ABSTRACT

XIE, HUI. Finite Element Methods for Interface Problems with Locally Modified
Triangulations. (Under the direction of Dr. Zhilin Li).

Interface problems arise in many applications such as heat conduction in different ma-
terials. The partial differential equations (PDEs) that describe these applications have do-
mains that consist of different subdomains. The different subdomains can have complicated
shapes or can have different properties. For instance, different subdomains can represent
different phases of the same material, such as water and ice. The coefficients of the PDEs
can be discontinuous across the interfaces of the subdomains, and the source terms can be
singular. Due to these irregularities, the solutions to the PDEs can be nonsmooth or even
discontinuous. Here we restrict ourselves to interface problems that do not depend on time
and can be expressed in terms of elliptic or elasticity PDEs.

We present finite element methods (FEMs) for elliptic and elasticity problems with
interfaces. The FEMs are based on body-fitted meshes with a locally modified triangula-
tion. A FEM based on a body-fitted mesh uses a triangulation that is aligned with the
interfaces. However, for complicated interfaces it can be difficult and expensive to generate
such triangulations. That is why we use a locally modified triangulation based on Cartesian
meshes. We first form a Cartesian mesh, then move the grid points near the interfaces to
the interfaces. This leads to a locally modified triangulation. We use the standard FEM
with the locally modified triangulation to solve the elliptic and elasticity problems with
interfaces. By FEM theory, the method is second order accurate in the infinity norm for
piecewise smooth solutions. We present some numerical examples to show the second order
accuracy of the method.

We also present a new second order finite difference method that does not require
computing the curvature. At points away from the interface we can approximate the PDE
by using the standard 5-point scheme. At points where the interface crosses the 5-point
scheme, we still use the 5-point scheme by introducing some ghost values for the grid points
on the other side of interface. The price is that we need to find an equation for each ghost
value. We use the interface conditions, either the jump in Dirichlet or Neumann boundary
conditions, to form the equations for the ghost values to complete the linear system. We

also present some numerical examples to show the second order accuracy of the method.
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Chapter 1

Introduction

In this thesis, we propose a finite element method for elliptic problems and plane
elasticity problems with interfaces in which the physical parameters and solutions may be
discontinuous across an arbitrary interface. We also propose a new finite difference method
that does not require computing the curvature for elliptic problems with interfaces. We

first give a brief background of the general interface problems.

1.1 Interface problems

Interface problems arise in a diverse range of applications such as heat conduction,
multiphase flows and phase transitions in fluid mechanics, thin film and crystal growth
simulations in material science, and mathematical biology problems modeled by partial
differential equations involving moving fronts. The partial differential equations (PDEs)
that describe these applications have domains that consist of different subdomains. The
different subdomains can have complicated shapes or can have different properties. For
instance, different subdomains can represent different phases of the same material, such as
water and ice. The coefficients of the PDEs can be discontinuous across the interfaces of
the subdomains, and the source terms can be singular. As a result, the solutions to the
PDEs can be nonsmooth or even discontinuous.

For time-independent or fixed interface problems, the interfaces do not move. We
solve the governing equations with given boundary conditions for the field variables we are
interested in. The situation is different for time-dependent or moving interface problems. A

commonly used approach to moving interface problems is a splitting method in which we fix



the interface temporarily and solve the governing equations to determine the velocity of the
interface. The computed velocity then is used to evolve the interface. Such a process can
be done once or iteratively until a convergence criterion is satisfied. So how to solve fixed
interface problems is the essential part of both stationary and moving interface problems.
In this thesis, we will focus on solving fixed interface problems which do not depend on
time.

The difficulties of the interface problems are the existence of nonsmoothness or discon-
tinuity across the interfaces and the complexity or movement of the interfaces. Analytic
solutions are rarely available for interface problems so we have to use numerical methods
to find approximate solutions. Standard numerical methods which are designed for smooth
solutions will lose accuracy in a neighborhood of interfaces where smoothness is lost. To
recover the accuracy, we have to take effort in the neighborhood of interfaces.

Many methods have been developed for the interface problems such as
e Smoothing method for discontinuous coefficients;
e Harmonic averaging for discontinuous coefficients;
e Peskin’s Immersed Boundary Methods (IBM);
e Ghost fluid methods;
e Immersed Interface Methods (IIM);
e Finite element methods (FEMs) with body-fitted meshes;
e Immersed finite element method(IFEM).

Some methods (immersed boundary methods, ghost fluid methods) are easy to implement
but only achieve first order accuracy. Others (immersed interface methods, finite element
methods with body-fitted meshes) achieve second order accuracy but are not easy to im-
plement. We refer the reader to [15, 32] for further information.

In this thesis, we will use two methods to solve elliptic and elasticity problems with fixed
interfaces. One method is the finite element method (FEM) with a locally modified mesh.
The other is a new second order finite difference method that does not require computing

the curvature.



The FEM with a locally modified mesh is motivated by the locally modified triangu-
lations proposed in [2, 31] for Poisson equations on irregular domains. We use such meshes
to solve the elastic and elasticity problem with interfaces using the Galerkin finite element
method [4, 34]. We want to take advantage of Cartesian meshes and the finite element
method using body-fitted meshes. The Cartesian meshes have several benefits over non-
structured meshes. In the literature several finite element methods have been proposed
using Cartesian meshes for elastic and elasticity interface problems. The non-conforming
finite element method proposed in [16] is simple and enforces the homogeneous jump condi-
tion but it is not fully second order accurate because the basis functions are non-conforming.
The conforming finite element method proposed in [9, 16] is second order accurate but it is
not easy to implement as the basis functions have wider support in the neighborhood of the
interface. The finite element method proposed in this thesis is an alternative approach based
on body-fitted meshes with modification to the Cartesian mesh only in the neighborhood of
the interface. Thus, the coefficient matrix is altered only in the elements that are near the
interface. This nature is fully taken into account in developing an efficient algebraic solver
in [11] using a sparse subspace iterative method. In this thesis, for elastic interface prob-
lems, the finite element method using the locally modified mesh was also compared with the
finite element method based on a locally enriched mesh in which the intersections between
the grid lines and the interface are added as additional nodal points. Both methods can
lead to second order accurate solution for elliptic problems with interfaces. But the efficient
iterative solver proposed in [11] in general can not be applied for the locally enriched mesh
because the structure of the matrix has been changed. Other numerical simulations based
on the locally modified mesh can be found in [10, 12].

The new second order method is a finite difference method. At points away from the
interface we can approximate the PDE by using the standard 5-point scheme which gives
second order accuracy. At points where the interface crosses the 5-point scheme, we have
to modify the 5-point scheme. These points are called irregular grid points hereafter. It
is sufficient to consider such irregular grid points lying outside the interface. We use real
values for points outside the interface and ghost values for points inside the interface in
the 5-point scheme. So we do not change the form of 5-point scheme by introducing ghost
values for grid points inside the interface or more generally outside the subdomain. The
price of this is that we need to find an equation for each ghost value. We will use the

interface conditions, either the jump in Dirichlet or Neumann boundary conditions, to form



the equations for the ghost values to complete the linear system. Noticing that we have
normal derivatives in interface conditions, we will use a local coordinates system defined
by the normal and tangential directions of the interface at some point on the interface. We
use Taylor expansions to expand all the variables including the ghost value that we need to
find an equation to third order accuracy. Then we use a least squares approximation to the
interface conditions to find the equation for the ghost value. We do not need the curvature
in this process. In the literature several finite difference methods have been proposed
using Cartesian meshes for interface problems. The immersed boundary method [21] was
developed by Peskin in 1977 to model the blood flow in the heart [20]. In general, it is a
first order method. The Immersed Interface Method (IIM) was originally invented by R. J.
LeVeque and Z. Li [13, 14, 15]. It is a second order method but it needs to compute the

curvature which is usually difficult.

1.2 Model problems

1.2.1 Elliptic problems with interfaces

We consider the elliptic problems with interfaces
—v«ﬁvm:f@yi/C@aw—X@mm P=(myea=0lJo, (L1
r

with a given boundary condition on 92, where I' € C? is an interface between the subdo-
mains Q7 and Q7; see Fig. 1.1 for an illustration. The diffusion coefficient 3 can have a
finite jump across the interface I'. We assume that 8 > B, > 0, and f is a bounded func-
tion, ¢ is the two dimensional Dirac-delta function, X (s) is the arc-length parametrization

of the interface I'. The second term at the right hand side is a distribution which satisfies

/AA@ﬁM%X@W@%M:AﬂgMﬁmﬁ (1.2)

for any arbitrary smooth function ¥(Z) that vanishes on the boundary 0f.

From the equation (1.1), it is easy to obtain the following jump conditions

oul ouT _ou”
[ﬁ%}r_ﬁ %—5 87_0’ (1.4)



where the jump is defined as the difference of the limiting values from the outside of the
interface to the inside, and n is the unit normal direction of the interface I' pointing outward.
Therefore, the model interface problem can be written in an equivalent form:

/

V. (BVu) = f(7), F=(ny) €Q\T
[ulr =0,
[5%%:

ulan = uop(T),

(1.5)

where v is a given function. We refer the reader to [15, 16] for the derivation and other

related information.

Q+

Q

Figure 1.1: A rectangular domain 2 with an immersed interface I'.

1.2.2 Elasticity problems with interfaces

Elasticity problems with interfaces have wide applications in continuum mechanics,
particularly for problems that involve stresses and strains, for example, [7, 18, 33].

Let x = (x,y) be a point in space and u = (ui(x,y),u2(x,y)) be the displacement
of a plate which is composed of different materials. The relation between strains and

displacements of the plate is given by

1 /0u; Ou; ..
sij(u) = Eji(u) = 5 <81‘ + al'J) , 4,]= 1,2, (1.6)
j 7



ie.,

oy " or

Assuming that the material is linearly elastic and isotropic, and that the displacements

au1 8u2 1 (8u1 aUQ >

€11 or’ €22 8y’ €12 = €21 5 ( )

are small, we have the following relation between stresses and strains, or the constitutive
relation from the Hooke’s law,
oij = A (V-u) 0ij + 2u£,~j(u), 1,7 =1,2, (1.8)

where A and p are the Lamé coefficients, and

1, i=j,
5ij = e
0, @#7,

. 8U1 8UQ

V.-u= o ay

Let 0 = (0y5) be the stress tensor, f(x) = (f1, f2) be the applied body forces. Then the

stress tensor satisfies the following partial differential equation,

—V.o=f1, (1.9)
ie.,
Ooi1 0012
o oy v o)
_Oom dom _ '
Ox Oy .

From (1.8)-(1.10), we can re-write the above system as the system of plane elasticity equa-

tions of the following,

0%u 0%u 0%u
- {(A + QM)W; +(A+ #)Waz + May;} = f1,
82U2 82u1 82u2 (111)
- ()\+2M)Ty2+ ()\‘i‘/l)a?ay‘i‘ﬂ 522 (= 1
In the vector form, it is
—pAu — (A + p) grad div u = f. (1.12)

Note that, in practice, it is common to use the Young’s modulus E and Poisson’s ratio

v instead of the Lamé coefficients A and p in the expression (1.8). The relations between \



and u, and E and v, are given by

FE
2(1+v)’
vE vE

p— 1 i -
A AT -2 (plane strain) A T2

w= (1.13)

(plane stress).  (1.14)

We want to obtain the numerical solution of the elasticity system that has an interface
I" in the solution domain. Across the interface I', the material coefficients may have finite

jumps; so does the flux on (see Fig. 1.2 for an illustration). Now the problem can be written

as follows:
~V-o = f mQfJo~ (1.15)
[ulp = 0, (1.16)
[on], = q, (1.17)
ulpo = u, (1.18)

where £ = (f1, f2), 4 = (q1,¢2), ug = (uo,,uo,) are known vector functions, and I' € C?
is a closed interface between the subdomains Q% and Q™. The jump [-]r is defined as the
difference of the limiting values from the outside of the interface to the inside, and n is the
unit normal direction of the interface I' pointing outward. We refer the reader to [24, 28]

for more information of the elasticity problems.

1.3 The FEM with a locally modified mesh

Many numerical methods designed for smooth solutions do not work efficiently for in-
terface problems. One way to get rid of the difficulties is to use the finite element method
(FEM) with a body-fitted mesh. The FEM is a numerical method for computing approxi-
mate solutions to PDEs. The FEM partitions the domain into pieces (triangles or quadri-
laterals in 2D) which are also called elements — in contrast to finite difference methods,
which discretize the domain with a rectangular grid. The FEM can easily deal with the
discontinuity in the coefficients of the PDEs or nonsmoothness in the solutions across the
boundaries (edges) of the elements. The FEM is better suited for the solution of interface
problems because the triangulation can be more easily adapted to the interfaces.

A body-fitted FEM uses a triangulation that is aligned with the interfaces. However,

for complicated interfaces it can be difficult and expensive to generate such triangulations.
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Figure 1.2: A rectangular domain €2 with an immersed interface T'.

That is why we use a locally modified triangulation based on a Cartesian mesh. We first
form the Cartesian mesh, then move the grid points near the interfaces onto the interfaces.
This leads to a locally modified triangulation. The advantage of this process is that we only
make local modifications. Thus the process is fast and inexpensive.

There are two essential steps one must take to solve a boundary value problem (BVP)

using the FEM [29].

e In the first step, one rephrases the original BVP in its weak, or variational form.

There is almost no cost to this step.

e The second step is the discretization, where the weak form is discretized in a finite

dimensional space.

After this second step, we have concrete formulae for a large but finite dimensional
linear problem whose solution will approximately solve the original BVP.
1.4 The level set representation of interfaces

The FEM with a locally modified mesh is based on a Cartesian mesh. We will track
the interfaces implicitly by using level set methods [19, 25, 30]. The level set method is a



numerical technique for tracking interfaces and shapes. We will use the zero level set of a

Lipschitz continuous function ¢(z1,z2) to represent an interface

[ = {(21,22) | p(21,22) = 0},

and obtain interface information such as the normal directions curvature etc., through the
function . This function is called a level set function. ¢ is generally chosen to be the
signed distance function and assumed to take negative values inside the region enclosed by
the curve I' and positive values outside. In two dimensions, the zero level set is a plane
curve known as a level curve. In three dimensions, the zero level set is a surface known as
a level surface.

The advantage of the level set method is that one can perform numerical computations
involving curves and surfaces on a fixed Cartesian grid without having to parameterize these
objects. The level set method simplifies numerical computation. In particular, for moving
interface cases, it is easy to follow interfaces that have topological changes such as merging
or splitting, by the level set method.

For such a level set function, the resolution of the interface I' is determined by the
level set function. If the interface is complicated in reference to a mesh, then it may not be
resolved well by the level set function. Consequently, the finite element solution obtained
from our method may not resolve all fine details of the solution. A finer mesh is then needed

to resolve the geometry and the solution.

1.5 The outline of the thesis

The thesis is organized as follows. Chapters 2-4 are devoted to the finite element
methods with a locally modified mesh. Chapter 5 is devoted to a new second order finite
difference method. In the next chapter, we discuss an important part of the FEM with a
locally modified mesh: the mesh generation. In Chapter 3 we apply the method to elliptic
problems with interfaces. In Chapter 4 we apply the method to elasticity problems with
interfaces. In Chapter 5 we present a new second order finite difference method and apply

it to elliptic problems with interfaces. We conclude in Chapter 6.
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Chapter 2

The mesh generation processes

The generation of a body-fitted triangulation from a Cartesian grid is an essential part
of our algorithm. We describe two different approaches here. Both of them start from a
uniform Cartesian grid; see Fig. 2.1. In general, the Cartesian grid is not a body-fitted

mesh for interface problems.

A .
\""--_..._-'" e

Figure 2.1: A Cartesian grid, not a body-fitted mesh.



2.1

11

A locally modified mesh

The first approach is to perturb the Cartesian grid, which does not increase the number

of nodal points or the degrees of the freedom. The idea is the same as used in [2], but the

implementation is different.

Step 1

Step 2

Step 3

The procedure is the following:

Generate a rectangular grid. We denote the grid points (z;,;), 0 < i < M, 0 <
7 < N. For simplicity, we assume that the step sizes are the same in both x and y

direction. We denote the step size by h.

Define a level set function ¢ on the rectangular grid to represent the interfaces. Each

grid point has a value s.t.

o(xi,y;) <0, if (x;,y;) is inside the interface I';
o(xi,y;) =0, if (z4,7;) is on the interface I';
o(xi,y;) >0, if (z4,y;) is outside the interface I'.

For example, we can define ¢(z,y) = 2% 4+ y? — 1 for a circle centered at (0,0) with
radius 3 which is the interface inside a box [—1,1] x [—1,1]. So we will have negative

values inside the circle, positive values outside the circle and zeroes on the interface.

Find the intersections of rectangular grid lines and the interface I' using the level set
function ¢. We search the horizontal and vertical grid lines and use linear interpolation
to get the coordinates of intersection points. Below is a sample Fortran 77 code to find

the intersections in vertical grid lines. The search in horizontal grid lines is similar.

the domain is [a0,b0]*[c0,d0]
v: level set function
xys: coordinates of intersection points
n records the number of intersection points
n=0
for i=1,M
for j=1,N-1
if (v(i,j)*v(i,j+1).1le.0.d0) then
n=n+1

O o0 o o0

determine x-,y-coordinates of intersection points
by linear interpolation
(v2-v1) /h=(0-v1)/t so t=v1/(v1-v2)*h

xys(1,n) =a0+ (i - 1)*h



Step 4

12

t =v(i,j) - v(i,j+1)

if (abs(t).l1lt.1.d-9) then
t = 0.d0

else
t =v(i,j)/t

end if

xys(2,n) = cO+(j - 1 + t)*h

end if
end do
end do

We call the intersection points interface points in this thesis. If the coordinates of an
interface point lie in (x; — h/2,2; + h/2] x (y; — h/2,y; + h/2], then we call such a
grid point (x;,y;) an irregular grid point. Otherwise a grid point is called a regular
grid point.

We move each irregular grid point to a new location on the interface as a new nodal
point (replacing the original one). If there is only one interface point associated with
the irregular grid point, then we simply replace the irregular grid point with the
interface point as the new nodal point. If there is more than one interface point
associated with the grid point (z;,y;), we choose the nearest intersection to the grid

point as the new nodal point; see Fig. 2.2 for an illustration.

In Fig. 2.2, the irregular grid point is P, and the interface points are P1 and P2. Since
P is closer to P2 than to P1, we move P to P2 as a new nodal point. In Fig. 2.2,
for simplicity of the discussion, we assume that points A, C, D, F, G, and point H are
regular grid points which means that there is no need to move them. We move the
point B to P3, and F to P4. Then we have four quadrilaterals around point P2; see
Fig. 2.3 (a).

Remark for Step 2 & 3: There are some differences between the implementation
in this thesis and in [2]. In that paper, the author used a discrete indicator function of
values in {—1,0,1} instead of using a continuous level set function. The author did not
disclose how to represent the interface and determine the coordinates of intersection
points. The author used a different criterion to move irreqular grid points rather than

to choose the nearest interface points.

Form the triangulation. The emphasis is how to generate triangles at irregular grid

points. Now we discuss how to generate the triangles after we have moved irregular
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Figure 2.2: A typical irregular grid point P with coordinates (x;,y;) and the geometry.
There are two interface points P1, P2 lie in the inner domain (x; — h/2,z; + h/2] x (y; —
h/2,y;+h/2]. So P is an irregular grid point. We will move P to its nearest interface point.
Here we move P to P2 since |[PP2| < |PP1|, where |PP2| is the distance between P and

P2 and so on.

grid points to get new nodal points. We use Fig. 2.3 to illustrate the idea. Each of

the quadrilaterals of the perturbed grid is divided into two triangles along one of its

diagonals. Let K be the number of irregular grid points (perturbed nodal points) in

a quadrilateral. We divide the quadrilateral into triangles according to the following

rules:

— If K = 0, then the quadrilateral is rectangular. We form the triangles by con-

necting two vertices from the lower left corner to the upper right corner.

— If K = 2 and the two irregular grid points are the opposite corners, then we

connect the irregular grid points; see, for example, P2 and P4 in Fig. 2.3.

— If K =1, or K =2 and the two irregular grid points are not the opposite corners,

then we connect the diagonal which gives better mesh quality. In Fig. 2.3 (a),

we would connect P2 and C, P3 and H, H and F to form the triangulation; see

Fig. 2.3 (b). Usually the criterion is to connect the shorter diagonal.

— The cases K = 3 and K = 4 are special cases that rarely happen if the interface

I" is smooth and the mesh is fine enough. We omit this discussion here but refer

the readers to [2, 22] for the details.
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A H G A H G
P3 P3.~

B F
C D P4 E C D P4

Figure 2.3: (a). The geometry near a perturbed nodal point P2. We assume points P,
B, E are irregular grid points and they are replaced by the new nodal points P2, P3, P4
respectively. After these perturbations, there are four quadrilaterals around nodal point P2
which may not be rectangles. (b). Resulting triangles from the left quadrilaterals. For the
quadrilateral P2D P4 F where the interface I' cuts through the quadrilateral along one of
its diagonal P2 P4, we connect P2 and P4. For other quadrilaterals, we connect the shorter
diagonal.

It can be proved [2] that for I' € C? this mesh generation algorithm leads to a quasi-
uniform triangulation, that is, for each triangle the ratio between the length of the longest
side and the length of the shortest side is bounded. Furthermore, the accuracy of the

approximation of the interface T' is O(h?).

2.2 A locally enriched mesh

For a comparison, we also briefly describe another approach in which the intersections
between the grid lines and the interface are added as additional nodal points; see also [16].
With a piecewise linear finite element space this increases the number of degrees of freedom
by O(N). Furthermore, the structure of the Cartesian grid is lost. Below we describe how

to generate the locally enriched mesh'.

Step 1 Generate a rectangular grid (z;,y;) as before.

Step 2 For a regular quadrilateral, that is, for which the interface does not cut through the

Tt is called a Cartesian mesh with added nodes in [16]
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quadrilateral, we generate the triangles by connecting one of the diagonals as we

discussed earlier.

For an irregular quadrilateral, we find the intersection of the grid lines and the interface
as before. If the intersection is one of the vertices of the quadrilateral, nothing needs
to be done. If not, then we add the intersection as an additional nodal point. We
then use the newly added nodes and the vertices of the quadrilateral to form the
triangles. Let K be the total number of added nodes in the irregular quadrilateral.

The triangulation process is as follows:

— If K = 1: We connect this node with the two vertices on the opposite side. See

Fig. 2.4.

Figure 2.4: One added node.

- I K=2:

x If the two points are on the adjacent edges, we connect these two points and

with the vertex farthest from these points. See Fig. 2.5.

Figure 2.5: Two added adjacent nodes.

x If the two points are on opposite edges, we connect these two points and get
two quadrilaterals. Then we cut the quadrilaterals along one of the diagonals

which cuts the obtuse angle. If the quadrilaterals are still rectangular, then
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we join the left lower and right upper corner; see Fig. 2.6 for an illustration.

Figure 2.6: Two added opposite nodes.

— There can be some special cases that need different treatments: for example, if
the interface is along one side of a quadrilateral. We omit the details here for

simplicity.

The locally enriched mesh is a simple, direct, and intuitive approach, but the algorithm can
lead to poor mesh quality such as skinny triangles.

For the purposes of comparison and illustration, in Fig. 2.7 we show two different
meshes, in which Fig. 2.7 (a) is a locally modified mesh, while Fig. 2.7 (b) is a locally
enriched mesh. In the next chapter, we will present a comparison of the errors of the finite

element solutions using two different meshes.
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Figure 2.7: A comparison of two meshes. (a). A locally modified mesh; (b). A locally
enriched mesh.
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Chapter 3

The FEM for elliptic problems

with interfaces

For convenience, we re-write the model problem again (see Section 1.2.1):
[u]r = O,
[5%}1“ =G,

u|pa = up(Z).

(3.1)

We will use the standard notation for Hilbert space:

HY(Q) = {w:weL*Q),w € L*N)}
{we HY(Q) : w | 0Q = 0}

Hj ()

3.1 The weak formulation

In the following we apply the standard Galerkin finite element method to a homoge-
neous Dirichlet boundary value problem. We multiply both sides of the equation (3.1) by

a test function v(x,y) € H}(Q) and integrate over the domain Q* and Q= to obtain

//Q+ [—(Bug)s — (Buy)ylvdedy = //Q+ fodady, (3.2)

/ / [~ (Buz)z = (Buy)ylvdady = / N fudzdy. (3.3)
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Then applying Green’s theorem on the above equations and using v|gg = 0, we get

/F B+v+aau;d8 + / /Q X B(z,y)VuVodzdy = / /Q . fodxdy, (3.4)

B /F ﬁ—v—aa%ds—i— / [ Bl VuVodsdy - / /  fodady, (3.5)

where n is the unit normal direction of the interface I pointing outward. Adding (3.4) to

(3.5), we obtain

/Fﬁ+v+88u7;ds—Aﬁ‘v‘%ds%—//Qﬁ(x,y)VuVUd:vdy://Q fodxdy. (3.6)

Since [ulr = u* —u~ =0 and [B%4]r = ﬁ+% — B~ = O, we have the weak form:

// B(x,y)VuVudrdy = // fodxdy — / Cuvds  for all v € HY(Q). (3.7)
Q Q r

The problem then is to find u € H{(Q) such that the weak form above is true for all
v e HHQ).

3.2 The finite element discretization

If we introduce the following notation:

alu,v) = / /Q B(z, y)VuVvdzdy

flv) = //vadacdy—/FCvds
Hy ()

The problem becomes

Find uw € V such that
a(u,v) = f(v) forallveV. (3.8)

The dimension of the Hilbert space V = H(Q) is infinite. To find an approximate
solution for (3.8), we need to use some finite-dimensional space V,, to approximate the
infinite-dimensional space V. Here n denotes the dimension of the space V,,. For Galerkin’s

method, we choose V,, to be a subspace of V', i.e. V,, C V. So we get the following Galerkin
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discretization:
Find u, € V,, such that
a(Un,vn) = f(vy) for all v, € V. (3.9)

If we denote the basis for V;, as {¢;}7_;, we can write

n
un =) ujp;
=1

Then (3.9) leads to a linear system

> ujaley, ) = fler), i=1n (3.10)
j=1
a(p1,p1) -+ oo alpr,on) U fp1)
o | (3.11)
a(@na o1) e e a(@na ‘Pn) Un, f(%pn)

The matrix is often called the stiffness matrix. For our problem, the stiffness matrix is
symmetric positive definite. We can solve the linear system for u;,j = 1,n by using direct

or iterative methods.

To construct a finite-dimensional space V,, to approximate the infinite-dimensional
space V', we need to subdivide the computational domain into subdomains (finite elements).
This process is called triangulation and done in Chapter 2. Then we need to construct basis
functions over the triangulation or mesh 7}. Different choices of basis functions lead to
different methods. The FEM employs basis functions that are locally defined polynomials
within each element T € T},. Elements are connected at specific points, called nodes. Each
basis function is defined to be normalized with value 1 at one node and zero at all others.
Because of this, the matrix in (3.11) is sparse, which means most of the entries are zeroes.

In this thesis, we will use piecewise linear polynomials as the basis functions. Let

Ny, ..., N, be all the nodes in the triangulation. The linear basis function ¢; satisfies
1, 1=7;
©;(Ni) = .
0, i#j.

See Fig 3.1 for a typical basis function.
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A

Mv

Figure 3.1: A basis function ¢; for node Nj.

3.3 Dealing with nonhomogeneous Dirichlet BC

We can change the nonhomogeneous Dirichlet BC to homogeneous BC by constructing
a function u,, to satisfy the nonhomogeneous Dirichlet BC. If we order the inner nodes prior
to the boundary nodes and denote the basis functions as {¢1,--- , ¢n, @1, , Pn, } Where
{¢1,--+ ,pn} are the basis functions for inner nodes and {@1, - -- , Pp, } for boundary nodes,

then we can write
n np
Up = ZUJ‘QOJ‘ + Zﬂj@j.
=1 =1
If we set
ny
Up = Z Ujpj,
j=1
then

n
> ujales, @) = f(ei) — alim, @i), i=1,n.
j=1

In the next section, we will show how to use FEPG (Finite Element Program Generator)

to generate all the Fortran 77 source code for finite element computation.

3.4 Generation of FE source code by FEPG

FEPG (Finite Element Program Generator) [17] is a very powerful tool to generate
the FE source code. For ANY kind of finite element modelings, FEPG can automatically

generate complete source code based on given PDE and algorithm expressions.
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FEPG is suitable for solving FE problems in various scientific and engineering fields.
It is a major breakthrough from the limitation that current general-purpose FE software
packages are only suitable for particular fields and particular problems. Users only need to
input all expressions and formulae for the FEM, then FEPG can automatically generate the
complete source code, including element subroutines, algorithm programs, etc. In this way,
a lot of coding time can be saved while the correctness and the consistency of the program
can be guaranteed.

The work in this thesis was done with FEPG 5.2. In general, there are three types
of files we need to provide for the FEPG system (Ver 5.2): GCN file, GIO file and PDE
(FBC) files. There may be multiple PDE files for solving multi-physics problems. The GCN
file organizes the computation procedure. The GIO file provides some general information.
The PDE (FBC) files describe the volume (boundary) integrals in the weak form. Further
details are in [17].

Here we will illustrate how to write the GCN, GIO and PDE files for one example. The
interface I is the circle 22 +%? = 1/4 within the computational domain Q = (—1,1) x(—1,1).

The equations are

—(Buw)z — (Buy)y = flz,y) — c/Fa(f— X (s))ds, (3.12)
with
fla,y) =—8(z" +y*) —4 (3.13)
and
2 2 2 2 -1
By =4 " thoeyss (3.14)
b, 22 +9y? > %.

The Dirichlet boundary condition is given and we assume the solution w is continuous across
the interface I'" and [Suy,]|r = C. Here we set b = 10 and C' = 0.1.

The weak form is

_ _ 1
//Q B(x,y)VuVudedy = //Q fodzdy /FCvds for all v € Hy(2). (3.15)

3.4.1 Writing GCN, GIO files

The filenames of GCN and GIO files must be the same. We list them below. The
comments follow ’\’.

GIO file “le.gio”:
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intf \ Define the name of PDE file we will use.

#elemtype t3 \ Define the element shape (t for triangular elements)
\and node number (3) of each element.

2dxy \ Define the coordinate type.
\This is 2d Cartesian coordinates.

GCN file “le.gcn”:

defi \Define solution algorithm for
\every decoupled physical field.
aell & \The field "a" associates with the first

\PDE name in the GIO file.
\"ell" is the algorithm for solving the
\elliptic equation provided by FEPG.

STARTilu a \Initialize the solver which uses the conjugate
\gradient method with ilu as pre-conditioner.
SO0LVilu a \Solve the linear system using the conjugate

\gradient method with ilu as pre-conditioner.

We can select a different solver by replacing ilu with sin (symmetric direct method), sor

(SOR iterative method) etc.

3.4.2 Writing PDE file

Next, we will show the PDE (FBC) files based on the weak form (3.15). We notice
that there are both volume integrals and a boundary integral in the weak form. We need
to write a PDE file for volume integrals and an FBC file for the boundary integral. If there
is no boundary integral in the weak form, then we do not need to write the FBC file. The
name of the PDE (FBC) file is given in the first part of the GIO file. We name it “intf.pde”
(“intf.fbc”).

In the “intf.pde” file, we will use “ek” to denote [(z,y) and “eq” to denote f(z,y).
FEPG uses F77 naming conventions. This means that all variables starting with the letters
“i-n” are integers and all others are real.

PDE file “intf.pde”:

disp u, \Define the name of the unknown function.
coor X,V, \Define the coordinate system.
shap %1 %2 \Define the shape function.

\The parameters "%1, %2" are retrieved from



gaus %3

mate ek eq 1d0;040;

stif
$c6 elen=x*xt+y*y

\"#elemtype t3" in GIO file.

\Define type of integration

\(nodal integral or Gaussian integral).
\"%3" is also retrieved from

\"#elemtype t3" in GIO file.

\For Gaussian integral, it gives

\the number of integral points.

\Define the material parameters "ek, eq"
\which will be used in weak form and their
\default values.

\So ek=1d0, eq=0d0.

\The values can be modified in the following
\"stif" segment.

\Define stiffness matrix.
\Insert fortran code following the "$c6"
\to define the material parameters.
\"$c6" means beginning with 6 spaces
\which is the fortran 77 convention.

$c6 if(imate.eq.l) then  \Define material parameter "ek".

$c6  ek=elen+1d0

$c6 else

$c6 ek=10d0

$c6 endif

$c6 eq=-(elen*8d0+4d0)

\"imate=1" signifies that the element is
\inside the circle. We will give an
\explanation below.

\Define material parameter "eq".

dist =+[u/x;u/x]*ek+[u/y;u/yl*ek \Explained below.

load =+[ul*eq

end

24

Here is the explanation for “imate” in the stiff segment. When we generate the mesh

in Chapter 2, we assign a material number for each element, ‘1’ for elements inside the circle

and ‘2’ for others. So we can use an if statement to define the material parameter “ek”

for f(z,y) in (3.14).

The keyword “dist” in the stiff segment defines the volume integral in the left hand

side of the weak form which contains the unknown function. The name of the unknown

[

function is “u”, which is defined in “disp u”. The volume integral in the left hand side of

the weak form (3.15) is

//Q Bz, y)VuVudzdy
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or
// B(x, y)uzvdedy + / Bz, y)uyvydrdy.
Q Q
So we write it in the FEPG language as

dist =+[u/x;u/x]*ek+[u/y;u/y]l*ek.

The first part “+[u/x;u/x]*ek” corresponds to [[, 6(x,y)u,v.drdy. In the expression,

()

he “[ ; 1”7 corresponds to a volume integral. The “u/x” preceding the semicolon ‘;
corresponds to u,. The “u/x” following the semicolon ‘;” corresponds to v,. The “ek”
corresponds to 3(x,y). The second part has similar meaning.

The volume integral in the right hand side of the weak form (3.15) is

/ fudxdy
Q

We write it in the FEPG language as
load =+[ul*eq

Here, “u” corresponds to the test function v. The “eq” corresponds to f(x,y). The “[ 1”

corresponds to volume integral.

3.4.3 Writing FBC file

What is left in the weak form (3.15) is the boundary integral

/ Cuds.

FBC file “intf.fbc”:

disp u \Define the name of the unknown function.
coor X \Define the coordinate system.

shap %1 %2 \Define the shape function.

gaus %3 \Define type of integration.

mate eb 0.1d0 \Define the material parameter "eb"

\which will be used in weak form and its
\default value.

stif \Define stiffness matrix.
dist=+[u;ul*0d0  \Explained below.

load=-[u] *eb

end



26

The format of FBC files is nearly the same as that for PDE files. Since the elements
treated in FBC files are boundary elements, their dimension is one order lower than that
for volume elements. The “dist=+[u;u]*0d0” means that there is no boundary integral in

the left hand side of the weak form. The “load=-[u]*eb” corresponds to — fr Cuds.

3.4.4 Generation of FE source code

After preparing the “le.gcn”; “le.gio” , “intf.pde” and “intf.fbc” files, we can just run
“gio le” under the FEPG environment to generate all the Fortran 77 source code. Then we
can insert some Fortran code to customize the output. FEPG also integrates a pre/post
processor GID [5] into its system. It provides a user-friendly graphical user interface for
geometrical modeling, data input and visualization of results for all types of numerical sim-

ulation programs.

The FEPG system helpfully provides many templates for GCN, GIO and PDE (FBC)
files. There are some techniques to simplify the writing of PDE files by utilizing tensor

products, gradient operators etc. which are discussed in [17].

3.5 Numerical results

We present numerical experiments using the proposed locally modified mesh method.
We compare the results with the ones on locally enriched meshes having added nodes at all
intersections between the interface and the grid lines. With this approach the dimension
of the system of linear equations is larger and the Cartesian structure is lost. We use the
standard piecewise linear Galerkin finite element method.

We present an example with a known exact solution from [15] so that we can compute
the error and convergence rate. The interface I' is the circle 22 + 32 = 1/4 within the

computational domain = (—1,1) x (—1,1). The equations are

—(Buz)e — (Buy)y = f(z,y) — c/ra(f— X(s))ds, (3.16)

with
fl@,y) = —8(z” +¢*) — 4 (3.17)



27

and
2,2 2, ,2 1
r+y +1, 2 +y < g
B(x,y) = (3.18)
b, 22 +9y? > %.
The Dirichlet boundary condition is given by the exact solution
2 if r< %
u(zy) = 4 (3.19)
(1—g —$)/4+ (5 +7r)/b+Clog(2r)/b/2  if r>1.

where r = \/alﬁy2 For any b and C, the solution u is continuous across the interface
r =1/2 and [fuy]|r = C. For problems with a discontinuous solution, we refer the readers
to the technique discussed in [9].

We use the standard Galerkin finite element method with piecewise linear basis func-
tions to solve it. We consider two cases with b = 10 and b = 1000. In both cases 3 is
discontinuous with C' = 0.1.

We use the Finite Element Program Generator (FEPG) to generate the stiffness matrix
and the load vector as in Section 3.4. We use the incomplete LU decomposition (ILU) along
with the conjugate gradient method to solve the resulting linear system of equations.

The linear system for the locally enriched mesh is larger than that for the locally
modified mesh. We expect longer CPU time for solving the linear system for the finite
element method with the locally enriched mesh. On an Intel Pentium 1.6GHz processor
with 768MB of RAM, the CPU time of the FE method using the locally enriched mesh
with a 320 x 320 grid is 21 seconds, while the FE method using the locally modified mesh
is about 19 seconds.

Let Uj; be the finite element solution at the grid points (x;,y;). Let @ be the interpo-
lation solution such that @ = Zij Uijpij, where ;; is the basis function at point (z;,y;).
We define ey, €, €q, €1 as the errors in the L, L?, energy, and H' norms, respectively,
in the following way:

€oo = max [u(xi, y;) — Uy, (3.20)

’

e = /Q(u — 1)2dS2, (3.21)

o = \/ /Q (Blus — i10)? + Bluy — iy)2)dQ, (3.22)



28

and

e1 = \// (w— )% 4+ (ug — Ug)? + (uy — Uy)?)d2. (3.23)
Q

Let N be the number of intervals in each direction on the Cartesian grid.

Case 1, C =0.1, b= 10.
In Table 3.1 we show the result of a grid refinement analysis of the finite element solutions
using the two different meshes. In the table, the first column is the number of intervals
in the z and the y directions; the second column is the error in the maximum norm. The
third column is the ratio of the two consecutive errors. The ratio approaches number four
for quadratic convergence and number two for linear convergence. The other columns in
this table and other tables have the similar meanings. The finite element methods are both
roughly second order accurate in the maximum norm as expected. In Table 3.2, we also
present the results in the L? (second order), energy and H' norms (first order).

In Figure 3.2, we show a linear regression analysis for ¢ = 0.1, b = 10 for the finite
element solution using the locally modified mesh. From the slope, we can observe that the
convergence order is roughly 2. The mesh varies from N = 100 to N = 320 according to

N =100+ 10k, k =0,...,22.

Linear regression
T T T

_gl y=2-068

O datal
linear

log(eso)

-10.5

—11F

115 . . . . . . .
-5.2 -5 -4.8 -4.6 -4.4 -4.2 -4 -3.8 -3.6

log(h)

Figure 3.2: A linear regression analysis of the convergence order in log-log scale for ¢ =
0.1, b =10 for the finite element solution using the locally modified mesh. The mesh varies
according to N = 100410k, kK = 0, ...,22. From the slope, the convergence order is roughly
2.

Case 2, C' = 0.1, b= 1000.
The coefficient 8 has a bigger jump compared with Case 1. We show the same grid refine-
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Table 3.1: A grid refinement analysis in the maximum norm of the finite element methods
using two different meshes for Case 1.

C=0.1,b=10
‘ locally modified mesh | locally enriched mesh
N €0 ratio €00 ratio
20 | 3.5081E-3 3.4920E-3

40 | 1.1067E-3 | 3.1700 | 8.9005E-4 | 3.9234
80 | 2.9460E-4 | 3.7565 2.3232E-4 | 3.8312
160 | 7.5932E-5 | 3.8797 | 6.3728E-5 | 3.6454
320 | 1.8183E-5 | 4.1761 1.6156E-5 | 3.9446

Table 3.2: A grid refinement analysis in L2, energy, and H' norms of the finite element
methods using two different meshes for Case 1.

C=01,b=10
locally modified mesh
N €o ratio €q ratio el ratio
20 | 2.4657E-3 3.1786E-2 1.5488E-2

40 | 6.7869E-4 | 3.6330 | 1.0644E-2 | 2.9862 | 5.1462E-3 | 3.0097
80 | 1.8407E-4 | 3.6872 | 4.1852E-3 | 2.5433 | 1.9771E-3 | 2.6029
160 | 4.6440E-5 | 3.9635 | 1.5905E-3 | 2.6314 | 7.4842E-4 | 2.6417
320 | 1.1430E-5 | 4.0629 | 5.5541E-4 | 2.8636 | 2.6867E-4 | 2.7857
locally enriched mesh
N €o ratio €q ratio e1 ratio
20 | 2.3961E-3 4.0277E-2 1.7297E-2
40 | 6.2432E-4 | 3.8379 | 1.5061E-2 | 2.6742 | 6.0933E-3 | 2.8387
80 | 1.5986E-4 | 3.9055 | 5.7430E-3 | 2.6225 | 2.2593E-3 | 2.6970
160 | 4.0567E-5 | 3.9407 | 2.1418E-3 | 2.6815 | 8.3928E-4 | 2.6919
320 | 1.0233E-5 | 3.9643 | 7.5062E-4 | 2.8533 | 3.0689E-4 | 2.7348
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ment results in Table 3.3. The results are quantitatively the same as in Case 1. In Table 3.4,

we present the results in the L?, energy, and H' norms.

Table 3.3: A grid refinement analysis in the maximum norm of the finite element methods
using two different meshes for Case 2.

C =0.1, b=1000
‘ locally modified mesh | locally enriched mesh

N €00 ratio €00 ratio
20 | 3.2222E-3 3.2220E-3
40 | 1.1167E-3 2.8855 8.2369E-4 3.9117
80 | 3.0983E-4 3.6041 2.0978E-4 3.9264
160 | 8.0474E-5 3.8501 5.4798E-5 3.8283
320 | 1.9307E-5 4.1681 1.3915E-5 3.9379

Table 3.4: A grid refinement analysis in L?, energy, and H' norms of the finite element
methods using two different meshes for Case 2.

C =0.1, b= 1000
locally modified mesh
N €0 ratio €q ratio el ratio
20 | 2.1762E-3 3.3751E-2 1.6358E-2
40 | 6.1872E-4 | 3.5173 | 1.1812E-2 | 2.8574 | 5.4530E-3 | 2.9998
80 | 1.7183E-4 | 3.6007 | 4.8557E-3 | 2.4326 | 2.1660E-3 | 2.5176
160 | 4.3527E-5 | 3.9477 | 1.8397E-3 | 2.6394 | 8.1848E-4 | 2.6464
320 | 1.1430E-5 | 3.8080 | 5.5541E-4 | 3.3123 | 2.6867E-4 | 3.0464
locally enriched mesh
N () ratio €q ratio el ratio
20 | 2.1272E-3 4.8196E-2 1.9641E-2
40 | 5.5894E-4 | 3.8058 | 1.7940E-2 | 2.6865 | 6.8174E-3 | 2.8810
80 | 1.4401E-4 | 3.8813 | 6.8224E-3 | 2.6296 | 2.5637E-3 | 2.6592
160 | 3.6752E-5 | 3.9183 | 2.5369E-3 | 2.6892 | 9.4370E-4 | 2.7166
320 | 9.3078E-6 | 3.9486 | 8.7973E-4 | 2.8837 | 3.3714E-4 | 2.7991
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Chapter 4

The FEM for elasticity problems

with interfaces

For convenience, we re-write the model problem again (see Section 1.2.2):

~V-o = f Q" Jo~ (4.1)
[u, = 0, (4.2)
[on)p, = q, (4.3)
ulse = up, (4.4)

where u = (uq,ug) is the unknown vector function.

4.1 The weak formulation

First we apply the standard Galerkin finite element method to a homogeneous Dirichlet
boundary value problem to derive the weak form. We multiply both sides of the equation
(4.1) by a test vector function v = (v1,vs), v1,v2 € HZ(Q) and integrate over the domain

Q1 and Q~ to obtain

do11 6012 Ooo1  Oooa B

//Q+ {< By ) vt < or T 6y> U2} drdy = /Q+(f1v1 + fave)dady. (4.5)
8011 0oz Oo91  Oogo B

// {< "y >U1+( o oy )vz}dwdy—/ﬂ(f1U1+f2v2)dfvdy- (4.6)
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Then integrating each term by parts and rearranging on the above equations and using
v1laa = 0, 2|90 = 0, we get

/ {(Ullnl + o19m2)vr + (01211 + 022n2)v2} ds

8’02 8’01 8
//Q+ {011 + 012 (8 8) 725, }dﬂ?d = //m(flvl + fave)dzdy,

(4.7)
and

—/ {(Ullnl + o19mg)vr + (01201 + 022n2)1)2} ds
ov ov ov
// {011 + 012 (6 2 8;) + 022 83/2 } dxdy = /Q(fl’Ul + favz)dzdy,

(4.8)
where n = (n1,n2) is the unit normal direction of the interface I" pointing outward. Adding
(4.7) to (4.8), we obtain

o} 19} 19} Ovg
/{ 1V1 + q2U9 d8+// {0'112}14-012 (aUZ + U1> + 099— y }dmdy

dy
-/ / (fron + fova)dady

using the fact that [u]r = 0 and [on], = q. Thus we have arrived at the weak form:

0 0 0vy
// {011 + o012 <;2 + Ul) + 0929 —— By }d:z:dy

dy
= // (fiv1 + fave)dxdy — / {q1v1 + qua} ds. (4.10)
Q r

The problem then is to find u € H'(Q) x H!(Q) such that the weak form above is true for
all v e H}(Q) x HL(Q).

If we denote

(4.9)

o11 €11 €11 %
o=1 o022 |- e(v) €22 €2 | = %%2 (4.11)
012 2e19 Y12 ‘%1 + u
and
f= h , v = vt , q= n , (4.12)
f2 vy 2

then the weak form can be written as

// ole(v)dedy = // fTvd:cdy—/qTVds.
Q Q r

(4.13)
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By (1.8), we have

0 = De(u)
where
A+ 2u A 0
u1
D = A A+2u 0 |, u=
U2
0 0 "

So (4.13) can also be written as

//Qe(u)TDg(v)dxdy — //QfTdedy_/FqTVds' (4.14)

J 40+ 2menten () + deam(uen (v
+Ae11(w)en(v) + (A + 2u)en(u)en(v) + unz(a)yz(v)dedy  (4.15)
= //Q(flvl + fove)dzdy — /F{qlvl + qova} ds.

or

4.2 Generation of FE source code by FEPG

FEPG (Finite Element Program Generator) [17] is a very powerful tool to generate the
FE source code. Here we will give some template files for writing the GCN, GIO and PDE
files.

4.2.1 Writing GCN, GIO files

We can use the same GCN, GIO as in Section 3.4. The filenames of GCN and GIO
files must be the same. We list them below. The comments follow "\’.

GIO file “le.gio”:

intf \ Define the name of PDE file we will use.

#elemtype t3 \ Define the element shape (t for triangular elements)
\and node number (3) of each element.

2dxy \ Define the coordinate type.
\This is 2d Cartesian coordinates.

GCN file “le.gcn”:
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defi \Define solution algorithm for
\every decoupled physical field.
aell & \The field "a" associates with the first

\PDE name in the GIO file.
\"ell" is the algorithm for solving the
\elliptic equation provided by FEPG.

STARTilu a \Initialize the solver which uses the conjugate
\gradient method with ilu as pre-conditioner.
SOLVilu a \Solve the linear system using the conjugate

\gradient method with ilu as pre-conditioner.

We can select a different solver by replacing ilu with sin (symmetric direct method), sor

(SOR iterative method) etc.

4.2.2 Writing PDE file

Next, we will show the PDE (FBC) files based on the weak form (4.14) or (4.15). We
notice that there are both volume integrals and a boundary integral in the weak form. We
need to write a PDE file for volume integrals and an FBC file for the boundary integral.
If there is no boundary integral in the weak form, then we do not need to write the FBC
file. The name of the PDE (FBC) file is given in the first part of the GIO file. We name it
“intf.pde” (“intf.fbc”).

Here is the file “intf.pde”. It uses the same rules as in Section 3.4. We will use “pl,
pm, 1, £2” to denote A, u, f1, fo respectively. FEPG uses F77 naming conventions. This
means that all variables starting with the letters i-n are integers and all others are real. To
make it easy to write the “stif” segment, we introduce some auxiliary functions “exx, eyy,
exy” which will be defined in the “func” segment. In that segment, “exx, eyy” and “exy”
are define as €11, €92 and vy respectively.

PDE file “intf.pde”:

defi

disp ul u2 \Define the name of the unknown function.

coor X y \Define the coordinate system.

func exx eyy exy \Give the names of some auxiliary functions
\which will be defined in "func" segment.

shap %1 %2 \Define the shape function.

\The parameters "%1, %2" are retrieved from
\"#elemtype t3" in GIO file.
gaus %3 \Define type of integration



\(nodal integral or Gaussian integral).
\"%3" is also retrieved from
\"#elemtype t3" in GIO file.

\For Gaussian integral, it gives

\the number of integral points.

mate pl pm f1 £2 1.0;1.0;0.0;0.0;

func
exx=+[ul/x]

eyy=+[u2/y]
exy=+[ul/y]+[u2/x]

stif

$c6 if(imate.eq.1) then

$c6  pl=1d0
$c6  pm=1d0
$c6  £1=-8d0
$c6 £2=-8d0

$c6 else
$c6  pl=1d2
$c6  pm=1d2

$c6 £1=-8d0
$c6  £2=-8d0
$c6 endif

\Define the material parameters "pl, pm, f1, f2"
\which will be used in weak form and their
\default values.

\The values can be modified in the following
\"stif" segment.

\Define auxiliary functions.

\Define stiffness matrix based on weak form.
\Insert fortran code following the "$c6"

\to define the material parameters.

\"$c6" means beginning with 6 spaces

\which is the fortran 77 convention.

\Inside the interface.

\Give the values of the material parameters.

\Outside the interface.

$c6 factvol = pl+2.0*pm
dist=+[exx;exx]*factvol+[exx;eyy]*pl
+[eyy; exx] *pl+[eyy;eyyl*factvol+[exy;exy] *pm

load=+[ul] *f1+[u2] *£2

\Correspond to volume integrals
\at the Left Hand Side of the weak form.

\Correspond to volume integrals
\at the Right Hand Side of the weak form.

35
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end

“disp ul u2” gives the primary variables. Here “(ul, u2)” corresponds to u = (uj, us).

The keyword “dist” in stif segment is to define the volume integrals in the left hand side
of the weak form which contains the unknown function. The first part “+ [exx;exx]*factvol”

corresponds to
// (A4 2u)er1(u)err (v)dady
Q

in the weak form (4.15). In the expression, the “[ ; 1” corresponds to volume integral. The
“exx” preceding the semicolon ‘;’ corresponds to e(u). The “exx” following the semicolon
‘;” corresponds to £(v). The “factvol” is defined as A + 2u. The other parts have similar
meanings.

The volume integral in the right hand side of the weak form (4.15) is

//Q(fl'Ul + fov2)dxdy.

We write it in the FEPG language as
load=+[ull*f1+[u2] *£2

Here, “(ul, u2)” corresponds to the test function v = (vq1,v2). The “f1, £2” corresponds

to fi1, fo respectively. The “[ 1”7 corresponds to the volume integral.

4.2.3 Writing FBC file

What is left in the weak form (4.15) is the boundary integral

—/ {a1v1 + qev2} ds. (4.16)
r

Here we assume
2(322 + 22y + y?) 2(3y? + 2zy + 2?)
q1 = ) g2 = .
/22 + Y2 /22 + 42

We need to introduce a local coordinate system first.

The triangulation in Chapter 2 also gives the discretization of the interface. The
interface I' is approximated with a series of line elements {i1,ls,...,l,,} where n; is the

total number of line elements. In general, we approximate (4.16) with

- Z/ {q1v1 + qova} ds. (4.17)
i=1 71l
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For a typical line element [; with nodes 1,2 (see Fig 4.1), we define the local coordinate
system centered at node 1 as

E=(x—x1)cosf+ (y — y1)sinb, (4.18)

n=—(x—x1)sinfd + (y — y1) cos b,

where 6 is the angle between the x-axis and 12 (see Fig. 4.1), and (x1,y1) is the coordinates

of node 1.
If we set
cosf sinf
T = (4.19)
—sinf@ cos6
2 N I T (4.20)
n y—yl
then
£E=Tx.

T is an orthogonal matrix and often called the transformation matrix.

y

Figure 4.1: Local coordinate system for a typical line element [; with nodes 1, 2.

To write the system in an FBC file, we need to represent

q1
q =
q2
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in the local coordinate system. If we denote it as q’, then
q =Tq

There is no direct way to input q given in the global coordinate system into the FEPG
system. We will do this indirectly by revising the generated Fortran source code. The
FEPG system provides the transformation matrix 7. We need to pass this matrix to the
subroutine “all2” which is generated from the FBC file below.

FBC file “intf.fbc”:

defi

disp ul,u2
coor X \local coordinates
shap %1 %2

gaus %3

coef gx,gy \global coordinates

mate ql1 g2 0d0;0d0;

stif

$c6 pl=1do \Define vector q.

$c6 pm=1d0

$c6 el=dsqrt (gx*gx+gy*gy)

$c6 gql =-2d0* ((pl+2d0*pm) *gx*gx+pm*gy*gy+(pl+pm) *gx*gy) /el
$c6 gq2 =-2d0* ((pl+2d0*pm) *gy*gy+pm*gx*gx+(pl+pm) *gx*gy) /el
$c6

$c6 ql=t(1,1)*gql+t(1,2)*gq2 \Transformation of vector q.
$c6 q2=t(2,1)*gql+t(2,2)*gq2

dist=[ul;ul]*0.0

load=+[ul] *q1+[u2] *q2
end

The format of FBC files is nearly the same as that for PDE files. Since the elements
treated in FBC files are boundary elements, the dimension is one order lower than that
for volume elements. The “dist=+[ul;ul]*0d0” means there is no boundary integral in
the left hand side of the weak form. The “load=+[ul]*ql+[u2]*q2” corresponds to the
boundary integral (4.16).
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4.2.4 Generation of FE source code

After preparing the “le.gcn”, “le.gio” , “intf.pde” and “intf.fbc” files, we can just run
“gio le” under the FEPG environment to generate all the Fortran 77 source code.

In Section 4.2.3, we need to use the transformation matrix 7" which is not defined in
the FBC file. We need to modify the Fortran 77 source code to make it work. We change
the flow of subroutine “agl2” by forming the matrix 7" before calling the subroutine “all2”
and pass the matrix T' as a parameter for the subroutine “all2”.

Then we can insert some Fortran code to customize the output. FEPG also integrates
a pre/post processor GID [5] into its system. It provides a user-friendly graphical user
interface for geometrical modeling, data input and visualization of results for all types of

numerical simulation programs.

4.3 Numerical results

We present numerical experiments for the model problem (1.15)-(1.18) using the pro-
posed locally modified mesh method. We use the standard piecewise linear Galerkin finite
element method. Finite Element Program Generator (FEPG) [17] is used to generate the
stiffness matrix and the load vector. We use the incomplete LU decomposition (ILU) along
with the conjugate gradient method to solve the resulting linear system of equations.

Most of the computations are done on an Intel Core 2 Duo 2.0GHz processor with 2GB
of RAM. For a 320 x 320 mesh, it takes about 0.2 seconds to generate the mesh. Most of
the simulations are done within seconds.

We present some examples (Examples 1, 2) with known exact solutions so that we can
validate the computer codes and check the convergence rate. The interface I' is the circle
2?2 + y? = 1/4 within the computational domain Q = (—1,1) x (—1,1). For a 320 x 320
mesh, it takes 53 seconds to solve the resulting linear system using the ILU. In Example 3,
we consider a more realistic problem with a non-convex general interface. In this example,
we do not have an analytic solution. It takes about 3 minutes to solve the resulting linear

system using the ILU.
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Let @ be the finite element solution obtained from our method and
i(x,y) =Y Uyjei(x,y)
ij

where ¢;; is the piecewise linear basis function centered at point (z;,y;). We define e, €1

as the errors in the L™ and H' norms, respectively, thus

Coo = MAx \u(zi, y;) — Usjl, (4.21)

e1 = \//Q {(u — )2+ (g — )2+ (uy — ay)2} dq. (4.22)

We also scale e, €1 as follows to get the relative errors,

€oo
- 7 4.23
= nax [u(r, ;) (4.23)
/L?J
= 2l (4.24)

max |u(zi, y;)|
Z?J

We will use this scaled error measurement only for Example 2.

Example 1 The first example is taken from [8]. The parameters are A\~ = p~ =1, and
At = pt = 100. The body force term £ = (f1, fo) and the Dirichlet boundary condition

ug = (uo,,uo,) are given from the exact solution u = (uy,uz):

7“2, r < R;

- W)RQ, otherwise.

where R = 3 and r = /22 + ¢2.

Note that the solution u is continuous across the interface r = 1/2 and [on]|pr = 0, i.e., the
exact solution satisfies the homogeneous jump conditions.

In Table 4.1 we show the result of a grid refinement analysis of the finite element
solutions using the locally modified meshes. In the table, the first column N is the number
of intervals in the x and the y directions; the second column is the error in the maximum
norm. The third column is the ratio of the two consecutive errors. The ratio approaches
number four for quadratic convergence and number two for linear convergence. The fourth
column is the error in the H' norm. The other columns in this table and other tables have
the similar meanings. The finite element methods are both roughly second order accurate

in the maximum norm and first order accurate in the H' norm as expected.
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Table 4.1: A grid refinement analysis in the maximum and H' norms of the finite element
method using the locally modified meshes for Example 1.

N €00 ratio el ratio
20 | 2.4271E-03 1.1957E-02
40 | 8.8263E-04 | 2.7498 | 4.4212E-03 | 2.7045
80 | 2.5543E-04 | 3.4555 | 1.7337E-03 | 2.5502
160 | 5.7255E-05 | 4.4613 | 6.3617E-04 | 2.7252
320 | 1.4157E-05 | 4.0443 | 2.2759E-04 | 2.7952

Example 2 We set \™ =y~ =1 and \* = u™ = b for some b > 0. The body force term
f = (f1, f2) and the Dirichlet boundary condition uy = (ug, , ug,) are derived from the exact

solution u = (uy,u2):

2 +log(1 +r?), r < R;
Ul =tz = 2 1 log(1 + r? 1
br/i2 + <1 — b/2> R?+ Og(b-i—T’) + (1 - b> log(1 + R?), otherwise.

where again R = % and r = \/x? + y2.

For any b, the solution u is continuous across the interface » = 1/2 and [on]|r = q =

(q1,92),

2(322 + 22y + y?) 2(3y? + 2xy + 22)
SV R N

In Table 4.2 we show the result of a grid refinement analysis of our method. We can
see once again that we have first order accuracy in the H! norm, and second order accuracy
in L* norm as we would expect. The results also show that our method can handle small
or large jumps in the physical parameters and in the solution. The convergence order is
almost independent of the jumps in the coefficients for the relative error. Note that the
magnitude of the solution is getting larger as the parameter b = AT = u™ is getting smaller,
or vice versa. Nevertheless, our method can handle these situations very well.

In Figure 4.2, we show a linear regression analysis for \™ =y~ = 1, AT = ™ = 0.1
for the finite element solution using the locally modified mesh. From the slopes, we can
observe that the convergence order is 1.9 with the mesh size varying from N = 100 to
N = 320 according to N = 100+ 10k, £k =0, ...,22 and 2 with the mesh varying according
to N =100+ 20k, k=0,...,11.
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Table 4.2: A grid refinement analysis in the maximum and H' norms of the finite element

method using the locally modified meshes for Example 2 with different jump ratio.

’ ‘ AT =pt =10
N Too ratio 1 ratio
20 | 3.7083E-3 2.3834E-2
40 | 1.4063E-3 | 2.6369 | 8.6210E-3 | 2.7646
80 | 4.1231E-4 | 3.4108 | 3.2720E-3 | 2.6348
160 | 9.2478E-5 | 4.4585 | 1.1867E-3 | 2.7573
320 | 2.3622E-5 | 3.9149 | 4.2083E-4 | 2.8198
] AT =t =1000
N Too ratio 71 ratio
20 | 9.2119E-3 4.4262E-2
40 | 3.3598E-3 | 2.7418 | 1.6187E-2 | 2.7344
80 | 9.8181E-4 | 3.4220 | 6.2464E-3 | 2.5915
160 | 2.2333E-4 | 4.3962 | 2.2636E-3 | 2.7596
320 | 5.4229E-5 | 4.1183 | 8.0108E-4 | 2.8257
’ ‘ AT =put=0.1
N Too ratio 1 ratio
20 | 1.8451E-3 1.0097E-2
40 | 5.3678E-4 | 3.4373 | 3.6190E-3 | 2.7901
80 | 1.5390E-4 | 3.4878 | 1.3593E-3 | 2.6625
160 | 4.2369E-5 | 3.6324 | 4.1334E-4 | 3.2885
320 | 1.1251E-5 | 3.7658 | 1.4863E-4 | 2.7810
] AT =pt =0.001
N Too ratio 71 ratio
20 | 1.9727E-3 1.0169E-2
40 | 5.8714E-4 | 3.3598 | 3.6591E-3 | 2.7792
80 | 1.6904E-4 | 3.4734 | 1.3775E-3 | 2.6564
160 | 4.6768E-5 | 3.6144 | 4.1916E-4 | 3.2863
320 | 1.2460E-5 | 3.7535 | 1.5067E-4 | 2.7820
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Linear regression Linear regression
T T T T T T
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log(h) log(h)

Figure 4.2: A linear regression analysis for A\~ =y~ =1, At =y = 0.1 in log-log scale (a)
with the mesh varying according to N = 100 + 10k, k£ = 0,...,22. The slope(convergence
order) is 1.9; (b) with the mesh varying according to N = 100 + 20k, k = 0,...,22. The
slope is 2.1.

Example 3 We consider a plate consisting of two materials with a non-circular interface
in a state of plane strain. The interface is given by r = 0.5+ 0.2sin @ in polar coordinates.
The plate is 2m x 2m with the bottom fized and 1€7 N/m force applied on the top; see
Fig. 1.2. The Young’s modulus and Poisson’s ratio for the inner and outer materials are
E~ =1e9 Pa, v~ = 0.3, and ET = 1el0 Pa, v = 0.3 respectively. We wish to compute
the displacement distribution of the plate.

The purpose of this example is to show that our method can handle complicated ge-
ometry and large coefficients. Under the pressure, the plate will undergo a compression in
the y-direction and will react by stretching in the x-direction in order to reduce the change
in the volume.

We set the origin at the center of the plate and use a 320 x 320 mesh to do the simulation.
We use . 5

e e (4.25)

to compute the Lamé coefficients u~, A~ and p+, A" for this is a plane strain problem.

In Fig. 4.4, we show a 40 x 40 mesh for an illustration. In Fig. 4.5, we show the contour
plot for the displacement distribution. The results are symmetric along the y-axis for the

x-component u; of displacement and symmetric along the z-axis for the y-component uy of
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Figure 4.3: A rectangular plate with a non-circular interface » = 0.5 4+ 0.2sin 6. A uniform
force is applied at the top of the boundary.

displacement. In Fig. 4.6, we show the positions of the original and deformed plates.

Figure 4.4: A locally modified mesh for a non-circular interface.

We also consider nearly incompressible cases for Example 3 with different Poisson’s
ratios v. Notice that in (4.25), if v is close to 0.5, then A goes to infinity, or so called
the nearly incompressible case. We first set v~ = v = 0.4,0.42,0.44,0.45, and 0.46. It
takes about 191, 215,231,700, and 4000 seconds respectively to converge using the ilu
solver. It takes much more time for larger Poisson’s ratios since the matrix become worse.
So we use the sin (symmetric direct method) solver to compute the solution for the case

v~ = vt =0.49. The CPU time is about 450 seconds. We show the deformation in Fig. 4.7.
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0

-0.00045589
— -0.00091178
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Figure 4.5: Contour plots of the displacement distribution u = (u1,u2). (a) the

contour
plot of ui; (b) the contour plot of us.

w

Figure 4.6: The original and deformed plates for case v~ = v™ = 0.3. Note that the
displacement is very small. To make it visible, we have rescaled the displacement 50 times
larger in the plot. The result agrees with physical intuition and reasoning.

Figure 4.7: The original and deformed plates for case v~ = v = 0.49. Note that the
displacement is very small. To make it visible, we have rescaled the displacement 50 times
larger in the plot. The result agrees with physical intuition and reasoning.
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Chapter 5

A new second order finite
difference method for interface

problems

In this chapter, we will present a new second order finite difference method for interface

problems. Our model problem is as follows:

V-(BVu) = [f(T), T=(z,y)ecQ\T (5.1)
[up = 0, (5.2)
ulpo = uo(), (5.4)

where Q = QT JQ™, T € C? is an interface between the subdomains Q7 and Q7; see
Fig. 5.1 for an illustration. The diffusion coefficient § can have a finite jump across the
interface I'. We assume that 3 > Bnin > 0, and f is a bounded function, wug is a given
function, and C is a constant. “[-]” denotes the jump of the function which is defined as
the difference of the limiting values from the outside of the interface to the inside, and n is

the unit normal direction of the interface I" pointing outward.
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Q

Figure 5.1: A rectangular domain €2 with an immersed interface T'.

5.1 The idea of the new method

For non-interface problems, we know that the standard 5-point finite difference scheme
based on a Cartesian grid will produce second order results. But for interface problems, this
method will lose accuracy when the interface crosses the 5-point stencil. We call these grid
points irregular grid points. The local truncation errors are no longer h? for the standard
finite difference methods where h is the step size of the Cartesian grid. We want to take
advantage of the simplicity of the standard finite difference methods. So we introduce some
extra variables which we call ghost values to make the 5-point stencil work. The price of
this is that we need to find an equation for each ghost value. We notice that there are two
interface conditions [u| =0, [ﬂ g—m r = C. We need to carefully choose one of the interface

conditions for each ghost value.

5.2 A new finite difference discretization

Again, we will use a Cartesian grid. Let (z;,y;), 0 <i < M, 0 < j < N be the grid
points. The step sizes are the same denoted as h in both the  and the y directions. Those
grid points marked by circles or boxes, in Fig 5.2, are irregular grid points for which the
interface crosses the standard 5-point finite difference stencil. Other grid points are called

regular grid points.
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Figure 5.2: A mesh with irregular grid points marked.

The finite difference scheme for regular grid points

Let U; ; be the approximation to the solution u(x,y) of (5.1)-(5.4) at a point (x;,y;).

For regular points with index (i, ), we use the standard centered 5-point finite difference

scheme,

where

Bioryy Wit = Uig) g (Ui = Uicny)
i4+1/2,5 n ﬂz—l/zg h

U1 — Ui Uss — Ui
+ <5z,j+1/2(’]+1h’]) - ﬂz‘,jl/z(]hjl)>} = fij; (5.5)

> =

h h
Biv1/25 =P <xz + 273/3‘) o Bijrip =20 (xz‘,yj + 2) ,

and so on. The local truncation errors are O(h?) at these regular points.

If we rearrange (5.5), we have

1
72 {Bi—1/2,;Ui-1,j + Biv1/2,Uir1,5 + Bij—1/2Uij—1 + Bi j41/2Ui j1
—(Bi—1y2, + Bix1y2,j + Bij—172 + Bijr12) Uiz} = fij. (5.6)

5.2.2 The finite difference scheme for irregular grid points

If (z4,7;) is an irregular grid point, i.e., the grid points in the centered 5-point stencil

are from both sides of the interface, then we will introduce some ghost values to make
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the 5-point stencil work properly. Without loss of generality, we assume that an irregular

point (z;,y;) lies outside the interface, or in “4” side; see Fig. 5.3. Because the grid point

+ i+l /) -

-1 i i+1,]

-1\

Figure 5.3: A typical irregular grid point (4, 5).

(%i4+1,y;) is not on the same side of the interface as the grid point (x;,y;), we need a ghost
value UY}, at that point (z;11,y;), where there is a one-to-one mapping between the index

(1+1,7) and k. So we have an equation for the irregular grid point (x;,v;),
1
2 {5@'71/2,jUi—1,j + ﬂ;’k+1/2,jng + Bij—1/2Uij-1 + Bi j11/2Ui j+1

—(Bi—1/25 + 52;1/2,]- +Bij—1/2 + 5i,j+1/2)Ui,j} = fij (5.7)

Note that we replace Ujt1,; with U and ;11,9 ; with 6;;1/27]. in (5.6). If the grid point

(Ti41/2,¥;) is on the same side as the point (z;,y;), then ﬁ;:rl/?,j = Bit1/2,5.- Otherwise we

evaluate the extension of B(z,y) from outside the interface, where the grid point (x;,y;)
lies, at the point (z; + h/2,y;).

Now we have obtained all the equations for all grid points. We can write (5.6)-(5.7) in

a matrix-vector form

AU+BUY=F (5.8)

where U, U9 and F are the vectors formed by {U; ;},{U%}, and {f;;}, respectively.

5.2.3 The least squares interpolation for ghost values

Now we need to set up an equation for U9 (the ghost value for grid point (x;+1,y;) )
to complete the linear system. Recall that we have not used the interface conditions

fuly = 0, [ﬁgZ]F e
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One of them will be chosen to be satisfied at its orthogonal projection point of (z;41,y;)
on the interface based on the values of 7 and 5~ at that projection point. Since we need
to deal with the flux jump condition given in the normal direction, we will use the local
coordinates in the normal and tangential directions.
Let (z*,y*) be the orthogonal projection point of the grid point (x;41,y;) on the inter-
face. Then the local coordinate system is defined as
=(x—2a")cosf+ (y —y*)sinf
§=( ) (y —y*)sinb, (5.9)
n=—(x—a*)sinb + (y — y*) cos 0,
where 6 is the angle between the x-axis and the normal direction n of the interface I" pointing

outward. See Fig. 5.4 for an illustration.
+ |, J+ 1 / —_

S

-1 i) +1,]
n
L=1\r

Figure 5.4: The local coordinate system in the normal and tangential directions. The “+”
side lies outside the interface.

With the local coordinate system, we can set up the equation for the ghost value UY.

Let 81, 3~ be the limiting values of 3(z, y) at the projection point (*, y*) from outside
and inside the interface, respectively. The grid point (x;41,y;) lies the “—” side. We need
a ghost value from the “+” side to make the 5-point stencil work at grid point (x;,y;). If
B%t > 37, then we choose [ﬁ%]r = C. Otherwise we choose [u]p = 0. We will explain this
below in the remark. We consider two different cases.

Case 1, 3t > 3

We have
ou~

ou™
+7 _ —
g -
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We use U9, the ghost value at (x;41,;), and Uz‘;f,j;” p=2,...,n4 to carry out the second
order least squares interpolation for !, where the grid points (371;7 yj;), p=2,...,n4 are
in the neighborhood of the projection point (z*,y*) and lie outside the interface.

We use Ui;j;, p = 1,...,n4 for the second order least squares interpolation for u,,,
where the grid points (xi;,yj;),p = 1,...,n4 are in the neighborhood of the projection
point (x*,y*) and lie inside the interface.

So we have an equation for the ghost value UY,
g g
+ | At + - —~ _
BT MU+ Z’Yp Uiz | =5 Z'yp Usgr | =€ (5.10)
p=2 p=1

Remark: We want the magnitude of the coefficient of U9, as large as possible. So we choose
[B g—g]r = C when 7 > 37. Another consideration is to control the local truncation error.
If we divide the above equation by 3%, then the local truncation error is O(h?) — g—;O(hQ).
Since g—; < 1 when 37 > 37, the local truncation error is well controlled by the second
order least squares interpolation error.

Case 2, 3t <=p3":

We have

ut —u” =0.
We use U9, the ghost value at (zi41,y;), and Ui;;f P = 2,...,n4 to carry out the second
order least squares interpolation for u™, where the grid points (l‘i;, yj;), p=2,...,n4 are

in the neighborhood of the projection point (z*,3*) and lie outside the interface.

We use Ui; g P = 1,...,ng for the second order least squares interpolation for u™,
where the grid points (:L‘Z.;,yjp_), p = 1,...,n4 are in the neighborhood of the projection
point (z*,y*) and lie inside the interface.

So we have an equation for the ghost value UY,

g g
+ + - _
VU +D WU e | = (2w Uiy | =0 (5.11)
p=2 p=1
Next, we will show how to use U9, Ui; i P= 2,...,ng4 to carry out the second order

. . + _ —
least squares interpolation for w;” and Uiz? g P= 1,...,ng for u,.
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The interpolation scheme for approximating w,! is
g
u;'g/ﬁvak4_§£:7;IQ;J;. (5.12)
p=2
Using the local coordinate system (5.9) centered at the projection point (z*,y*), we
can denote the local coordinates of (ziy1,y;) as (€0, o), (xi;,yj;) as (§p,mp). We have the

following from the Taylor expansion at (z*,y*) or (0,0) in the local coordinates:

ng ~ u+($i+1,yj) = u+(§077}0)

1
fngu:{n +O(h®), (5.13)

1
= ut+ &)u&F + not,y + 553%2 + fonougn t3

i = M%MU):U@MW
1
=yt —|—£pug +77pu + 52%5 ~|—£p17pu€n + 2772u+ + O(h3), (5.14)
where u™, ug, ..., u,t, are evaluated at the local coordinates (0,0) or (z*,y*) in the original

coordinate system. Below we will use Ui1+ it to denote UY;. Then we can just focus on
(5.14).

In the local coordinate system, the equation (5.1) can be written as

g (gg"’um;)“‘ﬂ ‘1‘5 =t

Therefore, we have

it Be By o+
ug% = g u;;] - ﬂ—iuz 3+ n (5.15)

Plugging (5.15) into (5.14), we get

Uit i+ =~ u(wi;7yjp+) = u(§p777p)

p 7]P
ﬂ +
- —ffpﬂi> + (- §g+> :
1

To minimize the interpolation error, we should set the following linear system of equations
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for the coefficients {7, }:

Ng
Z’YJ =0

Ng 6
p=

nzgwn ! ﬂ) - 0 (5.17)
p=1 P2 pﬂJr '

Mg
ZV;fpnp =0

Z'V; np_fgp) = 0.

Note that we have five equations in the above system. We should set ny, > 5 in
order to have a consistent system. In our numerical tests, we set n, = 8 or 9. Thus
(5.17) is an underdetermined system of linear equations that has an infinite number of
solutions in general. We solve (5.17) using the singular value decomposition (SVD). The
SVD subroutine is taken from Linpack. The SVD solution has the smallest 2-norm among

all feasible solutions,

g ng
Z(’YJ*)Z = mi+n 2(7;)2’ subject to (5.17).
p=1 Pop=1

We will drop the superscript “*’ for simplicity. Note that we have an extra constant term

5 ggj in (5.16), so we need to modify (5.12) to

g g
fr
w0 G U+ Y U (5.18)
p=1 p=2
Similarly, for
g
U =Y U s (5.19)
p=1

we denote the local coordinates of (:Eig,yjp—) as (§ng+ps Mng+p) and expand U, S P = 1,ng

“_»

from the side. Following the above procedure, by changing all the “+” superscripts to

” superscripts and (&p, 1) t0 (&ng4ps Mg +p) in the linear system (5.17), we can determine
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the coefficients v, and get
g — g
_ 1, f _
u £ % §§ng+pﬂf ~> % Uiz g5 (5.20)
p=1 p=1

Instead of (5.10), we obtain an equation for the ghost variable U9 under the condition

Bt > p:

Tg g
B\ AU+ D WUt | =87 | 2w Ui s
p=2 p=1
g Ng _
1 ,fT _ _1 f
—C+pt 2’7355567 %" g | - (5.21)
p=1 p=1
For the case when 3 < 37, we will obtain a similar equation
g g
+ + -
WU+ WU | = | 2% Uis iz
p=2 p=1
g g _
1, f* 1 f
+ 22 —_ g2
2710 2% g | T Z’YP §§ng+pﬁi : (5.22)
p=1 p=1

The difference from the above derivation is the right hand side vector in the linear
system (5.17). Here we need to approximate u™ and v~. The right hand side vector should

be the column vector (1,0,0,0,0)” instead of the vector (0,1,0,0,0).

Finally, summarizing the procedure above, we can come up with
CU+DUI=FI. (5.23)
By combining (5.8) and (5.23), we obtain a complete linear system

AU+BUI = F

5.24
CU+DUI = F9, (5:24)

where A is a symmetric negative definite matrix and D is a diagonal matrix by our con-

struction.



95

5.3 The Schur complement

If we multiply the top equation in (5.24) by C A~! and then subtracting from the

bottom equation, we obtain
(D—-C A 'B)UY=F9 - C A'F. (5.25)

The matrix D — C A™'B is called the Schur complement of the block A. It is an Ng X ng
matrix for UY, a much smaller linear system compared with the one for U. Since D is a

diagonal matrix, we will use it as a right preconditioner. We solve
(I-CA'BD Yy=FI—C A 'F with U%=D"1y. (5.26)

Since the matrix I — C A~'BD~! is nonsymmetric in most cases, we will solve (5.26)
by the GMRES iterative method [23].

The GMRES method requires only matrix-vector multiplication. Given a vector y;, we
compute yll = D7y, yf = Byil, yf’ = A_lyf, and ygl = C’yg’, then subtract yf from y;, to
obtain

Yi+1 = Yi —yf‘-

There are many ways to compute yf’ = A‘lyf. In general, we need to solve the linear system
Ay} =y} (5.27)
for yf’ The matrix A has many nice properties:
1. invertible
2. symmetric negative definite
3. diagonally dominant

4. reducible

If we order all the outer grid points before the inner grid points, we have

A O
pAPT = | ! , (5.28)
0 A
where A1, Ay are irreducible and have the Properties 1-3, and P is some permutation

matrix.
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Based on these properties, we can use a direct method such as the LU decomposition
or iterative methods such as the preconditioned conjugate gradient method, or multigrid
method [3] based on the matrix A. Or we can solve two smaller systems using the LU
decomposition, or the preconditioned conjugate gradient method based on (5.28).

In this chapter, we will use a blackbox multigrid solver DMG9V [6] to solve (5.27).
This solver is developed for the scheme that involves the 9-point stencil. We use it for

convenience.

5.4 Numerical results

We present numerical experiments using the proposed finite difference method.
We present an example used in Chapter 3.5 with a known exact solution from [15]
so that we can obtain the error and the convergence rate. The interface I' is the circle

2?2 4+ y? = 1/4 within the computational domain = (—1,1) x (—1,1). The equation is

—(Buw)z — (Buy)y = flz,y) — C/Fé(a?— X (s))ds, (5.29)
with
and
R N T
Blx,y) = ! (5.31)
b, 22 +9y? > %.
The Dirichlet boundary condition is given by the exact solution
r2, if r< %,
u(x,y) = \ (5.32)
(1—3& —1)/4+ (5 +7r%)/b+ Clog(2r)/b/2, if r> 1.

where r = \/aﬁy2 For any b and C, the solution u is continuous across the interface
r=1/2 and [fu,]lr = C.

We first consider two cases with b = 10 and b = 1000 with C' = 0.1. In both cases (3 is
discontinuous.

The maximum error over all grid points is defined as

eco = max |u(x;, y;) — Usjl, (5.33)
/L?]
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and we scale ey, as follows to get the relative error,

€oo
Foo = ———20 . 5.34
= max|u(zi,y;)| 34

5

We set the max number of the GMRES iterations to be 100.

Case 1, C =0.1, b= 10.
In Table 5.1 we show the result of a grid refinement analysis of the finite difference solutions.
In the table, the second row contains the GMRES error tolerances to reduce the norm of
the residual by the factors of 107° and 10~7. The first column N is the number of intervals
in the x and the y directions; the second column is the error in the maximum norm. The
third column is the ratio of the two consecutive errors. The ratio approaches number four
for quadratic convergence and number two for linear convergence. The fourth column is the
number k of GMRES iterations. The other columns in this table and other tables have the
similar meanings.

The finite difference method is roughly second order accurate in the maximum norm

for suitable GMRES error tolerance as expected.

Table 5.1: A grid refinement analysis in the maximum norm of the finite difference method
for Case 1.

C=01b=10
‘ GMRES error 1le—5 \ GMRES error le—7
N €so ratio k €so ratio k
20 | 4.2998E-3 9 | 4.2957E-3 13

40 | 4.1346E-4 | 10.3996 | 13 | 4.1223E-4 | 10.4206 | 17
80 | 1.1218E-4 | 3.6857 | 17 | 1.0975E-4 | 3.7561 | 24
160 | 2.8796E-5 | 3.8957 | 24 | 2.7949E-5 | 3.9268 | 36
320 | 7.1458E-6 | 4.0298 | 33 | 6.7241E-6 | 4.1565 | 48

Case 2, C' = 0.1, b= 1000.
The coefficient 8 has a bigger jump compared with Case 1. We show the same grid refine-
ment results in Table 5.2. We need a smaller GMRES error tolerance to get the second

order convergence rate.
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Table 5.2: A grid refinement analysis in the maximum norm of the finite difference method
for Case 2.

C =0.1, b=1000
‘ GMRES error 1le — 5 ‘ GMRES error 1le — 7
N €so ratio k €so ratio k
20 | 1.4585E-3 8 | 1.4362E-3 12
40 | 2.1754E-4 | 6.7045 | 12 | 2.1103E-4 | 6.8057 | 16
80 | 1.2089E-4 | 1.7995 | 16 | 4.2766E-5 | 4.9345 | 23
160 | 4.1394E-5 | 2.9205 | 23 | 9.8058E-6 | 4.3613 | 54
320 | 1.2865E-4 | 0.3218 | 31 | 2.3460E-6 | 4.1798 | 44

5.5 The new method with a good guess

For both cases in previous subsection, we have verified that our method is a second
order method. Now we need to control the number of GMRES iterations. The idea is to
use a good guess obtained by some simple methods such as harmonic averaging [1, 26, 27],
or Peskin’s immersed boundary method [20, 21]. These methods are generally first order
methods. To illustrate the idea, we consider a simple case when C' = 0 for which we can

use harmonic averaging to get a good guess. For the harmonic averaging, we use (5.5) for

all grid points and redefine the ﬁH%’j, ﬂi,jJr% as below:
[ B(z; + h/2,y;), B is smooth in [z, zi41];
ﬁ, 1. = 1 Tit1 -1
i+35.] (/ ﬁ_l(x,yj)dx> , otherwise.
h ),
B(xi,y; + h/2), 3 is smooth in [y;, y;+1];
G...1 = 1 [Y+ -
tt3 h/ gfl(q;i’y)dx , otherwise.
Yi

After we obtain Uy from the harmonic averaging, we can use the second equation

in (5.24) to obtain the initial guess
yOZDUg :Fg—CUO

for the linear system (5.26).
We consider two cases for b = 10, b = 1000 with C' = 0. We set the GMRES error

tolerance to be 1072 or 10~7. We show the results from our method with zeros as the initial
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guess, the harmonic averaging and our method with the harmonic averaging as the initial
guess in Table 5.3 and Table 5.4. From Table 5.3, we see that our method is second order
accurate and the harmonic averaging is first order accurate. The method with the harmonic
averaging as the initial guess requires fewer GMRES iterations than the method with zeros
as the initial guess. From Table 5.4, the harmonic averaging is nearly second order accurate.
Our method is second order accurate with much less error. The method with the harmonic
averaging as the initial guess is much better than the method with zeros. So we will use it

for the other examples.

Table 5.3: A grid refinement analysis in the maximum norm of the finite difference method
for C' =0, b=10.

C =0, b=10, GMRES error le—5

| with initial zeros | HA | with initial HA
N €oo ratio k €oo ratio €oo ratio k
20 | 4.3430E-3 9 | 4.6449E-3 4.3405E-3 7
40 | 4.5682E-4 | 9.5070 | 13 | 2.4262E-3 | 1.9145 | 4.5484E-4 | 9.5429 | &8

80 | 1.2764E-4 | 3.5790 | 17 | 1.0861E-3 | 2.2339 | 1.2393E-4 | 3.6701 | 10
160 | 3.3115E-5 | 3.8544 | 24 | 4.8931E-4 | 2.2197 | 3.1066E-5 | 3.9892 | 12
320 | 8.2476E-6 | 4.0151 | 33 | 2.2840E-4 | 2.1423 | 6.6660E-6 | 4.6604 | 14

Table 5.4: A grid refinement analysis in the maximum norm of the finite difference method
for C' =0, b= 1000.

C =0, b =1000, GMRES error le—7

with initial zeros HA with initial HA
N €so ratio k €so ratio €so ratio k
20 | 1.4363E-3 12 | 3.2352E-3 1.4373E-3 9

40 | 2.1132E-4 | 6.7968 | 16 | 1.3592E-3 | 2.3802 | 2.1183E-4 | 6.7852 | 11
80 | 4.3038E-5 | 4.9101 | 68 | 4.2586E-4 | 3.1917 | 4.2829E-5 | 4.9459 | 11
160 | 9.9196E-6 | 4.3387 | 33 | 1.2139E-4 | 3.5082 | 9.5899E-6 | 4.4661 | 13
320 | 2.3288E-6 | 4.2595 | 100 | 3.3165E-5 | 3.6602 | 2.3164E-6 | 4.1400 | 16

We also compare harmonic averaging with our method with harmonic averaging as the
initial guess for the cases C' = 0, b = 0.1 and C = 0, b = 0.001. We set the GMRES
error tolerance to be 10~ for these cases and use the relative error 7+ to show the results.
In Table 5.5 and Table 5.6, we also observe a second order pattern for our method with

harmonic averaging as the initial guess.
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Table 5.5: A grid refinement analysis in the maximum norm of the finite difference method
for C =0, b=0.1.

C =0, b=0.1, GMRES error le—4

HA with initial HA
N Too ratio T'oo ratio k
21 | 2.4260E-3 1.2353E-02 8

41 | 1.9517E-3 | 1.2430 | 2.3693E-03 | 5.2138 | 11
81 | 1.1450E-3 | 1.7045 | 5.6211E-04 | 4.2150 | 14
161 | 6.1808E-4 | 1.8525 | 1.3889E-04 | 4.0472 | 21
321 | 3.2563E-4 | 1.8981 | 3.1969E-05 | 4.3446 | 29

Table 5.6: A grid refinement analysis in the maximum norm of the finite difference method
for C' =0, b= 0.001.

C =0, b=0.001, GMRES error le—4

\ HA | with initial HA
N Too ratio Too ratio k
21 | 2.2187E-3 1.2025E-2 9

41 | 1.7974E-3 | 1.2344 | 2.2838E-3 | 5.2653 | 13
81 | 1.0469E-3 | 1.7169 | 5.3352E-4 | 4.2806 | 16
161 | 5.6346E-4 | 1.8580 | 1.3036E-4 | 4.0927 | 26
321 | 2.9688E-4 | 1.8979 | 2.6186E-5 | 4.9782 | 38
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Harmonic averaging can not give a good initial guess for problems where C' # 0. We
need to use other methods such as Peskin’s immersed boundary method to obtain a good
initial guess. A more natural way is to use our method on a coarse grid which consists of
the even-numbered grid points of the fine grid (original grid) with stepsize h to obtain a
better initial guess. If we obtain (U9)%", U?" from a coarse grid, then we can use a second
order least squares interpolation to get a better initial guess (U9)" for the fine grid. We
show the results for the cases C' = 0.1, b = 0.1 and C' = 0.1, b = 0.001. We set the GMRES
error tolerance to be 107° for these cases and use the relative error 7o to show the results.
In Table 5.7, we also observe a second order pattern for our method with the coarse grid
solution as the initial guess. For the case C'= 0.1 and b = 0.001, on an Intel(R) Xeon(R)
3.0GHz processor with 32GB of RAM, the CPU time of our method with the coarse grid

solution as the initial guess with a 320 x 320 grid is 7 seconds.

Table 5.7: A grid refinement analysis in the maximum norm of the finite difference method
with the coarse grid solution as the initial guess.

GMRES error le—5

C=01,b=0.1 C =0.1, b=0.001
N Too ratio k Too ratio k
41 | 2.0259E-3 15 | 1.9470E-3 17

81 | 4.6540E-4 | 4.3531 | 20 | 4.4413E-4 | 4.3839 | 22
161 | 1.1314E-4 | 4.1134 | 26 | 1.0814E-4 | 4.1070 | 31
321 | 2.5047E-5 | 4.5171 | 34 | 2.3518E-5 | 4.5982 | 41
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Chapter 6

Conclusions and future work

In this thesis, we have proposed finite element methods for solving elliptic and elasticity
problems with interfaces using locally modified meshes. The locally modified mesh is easy
to generate from a Cartesian mesh in which some nodal points near the interface are moved
on the interface. For elliptic problems with interfaces, the finite element method using the
modified mesh is compared with another modified mesh, locally enriched triangulations also
based on a Cartesian mesh, in which new nodal points are added on the intersection between
grid lines and the interface. The locally enriched triangulation is also easy to generate.
Based on our numerical experiments both meshes lead to second order accurate solution for
elliptic problems with interfaces. With the adaptation, the triangles are quasi-uniform and
the mesh maintains the Cartesian structure. In particular, the Cartesian structure is useful
when storing matrices and developing iterative solvers. Neither of these properties hold for
the locally enriched meshes.

We have also proposed a new second order finite difference method for solving elliptic
problems with interfaces which can be easily extended to elasticity problems with interfaces.
By introducing some ghost values where the 5-point stencil contains the interface, we can
use the standard finite difference scheme at all the grid points. With ghost values, we use
the interface conditions to set up the equations for the ghost values. We test our method
with different initial guess and find that our method with the coarse grid solution as the
initial guess is a good choice for interface problems.

There are a lot can be done in future work:

1. Apply the finite element methods with a locally modified mesh to the moving interface
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problems.

. Extend the finite element methods to three dimensional (3D) problems. The interfaces
are surfaces in 3D instead of curves in 2D. To form a locally modified mesh, starting
form a Cartesian mesh, we propose to move the grid points near the interface onto
it. This will lead to a hexahedral grid. We will develop a systematical way to divide

each of the hexahedrons into six tetrahedrons.

. Use a two-grid correction or even a multigrid method to reduce the number of the

GMRES iterations.
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