
Abstract

JONES, MARTHA LOUISE. A Retrospective Method for Inference on Haplotype Main
Effects and Haplotype-environment Interactions Using Clustered Haplotypes. (Under
the direction of Dr. Jung-Ying Tzeng.)

Many regression-based methods exist for conducting haplotype association analysis

in case-control studies. Such methods generally are based on either a prospective frame-

work (modeling the probability of disease conditional on haplotypes and covariates) or

a retrospective framework (modeling the probability of haplotypes and covariates con-

ditional on disease). For haplotype analysis, both theoretical and simulation work have

demonstrated that a retrospective framework can be more efficient than a prospective

framework in this context. Given this result, we aim to improve the performance of

the retrospective haplotype framework by more efficiently modeling haplotype informa-

tion. We do so by clustering evolutionarily close haplotypes and studying the effects of

haplotype clusters. Previous work has shown that the strategy of clustering haplotypes

under the prospective framework can increase the power of haplotype-based associa-

tion analysis. This work extends the clustering idea to the retrospective framework

and improves the performance of haplotype analysis for case-control studies.

Specifically, we construct a retrospective likelihood that allows for environmental

covariates and interactions between haplotypes and covariates. We derive generalized

score statistics to test for haplotype main effects and interaction effects at the global

and individual levels. We also derive tests for interaction effects that can be applied

to case subjects only. Through simulation, we assess the validity of the proposed

tests and, where appropriate, compare the power with the power of the retrospective

full-dimensional and prospective analyses. We also present a new strategy for



evaluating haplotype specific effects that allows us to identify haplotypes that have

similar effects on disease. Finally, we apply our proposed method to real data from a

genetic study of hypertriglyceridemia.
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Chapter 1

Introduction

1.1 Problem of Interest

The goal of genetic association studies is to find the disease susceptibility genes that

increase the risk for developing complex diseases. Study designs may involve collecting

data from groups of related individuals or from a cohort of patients over time, but

more often researchers use a case-control study design. A case-control study identifies

subjects who have a particular trait (e.g. a disease) and then identifies appropriate

control subjects. Researchers are then interested in the relationship between genetic

factors and the disease status of the subjects. Many genetic association studies today

measure the genetic variation through single nucleotide polymorphisms (SNPs). A

SNP is a variation in DNA consisting of a single base change. Through identifying

SNPs that are associated with disease, one can approximately locate the region of

disease susceptibility genes. This strategy is based on the conjecture that the observed

SNPs are causal variants themselves, or more often, are in linkage disequilibrium with

a causal variant.

It is generally believed that jointly analyzing multiple SNPs together, such as in the

format of haplotypes, may be more effective in identifying gene-trait associations. A

haplotype is a set of alleles from several loci that are located on the same chromosome
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Chapter 1. Introduction

and inherited as a unit. Haplotypes represent a unit of inheritance and preserve the

linkage disequilibrium among the loci. Previous studies have shown that haplotype

analysis can be more powerful than single SNP analysis, especially when there are

multiple disease causing variants (Morris and Kaplan (2002)). But there are practical

limitations that limit the use of haplotype analysis in practice. One limitation is that

haplotype phase is usually not known. The most commonly used genotyping methods

do not provide information on which alleles occur on the same chromosome. Therefore

we know which alleles occur at each loci, but not which alleles occur together across

multiple loci. Molecular haplotyping methods that can provide this information ex-

ist, but they are expensive and not practical for use on large samples of genetic data.

Alternatively, statistical methods can handle missing phase information by using the

expectation-maximization (EM) algorithm and using genotype data to infer haplotype

frequencies. Several early haplotype association studies demonstrated that the EM al-

gorithm is successful at accurately estimating haplotype frequencies (Fallin and Schork

(2000), Zhao et al. (2000)).

Haplotype analysis can have a power disadvantage due to an increasing number

of parameters as the number of possible haplotypes increases. This problem is even

more pronounced when considering interactions between haplotypes and covariates.

When relatively rare haplotypes exist, degrees of freedom are expended on haplotypes

and interaction terms that we have a limited ability to detect, even if a significant

association exists. The common way of dealing with this problem is to exclude the

rare haplotypes from the analysis. However, by doing so, one has to discard samples

of rare haplotypes. One way to retain all of the sample information while reducing

the degrees of freedom is to cluster haplotypes. The advantage of clustering is that

2



Chapter 1. Introduction

it does not throw away the information provided by rare haplotypes. Most haplotype

clustering methods fall into two major categories: methods that use haplotype simi-

larity and methods that use evolutionary relationships (also called cladistic methods).

Haplotype similarity methods define a pairwise similarity measure and then assess how

the similarity differs between cases and controls. The assumption is that if cases have

inherited a disease-causing variant from a common founder haplotype, they will also

have inherited more of the same alleles at nearby markers, resulting in a greater degree

of haplotype similarity than controls (Yu et al. (2004)). Molitor et al. (2003), Yu et al.

(2004), and Waldron and Whittaker (2006) have all developed methods for genetic

association analysis based on haplotype similarity. Clustering methods that use evolu-

tionary relationships are based on representing how haplotypes evolve from an ancestral

haplotype with a cladogram. A cladogram is a tree diagram used to represent a genetic

evolutionary history. Templeton et al. (1987), Templeton (1995), Seltman et al. (2003),

and Durrant et al. (2004) all use cladistic approaches to cluster haplotypes. Seltman

et al. (2003) develop a cladogram-collapsing algorithm that performs 1-df tests to see

if two haplotypes (or clusters) occurring at nearby nodes of the cladogram should be

collapsed into a new cluster. The challenge of cladistic methods is that they rely on

the knowledge of the true, but unknown, evolutionary tree. As a result, most of the

cladistic methods have to estimate this tree and then cluster haplotypes based on the

estimated tree. The haplotype clustering method of Tzeng (2005) bypasses this issue

by probabilistically assigning haplotypes to clusters based on all possible evolution-

ary relationships. Instead of inferring the most likely relationship and performing the

clustering, the method assigns probabilities to all possible relationships based on the

relatedness between haplotypes and the ages of haplotypes. Tzeng et al. (2006) in-
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Chapter 1. Introduction

corporate this clustering method into a generalized linear model framework and show

that the clustered approach has greater power than the full dimensional approach for

detecting global haplotype main effects.

Most complex diseases are thought to be caused by both genetic and environ-

mental factors, as well as interactions between them. Methods to analyze effects of

interactions between haplotypes and environmental factors in case-control studies are

relatively new, and are generally based on either a prospective framework (modeling

the probability of disease status conditional on haplotype and covariates) or a retro-

spective framework (modeling the probability of haplotype and covariates conditional

on disease status). The method of Lake et al. (2003), which is incorporated into the

haplo.stats package in R, estimates and tests for haplotype-covariate interactions us-

ing a prospective approach under the generalized linear model framework. The classic

result of Prentice and Pyke (1979) says that analyzing case-control data with a logistic

regression model and treating the data as if they were sampled prospectively does not

affect the estimates of the odds ratios. They show that the retrospective likelihood

function can be factored into a piece that looks like the prospective likelihood and a

piece that is only a function of the regression variable. But Carroll et al. (1995) show

that standard errors calculated assuming a prospective likelihood will only be correct

if the distribution of the regression variable is unrestricted. In haplotype analysis,

the regression variable of interest is the haplotype, while only genotypes are observ-

able. To reconstruct haplotypes from genotypes, we must make an assumption on the

haplotype pair distribution (usually Hardy-Weinberg Equilibrium (HWE)) to ensure

that the haplotype frequencies will be identifiable. The HWE assumption results in

a restricted distribution for the regression variable. Epstein and Satten (2003) have

4



Chapter 1. Introduction

shown that using a retrospective likelihood is more efficient when making assumptions

about the distribution of covariates. As a result, it would be more appropriate and

more efficient to take into account the case-control sampling scheme and use a retro-

spective likelihood to study the effects of haplotypes, environmental covariates, and

their interactions. One difficulty with using a retrospective likelihood is specifying the

distribution for the environmental covariates. Several approaches, including the work

of Chatterjee and Carroll (2005), Spinka et al. (2005), Chen et al. (2007), Lin and Zeng

(2006), Chen and Kao (2006), and Kwee et al. (2007), have been developed to study

haplotype effects based on a retrospective likelihood while being able to incorporate

covariates and interactions. These approaches differ in how the distribution of the co-

variates is handled and what assumptions are imposed on the haplotype-environment

relationship, HWE, and the prevalence of the disease being investigated. Chatterjee

and Carroll (2005) and Spinka et al. (2005) assume haplotype-environment indepen-

dence and HWE in the population, but do not make any assumptions about the disease

prevalence. Lin and Zeng (2006) assume that the disease of interest is rare, but allow

for Hardy-Weinberg disequilibrium and only assume that haplotype and the environ-

mental covariate are independent conditional on genotype. Chen and Kao (2006) and

Kwee et al. (2007) both assume haplotype-environment independence in the popula-

tion, but Kwee et al. (2007) assume a rare disease and HWE in the population, while

Chen and Kao (2006) only assume HWE in the control population.

These methods all recognize gains in efficiency from using a retrospective likelihood

when analyzing effects of haplotypes and haplotype-environment interactions, but they

are still all limited by large degrees of freedom from including all possible haplotypes in

the model. We propose to further improve the performance of the retrospective frame-

5



Chapter 1. Introduction

work by allowing for haplotype clustering. Kwee et al. (2007) and Spinka et al. (2005)

both suggest that using techniques to reduce the haplotype space could improve the

power of their methods. But there is no method available yet that incorporates clus-

tering and a retrospective likelihood. We incorporate the clustering method of Tzeng

(2005) into a retrospective likelihood that assumes haplotype-environment indepen-

dence, HWE in the target population, and a rare disease. The clustering algorithm

can easily be incorporated into the logistic regression framework, and we derive tests

for main haplotype and interaction effects that are practical to implement. Our method

handles data with unknown haplotype phase, addresses the power limitation due to

an increasing number of parameters, and can be used to study haplotype-environment

interactions.

1.2 Literature Review

Schaid et al. (2002) presented a prospective method to test for haplotype association

that can be used with binary, quantitative, or ordinal responses. Their method can

be used with unphased genetic data and can adjust for the effect of environmental

covariates. They use a generalized linear model framework to develop score tests for

assessing global haplotype association and haplotype specific effects. The method is

implemented in the haplo.stats package in R. Lake et al. (2003) extended the work of

Schaid et al. (2002) to incorporate interactions between haplotype and covariates. Lake

et al. (2003) use the EM algorithm to iteratively estimate the haplotype frequencies

and regression parameters. Parameter estimates can be obtained from the haplo.glm

function in haplo.stats, and can be used to create multivariate Wald statistics to test

6



Chapter 1. Introduction

for global or specific interaction effects.

Tzeng et al. (2006) incorporated the clustering algorithm of Tzeng (2005) into a

generalized linear model framework and derived score tests for global haplotype associ-

ation. The clustering algorithm constructs a core set of haplotypes and probabilistically

incorporates rare haplotypes into the core clusters by evaluating all possible evolution-

ary relationships. The method uses an entropy-based information criterion to find the

balance between information and dimensionality to determine the core set of haplo-

types. Through clustering, they assume that all haplotypes in a cluster have the same

effect on disease. Tzeng et al. (2006) based their work on the prospective method of

Schaid et al. (2002), and allow for adjustment of covariates and modeling a binary

or quantitative trait. They find that their clustering method improves power when

compared with the full-dimensional method.

Zhao et al. (2003) developed a prospective estimating equation approach to estimate

and test for haplotype and interaction effects in case-control studies. They use score

equations derived from the prospective likelihood of disease given the environmental

covariate, and only require assuming HWE in the control population. Some of the

advantages of the method are that it is easy to implement and suitable for estimating

haplotype frequencies based on a large number of SNPs. But Satten and Epstein

(2004) found the method to be inefficient when compared to more recent retrospective

approaches.

Chatterjee and Carroll (2005) developed a retrospective model that assumes in-

dependence between haplotypes and environmental covariates in the population, and

showed that this model is more efficient when estimating regression parameters than the

traditional logistic regression approach. Their method used a semiparametric frame-
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Chapter 1. Introduction

work in which a nonparametric distribution is assumed for the covariate. They then

used the profile likelihood technique to obtain maximum likelihood estimates for the

parameters of interest. Spinka et al. (2005) extend this method to allow for haplo-

type phase ambiguity and missing genetic data. The method does not explicitly need

the rare disease assumption, but does assume HWE in the population. When the rare

disease assumption is not made, the true intercept parameter (the log odds of the base-

line category, log(P (D=1|baseline)
P (D=0|baseline)

)) appears in the risk function and must be estimated.

Spinka et al. (2005) show that this parameter is identifiable but difficult to estimate

without information on the marginal probability of disease (P (D = 1)). Because in

practice this information on P (D = 1) tends to be unavailable, Spinka et al. (2005)

also proposed a modified approach that does not require estimation of the intercept.

The modification assumes a rare disease so as to remove the intercept parameter from

the likelihood, and is equivalent to some of the methods discussed below.

Lin et al. (2005) and Lin and Zeng (2006) presented a retrospective likelihood-

based approach that assumes haplotype-environment independence conditional on the

genotype data. Their method allows for Hardy-Weinberg disequilibrium, but does

assume that the disease of interest is rare. They also use the profile likelihood technique

to calculate the maximum likelihood estimates of the parameters. Assuming that

haplotypes and environmental covariates are independent conditional on genotypes

allows Lin and Zeng (2006) to avoid having to specify the distribution of the haplotypes

for each level of the covariate. However in reality, if haplotypes and covariates are

not independent at the population level, it is not likely that they will be independent

conditional on the genotypes (Kwee et al. (2007)). Hence it is generally recognized that

this conditional independence assumption does not realistically release the haplotype-
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Chapter 1. Introduction

environment independence assumption, but ends up adding complexity to the method.

Kwee et al. (2007) developed a simpler retrospective likelihood-based approach that

assumes both a rare disease and haplotype-environment independence. These assump-

tions allow them to write the likelihood as a product of the likelihood of haplotypes

conditional on disease and environmental covariates and the prospective likelihood of

disease conditional on environmental factors. The second piece results from assuming

a saturated distribution for the environmental covariate and applying the results of

Prentice and Pyke (1979) to the probability of the environmental covariate conditional

on disease. Specifying the distribution of the disease conditional on the environmental

factors allows them, as the methods above, to avoid specifying the distribution of the

covariates. Kwee et al. (2007) also assume HWE in the target population, which along

with the rare disease assumption, implies HWE in the controls. It can be shown that

the method of Kwee et al. (2007) and the method of Spinka et al. (2005) with the rare

disease assumption are equivalent. Kwee et al. (2007) found that their retrospective

approach has greater power and results in more efficient estimators than the traditional

prospective approach.

Chen and Kao (2006) presented a method that is very similar to the method of Kwee

et al. (2007). They introduced a multinomial logistic model where the combinations

of disease status and haplotype pairs are considered the outcome variables and the

environmental factors are considered as explanatory variables. By using the profile

likelihood technique to profile out the distribution of the covariate, they can write

their retrospective likelihood as a prospective multinomial likelihood of disease status

and haplotype pair given the covariate. Chen and Kao (2006) assumed haplotype-

environment independence, but instead of assuming a rare disease as Kwee et al. (2007),

9
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they only make an assumption of HWE for the distribution of haplotype pairs in the

controls. Their assumption of HWE in the controls is equivalent to the assumptions

made by Kwee et al. (2007) of a rare disease and HWE in the target population.

All of these methods recognize that assuming haplotype-environment independence

leads to simpler models and easier parameter estimation. But Spinka et al. (2005) and

Kwee et al. (2007) both have shown that violation of this assumption can lead to

biased inference. There are many examples of environmental covariates of interest

that we would expect to be independent of genetic factors, for example, exposure to a

certain toxin. But Chatterjee and Carroll (2005) gave an example in which the genetic

polymorphisms that may increase a person’s risk of developing a disease from smoking

can also affect the person’s tendency to be addicted to smoking. In this example, the

covariate of interest, whether or not a person smokes, may be dependent on the person’s

genetic makeup. To release the assumption of haplotype-environment independence,

Chen et al. (2007) developed a method that directly models the relationship between

haplotypes and environmental factors. They used a multinomial logistic regression to

describe the relationsip between haplotypes and covariates while still allowing for HWE

in the marginal distribution of haplotype pairs. This parametric model, along with

a nonparametric model for the environmental covariate, results in a semiparametric

model for the distribution of the covariates conditional on the haplotype pairs. They use

semiparametric estimating equations to make inferences on the odds ratios of interest.

As Spinka et al. (2005), they also proposed the rare disease assumption to avoid having

to estimate the true intercept parameter and to simplify the estimation.

10
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1.3 Dissertation Outline

In Chapter 2 we will present a retrospective likelihood that incorporates clustering and

allows for environmental covariates in the model. The assumptions we make and the

likelihood we use are based on the work of Kwee et al. (2007). We feel that the rare

disease assumption is appropriate when considering methods for case-control studies,

and the haplotype-environment independence assumption is reasonable since there are

many cases where we can expect the assumption to hold. We derive generalized score

statistics to test for global and specific haplotype main effects. We compare the tests

for haplotype main effects to the retrospective full-dimensional method as well as the

clustering and full-dimensional prospective methods. In Chapter 2, we also propose

a strategy for evaluating haplotype specific effects that allows us to further group

haplotypes that have similar effects on risk of disease.

In Chapter 3 we extend this likelihood to include haplotype-environment interac-

tions, and derive score statistics to test for global and specific interaction effects. Most

of the methods described in the literature only present tests for specific interaction

effects, assuming the other effects are zero. To implement these interaction tests, we

need prior knowledge about which haplotype will interact with the covariate, but in

practice this information will not usually be known. Ideally, we wish to perform the

same analysis for studying interaction effects as for studying main effects. That is, we

would first carry out a global test on all interaction terms; if we detect a significant

effect, we would then carry out the specific tests for interactions. However, such a pro-

cedure is usually not practical due to a lack of power from a large number of degrees of

freedom. With clustered haplotypes, this test strategy is more feasible since we have
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reduced the parameter space of haplotypes.

In Chapter 4 we present a likelihood for a cases-only analysis and derive score

statistics to test for interaction effects. We compare the results from the case-only

analysis to results using a case-control sample in Chapter 3. In Chapters 2-4, we assess

the validity and power of the proposed tests through simulations.

In Chapter 5 we apply our methods to data from a genetic study of hypertriglyc-

eridemia and confirm previous findings. In Chapter 6 we present a summary of the

contributions of our work and discuss future extensions.
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Chapter 2

Testing for Haplotype Main Effects

2.1 Introduction

The first step in a haplotype association analysis is to assess the main effects of hap-

lotype on the trait being studied. For the retrospective clustering method, we are in-

terested in evaluating the effects of the core haplotypes. In Chapter 2, we will present

the retrospective likelihood and derive the robust score test for testing both for global

and specific haplotype effects. Robust score tests are robust to misspecification of the

model for the odds of disease and do not require maximization of the observed likeli-

hood under the alternative hypothesis. We will present simulation results evaluating

the size and power of the score test, and compare the results to those obtained from the

retrospective, full-dimensional analysis and the prospective, clustering and prospective

full-dimensional analyses.

The retrospective clustering method incorporates the clustering algorithm of Tzeng

et al. (2006) through the allocation matrix, B(p). The algorithm divides the space of

haplotypes into a core category, a group that differs from the core category by one

mutation, a group that differs by two mutations, and so on until all haplotypes are

assigned to a group. The clustering algorithm starts with the last group of haplotypes,
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and clusters each haplotype in the current group into the group that is one step closer

to the core group based on haplotype similarity and age, and this continues until

the space has been collapsed to the group of core haplotypes. In each step, Tzeng

et al. (2006) used an allocation probability matrix to describe how a haplotype is

allocated to each of the haplotypes in the previous group. Specifically, the allocation

probability matrices from each step can be combined together by taking their product.

The combined matrix, denoted by B(p), describes how each haplotype is grouped into

the core haplotypes. By multiplying the design matrix for the full-dimensional space

of haplotypes by B(p), we obtain the design matrix for the clustered haplotypes. This

design matrix is then incorporated into the logistic regression model for disease.

For detecting the global haplotype-phenotype association, we compare our method

to the prospective clustering method of Tzeng et al. (2006) and the retrospective, full-

dimensional method of Kwee et al. (2007). For completeness, we also compare the

method to the prospective, full-dimensional method of Schaid et al. (2002). Schaid

et al. (2002) use a generalized linear model (GLM) framework and derive score tests

for testing for haplotype main effects using a prospective likelihood. The method allows

for environmental covariates and missing phase information, and is implemented in the

haplo.stats package in R.

We will also present a new framework for evaluating the effects of specific hap-

lotypes. If the global haplotype test is significant, the next step is to examine the

effects of specific haplotypes. Investigators commonly employ one of two strategies for

investigating haplotype specific tests. They may choose one haplotype as the reference

haplotype and then test to see if the other haplotypes have a significant effect relative

to the reference. Or they may choose one haplotype of interest and test to see if it is
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different relative to the pooled group of remaining haplotypes. We present an example

where these strategies may lead us to incomplete or misleading conclusions about the

effects of specific haplotypes. We propose an alternative procedure which carries out

all pairwise comparisons between haplotypes and allows us to partition the clusters

into groups that have similar effects on disease.

2.2 Methods

2.2.1 The Retrospective Likelihood for Haplotype Main Ef-

fects

Let D represent the disease status for a subject, with D = 1 denoting a case and D = 0

denoting a control. Let G represent a subject’s multilocus genotype for the region of

interest and let E represent a subject’s value for the environmental covariate. Let H

denote the haplotype pair (h, h′), where (h′, h) is counted as a separate haplotype pair.

We can write the observed retrospective likelihood as

Lobs =
n

∏

i=1

P (Gi, Ei|Di) =
n

∏

i=1

∑

H∈S(Gi)

P (H,Ei|Di)

where n is the total number of subjects and H ∈ S(Gi) represents the set of haplotype

pairs (h, h′) that are consistent with a subject’s genotype. We can further factorize the

likelihood into

Lobs =
n

∏

i=1

∑

H∈S(Gi)

P (H|Ei, Di)P (Ei|Di).
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Kwee et al show that the above can be further written as

Lobs ∝
n

∏

i=1

∑

H∈S(Gi)

P (H|Ei, Di)P (Di|Ei). (2.1)

This comes from the result of Prentice and Pyke (1979) that says the retrospective

likelihood P (Di|Ei) is proportional to the prospective likelihood P (Ei|Di) if we assume

a saturated distribution for E.

We further assume that the disease of interest is rare (defined as having a prevalence

<10%) and that haplotypes and the environmental covariate are independent in the

target population. We first consider P (H|Ei, Di = 0), which simplifies to P (H|Di =

0) under the assumption of haplotype-environment independence. Assuming Hardy-

Weinberg Equilibrium (HWE) in the target population, along with the rare disease

assumption, allows us to assume that the controls will represent a sample from the

population that is also in HWE. Then we can write

P (H|Di = 0) = phph′ .

Epstein and Satten (2003) show that the distribution of haplotypes conditional on
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disease and coviarates in cases can be written as

P (H|Ei, Di = 1) =
P (Di = 1|H,Ei)P (H)P (Ei)

∑

H′ P (Di = 1|H ′, Ei)P (H ′)P (Ei)

=
θ(H,Ei)P (Di = 0|H,Ei)P (H)

∑

H′ θ(H ′, Ei)P (Di = 0|H ′, Ei)P (H ′)

=
θ(H,Ei)P (Di = 0|H)P (H)

∑

H′ θ(H ′, Ei)P (Di = 0|H ′)P (H ′)

=
θ(H,Ei)P (H|Di = 0)P (Di = 0)

∑

H′ θ(H ′, Ei)P (H ′|Di = 0)P (Di = 0)

=
θ(H,Ei)P (H|Di = 0)

∑

H′ θ(H ′, Ei)P (H ′|Di = 0)

where θ(H,E) = P (D=1|H,E)
P (D=0|H,E)

and is the odds of disease for haplotype pair H and

covariate E. Using a logistic regression model for the probability of disease, we write

the odds as

θ(H,E) = exp(α + XCH
β + XEγ)

where XCH
is the row of the clustering design matrix XC that corresponds to haplotype

pair H, β is the vector of haplotype cluster effects, XE is the design matrix for the

environmental covariates, and γ is the vector of covariate effects. The clustering design

matrix is a product of the design matrix for the full dimensional space of haplotypes

and the clustering allocation matrix. We can write XC as

XC = XFB(p).

XF has dimension (L+1)2 by (L+1) where (L+1) is the number of observed haplotypes.

XF has a row for each of the (L+1)2 possible pairs of observed haplotypes and a column
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for each observed haplotype. Each row of XF corresponds to a unique (with respect

to order) haplotype pair and each column corresponds to an observed haplotype. The

design matrix assumes a multiplicative genetic model, which says that the haplotypes

are multiplicative in their effect on the odds of disease. XFH
is the row corresponding to

haplotype pair H = (h, h′) and counts the number of each haplotype in the haplotype

pair. The matrix B(p) is a function of the haplotype frequencies and has dimension

(L + 1) by (L∗ + 1) where (L∗ + 1) is the number of clusters. Matrix B(p) contains

the allocation probabilities that describe how the (L + 1) haplotypes are grouped into

the (L∗ + 1) clusters. We write B(p) as

B(p) =

























B11(p) . . . B1(L∗+1)(p)

B21(p) . . . B2(L∗+1)(p)

...
...

...

B(L+1)1(p) . . . B(L+1)(L∗+1)(p)

























where each element Bjk describes how haplotype j is allocated to cluster k. We can

write XFB(p) as

XFB(p) =

























∑(L+1)
h=1 XF1h

Bh1(p) . . .
∑(L+1)

h=1 XF1h
Bh(L∗+1)(p)

∑(L+1)
h=1 XF2h

Bh1(p) . . .
∑(L+1)

h=1 XF2h
Bh(L∗+1)(p)

...
...

...

∑(L+1)
h=1 XF(L+1)2h

Bh1(p) . . .
∑(L+1)

h=1 XF(L+1)2h
Bh(L∗+1)(p)

























.

To determine P (Di|Ei), Kwee et al show we can write the odds of disease given E
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as,

θ(E) =
P (D = 1|E)

P (D = 0|E)
=

∑

H

θ(H,E)P (H|E,D = 0).

Therefore

θ(E) =
∑

H

exp(α + XCH
β + XEγ)phph′ .

Since

1 + θ(H,E) =
P (D = 0|E)

P (D = 0|E)
+

P (D = 1|E)

P (D = 0|E)

=
1

P (D = 0|E)
,

we can write P (D = 0|E) = 1
1+θ(E)

and P (D = 1|E) = θ(E)
1+θ(E)

. In logistic regression

analysis of case-control data we cannot estimate the true intercept α, so we replace it

with a modified intercept that we can estimate. Let α∗ = α −

probability a case is sampled
probability a control is sampled

and use it to replace α in θ(E). We will call this new

odds θ∗(E). We can now write (2.1) as

Lobs ∝
n

∏

i=1

[

∑

H∈S(Gi)
exp(α + XCH

β + XEi
γ)phph′

∑

H exp(α + XCH
β + XEi

γ)phph′

θ∗(Ei)

1 + θ∗(Ei)

]di
[

∑

H∈S(Gi)
phph′

1 + θ∗(Ei)

]1−di

(2.2)

The term exp(α) in the numerator and denominator of the first part of the likelihood for

a case will cancel, and we can replace it in the numerator with the α∗ from θ∗(Ei). The

remaining terms in θ∗(Ei) cancel with
∑

H exp(XCH
β+XEi

γ)phph′ in the denominator.

This leads us to a simplified version of (2.2)

Lobs ∝
n

∏

i=1

[

∑

H∈S(Gi)
exp(α∗ + XCH

β + XEi
γ)phph′

1 + θ∗(Ei)

]di
[

∑

H∈S(Gi)
phph′

1 + θ∗(Ei)

]1−di

(2.3)
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2.2.2 Score Test for Global Haplotype Effects

The global test for main haplotype effects tests the hypothesis that all of the hap-

lotype cluster parameters are 0, H0 : β = 0. The generalized score statistic is

Sβ = UT

β
V −1

β
Uβ

∣

∣

∣

∣

β=0,ξ=
˜ξ

where Uβ is the score function and Vβ is the generalized

variance function for β. Sβ has a χ2 distribution with L∗ degrees of freedom. Let ξ be

the vector of nuisance parameters, which consists of α∗, the covariate parameter vector

γ and the vector of haplotype frequencies p. The score function is defined as

Uβ =
∂

∂β
log Lobs

and

Vβ = Dββ − IβξI−1

ξξ
DT

βξ − DβξI−1

ξξ
IT

βξ + IβξI−1

ξξ
DξξI−1

ξξ
IT

βξ,

(Boos (1992)). D is the variance-covariance matrix of the score function U = (Uβ, Uξ)T

and I is the observed Fisher information matrix which is constructed by taking first

derivatives of Uβ and Uξ. See Appendix A for the detailed expressions for these

quantities.

Estimation

We evaluate the score statistic using estimates of the nuisance parameters under the

null hypothesis that β = 0. Under the null hypothesis, 2.3 becomes

Lobs =
n

∏

i=1

[

exp(α∗ + XEi
γ)

∑

H∈S(Gi)
phph′

1 + exp(α∗ + XEi
γ)

]di
[

∑

H∈S(Gi)
phph′

1 + exp(α∗ + XEi
γ)

]1−di

.
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We see that the observed likelihood factors into terms only involving the haplotype

frequencies p and terms only involving the regression parameters α∗ and γ. For esti-

mating p, we consider the terms of the observed likelihood that contain p:

Lobs ∝

n
∏

i=1

∑

H∈S(Gi)

phph′ .

If we assume haplotype phase is known, we can write the full data likelihood involving

p as

Lfull ∝
∏

(h,h′)

(phph′)(chh′+dhh′ ),

where chh′ is the number of controls with haplotype pair (h, h′) and dhh′ is the number of

cases with haplotype pair(h, h′). Therefore, the full data likelihood has a multinomial

distribution and we can use the EM algorithm implemented in the haplo.em function

in R to estimate p.

For estimating α∗ and γ, we write the terms of the observed likelihood that contain

the regression parameters:

Lobs ∝

n
∏

i=1

exp(α∗ + XEi
γ)di

1 + exp(α∗ + XEi
γ)

.

α∗ and γ are the parameter estimates from regressing the response di on the environ-

mental covariate E. Therefore, we can use the glm function in R to obtain estimates

for these parameters.
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2.2.3 Score Test for Specific Haplotype Main Effect

The test for a specific haplotype tests the hypothesis that the effect of the specific

haplotype is 0 (compared to the reference haplotype) while the other haplotype effects

are unconstrained. If we are interested in haplotype t, the null hypothesis will be

Ho : βt = 0. Here the score function is

Uβt
=

∂

∂βt

log Lobs

and the generalized variance function is

Vβt
= Dβtβt

− I
βtξI−1

ξξ
DT

βtξ
− D

βtξI−1

ξξ
IT

βtξ
+ I

βtξI−1

ξξ
DξξI−1

ξξ
IT

βtξ

where ξ now consists of α∗, γ, p, and the set of haplotype cluster parameters excluding

βt (i.e. β(−t)). Sβt
= UT

βt
V −1

βt
Uβt

and has a χ2 distribution with 1 degree of freedom.

Estimation

Because we must now estimate all but one of the haplotype cluster parameters under

H0, we use the expectation-conditional-maximization (ECM) algorithm (Meng and Ru-

bin (1993)) to iteratively estimate the regression parameters and haplotype frequencies.

Under the null hypothesis that βt = 0, the full data likelihood assuming the missing
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data (haplotype phase) is known is

Lfull =
e

∏

k=1

∏

(h,h′)

[

phph′

1 +
∑

H exp(α∗ + XCH
β + XEk

γ)phph′

]chh′,k

[

exp(α∗ + XCH
β + XEk

γ)phph′

1 +
∑

H exp(α∗ + XCH
β + XEk

γ)phph

]dhh′,k

.

The steps for estimating the nuisance parameters are

1. Obtain initial estimates of p, α∗, γ, and β.

2. For step s, use E Step to estimate c
(s)
hh′,k and d

(s)
hh′,k.

3. Use M step 1 to find p(s+1) that maximizes Lfull, using β(s), γ(s), α∗(s), p(s), c
(s)
hh′,k

and d
(s)
hh′,k.

4. Use M step 2 to find α∗(s+1), γ(s+1) and β(s+1) that maximize Lfull, using p(s+1),

c
(s)
hh′,k, and d

(s)
hh′,k.

5. Check differences between parameters at steps (s + 1) and s.

6. If difference for at least one of the parameters is greater than a specified limit,

start over with step 2 to estimate c
(s+1)
hh′,k , and d

(s+1)
hh′,k using p(s+1) , β(s+1), γ(s+1),

and α∗(s+1).
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E step

The E step estimates the number of controls with haplotype pair (h, h′) and covariate

level k as

E(chh′,k) =
∑

g

cg,kI(H ∈ S(g))P (H|g)

=
∑

g

cg,kI(H ∈ S(g))
phph′

∑

H∈S(g) phph

and the number of cases with haplotype pair (h, h′) and covariate level k as

E(dhh′,k) =
∑

g

dg,kI(H ∈ S(g))P (H|g)

=
∑

g

dg,kI(H ∈ S(g))
exp(α∗ + XCH

β + XEk
γ)phph′

∑

H∈S(g) exp(α∗ + XCH
β + XEk

γ)phph

,

where cg,k and dg,k are the number of controls and cases, respectively, with genotype g

and covariate level k.

24



Chapter 2. Testing for Haplotype Main Effects

M step 1: Estimating p

To estimate p, we maximize the log of the full data likelihood subject to the constraint
∑

h ph = 1. We introduce a Lagrange multiplier λ and call the new likelihood LM :

LM = log Lfull + λ(
∑

h

ph − 1)

=
e

∑

k=1

∑

(h,h′)

[

chh′,k log(phph′) + dhh′,k[(α
∗ + XChh′

β + XEk
γ) + log(phph′)]−

log(1 +
∑

H

exp(α∗ + XCH
β + XEk

γ)phph)(chh′,k + dhh′,k)

]

+ λ(
∑

h

ph − 1)

=
e

∑

k=1

∑

(h,h′)

[

chh′,k log(phph′) + dhh′,k[(α
∗ + XChh′

β + XEk
γ) + log(phph′)]−

log(1 +
∑

H

exp(α∗ + XCH
β + XEk

γ)phph)(chh′,k + dhh′,k)

]

+ λ(
∑

h

ph − 1)

=
e

∑

k=1

∑

(h,h′)

[

log(phph′)(chh′,k + dhh′,k) + dhh′,k(α
∗ + XChh′

β + XEk
γ)−

nhh′,k log(1 +
∑

H

exp(α∗ + XCH
β + XEk

γ)phph)

]

+ λ(
∑

h

ph − 1).

The portion of LM that depends on p is

LM ∝

e
∑

k=1

∑

(h,h′)

[

log(phph′)nhh′,k−

nhh′,k log(1 +
∑

H

exp(α∗ + XHβ + XEk
γ)phph′)

]

+ λ(
∑

h

ph − 1)

∝
e

∑

k=1

(

∑

h

mh,k log(ph)
)

−

e
∑

k=1

∑

(h,h′)

(

nhh′,k log(1 +
∑

H

exp(α∗ + XHβ + XEk
γ)phph′)

)

+ λ(
∑

h

ph − 1),
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where mh,k is the number of haplotypes of type h with covariate level k. The derivative

of this expression with respect to a specific pτ is

∂

∂pτ

LM ∝

e
∑

k=1

mτ,k

pτ

−

e
∑

k=1

∑

(h,h′)

{

nhh′,k

∑

H exp(α∗ + XCH
β + XEk

γ)I(h = τ)2ph′

1 +
∑

H exp(α∗ + XCH
β + XEk

γ)phph′

}

+ λ

∝

e
∑

k=1

mτ,k

pτ

−

e
∑

k=1

{

nk

∑

h′ exp(α∗ + XCτ,h′
β + XEk

γ)2ph′

1 +
∑

H exp(α∗ + XCH
β + XEk

γ)phph′

}

+ λ

This expression is still difficult to solve for an analytical expression for pτ , therefore we

define the quantity u(p)τ as

u(p)τ =
e

∑

k=1

nk

∑

h′ exp(α∗ + XCτ,h′
β + XEk

γ)2ph′

1 +
∑

H exp(α∗ + XCH
β + XEk

γ)phph′

Then we can write the derivative with respect to pτ as

∂

∂pτ

Lm ∝
e

∑

k=1

mτ,k

pτ

− u(p)τ + λ

By setting the above equal to 0 and solving for pτ we obtain the updating equation for

pτ

pτ =

∑e

k=1 mτ,k

(u(p)τ − λ)
. (2.4)

We carry out another iteration within the M step for estimating p by estimating
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u(p)(s,k) based on p(s), then estimating p(s,k+1) based on u(p)(s,k). This iteration con-

tinues until the difference between p(s,k) and p(s,k+1) is less than a specified limit. Then

p(s,k+1) becomes p(s+1).

M step 2: Estimating α∗, β, and γ

The log of the full likelihood that depends on the regression parameters is

log Lfull ∝
e

∑

k=1

∑

(h,h′)

−nhh′,k log(1 +
∑

H

exp(α∗ + XCH
β + XEk

γ)phph′)

+ dhh′,k

[

log(exp(α∗ + XCH
β + XEk

γ)) + log phph′

]

∝
e

∑

k=1

∑

(h,h′)

−nhh′,k log(1 +
∑

H

exp(α∗ + XCH
β + XEk

γ)phph′)

+ dhh′,k(α
∗ + XCH

β + XEk
γ)

We obtain maximum likelihood estimates for α∗, β, and γ using the optimization

function nlminb in R.

2.2.4 Testing Framework for Haplotype Specific Tests

After a global effect is detected, the next step is to make inferences about specific

haplotype cluster effects. The ideal outcome from the haplotype cluster specific tests

is to be able to partition the clusters into groups that have similar effects on risk of

disease. Suppose we have 6 haplotype clusters with clusters 3 and 5 having a significant

effect on disease and clusters 1, 2, 4, and 6 having no effect. We want our testing

framework to conclude that clusters 1, 2, 4, and 6 belong in a different group than

clusters 3 and 5. In addition, we also want to know if clusters 3 and 5 have different or
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similar effects on disease, and therefore if they should be assigned to the same group or

2 different groups. We propose a new strategy that considers all pairwise comparisons

between haplotypes by assigning each of the haplotypes in turn to be the reference,

and then testing for relative effects of the others.

To evaluate haplotype specific tests, often researchers choose one haplotype to be

the reference and test the effects of the others relative to it. This strategy may be

appropriate if we know in advance there is one haplotype of interest. But in practice

we usually do not have any prior knowledge of a haplotype of interest, and therefore

wish to examine the relationships between all of the haplotypes. Arbitrarily assigning

a haplotype as the reference may make our conclusions dependent on which haplotype

we designate as the reference. Another common strategy is to compare one haplotype

of interest to the group of remaining haplotypes. This strategy may not be adequate to

group the haplotypes, especially when haplotypes being grouped together have opposite

effects.

As an example, we simulated data where we have 7 haplotype clusters defined by the

haplotypes 100010, 011010, 100011, 010000, 010100, 010010, and 100000. Haplotypes

011010 and 010010 have a significant effect on the odds of disease. The odds ratio

for haplotype 011010 is 3 and the odds ratio for haplotype 010010 is 2. We first

assign the most frequent haplotype, 100010, as the reference and test if the others

have different effects relative to it. The results of these tests are in Table 2.1, where

the p-value denotes the p-value for the haplotype specific score test described in the

previous section. From these results, we can conclude that 011010 and 010010 have

different effects from the others, but we do not know anything about the relationship

between the effects of these 2 haplotypes. Suppose instead we had assigned haplotype
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Table 2.1: Haplotype Specific Testing Example: Reference haplotype=100010

Haplotype p-values

011010 3.33 ×10
−15

100011 5.58 ×10−01

010000 7.18 ×10−01

010100 7.01 ×10−01

010010 9.66 ×10
−04

100000 3.49 ×10−01

011010 as the reference haplotype and tested the relative effects of the others. The

results from these tests are in Table 2.2. From these results alone, we could only divide

the haplotypes into 2 groups, one containing haplotype 011010 and one containing the

remaining haplotypes. These results would be misleading because we would not be

able to distinguish haplotype 010010 from the group of remaining haplotypes. But

putting these results together with those from using haplotype 100010 as a reference,

we can conclude that 011010 and 010010 are both different from all of the others and

different from each other. If we carry out the remaining pairwise comparisons, shown

in Table 2.3, we then have the complete picture of the relationships between all of the

haplotype clusters.

Our haplotype specific testing framework can be compared to the cladogram col-

lapsing clustering method of Seltman et al. (2003) discussed in Chapter 1. The method

of Seltman et al. (2003) collapses high frequency core haplotypes together if they have

similar effects on disease. Their method uses marginal tests by simply comparing hap-

lotype A to haplotype B. Our test is a conditional test, as we compare one haplotype
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Table 2.2: Haplotype Specific Testing Example: Reference haplotype=011010

Haplotype p-values

100010 1.34 ×10
−10

100011 6.41 ×10
−06

010000 6.20 ×10
−06

010100 5.77 ×10
−09

010010 1.92 ×10
−04

100000 1.60 ×10
−06

Table 2.3: Haplotype Specific Testing Example: Remaining Comparisons

Reference Haplotype p-values

100011 010000 8.88 ×10−01

010100 5.54 ×10−01

010010 3.50 ×10
−02

100000 2.87 ×10−01

010000 010100 6.77 ×10−01

010010 3.30 ×10
−02

100000 4.14 ×10−01

010100 010010 2.37 ×10
−02

100000 5.85 ×10−01

010010 100000 1.20 ×10
−03
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to the reference while conditioning on the effects of the other haplotypes. We choose

to include separate terms for all of the core haplotypes in our model, but then col-

lapse these haplotypes together if appropriate according to the results of the haplotype

specific tests.

When we conduct all possible pairwise haplotype specific comparisons, we must

control the familywise error rate by adjusting for multiple comparisons. We use the

Bonferroni correction method, which adjusts the α level by dividing by the number

of comparisons being made. The Bonferroni method is a conservative method that is

easy to implement. In the example above, if the original α level was 0.05, we would

declare a comparison significant if the p-value is less than 0.05/21=0.002.

2.3 Simulations

2.3.1 Scenarios

To assess the size and power of the proposed score tests, we simulated data using

two different scenarios. We will describe the coalescent simulation and the FUSION

simulation.

Coalescent Simulation

For the coalescent simulation, we used case-control sampling and single SNPs as the

disease loci for evaluating the global test. We generated haplotype data using the coa-

lescent model similar to the method used by Roeder et al. (2005) and Tzeng (2005). We

generated 100 SNP haplotypes using a variable recombination rate to simulate regions
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of varying haplotype diversity. The parameters used to simulate the haplotypes were

chosen so that the simulated data were similar to the SELP gene in the SeattleSNP

database in terms of the number of SNPs and the linkage disequilibrium (LD) pattern.

We then determined six different liability loci according to allele frequency and hap-

lotype diversity in the region. We chose liability loci with frequencies, denoted by q,

equal to 0.1 and 0.3 and in regions with high, moderate, and low haplotype diversity.

The high haplotype diversity regions represent recombination hotspots and have an

average of 10-16 observed haplotypes. The moderate haplotype diversity regions have

9-12 haplotypes, and the low diversity regions represent haplotype blocks with 5-8 hap-

lotypes. We defined 6-SNP haplotypes using the 3 adjacent SNPs directly to the left of

the liability locus and the 3 SNPs directly to the right of the liability locus. To perform

the case-control sampling, we sampled 2 haplotypes with replacement from the original

sample of 100 haplotypes and sampled the binary environmental covariate from a uni-

form distribution to form an individual’s data. Case-control status is determined using

a penetrance function fji, where fji is the probability that an individual is a case given

they have j copies of the liability allele and level i of a binary environmental covariate.

We assumed a logistic model at the liability locus so that logit(fji) = b0 + b1j + b2i.

We are assuming a genetic effect that is additive on the log scale by assuming the logit

increases by the same amount for each copy of the liability allele. We determined the

appropriate penetrance function for an individual, and if a randomly chosen number

was less than fji, the subject was assigned case status, otherwise they were assigned

control status. The process was repeated until we obtained 500 cases and 500 controls.

We conduct simulations with b1 = 0.0 for size analysis and b1 = 0.5 for power

analysis. b1 = 0.5 implies that the odds ratio for the liability allele is exp(0.5) = 1.6.
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This says that the odds of disease for one copy of the liability allele are 1.6 times the

odds for zero copies of the liability allele. We set b2 = 0.3 and let b0 range from -3.0 to

-3.3, depending on the frequency of the liability locus. These parameter values were

chosen so that the disease prevalence would be approximately 5 % for each scenario.

To evaluate the haplotype specific test, we chose a high haplotype diversity region

with 10 haplotypes. We generated data assuming 2 different liability haplotypes with

frequencies 0.12 and 0.08. For 2 liability haplotypes, the penetrance function fjik is the

probability that an individual is a case given they have j copies of liability haplotype

1, k copies of liability haplotype 2, and level i of a binary environmental covariate.

The model at the liability haplotypes becomes logit(fjik) = b0 + b1j + b2k + b3i. To

evaluate power, we generated data assuming the 2 liability haplotypes had the same

effect (b1 = b2 = 0.5) and also assuming they had different effects (b1 = 0.7, b2 = 0.5

and b1 = 0.7, b2 = 0.3). We set b3 = 0.3 and varied b0 to achieve a 5 % disease

prevalence.

FUSION Simulation

For the FUSION simulation, we used retrospective sampling and a haplotype as the

causal variant. The data simulation was based on the procedure used in Kwee et al.

(2007), which uses parameter estimates based on the retrospective analysis of the

Finland-United States Investigation of Non-Insulin Dependent Diabetes Mellitus (FU-

SION) study in Epstein and Satten (2003). Epstein and Satten (2003) analyzed 5 SNPs

in a region of interest on chromosome 22 in a sample from the FUSION study and found

2 haplotypes with a significant effect on risk of Type II diabetes. We simulated data

based on the observed haplotypes formed from these 5 SNPs. We used the haplotype
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01100 as the causal haplotype, as Epstein and Satten (2003) found this haplotype to

increase the risk of Type II diabetes using their retrospective approach. We simulated

the haplotype data and binary environmental covariate for each individual conditional

on disease status. We assumed haplotype-environment independence and HWE for

simulating control data. For case subjects, we used the model

P (H = (h, h′), E = e|D = 1) =
exp(XChh′

β + Xeγ)phph′F0(e)
∑

H

∑

e∗ exp(XChh′
β + Xe∗γ)phph′F0(e∗)

, (2.5)

where F0(e) is the probability of having covariate e in controls. Based on the FUSION

results, we set F0(0) = 0.17, F0(1) = 0.83, and γ = 1.39. To evaluate Type I error, we

set β01100 = 0.0, and evaluated power for β01100 = 0.2 and β01100 = 0.4. We also used

the same sample size as the FUSION study: 727 cases and 415 controls. To evaluate

the haplotype specific test, we set β01100 = 0.5.

For the global haplotype test, we simulated 2000 datasets to assess Type I error

and 1000 datasets to assess power for α = 0.05 and α = 0.01 for both simulation

scenarios. We also conducted the analyses using the retrospective, full-dimensional

approach, and the prospective full-dimensional and clustering approaches on the same

datasets for both simulations.

To evaluate the haplotype specific test, we simulated 1000 datasets to assess Type

I error and 500 datasets to assess power. For the haplotype specific test, we only

evaluated the retrospective clustering method. There is no available haplotype specific

test for the prospective clustering method. The retrospective full-dimensional method

is not feasible because we must estimate all but one of the full-dimensional haplotype

main effect parameters. This estimation becomes prohibitively difficult when there
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Table 2.4: Type I error rate for Coalescent Simulation: Global Haplotype Test (α = 0.05)

Hap Diversity RD retro FD retro RD prosp FD prosp

High:

q=0.1 0.048 (0.005 ) 0.044 (0.005 ) 0.050 (0.005 ) 0.050 (0.005 )

q=0.3 0.043 (0.005 ) 0.047 (0.005 ) 0.046 (0.005 ) 0.051 (0.005 )

Moderate:

q=0.1 0.047 (0.005 ) 0.028 (0.004 ) 0.052 (0.005 ) 0.051 (0.005 )

q=0.3 0.040 (0.004 ) 0.023 (0.003 ) 0.041 (0.004 ) 0.049 (0.005 )

Low:

q=0.1 0.054 (0.005 ) 0.044 (0.005 ) 0.052 (0.005 ) 0.047 (0.005 )

q=0.3 0.046 (0.005 ) 0.039 (0.004 ) 0.045 (0.005 ) 0.045 (0.005 )

RD denotes reduced-dimensional (or clustering) analysis. FD denotes

full-dimensional analysis. Retro denotes retrospective analysis. Prosp

denotes prospective analysis. Numbers in parentheses are Monte Carlo

standard deviations.

is a large number of estimated haplotypes. The prospective full-dimensional method

can be carried out using haplo.glm in R, but we did not use this method as it is not

comparable to the retrospective clustering method.

2.3.2 Results

Coalescent Simulation

Tables 2.4 and 2.5 presents the Type I error rate analysis for the coalescent simulation.

These results are based on 2000 replicates, with each replicate having 500 cases and 500
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Table 2.5: Type I error rate for Coalescent Simulation: Global Haplotype Test (α = 0.01)

Hap Diversity RD retro FD retro RD prosp FD prosp

High:

q=0.1 0.011 (0.002 ) 0.012 (0.002 ) 0.013 (0.003 ) 0.016 (0.003 )

q=0.3 0.007 (0.002 ) 0.005 (0.002 ) 0.010 (0.002 ) 0.008 (0.002 )

Moderate:

q=0.1 0.009 (0.002 ) 0.007 (0.002 ) 0.009 (0.002 ) 0.016 (0.003 )

q=0.3 0.007 (0.002 ) 0.003 (0.001 ) 0.006 (0.002 ) 0.013 (0.003 )

Low:

q=0.1 0.011 (0.002 ) 0.009 (0.002 ) 0.011 (0.002 ) 0.008 (0.002 )

q=0.3 0.012 (0.002 ) 0.011 (0.002 ) 0.011 (0.002 ) 0.012 (0.002 )

RD denotes reduced-dimensional (or clustering) analysis. FD denotes

full-dimensional analysis. Retro denotes retrospective analysis. Prosp

denotes prospective analysis. Numbers in parentheses are Monte Carlo

standard deviations.

controls. The Type I error rate for the global tests for main haplotype effects are close

to the nominal level for each of the analyses. This is evidence that the χ2 distribution

accurately approximates the asymptotic distribution of the score statistics.

Tables 2.6 and 2.7 shows that the clustering retrospective analysis has the greatest

power for all 6 liability loci. For the loci in the low diversity regions we see very

little difference between the clustering and full-dimensional analyses. When haplotype

diversity is low, the dimension reduction due to clustering is small. For the 2 low

diversity regions, the average number of observed haplotypes was 6 and the average

dimension reduction was 0.25. Therefore, we do not expect to see a difference in the
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Table 2.6: Power for Coalescent Simulation: Global Haplotype Test (α = 0.05)

Hap Diversity RD retro FD retro RD prosp FD prosp

High:

q=0.1 0.849 (0.011 ) 0.775 (0.013 ) 0.843 (0.012 ) 0.772 (0.013 )

q=0.3 0.646 (0.015 ) 0.639 (0.015 ) 0.644 (0.015 ) 0.639 (0.015 )

Moderate:

q=0.1 0.562 (0.016 ) 0.479 (0.016 ) 0.560 (0.016 ) 0.504 (0.016 )

q=0.3 0.911 (0.009 ) 0.844 (0.011 ) 0.907 (0.009 ) 0.868 (0.011 )

Low:

q=0.1 0.839 (0.012 ) 0.827 (0.012 ) 0.835 (0.012 ) 0.826 (0.012 )

q=0.3 0.796 (0.013 ) 0.779 (0.013 ) 0.798 (0.013 ) 0.778 (0.013 )

RD denotes reduced-dimensional (or clustering) analysis. FD denotes

full-dimensional analysis. Retro denotes retrospective analysis. Prosp

denotes prospective analysis. Numbers in parentheses are Monte Carlo

standard deviations.

clustering and full-dimensional analyses. There is also very little difference between

the clustering and full-dimensional analyses for the loci with frequency 0.3 in a high

haplotype diversity region. This is due to a large number of observed haplotypes and

a relatively small dimension reduction due to clustering. For this region, the average

number of observed haplotypes was 15 and the average dimension reduction was 2. The

increase in power due to clustering for the retrospective method is greatest for the loci in

a moderate haplotype diversity region. For the locus with frequency 0.1 in a moderate

haplotype diversity region, there was an average of 12 observed haplotypes and an
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Table 2.7: Power for Coalescent Simulation: Global Haplotype Test (α = 0.01)

Hap Diversity RD retro FD retro RD prosp FD prosp

High:

q=0.1 0.642 (0.015 ) 0.541 (0.016 ) 0.640 (0.015 ) 0.549 (0.016 )

q=0.3 0.401 (0.015 ) 0.377 (0.015 ) 0.403 (0.016 ) 0.384 (0.015 )

Moderate:

q=0.1 0.319 (0.015 ) 0.257 (0.014 ) 0.314 (0.015 ) 0.269 (0.014 )

q=0.3 0.769 (0.013 ) 0.643 (0.015 ) 0.763 (0.013 ) 0.685 (0.015 )

Low:

q=0.1 0.660 (0.015 ) 0.645 (0.015 ) 0.663 (0.015 ) 0.644 (0.015 )

q=0.3 0.598 (0.016 ) 0.573 (0.016 ) 0.597 (0.016 ) 0.565 (0.016 )

RD denotes reduced-dimensional (or clustering) analysis. FD denotes

full-dimensional analysis. Retro denotes retrospective analysis. Prosp

denotes prospective analysis. Numbers in parentheses are Monte Carlo

standard deviations.

Table 2.8: Type I error Rate and Power for Coalescent Simulation: Haplotype Specific Test
(α = 0.05)

True Effect Global Hap1 Hap2

β1 = β2=0.0 0.039 (0.006 ) 0.025 (0.005 ) 0.029 (0.005 )

β1 = β2=0.5 0.958 (0.009 ) 0.892 (0.014 ) 0.794 (0.018 )

β1=0.7, β2=0.3 0.994 (0.003 ) 0.998 (0.002 ) 0.312 (0.021 )

β1=0.7, β2=0.5 0.998 (0.002 ) 1.000 (<0.001 ) 0.798 (0.018 )

Numbers in parentheses are Monte Carlo standard deviations.
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Table 2.9: Type I error Rate and Power for Coalescent Simulation: Haplotype Specific Test
(α = 0.01)

True Effect Global Hap1 Hap2

β1 = β2=0.0 0.007 (0.003 ) 0.005 (0.002 ) 0.003 (0.002 )

β1 = β2=0.5 0.854 (0.016 ) 0.716 (0.020 ) 0.556 (0.022 )

β1=0.7, β2=0.3 0.976 (0.007 ) 0.988 (0.005 ) 0.120 (0.015 )

β1=0.7, β2=0.5 0.990 (0.004 ) 0.980 (0.006 ) 0.570 (0.022 )

Numbers in parentheses are Monte Carlo standard deviations.

average dimension reduction of 3. For the locus with frequency 0.3 in a moderate

haplotype diversity region, there was an average of 14 observed haplotypes and an

average dimension reduction of 4.

The simulation results for the haplotype specific tests are presented in Table 2.8.

Data were simulated using 2 causal haplotypes, one with frequency 0.12 (haplotype 1)

and the other with frequency 0.08 (haplotype 2). The haplotype specific score statistics

test the hypothesis that one of the haplotype effects is 0 while the other effects are

unconstrained. The Type I error analysis shows that the haplotype specific test is

slightly conservative. The global haplotype test has higher power when there are 2

causal haplotypes with an effect size of 0.5 (0.958 for α = 0.05) than when there is one

liability SNP with an effect size of 0.5 (0.849 for α = 0.05 in Table 2.6). The haplotype

specific tests also have acceptable power, with the test for causal haplotype 1 having

greater power than the test for causal haplotype 2. We expect to have greater power

to detect the effect of causal haplotype 1 because it has a greater frequency. When

causal haplotype 1 has an effect size of 0.7 and causal haplotype 2 has an effect size of
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Table 2.10: Type I Error Rate and Power for FUSION Simulation: Global Haplotype Test
(α = 0.05)

True Effect RD retro FD retro RD prosp FD prosp

β=0.0 0.050 (0.005 ) 0.032 (0.004 ) 0.051 (0.005 ) 0.060 (0.005 )

β=0.2 0.255 (0.014 ) 0.158 (0.012 ) 0.248 (0.014 ) 0.188 (0.012 )

β=0.4 0.865 (0.011 ) 0.724 (0.014 ) 0.834 (0.012 ) 0.649 (0.015 )

RD denotes reduced-dimensional (or clustering) analysis. FD denotes

full-dimensional analysis. Retro denotes retrospective analysis. Prosp

denotes prospective analysis. Numbers in parentheses are Monte Carlo

standard deviations.

0.3, both the global haplotype test and the test for causal haplotype 1 have very high

power. Causal haplotype 2 has a smaller frequency and effect size, and therefore there

is lower power to detect the effect of this haplotype.

FUSION simulation

For the FUSION simulation, the average number of haplotypes estimated in each sam-

ple is 16 and the average number of haplotype clusters is 9. Therefore, the average

decrease in the degrees of freedom from the full-dimensional test to the clustering test

is 7. The Type I error rate and power results for simulation scenario 2 are presented in

Tables 2.10 and 2.11. These results are based on 2000 replicates for Type I error rate

analysis (β = 0) and 1000 replicates for power analysis. The true effect refers to the

effect of the causal haplotype (01100) used to generate the data. The global test for

haplotype main effects has type I error close to the nominal level for all of the analy-
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Table 2.11: Type I Error Rate and Power for FUSION Simulation: Global Haplotype Test
(α = 0.01)

True Effect RD retro FD retro RD prosp FD prosp

β=0.0 0.010 (0.002 ) 0.004 (0.001 ) 0.010 (0.002 ) 0.021 (0.003 )

β=0.2 0.116 (0.010 ) 0.048 (0.007 ) 0.110 (0.010 ) 0.066 (0.008 )

β=0.4 0.676 (0.015 ) 0.488 (0.016 ) 0.637 (0.015 ) 0.436 (0.016 )

RD denotes reduced-dimensional (or clustering) analysis. FD denotes

full-dimensional analysis. Retro denotes retrospective analysis. Prosp

denotes prospective analysis. Numbers in parentheses are Monte Carlo

standard deviations.

Table 2.12: Type I Error Rate and Power for FUSION Simulation: Haplotype Specific Test

α = 0.05 α = 0.01

True Effect Global Specific Global Specific

β=0.0 0.050 (0.007 ) 0.033 (0.006 ) 0.012 (0.003 ) 0.003 (0.002 )

β=0.5 0.976 (0.007 ) 0.982 (0.006 ) 0.926 (0.012 ) 0.912 (0.013 )

Numbers in parentheses are Monte Carlo standard deviations.

ses. This indicates that the score statistics under H0 have the proper χ2 asymptotic

distribution. The full-dimensional retrospective test is slightly conservative, which can

be expected because of the large number of degrees of freedom. The full-dimensional

prospective test is slightly anti-conservative.

The clustering retrospective analysis has the greatest power for each of the effect
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sizes, and has slightly greater power than the clustering prospective analysis. For both

retrospective and prospective approaches, the clustering analysis has greater power

than the full-dimensional analysis. This difference in power is similar for the retrospec-

tive and prospective approaches.

The haplotype specific test results are presented in Table 2.12. As with the coales-

cent simulation, the haplotype specific test is conservative. The global and specific tests

have almost identical power, which is expected as there is only one causal haplotype.

Therefore the global and specific tests are detecting the same effect.

2.4 Conclusions

We have proposed a method that addresses one of the major limitations to the useful-

ness of haplotype analysis for detecting genetic associations in complex diseases. Our

method reduces the degree of freedom by clustering haplotypes and carrying out infer-

ence based on a core set of haplotypes. The method uses unphased genotype data and

can incorporate environmental covariates, which is important when studying complex

diseases. The method has greater power than the retrospective full-dimensional ap-

proach, evidence that reducing the degrees of freedom through clustering improves the

performance of haplotype analysis. The greater the dimension reduction due to clus-

tering, the larger the difference in power between the clustering and full-dimensional

approaches. This can be seen from the larger power difference in our results from the

FUSION simulation, where the dimension reduction is much greater than for any of

the coalescent simulation scenarios.

Our simulations show little difference between the prospective and retrospective
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clustering approaches. This supports the finding of Satten and Epstein (2004) that

retrospective and prospective likelihood analyses have similar power when assuming

haplotypes have a multiplicative effect on the disease odds. Our clustering retrospec-

tive likelihood assumes a multiplicative model of disease odds because the clustering

algorithm must make this assumption.

The clustering retrospective method assumes a rare disease, while the clustering

algorithm is based on the common disease/common variant hypothesis. The com-

mon disease/common variant hypothesis says that common variants are responsible

for common diseases. This assumption for the clustering algorithm allows us to reduce

the degrees of freedom by concentrating attention on common variants that comprise

the set of core haplotypes. We do not expect this contradiction to be a problem as

we expect rare causal variants to be oversampled in a case-control sample. In addi-

tion, Kwee et al. (2007) found that the retrospective method assuming a multiplicative

disease model is robust to the assumption of a rare disease. Case-control studies are

usually used when the disease prevalence is less than 10 %, and they found the method

has similar size and power for disease prevalences of 5 % and 10 %.

Satten and Epstein (2004) also show that the retrospective approach with a mul-

tiplicative model is robust to the assumption of HWE in the target population. They

also propose a method to model departure from HWE due to inbreeding and population

stratification by incorporating a fixation index. The fixation index is a measurement

of how different the subpopulation is from a population in HWE.

The third assumption that our method makes is that haplotypes and the environ-

mental covariate are independent in the population. Spinka et al. (2005) and Kwee

et al. (2007) found that the retrospective methods are sensitive to this assumption of
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haplotype-environment independence. We expect this assumption to be valid in many

cases, but if there is evidence that the environmental covariate is also influenced by

genetic factors, other methods should be used. Spinka et al. (2005) propose a modi-

fied prospective approach that is similar to the estimating equation method of Zhao

et al. (2000). This method is more robust to the haplotype-environment independence

assumption. Chen et al. (2007) develop a method that allows a direct relationship

between haplotypes and environmental covariates. It may be interesting to see if these

methods can incorporate haplotype clustering, resulting in a method that can be used

if there is a known relationship between haplotypes and covariates.
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Testing for Haplotype-Environment

Interactions

3.1 Introduction

It is known that complex diseases are caused by both genetic and environmental fac-

tors, and researchers are becoming increasingly interested in studying the interactions

between these factors. There are numerous methods available to test for interactions

between single SNPs and environmental covariates, but methods for studying interac-

tions with haplotypes are relatively new and still developing. Recent methods have

focused on retrospective likelihood based approaches for studying these interactions in

case-control studies. It has been shown that a prospective approach for analyzing these

data is equivalent to a retrospective approach that respects the case-control sampling

design (Prentice and Pyke (1979)), but only if we assume a nonparametric distribution

for all of the covariates. But for haplotype-based studies, we must make some as-

sumption about the haplotype distribution to guarantee identifiability when haplotype

phase is unknown. In epidemiological studies, it is also common to assume that the

genetic factors, or haplotypes, are independent of the environmental covariates. If we

wish to makes these assumptions about the covariates, then a prospective approach is

no longer the most efficient (Satten and Epstein (2004)). A retrospective likelihood
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allows us to incorporate these assumptions and improve efficiency.

Some of the retrospective methods presented in Chapter 1 only present tests to test

for interaction between a specific haplotype and the covariate of interest. While there

are situations where this may be an appropriate test to consider, ideally we would use

the same strategy to study interaction effects that we use for studying main effects. We

wish to first carry out a global test for interaction effects. Then if a global association

is detected, we carry out tests for specific interaction effects. This strategy is usually

not practical for methods that consider the full-dimensional haplotype space due to

lack of power from large degrees of freedom. But our method uses a reduced set of

haplotypes, and therefore this strategy becomes feasible.

In Chapter 2, we derived a retrospective likelihood that incorporates haplotype clus-

tering and is based on assuming a rare disease and HWE and haplotype-environment

independence in the target population. In Chapter 3 we extend the methods developed

in Chapter 2 to study haplotype-environment interactions. We present score statistics

to test for both global and haplotype specific interaction effects. The proposed frame-

work for testing for haplotype specific main effects can also be applied to testing for

specific interaction effects.
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3.2 Methods

3.2.1 The Retrospective Likelihood for Haplotype-Environment

Interaction

Here we extend the likelihood in (2.3) to allow for haplotype-environment interactions.

We write the design matrix for haplotype-environment interactions as XC ⊗XE, where

⊗ denotes the Kronecker product. If we assume a binary covariate, we write the row

of the design matrix corresponding to haplotype pair H as

XHE = XCH
⊗ XE =

(

XCH1
XE XCH2

XE . . . XCHL∗
XE.

)

XHE will have L∗(k−1) columns, where k is the number of levels of the environmental

covariate and (L∗ + 1) is the number of haplotype clusters. We write the vector of

L∗(k − 1) interaction parameters as ν. We can modify the odds of disease as

θ(H,E) = exp(α + XCβ + XEγ + XHEν)

and now the likelihood for testing for interactions becomes

Lobs ∝

n
∏

i=1

[

∑

H∈S(Gi)
exp(α∗ + XCH

β + XEi
γ + XHEi

ν)phph′

1 + θ∗(Ei)

]di
[

∑

H∈S(Gi)
phph′

1 + θ∗(Ei)

]1−di

.

(3.1)
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3.2.2 Score Test for Global Interaction Effect

The null hypothesis to test for global interaction effects for a certain environmental

covariate is H0 : ν = 0. The score statistic is Sν = UT
νV −1

ν Uν

∣

∣

∣

∣

ν=0,ξ=
˜ξ
, and has a χ2

distribution with L∗(k − 1) degrees of freedom.

Uν =
∂

∂ν
log Lobs

and

Vν = Dνν − IνξI−1

ξξ
DT

νξ − DνξI−1

ξξ
IT

νξ + IνξI−1

ξξ
DξξI−1

ξξ
IT

νξ,

where D is the variance-covariance matrix of the score function U = (Uν ,ξ)T and I is

the observed information matrix (Boos (1992)). The vector of nuisance parameters, ξ,

now consists of α∗, γ, β, and p. See Appendix B for detailed expressions for the score

and variance functions.

Estimation

We use the expectation-conditional maximization (ECM) algorithm to estimate all of

the nuisance parameters ξ under the null hypothesis. The estimation scheme is the

same as that in section 2.2.3 for the score test for a specific haplotype main effect.

The difference for the global interaction test is that we must estimate the haplotype

main effect parameters β for all clusters. The E step estimates the number of cases

and controls of each haplotype pair and covariate value. The first M step estimates

maximum likelihood estimates of p using the updating equation (2.4). The second M

step uses the optimization function nlminb in R to obtain MLEs of α∗, γ, and β.
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3.2.3 Score Test for Specific Haplotype-Environment Interac-

tion Effect

The test for a specific interaction effect tests the hypothesis that the specific effect is

0 while the other interaction effects are unconstrained. If we include one covariate in

the model, the null hypothesis for testing for an interaction between haplotype t and

the covariate is H0 : νt = 0. The score function is

Uνt
=

∂

∂νt

log Lobs

and the generalized variance function is

Vνt
= Dνtνt

− I
νtξI−1

ξξ
DT

νtξ
− D

νtξI−1

ξξ
IT

νtξ
+ I

νtξI−1

ξξ
DξξI−1

ξξ
IT

νtξ
.

The score statistic is Sνt
= UT

νt
V −1

νt
Uνt

∣

∣

∣

∣

νt=0,ξ=
˜ξ
, and has a χ2 distribution with 1 degree

of freedom. The vector of nuisance parameters ξ now contains α∗, β, γ, p, and the

interaction parameters ν, excluding νt.

Estimation

The estimation scheme for the test for a specific haplotype-environment effect is similar

to that for the test of a specific main haplotype effect presented in 2.2.3. Now we must

also estimate the interaction effects ν, excluding the parameter of interest νt.
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E Step

The E step for estimating the number of controls with haplotype pair (h, h′) and

covariate level k is the same as that in Section 2.2.3. The E step for estimating the

number of cases with haplotype pair (h, h′) and covariate level k is now

E(dhh′,k) =
∑

g

dg,kI(H ∈ S(g))P (H|g)

=
∑

g

dg,kI(H ∈ S(g))
exp(α∗ + XCH

β + XEk
γ + XHEk

ν)phph′

∑

H∈S(g) exp(α∗ + XCH
β + XEk

γ + XHEk
ν)phph′

where dg,k is the number of cases with genotype g and covariate level k.
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M step 1: Estimating p

To estimate p, we use a Lagrange multiplier λ and maximize the log of the full-data

likelihood subject to the constraint
∑

h ph = 1.

LM = log Lfull + λ(
∑

h

ph − 1)

=
e

∑

k=1

∑

(h,h′)

[

chh′,k log(phph′) + dhh′,k[(α
∗ + XChh′

β + XEk
γ + X(h,h′)Ek

ν)+

log(phph′)] − log(1 +
∑

H

exp(α∗ + XCH
β + XEk

γ + XHEk
ν)phph′)

(chh′,k + dhh′,k)

]

+ λ(
∑

h

ph − 1)

=
e

∑

k=1

∑

(h,h′)

[

chh′,k log(phph′) + dhh′,k[(α
∗ + XChh′

β + XEk
γ + X(h,h′)Ek

ν)+

log(phph′)] − log(1 +
∑

H

exp(α∗ + XCH
β + XEk

γ + XHEk
ν)phph′)

(chh′,k + dhh′,k)

]

+ λ(
∑

h

ph − 1)

=
e

∑

k=1

∑

(h,h′)

[

log(phph′)(chh′,k + dhh′,k) + dhh′,k(α
∗ + XChh′

β + XEk
γ + X(h,h′)Ek

ν)−

nhh′,k log(1 +
∑

H

exp(α∗ + XCH
β + XEk

γ + XHEk
ν)phph′)

]

+ λ(
∑

h

ph − 1)
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The portion of LM that depends on p is

LM ∝
e

∑

k=1

∑

(h,h′)

[

log(phph′)nhh′,k−

nhh′,k log(1 +
∑

H

exp(α∗ + XCH
β + XEk

γ + XHEk
ν)phph′)

]

+ λ(
∑

h

ph − 1)

∝

e
∑

k=1

(

∑

h

mh,k log(ph)
)

−

e
∑

k=1

∑

(h,h′)

(

nhh′,k log(1 +
∑

H

exp(α∗ + XCH
β + XEk

γ + XHEk
ν)phph′)

)

+ λ(
∑

h

ph − 1),

where mh,k is the number of haplotypes of type h with covariate level k. The derivative

with respect to a specific pτ is

∂

∂pτ

LM ∝
e

∑

k=1

mτ,k

pτ

−

e
∑

k=1

∑

(h,h′)

{

nhh′,k

∑

H exp(α∗ + XCH
β + XEk

γ + XHEk
ν)I(h = τ)2ph′

1 +
∑

H exp(α∗ + XCH
β + XEk

γ + XHEk
ν)phph′

}

+ λ

∝
e

∑

k=1

mτ,k

pτ

−

e
∑

k=1

{

nk

∑

h′ exp(α∗ + XCτ,h′
β + XEk

γ + X(τ,h′)Ek
ν)2ph′

1 +
∑

H exp(α∗ + XCH
β + XEk

γ + XHEk
ν)phph′

}

+ λ.

As in Chapter 2, we define the quantity u(p)τ as

u(p)τ =
e

∑

k=1

nk

∑

h′ exp(α∗ + Xτ,h′β + XEk
γ + X(τ,h′)Ek

ν)2ph′

1 +
∑

H exp(α∗ + XHβ + XEk
γ + XHEk

ν)ph1ph2
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where nk is the number of subjects with covariate level k. Then the derivative with

respect to pτ becomes

∂

∂pτ

LM ∝
e

∑

k=1

mτ,k

pτ

− u(p)τ + λ

and the updating equation for pτ is

pτ =

∑e

k=1 mτ,k

(u(p)τ − λ)
. (3.2)

We carry out another iteration within the M step for estimating p by estimating

u(p)(s,k) based on p(s), then estimating p(s,k+1) based on u(p)(s,k). This iteration con-

tinues until the difference between p(s,k) and p(s,k+1) is less than a specified limit. Then

p(s,k+1) becomes p(s+1).

M step 2: Estimating α∗, γ, β, and ν

The log of the full likelihood that depends on the regression parameters is

log Lfull ∝

e
∑

k=1

∑

(h,h′)

−nhh′,k log(1 +
∑

H

exp(α∗ + XCH
β + XEk

γ + XHEk
ν)phph′)

+ dhh′,k

[

log(exp(α∗ + XCH
β + XEk

γ + XHEk
ν)) + log phph′

]

∝

e
∑

k=1

∑

(h,h′)

−nhh′,k log(1 +
∑

H

exp(α∗ + XCH
β + XEk

γ + XHEk
ν)phph′)

+ dhh′,k(α
∗ + XCH

β + XEk
γ + XHEk

ν).

We obtain maximum likelihood estimates for α∗, β, γ, and ν using the optimization

function nlminb in R.
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3.3 Simulations

3.3.1 Scenarios

To assess the size and power of the proposed score tests for interactions, we use simu-

lation scenarios similar to those described in Chapter 2.

Coalescent Simulation

The coalescent simulation uses haplotype data generated using the coalescent model.

We perform case-control sampling and use a single SNP as the disease liability locus.

We use the same 6 scenarios for selecting a disease locus as in Chapter 2, which are

chosen based on allele frequency (0.1 and 0.3) and haplotype diversity (high, moderate,

and low) in the region. The logistic model for the liability variant allows for the effect

of an interaction between the liability variant and the environmental covariate, and is

defined as logit(fji) = b0 + b1j + b2i + b3i ∗ j where j is the number of copies of the

liability SNP and i is the level of the environmental covariate. We set b3 = 0.0 to

evaluate Type I error rate and b3 = 0.5 and 0.7 to evaluate power. We set b1 = 0.5,

b2 = 0.3, and vary b0 so that the prevalence for each situation is approximately 5 %.

We analyze 6-SNP haplotypes that exclude the liability locus. The haplotypes are

formed from the 3 adjacent SNPs directly to the left and right of the liability locus.

For each replicate we generate 500 cases and 500 controls.

To evaluate the interaction specific test, we chose the same high haplotype diversity

region used to test for specific main haplotype effects in Chapter 2. We generated data

assuming 2 different liability haplotypes with frequencies 0.12 and 0.08. The model at

the liability haplotypes is logit(fjik) = b0 + b1j + b2k + b3i + b4i ∗ j + b5i ∗ k, where
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fjik is the probability that an individual is a case given they have j copies of liability

haplotype 1, k copies of liability haplotype 2, and level i of the binary environmental

covariate. We evaluated power assuming the interaction effects between both of the

liability haplotypes and the covariate were the same (b4 = b5 = 0.5) and different

(b4 = 0.7, b5 = 0.5). We set b1 = b2 = 0.5, b3 = 0.3, and varied b0 to achieve a 5 %

disease prevalence.

FUSION Simulation

The FUSION simulation uses haplotype data based on 5 SNPs of interest on chromo-

some 22 in the FUSION study. We allow for interaction between the causal haplotype

(01100) and the environmental covariate by modifying equation (2.5) to become

P (H = (h, h′), E = e|D = 1) =
exp(XChh′

β + Xeγ + Xhh′,eν)phph′F0(e)
∑

H

∑

e∗ exp(XChh′
β + Xe∗γ + Xhh′,e∗ν)phph′F0(e∗)

.

(3.3)

We set the probability for each level of the covariate in the controls to be 0.5. This

eliminates estimation problems that could result from having low counts for certain

haplotype-environmental covariate combinations. We used the same sample size as in

scenario 1: 500 cases and 500 controls. We set β01100 = 0.65, γ = 1.39, and ν01100,1 = 0.0

to evaluate Type I error rate and ν01100,1 = 0.3, 0.5, and 0.7 to evaluate power. We

evaluated the interaction specific test using the simulated data with an effect size of

0.7.

For all simulations, we simulated 1000 datasets to assess Type I error rate and 500

datasets to assess power for α = 0.05 and α = 0.01. For the low diversity regions in

the coalescent simulation we also conducted the analyses using the retrospective full-
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dimensional method of Kwee et al. (2007). For this analysis, we must estimate the full-

dimensional main effect parameters. In the case of the interaction specific test, we must

estimate all of the full-dimensional interaction parameters except the one that is being

tested. Therefore the estimation for these parameters of main and interaction effects is

not feasible for the FUSION simulation and the high and moderate haplotype diversity

regions of the coalescent simulation. Furthermore, there is no available interaction test

for the prospective clustering method. Consequently, in this chapter we will evaluate

our proposed test under the retrospective framework, and report the results of the

clustering analysis only for most scenarios.

3.3.2 Results

Coalescent Simulation

Table 3.1 presents the Type I error rate analysis for the global interaction test from

the coalescent simulation. The Type I error rate is at the nominal level for all six

of the liability loci for the global interaction test, indicating that the χ2 distribution

accurately estimates the asymptotic distribution of the score statistic.

Power results for an interaction effect of 0.5 and 0.7 are presented in Tables 3.2 and

3.3. The interaction effects represent the effect of the interaction between the liability

locus and the environmental covariate. We set ν = 0.5, meaning that the odds ratio

of the covariate for individuals with the liability locus is exp(0.5) = 1.65. We see an

increase in power for ν = 0.7 compared to ν = 0.5. For the liability loci where we

are able to conduct the retrospective full-dimensional analysis, we do see an increase

in power for the retrospective clustering analysis as compared to the retrospective
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Table 3.1: Type I Error Rate for Coalescent Simulation: Global Interaction Test

α = 0.05 α = 0.01

Hap Diversity RD retro FD retro RD retro FD retro

High:

q=0.1 0.054 (0.007 ) NA 0.015 (0.004 ) NA

q=0.3 0.048 (0.007 ) NA 0.010 (0.003 ) NA

Moderate:

q=0.1 0.056 (0.007 ) NA 0.010 (0.003 ) NA

q=0.3 0.067 (0.008 ) NA 0.014 (0.004 ) NA

Low:

q=0.1 0.057 (0.007 ) 0.042 (0.006 ) 0.009 (0.003 ) 0.008 (0.003 )

q=0.3 0.047 (0.007 ) 0.038 (0.006 ) 0.014 (0.004 ) 0.011 (0.003 )

RD denotes reduced-dimensional (or clustering) analysis. FD denotes

full-dimensional analysis. Retro denotes retrospective analysis. NA

indicates that the analysis was not conducted. Numbers in parentheses

are Monte Carlo standard deviations.

full-dimensional analysis. The retrospective full-dimensional analysis is only feasible

in regions with low haplotype diversity. As with the test for global main haplotype

effects, we do not expect a large difference in power between the clustering and full-

dimensional analyses for low haplotype diversity regions since the reduction in degrees

of freedom is small. We are still able to observe slight power improvement. This result

suggests potential power gain that can be brought by the clustering strategy when the

haplotype diversity is moderate and high.

The interaction specific test results are presented in Tables 3.4 and 3.5. Data
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Table 3.2: Power for Coalescent Simulation: Global Interaction Test, ν = 0.5

α = 0.05 α = 0.01

Hap diversity RD retro FD retro RD retro FD retro

High:

q=0.1 0.422 (0.022 ) NA 0.222 (0.019 ) NA

q=0.3 0.188 (0.017 ) NA 0.060 (0.011 ) NA

Moderate:

q=0.1 0.240 (0.019 ) NA 0.088 (0.013 ) NA

q=0.3 0.262 (0.020 ) NA 0.110 (0.014 ) NA

Low:

q=0.1 0.496 (0.022 ) 0.420 (0.022 ) 0.244 (0.019 ) 0.208 (0.018 )

q=0.3 0.280 (0.020 ) 0.264 (0.020 ) 0.104 (0.014 ) 0.084 (0.012 )

RD denotes reduced-dimensional (or clustering) analysis. FD denotes

full-dimensional analysis. Retro denotes retrospective analysis. NA

indicates that the analysis was not conducted. Numbers in parentheses

are Monte Carlo standard deviations.

were simulated using 2 causal haplotypes with frequencies 0.12 and 0.08. The Type

I error rate analysis shows that the specific interaction test is conservative, similar

to the specific haplotype main effect test. This is likely due to having to estimate

all of the main effect haplotype parameters as well as all but one of the interaction

parameters for the specific interaction test. We can compare the power of the global

test in Table 3.4 to the power in Table 3.2 for the liability locus with frequency 0.1

and in a high haplotype diversity region. The power of the global test is greater with

2 causal haplotypes than with 1 causal SNP. When the interaction effect between the
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Table 3.3: Power for Coalescent Simulation: Global Interaction Test, ν = 0.7

α = 0.05 α = 0.01

Hap diversity RD retro FD retro RD retro FD retro

High:

q=0.1 0.717 (0.020 ) NA 0.469 (0.022 ) NA

q=0.3 0.310 (0.021 ) NA 0.112 (0.014 ) NA

Moderate:

q=0.1 0.452 (0.022 ) NA 0.244 (0.019 ) NA

q=0.3 0.436 (0.022 ) NA 0.204 (0.018 ) NA

Low:

q=0.1 0.790 (0.018 ) 0.752 (0.019 ) 0.586 (0.022 ) 0.560 (0.022 )

q=0.3 0.422 (0.022 ) 0.388 (0.022 ) 0.196 (0.018 ) 0.178 (0.017 )

RD denotes reduced-dimensional (or clustering) analysis. FD denotes

full-dimensional analysis. Retro denotes retrospective analysis. NA

indicates that the analysis was not conducted. Numbers in parentheses

are Monte Carlo standard deviations.

environmental covariate and each of the causal haplotypes is the same, we see the

power for detecting the interaction effect for causal haplotype 1 (q = 0.12) is greater

than that for the interaction effect for causal haplotype 2 (q = 0.08). When the effect

of haplotype 1 increases from 0.5 to 0.7, the power of the global test and the test for

haplotype 1 increases.
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Table 3.4: Type I Error Rate and Power for Coalescent Simulation: Interaction Specific Test
(α = 0.05)

True Effect Global Hap 1 Hap 2

ν1 = ν2=0.0 0.051 (0.007 ) 0.022 (0.005 ) 0.027 (0.005 )

ν1 = ν2=0.5 0.550 (0.022 ) 0.456 (0.022 ) 0.366 (0.022 )

ν1=0.7, ν2=0.5 0.782 (0.018 ) 0.738 (0.020 ) 0.340 (0.021 )

Numbers in parentheses are Monte Carlo standard deviations.

Table 3.5: Type I Error Rate and Power for Coalescent Simulation: Interaction Specific Test
(α = 0.01)

True Effect Global Hap 1 Hap 2

ν1 = ν2=0.0 0.007 (0.003 ) 0.004 (0.002 ) 0.004 (0.002 )

ν1 = ν2=0.5 0.324 (0.021 ) 0.206 (0.018 ) 0.162 (0.016 )

ν1=0.7, ν2=0.5 0.536 (0.022 ) 0.470 (0.022 ) 0.130 (0.015 )

Numbers in parentheses are Monte Carlo standard deviations.

FUSION Simulation

The Type I error rate and power results for the global interaction test in the FUSION

simulation are presented in Table 3.6. The global interaction test is anti-conservative

for the FUSION simulation. We found this is caused by low haplotype frequencies

which lead to near-singularities in the observed information matrix. The observed

information matrix for the haplotype frequencies p has eigenvalues close to 0, which

results in an inflated estimate for the variance of the score function.

For the FUSION simulation, we also compare the results from the global interaction
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Table 3.6: Type I Error Rate and Power for FUSION Simulation: Global Interaction Test

RD retro

True Effect α = 0.05 α = 0.01

ν=0.0 0.075 (0.008 ) 0.020 (0.004 )

ν=0.3 0.197 (0.018 ) 0.077 (0.007 )

ν=0.5 0.418 (0.022 ) 0.214 (0.018 )

Numbers in parentheses are Monte Carlo standard deviations.

test to results from the test assuming only one interaction term is included in the model.

For this test, we assume all of the interaction effects except the interaction with the

causal haplotype are 0, and therefore the global test becomes a 1-df test. From Table

3.7, we see this test has appropriate Type I error and greater power than the full global

test. This is evidence that if we have prior knowledge of a specific interaction term

of interest, we will have greater power to detect a significant interaction. However, in

practice we rarely have this prior knowledge; in this case it would be more practical to

start with the global interaction test for investigating the interaction effects.

The interaction specific test results are presented in Table 3.8. As with the coales-

cent simulation, we see that the interaction specific test is conservative. The power of

the global test for an interaction effect size of 0.7 can be compared to the results for

effect sizes 0.3 and 0.5 in Table 3.6. For α = 0.05, the power improves to 0.653 for an

effect size of 0.7 as compared to 0.418 for an effect size 0.5. Finally, the power of the

interaction specific test is slightly lower than the power for the global test. This implies

61



Chapter 3. Testing for Haplotype-Environment Interactions

Table 3.7: Type I Error Rate and Power for FUSION Simulation: One df Global Test

RD retro

True Effect α = 0.05 α = 0.01

ν=0.0 0.049 (0.007 ) 0.010 (0.003 )

ν=0.3 0.415 (0.022 ) 0.197 (0.018 )

ν=0.5 0.766 (0.019 ) 0.520 (0.022 )

Numbers in parentheses are Monte Carlo standard deviations.

Table 3.8: Type I Error Rate and Power for FUSION Simulation: Interaction Specific Test

α = 0.05 α = 0.01

True Effect Global Specific Global Specific

ν=0.0 0.087 (0.013 ) 0.017 (0.006 ) 0.025 (0.007 ) 0.000 (<0.001 )

ν=0.7 0.653 (0.021 ) 0.529 (0.022 ) 0.382 (0.022 ) 0.268 (0.020 )

Numbers in parentheses are Monte Carlo standard deviations.

that a global interaction effect is easier to detect than a specific haplotype-environment

effect.

3.4 Conclusions

We have extended our retrospective framework of haplotype clustering to incorporate

interactions between haplotypes and environmental covariates. When testing for inter-

action effects, the nuisance parameter space includes the full-dimensional set of main
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haplotype effect parameters and the haplotype frequencies. The large dimension of

the nuisance parameters can cause problems when estimating them under the null hy-

pothesis. The estimation is especially unstable for low frequency haplotypes, and as

a result, full-dimensional methods can only include specific interaction terms in the

model. This makes the full-dimensional analysis less realistic, as usually we do not

have prior information about what specific haplotypes may interact with the environ-

mental covariate. The advantage of clustering is that we reduce the dimension of the

parameter space and do not have to estimate main effect parameters for low frequency

haplotypes, as these haplotypes will have been incorporated into clusters represented

by more frequent haplotypes.

A significant contribution of our work is that by reducing the degrees of freedom

through clustering, we can derive a global test for interaction that is more feasible in

reality. The global test we refer to is a test involving the interaction terms between

all of the haplotype clusters and a designated environmental covariate of interest. We

do not refer to a test that involves the interaction terms across all haplotype clusters

and all environmental covariates. We wish to use the same testing strategy we use for

testing main haplotype effects to also test for interaction effects. That is, we first wish

to conduct a global test to detect if there is any significant interaction between the

covariate of interest and the haplotype clusters. If a global association is detected, we

would then evaluate specific interaction tests.

The proposed strategy for evaluating specific haplotype effects can also be applied

when evaluating specific interation effects. Our method is especially useful when we

do not have prior knowledge of a haplotype or interaction term of interest. In this

situation, the strategy proposed in Chapter 2 will be useful to evaluate the relationship
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between all of the interaction effects and group together interaction terms with a similar

effect on risk of disease.

Another strategy used to evaluate interaction effects is to first test for main haplo-

type effects, and then test for interaction terms involving haplotypes with a significant

main effect. The method proposed here can also be used for this testing strategy. We

can use the haplotype specific tests from Chapter 2 to determine which haplotypes

have a significant main effect and then include interaction terms for these haplotypes

only.

The tests for haplotype-environment interactions presented in this chapter are

subject to the same assumptions described in Chapter 2. We assume haplotype-

environment independence in the target population, Hardy-Weinberg equilibrium (HWE)

in the controls, and a rare disease. Satten and Epstein (2004) show that the retrospec-

tive likelihood is robust to the assumption of HWE when assuming a genetic effect that

is multiplicative with respect to the odds of disease. It has also been shown by Kwee

et al. (2007) that the retrospective method is robust to the rare disease assumption

when the genetic effect is assumed to be multiplicative. If we expect the haplotype-

environment independence assumption is violated, we suggest using another method

(such as that of Spinka et al. (2005) or Chen et al. (2007)) that can incorporate a direct

relationship between the covariate and haplotypes.
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Case-only Analysis for Testing for

Haplotype-Environment Interactions

4.1 Introduction

Interactions between haplotypes and environmental covariates can also be assessed in

samples of case individuals only. By assuming a saturated distribution for the environ-

mental covariate and a multiplicative genetic effect with respect to the odds of disease,

it can be shown that the retrospective likelihood factors into a piece that contains

information about the haplotype and interaction parameters and a piece that does not

(Kwee et al. (2007)). It can further be shown that the piece containing information

about these parameters only involves case data. Thus, through a reparameterization

involving the haplotype main effect parameters and haplotype frequencies, we can de-

velop a case-only likelihood to study the effects of haplotype-environment interactions.

A method for evaluating interaction effects using only cases has several practical

applications, more commonly seen in cancer therapy efficacy or drug adverse event

studies. In these cases, researchers may be interested in studying how genetic factors

modify the effect of treatment, but may only have data from those who responded to

the treatment. For example, in pharmaceutical research one main focus in studying

drug adverse events is to investigate whether the adverse reaction is different for indi-
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viduals with different genetic variants (i.e. gene-drug interactions). These studies are

often conducted post-marketing, and therefore we may have data for individuals who

experienced an adverse reaction but not for individuals who did not experience one.

In this situation, the environmental covariate is now the drug treatment and cases are

defined as individuals who experience a specific adverse reaction.

To take advantage of such data, in Chapter 4 we construct a retrospective approach

based on case subjects only to study haplotype-environment interaction effects. We

derive score statistics to test for both global and interaction specific effects and compare

the performance of these tests to those based on a sample of cases and controls presented

in Chapter 3.

4.2 Methods

4.2.1 The Case-Only Retrospective Likelihood for Haplotype-

Environment Interaction

We derive the case-only likelihood for testing for interaction effects by first examining

which pieces of the likelihood contain information about the interaction parameters ν.

Recall equation (2.1) from Chapter 2 that writes the observed likelihood of the data

as

Lobs ∝

n
∏

i=1

∑

H∈S(Gi)

P (H|Ei, Di)P (Di|Ei).
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P (D|E) is a function of the odds of disease given E,

θ(E) =
∑

H

exp(α + XCH
β + XEγ + XHEν)phph′ .

Kwee et al. (2007) show that we can rewrite θ(E) as exp(α + XEγ + φE) where φE =
∑

H exp(XCH
β + XHEν)phph′ . Because we assume a saturated distribution for E, we

must estimate k − 1 main environmental effects, where k is the number of levels of

E. Therefore, β and ν are incorporated into a reparameterized set of parameters,

γ̃, where γ̃E = γE + φE. These γ̃ parameters are a function of β and ν, but do

not provide us information about them. Thus we see that P (D|E) does not contain

information about β and ν, and we can concentrate on P (H|E,D) when interested in

interaction effects. Because of the assumption of haplotype-environment independence

in the target population, we can further say that all of the information about β and ν

is contained in P (H|E,D = 1). Therefore we can conduct inference on the interaction

parameters ν using the cases only. We can write P (H|E,D = 1) as

∑

H∈S(G)

P (H|E,D = 1) =

∑

H∈S(G) θ(H,E)P (H|D = 0)
∑

H′ θ(H ′, E)P (H ′|D = 0)

=

∑

H∈S(G) exp(XCH
β + XHEν)phph′

∑

H′ exp(XCH′
β + XH′Eν)phph′

. (4.1)

We can write exp(XCH
β) as exp((B(p)[h, ] + B(p)[h′, ])β), where B(p)[h, ] is the hth

row of the clustering allocation matrix. B(p)[h, ] describes how haplotype h is allocated
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to each of the (L∗ + 1) core clusters. We can further expand this as

exp(XCH
β) = exp(

L∗

∑

c=1

B(p)[h, c]βc) exp(
L∗

∑

c=1

B(p)[h′, c]βc).

Incorporating this into (4.1) , we can rewrite
∑

H∈S(G) P (H|E,D = 1) as

∑

H∈S(G) exp(
∑L∗

c=1 B(p)[h, c]βc) exp(
∑L∗

c=1 B(p)[h′, c]βc) exp(XHEν)phph′

∑

H′ exp(
∑L∗

c=1 B(p)[h, c]βc) exp(
∑L∗

c=1 B(p)[h′, c]βc) exp(XH′Eν)phph′

. (4.2)

Define the quantity p̃h as

p̃h =
exp(

∑L∗

c=1 B(p)[h, c]βc)ph
∑

h∗ exp(
∑L∗

c=1 B(p)[h∗, c]βc∗)ph∗

.

Now we write the case-only likelihood as

Lobs ∝

d
∏

i=1

∑

H∈S(Gi)
exp(XHEi

ν)p̃hp̃h′

∑

H′ exp(XH′Ei
ν)p̃hp̃h′

(4.3)

where d is the number of cases. Thus we can conduct inference on the interaction

parameters ν using (4.3) and case data only.

4.2.2 Score Test for Global Interaction Effect

The null hypothesis to test for global interaction effects is H0 : ν = 0. The score

statistic is Sν = UT
νV −1

ν Uν

∣

∣

∣

∣

ν=0,ξ=
˜ξ
, and has a χ2 distribution with L∗(k − 1) degrees

of freedom. The score function is

Uν =
∂

∂ν
log Lobs
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and the generalized variance function is

Vν = Dνν − IνξI−1

ξξ
DT

νξ − DνξI−1

ξξ
IT

νξ + IνξI−1

ξξ
DξξI−1

ξξ
IT

νξ,

where D is the variance-covariance matrix of the score function U = (Uν , Uξ)T and I is

the observed information matrix (Boos (1992)). For the case-only global analysis, the

vector of nuisance parameters, ξ, only contains the new parameters p̃. The parameters

p̃ do not have a straightforward interpretation since they are a function of both the

main effect parameters β and the haplotype frequencies p. See Appendix C for detailed

expressions for the score and variance functions for the case-only analysis.

Estimation

We use the EM algorithm to maximize the case-only likelihood with respect to p̃, while

using a Lagrange multiplier to constrain
∑

h p̃h = 1. We first assume that haplotype

phase is known and construct the full data likelihood:

Lfull =
e

∏

k=1

∏

(h,h′)

[

exp(XHEk
ν)p̃hp̃h′

∑

H′ exp(XH′Ek
ν)p̃hp̃h′

]dhh′,k

,

where dhh′,k is the number of cases with haplotype pair (h, h′) and covariate level k.

Under the null hypothesis that ν = 0, the full data likelihood becomes

Lfull =
e

∏

k=1

∏

(h,h′)

[

p̃hp̃h′

∑

H′ p̃hp̃h′

]dhh′,k

.
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Taking the log of the full likelihood and incorporating the Lagrange multiplier, we

maximize the new likelihood, LM :

LM = log Lfull + λ(
∑

h

p̃h − 1)

=
e

∑

k=1

∑

(h,h′)

[

dhh′,k log(p̃hp̃h′) − dhh′,k log(
∑

H′

p̃hp̃h′)

]

+ λ(
∑

h

p̃h − 1)

=
e

∑

k=1

∑

(h,h′)

dhh′,k log(p̃hp̃h′) + λ(
∑

h

p̃h − 1)

=
e

∑

k=1

(
∑

h

dh,k log(p̃h)) + λ(
∑

h

p̃h − 1),

where dh,k is the number of cases with haplotype h and covariate level k. We estimate

dhh′,k in the E step:

E(dhh′,k) =
∑

g

dg,kI(H ∈ S(g))P (H|g)

=
∑

g

dg,kI(H ∈ S(g))
p̃hp̃h′

∑

H∈S(g) p̃hp̃h′

where dg,k is the number of cases with genotype g and covariate level k. The derivative

of LM with respect to a specific p̃τ is

∂

∂p̃τ

LM ∝

e
∑

k=1

dτ,k

p̃τ

+ λ.

By setting the above equal to 0 and solving for p̃τ , we obtain the updating equation

for p̃τ

p̃τ =

∑e

k=1 dτ,k

λ
.
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4.2.3 Score Test for Specific Haplotype-Environment Interac-

tion Effect

The null hypothesis for testing for an interaction between haplotype t and the envi-

ronmental covariate is H0 : νt = 0. The score function Uνt
is

Uνt
=

∂

∂νt

log Lobs

and the generalized variance function is

Vνt
= Dνtνt

− I
νtξI−1

ξξ
DT

νtξ
− D

νtξI−1

ξξ
IT

νtξ
+ I

νtξI−1

ξξ
DξξI−1

ξξ
IT

νtξ
.

The score statistic is Sνt
= UT

νt
V −1

νt
Uνt

∣

∣

∣

∣

νt=0,ξ=
˜ξ
, and has a χ2 distribution with 1 degree

of freedom. The vector of nuisance parameters ξ now contains p̃ and the vector of

interaction parameters ν, excluding the parameter of interest νt.

Estimation

We use the ECM algorithm to estimate the nuisance parameters ξ under the null

hypothesis. Assuming that haplotype phase is known, the full data likelihood is

Lfull =
e

∏

k=1

∏

(h,h′)

[

exp(XHEk
ν)p̃hp̃h′

∑

H′ exp(XH′Ek
ν)p̃hp̃h′

]dhh′,k

.

The steps for estimating the nuisance parameters are

1. Obtain initial estimates of p̃ and ν.
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2. For step s, use E Step to estimate d
(s)
hh′,k.

3. Use M step 1 to find p̃(s+1) that maximizes Lfull, using ν(s) and d
(s)
hh′,k.

4. Use M step 2 to find ν(s) that maximizes Lfull, using p̃(s+1) and d
(s)
hh′,k.

5. Check differences between parameters at steps (s + 1) and s.

6. If difference for at least one of the parameters is greater than a specified limit,

start over with step 2 to estimate d
(s+1)
hh′,k using p̃(s+1) and ν(s+1).

E step

The E step estimates the number of cases with haplotype pair (h, h′) and covariate

level k as

E(dhh′,k) =
∑

g

dg,kI(H ∈ S(g))P (H|g)

=
∑

g

dg,kI(H ∈ S(g))
exp(XHEk

ν)p̃hp̃h′

∑

H∈S(g) exp(XHEk
ν)p̃hp̃h′

where dg,k is the number of cases with genotype g and covariate level k.

M step 1

Similar to the estimation of p̃ for the global interaction test, we maximize the full

data likelihood subject to the constraint that
∑

h p̃h = 1. Incorporating the Lagrange
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multiplier, the new likelihood LM is

LM = log Lfull + λ(
∑

h

p̃h − 1)

=
e

∑

k=1

∑

(h,h′)

[

dhh′,k[(XHEk
ν) + log(p̃hp̃h′)]−

dhh′,k log(
∑

H

exp(XHEk
ν)p̃hp̃h′)

]

+ λ(
∑

h

p̃h − 1)

The portion of LM that depends on p̃ is

LM ∝

e
∑

k=1

∑

(h,h′)

[

dhh′,k log(p̃hp̃h′)−

dhh′,k log(
∑

H

exp(XHEk
ν)p̃hp̃h′)

]

+ λ(
∑

h

p̃h − 1)

∝
e

∑

k=1

(
∑

h

dh,k log(p̃)) +
e

∑

k=1

∑

(h,h′)

dhh′,k log(
∑

H

exp(XHEk
ν)p̃hp̃h′) + λ(

∑

h

p̃h − 1)

The derivative of this expression with respect to a specific pτ is

∂

∂pτ

LM ∝
e

∑

k=1

dτ,k

p̃τ

−
e

∑

k=1

∑

(h,h′)

dhh′,k

∑

H exp(XHEk
ν)I(h = τ)2p̃h′

∑

H exp(XHEk
ν)p̃hp̃h′

+ λ

∝
e

∑

k=1

dτ,k

p̃τ

−
e

∑

k=1

dk

∑

h′ exp(XHEk
ν)2p̃h′

∑

H exp(XHEk
ν)p̃hp̃h′

+ λ

As in Chapters 2 and 3, we define a quantity u(p̃)τ as

u(p̃)τ =
e

∑

k=1

dk

∑

h′ exp(XHEk
ν)2p̃h′

∑

H exp(XHEk
ν)p̃hp̃h′

.
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Then we write the derivative with respect to pτ as

∂

∂pτ

LM ∝
e

∑

k=1

dτ,k

p̃τ

− u(p̃)τ + λ,

and by setting the above equal to 0 and solving for pτ we obtain the updating equation

for pτ :

pτ =

∑e

k=1 dτ,k

u(p̃)τ − λ
.

We carry out another iteration within the M step for estimating p̃ by estimating

u(p̃)(s,k) based on p̃(s), then estimating p̃(s,k+1) based on u(p̃)(s,k). This iteration con-

tinues until the difference between p̃(s,k) and p̃(s,k+1) is less than a specified limit. Then

p̃(s,k+1) becomes p̃(s+1).

M step 2

The log of the full data likelihood that depends on the interaction parameters ν is

log(Lfull) ∝
e

∑

k=1

∑

(h,h′)

[

dhh′,k log(exp(XHEk
ν)p̃hp̃h′) − dhh′,k log(

∑

H

exp(XHEk
ν)p̃hp̃h′).

We use the optimization function nlminb in R to obtain maximum likelihood estimates

of ν.
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4.3 Simulations

4.3.1 Scenarios

The simulations for assessing the size and power of the proposed score tests based on

a case-only likelihood use the same simulation scenarios described in Chapter 3.

Coalescent Simulation

The coalescent simulation simulates case-control data using 6 single-SNP liability loci

chosen based on allele frequency and haplotype diversity in the surrounding region. The

logistic model at the liability locus is defined as logit(fji) = b0 +b1j +b2i+b3i∗j where

j is the number of copies of the liability allele and i is the level of the environmental

covariate. To evaluate the Type I error rate, we set b3 = 0. To evaluate power, we run

the case-only analysis on the same data used for evaluating the case-control method

using an effect size of b3 = 0.7. We set b1 = 0.5, b2 = 0.3, and vary b0 so that the

prevalance for each situation is approximately 5 %. As in Chapter 3, we analyze 6-SNP

haplotypes that exclude the liability locus. For each replicate, we generate 500 cases

and 500 controls.

We evaluated the case-only haplotype specific test using the same data used to eval-

uate the case-control haplotype specific test in Chapter 3. These data were simulated

using two causal haplotypes with frequencies 0.12 and 0.08. The model at the liability

haplotypes is logit(fjik) = b0+b1j+b2k+b3i+b4i∗j+b5i∗k, where fjik is the probability

that an individual is a case given they have j copies of liability haplotype 1, k copies of

liability haplotype 2, and level i of the binary environmental covariate. We evaluated

power assuming the interaction effects between both of the liability haplotypes and
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the covariate were the same (b4 = b5 = 0.5) and different (b4 = 0.7, b5 = 0.5). We set

b1 = b2 = 0.5, b3 = 0.3, and varied b0 to achieve a 5 % disease prevalence.

FUSION Simulation

The FUSION simulation uses haplotype data based on 5 SNPs of interest on chro-

mosome 22 in the FUSION study. We set the interaction effect between the causal

haplotype (01100) and the environmental covariate equal to 0 to evaluate the Type I

error rate. We evaluated the power of the global and specific interaction tests using

the same data used to evaluate the case-control tests using an effect size of 0.7.

We simulated 1000 datasets to assess Type I error rate and 500 datasets to assess

power for α = 0.05 and α = 0.01. For the case-only analysis of the global interaction

test, we also conducted the analyses using the retrospective full-dimensional method

of Kwee et al. (2007). This full-dimensional analysis is implementable for the case-only

analysis because the estimation is the same for both the clustering and full-dimensional

analyses. For the global interaction test, the nuisance parameters only consist of p̃.

4.3.2 Results

Coalescent Simulation

Table 4.1 contains the Type I error rate analysis results for the case-only global test

of interaction from the coalescent simulation. The Type I error rate is at the nominal

level for the retrospective clustering analysis, which is evidence that the χ2 distribution

accurately estimates the asymptotic distribution of the case-only score statistic. The

Type I error rate is conservative for the retrospective full-dimensional analysis.
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Table 4.1: Type I Error Rate for Coalescent Simulation: Case-only Global Test of Interaction

α = 0.05 α = 0.01

Hap Diversity RD retro FD retro RD retro FD retro

High:

q=0.1 0.054 (0.007 ) 0.043 (0.006 ) 0.009 (0.003 ) 0.006 (0.002 )

q=0.3 0.047 (0.007 ) 0.044 (0.006 ) 0.010 (0.003 ) 0.005 (0.002 )

Moderate:

q=0.1 0.054 (0.007 ) 0.039 (0.006 ) 0.019 (0.004 ) 0.008 (0.003 )

q=0.3 0.046 (0.007 ) 0.014 (0.004 ) 0.010 (0.003 ) 0.002 (0.001 )

Low:

q=0.1 0.053 (0.007 ) 0.045 (0.007 ) 0.013 (0.004 ) 0.009 (0.003 )

q=0.3 0.050 (0.007 ) 0.040 (0.006 ) 0.010 (0.003 ) 0.008 (0.003 )

RD denotes reduced-dimensional (or clustering) analysis. FD denotes

full-dimensional analysis. Retro denotes retrospective analysis. Numbers

in parentheses are Monte Carlo standard deviations.

The power results for the case-only global test of interaction are presented in Table

4.2. These results are based on the same simulated data used to evaluate the case-

control global test of interaction for an effect size ν = 0.7. The power results for

the case-control global test of interaction are in Table 3.3. The case-only test is as

powerful as the case-control test for all of the liability loci, and in some cases the

case-only test has slightly greater power. We also see an improvement in power for the

case-only retrospective clustering method as compared to the case-only retrospective

full-dimensional method. We see the largest reduction in degrees of freedom as a result

of clustering for the locus with frequency 0.3 in a region of moderate haplotype diversity.
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Table 4.2: Power for Coalescent Simulation: Case-only Global Test of Interaction

α = 0.05 α = 0.01

Hap Diversity RD retro FD retro RD retro FD retro

High:

q=0.1 0.721 (0.020 ) 0.638 (0.021 ) 0.481 (0.022 ) 0.396 (0.022 )

q=0.3 0.328 (0.021 ) 0.278 (0.020 ) 0.116 (0.014 ) 0.088 (0.013 )

Moderate:

q=0.1 0.452 (0.022 ) 0.366 (0.022 ) 0.244 (0.019 ) 0.170 (0.017 )

q=0.3 0.494 (0.022 ) 0.270 (0.020 ) 0.266 (0.020 ) 0.088 (0.013 )

Low:

q=0.1 0.802 (0.018 ) 0.768 (0.019 ) 0.574 (0.022 ) 0.556 (0.022 )

q=0.3 0.430 (0.022 ) 0.380 (0.022 ) 0.204 (0.018 ) 0.178 (0.017 )

RD denotes reduced-dimensional (or clustering) analysis. FD denotes

full-dimensional analysis. Retro denotes retrospective analysis. Numbers

in parentheses are Monte Carlo standard deviations.

For this locus, there was an average of 14 observed haplotypes and an average of 10

haplotype clusters. As a result, we see the largest power improvement for this locus.

For α = 0.05, the power for the full-dimensional analysis is 0.27 and for the clustering

analysis is 0.49.

Results for the case-only interaction specific test are presented in Tables 4.3 and

4.4. As with the case-control interaction specific test, we see that the case-only inter-

action specific test is conservative. When the effect sizes of the 2 causal haplotypes

are the same, the power of the global test is greater than for each of the interaction

specific tests. The test for causal haplotype 1 is more powerful than the test for causal
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Table 4.3: Type I Error Rate and Power for Coalescent Simulation: Case-only Haplotype
Specific Test (α = 0.05)

True Effect Global Hap 1 Hap 2

ν1 = ν2=0.0 0.054 (0.007 ) 0.024 (0.005 ) 0.024 (0.005 )

ν1 = ν2=0.5 0.566 (0.022 ) 0.460 (0.022 ) 0.370 (0.022 )

ν1=0.7, ν2=0.5 0.786 (0.018 ) 0.746 (0.019 ) 0.358 (0.021 )

Numbers in parentheses are Monte Carlo standard deviations.

Table 4.4: Type I Error Rate and Power for Coalescent Simulation: Case-only Haplotype
Specific Test (α = 0.01)

True Effect Global Hap 1 Hap 2

ν1 = ν2=0.0 0.008 (0.003 ) 0.004 (0.002 ) 0.004 (0.002 )

ν1 = ν2=0.5 0.328 (0.021 ) 0.210 (0.018 ) 0.162 (0.016 )

ν1=0.7, ν2=0.5 0.544 (0.022 ) 0.482 (0.022 ) 0.144 (0.016 )

Numbers in parentheses are Monte Carlo standard deviations.

haplotype 2, which is expected as causal haplotype 1 is more frequent. When the effect

size of haplotype 1 increases from 0.5 to 0.7, the power of the global test and the test

for haplotype 1 both increase.

FUSION Simulation

The Type I error rate and power results for the clustering and full-dimensional case-

only global interaction tests from the FUSION simulation are presented in Table 4.5.

As found for the case-control global interaction test, the clustering case-only interaction
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Table 4.5: Type I Error Rate and Power for FUSION Simulation: Case-only Global Interac-
tion Test

α = 0.05 α = 0.01

True Effect RD retro FD retro RD retro FD retro

ν=0.0 0.066 (0.008 ) 0.088 (0.009 ) 0.017 (0.004 ) 0.024 (0.005 )

ν=0.7 0.644 (0.021 ) 0.540 (0.022 ) 0.376 (0.022 ) 0.212 (0.018 )

Numbers in parentheses are Monte Carlo standard deviations.

Table 4.6: Type I Error Rate and Power for FUSION Simulation: Case-only Interaction
Specific Test

RD retro

True Effect α = 0.05 α = 0.01

ν=0.0 0.019 (0.004 ) 0.000 (<0.001 )

ν=0.7 0.505 (0.022 ) 0.227 (0.019 )

Numbers in parentheses are Monte Carlo standard deviations.

test is anti-conservative for the FUSION simulation for both the clustering and full-

dimensional methods. For the FUSION simulation, clustering reduces the degrees of

freedom by 7 on average, and we see a corresponding increase in power compared to

the full-dimensional analysis. In Table 4.6 we see that the interaction specific test is

conservative. The power of the global and interaction specific tests is similar to the

power for the case-control tests evaluated on the same data (Table 3.8).

80



Chapter 4. Case-only Analysis for Testing for Haplotype-Environment Interactions

4.4 Conclusions

We have derived tests for haplotype-environment interactions at the global and specific

levels that can be applied to a sample of case individuals only. The tests based on the

case-only likelihood have similar power to tests based on a sample of cases and controls.

These results are consistent with those of Kwee et al. (2007), who found the case-only

analysis to have similar power to the case-control analysis for the retrospective full-

dimensional analysis. A test for haplotype-environment interactions in a case-only

sample will be relevant in situations where it is not practical or possible to collect a

control sample. The test may be especially useful in cancer research where collecting

controls is difficult and interactions with environmental covariates are of particular

interest.

We also conclude that the case-only clustering analysis is more powerful than the

case-only full-dimensional analysis. This is an important and encouraging result, as we

were unable to directly verify the power improvement from clustering for the interaction

tests in Chapter 3. In most situations, it is not feasible to carry out the full dimensional

interaction analysis for a case-control sample. For the case-only global interaction

test, we only need to estimate the new parameters p̃ for both the clustering and

full-dimensional analyses. Therefore we are able to compare the power of the two

methods. The power difference we see for the case-only analysis is further evidence of

the advantage of reducing degrees of freedom through clustering.

The case-only analysis method is limited by the assumptions that haplotypes have

a multiplicative effect on the odds of disease and that the distribution for covariate

E is saturated. Assuming that the model for E is saturated ensures that P (E|D)

81



Chapter 4. Case-only Analysis for Testing for Haplotype-Environment Interactions

will not contain any information about the haplotype and interaction parameters, and

allows us to conduct inferences on interaction parameters using cases only through

P (G|E,D = 1). If a dominant or recessive model is required, then we are not able to

reparameterize our model using the parameters p̃, and we must make inferences based

on the full case-control likelihood. Because the clustering algorithm also assumes a

multiplicative effect on the odds of disease, our method will not be further limited by

this assumption for the case-only analysis.
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Chapter 5

Application to Hypertriglyceridemia Study

5.1 Background

We apply the proposed score tests for testing for global and specific haplotype and

interaction effects to data from a study of hypertriglyceridemia conducted by the Na-

tional Taiwan University Hospital. This dataset was also analyzed by Tzeng et al.

(2006) and Chen and Kao (2006). Our goal in analyzing this dataset is to compare our

results with previous findings.

Hypertriglyceridemia is a metabolic disorder characterized by high levels of triglyc-

erides in the blood, and is known to be a risk factor for coronary heart disease.

The study consisted of 290 cases, defined as individuals having serum triglycerides

>400mg/dl, and 303 controls who were recruited through health examinations at Na-

tional Taiwan University Hospital. Controls were excluded if they had secondary hy-

perlipoproteinemia, hypertension, diabetes mellitus, lipid-lowering medications, and

endocrine and metabolic disorders. All participants provided consent for DNA sam-

ples.

From this study, Kao et al. (2003) identified a novel variant in the coding region of

the APOA5 gene on chromosome 11 that increases the risk of developing hypertriglyc-

eridemia. We will analyze haplotypes comprised of 5 SNPs in this region of interest,
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including the SNP identified by Kao et al. (2003).

5.2 Analysis

Our analysis was motivated by the results of Chen and Kao (2006), who found a

significant interaction between haplotype and age. We dichotomized age and included

it as an environmental covariate in our model. We used the mean age in controls of

49 as the cutoff for the dichotomization. Therefore we set Xage for individual i as

I(Agei > 49). We excluded participants with missing covariate information or missing

genetic information at all 5 SNPs analyzed. For our analysis, there were 210 cases and

287 controls. We first analyzed global and specific haplotype main effects. We then

included the interactions between all of the haplotype clusters and age in the model

and tested for interaction effects.

5.3 Results

The region of interest contains 12 estimated haplotypes with frequency >1×10−5. The

clustering algorithm creates 4 haplotype clusters represented by the core haplotypes

GGGCT, GGTCT, AGGCC, and GAGTT.

The global test for haplotype main effects is highly significant. The global score

statistic is 133.71 and the p-value is <1 × 10−6. Table 5.1 contains the haplotype

specific results from all pairwise comparisons.

All but one of these comparisons is highly significant using the Bonferroni corrected

α level of 0.05/6 = 8.3×10−3. Therefore we group the 4 haplotype clusters into 3 groups
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Table 5.1: Haplotype Specific Results for Age as Covariate

Reference Haplotype Score Statistic P-value

GGTCT GAGTT 20.50 5.97 × 10−6

GGGCT 59.79 < 1 × 10−6

AGGCC 8.94 2.79 × 10−3

GGGCT GAGTT 12.65 3.75 × 10−4

AGGCC 58.88 < 1 × 10−6

AGGCC GAGTT 5.92 1.50 × 10−2

based on similar effects on disease risk. Group 1 contains haplotype GGTCT, group 2

contains haplotype GGGCT, and group 3 contains haplotypes AGGCC and GAGTT.

The global test for interactions is close to significant at the nominal level. The

score statistic is 6.62 and the p-value is 0.08. The interaction specific results are

presented in Table 5.2. Before correcting for multiple testing, we see some evidence

that the interaction effect between age and the haplotype GGTCT is different from the

interaction effects between age and haplotypes GGGCT and AGGCC. The interaction

specific results are inconclusive about the interaction effect with haplotype GAGTT.

Our results show that the interaction between age and GAGTT is not different from

any of the other interaction effects. Based on the uncorrected results, we can group the

interaction term involving age and GGTCT into one group and the interactions with

GGGCT and AGGCC into another. None of the interaction specific results would be

significant after using the Bonferroni correction for multiple testing.
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Table 5.2: Interaction Specific Results for Age as Covariate

Reference Haplotype Score Statistic P-value

GGTCT GAGTT 1.59 2.08 × 10−1

GGGCT 3.42 6.46 × 10−2

AGGCC 3.55 5.97 × 10−2

GGGCT GAGTT 0.21 6.43 × 10−1

AGGCC 0.03 8.67 × 10−1

AGGCC GAGTT 0.11 7.39 × 10−1

5.4 Conclusions

Our analysis of the hypertriglyceridemia study confirms the findings of Tzeng et al.

(2006) that there is a highly significant global haplotype main effect in the region of

interest on chromosome 11 in the APOA5 gene. Our method is able to further group

the 4 haplotype clusters into 3 groups based on similar effects on risk of hypertriglyc-

eridemia.

Our method is able to confirm the finding of Chen and Kao (2006) of a significant

interaction between age and haplotype GGTCT. But whereas Chen and Kao (2006)

only include the interaction between age and this specific haplotype in their model,

we include all of the haplotype clusters and first test for a global effect. We then

evaluate the interaction specific tests, and are also able to conclude that the effect of

the interaction between age and GGTCT is different from the effects of interactions

involving haplotypes GGGCT and GAGTT.
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Summary and Future Work

6.1 Contributions

Haplotypes have the potential to play an important role in the search for genetic

factors that cause complex human diseases. However, due to power limitations from

the large number of degrees of freedom required to test for haplotype effects, haplotype

analyses may not be performed in practice. Also, because of restrictions placed on the

haplotype distribution to ensure identifiability when haplotype phase is unknown, the

traditional method of using a prospective likelihood to analyze haplotype data from a

case-control sample may not be the most efficient. This work increases the potential

for haplotype analysis to find regions of disease susceptibility genes by reducing the

degrees of freedom through haplotype clustering and improving efficiency through use

of a retrospective likelihood.

We have derived a retrospective likelihood that incorporates the haplotype clus-

tering algorithm of Tzeng et al. (2006) and can accomodate environmental covariates

and their interactions with haplotypes. Through clustering, we are able to retain

information from all observed haplotypes, without using degrees of freedom for rare

haplotypes we will have little power to detect. We assume that haplotype and the

environmental covariate are independent in the population, the target population is
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in Hardy-Weinberg Equilibrium, and that the disease of interest is rare. These as-

sumptions lead to a method that is practical to implement and appropriate for many

interesting situations.

We have presented score statistics to test for haplotype main effects at both the

global and specific levels. The global test for main effects based on our retrospective

clustering method has greater power than the test based on the retrospective full-

dimensional method and is at least as powerful as the prospective clustering method.

We have also suggested a new strategy for testing for haplotype specific effects. Com-

monly used strategies may not give us a complete picture of which haplotype clusters

have similar effects on the risk of disease, and the conclusions may be dependent on

which haplotype is chosen as the reference. The strategy we propose looks at all pair-

wise comparisons by assigning all haplotypes in turn to be the reference haplotype

and allows us to group together haplotypes that have similar effects on disease. This

strategy can also be applied to tests for specific haplotype-environment interaction

terms.

One of the most significant contributions of this work is the ability to test for global

interaction effects. As the study of complex diseases becomes an important focus of

scientific research, it is critical that methods for genetic analysis be able to incorporate

environmental covariates and interactions between genetic factors and these covariates.

Including interaction terms involving the full-dimensional space of haplotypes limits

power and causes estimation difficulties for low frequency haplotypes. As a result, many

full-dimensional methods are restricted to only including interaction terms involving

certain pre-determined haplotypes of interest. Our method works with a reduced pa-

rameter space, thereby making a global test more practical. Thus we can employ the
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testing strategy of first testing for a global interaction effect and then testing for spe-

cific haplotype-environment effects. We have presented score statistics to test for both

global and specific haplotype-environment interaction effects.

We have also derived haplotype-environment interaction tests that can be applied to

case-only samples. We have shown that the case-only interaction test is as powerful as

the case-control test. This is an important result in the context of cancer drug efficacy

and adverse event studies, where the drug treatment is the environmental covariate. In

these studies, the main focus is often on gene-drug interactions, and data may only be

available from individuals who respond to a treatment or experience an adverse event.

Our results also show that the retrospective case-only test using clustered haplotypes

is more powerful than the case-only full-dimensional test.

We also plan to make our R code available to users interested in implementing our

methods. We will provide code for testing for haplotype main effects and interactions,

as well as code for carrying out our strategy for haplotype specific tests. Our code for

haplotype specific tests can also be used to obtain estimates of haplotype or interaction

specific effects. Instead of constraining the haplotype of interest to have no effect on

disease and calculating the corresponding score statistic, we can leave all of the effects

unconstrained and estimate effects relative to the reference haplotype.

6.2 Future Work

We plan for future work to improve the clustering algorithm, specifically in the context

of testing for interactions. When assessing interaction effects, we can further reduce the

degrees of freedom by limiting the number of core haplotypes. The clustering algorithm
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Figure 6.1: Haplotype frequency distribution for FUSION simulation. Haplotypes with
frequencies greater than the horizontal cut-off line will be designated as core haplotypes.
The clustering algorithm uses the original penalty function to determine the core haplotypes.

was designed for assessing main haplotype effects, where we are interested in including

all of the core haplotypes in our model. One factor in determining the number of

core clusters is the penalty function used to determine the information criterion. The

penalty function is a function of the sample size. The rationale is that the larger the

sample size, the more information we have about the haplotypes and the more likely

we are to allow for lower frequency core haplotypes. But for interaction tests, we are

willing to sacrifice core haplotypes in return for greater power to detect interactions

between the most common haplotypes and the covariate. One ad-hoc way to reduce the

number of core haplotypes is to use a larger penalty term in the clustering algorithm.

For example, Figure 6.1 presents the haplotype distribution from a sample dataset from

the FUSION simulation. The horizontal line represents the cut-point for determining
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Figure 6.2: Haplotype frequency distribution for FUSION simulation. Haplotypes with
frequencies greater than the horizontal cut-off line will be designated as core haplotypes.
The clustering algorithm uses a doubled penalty term to determine the core haplotypes.

the core haplotypes, which is based on the original penalty function. The 8 haplotypes

with frequency above this cut-point will be included as the core haplotypes. Figure

6.2 presents the distribution from the same dataset, using a doubled penalty term for

determining the core haplotypes. The clustering algorithm assumes a larger penalty

function, and as a result only designates 6 core haplotypes. Another ad-hoc method

is to determine the desired number of core haplotypes by inspecting the haplotype

distribution before performing the clustering. Using this method, the user can directly

choose which haplotypes to include as core haplotypes. Our future work will look at

developing a more rigorous method for determining the core haplotypes in the context

of interaction tests.

We also plan to improve the clustering algorithm by incorporating it into the haplo-

91



Chapter 6. Summary and Future Work

type frequency estimation. Currently the allocation matrix B(p) is determined based

on original estimates of the haplotype frequencies in the combined sample of cases and

controls. Thus we are assuming one evolutionary tree for the combined sample. For

testing for global haplotype main effects, this is acceptable since cases and controls

are the same under the null hypothesis. But for testing for interaction effects, we may

want to estimate two separate evolutionary trees, and therefore two separate allocation

matrices, for cases and controls. We will explore the feasibility of using two evolution-

ary trees and what effect it might have on the performance of the method. We also

plan to investigate how the determination of the core haplotypes and creation of the

allocation matrix can be combined with the estimation of the haplotype frequencies

into one process.
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Appendix A

Score Statistic Details for Testing for

Haplotype Main Effects

The score statistic for main haplotype effects is

Sβ = UT

βV −1

β
Uβ

∣

∣

∣

∣β=0

ξ=
˜ξ

where

Uβ =
∂

∂β
log Lobs

and

Vβ = Dββ − IβξI−1

ξξ
DT

βξ − DβξI−1

ξξ
IT

βξ + IβξI−1

ξξ
DξξI−1

ξξ
IT

βξ,

We write the variance-covariance matrix D as

D =









Dββ Dβξ

DT

βξ
Dξξ









where

Dβξ =

(

Dβα∗
Dβγ Dβp1

. . . DβpL+1

)
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and
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si(yi, gi, α
∗) = ∂

∂α∗
log Li

si(yi, gi,β) = ∂

∂β
log Li

si(yi, gi,γ) = ∂
∂γ log Li

si(yi, gi, pτ ) = ∂
∂pτ

log Li.

Then we define the elements of D as

Dα∗α∗ =
∑n

i=1 si(yi, gi, α
∗)si(yi, gi, α

∗)

D
α∗β =

∑n

i=1 si(yi, gi, α
∗)si(yi, gi,β)

Dα∗γ =
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i=1 si(yi, gi, α
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Dγpτ
=

∑n

i=1 si(yi, gi,γ)si(yi, gi, pτ )

Dpτ pτ
=

∑n

i=1 si(yi, gi, pτ )si(yi, gi, pτ )

Dpτ pθ
=
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i=1 si(yi, gi, pτ )si(yi, gi, pθ).

We can write the observed information matrix I as

I =
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= − ∂

∂pτ

∂
∂pτ

log Li

Ipτ pθ
= − ∂

∂pθ

∂
∂pτ

log Li

To simplify notation, define the quantities v, u, and w for each individual as

v =
∑

H∈S(Gi)
exp(α∗ + XCH

β + XEi
γ)phph′

u =
∑

H exp(α∗ + XCH
β + XEi

γ)phph′

w =
∑

H∈S(Gi)
phph′

The derivatives of v with respect to the parameters α∗, γ, β, and a specific pτ are

∂
∂α∗

v =
∑

H∈S(Gi)
exp(α∗ + XCH

β + XEi
γ)phph′

∂

∂β
v =

∑

H∈S(Gi)
exp(α∗ + XCH

β + XEi
γ)XT

CH
phph′

∂
∂γ v =

∑

H∈S(Gi)
exp(α∗ + XCH

β + XEi
γ)XT

Ei
phph′

∂
∂pτ

v =
∑

H∈S(Gi)
2I(h = τ)

{

ph′exp(α∗ + XCH
β + XEi

γ)

}

∂
∂α∗

∂
∂α∗

v = v

∂

∂β
∂

∂α∗
v = ∂

∂β
v

∂
∂γ

∂
∂α∗

v = ∂
∂γ v

∂
∂pτ

∂
∂α∗

v = ∂
∂pτ

v

∂

∂β
∂

∂β
v =

∑

H∈S(Gi)
exp(α∗ + XCH

β + XEi
γ)XT

CH
XCH

phph′
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∂
∂γ

∂

∂β
v =

∑

H∈S(Gi)
exp(α∗ + XCH

β + XEi
γ)XT

CH
XEi

phph′

∂
∂pτ

∂

∂β
v =

∑

H∈S(Gi)
2I(h = τ)

{

exp(α∗ + XCH
β + XEi

γ)XT
CH

ph′

}

∂
∂γ

∂
∂γ v =

∑

H∈S(Gi)
exp(α∗ + XCH

β + XEi
γ)XT

Ei
XEi

phph′

∂
∂pτ

∂
∂γ v =

∑

H∈S(Gi)
2I(h = τ)

{

exp(α∗ + XCH
β + XEi

γ)XT
Ei

ph′

}

∂
∂pτ

∂
∂pτ

v = I(h = h′ = τ)

{

2 exp(α∗ + XCH
β + XEi

γ)

}

∂
∂pθ

∂
∂pτ

v =
∑

H∈S(Gi)
2I(hj = τ, h′

j = θ)

{

exp(α∗ + XCH
β + XEi

γ)

}

The derivatives of u are the same as those for v, except they are summed over all

haplotype pairs H instead of H ∈ S(Gi). The derivates of w are

∂
∂pτ

w =
∑

H∈S(Gi)
2I(h = τ)ph′

∂
∂pτ

∂
∂pτ

w = 2I(h = h′ = τ)

∂
∂pθ

∂
∂pτ

w =
∑

H∈S(Gi)
2I(hj = τ, h′

j = θ)

Now we can write the components of D and I in terms of derivatives of v, u, and

w.

∂
∂α∗

log Li = yi

∂
∂α∗ v

v
−

∂
∂α∗ u

u

∂

∂β
log Li = yi

∂

∂β
v

v
−

∂

∂β
u

u

∂
∂γ log Li = yi

∂

∂γ v

v
−

∂

∂γ u

u

∂
∂pτ

log Li = (1 − yi)
∂

∂pτ
w

w
+ yi

∂
∂pτ

v

v
−

∂
∂pτ

u

u

∂
∂α∗

∂
∂α∗

log Li = yi
v( ∂

∂α∗

∂
∂α∗ v)−( ∂

∂α∗ v)( ∂
∂α∗ v)

v2 −
u( ∂

∂α∗

∂
∂α∗ u)−( ∂

∂α∗ u)( ∂
∂α∗ u)

u2

∂

∂β
∂

∂α∗
log Li = yi

v( ∂

∂β
∂

∂α∗ v)−( ∂
∂α∗ v)( ∂

∂β
v)

v2 −
u( ∂

∂β
∂

∂α∗ u)−( ∂
∂α∗ u)( ∂

∂β
u)

u2

∂
∂γ

∂
∂α∗

log Li = yi

v( ∂

∂γ
∂

∂α∗ v)−( ∂
∂α∗ v)( ∂

∂γ v)

v2 −
u( ∂

∂γ
∂

∂α∗ u)−( ∂
∂α∗ u)( ∂

∂γ u)

u2

∂
∂pτ

∂
∂α∗

log Li = yi

v( ∂
∂pτ

∂
∂α∗ v)−( ∂

∂α∗ v)( ∂
∂pτ

v)

v2 −
u( ∂

∂pτ

∂
∂α∗ u)−( ∂

∂pτ
u)( ∂

∂α∗ u)

u2
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∂

∂β
∂

∂β
log Li = yi

v( ∂

∂β
∂

∂β
v)−( ∂

∂β
v)( ∂

∂β
v)

v2 −
u( ∂

∂β
∂

∂β
u)−( ∂

∂β
u)( ∂

∂β
u)

u2

∂
∂γ

∂

∂β
log Li = yi

v( ∂

∂γ
∂

∂β
v)−( ∂

∂β
v)( ∂

∂γ v)

v2 −
u( ∂

∂γ
∂

∂β
u)−( ∂

∂β
u)( ∂

∂γ u)

u2

∂
∂pτ

∂

∂β
log Li = yi

v( ∂
∂pτ

∂

∂β
v)−( ∂

∂β
v)( ∂

∂pτ
v)

v2 −
u( ∂

∂pτ

∂

∂β
u)−( ∂

∂β
u)( ∂

∂pτ
u)

u2

∂
∂γ

∂
∂γ log Li = yi

v( ∂

∂γ
∂

∂γ v)−( ∂

∂γ v)( ∂

∂γ v)

v2 −
u( ∂

∂γ
∂

∂γ u)−( ∂

∂γ u)( ∂

∂γ u)

u2

∂
∂pτ

∂
∂γ log Li = yi

v( ∂
∂pτ

∂

∂γ v)−( ∂

∂γ v)( ∂
∂pτ

v)

v2 −
u( ∂

∂pτ

∂

∂γ u)−( ∂

∂γ u)( ∂
∂pτ

u)

u2

∂
∂pτ

∂
∂pτ

log Li = (1−yi)
w( ∂2

∂p2
τ

w)−( ∂
∂pτ

w)( ∂
∂pτ

w)

w2 +yi

v( ∂2

∂p2
τ

v)−( ∂
∂pτ

v)( ∂
∂pτ

v)

v2 −
u( ∂2

∂p2
τ

u)−( ∂
∂pτ

u)( ∂
∂pτ

u)

u2

∂
∂pθ

∂
∂pτ

log Li = (1 − yi)
w( ∂

∂pθ

∂
∂pτ

w)−( ∂
∂pτ

w)( ∂
∂pθ

w)

w2 + yi

v( ∂
∂pθ

∂
∂pτ

v)−( ∂
∂pτ

v)( ∂
∂pθ

v)

v2 −

u( ∂
∂pθ

∂
∂pτ

u)−( ∂
∂pτ

u)( ∂
∂pθ

u)

u2
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Appendix B

Score Statistic Details for Testing for

Interaction Effects

The score statistic for haplotype-environment interaction effects is

Sν = UT
νV −1

ν Uν

∣

∣

∣

∣ν=0

ξ=
˜ξ

where

Uν =
∂

∂ν
log Lobs

and

Vν = Dνν − IνξI−1

ξξ
DT

νξ − DνξI−1

ξξ
IT

νξ + IνξI−1

ξξ
DξξI−1

ξξ
IT

νξ,

We write the variance-covariance matrix D as

D =









Dνν Dνξ

DT

νξ
Dξξ









where

Dνξ =

(

Dνα∗ Dνβ Dνγ Dνp1 . . . DνpL+1

)
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and

Dξξ =



























































Dα∗α∗ D
α∗β Dα∗γ Dα∗p1 . . . Dα∗pL+1

D′

α∗β
Dββ Dβγ Dβp1

. . . DβpL+1

D′
α∗γ D′

βγ
Dγγ Dγp1 . . . DγpL+1

D′
α∗p1

D′

βp1
D′

γp1
Dp1p1 . . . Dp1pL+1

...
...

...
...

...
...

. . . . . .
...

... Dpipj
. . .

...
...

...
...

...
...

D′
α∗pL+1

D′

βpL+1
D′

γpL+1
D′

p1pL+1
. . . DpL+1pL+1



























































Let

si(yi, gi, α
∗) = ∂

∂α∗
log Li

si(yi, gi,β) = ∂

∂β
log Li

si(yi, gi,γ) = ∂
∂γ log Li

si(yi, gi, pτ ) = ∂
∂pτ

log Li

si(yi, gi,ν) = ∂
∂ν log Li.

Then we define the elements of D as

Dα∗α∗ =
∑n

i=1 si(yi, gi, α
∗)si(yi, gi, α

∗)

D
α∗β =

∑n

i=1 si(yi, gi, α
∗)si(yi, gi,β)

Dα∗γ =
∑n

i=1 si(yi, gi, α
∗)si(yi, gi,γ)

Dα∗pτ
=

∑n

i=1 si(yi, gi, α
∗)si(yi, gi, pτ )

Dα∗ν =
∑n

i=1 si(yi, gi, α
∗)si(yi, gi,ν)

Dββ =
∑n

i=1 si(yi, gi,β)si(yi, gi,β)T
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Dβγ =
∑n

i=1 si(yi, gi,β)si(yi, gi,γ)T

Dβpτ
=

∑n

i=1 si(yi, gi,β)si(yi, gi, pτ )

Dβν =
∑n

i=1 si(yi, gi,β)si(yi, gi,ν)T

Dγγ =
∑n

i=1 si(yi, gi,γ)si(yi, gi,γ)T

Dγpτ
=

∑n

i=1 si(yi, gi,γ)si(yi, gi, pτ )

Dγν =
∑n

i=1 si(yi, gi,γ)si(yi, gi,ν)T

Dpτ pτ
=

∑n

i=1 si(yi, gi, pτ )si(yi, gi, pτ )

Dpτ pθ
=

∑n

i=1 si(yi, gi, pτ )si(yi, gi, pθ)

Dpτν =
∑n

i=1 si(yi, gi, pτ )si(yi, gi,ν)

Dνν =
∑n

i=1 si(yi, gi,ν)si(yi, gi,ν)T .

We can write the observed information matrix I as

I =









Iνν Iνξ

IT

νξ
Iξξ









where

Iνξ =

(

Iνα∗ Iνβ Iνγ Iνp1 . . . IνpL+1

)

and
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Iξξ =



























































Iα∗α∗ I
α∗β Iα∗γ Iα∗p1 . . . Iα∗pL+1

I ′

α∗β
Iββ Iβγ Iβp1

. . . IβpL+1

I ′
α∗γ I ′

βγ
Iγγ Iγp1 . . . IγpL+1

I ′
α∗p1

I ′

βp1
I ′
γp1

Ip1p1 . . . Ip1pL+1

...
...

...
...

...
...

. . . . . .
...

... Ipipj
. . .

...
...

...
...

...
...

I ′
α∗pL+1

I ′

βpL+1
I ′
γpL+1

I ′
p1pL+1

. . . IpL+1pL+1



























































and the elements of I as

Iα∗α∗ = − ∂
∂α∗

∂
∂α∗

log Li

Iβα∗
= − ∂

∂β
∂

∂α∗
log Li

Iγα∗ = − ∂
∂γ

∂
∂α∗

log Li

Ipτ α∗ = − ∂
∂pτ

∂
∂α∗

log Li

Iνα∗ = − ∂
∂ν

∂
∂α∗

log Li

Iββ = − ∂

∂β
∂

∂β
log Li

Iγβ = − ∂
∂γ

∂

∂β
log Li

I
pτβ = − ∂

∂pτ

∂

∂β
log Li

Iνβ = − ∂
∂ν

∂

∂β
log Li

Iγγ = − ∂
∂γ

∂
∂γ log Li

Ipτγ = − ∂
∂pτ

∂
∂γ log Li

Iνγ = − ∂
∂ν

∂
∂γ log Li
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Ipτ pτ
= − ∂

∂pτ

∂
∂pτ

log Li

Ipτ pθ
= − ∂

∂pθ

∂
∂pτ

log Li

Iνpθ
= − ∂

∂ν
∂

∂pτ
log Li.

To simplify notation, define the quantities v, u, and w for each individual as

v =
∑

H∈S(Gi)
exp(α∗ + XCH

β + XEi
γ + XHEi

ν)phph′

u =
∑

H exp(α∗ + XCH
β + XEi

γ + XHEi
ν)phph′

w =
∑

H∈S(Gi)
phph′

The derivatives of v with respect to the parameters α∗, γ, β, ν, and a specific pτ

are

∂
∂α∗

v =
∑

H∈S(Gi)
exp(α∗ + XCH

β + XEi
γ + XHEi

ν)phph′

∂

∂β
v =

∑

H∈S(Gi)
exp(α∗ + XCH

β + XEi
γ + XHEi

ν)XT
CH

phph′

∂
∂γ v =

∑

H∈S(Gi)
exp(α∗ + XCH

β + XEi
γ + XHEi

ν)XT
Ei

phph′

∂
∂pτ

v =
∑

H∈S(Gi)
2I(h = τ)

{

ph′exp(α∗ + XCH
β + XEi

γ + XHEi
ν)

}

∂
∂ν

v =
∑

H∈S(Gi)
exp(α∗ + XCH

β + XEi
γ + XHEi

ν)XT
HEi

phph′

∂
∂α∗

∂
∂α∗

v = v

∂

∂β
∂

∂α∗
v = ∂

∂β
v

∂
∂γ

∂
∂α∗

v = ∂
∂γ v

∂
∂pτ

∂
∂α∗

v = ∂
∂pτ

v

∂
∂α∗

∂
∂ν

v =
∑

H∈S(Gi)
exp(α∗ + XCH

β + XEi
γ + XHEi

ν)XT
HEi

phph′

∂

∂β
∂

∂β
v =

∑

H∈S(Gi)
exp(α∗ + XCH

β + XEi
γ + XHEi

ν)XT
CH

XCH
phph′

∂
∂γ

∂

∂β
v =

∑

H∈S(Gi)
exp(α∗ + XCH

β + XEi
γ + XHEi

ν)XT
CH

XEi
phph′

∂
∂pτ

∂

∂β
v =

∑

H∈S(Gi)
2I(h = τ)

{

exp(α∗ + XCH
β + XEi

γ + XHEi
ν)XT

CH
ph′

}
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∂
∂ν

∂

∂β
v =

∑

H∈S(Gi)
exp(α∗ + XCH

β + XEi
γ + XHEi

ν)XT
CH

XHEi
phph′

∂
∂γ

∂
∂γ v =

∑

H∈S(Gi)
exp(α∗ + XCH

β + XEi
γ + XHEi

ν)XT
Ei

XEi
phph′

∂
∂pτ

∂
∂γ v =

∑

H∈S(Gi)
2I(h = τ)

{

exp(α∗ + XCH
β + XEi

γ + XHEi
ν)XT

Ei
ph′

}

∂
∂ν

∂
∂γ v =

∑

H∈S(Gi)
exp(α∗ + XCH

β + XEi
γ + XHEi

ν)XT
Ei

XHEi
phph′

∂
∂pτ

∂
∂pτ

v = 2I(h = h′ = τ)

{

exp(α∗ + XCH
β + XEi

γ + XHEi
ν)

}

∂
∂pθ

∂
∂pτ

v =
∑

H∈S(Gi)
2I(hj = τ, h′

j = θ)

{

exp(α∗ + XCH
β + XEi

γ + XHEi
ν)

}

∂
∂pτ

∂
∂ν

v =
∑

H∈S(Gi)
2I(h = τ 6= h′)

{

exp(α∗ + XCH
β + XEi

γ + XHEi
ν)ph′XHEi

}

+

2I(h = h′ = τ)

{

exp(α∗ + XCH
β + XEi

γ + XHEi
ν)pτXHEi

}

∂
∂ν

∂
∂ν

v =
∑

H∈S(Gi)
exp(α∗ + XCH

β + XEi
γ + XHEi

ν)XT
HEi

XHEi
phph′

The derivatives of u are the same as those for v, except they are summed over all

haplotype pairs H instead of H ∈ S(Gi). The derivates of w are

∂
∂pτ

w =
∑

H∈S(Gi)
2I(h = τ)ph′

∂
∂pτ

∂
∂pτ

w = 2I(h = h′ = τ)

∂
∂pθ

∂
∂pτ

w =
∑

H∈S(Gi)
2I(hj = τ, h′

j = θ)

Now we can write the components of D and I in terms of derivatives of v, u, and

w.

∂
∂α∗

log Li = yi

∂
∂α∗ v

v
−

∂
∂α∗ u

u

∂

∂β
log Li = yi

∂

∂β
v

v
−

∂

∂β
u

u

∂
∂γ log Li = yi

∂

∂γ v

v
−

∂

∂γ u

u

∂
∂pτ

log Li = (1 − yi)
∂

∂pτ
w

w
+ yi

∂
∂pτ

v

v
−

∂
∂pτ

u

u

∂
∂ν log Li = yi

∂

∂ν v

v
−

∂

∂ν u

u
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∂
∂α∗

∂
∂α∗

log Li = yi
v( ∂

∂α∗

∂
∂α∗ v)−( ∂

∂α∗ v)( ∂
∂α∗ v)

v2 −
u( ∂

∂α∗

∂
∂α∗ u)−( ∂

∂α∗ u)( ∂
∂α∗ u)

u2

∂

∂β
∂

∂α∗
log Li = yi

v( ∂

∂β
∂

∂α∗ v)−( ∂
∂α∗ v)( ∂

∂β
v)

v2 −
u( ∂

∂β
∂

∂α∗ u)−( ∂
∂α∗ u)( ∂

∂β
u)

u2

∂
∂γ

∂
∂α∗

log Li = yi

v( ∂

∂γ
∂

∂α∗ v)−( ∂
∂α∗ v)( ∂

∂γ v)

v2 −
u( ∂

∂γ
∂

∂α∗ u)−( ∂
∂α∗ u)( ∂

∂γ u)

u2

∂
∂pτ

∂
∂α∗

log Li = yi

v( ∂
∂pτ

∂
∂α∗ v)−( ∂

∂α∗ v)( ∂
∂pτ

v)

v2 −
u( ∂

∂pτ

∂
∂α∗ u)−( ∂

∂pτ
u)( ∂

∂α∗ u)

u2

∂
∂α∗

∂
∂ν log Li = yi

v( ∂
∂α∗

∂

∂ν v)−( ∂

∂ν v)( ∂
∂α∗ v)

v2 −
u( ∂

∂α∗

∂

∂ν u)−( ∂

∂ν u)( ∂
∂α∗ u)

u2

∂

∂β
∂

∂β
log Li = yi

v( ∂

∂β
∂

∂β
v)−( ∂

∂β
v)( ∂

∂β
v)

v2 −
u( ∂

∂β
∂

∂β
u)−( ∂

∂β
u)( ∂

∂β
u)

u2

∂
∂γ

∂

∂β
log Li = yi

v( ∂

∂γ
∂

∂β
v)−( ∂

∂β
v)( ∂

∂γ v)

v2 −
u( ∂

∂γ
∂

∂β
u)−( ∂

∂β
u)( ∂

∂γ u)

u2

∂
∂pτ

∂

∂β
log Li = yi

v( ∂
∂pτ

∂

∂β
v)−( ∂

∂β
v)( ∂

∂pτ
v)

v2 −
u( ∂

∂pτ

∂

∂β
u)−( ∂

∂β
u)( ∂

∂pτ
u)

u2

∂

∂β
∂

∂ν log Li = yi

v( ∂

∂β
∂

∂ν v)−( ∂

∂ν v)( ∂

∂β
v)

v2 −
u( ∂

∂β
∂

∂ν u)−( ∂

∂β
u)( ∂

∂β
u)

u2

∂
∂γ

∂
∂γ log Li = yi

v( ∂

∂γ
∂

∂γ v)−( ∂

∂γ v)( ∂

∂γ v)

v2 −
u( ∂

∂γ
∂

∂γ u)−( ∂

∂γ u)( ∂

∂γ u)

u2

∂
∂pτ

∂
∂γ log Li = yi

v( ∂
∂pτ

∂

∂γ v)−( ∂

∂γ v)( ∂
∂pτ

v)

v2 −
u( ∂

∂pτ

∂

∂γ u)−( ∂

∂γ u)( ∂
∂pτ

u)

u2

∂
∂γ

∂
∂ν log Li = yi

v( ∂

∂γ
∂

∂ν v)−( ∂

∂ν v)( ∂

∂γ v)

v2 −
u( ∂

∂γ
∂

∂ν u)−( ∂

∂ν u)( ∂

∂γ u)

u2

∂
∂pτ

∂
∂pτ

log Li = (1 − yi)
w( ∂2

∂p2
τ

w)−( ∂
∂pτ

w)( ∂
∂pτ

w)

w2 + yi

v( ∂2

∂p2
τ

v)−( ∂
∂pτ

v)( ∂
∂pτ

v)

v2 −

u( ∂2

∂p2
τ

u)−( ∂
∂pτ

u)( ∂
∂pτ

u)

u2

∂
∂pθ

∂
∂pτ

log Li = (1 − yi)
w( ∂

∂pθ

∂
∂pτ

w)−( ∂
∂pτ

w)( ∂
∂pθ

w)

w2 + yi

v( ∂
∂pθ

∂
∂pτ

v)−( ∂
∂pτ

v)( ∂
∂pθ

v)

v2 −

u( ∂
∂pθ

∂
∂pτ

u)−( ∂
∂pτ

u)( ∂
∂pθ

u)

u2

∂
∂pτ

∂
∂ν log Li = yi

v( ∂
∂pτ

∂

∂ν v)−( ∂

∂ν v)( ∂
∂pτ

v)

v2 −
u( ∂

∂pτ

∂

∂ν u)−( ∂

∂ν u)( ∂
∂pτ

u)

u2
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Appendix C

Score Statistic Details for Case-only Test

for Interaction Effects

The score statistic for the case-only analysis of haplotype-environment interaction ef-

fects is

Sν = UT
νV −1

ν Uν

∣

∣

∣

∣ν=0

ξ=
˜ξ

where

Uν =
∂

∂ν
log Lobs

and

Vν = Dνν − IνξI−1

ξξ
DT

νξ − DνξI−1

ξξ
IT

νξ + IνξI−1

ξξ
DξξI−1

ξξ
IT

νξ,

We write the variance-covariance matrix D as

D =









Dνν Dνξ

DT

νξ
Dξξ









where
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Dνξ =

(

Dν p̃1 . . . Dν p̃L+1

)

and

Dξξ =

































Dp̃1p̃1 . . . Dp̃1p̃L+1

...
...

...

. . . Dp̃ip̃j
. . .

...
...

...

D′
p̃1p̃L+1

. . . Dp̃L+1p̃L+1

































Let

si(yi, gi, p̃τ ) = ∂
∂p̃τ

log Li

si(yi, gi,ν) = ∂
∂ν log Li.

Then we define the elements of D as

Dp̃τ p̃τ
=

∑n

i=1 si(yi, gi, p̃τ )si(yi, gi, p̃τ )

Dp̃τ p̃θ
=

∑n

i=1 si(yi, gi, p̃τ )si(yi, gi, p̃θ)

Dν p̃τ
=

∑n

i=1 si(yi, gi,ν)si(yi, gi, p̃τ )

Dνν =
∑n

i=1 si(yi, gi,ν)si(yi, gi,ν)T .

We can write the observed information matrix I as

I =









Iνν Iνξ

IT

νξ
Iξξ









where
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Iνξ =

(

Iν p̃1 . . . Iν p̃L+1

)

and

Iξξ =

































Ip̃1p̃1 . . . Ip̃1p̃L+1

...
...

...

. . . Ip̃ip̃j
. . .

...
...

...

I ′
p̃1p̃L+1

. . . Ip̃L+1p̃L+1

































and the elements of I as

Ip̃τ p̃τ
= − ∂

∂p̃τ

∂
∂p̃τ

log Li

Ip̃τ p̃θ
= − ∂

∂p̃θ

∂
∂p̃τ

log Li

Iν p̃τ
= − ∂

∂ν
∂

∂p̃τ
log Li.

To simplify notation, define the quantities v, u, and w for each individual as

v =
∑

H∈S(Gi)
exp(XHEν)p̃hp̃h′

u =
∑

H exp(XHEν)p̃hp̃h′

The derivatives of v with respect to the parameters ν and a specific p̃τ are

∂
∂ν v =

∑

H∈S(Gi)
exp(XHEν)p̃hp̃h′XT

HE

∂
∂p̃τ

v =
∑

H∈S(Gi)
exp(XHEν)2I(h = τ)p̃h′

∂
∂p̃θ

∂
∂p̃τ

v =
∑

H∈S(Gi)
2I(h = τ, h′ = θ) exp(XHEν)

∂
∂p̃τ

∂
∂ν v =

∑

H∈S(Gi)
exp(XHEν)2I(h = τ)p̃h′XT

HE

The derivatives of u are the same as those for v, except they are summed over all
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haplotype pairs H instead of H ∈ S(Gi).

Now we can write the components of D and I in terms of derivatives of v, u, and

w.

∂
∂p̃τ

log Li = di

∂
∂p̃τ

v

v
− di

∂
∂p̃τ

u

u

∂
∂ν log Li = di

∂

∂ν v

v
− di

∂

∂ν u

u

∂
∂p̃τ

∂
∂p̃τ

log Li = di

v( ∂2

∂p̃2
τ

v)−( ∂
∂p̃τ

v)( ∂
∂p̃τ

v)

v2 − di

u( ∂2

∂p̃2
τ

u)−( ∂
∂p̃τ

u)( ∂
∂p̃τ

u)

u2

∂
∂p̃θ

∂
∂p̃τ

log Li = di

v( ∂
∂p̃θ

∂
∂p̃τ

v)−( ∂
∂p̃τ

v)( ∂
∂p̃θ

v)

v2 − di

u( ∂
∂p̃θ

∂
∂p̃τ

u)−( ∂
∂p̃τ

u)( ∂
∂p̃θ

u)

u2

∂
∂p̃τ

∂
∂ν log Li = di

v( ∂
∂p̃τ

∂

∂ν v)−( ∂

∂ν v)( ∂
∂p̃τ

v)

v2 − di

u( ∂
∂p̃τ

∂

∂ν u)−( ∂

∂ν u)( ∂
∂p̃τ

u)

u2
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