
ABSTRACT

CZIKA, WENDY ANN. Accounting for Within- and Between-Locus Dependencies in

Marker Association Tests. (Advisor: Dr. Bruce Spencer Weir)

The importance of marker association tests has recently been established for locating

disease susceptibility genes in the human genome, attaining finer-scaled maps than the

linkage variety of tests through the detection of linkage disequilibrium (LD). Many of

these association tests were originally defined for biallelic markers under ideal assump-

tions, with multiallelic extensions often complicated by the covariance among genotype

or allele proportions. The well-established allele and genotype case-control tests based on

Pearson chi-square test statistics are exceptions since they adapt easily to multiallelic ver-

sions, however each of these has its shortcomings. We demonstrate that the multiallelic

trend test is an attractive alternative that lacks these limitations. A formula for marker

genotype frequencies that incorporates the coefficients quantifying various disequilibria

is presented, accommodating any type of disease model. This enables the simulation of

samples for estimating the significance level and calculating sample sizes necessary for

achieving a certain level of power.

There is a similar complexity in extending the family-based tests of association to

markers with more than two alleles. Fortunately, the nonparametric sibling disequilib-

rium test (SDT) statistic has a natural extension to a quadratic form for multiallelic

markers. In the original presentation of the statistic however, information from one of

the marker alleles is needlessly discarded. This is necessary for the parametric form of



the statistic due to a linear dependency among the statistics for the alleles, but the non-

parametric representation eliminates this dependency. We show how a statistic making

use of all the allelic information can be formed.

Obstacles also arise when multiple loci affect disease susceptibility. In the presence of

gene-gene interaction, single-marker tests may be unable to detect an association between

individual markers and disease status. We implement and evaluate tree-based methods

for the mapping of multiple susceptibility genes. Adjustments to correlated p-values from

markers in LD with each other are also examined. This study of epistatic gene models

reveals the importance of three-locus disequilibria of which we discuss various statistical

tests.
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Chapter 1

Introduction

With the landmark paper of Risch and Merikangas (1996) advocating the use of asso-

ciation studies over linkage analysis for locating complex disease genes on a fine-scale

genetic map, much discussion about the two classes of association tests, case-control and

family-based, has surfaced. These analyses test for a statistical association between the

disease and marker genotypes. Since the location of the disease locus is unknown and

thus the genotypes at that locus are unobserved, disease phenotype (affected/unaffected

with disease) is used as a surrogate for the genotype. Any association found between the

disease phenotype and marker genotypes is hoped to be due to linkage disequilibrium

between the two loci, that is an association due to linkage. These two association test

categories differ in the individuals comprising the samples, with case-control samples

containing random samples of individuals from a population and family-based studies

including nuclear families with at least one child affected with the disease of interest.
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Family-based tests have a clear-cut advantage over case-control tests “because they of-

fer complete robustness to potential population heterogeneity” (Risch and Teng 1998);

however, when parental genotypes are unavailable, case-control tests can be substantially

more powerful than statistics using unaffected siblings as controls (Risch and Teng 1998;

Teng and Risch 1999) while being more easily and conveniently collected. We examine

how various types of associations or dependencies among alleles at the same locus or

different loci, described below, can affect tests of both sorts.

Many of these association tests were originally defined for biallelic markers under ideal

assumptions. The form of these tests is often quite straightforward; a single allele can

be used in the analysis, with each yielding the same statistic due to the two-sided nature

of the tests and the complete negative correlation between the two allele proportions.

However, the natural negative covariance among allele or genotype counts complicates

the generalization of such tests to multiallelic versions for markers such as microsatellites;

tests cannot be performed on each allele or genotype independently. Additionally, the

pair of alleles an individual possesses at a locus may be dependent due to the existence

of Hardy-Weinberg disequilibrium in the population; this can be caused by forces such as

nonrandom mating or migration. Both of these types of within-locus dependencies can

have an effect on the test statistic.

Linkage disequilibrium (LD) is a dependency between alleles at linked loci that facil-

itates association-based tests. The strength of this between-locus association affects the

power of these tests. In addition, markers in LD with each other may have p-values that
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are correlated; accounting for these dependencies can serve to remove spurious significant

associations. Another sort of dependency to consider is the interaction between genes

on disease susceptibility. For diseases that are affected by multiple loci, the effect is not

always an additive one; epistasis, or a gene-gene interaction, can occur between genes.

Tests applied to single markers at a time may not capture the relationship between mul-

tiple loci and a disease, so methods for detecting the multi-gene association with disease

status are advantageous in this situation.

In Chapter 2, the multiallelic trend test, extended from the original Armitage linear

trend test (1955) by Slager and Schaid (2001b), is examined. This test statistic uses the

multinomial distribution of genotypes and the covariances induced by this distribution.

First we perform an algebraic comparison of this test to the allele case-control test,

which is based on the Pearson chi-square statistic for a contingency table. We also look

at the behavior of this test statistic when independent transmission of alleles (HWE) at

a marker does not hold, under both the null and alternative hypotheses. Sample sizes for

attaining a predefined level of power are calculated taking varying amounts of LD, both

gametic and nongametic, into account in the model. In order to perform these analyses,

an extension to the equations for marker genotype frequencies presented by Nielsen and

Weir (1999) is given, now including single-locus and LD coefficients and applicable for

any type of genetic model for the disease.

Association mapping utilizing decision trees, or recursive partitioning, is presented

in Chapters 3 and 4. In Chapter 3, the results from association mapping with trees

3



are compared with those from standard association tests. The approach for combining

correlated p-values from sliding windows of markers (Zaykin et al. 2002) in order to

smooth out the random noise in the p-values is also examined. Chapter 4 demonstrates

a novel approach to analyzing marker data along with other covariates, consisting of

tree-based and other data-mining methods combined with conventional statistical and

family-based marker tests, again in an attempt to map multiple disease susceptibility

genes.

Another alternative to single-marker tests are haplotype-based case-control tests.

These test statistics involve both the two-locus allelic associations between individual

markers and the disease as well as three-locus haplotypic associations that capture the

disequilibrium between two markers and the disease (Nielsen and Weir 2001). Different

methods for testing whether the three-locus disequilibria are significant are described in

Chapter 5 along with a comparison between an exact method that is introduced and an

asymptotic approach.

Chapter 6 introduces a modification of the test statistic for the sibling disequilibrium

test (SDT) (Horvath and Laird 1998). The SDT is a nonparametric test that evolved from

the popular family-based tests, the transmission/disequilibrium test (TDT) (Spielman,

McGinnis, and Ewens 1993) and sib-TDT (S-TDT) (Spielman and Ewens 1998). These

tests of linkage and association between a marker and disease locus use the parental geno-

types not transmitted (in the TDT) or genotypes of unaffected siblings (in the S-TDT)

as controls for affected children. Since they are joint tests of both linkage and associa-
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tion, associations between unlinked loci due to population stratification are not detected,

an advantage over case-control tests. However, for these tests to remain valid tests of

association, only one affected child per family in the TDT and one discordant sibling

pair per family in the S-TDT can be used; the SDT can take advantage of the genotypic

information from all children in a nuclear family while still testing for association in the

presence of linkage. These tests are ideal in their biallelic form, though extensions for

multiallelic markers exist (see Spielman and Ewens (1996); Kaplan, Martin, and Weir

(1997); Monks, Kaplan, and Weir (1998); and Curtis, Miller, and Sham (1999)). The

multiallelic version of the SDT by Horvath and Laird (1998) is based on the multivariate

component sign test (Bickel 1965; Randles 1989) that results in a quadratic form with an

asymptotic χ2
(m−1) distribution for a marker with m alleles. A disadvantage of this test is

the omission of an arbitrary allele due to a linear dependency among certain statistics for

the marker alleles; however, the function of these statistics that is used in the quadratic

form removes this dependency, rendering m possible test statistics depending on which

allele is dropped. This can be resolved using the test statistic proposed in Chapter 5.
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Chapter 2

Properties of the Multiallelic Trend

Test

Czika, W. and B. S. Weir (2003). Submitted to Biometrics.
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2.1 Abstract

Disease genes can be mapped on the basis of associations between genetic markers and

disease status, with the case-control design having the advantage of not requiring indi-

viduals from different generations. When the marker loci have multiple alleles, there has

been debate on whether the power of tests for association increases or decreases. We

show here that the multiple-allele version of Armitage’s trend test can have increased

power over the two-allele version. The trend test has the advantage of remaining valid

even when the sampled population is not in Hardy-Weinberg equilibrium. A departure

from Hardy-Weinberg proportions means that association tests depend on gametic and

nongametic linkage disequilibrium between marker and disease loci, and we illustrate the

magnitude of these effects with simulated data.

2.2 Introduction

Chi-square tests based on simple contingency tables are useful tools for the association

mapping of disease genes. These tables consist of rows representing those affected with

the disease (cases) and those not affected (controls), and columns containing either allele

or genotype counts at the marker(s) of interest. The allele and genotype contingency

table tests can accommodate markers with any number of alleles. With the allele statistic

testing for additive effects of alleles and the genotype statistic testing for both additive

and allelic interaction (dominance) effects (Nielsen and Weir 1999), the genotype statistic
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can have a χ2 distribution with up to m(m− 1)/2 more degrees of freedom (df) than the

allele statistic for a marker with m alleles. This often gives the allele test an advantage in

the power to detect an association between a marker and disease even in the presence of

nonadditive allelic effects. The possible sparseness of the genotype contingency table can

also lead to the chi-square test not being valid for the genotype test statistic. However,

a drawback of the allele test is its reliance on the assumption of allelic independence

(Hardy-Weinberg equilibrium, HWE) in the sample collected. Departures from HWE,

depending on whether homozygotes or heterozygotes are in excess, can either decrease

or increase, respectively, the size of the test; regardless, the test is no longer valid at

the nominal level. With the recent attention given to single nucleotide polymorphisms

(SNPs), the Armitage linear trend test (1955) has emerged as a desirable method of

testing for associations between biallelic markers and disease status, utilized for example

by Devlin and Roeder (1999). Like the standard allele test, only additive allelic effects

are tested but, like the genotype test, with the benefit of robustness to departures from

HWE. Though its extension to multiallelic markers is not as straightforward and natural

as for the contingency-table-based tests, Slager and Schaid (2001b) present a multiallelic

version of the linear trend test that has the same power advantage of the allele test over

the genotype test due to fewer df. We show here that the multiallelic trend test remains

valid when Hardy-Weinberg disequilibrium (HWD) exists in the sample, unlike the allele

test, and when HWE holds perfectly, the tests are asymptotically equivalent. Departures

from HWE are likely to be accompanied by nongametic disequilibrium between alleles
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at disease and marker loci, and we show here how this and linkage disequilibrium affect

the trend test. We phrase most of the results in terms of the sample sizes required for

obtaining specified power levels.

2.3 Comparison of the Allele and Trend Test Statis-

tics

For the biallelic case, Sasieni (1997) represents the linear trend test statistic in terms of

the quantities used in Table 2.1. Marker genotype counts are written as ri and si for

cases and controls when individuals have i copies of marker allele M1. The test statistic

X2
T is

X2
T =

N [N(r1 + 2r2)−R(n1 + 2n2)]
2

R(N −R)[N(n1 + 4n2)− (n1 + 2n2)2]
(2.1)

which has an asymptotic χ2
(1) distribution like the allele test statistic X2

A. This latter

statistic is the contingency-table statistic for the 2 × 2 table with row entries 2r0 + r1,

r1 + 2r2 for cases and 2s0 + s1, s1 + 2s2 for controls:

X2
A =

2N [2N(2r2 + r1)− 2R(2n2 + n1)]
2

2R(2N − 2R)[2N(n1 + 2n2)− (n1 + 2n2)2]
(2.2)

Sasieni demonstrated that the ratio of X2
A to X2

T is 1+(4n0n2−n2
1)/[(n1+2n2)(n1+2n2)],

which depends only on the counts in the combined sample. Clearly, the test statistics are

equal only when HWE holds in the sample (n2
1 = 4n0n2). Otherwise, the allele statistic is

larger than the valid trend test statistic if there is an excess of homozygotes and smaller
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when there is an excess of heterozygotes, meaning that the test will be conservative for

heterozygote excess. The allele test is invalid when there is HWD in either cases or

controls because in that case the allele numbers are not binomially distributed (Weir

1996). HWD in either cases or controls is expected when the marker is associated with

the disease (Nielsen, Ehm, and Weir 1999), but, as Sasieni noted, HWE in both can

result in HWD in the combined sample whenever allele frequencies are different in the

two groups.

To extend Sasieni’s findings to multiallelic markers, we start by looking at different

representations of the biallelic trend test statistic. Slager and Schaid (2001b) present the

trend test statistic in the form u2/Var(u) where u = x′[(1 − φ)r − φs], with φ = R/N ,

x′ = (0, 1, 2), r′ = (r0, r1, r2), and s′ = (s0, s1, s2) using the terms in Table 2.1. A

small amount of algebra shows the equality of the trend test statistic in this form to the

one given in Equation 2.1. Using this representation, there is a natural extension to a

multiallelic statistic by substituting a matrix X for the vector x to calculate a vector U

instead of the scalar u as U = X′[(1−φ)r−φs]. For a marker with m alleles, the elements

Xij of the [m(m+1)/2×(m−1)] matrix X are the number of times the jth allele occurs in

the ith genotype (either 0, 1, or 2). Note that the mth column has been omitted because

of the linear dependence among all m allele frequencies. The r and s vectors are similarly

extended to include one row for each of the m(m+1)/2 possible genotypes containing the

genotype counts for the cases and controls, respectively. The variance of U is calculated

using the multinomial distribution of the genotype counts r and s (Slager and Schaid
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2001b), which have covariance matrices ( R
N

diag(n)− R
N2nn′) and (N−R

N
diag(n)− N−R

N2 nn′)

respectively under the null hypothesis and the assumption of unrelated individuals in the

sample. The vector n of length m(m + 1)/2 contains the overall sample counts for each

genotype. This allows Var(U) to be expressed as R(N−R)
N3 X′(Ndiag(n) − nn′)X. The

quadratic form U′[Var(U)]−1U then has an asymptotic χ2 distribution with m− 1 df.

The allele test statistic in Equation 2.2 is not conducive to a multiallelic extension.

We need a method of calculating the allele test statistic that can be translated from a

scalar to matrix format as with the trend test statistic and, as with the biallelic form,

will have the same numerator but a different variance from the trend test statistic. The

biallelic test statistic can be derived from the difference of two multinomial proportions:

(p̃R− p̃S)2/Var(p̃R− p̃S) since under the null hypothesis of no marker-disease association

we are assuming the alleles in cases and controls come from two independent binomial

samples, each with probability that can be estimated with p̄, the sample frequency of the

corresponding allele. In terms of the notation in Table 2.1, p̃R = (2r2 + r1)/(2R), p̃S =

(2s2 + s1)/(2S), p̄ = (2n2 +n1)/(2N), and Var(p̃R− p̃S) = p̄(1− p̄)/(2R)+ p̄(1− p̄)/(2S).

In matrix notation the chi-square statistic can be expressed as (p̃R − p̃S)′[Var(p̃R −

p̃S)]−1(p̃R − p̃S), a quadratic form with U=p̃R − p̃S. The p̃ vectors can be expressed

in terms of the notation of Slager and Schaid (2001b) for the multiallelic trend statistic
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using the fact that p̃R = 1
2R

X′r, p̃S = 1
2S

X′s = 1
2N−2R

X′(n− r), and

Var(p̃R − p̃S) =
( 1

2R
+

1

2S

)



p̃1(1− p̃1) −p̃1p̃2 · · · −p̃1p̃m−1

−p̃2p̃1 p̃2(1− p̃2) · · · −p̃2p̃m−1

...
...

. . .
...

−p̃m−1p̃1 −p̃m−1p̃2 · · · p̃m−1(1− p̃m−1)


=

1

2R(2N)(2N − 2R)
(2Ndiag(X′n)−X′nn′X)

Then the allele test statistic for multiallelic markers can be put into a similar form as

the multiallelic trend test statistic:

X2
T =

N3

R(N −R)
(r− φn)′X[N(X′diag(n)X)−X′nn′X]−1X′(r− φn)

X2
A =

2N3

R(N −R)
(r− φn)′X[2Ndiag(X′n)−X′nn′X]−1X′(r− φn)

As desired, we now have the multiallelic allele and trend statistics as quadratic forms

with the same U, but potentially different variances. The requirement for the equality

of these two variances and thus the two statistics is

2N(X′diag(n)X)−X′nn′X = 2Ndiag(X′n)

This condition can be expressed in more familiar terms, the sample allele and genotype

frequencies, p̃i and P̃ij respectively for alleles i and j, as

p̃2
1 p̃1p̃2 · · · p̃1p̃m−1

p̃2p̃1 p̃2
2 · · · p̃2p̃m−1

...
...

. . .
...

p̃m−1p̃1 p̃m−1p̃2 · · · p̃2
m−1


=



P̃11
1
2
P̃12 · · · 1

2
P̃1(m−1)

1
2
P̃21 P̃22 · · · 1

2
P̃2(m−1)

...
...

. . .
...

1
2
P̃(m−1)1

1
2
P̃(m−1)2 · · · P̃(m−1)(m−1)


12



which implies that all m(m−1)/2 independent sample HWD coefficients in the combined

data must be zero in order for these two statistics to be equal. As in the biallelic case,

without this assumption of HWE, the multinomial distribution of the alleles in each of

the case and control samples, which is assumed for the allele test statistic, does not hold.

2.4 Examination of Significance Levels and Sample

Sizes

We now present the results of simulating data for the examination of the size of the trend

and allele tests under certain conditions, as well as power/sample-size calculations for

the trend test under a variety of disequilibrium values, both within-locus and between

the marker and disease loci. We assume a biallelic disease locus with alleles A1 and A2,

the latter being the high-risk allele, with population frequencies p1 and p2, respectively.

The disease model is defined using terms from Slager and Schaid (2001a): the population

prevalence of the disease K; γ1 and γ2, the relative risks of genotypes A1/A2 and A2/A2,

respectively, to A1/A1, which has penetrance f11.

We consider markers with alleles Mi with population frequencies qi, i = 1, ...,m. As in

Chapman and Wijsman (1998), we assume equifrequent alleles in all markers (qi = 1/m

for all i) to maximize heterozygosity. Thus, for any number of alleles at a marker, there

are only two distinct linkage disequilibrium (LD) coefficients. Without loss of generality,

we assume the initial disease mutation arose on a haplotype with marker allele M1, and
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we assume maximum LD between the disease and marker loci. The LD coefficients Dri

between alleles Ar and Mi have values

D11 = −DA , D21 = DA

D1i = −DB , D2i = DB, i 6= 1

where DA = (m − 1)p2/m, DB = −p2/m. The usual bounds on linkage disequilibria

(Weir 1996) imply that p2 ≤ 1/m for this formulation, so that the disease is supposed to

be rare.

We deviate from the Chapman and Wijsman (1998) method of calculating the marker

allele and genotype frequencies in cases and controls; instead we use a modification of

formulas given by Nielsen and Weir (1999) and Nielsen, Ehm, and Weir (1999). We add

to their calculation of the marker genotype frequencies in affected and unaffected indi-

viduals the following coefficients (Weir 1979): HWD at the marker locus, denoted dij for

genotype Mi/Mj; HWD at the disease locus, denoted drs for genotype Ar/As; the digenic

gametic disequilibrium (LD), previously defined as Dri; and the digenic nongametic dis-

equilibrium, denoted Dr/i for allele Ar at the disease locus and Mi at the marker locus.

This last term refers to alleles received by an individual from different parents. Trigenic

and quadrigenic disequilibria are not included in the model. Using the simplification

∑
r,s(prps + drs)frs = K, marker genotype frequencies in cases and controls can then be

computed as

Pr(MiMj|Aff.) =
{∑

r,s

[(prqi + Dri)(psqj + Dsj) + prpsdij + qiqjdrs + dijdrs
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+prqjDs/i + psqiDr/j + Dr/jDs/i]frs

}
/K

=


q2
i + (2qiδ

c
i + δc

ii)/K + dij, i = j

2qiqj + 2[qiδ
c
j + qjδ

c
i + δc

ij]/K + dij, i 6= j

Pr(MiMj|Unaff.) =
{∑

r,s

[(prqi + Dri)(psqj + Dsj) + prpsdij + qiqjdrs + dijdrs

+prqjDs/i + psqiDr/j + Dr/jDs/i](1− frs)
}
/(1−K)

=


q2
i − (2qiδ

c
i + δc

ii)/(1−K) + dij, i = j

2qiqj − 2[qiδ
c
j + qjδ

c
i + δc

ij]/(1−K) + dij, i 6= j

where δc
i and δc

ij are the composite versions of δi and δij defined by Nielsen and Weir

(1999) that now include the digenic nongametic coefficients and can be expressed as

δc
i =

∑
r,s prfrs(Dsj + Ds/j) and δc

ij =
∑

r,s frs(DriDsj + Dr/iDs/j). Note that the sum

(Dsj + Ds/j) has previously (Weir 1979) been written as ∆sj, the composite linkage

disequilibrium coefficient. When HWE holds in the whole population, dij = drs = 0, it is

reasonable to assume that the digenic nongametic disequilibria are also zero. In that case,

δc
i = D2if11[−p1 +(p1−p2)γ1 +p2γ2] and δc

ij = D2iD2jf11(1−2γ1 +γ2). This formulation

accommodates any disease model, and allows us to extend the work of Chapman and

Wijsman (1998).
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2.4.1 Effect of Hardy-Weinberg Disequilibrium on Significance

Level

To demonstrate the effect of HWD on the allele test and the immunity of the trend test

to the value of these coefficients, we simulate a multiallelic marker that incorporates de-

partures from HWE. We use a marker with three alleles to create 10,000 samples of 5,000

affected and 5,000 unaffected individuals each under the null hypothesis of no marker-

disease association. This null hypothesis can equivalently be expressed for these tests as

no LD between the marker and disease locus or no effect of the disease locus on the pen-

etrance of the disease. Thus, only single-locus disequilibria need to be considered in the

model. Assuming the same HWD coefficient for all heterozygous genotypes, that is, a sin-

gle within-population inbreeding coefficient f (Weir 1996), we examine the effect of four

values of f (its maximum, average of the maximum and minimum, zero, and minimum)

on the significance level of the allele and trend tests at the nominal level α = 0.05. The

marker genotype probabilities for both cases and controls under this null hypothesis can

then be expressed as Pr(Mi/Mj) = 2(1− f)/9 for all i 6= j and Pr(Mi/Mi) = (1 + 2f)/9

since qi = 1/3 for i = 1, 2, 3. SAS/IML r© and SAS/GeneticsTM software are used for

these calculations.

As shown in Table 2.2, the size of the trend test remains close to 0.05 regardless of the

value of f ; however, the allele test is anticonservative when f is positive and conservative

when f is negative, confirming that the finding of Sasieni (1997) for the biallelic case

holds in the multiallelic case as well (f > 0 corresponds to an excess of homozygotes and
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f < 0 an excess of heterozygotes).

2.4.2 Power and Sample Sizes Approximations Assuming HWE

Slager and Schaid (2001a) calculate power for the biallelic case using the normal dis-

tribution; here we deal with the χ2 distribution of the multiallelic statistic. Under the

alternative hypothesis that case and control genotypes are from two independent multi-

nomial distributions with unequal probabilities PR and PS respectively, the mean of

U is µ1 = Nφ(1 − φ)X′(PR − PS) and the variance of U is Σ1 = Nφ(1 − φ)X′[(1 −

φ)(diag(PR)−PRP′
R) + φ(diag(PS)−PSP

′
S)]X. Then X2

T has a χ2
(m−1)(λ) distribution

with noncentrality parameter λ = 1
2
µ′

1Σ1
−1µ1. Using these quantities, the power of the

trend test is calculated as

Prob(X2
T > χ2

(m−1),1−α(0))

under the noncentral χ2 distribution.

Since an analytic formula for sample size is not tractable as in the biallelic trend

test (Slager and Schaid 2001a), we present here numerical results from examining the

effects of various disease models on the sample size. It is assumed an equal number

of cases and controls are sampled with a total sample size N , chosen to achieve 80%

power. First, we assume HWE in which case the multiallelic trend test is equivalent to

the allele test and we can extend the work of Chapman and Wijsman (1998) using our

equations for calculating marker genotype frequencies to show power of models other

than fully penetrant recessive and dominant diseases. Complete LD between the disease

17



and marker loci is assumed so that the coefficients Dri are defined as above. Tables 2.3-

2.6 show the sample sizes required for achieving 80% power using the multiallelic trend

test. The numbers were obtained using SAS/IML software. Multiplicative, additive,

dominant, and recessive disease models were all examined, defined by K, p2, γ1, and γ2;

the penetrance f11 for genotype A1/A1 can then be extracted using these values (Slager

and Schaid 2001a). Note that values shown in bold correspond to the values obtained by

Slager and Schaid (2001a) although they are consistently off by a negligible 5 (numbers

for disease allele frequency other than 0.50 cannot be compared since the same marker

and disease locus is assumed in their work).

We also look at the effect of LD decay over time. Using the model defined by Chapman

and Wijsman (1998), our LD coefficients can now be defined as

DA = (m− 1)p2(1− θ)t/m

DB = −p2(1− θ)t/m

For the sake of space, we show in Tables 2.7-2.10 only the results when θ = 0.005

(1 cM) and t = 40 generations, corresponding to a loss of about 18% from complete

disequilibrium.

2.4.3 Power and Sample Sizes Accounting for Hardy-Weinberg

and Nongametic Disequilibrium

As mentioned, examining the power of the multiallelic trend test in the absence of de-

partures from HWE is essentially the same as the power for the allele test. However,
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introducing HWD requires a consideration of the digenic nongametic disequilibria as well,

complicating the model vastly. Thus we limit our study of the power of the multiallelic

trend test with the inclusion of HWD to markers with three alleles, the simplest multial-

lelic case. We continue to ignore higher-order (trigenic and quadrigenic) disequilibria and

keep LD at its maximum, with no decay. We consider for the three-allele case the fol-

lowing as in our significance level calculations: the maximum, average of maximum and

minimum, and minimum values for HWD (again assuming the same coefficients for all

heterozygous genotypes and the same for all homozygous genotypes) at both the marker

and disease locus. Various values for the digenic nongametic coefficients are considered

as well. At their maxima, the nongametic coefficients equal the LD coefficients, that is

Dr/i = Dri and thus the values of the between-locus disequilibrium are twice that of the

usual gametic disequilibrium. We also used Dr/i = Dri/2, half the maximum value. The

effects of these disequilibria are shown in Table 2.11. We examine only a single disease

model under these specifications: an additive model with p2 = 0.1, K = 0.01, γ1 = 2, and

γ2 = 3. From Table 2.11 we can see that the sample sizes required to have 80% power in

the multiallelic trend test vary drastically according to the values of the Hardy-Weinberg

and digenic nongametic disequilibrium coefficients.

2.5 Discussion

We have shown algebraically that the requirement for the equality of the multiallelic allele

and trend test statistics is consistent with that shown by Sasieni (1997) for the biallelic
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statistics: the combined sample must have genotype frequencies satisfying the Hardy-

Weinberg law. Simulations also confirm the extension of Sasieni’s findings on the effect

of HWD on the significance level of the allele test to the multiallelic case. Though this

effect was expected, the magnitude of the effect was not; even nonsignificant departures

from HWE can invalidate the allele test at the nominal significance level. The multiallelic

trend test, with the same df as the allele test and same test of hypothesis, is thus a clear

choice over the allele test for detecting a significant association between a marker and

disease locus.

Additionally, we have extended the work of Chapman and Wijsman (1998) to demon-

strate the power advantage of using multiallelic markers, with alleles as equifrequent as

possible to maximize heterozygosity, over biallelic SNPs. These findings come as some-

what of a surprise as well, especially for disease models such as an additive model where

the effect is relatively small; it is often thought that a multiallelic test will not perform

well due to the effect being swamped by the alleles in negative LD with the disease allele.

Sample sizes for the multiallelic trend test were examined looking at a variety of disease

models assuming different conditions for the within-locus and between-locus disequilib-

rium coefficients. The dramatic effects that HWD and between-locus disequilibrium can

have on power and sample sizes were demonstrated, substantiating the importance of

estimating these coefficients prior to testing for association with the disease.
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2.7 Tables

Table 2.1: Contingency Table of Genotypes for Case-Control Sample

Number of M1 alleles

0 1 2 Total

Case r0 r1 r2 R

Control s0 s1 s2 S

Total n0 n1 n2 N

Table 2.2: Estimated Significance Level of Tests

f Trend Test Allele Test

1 0.0529 0.2267

0.25 0.0490 0.0927

0 0.0474 0.0472

-0.5 0.0511 0.0030
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Table 2.3: Sample Sizes for Multiplicative Models with HWE and Complete LD

Number of Alleles at Marker Locus

γ1 γ2 K p2 2 3 4 5 6 7 8 9 10

2 4 0.01 0.01 156939 96791 73371 60530 52294 46505 42185 38821 36119

0.10 1854 1185 929 792 706 647 604 571 546

0.50 131

0.1 0.01 129701 79952 60576 49950 43132 38339 34761 31974 29734

0.10 1532 974 760 645 573 523 487 459 437

0.50 108

3 9 0.01 0.01 40010 24790 18878 15645 13576 12126 11047 10210 9539

0.10 547 359 288 251 229 213 203 195 189

0.50 54

0.1 0.01 33065 20467 15570 12891 11176 9973 9077 8382 7824

0.10 451 293 234 202 183 169 160 153 148

0.50 44

Table 2.4: Sample Sizes for Additive Models with HWE and Complete LD

Number of Alleles at Marker Locus

γ1 γ2 K p2 2 3 4 5 6 7 8 9 10

2 3 0.01 0.01 160054 98703 74814 61715 53312 47406 42999 39567 36809

0.10 2201 1397 1090 924 819 747 694 654 623

0.50 231

0.10 0.01 132276 81532 61769 50929 43974 39084 35433 32590 30304

0.10 1819 1150 893 754 667 606 561 527 501

0.50 191

3 5 0.01 0.01 41587 25758 19608 16244 14091 12582 11459 10587 9888

0.10 739 477 378 324 291 269 253 241 231

0.50 124

0.10 0.01 34369 21267 16174 13387 11602 10350 9418 8694 8113

0.10 611 391 308 263 235 216 202 191 183

0.50 102
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Table 2.5: Sample Sizes for Dominant Models with HWE and Complete LD

Number of Alleles at Marker Locus

γ1 γ2 K p2 2 3 4 5 6 7 8 9 10

2 2 0.01 0.01 163264 100673 76300 62935 54361 48335 43837 40335 37520

0.10 2664 1681 1302 1097 968 878 812 762 722

0.50 686

0.10 0.01 134930 83161 62997 51938 44841 39851 36126 33225 30892

0.10 2202 1385 1070 899 790 715 660 617 583

0.50 571

3 3 0.01 0.01 42411 26264 19990 16557 14361 12821 11674 10784 10071

0.10 883 565 443 378 337 309 288 273 261

0.50 332

0.10 0.01 35051 21686 16490 13646 11825 10547 9596 8856 8264

0.10 730 464 362 307 273 249 231 218 208

0.50 277

Table 2.6: Sample Sizes for Recessive Models with HWE and Complete LD

Number of Alleles at Marker Locus

γ1 γ2 K p2 2 3 4 5 6 7 8 9 10

1 2 0.01 0.01 1.54x109 9.45x108 7.13x108 5.85x108 5.03x108 4.45x108 4.02x108 3.68x108 3.41x108

0.10 157700 97725 74429 61688 53538 47827 43577 40279 37637

0.50 408

0.10 0.01 1.27x109 7.81x108 5.89x108 4.84x108 4.16x108 3.68x108 3.32x108 3.04x108 2.82x108

0.10 130266 80645 61361 50809 44055 39320 35794 33055 30860

0.50 334

1 3 0.01 0.01 3.85x108 2.36x108 1.78x108 1.46x108 1.26x108 1.11x108 1.01x108 9.22x107 8.54x107

0.10 40391 25258 19407 16224 14198 12787 11743 10938 10298

0.50 146

0.10 0.01 3.18x108 1.95x108 1.47x108 1.21x108 1.04x108 9.21x107 8.32x107 7.62x107 7.06x107

0.10 33348 20814 15963 13321 11637 10463 9594 8922 8387

0.50 119
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Table 2.7: Sample Sizes for Multiplicative Models with HWE and Decayed LD

Number of Alleles at Marker Locus

γ1 γ2 K p2 2 3 4 5 6 7 8 9 10

2 4 0.01 0.01 234363 144416 109379 90159 77824 69151 62675 57631 53574

0.1 2773 1760 1372 1162 1030 939 873 822 782

0.5 200

0.1 0.01 193688 119303 90321 74420 64213 57034 51672 47494 44134

0.1 2291 1448 1125 950 839 763 706 664 630

0.5 164

3 9 0.01 0.01 59751 36960 28099 23248 20141 17962 16339 15077 14065

0.1 820 533 424 367 331 307 290 277 267

0.5 85

0.1 0.01 49381 30520 23184 19166 16592 14785 13439 12392 11552

0.1 677 437 345 297 266 246 231 220 211

0.5 69

Table 2.8: Sample Sizes for Additive Models with HWE and Decayed LD

Number of Alleles at Marker Locus

γ1 γ2 K p2 2 3 4 5 6 7 8 9 10

2 3 0.01 0.01 239020 147275 111536 91931 79349 70501 63894 58747 54609

0.1 3294 2081 1614 1362 1203 1092 1012 950 901

0.5 353

0.1 0.01 197537 121666 92104 75885 65472 58149 52680 48417 44989

0.1 2722 1714 1325 1115 982 889 821 769 727

0.5 291

3 5 0.01 0.01 62110 38409 29192 24146 20915 18647 16957 15644 14591

0.1 1111 713 561 479 429 394 369 349 335

0.5 192

0.1 0.01 51331 31718 24088 19909 17231 15351 13950 12861 11986

0.1 918 585 458 390 347 317 296 279 267

0.5 159
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Table 2.9: Sample Sizes for Dominant Models with HWE and Decayed LD

Number of Alleles at Marker Locus

γ1 γ2 K p2 2 3 4 5 6 7 8 9 10

2 2 0.01 0.01 243817 150221 113759 93757 80919 71891 65150 59898 55674

0.1 3991 2509 1937 1627 1431 1294 1194 1117 1055

0.5 1058

0.1 0.01 201503 124100 93942 77393 66770 59298 53717 49368 45870

0.1 3299 2068 1593 1334 1170 1056 972 907 856

0.5 878

3 3 0.01 0.01 63343 39166 29764 24616 21319 19005 17281 15941 14865

0.1 1329 846 661 562 499 456 425 401 383

0.5 521

0.1 0.01 52350 32344 24561 20297 17565 15647 14217 13105 12213

0.1 1099 696 542 458 406 369 343 322 306

0.5 434

Table 2.10: Sample Sizes for Recessive Models with HWE and Decayed LD

Number of Alleles at Marker Locus

γ1 γ2 K p2 2 3 4 5 6 7 8 9 10

1 2 0.01 0.01 2.30x109 1.410x108 1.064x109 8.74x108 7.51x108 6.65x108 6.01x108 5.50x108 5.09x108

0.1 235125 145351 110436 91317 79069 70473 64068 59088 55092

0.5 598

0.1 0.01 1.90x109 1.17x109 8.79x108 7.22x108 6.21x108 5.50x108 4.96x108 4.55x108 4.21x108

0.1 194253 119996 91106 75279 65136 58015 52706 48576 45261

0.5 491

1 3 0.01 0.01 5.75x108 3.53x108 2.66x108 2.19x108 1.88x108 1.66x108 1.50x108 1.38x108 1.27x108

0.1 60132 37427 28628 23827 20764 18623 17035 15806 14824

0.5 215

0.1 0.01 4.75x108 2.92x108 2.20x108 1.810x108 1.55x108 1.37x108 1.24x108 1.14x108 1.05x108

0.1 49663 30867 23576 19596 17054 15276 13956 12933 12115

0.5 175
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Table 2.11: Sample Sizes for an Additive Model with HWD and Nongametic Disequilib-

rium

Hardy-Weinberg Disequilibrium

Nongametic Diseq. Min 0∗ Avg Max

0 718 1397 1737 2757

Half-max 321 774 1228

Max 180 425 690

∗Non-zero Dr/i are not considered when HWD coefficients are 0
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Chapter 3

Performing Association Mapping

with Decision Trees

3.1 Introduction

Case-control marker association tests such as the allele test, the genotype test, and the

linear trend test, all discussed in Chapter 2, examine one marker at a time; they are

single-marker tests that compare marker allele or one-locus genotype frequencies between

cases and controls. The drawback to these approaches is that they may be insufficient

for uncovering more than one gene that affects a complex disease. For this reason, we

present here an examination of decision tree analysis, a recursive partitioning method,

which implements case-control tests in such a manner as to capture possible epistatic

effects of several genes on disease susceptibility.
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Analyzing genetic marker data using decision trees is a logical approach for several

other reasons. First, the goal of the analysis; in locating a disease gene through fine-scale

mapping with the aid of association techniques, the goal may be dual. In addition to

uncovering the markers whose associations with a disease help guide researchers to the

location of the disease gene, these markers may also be used to identify individuals who

have a greater chance of one day being affected with the disease of interest. These two

purposes, understanding the predictive structure of the problem and accurately classi-

fying individuals, makes classification analysis such as decision trees a natural solution

(Breiman et al. 1984). In addition, the mere size of data involving genetic markers

may render standard statistical techniques, such as regression, ineffective. Breiman et al.

(1984) describe a data set possibly too complex for a simple statistical approach as hav-

ing high dimensionality, a mixture of data types, and nonstandard data structure. This

again certainly matches the description of genetic marker data.

The process of creating a decision tree works as follows: using all of the data available,

determine which of the independent variables creates the best “split”; that is, the best

way of subsetting the data based on the independent variable into categories that are

the most homogeneous with respect to the dependent variable, or target. Statistical

methods such as goodness-of-fit tests are often used to determine which split is optimal.

On each of these new “nodes” that contain a subset of the data, continue this process

until some stopping criterion is reached. In this notation, the marker genotypes or alleles

are the independent variables, and disease status is the dependent variable or target.
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One criterion for choosing which algorithm to implement is the number of branches into

which a node in the tree can be split. We opt to consider binary splits only. Since the

dependent variable in marker data is binary (disease status: affected or unaffected), this

is a logical approach. In addition,

a multiway split may always be accomplished with a sequence of binary splits
on the same input. An algorithm that proceeds in binary steps has the
opportunity to split with more than one input and thus will consider more
multistep partitions than an algorithm can consider in a single-step multiway
split. Too often the data do not clearly determine the number of branches
appropriate for a multiway split. The extra branches reduce the data available
deeper in the tree, degrading the statistics and splits in deeper nodes. (Neville
1999)

Since we are dealing with binary decision trees and biallelic markers known as single

nucleotide polymorphisms (SNPs), a test for classifying individuals with three different

genotypes into two categories is needed. Individuals with at least one copy of a particular

marker allele can be placed in one category, and those with no copies of the allele placed

in the other. We do not know a priori which allele is the one of interest, so the tree-

building process performs a preliminary test to determine which two genotype categories

are most similar in their proportion of cases and controls, and these two categories are

combined together to form one category. It is expected that the heterozygous genotype

will always be one of the categories that is combined with one of the homozygous genotype

categories. Performing a chi-square test on the contingency table created in this manner is

equivalent to Sasieni’s “serological” test (1997). This statistic, X2
S, has an asymptotic χ2

1

distribution. In terms of the notation used by Nielsen and Weir (1999), X2
S is proportional

to a linear combination of the terms [δ1/φ(1 − φ)]2 and [2δ2 + δ22/φ(1 − φ)]2, assuming
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that one of the homozygous genotypes M1/M1 or M2/M2 and the heterozygous genotype

M1/M2 have been combined into one category, where the terms are defined as

δi =
∑
r

αrDri

δii =
∑
r,s

DriDsiGrs

with αr as the additive effect of rth allele at the trait locus, Dri as the coefficient of linkage

disequilibrium between marker allele Mi and allele Ar at the trait locus, φ the prevalence

of the disease in the population, and Grs is the trait of an individual with genotype Ar/As.

That is, it tests for significance of the additive effect of allele Mi and dominance effect of

the Mi/Mi genotype. The genotype chi-square statistic X2
G tests simultaneously for any

additive effects and any dominance effects of the alleles and genotypes, respectively, and

has 2 df. The relationship between X2
S and X2

G can be shown to be X2
S ≤ X2

G (Agresti

1990), with the difference between the two statistics dependent on the similarity between

the two genotypes that are combined into one category; the more similar they are, the

closer the two statistics will be, and thus the more significant X2
S will be since it has

fewer df meaning a possible increase in power. This test will be locally more powerful

than the allele and trend tests, discussed in Chapter 2, if the genetic model is nonadditive

(Sasieni 1997).

The use of recursive partitioning or trees for gene mapping has surfaced in several

applications recently. Data from the Genetic Analysis Workshop 12 were analyzed using

tree-based methods by Czika et al. (2001), presented in the following chapter, and

Zhang et al. (2001). Zhang and Bonney (2000) also use classification trees for the
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association study of a single simulated data set. Here we present results mentioned

by Weir et al. (1999) from analyzing SNP data in the APOE region with Alzheimer

disease and compare these with previous single-marker association analyses. We also

use replicates from simulated data in order to perform an analysis of the power of this

approach under a multilocus genetic disease model and determine whether the correct

size holds using recursive partitioning. We additionally use real SNP data to examine

an epistatic disease model using many different pairs of markers, with varying allele

frequencies and extent of linkage disequilibrium.

While evaluating decision trees for analyzing genetic marker data, we also examine

a method of “smoothing” p-values by taking correlations from neighboring SNPs into

account. If p-values are plotted along the map of markers being analyzed, it has been

shown that by taking the width of peaks into account in addition to height, the power of

linkage studies can be improved (Terwilliger et al. 1997; Goldin et al. 1999; Siegmund

2001). Zaykin et al. (2002) applies a similar methodology to association mapping that

we implement here in standard association tests as well as the tree analysis.

3.2 APOE Data and Results

The apolipoprotein E (APOE) gene on chromosome 19q has been identified as a suscep-

tibility gene for late-onset Alzheimer disease (see Martin et al. (2000) for a description

of the work establishing this). Martin et al. (2000) also present an application of using

dense SNP maps in the association mapping of complex genes, analyzing ten SNPs in
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the APOE region. We demonstrate the use of decision trees on the case-control data

from this study to see if the SNPs most tightly linked, and significantly associated via

standard association tests, with the susceptibility gene are included in the tree.

The default tree-building method of the Enterprise MinerTM (EM) software is applied

to the APOE data, with the resulting tree displayed in Figure 3.1. The tree first splits

the entire data set into two nodes using genotypes from the APOC1S marker, with

individuals homozygous for one of the alleles included in the left node and all other

individuals (including those with missing genotypes) in the right node. A significant

split was then detected in the right node, with the subset of individuals now split on the

PRR2 marker. Using the tree to classify individuals, the classification rate improves from

50.7% to 67.1%. Table 3.1 shows that these results confirm the single-marker association

tests, with the two markers closest to APOE included in the tree as desired.

3.3 Simulations

3.3.1 Data

The data that were simulated to examine the properties of decision trees for analyzing

SNP data in order to fine-scale map multiple disease-susceptibility genes consist of ten

populations. There are 2,000 total markers, with each of two sets of 1,000 markers

spanning approximately one Morgan. The two sets are unlinked so are essentially on

two separate chromosomes. Among these SNPs, there are three genes that affect the
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penetrance of the disease through dominance and additive effects; the genotypes at the

actual disease gene loci are not included in the data.

Three populations were initially simulated, two large populations with 10,000 individ-

uals each, and a smaller population of 1,000 individuals. The large populations admixed

at a rate of five percent into the smaller one for 20 generations. Once the admixture was

stopped, the smaller population continued random mating for 30 generations, with the

population size limited to 10,000.

Initial allele frequencies were generated from a uniform distribution separately for

each population. For the three disease genes, the allele frequencies were generated with

a uniform distribution for the two alleles. The effect of these genes on the disease pen-

etrance was in the form of additive allele effects, dominance deviations at each of the

three loci, and gene-by-gene interactions of the additive allele effects for the three pairs

of loci. These random deviations could not exceed ten percent of the maximum allelic

effect. Then a random value between one and five percent of the maximum allelic effect

was added (or subtracted) to the three-locus genotype penetrance to create three-loci

interactions. Only populations with a disease prevalence between 5 and 30% were used.

Table 3.2 shows the single-locus penetrances for one of the ten populations, based on the

theoretical, not observed, three-locus penetrances.

Recombination was performed by drawing random parents and creating two recom-

binant gametes from the parental chromosomes. The number of positions was generated

from a Poisson distribution with the chromosome length in Morgans as the mean. The
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sites for recombination were then distributed uniformly across the chromosome map.

Ten of these populations were simulated. For each of these populations, we took ten

samples of size 2,000 with 1,000 affected individuals and 1,000 unaffected individuals for

the disease we are simulating. All individuals were genotyped at the 2,000 loci, but the

three disease genes were excluded from the analysis.

3.3.2 Methods

There are many different algorithms that can be used to create a decision tree. The

method we opt to use for analyzing the simulated data is a simple recursive partitioning

algorithm similar to an unsophisticated CHAID-like algorithm (Kass 1980) where the

best split is determined using a chi-square test. No pruning of the tree is performed.

In order to account for the multiple testing of dependent hypotheses, several meth-

ods were considered. All methods use an approach described by Zaykin et al. (2002)

where each marker’s p-value is replaced by some function of the p-values of the nearest

neighboring markers. Fisher’s method (1932) can be used, where assuming independence

of tests, the p-value for the ith marker is calculated using the p-value from the χ2
2(2w+1)

distribution for the statistic t = −2
∑w

j=−w ln(pi+j). When the assumption of test inde-

pendence is violated, as it is with these data since we are combining tests from markers

that we know are correlated, Fisher’s method does not control the type I error rate; that

is, it is anti-conservative. An alternative is to apply Simes’ method (1986) over a similar

window of size 2w + 1, again centered at the SNP whose p-value is being replaced. For
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Simes’ method, we use the order statistics of the p-values from the chi-square statistics

across the particular window. Then the new p-value p∗i for the ith SNP is calculated as

p∗i = min
1≤j≤n

[nP i
(j)

j

]

where n = 2w+1 and P i
(j) is the jth order statistic of the p-values in the ith window. This

method is in fact conservative when tests are positively correlated (Sarkar and Chang

1997), as we would expect them to be in this situation. Since this is the only method

that controls type I error, we used this method alone.

The first step in the analysis is to examine single-marker statistics with Simes’ method

compared with no correction. Three types of association tests are performed: the allele

case-control test, the genotype case-control test, and the linear trend test. For all tests,

Sidak’s correction is used for the number of tests that are being performed (the adjusted

significance level is then 0.0000256). Note that even for tests that implement Simes’

method, this correction is still needed since there are still 1,997 p-values being tested for

significance. We then compare these with the new statistics created using the methods

described above.

Next, decision trees are formed in a similar fashion: with no sort of multiplicity

correction, and then using the Simes method. When this method is utilized, it is applied

to each node in the tree. The branching of the trees is stopped when either there are five

levels in the tree, or no chi-square statistics are above the significance level, whichever

occurs first. As with the single-marker tests, a Sidak correction is applied to account for

the number of markers being tested for each split in the tree.
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In order to evaluate the tests that are performed, we must first define power. Again,

the actual polymorphisms that affect the penetrance of the disease are not included in the

data; we are hoping to find the SNPs close to these genes. In order to define “close,” we

have to study the linkage disequilibrium between pairs of markers in these samples to see

the number of markers, on average, over which significant linkage disequilibrium extends.

Since gametic phase is unknown in this study, haplotype frequencies must be estimated

using the EM algorithm (since only the two-locus disequilibrium is examined and the

markers are biallelic, this reduces to a solving a cubic equation). From these estimated

haplotype frequencies, the linkage disequilibrium coefficient D can be estimated and used

in a chi-square statistic to test if D is significantly different from zero (Weir 1979).

3.3.3 Results

The linkage disequilibrium (LD) test was performed on all pairs of markers in the 100

samples. To see how far LD extends on average, p-values from the LD tests for all pairs of

markers the same number of markers apart were averaged together. This results in pairs

of markers up to 21 markers apart having, on average, significant linkage disequilibrium.

We use this to define a power region for evaluating our results; any marker less than

22 markers from a disease gene contributes towards power, while markers outside these

three regions contribute towards type I error.

The power and type I error for the single-marker analyses are displayed in Table 3.3.

Window sizes indicate the number of markers on either side of a marker that are included
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in Simes’ method to adjust the p-value at the middle of the sliding window. Since LD

between pairs of markers extends across 21 markers on average, we would expect to see

differences between the window sizes 21 or less and those more than 21. While there

are no clear-cut distinctions between the two groups, it does appear that power begins

decreasing at about the window size of 21, and type I error exceeds the 0.05 level near

this window size as well. Thus, only window sizes of 20 or less are considered for the rest

of the analyses.

The decision trees that were created in analyzing the markers had 2.82 splits on

average, or 6.64 nodes in the tree. There is, on average, one less split in trees using

Simes’ method than those not. Of the 941 trees that had at least one split, almost 46%

of the trees made the first split on a marker in the region of gene 1, and 29% were made

on a marker in the region of gene 2. Table 3.4 shows how often markers in the region of

the disease genes occurred in the trees, using a window size of 10 for Simes’ method. For

example, 67 of the 100 trees using the window size of 10 did not split on any markers

outside any of the gene regions, while 1 tree had seven splits on markers outside all of

the gene regions.

Next we compared how often the specific genes were found by the different analyses.

For the single-marker tests, each of the three genes is considered “found” if at least one

marker in the power region, less than 22 markers from the gene, has a significant test

statistic at the Sidak-corrected level 0.0000256. For the decision trees, a gene is “found”

if such a marker is included somewhere in the tree. The results are displayed in Table 3.5.
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3.4 Analysis of Chromosome 20 Data

With our simulated data, there is only a single specific disease model being examined,

so the somewhat discouraging results for the performance of the decision trees can not

be generalized. Therefore, we also evaluate the ability of decision trees to locate markers

acting epistatically on disease susceptibility using real data containing SNPs from a

single chromosome. The data consist of 96 individuals genotyped at 4,427 markers from

chromosome 20. A total of 5,827 pairs of markers were used in the following disease

model: a single “main” effect marker is fully recessive for the disease, while a second

“weak” effect marker, when recessive, causes the main effect marker to act dominantly

for the disease (see Table 3.6 for a representation of this model) (Majewski, Li, and Ott

2001). Main effect markers were taken from 59 of the first 1,000 SNPs and 100 different

weak effect markers taken from the second 1,000. For the tree analysis, the same method

as used on the simulated data was applied though no windowing of the p-values was

performed. The trees were limited to a depth of three, that is three total splits, due to

the small sample size.

Of the 5,827 trees run on these samples, there were 4,348 that contained a split on

a SNP near the main disease gene. Note that “near” is now defined as a marker within

10,000 base pairs (approximately 0.01 cM) of the main or weak disease gene. Of these

splits, 1,936 were the first split in the tree, and the other 2,412 splits were made in the

second level of the tree, after the first split. A SNP near the weak effect SNP was included

in the tree 732 times. Only 92 of these were the first split, and the other 640 were made
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after the first split. Table 3.7 shows summary statistics of the allele frequencies for all

markers alleles used as main or weak effects, and for those SNPs with a neighboring

SNP included in the tree. The wide range of allele frequencies for markers from this

chromosome is evident. This table also shows that while the allele frequencies for those

SNPs included in the tree are on average slightly higher, the allele frequencies still span

almost the entire range of possible values.

There were also 604 trees that included splits on SNPs close to both disease genes.

For the disease models for which this occurred, we compared the results from applying

single-marker association tests to SNPs in windows around the disease genes. Only

56 of the 604 pairs of disease genes were not found to be significant according to the

genotype contingency table test, and of these, 26 pairs had at least one SNP within

10,000 bases of each of the disease genes that was significant (α = 0.05). That leaves

30 pairs for which the decision tree successfully located both disease genes when the

single-marker association test did not. However, there were 3,021 pairs of disease genes

that the genotype test found to be significant in total, without including significance of

nearby markers.

3.5 Discussion

We performed three different types of analyses to evaluate the performance of decision

trees for the association mapping of a disease gene: first, a confirmation of single-marker

tests that found SNPs close to the APOE gene that affects susceptibility to Alzheimer’s;
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then, an examination of the tree method’s size and power analyzing simulated data

and applying smoothing techniques to p-values; and finally, we created a simple two-

locus epistatic disease model using different combinations of SNPs from real data from

chromosome 20. While it is important to know that the trees perform as well as single-

marker tests in single disease-gene models, the multi-gene, epistatic disease models are

those where we hope that the trees will detect interactions between genes that the single-

marker tests miss. This was not the result with the simulated data. In this complicated

three-gene model, the single-marker tests were detecting two or more of the genes more

often than the trees. Also of interest in the analysis of the simulated data was the effect of

using Simes’ method on sliding windows of p-values to adjust for correlations due to LD.

This proved to be a powerful way of taking “peak width” into account while maintaining

the nominal level.

We studied a more simplistic epistatic model with two genes only, using real allele

frequencies and LD. Looking at over 5,800 pairs of disease genes, we found that the single-

marker test based on the genotype contingency table Pearson chi-square was finding both

disease genes over half of the time, while the trees only detected both genes approximately

one in ten times. The small sample size may have negatively impacted the performance

of the trees, but the fact that the single-marker tests are more robust to such limitations

further weakens the endorsement for the use of decision trees in association mapping.
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3.6 Tables and Figures

Table 3.1: Analysis Results for APOE Data

Distance from Association

Marker APOE (kb) test p-value Decision Tree

APOC1 10 0.00 First split

PRR2 20-40 0.01 Second split

APOC4-1 60 0.55 –

2050 80 0.78 –

2590 166 0.28 –

42709 250 0.24 –

2526 257 0.24 –

2151 443 0.03 –

582 800 0.23 –

104 841 0.26 –
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Table 3.2: Penetrance of Disease for One-Locus Genotypes

Locus Genotype Penetrance

Gene 1 0/0 0.3100

0/1 0.1817

0/2 0.1742

1/1 0.0370

1/2 0.0065

Gene 2 0/0 0.1876

0/1 0.2974

0/2 0.4112

1/1 0.1948

1/2 0.2973

2/2 0.3872

Gene 3 0/0 0.2460

0/2 0.2498

2/2 0.2553
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Table 3.3: Power and Type I Error for Single-Marker Tests Using Simes’ Method

Window Power Type I Error

size Allele Genotype Trend Allele Genotype Trend

0 0.1204 0.1161 0.1357 0.0117 0.0109 0.0135

2 0.2933 0.2815 0.3248 0.0250 0.0241 0.0296

4 0.3579 0.3420 0.3905 0.0297 0.0284 0.0348

6 0.3875 0.3716 0.4266 0.0322 0.0311 0.0381

8 0.4083 0.3890 0.4474 0.0349 0.0334 0.0410

10 0.4206 0.3995 0.4568 0.0366 0.0354 0.0436

12 0.4315 0.4079 0.4640 0.0387 0.0375 0.0456

14 0.4357 0.4171 0.4717 0.0408 0.0393 0.0479

16 0.4417 0.4252 0.4758 0.0431 0.0407 0.0501

18 0.4483 0.4315 0.4836 0.0450 0.0428 0.0526

20 0.4522 0.4335 0.4886 0.0464 0.0449 0.0548

22 0.4562 0.4306 0.4868 0.0492 0.0472 0.0568

24 0.4561 0.4305 0.4872 0.0517 0.0492 0.0591

26 0.4569 0.4329 0.4887 0.0538 0.0516 0.0619

28 0.4532 0.4325 0.4904 0.0557 0.0539 0.0647

30 0.4499 0.4300 0.4899 0.0578 0.0559 0.0670

32 0.4498 0.4287 0.4882 0.0602 0.0582 0.0689

34 0.4454 0.4293 0.4858 0.0618 0.0603 0.0712

36 0.4447 0.4296 0.4867 0.0644 0.0624 0.0738

38 0.4453 0.4266 0.4841 0.0668 0.0647 0.0759

40 0.4462 0.4238 0.4816 0.0693 0.0668 0.0782

42 0.4306 0.4210 0.4829 0.0717 0.0689 0.0804
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Table 3.4: Number of Trees Containing Markers from Gene Regions

Times occurred in tree

Gene Region 0 1 2 3 4 5 6 7

None 67 17 6 6 2 1 0 1

Gene 1 44 14 12 15 8 7 0 0

Gene 2 64 17 10 9 0 0 0 0

Gene 3 94 2 1 1 1 1 0 0
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Table 3.5: Number of Samples Finding Specified Genes

Window size

Genes found Test 0 2 4 6 8 10 12 14 16 18 20

1 only Allele 24 20 20 20 20 22 22 23 23 23 22

Genotype 20 21 20 22 21 23 23 24 23 23 23

Trend 23 20 20 20 20 22 22 23 23 23 22

Tree 17 34 36 40 38 36 36 40 40 36 39

2 only Allele 10 8 8 10 10 10 10 10 11 12 12

Genotype 10 10 11 11 11 10 10 9 11 12 13

Trend 10 8 8 10 10 10 10 10 11 12 12

Tree 20 17 16 18 19 19 22 23 20 26 23

3 only Allele 0 0 0 1 1 1 1 1 1 1 1

Genotype 0 1 1 1 1 1 1 1 1 1 1

Trend 0 0 0 1 1 1 1 1 1 1 1

Tree 2 2 2 3 3 3 4 3 4 4 4

Any one gene Allele 34 28 28 31 31 33 33 34 35 36 35

Genotype 30 32 32 34 33 34 34 34 35 36 37

Trend 33 28 28 31 31 33 33 34 35 36 35

Tree 39 53 54 61 60 58 64 66 64 66 66

1 and 2 Allele 33 35 35 32 34 34 35 34 33 32 32

Genotype 34 32 34 31 32 30 31 31 29 28 28

Trend 33 35 35 32 34 34 35 34 33 32 32

Tree 21 21 20 15 17 17 14 8 11 7 9

1 and 3 Allele 9 10 10 9 9 8 8 8 8 8 8

Genotype 10 9 8 8 8 8 8 8 8 8 8

Trend 9 10 10 9 9 8 8 8 8 8 8

Tree 11 6 5 4 1 3 1 2 1 2 1

2 and 3 Allele 3 2 2 1 2 1 2 2 2 2 2

Genotype 2 1 1 1 2 2 2 2 2 2 1
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Table 3.5: continued

Window size

Genes found Test 0 2 4 6 8 10 12 14 16 18 20

Trend 2 2 2 1 2 2 2 2 2 2 2

Tree 1 0 0 0 0 0 0 0 0 0 0

Any two genes Allele 45 47 47 42 45 43 45 44 43 42 42

Genotype 46 42 43 40 42 40 41 41 39 38 37

Trend 44 47 47 42 45 44 45 44 43 42 42

Tree 33 27 25 19 18 20 15 10 12 9 10

All three genes Allele 16 14 13 13 10 9 8 8 8 8 8

Genotype 15 13 10 10 8 8 7 7 7 7

Trend 17 14 13 13 10 9 8 8 8 8 8

Tree 6 1 1 1 1 0 0 2 0 0 0

Table 3.6: Disease Penetrance Given Two-Locus Genotypes

Locus 2

Locus 1 B/B B/b b/b

A/A 0 0 0

A/a 0 0 1

a/a 1 1 1

47



Table 3.7: Allele Frequencies for Chromosome 20 SNPs

Allele Frequencies

SNPs Min Mean Max

All used as main disease gene 0.0053763 0.4889745 0.9947917

Main genes used in tree 0.0053763 0.5440823 0.9947917

All used for weak disease gene 0.0052083 0.4723178 0.9895833

Weak genes used in tree 0.0052083 0.6181344 0.9791667
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Figure 3.1: Tree Created for APOE Data
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Chapter 4

Applying Data Mining Techniques

to the Mapping of Complex Disease

Genes

Czika, W. A., B. S. Weir, S. R. Edwards, R. W. Thompson, D.

M. Nielsen, J. C. Brocklebank, C. Zinkus, E. R. Martin, and

K. E. Hobler (2001). Genetic Epidemiology 21, S435-S440.

50



4.1 Abstract

The simulated sequence data for the Genetic Analysis Workshop 12 were analyzed using

data mining techniques provided by SAS Enterprise MinerTM Release 4.0 in addition to

traditional statistical tests for linkage and association of genetic markers with disease sta-

tus. We examined two ways of combining these approaches to make use of the covariate

data along with the genotypic data. The result of incorporating data mining techniques

with more classical methods is an improvement in the analysis, both by correctly classi-

fying the affection status of more individuals and by locating more SNPs related to the

disease, relative to analyses that use classical methods alone.

4.2 Introduction

With the identification of hundreds of thousands of single nucleotide polymorphisms

(SNPs) well underway, many issues have materialized that may reduce the effectiveness

of standard techniques that use these markers to locate disease genes. Multiple hypothesis

testing, dependencies between tests performed, and managing the sheer volume of the

data are among the obstacles that can be encountered. Methods that analyze single

markers at a time are particularly inadequate for the mapping of complex disease genes,

because they fail to capture interactions between genes. These problems make data

mining (Westphal and Blaxton 1998), the process of uncovering patterns in large amounts

of data, a natural approach for the analysis of genetic data. Decision trees, a popular
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data mining method which have a number of applications, are especially useful for finding

interactions between variables. In this paper, we demonstrate the use of trees in modeling

the covariate data, reducing the number of SNPs, and categorizing the quantitative risk

factors into binary variables. Our goal then is to combine these methods with logistic

regression and SNP linkage and association tests to produce better results than analyses

using the traditional methods alone.

4.3 Methods

Three replicates of the sequence data for the candidate genes from the general population

were analyzed. Replicate 1 was used for model training, replicate 42 was selected as the

validation data and used for model assessment, and replicate 3 was used as the test data

set to obtain a final, unbiased estimate of the generalization error of each model. For

modeling and association methods, the data was subset to include only the 165 founders

since only unrelated individuals should be used. The answers were available to us during

analysis. Before incorporating the genetic factors into the analysis, preliminary analyses

were performed to determine the effect of the five quantitative traits, the two environ-

mental factors, age of examination, household membership, and gender on the affection

status of the individuals. Because model interpretability was deemed more important

than prediction accuracy, the Decision Tree and the Regression tools of Enterprise Miner

were used in favor of the Neural Network tool and model ensembles to predict the affec-

tion status. For the decision trees, the chi-square test was used as the splitting criterion
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(p < 0.20) to recursively partition the data. The logistic regression models selected the

subset of predictors from all possible steps in a stepwise regression based on the step

that minimized the misclassification rate in the validation data. Entry and stay p-values

of 0.15 were used. Models were first created using only the quantitative risk traits Q1

through Q5. We then added the following variables into the analysis: environmental

factors, age of examination, gender, household membership, and the interaction of these

variables with Q1 through Q5. Because the trait means are noticeably higher in females

than in males, we attempted to improve the classification rate by fitting separate logistic

regression models for males and females.

The next step in the analysis was to incorporate the sequence data from the seven

candidate genes for the general population into the analysis of the phenotypic data. SNPs

were generated from the candidate genes based on variants identified in sequencing ten

individuals from the three chosen replicates. The primary goal of this analysis was to

find SNPs associated and linked with affection status. The Reconstruction-Combined

TDT (Knapp 1999) was used to test for linkage of the SNPs with affection status. We

used a continuity correction of 0.5 for this test. For the RC-TDT, we used all of the

pedigree data from replicate 1. However, because the data represent an extended pedigree

with related nuclear families, the test’s validity for association does not hold. Thus,

separate association tests needed to be performed on unrelated individuals; we therefore

used the subset of data that was created for the covariate analysis. We conducted tests

for the composite linkage disequilibrium between SNPs (Weir 1996), tests of Hardy-
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Weinberg equilibrium for each SNP, and chi-square tests of association of SNPs with

disease phenotype using SNP alleles. In order to combine the genotypic information

with the covariate model, we first wanted to reduce the number of SNPs that were

found to be linked and associated with affection status. We implemented a tree-based

method to decrease the number of SNPs used in subsequent modeling. This method

takes multiple testing and associations between neighboring SNPs into account through

a windowing algorithm. Thus, splits in the tree were formed based on a new statistic for

each SNP, which is a result of combining the chi-square value from the SNP itself and the

neighboring SNPs’ chi-square values. The SNPs that formed splits in the tree were then

added to the covariate regression or tree models in an attempt to improve classification

rates of individuals. Our other approach to combining data mining with linkage and

association methods was to examine the relationship between the candidate genes and

the risk factors. Our analysis tools are set up to handle a binary phenotype only; thus,

we first binned these quantitative factors into two categories based on their optimal

relationship with the disease status. This was performed using a binary decision tree in

the Transform Variables node of Enterprise Miner. Once this was done, we performed

the same linkage and association analyses on these new binary phenotypes that we had

performed on affection status to find additional genetic information.
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4.4 Results

Figure 4.1 displays the tree diagram produced by Enterprise Miner using only the five

quantitative traits as model inputs. Each node in the tree diagram contains three

columns that contain the following information: the target values (A=Affected and

U=Unaffected); the target percentages and counts for the training data (replicate 1);

and the target percentages and counts for the validation data (replicate 42). The root

or top node contains all of the data. The first split was made on Q1. The left-most

terminal leaf in the tree diagram indicates that individuals with values of Q1 less than

19.075 have a greater tendency to be unaffected than individuals with higher Q1 values.

The individuals in the other nonterminal node were further split based on values of Q5

less than 37.62, or greater than or equal to 37.62. No other significant splits were found

based on choosing the subtree that minimizes the misclassification rate in the validation

data.

The stepwise logistic regression model provides a better overall fit than the decision

tree (Table 4.1). For the model using the quantitative traits alone, Q2 was found to be

a significant input in addition to Q1 and Q5. Table 4.3 reports the parameter estimates

and related statistics for this model. The odds of being affected increase by factors of

1.428, 1.226, and 1.392 for each unit increase in the values of Q1, Q2, and Q5 respectively.

After including the other covariates in the analysis with their interactions with Q1

through Q5, we found Q1, Q5, and the interaction of Q5 by age of examination to be

significant. The parameter estimates from this step are shown in Table 4.2. Thirteen
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of 45 affected individuals are misclassified, and seven of the 120 unaffected individuals

are misclassified in the training data. It is important to note that the interaction of

age of examination by Q4 and the interaction of environmental factor 2 by Q4 are both

significant when using the training data exclusively to build the model. When including

the other phenotypic factors in the analysis, the decision tree node still segmented the

data based only on Q1 and Q5 as shown in Figure 4.1.

In the logistic regression models that were fit separately for males and females, only

half of the 12 affected males in the training data are correctly classified. On the other

hand, only one of the 68 unaffected males is incorrectly classified. Significant model

effects for males include Q1, Q5, age of examination by environmental factor 2, and age

of examination by Q5. For the females, 29 of the 33 affected individuals are correctly

classified, and 49 of 52 unaffected individuals are correctly classified in the training data.

Significant model effects include Q1, Q5, age of examination by Q1, age of examination

by Q4, and age of examination by Q5.

All tests of linkage and association are reported on replicate 1 though similar results

were found on replicates 3 and 42. The association map for candidate gene 1 in Figure 4.2

gives us a picture of the composite linkage disequilibrium between SNPs, with the color

on the off-diagonal corresponding to the significance of the p-values for testing the null

hypothesis of no linkage disequilibrium between SNPs. The p-values for testing SNPs for

Hardy-Weinberg equilibrium are represented by the coloron the diagonal, and the shape

on the diagonal indicates the presence or absence of a SNP’s association with disease
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status at a significance level of 0.05. For example, the yellow plus symbol in the bottom

left-hand corner of the figure indicates that SNP2 has a significant association with

affection status, and we would not reject the hypothesis that SNP2 is in Hardy-Weinberg

equilibrium. We can determine that there is evidence of linkage disequilibrium between

SNP2 and SNP3 by the red square to its right. Table 4.4 displays the results of these

linkage tests using the RC-TDT and chi-square association tests on SNP alleles. Nearly

half of the SNPs in candidate gene 1 show both significant linkage and association with

affection status (42 out of the 47 have p-values below 0.01 for both tests). Our tree-based

method, which is applied to reduce the number of SNPs found to be linked and associated

with the disease, split the data with respect to affection status only at the SNP located

at base pair 76 in candidate gene 1. When we added this sole SNP to the quantitative

risk factors found in the previous regression model, the percentage of correctly classified

individuals improves from 87.9 to 95.8 for the training data, and from 85.5 to 92.7 for

the validation data.

In our examination of linkage and association of the binary variables formed from the

quantitative traits, the most noticeable relationship occurs between candidate gene 6 and

Q1. Ten out of a total of 30 SNPs in candidate gene 6 have p-values below 0.01 for both the

association test and linkage test with the binary Q1 that was created. Candidate gene 6

also has several SNPs, primarily in the 6000-8000 bp range, linked and associated with the

binned Q2 variable. With several SNPs in candidate gene 2 displaying significant linkage

and association p-values with the binned Q5, there is also evidence of a relationship in
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this gene-trait pair. Thus, we found candidate genes that have a significant effect on all

three quantitative risk factors significantly related to affection status.

4.5 Discussion

Genetic data are now as vast as the business data for which data mining was originally

developed, making data mining a natural approach for analyzing the GAW data. Through

preliminary logistic regression and decision tree runs using Enterprise Miner software, we

determined that the quantitative risk factors Q1, Q2, and Q5 are most important in

differentiating the affected and unaffected patients; in the actual model, these are the

three risk factors with the strongest effect on liability. The other phenotypic variables

were not found to be significant predictors in the absence of the candidate genes. Using

the RC-TDT and the chi-square test for association, 47 SNPs in candidate gene 1 were

identified as linked and associated with disease status. This is in fact the only candidate

gene that has a direct effect on liability according to the true model. We used data

mining algorithms to bring the phenotypic and genotypic analyses together to glean more

information from the data. A tree-based method was implemented to reduce the number

of markers that were considered for the regression model; it selected only the marker at

base pair 76. This marker has a significant p-value for testing the hypothesis of no linkage

and is less than 500 base pairs from the site of the true gene that directly affects liability.

By incorporating this SNP with the risk factors, we were able to improve the classification

rate in our regression model by approximately seven percent in both the training and

58



validation data sets. In addition to characterizing the affection status, we also examined

the relationship between the genotypic information and risk factors. Since we had already

found several risk factors that were significantly related to disease status, we examined

which genes were linked and associated with these phenotypes. A decision tree was

applied to each of the continuous traits to form binary variables, making this analysis

possible. This produced a new set of SNPs from the candidate genes that have an indirect

effect on affection status that we otherwise would not have found. The relationships that

we found between the quantitative traits and the candidate genes (candidate gene 6 with

Q1 and Q2, and candidate gene 2 with Q5) are again consistent with the true model.

Our analysis demonstrates that the integration of common data mining techniques with

traditional genetic statistical methods is a valuable tool for detecting and describing

complex genotypic-phenotypic relationships.
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4.7 Tables and Figures

Table 4.1: Fit Statistics for the Decision Tree and Logistic Regression Models Using
Q1-Q5 as Model Inputs

Statistic Train Rep 1 Validation Rep 42 Test Rep 3

Tree

Misclassification Rate 0.152 0.176 0.188

Average Squared Error 0.112 0.140 0.158

Logistic Regression

Misclassification Rate 0.121 0.145 0.157

Average Squared Error 0.093 0.098 0.120

Table 4.2: Parameter Estimates from Stepwise Logistic Regression Using Q1-Q5 as Model
Inputs

Parameter Estimate∗ Standard Error Wald Chi-square P > Chi-square

Intercept -23.936 3.955 36.63 0.0001

Q1 0.357 0.106 11.23 0.0008

Q2 0.203 0.093 4.80 0.0285

Q5 0.330 0.070 22.50 0.0010

∗Parameter estimates are from replicate 1
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Table 4.3: Parameter Estimates for the Stepwise Logistic Regression Using All of the
Phenotypic Factors as Model Inputs

Parameter Estimate∗ Standard Error Wald Chi-Square P > Chi-Square

Intercept -27.476 4.7163 33.94 0.0001

Q1 0.587 0.1157 25.78 0.0001

Q5 0.556 0.1142 23.70 0.0001

Q5xAge -0.002 0.0008 9.51 0.0020

∗Parameter estimates are from replicate 1

Table 4.4: SNPs from the Candidate Genes Showing Linkage and Association with Af-
fection Status

Candidate # of SNPs # of SNPs showing # of SNPs showing # of SNPs
gene linkage w/ disease∗ association w/ disease∗ showing both∗

1 114 52 49 47
2 71 0 2 0
3 59 1 0 0
4 111 2 28 0
5 37 1 1 0
6 30 8 13 5
7 153 2 5 0

∗α = .05
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Figure 4.1: Tree Diagram Using Only Q1-Q5 as Predictors of Affection Status
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Figure 4.2: Association Map of Candidate Gene 1
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Chapter 5

Testing for Three-Locus

Disequilibrium

5.1 Introduction

In Chapter 2, we discussed single-marker case-control tests that can be used for the

association mapping of a disease gene. We then mentioned the possible inadequacy of

these tests for detecting multiple genes that act epistatically on disease susceptibility and

suggested decision trees as an alternative in Chapter 3. A third category of association

tests to consider is haplotype-based case-control tests. Nielsen et al. (2002) describe the

following situations in which haplotype tests can be more powerful than single-marker

tests: two markers within a gene may jointly affect disease susceptibility; or markers

may have a haplotype structure such that no two-locus linkage disequilibrium (LD) exists
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between two individual markers and the disease gene, but their three-locus disequilibrium

is significant. The construction of two haplotype-based case-control tests is given by

Nielsen et al. (2002), and then simulations are used to show that for many patterns of

allele frequencies and LD, the haplotype tests outperform the single-marker tests that

use allele or genotype counts.

We showed in Chapter 2 how the strength of LD between the marker and disease loci

can positively affect the power of single-marker tests, and thus it is important to have a

sense of how far LD extends across the portion of the genome that is being considered.

Similarly, both the two- and three-locus disequilibria impact the power of the haplotype-

based tests as we show below. In both situations, these disequilibria cannot be directly

estimated since only disease phenotypes, not genotypes, are observed, but nonetheless,

the identification of disequilibria patterns, facilitated by testing for nonzero disequilibria,

among the markers in the genotyped regions can serve to characterize the behavior of

these coefficients in the portion of the chromosome(s) being studied. Statistics testing

for significance of two-locus disequilibria have been well-defined (Weir 1979; Weir 1996),

but several tests used for detecting nonzero three-locus disequilibria have unresolved

issues that we discuss here, while proposing new methods for testing the hypothesis of

no three-locus disequilibria.

We presented a formulation for the association of genotypes at a marker locus with

the presence or absence of a disease in Chapter 2. Genotypic associations depend on

linear and quadratic functions of gametic and nongametic linkage disequilibria between
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marker and disease alleles, whereas allelic associations depend only on linear functions of

these disequilibria. For marker allele Mi, we can obtain the following frequencies among

cases and controls by summing over genotypes:

Pr(Mi|Aff.) = qi + δc
i /K

Pr(Mi|Unaff.) = qi − δc
i /(1−K)

where K is the disease prevalence in the population, qi is the frequency of Mi in the whole

population, and the composite association measure δc
i depends on the susceptibilities frs

of all disease genotypes Ar/As:

δc
i =

∑
r,s

prfrs∆is

with ∆is representing the composite linkage disequilibrium between Mi and As. When

Hardy-Weinberg proportions hold, the usual linkage disequilibrium coefficient Dis can be

used in place of ∆is so that δc
i = δi.

Now consider a second marker N with alleles Nk. Nielsen and Weir (2001) showed

that, under a random-mating model, two-locus marker haplotype frequencies within af-

fected and unaffected individuals are

Pr(MiNk|Aff.) = Pik + [qkδ
(M)
i + qiδ

(N)
k + δ

(MN)
ik ]/K

Pr(MiNk|Unaff.) = Pik − [qkδ
(M)
i + qiδ

(N)
k + δ

(MN)
ik ]/(1−K)

where the association measures δ for each marker are distinguished with a superscript:

δ
(M)
i =

∑
r,s

prfrsDsi
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δ
(N)
k =

∑
r,s

prfrsDsk

The new marker haplotype association measure δ
(MN)
ik is

δ
(MN)
ik =

∑
r,s

psDrikfrs

Allelic associations involve two-locus disequilibria, and two-locus haplotype associations

involve both two- and three-locus gametic disequilibria. These disequilibria are

Dri = Pri − prqi

Drk = Prk − prqk

Drik = Prik − qiDrk − qkDir − prDik − prqiqk

The three-locus disequilibrium measure was introduced by Bennett (1954), and this

chapter considers methods for drawing inferences about the measure. Evidently, the

difference between marker haplotype frequencies in cases and controls depends on this

quantity:

Pr(MiNk|Aff.)− Pr(MiNk|Unaff.) = qk[Pr(Mi|Aff.)− Pr(Mi|Unaff.)] + qi[Pr(Nk|Aff.)

−Pr(Nk|Unaff.)] + δ
(MN)
ik /[K(1−K)]

and any advantage of the two-locus analysis over the two single-locus analyses depends on

δ
(MN)
ik , and hence on Drik. Since we can use observed estimates of allele and haplotype

frequencies in the cases and controls in this formula, we can solve for an estimate of

δ
(MN)
ik , but our interest is in predicting the behavior of haplotype case-control tests from
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values of Drik. Note that, as with the two-locus disequilibria, the Drik can be shown to

decay over t generations from the initial disequilibrium D0
irk as

Dt
irk = D0

irk[(1− 1/N)(1− 2/N)(1− θMA)(1− θAN)]t

(Hill 1976) assuming A is located between M and N; θMA and θAN are the recombina-

tion fractions of A with M and N, respectively; and a population of size N/2 comprising

N chromosomes.

5.2 Example

To give an example of a comparison between single-marker and haplotype-based case-

control tests, we now create a data set based on the estimated haplotype frequencies for

the APOE data used by Fallin et al. (2001). Their data contain 210 individuals affected

with Alzheimer disease and 159 individuals unaffected with the disease. Single-marker

and haplotype-based tests using haplotype frequencies estimated from the EM algorithm

were performed on eight SNPs in the APOE gene region in their analysis, including a SNP

containing an actual disease allele. We focus on markers M1 with alleles C and T and M2

with alleles A and G. According to the results given by Fallin et al. (2001) as well as the

results from analyzing the data set we created to mimic theirs, neither of these markers

shows a significant association with Alzheimer disease based on allele case-control tests at

the 0.05 level. However, using the two-locus haplotype frequencies that we inferred from

the estimated four-locus haplotype frequencies given by Fallin et al. (2001), Table 5.2
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shows the significant chi-square statistic from the haplotype case-control test. We can

estimate the association parameters δ
(M1)
C , δ

(M2)
A and δ

(M1,M2)
CA by plugging in the observed

allele frequencies in the total sample and in cases to give

δ̃
(M1)
C = 0.00661

δ̃
(M2)
A = −0.00595

δ̃
(M1,M2)
CA = −0.01513

The magnitude of the haplotype association measure gives an indication why the haplotype-

based test statistic was more significant than the single-marker ones. This measure is

a function of the three-locus disequilibria between markers M1 and M2 and the disease

locus.

5.3 Existing Asymptotic Tests

The involvement of three-locus disequilibria in the two-marker-haplotype association tests

suggests that it may be of interest to examine patterns of three-locus disequilibrium

among marker loci. Various approaches have been suggested for testing that this quantity

is zero (Hill 1975; Hill 1976; Smouse 1974; Weir 1996), and these are now reviewed. The

approaches of Hill and Weir, however, ignore the fact that the parameter may be bounded

away from zero so that testing for a zero value may not be appropriate.

Suppose we have three markers A, B, and C with two alleles each: A, a; B, b; and
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C, c, respectively. For the additive model of disequilibrium

PABC = pApBpC + pADBC + pBDAC + pCDAB + DABC

Hill (1976) showed that, in the two allele case, the goodness-of-fit chi-square test statistic

for the hypothesis of complete independence: H0 : PABC = pApBpC when the sample has

n chromosomes can be calculated using sample allele and haplotype frequencies as

X2
H = n

(
(P̃ABC − p̃Ap̃B p̃C)2

p̃Ap̃B p̃C

+
(P̃ABc − p̃Ap̃B p̃c)

2

p̃Ap̃B p̃c

+
(P̃AbC − p̃Ap̃bp̃C)2

p̃Ap̃bp̃C

+
(P̃Abc − p̃Ap̃bp̃c)

2

p̃Ap̃bp̃c

+
(P̃aBC − p̃ap̃B p̃C)2

p̃ap̃B p̃C

+
(P̃aBc − p̃ap̃B p̃c)

2

p̃ap̃B p̃c

+
(P̃abC − p̃ap̃bp̃C)2

p̃ap̃bp̃C

+
(P̃abc − p̃ap̃bp̃c)

2

p̃ap̃bp̃c

)

= n
(
r2
AB + r2

AC + r2
BC + r2

ABC

)

where

r2
AB =

D̃2
AB

p̃Ap̃ap̃B p̃b

(5.1)

r2
AC =

D̃2
AC

p̃Ap̃ap̃C p̃c

(5.2)

r2
BC =

D̃2
AB

p̃B p̃bp̃C p̃c

(5.3)

r2
ABC =

D̃2
ABC

p̃Ap̃ap̃B p̃bp̃C p̃c

(5.4)

The 4 df statistic X2
H has therefore been partitioned into four terms, the first three of

which are the 1 df statistics for testing two-locus disequilibria. This suggests that the

fourth term is a 1 df chi-square statistic for testing H0 : DABC = 0. Hill (1976) points
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to the controversy surrounding this form of Lancaster (1951) partitioning. The three

two-locus disequilibria are not independent, and this is missed by this partitioning.

Hill (1976) and Smouse (1974) instead consider a multiplicative model, where the null

hypothesis is ZABC = 1 with

ZABC =
PABCPAbcPaBcPabC

PABcPAbCPaBCPabc

corresponding to a common measure of association in a 2×2×2 contingency table (Good-

man 1969; Fienberg 1970). This can be tested using a likelihood approach. There are

seven df and seven parameters in the full model: pA, pB, pC , DAB, DAC , DBC , DABC . Note

that sample allele and haplotype counts are represented by an n with the corresponding

subscript(s). The full unconstrained maximum likelihood is therefore easy to calculate:

L1 ∝ P̃ nABC
ABC P̃ nABc

ABc P̃ nAbC
AbC P̃ naBC

aBC P̃ nAbc
Abc P̃ naBc

aBc P̃ nabC
abC P̃ nabc

abc

with the eight three-locus gametic probabilities given in Table 5.1, and a likelihood ratio

test can be constructed by comparing this to the likelihood under the null hypothesis:

L0 ∝ p̃nA
A p̃nB

B p̃nC
C (1− p̃A)n−nA(1− p̃B)n−nB(1− p̃C)n−nC

with only three parameters giving X2
L = −2(ln L0−ln L1) ∼ χ2

4 assuming Hardy-Weinberg

equilibrium. Analogous to the X2
H statistic described above, this statistic is testing for

any two- or three-locus associations and can be partitioned into four 1 df chi-square

statistics. These four statistics, however, do not test for the three individual two-locus

associations and the three-locus disequilibrium as with the X2
H statistic like we would
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hope; rather, they involve marginal and conditional associations so the genetic inter-

pretation of these tests is not as straightforward as with the goodness-of-fit approach.

Additionally, two of these likelihood ratio chi-square statistics involve estimates of hap-

lotype frequencies allowing for pairwise, but no three-locus, associations for which there

is no formula. Iterative procedures given for example by Fienberg (1970) must be used.

An explicit test statistic for the three-locus disequilibrium was given by Weir (1996):

X2
W =

D̃2
ABC

V̂ar(D̃ABC)

where, under the assumption that DABC = 0

V̂ar(D̃ABC) =
1

n

{
p̃A(1− p̃A)p̃B(1− p̃B)p̃C(1− p̃C) + 6D̃ABD̃ACD̃BC

+ p̃A(1− p̃A)[(1− 2p̃B)(1− 2p̃C)D̃BC − D̃2
BC ]

+ p̃B(1− p̃B)[(1− 2p̃A)(1− 2p̃C)D̃AC − D̃2
AC ]

+ p̃C(1− p̃C)[(1− 2p̃A)(1− 2p̃B)D̃AB − D̃2
AB]

}

The problem with this equation is that the observed gametic frequencies may not allow

DABC to be zero, and this can lead to negative values for the variance expression when

DABC is set to zero. DABC can be shown to be constrained by L ≤ DABC ≤ U , where

the bounds are defined as

L = max(−S, PAB + PAC − pA − S, PAB + PBC − pB − S, PAC + PBC − pC − S)

U = min(pA − S, pB − S, pC − S, 1− pA − pB − pC + PAB + PAC + PBC − S)

with S = pApBpC + pADBC + pBDAC + pCDAB. These bounds can be shown to be equal

to those given by Thomson and Baur (1984). Both L and U can be positive or negative.

72



We mentioned previously that of particular interest is the situation where the three

two-locus disequilibria DAB, DAC , and DBC are zero but there is significant three-locus

disequilibria, in which case the haplotype tests are more powerful than the single-marker

association tests. It is important to note that when there are no two-locus associations,

L is negative and U is positive, assuming both alleles are observed at each of the three

marker loci in the sample, and the estimate of the variance of DABC when all two- and

three-locus disequilibria are zero is simply the product of the six allele frequencies at the

three loci divided by the sample size, yielding X2
W equivalent to nr2

ABC .

5.4 An Exact Method

Calculating the exact probabilities of the possible values for DABC holding the sample size

n, allele frequencies, and two-locus haplotype frequencies constant can provide a means

for testing hypotheses about DABC . That is, DABC is estimated for all sets of valid three-

locus haplotype counts given the single- and two-locus counts. Valid haplotype counts

can be produced by using integers ranging from n(L+S) to n(U +S) for nABC , then the

other seven haplotype counts are given by subtraction for each of the nABC . To calculate

probabilities of the haplotype counts under the null distribution that allows for two-locus

disequilibrium but no three-locus disequilibrium, in general, an iterative procedure must

be used to arrive at the estimates of the three-locus haplotype frequencies (Hill 1976).

However, when the two-locus disequilibria are zero, mentioned above as a situation of

interest, we can use the product of the observed allele frequencies for the three-locus
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haplotype frequencies. The probability of observing each of these sets of eight three-locus

haplotype counts under the null hypothesis is then given by the multinomial distribution

as

Pr(nABC , nABc, . . . , nabc) =
n!

nABC !···nabc!
(p̃Ap̃B p̃C)nABC · · · (p̃ap̃bp̃c)

nabc∑n(U+S)
nABC=n(L+S)

n!
nABC !···nabc!

(p̃Ap̃B p̃C)nABC · · · (p̃ap̃bp̃c)nabc

since not all values 0, . . . , n are necessarily valid for each of the three-locus haplotype

counts. A p-value for testing H0 : DABC = 0 can be calculated by summing the proba-

bilities of all DABC possible for the fixed allele and two-locus haplotype counts that are

greater or equal in absolute value to the absolute value of the observed D̃ABC .

We now describe an analysis performed to compare this exact method with the asymp-

totic test statistic X2
W . Using all possible combinations of allele frequencies from the set

{0.1, 0.2, . . . , 0.8, 0.9} for the three marker loci, we generated the distribution of DABC

given these allele frequencies and setting the two-locus disequilibria, DAB, DAC , and

DBC , to 0. There were 165 such distinct combinations of allele frequencies. A sample

size of n = 100 haplotypes was used. Of these combinations, 25 had only two distinct

sets of haplotype counts possible, and thus only two possible values for DABC given the

allele and two-locus haplotype counts. The maximum number of distinct values, 26, for

DABC occurred when pA = pB = pC = 0.5. Using the probability formula given above for

each of the three-locus disequilibria, we show the distribution of DABC for several sets of

allele frequencies in Figures 5.1-5.4. Comparing the p-values from these two approaches,

p-values from the asymptotic χ2
1 distribution are significant at level 0.05 for 584 out of

1074 values of DABC from the 165 runs, while 488 p-values using the exact distribution
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are significant.

5.5 Discussion

With marker case-control tests expanding from analyzing single loci at a time to using

haplotype information, it is clear that a similar extension from the analysis of two-locus

disequilibrium to three-locus disequilibrium is necessary. These disequilibria give the cor-

responding tests the power to detect an association. Though tests for three-locus associa-

tions were developed 30 years ago, there remain disadvantages to both the goodness-of-fit

approach, which does not test for a true three-way, contingency-table type of association,

and the likelihood approach, which can be computationally intensive and does not have

as natural of a genetic interpretation. The explicit method of testing DABC = 0 of Weir

(1996) using Fisher’s formula for the variance of this quantity is limited by the bounds

of DABC possibly resulting in a negative variance. These bounds also greatly restrict

the possible values for DABC so that even for a sample size of 100, the normal distribu-

tion may not hold well. Using the exact test based on multinomial probabilities is an

alternative approach that does not rely on asymptotic theory, though other than for the

case when there are no two-locus associations, iterative procedures are again required

to estimate three-locus haplotype frequencies accounting for the pairwise, but not the

three-locus, disequilibria. Future work will include the development of alternative testing

procedures.
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5.6 Tables and Figures

Table 5.1: Three-Locus Gamete Probabilities

1 DBC DAC DAB DABC

PABC pApBpC pA pB pC 1

PABc pApB(1− pC) −pA −pB (1− pC) -1

PAbC pA(1− pB)pC −pA (1− pB) −pC -1

PAbc pA(1− pB)(1− pC) pA −(1− pB) −(1− pC) 1

PaBC (1− pA)pBpC (1− pA) −pB −pC -1

PaBc (1− pA)pB(1− pC) −(1− pA) pB −(1− pC) 1

PabC (1− pA)(1− pB)pC −(1− pA) −(1− pB) pC 1

Pabc (1− pA)(1− pB)(1− pC) (1− pA) (1− pB) (1− pC) -1
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Table 5.2: Contingency Table for M1 and M2 Haplotypes

CA CG TA TG Total

Cases 51 169 199 1 420

Controls 57 101 140 20 318

Total 108 270 339 21 738

Chi-Square=31.421, DF=3, P -value< 0.0001
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Figure 5.1: Distribution of DABC when DAB = DAC = DBC = 0 and pA = 0.1, pB = 0.3,

pC = 0.5
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Figure 5.2: Distribution of DABC when DAB = DAC = DBC = 0 and pA = 0.2, pB = 0.2,

pC = 0.2
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Figure 5.3: Distribution of DABC when DAB = DAC = DBC = 0 and pA = 0.2, pB = 0.5,

pC = 0.8
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Figure 5.4: Distribution of DABC when DAB = DAC = DBC = 0 and pA = 0.5, pB = 0.5,

pC = 0.5
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Chapter 6

Using All Alleles in the Multiallelic

Versions of the SDT and Combined

SDT/TDT

Czika, W. and J. J. Berry (2002). American Journal of Human

Genetics 71, 1235-1236.
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6.1 Introduction

Horvath and Laird’s sibling disequilibrium test (SDT) provides a nonparametric approach

to testing genetic markers for both linkage and association with a disease (1998). The

advantage over its parametric alternatives is its validity as a test of association when us-

ing sibships containing more than one affected sibling and/or more than one unaffected

sibling. Horvath and Laird introduced an SDT for multiallelic markers and a biallelic

combined SDT/TDT when some parental genotypic information is available. Curtis,

Miller, and Sham (1999) later developed a multiallelic combined SDT/TDT. The mul-

tiallelic versions of these tests are designed for situations in which there is no a priori

knowledge of which allele at a marker may have an effect on disease status; otherwise, a

biallelic test can be performed on the allele of interest versus all other alleles collapsed

into one. A problem with the multiallelic extensions is the statistic varies depending on

which allele is omitted from the analysis. We present an alternative multiallelic SDT

(mSDT) that takes into account all the allelic information and is consistent with the

biallelic approach. This method can also be applied to the combined SDT/TDT.

6.2 Justification for the mSDT

In calculating the multiallelic versions of both the SDT and combined SDT/TDT, the

statistics dj, j = 1, ...,m for a marker with m alleles are used. In the SDT, dj =
∑

i d
j
i

where the dj
i represent the difference between the average number of times allele j occurs
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in an affected sibling and the average number of times it occurs in an unaffected sibling

within sibship i (Horvath and Laird 1998); for the combined SDT/TDT, dj is the differ-

ence between the number of times allele j is transmitted and the number times it is not

transmitted from a heterozygous parent to an affected child (Sham 1997). As discussed

in Stuart (1955), a quadratic form of the dj can be used to create a statistic with an

asymptotic chi-square distribution. It is noted that since
∑m

j=1 dj = 0, the degrees of

freedom (df) for the distribution are (m− 1). Furthermore, since using all m columns of

the variance-covariance matrix creates a singularity and thus the matrix is uninvertible,

the natural solution is to eliminate one of the dj and the corresponding row and column

in the variance-covariance matrix to make it full-rank. The invariance of the chi-square

statistic according to which variate (dj) is omitted from the statistic is demonstrated by

Stuart (1955).

To create a nonparametric test, Sj
i = sgn(dj

i ) is used in place of dj
i , where sgn(d) =

−1, 0, 1 for d <, =, > 0 respectively. Though the sum of the quantities dj
i , j = 1, ...,m, is 0

for each sibship i = 1, ..., N and S1
i = −S2

i in the biallelic case, for more than two alleles,

the sum over j of the Sj
i is not similarly linearly constrained within a sibship. In fact, the

Sj
i can sum over j to either -1, 0, or 1. Despite this fact, multiallelic extensions to the SDT

and combined SDT/TDT are formed by arbitrarily dropping one of the Sj =
∑N

i=1 Sj
i

from the analysis. The resulting χ2
(m−1) test statistic is no longer invariant to which

allele’s information has been omitted since there is no linear dependency among the

Sj; information is being unnecessarily discarded. Furthermore, the variance-covariance
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matrix W for S = (S1, ..., Sm) is nonsingular (exceptions are discussed below) before

omitting any of the m alleles. Thus, when all m alleles are used, a valid test statistic can

still be created as S′W−1S, which has an asymptotic χ2
(m) distribution (Hettmansperger

1984; Randles 1989).

There are, as mentioned, situations in which W will not be full-rank. Among these

are

1. the biallelic case: in this case, the Sj are constrained since there is a perfect negative

correlation between S1
i and S2

i for all i (
∑

j=1,2 Sj
i = 0 for all i)

2. If there exists at least one allele j such that Sj
i = 0 for all N sibships. Thus, this

allele will have a row and column of 0s in W creating a singularity.

3.
∑m

j=1 Sj
i = C, the same constant, for all N sibships

For these situations, we recommend the use of the Moore-Penrose generalized inverse (g-

inverse) of the variance-covariance matrix W, W−. This is a unique generalized inverse

of W that satisfies the following conditions (Rao and Mitra 1971; Searle 1971): WW−

and W−W are symmetric; W−WW− = W−; and WW−W = W. It is worth noting

that the last two scenarios listed for a singular variance-covariance matrix are possible

with the original SDT statistic even after having omitted one allele from the analysis, in

which case the statistic cannot be calculated since W is uninvertible.

When using W− in place of W−1 in the quadratic form, the test statistic S′W−S still

has an asymptotic chi-square distribution, now with df equal to the rank of W (Rao and
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Mitra 1971). Note that for the biallelic case, using Horvath and Laird’s notation (1998),

the mSDT gives S = (b− c, c− b) and the W matrix will be of the form: b + c −(b + c)

−(b + c) b + c


The g-inverse is then calculated as 1/(4b + 4c) −1/(4b + 4c)

−1/(4b + 4c) 1/(4b + 4c)


which yields a chi-square statistic of (b − c)2/(b + c) with 1 df, the same as the usual

biallelic statistic.

6.3 Summary and Example

To summarize our approach, we suggest modifying Horvath and Laird’s SDT statistic

(1998) and the combined SDT/TDT of Curtis, Miller, and Sham (1999) in the following

manner to calculate the statistic for the mSDT:

1. use all m alleles in the S vector and W matrix

2. to create the chi-square statistic, use W− in place of W−1 (note that these are

identical when W is full-rank)

3. use rank(W) as the df for the chi-square distribution

We give an example here using simulated data from GAW9 (Hodge 1995). As in

Spielman and Ewens (1998) and Knapp (1999), we focus on multiallelic markers D1G31
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and D5G23, each which contain an actual disease allele, M8 and M7 respectively. Ta-

ble 6.1 shows the results of analyzing the data using the original Horvath and Laird SDT

method where each allele is dropped in turn. Also shown are the results from analyzing

the data using our mSDT approach. Note that each marker has eight alleles so p-values

from the SDT are based on a χ2
7 distribution, while the mSDT p-values are from a χ2

8

distribution since the variance-covariance matrices for both markers are full-rank. This

example is not intended as any sort of power comparison, but merely to illustrate that

there is not necessarily a loss of power by introducing an additional degree of freedom.

The other thing to note from this table is the variation of the SDT p-values depending

on which allele is dropped. While for marker D5G23, all test statistics are highly signifi-

cant, we can see quite a discrepancy between the SDT statistic for marker D1G31 when

dropping allele M8 and any of the other seven SDT statistics. The mSDT approach will

always give a unique chi-square statistic, regardless of whether W is full-rank or not.

This method will be available in a future release of SAS/GeneticsTM.
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6.4 Tables

Table 6.1: SDT and mSDT Statistics for Two Markers Linked and Associated with
Disease

D1G31 D5G23

Allele Chi- Chi-

Dropped Square P -Value Square P -Value∗

M1 23.115255 0.001628 52.441075 0.000048

M2 23.543802 0.001370 52.365979 0.000049

M3 23.239746 0.001548 52.382481 0.000049

M4 23.621073 0.001328 51.086058 0.000088

M5 23.661028 0.001307 52.546616 0.000046

M6 23.648748 0.001313 53.238694 0.000033

M7 23.417311 0.001441 45.631132 0.001031

M8 14.806102 0.038567 51.811979 0.000064

mSDT 23.667390 0.002605 53.455015 0.000088

∗p-values multiplied by 104
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