
ABSTRACT

GUO, FEI. Analyzing and Managing Shared Cache in Chip Multi-Processors. (Under
the direction of Professor Yan Solihin).

Recently, Chip Multi-Processor (CMP) or multicore design has become the main-

stream architecture choice for major microprocessor makers. In a CMP architecture,

some important on-chip platform resources, such as the lowest level on-chip cache and

the off-chip bandwidth, are shared by all the processor cores. As will be shown in this

dissertation, resource sharing may lead to sub-optimal throughput, cache thrashing,

thread starvation and priority inversion for the applications that fail to occupy suf-

ficient resources to make good progress. In addition, resource sharing may also lead

to a large performance variation for an individual application as determined by other

applications that are co-scheduled with it. Such performance variation is ill-suited for

the future uses of CMPs considering the recent trends in enterprise IT toward run-

ning a diverse set of applications that have diverse computing requirements. In this

environment, many applications may require a certain level of performance guaran-

tee, which we refer to as performance Quality of Service (QoS). A large performance

variation is a major hindrance to provide QoS. As the number of cores in a CMP

increases, the degree of sharing of platform resources can be expected to increase and

will further exacerbate the performance variation problem. In this dissertation, we

address the resource sharing problem from two aspects.



Firstly, in order to better understand what factors affect the degree of an ap-

plication suffering from the impact of cache sharing, we propose an analytical and

several heuristic models that encapsulate and predict the impact of cache sharing.

The models differ by their complexity and prediction accuracy. We validate the mod-

els against a cycle-accurate simulation. The most accurate model achieves an average

error of 3.9%. Through a case study, we found that the cache sharing impact is largely

affected by the temporal reuse behaviors of the co-scheduled applications.

Secondly, in order to overcome the performance variation problem and provide de-

terministic throughput to the individual applications, we investigate a framework for

providing performance Quality of Service in a CMP server. We found that the ability

of a CMP to partition platform resources alone is not sufficient for fully providing

QoS. We also need an appropriate way to specify a QoS target, and an admission

control policy that accepts jobs only when their QoS targets can be satisfied. We also

found that providing strict QoS often leads to a significant reduction in throughput

due to resource fragmentation. We propose novel throughput optimization techniques

that include: (1) exploiting various QoS execution modes, and (2) microarchitecture

techniques that steal excess resources from a job while still meeting its QoS target.

Through simulation, we found that compared to an unoptimized scheme, the through-

put can be improved by up to 45%, making the throughput significantly closer to a

non-QoS CMP.
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Chapter 1

Introduction

Recently, Chip Multi-Processor (CMP) or multicore design has become the main-

stream architecture choice for major microprocessor makers. Compared to single

core design, CMPs provide throughput improvement for multi-threaded and multi-

programmed workloads. However, since some important on-chip platform resources,

such as the lowest level on-chip cache and the off-chip bandwidth, are shared by

all the processor cores, the performance of co-scheduled applications running on a

CMP highly depend on their ability to compete for the shared resources. As will be

demonstrated in this dissertation, resource sharing affects applications non-uniformly.

Some applications may be slowed down significantly, while others may not be. This

may lead to sub-optimal throughput, cache thrashing, thread starvation and pri-

ority inversion for the applications that fail to acquire sufficient resources to make

good progress. In addition, resource sharing may also lead to a large performance
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variation for an individual application as determined by other applications that are

co-scheduled with it. Such performance variation is ill-suited for the future uses of

CMPs considering the recent trends in enterprise IT toward running a diverse set

of applications that have diverse computing requirements [40]. In this environment,

many applications may require a certain level of performance guarantee, which we

refer to as performance Quality of Service (QoS). A large performance variation is a

major hindrance to providing QoS. As the number of cores in a CMP increases, the

degree of sharing of platform resources can be expected to increase and will further

exacerbate the performance variation problem.

To illustrate the performance variation problem due to cache sharing, Figure 1.1

shows an example in which mcf is co-scheduled with another application that runs on

a different processor core in a 2-core CMP with private L1 cache and shared L2 cache.

Figure 1.1(a) shows the impact of cache sharing on the IPC of each application in a

co-schedule. The full height of each bar (black+white sections) represents the IPC

of the application when it runs alone 1. The black section represents the IPC of the

application when it is co-scheduled with another application. From Figure 1.1(a), we

can see that the impact of cache sharing is not uniform. When mcf is co-scheduled

with mst, neither mcf nor mst suffers from much performance degradation due to

cache sharing. When mcf is co-scheduled with art and swim, only mcf suffers from a

significant slowdown. On the contrary, when mcf is co-scheduled with gzip, only gzip

1In Figure 1.1(a), the number of instructions that mcf executes in each co-schedule varies when
it is co-scheduled with different benchmarks, making the IPC of mcf different in each co-schedule.
The full evaluation setup can be found in Section 2.3.
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shows a considerable slowdown. Figure 1.1(b) and Figure 1.1(c) present the impact

of cache sharing on mcf in terms of its L2 cache misses and its IPC with various

co-scheduled applications, normalized to the case in which mcf runs alone.

In Figure 1.1(b) and Figure 1.1(c), mcf shows a very large performance variation

across different co-schedules. When mcf runs together with mst or gzip, mcf does not

suffer much from performance degradation. Its cache misses and IPC are still close

to the case when it runs alone. However, when it runs together with art or swim,

its number of L2 misses increases to roughly 390% and 160%, respectively, resulting

in IPC reduction of 65% and 25%, respectively. From Figure 1.1, we can conclude

that the impact of cache sharing is neither uniform nor consistent across different

applications and across different co-schedules. In order to better understand what

factors affect the degree of an application suffering from the impact of cache sharing,

we propose an analytical and several heuristic models that encapsulate and predict the

impact of cache sharing. In addition, in order to overcome the performance variation

problem and provide deterministic throughput to the individual applications, we also

propose a framework for providing performance Quality of Service. We will describe

these two studies separately in the following sections.

1.1 Predicting Inter-Thread Cache Contention

The performance impact of cache sharing has been investigated by several re-

searchers. Past studies have investigated profiling techniques that detect the cache
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sharing problems, and apply inter-thread cache partitioning schemes to improve fair-

ness [25] or throughput [11, 25, 36, 48]. However, two important aspects were not

addressed in past studies. The first aspect deals with determining what factors in-

fluence the cache sharing impact that a thread in a co-schedule suffers. The second

aspect deals with whether such problems are predictable and hence preventable by

knowing the factors. This dissertation addresses both questions by presenting an

analytical and several heuristic models to predict the impact of cache sharing.

Past performance prediction models only predict the number of cache misses in

a uniprocessor system [6, 9, 13, 14, 16, 26, 52, 55], or predict cache contention on a

single processor time-shared system [1, 49, 50], where it was assumed that only one

thread runs at any given time. Therefore, interference between threads that share a

cache was not modeled.

This dissertation goes beyond past studies and presents three tractable models

that predict the impact of cache space contention between threads that simultaneously

share the L2 cache on a Chip Multi-Processor (CMP) architecture [7]. Two models,

Frequency of Access (FOA) and Stack Distance Competition model (SDC), are based

on heuristics. The third model is an analytical inductive probability model (Prob).

The input to our models is the isolated L2 cache stack distance or circular sequence

profiling of each thread, which can be easily obtained on-line or off-line. The output of

the models is the number of extra L2 cache misses of each thread that shares the cache.

We validate the models by comparing the predicted number of cache misses under
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cache sharing for fourteen pairs of benchmarks against a detailed, cycle-accurate CMP

architecture simulation. We found that Prob is very accurate, achieving an average

absolute error of only 3.9%. The two heuristics-based models are simpler but not as

accurate.

Finally, the Prob model provides a valuable and practical tool through which we

can study the impact of cache sharing extensively. We present a case study that

evaluates how different temporal reuse behavior in applications influence the impact

of cache sharing suffered by them. The case study gives an insight into what types

of applications are vulnerable (or not vulnerable) to a large increase in cache misses

under sharing.

1.2 Providing Performance Quality of Service

The primary goal of providing Quality of Service (QoS) is to guarantee a certain

level of performance to individual applications. The need for such performance guar-

antee is motivated by the recent trends in the enterprise IT toward service-oriented

computing, server consolidation, and virtualization. For example, in a service-oriented

or utility computing environment, the utility computing provider may set up different

service-level agreements (SLAs) to different clients that encapsulate guarantees in per-

formance, reliability, manageability, and other metrics [34, 40]. Such an environment

would require the server to be able to allocate platform resources proportionally to the

level of the performance guarantee for each workload. For example, a job from a client
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with a “gold” SLA may be allocated more resources (e.g. larger cache sizes, higher

processor count, and off-chip bandwidth) compared to jobs with standard SLAs. In

virtualization, a virtual machine manager (VMM) hosts multiple virtual machines

(VMs), where each VM runs a guest Operating System for various purposes ranging

from regular to critical computations. It is beneficial if the VMM can allocate more

platform resources to critical VMs and fewer resources to regular VMs. Finally, many

transaction processing applications in a service-oriented computing domain would re-

quire a minimum level of real-time performance to be guaranteed. Overall, we believe

that it is critical to support QoS in CMPs.

In recent studies, researchers have introduced frameworks in which applications

specify their QoS targets, expressed in instructions per cycle (IPC) or resource per-

formance (e.g. cache miss rates), while a resource manager dynamically partitions

shared resources in order to meet each application’s QoS target [15, 20, 21, 22, 33, 37].

Unfortunately, these frameworks are insufficient if one wants to fully provide QoS

in CMPs. Figure 1.2 shows an example in which multiple jobs (each job runs the

SPEC2006 benchmark bzip2) run on a 4-core CMP with private L1 caches but a

shared L2 cache. Let us assume that each job’s QoS target is to reach an IPC of at

least 0.25, which is 2
3

of its IPC when it runs alone. If the resource manager tries

to satisfy the QoS targets of all jobs, it will equally divide the L2 cache among all

instances of bzip2. However, from this figure, we can observe that while the jobs’ QoS

targets are met when only two jobs run simultaneously, they are not met when three
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or four jobs run in the CMP. There are two major reasons why such frameworks fail

in meeting the QoS targets of the jobs. First, the CMP does not have the ability to

check whether its available resources are sufficient to satisfy a job’s IPC target or the

amount of resources needed by the job to meet its IPC target. Secondly, the lack of

an admission control policy means that jobs are always accepted and run even when

their QoS targets cannot be met.

ta td
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Figure 1.2: The IPC of different numbers of instances of bzip2 running on a
4-core CMP with a 32-KB L1 cache per core, and a 2MB L2 cache shared by
all cores. The full evaluation setup can be found in Section 3.5.

In this dissertation, we investigate a framework that is needed to fully provide

QoS in a CMP system [17]. First, we study how a QoS target should be specified

in order to enable the system to compare its available computation capacity against

the requested computation capacity. We found that popular metrics (IPC and miss

rate) are not suitable for this purpose, while capacity specification (e.g. cache size)

naturally makes it easier to compare available computation capacity with demanded

capacity. We then add an admission control policy to ensure that jobs are accepted
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only when their QoS targets can be satisfied.

Secondly, we introduce three QoS execution modes, as a way for jobs to specify

how flexible they are with regard to their QoS targets. These execution modes are

needed to match users’ diverse requirements for their workloads as well as to provide

a means for the system to boost throughput.

We use our framework to enable QoS in a CMP and apply it for managing pro-

cessor cores and the shared L2 cache resources. We found that providing a strict

QoS guarantee usually comes at a cost of significant reduction in system throughput

due to jobs overspecifying their QoS targets, resulting in fragmentation of various

resources in the system. We propose and investigate two techniques to recover the

lost throughput. The first technique speculatively downgrades a job’s QoS execution

mode in order to boost the overall throughput. The second is a simple microarchi-

tecture technique that we refer to as resource stealing, which steals cache capacity

from a job which may have excess resources while still meeting the job’s QoS target.

We analyze the limitation of the original resource stealing technique and propose two

improved resource stealing techniques to more effectively steal cache capacity. In ad-

dition, we propose a dynamic resource stealing mechanism to optimize the resource

stealing for higher throughput.

We evaluate the proposed schemes and mechanisms on a 4-core CMP machine

model based on Simics, with a recent version of the Linux Operating System, and

workloads constructed by using SPEC2006 benchmarks. We found that through a
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combination of appropriate QoS target specification, admission control, and execution

modes, a CMP can ensure that all accepted jobs have their QoS targets satisfied.

In addition, we found that the proposed QoS execution modes and resource stealing

mechanism are effective in improving throughput without violating jobs’ QoS targets.

They achieve throughput improvement between 13% and 45%, making the throughput

significantly closer to a non-QoS CMP.

1.3 Organization of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 describes the pro-

posed models that predict the inter-thread cache contention in a CMP architecture.

Chapter 3 presents the proposed framework that provides performance QoS in a CMP

architecture. Finally, Chapter 4 concludes the dissertation.
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Chapter 2

Predicting Inter-Thread Cache

Contention in Chip

Multi-Processors

This chapter is organized as follows. Section 2.1 presents the three models. Sec-

tion 2.2 shows the hardware support for Prob’s circular sequence on-line profiling.

Section 2.3 details the validation setup for our models. Section 2.4 presents and

discusses the model validation results and the case study. The related works are

discussed in Section 2.5. Finally, we conclude this study in Section 2.6.
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2.1 Cache Miss Prediction Models

This section will present our three cache miss prediction models. It starts by pre-

senting assumptions used by the models (Section 2.1.1), then it presents an overview of

the three models (Section 2.1.2), the frequency of access (FOA) model (Section 2.1.3),

the stack distance competition (SDC) model (Section 2.1.4), and the inductive prob-

ability (Prob) model (Section 2.1.5). Since the most accurate model is Prob, the

discussion will focus mostly on Prob.

2.1.1 Assumptions

We assume that each thread’s temporal behavior can be captured by a single

stack distance or circular sequence profile. Although applications change their tem-

poral behavior over time, in practice we find that the average behavior is good enough

to produce an accurate prediction of the cache sharing impact. Representing an ap-

plication with multiple profiles that represent different program phases may improve

the prediction accuracy further, at the expense of extra complexity due to phase

detection and profiling, e.g., [41]. This is beyond the scope of this dissertation.

It is also assumed that the profile of a thread is the same with or without sharing

the cache with other threads. This assumption ignores the impact of the multi-level

cache inclusion property [2]. In such a system, when a cache line is replaced from the

L2 cache, the copy of the line in the L1 cache is invalidated. As a result, the L1 cache

may suffer extra cache misses. This changes the cache miss stream of the L1 cache,
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potentially changing the profile at the L2 cache level. In the evaluation (Section 2.4),

we relax the assumption and find negligible difference in the average prediction error

(0.4%).

Co-scheduled threads are assumed not to share any address space. This is mostly

true in the case where the co-scheduled threads are from different applications. Al-

though parallel program threads may share a large amount of data, the threads are

likely to have similar characteristics, making the cache sharing prediction easier be-

cause the cache is likely to be equally divided by the threads and each thread is likely

to be impacted in the same way. Consequently, we ignore this case.

Furthermore, for most of the analyses, the L2 cache only stores data and not

instructions. If instructions are stored in the L2 cache with data, the accuracy of the

model decreases slightly (by 0.8%).

Finally, the L2 cache is assumed to use Least Recently Used (LRU) replacement

policy. Although some implementations use different replacement policies, they are

usually an approximation to LRU. Therefore, the observations of cache sharing im-

pacts made in this dissertation are likely to be applicable to other implementations

as well.

2.1.2 Model Overview

Stack Distance Profiling. The input to the models is the isolated L2 cache stack

distance or circular sequence profile of each thread without cache sharing. A stack
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distance profile captures the temporal reuse behavior of an application in a fully- or

set-associative cache [6, 26, 32], and is sometimes also referred to as marginal gain

counters [49, 48]. For an A-way associative cache with LRU replacement algorithm,

there are A + 1 counters: C1, C2, . . . , CA, C>A. On each cache access, one of the

counters is incremented. If it is a cache access to a line in the ith position in the LRU

stack of the set, Ci is incremented. Note that our first line in the stack is the most

recently used line in the set, and the last line in the stack is the least recently used

line in the set. If it is a cache miss, the line is not found in the LRU stack, resulting

in incrementing the miss counter C>A. A stack distance profile can be easily obtained

statically by the compiler [6], by simulation, or by running the thread alone in the

system [48].
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Figure 2.1: Illustration of a stack distance profile.

Figure 2.1 shows an example of a stack distance profile. Applications with tem-

poral reuse behavior usually access more-recently-used data more frequently than
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less-recently-used data. Therefore, typically, the stack distance profile shows decreas-

ing values as we go to the right, as shown in Figure 2.1. It is well known that the

number of cache misses for a smaller cache can be easily computed using the stack

distance profile. For example, for a smaller cache that has A′ associativity, where

A′ < A, the new number of misses can be computed as:

miss = C>A +
A∑

i=A′+1

Ci (2.1)

For our purpose, since we need to compare stack distance profiles from differ-

ent applications, it is useful to take the counter’s frequency by dividing each of the

counters by the number of processor cycles in which the profile is collected (i.e.,

Cfi = Ci

CPUcycle
). Furthermore, we refer to Cf>A as the miss frequency, denoting

the frequency of cache misses in CPU cycles. We also refer to the sum of all other

counters, i.e.
∑A

i=1 Cfi as reuse frequency. We refer to the sum of miss and reuse

frequency as access frequency (Af).

Determining Factors. When several threads share a cache, they compete for cache

space. Each thread ends up occupying a portion of the cache space, which we will

refer to as the effective cache space of the thread. The size of the effective cache space

determines the impact of cache sharing on the threads. A thread that succeeds in

competing for sufficient cache space, relative to its working set, suffers less impact

from cache sharing. The ability of a thread to compete for sufficient cache space,

as will be discussed in Section 2.4.5, is determined by its temporal reuse behavior,

which is largely determined by its stack distance profile. Intuitively, a thread that
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frequently brings in new cache lines (high miss frequency) and reuses them (high

reuse frequency) has a higher effective cache space compared to other threads with

low miss and reuse frequencies. Finally, although less obvious, a thread with a more

concentrated stack distance profile (i.e., for all i, Ci is much larger than Ci+1) reuses

fewer lines often, making the lines less likely to be replaced, increasing the effective

cache space. Listing these factors helps to qualitatively distinguish how much detail

each model takes into account.

Overview of the Models. We propose three models that vary in complexity and

accuracy. Two of them are heuristics-based models: frequency of access (FOA) and

stack distance competition (SDC). The two approaches are compared in Figure 2.2.

Figure 2.2(a) illustrates how FOA and SDC predict the number of extra cache misses.

Using a set of heuristics, they first predict the effective cache space (A′) that a thread
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Figure 2.2: Comparing the prediction approach of FOA and SDC (a), with
that of Prob (b).

will have under cache sharing. Then A′ is input into Equation 2.1 to predict the
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number of misses that the thread will suffer under cache sharing (the shaded region

in Figure 2.2(a)). This approach uses an assumption that accesses to more recently

used lines, as long as their reuse distances are less than A′, will not result in cache

misses. However, this assumption may not be accurate in some cases. For example,

even an access to the most recently used line may become a cache miss, if there

are sufficient intervening accesses and misses from another thread. This aspect is

taken into account by the Prob model, which computes the probability of each cache

hit turning into a cache miss, for every possible access interleaving by an interfering

thread. This is illustrated in Figure 2.2(b).

Table 2.1 compares the three models based on which of the three factors that

determine the effective cache space of a thread under cache sharing are considered in

the models. The table shows that FOA only takes into account the access frequency

(sum of reuse and miss frequency). SDC takes into account both the reuse frequency

and stack distance shape, but ignores the miss frequency. Finally, Prob takes into

account all three factors but requires slightly more detailed profiling compared to the

stack distance profiling, which will be discussed further in Section 2.1.5. From the

table, we expect Prob to be the most accurate because it takes into account all the

factors.
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Table 2.1: Factors that determine the effective cache space a thread occupies.

Information Considered FOA SDC Prob

Miss frequency Partially No Yes

Reuse frequency Partially Yes Yes

Stack dist profile shape No Yes Yes

Profiling required Stack distance Stack distance Circular sequence

2.1.3 Frequency of Access (FOA) Model

The simplest model, frequency of access (FOA), uses an assumption that the effec-

tive cache space of a thread is proportional to its access frequency. This assumption

makes sense because a thread that has a high access frequency tends to bring in more

data into the cache and retains them, occupying a larger effective cache space.

Let CacheSize denote the total cache size, and AfX denote the access frequency

of thread X. Let us assume that there are N threads running together and sharing

the cache. The effective cache size for thread X can be calculated from:

effCacheSizeX =
AfX∑N
j=1 Afj

× CacheSize (2.2)

By taking A′ = effCacheSizeX

numCacheSet
, and plugging it into Equation 2.1 and applying linear

interpolation whenever necessary, we can obtain the number of cache misses under

cache sharing. Since FOA only takes into account the access frequency, it may become

inaccurate if the co-scheduled threads have different stack distance profile shapes, or

when their ratios of miss and reuse frequency are very different.
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2.1.4 Stack Distance Competition (SDC) Model

The stack distance competition (SDC) model tries to construct a new combined

stack distance profile that merges individual stack distance profiles of threads that

run together, by taking a subset of counters from each individual profile. This model

relies on the intuition that a thread that reuses its lines the most will likely occupy

more of the cache space than other threads. Based on such intuition, we consider

the reuse frequency of each thread’s stack distance position, starting from the MRU

position as its current stack position being considered. For each (any) cache way in a

set, the threads compete for the way, and the winner (the thread that is the likeliest

to occupy the way) is the one with the highest reuse frequency at its current stack

position. We then assign the way to the winner thread. The winner thread then

advances its current stack position, and is ready for the next round of competition.

The algorithm stops once all cache ways in the set are assigned to winner threads.

We then count how many ways each thread has won, and compute its effective cache

size based on that.

The algorithm shown in Figure 2.3 describes the algorithm steps in detail. Con-

sider that we have n threads competing for the cache (denoted as X1, X2, . . . , Xn) and

the resulting combined behavior is denoted by Y . Let Ci[Xj] denote the counter value

of the ith stack distance position of thread Xj, and currP tr[Xj] denote the current

stack position being considered for competition for thread Xj. Similarly, let Ci[Y ] de-

note the counter value of the ith stack distance position of Y , and currP tr[Y ] denote
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the current stack position being competed for. Finally, let A denote the associativity

of the cache.

Initially (Step 1), the currP tr’s for all threads and for Y are set to 1 so that

they point to the first stack position in each stack distance profile. Then, in Step

2 the counters pointed by the current pointers from all threads are compared, and

the thread with the maximum counter value is selected as the winner thread (say,

Xwin). Then, the current stack distance counter for the winner thread is copied into

the combined stack distance profile, and the current pointers of both Xwin and Y

are incremented for the next competition. This step is repeated A times until the

combined stack distance is fully populated.

SDC algorithm:

1. Initialization

For all thread Xi, currP tr[Xi] = 1; currP tr[Y ] = 1;

2. Repeat A times:

Find Xwin such that currP tr[Xwin] ≥ currP tr[Xi],∀i
CcurrP tr[Y ][Y ]← CcurrP tr[Xwin][Xwin]

currP tr[Y ]← currP tr[Y ] + 1;

currP tr[Xwin]← currP tr[Xwin] + 1;

3. Compute Cache Misses:

For each thread Xi, its effective cache space is currP tr[Xi]−1
A

× CacheSize

Figure 2.3: SDC algorithm.

Figure 2.4 illustrates the end result of combining two stack distances of application
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1 in Figure 2.4(a) and application 2 in Figure 2.4(b), into the combined stack distance

profile in Figure 2.4(c), assuming an 8-way associative cache. At the end of the

algorithm, the current pointer for application 1 is 4, and for application 2 is 6. The

model predicts that application 1 will get 4−1
8

= 37.5% of the cache space, whereas

application 2 will get 6−1
8

= 62.5% of the cache space.

The stack distance competition model is intuitive because it assumes that the

higher the reuse frequency, the larger the effective cache space. However, it does not

take into account the miss frequency. Therefore, the model can be inaccurate if the

threads have very different miss frequency. It is also possible for the model to predict

that a thread has a zero effective cache size, which is inaccurate.

2.1.5 Inductive Probability (Prob) Model

The most detailed model is an analytical model which uses inductive probability

for predicting the cache sharing impact. Before we explain the model, it is useful to

define two terms.

Definition 1 A sequence of accesses from thread X, denoted as seqX(dX , nX), is a

series of nX cache accesses to dX distinct line addresses by thread X, where all the

accesses map to the same cache set.

Definition 2 A circular sequence of accesses from thread X, denoted as cseqX(dX , nX),

is a special case of seqX(dX , nX) where the first and the last accesses are to the same

line address, and there are no other accesses to that address.
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For a sequence seqX(dX , nX), nX ≥ dX necessarily holds. When nX = dX , each

access is to a distinct address. We use seqX(dX , ∗) to denote all sequences where

nX ≥ dX . For a circular sequence cseqX(dX , nX), nX ≥ dX + 1 necessarily holds.

When nX = dX + 1, each access is to a distinct address, except the first and the last

accesses. We use cseqX(dX , ∗) to denote all sequences where nX ≥ dX + 1.

In a sequence, there may be several, possibly overlapping, circular sequences. The

relationship of a sequence and circular sequences is illustrated in Figure 2.5. In the

figure, there are eight accesses to five different line addresses that map to a cache

set. In it, there are three circular sequences that are overlapping: one that starts and

ends with address A (cseq(4, 5)), another one that starts and ends with address B

(cseq(5, 7)), and another one that starts and ends with address E (cseq(1, 2)).

A  B  C  D  A  E  E  B
cseq(4,5) cseq(1,2)

cseq(5,7)

seq(5,8)

Figure 2.5: Illustration of the relationship between a sequence and circular
sequences.

We are interested in determining whether the last access of a circular sequence

cseqX(dX , nX) is a cache hit or a cache miss 1. To achieve that, it is important to

consider the following property.

1Note that, there are some addresses that are accessed only once. They do not form circular
sequences. Each access results in a compulsory cache miss. Therefore, with or without cache
sharing, the access remains a cache miss.
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Property 1 In an A-way associative LRU cache, the last access in a circular se-

quence cseqX(dX , nX) results in a cache miss if between the first and the last access,

there are accesses to at least A distinct addresses (from any threads). Otherwise, the

last access is a cache hit.

Explanation: If there are accesses to a total of at least A distinct addresses

between the first access up to the time right before the last access occurs, the address

of the first and last access will have been shifted out of the LRU stack by the other

A (or more) addresses, causing the last access to be a cache miss. If there is only

a < A distinct addresses between the first and the last access, then right before the

last access, the address would be in the (a + 1)th position in the LRU stack, resulting

in a cache hit.

Corollary 1 When a thread runs alone, the last access in a circular sequence cseqX(dX ,

nX) results in a cache miss if dX > A, or a cache hit if dX ≤ A. Furthermore, in

stack distance profiling, the last access of cseqX(dX , nX) results in an increment to

the counter C>A if dX > A (a cache miss), or the counter CdX
if dX ≤ A (a cache

hit).

The corollary is intuitive since when a thread X runs alone, the number of dis-

tinct addresses in the circular sequence cseqX(dX , nX)is dX (because they only come

from thread X). More importantly, however, the corollary shows the relationship be-

tween stack distance profiling and circular sequences. Every time a circular sequence
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with dX ≤ A distinct addresses appears, CdX
is incremented. If N(cseqX(dX , ∗))

denotes number of occurrences of circular sequences cseqX(dX , ∗), we have CdX
=

N(cseqX(dX , ∗)). This leads to the following corollary.

Corollary 2 The probability of occurrences of circular sequences cseqX(dX , ∗) from

thread X is equal to P (cseqX(dX , ∗)) =
CdX

totAccessX
, where totAccessX denote the total

number of accesses of thread X, and dX ≤ A.

X’s circular sequence cseq  (2,3)
U V V WA  B  A

Y’s sequence 

case 1: A U B V V A W

Cache Hit

case 2: A U B V V W A

Cache Miss

Figure 2.6: Illustration of how intervening accesses from another thread de-
termines whether the last access of a circular sequence will be a cache hit
or a miss. Capital letters in a sequence represent line addresses. The figure
assumes a 4-way associative cache and all accesses are to a single cache set.

Let us now consider the impact of running a thread X together with another thread

Y that shares the L2 cache with it. Figure 2.6 illustrates the impact, assuming a 4-way

associative cache. It shows a circular sequence of thread X (“ A B A”). When thread

Y runs together and shares the cache, many access interleaving cases between accesses

from thread X and Y are possible. The figure shows two of the access interleaving

cases. In the first case, sequence “U V V” from thread Y occurs during the circular

sequence. Since there are only three distinct addresses (U, B, and V) between the
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first and the last access to A, the last access to A is a cache hit. However, in the

second case, sequence “U V V W” from thread Y occurs during the circular sequence.

Therefore there are four distinct addresses (U, B, V, and W) between the accesses

to A, which is equal to the cache associativity. By the time the second access to A

occurs, address A is no longer in the LRU stack since it has been replaced from the

cache, resulting in a cache miss for the last access to A. More formally, we can state

the condition for a cache miss in the following corollary.

Corollary 3 Suppose a thread X runs together with another thread Y . Also suppose

that during the time interval between the first and the last access of X’s circular

sequence, denoted by T (cseqX(dX , nX)), a sequence of addresses from thread Y (i.e.,

seqY (dY , nY )) occurs. The last access of X’s circular sequence results in a cache miss

if dX + dY > A, or a cache hit if dX + dY ≤ A. 2

Every cache miss of thread X remains a cache miss under cache sharing. However,

some of the cache hits of thread X may become cache misses under cache sharing, as

implied by the corollary. The corollary implies that the probability of the last access

in a circular sequence cseqX(dX , nX), where dX < A, to become a cache miss is equal

to the probability of the occurrence of sequences seqY (dY , ∗) where dY > A− dX .

Note that we now deal with a probability computation with four random variables

(dX , nX , dY , and nY ). To simplify the computation, we represent nX and nY by their

2For simplicity, we only discuss a case where two threads share a cache. The corollary can easily
be extended to the case where there are more than two threads.
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expected values: nX and E(nY ), respectively. Hence, Corollary 3 can be formally

stated as:

Pmiss(cseqX(dX , nX)) =

E(nY )∑
dY =A−dX+1

P (seqY (dY , E(nY ))) (2.3)

Therefore, computing the extra cache misses suffered by thread X under cache

sharing can be accomplished by using the following steps:

1. For each possible value of dX , compute the weighted average of nX (i.e. nX) by

considering the distribution of cseqX(dX , nX). This requires a circular sequence

profiling, which we will describe later. Then, we use cseqX(dX , nX) instead of

cseqX(dX , nX).

2. Compute the expected time interval duration of the circular sequence of X, i.e.

T (cseqX(dX , nX)).

3. Compute the expected number of accesses of Y , i.e. E(nY ), during time interval

T (cseqX(dX , nX)). Then, use seqY (dY , E(nY )) to represent seqY (dY , nY )

4. For each possible value of dY , compute the probability of occurrence of the

sequence seqY (dY , E(nY )), i.e. P (seqY (dY , E(nY ))). Then, compute the proba-

bility of the last access of X’s circular sequence becoming a cache miss by using

Equation 2.3.

5. Compute the expected extra number of cache misses by multiplying the proba-

bility of cache misses of each circular sequence with its number of occurrences.
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6. Repeat Step 1-5 for each co-scheduled thread (e.g. thread Y ).

We will now describe how each step is performed.

Step 1: Computing nX

nX is computed by taking its average over all possible values of nX :

nX =

∑∞
nX=dX+1 N(cseqX(dX , nX))× nX∑∞

nX=dX+1 N(cseqX(dX , nX))
(2.4)

To obtain N(cseqX(dX , nX)), an off-line profiling or simulation can be used. An

on-line profiling is also possible, using simple hardware support where a counter is

added to each cache line to track n and a small table is added to keep track of

N(cseqX(dX , nX)). We found that each counter only needs to be 7 bits because there

are very few nX values that are larger than 128.

Step 2 and 3: Computing T (cseqX(dX , nX)) and E(nY )

To compute the expected time interval duration for a circular sequence, we simply

divide it by the access frequency per set of thread X (AfX):

T (cseqX(dX , nX)) =
nX

AfX

(2.5)

To estimate how many accesses by Y are expected to happen during the time interval

T (cseqX(dX , nX)), we simply multiply it with the access frequency per set of thread
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Y :

E(nY ) = AfY × T (cseqX(dX , nX)) (2.6)

Step 4: Computing P (seqY (dY , E(nY )))

The problem can be stated as finding the probability that given E(nY ) accesses

from thread Y , there are dY distinct addresses, where dY is a random variable.

For simplicity of Step 4’s discussion, we will just write P (seq(d, n)) to represent

P (seqY (dY , E(nY ))). The following theorem uses inductive probability function to

compute P (seq(d, n)). The theorem assumes that each access is independent and

identically distributed according to the overall stack distance profile.

Theorem 1 For a sequence of n accesses from a given thread, the probability of the

sequence to have d distinct addresses can be computed with a recursive relation, i.e.

P (seq(d, n)) =

1 if n = d = 1

P ((d− 1)+)× P (seq(d− 1, d− 1)) if n = d > 1

P (1−)× P (seq(1, n− 1)) if n > d = 1

P (d−)× P (seq(d, n− 1))+

P ((d− 1)+)× P (seq(d− 1, n− 1) if n > d > 1

where P (d−) =
∑d

i=1 P (cseq(i, ∗)) and P (d+) = 1− P (d−).

Proof: The proof will start from the more complex term to the least complex term.
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Case 1 (n > d > 1): Let the sequence seq(d, n) represent an access sequence Y1, Y2,

. . . , Yn−1, Yn. The sequence just prior to this one is Y1, Y2, . . . , Yn−1. There are two

possible subcases. The first subcase is when the address accessed by Yn also appears in

the prior sequence, i.e. addr(Yn) ∈ {addr(Y1), addr(Y2), . . . , addr(Yn−1)}, hence the

prior sequence is seq(d, n− 1). Furthermore, adding Yn to the prior sequence creates

a new circular sequence cseq(i, ∗) with i ranging from 1 to d, with a probability

of 1 −
∑∞

i=d+1 P (cseq(i, ∗)), which is equal to
∑d

i=1 P (cseq(i, ∗)), denoted as P (d−).

The second subcase is when the address accessed by Yn has not appeared in the

prior sequence, i.e. addr(Yn) /∈ {addr(Y1), addr(Y2), . . . , addr(Yn−1)}, hence the prior

sequence is seq(d− 1, n− 1). Furthermore, adding Yn to the prior sequence does not

create a new circular sequence at all (i.e. cseq(∞, ∗)), or creates a circular sequence

that is not within the sequence (i.e. cseq(i, ∗) where i > d − 1). Therefore, the

probability of the second subcase is
∑∞

i=d P (cseq(i, ∗)) = 1 −
∑d−1

i=1 P (cseq(i, ∗)),

denoted as P ((d − 1)+) 3. Therefore, P (seq(d, n)) = P (d−) × P (seq(d, n − 1)) +

P ((d− 1)+)× P (seq(d− 1, n− 1)).

Case 2 (n > d = 1): since seq(1− 1, n− 1) is impossible, P (seq(d− 1, n− 1)) = 0.

Therefore, P (seq(1, n)) = (P (1−)× P (seq(1, n− 1)) follows from Case 1.

Case 3 (n = d > 1): since seq(d, n− 1) is impossible (there are more distinct ad-

dresses than accesses), P (seq(d, n−1)) = 0. Therefore, P (seq(d, n)) = P ((d−1)+)×

P (seq(d− 1, d− 1)) follows from Case 1.

3Computation-wise,
∑∞

i=d P (cseq(i, ∗)) = C>A+
Pi=A

i=d Ci

totAccess .
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Case 4 (n = d = 1): P (seq(1, 1)) = 1 is true because the first address is always

considered distinct.

Probability Distribution Function
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Figure 2.7: Example probability distribution function that shows P (3−) and
P (3+). The function is computed by using the formula in Corollary 2.

Corollary 2 and Figure 2.7 illustrates how P (d−) and P (d+) can be computed

from the stack distance profile. The figure shows that we already have three distinct

addresses in a sequence. The probability that the next address will be one already

seen is P (3−), otherwise it is P (3+).

Step 5: Computing the Number of Extra Misses Under Sharing

Step 4 has computed P (seqY (dY , E(nY ))) for all possible values of dY . We can

then compute Pmiss(cseqX(dX , nX)) using Equation 2.3. To find the total number of

misses for thread X due to cache contention with thread Y , we need to multiply the

probability of a cache miss from a particular circular sequence with the number of
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occurrences of such a circular sequence, then sum them over all possible values of dX ,

and add the result to the original number of cache misses (C>A):

missX = C>A +
A∑

dX=1

Pmiss(cseqX(dX , nX))× CdX
(2.7)
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2.2 Circular Sequence Profiling

The inductive probability model (Prob) needs applications’ circular sequence pro-

files as its input in Step 1 of the prediction model. A circular sequence profile es-

sentially captures the temporal reuse behavior of an application. The information

collected through circular sequence profiling is the superset of that collected through

stack distance profiling. While stack distance profiling only collects the distribution

of the number of distinct addresses that occur between two consecutive accesses to

the same line, circular sequence profiling collects the distribution of the number of

distinct and non-distinct addresses that occur between two consecutive accesses to

the same line.

Although off-line profiling through simulation can be used to collect this informa-

tion, this section shows that with a simple hardware support, we can also collect the

information online with low overheads. While runtime circular sequence profiling is

not strictly needed for constructing a performance model or for understanding the

performance impact of cache sharing, there are situations in which it may be prefer-

able compared to off-line profiling using a simulator. One such situation is when

dynamic changes of an application’s circular sequence profile needs to be captured

for dynamic adaptation of the cache partitioning policy. Another situation is when

simulation is expensive or impractical, such as for applications with large inputs or

long-running computation.

Figure 2.8 shows the hardware support for circular sequence profiling. To collect
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128 rows

Number of Associativity (A=4)
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Circular Sequence Table

L2 Cache

n
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log  A bits2

N(cseq(3,n))

Figure 2.8: Hardware support for circular sequence profiling, illustrating a
4-way associative cache.

N(cseq(d, n)), we need to track both d and n for each cache access. For an LRU

cache, the LRU stack position of a line when it is accessed provides d. To track n,

each cache line can be augmented with a counter that is incremented on each access

to any line in the same set. In practice, we find very few n > 128. Therefore a 7-bit

counter is sufficient (if it is not sufficient, it can be truncated without much loss of

information). Assuming the cache has 64-byte lines, this is equivalent to a storage

overhead of 1.4% of the L2 cache. In addition, a Circular Sequence Table is added.

The table has 27 = 128 rows and A columns, where A is the cache associativity. Each

entry holds a 32-bit counter, which is able to record a value up to 232, or more than

4 billion samples, allowing for a very long continuous profiling period. The table size

is reasonably small, e.g., for a 4-way associative cache, the size is 2 Kbytes.

When a cache line is re-accessed, a circular sequence is detected. The position
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in the LRU stack (d) is used to index the column of the circular sequence table, the

cache line’s n-field is used to index the row of the table, and the corresponding entry

in the table is incremented to reflect the current number of the circular sequence

cseq(d, n), i.e. N(cseq(d, n)). Then, the n-field is reset to 0, and the LRU stack is

updated by the LRU replacement algorithm.
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2.3 Validation Methodology

Simulation Environment. The evaluation is performed using a detailed CMP

architecture simulator based on SESC, a cycle-accurate execution-driven simulator

developed at the University of Illinois at Urbana-Champaign [23]. The CMP cores

are out-of-order superscalar processors with private L1 instruction and data caches,

and shared L2 cache and all lower level memory hierarchy components. Table 2.2

shows the parameters used for each component of the architecture. The L2 cache

uses prime modulo indexing to ensure that the cache sets’ utilization is uniform [24].

Unless noted otherwise, the L2 cache only stores data and does not store instructions.

Table 2.2: Parameters of the simulated architecture. Latencies correspond
to contention-free conditions. RT stands for round-trip from the processor.

CMP

2 cores, each 4-issue dynamic. 3.2 GHz. Int, fp, ld/st FUs: 3, 2, 2

Branch penalty: 13 cycles. Re-order buffer size: 152

MEMORY

L1 Inst, Data (private): each WB, 32 KB, 4 way, 64-B line, RT: 2 cycles, LRU
replacement

L2 data (shared): WB, 512 KB, 8 way, 64-B line, RT: 12 cycles, LRU replacement,
prime modulo indexed, inclusive.

RT memory latency: 362 cycles

Memory bus: split-transaction, 8 B, 800 MHz, 6.4 GB/sec peak

Applications. To evaluate the benefit of the cache partitioning schemes, we

choose a set of mostly memory-intensive benchmarks: apsi, art, applu, equake, gzip,
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mcf, perlbmk and swim from the SPEC2K benchmark suite [44]; and mst from the

Olden benchmark suite. Table 2.3 lists the benchmarks, their input sets, and their

L2 cache miss rates over the benchmarks’ entire execution time. The miss rates may

differ from when they are co-scheduled, because the duration of co-scheduling may be

shorter than the entire execution of the benchmarks. These benchmarks are paired

and co-scheduled. Fourteen benchmark pairs that exhibit a wide spectrum of stack

distance profile mixes are evaluated.

Table 2.3: The applications used in our evaluation.

Benchmark Input Set L2 Miss Rate (whole execution)

art test 99%

applu test 68%

apsi test 5%

equake test 91%

mst 1024 nodes 63%

gzip test 3%

mcf test 9%

perlbmk reduced ref 59%

swim test 75%

Co-scheduling. Benchmark pairs run in a co-schedule until a thread that is

shorter completes. At that point, the simulation is stopped to make sure that the

statistics collected are only due to sharing the L2 cache. To obtain accurate stack

distance or circular sequence profiles, for the shorter thread, the profile is collected

for its entire execution without cache sharing, but for the longer thread, the profile
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is collected for the same number of instructions as that in the co-schedule.
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2.4 Validation and Evaluation

This section will discuss four sets of results: the impact of cache sharing on IPC

(Section 2.4.1), validation of the prediction models (Section 2.4.2), sensitivity study

(Section 2.4.4) and a case study on the relationship between temporal reuse behavior

and the impact of cache sharing (Section 2.4.5).

2.4.1 Impact of Cache Sharing

Figure 2.9 shows the impact of cache sharing on IPC of each benchmark in a co-

schedule. Each group of two bars represents a co-schedule consisting of two threads

from sequential benchmarks that run on different CMP cores. The full height of

each bar (black + white sections) represents the IPC of the benchmark when it runs

alone in the CMP. The black section represents the IPC of the benchmark when it

is co-scheduled with another benchmark. Therefore, the white section represents the

reduction in IPC of the benchmark due to L2 cache sharing.

There are several interesting observations that can be made from the figure. First,

the figure confirms that the impact of cache sharing is neither uniform nor consistent

across benchmarks. For most co-schedules, the IPC reduction of the benchmarks is

highly non-uniform. For example, in applu+art, while applu suffers from 42% IPC

reduction, art only suffers 14% IPC reduction. Similar observation can be made for

applu+equake (6% vs. 19%), art+equake (10% vs. 41%), gzip+applu (25% vs. 4%),

gzip+apsi (20% vs. 0%), mcf+art (65% vs. 10%), and many others. In addition, for
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almost all benchmarks, the IPC reduction is not consistent for the same benchmark

across different co-schedules. For example, the IPC reduction for equake is 19% in

applu+equake, 41% in art+equake, 13% in mcf+equake, and 2% in mst+equake. The

same observation can be made for applu, mcf, gzip, and swim. Another observation

is that a few benchmarks, such as apsi and art, do not exhibit much slowdown due

to cache sharing. They are applications with very low IPC values because they suffer

many L2 cache misses, where most of them are capacity misses. Therefore, even when

the effective cache space decreases, the number of cache misses cannot increase much.

2.4.2 Model Validation

Table 2.4 shows the validation results for the fourteen co-schedules that we eval-

uate. The first numeric column shows the number of instructions that each thread

executes in a co-schedule. The second column denotes the extra L2 cache misses un-

der cache sharing, divided by the L2 cache misses when each benchmark runs alone

(e.g. 100% means that the number of cache misses under cache sharing is two times

compared to when the benchmark runs alone). The cache misses are collected using

simulation.

The next three columns present the prediction errors of the FOA, SDC, and Prob

models. The last two columns (Prob+NI) and (Prob+Unif) will be discussed in Sec-

tion 2.4.3. The errors are computed as the difference in the L2 cache misses predicted

by the model and collected by the simulator under cache sharing, divided by the
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Table 2.4: Validation Results. In each co-schedule, the benchmark that
finishes to completion is indicated with an asterisk.

Number Extra L2 Cache Miss Prediction Error (Ej)
Co-schedule of L2

Instruc- Cache FOA SDC Prob Prob+ Prob+
tions Misses NI Unif

applu applu 424M 29% 8% -22% 2% 2% 7%
+art art* 121M 0% 0% 0% 0% 0% 0%
applu applu* 447M 10% 0% 1% 1% 0% 0%

+equake equake 529M 19% 6% 1% 5% 7% 1%
art art* 121M 0% 0% 0% 0% 0% 0%

+equake equake 546M 43% -6% -30% 5% 8% 4%
gzip gzip* 287M 243% -60% -58% -25% -26% -35%

+applu applu 269M 11% 6% 4% 2% 2% 5%
gzip gzip* 287M 180% -62% -64% -9% -9% -11%

+apsi apsi 52M 0% 0% 0% 0% 0% 0%
mcf mcf 177M 296% -4% -74% 7% 12% 4%
+art art* 121M 0% 0% 0% 0% 0% 0%
mcf mcf* 187M 11% -9% -3% -3% -3% -6%

+equake equake 388M 6% 22% 7% 5% 6% 4%
mcf mcf 176M 18% -5% 1% 7% 7% 6%

+gzip gzip* 287M 102% 264% 25% 22% 22% 21%
mcf mcf 159M 8% -5% -7% -3% -3% -11%

+perlbmk perlbmk* 174M 28% 30% 31% 2% -3% 4%
mst mst 450M 10% 0% -5% 0% 0% -1%
+art art* 121M 0% 0% 0% 0% 0% 0%
mst mst 530M 25% 4% 4% 3% 3% 2%

+equake equake* 1185M 3% 1% -2% 0% 0% 0%
mst mst 382M 0% 0% 0% 0% 0% -1%

+mcf mcf* 187M 2% 0% -2% 0% 0% 0%
swim swim 261M 0% 0% 0% 0% 0% 0%
+art art* 121M 0% 0% 0% 0% 0% 0%
mcf mcf* 187M 59% -31% -32% -7% -7% -8%

+swim swim 213M 0% 0% 0% 0% 0% 0%

Minimum Absolute Error (min(|Ej |)) 0% 0% 0% 0% 0%
Maximum Absolute Error (max(|Ej |)) 264% 74% 25% 26% 35%

Arithmetic Mean of Absolute Error 18.6% 13.2% 3.9% 4.3% 4.7%
Geometric Mean of Absolute Error 13.3% 11.6% 3.7% 4.1% 4.4%
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number of L2 cache misses collected by the simulator under cache sharing. There-

fore, a positive number means that the model predicts too many cache misses, while

a negative number means that the model predicts too few cache misses. The last

four rows in the table summarize the errors. They present the minimum, maximum,

arithmetic mean, and geometric mean of the errors, after each error value is converted

to its absolute (positive) value.

Consistent with the observation of IPC values in Section 2.4.1, the benchmarks

that show large IPC reduction also suffer from many extra L2 cache misses, with one

exception. Specifically, the IPC reduction for swim in swim+art is not caused by an

increase in cache misses. Rather, it is caused by memory bandwidth contention that

results in higher cache miss penalties. In five co-schedules, one of the benchmarks

suffers from 59% or more extra cache misses: gzip+applu (243% extra misses in gzip),

gzip+apsi (180% extra misses in gzip), mcf+art (296% extra misses in mcf), mcf+gzip

(102% extra misses in gzip), and mcf+swim (59% extra misses in mcf).

Let us compare the average absolute prediction error of each model. Prob achieves

the highest accuracy, followed by SDC and FOA (average error of 3.9% vs. 13.2%

vs. 18.6%, respectively). The same observation can be made when comparing the

maximum absolute errors: 25% for Prob, 74% for SDC, and 264% for FOA. Therefore,

Prob achieves a substantially higher accuracy compared to both SDC and FOA.

Analyzing the errors for different co-schedules, Prob’s prediction errors are larger

than 10% only in two cases where a benchmark suffers a very large increase in cache
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misses, such as gzip in gzip+applu (-25% error, 243% extra cache misses), and gzip

in mcf+gzip (22% error, 102% extra cache misses). Since the model still correctly

identifies a large increase in the number of cache misses, it is less critical to predict

such cases very accurately. Elsewhere, Prob is able to achieve a very high accuracy,

even in cases where there is a large number of extra cache misses. For example, in

mcf+art, mcf has 296% extra cache misses, yet the error is only 7%. In mcf+swim,

mcf has 59% extra cache misses, yet the error is only -7%. Finally, in gzip+apsi, gzip

has 180% error, yet the error is only -9%.

In general, both FOA and SDC are not as accurate as Prob, although SDC per-

forms better than FOA, with an average absolute error of 13.2% (vs. 18.6% for FOA),

and maximum absolute error of 74% (vs. 264% for FOA). Unfortunately, the large

error not only happens in cases where the extra number of cache misses is large,

but also in cases where the extra number of cache misses is small. For example, in

mcf+perlbmk, perlbmk has 28% extra cache misses, and the prediction error is 30%

for FOA and 31% for SDC.

2.4.3 Remaining Inaccuracy

To further validate the Prob model, we relax two assumptions that we have made

in Section 2.1.1, namely the multi-level cache inclusion, and the unified L2 cache.

The last two columns in Table 2.4 shows the prediction error of Prob when the L2

cache does not maintain inclusion with the L1 data cache (Prob+NI), and when the
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L2 cache stores both instructions and data (Prob+Unif). In both cases, we rerun the

simulation and the profiling, and generate new predictions.

For an inclusive L2 cache, the effect of inclusion is ignored by our models. When

an inclusive L2 cache replaces a cache line, the corresponding line in the L1 cache

is invalidated. This may cause extra L1 cache misses that perturb the L2 accesses

and miss rates, which the models assume to be unchanged. In Prob+NI, we simulate

a non-inclusive L2 cache, thereby removing one source of possible inaccuracy. The

result in Prob+NI shows that the impact of cache inclusion property is insignificant.

The average error increases by only 0.4% to 4.3%.

Using an L2 cache that stores both data and instructions, the prediction error

in Prob+Unif increases by 0.8% to 4.7%. In some co-schedules, the errors increase

slightly, and in others, the errors decrease slightly. We conclude that the increase

in prediction errors only matter for a small subset of co-schedules, because in most

benchmarks, the instruction footprint is a lot smaller than the data footprint.

Prob’s remaining inaccuracy may be due to two assumptions. We assume that the

number of accesses in a circular sequence of a thread X can be represented accurately

by its expected value (nX in Equation 2.4). We also assumed that the number of

accesses from an interfering thread Y can be represented accurately by its expected

value (E(nY ) in Equation 2.6). In addition, the model rounds down E(nY ) to the

nearest integer. Relaxing these assumptions requires treating nX and nY as random

variables, which significantly complicates the Prob model.
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2.4.4 Sensitivity Study

To observe the impact of L2 cache parameters to the prediction accuracy of the

Prob model, we perform two studies. In the first study, we vary the L2 cache size from

256KB to 1024KB, while keeping the associativity at 8-way. In the second study, we

vary the L2 cache associativity from 4 to 16, while keeping the cache size constant at

512KB. The results are shown in Table 2.5 and Table 2.6, respectively.

Table 2.5: Prediction accuracy for different cache sizes.

Cache Size, Assoc Extra L2 L2 Miss Prediction
Cache misses Absolute Error (Ej)

FOA SDC Prob

min 0% 0% 0% 0%
256KB, 8 max 4332% 54% 153% 31%

avg 283% 9.6 % 27.3% 4.2%

min 0% 0% 0% 0%
512KB, 8 max 296% 264% 74% 25%

avg 39% 18.6 % 13.2% 3.9%

min 0% 0% 0% 0%
1024KB, 8 max 363 % 74% 78% 21%

avg 45% 17.7 % 21.1% 5.4%

An interesting observation is that for a 256KB L2 cache, the average and the

maximum increase in L2 cache misses is now 283% and 4332%. Therefore, the impact

of cache sharing for a small cache is very significant. In terms of the average error

of Prob for different L2 cache sizes, Table 2.5 shows little variation (4.2% for 256KB,

3.9% for 512KB, and 5.4% for 1MB). However, the error tends to be correlated with

the increase in the number of L2 cache misses. As discussed earlier, Prob’s large
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prediction errors only occur when there are large increases in L2 cache misses. Since,

in both 256KB and 1MB cache sizes, the average increase in L2 cache misses is larger

than that in the 512KB cache, the prediction errors are also larger. However, the

maximum absolute error reveals a different trend. The maximum error decreases

with a larger L2 cache size (31% for 256KB, 25% for 512KB, and 21% for 1MB),

indicating that Prob is more accurate in the worst case for larger caches. In any case,

Prob achieves very good accuracy.

Both the FOA and SDC models have large errors. For 256KB cache, SDC per-

forms very poorly, with an average error of 27.3% and maximum absolute error of

153%. This is expected as SDC does not take into account the miss frequency of the

benchmarks, which tends to increase with smaller caches.

Table 2.6: Prediction accuracy for different cache associativities.

Cache Size, Assoc Extra L2 L2 Miss Prediction
Cache misses Absolute Error (Ej)

FOA SDC Prob

min 0% 0% 0% 0%
512KB, 4 max 361% 80% 78% 45%

avg 47% 12.2 % 13.4% 7.2%

min 0% 0% 0% 0%
512KB, 8 max 296% 264% 74% 25%

avg 39% 18.6 % 13.2% 3.9%

min 0% 0% 0% 0%
512KB, 16 max 275% 69% 73% 36%

avg 38.1% 11.8 % 12.5% 5.1%

Table 2.6 shows a decreasing average and maximum L2 cache miss increase as the
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associativity increases, indicating that higher associativity can tolerate cache sharing

impact better. In terms of the average error of Prob, there is little variation (7.2% for

4-way, 3.9% for 8-way, and 5.1% for 16-way associativity). For a small associativity

(4-way), the larger error is expected because we use E(nY ) instead of treating nY as

a random variable. Unfortunately, for smaller associativity, the value of E(nY ) tends

to be smaller too. Since we round it down to the nearest integer value, this rounding

error starts to introduce extra inaccuracy. For 16-way associativity, the prediction

error is slightly higher than in the 8-way associativity mostly due to a larger error in

one co-schedule. To summarize, for sufficiently high associativity, Prob remains very

accurate.

2.4.5 Case Study: Impact of Temporal Reuse Behavior on

Cache Sharing Performance

In this case study, we investigate how temporal reuse behavior affects the cache

sharing performance of co-scheduled applications. To achieve that, we construct syn-

thetic stack distance profiles that cover a wide range of temporal reuse behavior.

The synthetic stack distance profiles are constructed using geometric progressions,

where C1 = Z,C2 = Zr, C3 = Zr2, . . . , CA = ZrA−1, where Z denotes the amplitude,

and r = 0.5, 0.6, . . . , 0.9 denotes the common ratio of the progression. In order to

assign a value to the miss counter (C>A), we use two models. The first (full ge-

ometric) model assumes that the geometric progression continues infinitely, hence
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C>A =
∑∞

i=A+1 Zri = ZrA

1−r
. In practical terms, this model assumes that any line that

has been accessed has a probability of being reused, and its probability decreases

according to its stack position infinitely. Figure 2.10(a) shows the full-geometric syn-

thetic stack distance profiles as the common ratio is varied from 0.5 to 0.9. The

figure shows that larger common ratio indicates a flatter profile, while a smaller ratio

indicates a more concentrated profile.

The second (partial-geometric) model assumes that temporal reuse does not con-

tinue infinitely and the miss rate is chosen as a constant fraction of the total accesses.

For example, Figure 2.10(b) shows the partial-geometric synthetic stack distance pro-

files with a fact that C>A equals to 25% of the total accesses.

Modeling a stack distance profile as a geometric progression is in general reason-

able because recently used lines are more likely to be reused than less recently used

lines, a well-known behavior of applications exploited by the LRU replacement pol-

icy. However, how much temporal reuse an application has may determine whether

its stack distance profile will be closer to the full- or partial-geometric model.

To analyze the cache sharing impact for various profiles, we start with the same

profile for both a base thread and an interfering thread. Then, we modify the inter-

fering thread’s profile by four different ways and observe how the number of misses

of the base thread is impacted. Let Ctotal denote the total number of accesses of the

base thread, i.e. Ctotal = C1 + C2 + . . . + CA + C>A. We define a multiplying factor

k = 0.1, 0.2, . . . , 0.5 and multiply it with Ctotal to obtain the extra accesses that we
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Figure 2.10: The full-geometric stack distance profiles with different common ratios (a), and the partial-
geometric stack distance profiles with different common ratios, with a miss rate fixed at 25%(b).

fguo
Text Box
50




51

will add to the interfering thread’s profile as shown in Figure 2.11. We can add the

extra accesses solely to the miss counter (ExcessC>8), the MRU counter (ExcessC1),

or across all counters while maintaining its common ratio constant (ExcessC∗). The

final modification we make to the interfering thread is performed without increasing

its number of accesses, but changing its common ratio to r′ = 0.5, 0.6, . . . , 0.9. These

four modifications to the interfering thread’s profile are applied in the same way to

both the full-geometric and partial-geometric models. For all modifications, we as-

sume that the execution time of the interfering thread is unchanged, i.e. the change

in the number of access proportionally changes the access frequency.
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Figure 2.11: Example modifications to the interfering thread’s stack distance
profile over a full-geometric base stack distance profile with a common ratio
of 0.7.

Note that the prob model expects the circular sequence profiles as its input rather

than stack distance profiles, requiring the value of n for each d. For simplicity, we set

n = d + 1, which, in our experience, is in line with many (but not all) applications.
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Figure 2.12: The impact of cache sharing to a full-geometric base thread with
a common ratio of r = 0.5.

Results for Full-Geometric Model

Figure 2.12 shows the result of the four experiments when the base thread’s com-

mon ratio is 0.5. The x-axes of Figure 2.12(a) shows the number of accesses of the

interfering thread relative to the base thread, while the y-axes shows the miss increase.

Figure 2.12(b) shows the miss increase of the base thread when the interfering thread

has different common ratios but without extra accesses.

We can observe in Figure 2.12(a) that ExcessC>8 incurs the highest miss increase

on the base thread, followed by ExcessC∗ and ExcessC1. This is because ExcessC>8

greatly expands the working set size of the interfering thread, reducing the effective

cache space of the base thread. On the other hand, ExcessC1 only increases the reuse

of the interfering thread’s MRU lines, which are likely to already be a part of the
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interfering thread’s effective cache space. As a result, the base thread does not suffer

from much miss increase. Thus, we can expect that extra reuses to a larger stack

position in the interfering thread are more harmful to the base thread. In addition,

we can also observe that a base thread with a small common ratio, indicating a

concentrated stack distance profile, is very vulnerable to miss increase due to cache

sharing, ranging from 5-13 times the base misses.

From Figure 2.12(b), we can make an observation that the larger common ratio

of the interfering thread (i.e. the flatter the stack distance profile), the higher the

miss increase of the base thread. This is very significant considering that the access

numbers of both threads are identical. The reason for this is that with a flatter

stack distance profile, the interfering thread reuses and retains the cache lines it has

brought into the cache, effectively reducing the space available to the base thread.

Overall, we identify that the base misses and stack distance profile shape of the

interfering thread play a significant role in affecting the base thread’s miss increase.

Figure 2.13 and Figure 2.14 repeat the experiments in Figure 2.12 for the base

thread’s common ratios of 0.7 and 0.9, respectively. The figures reveal that the higher

common ratio in the base thread, the smaller miss increase the base thread suffers. In

fact, when the common ratio is 0.9, the base thread’s miss increase never rise above

1X (or 100%). This is not unexpected since the base misses for a large common ratio

are also large, placing a smaller upper bound on the miss increase.

Overall, Figure 2.12– 2.14 help explain why gzip and mcf are very vulnerable to
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Figure 2.13: The impact of cache sharing to a full-geometric base thread
with a common ratio of r = 0.7.
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Figure 2.14: The impact of cache sharing to a full-geometric base thread
with a common ratio r = 0.9.
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a large miss increase due to cache sharing: they have low base misses, while almost

all other applications that they are co-scheduled with have higher base misses and

flatter stack distance profiles.

Results for Partial-Geometric Model
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Figure 2.15: The impact of cache sharing to a partial-geometric base
thread with a common ratio of r = 0.5.

Figure 2.15– 2.17 repeat the experiments in Figure 2.12– 2.14 for the partial-

geometric model. A new striking observation is that whereas in the full-geometric

model a base thread with a smaller common ratio is more vulnerable to cache miss

increase, we observe the opposite in the partial-geometric model: the base thread’s

miss increase is up to 1.5X when its common ratio is 0.9 (Figure 2.17(a)), but only

up to 0.3X when its common ratio is 0.5 (Figure 2.15(a)). The explanation for this



56

Base r=0.7

0.0X

0.4X

0.8X

1.2X

1.6X

2.0X

1.1 1.2 1.3 1.4 1.5
Normalized number of

accesses of interfering thread

M
is

s 
In

cr
ea

se
ExcessC>8
ExcessC1
ExcessC*

Base r=0.7

0.0X

0.4X

0.8X

1.2X

1.6X

2.0X

0.5 0.6 0.7 0.8 0.9
Common Ratio of interfering

thread
M

is
s 

In
cr

ea
se

(a) (b)

Figure 2.16: The impact of cache sharing to a partial-geometric base
thread with a common ratio of r = 0.7.
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Figure 2.17: The impact of cache sharing to a partial-geometric base
thread with a common ratio r = 0.9.
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seemingly opposite behavior is that the partial-geometric model assumes that the

base miss rates are constant across different common ratios and independent of the

reuse probabilities at large stack distance positions. Given a constant base miss rate

across different common ratios, we can conclude that a thread that has a flatter

stack distance profile is more vulnerable to cache miss increase due to cache sharing.

However, in the full-geometric model, such a flatter profile also has a high base miss

rate, which more than offsets its vulnerability.

Finally, we note that because in the partial-geometric model the base miss rate is

a constant percentage of the total accesses, the value of the constant greatly affects

the miss increase. Hence, the magnitudes of miss increase for different constants can

be very different than those in Figure 2.15– 2.17. For that reason, we do not compare

the miss increase in the full- and partial-geometric models.
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2.5 Related Work

Previous performance prediction models only predict the number of cache misses

in a uniprocessor system [6, 9, 13, 14, 16, 26, 46, 52, 55], or predict cache contention

on a single processor time-shared system [1, 49, 50]. In such a system, since only one

thread runs at any given time, no interfering effects between threads in the cache is

modeled. In contrast, this dissertation presents models that predict the impact of

inter-thread cache sharing on each co-scheduled thread that shares the cache. As a

result, the model can explain cache contention phenomena that have been observed

in an SMT or CMP system in past studies [19, 24, 28, 48, 53], but have not been

understood well.

The Prob model presented here may be applicable for improving OS thread schedul-

ing decisions. For example, Snavely et al. rely on discovering the interaction (symbio-

sis) between threads in a SMT system by profiling all possible co-schedules [42]. Such

profiling is unfeasible, or at least impractical, to implement on a real system due to

the combinatoric explosion of the number of co-schedules that need to be profiled. If

a symbiotic job scheduling is to be applied in a CMP system, Prob can avoid the need

for such profiling by discovering cache symbiosis between co-scheduled threads with-

out running the co-schedule, by directly using the model or through parameterization

similar to the case study presented in Section 2.4.5.

Suh et al. [48] and Kim et. al. [25] have proposed partitioning the shared cache in

a CMP system to minimize the number of cache misses or maximizing fairness. Both
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studies assume that a co-schedule is already determined by the OS, and the hardware’s

task is to optimize the performance for the given co-schedule. Unfortunately, some

problems such as cache thrashing can only be avoided by the OS’s judicious co-

schedule selection. We view that our models can be used in a complementary way,

where the models can be used to guide the OS scheduling algorithms, allowing them

to optimize the performance of a selected co-schedule further.

In the context of paging behavior, Turner and Strecker showed a method to arrive

at a closed-form solution for an equation similar to the one in Theorem 1 [51].

Finally, the model proposed by Wasserman et al. predicts the average cache

miss penalty of a program on a superscalar uniprocessor [55], while that proposed by

Solihin et al. predicts the miss penalty on a distributed shared memory multiprocessor

system [43]. Integrating such models with Prob allow a full performance model that

predicts the execution time rather than just miss rates.
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2.6 Conclusions

This chapter has investigated the impact of inter-thread cache contention on a

Chip Multi-Processor (CMP) architecture. Using a cycle-accurate simulation, we

found that cache contention can significantly increase the number of cache misses of

a thread in a co-schedule and showed that the degree of such contention is highly

dependent on the thread mix in a co-schedule. We have proposed and evaluated

two heuristics-based models and one analytical model that predict the impact of

cache sharing on co-scheduled threads. The input to our models is the isolated L2

cache stack distance or circular sequence profiles of each thread, which can be easily

obtained on-line or off-line. The output of the models is the extra number of L2 cache

misses of each thread that shares the cache. We validated the models against a cycle-

accurate simulation that implements a dual-core CMP architecture and found that

the analytical Inductive Probability (Prob) model produces very accurate prediction

regardless of the co-schedules and the cache parameters, with an average error of

only 3.9% on a 512KB 8-way associative L2 cache. Finally, the Prob model provides

a valuable and practical tool through which we can study the impact of cache sharing

extensively. We have presented a case study to demonstrate how different temporal

reuse behavior in applications influence the impact of cache sharing suffered by them.

Through the case study, the Prob model reveals non-obvious interaction between the

applications. We found that for a base thread, the base misses and stack distance

profile shape of the interfering thread play a significant role in affecting the base
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thread’s miss increase. We also found that a thread that has a flatter stack distance

profile is more vulnerable to cache miss increase.
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Chapter 3

Providing Performance Quality of

Service in Chip Multi-Processors

This chapter is organized as follows. Section 3.1 presents QoS target specifica-

tion and execution modes. Section 3.2 presents our microarchitecture technique for

improving throughput. Section 3.3 presents improved resource stealing techniques

for more effectively stealing resource. Section 3.4 discusses the implementation of an

admission control policy. Section 3.5 presents the evaluation setup, while Section 3.6

presents and discusses the evaluation results. The related works are discussed in

Section 3.7. Finally, Section 3.8 summarizes the findings.
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3.1 QoS Target Specification and Execution Modes

This section presents the assumptions of our working environment (Section 3.1.1),

QoS goals and metrics for specifying a QoS target (Section 3.1.2) and the proposed

QoS execution modes (Section 3.1.3).

3.1.1 Definitions and Assumptions

We refer to a job as the unit of aperiodic computation task that has its own QoS

target. A job may consist of a thread, an application, or a group of applications. In

this dissertation, we limit our study by associating an instance of a single-threaded

application as a job. We define computation capacity as the resources that can be

used for providing performance. Basically, a job’s QoS target is computation capacity

demand, while available resources in the server are computation capacity supply.
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Figure 3.1: The assumed working environment.

We assume a server platform consisting of CMP nodes as shown in Figure 3.1. The

server has a global admission controller (GAC) which decides whether to accept or
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reject a newly arriving job submitted by user. To achieve this, the global admission

controller probes each CMP node’s local/per-CMP admission controller (LAC) to

find which CMP node can accept the job and satisfy its QoS target. When the GAC

cannot find any CMP node that can accept the job, it rejects this job or negotiates

with the user for another acceptable QoS target. A comprehensive discussion of the

GAC is beyond the scope of this dissertation. In this dissertation, only the LAC is

considered as a component of our QoS framework because it has a direct interaction

with microarchitecture resources.

3.1.2 Specifying QoS Target

Earlier we have argued that for a CMP to fully provide QoS to an incoming job,

it must have available computation capacity in excess of the capacity demanded by the

job. We refer to the units of target as the units in which a QoS target is specified, and

units of capacity as the units in which computation capacity in the CMP is expressed.

Before continuing our discussion, it is helpful to define one term.

Definition 1 A QoS target is convertible if its units of target can be converted into

units of computation capacity.

In order for a CMP to really provide QoS, two conditions must be met. The first

condition is that a QoS target must be convertible, which allows the system to easily

compare the available computation capacity with demanded capacity. The second
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condition is that a job should be accepted only if its QoS target can be satisfied.

Convertibility and satisfiability checking are the basis for constructing an admission

control policy to ensure that the QoS targets of all accepted jobs can be met.

One way to provide QoS in a CMP system is to model it after a traditional

real-time system in which the QoS target of a job is specified by its deadline. In

a real-time system, deadline convertibility can be achieved through Worst-Case Ex-

ecution Time (WCET) analysis which determines the maximum execution time of

a job by taking into account the maximum path length of the code and maximum

latencies that can occur in the architecture. Unfortunately, in traditional real-time

systems the operating system and processor architecture are often structured to suit

the needs of real-time constraints, such as by restricting out-of-order execution, dy-

namic branch prediction, and a complex memory hierarchy. Our goal is to provide

QoS in general purpose servers with a largely unmodified OS, processor architec-

ture, and memory hierarchy. Furthermore, in a server environment, jobs often have

unpredictable arrivals, dynamic and input-dependent behavior, and may not have

meaningful deadlines. Hence, unlike in traditional real-time systems, we cannot use

deadlines as the primary QoS target.

In [22], Iyer et al. proposed three types of QoS targets. The first is Resource Usage

Metrics (RUM), which specify the amount of resources needed by the application,

such as the processor count, cache size, and bandwidth rate. The second is Resource

Performance Metrics (RPM), which specify the performance of specific resources
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being used, for example cache miss rates. The final is Overall Performance Metrics

(OPM), which specify the overall throughput of the program, expressed in IPC. Most

prior studies in architecture support for QoS assume that the QoS target is expressed

in IPC. However, we believe that IPC is not suitable to specify a QoS target because

IPC is not easily convertible. A CMP system cannot easily determine how much IPC

it can provide for a particular job (unless it uses an elaborate performance model).

Furthermore, it also cannot easily determine the amount of platform resources that

are needed to achieve a target IPC. Similarly, a CMP cannot easily determine what

miss rate it can provide to a particular job or the amount of resources needed in

order to provide a given miss rate. In fact, in addition to being non-convertible, it

may be hard to check whether particular RPM and OPM values are ill-defined, i.e.

they cannot be satisfied no matter how many resources are allocated. As a result, we

believe that OPM and RPM are not suitable for a CMP system to fully provide QoS.

In contrast to RPM and OPM, RUM are easily convertible if a CMP is equipped

with relatively simple hardware that tracks the current allocation of platform re-

sources for different cores. For example, with RUM, an incoming job’s request in

terms of the amount of cache capacity it needs (demand) can be compared trivially

against the amount of cache capacity that has not been allocated yet (supply). This

leads to the ease of constructing an admission control policy. An additional benefit of

using RUM is that such metrics are already used in batch job systems. For example,

in the Lsbatch batch job system [54], a job can specify its requirements in terms of
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the number of processors, memory size, disk space size, and the maximum wall clock

time it would run. Hence, RUM has an advantage of being time-tested and has a

high familiarity with users.

In the context of CMPs, RUM must extend beyond resources that are specified

in traditional batch job systems, for example by including the shared cache capacity

and off-chip bandwidth rate. In this work, we focus on the shared L2 cache capacity

and processor core resources in the QoS target specification. We acknowledge that

a complete QoS target would include off-chip bandwidth rate, main memory size,

network bandwidth, disk size, and other resources. However, we note that those

resources are not specific to CMP design or do not contribute as strongly to the

performance variation of a job compared to the L2 cache capacity and processor core.

Hence, we leave them for future work.

Optionally, a QoS target may include a timeslot resource, which can be specified

through a maximum wall-clock time which indicates the size of the timeslot, and a

deadline which indicates the latest expected completion of the timeslot. Maximum

wall-clock time is a concept borrowed from batch job systems [54]. It specifies the

maximum amount of time that a job should be allowed to run assuming it gets all

its requested resources. The maximum wall-clock time is different from WCET in a

real-time system in that it does not need to be a safe execution time upper bound.

Embedded in it is the users’ expectation that a job may be terminated if it runs longer

than its maximum wall-clock time. Another reason why timeslot resource specification
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is optional is that jobs do not necessarily have a maximum wall-clock time or a

deadline. Long-running applications, OS daemons, or other legacy applications may

not specify timeslot resources, and in this case resources will be allocated to them for

their entire lifetime.

In order to make it easier for users to determine an appropriate QoS target, the

system may provide several preset RUM targets that users can choose from. Similar

preset targets have been employed in many batch job systems. For example, a job

can choose one of large, medium, or small configurations. Each configuration comes

with preset memory size, maximum processor count, and maximum wall-clock time.

However, while preset QoS targets could greatly simplify QoS target selection for

users, they may also exacerbate QoS overspecification, a situation in which a job

needs less resources than what it specifies. This leads to resource fragmentation

that will reduce overall throughput. We will address how to recover from resource

fragmentation in the following sections.

3.1.3 QoS Execution Modes

Besides QoS target specification, another important component of our QoS frame-

work is how strictly the QoS target must be followed. Similar to the postal delivery

system that allows various strictness levels in delivery times, it may be desirable for a

utility computing server to provide various strictness levels in meeting the QoS target.

To achieve this variety, we propose the following execution modes:



69

1. Strict: The Strict execution mode may be used by jobs that have rigid require-

ments for a minimum throughput (implied by the RUM) and deadline. To meet

a Strict job’s QoS target, the requested resources and timeslot must be strictly

reserved.

2. Elastic(X) 1: The Elastic(X) execution mode can be used by jobs that have

a rigid deadline requirement but can tolerate some deviation of throughput

compared to that implied by the amount of resources requested in RUM. The

deviation is such that the reduction of throughput (slowdown) is not more than

X% compared to the case in which the resources are reserved (i.e. in the Strict

mode).

3. Opportunistic: The Opportunistic mode may be used by jobs that do not

have rigid throughput and deadline requirements. For example, users may use

the Opportunistic mode for jobs whose deadlines are still far away.

Note that since we propose to use RUM in our QoS target specification, the

Elastic(X) mode is only meaningful when X is defined with a different metric (not

a RUM). Otherwise, Elastic(X) mode will be equivalent to the Strict mode with a

reduced resource requirement. As a result, for the Elastic(X) execution mode, we

specify X in terms of the percentage of slowdown in execution time or cycle-per-

instruction (CPI). From users’ point of view, the significance of the availability of

1The concept of Elastic mode is similar to the one in Buttazzo et al. [5]. However, while in [5] it
only applies to periodic jobs, we define the elasticity in terms of slowdown, hence it is applicable to
aperiodic jobs as well.
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the weaker modes (Elastic(X) and Opportunistic) is that they may match their jobs’

requirements better, especially if the weaker modes have lower fee structures. From

the system point of view, we will show that weaker modes allow the CMP to boost

throughput by accepting more jobs and mitigating QoS target overspecification.

Downgrading QoS Execution Mode. Suppose a user submits a job in Strict

mode, and the CMP rejects the job because it cannot meet the QoS target of the

job. In this case, the user can probably make the job admissible if he/she is willing

to reduce the required resources specified in the QoS target, increase the deadline, or

downgrade the mode of their job to a weaker one. We refer to changing the mode

from Strict to Elastic(X) or Opportunistic, or from Elastic(X) to Opportunistic by

users as manual mode downgrade. Since users are fully aware of the consequence of

using different execution modes, manual mode downgrade requires the willingness of

users to reduce their expectations on the strictness of the jobs’ QoS targets.

Mode downgrade can also be performed transparently by the system as long as

the old and new modes are interchangeable. We define two modes as interchangeable

if they can be used to guarantee completion of a job by the same deadline, and

throughput variation can be tolerated by the job. Suppose we have a Strict job with

deadline of td and maximum wall-clock time of tw, arriving at time ta. We note

that there is a time slack of (td − ta) − tw. This amount of slack means that the

job can be downgraded as an Elastic( (td−ta)−tw
tw

) job while still meeting its deadline.

Additionally, it can also be downgraded to the Opportunistic mode for (td− ta)− tw
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amount of time, but if it has not completed by time td− tw, it needs to be switched

back to the Strict mode. We refer to these as automatic mode downgrade.

3.1.4 The Impact of Execution Mode Downgrade

In this section, we examine the impact of manual and automatic mode down-

grade. Before we continue the discussion, it is helpful to distinguish two factors that

contribute to sub-optimal throughput when there are only Strict jobs. The first is

external resource fragmentation which refers to idle resources that are not allocated

to any jobs. Typically, external resource fragmentation occurs when there are not

sufficient remaining available resources to accept a new job. The second factor is

internal resource fragmentation which is caused by a job not using all resources that

are allocated to it.

First, let us consider the impact of manual mode downgrade as illustrated in Fig-

ure 3.2. In the figure, each bar represents the time each job takes to complete its

computation, the x-axis represents the time duration and the y-axis represents differ-

ent accepted jobs. In this example, we assume that jobs are sequentially submitted to

the system, and the first six accepted jobs are shown in the figure. Assume that each

job requires 40% of the shared cache size in order to complete in T time. The deadline

of each job is assumed to be 1.5T from the time when the job is accepted. If there

are six Strict jobs (Figure 3.2(a)), at most two jobs can be executed simultaneously

since there is not enough cache space to run more than two jobs simultaneously. The
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external resource fragmentation includes two idle cores in a 4-core CMP and 20% of

the L2 cache capacity. The CMP takes 3T to finish all six jobs and all of them meet

their deadlines. However, if users manually downgrade the third and sixth jobs to

Opportunistic jobs (Figure 3.2(b)), the system can accept and run more jobs simul-

taneously and reduce external resource fragmentation. Although the third and the

sixth jobs run slower, the overall throughput is improved as it only takes slightly more

than 2.5T to complete all six jobs. If users also manually downgrade the second and

fifth jobs to Elastic(X) jobs, the system can employ the resource stealing technique

(Section 3.2) to discover unused cache capacity allocated to Elastic(X) jobs and real-

locate them to Opportunistic jobs. This results in the third and sixth jobs completing

faster, while the second and fifth jobs run slower but still meet their deadlines. The

overall throughput is potentially improved further as we also reduce internal cache

fragmentation.

With manual mode downgrade, when a Strict job is downgraded to Elastic(X),

its unused resources are re-allocated to Opportunistic jobs. However, since the job

may be slowed down by up to X%, in order to guarantee meeting its deadline, the

job needs to reserve resources for a longer time duration of tw× (1+X) (versus tw if

it remains a Strict job). Since the same amount of resources are reserved for a longer

time, the ability of the CMP to accept future jobs may be reduced, which in turn

may reduce future throughput. Consequently, manual downgrade of a Strict job to

Elastic(X) may reduce throughput if it is not accompanied by a throughput increase



74

due to Opportunistic jobs benefiting from reallocation of excess resources. Overall,

we can expect throughput improvement to be higher when there are both Elastic(X)

and Opportunistic jobs to complement Strict jobs, compared to when there are only

Opportunistic jobs to complement Strict jobs.

With automatic mode downgrade, an additional impact occurs when a Strict job

is downgraded to Opportunistic mode. In contrast to the manual mode downgrade

in which an Opportunistic job does not reserve any resources, with automatic mode

downgrade the resources requested by the job still need to be reserved for the length

of its maximum wall-clock time. The job can only be run in Opportunistic mode

before it meets its reserved timeslot, by which time it has to switch back to Strict

mode in order to ensure that its deadline is met. When a job completes before it

meets its reserved timeslot, the reserved resources can be reclaimed to allow new

jobs to be accepted and future throughput to be improved. As a result, the reserved

timeslot needs to be placed as far away as possible in order to increase the probability

that the job completes before the reserved timeslot is encountered. Finally, we do

not consider automatically downgrading a Strict job to Elastic(X) job because the

Elastic(X) mode reserves resources longer than the original Strict mode, which is

likely to be detrimental to throughput.

Comparing manual and automatic mode downgrade, if the manually downgraded

Opportunistic jobs do not suffer from too much slowdown due to lack of resources,

it can be expected that manual downgrade would achieve a higher throughput than
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automatic downgrade since the latter still relies on resource reservation, which may

reduce job admission rate. However, the automatic mode downgrade is still useful

because it does not rely on users’ willingness to downgrade their jobs to weaker modes.
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3.2 Resource Stealing

In this section, we will discuss resource stealing, a key technique that supports

the proposed Elastic(X) execution mode.

3.2.1 Managing Cache Capacity Partitions

In order to track and control the shared cache allocation across cores, we need

to employ a cache partitioning scheme. Cache partitioning can be achieved through

a global approach or per-set approach. In the global approach, a modified LRU

policy [48] keeps a global counter that tracks the number of cache blocks currently

allocated to each core, and another counter that records the target number of cache

blocks that should be allocated to each core. On a cache miss, the victim block is

chosen from the blocks that belong to the core which has more allocated blocks than

its target number of blocks. This process is repeated until each core reaches its target

cache allocation. The number of blocks allocated to a core in different sets varies,

but the sum of them over all sets would match the target allocation. We note that

while this global approach is relatively simple to implement, it has a drawback that

the distribution of blocks allocated to an application in different cache sets varies

across different runs as it is affected by other applications that run simultaneously.

This variation of allocation, especially when it occurs in heavily-used sets sometimes

introduces a large variation in miss rates and performance for the same application

across different runs. As a result, we do not use it in our QoS framework.
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The per-set cache partitioning algorithm in [21, 33] is a finer-grain version of the

modified LRU replacement policy proposed by Suh et al. [48]. In [21, 33], each core

is assigned a target allocation counter that records the number of cache ways that

should be assigned to it. Each set in the cache also has per-set counter to track the

number of blocks in the set that are currently allocated to the core. When a core

suffers a cache miss on a set, the core’s per-set counter is compared against its target

allocation counter. If the per-set counter has a lower value, a block that belongs

to one of the over-allocated cores is selected as the victim. Otherwise, a block that

belongs to the core itself is selected as the victim. Over time, the number of blocks

allocated to a core will be the same over all sets. Consequently, over different runs,

the same job with the same cache space allocation will perform more uniformly. This

is a desirable factor in a system that tries to provide QoS.

Our cache partitioning scheme is based on the fine-grain approach in [21, 33], but

we adapt it to our QoS framework. In our modified version, the selection of the victim

block for a cache miss also depends on the execution mode of the job that the victim

belongs to. On each cache miss, if there is more than one over-allocated core, the

victim is first selected from an over-allocated Strict or Elastic(X) job (if there is any).

Otherwise, the LRU block among the blocks from Opportunistic jobs is selected as

the victim. The reason why over-allocated Strict/Elastic(X) jobs are given a higher

priority for victim selection is that we would like to accelerate the cores running these

jobs in converging to their target allocations, and reallocate the excess cache capacity
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from Elastic(X) jobs to Opportunistic jobs as fast as possible.

3.2.2 Criterion for Resource Stealing

In Section 3.1.3, the Elastic(X) execution mode was proposed in order to enable the

system to remove excess cache capacity allocated to a job due to QoS ovespecification,

and X specifies the maximum slowdown (slack) that is acceptable to the user. When

applying resource stealing, it is difficult to accurately measure how much CPI increases

when we employ resource stealing versus when we do not. Hence, we need a more

measurable metric.

First, we note that the components of CPI are additive, i.e. the overall CPI is the

sum of the CPI assuming an infinite cache and the additional CPI when cache misses

are considered [12, 30]. Specifically, assuming a system with two levels of caches, the

overall CPI of an application can be expressed as:

CPI = CPIL2−>∞ + hm × tm (3.1)

where CPIL2−>∞ indicates the CPI of the program when the lowest level on-chip

cache (e.g. the L2 cache) has infinite size, hm and tm indicate the number of L2

misses per instruction and the penalty (in number of cycles) of an L2 miss respectively.

With resource stealing, we attempt to steal L2 cache capacity from an Elastic(X) job

and reallocate it to Opportunistic jobs. The effect of reduced L2 cache size for the

Elastic(X) job is a higher L2 cache miss rate (hence higher hm), but other variables
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would remain roughly unchanged 2. Since hm×tm is only one component of the CPI,

and all other components have positive (at least non-negative) values, an increase of

X% in hm would result in a less than X% increase in CPI. We exploit this observation

to guide our resource stealing algorithm such that it removes cache capacity from an

Elastic(X) job but without increasing the job’s L2 cache miss rate by more than X%.

Note that our criterion of allowing the L2 cache miss rate to increase by not more

than X% is likely to be conservative, i.e. the increase in CPI is smaller than X%. We

will address this issue in Section 3.3. Finally, monitoring the L2 miss rate increase

is achievable with relatively simple hardware modification which will be described in

the next section. Therefore, in this dissertation, we choose to use L2 miss rate as the

metric to guide the resource stealing mechanism.

3.2.3 Microarchitecture Support

In order to monitor the miss rate increase due to partition changes, we need a

mechanism to dynamically obtain the miss rates for both the reduced and original

partition cases. To achieve this, we use a straightforward method that utilizes an

additional duplicate cache tag array [35, 47] that keeps track of what blocks the cache

would have if resource stealing had not been applied, while the main cache tag array

2 The CPI of infinite L2 cache (CPIL2−>∞) is mostly affected by physical L1 and L2 cache
organization, and not affected much by L2 cache partition sizes. The latency of an L2 miss (tm)
may be affected as memory bus contention increases due to the increase in the number of L2 cache
misses. However, this can be mitigated by prioritizing memory requests from Elastic(X) jobs over
those from Opportunistic jobs. In addition, we can monitor bus utilization and disable resource
stealing when bus saturation is reached. According to Little’s Law [18], prior to saturation, queueing
delay is roughly constant.
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keeps track of the actual cache content. To reduce the storage overhead of keeping

the duplicate tag array, we employ set sampling [35, 36], in which only a few sets are

augmented with duplicate tags and profiled to infer the global cache behavior. We

let the stream of all L2 cache accesses be visible to both tag arrays so that only their

numbers of misses differ.

When an Elastic(X) job runs, the resource stealing algorithm is activated. The

algorithm reduces the Elastic(X) job’s partition size by one way. This “stolen” way

is re-allocated to one of the Opportunistic jobs. The target allocation counters for

the Elastic(X) job and the Opportunistic job are updated, which allows the cache to

converge to the new partitions over time. In the meantime, the duplicate tags keep

track of the total number of misses for the Elastic(X) job without resource stealing. If

the extra number of misses in the main tags reaches or exceeds X% compared to that

in the duplicate tags, then the resource stealing has potentially caused the Elastic(X)

job to slowdown by more than X%, so the resource stealing is canceled and all the

stolen ways are returned to the Elastic(X) job. Otherwise, in the next time interval

we steal another way from the Elastic(X) job. Note that while repartitioning occurs

at periodic intervals, the number of misses in the duplicate tag array and main tag

array are not reset at each interval. This ensures that the total number of misses since

the start of the Elastic(X) job does not increase by more than X% due to resource

stealing.
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3.3 More Effective Resource Stealing Techniques

The resource stealing algorithm presented in Section 3.2, which we refer to as

RSbase, is fairly simple, but the criterion of allowing the L2 cache miss rate to increase

by not more than X is too conservative. This section presents the reason why the

RSbase algorithm is conservative in Section 3.3.1, and two improved resource stealing

techniques in Section 3.3.2 and Section 3.3.3. Finally, a mechanism to dynamically

control the resource stealing is presented in Section 3.3.4.

3.3.1 The Conservativeness of the RSbase Algorithm

Equation 3.1 expresses the CPI as addition of its components, with one of the

components being hm × tm. Let CPI and hm denote the original CPI and the orig-

inal number of L2 misses per instruction, i.e. when resource stealing is not applied.

Let CPI ′ and h′m denote the CPI and the number of L2 misses per instruction when

resource stealing is applied. Since both CPIL2−>∞ and tm can be assumed to be unaf-

fected by resource stealing, the increase in CPI, denoted as 4CPI, can be expressed

in Equation 3.2. Consequently, the miss rate increase, denoted as 4MissRate, can

be expressed in Equation 3.3.

4CPI =
CPI ′ − CPI

CPI
=

(h′m − hm)× tm
CPI

(3.2)

4MissRate =
h′m − hm

hm

= 4CPI × CPI

hm × tm
(3.3)
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Equation 3.3 indicates that to satisfy the condition that CPI does not increase

by more than X, the maximum increase in miss rate should be X multiplied by a

factor, denoted by F , which is CPI
hm×tm

. F is always equal or larger than one since

hm× tm is only one component of CPI. The RSbase algorithm conservatively assumes

that F is one. While safe, the algorithm is not effective because in practice, F is

often much larger than one. Figure 3.3 shows F ’s of fifteen SPEC2006 benchmarks
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Figure 3.3: The F (i.e. CPI
hm×tm

) values of fifteen SPEC2006 benchmarks.

Detailed simulation parameters are described in Section 3.5.

without applying resource stealing. While F varies between 1.26 and 30.1 for different

benchmarks, for two thirds of the benchmarks the value is larger than 2, indicating

that to tolerate a slowdown of X, the miss rate can be allowed to increase by more

than 2X. Therefore, assuming F to be one as in RSbase is too conservative.
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3.3.2 CPI Sampling

Our first attempt to make resource stealing more effective is by estimating the

value of F to get the maximum allowable increase in L2 cache miss rate. Since hm

can be obtained on-line through the duplicate cache tag array and tm is unaffected

by resource stealing, the challenge is to obtain CPI, which is the actual CPI of the

program when no resource stealing is applied. Unfortunately, once resource stealing is

applied, the CPI is affected and its original value is no longer obtainable. To approx-

imate the value, we rely on CPI sampling in order to predict its original value. More

specifically, an application’s execution is divided into intervals with equal number of

dynamic instructions. We choose one interval for sampling CPI (no resource stealing

is applied), followed by α number consecutive intervals in which resource stealing is

applied, where α is an adjustable parameter. During a sampling interval, we cancel

all resource stealing and use the original cache partition size in the main tag array.

The CPI value collected in each sampling interval forms a sample, and we assume

that these samples are independent and identically distributed. The average value of

sampled CPIs (CPI) form a point estimation of the original CPI value, and we can

use it for computing F . In addition, since during sampling no resource stealing is

applied, its CPI is not increased. Therefore, the amount of CPI increase during re-

source stealing can be adjusted up by a factor of α+1
α

. Hence, the maximum allowable
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increase in L2 cache miss rate can be expressed as:

4MissRate ≤ X × CPI

hm × tm
× α + 1

α
(3.4)

where X is the maximum allowable slowdown. We refer to this resource stealing

algorithm as RSsample. The major risk of using the RSsample algorithm is the accuracy

of estimating the original CPI with the average of sampled CPIs (CPI). If the

CPI overestimates the original CPI, the miss rate may increase beyond a safety

threshold and the application slowdown may exceed X. An example in which this

can happen is when the CPI samples capture unusually high CPI which cause the

accumulated CPI to permanently overestimate the original CPI. In general, the larger

the fraction of execution time dedicated as sampling intervals, the more accurate the

estimation accuracy becomes. However, it also reduces resource stealing opportunities

and effectiveness. In the next section, we add margin of safety to the CPI estimation

in order to avoid CPI estimation error to cause the application’s slowdown to exceed

X.

One intuitive question regarding the use of CPI sampling is whether we can di-

rectly use it to guide the increase in CPI without regarding the miss rate increase. For

example, we can compare the average CPI when resource stealing is applied versus

the average CPI during sampling in which resource stealing is not applied. Resource

stealing can be applied when the difference between the two average CPIs is still

smaller than X. While such a technique is clearly possible, we note that the risk is

high that the slowdown may overshoot X and it is very difficult to detect and re-
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cover from it. In contrast, using miss rate increase as a proxy allows the technique

to switch seamlessly between more aggressive resource stealing techniques with the

safer technique of RSbase. For example, if for some reasons we suspect the slowdown

overshoots X, resource stealing can be canceled and we can wait until the cumulative

miss rate increase is less than X before attempting more aggressive resource stealing

again.

3.3.3 Adding Safety Margin

In order to add a safety margin to the aggressive resource stealing RSsample that

we introduced earlier, we utilize the degree of confidence of the estimation. One

question is whether the degree of confidence should be computed for all CPI samples

or for most recent ones. We note that applications are known to go through phases

of execution in which one phase often exhibits a very different CPI compared to

prior phases. Hence, the assumption that sampled CPIs are identically distributed

are more valid over a short time period than over a long time period. Hence, we

define a sample safe size, denoted by W , as the number of the most recent collected

samples considered in computing the degree of confidence. We assume that CPI

samples over W are independent and identically distributed with a mean of µ and

variance of σ2. Consequently, according to Central Limit Theorem, CPI over W

follows a normal distribution with a mean of µ and variance of σ2
sample = σ2

W
. Hence,

there is a 95% probability that the original CPI is larger than CPI − 1.64× σsample.
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Similarly, there is a 99% probability that it is larger than CPI − 2.33 × σsample.

Hence, CPI − 1.64 × σsample forms the lower bound of the original CPI value with

95% confidence. We denote this estimated lower bound as CPImin, and our criterion

for miss rate increase becomes:

4MissRate ≤ X × CPImin

hm × tm
× α + 1

α
(3.5)

We refer to this modified algorithm as RSsafe. Compared with RSsample, RSsafe is

relatively conservative in stealing resource since CPImin includes a margin of safety

that is often lower than the actual CPI. During a period in which CPI samples are

unusually volatile (i.e. their values highly fluctuate), the estimated standard deviation

becomes high, CPImin becomes small, hence miss rates are not allowed to increased

by much. However, when CPI samples are relatively stable, the estimated standard

deviation becomes low, CPImin becomes large, and miss rates are allowed to increase

significantly. Hence, the algorithm tends to be more aggressive when stable phases

are detected, and becomes conservative when unstable phases or transitions between

phases are encountered. In addition, a temporary large spike in CPI values does not

cause overshoot in slowdown. The reason is that while the average CPI over the

samples becomes elevated, the CPImin does not change much because the estimated

standard deviation also increases significantly. In some of these cases, we actually

observe that the computed F drops below one, which is unnecessarily low. In this

case, we simply replace it by one since we know it is safe to do so, i.e. we let the

algorithm to temporarily revert back to RSbase.
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The sample safe size W obviously impacts the effectiveness of the RSsafe algo-

rithm. Ideally, W must be adjusted such that it is able to detect most of program

phases with stable CPI values. If W is too large, it may include multiple phases

with highly different CPI values, and the algorithm becomes overly conservative and

has less opportunity to perform resource stealing. However, if W is too small, the

accuracy of average and variance of sampled CPIs is reduced. In our experiments,

we found a sample safe size of three to deliver reasonable accuracy and coverage for

resource stealing.

3.3.4 Dynamic Resource Stealing Mechanism

So far we have discussed two alternative techniques to more effectively steal cache

capacity from Elastic(X) jobs. However, we note that the resource stealing techniques

alone are not sufficient to ensure improving the overall throughput. This is because

as mentioned in Section 3.1.4, the overall throughput can be improved only when

the Elastic(X) jobs are accompanied by the opportunistic jobs which benefit from

the relocation of the excess cache capacity. Otherwise, the overall throughput may

be even reduced due to the slowdown of the Elastic(X) jobs. Ideally, in order to

improve overall throughput, resource stealing should be suspended temporally when

the opportunistic jobs cannot benefit from extra cache space and be resumed when

it can help reduce the misses of opportunistic jobs significantly. In this section, we

present a mechanism, which dynamically controls the suspension/resuming of the
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resource stealing by counting the reduction of total number of cache misses. We refer

to this mechanism as RSdyn. It works as follows.

Let CRS and CNoRS denote the total number of cache misses with and without

resource stealing respectively and they are set to 0 when resource stealing is activated.

After each cache repartitioning interval expires, following steps will be performed:

1. The total number of cache misses in previous interval obtained from the main

tags is added to CRS if resource stealing is not suspended, otherwise it is added

to CNoRS. The total number of cache misses obtained from the duplicate tags

is added to CRS if resource stealing is not suspended, otherwise it is added to

CNoRS.

2. CRS and CNoRS are compared to determine whether the resource stealing is

useful or not. In this dissertation, we use X to guide the suspension/resuming of

the resource stealing such that: resource stealing will be suspended (if it has not)

when CRS

CNoRS
> 1−X, and will be resumed (if it has not) when CRS

CNoRS
≤ 1−X.

The intuition of using this comparison is that the total number of cache misses

should at least be reduced by X under the cost of the slowdown of Elastic(X)

jobs.

3. Upon the suspension/resuming of the resource stealing, we exchange the val-

ues of the allocation counters of the main tags and duplicate tags for all proces-

sors and apply the resource stealing on the duplicate/main tags. i.e., in the
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next repartitioning interval, the partition sizes of duplicate/main tags will be

changed according to the running resource stealing algorithms and those of the

main/duplicate tags will keep unchanged. As a result, we are able to estimate

the total number of misses with and without resource stealing through CRS and

CNoRS respectively no matter resource stealing is suspended or not.

Note that RSdyn slightly affects on the running resource stealing algorithms. The

number of cache misses of Elastic(X) job with/without resource stealing should be

accumulated from main/duplicate tags when resource stealing is not suspended and

from duplicate/main tags if it is. The CPI sampling technique used in RSsample and

RSsafe is not affected by RSdyn. In addition, CRS and CNoRS may not accurately

estimate the total number of cache misses with and without resource stealing respec-

tively since the contents in main tags and duplicate tags are not consistent upon the

suspension or resuming of resource stealing. However, the impact of such inaccuracy

can be largely mitigated by increasing the size of repartitioning interval.
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3.4 Local Admission Controller Implementation

For the Local Admission Controller (LAC), we implement a First Come, First

Served (FCFS) scheduling algorithm using a basic resource allocation model from [38].

The LAC maintains a list of vectors that encode processor core and cache capacity

resources and the timeslots in which they are available. A job specifies its QoS target

through a resource request vector which encodes the amount of resources needed for

each resource type, and for how long (based on the maximum wall-clock time) they

are needed. For a Strict or Elastic(X) job, The LAC tries to find the earliest timeslot

in which this vector can be fit before the job’s deadline. If such a timeslot is found,

the job is accepted and the resources are reserved in that timeslot. An Opportunistic

job is always accepted if there are spare resources not already taken up by Strict or

Elastic(X) jobs.

To keep the OS thread scheduler unchanged, we implement the LAC as a user-level

program. The LAC has a scheduler queue to store accepted jobs and manage their

resource and timeslot reservations. Once it is time to start a job, the job is submitted

to the OS. If the job is an Elastic(X) job, resource stealing is also activated. To avoid

timesharing from violating a Strict or Elastic(X) job’s deadline, the LAC pins only

one such job to one processor core. However, the LAC may pin multiple Opportunistic

jobs on a core that is not already assigned to Strict or Elastic(X) jobs.
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3.5 Evaluation Methodology

Simulation Environment. To evaluate the proposed QoS framework, we use a full-

system simulator based on Simics [31] to model a 4-core CMP node with Fedora Core

4 Linux as the operating system. Each core is an in-order processor with a 2GHz clock

frequency. Each core has a private L1 instruction and a private L1 data cache with

a 32KB size, 4-way associativity, 64-byte block size, LRU replacement policy, write

back policy, and 2-cycle access time. The L2 cache is shared by all four cores, and

is a unified cache with a 2MB size, 16-way associativity, 64-byte block size, modified

LRU replacement policy (Section 3.2.1), write-back policy, and 10-cycle access time.

The main memory is 4GB in size with a 300-cycle access time. The peak bandwidth

to the main memory is 6.4GB/s. The simulator ignores the impact of page mapping

by assuming each job is allocated contiguous physical memory.

Resource Stealing. We employ set sampling to implement the duplicate tags used

in resource stealing. The duplicate tags only cover 1
8

of the total number of sets,

which is conservative compared to 32 sets used in [36]. Every 8th set is sampled. The

interval for triggering cache repartitioning is 2 million instructions of the Elastic(X)

job.

To evaluate the RSsample and RSsafe algorithms, the sampling parameter α is set

to two for both RSsample and RSsafe algorithms, which means that 33% of the overall

intervals are spent on sampling and the rest for resource stealing. α is chosen to be

small in order to achieve a high estimation accuracy. In each sampling interval, the
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first one million instructions are excluded from sampling as the cache is adjusting to

the new partition size. The CPI of the next one million instructions is used to form a

sample point. For the RSsafe algorithm, the degree of confidence is 95% is used, and

the sample safe size of three is used.

Individual Job. To evaluate our proposed QoS execution modes and resource steal-

ing technique, we choose fifteen C/C++ benchmarks from SPEC2006 benchmark

suite [45]: gcc, bzip2, perl, gobmk, mcf, hmmer, sjeng, libquantum, h264ref, milc, as-

tar, namd, soplex, povray, sphinx. We use the ref input sets for all benchmarks except

for milc and soplex which use the train input sets because their ref input sets require

too much memory. For each benchmark, we first inspect its source code and identify

its initialization routines. Then we skip the initialization routines and simulate the

next 200 million instructions.

To reduce the number of benchmarks that we need to evaluate, we classify the

benchmarks according to their cache space sensitivity. For each benchmark, we cal-

culate the CPI increase when we reduce its L2 cache allocation from 7 ways to 1

way, and from 7 ways to 4 ways. Then we plot them in a two-dimensional space

(Figure 3.4).

From the figure, we can roughly classify the fifteen benchmarks into three groups

based on how sensitive they are to the allocated cache space: highly sensitive (Group

1), moderately sensitive (Group 2), and insensitive (Group 3). Similar classification

methods can be found in [8, 36]. Highly sensitive benchmarks are ideal beneficiaries
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Figure 3.4: The sensitivity of each benchmark to cache capacity.

of resource stealing, whereas insensitive benchmarks are ideal donors for resource

stealing. From each group, we choose one representative benchmark: bzip2 from

Group 1, hmmer from Group 2 and gobmk from Group 3. The L2 miss rates and L2

misses per instruction of these benchmarks when they are allocated 7 cache ways are

listed in Table 3.1.

Table 3.1: The benchmarks used as individual jobs in the evaluation.

Benchmark Input Set L2 Miss L2 Misses Number of

Rate Per Instruction Skipped Instructions

bzip2 ref.chicken 20% 0.0055 315M

hmmer ref.retro 17% 0.001 0.3M

gobmk ref.nngs 24% 0.004 267M
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Workload Composition. We construct 10-job workloads and measure the wall

clock time to complete all ten jobs. Each job requests a processor core and L2 cache

capacity of 896KB (7 ways in the 16-way L2 cache). We assume incoming jobs with

Poisson arrival, with an inter-arrival time that assumes full computation capacity

utilization of a 128-CMP server. Specifically, on a 4-core CMP, in one job’s wall-clock

time, there are on average 4× 128 new jobs that arrive and probe the CMP’s Local

Admission Controller. Job deadlines are assigned as follows. We pseudo-randomly

set 50% of them with a tight deadline (td − ta = 1.05 × tw), 30% with a moderate

deadline (td− ta = 2× tw) and 20% with a relaxed deadline (td− ta = 3× tw).

To evaluate the various execution modes, we use five configurations shown in

Table 3.2. The base configuration is All-Strict. The EqualPart configuration mimics

the Virtual Private Cache [33] by equally partitioning the cache capacity among all

cores, but without an admission controller and bandwidth partitioning. In the Hybrid-

2 configuration, unless otherwise specified, we employ RSsafe algorithm and a slack

value of 5% for each Elastic(X) job. The detailed evaluation of different resource

stealing techniques is presented in Section 3.6.

The 10-job workloads are constructed in two ways. First, we use instances of the

same benchmark, i.e. 10 instances of bzip2, 10 instances of hmmer, and 10 instances

of gobmk. In addition, we also construct two mixed-benchmark workloads shown

in Table 3.3. Mix-1 is a favorable workload for our framework since cache-sensitive

bzip2 is the recipient of resource stealing, while cache-insensitive gobmk is the donor
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Table 3.2: Execution modes configurations.

Configuration Percentage of Jobs in Various Execution Modes

All-Strict 100% Strict

Hybrid-1 70% Strict + 30% Opportunistic

Hybrid-2 40% Strict + 30% Elastic(5%) + 30% Opportunistic

All-Strict+ 100% Strict, jobs with moderate or

AutoDown relaxed deadlines are automatically downgraded.

EqualPart No admission control, default Linux job scheduling,

L2 cache is equally partitioned among cores.

of resource stealing. In contrast, Mix-2 is not favorable to our resource stealing

technique.

Table 3.3: Mixed-Benchmark Workloads.

Type Workload Composition

Mix-1 hmmer (Strict), gobmk (Elastic(5%)) and bzip2 (Opportunistic)

Mix-2 hmmer (Strict), bzip2 (Elastic(5%)) and gobmk (Opportunistic)
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3.6 Evaluation Results

In this section, we will present our experiment results, including the impact of

various execution modes (Section 3.6.1), the impact of automatic mode downgrade

(Section 3.6.2), evaluation of mixed workloads (Section 3.6.3), evaluation of the re-

source stealing techniques (Section 3.6.4), the impact of slack X and RSdyn mechanism

on overall throughput (Section 3.6.5) and characterization of the Local Admission

Controller (Section 3.6.6).

3.6.1 Impact of Various Execution Modes

Let deadline hit rate refer to the fraction of jobs that meet their deadlines. Fig-

ure 3.5(a) shows the deadline hit rates for various configurations (Table 3.2) with

workloads consisting of ten identical instances of a single benchmark. For our QoS

framework, the deadline hit rate is only computed for Strict and Elastic(X) jobs. The

figure shows a consistent result of 100% deadline hit rate in our QoS framework. In

contrast, the deadline hit rates are only 50%, 10% and 20% in EqualPart for gobmk,

hmmer and bzip2, respectively. This is because in EqualPart, the lack of an admission

controller causes jobs to be accepted continuously despite the fact that the CMP no

longer has sufficient computation capacity to meet the jobs’ deadlines. This observa-

tion reinforces the argument that partitioning the cache capacity among cores alone

cannot fully provide QoS. Only after incorporating an admission control policy and

using appropriate QoS targets can jobs reliably meet their deadlines.
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Figure 3.5: Comparing QoS and throughput of different configurations.
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Figure 3.5(b) compares the job throughput of the single-benchmark workloads on

various configurations, measured as the total wall-clock time to complete the first

ten accepted jobs. The throughput is normalized to the All-Strict case. Comparing

All-Strict and EqualPart, the figure clearly shows that in all workloads, providing

strict QoS comes at a cost of significantly lower job throughput, e.g., the throughput

in EqualPart is higher by 64%, 54% and 25% for gobmk, hmmer and bzip2, respec-

tively. There are several factors that cause this result. The first is various external

resource fragmentation such as the processor cores (only two jobs run simultaneously,

leaving two idle cores) and cache capacity (only 14 ways in the 16-way L2 cache

are allocated). The second is the internal cache capacity fragmentation if the jobs

do not fully utilize their allocated cache partitions, which is especially the case for

cache-insensitive benchmarks such as gobmk. In contrast, the EqualPart configura-

tion does not suffer from any external resource fragmentation and suffers little from

internal resource fragmentation. As a result, the more cache sensitive the jobs in a

workload are, the smaller throughput reduction the workload suffers from when QoS

is provided.

In Hybrid-1, the existence of Opportunistic jobs effectively removes external core

and cache capacity fragmentation, resulting in a significant 25% improvement in

throughput for all workloads. However, since internal cache capacity fragmentation

still exists (especially in gobmk and hmmer), the throughput is still lower than that

in EqualPart. In Hybrid-2, the existence of Elastic(X) jobs conceptually allows some
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cache capacity to be stolen and reallocated to Opportunistic jobs, reducing some in-

ternal cache capacity fragmentation. However, the figure shows that the throughputs

of all the workloads in Hybrid-2 are almost the same as those in Hybrid-1. Upon closer

analysis, we find that indeed Opportunistic jobs complete sooner but the overall job

throughput is largely unaffected because the tenth accepted job is a Strict job and it

completes at almost the same time in Hybrid-1 and Hybrid-2 for all workloads. Note

that internal cache capacity fragmentation still exists in Strict jobs (70% in Hybrid-1

and 40% in Hybrid-2) and it cannot be removed without the risk of reducing through-

put and missing deadlines. This prevents Hybrid-1 and Hybrid-2 from matching the

throughput of EqualPart.

Finally, in All-Strict+AutoDown, automatic mode downgrade is applied to Strict

jobs to remove some of the resource fragmentation, resulting in throughput improve-

ments of 39%, 20% and 13% for gobmk, hmmer and bzip2 respectively. Again, due to

their higher internal cache capacity fragmentation, the throughput improvement for

gobmk and hmmer are higher than that of bzip2. The throughput improvement over

All-Strict is substantial, especially considering that the optimization does not require

users to downgrade the modes of their jobs. However, we note that since we apply

automatic mode downgrade only to jobs whose deadlines are relaxed or moderate

(Table 3.2), only half of the jobs benefit from automatic mode downgrade. We can

expect that if more jobs have moderate or relaxed deadlines, the throughput will be

closer to that of EqualPart.
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Overall, we conclude that while providing QoS imposes a severe penalty on through-

put, a significant part of the throughput can be recovered through several schemes:

providing various execution modes to users, and/or employing automatic mode down-

grade transparently.
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Figure 3.6: The average and variation of wall-clock time for different con-
figurations. The jobs are instances of bzip2.

To further analyze the impact of various execution modes on wall-clock time, Fig-

ure 3.6 shows the average wall-clock time of jobs in different configurations for the

single-benchmark workload of bzip2. The candle on each bar shows the range between

the minimum and the maximum wall-clock time. The figure shows that with our QoS

framework, Strict jobs in all configurations except All Strict+AutoDown have short

and almost-constant wall-clock times. The Elastic(X) jobs in Hybrid-2 run slightly

longer than Strict jobs because of resource stealing. However, their wall-clock time

is still absent of much variation. As expected, because resources are not reserved,

Opportunistic jobs in Hybrid-1 and Hybrid-2 have a higher average and variation of
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wall-clock time compared to Strict jobs. Opportunistic jobs in Hybrid-2 have lower

wall-clock time compared to those in Hybrid-1, thanks to the extra cache capacity

stolen from Elastic(X) jobs. We can see the impact of automatic mode downgrade

on Strict jobs’ wall clock time in the All-Strict+AutoDown configuration. Both the

wall-clock time and variation in wall-clock time increase significantly compared to the

Strict jobs in the All-Strict configuration. However, as long as the wall-clock time

variation can be tolerated by the job, this is a good trade-off because all the jobs

in the All-Strict+AutoDown still meet their deadlines and overall job throughput is

significantly improved compared to the All-Strict case. Finally, the EqualPart config-

uration suffers from a high average and variation of wall-clock time, which is caused

by the lack of admission control and resource reservation, as well as timesharing.

3.6.2 Impact of Automatic Mode Downgrade

To better understand how automatic mode downgrade improves throughput, we

show the detailed execution of each job in the All-Strict and All-Strict+AutoDown

for the single-benchmark workload of bzip2 in Figure 3.7. The x-axes shows time in

the number of millions of cycles, while the y-axes shows the first ten accepted jobs.

Boxes with solid lines represent the time from a job starting its execution until the

time it completes, while boxes with dashed lines represent the amount of time between

the job’s completion and its deadline. In addition, automatically downgraded jobs

are shown in a darker color and the arrows point to the time when they are to be
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Figure 3.7: Execution trace of ten accepted jobs in the All-Strict case (a)
versus in the All-Strict+AutoDown case (b). The jobs are instances of bzip2.
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switched back to the Strict execution mode.

From the figure, we can see that in the All-Strict case, only two jobs can be

accepted and run simultaneously, leading to a low admission rate and throughput. It

takes 3,883M cycles to complete all ten jobs. In the All-Strict+AutoDown case, it

only takes 3,451M cycles to complete ten jobs for several reasons. The first reason is

that because Strict jobs running in the Opportunistic mode do not reserve resources,

more jobs can be accepted and started earlier. For example, the third job is executed

earlier because the first job runs in the Opportunistic mode rather than the Strict

mode. The fifth, sixth, and seventh jobs are also admitted sooner and executed

earlier. While automatically downgraded jobs run significantly slower, they utilize

fragmented resources which otherwise would not have been utilized. The second

reason is that when automatically downgraded jobs complete execution, the LAC

reclaims their resources, allowing other jobs to be accepted earlier. For example, the

completion of the fifth job allows the eighth job to be accepted and executed earlier,

while the completion of the sixth job allows the tenth job to be accepted and executed

earlier. Another observation is that out of the five automatically downgraded jobs,

four of them (the first, fifth, sixth, and seventh) need to be switched back to the

Strict mode because they do not complete early enough, while only one (the ninth

job) is able to complete before it needs to be switched. Furthermore, the first and

seventh jobs likely would not have met their deadlines had resources and timeslot not

been reserved. This emphasizes the importance of reserving resources and timeslots
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for automatically downgraded jobs in order to guarantee meeting their deadlines.

3.6.3 Evaluating Mixed-Benchmark Workloads

So far we have only used single-benchmark workloads to evaluate our QoS frame-

work. In this section, we evaluate two mixed-benchmark workloads described in

Table 3.3. Recall that Mix-1 represents an ideal workload for resource stealing:

the cache-sensitive benchmark (bzip2) forms Opportunistic jobs while the cache-

insensitive benchmark (gobmk) forms Elastic(5%) jobs. Mix-2, on the other hand

swaps the execution modes of bzip2 and gobmk, so it is not an ideal workload for

resource stealing.

Figure 3.8(a) shows the deadline hit rates for different configurations. While our

QoS framework achieves 100% deadline hit rates for all Strict and Elastic(X) jobs in

mixed-benchmark workloads, EqualPart has low deadline hit rates (30% for Mix-1

and 40% for Mix-2). Figure 3.8(b) shows the job throughput for Mix-1 and Mix-2

normalized to the respective All-Strict cases. Overall, all of Hybrid-1, Hybrid-2, and

All-Strict+AutoDown achieve a significant improvement in throughput compared to

All-Strict. The throughput improvements achieved in Hybrid-1 and Hybrid-2 some-

times even exceed that of EqualPart. This is a significant result considering that

while a majority of jobs miss their deadlines in EqualPart, they meet their deadlines

in our QoS framework while simultaneously achieving higher throughputs.

Comparing the throughput improvement between the two workloads, Mix-1 achieves
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lower throughput improvement than Mix-2 in Hybrid-1 (35% vs. 42%) but higher

than Mix-2 in Hybrid-2 (45% vs. 37%). This is because in Hybrid-1, the Oppor-

tunistic jobs can only utilize unallocated cache capacity, and because bzip2 is more

cache sensitive than gobmk, instances of bzip2 have more restricted throughput com-

pared to instances of gobmk. However, in Hybrid-2, Opportunistic jobs benefit from

extra cache capacity stolen from Elastic(X) jobs. In this case, Opportunistic bzip2

jobs benefit more from resource stealing than Opportunistic gobmk jobs, while at

the same time Elastic(X) gobmk jobs can give up more of their cache space and are

slowed down less than Elastic(X) bzip2 jobs. The outcome of this combination is that

resource stealing is more effective for Mix-1 than for Mix-2. The consequence of this

observation is that resource stealing should be applied selectively if our goal is to

maximize throughput.

3.6.4 Resource Stealing Techniques Evaluation

The amount of slack available in Elastic(X) jobs determines the amount of cache

capacity that can be stolen and reallocated to Opportunistic jobs. In our framework,

the slack values of the Elastic(X) jobs are assumed to be specified by the users who

may have to consider the trade-off between the amount of stolen cache capacity and

the resulting slowdown of the Elastic(X) jobs. One interesting question is whether

we could find an appropriate slack value which is not only sufficient to steal unused

cache capacity but also remains low in order to minimize the possible slowdown of
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the Elastic(X) job. To answer this question, we first calculate the target miss rate

increase of each benchmark by using Equation 3.3 for the slack values ranging from

5% to 20%. Based on each benchmark’s L2 cache stack distance profile [32], we then

estimate the amount of cache capacity that can be reclaimed compared to the initial

cache capacity of 896KB (Section 3.5) in order to reach the target miss rate increase

for different slack values. The results are presented in Figure 3.9.

From figure 3.9, we can see that different slack values impact the amount of stolen

cache capacity non-uniformly across benchmarks. When the slack value is 5%, for

bzip2, soplex, hmmer and astar, the amount of stolen cache capacity is less than

20%, while in other benchmarks, at least 40% cache capacity can be stolen. Note

that these four benchmarks actually belong to Group 1 or Gourp 2 (Figure 3.4 in

Section 3.5), indicating that they are cache space sensitive benchmarks. Therefore,

a smaller cache capacity reduction will cause a 5% CPI increase compared to other

cache space insensitive benchmarks. When the slack value increases to 20%, for all

benchmarks except bzip2, at least 65% of cache capacity can be stolen. An interesting

observation is that most benchmarks will not yield a significant amount of extra stolen

cache capacity as the slack value increases from 5% to 20% except several cache space

sensitive benchmarks in which the amount of stolen cache capacity can be largely

increased (e.g. bzip2 (from 15% to 48%), soplex (from 16% to 75%), hmmer (from

17% to 74%) and astar (from 14% to 70%)). On average, the stolen cache capacity

will only increase from 48% to 75% when the slack value increases from 5% to 20%.
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Hence, in most cases, a small X value can be sufficient to recover most unused cache

capacity and a larger slack value cannot produce considerably more stolen cache

capacity which however may cause larger unexpected slowdown for an Elastic(X)

job. Overall, the implication of this observation is that the X value of an Elastic(X)

job could be a fixed small value other than a specifiable parameter, which simplifies

specifying QoS targets. Unless otherwise specified, we will use a slack value of 5% to

evaluate different resource stealing algorithms in this section.

Figure 3.10 shows the CPI increase of the Elastic(5%) job for all benchmarks

with different resource stealing algorithms. From this figure, we can make several

observations. First, the RSbase algorithm is not effective in stealing resources for all

benchmarks. The actual CPI increase is only between 36% and 76% of the perfor-

mance slack in bzip, soplex, mcf, astar and sphinx, and is even lower (less than 20%)

in all other benchmarks. Secondly, in quite a few benchmarks (e.g. bzip2, hmmer,

gcc, etc.), both the RSsample and RSsafe algorithms are much more effective in that

the CPI increases much closely approach the slack of 5% compared to that of using

the RSbase algorithm. For most cache space insensitive benchmarks (e.g. h264ref,

milc, namd, libquantum, sjeng, etc.), the CPI increases are very low for all algorithms

and the variation between difference resource stealing algorithms is trivial. This is

because the miss rate of those benchmarks cannot be increased as expected no mat-

ter how many cache ways are stolen (each job is allocated a minimum of one cache

way to avoid starvation). Thirdly, the RSsample algorithm generally outperforms the
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RSsafe algorithm in terms of increasing the actual CPI because the latter adds a

margin of safety using CPImin which is usually lower than the CPI used in the

RSsample algorithm. However, the RSsample algorithm often overshoots the maximum

allowed slowdown and the actual CPI increases exceed the bound. For example, with

RSsample algorithm, the actual CPI increases are 6.1%, 7.2%, 6.4%, 6.7% for bzip2,

soplex, hmmer and mcf respectively. This is not desirable even with soft QoS require-

ments. The main reason is that the CPI often overestimates the original CPI in the

RSsample algorithm for these benchmarks.

That leaves the RSsafe algorithm as the best performing algorithm for most bench-

marks. It is more effective than RSbase in stealing cache capacity to exploit the per-

formance slack, and it does not overshoot the slowdown. In all but one case the CPI

increase is less than the specified slack value. The exception is hmmer, RSsafe over-

shoots the slowdown by less than 1%. In this case, it turns out that this is because

the CPI values collected during sampling intervals (when no resource stealing is ap-

plied) are higher than the original CPI. While in both cases no resource stealing is

applied, the cache state in sampling intervals has been perturbed by partition changes

in prior intervals when resource stealing was applied. This perturbation introduces a

slight upward bias in the average sampled CPI values compared to the actual CPI.

However, this effect is very small and can be largely mitigated by increasing the size

of the repartitioning interval. Another interesting observation is that in astar, sphinx

and gobmk, RSbase slightly outperforms RSsafe and/or even RSsample. The reason
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is that in RSsample and RSsafe, only two thirds of the overall intervals are spent on

resource stealing while RSbase attempts to steal resource throughout the whole ex-

ecution. Although the miss rate increase threshold of RSsample or RSsafe is higher,

the actual miss rate increase is not significantly higher than that in RSbase during the

resource stealing intervals. Again, this effect can be largely mitigated by increasing

the repartitioning interval size.

Overall, the proposed RSsafe algorithm is much more effective in performing re-

source stealing compared to RSbase while still preserving QoS of Elastic(X) jobs.

3.6.5 Impact of Slack X and RSdyn on Overall Throughput

In previous section, we focus on evaluating the effectiveness of different resource

stealing algorithms on stealing cache capacity from Elastic(X) jobs. In this section, we

will present how different slack values and the dynamic resource stealing mechanism

impact the overall throughput. Figure 3.11 shows the overall throughput of Mix-1

and Mix-2 workload in Hybrid-2 configuration when RSsafe is used with different

slack values. The result of combining RSsafe and RSdyn mechanism when X is 5%

is also shown in this figure. The throughput values are normalized to the respective

All-Strict cases. From figure 3.11(a), we can see that the throughput improvement

can be slightly increased from 45% to 47% when X increases from 5% to 15% because

in Mix-1, the opportunistic bzip2 jobs keep benefiting from the reallocated cache

capacity as the slack value increases, which helps improving the overall throughput
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Figure 3.11: Normalized throughput of Mix-1 workload (a) and
Mix-2 workload (b) in Hybrid-2 configuration when RSsafe is used
with different slack values and when RSsafe is combined with RSdyn

mechanism.
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to a little extent. However, as X increases to 20%, the throughput improvement is

slightly lower than that when X is 15% because the extra speedup of bzip2 jobs gained

from the extra cache capacity cannot compensate the extra slowdown of Elastic(X)

jobs and the extra admission rate reduction due to the longer resource reservation

for Elastic(X)jobs. In Mix-2, since the opportunistic gobmk jobs, which are cache

space insensitive, cannot benefit from the extra cache capacity, the overall throughput

improvement is even decreased as the slack value increases (figure 3.11(b)) because

resource stealing only makes the Elastic(X) jobs run slower . The implication of these

observations is that a small X value is sufficient for improving the overall throughput.

RSdyn mechanism impacts the overall throughput of Mix-1 and Mix-2 differently.

For Mix-1, when RSdyn is applied, the throughput improvement is actually lower

than that of not applying RSdyn (43% vs. 45%). This is because RSdyn suspends

the resource stealing in the first several repartitioning intervals until the reduction of

total number of cache misses is larger than 5%. During this period, bzip2 jobs cannot

steal extra cache capacity. This performance gap however can be largely reduced if

Elastic(X) jobs’ wall-clock time is increased. For Mix-2, resource stealing is useless

since the opportunistic gobmk jobs are cache space insensitive. As we expect, using

RSdyn achieves higher throughput improvement (39% vs. 37%) because the resource

stealing is suspended during most of execution time. In general, RSdyn mechanism

can be used to achieve higher overall throughput without user’s judgement of whether

resource stealing is useful or not.
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3.6.6 Characterization of the Local Admission Controller

In our framework, the LAC is implemented as a user level program and is fully

simulated in our evaluation. The LAC incurs performance overheads when it performs

admission tests and scheduling. However, since the LAC only performs a simple ad-

mission control policy and implements a simple scheduling algorithm, the occupancy

of the LAC is less than 1% of each workload’s wall-clock time. If the number of jobs

submitted to the CMP increases, or if the number of cores in the CMP increases, the

LAC’s overheads will increase proportionally although they likely remain low.
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3.7 Related Work

In a CMP system, some platform resources, such as the off-chip bandwidth and

the lowest level on-chip cache, are typically shared among cores. With the increasing

number of cores on a chip (possibly to more than one hundred cores by 2015 [3]),

the contention for these critical shared resources suffered by applications running

simultaneously in different cores will increase significantly and needs to be carefully

managed.

Some studies that address the management of shared resources have focused on

improving the overall throughput or fairness of the CMP. Suh et al. proposed a cache

partitioning policy that minimizes the total number of cache misses [49], Kim et al.

proposed a cache partitioning policy that optimizes for uniform slowdown (fairness)

to applications that share the cache [25], while Qureshi et al. proposed utility-based

cache partitioning [36]. Hsu et al. studied the impact of various optimization goals in

guiding how cache partitions are allocated in a CMP architecture [20]. The optimiza-

tion goals include maximizing the overall performance metric (e.g. IPC or miss rate)

and the overall fairness. Cho and Jin proposed an OS-level page allocation algorithm

in a shared L2 non-uniform cache architecture for future many-core processors to

reduce the cache access latency, on-chip network traffic and power consumption [10].

Chang and Sohi proposed a cooperative cache partitioning algorithm that optimizes

for several metrics, such as the sum of per-thread slowdowns as well as the harmonic

mean of per-thread speedups over an equal-partition cache baseline [8]. While these
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studies seek to mitigate the impact of contention and optimize for an overall goal,

they do not provide QoS to individual applications.

Some recent studies have recognized the need for CMPs to have QoS-enabling

features to provide differentiated services to various applications. For example, Iyer

described the need for a priority-based QoS framework in CMP architectures in which

a job can specify whether it should be run with a high or low priority, and resource

allocation is guided by job priorities [21]. Rafique et al. proposed an architecture

support and Operating System (OS) interface that allows OS-level cache partition-

ing, in which an application is prevented from occupying more than a certain fraction

(quota) of the cache [37]. Nesbit et al. proposed a Virtual Private Cache (VPC)

that combines the resource allocation policies for caches and the memory controller

using a fair queuing algorithm [33]. VPC provides an abstraction of private caches

through partitioning the shared cache into per-core partitions, while resource alloca-

tion policies ensure that the IPC achieved is equal to that of real private caches. Iyer

et al. [22] proposed several priority-based resource management policies as well as a

QoS-aware cache and memory architecture. Individual applications can specify their

own QoS target (e.g. IPC, miss rate, cache space) and the hardware dynamically

adjusts cache partition sizes to meet their QoS targets. Lin et al. [29] proposed a

software based experimental methodology to implement and evaluate several cache

partitioning policies that optimize for fairness and QoS. In this study, the QoS target

of an application is specified in IPC and an OS based cache partitioning scheme is
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used to emulate the dynamic partitioning of hardware cache in order to reach the

application’s target IPC. We note that while all above studies mention QoS, they do

not associate QoS with the notion of performance guarantee. While both priorities

and cache quota correlate with performance and help the system to favor one appli-

cation over another in allocating resources, they do not automatically provide QoS

guarantees to the applications.

In some QoS models, individual applications can specify an acceptable perfor-

mance level expressed in IPC. The system then translates the IPC into the minimum

resources required to achieve it, through profiling a thread at run-time and recording

how the thread’s IPC changes as the amount of resources are varied [27, 56]. The

fact that the studies above require a greedy search in the resource allocation space

illustrates the difficulty of using IPC as a QoS target. We believe that to really pro-

vide QoS, the CMP must have an ability to easily compare available and demanded

computation capacity, and such an ability is a critical component that enables the

construction of an admission control policy.

Finally, some of the concepts in our framework, such as the resource reservation

and admission control, are borrowed from the real-time system domain [4, 5, 39].

However, while in traditional real-time systems the operating system and processor

architecture are structured to suit the needs of real-time constraints, we seek to

provide QoS in CMP-based general purpose servers with a largely unmodified OS,

processor architecture, and memory hierarchy.
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3.8 Conclusions

This chapter has presented a QoS framework that provides performance QoS

through the use of appropriate QoS target specification and execution modes. It

has also presented how throughput can be improved while still preserving QoS, by

employing several techniques such as manual and automatic mode downgrade and re-

source stealing. Through this study, we discover several findings. First, QoS targets

should be specified with Resource Usage Metrics (RUM) in order to fully provide QoS

and to build an admission control policy. Secondly, QoS-enabling features such as the

ability to dynamically partition caches and a resource manager which tries to meet the

IPC target of all jobs, are by themselves insufficient for fully providing QoS. Thirdly,

substantial throughput is lost when we provide strict QoS with our framework due to

external processor core and cache fragmentation, and internal cache fragmentation.

Fourthly, the two alternative QoS execution modes (Elastic(X) and Opportunistic)

enable the system to recover much of the lost throughput by reducing resource frag-

mentation. Manual mode downgrade in general is more effective than automatic mode

downgrade if there is an appropriate mixture of Elastic(X) and Opportunistic jobs.

However, even when there are only Strict jobs, the overall throughput of the system

can still be boosted by using automatic mode downgrade. Finally, resource stealing is

an effective microarchitecture technique for improving throughput by reallocating ex-

cess cache capacity from Elastic(X) jobs to Opportunistic jobs while still meeting the

Elastic(X) jobs’ QoS targets. Among all the proposed resource stealing algorithms,
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RSsafe is most effective in performing resource stealing while still preserving QoS. We

also find that a small X value is sufficient to recover most unused resource and im-

prove throughput. In addition, dynamic resource stealing mechanism can be used to

achieve higher overall throughput without user’s understanding of the characteristics

of the workload.
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Chapter 4

Conclusions

The scaling, power, thermal and reliability constraints of uniprocessors have turned

the focus of the computer industry towards chip muti-processor (CMP) systems in

many computing domains. Within a decade, we can expect that tens of processor

cores will be able to be integrated into a single chip which supports hundreds of

concurrent threads. However, since some important platform resources such as on-

chip cache and off-chip bandwidth are shared by all processor cores, one fundamental

factor that determines the scalability of the CMP architecture is whether the CMP

can efficiently manage the shared resources to ensure that all concurrent threads can

make good progress as the total number of concurrent threads increases. This chal-

lenge is also known as the resource sharing problem which has become a significant

issue in recent CMP architecture research. In this dissertation, we have focused on

one important shared platform resource, the lowest level on-chip cache in a CMP
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architecture, and have addressed the cache sharing problem from two aspects. The

major contributions and conclusions are summarized as follows.

Firstly, we have presented three tractable models (FOA, SDC and Prob) to predict

the impact of cache sharing. Such impact was considered to be intractable because

the factors that influence the cache sharing impact were not known. Two models

(FOA and SDC) are based on heuristics. They are simple to use but hardly accu-

rate. On the other hand, the analytical inductive probability model (Prob) which

realizes a simple Markov process is very accurate, achieving an average absolute error

of 3.5%. In addition to not only offering accurate prediction, the Prob model also

provides a practical tool through which we can investigate the factors that influence

the impact of cache sharing and reveal certain non-obvious interactions between dif-

ferent co-scheduled threads. One particular insight that we have gained is that for

a base thread, the number of cache misses and the stack distance profile shape of

the interfering thread largely determine the base thread’s cache miss increase. This

knowledge could be very useful for future thread scheduler design in identifying and

avoiding suboptimal thread co-schedules.

Secondly, we have presented a Quality of Service (QoS) framework which provides

performance guarantee for individual applications. The ability to provide performance

guarantee is a very favorable feature in CMP-based servers, especially for the appli-

cations in utility computing and virtualization domains. However, providing such

ability in servers is really challenging. The major obstacles are how to enable a CMP
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to check whether a job’s QoS target can be satisfied or not and how to control the job

admission when the incoming jobs are irregular. In this dissertation, we have argued

that the job’s QoS target should be specified through resource capacity requirements

in order to easily build an admission control policy. The admission controller ensures

that jobs are accepted only when their QoS targets can be met. However, resource

capacity specification may lead to jobs overspecifying their QoS targets. Such QoS

overspecification can easily lead to resource fragmentation and result in throughput

reduction. We have presented two techniques to recover the lost throughput. The

first one relies on the speculative downgrade of a job’s QoS execution modes (from

Strict mode to Elastic(X) mode or from Strict mode to opportunistic mode). The

second technique is referred to as resource stealing technique, which discovers and re-

allocates the excess resources from the specified jobs while still preserving their QoS

targets. We have investigated three resource stealing algorithms (RSbase, RSsample

and RSsafe) and have compared them in terms of safety and effectiveness. Through

simulation, we found that by using the proposed QoS framework and throughput

improvement techniques, a CMP can ensure that all accepted jobs have their QoS

targets satisfied and the overall throughput can be improved between 13% and 45%,

which is significantly closer to a non-QoS CMP. In addition, we found that a small

performance slack value is sufficient to achieve effective resource stealing, so a fixed

small X value can be used for Elastic(X) jobs, which simplifies specifying the QoS

targets.
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Overall, in this dissertation, we have investigated methodology, techniques, and

algorithms to analyze and manage the shared cache in a CMP architecture. We

can conclude that the traditional heuristics assuming that factors like IPC, miss

rates or instruction types impact the cache contention are misleading. The cache

contention is actually largely affected by the temporal reuse behaviors of the co-

scheduled applications. We can also conclude that combining QoS target specification,

QoS execution modes, job admission control, job scheduling, and resource stealing is

essential towards providing QoS in a CMP architecture. Finally, the proposed QoS

framework could additionally serve as a base framework for future research work as

it associates the QoS with the notion of performance guarantee.
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