
Abstract 

LIU, YOUFANG. Analytical Tools for Population-Based Association Studies. (Under the 
direction of Dr. Jung-Ying Tzeng.) 
 

Disease gene fine mapping is an important task in human genetic research. Association 

analysis is becoming a primary approach for localizing disease loci, especially when 

abundant SNPs are available due to the well improved genotyping technology during the last 

decades. Despite the rapid improvement of detection ability, there are many limitations of 

association strategy. In this dissertation, we focused on three different topics including 

haplotype similarity based test, association test incorporating genotyping error and 

simulation tool for large data set. 1) Previous haplotype similarity based tests don’t have the 

ability to incorporate covariates in the test. In chapter 2, we proposed a new association 

method based on haplotype similarity that incorporates covariates and utilizes maximum 

amount of data information.  We found that our method gives power improvement when 

neither LD nor allele frequency is too low and is comparable under other scenarios. 2) In 

chapter 3, we proposed a new strategy that incorporates the genotyping uncertainty to assess 

the association between traits and SNPs. Extensive simulation studies for case-control 

designs demonstrated that intensity information based association test can reduce the impact 

induced by genotyping error. 3) In chapter 4, we described simulation software, SimuGeno, 

which is used to simulate large scale genomic data for case-control association studies.  
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 1.1 General introduction for association studies 

Genetic association studies aim to detect association between the disease phenotypes and 

genetic polymorphisms. More and more attention has been focused on association analysis 

due to the rapid development of high-throughput genotyping technology, the availability of 

large amount of genetic marker and the completion of the initial wave of genetic maps (Neale 

2004). During the past decade, association studies have been a promising tool to identify 

candidate genes or genomic regions that contribute to diseases.  Causal genes for diseases, 

such as type I and type II diabetes, prostate cancer, breast cancer and inflammatory bowel 

diseases, have been found through genetic association studies (McCarthy 2008). These 

studies helped us to better understand the molecular mechanisms of diseases and will 

improve the medicine development in the future.  

 

There are many different genetic markers that can be used to capture the genetic variation, 

such as restriction fragment length polymorphisms (RFLP’s), microsatellites, single 

nucleotide polymorphisms (SNPs), and copy number variation (CNV). Among all the genetic 

markers, SNP is the most widely used one for human genetic disease mapping due to their 

high abundance across the human genome and the rapidly developed genotyping technology, 

although all the other genetic markers are still very important for genetic association research. 

 

Association between genetic variation and disease phenotypes can be generally grouped into 

three categories (Cordell 2005): 1) direct association, which means that the marker has a 
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causal role; 2) indirect association, which means that the marker has no causal role but is 

associated with a nearby causal marker; and 3) confounded association, which is due to the 

population structure. Direct association is the easiest for association analysis and usually 

achieves the greatest power. Compared with the direct association, indirect association is 

much more difficult to detect and it is usually necessary to genotype more surrounding 

markers to pick up the causal marker. Population structure could result in false positive 

signals in association studies. To deal with confounded association, there are three strategies: 

matching by family, excluding population structure associated markers and using genomic 

control.  

 

Based on how the samples are collected, association tests can be separated into two groups: 

population-based association test and family-based association test. Population-based 

analysis requires samples to be collected independently. The rational for population-based 

analysis is that the allele frequency distributions of the functional loci are different between 

cases and controls (Risch 2000). As we discussed in the previous paragraph, population 

structure is the main limitation of population-based test. The advantage of family-based test 

is that it is still valid even there was population structure. However, family data usually 

requires more resources in terms of money and time to collect data (Laird and Lange 2006). 

In the following discussion, we will only focus on population based association test.  

 

Based on the way marker data being used, association test can be grouped into three 

categories: association test based on single SNP, multiple SNPs, or haplotype. Perhaps the 
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most simple and natural association test is the single SNP based test. In the single SNP based 

test, the SNP was considered as the basic unit for testing. However, single SNP analyzing 

probably will neglect information due to joint effect of multiple SNPs. With increasing 

marker density, association is now often considered at the multiple marker level or haplotype 

level. Multiple SNPs based test can be used for testing the association between a gene and 

the phenotype given those SNPs are subject to an LD block within a gene. But the multiple 

SNP analysis can suffer from several problems: 1) too many parameters are needed to cover 

all the SNPs; 2) some of those SNPs are highly correlated. Another popular strategy 

suggested by the block-like structure of the human genome is to use haplotype to capture the 

correlation structure of SNPs in regions of little recombination. Haplotypes can capture the 

combined effects of tightly linked cis-acting causal variants.  

 

Despite the rapid improvement of genetic association analysis to date, there are still many 

limitations in methodologies. Here, we will focus on three problems which still exist in 

association test: how to incorporate covariates in haplotype similarity based test, how to 

avoid the power reduction induced by genotyping error, and how to improve the efficiency of 

large scale data simulation. 

 

1.2 Haplotype similarity based association test 

Haplotype is the combination of closely linked SNPs located on the same chromosome. To 

perform the genetic association study, one can either use SNPs or the haplotypes. Generally, 
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haplotype-based association tests have greater power when SNPs are in strong linkage 

disequilibrium with the disease locus (Akey 2001, Nielsen 2004, Zaitlen 2007) and are 

helpful in identifying rare causal variants (HapMap 2003, de Bakker 2005). However, the 

large dimensionality of haplotypes often leads to high degrees of freedom and the existence 

of rare haplotypes results in power loss in haplotype-based analyses (Seltman 2001, Molitor 

2003(a), Thomas 2003, Zhang 2003, Durrant 2004, Sha 2005, Tzeng 2005, Yu 2005, 

Browning 2006). 

 

To tackle the haplotype dimensionality problem, many methods have been proposed: (a) 

haplotype clustering (Seltman 2001, Molitor 2003(a), Durrant 2004, Tzeng 2005,  Seltman 

2003, Molitor 2003(b), Tzeng 2006), which clusters evolutionarily close haplotypes into 

groups, (b) haplotype smoothing (Molitor 2003(b), Thomas 2001, Schaid 2004), which 

smoothes haplotype effects by introducing a correlation structure on the effects of similar 

haplotypes, and (c) haplotype similarity (Houwen 1994, McPeek 1999, Su 2008), which 

looks for unusual sharing of chromosomal segments within homogeneous trait groups.  

 

The general rationale behind the similarity method is that the haplotypes around a causative 

locus will be more similar among the cases descended from the common ancestors. 

Depending on how this concept is implemented, similarity methods can be divided into two 

categories: evolutionary based approaches and case-control based approaches. 
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However, neither of the existing haplotype-similarity approaches can incorporate covariate 

information into analysis. This makes them less attractive for studying complex traits where 

covariate adjustments can be crucial. In chapter 2, we proposed an approach that combines 

the two schools of similarity approaches and is easy to incorporate covariates. 

 

1.3 Genotyping error 

High-throughput genome-wide SNP genotyping assay across many thousands of samples is 

required for association mapping study. It is important to notice that the performance of the 

genetic association methods depends on the novel high-fidelity genotyping technology and 

the accurate genotype determination. Many whole genome scan SNP chips have been 

developed recently, such as Illumina BeadArray, Affymatrix, Perlegen, and Tagman. 

Although genotyping technology has been considerably improved recently, further 

improvements are still necessary.  

 

Many genotyping scoring algorithms have been published. Those genotyping scoring 

algorithms can be divided into two groups: (a) classification based method, and (b) 

distribution based method. The clustering of individuals for genotyping was widely used in 

genotyping scoring since 2002, such as K-means algorithm (Oliver 2002), RLMM (Rabbee 

2006) and BRLMM (Affymetrix 2007). Distribution and likelihood based methods are 

developed recently. The original genotyping data can be easily fitted into normal mixture 
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distribution, t mixture distribution or gamma distribution and the genotype can be determined 

by the probability of likelihood (Moorhead 2006, Xiao 2007, Teo 2007, WTCCC 2007).  

 

Genotyping error is defined as the proportion of mistyping in all called genotypes. 

Genotyping error includes the technological error and the scoring error (Kang 2004). Those 

technological problems have been improved during the recent years due to the technological 

development of genotyping whereas the scoring error is still a considerable problem. 

Genotyping error could result in (1) incorrect estimates of allele frequency, linkage 

disequilibrium, genetic distance and (2) less power of association studies and linkage 

analysis (Goldstein 1997, Abecasis 2001, Akey 2001, Gordon 2002, Kang 2004, Hao 2004, 

Ahn 2006).  

 

It is difficult to avoid genotyping scoring error under traditional association strategy. 

Recently, a couple of papers have been published that tried to incorporate genotyping 

uncertainty in association tests (Kang 2004, Zhu 2006). They used genotype probabilistic 

scoring instead of genotype as input to assess the association analysis.  Simulation studies 

show that their methods can reduce the impact induced by genotyping errors because 

genotype probabilistic data provides more quantitative information. These two papers 

discussed above focused on haplotype inference and haplotype association test.  In chapter 3, 

to avoid the genotyping scoring error, we proposed a new score test that incorporates the 

genotyping uncertainty to assess the single SNP association analysis. 
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1.4 Software for simulation  

One key issue for developing novel association test is how to evaluate the power of each 

method under realistic settings. Simulation is an efficient way to evaluate the ability of novel 

methods to detect the disease markers. There are three main approaches for simulation (Liu 

2008): 1) “backwards”, which starts with the samples that will form your simulated dataset, 

then works backwards in time to construct the genealogical information; 2) “forwards”, 

which starts with the entire population of individuals and then follows how all the genetic 

data are passed on from one generation to the next; 3) “Sidewards”, which starts with a 

collection of real genetic data, and uses these as a template for generating new simulated data 

with similar properties.  

 

With the steady increase in public-available genomewide SNP data, such as the HapMap 

project, the potential advantage of the “sidewards” simulation approach has been realized 

recently. HapMap project, as a natural extension of the Human Genome Project, accelerates 

the pace of biomedical research. By providing abundant human genomic information, such as 

population information, LD block estimation, and accurate haplotype determination, 

HapMap project became a popular public data source for statistical genetic research. 

HapMap data based simulations also have been already widely used in association study 

(Bakker 2005, Pe’er 2006). In chapter 4, we described the new software, SimuGeno, which is 

a HapMap data based simulation tool. It offers several different ways to generate genotype 

data and provides causal region simulation to accelerate the simulation.  
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2.1 Abstract  

Objective: We propose a new association method based on haplotype similarity that 

incorporates covariates and utilizes maximum amount data information.   

Methods: We first estimate the ancestral haplotypes of case individual and then, for each 

individual, an ancestral haplotype based similarity score is computed by comparing that 

individual’s observed genotype with the estimated ancestral haplotypes. Trait values are then 

regressed onto the similarity scores. Covariates can easily be incorporated under the 

regression framework. To minimize the bias of raw p-values due to variation in ancestral 

haplotype estimation, a permutation procedure is adopted to obtain empirical p-values.  

Results and Conclusion: To evaluate the power and type I error of our method, we 

conducted simulations for various scenarios of LD and allele frequency and compared our 

method with the standard haplotype score test. We found that our method gives power 

improvement when neither LD nor allele frequency is too low and is comparable under other 

scenarios. We also applied our method to the GAW15 simulated SNP data for Rheumatoid 

Arthritis (RA). In an 8cM causal region, our method successfully pinpoints a stretch of SNPs 

that covers the fine-scale region where the two causal locus of RA, the HLA DR locus and D 

locus, is located. 



 11 

2.2 Introduction  

Association analysis is becoming a primary approach for localizing disease loci, especially 

for detecting genes with modest effects on a disease. To access the association between 

genetic variants and disease, one can either consider individual SNPs or the haplotypes of 

closely linked SNPs. Although studies of their relative efficiency revealed varying 

conclusions, it is generally appreciated that haplotype-based analyses have greater power 

when SNPs are in strong multilocus linkage disequilibrium with the disease locus (Akey 

2001, Neilsen 2004, Zaitlen 2007), and are helpful in identifying rare causal variants 

(HapMap 2003, de Bakker 2005). However, practical potential of haplotype-based analysis 

may not be fully realized due to the difficulties balancing the dimensionality of the 

haplotypes and the amount of information (Seltman 2001, Molitor 2003(a), Thomas 2003, 

Zhang 2003, Durrant 2004, Sha 2005, Tzeng 2005, Yu 2005, Browning 2006). The large 

dimensionality often leads to high degrees of freedom and the existence of rare haplotypes 

results in power loss in haplotype-based analyses. 

 

Many thoughts have been proposed to tackle the dimensionality problem in haplotype 

methods. These approaches include: (a) haplotype clustering (Seltman 2001, Molitor 2003a, 

Durrant 2004, Tzeng 2005,  Seltman 2003, Molitor 2003b, Tzeng 2006), which clusters 

evolutionarily close haplotypes into groups, (b) haplotype smoothing (Molitor 2003b, 

Thomas 2001, Schaid 2004), which smoothes haplotype effects by introducing a correlation 

structure on the effects of similar haplotypes, and (c) haplotype similarity (Houwen 1994, 
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McPeek 1999, Su 2008), which looks for unusual sharing of chromosomal segments within 

homogeneous trait groups. In this study, we focus on the haplotype-similarity approach, and 

introduce a method that aims to combine the merits of current similarity methods and 

incorporate covariate information. 

 

Haplotype similarity methods have been constructed for association testing or for LD 

mapping. The general rationale behind the similarity method is that haplotypes around a 

causative locus will be more similar among cases descended from the common ancestors. 

Depending on how this concept is implemented, similarity methods can be divided into two 

categories: evolutionary based approaches and two-sample based approaches. Evolutionary 

based approaches tend to apply to cases only and the excess similarity among cases is 

identified by comparing to the similarity level expected from the genealogical process 

(Durham 1997, Service 1999). It takes direct advantage of the decay process of haplotype 

sharing, which is the underlying driving mechanism for haplotype similarity (McPeek 1999, 

Su 2008, Morris 2002, Morris 2003, Morris 2005).  However, it becomes more challenging 

to model the genealogical process for complex diseases because the causal variants have a 

relatively modest impact on total disease risk (Zöllner 2005).  

 

The two-sample based methods hence use the sharing level among control haplotypes as 

baseline for comparisons (Van der Meulen 1997, Tzeng 2003a, Tzeng 2003b). Although the 

use of case-control samples bypasses the need to modeling the evolutionary process, these 

methods tend to be applicable only to binary traits, limit similarity calculations to the 
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concordant samples (i.e., case-case similarity and control-control similarity). Further, many 

of these methods do not use information obtained from case-control similarity. Sha et al. 

(2007) showed that by accounting for the information from discordant pairs, the power of 

using haplotype similarity to detect association is significantly improved (Sha 2007). Finally, 

the existing haplotype-similarity methods do not incorporate covariate information. This 

makes them less attractive for studying complex traits where covariate adjustments can be 

crucial.  

 

In this article, we propose an approach that combines the two schools of similarity 

approaches to addresses current concerns. Our method follows the framework of two-sample 

approaches, while the level of similarity in each sample is quantified following the spirit of 

evolutionary-based approaches. Specifically we estimate the ancestral haplotypes of cases 

using the multilocus decay-of-haplotype-sharing (DHS) model of McPeek and Strahs (1999), 

and use the estimated ancestral haplotypes as the “summary haplotypes” of the case 

haplotypes. We then define the “ancestral haplotype similarity (AHS) scores”, which 

quantify the similarity degree between the haplotypes of an individual to the case haplotypes 

by comparing them with these summary haplotypes of cases. The use of ancestral haplotype 

similarity scores allows us to utilize all sample information in the association testing. It also 

makes it straightforward to extend a similarity method from the 2-sample test to a regression 

model to incorporate covariates and allows for quantitative and qualitative traits. Finally, 

because all our method requires are that the estimated ancestral haplotypes be representative 
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of the case haplotypes, we bypass the issue of whether the estimated ancestral haplotypes are 

actually the true ancestral disease haplotypes for complex traits.  

 

In the following sections, we illustrate the procedure of the proposed AHS method, and 

present simulation results of type I errors and power. The results are compared to the 

standard haplotype score test of Schaid et al. (2002). We also applied our method to the 

simulated SNP data for Rheumatoid Arthritis (RA) from GAW (Genetic Analysis Workshop) 

15 and examined whether this proposed method can detect the DR and D loci that affect the 

risk of RA.  

 

2.3 Methods 

2.3.1 Model and approach 

Overall our method can be described in the following three major steps. First, we estimate 

the ancestral haplotypes of cases from the case genotypes using the DHS method of McPeek 

and Strahs (McPeek 1999, Strahs 2003). Next, the inferred ancestral haplotypes are used as 

reference haplotypes to compute the ancestral haplotype similarity (AHS) scores. The AHS 

score for an individual is obtained by directly comparing an individual's unphased genotypes 

to the inferred ancestral haplotypes. Finally, the phenotype of interest is regressed onto the 

AHS scores and covariates. A significant coefficient of the AHS scores indicates genetic 

association, as there is a different amount of sharing among the control haplotypes compared 

to the case haplotypes. The significance threshold will be determined by permutation to 
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account for the estimation error induced from the use of the estimated ancestral haplotypes. 

Below we describe each of the steps in detail. 

 

In the first step, we use the DHS method (McPeek 1999, Strahs 2003) to infer the ancestral 

case haplotypes. The DHS method models the decay process of haplotype sharing for 

haplotypes descended from certain common ancestors, taking into account recombination, 

mutation, and background LD. The model allows for multiple origins of case haplotypes, and 

incorporates haplotype correlation due to shared ancestry by applying a correction factor to 

the star-shaped genealogy of case haplotypes. The method has been implemented in the 

software of DHSMAP (Decay of Haplotype Sharing Mapping), and can take phased 

haplotypes (McPeek 1999) or unphased genotype data (Strahs 2003).  

 

In the second step, a similarity score for each individual is computed based on the amount of 

similarity between that individual's haplotypes and the estimated ancestral haplotypes. To 

tackle the phase unknown problem, we adopt the count statistic of Tzeng et al. (2003a) and 

measure the level of similarity using the number of matching alleles between an individual’s 

haplotypes and ancestral haplotype. As shown in Schaid (2004) and Tzeng et al. (2008), such 

quantity can be obtained by counting the matching alleles between one’s genotypes and the 

ancestral haplotypes. In the case of multiple estimated ancestral haplotypes, we calculate the 

overall AHS score by taking a weighted average of the ancestral specific AHS score, with 

weights dependent on the likelihood of the ancestral haplotypes. Specifically, for individual i, 

define Lj the likelihood value obtained from DHSMAP for the ancestral haplotype j, and sij 
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the count of the matching alleles between the genotype of individual i and ancestral 

haplotype j. The weight for ancestral haplotype j is j
j

k
k

L
w

L
=

∑
, k is the number of all inferred 

ancestral haplotypes, and the overall AHS score for person i is ij ji
j

S s w= ∑ . 

 

In the third step of evaluating association between haplotypes and disease status, we fit a 

generalized linear model (McCullagh 1989): ( ) t
i i ig X Sµ γ β= + , where iX  is the design 

matrix of covariates including the intercept , ( )g ⋅  is the link function, and ( )| ,i i i iE Y X Sµ =  

with iY  equaling to the trait value. The null hypothesis of no association corresponds to β =  0. 

To address the extra variability introduced into the procedure by using estimated ancestral 

haplotypes, we use permutation procedure to obtain the empirical p-values. The permutation 

datasets are obtained by randomly shuffling individual’s genotype instead of phenotype, so to 

maintain the potential association between the phenotype and the covariates. For each 

permutated dataset, we repeated the entire procedure of estimating the ancestral haplotypes, 

computing similarity scores and fitting the regression model. Empirical p-values were 

computed as the proportion of significant results from all the permutation datasets. All 

analysis procedures were implemented using R software (http://www.r-project.org/). 

 

2.3.2 Simulation study 

Simulations were performed to evaluate the power and type I error of the AHS method. 

Haplotype data were generated based on the HapMap CEU population. There are in total 

http://www.r-project.org/
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thirty trio families in the original CEU data set. To create an unrelated random population, 

we selected two parents from each family to form a sample pool and randomly drew cases 

and controls from this pool with replacement. We focus on the shortest chromosome 22 to 

facilitate data processing.  

 

We consider six simulation scenarios, as listed in Table 2.1, with different allele frequency 

(AF) of the causal variant (0.1 and 0.4) and different LD between the causal variant and its 

surrounding LD (high ( 2 0.8R > ), moderate ( 2 0.5R ≈ ) and low ( 2 0.2R < )) (Table 2.1). For 

each scenario of AF and LD, a SNP was chosen as the causal locus in accordance with the 

simulation setting. Given a causal locus, the three neighboring markers (one marker to its left 

and two to its right) form a haplotype of size 3 (Figure 2.1). We then randomly draw two 

haplotypes with replacement and convert it to the unphased genotype for an individual. 

Therefore, the observed genotype of an individual does not include the causal locus, though 

the trait value is determined by the genotype of the causal marker using the logistic model: 

Logit [ Pr ( Y=1 | G, E ) ] =  0 1 gE Gγ γ β+ × + × , where Y is the disease status coded as 0 and 

1; E is for a binary covariate; G is the genotype of the causal marker coded as 0, 1 and 2. We 

randomly generated the value for covariate E from Bernoulli distribution with p = 0.5. Then, 

conditional on G and E, we used the logistic formula given above to determine the disease 

status of an individual. We repeated this process until we obtained enough cases and controls. 

Two different sample size, 200 and 400, were set to illustrate how sample size will affect 

power. In each sample, half of them are cases and the other half of them are controls.  The 
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logistic model parameters were set as 1 1.0γ =   and 0 4γ = −  which corresponds the population 

prevalence rate of 0.03. For type I error analysis, β was set to be log(1.0), and for power 

analysis, βg = log(1.5). We obtained the empirical p-value by 104 permutations.  

 

2.3.3 Data application to GAW15 data 

The Genetic Analysis Workshop (GAW) has provided several sets of data biannually since 

1982. In 2006, GAW15 provided the simulated Rheumatoid Arthritis (RA) SNP data which 

includes the HLA DR locus and the D locus on chromosome 6.  The DR locus directly 

affects risk of RA while D locus increases RA risk 5-fold. According to the simulation 

information provided by GAW, smoking status is a very important covariate which can affect 

RA risk directly.  

 

We selected one child from each affected sib-pair family to create a case pool. We randomly 

selected N individuals from this case pool and N controls from all the controls in the 

simulated data. We considered N = 100 and 200 in the analysis. Among all the SNPs located 

on chromosome 6, we selected an 8cM region containing 103 SNPs covering the HLA DR 

locus located at 49.45cM and the D locus located at 54.57cM. We used three-SNP sliding 

windows of haplotypes to scan this region. For each sliding window, we estimated ancestral 

haplotypes of the cases using DHSMAP and calculated the AHS scores for each individual. 

We then regressed the disease status on the ASH scores, with the smoking status included as 

a covariate in the regression. We obtained the empirical p-value by 106 permutations. 
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2.4 Results  

2.4.1 Simulation study 

Table 2.2 and Table 2.3 displays the type I error of the AHS tests which was calculated on 

the basis of 1000 simulation replicates for 200 samples and 400 samples respectively. The 

values in Table 2.2 and Table 2.3 are close to the nominal level 0.05, indicating that the type 

I error is under controlled. Table 2.4 and Table 2.5 show the power at the nominal level 0.05 

obtained on the basis of 500 simulation replicates for 200 samples and 400 samples 

respectively. The power of the AHS method is compared to the standard haplotype score test 

of Schaid et al. (2002) as implemented in the R function haplo.score. We also performed a 

McNemar test to examine whether the power difference is significant. First, as expected, 

when the disease locus in low LD with its nearby markers, there is no statistical power to 

detect the association for both of the method, and hence the power is around the nominal 

level. When the disease locus is in moderate or high LD with surrounding SNPs, we notice 

that the power performance depends on the disease allele frequency. The power of the two 

methods is not significantly different when the disease allele frequency is low. When the 

disease allele frequency is high, the power of AHS method is significantly higher than the 

standard haplotype method.   

 

2.4.2 Data application to the GAW15 data 

Under the 200 samples situation, the AHS method identified a fine-scale region of 1cM 

containing 6 SNPs that are significantly associated with RA disease status. Figure 2.2 shows 
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the profile of empirical p-values over chromosomal locations. The peak of empirical p-values 

is surrounding 49.45cM where the true causal HLA DR locus lies. We also plotted p-values 

from haplo.score test in Figure 2.2a. It clearly shows that both methods are capable of 

detecting the disease causal signal.  

 

Under the 400 samples situation, The AHS method identified two very close regions (Figure 

2.2b). One region is exactly the same region as described above. The other one is a 1cM 

region containing 8SNPs and being highly linked with the first region.  

 

On the other hand, both methods did not detect the second disease loci, the D locus located 

5.12cM downstream from the DR locus on chromosome 6 whenever 200 samples or 400 

samples were used for analysis.  

 

2.5 Discussions 

In this work, we proposed a new haplotype similarity method that is under the regression 

framework and uses the ancestral haplotype similarity scores, which are obtained by 

comparing individual haplotypes with the inferred ancestral haplotypes of the cases. Using 

the ancestral haplotypes as a reference for scoring similarity provides a possible mechanism 

to tackle several common issues encountered in current similarity-based approaches, 

including using partial of the sample similarity information, ignoring covariates, and 

applicable to binary traits. In the proposed AHS method, with respect to the reference 
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haplotypes, we assign an AHS score to each individual. Through the AHS scores, the 

traditional similarity comparison between two samples (case-case pairs vs. control-control 

pairs or concordant pairs vs. discordant pairs) is now transformed to testing the association 

between the trait values and the AHS scores. With this transformation, the haplotype 

similarity information of each sample is retained and used, and the association can be 

examined naturally under a regression model so to account for covariates and various trait 

types. Finally, we define the similarity score based on the number of matching alleles 

between compared haplotypes, which allows for un-phased genotypes and avoids estimation 

of the haplotype phase for each individual.   

 

As a quick note, we would like to point out that besides using AHS scores as proposed here, 

there also exist alternative approaches to tackle the common issues mentioned above in the 

similarity-based approaches, such as Tzeng et al. (2008). In these approaches, the use of the 

pairwise samples is extended to a model-based framework, and the focus is to study the 

correlation between the trait similarity and haplotype similarity. It may be interested to 

understand the relative efficacy of method of this type and the AHS methods. 

 

The proposed AHS method also has its limitations. In the proposed method we used the 

decay of haplotype sharing method (DHSMAP) to infer the ancestral haplotypes of cases.  

Concerns may arise as to (a) whether the estimated ancestral haplotypes are actually the true 

ancestral disease haplotypes, and (b) how to deal with the variation of the estimated ancestral 

haplotypes. The former issue may be a less concern as what the AHS method requires is that 



 22 

the estimated ancestral haplotypes be representative of the case haplotypes, so that the 

similarity scores of each individual reflect similarity to case haplotypes. For the latter 

concern, we chose to perform permutation tests. In our permutation, we choose to permute 

the genetic information instead of the disease status among individuals. Such procedure 

retains the relationship between the disease status and the potential covariates. 

  

Our choice of the DHS method to estimate the ancestral haplotypes is not only because it 

incorporates realistic complications in modeling the genealogy process and is recognized as a 

foundation method, but also because of its likelihood-based framework. This feature provides 

a potential opportunity to incorporate the estimation of ancestral haplotypes as an internal 

step. Currently, our AHS method requires separate steps for estimating the ancestral case 

haplotypes, calculating the individual AHS scores, and the tests for association. In future 

improvement, these three steps can be included as intermediate steps under an integrated 

likelihood of trait values and observed genotypes, and output the association test result that 

account for the uncertainty of the AHS scores. 
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Tables 

Table 2.1    The six simulation scenarios for causal locus 
 

 Low LD 
( R2<0.2 ) 

Moderate LD 
(R2 around 0.5 ) 

High LD 
(R2>0.8 ) 

AF ≈ 0.1 rs134220 rs2858522 rs9614393 
AF ≈0.4 rs133914 rs5768355 rs5750870 
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Table 2.2    Type I error at nominal level 0.05 (100 cases and 100 controls) 
 

 Low LD Moderate LD High LD 
AF ≈ 0.1 0.056 0.056 0.052 
AF ≈ 0.4 0.052 0.040 0.042 
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Table 2.3    Type I error at nominal level 0.05 (200cases and 200 controls) 
 

 Low LD Moderate LD High LD 
AF ≈ 0.1 0.054 0.046 0.050 
AF ≈ 0.4 0.054 0.042 0.046 
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Table 2.4    Power at nominal level 0.05 (100 cases and 100 controls) 
 

  Low LD Med LD High LD 
haplo.score 0.054 0.133 0.175 

AHS method 0.058 0.133 0.168 AF ≈ 0.1 
McNemar ( p = 0.777 )* ( p = 0.951 )* ( p = 0.746 )* 

haplo.score 0.041 0.163 0.441 
AHS method 0.038 0.214 0.522 AF ≈ 0.4 

McNemar ( p = 0.822 )* ( p = 0.010 )* ( p = 0.010 )* 
 
* is the p-value obtained by McNemar test. 
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Table 2.5    Power at nominal level 0.05 (200 cases and 200 controls) 
 

  Low LD Med LD High LD 
haplo.score 0.092 0.230 0.394 

AHS method 0.091 0.252 0.374 AF ≈ 0.1 
McNemar ( p = 1.00 )* ( p = 0.339 )* ( p = 0.493 )* 

haplo.score 0.134 0.349 0.694 
AHS method 0.129 0.403 0.769 AF ≈ 0.4 
McNemar ( p = 0.805 )* ( p = 0.053 )* ( p = 0.053 )* 

 
* is the p-value obtained by McNemar test. 
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Figures 

 
 

 

Figure 2.1    Simulation model  
D is the causal marker and used for determining traits. M1, M2 and M3 are the markers 
highly linked with D and used for association test. 
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Figure 2.2    Data application to the GAW15 data 
The negative base 10 logarithm of empirical p-values of the proposed AHS method (solid 
line with filled circles) and those of the standard haplotype score test (dashed line with open 
circles) around the DR locus. The p-values which were obtained by AHS method and smaller 
than 10-6 were replaced with 10-6 in this figure. The p-values which were obtained by the 
standard haplotype score test and smaller than 10-10 were replaced with 10-10. The dotted 
horizontal line is the bufferoni correction. The solid vertical line is the location of DR locus. 
The dashed vertical line is the location of D locus. Figure 2.2a is for the analysis study with 
sample size equaling to 200, which includes 100 cases and 100 controls. Figure 2.2b is for 
the analysis study with 400 sample size with 200 cases and 200 controls.   
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3.1 Abstract 

Current genotyping technology produces two dimensional intensity data, from which 

genotypes are inferred by a scoring algorithm and genetic association are evaluated based on 

the scored genotypes and phenotypes. Genotyping scoring errors remain a major challenge 

for automated scoring programs and it renders a negative impact on association analysis. 

Here, we propose an alternative strategy that uses the intensity data to study gene-trait 

association. In the analysis, we treat the original two dimensional intensity data or their 

transformation as the observed genetic variables and regard genotypes as unobserved 

variables. The genotyping uncertainty is hence incorporated in the assessment of the 

association. Simulation studies demonstrate that intensity information based association test 

slightly outperforms other approaches that use inferred genotypes as input when mis-call rate 

is high.  

 

3.2 Introduction 

SNPs, single nuclear polymorphism, the most abundant and stable marker, are widely used in 

linkage analysis, association mapping and complex disease study (Risch 2000). With the 

completion of the Human Genome Project, a huge volume of SNPs have been discovered in 

the human genome (The international HapMap consortium 2005). With more SNPs 

becoming available, various statistical methods to assess the associations between SNP 

allelic variants and diseases have been proposed. Previous studies had demonstrated that ~ 

200K - 300K tagging SNPs will be required to cover most of genetic variations in the whole 
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genome (Gabriel 2002, Judson 2002, Stephens 2001). Therefore, high-throughput genome-

wide SNP genotyping assay across many thousands of samples is required for association 

mapping study, and the performance of the abovementioned association studies depends on 

the high-fidelity genotyping technology.  

 

Genotyping can be separated into two steps: allele discrimination and allele detection. Allele 

discrimination is the generation of allele-specific products for SNPs, which is done by allele-

specific biochemical reaction (Syvanen 2001, Kim 2007). There are four different allele 

discrimination methods: enzymatic cleavage, hybridization with allele-specific probes, 

oligonucleotide ligation, and single primer extension (Syvanen 2001, kim 2007). Allele 

detection methods include indirect colorimetric, chemiluminescence, fluorescence, 

fluorescence resonance energy transfer, fluorescence polarization, mass spectrometry 

(Syvanen 2001, Kim 2007). Many whole genome scan SNP chips have been developed 

recently, such as Illumina BeadArray, Affymatrix, Perlegen, and Tagman, etc. They use 

different allele discrimination methods and allele detection methods (Syvanen 2001). For 

example, the TagMan assay involves hybridization with allele specific probes and detection 

by fluorescence resonance energy transfer (Syvanen 2001). Although genotyping technology 

has been considerably improved recently, further improvements are still necessary in order to 

improve the quality and efficiency of genotyping (Syvanen 2001, Kim 2007).   

 

Recently, many genotyping scoring algorithms have been published. Those genotyping 

scoring algorithms can be divided into two groups: (a) classification based method (Olivier 
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2002, Liu 2003, Rabbee 2006, Bierut 2007), and (b) distribution based method (Fujisawa 

2004, Di 2005, Hua 2006, Nicolae 2006, Moorhead 2006, Xiao 2007, Teo 2007, WTCCC 

2007). Among the recently published classification based methods. Oliver’s method and 

Bierut’s method are both based on the K-means clustering strategy (Oliver 2002, Bierut 

2007). Liu et al. proposed the modified partitioning around medoids as a classification 

method for relative allele signals (Liu 2003). RLMM (Rabbee 2006) and BRLMM (Cawley 

2006) are very similar and both based on a robustly fitted linear model and use the 

Mahalanobis distance for classification. The difference between RLMM and BRLMM is the 

addition of a Bayesian step which provides improved estimates of cluster centroids and 

variances (Cawley 2006). RLMM and BRLMM both have been built in an Affymetrix 

software, GType. Although classification based algorithms are widely used in genotyping 

scoring, model and likelihood based methods are also developed recently. Fujisawa et al. 

(2004) proposed a model-based clustering method using a normal mixture model and a well-

conceived penalized likelihood. Di et al. (2005) introduced a new dynamic model-based 

algorithm (DM) for screening over 3 million SNPs and genotyping over 100,000 SNPs. 

SNiPer-HD (Hua 2006) is based on Gaussian distribution and employs an expectation-

maximization (EM) algorithm with parameters obtained from a training sample set. GEL 

(Nicolae 2006) uses likelihood calculations that are based on Gamma distributions inferred 

from the observed data. Moorhead (2006) proposed a new method based on normal mixture 

distribution. SAMS (Xiao 2007) and MAMS (Xiao 2007) are both based on multivariate 

normal distribution. Teo’s method is based on multivariate truncated t distribution. CHIAMO, 
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a newly developed algorithm for Affymetrix SNP chip data, is based on a Bayesian 

hierarchical mixture model and is one of the scoring algorithms used for WTCCC project. 

 

For genetic association analysis, the major concern is the genotyping error. It could result in 

incorrect estimates of allele frequency, linkage disequilibrium, and genetic distance. It can 

also reduce the power and increase the false positives of association analysis (Goldstein 1997, 

Abecasis 2001, Akey 2001, Gordon 2002, Kang 2004, Hao 2004, Ahn 2006).Genotyping 

error is defined as the proportion of mistyping in all called genotypes that can be categorized 

into two groups: the technological error and the scoring error (Kang 2004). Those 

technological problems have been addressed in recent years by the improvement of 

genotyping technology whereas the scoring error is still a considerable problem.   

 

Almost all the association studies performed currently would first determine genotype 

through genotyping scoring and then use the inferred genotype as input to do association 

mapping. Under such a procedure, it is difficult to avoid genotyping scoring error regardless 

of which scoring method used. The common strategy to cope with genotyping error is to 

model the error rates in the association tests (Hao 2004, Kang 2004, Ahn 2006, Cheng 2007 

and Plagnol 2007). An alternative strategy is to use probe intensity data instead of the 

genotype data as input for association test. A few papers have been published trying to use 

this strategy to incorporate genotyping uncertainty in association test (Kang 2004; Zhu 2006). 

Kang et al. demonstrated a new method for haplotype inference by incorporating genotyping 

uncertainty (Kang 2004) by using a t-mixture model to calculate the probability of each 
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genotype before doing the haplotype inference. They found that probabilistic scoring gives 

rise to more quantitative information and flexibility in the haplotype phasing step and can 

improve the accuracy in haplotype phasing, especially in high LD and high ambiguity 

situation (Kang 2004). Zhu moved one step further: they not only estimated possible 

genotypes thus the haplotype inference but also did the haplotype association test (Zhu 2006). 

Simulation studies show that their likelihood-based method reduced the impact by 

genotyping errors. These two papers discussed above are focusing on haplotype inference 

and haplotype association test. The similar principle can be applied to SNP-based analysis. 

 

Here, we propose an algorithm that incorporates the genotyping uncertainty to assess the 

association between trait data and SNPs. In this strategy, we use the original two-dimensional 

intensity data or the transformed one-dimensional intensity data as input and regard 

genotypes as unobserved variables. We also considered alternatively strategies that are 

commonly used in practice to reach a better understanding on how different strategies would 

optimally be applied to various scenarios.  

 

3.3 Methods 

3.3.1 Transformation algorithms of the two-dimensional intensity data  

The raw intensity data are two-dimensional. Transformation is usually used to create a one-

dimensional normal variable, with which a certain scoring algorithm is then applied to 

determine genotypes. Below we list four commonly used transformation algorithms: 
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Algorithm 1 (Cawley 2006): X = asinh[ 4 ( Ia – Ib ) / ( Ia + Ib ) ] / asinh( 4 ), 

Algorithm 2 (Teo 2007): X = ( Ia - Ib ) / ( Ia + Ib ), 

Algorithm 3 (Bierut 2007): X = Ia / ( Ia + Ib ), 

Algorithm 4 (Moorhead 2006): X = sinh[ 2 ( Ia – Ib ) / ( Ia + Ib ) ] / sinh( 2 ), 

* sinh(m)=(exp(m)-exp(-m))/2. 

In the algorithms above, Ia stands for probe intensity of allele “a” and Ib stands for probe 

intensity of another allele “A”. After transformation, X follows a normal distribution, 

N(μg,σg
2), with g stands for three different genotypes AA, Aa, and aa. 

 

Many scoring algorithms have been proposed in recent years. In this work we particularly 

focus on the genotype determination algorithm of Moorhead et al. (2006). The algorithm 

firstly transforms the two dimensional intensity data into one dimensional data using 

Algorithm 4 and then fit the transformed data using a mixture normal distribution. It 

estimates the parameters by EM algorithm, and determines the genotype based on the 

likelihood value. We choose Moorhead’s method because it is easier to write the likelihood 

for one dimension data and it is easy to achieve convergence for EM algorithm when there is 

less parameter in the model. 

 

3.3.2 Likelihood of the complete data 

The observed data are the original or transformed intensity data (denoted by R), 

environmental covariates (denoted by E), and trait value (denoted by Y). The complete data 

are (G, Y, E) where G is the genotype. We first specify the complete data likelihood as 
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follows, from which we can use EM algorithm to obtain MLEs of the observed-data 

likelihood or the score function of the observed-data likelihood:  

(1) L = f (Y, G, R | E ) = f ( Y | G, R, E ) f ( G, R ) = f ( Y | G, E ) f ( G, R ), where Y is the 

trait data, R is the input data which could be the original two dimensional intensity data or 

the transformed one dimensional data, G is genotype ( AA = 0, Aa = 1, aa = 2 ) and E is the 

covariate; 

(2) f ( G, R ) = mixture of normal distribution, which will be discussed in the next paragraph; 

(3) f ( Y | G, E ) = exp{ ( Yη – b ( η ) ) / a ( φ ) + c ( Y, φ ) }, which is expressed as an 

exponential family data, where a, b and c are known functions, φ is the dispersion parameter 

and η is the link function;   

(4) η = β0 + βgG + βeE, where β0, βg and βe are the regression parameters for the intercept, the 

genotype factor and environmental factor, respectively.  

 

We fit two different normal mixture models for f ( G, R ) : (1) univariate normal mixture 

distribution model, which uses transformed data X of Algorithm 4 as input data; and (2) 

bivariate normal mixture distribution, which uses original two dimensional probe intensity 

data Ia and Ib as input. For the i-th sample, we can write its un-normalized probability of 

belonging to the j-th cluster, with respect to the two normal mixture models abovementioned, 

as follows: 

(1) fij ( G = j, Ri = Xi ) = ( λj / σj ) exp ( -1/2 ( ( Xi - mj ) / σj )2 ), where mj, σj and λj are the 

mean, sigma, and weight of the jth cluster, respectively;  
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(2) fij ( G = j, Ri = ( Iai, Ibi ) ) = ( λj / ( σxj σyj ( 1 - ρ2 )1/2 ) ) exp { -1 / ( 2 ( 1 - ρ2 ) ) [ ( Iai - 

mxj )2 / σxj
2 + ( Ibi - mxj )2 / σxj

2 + ( Iai - mxj ) ( Ibi- myj ) / ( σxj σyj ) ]}, where mxj, myj, σxj, σyj, ρj 

and λj are the mean, sigma, and weight of the jth cluster, respectively. 

 

3.3.3 Score test for H0: βg = 0 

Let ( )g ,θ β ψ= , where gβ  is of our interest and ( )0 0 1 2, , , ,eψ β β φ φ φ= is the nuisance 

parameter.   In the one-dimensional intensity based score test approach, we define 

( ), ,   0,1, 2j j j j jφ µ σ λ= ∀ =  for each genotype cluster. In the two-dimensional intensity 

based score test, we have ( ), , , , ,   0,1, 2.j xj yj xj yj j j jφ µ µ σ σ ρ λ= ∀ =  

 

We are interested in testing the hypothesis 0 : 0gH β = .  Denote ψ%  as the maximum 

likelihood estimates (MLEs) of the nuisance parameter under the null hypothesis. First, we 

obtain the score and Fisher information matrix from the complete data likelihood as follows: 
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Next we use Louis’s method (Louis 1982) to compute the score statistic of the observed 

likelihood (note the asterisks that denote statistics for observed data) as follows: 

( ) ( )* * 1 *0, 0,
g g g

T S V Sβ β βψ ψ−= % %  

where ( ) ( )* 0, 0,
g g

S E Sβ βψ ψ =  % %  and 

( ) ( ) ( ) ( ) ( )1* * * * *var 0, 0, 0, 0, 0,
g g g g g

V S I I I Iβ β β β ψ ψψ ψβψ ψ ψ ψ ψ
−   = = −   % % % % % . 

In the above equations, 

( ) ( )* 0, 0, ,S E Sψ ψ=   % % ( ) ( ) ( ) ( ) ( ) ( )* * *0, 0, 0, 0, 0, 0, .TI E I E S S S Sψ ψ ψ ψ ψ ψ = − +    % % % % % %  

Note that ( )* 0,
g g

Iβ β ψ%  is the element in the matrix ( )* 0,I ψ% that corresponds with gβ . 
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3.3.4 Five strategies for testing association 

We will discuss five different association tests using either genotype or intensity data as 

input.  

Test 1: Score test using true genotypes.  

Test 2: Score test using estimated genotype  

Test 3: Score test using estimated genotype probability 

Test 4: Score test using the one dimensional transformed intensity data 

Test 5: Score test using the two dimensional original intensity data 

  

3.3.5 Simulation schemes 

To compare the performance of using intensity data with that of using genotypes, we 

simulated probe intensity data for each SNP such that each genotype cluster’s shape and size 

are similar to that of the real probe intensity data. We assumed Hardy-Weinberg equilibrium 

(HWE) for each SNP in the simulated population and multivariate t distribution for each 

cluster of genotype. Each of the three different genotypes has a multivariate t distribution 

with different mean and variance matrix.  Each genotype cluster has a center and spreads in 

two dimensions with a constant variance. The ambiguity level is controlled by changing the 

correlation coefficient ρ, the correlation coefficient of the variance matrix. Many scenarios 

were simulated with different ρ, allele frequencies and sample sizes. Detailed simulation 

procedure is as follow: 

1. Simulate the true genotype using a binomial distribution with p equaling to the allele 

frequency.  



 41 

2. Simulate the two dimension probe intensity data using a multivariate t distribution.  

3. Determine the disease status for each individual based on the logistic regression model: 

Logit [ Pr ( Y=1 | G, E ) ] = β0 + βgG + βeE. 

4. Repeat step 1, 2, and 3 until obtaining enough cases and controls. Two different sample 

size, 500 and 1000, were set to illustrate how sample size will affect power. 

5. Generate 1000 replicates for power and type I error analysis. 

 

3.3.6 Application to the WTCCC data 

In 2007, the Wellcome Trust Case Control Consortium (WTCCC) provided several data sets 

including one control data set from the 1958 UK Birth Cohort, another control data from the 

UK National Blood Service and case data sets for seven diseases, such as Type 1 diabetes, 

Type 2 diabetes, rheumatoid arthritis, inflammatory bowel disease, bipolar disorder, 

hypertension and coronary artery disease. In our real data application, we focused on Type 2 

diabetes. The molecular mechanism involved in the development of Type 2 diabetes is still 

poorly understood. According to several association studies reported to date, the number of 

Type 2 diabetes susceptibility signals increased from three to nine recently (Zeggini 2007). 

We constructed a data set containing 1,500 samples from the 1958 British Birth Cohort, 1504 

samples from the UK Blood Service Control Group and 1,999 samples from the Type 2 

diabetes collection. Genotype data and normalized intensity data are both available in 

WTCCC. Two different association tests were performed in this real data analysis: 1) 

genotype based score test; 2) transformed one dimensional intensity based score test.    
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3.4 Results 

3.4.1 Comparisons of the four different transformation algorithms 

We compared the performance of four different transformation algorithms described in 

methods under different ambiguity levels from low to high. In our simulation, bivariate t 

distributions were used to generate the fluorescence intensity (FI) scatter plots (see Figure 

3.1 shows an example of simulated two dimensional intensity data). We determined the 

genotype for each individual through Moorhead’s method and calculate the miscall rate for 

each transformation algorithm. We also performed the SNP single marker association test 

with genotype uncertainty based on four different transformed data and calculated the power.  

 

Table 3.1 shows miscall rates for all the transformation algorithms under different ambiguity 

level. To make a fair comparison, we gave the same starting points for the centroids for all 

the algorithms. In the mixed normal model, we picked the cluster with the highest probability. 

We counted the number of erroneous calls (defined as the calls different from the true calls) 

in each simulation scenario. At every ambiguity level, the Algorithm 4 outperformed other 

algorithms.  

 

In addition to performing better in clustering, Algorithm 4 also got higher power for the one 

dimensional intensity base score test for association study (Table 3.1) while the type I error 

rate of the four algorithms remain around the nominal level. All above considered, we 

decided to use the Algorithm 4 in the subsequent simulations.  
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3.4.2 Ambiguity level and mis-call rate 

The ambiguity level of the two dimension intensity data is controlled by changing the 

correlation coefficient for the covariates matrix, ρ, which is also called the ambiguity 

parameter. Mis-call rate is the percentage of the mis-classified genotypes among all the 

genotypes. To describe the relationship between ρ and mis-call rate, we calculated the mis-

call rates based on five different ρ values ranging from 0.1 to 0.9. As the ambiguity 

parameter increases, the mis-call rate decreases (Figure 3.2). 

 

3.4.3 Power comparisons of different association tests 

To find which association test performs better, we compared different association tests under 

many scenarios with different sample sizes, allele frequencies and ambiguity levels. A 

thousand replicates under each scenario were simulated for type I error and power analyses.  

 

Table 3.2 and Table 3.3 show the type I errors for all the association test methods with 

sample sizes of 500 and 1000, respectively. All the type I errors are close to the nominal 

level of 0.05, which verifies the validity of the test statistics constructed here.  

 

Figure 3.3 and Figure 3.4 show the power for all the methods with sample sizes of 500 and 

1000, respectively. As expected, the test using true genotypes as inputs for the association 

test has the highest power in every scenario. Overall, genotype based method has the lowest 

power. In the low ambiguity cases, genotype based test, genotype probability based test, 
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transformed intensity based test and two dimensional intensity based test yielded similar 

power. When ambiguity level increases, transformed one-dimensional intensity based test 

has the highest power among all the methods.  

 

We set four different minor allele frequencies at 0.01, 0.05, 0.10 and 0.25. The power trends 

for all the allele frequencies are similar. We noticed that it is very difficult for two 

dimensional intensity based test to estimate the centroid and variance of the minor allele 

homozygote genotype group when sample size is equal to 500 and minor allele frequency is 

lower than 0.1. After increasing the sample size to 1000, two dimensional intensity based test 

obtained the ability to handle simulated data with allele frequency 0.05. Thus, with enough 

sample size, such as 5000 or more, two dimensional intensity based test would possibly 

overcome the problem for small sample size and low allele frequency.     

 

3.4.4 Gene-Environment interaction  

Increased attention has been paid on gene-environment interaction for complex disease 

association study. The above framework can be extended to incorporate the gene-

environmental interaction:  

Y = β0+G + βeE + βgeGE, 

where Y stands for the trait, G for the genotype, E for the environment effect, and GE for the 

interaction term. We tested the genetic effect βg = 0, interaction effect βge = 0, and combined 

effect βg = βge = 0 separately. To avoid the simulation complexity, we fixed the sample size 
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to 500, set the ambiguity parameter at 0.7 and the allele frequency to 0.25. The results for 

four different scenarios are in the Table 3.4 and discussions are as follows: 

(1) βe = log(1.4), βg = log(1.0), βge = log(1.0). Under this null scenario, there is no genetic 

effect and no gene-environment interaction effect. All the tests successfully controlled their 

type I errors around the nominal level of 0.05.  

(2) βe = log(1.4), βg = log(1.4), βge = log(1.0). Since this is the genetic effect only scenario, it 

is reasonable that we couldn’t detect the power by testing βge alone. The simulation results 

demonstrated that intensity based method outperformed the genotype based method when 

testing βg effect alone or βg and βge combined. 

(3) βe = log(1.4), βg = log(1.0), βge = log(1.4). Under this scenario, the model contains the 

gene-interaction effect only. It is interesting to see that the performance of intensity based 

tests was very similar with that of genotype based test.  

(4) βe = log(1.4), βg = log(1.4), βge = log(1.4). This is the most general scenario which 

contains both the genetic effect and the interaction effect. When testing βg = 0 or βge = 0, both 

testing methods obtained similar level of power. However, when testing βg and βge jointly, the 

intensity based test outperformed the genotype based test. 

 

3.4.5 Application to the WTCCC data 

We applied the one dimensional intensity based score test and genotype based score test to a 

real WTCCC data set. It contains 1,999 cases from the Type 2 diabetes collection, 1500 

controls from the 1958 Birth Cohort and 1504 controls form the National Blood Service, in 

which both genotype data determined by Chiamo clustering method and normalized two 
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dimensional intensity data were available. We performed the intensity based test and the 

genotype based test, respectively. According to several association studies to date, there are 

totally nine susceptive genes and 11 causal loci for Type 2 Diabetes (Zeggini 2007). 

However, two loci (rs1111875 and rs13266634) were missing from the WTCCC dataset and 

hence there were only eight susceptive genes and 9 causal loci included in our analysis. 

Genotype-based score test and intensity-based score test both identified all the 9 loci and 

eight susceptive genes. The results are summarized in Table 3.5 that also included the p-

values from a previous association study (Zeggini 2007) using WTCCC data set with 

different number of cases and controls. Comparing our results with the p-values provided by 

Zeggini’s paper, we found that both genotype-based test and intensity-based test got very 

similar p-values as the previous study. 

 

3.5 Discussions 

We constructed an alternative association score test using the original intensity data instead 

of genotype as input. Based on extensive simulations, we compared the performance of this 

new score test with another genotype based score test. Our findings are in agreement with 

two previous studies that intensity data based association test reduce the power impact 

induced by genotyping error (Kang 2004 and Zhu 2006). Kang’ paper demonstrated a new 

method for haplotype inference by incorporating the probability of each genotype instead of 

inferred genotype. Zhu’s paper only focused on the haplotype association test (Zhu 2006). 

Their simulation studies also showed that their intensity data based likelihood-based method 
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can reduce the impact by genotyping errors. To date, there is no published method using 

intensity data as input for SNP based association test. Single marker based association test is 

generally more widely used than haplotype test in genome-wide association studies due to its 

simplicity and computational efficiency. In this paper, we proposed a new score test that 

incorporates the genotyping uncertainty to assess the association between traits and SNPs. In 

this method, we directly used the original intensity data and regard genotypes as unobserved 

variables such that genotyping scoring errors would not be a problem.  Our simulation 

studies showed that association analysis using intensity data can improve the power 

comparing to other approaches using inferred genotypes.  

 

Poor separation between genotype clusters always increases the mis-call rate and thus 

impacts the association test. The results of power comparison in association test showed that 

all intensity based test (genotype probability based score test, one dimensional data based 

score test and two dimensional probe intensity data based score test) had power 

improvements comparing with inferred genotype based score test when mis-call rate is high.  

 

Two dimensional original intensity data is supposed to contain more quantitative information 

than transformed one dimensional data. It was surprising that one dimensional data based 

score test has higher power than two dimensional data based score test under almost all the 

simulation scenarios. One possible cause could be that two dimensional data based 

association test approach involves more parameters than one dimensional data based test, 
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which, during Expection-Maximization iterations,  could make it more difficult to  achieve 

the convergence.     

 

Since the two dimensional intensity based score test faces the convergence problem in the 

EM algorithm, it is limited in sample size and allele frequency. When sample size is small 

and allele frequency is low, there will be few individuals with homozygous minor alleles. 

Under such situation, it is very difficult for EM algorithm to estimate its centroid and 

variance. Based on the reasons above, two dimensional intensity based score test can not be 

applied to a data set with small sample size and low allele frequency simultaneously. 

However, one dimensional intensity based score test has the ability to overcome the 

convergence problem encountered during the EM procedure. 

 

In recent years, more and more attention is paid to the copy number variation (CNV), a new 

type of genetic variation. There are two technology platforms to assess CNV: comparative 

genome hybridization (CGH) using whole genome TilePath array and comparative intensity 

analysis using common SNP chip. The raw intensity data generated during SNP genotyping 

can be mined for copy-number information, making such studies a potential source of data 

for CNV-disease association studies. In the future, it is possible to extend the proposed 

intensity data based score test to detect the causal SNP and CNV simultaneously. 
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Tables 

Table 3.1    Comparing four different transformation algorithms 
 

ρ Tests Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 
MisCall Rate 0.318 0.257 0.352 0.235 
Type I Error 0.045 0.040 0.053 0.051 0.3 

Power 0.588 0.603 0.546 0.622 
MisCall Rate 0.250 0.186 0.315 0.152 
Type I Error 0.055 0.049 0.056 0.043 0.6 

Power 0.596 0.623 0.573 0.636 
MisCall Rate 0.163 0.077 0.291 0.037 
Type I Error 0.055 0.047 0.044 0.045 0.9 

Power 0.668 0.726 0.631 0.732 
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Table 3.2    Type I error when sample size = 500 
 

AF ρ 0.9 0.7 0.5 0.3 0.1 
MisCall Rate 0.008 0.082 0.147 0.193 0.227 

Test 1 0.045 0.039 0.046 0.055 0.048 
Test 2 0.044 0.040 0.054 0.054 0.052 
Test 3 0.055 0.041 0.046 0.053 0.048 
Test 4 0.055 0.041 0.048 0.055 0.047 

0.01 

Test 5 - - - - - 
MisCall Rate 0.014 0.090 0.153 0.200 0.236 

Test 1 0.048 0.049 0.050 0.044 0.047 
Test 2 0.054 0.055 0.040 0.042 0.050 
Test 3 0.052 0.054 0.045 0.052 0.045 
Test 4 0.052 0.054 0.045 0.052 0.047 

0.05 

Test 5 - - - - - 
MisCall Rate 0.020 0.098 0.162 0.210 0.245 

Test 1 0.053 0.045 0.044 0.047 0.041 
Test 2 0.051 0.052 0.049 0.042 0.051 
Test 3 0.041 0.053 0.041 0.048 0.047 
Test 4 0.044 0.053 0.036 0.039 0.048 

0.10 

Test 5 0.030 0.035 0.033 0.038 0.040 
MisCall Rate 0.035 0.116 0.181 0.230 0.270 

Test 1 0.052 0.043 0.052 0.050 0.047 
Test 2 0.048 0.051 0.050 0.046 0.058 
Test 3 0.046 0.043 0.045 0.049 0.047 
Test 4 0.048 0.044 0.044 0.049 0.046 

0.25 

Test 5 0.039 0.036 0.043 0.041 0.041 
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Table 3.3    Type I error when sample size = 1000 
 

AF ρ 0.9 0.7 0.5 0.3 0.1 
MisCall Rate 0.009 0.082 0.147 0.193 0.226 

Test 1 0.052 0.048 0.055 0.040 0.050 
Test 2 0.046 0.042 0.052 0.046 0.055 
Test 3 0.040 0.045 0.054 0.040 0.054 
Test 4 0.042 0.046 0.054 0.041 0.053 

0.01 

Test 5 - - - - - 
MisCall Rate 0.016 0.091 0.155 0.202 0.239 

Test 1 0.048 0.049 0.050 0.056 0.051 
Test 2 0.052 0.047 0.048 0.042 0.048 
Test 3 0.051 0.041 0.050 0.048 0.054 
Test 4 0.048 0.041 0.052 0.048 0.054 

0.05 

Test 5 0.044 0.045 0.040 0.042 0.048 
MisCall Rate 0.023 0.101 0.166 0.214 0.249 

Test 1 0.047 0.055 0.056 0.048 0.055 
Test 2 0.050 0.044 0.044 0.042 0.047 
Test 3 0.052 0.052 0.044 0.051 0.053 
Test 4 0.051 0.053 0.044 0.052 0.052 

0.10 

Test 5 0.040 0.039 0.049 0.038 0.040 
MisCall Rate 0.035 0.116 0.182 0.231 0.268 

Test 1 0.047 0.042 0.046 0.050 0.046 
Test 2 0.050 0.049 0.051 0.054 0.043 
Test 3 0.050 0.045 0.050 0.051 0.047 
Test 4 0.051 0.044 0.051 0.050 0.046 

0.250 

Test 5 0.044 0.042 0.047 0.055 0.040 
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Table 3.4    Power for genetic model including gene-environment interaction  
 

    Y = βg G + βe E Y = βg G + βe E + βge GE 

βe βg βge Tests βg = 0 βg = 0 βge = 0 βg = 0 &  
βge = 0 

Test 2 0.054 0.053 0.055 0.054 0.33 0.00 0.00 Test 4 0.048 0.050 0.048 0.050 
Test 2 0.512 0.548 0.043 0.435 0.33 0.33 0.00 Test 4 0.550 0.570 0.046 0.500 
Test 2 0.096 0.058 0.554 0.428 0.33 0.00 0.33 Test 4 0.102 0.056 0.554 0.427 
Test 2 0.668 0.511 0.575 0.726 0.33 0.33 0.33 Test 4 0.688 0.512 0.574 0.754 
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Table 3.5    Data application to the WTCCC data  
 

Rs Chr Gene 
p-values from 

previous 
paper 

Test 2 Test 4 

Rs1801282 3 PPARG 1.3e-03 3.8e-04 1.1e-03 
Rs4402960 3 IGF2BP2 1.7e-03 1.7e-03 7.9e-05 
Rs10946398 6 CDKAL1 2.5e-05 1.6e-05 7.9e-06 
Rs564398 9 CDKN2B 3.2e-04 8.3e-04 7.2e-03 

Rs10811661 9 CDKN2B 7.6e-04 1.2e-03 5.4e-03 
Rs5015480 10 HHEX 5.4e-06 2.4e-05 1.2e-06 
Rs7901695 10 TCF7L2 6.7e-13 8.6e-14 4.9e-14 

Rs5215 11 KCNJ11 1.3e-03 1.7e-03 5.3e-03 
Rs8050136 16 FTO 2.0e-08 1.6e-08 3.8e-08 
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Figures 

 

 

Figure 3.1     An example of simulated data and transformed data. a. The left one: plot for 
the two dimensional original data. b. The right one: histogram for the one dimensional 
transformed data. 
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Figure 3.2    Mis-call rate and ambiguity level 
Triangle and dot-dashed line stands for allele frequency equaling to 0.25, diamond and 
dashed line stands for allele frequency equaling to 0.10, solid circle and doted line stands for 
allele frequency equaling to 0.05, open circle and solid line stands for allele frequency 
equaling to 0.01. a. The top one: results from simulation with 500 individuals. b. The bottom 
one: results from simulation with 1000 individuals. 
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Figure 3.3    Power when sample size = 500 
Lightblue bar stands for test 1, mistyrose bar stands for test 2, lightcyan bar stands for test 3, 
lavender bar stands for test 4, lightgreen bar stands for test 5. 
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Figure 3.4     Power when sample size = 1000 
Lightblue bar stands for test 1, mistyrose bar stands for test 2, lightcyan bar stands for test 3, 
lavender bar stands for test 4, lightgreen bar stands for test 5. 
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SimuGeno: simulation software for genome wide case-

control association study 

 

Youfang Liu and Mike Weale 
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4.1 Abstract 

Summary: SimuGeno is a package to simulate large scale genomic data for Case-Control 

study. SimuGeno use the logistic regression model which allows single causal locus, multiple 

causal loci and gene-gene interaction. SimuGeno is a real data based simulation software. It 

can take HapMap data or any other similar data sets as input. The advantage of SimuGeno is 

that SimuGeno can keep similar allele frequency and LD pattern as the original data.  

Availability: http://www4.ncsu.edu/~yliu7/SimuGeno  

Contact: yliu7@ncsu.edu   

 

4.2 Introduction  

Genetic association analysis has become a powerful and important tool in the study of 

genetic complex disease. Many novel methods for testing association have been developed. 

One key issue is how to evaluate the power of each method under realistic settings. 

Simulation is an efficient way to evaluate the ability of novel methods to detect the disease 

markers.  

 

There are three main approaches for simulation (Liu 2008): 1) “backwards”, which starts 

with the samples that will form your simulated dataset, then works backwards in time to 

construct the genealogical information; 2) “forwards”, which starts with the entire population 

of individuals and then follows how all the genetic data are passed on from one generation to 

http://www4.ncsu.edu/~yliu7/SimuGeno
mailto:yliu7@ncsu.edu
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the next; 3) “Sidewards”, which starts with a collection of real genetic data, and uses these as 

a template for generating new simulated data with similar properties.  

 

With the steady increase in public-available genomewide SNP data, such as the HapMap 

project and the 1000 genomes project, the potential advantage of the “sidewards” simulation 

approach has been realized recently and HapMap data based simulations have been already 

widely used in association study (Bakker 2005, Pe’er 2006). Dudbridge proposed forming 

random diploid chromosomes from phased HapMap data followed by a single round of 

artificial meiosis (Dudbrige, 2007). This idea has been put to use in the HAP-SAMPLE 

software. Durrant et al. proposed an alternative idea based on sliding windows for 

introducing new variation into simulated data.  This method has been implemented in the 

GWAsimulator software.  Jonathan Marchini’s hapgen software applies an approximation to 

the coalescent-with-recombination to generate new simulated data from existing phased 

HapMap data, but is slower than the other two sideways simulators.    

 

SimuGeno is a package to simulate large scale genomic data for case-control association 

studies. It can take HapMap data or any other similar data sets as a starting point.  Causal loci 

can be either random or user-defined.  SimuGeno provides two different ways to generate 

genotype data: boostrapping and Dudbridge’s method. For large data set, we also provide 

causal region simulation to fasten the program. After generating genotype data, we use 

logistic model to determine the disease status for each individual. 
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SimuGeno simulated data maintains allele frequencies and LD structure that are similar to 

the original data. As an example, we applied SimuGeno to HapMap CEU chromosome 21 

and 22 data. We found that the causal region simulation is more time saving and the 

simulated data do indeed have very a similar allele frequency pattern and LD structure 

compared to the original HapMap data. 

 

4.3 methods 

4.3.1 Generate genotype by bootstrapping or Dudbridge method 

Two options we provide for the simulation of case and control datasets are: bootstrapping of 

haplotypes and a method proposed by Dudbridge (2007). 

 

(1) Bootstrapping of haplotypes  

In this method, two haplotypes are randomly selected firstly, then genotype data is formed by 

pairing those two haplotypes. We will keep select and pair haplotypes until we get enough 

cases and controls.  

(2) Dudbridge’s model  

In this method, new haplotypes are generated based on the recombination rate and random 

mating assumption (Dudbridge 2007). Two chromosomes are randomly selected, grouped in 

pairs, and gametes are constructed using HapMap recombination maps. New genotypes are 

constructed by random union of gametes.  
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4.3.2 Generate genotype by causal region simulation 

Computational time for Dudbridge’s method will be a problem when we simulate whole 

genome data containing about 500k SNPs (the current popular size for genome-wide 

association studies). To solve this problem, SimuGeno undertakes what we call causal region 

simulation. The rationale behind this causal region simulation is that only the SNPs close to 

causal loci will show differences between cases and controls. In causal region simulation, 

SimuGeno selects, for each causal SNP, a causal region with that causal SNP located at its 

center. The edges of each region are determined by recombination rates or hotspots. 

Dudbridge’s model based simulation takes place within these regions only. Finally, the 

newly constructed causal regions are plugged back into the original chromosomal data to 

create new chromosomes.  

 

4.3.3 Generate disease status by logistic model 

SimuGeno use the logistic regression model to determine the disease status: 

Logit[Pr(D|G)] = α + β1*g1 + β2*g2 + β3*g3 + …+ βi*gi, where D stands for diseases status, 

g stands for genotype of each causal locus coding in 0,1,2 and i stands for  the number of 

disease loci.  In Pr(D|G), the G here stands for the combination of all disease markers.  

 

We define all K as the probability of cases in the whole population. α is solved by the 

following equation to:  

K = Pr(D|G) * F(G1) + Pr(D|G2) * F(G2) + …+ Pr(D|Gj) * F(Gj) 
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Here, F stands for genotype frequency and j stands for number of all the possible genotypes. 

Logistic model allows single causal locus, multiple causal loci and gene-gene interactions 

among them, and thus allows for complex disease simulation.  

 

4.3.4 Calculate average LD  

Pairwise LD block is a common way to depict LD structure. However, it is not easy to show 

all the LD blocks when the simulated data is quite large. To compare the LD structures 

between different simulated data sets, we chose to use average LD. Average LD can be 

calculated as follows: 1) LD between one marker and every marker in its 50kb neighborhood 

are calculated, 2) the averaged LD value is assigned to the marker.  

 

4.4 Results for an example 

4.4.1 Allele frequency, LD structure and running time 

We compared the allele frequency and LD pattern among the original HapMap data, the 

simulated data by bootstrapping and simulated data by Dudbridge model to find out whether 

the simulated data could keep similar LD pattern and allele frequency as the original one. 

The original data used in the test was the HapMap chromosome 21 CEU data. There are in 

total thirty trio families in the original CEU data set. To create an unrelated random 

population, we selected two parents from each family to form a sample pool.  
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Minor allele frequencies of data sets simulated by bootstrapping, Dudbridge’s method or 

causal region simulation were compared with the original HapMap data (Figure 4.2). The 

results show that simulated data by either method had very similar allele frequency as the 

original one.  

 

Average LD was calculated as discussed in 2.4. Average LD of simulated data by either 

method was compared with the original data (Figure 4.2). The results show that simulated 

data sets by all the methods share very similar LD structure with the original HapMap data.  

 

Finally, we found that causal region simulation does save time for large data simulation 

(Table 4.1). When sample size is small, the running times are quite similar for different 

simulation methods. However, when sample size is as large as 1000, the time needed for the 

causal region simulation is only half of the time for Dudbridge’s method.  

 

4.4.2 Type I error and power  

The original data used in the test was the HapMap chromosome 21 and 22 combined data. 

CEU population was the only population to be used in the test to avoid potential population 

structure problem. Three causal SNPs were selected for the simulation. They were all 

separated far away and there was no LD between any two of them. Interaction between 

causal SNP1 and causal SNP2 was designed in the model. The logistic model used is listed as 

below: 

Logit[Pr(D|G)] = α + 0.4*g1 + 0.4*g2 + 0.4*g3 + 0.2*g1*g2.  
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Detailed information of causal markers is listed in Table 4.2. Originally, minor allele 

frequency of each causal SNP was 0.25. After simulation, the minor allele frequency of each 

causal SNP changed a little bit.  

 

To calculate type I error and power, logistic test was applied to the simulated data sets. Table 

4.3 shows that simulated data by either model has type I error close to 0.05 as expected. 

Table 4.3 shows that logistic test has high power to detect the causal locus for simulated data 

sets by all simulation methods.  

 

4.5 Operating systems 

All the source codes are written in R. They can be run on many operating systems as long as 

the R-2.2.1 or higher version of R is installed. Many parameters, such as sample size and 

number of disease markers, all can be determined by user. A detailed documentation for how 

to use this package is available at the website.  
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Tables 

Table 4.1 Running time for different simulation methods 
 

Sample Size Bootstrapping Dudbridge Causal Region 
200 2΄ 03˝ 3΄ 31˝ 2΄ 21˝ 
1000 4΄ 34˝ 12΄ 31˝ 5΄ 36˝ 
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Table 4.2 Causal SNPs information 
 

 Chr Position MAF 
SNP1 21 18053748 0.25 
SNP2 21 40181010 0.25 
SNP3 22 46323517 0.25 
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Table 4.3    Type I error and power at nominal level 0.05 
 

  Bootstrapping Dudbridge Causal Region 
SNP1 0.056 0.044 0.056 
SNP2 0.052 0.050 0.052 Type I Error 
SNP3 0.053 0.049 0.046 
SNP1 0.999 0.995 0.998 
SNP2 0.987 0.996 0.996 

Power 
(without inter 
action term) SNP3 0.983 0.994 0.952 

SNP1 0.999 0.997 0.999 
SNP2 0.993 0.998 0.999 
SNP3 0.970 0.996 0.944 

Power 
(with inter 

action term) 
SNP1*SNP2 0.182 0.210 0.204 
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Figures 

 

 

 
 
 
Figure 4.1    Allele frequency comparisons 
Minor allele frequencies for original Hapmap data, simulated data by bootstrapping, 
simulated data by Dudbridge model, and simulated data by regional simulation. 
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Figure 4.2 LD comparisons 
LD for original Hapmap data, simulated data by bootstrapping, simulated data by Dudbridge 
Model, and simulated data by regional simulation.
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Chapter 5 

 

Summary 
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5.1    Summary and discussion 

There is always a debate about whether the haplotype based test is better than the single 

marker based test. Generally, haplotype-based association tests have greater power when 

SNPs are in strong linkage disequilibrium with the disease locus (Akey 2001, Nielsen 

2004, Zaitlen 2007) and are helpful in identifying rare causal variants (HapMap 2003, de 

Bakker 2005). The reasons for thinking that haplotype gains more power than single marker 

test include: 1) haplotypes are comprised of the functional units of genes and 2) haplotypes 

incorporate LD information (Allen 2008). In addition, comparing with haplotype test, single 

marker tests can lost significant power when multiple loci located at a same disease region 

affect disease simultaneously (Morris 2002). However, the large dimensionality of 

haplotypes often leads to high degrees of freedom and the existence of rare haplotypes 

results in power loss in haplotype-based analyses (Seltman 2001, Molitor 2003(a), Thomas 

2003, Zhang 2003, Durrant 2004, Sha 2005, Tzeng 2005, Yu 2005, Browning 2006). In 

real data practice, single marker based test is still widely used because it is simple, fast and 

efficient. Thus, both the single marker based methods and haplotype based methods have 

their advantages and disadvantages, and both deserve further research. 

 

For population-based association studies, many haplotype based tests have been developed. 

Haplotype global tests had been proposed by Zhao (2000) and Fallin (2001). They treated 

different haplotype as categorical data and tested them all together. These methods do not 

have the ability to identify the specific causal haplotype. To address this problem, haplotype 
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specific tests had been developed by Schaid (2002) and Zaykin (2002). These methods 

incorporated the haplotypes into a regression model and had the ability to test the effect of 

each haplotype. However, haplotype diversity became a new problem for the haplotype 

specific tests because high haplotype diversity would use large number of degree freedom 

and result in low power. To tackle this haplotype dimensionality problem, many haplotype 

similarity methods had been developed ( McPeek 1999, Tzeng 2003). There are two types of 

haplotype similarity tests: evolutionay based test (McPeek 1999) and case-control based test 

(Tzeng 2003). McPeek’ method modeled the geneology of the case data and estimated the 

ancestral haplotype. The rational behind McPeek’s method is that, in the cases, the haplotype 

similarity level should be higher in causal region than in other regions. Instead of comparing 

current haplotypes with ancestral haplotypes, Tzeng’s method compared the haplotype 

similarity between cases and controls. However, neither McPeek’s method nor Tzeng’s 

method can adjust covariate. This became a big limitation for application of both methods 

because covariates play an important role in complex disease mapping. To tackle the 

covariates incorporation problem, we proposed the ancestral haplotype similarity based 

association method.  By combining the strengths from the evolutionary based haplotype 

similarity test and the case-control based haplotype similarity test, our proposed method 

successfully solves the covariate-incorporation problem and the haplotype diversity problem 

simultaneously. In our method, we 1) use McPeek’s method to estimate ancestral haplotypes 

and treat them as reference haplotypes, 2) calculate similarity score through Tzeng’s method, 

3) incorporate covariates through a logistic regression framework, 4) and calculate empirical 

p-values through permutation. However, there are limitations for our proposed method, too. 
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First of all, since the empirical p-values are obtained through permutations, time 

consumption becomes an unavoidable problem, which will limit its application to GWAS 

(genomewide association scan). Secondly, DHSMAP (McPeek 1999), the software that was 

used to estimate ancestral haplotypes, will be extremely slow when the sample size is large, 

which also limits the application of our proposed method to a large data set. Thus, it may be 

worth researching how to combine the ancestral haplotype estimation step and the testing 

step together and avoid the permutation and the sample size limitation.  

 

Almost all the association studies conducted currently would first determine genotype 

through genotyping scoring and then use the inferred genotype as input to do association 

mapping. Under such a procedure, it is difficult to avoid genotyping scoring error regardless 

of the scoring method used. The common strategy to cope with genotyping error is to model 

the error rates in the association tests (Hao 2004, Kang 2004, Ahn 2006, Cheng 2007 and 

Plagnol 2007). An alternative strategy is to use probe intensity data instead of the genotype 

data as input for association test. A few papers have been published trying to use this strategy 

to incorporate genotyping uncertainty in association test (Kang 2004; Zhu 2006). Kang (2004) 

demonstrated a new method for haplotype inference by incorporating genotyping uncertainty 

(Kang 2004) by using a t-mixture model to calculate the probability of each genotype before 

doing the haplotype inference. They found that probabilistic scoring gives rise to more 

quantitative information and flexibility in the haplotype phasing step and can improve the 

accuracy in haplotype phasing, especially in high LD and high ambiguity situation (Kang 

2004). In Zhu’s method, they not only estimated possible genotypes thus the haplotype 
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inference but also did the haplotype association test (Zhu 2006). Kang’s method and Zhu’s 

method motivated us to move one step further. Instead of using genotype probability as input, 

we proposed a new strategy to use intensity data as input. Under such strategy, we can 

incorporate the genotyping scoring algorithm and take all the genotyping uncertainty into 

consideration. Extensive simulation studies demonstrated that intensity information based 

association test outperforms genotype based approaches when ambiguity level of the 

intensity data is high. However, based on the running time observed during simulation study, 

intensity data based test consumes longer time than regular genotype based test. Although the 

running time difference is not so significant for single marker association analysis, time 

consummation could be a serious problem when the intensity based test is applied to GWAS. 

To tackle this potential running time problem, recoding the intensity based test using C++ 

instead of R language could be the possible solution. The reason is that R is usually slower 

than C++ due to the memory limitation in R environment.  

  

Genetic association analysis has become a powerful and important tool in the study of 

genetic complex disease. Many novel methods for association testing have been developed. 

One key issue is how to evaluate the power of each method under realistic settings. 

Simulation is an efficient way to evaluate the ability of novel methods to detect the disease 

markers.   

 

There are three main approaches for simulation (Liu 2008): 1) “backwards”, which starts 

with the samples that will form the simulated dataset, then works backwards in time to 
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construct the genealogical information; 2) “forwards”, which starts with the entire population 

of individuals and then follows how all the genetic data are passed on from one generation to 

the next; 3) “Sidewards”, which starts with a collection of real genetic data, and uses these as 

a template for generating new simulated data with similar properties.  

 

With the steady increase in publicly-available genomewide SNP data, such as the HapMap 

project and the 1000 genomes project, the potential advantage of the real data based 

simulation approach has been realized recently. Dudbridge (2006) proposed forming random 

diploid chromosomes from phased HapMap data followed by a single round of artificial 

meiosis, governed by empirical recombination rates also estimated from HapMap.  This idea 

has been put to use in the HAP-SAMPLE software.  Durrant (2004) proposed an alternative 

idea based on sliding windows for introducing new variation into simulated data.  This 

method has been implemented in the GWAsimulator software. Jonathan Marchini’s hapgen 

software (2007), based on the same underlying principles as his genotype imputation 

software impute, applies an approximation to the coalescent-with-recombination to generate 

new simulated data from existing phased HapMap data, but is slower than the other two 

sideways simulators.    

 

 Motivated by Dudbridge’s method, we proposed the causal region simulation which 

combines the strength from Bootstrapping method and Dudbridge’s strategy. In chapter 4, we 

described a real data based simulation program, SimuGeno, which can simulate large scale 

genomic data for case-control association studies by using HapMap data as a starting point. 
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SimuGeno provides three different ways to generate genotype data: bootstrapping, 

Dudbridge’s method and causal region simulation. Bootstrapping is fast, but it only provides 

limited genetic variation. Dudbridge provides more genetic variations which are generated 

from the simulated recombination and random mating. However, it is very slow when 

simulating whole genome data with large sample sizes. Causal region simulation, by 

combining the strength from Bootstrapping method and Dudbridge’s method, provides 

enough genetic variation and meanwhile keeps the running time short. SimuGeno, which 

currently only takes HapMap data as the original input data, can be easily extended to take 

other real data as input as long as that data contains a recombination map.   

 

5.2    Future work 

There are couples of topics which I am very interested in and may put some efforts on in the 

future. I will discuss two topics, gene-environment interaction and integrated association 

studies for SNP and CNV, in the following paragraphs.  

 

CNV stands for a DNA segment that is 1 kb or larger and present at variable copy number in 

comparison with a reference genome ( Feuk 2006). CNV can be created by deletions, 

insertions, duplications and complex multi-site variants (Redon 2006). By disrupting genes 

or altering gene dosage, CNV could effect gene expression, induce phenotypic variation and 

cause diseases. CNV associated diseases include CHARGE syndrome (Jongmans 2006 ), 

Parkinson’s (Singleton 2003) and Alzheimer’s disease (Rovelet-Lecrux 2006). Currently, 
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there are two technology platforms widely used to assess CNV: comparative genome 

hybridization (CGH) and regular SNP chip (Redon 2006). The raw intensity data generated 

during SNP genotyping can be mined for copy-number information, making such studies a 

potential source of data for CNV-disease association studies (MacCarroll 2007). When I 

worked on my second project (Chapter 3), I noticed that it is possible to integrate association 

studies for SNPs and CNVs together. I am interested in exploring new methods in this 

direction.   

 

Most of the complex diseases usually result from the interplay of genetic and environmental 

factors instead of genetic factors along or environmental factors along. One example is the 

much stronger effect of sunlight exposure on skin cancer risk in fair-skinned humans than in 

individuals with darker skin (Green 2002). Another example could be the ethnic differences 

in response to the exposure to the cigarette smoking in lung cancer (Haiman 2006). A recent 

report also demonstrated that the association between childhood asthma and exposure to 

large roadways was affected by genetic variation (McConnell 2006). There are different 

approaches to detect the disease susceptibility loci which are involved in gene-environmental 

interaction: 1) ignore the environmental exposure and detect the marginal effect of the loci 

(Clayton 2001); 2) screen markers for deviation from a odds ratio model for gene-

environment interaction (Botto 2004); 3) use data mining methods to find disease predictors 

from genetic and environmental inputs (Cupples 2005). Kraft (2007) proposed a new 

likelihood ratio association test, allowing gene-environmental interaction. In their logistic 

regression model, they detect the G (gene only test), GE (gene-environmental interaction 



 79 

test), G-GE (joint test) separately.  They compared the power and sample size requirements 

of different tests. They found that the joint test is nearly optimal across all penetrance models. 

In Kraft’s study, they only considered the simplest situation which contains binary covariates 

for case-control study. In real world, continuous covariates and continuous response 

variables are more common, especially in pharmacogenetic study. For example, the drug 

response for obesity disease should be the weight lose, which is obviously a continuous 

variable. Thus extending Kraft’s method to continuous response and continuous covariates 

would be an interesting research direction to go. 



 80 

References 

Abecasis GR, Cherny SS and Cardon LR (2001). The impact of genotyping error on 
family-based analysis of quantitative traits. Eur J Hum Genet 9: 130-134. 
 
Affymetrix (2006). BRLMM: an improved genotype calling method for the 
GeneChip human mapping 500k array set. Affymetrix website. 
 
Ahn K, Haynes C, Kim W, St. Fleur R, Gordon D and Finch SJ (2006). The effects of 
SNP genotyping errors on the power of the Cochran-Armitage linear trend test for 
case/control association studies. Annals of Human Genetics 71: 249-261. 

 
Akey JM, Zhang K, Xiong M, Doris P and Jin L (2001). The effect that genotyping 
errors have on te robustness of common linkage-disequilibrium measures. Am J Hum 
Genet 68: 1447-1456. 
 
Akey J, Jin L, and Xiong M (2001). Haplotypes vs single marker linkage 
disequilibrium tests: What do we gain? Eur J Hum Genet 9:291-300. 
 
Allen AS and Satten Glen (2008). Robust estimation and testing of haplotype effects 
in case-control studies. Genetic Epidemiology 32:29-40. 

 
Bakker, P., Yelensky R., Pe’er I., Gabriel S. B., Daly, M. J. and Altshuler, D. (2005). 
Efficiency and power in genetic association studies. Nature Genetics 37, 1217–1223. 

 
Bierut LJ, Madden PAF, Breslau N, Johnson EO et al (2007). Novel genes identified 
in a high-density genome wide association study for nicotine dependence. Human 
Molecular Genetics 16: 24-35. 
 
Botto L and Khoury M (2004). Human genome epidemiology: a scientific foundation 
for using genetic information to improve the health and prevent disease. Oxford, 
Oxford University Press. 

 
Browning SR (2006). Multilocus association mapping using variable-length Markov 
chains. Am J Hum Genet 78(6): 903-13. 

 
Cardon LR and Bell JI (2001). Association study designs for complex diseases. 
Nature reviews 2: 91-99. 

 
Cawley S, Di X, Hubbell E, Lincoln S, Moorhead M, Short W, Speed TP, Sugnet C, 
Veitch J, Webster T, Williams A and Yang G (2006): BRLMM: an improved 



 81 

genotype calling method for the GeneChip human mapping 500k array set. ASHG 
Annual Meeting 

 
Cheng KF and Lin WJ (2007): Simultaneously correcting for population stratification 
and for genotyping error in case-control association studies. The American Journal of 
Human Genetics 81:726-743 

 
Clayton D and McKeigue PM (2001). Epidemiological methods for studying genes 
and environmental factors in complex disease. Lancet 358:1356-1360 

 
Cordell HJ and Clayton DG (2005). Genetic association studies. Lancet 366:1121-
1131. 

 
Cupples LA, Bailey J and Cartier KC (2005). Data mining. Genet Epidemol 29(suppl 
1):s103-s109. 

 
de Bakker PI, Yelensky R, Pe'er I, Gabriel SB, Daly MJ, Altshuler D (2005). 
Efficiency and power in genetic association studies. Nat Genet 37(11): 1217-23. 

 
Di X, Matsuzaki H, Webster TA Hubbell E, Liu G, Dong S, Bartell D, Huang J, 
Chiles R, Yang G, Shen MM, Kulp D, Kennedy GC, Mei R, Jones KW and Cawley S 
(2007). Dynamic model based algorithms for screening and genotyping over 100k 
SNPs on oligonucleotide microarrays. Bioinformatics 21: 1958-1963. 

 
Dudbridge F. (2007). A note on permutation tests in multistage association scans. Am 
J Hum Genet 78(6):1094-1095. 

 
Dudek, S. M., Motsinger A. A., Velez, D. R., Williams S. M. and Ritchie M. D. 
(2006). Data simulation software for whole-genome association and other studies in 
human genetics. Pacific Symposium on Biocomputing 11, 499-510. 

 
Durham LK, Feingold E (1997). Genome scanning for segments shared identical by 
descent among distant relatives in isolated populations. Am J Hum Genet 61:830–842. 

 
Durrant C, Zondervan KT, Cardon LR, Hunt S, Deloukas P, et al. (2004). Linkage 
disequilibrium mapping via cladistic analysis of single-nucleotide polymorphism 
haplotypes. Am J Hum Genet 75:35–43. 

 
Fallin D, Cohen A, Essioux L, Chumakov I, Blumenfield M, Cohen D, Schork N 
(2001). Genetic analysis of case/control data using estimated haplotype frequencies: 
application to APOE locus variation and Alzheimer’s disease. Genome Res11:143-
151 

 



 82 

Feuk L, Marshall CR, Wintle RF and Scherer SW (2006). Structural variants: 
changing the landscape of chromosomes and design of disease studies. Hum Mol 
Genet 15 (Suppl 1):R57-R66 

 
Fujisawa H, Eguchi S, Ushijima M, Miyata S, Miki Y, Muto Y and Matsuura M 
(2004). Genotyping of single nucleotide polymorphism using model-based clustering. 
Bioinformatics 20: 718-726. 

 
Gabriel SB et al (2002). The structure of haplotype blocks in the human genome. 
Science 296: 2225-2229. 
 
Goldstein DR, Zhao H and Speed TP (1997). The effects of genotyping errors and 
interference on estimation of genetic distance. Hum Hered 47: 86-100. 
 
Gordon D, Finch SJ, Nothnagel M and Ott J (2002). Power and sample size 
calculations for case-control genetic association tests when errors are present: 
Application to single nucleotide polymorphisms. Hum Hered 54: 22-33. 
 
Green A and Trichopoulos D (2002). Textbook of Cancer Epidemiology 281-300. 
 
Haiman CA, Stram DO and Wilkens LR (2006). Ethnic and racial differences in the 
smoking –related risk of lung cancer. N Engl J Med 354:333-342. 
 
Hao K and Wang X (2004). Incorporating individual error rate into association test of 
unmatched case-control design. Human Heredity 58: 154-163. 
 
Houwen RHJ, Baharloo S, Blankenship K, Raeymaekers P, Juyn J, Sandkuijl LA and 
Freimer NB (1994). Genome screening by searching for shared segments: Mapping a 
gene for benign recurrent intrahepatic cholestasis. Nature Genetics 8:380-386. 
 
Hua J, Craig DW, Brun M, Webster J, Zismann V, Tembe W, Joshipura K, 
Huentelman MJ, Dougherty ER and Stephan DA (2007). SNiPer-HD: improved 
genotype calling accuracy by an expectation-maximization algorithm for high-density 
SNP arrays. Bioinformatics 23(1): 57-63. 
 
Hudson, R. R. (2002). Generating samples under a Wright-Fisher neutral model of 
genetic variation. Bioinformatics 18, 337–338. 
 
Jongmans MC (2006). CHARGE syndrome: the phenotypic spectrum of mutations in 
the CHD7 gene. J Med Genet 43:306-314 
 



 83 

Judson R, Sallisbury B, Schneider J, Windemuth A and Stephens JC (2002). How 
many SNPs does a genome-wide haplotype map require? Pharmacogenomics 3: 379-
391. 
 
Kang H, Qin ZS, Niu T and Liu JS (2004). Incorporating genotyping uncertainty in 
haplotype inference for single-nucleotide polymorphisms. Am J Hum Genet 74:495-
510. 
 
Kang SJ, Gordon D and Finch SJ (2004). What SNP genotyping errors are most 
costly for genetic association studies? Genet Epidemiol 26: 132-141. 
 
Kim S and Misra A (2007). SNP genotyping technologies and biomedical application. 
Annu Rev Biomed Eng 9:289-320. 
 
Kraft P, Yen Y, Stram DO, Morrison J and Gauderman WJ (2007). Exploiting gene-
environment interaction to detect genetic associations. Human Heredity 63:111-119 
 
Laird NM and Lange C (2006). Family-based designs in the age of large-scale gene-
association studies. Nat Rev Genet 7:385-394. 
 
Liu WM, Di X, Yang G, Matsuzaki H, Huang J, Mei R, Ryder TB, Webster TA, 
Dong S, Liu G, Jones KW, Kennedy GC and Kulp D (2003). Algorithms for large-
scale genotyping mircoarrays. Bioinformatics 19: 2397-24. 
 
Liu Y., Athanasiadis G., and Weale M. E. (2008). A survey of genetic simulation 
software for population and epidemiological studies. (Submitted) 
 
Louis AL (1982). Finding the observed when using the EM algorithm. J. R. Statist 
Soc B 44: 226-23. 
 
McCarroll SA and Altshuler DM (2007). Copy-number variation and association 
studies of human disease. Nature Genetics 39: s37-s42 
 
McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JPA and 
Hirschhorn JN (2008). Genome-wide association studies for complex traits: 
consensus, uncertainty and challenges. Nature 9:356-369. 
 
McConnell R, Berhane K and Yao L (2006). Traffic, susceptibility, and childhood 
asthma. Environ Health Perspect 114:766-772 
 
McCullagh P and Nelder JA (1989). Generalized Linear Model. 
 



 84 

McPeek M and Strahs A (1999). Assessment of linkage disequilibrium by the decay 
of haplotype sharing with application to fine-scale genetic mapping.  Am J Hum 
Genet 65:858-875. 
 
Molitor J, Marjoram P, Thomas D (2003a). Fine-scale mapping of disease genes with 
multiple mutations via spatial clustering techniques. Am J Hum Genet 73:1368–1384 
 
Molitor J, Marjoram P, Thomas D (2003b). Application of Bayesian spatial statistical 
methods to analysis of haplotypes effects and gene mapping. Genet Epidemiol 25:95-
105. 
 
Moorhead M, Hardenbol P, Siddiqui F, Falkowski M, Bruckner C, Ireland J, Jones 
HB, Jain M, Willis TD and Faham M (2006). Optimal genotype determination in 
highly multiplexed SNP data. European Journal of Human Genetics 14: 207-215. 
 
Morris AP, Whittaker JC, Balding DJ (2002). Fine-scale mapping of disease loci via 
shattered coalescent modeling of genealogies. Am J Hum Genet 70(3):686-707. 
 
Morris AP, Whittaker JC, Xu CF, Hosking LK, Balding DJ (2003). Multipoint 
linkage-disequilibrium mapping narrows location interval and identifies mutation 
heterogeneity. Proc Natl Acad Sci USA 100(23):13442-6. 
 
Morris AP (2005). Direct analysis of unphased SNP genotype data in population-
based association studies via Bayesian partition modelling of haplotypes. Genet 
Epidemiol 29(2):91-107. 
 
Morris RW ad Kaplan NL (2002). On the advantage of haplotype analysis in presence 
of multiple disease susceptibility alleles. Genet Epidemiol 23:221-233. 
 
Neale BM and Sham PC (2004). The future of association studies: gene-based 
analysis an replication. Am J Hum Genet 75:353-362. 
 
Nicolae DL, Wu X, Miyake K and Cox NJ (2006). GEL: a genotype calling algorithm 
using empirical likelihood. Bioinformatics, Genome analysis 22: 1942-1947. 
 
Nielsen DM, Ehm MG, Zaykin DV, and Weir BS (2004). Effect of two- and three-
locus linkage disequilibrium on the power to detect marker/phenotype associations. 
Genetics 168(2): 1029–1040. 
 
Pe’er, I., Bakker, P., Maller, J., Yelensky, R., Altshuler, D. And Daly M. J. (2006) 
Evaluating and improving power in whole-genome association studies using fixed 
marker sets. Nature Genetics 38, 663-667. 
 



 85 

Plagnol V, Cooper JD, Todd JA and Calyton DG (2007): A method to address 
differential bias in genotyping in large-scale association studies. PLOS Genetics 
3(5):759-767 
 
Rabbee N and Speed TP (2006). A genptype calling algorithm for affymetrix SNP 
arrays. Bioinformatics Genome analysis 22: 7-12. 
 
Redon R, Ishikawa S, Fitch KR and Feuk L (2006). Global variation in copy number 
in the human genome. Nature 23:444-454 
 
Risch N (2000). Searching for genetic determinants in the new millennium. Nature 
405:847-856. 
 
Rovelet-Lecrux A (2006). APPlocus duplication causes autosomal dominant early 
onset Alzheimer disease with cerebral amyloid angiopathy. Nature Genet 38: 24-26 
 
Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA (2002). Score tests for 
association between traits and haplotypes when linkage phase is ambiguous. Am J 
Hum Genet 70:425-434 
 
Schaid D (2004). Evaluating associations of haplotypes with traits. Genetic 
Epidemiology 27:348-364. 
 
Seltman H, Roeder K, Devlin B: Transmission/disequilibrium test meets measured 
haplotype analysis (2001). Family-based association analysis guided by evolution of 
haplotypes. Am J Hum Genet 68:1250–1263. 
 
Seltman H, Roeder K, Devlin B (2003). Evolutionary-based association analysis 
using haplotype data. Genet Epidemiol 25:48-58. 
 
Service SK, Temple Lange DW, Freimer NB, Sandkuijl LA (1999). Linkage-
disequilibrium mapping of disease genes by reconstruction of ancestral haplotypes in 
founder populations. Am J Hum Genet 64:1728–1738. 
 
Sha Q, Dong J, Jiang R, Zhang S (2005). Tests of association between quantitative 
traits and haplotypes in a reduced-dimensional space. Ann Hum Genet 69:715–732. 
 
Sha Q, Chen HS, Zhang S (2007). A new association test using haplotype similarity. 
Genet Epidemiol 31(6):577-93. 
 
Singleton AB (2003). α-Synuclein locus triplication causes Parkinson’s disease. 
Science 302:841. 
 



 86 

Stephens JC et al (2001). Haplotype variation and linkage disequilibrium in 313 
human genes. Science 293: 489-493. 
 
Strahs A and McPeek M (2003). Multipoint fine-scale linkage disequilibrium 
mapping: importance of modeling background LD. Notes Monograph Series Volume 
40 Science and Statistics: 343-366. 
 
Su SY, Balding DJ and Coin JM (2008). Disease association tests by inferring 
ancestral haplotypes using a hidden markov model. Genetics and Population Analysis 
24:972-978. 
 
Syvanen AC (2001). Accessing genetic variation: genotyping single nucleotide 
polymorphisms. Nature 2:930-942. 
 
Teo YY, Lnouye M, Small KS, Gwillian R, Deloukas P, Kwiatkowski DP, Clark TG 
(2007). A genotype calling algorithm for the Illumina BeadArray platform. 
Bioinformatics, Genetics and population analysis 23: 2741-2746. 
 
The International HapMap Consortium (2003). The International HapMap Project.  
Nature 426: 789-796. 
 
The international HapMap consortium (2005). A haplotype map of the human 
genome. Nature 437: 1299-1320. 
 
The Wellcome Trust Case Control Consortium (2007). Genome-wide association 
study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 
447: 661-678. 
 
Thomos DC, Morrison JL, Clayton DG (2001). Bayes estimates of haplotype effects. 
Genet Epidemol Suppl 21:S712-S717. 
 
Thomas DC, Stram DO, Conti D, Molitor J, Marjoram P (2003). Bayesian spatial 
modeling of haplotype associations. Hum Hered 56:32–40. 
 
Tzeng J, Devlin B, Wasserman L, and Roeder K (2003a). On the identification of 
disease mutations by the analysis of haplotype similarity and goodness of fit. Am J. 
Hum Genet 72:891-902. 
 
Tzeng J.Y., Byerley W., Devlin B., Roeder K. and Wasserman L (2003b). Outlier 
detection and false discovery rates for whole-genome DNA matching. Journal of the 
American Statistical Association 98:236-246. 
 



 87 

Tzeng JY (2005). Evolutionary-based grouping of haplotypes in association analysis. 
Genet Epidemiol 28:220–231. 
 
Tzeng JY, Wand CH, Kao JT, and Hsiao CK (2006). Regression-based association 
analysis with clustered haplotypes through use of genotype. Am J Hum Genet 
78:231-242. 
 
Tzeng J.Y., Chang S.M., Zhang D, Thomas DC, Davidian M (2008). Regression-
based Multi-marker Analysis for Genome-wide Association Studies Using Haplotype 
Similarity. Institute of statistics mimeo series #2606. 
 
Van der Meulen M and Meerman G (1997). Haplotype sharing analysis in affected 
individuals from nuclear families with at least one affected offspring. Genetic 
Epidemiology 14:915-920. 
 
Xiao Y, Segal MR, YangYH and Yel RF (2007). A multi-array multi-SNP 
genotyping algorithm for Affymetrix SNP microarrays. Bioinformatics, Genome 
analysis 23: 1459-1467. 
 
Yu K, Xu J, Rao DC, Province M (2005). Using tree-based recursive partitioning 
methods to group hapltypyes for increased power in association studies. Ann Hum 
Genet 69: 577-589. 
 
 Zaitlen N, Kang HM,  Eskin E, and Halperin E (2007). Leveraging the HapMap 
Correlation Structure in Association Studies. Am J Hum Genet 80(4): 683-691. 
 
Zaykin DV, Westfall PH, Young SS, Karnoub MA, Wagner MJ, Ehm MG (2002). 
Testing association of statistically inferred haplotypes with discrete and continuous 
traits in samples of unrelated individuals. Hum Hered 53:79-91 
 
Zeggini E and Weedon MN et al (2007). Replication of genome-wide association 
signals in UK samples reveals risk loci for Type 2 Diabetes. Science 316: 1336-1341. 
 
Zhang S, Sha Q, Chen HS, Dong J, Jiang R (2003). Transmission/disequilibrium test 
based on haplotype sharing for tightly linked markers. Am J Hum Genet 73:566–579. 
 
Zhao JH, Curtis D and Sham PC (2000). Model-free analysis and permutation tests 
for allelic associations. Hum Hered 50:133-139 
 
Zhu W and Guo J (2006). A likelihood-based method for haplotype association 
studies of case-control data with genotyping uncertainty. Science in China 49: 130-
144. 
 



 88 

Zöllner S, Pritchard JK (2005). Coalescent-based association mapping and fine 
mapping of complex trait loci. Genetics 169(2):1071-92. 

 


