and finally

ZT
1,0(Ax′ + Bx− f) = C1(Z

T
2 Fx− ZT

2 g) (5.44a)

(ZT
2 Fx− ZT

2 g)′ = −(C2 + λI)(ZT
2 Fx− ZT

2 g) (5.44b)

since P and Q are pointwise nonsingular. 2

Now that the completion is independent of which Z1, Z2 are used, we can select

them in a way that will facilitate our analysis.

Lemma 8 There exists appropriate Z1 and Z2 with ‖Z1‖ = ‖Z2‖ = 1 such that

‖C2‖ ≤ 1, ‖C2‖ ≤ 1 (5.45)

Proof. We can choose a Z2 to have orthonormal columns so that

ZT
2 Z2 = In.
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(If ZT
2 does not have this property, then by Gram-Schmidt, there exists a pointwise

nonsingular R such that RZT
2 does.) Now, let Q(t) be the solution of the ODE

X ′ = −X(ZT
2 )′Z2, X(t0) = I

Then Q(t) is smooth and pointwise nonsingular. Moreover we have

(QQT )′ = Q′QT + QQ′T

= −(Q(ZT
2 )′Z2)Q

T −Q(Q(ZT
2 )′Z2)

T

= −Q(ZT
2 )′Z2Q

T −QZT
2 (ZT

2 )′T QT

= −Q((ZT
2 )′Z2 + ZT

2 (Z ′
2)Q

T

= −Q(ZT
2 Z2)

′QT = 0 (5.46)

since ZT
2 Z2 = I . Therefore, we have QQT = I and Q(t) is point-wise unitary by the

initial condition [42]. Let ẐT
2 = QZT

2 . Then, using ZT
2 Z2 = I = QQT , we get

H1 = (ẐT
2 )′Ẑ2(Ẑ

T
2 Ẑ2)

−1

= (QZT
2 )′(QZT

2 )T (QZT
2 Z2Q

T )−1

= (Q′ZT
2 + Q(ZT

2 )′)Z2Q
T (I)

= (−Q(ZT
2 )′Z2Z

T
2 + Q(ZT

2 )′)Z2Q
T

= −Q(ZT
2 )′Z2Z

T
2 Z2Q

T + Q(ZT
2 )′Z2Q

T

= −Q(ZT
2 )′Z2Q

T + Q(ZT
2 )′Z2Q

T = 0 (5.47)

and

H2 = (QZT
2 )SKT (QZT

2 )T ((QZT
2 )(QZT

2 )T )−1

= (QZT
2 )SKT (QZT

2 )T

= QZT
2 SKT Z2Q

T (5.48)
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Let ‖, ‖ be the spectral norm. Then,

‖Ĉ2‖ = ‖Ĥ1 + Ĥ2‖
≤ ‖Ĥ1‖+ ‖Ĥ2‖
= 0 + ‖QZT

2 SKT ZT QT‖
≤ ‖Q‖‖ZT

2 ‖‖S‖‖KT‖‖Z2‖‖QT‖
= 1 (5.49)

since ‖Q‖ = ‖ZT
2 ‖ = ‖S‖ = ‖K‖ = 1. 2

Similarly, let ZT
1,0 have an orthonormal set of rows and Z2 be as calculated above.

Then, ZT
1 Z1 = I and

‖Ĉ1‖ = ‖ẐT
1 ẐT

2 (ẐT
2 Ẑ2)

−1‖ ≤ 1 (5.50)

5.5 The Stability Properties

We will now begin analyzing the additional dynamics of the completion (5.34),

which involves the parameter λ(t). We want to examine how λ effects the stability

of the system and determine the sufficient conditions that λ needs to satisfy in order to

achieve a desired stability. Instead of determining the additional dynamics explicitly,

as done in the constant coefficient case, we will directly look at the behavior of the

solutions of the completion relative to the solution manifold. The convergence of an

arbitrary solution of the completion to the solution manifold is what we are looking for.

Throughout this thesis it is assumed that λ(t) > 0.

Let σ denote the smallest singular value of a matrix and let

δ(t) = σ(D−1) = σ

([
ZT

1,0A

ZT
2 F

])
(5.51)

We have δ(t) > 0 for all t > 0 but δ(t) is not necessarily bounded away from zero.

We are now in a position to give our first stabilization result.

Theorem 9 Let M(t) = {a ∈ Rn|ZT
2 F(t)a − ZT

2 g(t) = 0}. That is, M = {M(t)|t ∈
R} is the solution manifold of the DAE. Let y = y(t) be an arbitrary solution of the LSC
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(5.34). Suppose that we have a smooth k such that

e−k(t) ≤ δ(t) (5.52)

Let λ(t) =
∫ t

0
λ(τ)dτ . Then

d(y(t),M(t)) ≤ c0e
−λ(t)+t+k(t) (5.53)

Here d is the standard metric, and d(y(t),M(t)) = inf{d(y(t), a)|a ∈ M(t)}. In par-

ticular, if
∫∞

0
−λ(τ) + 1 + k′(τ)dτ = −∞, then

limt 7→∞d(y(t),M(t)) = 0 (5.54)

Proof. Let y = y(t) be an arbitrary solution of the LSC (5.34). Let x =

[
ZT

1,0A

ZT
2 F

]−1 [
ZT

1,0Ay

ZT
2 g

]

so that we have

ZT
1,0Ax = ZT

1,0Ay (5.55a)

ZT
2 Fx− ZT

2 g = 0 (5.55b)

Then (5.55b) implies x(t) ∈ M(t). Note that we are not saying at this point that x(t)

is a solution of the DAE, merely that at each t it is a consistent initial condition. On the

other hand, by (5.34b) ZT
2 Fy − ZT

2 g is a solution of the ODE

z′ = −(C2 + λI)z

Then, there is a constant a0 so that ‖z‖ ≤ a0e
∫ t
0 ‖C2(τ)‖−λ(τ)dτ . Therefore, by (5.49), we

get

‖(ZT
2 Fy − ZT

2 g)(t)‖ ≤ a0e
−λ(t)+t (5.56)

where λ(t) =
∫ t

0
λ(τ)dτ . Combining this with (5.55b), we get for t ≥ 0 that

‖(ZT
2 Fy − ZT

2 g)− (ZT
2 Fx− ZT

2 g)‖ ≤ a0e
−λ(t)+t (5.57)

and hence

‖ZT
2 F(y − x)‖ ≤ a0e

−λ(t)+t (5.58)
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On the other hand, by (5.55a) we have

ZT
1,0A(y − x)(t) = 0 (5.59)

Now combining (5.58) and (5.59), we get

‖
[

ZT
1,0A

−ZT
2 F

]
(y − x)(t)‖ = ‖D−1(y − x)(t)‖ ≤ a0e

−λ(t)+t (5.60)

But by definition,

‖D−1(y − x)‖ ≥ δ(t)‖y − x‖ (5.61)

Then (5.61), (5.60), (5.52) imply

‖y(t)− x(t)‖ ≤ c0e
−λ(t)+t+k(t) (5.62)

Theorem (9) now follows. 2

Example 4 Consider the pure algebraic DAE

e−2tx = f(t) (5.63)

where f is a differentiable function. Note that the solution manifold for this DAE is

x(t) = e2tf(t). Lets now calculate the stabilized LSC. One differentiation in the stabi-

lized sense gives

0 = e−2tx− f (5.64)

0 = e−2tx′ − 2e−2tx + λe−2tx− f ′ − λf (5.65)

= e−2tx′ + (λ− 2)e−2tx− f ′ − λf (5.66)

Therefore the LSE is

[
0 0

e−2t 0

]T [
0 0

e−2t 0

][
x′

x′′

]
=

[
0 0

e−2t 0

]T (
−

[
e−2t

(λ− 2)e−2t

]
x +

[
f

f ′ + λf

])
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which simplifies to
[
e−4t 0

0 0

][
x′

x′′

]
= −

[
(λ− 2)e−4t

0

]
x +

[
e−2t(f ′ + λf)

0

]

The first block row of (4) gives us the LSC as

x′ = −(λ− 2)x + e2t(f ′ + λf) (5.67)

The difference ε between x of (5.67) and the unique solution x = e2tf satisfies ε′ =

−(λ−2)ε and ε goes to zero if λ is large enough. In particular, we need
∫∞
0

(2−λ)dτ =

−∞.

Example 5 Now consider

x′1 = −x1 + eαtx2 (5.68a)

0 = x2 (5.68b)

whose stabilized LSC is

x′1 = −x1 + eαtx2 (5.69a)

x′2 = −λx2 (5.69b)

Suppose that λ is constant and α ≥ 0. The solutions of (5.68) are xT = [e−tc, 0]

so that M(t) is just the constant subspace spanned by [1, 0]T . On the other hand, the

solutions of (5.69) are

x2 = e−λtc2, x1 =





c1e
−t + c2

1
1+α−λ

e(α−λ)t if 1 + α− λ 6= 0

c1e
−t + c2te

−t if 1 + α− λ = 0
(5.70)

We see that limt→∞ d(y(t),M(t)) = 0 for every solution of the completion if and only

if λ > 0. However, for every solution of the completion there is a solution x of the DAE

so that limt→∞(y(t)− x(t)) = 0 if and only if λ > α.
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Theorem 9 states that the solutions of the completion will converge to the solution

manifold for appropriately chosen λ’s. However, this does not necessarily mean that

they will converge to a particular solution of the DAE as well. As the Example 5 shows,

this might require an even larger λ in general. Theorem 10 describes the conditions

under which such a convergence can take place. We have two separate results. First,

given a solution y(t) of the completion with the initial condition y(0), if we take the

solution x(t) of the DAE that is closest to y(t) at the time t = 0, then the difference

‖y(t) − x(t)‖ is bounded by a function involving λ. Thus, it is possible to lower the

bound by choosing λ appropriately. However, for any given λ, the bounding function is

still monotone increasing, therefore, y(t) may still move away from x(t), and thus the

convergence at infinity would not occur. Therefore, this result is most useful when a

finite interval is concerned.

On the other hand, there is also a solution of the DAE, x̂(t), while it is not the closest

one to y(t) at t = 0, for which we do get ‖y(t) − x̂(t)‖ → 0 provided that λ satisfies

certain conditions.

Now, note that the system

ZT
1,0(Ax′ + Bx− f) = 0 (5.71a)

ZT
2 Fx− ZT

2 g = 0 (5.71b)

has the same solutions as the original DAE. On the other hand, we have calculated the

LSC as

ZT
1,0(Ax′ + Bx− f) = −C1(Z

T
2 Fx− ZT

2 g) (5.72a)

(ZT
2 Fx− ZT

2 g)′ = −(C2 + λI)(ZT
2 Fx− ZT

2 g) (5.72b)

Therefore, the difference z = z(t) = y(t)− x(t) between a solution y = y(t) of (5.72)

and a solution x = x(t) of the DAE, which will satisfy (5.71), satisfies the equation

ZT
1,0(Az′ + Bz) = −C1(Z

T
2 Fz) (5.73a)

(ZT
2 Fz)′ = −(C2 + λI)(ZT

2 Fz) (5.73b)
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Lets define the change of variable

z̃ =

[
z̃1

z̃2

]
=

[
ZT

1,0A

−ZT
2 F

]
z = D−1z

so that we have

z̃1 = ZT
10Az, (5.74a)

z̃2 = −ZT
2 Fz (5.74b)

Then, (5.73) becomes

z̃′1 + U1z̃1 = −U2z̃2 + C1z̃2 (5.75a)

z̃′2 = −(C2 + λI)z̃2 (5.75b)

where

U = ((ZT
1,0A)′ + ZT

1,0B)D (5.76a)

U1 = U [I, 0]T (5.76b)

U2 = U [0, I]T (5.76c)

Note that we have

‖U1(t)‖ ≤ ‖U(t)‖, and ‖U2(t)‖ ≤ ‖U(t)‖ (5.77)

Let Ut = sup{‖U(s)‖ | s ∈ [0, t]}. Then, Ut is monotone increasing. For the sake of

simplicity, we will also assume that k(t) is nondecreasing as well, which is not against

the nature of k(t).

We can now prove our second result.

Theorem 10 Let y = y(t) be a solution of the LSC (5.34) with the initial condition

y(0) = y0. Let x = x(t) be the solution of the DAE with the initial condition

x(0) =

[
ZT

1,0A

−ZT
2 F

]−1 [
ZT

1,0Ay

−ZT
2 g

]
(0) (5.78)
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Then we have

‖y(t)− x(t)‖ ≤ b0λ1(t) (5.79)

where λ1(t) = (Utt + t)e2Utt+t+k(t)
∫ t

0
e−λ(τ)dτ . In particular, if λ is such that λ′1(t) ≤

e−t, then there exists another solution x̂ = x̂(t) of the DAE such that

lim
t→∞

‖y(t)− x̂(t)‖ = 0 (5.80)

Proof. By the same argument as in the previous theorem, (5.75b) implies

‖z̃2(t)‖ ≤ a0e
−λ(t)+t (5.81)

On the other hand, (5.75a) implies

z1(t) = Φ(t)

(
Φ−1(0)z1(0) +

∫ t

0

Φ−1(τ)R(τ)dτ

)
(5.82)

where Φ(t) is a fundamental matrix solution of z′1 = −U1z1 and R(t) = (−U2 +

C1)z̃2(t). Let Rt = sup{‖R(s)‖ | s ∈ [0, t]}. Note that Rt is also positive increasing.

Then, (5.50) and (5.81) imply

Rt ≤ a0(Ut + 1)e−λ(t)+t (5.83)

On the other hand, since Φ(t) is a fundamental matrix solution of z′ = −U1z, we

have Φ(t) = − ∫ t

0
U1(τ)Φ(τ)dτ . By (5.77) this implies

‖Φ(t)‖ ≤ Ut

∫ t

0

‖Φ(τ)‖dτ (5.84)

Thus, by Gronwall,

‖Φ(t)‖ ≤ eUtt (5.85)

Similarly, Φ−1(t) is a fundamental matrix solution for z′ = zU1. Therefore, by the

same argument, we have

‖Φ−1(t)‖ ≤ eUtt (5.86)

Note also that by the assumption (5.78) we have z1(0) = ỹ1(0)− x̃1(0) = Z1,0Ay(0)−
Z1,0Ax(0) = 0. Therefore, substituting (5.83), (5.85), (5.86) in (5.82), we get

‖z̃1(t)‖ ≤ a0e
Utt

∫ t

0

eUτ τ (Uτ + 1)e−λ(τ)+τdτ

≤ a0(Utt + t)e2Utt+t

∫ t

0

e−λ(τ)dτ (5.87)
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since Ut and k are increasing. Combining that with (5.81) we get

‖z̃(t)‖ = ‖(D−1z)(t)‖ ≤ a0(Utt + t)e2Utt+t

∫ t

0

e−λ(τ)dτ (5.88)

Thus, by (5.52) we arrive at

‖z(t)‖ ≤ b0(Utt + t)e2Utt+t+k(t)

∫ t

0

e−λ(τ)dτ = b0λ1(t) (5.89)

which gives us the first part of theorem.

To prove the second part, suppose that λ′1(t) ≤ e−t. Then by (5.89) this implies

(Ut + 1)e−λ(t)+2Utt+t+k(t) ≤ e−t (5.90)

for all t ≥ 0. Then

‖Φ−1(s)R(s)‖ ≤ (Ut + 1)e−λ(t)+t+Utt ≤ e−Utt−t−k(t) (5.91)

Thus the integral
∫∞
0

Φ−1(τ)R(τ)dτ is defined. Let

z1(0) = −(Φ−1(0))−1

∫ ∞

0

Φ−1(τ)R(τ)dτ (5.92)

Then substituting (5.92), (5.91) and (5.85) in (5.82) we get

‖z̃1(t)‖ ≤ eUtt

(∫ ∞

t

e−Uτ τ−τ−k(t)dτ

)
≤ eUtt

(
e−Utt−k(t)

∫ ∞

t

e−τdτ

)

= eUtte−Utt−k(t)e−t = e−t−k(t) (5.93)

Combining (5.93) with (5.81) and (5.90), we get

‖z̃(t)‖ ≤ c0e
−t−k(t) (5.94)

Again, since ‖z̃(t)‖ = ‖(D−1z)(t)‖, this implies

‖z(t)‖ ≤ d0e
−t−k(t)+k(t) = d0e

−t (5.95)

Thus

lim
t→∞

‖z(t)‖ = lim
t→∞

‖y(t)− x(t)‖ = 0

2
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Note that x(t) is a solution of the DAE that is specified by the initial condition

z0 = −(Φ−1(0))−1

∫ ∞

0

Φ−1(τ)R(τ)dτ (5.96)

There is no restrictions on z̃2(0) however. Since z̃(0) = D−1z(0) = D−1(x0 − y0),

(5.96) is equivalent to x(0) = Dz̃(0) + y(0). Therefore, the solution of the completion

with the initial value y(0) = (y1(0), y2(0)) will converge to solutions of the DAE with

initial value [
x1(0)

x2(0)

]
= D

[
z̃1(0)

c

]
+

[
y1(0)

y2(0)

]
(5.97)

where c is an arbitrary constant vector. Therefore, in fact, each solution of the comple-

tion will converge to a family of solutions of the DAE.

Remark 1 Note that since J depends on λ, the matrices Z1,0, Z2 and thus D−1, U, C1

and C2 can depend on λ as well. Therefore, Theorem 9 and Theorem 10 do not neces-

sarily imply the convergence for a large enough λ = λ(t).

In the constant coefficient case, we had proved that the additional dynamics con-

sisted of a polynomial times an exponential, and the manifold was asymptotically stable

for any positive real λ. However, as we have just showed, this is not the case for the time

variable systems. λ has to satisfy certain assumptions. Also, even when the stability is

obtained, we don’t have a clear description of the additional dynamics as in the constant

coefficient case. Moreover, selecting an appropriate λ that will provide the stability can

involve technical difficulties since it depends on the matrices such as D(t) and U(t).

These difficulties motivate us to consider the alternative stabilized completion for LTV

systems, which we will begin to analyze now.
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Chapter 6

Alternative Stabilized Completion:

LTV Systems

6.1 Index One Formulation and Stability

In Chapter 4 we have introduced the alternative stabilized completion for constant

coefficient systems. We will now analyze the extension of that method to time variable

DAEs. While the alternative stabilized completion is computationally more expensive

than the stabilized LSC, we will show that it has better stability properties for time vari-

able systems and can overcome some of the difficulties present with the first technique.

The extension process will basically consist of replacing the elements described in Chap-

ter 4 with their time variable versions. However, the smoothness of the components will

be an issue as well for time variable DAEs.

Let Z1,0, Z2 be the matrices defined in the previous chapter, but corresponding to

the standard derivative array now. Thus, they don’t depend on λ this time. We have

already proved existence of smooth Z1,0, Z2 for the derivative array (5.4), and the stan-

dard derivative array is a special case of (5.4) with D = d
dt

. Therefore, we have that the

system

ZT
1,0(Ax′ + Bx− f) = 0 (6.1a)

ZT
2 Fx− ZT

2 g = 0 (6.1b)
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is an index one DAE with the same solutions as the original DAE. Thus, differentiating

(6.1b) once in the stabilized sense, we obtain the completion

ZT
1,0(Ax′ + Bx− f) = 0 (6.2a)

(ZT
2 Fx− ZT

2 g)′ = (−λI)(ZT
2 Fx− ZT

2 g) (6.2b)

Or, in a more explicit form it is

ZT
1,0Ax′ = −Bx + f (6.3a)

ZT
2 Fx′ = [−λZT

2 F − (ZT
2 F)′]x + (ZT

2 g) + (ZT
2 g)′ (6.3b)

Note that the system (6.2) can be viewed as a special case of (5.34) with C1 = C2 = 0.

Therefore, Theorem 9 and 10 hold for this completion. Moreover, since now Z1,0 and

Z2 are independent of λ, D−1 and U do not depend on λ as well. Thus, by Remark 1,

we conclude that the completion (6.2) is asymptotically stable for larger λ’s. Note that

λ is allowed to be time variable.

6.2 Computation Using Least Squares

As mentioned earlier, the left hand side of (6.2b) now involves the derivative of

Z2. Since Z2 is calculated numerically, the computation of Z ′
2 based on Z2 can create an

unacceptable amount of numerical error. We can avoid this by computing the completion

(6.2) using least squares method that does not involve Z ′
2. We have already outlined the

process for the constant coefficient case in Chapter 4. We will modify that process for

the time variable case now.

Let

R =




ZT
1 K

ZT
2 K

ZT
3

ZT
4




where ZT
1 , ZT

2 are defined as before, ZT
3 = (ZT

2 )′K + ZT
2 S + λZT

2 K, and ZT
4 are extra

rows to make R invertible. We will calculate the LSC obtained from

RĴw = R(−F̂x + ĝ) (6.4)
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where

Ĵ =




A 0 0 0 · · · 0

A′ + B A 0 0 · · · 0

A′′ + 2B′ 2A′ + B A 0 · · · 0

A′′′ + 3B′′ 3A′′ + 3B′ 3A′ + B A · · · 0
... . . . ...




, F̂ =




B

B′

B′′

...

Bk




, ĝ =




f

f ′

f ′′

...

fk




This is a special case of (5.5) with D = d
dt

. Note that the LSC of (6.4) is given by the

first block row of

(RĴ)†R(−F̂x + ĝ)

Considering previous calculations for D = d
dt

, we obtain [RĴ, R(−F̂x + ĝ)] as



ZT
1,0A 0 0 · · · 0 0 ZT

1,0(Bx + f)

0 0 0 · · · 0 0 ZT
2 (Fx + g)

−ZT
2 F 0 0 · · · 0 0 (ZT

2 F)′ + λ(ZT
2 F) + (ZT

2 g)′ + λ(ZT
2 g)

0 R1 R2 · · · · · · · · · · · ·




(6.5)

Note that since

[
ZT

1,0A

−ZT
2 F

]
=

[
ZT

1 K

ZT
3

]
J̃V T , and is invertible, and since ZT

2 K(J̃V T ) =

0, the rows of ZT
1 K, ZT

2 K, ZT
3 are linearly independent. Also, since J̃V T has n columns,

we have

n = rank(




ZT
1 K

ZT
2 K

ZT
3


 J̃V T ) ≤ rank(J̃V T ) ≤ n

Therefore,

corank(J̃V T ) = (k + 2)n− rank(J̃V T ) = (k + 1)n = dim(ZT
2 K) + dim(ZT

4 )

This implies that we can choose Z4 such that both R is invertible and ZT
4 (J̃V T ) = R0 =

0. In this special circumstance we have from [24] that

[
X 0

Y Z

]†
=

[
X† 0

−X†Y Z† Z†

]
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so that the Moore-Penrose inverse of the block lower triangular matrix is also block

lower triangular matrix. Thus the first block row gives the LSC

x′ =

[
ZT

1,0A

−ZT
2 F

]−1 ([
ZT

1,0B

(λI)(ZT
2 F) + (ZT

2 F)′

]
x +

[
ZT

1,0f

(λI)(ZT
2 g) + (ZT

2 f)′

])
(6.6)

which is equivalent to

ZT
1,0(Ax′ + Bx− f) = 0 (6.7)

(ZT
2 Fx + ZT

2 g)′ = (−λI)(ZT
2 Fx + ZT

2 g) (6.8)

which is the same as (6.2). Note that the matrix R does not involve Z ′
2.

6.3 The Smoothness of Calculations

While we have proved the existence of Z1, Z2, we also need to show that they can

be obtained smoothly. In the constant coefficient case Z1, Z2 are constant, therefore

smoothness was not an issue. However, they can be time dependent in the time varying

case since the derivative array is time variable. We will demonstrate a process to obtain

Z1, Z2 smoothly. Since the solutions of ordinary differential equations are smooth, we

will construct an ODE system that includes Z1 and Z2 as particular solutions. We will

illustrate the process only for Z2 here. It can be done similarly for Z1 as well.

Given a smooth jacobian J(t) with constant rank, suppose that we want to find a

smooth Z2 as in the hypothesis. For a fixed t0 ∈ I , by the singular decomposition

theorem, there exist constant unitary matrices U0 and V0 such that

UT
0 J(t0)V0 =

[
Σ0 0

0 0

]
(6.9)

where Σ0 is nonsingular. Then, from [42], the constant matrices U0 and V0 can be

extended to smooth matrix functions U(t) =
[
Ẑ(t) Z(t)

]
and V (t) =

[
T̂ (t) T (t)

]

such that
[
Ẑ(t) Z(t)

]T

J(t)
[
T̂ (t) T (t)

]
=

[
Σ(t) 0

0 0

]
(6.10)
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with
[
Ẑ(t0) Z(t0)

]
= U0,

[
T̂ (t0) T (t0)

]
= V0. Moreover, the columns of Ẑ(t) and

Z(t) span the range and corange of J(t) respectively. In other words, the matrix function

Z(t) satisfies the hypothesis of Z2(t) we are trying to calculate.

Now consider the following ordinary differential equation
[
Ẑ(t)T J(t)

T (t)T

]
T ′(t) = −

[
Ẑ(t)T J ′(t)T (t)

0

]
(6.11a)

[
T̂ (t)T J(t)T

Z(t)T

]
Z ′(t) = −

[
T̂ (t)T J ′(t)T Z(t)

0

]
(6.11b)

[
T (t)T

T̂ (t)T

]
T̂ ′(t) = −

[
T ′(t)T T̂ (t)

0

]
(6.11c)

[
Z(t)T

Ẑ(t)T

]
Ẑ ′(t) = −

[
Z ′(t)T Ẑ(t)

0

]
(6.11d)

with initial conditions
[
Ẑ(t0) Z(t0)

]
= U0 and

[
T̂ (t0) T (t0)

]
= V0. A straight-

forward calculation shows that the matrices in (6.10) satisfy this ODE and the initial

conditions [42]. Thus, by the uniqueness of the solutions, ZT
2 (t) = Z(t) can be calcu-

lated as part of the solution of this ODE.
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Chapter 7

Conclusions and Future Research

7.1 Conclusion

Completing a DAE to an ODE has been a major approach for numerically solving

DAEs for twenty years. This is especially advantageous for unstructured higher index

systems since the direct application of numerical methods to DAEs require the prob-

lem to have lower index and special structure. There are many ways one can obtain a

completion given a DAE. The basic idea of EI is to numerically compute a completion

by solving derivative array equations using least squares methods. While the EI ap-

proach has several advantages when it comes to efficient implementation, the behavior

of the additional dynamics can be a problem [23]. Ideally, the solution manifold will be

asymptotically stable within the open set defined by the solutions of the completion. In

other words, we would like the additional solutions to tend towards the manifold.

Our goal in this thesis has been to analyze the additional dynamics of LSCs for linear

DAEs and modify the completion process to have better dynamics. We can outline the

analytical completion process as follows

• Form the derivative array equations using the DAE

• Form the least squares equations using the derivative array

• Solve the least squares equations to obtain an analytical formula for the dynamical

part of the completion.
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We first analyzed the additional dynamics of LSC defined by the standard derivative

array. By the standard derivative array we mean the derivative array obtained by succes-

sively differentiating the DAE. We started our investigation with linear constant coeffi-

cient systems. Using a canonical decomposition, we first identified the part of the DAE

that creates the additional dynamics. We then applied the completion process outlined

above and obtained an analytical formula for the dynamical part of the DAE using linear

algebraic techniques. For the constant coefficient case, the dynamics are determined by

the eigenvalues of the system. We have proved that the eigenvalues that control the ad-

ditional dynamics are all equal to ”zero”. This means that the additional solutions will

move away from the solution manifold at a polynomial speed whose degree is equal to

the index of the nilpotent matrix in the canonical decomposition of the DAE. While this

is not the worst case possible, it is not what we are looking for either. The situation

is more complex for time varying systems. We demonstrated through an example that

the additional dynamics can be arbitrary for the LTV systems if one uses the standard

derivative array.

One way to change the behavior of additional dynamics is to modify the derivative

array prior to applying the least squares method. One candidate was to use stabilized dif-

ferentiation. Instead of simply differentiating the DAE, we connect each new derivative

with all the previous equations using a parameter λ. We have proved that the additional

eigenvalues of such a completion are then given by −λ. This means that the additional

solutions will converge to the solution manifold for any λ positive. Thus the stability

can be ensured in advance. However, the eigenvalues −λ has a Jordan block of size

equal to the index of the DAE. We then applied the method to time varying systems. In

the time varying case λ is allowed to be time variable. We have showed that the solution

manifold is stable if λ satisfies a certain inequality that involves A,B and some other

coefficients. We have also analyzed the convergence of solutions to a specific solution

of the DAE and showed that this might require even more restrictions on λ.

Another technique we have developed to improve the additional dynamics is the al-

ternative stabilized completion. Given a linear DAE, we first reformulate the system as

a semi-explicit index-1 DAE using auxiliary matrices Z1, Z2. We then differentiate the

constraint equation in the stabilized sense to obtain a completion. It is then a straight-
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forward task to analyze the stability of the completion. For the constant coefficient case,

the manifold is asymptotically stable for any λ positive and there is no jordan block

accompanying the eigenvalues −λ. In other words, the additional dynamics are pure

exponential. While a positive λ is not sufficient for the stability in the LTV case, we

still have the stability for a every sufficiently large λ, which is not the case with the first

technique. One difficulty with the alternative stabilized completion in the LTV case is

the presence of Z ′
2 in the completion and smooth calculation of Z1 and Z2, for which we

have outlined techniques to overcome the problem. We use the least squares method to

avoid Z ′
2 and use an ODE to compute Z1, Z2 smoothly.

In summary, we have developed two methods to alter the additional dynamics of

LSCs in the desired direction. While each method has its own analytical and numerical

advantages, we believe that they will at least jointly provide the necessary tools to obtain

similar results for nonlinear systems.
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Chapter 8

Future Research

We have analyzed the additional dynamics of LSC for linear DAEs and developed

two methods to produce LSCs with desired stability properties. Ultimately our goal is

two extend these results to nonlinear DAEs. It is obvious that nonlinear analysis will

contain additional difficulties. However, having obtained results for linear time varying

systems is promising in that respect since LTV systems have many structural similarities

with nonlinear DAEs. One way to start would be constructing linear jacobians by using

linearization techniques. One can then obtain a stabilized LTV completion and investi-

gate the relationship to the original nonlinear DAE. The nonlinearity will probably make

the results more local in nature.

In this thesis we only concerned ourselves with the effect of the dynamics and took

only the coefficients into the consideration in the analysis of the stability. We did not

examine the effect of constant terms. While in the long term the eigenvalues are what

determines the stability, the constant term also becomes important if we were to consider

the behavior of dynamics in a finite interval. An important question is then how λ should

be chosen to achieve a certain approximation in a given interval. This will depend not

only on the coefficient matrices but also on the function f(t) and the interval.

Our work in this thesis has been fully theoretical in nature. There are also a number

of computational issues to be examined. One of them is technical issues in the selection

process for the stability parameter λ [2]. While we specified in the thesis what assump-

tions λ has to satisfy, the results concern only the limit case, therefore an ideal selection
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of λ might require a technical analysis based on the structure of the specific problem,

area of integration and performance goals. Also, Theorem 10 was proved using Gron-

wall and some related inequalities, which are known to often give very conservative

results. A future research topic is to prove versions of Theorem 10 under weaker, more

practical assumptions on λ. One other numerical issue is to calculate the components

of the alternative completion smoothly, for which we outlined a process. There are also

general numerical issues regarding the computational cost of LSC process in general,

such as calculation of consistent initial conditions, derivative arrays and solving nonlin-

ear equations that are formed by Newton’s iteration.

Although we have constructed stabilized completions only for linear DAEs, it is also

possible to apply the same techniques to many other systems that have different forms.

Consider the following DAE system with delay

Ax′ + Bx + Cx(t− τ) + f(t) = 0 (8.1)

or

Ax′ + Bx + Cx(t− τ) + f(τ) = 0

Assuming that (A,B) is regular, we can apply the techniques we have developed to

obtain a stabilized completion of the form

x′ = Θx + Σ (8.2)

where Σ contains f, x(t − τ) and their derivatives. One can then investigate the con-

ditions necessary or modify the completion so that the higher derivatives of x(t − τ)

will disappear so (8.2) will be an ODE delay system whose analysis is much easier than

(8.1). The stability of the completion will enable (8.2) to effectively approximate (8.1).

Another possible example is the control systems with observers. Suppose that we

have a control DAE

Ax′ + Hx = Bu (8.3)

where A is singular, and would like to obtain an observer y = Cx + Du. Provided that

(A,B) is regular, we can obtain again a stabilized completion of (8.3) of the form

x̃′ + H̃x̃ = Bv (8.4)
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It is easier to find an observer for this ordinary control system. Let

ỹ = C̃x̃ + D̃u (8.5)

be an observer for (8.4). Then, since (8.4) is a stabilized completion we have

‖x̃− x‖ → 0

which implies

‖ỹ − y‖ → 0

thus (8.5) can be used as an observer for (8.3). In fact, since the additional dynamics

have to converge to the DAE dynamics, we only need the solution manifold of (8.3) be

observable and not all of the solutions of (8.4) be observable.

We should also note that while we have considered only continuous systems in the

thesis, the techniques can be modified for a discreet system

Axn+1 + Bxn = fn

with A being singular. There are some similarities as well as differences between con-

tinuous time and discreet time analysis. For example, if A and B are constant, using the

iterative scheme we can produce the equations

Axn+1 + Bxn = fn (8.6)

Axn+2 + Bxn+1 = fn+1 (8.7)
... =

... (8.8)

Axn+k + Bxn+k−1 = fn+2 (8.9)

which gives the system

Jw = Fxn + gn (8.10)

analogous to a derivative array, where w = [xn+1, xn+1, · · · , xn+k]. Note that J will

have the same structure as in the continuous time case when A,B are constant. There-

fore, using similar assumptions we can solve the systems for xn+1 in terms of xn and g,

which will be a discrete system of the form

xn+1 + Cxn = gn (8.11)



84

whose analysis is much easier.

If A and B are time variable, then the Jacobian in (8.10) will have a different but

simpler structure than its continuous counterpart since we will not have terms coming

form the product rule. Note that every new differentiation produces additional solutions.

However, an iteration creates only an equivalent system.
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Chapter 9

Publications and Presentations

Publications

• I. Okay, S. L. Campbell, and P. Kunkel, The Additional Dynamics of Least Squares

Completions for Linear Differential Algebraic Equations, Linear Algebra and Its

Applications, 425 (2007) 471-485.

• I. Okay, S. L. Campbell, and P. Kunkel, Completions of Implicitly Defined Vector

Fields and Their Applications, Proc. MTNS 2008, To appear.

• I. Okay, S. L. Campbell, and P. Kunkel, Stabilized Least Squares Completions for

Linear Time Varying Differential Algebraic Equations, (In Preparation).

Presentations

• Fifth International Conference on Dynamic Systems and Applications

May 2007, Morehouse College Atlanta, Georgia, USA

• Southeastern-Atlantic Regional Conference on Differential Equations

October 2007, Murray State University Murray, Kentucky, USA

• Mathematical Theory of Network and Systems

July 2008, Virginia Tech Blacksburg, Virginia
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