
Abstract

DAI, YUE. Game Theoretic Approach to Supply Chain Management. (Under the

direction of Dr. Shu-Cherng Fang, Dr. Xiuli Chao, and Dr. Henry L.W. Nuttle.)

This dissertation studies the competitive behavior of firms in supply chain manage-

ment and revenue management contexts. A game theoretic approach is employed. We

analyze capacity allocation and pricing strategies and derive equilibrium solutions for

multiple competing firms. We also study channel coordination mechanisms to bring the

competing firms together for chain-wide optimality and conduct sensitivity analysis of

equilibrium solutions.

First we consider a single-period distribution system with one supplier and two re-

tailers. When a stockout occurs at one retailer the customer may go to the other retailer.

The supplier may have infinite or finite capacity. In the latter case, if the total quantity

ordered (claimed) by the retailers exceeds the supplier’s capacity, an allocation policy is

invoked to assign the capacity to the retailers. We show that a unique Nash equilibrium

exists when the supplier has infinite capacity. While, when the capacity is finite, a Nash

equilibrium exists only under certain conditions. For the finite capacity case, we also use

the concept of Stackelberg game to develop optimal strategies for both the leader and the

follower. In addition to the decentralized inventory control problem, we study the cen-

tralized inventory control problem and obtain the optimal allocation that maximizes the

expected profit of the entire supply chain. We also design perfect coordination mecha-

nisms, i.e., a decentralized cost structure resulting in a Nash equilibrium with chain-wide



profits equal to those achieved under a fully centralized system.

As an extension to the capacity allocation models above, we then consider two firms

where each firm has a local store and an online store. Customers may shift among these

stores upon encountering a stockout. Each firm makes the capacity allocation decision

to maximize its profit. We consider two scenarios of a single-product single-period model

and derive corresponding existence and stability conditions of a Nash equilibrium. We

then conduct sensitivity analysis of the equilibrium solution with respect to price and

cost parameters. Finally we extend the results to a multi-period model in which each

firm decides its total capacity and allocates this capacity between its local and online

stores. A myopic solution is derived and shown to be a Nash equilibrium solution of a

corresponding sequential game.

Finally, we consider the pricing strategies of multiple firms providing same service

and competing for a common pool of customers in a revenue management context. The

demand at each firm depends on the selling prices charged by all firms, each of which

satisfies demand up to a given capacity limit. We use game theory to analyze the systems

under both deterministic and general stochastic demand. We derive the existence and

uniqueness conditions for a Nash equilibrium and calculate the explicit Nash equilibrium

point when the demand at each firm is a linear function of price.
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Chapter 1

Introduction

A supply chain consists of multiple firms (vendors, retailers, distributor, etc.) linked

by a flow of materials, information, and funds. The firms in a supply chain may or

may not belong to the same corporate entity, which results in decision making conflicts.

For instance, retailers who sell same or substitutable products compete for the common

pool of customers. This competition can be for a limited supply of product or in the

setting of selling prices. The purchasing and pricing decisions of one retailer affect the

profit of other competing retailers, which results in a strategic interaction among the

decision making of all retailers. In this dissertation, we apply game theory to analyze

the supply chain management problems when a supply chain consists of multiple agents

with possibly conflicting objectives.
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1.1 Capacity allocation problem

In many distribution systems, a single supplier provides products to several retailers.

If orders of all retailers are uncertain and capacity is costly, the supplier may not be

willing to have capacity that is high enough to cover all orders at any point in time.

Therefore when the total order from retailers exceeds the supplier’s capacity, the supplier

must allocate his/her supply based on some rules. This kind of problem is called a

capacity allocation problem. In a supply chain where several retailers sell same product,

customers, whose demand cannot be satisfied by one retailer, may go to another retailer.

This behavior is termed “market search” (Anupindi and Bassok (1999)), i.e., customers

“search the market” before leaving the system.

In the first part of this dissertation, we analyze capacity allocation problems with

market search in which retailers compete for a supplier’s capacity on one hand and

compete for customers on the other hand. Our objective is to provide game theoretic

analysis for decentralized system when retailers order simultaneously or sequentially and

to suggest a management solution to optimize the performance of the whole supply chain

through the coordination of retailers. For this purpose, we analyze two models with

market search. In the first model, retailers have general cost structure and make ordering

decisions to maximize their own profits. The order strategy of one retailer affects the

order strategies of all other retailers, which results in a strategic interaction among the

decision making of all retailers, and we use game theory to analyze the optimal order

strategies of retailers. We consider the case when all retailers order simultaneously and
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the case when one retailer has the privilege of ordering first. For both cases, we obtain

the necessary and sufficient conditions of the existence of an equilibrium solution.

Generally speaking, in a distribution system, an equilibrium solution reached by all

retailers may be sub-optimal in terms of the system-wide profit. Designing an easily

acceptable incentive structure that can be implemented in practice is a challenging and

important task. Therefore, through the analysis of the second capacity allocation model

with market search, we describe how to coordinate the retailers so that the performance

of the whole supply chain is optimized. First, we consider decentralized control where

retailers are competitive and obtain the equilibrium solution, which is the individual

optimum for each retailer. Then we consider centralized control where all retailers are

cooperative and obtain the central optimum, which maximizes the profit of whole supply

chain. Finally, we design a coordination mechanism to make the decentralized system

solution give a chain-wide profit equal to that achieved under a centralized system.

1.2 An extension to the capacity allocation problem

There is a large body of literature on the capacity allocation problem that treats

single-period models in which each retailer has a single demand class. In the second

part of this dissertation, we examine several extensions of the work. We start with a

single-period capacity allocation model in which each firm has multiple demand classes,

specifically, each firm has a local store and an online store. Upon encountering a stockout,

customers may shift from the local store to the online store of the same firm, or they

3



may switch to the other firm. Each firm makes its capacity decision to maximize its

profit. As an extension to the basic problem, we allow each firm make two capacity

decisions simultaneously: its total capacity and the allocation between its local and online

stores. We consider two versions of this single-period model and derive the corresponding

existence and stability conditions of an equilibrium solution. We then extend our results

to a multi-period model, deriving a myopic solution for the resulting sequential game.

Our model formulation and analysis draw on and contribute to the literature on capacity

allocation problems.

1.3 Revenue management

Revenue management is the practice of controlling the availability and/or pricing of

accommodations in different booking classes with the goal of maximizing expected rev-

enues or profits. It is widely applied in capacity-constrained service industries such as the

airlines, hotels, car rentals, and cruise-liners. Generally speaking, revenue management

aims at maximizing the revenue or profit of one firm (e.g., airline). However, in reality,

several firms may compete for the common pool of customers. In the third part of this

dissertation, we analyze the pricing strategies for multiple firms competing for customers

from a common pool (e.g., airlines with identical aircraft and fares). The firms aim to

maximize their own profit (subject to the capacity constraint) by setting prices to attract

potential customers. Since the pricing strategy of one firm affects the demand streams of

other firms, there is a strategic interaction among the firms’ pricing decisions; therefore

4



game theory is applied to analyze this problem.

1.4 Organization of the dissertation

This dissertation is organized as follows. Literature surveys on related work are given

in Chapter 2. In Chapter 3, we analyze the basic capacity allocation model with market

search, in which retailers have general cost structure and the supplier may have infinite

or finite capacity. In Chapter 4, we study both the decentralized and centralized systems

and design a channel coordination mechanism to optimize the performance of the supply

chain.

Extensions to the basic capacity allocation problem are the focus of Chapter 5. We

consider single and multi-period capacity allocation models in which each firm has mul-

tiple demand classes and makes simultaneous decisions on total capacity and capacity

allocation.

In all the above models, the competition is for a limited supply of product. In the real

world, it is reasonable to expect that firms will compete not only for inventory, but also

on price. In Chapter 6, we consider the pricing strategies of multiple firms providing same

service, competing for a common pool of customers in a revenue management context.

We analyze both systems in which firms face either a deterministic demand function or

a general stochastic demand function and derive the existence and uniqueness conditions

for a Nash equilibrium.

5



Finally, in Chapter 7, we summarize the findings and give directions for other re-

search in the area of game theoretic analysis of supply chain management and revenue

management.

6



Chapter 2

Literature Review

2.1 Game theory

Game theory has been widely used in supply chain management (Mesterton (2000)).

The different parties in a supply chain are called players in game theory. The profit

function of a player is called his/her payoff function. A player’s best response is his/her

best strategy given the strategies of all other players. The concept of “Nash equilibrium”

is used to represent a solution to a game in which all players make decisions simul-

taneously. A set of strategies constitutes a Nash equilibrium if each player’s strategy

maximizes his/her own payoff function given the strategies of other players. Chapter 9

of Heyman and Sobel (1984) talks about a sequential game, which is a multi-player deci-

sion process in which each player makes a sequence of decisions. Each player’s decision

sequence influences the evolution of the process and affects the time streams of rewards

7



to all players. A sequential game is said to have a myopic solution if its data can be used

easily to specify a one-period game such that ad infinitum repetition of a Nash equilib-

rium of the one-period game comprises an equilibrium for the sequential game. Different

from games above in which all players make decision simultaneously, Stackelberg game is

used to refer to the case when one of the players makes his/her decision before the others

do. Specifically, in a Stackelberg game, one player, called the leader, makes a decision

first and announces it, then the other players, called followers, make their decisions.

Parlar (1988) is perhaps the first author to treat an inventory problem using game

theory. He examines an extension of the classical newsvendor problems in which two

vendors sell substitutable product. In his two-player model, substitution occurs with a

certain probability. Parlar proves the existence of a unique Nash equilibrium. Lippman

and McCardle (1994) also study an extension of the classical newsvendor problem in

which the salvage value of excess inventory and penalty for unmet demand are assumed

to be zero. Under this assumption, they examine the equilibrium inventory levels and

the rules to reallocate excess demand. They provide conditions under which a Nash

equilibrium exists for the case with two or more newsvendors. Mahajan and Ryzin

(1999) study a model with n retailers that provide substitutable goods, assuming that

the demand process is a stochastic sequence of heterogeneous consumers who choose

dynamically from the available goods (or choose not to purchase) based on a utility

maximization criterion. Raju and Zhang (1999) analyze the Stackelberg game in which

one of the retailers is dominant and capable of unilaterally setting a retail price which

will be adopted by all other retailers.
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2.2 Channel coordination in supply chain manage-

ment

A supply chain consists of multiple players (vendors, retailers, distributor, etc.) linked

by a flow of materials, information, and funds. Total expected supply chain profit will

be maximized if all decisions are made by a single decision maker with access to all

available information. This is referred to as the optimal case or first-best case, and

is often associated with centralized control. However, in reality, the firms in a supply

chain often do not belong to one corporate entity, which results in decision making

conflicts. Typically no single decision is in a position to control the entire supply chain,

and each player has his/her own incentives and state of information. We refer to this as

a decentralized control structure. Under decentralized control, each player needs to know

how to behave in order to maximize his/her own profit. Under centralized control, a

system manager needs to know how to design a mechanism to optimize the performance

of the whole supply chain. In order to increase the total profit of a decentralized supply

chain and improve the performance of the players, one strategy is to form contracts

among players by modifying their payoffs. Some contracts provide a means to bring the

total profit resulting from decentralized control to the centralized optimal profit. This is

referred to as channel coordination.

Cachon and Zipkin (1999) investigate a two-stage (supplier and retailers) serial supply

chain with stationary stochastic demand and fixed transportation time over an infinite

horizon. They compare the base stock policies chosen under the competitive regime to
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those selected so to minimize total supply chain costs. Furthermore, they use a linear

contract between the supplier and the retailer to modify the payoffs of the players and

make the total profit close to the global optimum. In contrast, Klastorin et al. (2002)

use price discounts to influence buyers’ ordering behavior and coordinate a two-echelon

distribution system. The supplier offers a price discount to any retailer who places

an order which coincides with the beginning of retailer’s cycle. They show that this

policy can lead to more efficient supply chains under certain conditions, and present a

straightforward method for finding the optimal price discount in the decentralized supply

chain. Reviews by Goyal and Gupta (1989) and Weng (1995) show how coordination can

be achieved in integrated lot-sizing models with deterministic demand. Their work and

that of others provide valuable insights into how and when price discount schemes can be

used to achieve jointly optimal outcomes. Lariviere and Porteus (2001) consider a simple

supply-chain contract in which a manufacturer sells to a retailer facing a newsvendor

problem and the long contract parameter is the wholesale price. They show that the

manufacturer’s profit and sales quantity increase with market size, but the resulting

wholesale price depends on how the market grows.

2.3 Capacity allocation problem with market search

In many distribution systems, a single supplier provides products to several retailers.

If retailers’ orders are uncertain and capacity is costly, the supplier may not be willing to

have capacity that is high enough to cover all orders at any point in time. Therefore when

10



the total order from retailers exceeds the supplier’s capacity, the supplier must allocate

his/her supply based on some sort of rules. This kind of problem is called the capacity

allocation problem. In this dissertation we refer to the quantity of product requested by

a retailer as an order, while the quantity of product the retailer actually gets is called an

allocation. Three allocation rules are commonly used (see Cachon and Lariviere (1999))

to allocate the limited capacity to retailers when the total order from the retailers exceeds

the supplier’s capacity: proportional, linear, and uniform. Under these three allocation

rules, if the total order does not exceed the capacity, each retailer receives what he/she

ordered. Otherwise, the capacity is totally allocated and each retailer gets at most what

he/she ordered. Cachon and Lariviere (1999) compare these three allocation schemes in

the same context of one supplier, two retailers, and one period. They state that the supply

chain must balance two objectives: (i) increase the supplier’s profits by maximizing the

supplier’s capacity utilization; and (ii) increase the retailer’s profits by ensuring that the

allocation of supply closely matches the retailer’s true needs.

The terminology “market search”, to the best of our knowledge, was first introduced

by Anupindi and Bassok (1999). A related concept is “substitutable product”, refers to a

scenario where retailers sell similar products (McGillivray and Silver (1978), Pasternack

and Drezner (1991) and Drezner (1995)) and when one product is out of stock, the

customers may substitute another in its place. McGillivray and Silver (1978) consider

the substitutability of two products in an EOQ context. They investigate the effects

of substitutability on inventory control policies and develop a heuristic approach for

establishing the order-up-to levels. Netessine and Rudi (2002) analyze the centralized and
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decentralized inventory controls of a supply chain in which an infinite capacity supplier

provides substitutable products to n retailers.

Anupindi and Bassok (1999) appears to be the only paper that considers a capacity

allocation problem with market search. They compare two systems: one in which the

retailers hold stocks separately and the other in which they cooperate by holding a

centralized stock at a single location. They find that whether one system is better than

the other depends on the probability of customers’ switching to another retailer upon

encountering a stockout.

2.4 Revenue management

Revenue management, also called yield management, is the practice of controlling the

availability and/or pricing of accommodations in different booking classes with the goal

of maximizing expected revenues or profits (Gallego and van Ryzin (1997)). It is widely

applied in capacity-constrained service industries such as the airlines, hotels, car rentals,

and cruise-liners. Historically, revenue management started as an operations function,

focusing only on capacity allocation given exogenous demand. The problem of seat

inventory control across multiple fare classes has been studied by many researchers since

1972 (see for example, Littlewood (1972), Bhatia and Parekh (1973), and Ladany and

Bedi (1977)). However, more and more researchers and practitioners have come to realize

that the pricing decisions cannot be separated from traditional capacity-oriented yield

management decisions. Among them, Weatherford (1997) presents a formulation of the
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simultaneous pricing/allocation decision that assumes normally distributed demands, and

models mean demand as a linear function of price. In Gallego and van Ryzin (1994, 1997),

demand is formulated as a stochastic point process with an intensity that is a function of

the vector of prices for the products and the time at which these prices are offered. Their

basic result is that simple heuristics adapted from the solution to the problem in which

demand processes are replaced by their expectations are asymptotically optimal for the

stochastic control problem. Based on this, the optimal dynamic pricing that maximizes

expected revenues over a finite horizon is provided using intensity control theory. Feng

and Gallego (2000) address the problem of deciding the optimal timing of price changes

within a given menu of allowable, possibly time dependent, price paths each of which is

associated with a general Poisson process with Markovian, time dependent, predictable

intensities. They develop an efficient algorithm to compute the optimal value functions

and the optimal pricing policy. For a comprehensive and up-to-date overview of the

revenue management we refer to McGill and van Ryzin (1999) containing a bibliography

of over 190 references.

2.5 Pricing problems

There is an extensive literature in the pricing strategies among competitive firms.

Bernstein et al. (1999) consider a two-echelon distribution system with price-dependent

demand. The deterministic demand of each retailer is dependent on the prices charged

by all firms. Alternatively, the price each retailer can charge for his/her product depends
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on the sales volumes targeted by all of the retailers. The authors characterize perfect

coordination mechanisms for the distribution system. They also consider the Stackel-

berg game when the supplier acts like the leader and chooses the wholesale prices so as

to maximize his/her own profits. In another paper, Bernstein and Federgruen (1999)

compare the performance of a centralized system, a decentralized system and a Vendor

Managed Inventories (VMI) system. The deterministic demand is assumed to be a linear

function of price and an EOQ-like cost structure is applied.

In addition to deterministic demands, there are many papers analyzing competi-

tive oligopoly models with stochastic demands. Birge et al. (1998) and van Mieghem

and Dada (1999) study models with endogenously determined prices and retailer stock-

ing levels determined in advance of demand realizations. Birge et al. characterize the

equilibrium behavior in a two-retailer scenario with constant wholesale prices. They as-

sume that the stochastic demands are uniformly distributed. Van Mieghem and Data

(1999) consider a two-stage decision model where retailers make three decisions: capac-

ity investment, production quantity, and price. They analyze and compare the impacts

of postponing the capacity decision, the production decision, and the pricing decision.

Bernstein and Federgruen (2002) consider a periodic review, infinite horizon model where

competitive retailers play a pricing game. In every period, each retailer faces a random

demand volume. Two kinds of demand structures are considered: multiplicative and

non-multiplicative.

In addition to the papers mentioned above, McGuire and Staelin (1983) consider

a supply chain with two identical retailers, with linear demand functions and linear
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procurement costs, who compete on the basis of price. They assume the two retailers

are supplied by two manufacturers who may be vertically integrated with their retailer.

Petruzzi and Data (1999) examine an extension of the newsvendor problem in which

stocking quantity and selling price are set simultaneously. They provide a comprehensive

review that synthesizes the then existing results for the single-period problem and develop

a number of additional results. Sudhir (2001) analyzes the competitive pricing behavior

in the U.S. auto market. He uses a random utility approach, which is dependent on

prices, to estimate competitive interactions among firms in markets with many competing

products.

15



Chapter 3

Capacity Allocation Problem with

Market Search: General Cost

Structure

3.1 Introduction

We consider a single-period scenario for a distribution system in which a single sup-

plier provides one product to two retailers. When the total quantity of orders from

retailers exceeds the supplier’s capacity, some rules are followed to allocate the capacity

to the two retailers. The quantity of product that a retailer actually receives is called

an allocation. Note that in general a retailer’s allocation is different from his/her order.

The customer demand at each retailer is random, and when a demand cannot be met
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by one retailer because of a stockout, the customer may go to the other retailer. This

phenomenon is often referred to as “market search.”

Since the two retailers compete for both supply and demand, the ordering decision

at one retailer affects the demand of the competing retailer, thereby creating a strategic

interaction among the retailers’ inventory decisions. In this paper game theory is used

to study this problem. We are able to derive necessary and sufficient conditions for

the existence of a Nash equilibrium. We also show that, in case the supplier’s capacity

is unlimited, a unique Nash equilibrium always exists. However, when the supplier’s

capacity is finite, the Nash equilibrium exists only under certain conditions. For situations

where Nash equilibrium does not exist, we consider the problem as a Stackelberg game

and find optimal strategies for both the leader and the follower.

As mentioned in Section 2.3, Anupindi and Bassok (1999) appears to be the only

paper that considers a capacity allocation problem with market search. The authors

compared two systems: one in which the retailers hold stocks separately and the other in

which retailers cooperate to centralize stocks at a single location. Our model is different

from that used in Anupindi and Bassok (1999) and other papers cited in Section 2.3.

In our model, the two retailers hold stocks separately and have a general cost structure.

Our goal is to analyze the ordering strategies of the two retailers when they compete with

each other for both the supplier’s capacity and for customers. In addition, we consider

the cases when all retailers make order simultaneously and when one retailer has the

privilege of ordering first.
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The rest of the chapter is organized as follows: In Section 3.2 we present details of

the model. Section 3.3 analyzes retailers’ game behavior assuming that the supplier’s

capacity is infinite, while Section 3.4 considers the situation in which the supplier has

finite capacity. We show that only under certain conditions does a Nash equilibrium

exist. In case a Nash equilibrium does not exist, we study the retailers’ strategies through

Stackelberg game in Section 3.5. We conclude the chapter with a discussion in Section

3.6.

3.2 The model

We consider a single-product, single-period distribution system with one supplier and

two retailers. The demand during the period at each retailer is random. Customers

encountering a stockout at retailer i visit retailer j (j �= i) with probability aij before

leaving the system. The market search structure of this distribution system is represented

by a 2 × 2 matrix A with a11 = a22 = 0 and 0 ≤ aij ≤ 1 for i �= j, referred to as the

market search matrix. Thus, for retailer i, the total demand consists of customers who

visit retailer i first, and customers who switch from retailer j due to a stockout. The

former is called local demand, the latter distant demand, and the sum of these two, i.e.,

the total demand facing retailer i, effective demand at retailer i.

At the beginning of the season, the retailers place orders, and the supplier allocates

his/her product to each retailer. At the end of the season, the holding cost or stockout

penalty is incurred depending on whether there is unsold stock or a stockout. Therefore
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for each retailer, the decision problem is a newsvendor-like problem. Since the decision

of one retailer affects the total demand at the other retailer, a game arises as the two

retailers make their ordering decisions. We assume that each retailer has knowledge

of the distributions of the local demands, the market search matrix, and the capacity.

Furthermore, we assume that each retailer is a rational player who chooses an order

quantity to maximize his/her expected payoff.

In this chapter, we assume that the allocation rules of the supplier are exogenous and

known to each retailer. Thus, retailers apply the allocation rules to make their ordering

decisions, and they aim on making their allocations most beneficial for them. Therefore,

we focus on the analysis of allocation rather than that of order.

We use the following notation throughout the chapter:

For the supplier:

K: the capacity;

c: the unit production cost;

wi: the unit wholesale price to retailer i, i = 1, 2.

For retailer i, i = 1, 2:

si: the unit selling price of the product to customers;

Di: a continuous random variable for the stochastic local demand;
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f
i
(di): the probability density function of Di;

F
i
(di): the cumulative distribution function of Di;

aij : an element of the market search matrix A;

yi: the allocation, i.e., the inventory of retailer i at the beginning of the season;

Ri: the effective demand at retailer i, i.e.,

Ri = Di +
2∑

j=1

aji(Dj − yj)
+

= Di +

2∑
j=1

aji(yj − Dj)
−

where (x)+ = max{x, 0} and (x)− = max{−x, 0};

ci (·): the cost function including holding and stockout penalty;

πi(y1, y2): the expected payoff given the allocations to retailers are y1 and y2,

respectively.

In our analysis, we further assume that si > wi, i = 1, 2, for obvious reasons, and

ci (·) is a convex function satisfying

c′i(0) ≤ 0 and c′i(+∞) > 0. (3.1)

The first inequality implies that the minimizer of ci(·) is not negative, and the second

inequality implies that the cost function ci(·) is not decreasing on (−∞,∞).
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3.3 Analysis of the infinite capacity problem

In this section, we study the ordering (claiming) strategy of each retailer assuming

the supplier has infinite capacity. Note that in this case each retailer’s allocation is

equal to his/her order. Given retailer 1’s order is y1, the payoff of retailer 1 includes

the cost of purchasing w1y1, the cost of holding and stockout penalty c1(y1 − R1) =

c1(y1−(D1+a21(D2−y2)
+), and the revenue of selling s1 min{y1, R1} = s1(y1−(y1−R1)

+).

Thus retailer 1’s expected payoff function is

π1(y1, y2) = E[s1 min{y1, R1} − c1(y1 − R1) − w1y1]

= E[(s1 − w1)y1 − s1(y1 − R1)
+ − c1(y1 − R1)]

= (s1 − w1)y1 + E[g1(y1 − R1)],

where

g1(y1 − R1) � −s1(y1 − R1)
+ − c1(y1 − R1).

Since the function (x)+ is convex in x and c1 (·) is also convex, clearly g1 is a concave

function and, consequently, π1(y1, y2) is concave in y1 for any given y2. Since (3.1) holds

for the cost function, for any given y2, the optimal allocation for retailer 1 can be obtained

by setting the derivative (with respect to y1) of π1(y1, y2) to zero, i.e.,

s1 − w1 + E[g′
1(y1 − D1 − a21(D2 − y2)

+)] = 0. (3.2)

Let y1 = r1(y2) be the solution of (3.2), i.e., the optimal allocation for retailer 1 given

retailer 2’s allocation is y2. Also let y2 = v1(y1) be the inverse function of y1 = r1(y2).

By taking the derivative with respect to y1 on both sides of (3.2), we obtain

E[g′′
1(y1 − D1 − a21(D2 − y2)

+)(1 + a21I(y2 ≤ D2)v
′
1(y1))] = 0,
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where

I(y2 ≤ D2) =




1, if y2 ≤ D2,

0, otherwise.

Thus

v′
1(y1) =

−1

a21

E[g′′
1(y1 − D1 − a21(D2 − y2)

+)]

E[g′′
1(y1 − D1 − a21(D2 − y2)+)I(y2 ≤ D2)]

.

It follows that

v′
1(y1) <

−1

a21

≤ −1. (3.3)

Similarly, for retailer 2, given y1 is known, we have

π2(y1, y2) = E[s2 min{y2, R2} − c2(y2 − R2) − w2y2]

= (s2 − w2)y2 + E[g2(y2 − R2)],

where g2 is defined as

g2(y2 − R2) � −s2(y2 − R2)
+ − c2(y2 − R2).

For any given allocation y1 of retailer 1, the optimal allocation for retailer 2 satisfies

s2 − w2 + E[g′
2(y2 − D2 − a12(D1 − y1)

+)] = 0. (3.4)

Let r2(y1) be the optimal allocation of retailer 2, given retailer 1’s allocation is y1, as

defined by (3.4). Taking derivative with respect to y2 on both sides of (3.4) yields

E[g′′
2(y2 − D2 − a12(D1 − y1)

+)(r′2(y1) + a12I(y1 ≤ D1))] = 0,

where

I(y1 ≤ D1) =




1, if y1 ≤ D1,

0, otherwise.
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Therefore, we have

r′2(y1) = −a12E[g′′
2(y2 − D2 − a12(D1 − y1)

+)I(y1 ≤ D1)]

E[g′′
2(y2 − D2 − a12(D1 − y1)+)]

.

It follows that

r′2(y1) > −a12 ≥ −1. (3.5)

Figure 3.1 shows the optimal allocation functions of v1(y1) and r2(y1). When y2 = 0,

retailer 1 faces a newsvendor problem with stochastic demand D1 + a21D2. We denote

retailer 1’s optimal allocation in this case by y1. When y2 = ∞, retailer 1 faces a newsven-

dor problem with stochastic demand D1. We denote retailer 1’s optimal allocation in this

case by y
1
. Clearly, retailer 1’s optimal allocation y1 takes y

1
as a lower bound and y1

an upper bound. The curve v1(y1) of the optimal allocation function for retailer 1 starts

at the point (y
1
,∞) and ends at the point (y1, 0). In Figure 3.1, if retailer 2’s allocation

is y′
2, then the corresponding y′

1 is the optimal allocation for retailer 1. Similarly, retailer

2’s optimal allocation y2 has an upper bound y2 and a lower bound y
2
. The curve r2(y1)

represents the optimal allocation function for retailer 2. If retailer 1’s allocation is y′′
1 ,

then the corresponding y′′
2 is the optimal allocation for retailer 2.

Theorem 3.1 When the supplier has infinite capacity, there exists a unique Nash equi-

librium (yNash
1 , yNash

2 ), which can be obtained by solving the following system of equations

{
s1 − w1 + Eg′

1(y1 − D1 − a21(D2 − y2)
+) = 0,

s2 − w2 + Eg′
2(y2 − D2 − a12(D1 − y1)+) = 0.

(3.6)

Proof Retailer 1’s optimal allocation function, labeled as v1(y1) in Figure 3.1, is a strictly

decreasing curve starting at (y
1
,∞) and ending at (y1, 0). Retailer 2’s optimal allocation
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Figure 3.1: Nash equilibrium when the supplier provides infinite capacity.

function, labeled as r2(y1) in Figure 3.1, is also a strictly decreasing curve starting at

(0, y2) and ending at (∞, y
2
). These two optimal allocation functions must intersect, and

hence a Nash equilibrium exists. To prove uniqueness, we show that v1(y1) and r2(y1)

have at most one intersection. By (3.3) and (3.5), we have v′
1(y1) < −1 < r′2(y1) < 0.

Therefore, r2(y1) − v1(y1) is strictly increasing and r2(y1) − v1(y1) = 0 can have at most

one solution. Consequently, these two curves must have a unique intersection that is the

Nash equilibrium.

Example 3.2 Suppose that for each retailer the cost function consists of the holding cost

and stockout penalty in the following form:

ci(yi − Ri) = hi(yi − Ri)
+ + pi(yi − Ri)

−

where hi is the unit holding cost of the product and pi the unit stockout penalty cost.

Clearly, ci(yi−Ri) is a convex function of (yi−Ri) satisfying (3.1). In this case, following
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(3.6), the Nash equilibrium (yNash
1 , yNash

2 ) can be obtained by solving

{s1 − w1 + p1 − (s1 + h1 + p1)(F2(y2)F1(y1) +
∫ y1

0

∫ y1+a21y2−d1
a21

y2
dF2(d2)dF1(d1)) = 0,

s2 − w2 + p2 − (s2 + h2 + p2)(F2(y2)F1(y1) +
∫ y2

0

∫ y2+a12y1−d2
a12

y1
dF1(d1)dF2(d2)) = 0.

3.4 Analysis of the capacitated problem

In this section, we study the ordering strategies of retailers assuming the supplier has

a finite capacity K. Recall that in this case, based on the three commonly used allocation

rules, the allocation of each retailer is less than or equal to his/her order, and we focus on

the analysis of allocation. For convenience, in the (y1, y2) plane, we call the line formed

by y1 + y2 = K the supply line, and denote the intersection point of v1(y1) and r2(y1)

by (yNash
1 , yNash

2 ). Moreover, like in Figure 3.2, if the curve v1(y1) intersects the supply

line, we denote the intersection point by A; if curve r2(y1) intersects the supply line, we

denote the intersection point as B. If the curves do not intersect the supply line, as in

Figure 3.3, we denote the boundary point (K, 0) by A, and (0, K) by B. A simple result

is given below.

Theorem 3.3 If yNash
1 + yNash

2 ≤ K, then there exists a unique Nash equilibrium allo-

cation.

Proof At any point on the supply line, at least one retailer wants to apply his/her optimal

allocation function and deviate from that point. Thus, there is no Nash equilibrium on

the supply line. Below the supply line, as shown in Figure 3.2, the point (yNash
1 , yNash

2 )
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Figure 3.2: One Nash equilibrium.

Figure 3.3: The capacity is too limited.
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is a feasible allocation, and no player is willing to deviate from this point unilaterally.

Therefore, the point (yNash
1 , yNash

2 ) is the unique Nash equilibrium allocation.

A more interesting case is

yNash
1 + yNash

2 > K.

In this case, any allocation rule discussed in Section 2.3 can be applied. Two observations

are made here:

(i) If retailer 2 makes an order (claim) of yc
2 < K, then retailer 1 can either make an

order (claim) of yc
1 ≤ K−yc

2 or yc
1 > K−yc

2. In the former case, since the total order

does not exceed K, each retailer gets what he/she orders. Therefore, the allocation

(y1, y2) falls on the line segment between the points (0, yc
2) and (K − yc

2, y
c
2), as

shown in Figure 3.4. In the latter, since the total order quantity exceeds K, the

supplier’s capacity is depleted with the allocation (y1, y2) falling on the supply line.

When any of the three commonly used allocation rules applies (see Section 2.3),

retailer 2’s allocation y2 cannot be more than yc
2. Hence retailer 1 can go with the

allocation rule to make the allocation fall on the line segment between the points

(K − yc
2, y

c
2) and (K, 0), as shown in Figure 3.4. In other words, for any given yc

2,

retailer 1 can only push the allocation downward on the supply line. Similarly, for

any given yc
1, retailer 2 can only push the allocation upward on the supply line.

(ii) If retailer 2 makes an order (claim) of yc
2 > K, then retailer 1 can make the

allocation (y1, y2) fall at any place on the supply line.

27



Figure 3.4: Two observations.

Figure 3.5: yNash
1 + yNash

2 > K
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Theorem 3.4 Assume that yNash
1 + yNash

2 > K. There exists a Nash equilibrium alloca-

tion if and only if there exists (y1, y2) on the line segment AB such that y1 is the optimal

solution of

max π1(y, K − y)

s.t. max{K − y2, 0} ≤ y ≤ K

(3.7)

where π1(y, K−y) = (s1−w1)y+E[g1(y−D1−a21(D2−K +y)+)], and y2 is the optimal

solution of

max π2(K − y, y)

s.t. max{K − y1, 0} ≤ y ≤ K

(3.8)

where π2(K − y, y) = (s2 − w2)y + E[g2(y − D2 − a12(D1 − K + y)+)].

Proof We first prove sufficiency. Consider a point (y1, y2) lying on the line segment

AB (see Figure 3.5). If y1 is an optimal solution of (3.7), then retailer 1 cannot increase

his/her payoff by pushing the allocation downward on the supply line. Similarly, if y2

is an optimal solution of (3.8), then retailer 2 cannot increase his/her payoff by pushing

the allocation upward on the supply line. Since each retailer makes the decision that

is optimal given the behavior of the other retailer, the point (y1, y2) must be a Nash

equilibrium.

We then prove necessity. Note that the optimal allocation functions v1(y1) and r2(y1)

have no intersection below the supply line. Hence it is impossible to have a Nash equi-

librium below the supply line. Consequently, if a Nash equilibrium exists, it must fall on

the supply line. Now, if the Nash equilibrium does not fall on the line segment AB, one

retailer can use the corresponding optimal allocation function to increase his/her payoff
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and deviate from the equilibrium. Therefore, if a Nash equilibrium exists, it must fall

on the line segment AB. Moreover, for retailer 1 not having any incentive to deviate

from the equilibrium, y1 must be an optimal solution of (3.7). Similarly, for retailer 2

not having any incentive to deviate from the equilibrium, y2 must be an optimal solution

of (3.8). This proves the theorem.

Remark 3.5 If K = ∞, then Theorem 3.4 reduces to Theorem 3.1, with (y1, y2) being

the solution of (3.6).

3.5 Stackelberg game

As we see from the last section, when the supplier has finite capacity, the Nash

equilibrium may not exist. In this situation, we use the framework of Stackelberg game

to study the claiming (ordering) strategies of the retailers. In a Stackelberg game, one

retailer, called leader, makes a claim first, then the other retailer, called follower, makes

his/her claim. Based on both claims, the supplier allocates the finite capacity according

to a given allocation rule to the retailers, and the game is over.

Remember we use yc
i and yi (i = 1, 2) for retailer i’s claim (order) and allocation,

respectively. In the following analysis, we first study the follower’s claiming (ordering)

strategy assuming the leader’s strategy is known, and then we study the leader’s claiming

strategy based on the follower’s potential strategy. Recall that retailers apply the allo-

cation rules to make their ordering decisions, and they aim on making their allocations
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most beneficial for them. We focus on the analysis of optimal allocation.

3.5.1 The follower’s strategy

Without loss of generality, we assume that retailer 2 is the leader and retailer 1 follows.

Suppose the leader’s claim (order) yc
2 is known, the follower makes a claim yc

1 with an

attempt to maximize his/her payoff. Recall that point A is the intersection of the curve

v1(y1) and the supply line. Denote its coordinate by (yA
1 , yA

2 ) in the (y1, y2) plane. We

face two possible cases: (i) yc
2 ≥ yA

2 and (ii) yc
2 < yA

2 .

Case (i): As shown in Figure 3.6, if yc
2 ≥ yA

2 , the the follower (retailer 1) has two choices.

The first choice is to make a claim such that the allocation falls below the supply line.

The second choice is to make a claim such that the allocation falls on the supply line. For

the first choice, due to the concavity of the profit function, for any y1 ≤ K − yc
2, we have

π1(K − yc
2, y

c
2) > π1(y1, y

c
2). In other words, for the follower (retailer 1), no point below

the supply line is better than the point (K − yc
2, y

c
2) that sits on the supply line. (As an

example, in Figure 3.6, point D is not so good as point C for retailer 1.) Therefore, we

need only to consider the second choice through which the allocation falls on the supply

line. Consequently, the follower’s decision is actually given by (3.7), i.e.,

max π1(y, K − y)

s.t. max{K − yc
2, 0} ≤ y ≤ K.

Denote an optimal solution of the above problem by yline opt
1 . The point line opt with

coordinates (yline opt
1 , K − yline opt

1 ) is the follower’s optimal allocation downward on the

supply line given the leader’s claim is known. Thus, once the leader’s claim yc
2 is given,
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Figure 3.6: yc
2 ≥ yA

2

the follower makes a claim yc
1 > K − yc

2 such that the underlying allocation rule results

in an allocation of (yline opt
1 , K − yline opt

1 ). By doing so, the follower achieves an optimal

payoff π1(y
line opt
1 , K − yline opt

1 ).

Case(ii): As shown in Figure 3.7, if yc
2 < yA

2 , then the follower (retailer 1) again has the

two choices: one resulting in an allocation falling below the supply line while the other

resulting in an allocation falling on the line. Recall that function r1(y2) is the inverse

function of v1(y1), i.e., given y2, r1(y2) is the optimal allocation for retailer 1 when the

supplier has infinity capacity. Thus, given the leader’s claim yc
2 is known, if it goes with

the first choice, the follower (retailer 1) may make a claim of yc
1 = r1(y

c
2) and end up with

a payoff of π1(r1(y
c
2), y

c
2), which is the follower’s best payoff when the supplier’s capacity

is not fully utilized. If it goes with the second choice, as discussed before, retailer 1 will

end up with a payoff of π1(y
line opt
1 , K − yline opt

1 ). Consider both of these two choices,
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Figure 3.7: yc
2 < yA

2

the follower’s best strategy is to compare π1(r1(y
c
2), y

c
2) with π1(y

line opt
1 , K − yline opt

1 ) and

choose the one with a higher payoff.

3.5.2 The leader’s strategy

Once the follower’s claiming strategy is figured out, we can study the leader’s strat-

egy in the Stackelberg game. Remember that the follower’s (retailer 1’s) payoff on the

supply line plays an important role. In particular the follower’s payoff function becomes

π1(y1, K − y1) on this line. Denote the point (on the line) that maximizes π1(y1, K − y1)

by opt1 with coordinates (yopt1
1 , K − yopt1

1 ), as shown in Figure 3.8. We know from pre-

vious analysis that, for any yc
2 > K − yopt1

1 , the follower can make a claim such that the

allocation falls at the point opt1.
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Figure 3.8: Retailer 1’s payoff on the supply line.

Focus on the line segment between the points opt1 and (K, 0). As shown in Figure

3.8, the follower gets the largest payoff π1 on the line segment at the point opt1.

(i) If there exists a local maximum whose payoff is the second highest on the line

segment. We denote this point by down local with coordinates (ydown local
1 , ydown local

2 ).

Since the function π1(y1, K−y1) is continuous, some points near the point opt1 have higher

payoffs than the point down local does. Therefore, we can partition the segment between

the points opt1 and down local into two sets: set upper and set lower. Set upper consists

of all points whose π1 values are greater than or equal to π1(y
down local
1 , K − ydown local

1 ),

and set lower is formed by the rest.

To analyze the leader’s strategy, we use Figure 3.9 and Table 1 to highlight retailer 2’s

payoff when his/her claim is above point down local, i.e., yc
2 ≥ K − ydown local

1 . As shown

in the figure, we partition the line segments between the points (0, K) and down local
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Figure 3.9: Region 1, 2 and 3 when retailer 2’s claim is above point down local.

Region yc
2 ≥ yA

2 yc
2 < yA

2

1 π2(y
opt1
1 , K − yopt1

1 )




π2(y
opt1
1 , K − yopt1

1 ),

if π1(y
opt1
1 , K − yopt1

1 ) > π1(r1(y
c
2), y

c
2)

π2(r1(y
c
2), y

c
2), otherwise

2 π2(K − yc
2, y

c
2) π2(r1(y

c
2), y

c
2)

3 π2(y
down local
1 , K − ydown local

1 )




π2(y
down local
1 , K − ydown local

1 ),
if π1(y

down local
1 , K − ydown local

1 ) > π1(r1(y
c
2), y

c
2)

π2(r1(y
c
2), y

c
2), otherwise

Table 3.1: Retailer2’s payoff when his/her claim is in region 1, 2, and 3
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into three regions: all points above opt1 are in region 1, all points between opt1 and the

other end-point of set upper are in region 2, and the rest points are in region 3. Also

remember that the curve v1(y1) intersects the supply line at the point A.

If the leader’s (retailer 2’s) claim falls in region 1, the follower can increase his/her

payoff by pushing the allocation downward on the supply line. From our previous analy-

sis of the follower’s strategy, we know that, if yc
2 ≥ yA

2 , retailer 1 will push the allocation

downward on the supply line. Since the point opt1 is the best point for retailer 1 in

this direction, retailer 1 will push the allocation to this point. In this case, the leader

will achieve π2(y
opt1
1 , K − yopt1

1 ), as shown in the second row of the table. On the other

hand, if yc
2 < yA

2 , retailer 1 will compare π1(y
opt1
1 , K − yopt1

1 ) with π1(r1(y
c
2), y

c
2). There-

fore, if π1(y
opt1
1 , K − yopt1

1 ) is bigger, the leader will get π2(y
opt1
1 , K − yopt1

1 ); otherwise,

π2(r1(y
c
2), y

c
2). This completes the second row of the table. Similar reasoning process leads

to the leader’s optimal strategy and his/her associated payoff as shown on the third and

fourth rows of the table for regions 2 and 3, respectively.

Note that the above process may be repeated to cover the region between down local

and (K, 0) by taking the point down local as a new opt1 and finding a local maximum

with the second highest π1, a new down local, on the remaining region.

(ii) If there is no local maximum with the second highest π1, i.e., the point down local

does not exist, then π1 must be nonincreasing on the line segment between the points

opt1 and (K, 0). In this case, retailer 1 cannot increase his/her payoff by pushing the

allocation downward on the supply line. The analysis is the same as that of region 2 in
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Figure 3.9.

3.6 Concluding remarks

In this chapter, we apply game theory to study the optimal ordering strategies of

two retailers in a distribution system who compete for both supply capacity and for

customers. When stockout occurs at one retailer, a portion of customers will switch to

the other retailer. We focus on a single-period inventory model and derive necessary and

sufficient conditions for the existence of a unique Nash equilibrium solution. In case the

Nash equilibrium does not exist, we use the framework of Stackelberg game to analyze

optimal strategies for both the leader and the follower.

We conjecture that in the Stackelberg game with one of those commonly used allo-

cation rules, it is more beneficial to be the follower. Being the follower, we can actually

show that retailer 1’s payoff is guaranteed to be no less than the payoffs on the curve

segment between points A and (y1, 0) in Figure 3.6 and Figure 3.7. However, there is no

such guarantee for the leader whose ordering strategy heavily depends on the follower’s

payoffs on the supply line. In addition, the follower can always make an extreme claim to

get all capacity K by knowing yc
2 and the commonly used allocation rules. Since the fol-

lower has more information than the leader, he/she can take advantage of this situation.

Then, what is the incentive to be the leader in this scenario?

The “one-supplier two-retailer” model studied in this chapter can be extended to a

“one-supplier n-retailer” model. The following lemma given by Nikaido and Isora (1955)
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may be used to find existence conditions for a Nash equilibrium.

Lemma 3.6 If each player’s payoff function is continuous in all variables and concave

in his/her own decision variable, the game has at least one Nash equilibrium which is

determined by setting the first partial derivative of each player’s payoff function with

respect to his/her own decision variable to be zero.

As to uniqueness conditions for the Nash equilibrium, we can apply Theorem 3 in Chapter

6 of Moulin’s book (Moulin (1986)).
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Chapter 4

Capacity Allocation Problem with

Market Search: Channel

Coordination

4.1 Introduction

In this chapter, we consider another capacity allocation model. As in the previous

chapter, customers do market search. A major difference lies in the cost and revenue

structures. In the previous chapter, the holding and stockout penalty costs of each

retailer are represented by a convex function, while in this chapter more complicated

holding and stockout penalty structures are used. As for the revenue structure, in the

previous chapter, a retailer sells the product at the same price to all customers no matter
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where they appear first. In this chapter, market search occurs with a different revenue

level with the product being sold at different prices for customers taking a retailer as the

first choice and customers shifting from the other retailer.

In addition, compared to the papers cited in Section 2.3, our model has more general

revenue structure, and our goal is to improve the performance of the whole supply chain

including the supplier and the retailers. In this chapter, we consider centralized control as

well as decentralized control. By taking the whole supply chain as a centralized system,

we are able to find the optimal allocations that maximize the total profit of whole supply

chain. Based on this analysis, we apply the concept of channel coordination to create

independent decisions for each retailer that collectively optimize the performance of the

supply chain.

The rest of the chapter is organized as follows: In Section 4.2 we present a detailed

description of the model. Section 4.3 analyzes the game behavior of the retailers in the

decentralized control, while Section 4.4 considers a centralized model. In Section 4.5

we apply channel coordination to optimize the performance of the whole supply chain.

Conclusions and future research directions are given in Section 4.6.

4.2 The model

We use the following notation throughout the chapter:

For the supplier:
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K: the capacity of the supplier;

c: the production cost of the product;

wi: the wholesale price to retailer i, i = 1, 2;

For retailer i, i = 1, 2:

si: the selling price for local demand;

ti: the selling price for distant demand;

hi: the holding cost of the product left at the end of the season;

pi: the stockout penalty cost;

Di: a continuous random variable, denoting the stochastic local demand;

f
i
(di): the probability density function of Di;

F
i
(di): the cumulative distribution function of Di, denote 1-F

i
(di) as F i(di);

aij : an element of market search matrix, 0 ≤ aij ≤ 1, when j �= i; aii = 0.

yi: the allocation, i.e., the inventory retailer i at the beginning of the season.

Ri: the effective demand which is defined as:

Ri = Di +
2∑

j=1

aji(Dj − yj)
+

= Di +

2∑
j=1

aji(yj − Dj)
−.
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πi(y1, y2): the expected payoff given retailers’ allocations y1 and y2.

Following Pasternack and Drezner (1991), we make the assumptions as follows:

(A4.1) si > wi, i = 1, 2;

(A4.2) ti > wi, i = 1, 2;

(A4.3) si − pj ≥ ti − pi, i, j = 1, 2, i �= j;

(A4.4) si − hj ≥ tj − hi, i, j = 1, 2, i �= j.

Assumptions (A4.1) and (A4.2) are obvious. Assumptions (A4.3) and (A4.4), as

observed in Pasternack and Drezner (1991), are based on the phenomenon that the

retailers first satisfy their local demands, then use remaining inventory, if any, for distant

demand. The rationale behind assumption (A4.3) is as follows: Taking the whole supply

chain as a centralized system, suppose that retailer i has only one unit left and faces

a local demand and a distant demand at the same time. In the interest of maximizing

the payoff of whole supply chain, retailer i should satisfy his/her local demand first.

The rationale behind assumption (A4.4) is also based on the consideration of whole

supply chain: Suppose both retailers have one unit left, and a local demand for retailer

i appears. This demand should be satisfied by retailer i as a local demand, instead of

by retailer j (j �= i) as a distant demand. Assumptions (A4.3) and (A4.4) make sure

that in centralized control (see Section 4.4), to maximize the total profit of the whole

supply chain, the retailers also satisfy their local demands first, like what they do in

the decentralized control. When we cannot distinguish the local versus distant demands,
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i.e., si = ti, under assumptions (A4.3) and (A4.4), it becomes a system with multiple

identical retailers, which is a special case of our model.

4.3 Decentralized control

In this section, we study the ordering strategies of both retailers when they act to

maximize their own profits. First we assume the supplier has infinite capacity. Note that

in this case each retailer’s allocation is equal to his/her order. Given retailer 1’s order is

y1, the payoff of retailer 1 includes:

(i) Purchase cost: w1y1;

(ii) Holding and penalty cost: [h1(y1−R1)
+ +p1(y1−D1)

−], where R1 = D1 +a21(D2−

y2)
+;

(iii) Selling revenue: s1 min{y1, D1}+ t1 min{(y1 −D1)
+, a21(y2 −D2)

−}, where (x)− =

max{−x, 0}.

Thus retailer 1’s expected payoff function is:

π1(y1, y2) = E[s1 min{y1, D1} − h1(y1 − R1)
+ − p1(y1 − D1)

− − w1y1

+ t1 min{(y1 − D1)
+, a21(y2 − D2)

−}]

= E[s1y1 − w1y1 + p1(y1 − D1) − h1(y1 − D1 − a21(y2 − D2)
−)+

− (s1 + p1 − t1)(y1 − D1)
+ − t1((y1 − D1)

+ − a21(y2 − D2)
−)+].
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Lemma 4.1 For given y2, π1(y1, y2) is concave in y1.

Proof If function g(x) is convex in x, and function f(·) is convex and nondecreasing, then

f(g(x)) is convex in x (Zipkin (2000)). We know that (·)+ is a convex and nondecreasing

function and (y1−D1)
+−a21(y2−D2)

− is convex in y1. Therefore t1((y1−D1)
+−a21(y2−

D2)
−)+ is convex in y1, implying that −t1((y1 −D1)

+ − a21(y2 −D2)
−)+ is concave in y1.

From assumption (A4.3), we know s1 + p1 > t1, so −(s1 + p1 − t1)(y1 − D1)
+ is concave

in y1. The sum of several concave functions is still concave, thus π1(y1, y2) is concave in

y1.

The partial derivative of π1(y1, y2) with respect to y1 is

∂π1(y1, y2)

∂y1

(4.1)

= −h1

∫ y1

0

∫ y1+a21y2−d1
a21

y2

dF2(d2)dF1(d1)

− h1

∫ y1

0

∫ y2

0

dF2(d2)dF1(d1) + (s1 + p1)F 1(y1)

+ t1

∫ y1

0

∫ y1+a21y2
a21

y1+a21y2−d1
a21

dF2(d2)dF1(d1)

+ t1

∫ y1

0

∫ ∞

y1+a21y2
a21

dF2(d2)dF1(d1) − w1.

It is not difficult to prove that ∂π1(y1,y2)
∂y1

|y1=0 > 0 and ∂π1(y1,y2)
∂y1

|y1=+∞ < 0. By Lemma

4.1, for any given allocation to retailer 2, y2, the optimal allocation for retailer 1 can be

obtained by solving

∂π1(y1, y2)

∂y1
= 0. (4.2)

Let y1 = r1(y2) be the solution of (4.2), i.e., r1(y2) denotes the optimal allocation of

retailer 1 given y2. Let y2 = v1(y1) be the inverse function of y1 = r1(y2). Notice that
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y2 = v1(y1) and y1 = r1(y2) represent the same curve in the (y1, y2) plane. We refer to

this curve as v1(y1).

Lemma 4.2 Curve v1(y1) is strictly decreasing in the (y1, y2) plane.

Proof Let v′
1(y1) denote the slope of the curve v1(y1). By implicit differentiation, we

have

v′
1(y1) = −∂2π1(y1, y2)

∂y2
1

/
∂2π1(y1, y2)

∂y1∂y2
.

After some calculations, we obtain

∂2π1(y1, y2)

∂y2
1

= −(s1 + p1 − t1)f1(y1) − (h1 + t1)f1(y1)F2(y2) (4.3)

− h1 + t1
a21

∫ y1

0

f2(
y1 − d1

a21
+ y2)dF1(d1),

∂2π1(y1, y2)

∂y1∂y2
= −(h1 + t1)

∫ y1

0

f2(
y1 − d1

a21
+ y2)dF1(d1). (4.4)

From (4.3) and (4.4), we obtain

v′
1(y1) = − 1

a21
− (s1 + p1 − t1)f1(y1) + (h1 + t1)f1(y1)F2(y2)

(h1 + t1)
∫ y1

0
f2(

y1−d1

a21
+ y2)dF1(d1)

< 0,

which proves Lemma 4.2. Notice that v′
1(y1) < −1.
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For retailer 2, we have similar result: The partial derivative of π2(y1, y2) with respect

to y2 is

∂π2(y1, y2)

∂y2
= −h2

∫ y1a12+y2
a12

y1

∫ a12y1+y2−a12d1

0

dF2(d2)dF1(d1) (4.5)

− h2

∫ y1

0

∫ y2

0

dF2(d2)dF1(d1) + (s2 + p2)F 2(y2)

+ t2

∫ y1a12+y2
a12

y1

∫ y2

a12y1+y2−a12d1

dF2(d2)dF1(d1)

+ t2

∫ ∞

y1a12+y2
a12

∫ y2

0

dF2(d2)dF1(d1) − w2.

Thus for any given allocation to retailer 1, y1, the optimal allocation for retailer 2

can be obtained by solving

∂π2(y1, y2)

∂y2

= 0. (4.6)

Let r2(y1) denote the optimal allocation of retailer 2 for any given y1, as defined by (4.6).

Lemma 4.3 Curve r2(y1) is strictly decreasing in the (y1, y2) plane.

Proof Denoting the slope of curve r2(y1) as r′2(y1), we have

r′2(y1) = −∂2π2(y1, y2)

∂y1∂y2
/
∂2π2(y1, y2)

∂y2∂y2
,

∂2π2(y1, y2)

∂y1∂y2

= −a12(h2 + t2)

∫ y1a12+y2
a12

y1

f2(y1a12 + y2 − a12d1)dF1(d1), (4.7)

∂2π2(y1, y2)

∂y2∂y2

= −(h2 + t2)

∫ y1a12+y2
a12

y1

f2(y1a12 + y2 − a12d1)dF1(d1) (4.8)

− (s2 + p2 − t2)f2(y2) − (h2 + t2)f2(y2)F1(y1).

46



Figure 4.1: Nash equilibrium when the supplier has infinite capacity.

From (4.7) and (4.8), we obtain

r′2(y1)

= − a12(h2+t2)
∫ y1a12+y2

a12
y1

f2(y1a12+y2−a12d1)dF1(d1)

(s2+p2−t2)f2(y2)+(h2+t2)f2(y2)F1(y1)+(h2+t2)
∫ y1a12+y2

a12
y1

f2(y1a12+y2−a12d1)

< 0,

which proves Lemma 4.3. Notice that −1 < r′2(y1) < 0.

Figure 4.1 shows the optimal allocation functions, v1(y1) and r2(y1). Comparing

Figure 3.1 in Chapter 3 and Figure 4.1 in this chapter, we can see that they look similar,

except that functions v1(y1) and r2(y1) have different representations.

Theorem 4.4 When each retailer gets exactly what he/she orders, there exists a unique
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Nash equilibrium (yNash
1 , yNash

2 ), which can be obtained by solving

{∂π1(y1,y2)
∂y1

= 0,

∂π2(y1,y2)
∂y2

= 0.
(4.9)

Proof Retailer 1’s optimal allocation function, labelled as v1(y1) in Figure 4.1, is a strictly

decreasing curve starting at (y
1
,∞) and ending at (y1, 0). Retailer 2’s optimal allocation

function, labelled as r2(y1) in Figure 4.1, is also a strictly decreasing curve starting at

(0, y2) and ending at (∞, y
2
). Therefore, these two optimal allocation functions must

intersect, which proves the existence of a Nash equilibrium. Since v′
1(y1) < r′2(y1), v1(y1)

and r2(y1) have a unique intersection, which is the unique Nash equilibrium.

Following the structure of the previous chapter, we could analyze the cases when the

supplier has limited supply and when the Stackelberg game is applied. In fact, all results

are the same, so we do not repeat them here.

4.4 Centralized control

In centralized control, the total supply chain, including the supplier and two retailers,

is owned by one company, and all decisions are made on behalf of the company by a single

decision maker to maximize the expected profit of the supply chain. In centralized control,

there is no stockout penalty for demand satisfied within the supply chain. Only when

customers leave the system unsatisfied is the stockout penalty incurred. This includes

customers who visit only one retailer and leave unsatisfied and customers who visit both

retailers and leave unsatisfied. In the latter case, the amount of the penalty incurred in
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the supply chain is assumed to be the stockout penalty cost of the retailer visited first

by the customer. Now recall the following two assumptions of Section 4.2:

(A4.3) si − pj ≥ ti − pi, i, j = 1, 2, i �= j;

(A4.4) si − hj ≥ tj − hi, i, j = 1, 2, i �= j.

With these assumptions, we try to answer the following question: Assuming the whole

supply chain is in centralized control, in order to maximize the total profit, what are

optimal allocations for both retailers?

As before, let yi denote the allocation for retailer i. In centralized control, to maximize

the total profit, the supplier should only provide what is needed by the two retailers.

Namely K should equal y1 + y2. The cost and revenue includes:

(i) Total production cost: cK = c(y1 + y2);

(ii) Total holding cost:

h1(y1 − D1 − a21(y2 − D2)
−)+ + h2(y2 − D2 − a12(y1 − D1)

−)+;

(iii) Total penalty cost:

p1(y1 − D1)
−(1 − a12) + p1(a12(y1 − D1)

− − (y2 − D2)
+)+

+ p2(y2 − D2)
−(1 − a21) + p2(a21(y2 − D2)

− − (y1 − D1)
+)+;
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(iv) Total selling revenue:

s1 min{y1, D1} + t1 min{(y1 − D1)
+, a21(y2 − D2)

−}

+ s2 min{y2, D2} + t2 min{(y2 − D2)
+, a12(y1 − D1)

−}.

With some algebraic manipulation, the expected payoff function of the system, de-

noted π(y1, y2), is:

π(y1, y2) = E[s1 min{y1, D1} + t1 min{(y1 − D1)
+, a21(y2 − D2)

−}

+ s2 min{y2, D2} + t2 min{(y2 − D2)
+, a12(y1 − D1)

−}

− cy1 − h1(y1 − D1 − a21(y2 − D2)
−)+

− cy2 − h2(y2 − D2 − a12(y1 − D1)
−)+

− p1(y1 − D1)
−(1 − a12) − p1(a12(y1 − D1)

− − (y2 − D2)
+)+

− p2(y2 − D2)
−(1 − a21) − p2(a21(y2 − D2)

− − (y1 − D1)
+)+].

Theorem 4.5 π(y1, y2) is a concave function.

Proof After taking some calculations, we have
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∂π(y1, y2)

∂y1

= −c + (s1 + p1)F 1(y1) − h1F1(y1)F2(y2) (4.10)

− h1

∫ y1

0

∫ y1+a21y2−d1
a21

y2

dF2(d2)dF1(d1)

− a12(h2 + p1 + t2)

∫ y1a12+y2
a12

y1

∫ y1a12+y2−a12d1

0

dF2(d2)dF1(d1)

+ (p2 + t1)

∫ y1

0

∫ y1+a21y2
a21

y1+a21y2−d1
a21

dF2(d2)dF1(d1)

+ (p2 + t1)

∫ y1

0

∫ ∞

y1+a21y2
a21

dF2(d2)dF1(d1)),

∂π(y1, y2)

∂y2

= −c + (s2 + p2)F 2(y2) − h2F1(y1)F2(y2) (4.11)

− h2

∫ y1a12+y2
a12

y1

∫ y1a12+y2−a12d1

0

dF2(d2)dF1(d1)

− a21(h1 + p2 + t1)

∫ y1

0

∫ y1+a21y2−d1
a21

y2

dF2(d2)dF1(d1)

+ (t2 + p1)

∫ y1a12+y2
a12

y1

∫ y2

y1a12+y2−a12d1

dF2(d2)dF1(d1)

+ (t2 + p1)

∫ ∞

y1a12+y2
a12

∫ y2

0

dF2(d2)dF1(d1).
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Denoting (h1 + t1 + p2)
∫ y1

0
f2(

y1+a21y2−d1

a21
)dF1(d1) and (h2 + t2 + p1)

∫ y1a12+y2
a12

y1
f2(y1a12 +

y2 − a12d1)dF1(d1) as nonnegative values V 1 and V 2 respectively, we have

∂2π(y1, y2)

∂y1∂y2
= −V 1 − a12V 2,

∂2π(y1, y2)

∂y1∂y1
= − 1

a21
V 1 − (a12)

2V 2

− f1(y1)(s1 + p1 − p2 − t1)F 2(y2)

− f1(y1)(h1 + s1 + p1 − a12(h2 + p1 + t2))F2(y2),

∂2π(y1, y2)

∂y2∂y2

= −a21V 1 − V 2

− f2(y2)(s2 + p2 − p1 − t2)F 1(y1)

− f2(y2)(h2 + s2 + p2 − a21(h1 + p2 + t1))F1(y1).

From assumptions (A4.3) and (A4.4), we know that the third and fourth terms of ∂2π(y1,y2)
∂y1∂y1

and ∂2π(y1,y2)
∂y2∂y2

are both non-positive. In other words, they can be denoted as “−V 3” and

“−V 4” respectively, where V 3 and V 4 are nonnegative values. Therefore, we obtain

∂2π(y1, y2)

∂y1∂y1

∂2π(y1, y2)

∂y2∂y2

= (− 1

a21

V 1 − (a12)
2V 2 − V 3)(−a21V 1 − V 2 − V 4)

≥ (− 1

a21

V 1 − (a12)
2V 2)(−a21V 1 − V 2)

≥ (−V 1 − a12V 2)2

= (
∂2π(y1, y2)

∂y1∂y2
)2.

Since ∂2π(y1,y2)
∂y1∂y1

< 0 and ∂2π(y1,y2)
∂y2∂y2

< 0, the Hessian matrix is negative semidefinite. Thus

π(y1, y2) is a concave function.
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Based on Theorem 4.5, we know that the maximizer of π(y1, y2), (y∗
1, y

∗
2), can be

obtained by solving {∂π(y1,y2)
∂y1

= 0,

∂π(y1,y2)
∂y2

= 0.

Correspondingly, in the optimal case, the capacity of the supplier, K, equals y∗
1 + y∗

2.

4.5 Channel coordination

In this section, we apply the concept of channel coordination to optimize the per-

formance of the whole supply chain. Generally speaking, channel coordination may be

achieved by three steps: First, under decentralized control, apply game theory to deter-

mine how the players will behave when they each seek to maximize their own profits, and

whether a Nash equilibrium exists. Next, determine the optimal solution under central-

ized control. Third, if the decentralized and centralized solutions differ, investigate how

to modify the players’ payoffs so that the new decentralized solution matches the central-

ized solution. These three steps are commonplace in supply chain inventory management

research. We will also follow these steps to coordinate our one-supplier, two-retailer sup-

ply chain. The first two steps have been discussed in the previous sections.

Under centralized control in Section 4.4, we consider the whole supply chain as an

entity, and the money flow within the system is not involved. Therefore, the optimal

solution (y∗
1, y

∗
2) is independent with the wholesale prices, w1 and w2. Based on the

analysis of decentralized control in Section 4.3, we know that the Nash equilibrium does

depend on the wholesale prices. Channel coordination can be obtained by determining
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the wholesale prices, w1 and w2, so as to make the optimal solution (y∗
1, y

∗
2) a Nash

equilibrium. Recall that in centralized system, K = y∗
1 + y∗

2. In this case, to be a Nash

equilibrium in decentralized system, (y∗
1, y

∗
2) must satisfy (4.9), i.e.,

{∂π1(y1,y2)
∂y1

|y1=y∗
1 ,y2=y∗

2
= 0,

∂π2(y1,y2)
∂y2

|y1=y∗
1 ,y2=y∗

2
= 0.

Combining (4.1), (4.5), (4.10) and (4.11), we find that the wholesale prices that

achieve the channel coordination objective are:

w1 = c + a12(h2 + p1 + t2)

∫ y∗1a12+y∗2
a12

y∗
1

∫ y∗
1a12+y∗

2−a12d1

0

dF2(d2)dF1(d1) (4.12)

− p2(

∫ y∗
1

0

∫ y∗1+a21y∗2
a21

y∗1+a21y∗2−d1
a21

dF2(d2)dF1(d1) +

∫ y∗
1

0

∫ ∞

y∗1+a21y∗2
a21

dF2(d2)dF1(d1)),

w2 = c + a21(h1 + p2 + t1)

∫ y∗
1

0

∫ y∗1+a21y∗2−d1
a21

y∗
2

dF2(d2)dF1(d1)

− p1(

∫ y∗1a12+y∗2
a12

y∗
1

∫ y∗
2

y∗
1a12+y∗

2−a12d1

dF2(d2)dF1(d1) +

∫ ∞

y∗
1

a12+y∗
2

a12

∫ y2

0

dF2(d2)dF1(d1)).

We must also consider the satisfaction of the assumptions (A4.1) si > wi and (A4.2)

ti > wi, i = 1, 2. As shown in Figure 4.1, based on the results of the newsvendor model,

we know that given w1, y1 has a lower bound y
1

which solves

F1(y1) =
s1 − w1 + p1

s1 + h1 + p1
,

and an upper bound y1 which solves

(s1 + p1 − t1)F1(y1) + (t1 + h1)F1(y1)F2(
y1 − d1

a21
) = s1 − w1 + p1.

Similarly, y2 has a lower bound y
2

and an upper bound y2. In Figure 4.2, the fea-

sible region for a Nash equilibrium (yNash
1 , yNash

2 ) is the rectangle formed by the points
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Figure 4.2: Feasible region of the Nash equilibrium when w1 and w2 are fixed.

(y
1
, y

2
), (y

1
, y2), (y1, y2), and (y1, y2

). We can see that the lower bound y
1

decreases if

w1 increases and the upper bound y1 increases if w1 decreases. w1 is required to be less

than min{s1, t1} and greater than 0, so when w1 is a variable, the minimal lower bound

of y1, denoted ymin
1

, solves

F1(y1) =
s1 − min{s1, t1} + p1

s1 + h1 + p1
,

and the maximal upper bound of y1, denoted ymax
1 , solves

(s1 + p1 − t1)F1(y1) + (t1 + h1)F1(y1)F2(
y1 − d1

a21
) = s1 + p1.

Similarly, we can obtain the minimal lower bound of y2, denoted ymin
2

, and the maximal

upper bound of y2, denoted ymax
2 . Thus, based on the assumptions si > wi > 0 and

ti > wi > 0, i = 1, 2, the feasible region of Nash equilibrium (yNash
1 , yNash

2 ) is the rectangle
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Figure 4.3: Feasible region of a Nash equilibrium when min{s1, t1} > wi > 0, i = 1, 2.

formed by the points (ymin
1

, ymin
2

), (ymin
1

, ymax
1 ), (ymax

1 , ymax
1 ), and (ymax

1 , ymin
2

) (see Figure

4.3). Therefore, if (y∗
1, y

∗
2) falls in this region, it is a feasible Nash equilibrium, i.e., the

wholesale prices from (4.12) satisfies that si > wi > 0 and ti > wi > 0, i = 1, 2; otherwise

it is not.

4.6 Concluding remarks

In this chapter, we consider a distribution system with one supplier and two retailers.

If the total order quantity from retailers exceeds the capacity of the supplier, an allocation

policy has to be used to allocate the limited capacity to each retailer. When stockout

occurs at one retailer the unsatisfied demand may switch to the other retailer. In this
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way, the inventory level at one retailer affects the demand of the competing retailer. A

game theoretic approach is used to analyze this problem.

We consider a single period inventory model and study both the decentralized and

centralized controls. In the former case, we obtain necessary and sufficient conditions

for the existence of a Nash equilibrium; while for the latter case, we derived an optimal

allocation that maximizes the expected total profit. By applying the concept of chan-

nel coordination, we design perfect coordination mechanisms, i.e., a decentralized cost

structure resulting in a Nash equilibrium with chain-wide profits equal to those achieved

under a fully centralized system.

There are some potentially interesting extensions. While this chapter focuses on

a single-period (newsvendor-like) inventory model, further research on other inventory

models, such as the EOQ model of Drezner et al. (1995) and Chand et al. (1994) and the

base-stock model of van Ryzin and Mahajan (1998), may lead to new findings. In a multi-

period model where backorder is allowed, each retailer makes a sequence of decisions, and

the decision of one period affects the decision of all following periods. Sequential game

in Heyman and Sobel (1984) may be used to analyze this multi-person decision process.
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Chapter 5

Capacity Allocation with Traditional

and Internet Channels

5.1 Introduction

Internet, as a relatively inexpensive electronic medium, dramatically reduces the

transaction costs and increases information availability. By utilizing the Internet, in-

stock items can be made available to more customers, and orders can be placed in real

time. Internet-based electronic marketplace has become an integral part of the modern

economy. In this study, we consider two competitive firms, each of which has a local store

and an online store, namely, its web page. Customers can either visit the local store or

order from the web page. We assume that the local store and the online store hold sep-

arate stocks. When a stockout occurs at a local store customers may go to the online
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store belonging to the same firm, or visit the local store of the other firm. However, as

commonly observed, when a stockout occurs at an online store, customers usually will

not visit the local store belonging to the same firm, but instead they may go to the online

store of the other firm. One question facing each firm is how to allocate its finite capacity

between its local and online stores to maximize its profit as a whole.

Because customers may shift from one firm to another when stockout occurs, the

capacity allocation of one firm affects the decision of its rival, thereby creating a strategic

interaction. In this chapter game theory is used for analysis. We first consider a single-

product single-period model and assume that the capacity of each firm is given and

known. We study two scenarios of this capacity allocation game. Remember that when

a stockout occurs at a local store customers may go to the rival’s local store or go to the

online store belonging to the same firm. In Scenario 1, it is assumed that those customers

who have visited both local and online stores of the same firm will leave the system. In

Scenario 2, we assume that these customers with unmet demand in one firm may go to

the rival’s online store before leaving the system. For both scenarios, we present some

existence and stability conditions of a Nash equilibrium and conduct sensitivity analysis

of the equilibrium solution with respect to price and cost parameters. Based on the

analysis, we consider a more general case that each firm has to decide its total capacity

and allocate between its local and online stores. We extend the results to a multi-period

model and show that a myopic solution is a Nash equilibrium solution for a corresponding

multi-period game.

Our study is related to revenue management in the sense that each firm has a finite
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capacity and decides its allocation to maximize the profit. In contrast to the papers cited

in Section 2.4, instead of focusing on maximizing the revenue or profit of a single firm, this

chapter applies game theory to analyze the capacity strategies for multiple competitive

firms. We propose a single-period model and a multi-period model and derive Nash

equilibrium solutions to corresponding games.

This chapter is also related to Netessine and Shumsky (2001), which examines the

seat inventory control problem with two fare classes for two competing airlines. Each

airline chooses an optimal booking limit for the lower-fare class while taking into account

any overflow of passengers from its rival. They show that under certain conditions this

“revenue management game” has a Nash equilibrium, and in some special cases, the Nash

equilibrium is unique. They also compare the total number of seats allocated to each fare

class with, and without, competition. Our model is different from that of Netessine and

Shumsky on the following aspects: (i) We consider the possible overflow from one demand

class to another within a firm, while Netessine and Shumsky’s model does not allow. (ii)

In Netessine and Shumsky, all unsatisfied demand at one airline overflow to the rival. In

our model, this overflow occurs in probability. (iii) In addition to a single-period model

in which each firm allocates its capacity, we extend our results to a multi-period model

in which each firm decides its total capacity and allocates this capacity simultaneously.

The rest of this chapter is organized as follows. In Section 5.2 we consider a single-

product single-period model and assume that the total capacity level of each firm is

given and known. We study two scenarios of this capacity allocation game and derive

corresponding existence and stability conditions of a Nash equilibrium. In Section 5.3
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we conduct the sensitivity analysis of an equilibrium solution with respect to the price

and cost parameters. In Section 5.4, we extend our results to a multi-period model in

which each firm makes simultaneous decisions on its total capacity and the allocation of

this capacity. A myopic solution is derived for the corresponding sequential game. We

conclude this chapter in Section 5.5.

5.2 Single-period model

We consider two firms selling the same product. Each firm has a local store and an

online store. To simplify the exposition, we start with a single-period model and assume

the total capacity of each firm is given and known. Customers may switch among the

stores upon encountering a stockout as Figure 5.1 shows. For each firm, a challenging

problem is to allocate its finite capacity between its local and online stores in order to

maximize its total profit.

The initial demand at the local store of firm i is referred to as firm i’s local demand,

while the demand at the online store as firm i’s online demand. Figure 5.1 shows the

customer shifting behavior. When a stockout occurs at a local store, customers may

go to the online store belonging to the same firm, or visit the local store of its rival

firm. However, when a stockout occurs at an online store, customers may only go to the

rival’s online store. Therefore all stores are faced with a random initial demand as well

as demand shifting from other stores. The total demand at a store is referred to as its

effective demand.

61



Figure 5.1: Customer shifting

In the sequel, we use the following notation:

sLi
: the selling price at the local store of firm i = 1, 2;

sOi
: the selling price at the online store of firm i = 1, 2;

hLi
: the holding cost at the local store of firm i = 1, 2;

hOi
: the holding cost at the online store of firm i = 1, 2;

pLi
: the stockout penalty cost at the local store of firm i = 1, 2;

pOi
: the stockout penalty cost at the online store of firm i = 1, 2;

DLi
: a continuous random variable, denoting firm i’s stochastic local demand,

i = 1, 2;
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DOi
: a continuous random variable, denoting firm i’s stochastic online demand,

i = 1, 2;

aLiLj
: the probability of an unsatisfied local customer at firm i visiting the local

store of (the other) firm j, i, j = 1, 2, j �= i;

aLiOi
: the probability of an unsatisfied local customer at firm i visiting its online

store, i = 1, 2;

aOiOj
: the probability of an unsatisfied online customer at firm i visiting the online

store of (the other) firm j, i, j = 1, 2, j �= i;

Ci: the total capacity of firm i = 1, 2;

Bi: the capacity of firm i allocated to its online store, i = 1, 2;

RLi
: the effective demand at the local store of firm i = 1, 2;

ROi
: the effective demand at the online store of firm i = 1, 2;

πi(Bi, Bj): the expected payoff function of firm i, i, j = 1, 2, j �= i.

As most, if not all, papers in traditional revenue management, we assume that the

local and online demands are exogenous and independent. The decision variable for firm

i is the capacity allocated to its online store, i.e., Bi. Meanwhile, we know that RLi
, ROi

and πi(Bi, Bj) depend on Bi, i, j = 1, 2, j �= i. We further assume that aLiLj
+ aLiOi

≤

1, i, j = 1, 2, j �= i for obvious reasons.
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To study the interactive allocation strategies of the two firms and show the existence

of a Nash equilibrium, we shall make use of the following definition of submodularity and

related results introduced by Topkis (1978) and (1979).

Definition 5.1 A function f(x1, x2) is submodular in (x1, x2) if f(xsmall
1 , x2)−f(xlarge

1 , x2)

is nondecreasing in x2 for all xsmall
1 ≤ xlarge

1 . Function f(x1, x2) is supermodular if

−f(x1, x2) is submodular. If a function is both supermodular and submodular, it is a

valuation.

Lemma 5.2 Let function f(x1, x2) be twice differentiable. Then f(x1, x2) is submodular

in (x1, x2) if and only if ∂2f(x1,x2)
∂x1∂x2

≤ 0.

Lemma 5.3 Function f(x1, x2) is submodular in (x1, x2) if and only if it is supermodular

in (x1,−x2).

Lemma 5.4 Let g(Bi) be a nondecreasing function in Bi and m(Bj) be a nonincreasing

function in Bj. Then the function min{g(Bi), m(Bj)} is submodular in (Bi, Bj).

Lemma 5.5 Let function g(Bi, Bj) be monotone in both Bi and Bj and submodular

in (Bi, Bj). Also let m(·) be a nondecreasing concave function. Then the composition

function m(g(Bi, Bj)) is submodular in (Bi, Bj).

We consider two scenarios of the single-period model. Remember that when a stockout

occurs at a local store customers may go to the rival’s local store or go to the online store
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Figure 5.2: Scenario 1

Figure 5.3: Scenario 2
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belonging to the same firm. In Scenario 1, it is assumed that those customers who have

visited both local and online stores of the same firm will leave the system as Figure 5.2

shows. In Scenario 2, we assume that these customers with unmet demand in one firm

will follow the same shifting probabilities as the online demand of this firm. Namely,

they may go to the rival’s online store before leaving the system as Figure 5.3 shows.

5.2.1 Scenario 1

In Scenario 1, based on the customer shifting structure in Figures 5.1 and 5.2, we can

write down the effective demands at the local and online stores of firm i:

RLi
= DLi

+ aLjLi
(DLj

− (Cj − Bj))
+,

ROi
= DOi

+ aOjOi
(DOj

− Bj)
+ + aLiOi

(DLi
− (Ci − Bi))

+,

where (x)+ = max{x, 0}.

For firm 1, the expected payoff function is:

π1(B1, B2) = E[sL1 min{RL1, C1 − B1} − pL1(RL1 − (C1 − B1))
+ − hL1(RL1 − (C1 − B1))

−

(5.1)

+ sO1 min{RO1, B1} − pO1(RO1 − B1)
+ − hO1(RO1 − B1)

−]

= E[sL1 min{RL1, C1 − B1} − pL1(RL1 − (C1 − B1))

− (pL1 + hL1)(RL1 − (C1 − B1))
−

+ sO1 min{RO1, B1} − (pO1 + hO1)(RO1 − B1)
+ + hO1(RO1 − B1)],

where (x)− = max{−x, 0}.
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Theorem 5.6 In our two-firm model, each payoff function πi(B1, B2), i = 1, 2, is sub-

modular in (B1, B2).

Proof First we prove π1(B1, B2) is submodular in (B1, B2) by showing that each term

in the second equation of (5.1) is submodular in (B1, B2). By Lemma 5.4, we know

that min{RL1 , C1 − B1} is submodular in (B1, B2). From Definition 5.1, we know that

(RL1 − (C1 − B1)) is a valuation. By Lemma 5.5, we know −(RL1 − (C1 − B1))
− is

submodular. To see the submodularity of min{RO1 , B1}, notice that

min{RO1, B1} = min{DO1 + aO2O1(DO2 − B2)
+, B1 − aL1O1(DL1 − (C1 − B1))

+}

+ aL1O1(DL1 − (C1 − B1))
+,

where min{DO1 + aO2O1(DO2 − B2)
+, B1 − aL1O1(DL1 − (C1 − B1))

+} is submodular

by Lemma 5.4 and aL1O1(DL1 − (C1 − B1))
+ is a valuation. By Lemma 5.5 we can

prove that −(pO1 + hO1)(RO1 − B1)
+ is submodular. The last term in (5.1), hO1(RO1 −

B1), is a valuation. Therefore, as the sum of several submodular functions, π1(B1, B2)

is submodular in (B1, B2). Similarly, we can prove that π2(B1, B2) is submodular in

(B1, B2).

Theorem 3.1 of Topkis (1979) asserts that if the strategy space is a complete lattice,

the joint payoff function is upper-semicontinuous, and each player’s payoff function is

supermodular (submodular), then there exists a pure strategy Nash equilibrium. For ex-

ample, in a two-person game, if both players’ payoffs are supermodular, then each player’s

best response is increasing in his/her rival’s strategy. When the best responses exhibit

this monotonicity property, the players’ strategies are said to be strategic complements,
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and the existence of a Nash equilibrium is easy to establish (see Lippman (1994)).

Theorem 5.7 For Scenario 1 of our two-firm model, there exists a Nash equilibrium

(BNash
1 , BNash

2 ), which can be obtained by solving the following system of equations:

{∂π1(B1,B2)
∂B1

= 0,
∂π2(B1,B2)

∂B2
= 0.

Proof From Theorem 3.1 of Topkis (1979) and the submodularity of payoff functions,

we can prove the existence of a Nash equilibrium.

Now, we the stability of a Nash equilibrium solution. The concept of stability of a

Nash equilibrium was introduced by Moulin (1986) using the concept of Cournot taton-

nement. A Cournot tatonnement is a sequence formed by the best responses of all players.

For example, in our two-firm game, let ri(Bj) be the best response function of firm i given

the strategy of firm j, Bj, then the Cournot tatonnement is the following sequence

(B1, B2) → (r1(B2), r2(B1)) → (r1(r2(B1)), r2(r1(B2))) → . . .

A Nash equilibrium is locally stable if the Cournot tatonnement starting within a local

area of this Nash equilibrium converges to it.

Lemma 5.8 (Moulin (1986)) If |∂2πi(Bi,Bj)

∂2Bi
|Bi=BNash

i ,Bj=BNash
j

> |∂2πi(Bi,Bj)

∂Bi∂Bj
|Bi=BNash

i ,Bj=BNash
j

,

i, j = 1, 2, j �= i, then the Nash equilibrium is locally stable.

Taking derivatives using the Leibnitz formula is complicated. We follow the approach

of Rudi (2001) (see also Netessine (2001), Netessine and Rudi (2000), and Netessine and
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Shumsky (2001)) to check Moulin’s condition. With some simple calculations, we have

∂πi(Bi,Bj)

∂Bi
= hLi

− hOi
− (sLi

+ pLi
+ hLi

) Pr(RLi
> Ci − Bi)

+(sOi
+ hOi

)aLiOi
Pr(DLi

> Ci − Bi)

+(sOi
+ pOi

+ hOi
)(1 − aLiOi

) Pr(ROi
> Bi, DLi

> Ci − Bi)

+(sOi
+ pOi

+ hOi
) Pr(ROi

> Bi, DLi
≤ Ci − Bi),

(5.2)

∂2πi(Bi,Bj)

∂Bi∂Bj

= −(sLi
+ pLi

+ hLi
)aLjLi

fRLi
|DLj

>Cj−Bj
(Ci − Bi) Pr(DLj

> Cj − Bj)

− (sOi
+ pOi

+ hOi
)(1 − aLiOi

)aOjOi
fROi

|DOj
>Bj ,DLi

>Ci−Bi
(Bi) Pr(DOj

> Bj , DLi
> Ci − Bi)

− (sOi
+ pOi

+ hOi
)aOjOi

fROi
|DOj

>Bj ,DLi
≤Ci−Bi

(Bi) Pr(DOj
> Bj , DLi

≤ Ci − Bi)

≤ 0

(5.3)

and

∂2πi(Bi,Bj)

∂2Bi
= −(sLi

+ pLi
+ hLi

)fRLi
(Ci − Bi)

−(sOi
+ pOi

+ hOi
)(1 − aLiOi

)2fROi
|DLi

>Ci−Bi
(Bi) Pr(DLi

> Ci − Bi)

−(sOi
+ pOi

+ hOi
)fROi

|DLi
≤Ci−Bi

(Bi) Pr(DLi
≤ Ci − Bi)

+(sOi
+ hOi

)aLiOi
fDLi

(Ci − Bi).

(5.4)

Theorem 5.9 If aLiOi
+ aOjOi

≤ 1 in our two-firm model, a sufficient condition for the

Nash equilibrium, (BNash
1 , BNash

2 ), to be locally stable is

Pr(DLj
≤ Cj − BNash

j ) >
(sOi

+ hOi
)aLiOi

sLi
+ pLi

+ hLi

, i, j = 1, 2, j �= i. (5.5)
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Proof It is easy to see that

fRLi
(Ci − Bi)

= fRLi
|DLj

>Cj−Bj
(Ci − Bi) Pr(DLj

> Cj − Bj) + fRLi
|DLj

≤Cj−Bj
(Ci − Bi) Pr(DLj

≤ Cj − Bj)

= fRLi
|DLj

>Cj−Bj
(Ci − Bi) Pr(DLj

> Cj − Bj) + fDLi
(Ci − Bi) Pr(DLj

≤ Cj − Bj).

Therefore, from (5.4), if

Pr(DLj
≤ Cj − Bj) >

(sOi
+ hOi

)aLiOi

sLi
+ pLi

+ hLi

,

then

∂2πi(Bi, Bj)

∂2Bi

≤ 0

It follows that

|∂2πi(Bi,Bj)

∂2Bi
| − |∂2πi(Bi,Bj)

∂Bi∂Bj
|

> (sOi
+ pOi

+ hOi
)(1 − aLiOi

)(1 − aLiOi
− aOjOi

)fROi
|DLi

>Ci−Bi
(Bi) Pr(DLi

> Ci − Bi)

+ (sLi
+ pLi

+ hLi
)aLjLi

fRLi
|DLj

>Cj−Bj
(Ci − Bi) Pr(DLj

> Cj − Bj)

+ (sLi
+ pLi

+ hLi
)fRLi

(Ci − Bi) − (sOi
+ hOi

)aLiOi
fRLi

|DLj
≤Cj−Bj

(Ci − Bi)

> (sOi
+ pOi

+ hOi
)(1 − aLiOi

)(1 − aLiOi
− aOjOi

)fROi
|DLi

>Ci−Bi
(Bi) Pr(DLi

> Ci − Bi)

+ fRLi
|DLj

≤Cj−Bj
(Ci − Bi)((sOi

+ hOi
)aLiOi

− (sLi
+ pLi

+ hLi
) Pr(DLj

≤ Cj − Bj)).

It is easy to see that if aLiOi
+ aOjOi

≤ 1 and Pr(DLj
≤ Cj − BNash

j ) >
(sOi

+hOi
)aLiOi

sLi
+pLi

+hLi
,

then |∂2πi(Bi,Bj)

∂2Bi
|Bi=BNash

i ,Bj=BNash
j

> |∂2πi(Bi,Bj)

∂Bi∂Bj
|Bi=BNash

i ,Bj=BNash
j

. By using Lemma 5.8,

we can complete the proof.

Remark 5.10 If aLiOi
= 0 for all i, then

|∂
2πi(Bi, Bj)

∂2Bi

| > |∂
2πi(Bi, Bj)

∂Bi∂Bj

|
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always holds. Following Theorem 3 in Chapter 5 of Moulin (1986), we know that a

unique and globally stable Nash equilibrium exists. This special case has been studied by

Netessine and Shumsky (2001).

Remark 5.11 It is easy to see that the two-firm model which has high sLi
, pLi

and hLi

and low sOi
, hOi

and aLiOi
is more likely to have a stable Nash equilibrium solution.

5.2.2 Scenario 2

For this scenario, we can write the effective demands at the local and online stores of

firm i as:

RLi
= DLi

+ aLjLi
(DLj

− (Cj − Bj))
+,

ROi
= DOi

+ aOjOi
(DOj

+ aLjOj
(DLj

− (Cj − Bj))
+ − Bj)

+ + aLiOi
(DLi

− (Ci − Bi))
+

Analogous to Scenario 1, the expected payoff function of firm 1 is:

π1(B1, B2) = E[sL1 min{RL1 , C1 − B1} − pL1(RL1 − (C1 − B1))

− (pL1 + hL1)(RL1 − (C1 − B1))
−

+ sO1 min{RO1 , B1} − (pO1 + hO1)(RO1 − B1)
+ + hO1(RO1 − B1)],

which has the same representation as in Scenario 1, except that the form of RO1 is

different.

Theorem 5.12 For Scenario 2 of our two-firm model, there exists a Nash equilibrium
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(BNash
1 , BNash

2 ), which can be obtained by solving the following system of equations:

{∂π1(B1,B2)
∂B1

= 0,
∂π2(B1,B2)

∂B2
= 0.

Proof To prove π1(B1, B2) is submodular in (B1, B2), we need only to prove that the

terms with RO1 are still submodular in (B1, B2). Notice that

min{RO1 , B1} = min{DO1 + aO2O1(DO2 + aL2O2(DL2 − (C2 − B2))
+ − B2)

+,

B1 − aL1O1(DL1 − (C1 − B1))
+} + aL1O1(DL1 − (C1 − B1))

+.

By Lemma 5.4, we know min{RO1, B1} is submodular. Meanwhile, since (RO1 − B1)

is a submodular function and decreasing in both B1 and B2, by Lemma 5.5, we know

−(pO1 +hO1)(RO1−B1)
+ is submodular. Therefore, π1(B1, B2) is submodular in (B1, B2).

Similarly, we can prove that π2(B1, B2) is submodular in (B1, B2). From Theorem 3.1 of

Topkis (1979) and the submodularity of payoff functions, we can prove the existence of

a Nash equilibrium.

Theorem 5.13 In Scenario 2, if aLiOi
+ aOjOi

≤ 1, a sufficient condition for the Nash

equilibrium, (BNash
1 , BNash

2 ), to be locally stable is

Pr(DLj
≤ Cj − BNash

j ) >
(sOi

+ hOi
)aLiOi

sLi
+ pLi

+ hLi

, i, j = 1, 2, j �= i.

Proof Since ROi
is not related to Bi, we know that

∂πi(Bi,Bj)

∂Bi
and

∂2πi(Bi,Bj)

∂2Bi
are the

same as (5.2) and (5.4) respectively. Analogous to Scenario 1, denoting aOjOi
(DOj

+

aLjOj
(DLj

− (Cj − Bj))
+ as D

′
Oj

, we obtain:

∂2πi(B8,Bj)

∂Bi∂Bj
= −(sLi

+ pLi
+ hLi

)aLjLi
fRLi

|DLj
>Cj−Bj

(Ci − Bi) Pr(DLj
> Cj − Bj)

−(sOi
+ pOi

+ hOi
)(Y + Z)
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where

Y = (1 − aLiOi
)aOjOi

fROi
|DLi

>Ci−Bi,D
′
Oj

>Bj ,DLj
≤Cj−Bj

(Bi)

Pr(DLi
> Ci − Bi, D

′
Oj

> Bj , DLj
≤ Cj − Bj)

+aOjOi
(1 − aLiOi

)2fROi
|DLi

>Ci−Bi,D
′
Oj

>Bj ,DLj
>Cj−Bj

(Bi)

Pr(DLi
> Ci − Bi, D

′
Oj

> Bj , DLj
> Cj − Bj),

Z = aOjOi
fROi

|DLi
≤Ci−Bi,D

′
Oj

>Bj ,DLj
≤Cj−Bj

(Bi)

Pr(DLi
≤ Ci − Bi, D

′
Oj

> Bj, DLj
≤ Cj − Bj)

+(1 − aLiOi
)aOjOi

fROi
|DLi

>Ci−Bi,D
′
Oj

>Bj ,DLj
>Cj−Bj

(Bi)

Pr(DLi
> Ci − Bi, D

′
Oj

> Bj , DLj
> Cj − Bj)

We know that if Pr(DLj
≤ Cj − Bj) >

(sOi
+hOi

)aLiOi

sLi
+pLi

+hLi
, then

∂2πi(Bi,Bj)

∂2Bi
≤ 0. After some

calculations, analogous to Scenario 1, we have

|∂2πi(Bi,Bj)

∂2Bi
| − |∂2πi(Bi,Bj)

∂Bi∂Bj
|

> (sOi
+ pOi

+ hOi
)(1 − aLiOi

)(1 − aLiOi
− aOjOi

)fROi
|DLi

>Ci−Bi
(Bi) Pr(DLi

> Ci − Bi)

+ (sLi
+ pLi

+ hLi
)aLjLi

fRLi
|DLj

>Cj−Bj
(Ci − Bi) Pr(DLj

> Cj − Bj)

+ (sLi
+ pLi

+ hLi
)fRLi

(Ci − Bi) − (sOi
+ hOi

)aLiOi
fRLi

|DLj
≤Cj−Bj

(Ci − Bi)

> (sOi
+ pOi

+ hOi
)(1 − aLiOi

)(1 − aLiOi
− aOjOi

)fROi
|DLi

>Ci−Bi
(Bi) Pr(DLi

> Ci − Bi)

+ fRLi
|DLj

≤Cj−Bj
(Ci − Bi)((sOi

+ hOi
)aLiOi

− (sLi
+ pLi

+ hLi
) Pr(DLj

≤ Cj − Bj))

> 0

This completes the proof.
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5.3 Sensitivity analysis

In this section, we analyze the sensitivity of an equilibrium solution with respect to

system parameters, such as selling price, holding cost and stockout penalty cost. Based

on the above results, we know that in both scenarios the Nash equilibrium is characterized

by the following optimality conditions:


G1(B1, B2) � ∂π1(B1,B2)
∂B1

= 0,

G2(B1, B2) � ∂π2(B1,B2)
∂B2

= 0,

where

∂πi(Bi,Bj)

∂Bi
= hLi

− hOi
− (sLi

+ pLi
+ hLi

) Pr(RLi
> Ci − Bi)

+(sOi
+ hOi

)aLiOi
Pr(DLi

> Ci − Bi)

+(sOi
+ pOi

+ hOi
)(1 − aLiOi

) Pr(ROi
> Bi, DLi

> Ci − Bi)

+(sOi
+ pOi

+ hOi
) Pr(ROi

> Bi, DLi
≤ Ci − Bi), i, j = 1, 2, j �= i.

Recall that the two scenarios differ in the form of ROi
. In this section, we discuss

some properties that hold for both scenarios.

Theorem 5.14 Assume that the stability condition (5.5) holds at an equilibrium solu-

tion. The following results hold for both Scenarios 1 and 2:

(i) Relative to selling price, BNash
i is decreasing in sLi

and sOj
, while it is increasing

in sLj
and sOi

.

(ii) Relative to holding cost, BNash
i is increasing in hLi

and hOj
, while it is decreasing

in hLj
and hOi

.
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(iii) Relative to stockout penalty cost, BNash
i is decreasing in pLi

and pOj
, while it is

increasing in pLj
and pOi

.

Proof We only show the relationship between BNash
i and selling prices sLi

and sLj
. Other

cases follow the same logic. By the implicit function theorem applied at (BNash
1 , BNash

2 ),

we have 


∂B1

∂sL1

∂B1

∂sL2

∂B2

∂sL1

∂B2

∂sL2




= −




∂G1

∂B1

∂G1

∂B2

∂G2

∂B1

∂G2

∂B2



−1 


∂B1

∂sL1

∂B1

∂sL2

∂B2

∂sL1

∂B2

∂sL2




=
1

(∂G1

∂B1

∂G2

∂B2
− ∂G1

∂B2

∂G2

∂B1
)




−∂G2

∂B2

∂G1

∂sL1

∂G1

∂B2

∂G2

∂sL2

∂G2

∂B1

∂G1

∂sL1
−∂G1

∂B1

∂G2

∂sL2




Recall from (5.3), ∂Gi

∂Bj
=

∂2πi(Bi,Bj)

∂Bi∂Bj
< 0. Under the stability condition (5.5),

∂Gi

∂Bi
=

∂2πi(Bi, Bj)

∂2Bi
≤ 0,

and

∂G1

∂B1

∂G2

∂B2
− ∂G1

∂B2

∂G2

∂B1
= |∂

2π1(B1, B2)

∂2B1
| − |∂

2π1(B1, B2)

∂B1∂B2
| > 0.

Further, we have

∂Gi

∂sLi

= −Pr(RLi
> Ci − Bi) ≤ 0, i = 1, 2.

Hence, we know ∂Bi

∂sLi
is nonnegative and ∂Bi

∂sLj
is non-positive at the Nash equilibrium

(BNash
1 , BNash

2 ). In other words, BNash
i is decreasing in sLi

and increasing in sLj
.

The results of Theorem 5.14 go with our intuition. For example, the rationale behind

(i) is as follows: If the selling price of the local store at firm i, sLi
, increases, then at
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equilibrium more capacity should be allocated to that store, and thus less capacity is

allocated to the online store of firm i. Consequently, more online demand is unsatisfied

at firm i and shift to the online store of firm j. Therefore, at equilibrium, firm j allocates

more capacity to its online store. Intuitively, a small change in sOi
causes an opposite

effect on the equilibrium solution.

5.4 Extensions of the basic model

We next extend the basic model. First, we consider the case that each firm has to

decide its total capacity and allocates this capacity between its local and online stores.

In other words, we have two decision variables to consider. Second, we extend the single-

period model to a multi-period model, in which each firm makes a sequence of decisions.

We would like to derive a myopic solution of a corresponding sequential game.

5.4.1 Two decision variables

Assume that each firm decides its total capacity and allocates this capacity between

its local and online stores. For the sake of brevity, we only consider Scenario 1. Recall

that Ci is the total capacity of firm i, Bi is the capacity of firm i allocated to its online

store, and (thus) Ci − Bi is the capacity of firm i allocated to its local store. Denoting
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the expected payoff function of firm i as πi(Bi, Ci, Bj, Cj), for firm 1, we have

π1(B1, C1, B2, C2) = E[sL1RL1 + hL1(RL1 − (C1 − B1)) − (sL1 + pL1 + hL1)(RL1 − (C1 − B1))
+

+sO1RO1 + hO1(RO1 − B1) − (sO1 + pO1 + hO1)(RO1 − B1)
+],

(5.6)

which is the same as (5.1). The first derivative of π1(B1, C1, B2, C2) with respect to B1

is the same as (5.2), and the first derivative with respect to C1 is

∂π1

∂C1
= −hL1 + (sL1 + pL1 + hL1) Pr(RL1 > C1 − B1)

−(sO1 + hO1)aL1O1 Pr(DL1 > C1 − B1)

+(sO1 + pO1 + hO1)aL1O1 Pr(RO1 > B1, DL1 > C1 − B1)

With some simple calculations, we obtain the Hessian matrix,




∂2π1

∂2B1

∂2π1

∂B1C1

∂2π1

∂C1B1

∂2π1

∂2C1




where

∂2π1

∂B1C1
= (sL1 + pL1 + hL1)fRL1

(C1 − B1) − (sO1 + hO1)aL1O1fDL1
(C1 − B1)

− (sO1 + pO1 + hO1)aL1O1(1 − aL1O1)fRO1
|DL1

>C1−B1
(B1) Pr(DL1 > C1 − B1),

∂2π1

∂2C1
= −(sL1 + pL1 + hL1)fRL1

(C1 − B1) + (sO1 + hO1)aL1O1fDL1
(C1 − B1)

− (sO1 + pO1 + hO1)a
2
L1O1

fRO1
|DL1

>C1−B1(B1) Pr(DL1 > C1 − B1),

and ∂2π1

∂2B1
is the same as (5.4).

A sufficient condition for π1(B1, C1, B2, C2) to be jointly concave in (B1, C1) is that

the Hessian matrix is negative semidefinite, i.e.,

∂2π1

∂2B1

∂2π1

∂2C1
− (

∂2π1

∂B1C1
)2 > 0
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Denoting

fRO1
|DL1

>C1−B1(B1) Pr(DL1 > C1 − B1),

which is positive, as M and

fRO1
|DL1

≤C1−B1(B1) Pr(DL1 ≤ C1 − B1),

which is also positive, as N , we have

∂2π1

∂2B1

∂2π1

∂2C1

− (
∂2π1

∂B1C1

)2

= N((sL1 + pL1 + hL1)fRL1
(C1 − B1) − (sO1 + hO1)aL1O1fDL1

(C1 − B1))

+ M((sL1 + pL1 + hL1)fRL1
(C1 − B1) − (sO1 + hO1)aL1O1fDL1

(C1 − B1)

− 2a2
L1O1

(sL1 + pL1 + hL1)fRL1
(C1 − B1)) + (sO1 + pO1 + hO1)a

2
L1O1

MN

Therefore, if

(2a2
L1O1

− 1)(sL1 + pL1 + hL1)fRL1
(C1 −B1) + (sO1 + hO1)aL1O1fDL1

(C1 −B1) ≤ 0, (5.7)

then π1(B1, C1, B2, C2) is jointly concave in (B1, C1). Symmetrically, we have the following

sufficient condition for firm 2 to have a concave payoff function:

(2a2
L2O2

− 1)(sL2 + pL2 + hL2)fRL2
(C2 −B2) + (sO2 + hO2)aL2O2fDL2

(C2 −B2) ≤ 0, (5.8)

By using Tsay and Agrawal (2000), we have the following theorem.

Theorem 5.15 For both Scenarios 1 and 2 of our two-firm model with two decision

variables, if (5.7) and (5.8) are satisfied, then there exists a Nash equilibrium, which can

78



be obtained by solving the following system of equations:




∂π1(·)
∂B1

= 0,

∂π1(·)
∂C1

= 0,

∂π2(·)
∂B2

= 0,

∂π2(·)
∂C2

= 0.

Proof If (5.7) and (5.8) are satisfied, then πi(Bi, Ci, Bj, Cj) is jointly concave in (Bi, Ci), i, j =

1, 2, j �= i. As stated in Tsay and Agrawal (2000), the equilibrium solution of our two-

firm model with two decision variables can be obtained by solving the system of four

equations consisting of the two first order conditions for each of the two firms.

Now we show that conditions (5.7) and (5.8) are valid, namely they can be satisfied

under certain conditions. For example, for (5.7), note that it is equivalent to

aL1O1 ≤ −V +

√
V 2 +

1

2
,

where V =
(sO1

+hO1
)fDL1

(C1−B1)

4(sL1
+pL1

+hL1
)fRL1

(C1−B1)
≥ 0.

Since −V +
√

V 2 + 1
2

is decreasing in V , we denote
(sO1

+hO1
)

4(sL1
+pL1

+hL1
)

max
0≤y≤C1

fDL1
(y)

fRL1
(y)

as V .

Thus, if

aL1O1 ≤ −V +

√
V

2
+

1

2
, (5.9)

then π1(B1, C1, B2, C2) is jointly concave in (B1, C1). Note that the right hand side of

(5.9) is decreasing in the selling price at the online store of firm 1, sO1 , and increasing in

the selling price at the local store of firm 1, sL1 . This goes with our intuition, since aL1O1

is the probability of an unsatisfied local customer at firm 1 visiting its online store.
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Figure 5.4: The initial stock and order of firm i at the beginning of period t.

5.4.2 Multi-period model

Now we consider a multi-period model in which each player makes a sequence of

decisions. At the beginning of each period t (t = 1, 2, . . .), firm i has initial on-hand

inventories xt
Li

and xt
Oi

at its local and online stores, respectively. It makes decisions

Ct
i and Bt

i , where Ct
i is the total stock of firm i, Bt

i is the allocation to its online store

and (thus) Ct
i − Bt

i is the allocation to its local store, as shown in Figure 5.4. We

assume that the inventory replenishment is instantaneous, so Bt
i and Ct

i − Bt
i are the

actual inventory available at the online and local stores of firm i, respectively. The local

demand, online demand, and effective demands are also period-related, and we denote

them by Dt
Li

, Dt
Oi

, Rt
Li

and Rt
Oi

, respectively. We assume that Dt
Li

and Dt
Oi

are random

variables with independent identical distribution. The resulting inventory levels of firm
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i at the beginning of period t + 1 become:

xt+1
Li

= (Ct
i − Bt

i − Rt
Li

)+,

xt+1
Oi

= (Bt
i − Rt

Oi
)+.

Let βi < 1 be the discount factor per period for firm i, and ui be the unit cost that

firm i pays for the product. Therefore, firm i’s expected total profit is:

Πi = E[
∞∑
t=1

(βi)
t−1[sLi

min{Rt
Li

, Ct
i − Bt

i} − pLi
(Rt

Li
− (Ct

i − Bt
i))

+ − hLi
(Rt

Li
− (Ct

i − Bt
i))

−

+ sOi
min{Rt

Oi
, Bt

i} − pOi
(Rt

Oi
− Bt

i)
+ − hOi

(Rt
Oi

− Bt
i)

− − ui(C
t
i − Bt

i − xt
Li

) − ui(B
t
i − xt

Oi
)]]

= E[
∞∑
t=2

(βi)
t−1[sLi

min{Rt
Li

, Ct
i − Bt

i} − pLi
(Rt

Li
− (Ct

i − Bt
i))

+ − hLi
(Rt

Li
− (Ct

i − Bt
i))

−

+ sOi
min{Rt

Oi
, Bt

i} − pOi
(Rt

Oi
− Bt

i)
+ − hOi

(Rt
Oi

− Bt
i)

−

− ui(C
t
i − Bt

i − (Ct−1
i − Bt−1

i − Rt−1
Li

)+) − ui(B
t
i − (Bt−1

i − Rt−1
Oi

)+)]

+ sLi
min{R1

Li
, C1

i − B1
i } − pLi

(R1
Li

− (C1
i − B1

i ))
+ − hLi

(R1
Li

− (C1
i − B1

i ))
−

+ sOi
min{R1

Oi
, B1

i } − pOi
(R1

Oi
− B1

i )
+ − hOi

(R1
Oi

− B1
i )

− − ui(C
1
i − x1

Li
− x1

Oi
)]

= ui(x
1
Li

+ x1
Oi

) + E[
∞∑

t=1

(βi)
t−1[sLi

min{Rt
Li

, Ct
i − Bt

i} − pLi
(Rt

Li
− (Ct

i − Bt
i))

+

− hLi
(Rt

Li
− (Ct

i − Bt
i))

− + sOi
min{Rt

Oi
, Bt

i} − pOi
(Rt

Oi
− Bt

i)
+ − hOi

(Rt
Oi

− Bt
i)

−

− uiC
t
i + βiui((C

t
i − Bt

i − Rt
Li

)+ + (Bt
i − Rt

Oi
)+)]]

= ui(x
1
Li

+ x1
Oi

) + E[

∞∑
t=1

(βi)
t−1[(sLi

− βiui)R
t
Li

+ hLi
(Rt

Li
− (Ct

i − Bt
i))

− (sLi
− βiui + pLi

+ hLi
)(Rt

Li
− (Ct

i − Bt
i))

+ + (sOi
− βiui)R

t
Oi

+ hOi
(Rt

Oi
− Bt

i)

− (sOi
− βiui + pOi

+ hOi
)(Rt

Oi
− Bt

i)
+ − (1 − βi)uiC

t
i ]]
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Denoting sLi
− βiui by s′Li

and sOi
− βiui by s′Oi

, we have

Πi = ui(x
i
Li

+ xi
Oi

) +
∞∑
t=1

(βi)
t−1Gt

i(B
t
i , C

t
i , B

t
j, C

t
j)

where

Gt
i(B

t
i , C

t
i , B

t
j, C

t
j) = E[s′Li

Rt
Li

+ hLi
(Rt

Li
− (Ct

i − Bt
i)) − (s′Li

+ pLi
+ hLi

)(Rt
Li

− (Ct
i − Bt

i))
+

(5.10)

+ s′Oi
Rt

Oi
+ hOi

(Rt
Oi

− Bt
i) − (s′Oi

+ pOi
+ hOi

)(Rt
Oi

− Bt
i)

+ − (1 − βi)uiC
t
i ],

which is very close to (5.6).

We now apply the theory of sequential games developed in Heyman and Sobel (1984)

to analyze this multi-period model. In general, a multi-period game is difficult to solve.

Hence we apply the concept “myopic solution” to simplify it. A multi-period game is

said to have a myopic solution if its data can be used easily to specify a single-period

game such that ad infinitum repetition of a Nash equilibrium of the single-period game

comprises an equilibrium for the multi-period game. We would like to derive a myopic

solution to our multi-period game.

We refer to the single-period game, in which each firm has payoff function (5.10)

without superscript t, as game Φ. For our sequential game characterized by (5.10), from

Section 9-4 of Heyman and Sobel, we know that if the following three conditions are

satisfied, then a myopic solution exists and this sequential game can be simplified into

single-period game Φ. Those sufficient conditions are:

(A5.1) The demands in all periods are random variables with independent identical

distribution;
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(A5.2) The discount factor per period for firm i is less than one, i.e., βi < 1;

(A5.3) The equilibrium solution of the game Φ is a feasible solution to the multi-period

game in each period t.

For our model, conditions (A5.1) and (A5.2) are satisfied automatically. Condition

(A5.3) is equivalent to:

xt+1
Li

≤ (Ct
i − Bt

i) = (Ci − Bi),

xt+1
Oi

≤ Bt
i = Bi, i = 1, 2,

where (Bi, Ci, Bj, Cj) is an equilibrium solution of the game Φ. Since (Bi, Ci, Bj , Cj) is

an equilibrium solution of the game Φ, we know that (B1
i , C

1
i , B

1
j , C

1
j ) ≤ (Bi, Ci, Bj , Cj)

is feasible. Further, we have

xt+1
Li

= (Ct
i − Bt

i − Rt
Li

)+ = (Ci − Bi − Rt
Li

)+ ≤ Ci − Bi,

xt+1
Oi

= (Bt
i − Rt

Oi
)+ = (Bi − Rt

Oi
)+ ≤ Bi, i = 1, 2.

Hence, condition (A5.3) is also satisfied.

Therefore, we have the following theorem.

Theorem 5.16 For our multi-period game characterized by (5.10), a myopic solution

exists which simplifies this multi-period game into the single-period game Φ, in which

firm i makes decisions on Bi and Ci and has payoff function (5.10) without superscript

t, i.e.,

Gi(Bi, Ci, Bj, Cj) = E[s′Li
RLi

+ hLi
(RLi

− (Ci − Bi)) − (s′Li
+ pLi

+ hLi
)(RLi

− (Ci − Bi))
+

+ s′Oi
ROi

+ hOi
(ROi

− Bi) − (s′Oi
+ pOi

+ hOi
)(ROi

− Bi)
+ − (1 − βi)uiCi]
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Finding a Nash equilibrium solution for game Φ is almost the same problem as the

one discussed in Subsection 5.4.1 so that the myopic equilibrium is characterized as:



∂G1(·)
∂B1

= 0,

∂G1(·)
∂C1

= 0,

∂G2(·)
∂B2

= 0,

∂G2(·)
∂C2

= 0.

5.5 Concluding remarks

In this study, we consider the capacity allocation problem for two firms selling the

same product. Each firm has a local store and an online store. When a stockout occurs

at a local store customers may go to the online store belonging to the same firm, or visit

the rival’s local store. However, when a stockout occurs at an online store, customers

usually will not visit the local store belonging to the same firm, but instead they may

go to the rival’s online store. One question facing each firm is how to allocate its finite

capacity between the local and online stores to maximize its profit as a whole.

Because customers may shift from one firm to the other when stockout occurs, one

firm’s allocation affects the decision of the rival, thereby creating a strategic interaction.

In this chapter game theory is used for analysis. We first consider a single-product single-

period model and assume the total capacity of each firm is given and known. We study

two scenarios of this model and derive corresponding existence and stability conditions

of a Nash equilibrium. We also conduct sensitivity analysis of the equilibrium solution

with respect to price and cost parameters. We then study the case in which each firm
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decides its total capacity and allocates this capacity between its local and online stores

simultaneously and derive the existence condition of a Nash equilibrium. Finally we

extend the results to a multi-period model, and show that a myopic solution is a Nash

equilibrium for the corresponding sequential game.

In our model, we have assumed that the demands at local and online stores are

exogenous. A potential avenue of research is to study the case in which the demands are

affected by the quality of service, such as the percentage of demand satisfied, or by the

selling prices. It is also possible to analyze the case when the probabilities of customer

shifting, i.e, parameters like aLiLj
, are related to these factors.

Another extension would be to analyze collaboration between these two firms, such

as the side payment rules to make both of them better off by using a single web page. We

can also study the behavior of a monopolist who owns both firms, namely a centralized

model, as in Netessine and Shumsky (2001) and compare the results with the behavior

of two firms in competition, namely a decentralized model.
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Chapter 6

Pricing Game in Revenue

Management with Multiple Firms

6.1 Introduction

In this chapter, we study the pricing strategies of multiple firms in a revenue man-

agement context. We consider a scenario in which there are multiple firms selling same

product or providing same service. Each firm has a given capacity and competes for

customers from a common pool. The firms aim to maximize their profit subject to their

capacity constraint by setting prices to attract potential customers. Since the pricing

strategy of one firm affects the demand streams of other firms, there exists a strategic in-

teraction among the firms’ pricing decisions; therefore game theory is applied to analyze

this problem. We present the existence and uniqueness conditions of a Nash equilibrium
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when firms face either a deterministic demand function or a general stochastic demand

function. In particular, we calculate the explicit Nash equilibrium point when the de-

mand at each firm is a known linear function of price. We also perform sensitivity analysis

of the equilibrium prices with respect to cost and capacity parameters.

Our study is related to revenue management in that each firm in our model has

finite capacity and makes a pricing decision to maximize its profit. In contrast to most

revenue management models, which aim to maximize the revenue or profit of one firm,

this chapter analyzes the pricing strategies for multiple firms competing for customers

from a common pool. Potential applications for our research may be found in the airline

and hotel industries. For example, consider several airlines offering direct flights between

the same origin and destination, with departures and arrivals at similar times. Since the

number of seats on a flight is fixed, each airline makes pricing decisions to maximize its

profit or revenue under a capacity constraint. Similarly, consider several hotels of the

same quality located in the same city. Each of them tries to attract customers from a same

pool by making pricing decisions for a fixed number of rooms. In this chapter we focus

on the class of non-dynamic pricing strategies. We remark that it was shown in Gallego

and van Ryzin (1994) that the one-price strategy is near the optimal dynamic pricing

strategy. Using a game theoretic formulation we demonstrate the existence of equilibrium

prices when the demands are deterministic and also when demands are random following

a general stochastic demand function.

As mentioned in Section 2.5, there are other papers which treat pricing strategies

among competitive firms, such as Bernstein et al. (1999) and Bernstein and Federgruen
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(1999). Our model is different from those used in Bernstein et al. and Bernstein and

Federgruen. In our model, each firm has limited capacity and the demands are assumed

to have general properties which should be satisfied by most real substitutable products.

Furthermore, in addition to deterministic demand, we also consider the case when the

price-dependent demands are random. A stochastic ordering relationship is used to

express the dependency between random demand and pricing.

Our model is also related to papers analyzing competitive oligopoly models with

stochastic demands, such as Birge et al. (1998), van Mieghem and Dada (1999), and

Bernstein and Federgruen (2002). As was previously mentioned in Section 2.5, these

authors consider a certain kinds of demand structures, for example, multiplicative and

non-multiplicative. In contrast, we model the random demands with general stochastic

functions. Based on common properties of substitutable products, Topkis (1979) states

three properties of the deterministic demand functions which are consistent with common

observation. These properties are assumed in many subsequent papers. In this chapter,

we generalize these assumptions to a stochastic scenario. Compared with the demand

structures mentioned above, our demand structure is more general.

The rest of this chapter is organized as follows. In Section 6.2 we analyze the pricing

game with deterministic demands. Then the case with linear demands is studied, and

the unique Nash equilibrium is calculated. In Section 6.3, we study the existence and

uniqueness of a Nash equilibrium when the demands are stochastic. We analyze the

sensitivity of equilibrium prices with respect to the cost and capacity parameters in

Section 6.4 and conclude the chapter with a discussion in Section 6.5.
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6.2 Deterministic demand

In this section, we consider the case in which the demand of each firm is given in a

deterministic form. For the sake of brevity and to facilitate some of the derivations, we

confine ourselves to a two-firm model. All results apply for a model with n firms.

We use the following notation:

ci: the capacity of firm i;

wi: the unit cost of the product/service at firm i;

pi: the selling price of the product/service at firm i;

πi(p1, p2): the payoff function of firm i.

di(p1, p2): the deterministic demand of firm i.

In this section we assume that di(p1, p2) is a continuous and twice differentiable func-

tion of p1 and p2. The demand actually satisfied at firm i depends on its demand di(p1, p2)

and its capacity ci. The payoff function of firm i is

πi(p1, p2) = (pi − wi) min{ci, di(p1, p2)}.

To study the interactive pricing strategies of the two firms and analyze the existence

of a Nash equilibrium, we make use of the definition of submodularity and related results

introduced by Topkis (1979) (see Chapter 5).

In our model firms offer substitutable services and compete for customers. We assume
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three properties of the demand functions:

(A6.1) ∂di(p1,p2)
∂pi

< 0;

(A6.2) ∂di(p1,p2)
∂pj

> 0, j �= i;

(A6.3) −di(p1, p2) is submodular in (p1, p2).

Assumptions (A6.1) and (A6.2) are obvious. Assumption (A6.3) is equivalent to: For

psmall
1 ≤ plarge

1 , d1(p
small
1 , p2) − d1(p

large
1 , p2) becomes larger as p2 becomes smaller. For

example, an increase in the price of beef will cause a greater reduction in the demand

for beef when the price of chicken is lower. These assumptions, introduced by Topkis

(1979), are commonly observable with substitutable services and have been assumed by

many papers (Bernstein et al. (1999), Bernstein and Federgruen (1999), and Bernstein

and Federgruen (2002)) .

Similarly, as in Lippman and McCardle (1997), for mathematical convenience we let

z2 = −p2 be the decision variable of firm 2. z2 is the negative of the price charged by

firm 2. Then using Lemma 5.3, the three assumptions above can be rewritten as:

(A6.1
′
) ∂d1(p1,z2)

∂p1
< 0, ∂d1(p1,z2)

∂z2
< 0;

(A6.2
′
) ∂d2(p1,z2)

∂p1
> 0, ∂d2(p1,z2)

∂z2
> 0;

(A6.3
′
) −di(p1, z2) is supermodular in (p1, z2); in other words, di(p1, z2) is submodular

in (p1, z2).

Lemma 6.1 (Topkis (1978)) Suppose g(x1, x2) is monotone in both x1 and x2 and is a
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supermodular function in (x1, x2). Also suppose that f(·) is an increasing convex function.

Then f(g(x1, x2)) is a supermodular function in (x1, x2).

Theorem 6.2 The payoff function of each firm is supermodular in (p1, p2).

Proof For firm 1 we have

π1(p1, z2) = (p1 − w1) min{c1, d1(p1, z2)}.

= (p1 − w1)c1 − (p1 − w1)(c1 − d1(p1, z2))
+

It follows that

∂π1(p1,z2)
∂p1

= c1 − (c1 − d1(p1, z2))
+ − (p1 − w1)

∂(c1−d1(p1,z2))+

∂p1
,

∂2π1(p1,z2)
∂p1∂z2

= −∂(c1−d1(p1,z2))+

∂z2
− (p1 − w1)

∂2(c1−d1(p1,z2))+

∂p1∂z2
.

From the assumption (A6.1
′
) we know that ∂d1(p1,z2)

∂z2
< 0, so ∂(c1−d1(p1,z2))+

∂z2
≥ 0. Mean-

while, from assumptions (A6.1
′
) and (A6.3

′
) we know that c1 − d1(p1, z2) is increasing in

both p1 and z2 and supermodular in (p1, z2). Further, since (·)+ is a convex increasing

function, by Lemma 6.1 we know that (c1−d1(p1, z2))
+ is supermodular in (p1, z2), which

is equivalent to ∂2(c1−d1(p1,z2))+

∂p1∂z2
≥ 0. Therefore, we obtain ∂2π1(p1,z2)

∂p1∂z2
≤ 0, which proves that

π1(p1, z2) is submodular in (p1, z2) and consequently supermodular in (p1, p2). Similarly,

we can prove that π2(p1, p2) is supermodular in (p1, p2).

Theorem 6.3 In the two-firm pricing game with deterministic demands, a Nash equi-

librium exists.

Proof The result follows from the supermodularity of the payoff functions and Theorem

3.1 of Topkis (1979).
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Now we consider the uniqueness of the Nash equilibrium. Moulin (1986) states that

uniqueness is stronger than local stability in that if a Nash equilibrium is globally stable,

then it is unique. A sufficient condition for the uniqueness of a Nash equilibrium is that

the slopes of the players’ best responses never exceed 1 in absolute value. In a two-player

game, this is equivalent to the following lemma:

Lemma 6.4 If a Nash equilibrium exists and |∂2πi(xi,xj)

∂xi∂xj
| < |∂2πi(xi,xj)

∂x2
i

|, for all (xi, xj), i, j =

1, 2, i �= j, then the Nash equilibrium is unique.

In this lemma, the left (right) side of the inequality can be interpreted as the effect

of the firm j’s (firm i’s) decision on the best response of firm i. If firm i itself can act

to counter firm j’s effect on its best response, the equilibrium is stable. After some

calculations, we obtain

|∂
2π1(p1, z2)

∂p2
1

| = |2∂(c1 − d1(p1, z2))
+

∂p1
+ (p1 − w1)

∂2(c1 − d1(p1, z2))
+

∂p2
1

|, (6.1)

|∂
2π1(p1, z2)

∂p1∂z2

| =
∂(c1 − d1(p1, z2))

+

∂z2

+ (p1 − w1)
∂2(c1 − d1(p1, z2))

+

∂p1∂z2

.

Combining (6.1) and Lemma 6.4, we obtain a sufficient condition for the uniqueness of

the Nash equilibrium.

So far, we have obtained existence and uniqueness conditions for a Nash equilibrium.

However, how to calculate it in closed form is another issue. In what follows we show

how to calculate the Nash equilibrium when the demand at each firm is a linear function

of price; i.e.,

di(pi, pj) = ai − bipi + βijpj with ai, bi, βij > 0 for i, j = 1, 2 and i �= j. (6.2)
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We assume that bi > βij; otherwise both firms can increase their demands by simul-

taneously raising their prices. Note that the assumptions (A6.1), (A6.2), and (A6.3)

mentioned above are satisfied.

To calculate the Nash equilibrium we first consider firm 1’s best response given the

price of firm 2, p2. We know that firm 1’s payoff function is

π1(p1, p2) =




(p1 − w1)d1(p1, p2) when d1(p1, p2) < c1,

(p1 − w1)c1 otherwise.

Let p
′
1 solve d1(p1, p2) = c1, i.e.,

p
′
1 =

a1 − c1 + β12p2

b1

.

We now consider the two cases p1 > p
′
1 and p1 ≤ p

′
1 separately. If p1 > p

′
1, i.e., d1(p1, p2) <

c1, the payoff function is

π1(p1, p2) = (p1 − w1)(a1 − b1p1 + β12p2), (6.3)

which is concave in p1 given p2. Therefore the best response is obtained by making the

first derivative of (6.3) equal 0, i.e.,

a1 − 2b1p1 + β12p2 + b1w1 = 0. (6.4)

In the (p1, p2) plane, (6.4) is a line with slope 2b1
β12

and it passes through the point

(a1+b1w1

2b1
, 0). This line is the best response of firm 1 when its capacity is not constraining.

We denote the line as NoCapaBR1. If p1 ≤ p
′
1, i.e., d1(p1, p2) ≥ c1, the payoff function is

π1(p1, p2) = (p1 − w1)c1,
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Figure 6.1: Firm 1’s best response when c1 ≥ a1−b1w1

2
.

which is increasing in p1. Therefore the best response for firm 1 is

p1 = p
′
1 =

a1 − c1 + β12p2

b1

. (6.5)

which is a line with slope b1
β12

which passes through the point (a1−c1
b1

, 0). We denote this

line as CapaBR1, which is the best response of firm 1 when its capacity constraint is

active.

Based on the analysis above, we can derive the best response of firm 1. There are

two cases. If a1+b1w1

2b1
≥ a1−c1

b1
, i.e, c1 ≥ a1−b1w1

2
, firm 1’s best response includes a segment

from NoCapaBR1 and a segment from CapaBR1 (see Figure 6.1); otherwise, firm 1’s

best response is line CapaBR1 (see Figure 6.2).
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Figure 6.2: Firm 1’s best response when c1 < a1−b1w1

2
.

Figure 6.3: Firm 2’s best response when c2 ≥ a2−b2w2

2
.
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Figure 6.4: Firm 2’s best response when c2 < a2−b2w2

2
.

Similarly for firm 2, denoting the line

a2 − 2b2p2 + β21p1 + b2w2 = 0

as NoCapaBR2 and the line

p2 =
a2 − c2 + β21p1

b2

as CapaBR2, we can derive firm 2’s best response. If a2+b2w2

2b2
≥ a2−c2

b2
, i.e, c2 ≥ a2−b2w2

2
,

firm 2’s best response includes segments from NoCapaBR2 and CapaBR2 (see Figure

6.3); otherwise, firm 2’s best response is line CapaBR2 (see Figure 6.4).

The intersection of two best response curves is the Nash equilibrium. The values of

capacities c1 and c2 affect where the two best responses intersect. There are four cases

as follows.

• Case 1: c1 < a1−b1w1

2
, c2 < a2−b2w2

2
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Figure 6.5: If (2b1b2 − β12β21)c1 + β12b1c2 = m1, CapaBR2 passes the intersection of line
NoCapaBR1 and line CapaBR1.

In this case the best responses of the two firms are, respectively, line CapaBR1 and

line CapaBR2. It follows that the Nash equilibrium is




p1 = a1b2+β12a2−β12c2−b2c1
b1b2−β12β21

,

p2 = a2b1+β21a1−β21c1−b1c2
b1b2−β12β21

.

(6.6)

• Case 2: c1 ≥ a1−b1w1

2
and c2 < a2−b2w2

2

In this case the best response of firm 1 is shown in Figure 6.1, while that of firm 2

is line CapaBR2 shown in Figure 6.4. After some calculations, we obtain that if

(2b1b2 − β12β21)c1 + β12b1c2 = m1,

where m1 = a1b1b2 + β12β21b1w1 + β12a2b1 − b2
1b2w1, then the firm 2’s best re-

sponse, line CapaBR2, passes through the intersection of line NoCapaBR1 and line
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CapaBR1, shown in Figure 6.5. It follows that if

(2b1b2 − β12β21)c1 + β12b1c2 ≥ m1, (6.7)

the intersection of line NoCapaBR1 and line CapaBR2 and the Nash equilibrium

is 


p1 = a1b2+b1b2w1+β12a2−β12c2
2b1b2−β12β21

,

p2 = 2a2b1+β21a1+β21w1b1−2b1c2
2b1b2−β12β21

;

(6.8)

otherwise, the intersection of line CapaBR1 and line CapaBR2, given by (6.6), is

the Nash equilibrium (same as in Case 1).

• Case 3: c1 < a1−b1w1

2
and c2 ≥ a2−b2w2

2

In this case the best response of firm 1 is line CapaBR1 shown in Figure 6.2, and

that of firm 2 is shown in Figure 6.3. Similar to Case 2, we obtain that if

(2b1b2 − β12β21)c2 + β21b2c1 = m2

where m2 = a2b1b2 + β12β21b2w2 + β12a1b2 − b2
2b1w2, then the firm 2’s best re-

sponse, line CapaBR2, passes through the intersection of line NoCapaBR1 and line

CapaBR1. It follows that if

(2b1b2 − β12β21)c2 + β21b2c1 ≥ m2, (6.9)

the intersection of line CapaBR1 and line NoCapaBR2 and the Nash equilibrium

is 


p1 = 2a1b2+β12a2+β12w2b2−2b2c1
2b1b2−β12β21

,

p2 = a2b1+b1b2w2+β21a1−β21c1
2b1b2−β12β21

;

(6.10)

otherwise, the intersection of lines CapaBR1 and CapaBR2, given by (6.6), is the

Nash equilibrium ( again same as in Case 1).
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Figure 6.6: Line NoCapaBR2 Pass

• Case 4: c1 ≥ a1−b1w1

2
and c2 ≥ a2−b2w2

2
.

In this case the best response of firm 1 includes the segments from NoCapaBR1

and CapaBR1 shown in Figure 6.1, while that of firm 2 includes the segments from

NoCapaBR2 and CapaBR2 shown in Figure 6.3.

We modify the value of c1 to make line NoCapaBR2 pass through the point ( c1+b1w1

b1
,

2c1+b1w1−a1

β12
), i.e., the intersection of line NoCapaBR1 and line CapaBR1 (see Figure

6.6). In this case, we denote the value of c1 as c
′
1 and refer to the line NoCapaBR2

as NoCapaBR2 Pass. After some calculations, we obtain

c
′
1 =

b1(2a1b2 + β12b2w2 + β12a2 + β12β21w1 − 2b1b2w1)

4b1b2 − β12β21
.

Notice that the best response of firm 2 has segments from NoCapaBR2 and Ca-

paBR2. If c1 < c
′
1, the NoCapaBR2 segment falls above NoCapaBR2 Pass, as in
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Figure 6.7: In Case 4-1, the Nash equilibrium is the intersection of line CapaBR1 and
line CapaBR2.

Figure 6.7; otherwise, the NoCapaBR2 segment falls below NoCapaBR2 Pass, as

in Figure 6.8 and Figure 6.9.

Similarly, if line NoCapaBR1 passes through the intersection of lines NoCapaBR2

and CapaBR2, we call it NoCapaBR1 Pass and denote the value of c2 in this case

as c
′
2. We obtain

c
′
2 =

b2(2a2b1 + β21b1w1 + β21a1 + β12β21w1 − 2b1b2w1)

4b1b2 − β12β21
.

If c2 < c
′
2, the NoCapaBR1 segment of firm 1’s best response falls on the right side

of NoCapaBR1 Pass, as in Figure 6.7 and Figure 6.8; otherwise, the NoCapaBR1

segment falls on the right side of NoCapaBR1 Pass, as in Figure 6.9.

It is easy to verify that c
′
1 > a1−b1w1

2
and c

′
2 > a2−b2w2

2
. Therefore, based on the

values of c1 and c2, there are four cases.
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– Case 4-1: a1−b1w1

2
≤ c1 < c

′
1 and a2−b2w2

2
≤ c2 < c

′
2

Based on the analysis above, the best responses of firm 1 and firm 2 are shown

in Figure 6.7. It follows that the Nash equilibrium is the intersection of line

CapaBR1 and line CapaBR2, given in (6.6).

– Case 4-2: c1 ≥ c
′
1 and a2−b2w2

2
≤ c2 < c

′
2

There are two cases (see Figure 6.8). Similar to Case 2, we know that if

(2b1b2 − β12β21)c1 + β12b1c2 ≥ m1,

the Nash equilibrium is the intersection of line NoCapaBR1 and line CapaBR2

(see the below graph in Figure 6.8), which is (6.8); otherwise, the Nash equi-

librium is the intersection of line CapaBR1 and line CapaBR2 (see the upper

graph in Figure 6.8), given in (6.6).

– Case 4-3: a1−b1w1

2
≤ c1 < c

′
1 and c2 ≥ c

′
2

Similar to Case 3, we know that if

(2b1b2 − β12β21)c2 + β21b2c1 ≥ m2,

the Nash equilibrium is the intersection of line CapaBR1 and line NoCapaBR2,

given in (6.10); otherwise the Nash equilibrium is the intersection of line Ca-

paBR1 and line CapaBR2, given in (6.6).

– Case 4-4: c1 ≥ c
′
1 and c2 ≥ c

′
2

The best responses of retailer 1 and retailer 2 are shown in Figure 6.9. It

follows that the Nash equilibrium is the intersection of lines NoCapaBR1 and
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Figure 6.8: In Case 4-2, CapaBR2 may intersect with CapaBR1 or NocapaBR1.
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Figure 6.9: In Case 4-4, the Nash equilibrium is the intersection of line NoCapaBR1 and
line NoCapaBR2

NoCapaBR2, which is


p1 = 2a1b2+β12a2+β12b2w2+2b1b2w1

4b1b2−β12β21
,

p2 = 2a2b1+β21a1+β21w1b1+2b1b2w2

4b1b2−β12β21
.

(6.11)

From the above analysis, we see that the assumption bi > βij guarantees that the

best responses of firm 1 and firm 2 intersect only once, which results in a unique Nash

equilibrium. Furthermore, the unique Nash equilibrium has four possible values: (6.6),

(6.8), (6.10) and (6.11). The capacities of the two firms play a major role in determining

the value of the Nash equilibrium in this pricing game. When the capacities of both

firms are small (see Case 1 and Case 4-1), they are constraining, and therefore the Nash

equilibrium is dependent on both capacities (see (6.6)). When one of the firms has a

comparatively large capacity (see Case 2, Case 3, Case 4-2 and Case 4-3), if its capacity

is big enough to compensate for the capacity limitation of the other firm (conditions
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(6.7) and (6.9)), then the firm with the large capacity is unconstrained, and therefore the

Nash equilibrium is independent of the comparatively large capacity ((6.8) and (6.10));

if the large capacity is not large enough to compensate for the other, both firms are

constrained, which results in a Nash equilibrium dependent on both capacities. Only

when both firms have comparatively large capacities are both firms unconstrained (see

Case 4-4). In this case the Nash equilibrium is independent of the capacities (see (6.11)).

In order for the equilibrium prices to be feasible, the price of each firm must be greater

than its unit cost, i.e., {
p1 > w1,

p2 > w2.

In the appendix, we prove that the Nash equilibria of the above cases are feasible under

the following condition {
a1 − b1w1 + β12w2 > 0,

a2 − b2w2 + β21w1 > 0.
(6.12)

From (6.2), we know that when both firms charge their respective unit cost, they both

have positive demand. This goes with our intuition.

6.3 Stochastic demand

In this section, we study the case where the demands of both firms are stochastic.

The notation is the same as in the last section except that for the demand. We represent

the stochastic demand of firm i with a continuous random variable Di(p1, p2). To model

the dependence of Di(p1, p2) on deterministic decision variables p1 and p2, we assume

that the c.d.f. of Di(p1, p2) is a function of p1 and p2 and denote it as F
(p1,p2)
i (x). We use
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πi(p1, p2) to represent the expected payoff function of firm i.

Recall from Section 6.2 that when both demands are deterministic, the demand of

one firm increases (decreases) when the price of the other firm increases (decreases). In

this section, the demands are random. The demand of one firm changes from one random

variable to another when the price the other firm changes. To compare these two random

variables, we apply the concept of stochastic ordering (see Ross (1983) or Shaked and

Shanthikumar (1994)). Let U and V be two random variables. If

Pr{U > x} ≤ Pr{V > x} for all x,

then U is said to be smaller than V in stochastic ordering (denoted by U ≤st V ).

Assumptions in Section 6.2 express common properties of substitutable services when

the demands are deterministic. We now modify those assumptions for the stochastic

scenario.

Analogous to assumption (A6.1) in Section 6.2, we assume:

D1(p
large
1 , p2) ≤st D1(p

small
1 , p2), plarge

1 ≥ psmall
1 ,

D2(p1, p
large
2 ) ≤st D2(p1, p

small
2 ), plarge

2 ≥ psmall
2 .

Denoting 1 − F
(p1,p2)
i (x) as F

(p1,p2)

i , this assumption is equivalent to:

(A6.1′′) F
(plarge

1 ,p2)

1 (x) ≤ F
(psmall

1 ,p2)

1 (x), plarge
1 ≥ psmall

1 ,

F
(p1,plarge

2 )

2 (x) ≤ F
(p1,psmall

2 )

2 (x), plarge
2 ≥ psmall

2 .

Similarly, analogous to assumption (A6.2) in Section 6.2, we make the following as-
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sumption (A6.2
′′
):

(A6.2′′) F
(p1,psmall

2 )

1 (x) ≤ F
(p1,plarge

2 )

1 (x), plarge
2 ≥ psmall

2 ,

F
(psmall

1 ,p2)

2 (x) ≤ F
(plarge

1 ,p2)

2 (x), plarge
1 ≥ psmall

1 .

Assumption (A6.3) in Section 6.2 states that d1(p
small
1 , p2) − d1(p

large
1 , p2) is larger

as p2 becomes smaller for psmall
1 ≤ plarge

1 . When demands are stochastic, we assume

correspondingly that F
(psmall

1 ,p2)

1 (x) − F
(plarge

1 ,p2)

1 (x) is larger as p2 becomes smaller for

psmall
1 ≤ plarge

1 ; in other words, we make the following assumption:

(A6.3
′′
) F

(p1,p2)

i (x) is supermodular in (p1, p2).

The expected payoff function of firm 1 is

π1(p1, p2) = (p1 − w1)E[min{c1, D1(p1, p2)}]

= (p1 − w1)c1 + (p1 − w1)

∫ c1

0

(c1 − x)dF
(p1,p2)

1 (x)

= (p1 − w1)

∫ c1

0

F
(p1,p2)

1 (x)dx

After some calculations, we obtain

∂π1(p1,p2)
∂p1

=
∫ c1

0
F

(p1,p2)

1 (x)dx + (p1 − w1)
∫ c1
0

∂F
(p1,p2)
1

∂p1
(x)dx,

∂2π1(p1,p2)
∂p1∂p2

=
∫ c1

0

∂F
(p1,p2)
1 (x)

∂p2
dx + (p1 − w1)

∫ c1
0

∂2F
(p1,p2)
1 (x)

∂p1∂p2
dx.

Theorem 6.5 In our two-firm pricing game with stochastic demands, a Nash equilibrium

exists.

Proof From assumption (A6.1
′′
), we know that

∂F
(p1,p2)
1 (x)

∂p2
≥ 0. Assumption (A6.3

′′
) is

equivalent to
∂2F

(p1,p2)
1 (x)

∂p1∂p2
≥ 0. Therefore, we obtain that ∂2π1(p1,p2)

∂p1∂p2
≥ 0, which proves the
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supermodularity of π1(p1, p2). Similarly, we can prove that π2(p1, p2) is supermodular in

(p1, p2). Then by Theorem 3.1 of Topkis (1979), we conclude the existence of a Nash

equilibrium.

Similar to the deterministic case in Section 6.2, the uniqueness condition of the Nash

equilibrium can be obtained by applying Lemma 6.4.

6.4 Sensitivity analysis

In this section, we analyze the sensitivity of equilibrium prices with respect to capacity

ci and unit cost wi. For the deterministic case with linear demand function, this analysis

is straightforward, because the linear relationship prevails. Here, we focus on the scenario

with stochastic demand.

First we study the effects of the capacities, c1 and c2, on the Nash equilibrium. Based

on the results above, we know the Nash equilibrium is characterized by the following

optimality conditions: 


∂π1(p1,p2)
∂p1

= 0,

∂π2(p1,p2)
∂p2

= 0,

where

∂π1(p1,p2)
∂p1

=
∫ c1

0
F

(p1,p2)

1 (x)dx + (p1 − w1)
∫ c1
0

∂F
(p1,p2)
1

∂p1
(x)dx,

∂π2(p1,p2)
∂p2

=
∫ c2

0
F

(p1,p2)

2 (x)dx + (p2 − w2)
∫ c2
0

∂F
(p1,p2)
2

∂p2
(x)dx.

We denote the above formula as 


G1(·) = 0,

G2(·) = 0.
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By implicit function theory, we have




∂p1

∂c1

∂p1

∂c2

∂p2

∂c1

∂p2

∂c2


 = −




∂G1

∂p1

∂G1

∂p2

∂G2

∂p1

∂G2

∂p2



−1 


∂G1

∂c1

∂G1

∂c2

∂G2

∂c1
∂G2

∂c2


 (6.13)

=
1

(∂G1

∂p1

∂G2

∂p2
− ∂G1

∂p2

∂G2

∂p1
)




−∂G2

∂p2

∂G1

∂p2

∂G2

∂p1
−∂G1

∂p1







∂G1

∂c1
0

0 ∂G2

∂c2




=
1

(∂G1

∂p1

∂G2

∂p2
− ∂G1

∂p2

∂G2

∂p1
)




−∂G2

∂p2

∂G1

∂c1
∂G1

∂p2

∂G2

∂c2

∂G2

∂p1

∂G1

∂c1
−∂G1

∂p1

∂G2

∂c2




where

∂G1

∂p1
= 2

∫ c1

0

∂F
(p1,p2)

1

∂p1
(x)dx + (p1 − w1)

∫ c1

0

∂2F
(p1,p2)

1

∂2p1
(x)dx,

∂G1

∂p2
=

∫ c1

0

∂F
(p1,p2)

1

∂p2
(x)dx + (p1 − w1)

∫ c1

0

∂2F
(p1,p2)

1

∂p1∂p2
(x)dx,

∂G2

∂p1

=

∫ c2

0

∂F
(p1,p2)

2

∂p1

(x)dx + (p2 − w2)

∫ c2

0

∂2F
(p1,p2)

2

∂p1∂p2

(x)dx,

∂G2

∂p2
= 2

∫ c2

0

∂F
(p1,p2)

2

∂p2
(x)dx + (p2 − w2)

∫ c2

0

∂2F
(p1,p2)

2

∂2p2
(x)dx,

∂G1

∂c1

= F
(p1,p2)

1 (c1) + (p1 − w1)
∂F

(p1,p2)

1

∂p1

(c1),

∂G2

∂c2

= F
(p1,p2)

2 (c2) + (p2 − w2)
∂F

(p1,p2)

2

∂p2

(c2).

Theorem 6.6 At equilibrium a small change in ci leads to the changes in p1 and p2 such

that

∂pi

∂ci

/
∂pj

∂ci

=
−2

∫ cj

0

∂F
(p1,p2)
j

∂pj
(x)dx − (pj − wj)

∫ cj

0

∂2F
(p1,p2)
j

∂2pj
(x)dx

∫ cj

0

∂F
(p1,p2)
j

∂pi
(x)dx + (pj − wj)

∫ cj

0

∂2F
(p1,p2)
j

∂pi∂pj
(x)dx

, j �= i.

Proof From (6.13) we know that ∂pi

∂ci
/

∂pj

∂ci
= −∂Gj

∂pj
/

∂Gj

∂pi
, so the quantity relation is easy

to establish.
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Notice that supermodularity is a weaker condition than concavity. We now replace

assumption (A6.3
′′
) with:

(A6.4) F
(p1,p2)

i (x) is concave in (p1, p2).

Assumption (A6.4) implies that for any given pj , F
(p1,p2)

i (x) is concave in pi, i, j =

1, 2, i �= j,. Based on assumption (A6.4), we obtain the following result.

Theorem 6.7 Under the uniqueness condition of Lemma 6.4 and assumption (A6.4), at

equilibrium an increase in ci leads to decreases in both p1 and p2 if and only if F
(p1,p2)

i (ci)+

(pi − wi)
∂F

(p1,p2)
i

∂pi
(ci) ≤ 0.

Proof By assumption (A6.4), we know that ∂Gi

∂pi
≤ 0, which is equivalent to ∂2πi(x1,x2)

∂x2
i

≤ 0.

In this case, the uniqueness condition leads to (∂G1

∂p1

∂G2

∂p2
− ∂G1

∂p2

∂G2

∂p1
) > 0. Combining this

with the fact that ∂Gi

∂pj
≥ 0, we have that ∂pi

∂ci
and

∂pj

∂ci
are non-positive if and only if

∂Gi

∂ci
≤ 0.

Next we analyze the changes in equilibrium prices with respect to changes in the unit

cost, wi. By implicit function theory, we obtain




∂p1

∂w1

∂p1

∂w2

∂p2

∂w1

∂p2

∂w2


 =

1

(∂G1

∂p1

∂G2

∂p2
− ∂G1

∂p2

∂G2

∂p1
)




−∂G2

∂p2

∂G1

∂w1

∂G1

∂p2

∂G2

∂w2

∂G2

∂p1

∂G1

∂w1
−∂G1

∂p1

∂G2

∂w2




where

∂G1

∂w1

= −
∫ c1

0

∂F
(p1,p2)

1

∂p1

(x)dx ≥ 0,

∂G2

∂w2
= −

∫ c2

0

∂F
(p1,p2)

2

∂p2
(x)dx ≥ 0.
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Theorem 6.8 At equilibrium a small change in wi leads to the changes in p1 and p2

such that

∂pi

∂wi
/
∂pj

∂wi
=

−2
∫ cj

0

∂F
(p1,p2)
j

∂pj
(x)dx − (pj − wj)

∫ cj

0

∂2F
(p1,p2)
j

∂2pj
(x)dx

∫ cj

0

∂F
(p1,p2)
j

∂pi
(x)dx + (pj − wj)

∫ cj

0

∂2F
(p1,p2)
j

∂pi∂pj
(x)dx

, j �= i.

Proof This result is easy to establish from the fact that ∂pi

∂wi
/

∂pj

∂wi
= −∂Gj

∂pj
/

∂Gj

∂pi
.

Theorem 6.9 Under uniqueness condition and assumption (A6.4), at equilibrium an

increase in wi leads to increases in both p1 and p2.

Proof Under the uniqueness condition of Lemma 6.4 and assumption (A6.4), ∂Gi

∂pi
≤ 0

and (∂G1

∂p1

∂G2

∂p2
− ∂G1

∂p2

∂G2

∂p1
) ≥ 0. Combining this with the facts that ∂Gi

∂pj
≥ 0 and ∂Gi

∂wi
≥ 0, we

see that ∂pi

∂wi
and

∂pj

∂wi
are both nonnegative.

Remark 6.10 This result is closely related to those mentioned in Katz (1989) and Bern-

stein and Federgruen (2002). The fact that equilibrium retail prices increase with the

charged (set of) wholesale price(s) is assumed by Katz (p. 678-679). Similar results

are derived by Bernstein and Federgruen (p. 18-19) under multiplicative and non-

multiplicative demand structures.

6.5 Concluding remarks

In this chapter, we apply game theory to study the pricing strategies of multiple com-

peting firms in a revenue management context. The demand at each firm depends on the
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selling prices charged by all firms, each of which can satisfy demand up to a given capac-

ity limit. We derive the existence and uniqueness conditions of a Nash equilibrium when

the demands are deterministic and random according to general stochastic functions. In

particular, we study the case when the deterministic demand is a linear function of price.

The unique Nash equilibrium is derived and its feasibility is verified. Stochastic ordering

is used to model the dependence between deterministic prices and random demands. We

also analyze the changes in equilibrium prices as a result of changes in cost and capacity

parameters.

In the one-period model studied in this chapter, a lost sales occurs when the demand

exceeds the retailer’s capacity. A potential topic for future research would be to analyze a

similar multi-period model with backorders. In this case, each retailer makes a sequence of

decisions, and the decision of one period affects those of all following periods. Sequential

game (Chapter 9 of Heyman and Sobel (1984)) may be used to analyze this multi-period

decision process.

Our model can be extended to a one-supplier, n-retailer distribution system, where

each retailer faces demand as defined in this chapter and makes decisions about his/her

stocking quantity and selling price simultaneously. A potential avenue of research is to

study decentralized control, centralized control and coordination mechanisms for this

distribution system.
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Chapter 7

Summary and Future Research

7.1 Summary

In this dissertation, we have applied game theory to analyze the supply chain man-

agement problems. An understanding of the ways in which conflicting objectives affect

optimal inventory/capacity decisions can greatly improve the performance of a supply

chain. We extend the exiting literature by considering multiple competitive firms, each

of which makes multiple decisions either simultaneously or sequentially.

In Chapter 3, we began by analyzing a one-supplier, two-retailer distribution system

with general cost structure. When a stockout occurs at one retailer customers may go

to the other retailer. We studied a single-period model in which the supplier may have

infinite or finite capacity. In the latter case, if the total quantity ordered (claimed) by the

retailers exceeds the supplier’s capacity, an allocation policy is used to assign the limited
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capacity to the retailers. We used game theory to analyze the inventory control decisions

for the retailers. We showed that a unique Nash equilibrium exists when the capacity at

the supplier is infinite. However, when the capacity is finite, only under certain conditions

does the Nash equilibrium exist. We also used the concept of Stackelberg game to develop

optimal strategies for both the leader and the follower.

In a distribution system, an equilibrium solution reached by all retailers may be sub-

optimal in terms of the system-wide profit. Designing an easily acceptable incentive

structure that can be implemented in practice is a challenging and important issue. For

this purpose, in Chapter 4, we analyzed a capacity allocation model with cost and rev-

enue structures that differ from those of the model in Chapter 3. We studied both the

decentralized and centralized inventory control problems. For the decentralized prob-

lem we derived necessary and sufficient conditions for the existence of a unique Nash

equilibrium. For centralized inventory control we obtained an optimal allocation that

maximizes the expected profit of the entire supply chain. We also designed a perfect co-

ordination mechanism, i.e., a decentralized cost structure resulting in a Nash equilibrium

with chain-wide profits equal to those achieved under a fully centralized system.

In Chapter 5, we examined several extensions of the basic capacity allocation problem

that involves a single-period model, in which each retailer has one demand class. We

started with a single-period capacity allocation model in which each firm has multiple

demand classes. We considered two scenarios of this model and derived corresponding

existence and stability conditions of a Nash equilibrium. We also conducted sensitivity

analysis of the equilibrium solution with respect to price and cost parameters. From the
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well-studied single-period problem, we moved ahead to modelling and analyzing a multi-

period problem in which each firm decides its total capacity and allocates this capacity

between its local and online stores. We analyzed the resulting sequential game, derived

a myopic solution, and showed that it is a Nash equilibrium.

In Chapter 3, Chapter 4, and Chapter 5, the competition between firms is for a limited

supply of product. It is reasonable to expect that the firms compete not only on the basis

of inventory, but also on the basis of price. In Chapter 6, we analyzed the case when

multiple firms set selling price to attract potential customers. We considered the pricing

strategies of multiple firms providing same service and competing for a common pool of

customers in a revenue management context. We analyzed systems in which firms face

either a deterministic demand function or a stochastic demand function. For both cases,

we derived the existence and uniqueness conditions of a Nash equilibrium solution. In

particular, we calculated the explicit Nash equilibrium solution when the demand at each

firm is a linear function of price. In addition, we performed sensitivity analysis of the

equilibrium prices with respect to cost and capacity parameters.

7.2 Directions for further work

A potential topic for future research is to extend the two-retailer models studied in

Chapter 3 and Chapter 4 of this dissertation to n-retailer models. The lemma given by

Nikaido and Isora (1955) can be used to find the conditions for the existence of a Nash

equilibrium. To address uniqueness conditions for the Nash equilibrium, we can apply
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Theorem 3 in Chapter 6 of Moulin (1986).

For the capacity allocation problems analyzed in this dissertation, the demand at

each firm is exogenous. A potential avenue of research is to study the case in which

the demands are affected by the quality of service, such as the percentage of demand

satisfied, or by selling prices. It would also be interesting to analyze the case when the

probabilities of customer shifting, i.e, market search matrix elements, are related to these

factors.

In Chapter 4, we designed a channel coordination mechanism through wholesale prices

to optimize the performance of the supply chain. Beyond the price-only contracts used,

a potential topic is to explore other contracts that are designed to improve the perfor-

mance of a supply chain. Such contracts might include the reallocation of decision rights

(VMI, RMI), rules for sharing the costs of inventory and backorders (buyback, quantity

flexibility), and policies governing pricing to the end-customer or between supply chain

partners (pricing).

Another possible extension would be to incorporate overbooking into our pricing mod-

els in Chapter 6. Overbooking (e.g., ticketing seats beyond the capacity of an aircraft

to allow for the probability of no-shows) has been extensively studied in revenue man-

agement research. In most published scenarios pricing is used as the mechanism to alter

customer demand, but it has to be done jointly with the other managerial decisions, such

as inventory decision and booking limit decision.
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Appendix

In this appendix, we prove that under the condition (6.12) in Section 6.2, i.e.,

{
a1 − b1w1 + β12w2 > 0,

a2 − b2w2 + β21w1 > 0,

the Nash equilibria in all cases in Section 6.2 are feasible, i.e.,

{
p1 > w1,

p2 > w2.

Proof Case 1: Substituting c1 by a1−b1w1

2
(its upper bound in this case), and c2 by a2−b2w2

2

(its upper bound in this case) in (6.6), we obtain a lower bound on the Nash equilibrium

(p1, p2) and {
p1 − w1 = a1b2+β12a2+β12b2w2−b1b2w1+2β12β21w1

2(b1b2−β12β21)
,

p2 − w2 = a2b1+β21a1+β21b1w1−b1b2w2+2β12β21w2

2(b1b2−β12β21)
.

Clearly, under the condition (6.12), it is a feasible Nash equilibrium.

Case 2: When (2b1b2 − β12β21)c1 + β12b1c2 ≥ m1, substituting c2 by a2−b2w2

2
in (6.8),

we obtain a lower bound on the Nash equilibrium (p1, p2) and

{
p1 − w1 = 2a1b2+β12a2+β12b2w2−2b1b2w1+2β12β21w1

2(2b1b2−β12β21)
,

p2 − w2 = 2a2b1+β21a1+β21b1w1−2b1b2w2+2β12β21w2

2(2b1b2−β12β21)
.

We know that

2a1b2 + β12a2 + β12b2w2 − 2b1b2w1 + β12β21w1 (7.1)

= 2b2(a1 − b1w1 + β12w2) + β12(a2 − b2w2 + β21w1)

> 0,

which proves the feasibility of the Nash equilibrium.

123



When (2b1b2 − β12β21)c1 + β12b1c2 < m1, substituting c2 by m1−(2b1b2−β12β21)c1
β12b1

in the

formula for p1 in (6.6), we obtain a lower bound on firm 1’s equilibrium price, which is

p1 =
c1

b1
+ w1 > w1.

Substituting c1 by m1−β12b1c2
(2b1b2−β12β21)

in the formula for p2 in (6.6), we obtain

p2 =
2a2b1 + β21a1 + β21b1w1 − 2b1c2

2b1b2 − β12β21
.

Substituting c2 by a2−b2w2

2
, we obtain a lower bound on firm 2’s equilibrium price p2 and

p2 − w2 =
a2b1 + β21a1 + β21b1w1 − b1b2w2 + β12β21w2

2b1b2 − β12β21
> 0.

The feasibility of the Nash equilibrium in Case 3 can be proved in a similar manner.

Case 4-1: Substituting c1 by c
′
1 and c2 by value c

′
2 in (6.6), we obtain a lower bound

on the Nash equilibrium (p1, p2) and

{
p1 − w1 = 2a1b2+β12a2+β12b2w2−2b1b2w1+β12β21w1

4b1b2−β12β21
,

p2 − w2 = 2a2b1+β21a1+β21b1w1−2b1b2w2+β12β21w2

4b1b2−β12β21
.

(7.2)

We can prove its feasibility following the arguments for Case 2.

Case 4-2: When (2b1b2−β12β21)c1 +β12b1c2 ≥ m1, substituting c2 by value c
′
2 in (6.8),

we obtain a lower bound on the Nash equilibrium (p1, p2) which is the same as (7.2).

When (2b1b2 − β12β21)c1 + β12b1c2 < m1, substituting c2 by m1−(2b1b2−β12β21)c1
β12b1

in the

formula for p1 in (6.6), we obtain a lower bound on firm 1’s equilibrium price, which is

p1 =
c1

b1
+ w1 > w1.
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Substituting c1 by m1−β12b1c2
(2b1b2−β12β21)

in the formula for p2 in (6.6), we obtain

p2 =
2a2b1 + β21a1 + β21b1w1 − 2b1c2

2b1b2 − β12β21

.

Substituting c2 by c
′
2, we obtain a lower bound on firm 2’s equilibrium price and

p2 − w2 =
2a2b1 + β21a1 + β21b1w1 − 2b1b2w2 + β12β21w2

2b1b2 − β12β21
> 0.

The feasibility of the Nash equilibrium in Case 4-3 can be proved in a similar manner.

Case 4-4: From (6.11), we obtain

{
p1 − w1 = 2a1b2+β12a2+β12b2w2−2b1b2w1+β12β21w1

4b1b2−β12β21
> 0,

p2 − w2 = 2a2b1+β21a1+β21b1w1−2b1b2w2+β12β21w2

4b1b2−β12β21
> 0.
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