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MENG, ZHAOLING.  Statistical Topics in Disease Gene Mapping (Under 

the direction of DRS. BRUCE S. WEIR AND MARGARET G. EHM) 

Efforts in disease gene mapping have achieved a great deal of success in mendelain 

diseases, but made slower progress in common disease studies because of their 

complexity. The rapid development of genetics and molecular technologies provides an 

immense amount of DNA data; developing powerful and efficient statistical 

methodologies is under high demand. This dissertation explored some aspects of the 

problem. The power of two genome-wide disease gene mapping strategies is investigated. 

One applies linkage analysis and then linkage disequilibrium (LD) tests to markers within 

linked regions. The other looks for LD with disease using all markers. The results showed 

that the genome-wide association based tests are much more likely to identify genes. 

Genotyping closely spaced Single Nucleotide Polymorphisms (SNPs) frequently yields 

highly correlated data due to extensive LD, and gives association studies unnecessary and 

unaffordable burden when these markers don’t yield significantly different information. 

Two procedures are developed to select an optimum subset of SNPs that could be 

efficiently genotyped on larger numbers of samples while retaining most of the 

information based on genotypes of a large initial set of SNPs on a small number of 

samples. One utilizes a spectral decomposition method based on matrices of pair-wise 

LD, and the other extends David Clayton’s htSNP selection method. Properties of the 

procedures are studied; minimum sample sizes needed for achieving consistent results are 



 

recommended; the procedures are evaluated using experimental data. Studying gene-

treatment interaction is a long desired problem. When the genetic variation that is being 

tested is not specific functional sites but randomly selected polymorphisms, a source of 

randomness is introduced. A mixed effect model is developed to fit fixed treatment 

effects, random haplotypic effects, and random gene-treatment interactions in this 

scenario; likelihood ratio tests are applied for testing the random effects. Our simulation 

results showed that the mixed effect model is valid and generally behaves better than the 

fixed haplotypic effects model in the exploratory phase of a study.   
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1.1 Complex trait gene mapping 

Studying genetic variation, especially mapping human drug response and disease susceptibility 

genes, has drawn increasing attention since the near-completion of human genome sequencing 

(Venter et al. 2001; Lander et al. 2001). With a lot of fruitful results accomplished since 1913 

(Sturtevant 1913), mapping genetic traits remains a hard task. One main reason is that mapping 

genes is always like fishing in a sea of large size genomes, such as the human genome consisting 

of 3×109 base pairs. Another reason is the complexity of genetic traits such as incomplete 

penetrance, genetic heterogeneity, and polygenic inheritance. Due to the development of 

technologies and methodologies, the detection can be conducted based on the relations between 

inheritance patterns of a trait and chromosome components located by genetic markers, instead 

of the knowledge of the gene functions (Nakamura et al. 1987; Lander and Schork 1994). Most 

frequently used methods include linkage analysis (including model based and allele sharing 

methods), association studies, and experimental crosses.  

 

Linkage analysis methods rely on the assumption that the chromosome region closely linked to 

the disease mutation allele tends to be conserved in pedigrees and leads to a certain inheritance 

pattern of this chromosome piece among affected individuals. With current genotyping 

techniques, linkage analysis is widely applied to genome-wide gene mapping based on several 

hundred markers spread across the genome. It has been utilized for a relatively long time and 

quite successful in mapping Mendelian diseases (Kerem et al. 1989) and some complex disease 

such as Alzheimer’s disease and psoriasis (Pericak-Vance et al. 1991; Tomfohrde et al. 1994). 

Model-based linkage analysis methods are believed to be more powerful if the model parameters, 

such as penetrance functions or the underlying genetic models, are correctly specified. But the 
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results can be misleading if specified parameters do not mimic the reality correctly. On the other 

hand, allele-sharing methods are usually non-parametric, more robust, but presumably less 

powerful. The success of the linkage analysis in mapping complex human traits is still limited. 

Multiple genes with intermediate or small effects are believed to be the genetic basis of the 

complex traits. Based on their calculations, Risch and Merikangas (1996) predicted that linkage 

analysis would require unrealistic large sample sizes to obtain the statistical power required to 

detect relatively medium or small genetic effects comparing to the effects of some Mendelian 

diseases, and therefore might not be suitable for mapping complex traits. Several multi-point 

linkage analysis methods (Kruglyak et al. 1996; O'Connell 2001) were proposed and presumed 

to be more powerful than single-point methods (Penrose 1953; Elston and Stewart 1971). 

Obtaining large pedigrees is also considered crucial. However, their further achievements are 

still under inspection. Another limitation of linkage analysis is that the size of the detected region 

usually extends over more than 1cM (approximately 1000kb in human genome), which might be 

too large to pinpoint the targeted trait gene. Narrowing down a linkage region depends on the 

number of recombinations in the pedigree, which, in turn, depends on the number of meioses, 

pedigree structure and the sample sizes.  

  

Association analysis methods are more “population based’ in a sense that they try to locate the 

trait locus of interest by detecting the differences in marker allele frequencies between cases and 

matched controls from a population. The marker (markers) showing a significant difference is 

assumed to be either the trait locus or in linkage disequilibrium (LD) with it. The length of the 

detected region in an association study depends on a sample representing the recombination 

patterns and the evolution history of the population under study as whole, and therefore usually 
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much smaller than that from linkage analyses, which depends the patterns within families. It 

might vary in different chromosome regions from 1 kb to several hundred kb and from 

population to population. Relying on the inheritance pattern of a whole population, association 

studies are believed to have more power in mapping complex trait genes with small or 

intermediate effects (Jorde 1995). Therefore, they play more and more important roles in 

complex trait mapping (Ryder et al. 1979; Martin et al. 2000). Currently, most association 

studies are conducted on either candidate genes or pre-identified linkage regions. On the other 

hand, genome-wide association studies rely on relatively short distances of LD, and hence are 

constrained by the required high marker density, corresponding high genotyping costs and lack 

proper analysis methods. However, the fast development of high throughput single nucleotide 

polymorphism (SNP) genotyping techniques (Prince and Brookes 2001; Cutler et al. 2001) and 

statistical analysis methods are expected to be able to address these problems in the near future.  

 

Utilizing unrelated population case-control samples is a major advantage of the association 

studies since the samples are relatively easy to obtain, but also a major limitation. Spurious 

associations could be caused by population stratification or recent population admixture (Weiss 

1993), and by any markers confounding with trait locus of interest. Furthermore, the effects 

might be presented even after a careful matching of cases and controls. Two approaches were 

proposed to solve this problem. One relies on within family controls (Spielman et al 1993; 

Knapp et al 1993). Within family controls also provide good matches for the environments, 

although the concern of losing power due to over-matches of siblings was also raised (Risch and 

Teng 1998). The other approach is to develop methods either correcting or detecting 

stratification (Devlin and Roeder 1999; Pritchard and Rosenberg 1999; Pritchard et al. 2000). 
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Although the possible spurious association is the most frequently raised problem of the 

association studies, its effect on false positive findings is still unclear. 

 

Experimental crosses have been also widely applied to genetic trait mapping and have already 

made great contributions to the study of human complex diseases like diabetes and obesity 

(Forsell et al. 2000; Hamilton-Williams et al. 2001). Although their applicability is limited in 

studying certain human genetic traits, experimental crosses are viewed to be powerful and even 

the “limit-breaking” tool in future genetic variation studies. These methods have the advantage 

of relying on the relative genetic homogeneity of animal or plant models and the ability to study 

a relatively large number of animal or plant generations at a time. Therefore, they can be 

employed to solve the genetic heterogeneity problem in the complex traits.  

 

Replicating positive findings is essential in proving that the findings are true positives in any 

study. Contradicting reports about the same regions or genes are often seen in genetic trait 

mapping. One possible reason is false positives in some studies. Another possibility is lack of an 

appropriate design in the replicated studies. Therefore, replications need to be carefully selected 

to avoid the heterogeneity from the data showing the original positive signal, and large enough to 

possess the statistical power of replicating the original signal (Lernmark and Ott J1998). The 

biological and experimental proof should be considered critical and might be considered as the 

only “real” proof.  

 

1.2 Power comparison of genome wide disease gene mapping strategies. 

As mentioned above, linkage studies have been widely applied to genome wide gene mapping, 
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but usually give resolutions larger than 1cM subject to pedigree structure and sample sizes. 

Therefore, association studies are usually conducted to do fine mapping under linkage peak 

showing significant signals. Furthermore, linkage analysis might lack statistical power to detect 

moderate genetic effects of complex diseases. On the other hand, association tests have the 

ability to narrow disease susceptibility regions down to 1-100kb depending on the extent of LD, 

and are believed to be more powerful than traditional linkage studies. However, conducting a 

genome-wide association study requires a large genotyping effort due to the required high 

marker density. These pros and cons of both approaches lead to the question of which of the two 

genome-wide gene mapping strategies, applying association tests as a primary approach vs. as a 

follow-on to family-based linkage studies, has more power in genome wide studies.  

 

In chapter 2, these two approaches were investigated utilizing GAW12 simulated data and 

methodologies suitable for the pedigree structure under study. Furthermore, a strategy of using 

Simes test (Simes 1986) as a method for combining results from LD tests of adjacent markers 

was investigated in order to control false positives. The results showed that the genome-wide 

association based tests are much more likely to identify genes, although a denser map of markers 

is required. The results were published. (Meng Z, Zaykin DV, Karnoub MC, Sreekumar GP, St 

Jean PL, Ehm MG. “Identifying susceptibility genes using linkage and linkage disequilibrium 

analysis in large pedigrees.” Genet Epidemiol. 2001; 21 Suppl 1:S453-8.) 

 

1.3 LD structure study and marker selection for association studies  

One limitation of the association studies is the high genotyping cost due to the required high 

marker densities and large sample sizes in complex trait gene mapping. The intention of high 



 7

marker densities is to increase the chance of either including disease susceptibility loci or 

markers in LD with them and to provide enough statistical power to detect them. The current 

development of high-density maps of Single Nucleotide Polymorphisms (SNPs) provides a great 

source for such markers. However, genotyping of closely spaced SNPs frequently yields highly 

correlated data due to extensive LD between markers, it might be considered as “wasting 

resources” when these markers don’t yield significantly different information in association 

studies.  

 

Several recent studies investigated the empirical LD structure on different human chromosomal 

regions, and discovered that LD appears to be organized in block-like structures. Within these 

“blocks”, limited genetic variation was observed. Daly et al. (2001) analyzed 516 chromosomes 

from a European-derived population typed for 103 SNPs in a 500 kb region on chromosome 

5q31, and found the region could be decomposed into discrete haplotype blocks, which spanned 

up to 100 kb and contained 5 or more common SNPs. Johnson et al. (2001) scanned 135 kb of 

DNA, genotyped 122 markers in 9 genes, and determined haplotypes in a minimum of 384 

European individuals. They advocated determining haplotypes as an approach that would 

provide the relationships between all alleles in the region. Based on all these observations, 

researchers raised a possibility of developing the “haplotype map” for human, which is a map 

consisting of haplotype blocks and SNPs in relatively low LD linking between blocks. Because 

of the low genetic diversities within blocks, only a relatively small number of SNPs is required 

to retain most of the information. Therefore, the association studies can provide a much clearer 

picture by conducting analyses based on haplotype blocks and much lower cost for genotyping. 

However, there were also doubts about the existence of haplotype blocks (Couzin 2002); 
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simulation results showing that the required SNP number might be much larger (Kruglyak 1999). 

The future of the haplotype map is still unknown, and its impact on association studies still 

requires further investigation. 

 

Regardless of these contradictory views, using LD or haplotype information to select a subset of 

SNPs that optimizes the information retained in a genomic region while reducing the genotyping 

cost and simplifying the analysis without relying on “haplotype blocks” is still possible and can 

be quite helpful in association studies. In chapter 3, two procedures are developed to achieve this 

goal. One utilizes a spectral decomposition method based on matrices of pair-wise LD between 

markers, and the other extends David Clayton’s htSNP selection method. The procedures require 

genotype information for a large initial set of SNPs on a small number of samples to select an 

optimum subset of SNPs that could be efficiently genotyped on larger numbers of samples while 

retaining most of the information on genetic variation. The properties of these procedures were 

studied using simulated data sets; minimum sample sizes needed for achieving consistent results 

were recommended; the procedure performances were evaluated using experimental data sets 

with measures of haplotype information; the possible impact of the marker selection on the 

association study was illustrated using a real example.  

 

1.4 Mixed model for association study considering drug and gene-drug 

interaction 

Investigating genetic effects and gene×treatment interactions is essential in determining 

individual differences in drug responses, a long desired problem in clinical trial studies. With this 

knowledge, we will have more confidence in reducing drug adverse events and prescribing the 
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right treatment to the right person. In order to study how genes are related to efficacy and safety 

of a medicine, multiple markers are genotyped in candidate genes on samples collected in 

clinical trials. Challenges for analysis include lack of validated statistical genetic methods, 

multiple correlated genetic markers, and low sample sizes. Quantitative response traits are of 

interest because they better reflect drug pharmacokinetics and pharmacodynamics, therefore 

provide more information on drug responses. Models taking into account the nature of genetic 

data including allelic, genotypic and haplotype effects are critical to extracting maximum 

information.  

 

A linear regression approach considering genetic, treatment effects and their interactions directly 

should address this problem well. However, further studies are needed to understand the effects 

of the multiple factors involved, such as the nature of genetic effects, gene-drug interactions, and 

marker spacing in candidate genes, since the testing powers of different models, and “the best” 

approach vary under those effects. Therefore, in chapter 4, a model is proposed to separate the 

genetic effect into haplotype allelic additive effects and dominant effects of multiple markers in 

the candidate genes (Weir and Cockerham 1977; Zaykin et al. 2002), model the treatment, 

haplotypes additive effects, and treatment-haplotype interactions, and relate these effects to a 

quantitative trait. Furthermore, the variance components of a marker locus were related to those 

of a functional trait locus through genetic effects of trait alleles, LD between trait locus and 

markers, as well as their allele frequencies. Therefore, randomly genotyping markers in the 

candidate genes or regions of interests will introduce uncertainty into the study when the typed 

markers are not functional sites in question. Hence, more appropriate statistical models are 

required. A random effect model is proposed to treat haplotype effects and treatment-haplotype 
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interactions as random to account for this uncertainty. The model is compared to an analysis of 

variance approach with single marker genotypic classes and haplotype effects treated as fixed 

effects, and the power of utilizing multiple markers with a haplotype approach versus single 

markers is illustrated using simulated data.  
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SUMMARY  

 
 
Linkage and linkage disequilibrium tests are powerful tools for mapping complex disease genes. 

We investigated two approaches to identifying markers associated with disease. One method 

applied linkage analysis and then linkage disequilibrium tests to markers within linked regions. 

The other method looked for linkage disequilibrium with disease using all markers. Additionally, 

we investigated using Simes test to combine p-values from linkage disequilibrium tests for 

nearby markers. We applied both approaches to all replicates of the GAW12 problem 2 isolated 

population data set. We reported results from the 25th replicate as if it were a real problem and 

assessed the power of our methods using all replicates. Using all replicates, we found that testing 

all markers for linkage disequilibrium with disease was more powerful than identifying markers 

that were in linkage with disease and then testing markers within those regions for linkage 

disequilibrium with the implementations that we chose. Using Simes test to combine p-values for 

linkage disequilibrium tests on correlated markers seemed to be of marginal value. 
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INTRODUCTION 
 
 

In this paper, we aim to compare the strategies of identifying markers in linkage 

disequilibrium within regions linked to disease versus identifying markers in linkage 

disequilibrium across the genome. Furthermore, we investigate the strategy of using Simes test 

as a method for combining results from linkage disequilibrium tests for nearby markers. We 

analyzed GAW12 simulated data using one linkage analysis method  (SimIBD) applied to a 

10cM map of markers to identify broad regions likely to contain disease genes and then one 

linkage disequilibrium analysis method (PDT) applied to all markers within those regions.  We 

compared the results to applying another LD analysis method (Transmit) on all markers. We 

investigated use of the Simes test to combine results from linkage disequilibrium tests for 

adjacent markers. We feel that these are reasonable approaches for identifying markers nearest to 

disease genes without an abundance of false positives. 

 

The present study was completed on all the replicates of the isolated population for 

GAW12 problem 2. We investigated the affection status trait provided to search for disease 

susceptibility genes. To illustrate our approaches, we report the results for the 25th replicate. We 

estimated the power to find each of the 7 genes for a preset equal false positive rate for both 

approaches. The GAW12 problem 2 data set included 2855 STR markers with an average inter-

marker distance of 1 cM in each replicate. 
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METHODS 

 

We selected a single-point linkage analysis method, SimIBD [Davis, et al., 1996], to 

investigate linkage of the affection status trait with genetic makers. This method was selected for 

its speed and ability to analyze large pedigrees.  SimIBD presents a non-parametric simulation-

based statistic, which measures identity by descent sharing of alleles between affected relative 

pairs, reports a normalized Z statistic, weighted using population allele frequencies and gives a 

conditional empirical p-value. An empirical null distribution is determined by simulating marker 

genotypes in the affected subjects conditional on the marker genotypes in the unaffected 

subjects. The p-value reported is determined by the proportion of points in the null distribution 

that has a Z value greater than the observed Z statistic. To imitate a genome scan approach, we 

selected one marker every 10cM for analysis. We thought that it was a reasonable approach 

since, for micro-satellite makers, adding markers at a finer density isn’t likely to increase the 

information available for linkage: linkage usually extends more than 10cM. We defined a linkage 

region as significant if the p value at a peak was less than 0.05. The region started from the first 

marker with a p value greater than 0.17 (Lod score = 0.2) to the left of the peak to the first 

marker with a p value greater than 0.17 to the right of the peak. 

 

To identify markers in linkage disequilibrium with disease within linkage regions, we 

applied the transmission disequilibrium test [Spielman, et al., 1993] using the PDT program 

[Martin et al., 2000]. PDT uses data from affected and unaffected individuals in related nuclear 

families in extended pedigrees.  It calculates a statistic, T, which sums weighted transmission 

information from discordant sibling pairs and trios within the pedigrees. Under the null 
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hypothesis of no association in the presence of linkage, this statistic is asymptotically normal 

with mean 0 and variance 1. When investigating age of onset and age of exam, we noted that 

many of the individuals identified as unaffected were examined at ages that were considerably 

less than the mean age of onset. We suspected that some people classified as unaffected should 

have been called unknown, because they were too young to develop the disease. By investigating 

the distributions for age of onset in affected people and age of exam in unaffected people, we 

decided that individuals needed to be at least 45 years at exam to be identified as unaffected with 

disease. Individuals less than 45 years at exam and not affected, were assigned an unknown 

affection status. Then we calculated the above statistic using the new affection status. The p-

values reported were based on the normal distribution.  

 

We applied the transmission disequilibrium test using Transmit [Clayton D, 1999] to test 

for linkage and association using all the markers, not just ones within linkage regions. This 

method calculates a score test based on a partial score function that omits the terms most 

influenced by hidden population stratification. The test is proposed for the situation in which 

transmission is uncertain and is applied to all nuclear families within the extended families. 

Under the null hypothesis of no linkage or association, the score vector asymptotically follows a 

χ2 distribution with degrees of freedom (df) equal to H-1 where H is the number of distinct 

alleles. The reported statistic uses transmission information only to affected individuals. It has 

been shown [Clayton D, 1999] that the Transmit statistic is still valid while using all the affected 

siblings, even when you are assuming linkage. However, linkage induces a correlation structure 

within distant pedigree members that is not taken into account in the implementation of Transmit 

that was available to us. Since we were using the entire extended pedigrees when calculating the 
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Transmit statistic, we tested the null hypothesis of no linkage and no association.  This is distinct 

from the PDTest, which is a valid test for association in the presence of linkage. Because the 

Transmit test requires the assumption of Hardy-Weinberg equilibrium, we tested each marker to 

see if the genotype frequencies were in HWE. 

 

To identify significant regions of linkage disequilibrium based on statistics calculated 

with correlated markers, we applied Simes test [Simes, RJ 1986], which is a method for testing 

the intersection of hypotheses and controlling type 1 error for the whole set. Sarkar and Chang 

[1997] proved that it was applicable to positively correlated dependent hypotheses.  Simes test 

reports a combined p-value for a set of p-values based on the following formula, where p[i] is the 

ith order statistic and n is the number of p-values in the set.  
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We applied Simes test replacing the p-value of the middle marker by the combined p-value from 

the first n markers starting from the p-ter of the chromosome. Note that this would control the 

type 1 error rate of only the n markers, if we had one fixed. However, we are using this method 

as a smoothing technique for highly variable p-values. We continued this for each set of n 

markers in a sliding window across the chromosome. To determine the window size, we 

calculated the correlation of the marker p-values for the PDT and the Transmit results. The size 

of the window remained constant for each method. We assumed that the markers were equally 

spaced and the autocorrelation depended only on the number of markers between the two 

markers rather than either of the markers themselves. 
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We analyzed all 50 replicates using these 4 methods (1-SimIBD & PDT, 2-Transmit, 3-

SimIBD, PDT with Simes, and 4-Transmit with Simes). When comparing the markers with 

significant linkage disequilibrium tests to the “Answers”, any marker was a true positive if it was 

3 cM either to the left or to the right of the disease gene. Applying SimIBD and PDT tests 

sequentially to the data made it difficult to control the type I error for each approach. Applying 

Simes test complicated this further. To make the comparison of these 4 methods fair, we adjusted 

the α level used for each test within each approach so that the observed false positive rate, for the 

approach, was close to 0.05. 

 

The observed false positive rate was calculated as the proportion of all markers tested 

identified as significant that were not within 3cM of a gene. We summarized the number of times 

we identified each major gene in 50 replicates and computed the true discovery rate (the number 

of true positives over the total number of positives) for each approach. 



 22

RESULTS 

 

We didn’t find any evidence against the HWE assumption. The p-values of linkage 

disequilibrium analysis results (PDT and Transmit) were positively correlated and the average 

correlation extended to 3 markers. We smoothed the PDT and the Transmit results using Simes 

test with window sizes of 3. 

 

Replicate 25 

 

We controlled the false positive rate to be 0.05 for all approaches by choosing a different 

α-level for each test as follows: when applying Simes test, the α−level was 0.05 for SimIBD, 

0.09 for PDT and 0.03 for Transmit. Without Simes test, the α-level was 0.05 for SimIBD, 0.07 

for PDT, and 0.05 for Transmit. The results are summarized in Table 1. For each linkage region, 

we listed the boundaries of the region and the peak marker name along with the corresponding p-

values. For each set of markers showing significant linkage disequilibrium, we listed p-values 

only. Analysis using Transmit resulted in so many significant results that, we listed only the first 

12 most significant ones. 

 

We identified 12 linkage regions and 4 LD regions under the linkage regions (SimIBD & 

PDT). Among them, the region D09G120-122 contains MG3. The true discovery rate for regions 

was 25.0% (1/4) considering 4 regions identified by PDT. Transmit identified 41 LD regions 

looking for linkage and association (not all listed). Among them, the region D06G032-043 
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contains MG6 & MG7 and the region D19G026-032 contains MG1. The true discovery rate was 

4.9% (2/41). 

 

Power Study 

 

We counted the number of times each major gene was found in the 50 replicates, and 

summarized the results in Table 2. We also listed the average number of tests applied, the true 

discovery rate and the false positive rate for each approach. 

 

Comparing the SimIBD & PDT approach to the Transmit approach, we can see that a 

genome-wide association test did increase our chances of finding the disease genes. Applying 

Simes test reduced our power to locate disease genes, but a greater percentage of the markers we 

identified as significant were near genes. 
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DISCUSSION 

 

We analyzed GAW12 simulated data to compare the two commonly used strategies of 

identifying disease genes (linkage disequilibrium analyses within regions linked to disease and 

linkage disequilibrium analyses across the genome). Neither of these two approaches was 

extremely powerful, but our results show that genome wide linkage disequilibrium analyses 

increase the chance of finding genes compared to the linkage and association strategy. The above 

conclusion is only based on the implementations we chose in this paper. A possible shortcoming 

is that the number of markers to be typed will be significantly higher, but the probability of 

finding the genes using any replicate is also much higher with in this approach. Our approach of 

using Simes’ test for smoothing p-values is similar in spirit to the method of Goldin, et al., 

[1999] who suggested that p-values could be averaged across certain genetic distances. The 

underlying idea of such approaches is that multiple significant results in a chromosomal region 

provide more support for the presence of a gene than a single significant result. Thus, the false 

discovery rate might be decreased. For similar reason, Juo, et al., [1997] required that the p-

values for flanking markers around significant tests must also show the tendency to be “small”, if 

not significant.  Terwilliger, et al., [1997] and Knapp [1998] presented theoretical considerations 

pointing out that the positive correlation between test statistic values extends further around true 

positives. We have chosen Simes’ test based on preliminary simulation study (data not shown) 

that revealed its better performance.  Both approaches (averaging and applying Simes’ test) 

however suffer from the fact that the resulting overall p-value cannot possibly be smaller than 

the minimum p-value in the window. As a consequence, the power can be reduced, and Table 2 

indicates this. On the other hand, Table 3 shows that the true discovery rate is somewhat 
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increased. During analysis of GAW12 simulated data sets, Hardy et al. (personal 

communication) used another method proposed by Zaykin, et al., [2001] that may not suffer 

from the mentioned potential loss of power, allowing the overall p-value to be smaller than the 

minimum in the combined set. Further study is needed to compare suggested techniques. Both, 

original and smoothed sets of significant results show that the genome-wide association based 

tests (i.e. Transmit) are much more likely to identify genes, although a denser map of markers is 

required. 
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 Table 2.1 Analysis result for isolate replicate 25 
 

SimIBD SimIBD & PDT with 
Simes 

Transmit  with Simes 

Linkage 
regions 

Marker & p-
value at peak 

LD 
regions 

p value 
at peak 

LD regions p-value at 
peak 

D01G115
-143 

D01G120 & 
0.0061 

  D01G050-052 0.0009 

D02G167
-186 

D02G177 & 
0.0241 

  D01G126-128 0.0045 

D03G010
-057 

D03G023 & 
0.0037 

D03G024-
026 

0.0858 D03G043-045 0.0001 

D03G057
-073 

D03G065 & 
0.0208 

  D04G153-155 0.0015 

D04G010
-032 

D04G026 & 
0.0214 

  D05G045-050 0.0012 

D05G112
-142 

D05G132 & 
0.0089 

  D06G032-043* 0.0003 

D06G085
-119 

D06G097 & 
0.0472 

  D06G055-057 0.0024 

D06G129
-152 

D06G146 & 
0.0257 

D06G142-
144 

0.0303 D08G055-071 0.0018 

D09G102
-129 

D09G110 & 
0.0197 

D09G120-
122* 

0.0432 D12G050-052 0.0021 

D18G086
-106 

D18G103 & 
0.0091 

  D13G073-075 0.0001 

D19G102
-105 

D19G105 & 
0.0130 

  D16G107 0.0030 

D22G010
-026 

D22G016 & 
0.0169 

D22G024-
026 

0.0678 D19G026-032* 0.0015 
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Table 2.2 Number (percentage) of replicates correctly identifying each of the 7 major genes 
 

 With Simes Without Simes 
Major 
Gene 

Linkage & 
PDT 

Transmit Linkage & 
PDT 

Transmit 

MG1 3  ( 6%) 4  ( 8%) 1  ( 2%) 8  (16%) 
MG2 0  ( 0%) 5 (10%) 1  ( 2%) 14 (28%) 
MG3 1  ( 2%) 4  ( 8%) 1  ( 2%) 14 (28%) 
MG4 0  ( 0%) 4  ( 8%) 0  ( 0%) 10 (20%) 
MG5 1  ( 2%) 7 (14%) 2  ( 4%) 12 (24%) 
MG6 8 (16%) 44 (88%) 10 (20%) 49 (98%) 
MG7 7 (14%) 41 (82%) 10 (20%) 47 (94%) 
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Table 2.3 False positive and true discovery rates over all 50 replicates 
 

With Simes Without Simes  
Linkage & 

PDT 
Transmi

t 
Linkage & 

PDT 
Transm

it 
Total no. of markers 

tested 
15458 142750 15643 142750 

Total no. false 
positives 

765 6947 762 7291 

Total no. true 
positives 

38 294 24 233 

False positive rate 4.95% 4.87% 4.87% 5.10% 
True discovery rate 4.73% 4.06% 3.05% 3.10% 
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Chapter 3 

 

 

  

Selecting Genetic Markers for Association 

Analyses Using LD and Haplotypes 
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Abstract 

Genotyping closely spaced SNP markers frequently yields highly correlated data due to 

extensive linkage disequilibrium (LD) between markers. The extent of LD varies widely across 

the genome, and drives the number of frequent haplotypes observed in small regions. Several 

studies have illustrated that it may be possible to use LD or haplotype data to select a subset of 

SNPs that optimizes the information retained in a genomic region while reducing the genotyping 

cost and simplifying the analysis.  Generally applicable methods are needed to select a minimum 

subset of SNPs sufficiently retaining most information provided by haplotypes observed in a 

region.  We proposed a spectral decomposition method based on the matrices of pairwise LD 

between markers, modified David Clayton’s htSNP selection method that utilizes haplotype 

information, and proposed algorithms allowing the methods to be applied to large chromosomal 

regions. Our procedures require genotype information for a large initial set of SNPs on a small 

number of individuals, and select an optimum subset of SNPs that could be efficiently genotyped 

on larger numbers of samples while retaining most of the genetic variation in samples. We 

studied the properties of procedures using simulated data sets in linkage equilibrium and 

disequilibrium, and reported minimum sample sizes needed for consistent results. Procedures 

were applied to experimental data sets with SNPs at average densities of one SNP every 20 or 30 

kb and evaluated using haplotype information measures. Both procedures were similarly 

effective at reducing the genotyping requirement while maintaining the genetic information 

content throughout the regions. We also illustrated the procedure impact on an association study 

result in a region around the CYP2D6 gene (Hosking et al. 2002).    
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Introduction 

Efforts to positionally clone susceptibility genes for common, oligogenic diseases have led to the 

development of high-density maps of Single Nucleotide Polymorphisms (SNPs) distributed 

across the human genome (Sachidanandam et al. 2001). Theoretical studies have suggested that 

association tests employing such high-density SNP maps, either as a primary approach or as a 

follow-on to family-based linkage studies, should be more powerful in detecting disease 

susceptibility genes than traditional linkage approaches (Risch and Merikangas 1996).  However, 

the precise numerical meaning of “high-density” is a matter of debate, and has significant 

implications on the cost and practicality of conducting SNP association studies. An optimum 

strategy would be to genotype enough SNPs to capture the large majority of information on 

genetic variation within a defined chromosomal region while avoiding typing SNPs that yield 

redundant information due to extensive linkage disequilibrium (LD) between nearby SNPs.  

Defining the optimum set of SNPs will require knowledge of the patterns of linkage 

disequilibrium across the human genome. 

 

Recently, several studies investigated the empirical LD structure on different human 

chromosomal regions, and discovered a common pattern that LD appears to be organized in 

block-like structures, where a contiguous group of SNPs comprising a block show high levels of 

pair-wise LD between SNPs and where there is little LD between SNPs in different blocks. 

Authors (Subrahmanyan et al. 2001; Daly et al. 2001; Johnson et al. 2001; Dawson et al. 2002; 

Gabriel et al. 2002; Patil et al. 2001) have reported block-like LD structures showing 

considerable spatial variation across different genomic regions, extending up to several hundred 

kb, and exhibiting differing boundaries in samples from different ethnic groups. Reduced 
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haplotype diversities within blocks, given the number of SNPs involved, are observed not only in 

genotype data with numerically inferred haplotypes, but also in experimentally determined 

haplotype data (Patil et al. 2001). The reduction of haplotype diversities suggests the possibility 

of identifying SNPs to define the common haplotypes thereby reducing the number of markers 

needed to capture the majority of the genetic information about the region. A procedure that 

utilizes genotype information on a small number of samples to prioritize SNPs for typing on a 

large number of samples could be useful in increasing the experimental efficiency in any project 

involving a high-density map of SNPs. Examples include testing multiple SNPs within a 

candidate gene for association, fine-mapping a region identified using linkage analysis, and 

testing thousands of SNPs as part of a genome-wide association study. Furthermore using a 

technique to identify the most independent and informative SNPs could be helpful in interpreting 

analyses across a region where a large number of highly correlated SNPs have been typed. Such 

a procedure could helping an analyst see real support for the association in a region without the 

redundant information provided by highly correlated SNPs. On the other hand, any “marker 

selection procedure” relies on an arguable assumption that common SNP variation can provide 

high predictive values for risks associated with complex diseases (Couzin 2002). Thus, these 

procedures are only valuable to the extent that the original set of SNPs is useful for association 

mapping purposes. Nevertheless, marker selection can be viewed as a procedure for identifying 

polymorphisms most characteristic of underlying populations.  

 

Several algorithms have been proposed to detect haplotype blocks and (or) select markers.  Patil 

et al (2001) utilized a greedy algorithm to partition the entire chromosome into a set of 

contiguous haplotype blocks while minimizing the total number of representative SNPs that 
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distinguish at least α percent of the unambiguous haplotypes in each block. Zhang et al (2002) 

extend Patil et al’s greedy algorithm to a dynamic programming algorithm, which can guarantee 

an optimal solution for haplotype partitioning. Therefore, both Patil et al and Zhang et al selected 

markers by identifying the minimum number of SNPs distinguishing at least α percent of the 

unambiguous haplotype in the blocks.  These algorithms require haplotype phase known data.  In 

this case, haplotypes were determined experimentally.  These procedures are not applicable to 

unphased genotype data, and rely on their definitions of block boundaries to select markers. 

Other “block defining” algorithms such as those described in Daly et al (2002) and Gabriel et al 

(2002) do not require phase known haplotype data.  Daly et al used a combination of methods 

including familial data and the EM algorithm to estimate haplotype frequencies.  Then they 

initially defined blocks by comparing the observed haplotype heterozygosity with that expected 

assuming Hardy Weinberg Equilibrium within consecutive five markers windows, identifying 

“lower diversity haplotypes cores”, and constructing “blocks” by extending or shrinking two 

ends of the cores until reaching the longest local minimum “blocks”. Next, a hidden Markov 

model was also used to formally define the blocks by assigning observed chromosomes to one of 

the four ancestral haplotypes, accessing the significance of the estimations of the historical 

recombination rate (θ) between each pair of markers. Gabriel et al used D’ and associated 

confidence intervals as a measure of the historical recombination and defined “blocks”. Both 

methods appear to be specific for the particular data sets used and their general applicability is 

not known. Johnson et al (2001) proposed two methods to select markers within genes based on 

gene haplotypes constructed either using the family data or the expectation-maximization (EM) 

algorithm on unrelated individuals. One method orders the haplotypes by their similarities and 

requires selecting SNPs by eye. The other suggests a htSNP diversity method proposed by 
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Clayton (2001) to select haplotype tagging SNPs (htSNPs) to best extract the haplotype 

information in a gene. The first method is difficult to automate, and the second can become quite 

computationally intensive when a large number of markers are considered in a region. (Detailed 

reason is shown later.) Both methods require the predetermination of haplotypes for the region 

considered, which is difficult when the region contains a large number of markers.       

 

It is worth noticing that all the “block detecting” methods mentioned may result in differing 

block boundaries. Given the diversity of methods used to define blocks and conflicting assertions 

as to whether they exist at all (Couzin 2002), we choose to develope marker selection procedures 

that do not rely on defining “blocks”.  Instead, we select a set of SNPs that retain haplotype 

information similar to an original (and presumably) larger set of SNPs. Furthermore, the 

procedure should be applicable to regions with a large number of SNPs, and data sets without 

haplotype phase information or family information. We propose a method based on the spectral 

decomposition of the matrix of the pair-wise linkage disequilibrium coefficients of the markers, 

and compare it to the htSNP diversity method proposed by Clayton (2001). Both methods can be 

utilized to select a subset of markers that maintain haplotype information available from the set 

of markers before selection. The spectral decomposition of the LD matrix is a reductionist 

approach, which considers many pair-wise LD coefficients at one time.  Clayton’s htSNP 

method relies on haplotype information rather than pairwise LD coefficients making it a 

complementary approach. The spectral decomposition method has a population-genetics 

justification and advantages over considering a single pair-wise LD coefficient at a time. In 

addition, we propose a procedure summarizing the information obtained from a sliding window 

approach to allow both methods to be applied in large chromosomal regions. Our procedures are 
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local in that they are applied to genetically proximal sets of markers by considering relatively 

short windows of markers covering genetic distances that are generally less than 500 kb. 

Furthermore, none of the existing marker selection methods have been evaluated using 

quantitative criteria describing the proportion of the information retained in the selected marker 

sets. We compare two local haplotype diversity measures: the haplotype heterozygosity and the 

number of frequent haplotypes before and after application of the procedures to access the 

information retained and measure the success of these procedures. We summarize the results 

from two simulation studies to evaluate the performance of these procedures, apply them to two 

experimental data sets as examples, and also apply them to markers typed around CYP2D6 

where an association has been identified to show how the marker selection procedures impact 

these association study results. (Hosking et al. 2002)   
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Materials and Methods 

We describe two marker selection methods, the procedure extending them to a large 

chromosomal region, two simulation studies to evaluate the procedures, and criteria by which we 

evaluate the performance of the procedures when applied to two experimental data sets. Our 

selection procedures study relatively polymorphic SNPs with minor allele frequency (MAF) of at 

least 0.05.   

   

Spectral decomposition (spD) 

Population genetics theory predicts that the linkage disequilibrium associated with alleles from 

three or more markers decays more rapidly than LD associated with alleles from two markers 

(Bennet 1954). Therefore, it is reasonable to describe dependencies between markers by 

considering only pairwise correlations. Moreover, the precision of estimates and power to detect 

LD associated with alleles from three or more markers quickly diminishes with their order. The 

essence of spectral decomposition is to represent an entire variance-covariance matrix (LD 

matrix in our case) in terms of its eigenvalues and eigenvectors. Since the spectral 

decomposition-based method (spD) that we propose takes into account all pairwise disequilibria 

for a set of markers, it assumes that the LD associated with alleles from three or more markers is 

negligible. Therefore, the method assumes that most of the practically available haplotype 

information can be recovered from pairwise LD and single marker characteristics. Spectral 

decomposition is also the basis for the principal component analysis (PCA). In PCA, the sample 

variation is represented by a few linear combinations (the eigenvectors) of all original variables 

(i.e. SNPs), taken with different weights (the eigenvalues) to reflect their importance. In contrast, 

we examine all eigenvectors (linear combinations of the marker contributions) and eigenvalues 
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(the importance of the corresponding combinations), and retain only a subset of the original 

variables that contribute more to the more important weights.  Note that this procedure allows us 

to consider the pairwise LD coefficients of all markers at once instead of only considering the 

LD measure for a pair of markers at a time.  Let L be the number of markers evaluated.  For a set 

of markers, m1, …, mL, the LD matrix is RLxL with the pair-wise correlation rij as components, 

where ∆ij is the composite LD (Weir 1996) between markers i and j. (See Appendix 1)  

 

Applying the spectral decomposition technique, R can be written as   

 

where ei and λ i are eigenvectors and eigenvalues of R, i = 1, …, L,  and λ1 ≥ λ2 …  ≥ λL.  Note 

that the variables (markers) that contribute more to the eigenvectors associated with the first 

several large eigenvalues, are considered the more influential variables (markers) for that LD 

matrix, R. Variables that contribute more to the eigenvectors associated with subsequent 

eigenvalues, are considered less influential.   

 

To determine if there are variables or markers, which have little or no influence on the LD 

matrix, the following Lr index is calculated (See Appendix 2):  
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Lr equal to 0 indicates that all the markers in the set provide important information and the whole 

set should be kept. This measure is derived by examining the conditions of extreme 

disequilibrium and complete independence.  We find it useful in identifying when no SNPs 

should be eliminated from the set.  If Lr > 0, the actual number of markers to be retained, x, is  

most precisely determined from the inequality:                                                                                                

 

where α is the proportion of information retained (proportion of variation explained).  Therefore, 

we retain markers while the sum of the eigenvalues corresponding to the eigenvectors they 

contribute more is a high proportion of the sum of all eigenvalues.  Appropriate levels for α will 

be investigated in the simulation studies.   

 

It is not always clear which marker contributes more to which eigenvalue or eigenvector.  To 

sharpen marker loadings to particular eigenvectors, we apply the varimax-rotation procedure to 

the original set of eigenvectors, E ={e1, …, eL}. This procedure finds an orthogonal 

transformation T, E* = ET that will confine influence of each marker to a particular eigenvector. 

For each marker, mj, compute the following:  
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where ejv* is the jth element of vth eigenvector of E*. Marker, mj, is selected if  Γj > ϒj. That is, 

this marker contributes more to the more independent variations than the redundancy. 

 

Haplotype diversity (div) 

Clayton (2001) proposed the following method to select a subset of SNPs using haplotype 

information.  Let N be the total number of haplotypes in the sample, which is two times the 

number of individuals for a diploid population.  For L-diallelic-marker haplotypes, each 

haplotype can be written as a vector zi = {zij, j =1…L, i = 1…N}, where zij is either 0 or 1 

representing one of the two alleles. Haplotype diversity can be defined as the total number of 

differences in all N2 pair-wise comparisons between a pair of haplotypes. (zij-zkj) = 0 if haplotype 

i and k are the same at locus j. (zij-zkj) = ±1 if they differ. Haplotype diversity at locus j is 

calculated as  

 

Clayton proposed that the total haplotype diversity, given below, is calculated as the summation 

over all loci, which is analogous to the total sum of squares in an ANOVA setting.   

 

where L is the number of loci.   

 

Haplotype tagging SNPs (htSNPs) are a set of SNPs that retain most of the information available 

in the full haplotype. After selecting a set of htSNPs, N haplotypes are collapsed into groups 
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according to different htSNP allele combinations. That is, if haplotypes consisting of L SNPs are 

under study, and H out of L SNPs are selected to be candidate htSNPs, any haplotypes will 

belong to the same group as long as they have the same alleles at these H loci. Then the N full 

haplotypes are divided into G=2H (at most) groups. Within each group, a similar diversity 

measure to that above is computed. Within group haplotype diversity is then summed over all 

groups, which is analogous to the residual sums of squares. 

 

Then Clayton (2001) calculated the proportion of diversity explained by a set of htSNPs as p = 1 

– R/D. R/D is preferred to be as close to 0 as possible indicating that there is little diversity left 

when the haplotype is represented by the subset of htSNPs. The optimal htSNP set is obtained by 

an exhaustive search from the possible 2L-1 candidate sets.  This is very computationally 

intensive as the number of markers, L, increases.  Since Clayton (2001) does not provide 

guidance on obtaining a good set of htSNPs without searching the entire set, we propose 

selecting a set of htSNPs by minimizing the number of SNPs selected and maintaining the 

proportion of diversity explained by htSNPs, p, greater than a desired value, say α.  

 

We have simplified the expressions for both D and R in Clayton’s formula to the following. 
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where n0j and n1j are the number of 0’s and 1’s at locus j, p0j and p1j are the frequencies of “0” 

and “1” alleles at locus j. Here 2p0jp1j is the expected heterozygosity measure for the jth locus.  

Correspondingly, the proportion of diversity explained by htSNPs can be written as   

                      

Therefore, htSNPs are selected by trying to minimize the within group loci heterozygosity. After 

the simplification, the above measure can be extended to analyze multi-allelic markers by 

extending p0, p1 to pi, where i= 0 … T and T is the total number of alleles at this marker. Clayton 

(2001) suggested a Kappa correction, which corrects for the fact that selecting a set of ht SNPs 

will always reduce the residual diversity.  Also note that when haplotypes are not known with 

certainty, the EM algorithm is used to infer haplotype frequencies. 

 

Applying spD or div to a large chromosome region 

In selecting markers that maintain haplotype information, it is important for us to consider the 

haplotype information they provide in the context of nearby markers rather than for any marker – 

regardless of its position. That is, we decide not to include markers not only if they provide 

similar information, but also if they are fairly close to each other. Therefore, we propose the 

following procedure to apply either spD or div to a large chromosome region with a large 

number of SNPs. First, we assume that markers are arranged according to an ordered map. Next, 

a sliding window with a relatively small window size is moved along the map. Either spD or div 

method is used to select informative SNPs in each window. The event of selecting or failing to 

select a SNP is recorded in a vector Wi ={wij, j =1 …L}, where L is the number of SNPs in a 
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window (or the window size). wij = 1 indicates that jth SNP is not selected in ith window, 0 

otherwise. Most of SNPs appear in multiple windows with the maximum number of windows 

equal to the sliding window size. Each marker’s relative redundancy is computed by averaging 

its corresponding wij over all the windows in which it appears. The relative redundancies of all 

markers are recorded in another vector RR ={rrm, m = 1, …, M}, where M is the total number of 

markers in the chromosome region, and rrm is called  the relative redundancy  of mth SNP. A 

SNP is dropped from the final list when its relative redundancy is above a predetermined 

threshold.  Note that the window size (L) and relative redundancy threshold are adjustable 

parameters.  

 

Ideally, the sliding window size should be changed to reflect differing amounts of LD in the data. 

More SNPs should be included in a window and examined together when they are in high LD 

and fewer SNPs examined together when there is less LD between them. Practically, it is 

difficult to identify regions of high and low LD and choose the window sizes accordingly. 

Therefore, we propose applying the procedure multiple times so that we drop SNPs that provide 

redundant information in the first run and then rerun the procedure on the resulting data set. Then 

if there are some regions with highly correlated markers interspersed with regions having fewer 

correlated markers, the initial runs will drop markers within the highly correlated regions and 

retain markers in the regions with less correlation.  Subsequent runs will then examine the 

resulting markers using small window sizes.  Note that they will have more similar levels of 

correlation and will be appropriate for a fixed window size.  We will refer to this set up as  

“repeated runs”. Additional runs can be repeated until the procedure “converges.”  Convergence 

is achieved when the difference between the number of markers before and after selection 
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represents no more than 5% of the markers before selection.  We will refer to the procedures 

based on the spectral decomposition and the diversity methods as upper case SD and DIV, 

respectively. 

 

Simulation Studies 

We have designed two simulation studies to study the performance of SD and DIV.  The first 

study investigates how the procedures behave when applied to SNPs in linkage equilibrium (LE).  

The second study investigates what sample sizes provide consistent selection results. If we put 

these procedures into a hypothesis-testing framework, the first study is similar to controlling the 

false positive rate under the null hypothesis– how often do we drop important markers that 

should be included in our set.  Also note that we are interested in the true positive rate, or how 

often we drop markers and maintain the desired information when there are redundancies among 

them.  This will be addressed by using the experimental data rather than a simulation approach.   

  

Simulation study I: will the SNP selection procedure drop “important” SNPs? 

When the SNPs are in LE, all SNPs should be selected if both SD and DIV identify informative 

SNPs and only drop SNPs that are redundant.  Note that the performance of both methodologies, 

SD and DIV, will be affected by the set of parameters used, such as the sliding window size, the 

percentage of the variation explained, the relative redundancy threshold for each marker, and the 

sample size. We identify suitable parameter combinations by studying the procedures’ behaviors 

for SNPs in LE and controlling the SNPs’ drop rate (the false positive rate) to be less than 5%. 

First, we simulate genotype data for 50 SNPs with MAF greater than 5%, randomly drawn from 

the uniform distribution and in linkage equilibrium with each other. We apply either the SD or 
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DIV method, record the percentage of markers, out of 50, dropped, and average this percentage 

over 100 simulation runs. The “repeated runs” setup is not implemented here, since the purpose 

is to obtain the proportion of SNPs dropped at each single run and find parameter combinations 

than ensure this proportion is less than 5%.  Note this threshold is the convergence criterion for 

“repeated runs”. In practice, we recommend applying the procedures with the parameter 

combinations determined here. If the drop percentage in one run is below 5%, we stop the 

procedure and declare “convergence” to prevent dropping informative SNPs.  For SD, we 

investigate the following parameter combinations: sliding window sizes of 2, 5, 10, 15 and 30, 

and percentages of the variation explained of 85% and 90%. For DIV, we investigate sliding 

window sizes of 2, 3, 5, and 7, and percentages of the variation explained of 92% and 96%.  Note 

that values of the percentage of the variation explained are calculated using different methods for 

SD and DIV, have different interpretations, and cannot be directly related to each other.   For 

both SD and DIV, we investigate relative redundancy thresholds of 50%, 70% and 90% and 

sample sizes of 10, 50, 100 and 200 individuals. In addition, we look at the effect of availability 

of haplotype phase information by providing the same data in both haplotype phase-known and 

phase-unknown forms.  

 

The percentage of variation explained, as a parameter, significantly determines the proportion of 

the LD information conserved in the selected marker set.  We like to set this parameter high 

enough to conserve the required amount of LD to map susceptibility genes successfully, but low 

enough so that we can afford to genotype all the required markers.  However, the optimal amount 

of information is affected by many factors including the effects of the gene, the degree of LD 

between markers, marker allele frequencies, and distribution of markers. Therefore an optimal 
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value of the percentage of variation explained for all cases will not exist. To provide a reasonable 

value, we propose to identify a variation explained percentage parameter that results in less than 

5% of markers in LE being dropped.  We reason that it is important to control the percentage of 

markers dropped when all of them should be retained.  Note that when there is some LD between 

markers, this variation explained parameter will result in dropping more than 5% of the markers 

since there is LD between them.  In this situation, it is difficult to determine if the percentage of 

markers being dropped is correct.  To assess this, we use the real data to investigate the 

haplotype information in the region before and after dropping markers.  Note that the variation 

explained percentages are calculated differently for SD and DIV, and can’t be compared to each 

other directly. Despite this, we find a rough correspondence between them so that we can 

compare their behavior fairly. This allows us to calibrate the behavior of the methods under “the 

null hypothesis” of high importance of all markers, and is analogous to setting a common 

rejection region for power comparisons of statistical tests. Note the SD procedure calculates a Lr 

measure that essentially prevents dropping SNPs under LE, thus preventing us from studying its 

behavior under LE and finding the corresponding DIV variation explained percentages. We will 

not use this measure for this part of the simulation study. We simulated data as described above, 

applied SD or DIV with a range of the variation explained percentages, and computed the 

average percentage of SNPs dropped. The sample sizes considered were 50 and 100. The rest of 

parameters were chosen based on the results from the first part of the simulation I.   

 

Simulation Study II: what sample size is required to ensure consistent results across sample? 

Ideally, we would like to obtain information on the most informative markers representing the 

population we are interested in, but with as few samples as possible to keep genotyping costs 
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low.  Therefore we design a simulation study that investigates the consistency of our procedures 

as a function of the sample size used for marker selection. First, we simulate a large diploid data 

set, referred to as “the population” later, containing a chromosomal region with 50 SNPs and 

20,000 individuals using a forward simulation model that assumes constant population size, non-

overlapping generations, random mating and no other disturbing forces except recombination. 

Initial LD in the data is created by mixing two populations with discrepant allele frequencies. 

The number of generations, the recombination rate and the initial LD determine the degree of LD 

in the final generation. We also investigate whether the degree of LD has an effect on the sample 

size required to achieve consistent results.  To vary the data sets’ degree of LD, we studied the 

LD patterns in several regions for which we have experimental data. We selected  “high” and 

“low” LD regions, with criteria defined later in the results section, and adjust the parameters in 

our simulation program to mimic these patterns in our simulated data sets. Then we sample a 

certain number of individuals without replacement from “the population”, and apply either SD or 

DIV to each sample. For both methods, we fix the relative redundancy threshold of each marker 

at 75% and sliding window size at 5, and test sample sizes of 10, 50, 100 and 200 individuals 

using the variation explained percentages 85% and 90% for SD, and 92% and 96% for DIV.  We 

also apply “repeated runs” for each procedure until it meets the convergence criteria. For each 

parameter combination, we record, in a vector v1, …v50, the percentage of times that each SNP, 1, 

2, …50, is dropped in 100 non-overlapping samples from “the population”.  Note that vi’s close 

to 0 or 1 are preferred since this indicates that the SNP either gets dropped or kept each time in 

the simulations. The consistency for each marker is evaluated using the mean square error of its 

dropping  
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where yik is an indicator variable indicating whether ith marker gets dropped in kth sample, and vi 

is the drop percentage for the ith  marker over 100 simulations. Then the overall consistency, the 

average MSE of the drop percentage for all markers, is calculated as     

 

We also provide the same data in both haplotype phase-known and phase-unknown formats to 

study the effect of haplotype information on our results.  

 

Validation Criteria 

Our goal for marker selection is to identify a set of SNPs in a region that can retain a majority of 

the haplotype information available.  We assume that the haplotype information is summarized 

by the number of frequent haplotypes and their haplotype frequencies. Therefore, we propose 

that we can evaluate the information retained about a region using these metrics. Unfortunately, 

haplotype phase is unobservable in most cases. We suggest using the EM algorithm with a 

sliding window procedure to infer the haplotype frequencies. Our validation procedure is the 

following: apply a sliding window with window size equal to 5 and estimate the haplotypes for 5 

SNPs using the EM algorithm in each window. We chose a window size of 5 because calculating 

EM frequencies for 5 SNPs is computationally feasible and sample sizes of 50 and 100 

individuals provide enough genotype information to get reasonable estimates.  It is possible that 

unique situations may require other window sizes.  Compute two measures to evaluate the 

information in the data: count the number of the frequent haplotypes and calculate the 
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heterozygosity for these haplotypes.   Frequent haplotypes are defined as the haplotypes with 

frequencies greater than 5% and heterozygosity is calculated as 1-Σpi
2. Then the selection 

procedure is applied with either SD or DIV to select “informative” SNPs. If the subset of SNPs 

selected can represent most of the information in the data, then in each window, we expect to 

observe the same number of frequent haplotypes and the same frequencies when we only use the 

selected SNPs to infer these. Therefore we only use the selected SNPs to estimate the haplotype 

frequencies within the previously defined windows, compute the above two measures again, and 

compute the differences of the two measures before and after selection.  We define an acceptable 

difference before and after selection for haplotype heterozygosity as more than 90% of the 

windows having a heterozygosity difference of 0.1 or less.  When repeated runs are used, we 

evaluate the final selected marker set against the initial full data set. (See discussion for details) 

We judge the performance of the procedures by looking at the differences along the 

chromosomal region, as well as their overall distributions.  

 

Data Sets 

Using linkage analysis, we identified a 12 cM region on chromosome 12 centered at D12S853 as 

likely to contain a susceptibility gene for type 2 diabetes (Ehm et al. 2000). 649 SNPs distributed 

across this region were genotyped on 138 unrelated Caucasian individuals.  The SNPs have been 

placed on a 12 Mb composite map using a combination of STS content mapping and sequence 

analysis. 604 out of 649 SNPs have MAF greater than 5%. 

 

To study linkage disequilibrium in the region surrounding the CYP2D6 gene on chromosome 22, 

32 markers were typed with 27 having MAF greater than 5% on 1018 Caucasians.  The markers 
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were identified from The SNP Consortium (TSC) (http://snp.cshl.org/) release 5 (Sept2000) and 

dbSNP (http://www.ncbi.nlm.nih.gov/SNP/) public databases.  The samples consisted of 230 

samples originating from CEPH or Coriell cell repositories (Camden, New Jersey, US) and 788 

originating from patients in GlaxoSmithKline (GSK) Clinical Pharmacology studies with consent 

for non-identified genotyping (428 from North America and 360 from the United Kingdom) 

(Hosking et al. 2002).  All SNPs map to an 879 kb contig flanking the CYP2D6 locus. Hosking 

et al. (2002) reported the association study results of the above 27 SNPs with poor drug 

metabolizing phenotype using Fisher’s exact test for single marker genotypic tests and a 

regression based model for haplotype tests using a sliding window approach with window size 

equal to 5. To illustrate the impact of the marker selection on the results of an association study, 

first, we reproduced Hosking et al’s association study results using their data and the same 

association tests they used. We, then, applied the SD procedure to select markers using 100 

randomly selected controls.  Using only the selected markers and all 1018 individuals, we 

conducted Fisher’s exact test for single marker genotypic tests, used only selected SNPs to 

estimate haplotype frequencies within the previously defined windows, and applied the 

regression based haplotype tests mentioned above with the estimated haplotype frequencies. We 

plot the test p-values versus the marker positions of the full data set and the selected set, and 

compare their patterns.  
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Results 

We report the results for the two simulation studies described and study the behavior of the 

marker selection algorithms on several experimental data sets. 

 

Simulation Study I 

Table 1 shows the percentage of SNPs dropped when markers are in LE using SD with the 

percentage of variation explained set to 85% when the haplotype phase is unknown for sample 

sizes of 10 and 50.  No markers were dropped in the simulations for sample sizes of 100 and 200 

and therefore these percentages are not shown.  We only show the table for a variation explained 

value of 85% because the pattern of dropping markers was similar for a variation explained 

parameter of 90%, only slightly lower. The results show that SD won’t drop SNPs in LE under 

most parameter combinations unless the sample size is small relative to the window size. With a 

small sample size and relatively large window size, some independencies of SNPs will not be 

represented in the sample and SNPs will be dropped as a result. Note that the small percentages 

of SNP dropped are probably the result of using the Lr measure to determine if there is redundant 

information in the sample and dropping SNPs only if redundancy appears to exist.  In 

conclusion, for sample sizes of 50 individuals or more, this procedure will retain important SNPs 

up to window sizes of 15.   

     

Table 2 shows results for the DIV method when the percentage of variation explained is 92%.  

The results are similar when the percentage of variation explained is 96% only fewer markers are 

dropped.  DIV has more of a tendency to drop SNPs in LE compared to SD.  A similar pattern is 

observed that more SNPs are dropped when window size is large and sample size is relatively 
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small. The percentage of SNPs dropped is relatively stable when the sample size is greater than 

50 and the relative redundancy threshold is greater than 70%.  In choosing a sliding window size, 

we would like it to be large enough to include certain variation, but small enough that we don’t 

require large sample sizes to capture the important variation. If we choose a window size equal 

to 5 and a relative redundancy threshold greater than 70%, then the percentage of SNP dropped 

is close to 5% even with a small sample size like 50. Based on these simulations, we have 

selected a sliding window size of 5 and the relative redundancy threshold of 75% for many of 

our further analyses.  To make SD and DIV easier to compare, we choose to use the sliding 

window size equal to 5 and relative redundancy threshold to be 75% for SD also.      

 

To explore these two procedures when haplotypes are known rather than inferred, we generated 

the same data with the haplotype phase information, repeated the same simulation study, and 

computed the average percentage of SNP dropped.  We present the results for DIV since it relies 

more on the haplotype information.  Table 3 shows the results for DIV with the percentage of 

variation explained 92%. The percentages of SNPs dropped are smaller when the haplotype 

phase is known because inferring this information using a mathematical algorithm such as EM 

results in an information loss. Nonetheless, the percentages show a similar pattern that, to control 

the percentages of SNPs dropped, relatively small window sizes are needed when the sample size 

is small. When comparing the results in tables 2 and 3, we observed that the differences in the 

percentages of SNPs dropped between inferred and known haplotype phase data are smaller with 

increases in the sample size. It suggests that, when the haplotype phase is known, it may be 

possible to apply the algorithms using a smaller sample size.  
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Table 4 shows the percentages of SNPs dropped for SNPs in LE for a range of variation 

explained percentages using either SD or DIV. The variation explained percentages should be at 

least 94% for DIV and 75% for SD when the sample size is 50 and 92% for DIV and 70% for SD 

when sample size is 100, if the false positive rate for the markers in LE is controlled to be less 

than 5%. We only propose these values as the procedure’s “safe” starting point to avoid dropping 

important markers, when the degree of LD in the data is either hard to measure or complex. The 

variation explained percentage could be determined by testing a large range of values on the 

experimental data, and a value chosen when the haplotype information before and after selection 

is similar.  However, the results might become too complicated to interpret when the real data 

consists of regions with differing degrees of LD, and “repeated runs” is applied. Therefore, using 

a variation explained parameter for which we know does not result in dropping too many SNPs 

under LE is simpler. 

 

Simulation Study II 

To study the sample sizes needed to obtain consistent selection results, we simulated data sets 

containing differing degrees of LD with similar patterns as we observed in our experimental 

data. We treated chromosome 22 data as one single region, and divided chromosome12 data 

roughly into 6 regions each containing about 110 markers to study their LD patterns. D’ was 

calculated for each marker pair within each region, and averaged according to the number of 

intervening markers. The averaged-D’ was plotted versus the number of intervening markers. As 

expected, for all regions, the average-D’ decreases as the number of intervening markers 

increases (graphs are not shown.).  Two regions, one with fastest and one with slowest 

decreasing LD were selected as “high” and “low” LD regions, respectively. The average-D’ for 
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30 markers’ apart decreases approximately to the half of its maximum, 1, for the high LD region. 

For the low LD region, the average-D’ drops under 0.5 after 5 markers apart. Two data sets, each 

with 50 SNPs, were generated to produce similar LD patterns by using the simulation procedure 

we mentioned above adjusting  the number of generations evolved and the recombination rate.  

 

Figure 1 shows each SNP’s average drop percentage across 100 simulations when SD is applied 

with the variation explained percentage 90% and the window size equal to 5 on the “high LD” 

data. Figure 2 shows each SNP’s average drop percentage across 100 simulations when DIV is 

used with the variation explained percentage 92% and the window size equal to 5 on the “high 

LD” data. Note, SD or DIV could select different markers across different samples from the 

population because these markers are highly correlated and provide somewhat equivalent 

information, and which marker (markers) provides more information in each sample is affected 

by the statistical sampling variation. Therefore, we are expecting relative stable patterns, but not 

absolute 0% or 100% drop for each marker. In addition, the observation that SD and DIV drop 

different markers for the same data is expected for the same reason. Both Figures 1 and 2 suggest 

that sample sizes greater than or equal to 50 are needed to achieve consistent results. When the 

sample size is increased from 50 to 100 or from 100 to 200, the consistency improves a little. 

With higher variation explained values or a low degree of LD in the data, a similar pattern was 

obtain with even more consistent results (data not shown). Knowing haplotype phase information 

does improve the consistency, but its effect is small and can be compensated for with a slight 

increase of the variation explained percentage or the sample size. For both SD and DIV, almost 

the same number of markers and the same markers are dropped when the same parameters are 

used and the sample size is large enough (the sample size >= 50), regardless whether the 
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haplotype information is observable. According to simulation study II results, we recommend a 

sample size of 50-100 individuals depending on the expected amount of missing data.   

 

Experimental data results  

 In applying the procedure to the experimental data, we also used a sliding window size equal to 

5 and retained a SNP when its relative redundancy was less than 75%. We used “repeated runs” 

and utilized the convergence criterion as we mentioned above. Based on the results from table 4, 

we chose variation explained starting values of 70% for SD and 92% for DIV, respectively, since 

we use sample sizes close to 100 individuals for all experimental data. For validating the 

information retained, we used the sliding window size equal to 5 when calculating the number of 

frequent haplotypes and the haplotype heterozygosity. To obtain the haplotype structure 

information in the data before selecting markers, we included all the available SNPs even when 

their allele frequencies were less than 5% to achieve a relatively comprehensive picture of LD 

regardless of the SNP allele frequencies. We adjusted the variation-explained for each method 

until more than 90% of the windows had haplotype heterozygosity differences less than 0.1. We 

chose the haplotype heterozygosity because we found the number of frequent haplotypes to be 

unreliable in certain situations.  For example, a haplotype can change its status from an 

infrequent haplotype to a frequent haplotype by a very small frequency change, such as from 4% 

to 5.5%, which results in a difference in the number of frequent haplotypes. These haplotype 

frequency changes contribute little to the difference in heterozygosity.  For all experimental data 

sets, we presented results as long as one procedure (SD or DIV) selected markers to achieve this 

goal, and adjusted the variation-explained percentage for the other so that it retained a similar 

number of markers in order to make our comparisons fair.  
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For chromosome 12 data, the above procedure resulted in a variation-explained value of 90% for 

SD and 96% for DIV.  Using these settings, we selected 415 (63.9%) using SD and 412 (63.5%) 

markers using DIV out of 649 markers, respectively. Histograms of the differences in the 

haplotype heterozygosity and number of frequent haplotypes for each window are shown in 

Figure 3. The proportion of windows with differences in the heterozygosity of less than 0.1 is 

85.2% for the SD method, and 92.2% for the DIV method. The proportion of windows with 

differences in the number of frequent haplotypes of 1 or less was 93.4% for SD, and 95.3% for 

DIV.  

 

For the chromosome 22 region, we have a much larger sample size than that required for the 

marker selection. We randomly selected 100 controls and applied our procedure as if this was the 

sample size collected for the marker selection purposes. Variation explained percentages 75% 

and 92% were used for SD and DIV, and 20 (62.5%) markers were selected in both instances. 

The proportion of windows with differences in heterozygosity of less than 0.1 was 92.9% and 

88.9% for each method. We used relatively low variation explained percentages for each method 

than those for the chromosome 12 data, and achieved smaller differences before and after 

selection. The homogenous of the LD pattern in this data set might be one explanation.    

 

We analyzed the selected markers (SD method) for association with the poor metabolizer 

phenotype.  Note that because almost a half of the markers show strong association with the 

phenotype, it does not make sense to evaluate the procedure based on whether the selected 

marker set includes the significant signals.  Therefore, we chose to compare the test p-values’ 
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patterns using the full data and the selected data.  Note that 20 of 27 markers were selected and 

the markers with the most significant genotypic tests were among those selected (data not 

shown).   Figure 4 contains the haplotype tests results for the full marker set with a sliding 

window size of 5, and the selected marker set within the context of the windows defined by the 

full data. The two curves almost overlap, which is not surprising, since the selected markers 

preserved the information content of the full data well. Therefore marker selection had a 

negligible impact on the results of this association study.  
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Discussion 

There are several fundamental differences in two methods, spD and div, we considered. Spectral 

Decomposition (spD) is less computational intensive and can be applied to analyze a larger 

number of SNPs, such as candidate genes typed for several dozen markers, without using sliding 

windows since it is based on a summary of pair-wise LD and does not require haplotype phase 

information. The haplotype diversity (div) is constrained by its computational limitations 

because it relies on the haplotype information that has to be estimated if unknown. The required 

computational time on estimating haplotype frequencies in unrelated individuals using a 

numerical algorithm such as EM increases dramatically as the number of markers increases. 

Furthermore, as we mentioned in the method section, the optimal htSNP set is found by an 

exhaustive search from all the possibilities. Therefore, div, by itself, is quite time-consuming 

when more than 7 SNPs are considered.    

 

In addition to having different computational requirements, SD and DIV represent two different 

approaches to the problem of marker selection.  SD is a procedure that relies on two locus LD 

(i.e. pair-wise correlation) and single marker characteristics whereas DIV relies on haplotype 

frequencies. The pair-wise correlation relies on two-locus LD measures and marker allele 

frequencies. Haplotype frequencies involve not only two-locus LD coefficients and allele 

frequencies, but also LD coefficients involving alleles at three or more markers (Bennett 1954). 

Haplotypes will provide more information than pair-wise LD measures if the LD measures 

involving three or more markers makes a significant contribution. Otherwise, haplotype 

frequencies are just linear combinations or summaries of pair-wise LD and allele frequencies. 

Ehm et al (unpublished data) summarized the decay and extent of two and three locus LD in 
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several genomic regions including the chromosome 12 and 22 regions described here.  They 

found that LD based on alleles at three loci decays more quickly than two locus LD.  The extent 

of three locus LD is relatively small across the chromosome 12 locus except for the central 

region, near 5000 or 6000 kb, where there is a large amount of three locus LD.  Therefore it is 

reasonable to investigate marker selection procedures based on two locus LD and single marker 

characteristics.  

 

We did not find major differences in the overall performance of the two procedures.  A minor 

observation is that SD tends to drop markers with more equal or higher allele frequencies 

because it relies on r, which achieves higher values when marker allele frequencies are equal or 

relatively high. DIV tends to drop markers with disparate allele frequencies because it is based 

on the heterozygosity and markers with less frequent alleles contribute less to this measure.  

While we did not see significant differences in the performance of the methods when the results 

are evaluated using our validation criteria, this difference may explain why the methods do select 

different markers.  Note that for both methods, we pre-select markers according to their allele 

frequencies, and retain SNPs only when their minor allele frequencies are greater than 5%. This 

may make the two procedures more comparable since SNPs with very disparate allele 

frequencies will not be retained. Furthermore, typing markers with frequencies less than 5% 

might be considered less efficient in the association study design. 

 

Zhang et al (2002), proposed a dynamic programming method to perform haplotype block 

partitioning to minimize the SNPs needed to represent common haplotypes.  This method can 

utilize different measures of the block quality including the ratio of the number of SNPs in the 
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block to the minimum number of SNPs required to define haplotypes or the proportion of 

haplotype diversity explained by a subset of the SNPs in a block (Clayton 2001).  Similarly, 

another possible measure of the block quality could be the number of SNPs needed to achieve a 

pre-specified measure of the variation explained using the spD method.  Note that Zhang et al ’s 

goal is to define blocks with a minimum number of SNPs using any of a number of measures of 

block quality.  Our goal is to select a subset of SNPs, which capture the common haplotypes 

within a region and preserve local haplotype frequencies within relatively short genetic distance. 

Thus, our objective is to maintain similar measures of haplotype information before and after 

marker selection.  This leads us to the sliding window approach, which does not rely on the 

block definitions. Furthermore, our procedure is designed to be applicable to data when 

haplotype phase information is not available.    

 

There are several approaches that could be considered in defining the convergence for “repeated 

runs”.  One choice is to run the procedure until no more markers are dropped.  We found that this 

worked well for a homogeneous LD region, but when a region exhibits a mixed amount of LD, 

too many repeated runs can lead to dropping informative markers and information loss. One 

possible reason is that markers in LE get dropped if the procedure is applied to data with less and 

less correlation. Therefore, for a complex chromosome region, we suggested the 5% cutoff as 

described above.  One might consider whether it makes sense to use repeated runs at all.  We 

found that using a higher variation explained percentage value combined with “repeated runs” 

was preferable (less information loss) to one with a lower variation explained value with no 

repeated runs. 

 



 63

In evaluating our procedures, we used the heterozygosity and the number of the frequent 

haplotypes to measure the haplotype information content.  We felt that these measures captured 

aspects of haplotypes important in association studies.  Any other suitable measures, such as 

matching haplotype frequencies before and after selection, could be used. Furthermore, the 

validation procedure can vary according to the different requirements of the studies. We propose 

to use a fixed variation explained percentage, run the procedures repeatedly until they converge, 

and evaluate the information content of the selected marker set against that of its initial full data 

within the initially defined sliding windows. One advantageous of this approach is that it 

provides an overall evaluation for all repeated runs. However, it might be too conservative since 

markers are selected based on their LD structure in the sliding windows and some of the 

windows may loss their initial meanings after the repeated marker reductions, which result in 

some large differences in the haplotype information measures between before and after selection 

that don’t necessarily indicate serious information loss. An alternative approach would be to 

evaluate the information content of the selected marker set against that of its immediate input 

data for each repeated run. There are two advantages for this approach: first, all selected markers 

are evaluated in the windows they are selected. Second, the variation explained value could be 

adjusted to control the information loss for each repeated run. However, it is not clear how we 

summarize the overall performance of such a procedure.   

 

In this paper, the selection procedures are applied to the markers discovered and typed on 

population controls: samples chosen regardless of their phenotype.  We have found it useful to 

ensure that SNPs are polymorphic in the ethnic group of interest before typing them on precious 

disease samples.  Currently we are typing a large number of SNPs on a panel of 100 population 
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samples and using these data in the marker selection.  Since we are studying several diseases, 

using a population sample allows us to use the marker selected in further studies regardless of the 

disease.  However, this approach does assume the common disease, common allele hypothesis.  

If a rare allele at a marker is responsible for the disease, then it is unlikely to be selected in such 

an approach. Another choice would be to apply marker selection to markers discovered in case-

control samples and typed on cases only. This way, the disease alleles, although rare in the 

population, will have increased frequency in the sample and the selection favoring polymorphic 

markers would have a good justification. When case-control samples are available, procedures 

similar to the ones described here can be useful in selecting most discriminative subsets of 

markers among those that show frequency differences between cases and controls. Analogously, 

the marker selection procedure might need to be conducted separately using different samples 

from different populations if we wish to study different populations possibly having somewhat 

different haplotype structures. 

 
We do realize that procedures such of these have consequences. As with any statistical 

procedure, the marker selection is always a gamble, since markers are selected mainly based on 

LD structure regardless of any phenotypes.  Therefore the impact of selecting markers on the 

results of an association study, in general, is not known. Although we have showed one example 

where marker selection had a negligible effect on the association results, the impact can vary 

greatly from case to case. For instance, the required percentage of information retained in the 

association study might depend on effects of disease susceptibility genes, which are hard to 

access before actually conducting the association test. Furthermore, it is possible that a causal 

marker is not selected because it is highly correlated with nearby markers.  Fortunately, it 

appears that analyzing the data using haplotype analysis would reduce the impact of such a 
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selection.  In summary, the marker selection should be viewed as providing a way to prioritize 

markers for a first genotyping screen and more markers can always be typed in the regions of 

interest later.  
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Appendix 

Appendix 1. Obtaining the matrix of pairwise LD for bi-allelic markers 

Calculation of matrices of pairwise LD is most straightforward for markers with two alleles and 

can be handled with a simple command using standard statistical software (e.g. by invoking cor() 

function in R/Splus). The following method requires that marker genotypes are recoded as 

follows: 

 New value = 






−

"22" is genotype if1
"12" is genotype if0
"11" is genotype if1

 

A pair of SNPs will be represented by two vectors x and y with entries as just indicated. It can be 

easily shown that the usual sample covariance 

 ∑ ∑ ∑−= iiiiAB yx
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is twice the composite linkage disequilibrium, AB∆ , of Weir, 1996. To see this, the terms of the 

covariance can be written in terms of di-locus counts as, 
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These composite coefficients are unbiased estimates of the population LD under HWE. When 

HWE does not hold, they include an additional component measuring covariance between alleles 
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between different haplotypes in an individual. The diagonal elements ),( xxC A  of the variance-

covariance matrix ),( xxC , are variances of allele frequencies, nDppp AAAA 2/))1(()(Var +−=  

where Ap  is the allele frequency of allele A, AAAA pPD −=  is the deviation from HWE, and AAP  

is the frequency of genotype AA. In terms of recoded values the allele frequencies are 
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Finally, the correlation of Weir (1996) defined as 
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can be computed from recoded values as 
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or by an R/Splus function call, cor(). 

 

Appendix 2. Determining effective/redundant numbers of markers, re LL , . 

Let L  be the actual number of markers and }{ iλ  is a set of eigenvalues associated with the 

matrix of pairwise LD coefficients. From Cauchy-Schwarz inequality and noting that }{ iλ  are 

non-negative we have ( )∑ ∑≥ L
ii /22 λλ . This bound corresponds to the zero LD situation, 

when jiji ,, ∀= λλ . In this case ( ) L
L i

i
ii /22

∑∑
∑

∑ == λ
λ

λλ . From expanding ( )2∑ iλ  we 

also see that ( ) .22
∑∑ ≤ ii λλ  This bound corresponds to the maximum possible LD with a 
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single non-zero eigenvalue. In this case ( ) .22
∑∑ = ii λλ  Putting together, 

( ) ( )222 / ∑∑∑ ≤≤ iii L λλλ . Then we have 

 ( ) 110 2
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So that the number of redundant markers can be defined as 
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and the effective number of markers,  LLe ≤≤1 , reduced due to LD, is 
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Table 3.1 Percentage of SNPs dropped in LE using SD with variation explained 85% haplotype 
phase-unknown  
 

Sample Size 
10 50 

Relative redundancy  Relative redundancy 

Percentage of 
SNPs Dropped 

 
50% 70% 90% 50% 70% 90% 

2 0 0 0 0 0 0 
5 7 2 1 0 0 0 
10 45 21 6 0 0 0 
15 70 41 12 0 0 0 

Sliding 
Window 

Size 

30 91 74 28 36 15 5 
Note: Results averaged over 100 simulations.  
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Table 3.2 Percentage of SNPs dropped in LE using DIV with variation explained 92% haplotype 
phase-unknown  
 

Sample Size 
10 50 

Relative redundancy Relative redundancy 

Percentage of 
SNPs Dropped 

 
50% 70% 90% 50% 70% 90% 

2 3 <1 <1 <1 0 0 
3 6 2 2 <1 0 0 
5 24 14 9 10 6 4 

Sliding 
Window 

Size 
7 39 28 15 21 16 8 

Sample Size 
100 200 

Relative redundancy Relative redundancy 

Percentage of 
Drop 
(100 

simulations) 50% 70% 90% 50% 70% 90% 
2 0 0 0 0 0 0 
3 <1 0 0 0 0 0 
5 7 5 3 5 4 2 

Sliding 
Window 

Size 
7 15 11 6 13 10 6 

Note: Results averaged over 100 simulations.  
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Table 3.3 Percentage of SNPs dropped in LE using DIV with variation explained 92% haplotype 
phase-known  
 

Sample Size 
10 50 

Relative redundancy Relative redundancy 

Percentage of 
SNPs Dropped 

 
50% 70% 90% 50% 70% 90% 

2 1 <1 <1 <1 0 0 
3 2 <1 <1 0 0 0 
5 8 5 2 4 2 2 

Sliding 
Window 

Size 
7 13 8 3 10 7 4 

Sample Size 
100 200 

Relative redundancy Relative redundancy 

Percentage of 
Drop 
(100 

simulations) 50% 70% 90% 50% 70% 90% 
2 <1 0 0 0 0 0 
3 0 0 0 0 0 0 
5 4 3 2 4 2 2 

Sliding 
Window 

Size 
7 9 7 5 9 7 5 

Note: Results averaged over 100 simulations.  
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Table 3.4 Percentage of SNPs dropped in LE using different variation explained values  
 

Sample Size 
50 100 

Percentage of SNPs 
Drop 

 DIV SD DIV SD 
65% / 12.6 / 11.8 
70% / 8.9 / 4.2 
75% / 3.9 / 3.4 
80% 19.7 3.4 17.0 3.4 
85% 14.7 3.2 13.3 1.7 
90% 10.0 0.1 7.9 0 
92% 6.5 / 4.8 / 
94% 3.4 / 1.7 / 
95% / 0 / 0 
96% 1.0 / 0.3 / 

Percentage 
of  
the 

Variation 
Explained 

98% 0 / 0 / 
Note: “/” means the simulation is not done for this value. Results averaged over 100 simulations.  
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Figure Legends 

 

Figure 3.1: 50 SNPs’ average drop percentage across 100 simulations on the “high LD” data 

when haplotype phase is unknown. SD is used with variation explained 90% and window size 5. 

The graphs from top to bottom are for the sample sizes equal to 10, 50, 100 and 200. The average 

number of SNPs dropped is 25.5, 19.7, 20.1 and 20.2 and the average MSE of dropping is 0.17, 

0.11, 0.09 and 0.08 for each graph.  

 

Figure 3.2: 50 SNPs’ average drop percentage across 100 simulations on the “high LD” data 

when haplotype phase is unknown. DIV is used with variation explained 92% and window size 

5. The graphs from top to bottom are for the sample sizes equal to 10, 50, 100 and 200. The 

average number of SNPs dropped is 26.2, 20.4, 20.0 and 19.4 and the average MSE of dropping 

is 0.16, 0.09, 0.07 and 0.06 for each graph. 

 

Figure 3.3: Apply SD and DIV on on the chromosome 12 region with 649 SNPs. The graphs on 

the top and bottom are the overall evaluation for the procedure with SD method using variation 

explained 90% and DIV using variation explained 96%, respectively. The histograms on the left 

and right are for differences in the number of frequent haplotypes and differences in 

heterozygosity before and after marker selection. For both methods, sliding window size of 5 

was used and the procedure converged at the third run.  

 

Figure 3.4: Association between CYP2D6 PM phenotype and haplotypes. Haplotypes were 

derived by EM algorithm from windows of consecutive SNPs. Characters indicate the first 
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markers in window. “◊” represent haplotype test results of 27 markers with window size 5.  “▲” 

represent haplotype test results of 20 selected markers with placing markers in previously 

defined windows. 
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Figure 1  
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Figure 2 
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Figure 3  
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Figure 4. 
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Chapter 4 
 
 
 
 
 
 

A Random Effect Model for Quantitative 

Trait and Haplotypes Association Test 

Considering Treatments and 

Gene××××treatment Interactions 
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Abstract 

To study how genes are related to the efficacy and safety of a medicine, multiple markers are 

genotyped in candidate genes on samples collected in clinical trials. The development of analysis 

methods that take into account the nature of genetic data is critical to extracting the maximum 

information. Currently, a linear regression approach, where genetic effects are treated as fixed 

effects, is widely used to model the association between a quantitative trait and genetic markers. 

However, in an exploratory phase of a study, the genetic variations under test are usually not 

specific functional sites but randomly selected polymorphisms within a gene. It is more 

appropriate statistically to treat these effects as random, especially when the inference scope is 

regard to the whole candidate gene but not to the sites under test. To illustrate the randomness 

introduced by these non-specific polymorphisms, we derive the relation between the variance 

components of a causal quantitative trait locus (QTL) and a randomly selected locus in a nearby 

region. Furthermore, a mixed effect model is developed to fit fixed treatment effects, random 

haplotypic effects, and random gene×treatment interactions in this scenario; likelihood ratio tests 

are applied for testing the random effects. We illustrate and compare our random genetic effect 

model (Model III) to a fixed genetic effect model with single SNP genotypic effects (Model I) or 

haplotypic effects (Model II) with simulated data under a variety of conditions. Our simulation 

results showed that Model III is more powerful than or equivalent to Model II under most of the 

circumstances. Model I is always more powerful than or equivalent to the other two models 

under the recessive genetic model. When the genetic model is dominance or additive, in testing 

genetic effects, Model I is more powerful than or equivalent to Model II and III when the QTL is 

caused by a single mutation and included in the data. Model II and III are more powerful when 

the opposite is true. When the genetic model is dominance or additive, in testing gene-drug 
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interactions, Model III is more powerful than or equivalent to Model I and II regardless the type 

of the QTL and whether the QTL is included in the data. Therefore, our mixed effect model 

generally behaves equivalently or better than the fixed haplotypic effects model, and is more 

appropriate in the exploratory phase of a study.   
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Introduction 

Individuals respond to medicines in unique ways. Despite extensive research efforts into 

developing safer and more effective medicines and strict FDA guidelines, adverse drug events 

are still estimated to cost US $100 billion and over 100,000 deaths per year (Marshall, 1997). 

Furthermore, response rates for medicines vary widely. Variation in response could be due to 

many factors including drug-drug interactions, mis-dose, drug allergies, and medication error 

(Spear et al. 2001). However, a large proportion of the variation is known to be due to genetic 

variation among individuals. Variation in several genes has been associated with response to 

medicines including CYP2C9 (Aithal et al. 1999), CYP2D6 (Raimundo et al. 2000) and HLA-B 

region (Hetherington 2002). Some of the findings have been utilized in increasing drug discovery 

efficiencies (Gao 2002) and will eventually help in personalizing medicines and decreasing drug 

adverse events with the development of high throughput genotyping techniques. Methods to 

investigate the relationship between drug efficacy and adverse events and genetic variation are in 

their infancy. Therefore, identifying methods for investigating genetic effects and 

gene×treatment interactions that may be associated with drug efficacy or safety is still a task of 

high priority for clinical trial studies.  

 

The rapid discovery of single nucleotide polymorphisms (SNPs) and the dense SNP map are 

terrific tools necessary for identifying variation associated with drug efficacy and safety 

(Sachidanandam et al 2001). Multiple markers are genotyped in candidate genes or regions on 

unrelated samples collected in clinical trials. Association studies are widely applied because they 

utilize dense marker information efficiently, can be applied to unrelated individuals, provide 

more power in detecting susceptibly genes with small effects than do traditional linkage studies 
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(Risch and Merikangas 1996), and have the ability to narrow down the candidate regions to more 

experimentally manageable sizes. Association study designs that relate single SNP markers and 

haplotypes formed by multiple SNPs in regions of interest are the two main investigative 

approaches. While a single SNP could be made into a diagnostic product more easily than 

several SNPs, recent work has shown that the grouping and interactions of markers in haplotypes 

might play an important role as well. (Drysdale et al. 2000; Hoehe et al. 2000; Davidson 2000; 

Morris and Kaplan 2002) One rationale is that some complex diseases are not caused by a single 

mutation but the combination of several mutations (detected by haplotypes). Therefore the 

haplotype approach will detect more significant evidence for these kinds of epistatic effects. 

Also, the haplotype of the original carrier provides a good surrogate for the disease susceptibility 

gene since it tends to remain intact if recombination around the disease-causing mutation is rare. 

Finally, haplotype analysis has an advantage as it uses linkage disequilibrium (LD) between 

markers to capture more information in the regions than do single SNPs. Even with current 

typing techniques, it is not possible to type every SNP in candidate genes, and therefore need to 

rely on LD between markers and disease locus to detect the disease locus effects. Even though 

actual haplotypes can be determined experimentally using techniques such as atomic imaging 

microscopy (Woolley et al. 2000) or somatic cell hybrid (Douglas et al. 2001) approaches, these 

type of data is not routinely available. Therefore, the loss of the haplotype phase information 

might result in a loss of the statistical testing power. However, haplotype phases can be 

reasonable inferred from genotypes computationally (Clark 1990; Excoffier and Slatkin 1995; 

Long et al. 1995) in many cases.  
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Continuous human traits such as blood pressure or drug efficacy and binary traits such as the 

presence or absence of disease have been investigated for relationships with genetic variation in 

association studies. Quantitative response traits are likely to provide more power for identifying 

genetic variation associated with drug response. A linear regression setting is preferred because it 

utilizes quantitative trait information and other covariates, treatment effects in our case, more 

easily. For binary response traits, non-identity links (e.g., logistic) can be applied. In studying the 

association of a quantitative trait and genetic variation in a regression setting, the following two 

models are frequently used (Zaykin et al. 2002). The first is a linear model that associates a 

quantitative trait with genotypic effects, where the genotypic effects are treated as fixed factors 

with discrete levels. If multiple SNPs (S SNPs) at a locus are tested simultaneously, the number 

of possible genotypes, 2S(2S+1)/2, increases dramatically with the number of alleles, 2S. The 

power of the genotypic test will decrease with increasing degrees of freedom. Zaykin et al. 

(2002) proposed a linear model that split genotypic effects into allelic additive effects 

(haplotypic additive effects) and dominance effects, omitted the dominance effects from the 

model, associated the response trait with the haplotypic additive effects, and utilized an F-test in 

testing the significance of the haplotypic effects. Again, all genetic effects are treated as fixed 

factors with discrete levels. This second model might increase the testing power by decreasing 

the test degrees of freedom from 2S(2S+1)/2 to 2S, but it might also display a lack of fit because 

the dominance effects are omitted. Which model is more powerful will vary case by case. We 

extend the above two models to include treatments and gene×treatment interactions, and call 

them Model I and Model II, respectively. Model I includes a quantitative trait, treatment effects, 

genotypic effects, and genotype treatment interactions, where all effects are treated as fixed 

factors with discrete levels. Model II includes a quantitative trait, treatment effects, haplotype 
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additive effects, and haplotype treatment interactions, where all effects are treated as fixed 

factors with discrete levels. In this paper, we are mainly interested in comparing two types of the 

genotypic effects: the effects of a single SNP and the additive haplotype effects, where the 

haplotypes are formed by multiple SNPs within a gene.  

 

When the genetic variation under testing is not from specific functional sites but rather from 

randomly selected markers within the genes, it might not be appropriate to treat the genetic 

effects of the markers as fixed effects in the model. When the functional sites of candidate genes 

are genotyped and tested for association, the question is whether these specific sites have 

significant effects on the quantitative trait under study. Therefore, it is reasonable to model the 

effects of these functional sites as fixed effects. However, when markers with no prior 

knowledge of function are selected randomly, as a result of either the availability of SNPs in 

databases or the SNP discovery process based on a limited number of individuals, uncertainty is 

introduced in the study. First, most of these markers don’t directly cause the quantitative trait 

variation, but are associated with it through the functional sites in linkage disequilibrium with 

these SNPs under study. We show that the variance components (both additive and dominance) 

of a marker locus can be related to the variance components of the functional trait locus through 

genetic effects of trait alleles, LD between trait locus and markers, and their allele frequencies. 

Therefore, a statistical model that takes this uncertainty and randomness into account is 

preferred. Secondly, because of the limitations of both statistical and genetic sampling, the 

markers genotyped in the data represent only a portion of the total variation in the population and 

the specific population under study. Thus, based on our understanding of population genetics, it 

is desirable to model genetic effects as random, instead of fixed effects. Therefore, we adopt the 
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linear regression model setting of Model II to treat the haplotype additive effects and the 

haplotype gene×treatment interactions as random, and utilize likelihood ratio statistics to test the 

significance of the random effects. Furthermore, the scope of statistical inference based on our 

proposed model is extended to all markers in LD with the tested markers in the candidate gene 

including the “hidden” functional sites rather than for only the tested markers. Then if markers 

within a candidate gene show association, additional markers can be tested to identify the 

functional polymorphism.  

 

Since the scope of our hypotheses is wider than that of the fixed effect models, the power 

comparison of the two types of models is in favor of the fixed effect model if the two methods 

are equally powerful. We wish to investigate the differences of the above three models under 

several different circumstances, such as different genetic models, different allele frequencies of 

the quantitative trait locus (QTL), different types of mutations causing the QTL, and different 

magnitudes of the gene×treatment interactions, etc. A random effect model is more appropriate if 

it won’t loss much power to a fixed effect model in an exploratory stage of a study. In this paper, 

we concentrate on the haplotype phase-known situation, but illustrate that our proposed model 

can be easily extended to the haplotype phase-unknown cases by inferring haplotype frequencies 

using the Expectation-Maximization algorithm and fitting the inferred haplotype frequencies as 

“weights” in the model.                                                                              .
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Method   

We briefly introduce Models I and II, derive the relationship between the variance components 

of the quantitative trait locus and a random SNP in LD with it, and propose our random effect 

model. Furthermore, the test statistics used in testing treatment effects, genetic effects and 

gene×treatment interactions in each model are described. Simulation studies are conducted to 

study the powers of detecting treatment effects, genetic effects, and gene×treatment 

interactions using different models under several different scenarios. 

 

A brief introduction to Model I and II 

Model I:  

Let Ytgk is the quantitative trait value for the kth individual with gth genotype and taking tth 

treatment. We model 

 

 Ytgk = µ + τt + Gg + (τG)tg + εtgk                                                                                   (1) 

 

where, µ is the overall mean, τt is the tth treatment effect, Gg is the genetic effect of gth 

genotype at this locus, (τG)tg is the genotype gene×treatment interaction of the gth genotype 

with the tth treatment, and  εtgk is the random error. All effects, τt (t = 1..Τ, for T treatments), 

Gg (g = 1..G, for G genotypes), and (τG)tg, are regarded as fixed effects with discrete levels 

except εtgk iid ~ N (0, σe
2). g can be viewed as a mapping function, g(), that an dependent 

variable, any genotype g, is uniquely determined by a independent variable, an individual k.  
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Weir and Cockerham (1977) and Nielsen and Weir (1999) decomposed the genotypic effects 

into average effects of individual alleles and interaction effects between alleles. Then, the 

response variables can be explained by the allelic additive “main effects” and their interaction, 

the dominance effects. The alleles inherited from two parents are assumed to be independent if 

the parents are not related. Therefore, each allele is an independent observation and the allele-

based test is a valid test and maintains the proper distribution under the null hypothesis. To 

apply to Model I, we split the genotypic effect Gg into two allelic additive effects and the 

dominance effect, and the genotype×treatment interaction (τG)tg into the interactions between 

the treatments and two alleles and the interactions between the treatments and the dominance 

effects. If Ytijk is the quantitative trait value for the kth individual with genotype containing 

alleles i and j and taking tth treatment, then 

 

            Ytijk = µ + τt + αi
m + αj

p +  dij + (τα) ti
m + (τα) tj

p+ (τd)tij + εtijk                                      (2) 

 

where µ is the overall mean, τt is the tth treatment effect, αi
m and αj

p are the allelic effects of the 

maternal and paternal alleles i and j, respectively, dij is the dominance effect of alleles i and j, 

the deviation from their additivity, (τα) ti
m and (τα) tj

p are the treatment by allelic interactions, 

(τd)tij is the treatment by dominance interaction, and εtijk is a random error.  Again, all effects 

are regarded as fixed effects with discrete levels except εtijk iid ~ N (0, σe
2). Note that αim and 

αjp take the same number of levels, H the total number of alleles (haplotypes). For example, 

there are two markers: one has alleles A and a; the other has alleles B and b. The possible 

formed haplotypes are “AB”, “Ab”, “aB”, “ab”. Then, αim and αjp can both be αAB, and 

αAb, αaB, and αab. It is neither possible nor necessary to distinguish which allele is the actual 
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maternal or paternal allele in modeling since both maternal and paternal alleles are independent 

samples from the population and are assumed to contribute the same to the trait variations. 

Similarly, ij can also be viewed as a mapping function, ij(), that a dependent variable, any 

combination of allele i and j, is uniquely determined by an individual k. The above model is, in 

fact, an extension of the Zaykin et al. (2002) model with the inclusion of treatments and 

gene×treatment interactions. Zaykin et al. (2002) proposed to drop the dominance effects to 

balance between the test degrees of freedom and the testing power constrained by the sample 

size. We omit the dominance effects for the same reason, and have the following:  

 

Model II 

 

Ytijk = µ + τt + αi
m + αj

p + (τα) ti
m + (τα) tj

p
 + εtijk                                                           (3) 

 

Zaykin et al. (2002) also showed that the expectation-maximization (E-M) algorithm could be 

applied to infer haplotype frequencies when the haplotype phases are not observable. In this 

case, each individual’s allelic effects were expanded into all possible haplotype effects with 

their corresponding frequencies as weights. We are mainly interested in the haplotype phase 

known cases here.  

 

Relating the variance components of a QTL and a marker       

Suppose the QTL we are interested in has alleles Ar and As and its genotypic value Grs can be 

written as 
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Grs = µ + αr + αs+ drs                                                                                                      (4) 

where µ is the overall mean of the genotypic effects, αr and αs are the allelic additive effects 

for allele Ar and As, and drs are their dominance effects. Under the random mating assumption, 

constraints Σrprαr = Σrprdrs = 0 hold (Weir and Cockerham, 1977), where pr is the allele 

frequency of Ar. Therefore, the additive and dominance variance components of the trait can be 

written as  

 

where ps is the allele frequency of As. Similarly, the genotypic value of a marker locus with 

alleles Mi and Mj can be written as 

 

               Gij
(m) = µ + αi

(m) + αj
(m)
 + dij

(m)                                                                                    (7) 

 

Constraints Σiqiαi = Σiqidij = 0 are imposed. The additive and dominance variance components 

of the marker can be written as σA
2(m) = 2Σiqi(αi

(m))2 and σD
2(m) = Σi,jqiqj(dij

(m))2, ), where qi 

and qj are the allele frequencies of Mi and Mj. When the QTL and the marker locus are in LD, 

Nielsen and Weir (1999) showed  
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where Dri is the LD coefficient of the trait allele Ar and the marker allele Mi. Allelic additive 

effects and dominance effects showed at the markers are functions of the causal effects at the 

trait, marker allele frequencies and the LD coefficients between alleles of two loci. 

Furthermore,   

 

 

If both loci have only two alleles, we can simplify the expressions (10) and (11) by denoting 

the single LD coefficient D11 = -D12 = -D21 = D22 = D and using constraints Σrprαr = 0 and 

Σipidij = 0. (Details see Appendix I) 

 

Here r is the correlation coefficient between allele frequencies at the trait and the marker loci. 

The above derivations show that choosing different markers will result in different ratios 

between the variance components at the QTL and marker locus. In another ward, there is a 

considerable amount of randomness introduced by randomly choosing SNPs to test for the 

effects of the candidate genes. To take this randomness into account, we argue that the effects 
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of the QTL and the effects of all the possible combinations of the markers in LD with the QTL 

follow a certain distribution, and the effects of the markers are drawn from that distribution. 

Therefore, we propose to model marker genetic effects, haplotype additive effects and 

haplotype gene×treatment interaction, as random effects under this scenario. In this paper, we 

strict our attention to the additive effects of the haplotypes formed by several consecutive 

SNPs since it is reasonable to assume the effects of multiple alleles are drawn randomly from a 

distribution. Similarly, we can model the genotypic effects of a locus with multiple alleles as 

effects randomly drawn from a distribution as well, as long as there are multiple possible 

genotypes at the locus. However, if a single SNP is tested, the number of effects will be only 

two or three depending allelic or genotypic tests were conducted, and random effect approach 

will not be appropriate.  

 

The random effect model  

We adapt the regression setting in Model II and propose to treat all the genetic effects, the 

haplotype additive effects and haplotype gene×treatment interactions as random. 

 

Model III 

 

                      Ytijk = µ + τt + αi
m + αj

p + (τα) ti
m + (τα) tj

p
 + εtijk                                                (14) 

 

The differences between Model II and III are that the haplotype additive effects αi
m and αj

p iid 

~ N(0, σα2), (τα) ti
m and (τα) tj

p iid ~ N(0, στα2). In the rest of the paper, we use the vector θθθθ = 

{σα2, στα2, σe
2} denote the variance components for this model. αi

m and αj
p and (τα) ti

m and 
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(τα) tj
p are independent since they refer to the effects of alleles from unrelated parents. We then 

have a mixed model with fixed treatment effects, random haplotype additive effects, and 

random gene×treatment interactions. Because individuals share the same allele (or alleles), 

their trait values are correlated. The variance-covariance coefficients between individuals are 

given as following: 

 

 

where 2σα2 = σA
2, the additive genetic variation in a classical quantitative genetics setting 

(Lynch and Walsh 1998).   

 

Under the haplotype phase unknown cases, the EM algorithm (Weir and Cockerham. 1979; 

Excoffier and Slatkin 1995; Long et al. 1995) can be used to infer the population haplotype 

frequencies. Each person’s possible haplotypes with the corresponding probabilities of having 

these haplotypes are determined by jointly considering the compatibility of haplotypes to his 

(her) genotype and haplotype population frequencies. Then, for each person, his (her) 
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probabilities of having certain haplotypes are fitted as weights in the design matrix of the 

model.  

   

             Ytgk = µ + τt + Σipi(g)
mαi

m + Σjpj(g)
pαj

p + Σipi(g)
m(τα) ti

m + Σjpj(g)
p(τα) tj

p
 + εtgk            (16) 

 

where pi(g)
m and pj(g)

p are this person’s probabilities of  having i maternal and j paternal 

haplotypes given his (her) genotype g and haplotype population frequencies. pi(g)
m and pj(g)

p are 

either 0 or 1 if haplotype phase is known. Again, g can be viewed as a link function, g(), that 

an dependent variable, any genotype g, is uniquely determined by a independent variable, an 

individual k.  

 

Then variance-covariance coefficients between individuals are  

 

Note that the variance of an individual’s trait value, ((Σ(pi(g)
m)2+Σ(pj(g)

p)2)σα2 + 

(Σ(pi(g)
m)2+Σ(pj(g)

p)2)στα2 + σe2), when haplotype phase is unknown, is less than the variance 

of an individual’s trait value (2σα2 + 2στα2 + σe2), when haplotype phase is known. Unknown 
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phase represents an information loss and reduces the power for detecting the haplotype effects 

comparing to haplotype phase known cases, since we have to use the combination of all the 

possible phases. We focus on the haplotype phase-known case only in this paper.  

 

Using matrix notation, equations (13) or (15) can be written as: 

 

                 Y = Xββββ + Zb + εεεε                                                                                                    (18) 

 

where X is the design matrix for all the fixed effects (treatments) including the overall mean, ββββ 

is the vector of the fixed effects including the overall mean, Z is the design matrix for the 

random effects including the haplotype additive effects (denoted as ZH) and interactions 

(denoted as ZINT), and b is the vector of the random effects for the haplotypes and interactions. 

If there are H possible haplotypes at this locus and T possible treatments, the random effect b 

can be written as (α1
m
, …, αH

m, …, α1
p
, …, αH

p, (τα)11m, …, (τα)ΤH
m, …, (τα)11p, …, (τα)ΤH

p). 

And 

 

Then Y~ N (Xββββ, ZG(θθθθ)ZT + Iσe
2), and Y|b ~ N (Xββββ+Zb, Iσe

2). After estimating the variance 

components of the random effects, the fixed effects can be estimated using ββββ^ = (XTV(θθθθ^)-1X)-

1XTV(θθθθ^)-1Y, where V(θθθθ^)= ZG(θθθθ^)ZT + Iσe
2^. Each level of the random effects can be 

predicted as b^= G(θθθθ^)ZTV(θθθθ^)-1^(Y-Xββββ^). We are not interested in estimating ββββ^ or predicting b^ 

in the paper. 
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Hypothesis Testing  

To compare the above three models, we are interested in testing the following hypotheses: 

 

1. Whether treatments have significant effects 

For all models:   H0: τ1 = τ2 =…=τT = 0 vs. Ha: at least one of them ≠ 0. 

 

2. Whether the gene (or the region) has significant effects  

Model I:        H0: G1 = G2 = … = GG = 0 vs. Ha: at least one of them ≠ 0 

Model II:       H0: α1 = α2  = … = αH  = 0 vs. Ha: at least one of them ≠ 0 

Model III:     H0: σα2 = 0 vs. Ha: σα2 >0  

 

3. Whether gene×treatment interactions have significant effects 

Model I:         H0: (τG)11 = (τG)21 = … = (τG)TG = 0 vs. Ha: at least one of them ≠ 0 

Model II:        H0: (τα)11 = (τα)21  = … = (τα)TH  = 0 vs. Ha: at least one of them ≠ 0 

Model III:       H0: στα2 = 0 vs. Ha: στα2 > 0 

 

For all three models, we fit and test all effects in a similar order. We test the treatment effects 

when the genetic effects are not included (so called Type I tests) or included (so called Type III 

tests) in the model, test the genetic effects when the treatments are not included (Type I) or 

included (Type III) in the model, and test the interactions when both treatments and genetic 

main effects are included in the model. Since the major sources of genetic variation that we are 
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interested in are the genetic effects and the treatment by gene interactions, we test whether both 

are significantly different from zero when the treatment effects are included in the model.   

 

To test any effects in a fixed effects model, we utilize the most frequently used F test:  

 

 

where ESS is the error sum of square for each model, the reduced model is the model without 

the effects under testing, the full model is the model with the effects under testing, and df 

denotes the degrees of freedom for each model. For Model I, the genotypic test for each SNP is 

conducted individually, the smallest p value of the all tests is recorded as the p value for this 

set of SNPs, and a Bonferroni correction is then applied to this p value.  

 

To test Type III treatment effects in a random effect model, we use an F test with a 

Satterthwaite approximation for the denominator degrees of freedom. 

 

Where ββββ is a vector of fixed effects under testing, L is an estimable contrast matrix of rank q > 

1, and C^ is (X’V^-1X)-.  
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The variance components of the random effects are estimated and tested using the Restricted 

Maximum Likelihood (REML) approach. The likelihood ratio statistic is constructed as –2 * 

[the likelihood value of the reduced model – the likelihood values of the full model], where the 

likelihood values are obtained from REML. When testing whether a single variance component 

(σα2 or στα2) is significantly greater than zero, the likelihood ratio statistic follows a 50% χ1
2 + 

50% χ0
2 distribution if asymptotic theory holds (Self SG and Liang KY, 1987). In our 

simulation study, the validity of the tests is verified and showed to be slightly conservative. 

Therefore, a permutation test is implemented for each test. When testing whether σα2 is 

significantly greater than zero, the rows of the design matrix Z are shuffled with respect to Y 

and X, and likelihood ratio statistic is recalculated for each shuffling. When testing 

whether στα2 is significantly greater than zero, the rows of the design matrix for the interactions 

ZINT are shuffled with respect to Y, X and ZH to separate the interactions from the main 

effects and likelihood ratio statistic is recalculated for each shuffling. The permutation p value 

is calculated as the proportion of the times that the permuted likelihood ratio statistic is great 

than or equal to the likelihood ratio from the non-permuted data. Whether at least one of the 

two variance components (σα2 and στα2) is significantly from zero can also be tested. The 

likelihood ratio statistic follows a 25% χ2
2 + 50% χ1

2 + 25% χ0
2 distribution if asymptotic 

theory holds (Self SG and Liang KY, 1987). This type of tests is not studied here.        

   

Simulation study  

To illustrate the performances of the above three models under the influences of different 

factors such as genetic models and mutation origins of QTL, we conduct a simulation study. 

One thousand unrelated individuals were collected in a case-control clinical trial study, where 
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half of the patients were randomly selected and given one drug and the other half were given 

placebo. To study the possible genetic effects in the drug efficacy or adverse event, five SNPs 

were genotyped in a candidate gene at a density of one SNP every 30kb in all 1000 individuals. 

Several assumptions are made to keep our simulation study relatively simple and 

representative. First, the response variable is a quantitative trait representing patients’ 

responses to the drug. Second, there are no missing data. As we mentioned above, the 

haplotype phases are usually unobservable but can be inferred reasonably well using EM 

algorithm. We assume that haplotype phases are known. Last, the QTL is within the gene 

under study, but can be either included in our data or not depending on the selection of the 

SNPs within the gene. We simulate three types of genetic causation for the trait variation. First, 

a single site mutation (one SNP) might cause the change of the quantitative value. The QTL 

minor allele frequency (MAF) is relatively uncommon, 5%-15%, and presumably a relatively 

young mutation. Second, a single site mutation (one SNP) with MAF from 15% to 50% 

presumably a relatively old mutation might be the QTL. Last, the quantitative value change 

might be caused jointly by three single mutations (3 SNPs) in the gene with non-additive 

effects of three mutations. Hudson (2002) simulation program based on a coalescent 

approximation to the Wright-Fisher neutral model is used to generate gametes (haplotypes). 

The program assumes a diploid panmictic population of constant size N, an infinite-sites model 

of mutations, and no selection. A random genealogy tree for a piece of chromosome is 

generated for each sample. Mutations are created according to a Poisson process with the mean 

equal to the product of the mutation rate and the branch length. Only mutation and 

recombination processes are assumed in our simulation. In each simulation run, 2000 gametes 

were generated and randomly paired into 1000 individuals. When QTL is a single SNP 
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mutation, six linked loci with 10 SNPs in each locus are simulated with equal possible 

recombination occurring between loci and no recombination within the locus. One out of 10 

SNPs in each locus is selected if its MAF is greater than 5%, which results a region with six 

SNPs numbered as 1-6. The QTL is always the third SNP, which can be typed into the data or 

not. If the QTL is typed, SNP 1, 2, 3, 5, 6 are included in the data. If the QTL is not typed, SNP 

1, 2, 4, 5, 6 are included in the data. To mimic a young QTL, SNP 3’s MAF is controlled 

between 5%-15%. To mimic an old QTL, SNP 3’s MAF is controlled between 15-50%. When 

QTL is a combination of multiple SNP mutations, the above simulation steps are used similarly 

except 7 SNPs generated and numbered as 1-7. When a QTL is typed, SNPs 1, 3, 4, 5, 7 are 

included in the data. Otherwise, SNPs 2, 3, 4, 6, 7 are included. For both types of QTL 

mutation origins, either the mutation site (sites) or a nearby SNP (SNPs) are included in the 

data, which all result in 5 SNPs in the gene under study. One parameter required by the 

simulation program is the scaled recombination size of the region under study, 4Nc, where N is 

the effective population size and c is the recombination rate per gamete per generation between 

the two ends of the region. If we assume 4N equal to 10,000 and set 4Nc equal to15, the 

simulated region corresponds to a region of 0.15Mb. Since five SNPs are finally selected and 

“typed” in the region, a map density of one SNP every 30kb is then resolved. Our study is 

based on 500 simulation runs for each model. Then the quantitative trait values are generated 

by jointly considering the QTL and effects in table 1 or 2. Each individual’s quantitative trait 

value is generated using the following formula.    

 

Ytik = µ + τt + Gi + (Gτ)ti +  εtik 
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Where µ is always set to zero,  εtik is randomly generated from N(0,1), and the drug (τt), 

genetic (Gi) and interactions ((Gτ)ti) are determined by values in the tables 1 or 2 and the types 

of the QTL causation, the genetic model, and whether an individual took the drug or not. 

Proportions of the drug effects, gene effects and gene×treatment interactions for 6 different 

conditions and three types of genetic models, additive, dominance and recessive, are 

considered and shown in tables 1 and 2. The percentages of genetic effects and gene×treatment 

interactions out of the total variation are calculated using the averaged percentages of the sum 

of squares of the effects over the sum of squares of the total corrected by mean and shown in 

corresponding graphs. For the permutation tests of the random effects, 99 permutations are 

conducted for each simulation and a regression-based method from Boos and Zhang (2002) is 

utilized to reduce the bias of power for the study. Estimated type I error rates and the power for 

each model under different circumstances are calculated in testing the genetic effects and 

gene×treatment interactions at α = 0.05 level. In generating data, we try to keep all the effects 

the same for all genetic models and different types of single mutation based QTLs in order to 

show the impact of the genetic models and QTL compositions in the study. However, some 

effects were increased in data generation for either additive or recessive models because the 

original effects were too small to be detected using the sample size we studied. Increasing the 

sample sizes might increase the testing power. However, it is not an issue we are interested in 

this project.                                .    
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Results 

Estimated type I error rate 

Table 3 summarizes the estimated type I error rates in testing the type I and type III genetic 

effects and gene-drug interactions when the QTL is a single young mutation, a single old 

mutation or a combination of multiple mutations, and when the QTL is included in the data or 

not for Model I, Model II, Model III with the asymptotic test and Model III with the 

permutation test. All the tests for Model I and Model II are valid. Model III with asymptotic 

tests are slightly conservative. When the permutation tests are utilized for Model III, the test 

sizes for genetic effects are corrected, but the test sizes for gene-drug interactions are still 

slightly conservative. The test sizes are similar regardless the structure of the genetic 

components.       

    

Estimated Power   

Drug effects 

Figure 4.1 shows the power of the drug type III effect tests when the QTL is a single young 

mutation, a single old mutation or multiple mutations, when the genetic model is dominance, 

additive or recessive, and when there is drug effects only, drug and gene effects, or drug effects 

and different magnitude gene-drug interactions. The power of the drug type I effect tests is the 

same as that for type III tests since the experimental design is balanced here. The powers of the 

drug effect tests are the same for all three models. When the genetic model is recessive, the 

effects of the gene-drug interactions on the drug effects are hard to detect except when the 

effective allele is quite frequent.     
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Genetic effects 

When the QTL is a single young mutation and included in the data, the fixed genotypic test 

(FG) is the most powerful test. The fixed haplotype effect test (FH) and the random haplotype 

effect with permutation test (RHA) have similar power. The random haplotype effect with the 

asymptotic test (RHP) is the least powerful. When the QTL is not included in the data and the 

genetic model is either dominance or additive, RHP is the most powerful test; FG is the least 

powerful test; RHA is as same as or slightly more powerful than FH. When the QTL is single 

old mutation and included in the data, FG is the most powerful test; FH is the least powerful 

test; RHP is more powerful than PHA. When QTL is not included and the genetic model is 

either dominance or additive, RHP is the most powerful test; FG is the least powerful test; 

RHA is as same as or slightly more powerful than FH. When the QTL is a combination of 

multiple mutations and the genetic model is either dominance or additive, FG, FH, RHA and 

RHP are almost equivalent except FH is slight powerful under some circumstances. When 

QTL is not included and the genetic model is either dominance or additive, RHP is most 

powerful; FG is least powerful; RHA and FH are almost equivalent. Under the recessive 

model, FG is always the most powerful test. 

 

Gene-drug interactions 

When there is no gene-drug interaction, the power is the type I error rate under the null 

hypotheses. When the QTL is a single young mutation and the genetic model is either 

dominance or additive, RHA and RHP are the most powerful tests. RHP is slightly more 

powerful than PHA. When QTL is included in the data, FH is least powerful. When the QTL is 

not included, FG is least powerful. When the genetic model is recessive, FG is always the most 
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powerful test. When the QTL is single old mutation and included in the data, RHA and RHP 

are the most powerful tests. RHP is slightly more powerful that PHA. When the QTL is 

included in the data, FH is least powerful. When the QTL is not included, FG and FH are 

equivalently the least powerful test. When the genetic model is recessive and the QTL is 

included, FG is most powerful; FH is least powerful. . When the genetic model is recessive and 

the QTL is not included, RHA and RHP are as same as or slightly more powerful than FG and 

FH. When the QTL is a combination of multiple mutations and the genetic model is either 

dominance or additive, RHA and RHP are the most powerful tests. RHP is as same as or 

slightly more powerful that PHA. FG is least powerful. Under the recessive genetic model, 

RHA and RHP are as same as or slightly more powerful than FG.  
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Discussion 

In detecting genotypic effects, our study shows that the Model I based F-test is most powerful 

when the QTL is a single mutation and included in the data or the genetic model is recessive. 

Note, when the QTL is a single mutation and included in the data, Model I is the statistically 

appropriate model. The haplotype additive model (Model II and Model III) based tests are 

more powerful when the single mutation based QTL is not included in the data and the genetic 

model is either dominance or additive, or the QTL is a combination of several mutations. One 

observation is that haplotypes based tests start to have advantages over single SNP genotypic 

test when the number of mutations increases in the QTL. Although, this study does not serve as 

a proof that haplotypes based tests are more powerful than single SNP based tests since only 

limited circumstances are explored and we assume that the haplotype phases are observed, 

which is seldom the case because of the difficulties in obtaining haplotype data. Losing 

haplotype phase information might result in losing statistical power of detecting the effects. 

However, our results coincide with some recent published work. Morris and Kaplan (2002) 

showed that the haplotype analysis has advantages when multiple disease susceptibility alleles 

present under the additive genetic model. It further shows the importance of developing 

statistical appropriate and more powerful haplotype analysis methods. The fixed effect models 

based F-test is asymptotically equivalent to the likelihood ratio test and equivalent when the 

normality holds. Our simulation study shows that Model I based tests have correct size when 

the Bonferroni correction is applied. One reason might be that the LD between SNPs is 

relatively weak. 
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In testing gene×treatment interactions, our Model III based tests are the most powerful tests 

under most circumstances we explored except when the disease gene model is recessive and 

the QTL is included it the data. It shows that the random effect model is not only statistically 

rigorous but also having comparable power to the other tests. For Model III, Permutation tests 

increase the power of likelihood ratio tests based on asymptote, but not dramatically. The 

asymptote based likelihood ratio tests can be applied directly although they are slightly 

conservative under the null hypotheses.            

 

When the dominance effects (dij) are fitted, both Model II and III are almost equivalent to 

Model I with genotype classes of multiple loci, but providing more knowledge on the additive 

and dominance proportions of the genetic effects. However, for any particular analysis, there is 

a consideration of the sample size versus the test degrees of freedom. In this study, we choose 

not to include the dominance terms in the haplotype analysis. Extending Model II and III to 

include the dominance term is certainly if interest.    

 

Another observation is that the type I and type III tests of the genetic and drug effects are 

almost similar in our study results. The reason is that we have a balanced design in our 

simulation study and the design matrices of these two independent effects are orthogonal to 

each other. Therefore, the power of detecting one type of effects is almost independent from 

the presents of the other factors. We present the type III test results. However, type III tests 

should always be used in case there is unbalance in the experimental design and the type I test 

results might be misleading.     
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There are several issues worth considering, such as the sample sizes needed or the appropriate 

SNP densities. Similar to causes of the complex diseases, multiple genes with moderate effects 

are likely to play a role in complex drug treatment interactions as well. Therefore, a relatively 

large sample size may need in detecting the effects. Fortunately, phase III or IV clinical trials 

might provide enough sample sizes. Further study is certainly of interest. 
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Appendix 

Nielsen and Weir (1999) showed 

 

Combining equation (7) and (A1), equations (8) and (9) held. If both the trait and the marker 

loci have only two alleles, equation (10) can be further simplified. 

   

From the constrain Σrprαr = 0, we have  

 

It follows  

 
Substitute equation (A4) into equation (A2), we have  
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Similarly, the marker dominance variation (11) can be written as 

  

From the constrain Σrqrdrs = 0, we have  

 

Then, 

Similarly,  

Also,  

Substitute equation (A8), (A9) and (A10) into (A6), we have  
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If either the trait or the marker locus has more than two alleles, there are no simple 

relationships of the variance components of the trait and the marker loci as the above held. 

Instead, the effects of the trait is related to the effects of the marker though a rather 

complicated equation.     

 

(A11)                                                                                           D             

)dpdp2pd(pD            

 )2444()(

2
D2

2
2
1

2
2

2
1

4

2
22

2
2

2
1221

2
11

2
12

2
2
1

2
2

2
1

4

221122121211
2

12
2
22

2
112

2
2
1

4
2

σ

σ

ppqq

ppqq

ddddddddd
qq

DmD

=

++=

+−−++=



 115

Reference 

Aithal GP, Day CP, Kesteven PJ, Daly AK. (1999) Association of polymorphisms in the 

cytochrome p450 CYP2C9 with warfarin dose requirement and risk of bleeding 

complications. Lancet 353: 717-719 

Boos D. and Zhang J (2000) Monte Carlo evaluation of resampling-based hypothesis tests. 

JASA Vol 95 No. 450 486-492 

Clark AG. Inference of haplotype from PCR-amplified samples of a diploid population. (1990) 

Mol Biol Evol 7:111-122  

Davidson S (2000) Research suggests importance of haplotypes over SNPs. Natures 

Biotechnology 18: 1134-1135 

Douglas J, Boehnke M, et al. (2001) Experimentally-derived haplotypes substantially increase 

the efficiency of linkage disequilibrium studies. Nat Genet 28:361-364 

Drysdale CM, McGraw DW, Stack CB, Stephens JC, Judson RS, Nandabalan K, Arnold K, 

Ruano G, and Liggett SB (2000) Complex promoter and coding region 2-adrenergic 

receptor haplotypes alter receptor expression and predict in vivo responsiveness. PNAS 

97: 10483-10488 

Excoffier L and Slatkin M. (1995) Maximum-likelihood estimation of molecular haplotype 

frequencies in a diploid population. Mol Biol Evol 12:921-927 

Gao F, Johnson DL, Ekins S, Janiszewski J, Kelly KG, Meyer RD, West M. Optimizing higher 

throughput methods to assess drug-drug interactions for CYP1A2, CYP2C9, CYP2C19, 

CYP2D6, rCYP2D6, and CYP3A4 in vitro using a single point IC(50). (2002) J Biomol 

Screen 7:373-382 



 116

Hetherington S, Hughes AR, Mosteller M, Shortino D, Baker KL, Spreen W, Lai E, Davies K, 

Handley A, Dow DJ, Fling ME, Stocum M, Bowman C, Thurmond LM, Roses AD. 

(2002) Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. 

Lancet. 359: 1121-1122 

Hudson RR. (2002) Generating samples under a Wright-Fisher neutral model of genetic 

variation. Bioinformatics Vol. 18: 337-338    

Hoehe MR, Kopke K, Wendel B, Rohde K, Flachmeier C, Kidd KK, Berrettini WH, Church 

GM. (2000) Sequence variability and candidate gene analysis in complex disease: 

association of mu opioid receptor gene variation with substance dependence. Hum Mol 

Genet 9:2895-2908 

Long JC, Williams RC, Urbanek M (1995) An E-M algorithm and testing strategy for multiple-

locus haplotypes. Am J Hum Genet 56: 799 –810 

Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sunderland, Mass: 

Sinauer 

Marshall A. (1997) Getting the right drug into the right patient. Nature Biotechnol 15:1249-

1251 

Morris RW, Kaplan NL. (2002) On the advantage of haplotype analysis in the presence of 

multiple disease susceptibility alleles. Genet Epidemiol 23:221-233 

Nielsen DM, Weir BS (1999): A classical setting for association between markers and loci 

affecting quantitative traits. Genet Res 74:271-277 

Raimundo S, Fischer J, Eichelbaum M, Griese E-U, Schwab M, Zanger UM. (2000) 

Eluciatdion of the genetic basis of the common “intermediate metabolizer” phenotype 

for drug oxidation by CYP2D6. Pharmacogenetics. 10: 1-5 



 117

Risch, N, Merikangas, K (1996) The future of genetic studies of complex human diseases. 

Science 273: 1516-1517 

Sachidanandam, R., Weissman, D et al. (2001) A map of human genome sequence variation 

containing 1.42 million single nucleotide polymorphisms. Nature 409:928-933 

Self SG and Liang KY (1987) Asymptotic properties of maximum likelihood estimators and 

like likelihood ratio tests under nonstandard conditions. JASA Vol 82, No 398: 605-610 

Spear BB, Heath-Chiozzi M. Huff J. (2001) Clinical application of pharmacogenetics 

TRENDS in Molecular Medicine. Vol. 7 No.5    

Weir BS, Cockerham CC (1977) Two-locus theory in quantitative genetics. In: Proceedings of 

the international Conference on Quantitative Genetics. (eds) Pollak E, Kempthorne O, 

Bailey TB, Iowa State University Press, Ames, Iowa 247-269 

Weir, B.S. and C.C. Cockerham. (1979) Estimation of linkage disequilibrium in randomly 

mating populations. Heredity 42:105-111 

Woolley AT, Guillemette C, Li Cheung C, Housman DE, Lieber CM. (2000) Direct 

Haplotyping of Kilobase-Size DNA Using Carbon Nanotube Probes. Nature 

Biotechnology 18:760-763. 

Zaykin DV, Westfall PH, Young SS, Karnoub MA, Wagner MJ, Ehm MG. (2002) Testing 

Association of Statistically Inferred Haplotypes with Discrete and Continuous Traits in 

Samples of Unrelated Individuals. Hum Hered 53:79-91  

 



 118

Figure legends 

 

Figure 4.1: Power of drug effects type III tests. Three types of vertical bars stand for three 

genetic models: the light solid bar: the dominance model; the dark solid bar: the additive 

model; the empty bar: the recessive model. Five groups of bars are results for different types of 

effects in the model. From left to right, drug effects only, drug and genetic effects, drug and 

small gene-drug interactions, drug and medium gene-drug interactions, and drug and large 

gene-drug interactions. Figures from top to bottom: A: the QTL is a single young mutation. B: 

the QTL is a single old mutation. C: the QTL is a combination of multiple mutations.        

 

Figure 4.2: Power of genetic effects type III tests when the QTL is a single young mutation. 

Four types of vertical bars stand for different models and tests: the dark gray bar: Model I; the 

light bar: Model II; the light gray bar: Model III with the asymptotic test; the dark bar: Model 

III with the permutation test. For each picture, four groups of bars on the left are the results 

when QTL is included in the data; four groups of bars on the right are the results when QTL is 

not included in the data. Within each four groups of bars, from left to right, the groups are 

results when there are different types of effects in the model: drug and genetic effects, drug and 

small gene-drug interactions, drug and medium gene-drug interactions, and drug and large 

gene-drug interactions. Proportions of effects out of total variation are shown. Figures from top 

to bottom, A: Dominance genetic model; B: Additive genetic model with increased effects; C: 

Recessive genetic model with increased effects.  
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Figure 4.3: Power of genetic effects type III tests when the QTL is a single old mutation. All 

the notations are as the same as in Figure 2. Figures from top to bottom, A: Dominance genetic 

model; B: Additive genetic model; C: Recessive genetic model.  

 

Figure 4.4: Power of genetic effects type III tests when the QTL is a combination of multiple 

mutations. All the notations are as the same as in Figure 2. Figures from top to bottom, A: 

Dominance genetic model; B: Additive genetic model; C: Recessive genetic model. 

 

Figure 4.5: Power of gene-drug interaction tests when the QTL is a single young mutation. All 

the notations are as the same as in Figure 2. Figures from top to bottom, A: Dominance 

genetic model; B: Additive genetic model with increased effects; C: Recessive genetic model 

with increased effects. 

 

Figure 4.6: Power of gene-drug interaction tests when the QTL is a single old mutation. All 

the notations are as the same as in Figure 2. Figures from top to bottom, A: Dominance 

genetic model; B: Additive genetic model; C: Recessive genetic model. 

 

Figure 4.7: Power of gene-drug interaction tests when the QTL is a combination of multiple 

mutations. All the notations are as the same as in Figure 2. Figures from top to bottom, A: 

Dominance genetic model; B: Additive genetic model; C: Recessive genetic model. 
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Table 4.1 Simulation effects when quantitative trait locus (QTL) is a single SNP mutation. 
 

Genetic 
Model  

Additive Dominance Recessive M
O
D
E
L 

Genetic 
Components 
At QTL 

1/1 1/0 0/0 1/1 1/0 0/0 1/1 1/0 0/0 

τt 0 0 0 / / / / / / 
Gi 0 0 0 / / / / / / 

1 

(Gτ)ti 0 0 0 / / / / / / 
τt 0.08 0.08 0.08 / / / / / / 
Gi 0 0 0 / / / / / / 

2 

(Gτ)ti 0 0 0 / / / / / / 
τt 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 
Gi 0.28 0.14 0 0.28 0.28 0 0.28 0 0 

3 

(Gτ)ti 0 0 0 0 0 0 0 0 0 
τt 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 
Gi 0 0 0 0 0 0 0 0 0 

4 

(Gτ)ti 0.32 0.16 0 0.32 0.32 0 0.32 0 0 
τt 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 
Gi 0 0 0 0 0 0 0 0 0 

5 

(Gτ)ti 0.48 0.24 0 0.48 0.48 0 0.48 0 0 
τt 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 
Gi 0 0 0 0 0 0 0 0 0 

6 

(Gτ)ti 0.64 0.32 0 0.64 0.64 0 0.64 0 0 
 
Note: 1. “1” is always the minor allele.  
          2. Model 1-6 represent 6 different proportions of the drug effect, gene effects and 
interactions. 
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Table 4.2 Simulation effects when quantitative trait locus (QTL) is from multiple SNP 
mutations.  

 
Genetic Allelic  Effect Gene×treatment Allelic Effect Model Drug  

Effect 11* 100 00* 11* 
with drug 

100  
with drug 

00* 
with drug 

1 0 0 0 0 0 0 0 
2 0.08 0 0 0 0 0 0 
3 0.08 0.32 0.16 -0.06 0 0 0 
4 0.08 0 0 0 0.60 0.30 -0.06 
5 0.08 0 0 0 1.20 0.30 -0.06 
6 0.08 0 0 0 1.80 0.30 -0.06 
  Note: 1. “1” is always the minor allele.   

        2. ‘*’ means any allele. 
            3. Model 1-6 represent 6 different proportions of the drug effect, gene effects and 
interactions. 
             4. Additive, dominance and recessive models are also applied to Model 3-6.   The 
effects of alleles are dominated by alleles from left to right.     
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Table 4.3 Type I error rates with 95% confidence interval.  
 

 
 
 
 
 

Single Young 
SNP QTL 

Single Old SNP 
QTL 

Multiple SNPs 
QTL 

Effects Model 

W/ 
QTL 

W/O 
QTL 

W/ 
QTL 

W/O 
QTL 

W/ 
QTL 

W/O 
QTL 

I 0.06    
± 0.02 

0.07     
± 0.02 

0.04    
± 0.02 

0.04     
± 0.02 

0.04    
± 0.02 

0.05    
± 0.02 

II 0.06    
± 0.02 

0.05     
± 0.02 

0.07    
± 0.02 

0.05     
± 0.02 

0.06    
± 0.02 

0.05    
± 0.02 

III 0.04    
± 0.02 

0.04    
± 0.02 

0.03    
± 0.02 

0.03     
± 0.02 

0.03    
± 0.02 

0.04    
± 0.02 

Genetic 
Effect 
Type I 

III w/ perm 0.06    
± 0.02 

0.07    
± 0.02 

0.05     
± 0.02 

0.05     
± 0.02 

0.05    
± 0.02 

0.07    
± 0.02 

I 0.06    
± 0.02 

0.07    
± 0.02 

0.04    
± 0.02 

0.04     
± 0.02 

0.04    
± 0.02 

0.05    
± 0.02 

II 0.06    
± 0.02 

0.05     
± 0.02 

0.07    
± 0.02 

0.05     
± 0.02 

0.06    
± 0.02 

0.06    
± 0.02 

III 0.05    
± 0.02 

0.04    
± 0.02 

0.03    
± 0.02 

0.03     
± 0.02 

0.03    
± 0.02 

0.04    
± 0.02 

Genetic 
Effect 

Type III 

III w/ perm 0.06    
± 0.02 

0.07    
± 0.02 

0.05    
± 0.02 

0.05     
± 0.02 

0.04    
± 0.02 

0.07    
± 0.02 

I 0.05    
± 0.02 

0.05    
± 0.02 

0.03    
± 0.02 

0.04    
± 0.02 

0.04    
± 0.02 

0.05    
± 0.02 

II 0.05    
± 0.02 

0.05    
± 0.02 

0.04    
± 0.02 

0.05     
± 0.02 

0.05    
± 0.02 

0.05    
± 0.02 

III 0.03    
± 0.02 

0.03    
± 0.02 

0.04    
± 0.02 

0.03     
± 0.02 

0.03    
± 0.02 

0.03    
± 0.02 

Gene-drug 
interaction 

III w/ perm 0.05     
± 0.02 

0.04 
± 0.02 

0.05    
± 0.02 

0.04     
± 0.02 

0.04    
± 0.02 

0.03    
± 0.02 
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Figure 4.1 
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Figure 4.2 
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Figure 4.3  
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Figure 4.4  
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Figure 4.5 
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Figure 4.6  
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Figure 4.7  

 

 
 
 

A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.60% 1.70% 3.00% 4.50% 0.60% 1.70% 3.00% 4.50%

Effects

B

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

0 .60 % 1 .70% 3 .20% 5 .2 0% 0 .60 % 1 .70% 3 .20% 5 .2 0%

E ffe c ts

C

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

0 .6 0 % 1 .1 0 % 1 .6 0 % 2 .3 0 % 0 .6 0 % 1 .1 0 % 1 .6 0 % 2 .3 0 %

E ffe c ts


