
Abstract

KULKARNI, GIRISH. Exact and Heuristic Algorithms for the q-mode Problem. (Un-

der the direction of Dr. Yahya Fathi.)

In this dissertation we focus on the development of exact and inexact (i.e., heuris-

tic) algorithms for the q-mode problem. The exact algorithms are based on integer

programming models for the q-mode problem. We discuss the theoretical properties

of an existing IP model and propose several enhancements. We also propose a new IP

model for the problem and investigate these models through a comprehensive com-

putational experiment. The computational experiment reveals that, in practice, the

IP models are more effective for instances with strong natural clusters but less effec-

tive for instances containing weak natural clusters. We also propose exact algorithms

based on the Benders decomposition for one of the IP models.

The heuristic algorithm that we propose for the q-mode problem is a local im-

provement algorithm that is based on a very large scale neighborhood structure. We

evaluate the algorithm through a computational experiment and empirically demon-

strate its effectiveness.

(v)

Exact and Heuristic Algorithms
for the q-mode problem.

BY

G irish Kulkarni

A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY OF

NORTH CAROLINA STATE UNIVERSITY

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Operations Research

RALEIGH, NORTH CAROLINA

MAY 2005

APPROVED BY:

(fr~~~k .
. YAHYA FATHI

CHAIR OF ADVISORY COMMITTEE

. A X ;;b-~------V<! ~-S-: C. FANG

(1.4 da,)~C. A SAVAGE -

A seeker of material comforts should not expect to gain knowledge

while a seeker of knowledge has to avoid material comforts,

as the comfort seeker does not gain knowledge

whereas a knowledge seeker does not get material comforts.

- a sanskrit “pearl of wisdom”

ii

Biography

Girish Kulkarni was born on the the 1st of November, 1976 in the beautiful coastal

city of Margao in the state of Goa, India. After graduating from high school in

Mumbai, he obtained the Bachelor of Technology degree in Metallurgical Engineering

and Materials Science from IIT Bombay in 1999. After completing his undergraduate

studies, he worked as a software engineer at Infosys Technologies Ltd. at Pune, India

for a year and then joined the Operations Research program at NC State University.

As a graduate student Girish undertook courses in Operations Research and Com-

puter Science and the primary focus of his research was on integer programming

models and exact and heuristic algorithms for combinatorial optimisation problems.

During his stay at NC State University he was a member of INFORMS and served as

the president of its student chapter at NC State during 2003-2004. He was invited to

be a member of the intenational honor society for Operations Research, Omega Rho.

On the completion of his Ph.D., Girish plans to embark on a career in the industry

as an Operations Research analyst.

iii

Acknowledgments

I would like to thank my advisor, Dr. Yahya Fathi for helping me develop an interest

in the field of combinatorial optimisation. Dr. Fathi has been a great mentor and

working with him has been a memorable learning experience. I am indebted to him

for his ideas and advice. I had the opportunity to work with him on academic and

industrial problems and I benefited greatly from his insight and experience. I also

wish to acknowledge his tremendous contribution in preparing this dissertation.

I wish to thank Dr. Shu-Cherng Fang, Dr. Stephen Roberts and Dr. Carla

Savage for taking time out of their busy schedules to serve on my committee. They

are skillful teachers with great command over their subjects. A large part of what I

have imbibed during my graduate studies comes from the courses they taught. I am

grateful to Dr. Savage and Dr. Roberts for their suggestions and comments, and to

Dr. Fang for his insightful questions during my proposal and my final exam.

My parents, Dr. Suneela Kulkarni and Dr. Mangesh Kulkarni, have always been a

great source of encouragement and support and that has motivated me to pursue doc-

toral research. I owe my success to their well rounded upbringing and their emphasis

on discipline and excellence.

I was lucky to have Leena Wagle by my side throughout the journey of my doc-

toral studies. Her love and affection helped me face the challenges and focus on my

priorities. She has brought joy and colour to my life.

I would like to mention some of my fellow students at NC state, Daniel Finkel,

Girish Ramachandra, Rajesh Nagarajan and Chuan Lin. They were great team mates

iv

and office mates and from whom I received invaluable help while studying for the

courses and qualifying exams. I am thankful to Barbara Walls who is a great program

assistant for the OR program.

v

Table of Contents

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Electronic Manufacturing. 1

1.2 Data Mining. 3

1.3 Definition of the q-mode Problem and Notation. 6

1.4 An MIP Model for the q-mode Problem. 8

1.5 Organization of Thesis. 9

2 Literature Review 11

2.1 Algorithms for the 2-model Problem. 12

2.1.1 Constructive Clustering Scheme. 12

2.1.2 Iterative Clustering Scheme. 13

2.1.3 Single Switch Neighborhood (SSN) Algorithm. 13

2.1.4 Variable Depth Search (VDS) Algorithm. 14

2.1.5 Computational Results. 15

2.2 The K-modes Algorithm. 16

2.3 The ROCK Algorithm. 18

2.4 The CACTUS Algorithm. 21

2.5 Very Large Scale Neighborhood Search Techniques. 24

vi

3 MIP models and Benders’ Decomposition. 26

3.1 A Relaxed MIP Formulation for the q-mode Problem. 27

3.1.1 Separability of (IPR) for a Fixed Value of y. 28

3.1.2 Formulation (IPRjl
y) has an Integer Optimal Solution. 30

3.1.3 Integrality of Basic Feasible Solutions of (IPRy) 33

3.2 Benders Decomposition for the q-mode problem. 38

3.2.1 Benders’ Reformulation for the q-mode Problem. 38

3.2.2 The Benders Master Problem. 40

3.2.3 Details of the Algorithm based on Benders Decomposition. . . 41

3.3 Additional MIP formulations for the q-mode Problem. 47

3.3.1 An Alternate MIP Formulation. 47

3.3.2 A Modification of the Formulation (IPR). 51

4 Random generation of problem instances for the q-mode problem. 56

4.1 Introduction. 56

4.2 Notation. 57

4.3 Creation of Profiles. 60

4.4 Classification of the Problem Instances. 64

5 Computational Experiments for Algorithms based on the MIP Mod-

els. 66

5.1 Performance Measures. 67

5.2 Comparison of the Lower Bounds. 68

5.3 Optimal Solutions using Formulation (IPT) 72

5.4 Comparison of the Algorithms based on Benders’ Decomposition. . . 75

6 A local improvement algorithm based on a very large scale neigh-

borhood. 80

6.1 Solution Representation. 81

6.2 Neighborhood Definition. 81

vii

6.3 Identification of a Cyclic Exchange Neighbor. 84

6.4 Efficient Calculation of the Improvement Graph. 86

6.5 Identification of Valid Cycles in the Improvement Graph. 91

6.6 Local Improvement Algorithm. 95

6.7 Search Strategy . 96

7 Computational experiments for the Local Improvement Algorithm. 98

7.1 Performance Measures . 99

7.2 Observations . 99

8 Conclusion and Future Work. 106

8.1 Summary of Results . 106

8.2 Future Research. 108

References 110

A Lower Bounds for the q-mode Problem. 113

A.1 An Alternate Lower Bound for the q-mode Problem. 114

A.2 Special class of Instances of the q-mode Problem. 119

B Detailed Computational Results. 123

C File Format: Instance of the q-mode problem. 128

D C++ program: Random Generation of q-mode Instances. 129

E C++ Program: Reading a q-mode Instance from File. 136

viii

List of Tables

4.1 The 6 pmf types. 60

4.2 Parameter values for creating artificial instances 65

4.3 Names of all the artificial instances. 65

5.1 Comparison of the LP relaxation of the all the MIP formulations. . . 69

5.2 Optimal solutions using formulation (IPT) 78

5.3 Near Optimal solutions using formulation (IPT) 79

5.4 Results for the Benders’ algorithm 79

6.1 Different cases for reducing the computations for calculating the Im-

provement Graph arc costs. 89

7.1 Computational results for LI, LI1 and LIα. 104

7.2 Comparison of implementations IGC1 and IGC2 for calculation of the

improvement graph costs. 105

A.1 Comparison of LBF and v(LPT): Instances with weak clusters. . . . 121

A.2 Comparison of LBF and v(LPT): Instances with strong clusters. . . 122

B.1 Comparison of v(LPR), v(LPT) and v(LPA): Instances with weak

clusters. 124

B.2 Comparison of v(LPR), v(LPT) and v(LPA): Instances with strong

clusters. 125

ix

B.3 Detailed computational results for the local improvement algorithm :

weakly clustered instances. 126

B.4 Detailed computational results for the local improvement algorithm :

strongly clustered instances. 127

x

List of Figures

3.1 Pseudo Code for Algorithm Bopt . 42

3.2 Flowcharts for algorithms BNopt and Bopt. 45

4.1 The type of pmfs used in the selection of profiles. 58

4.2 Creation of pmf sets. 61

4.3 Creation of pmf sets. 63

5.1 Comparison of the Linear Programming Relaxations. 71

6.1 Example of a 2-exchange move in solution S. 82

6.2 Example of cyclic and path exchange in solution S. 85

6.3 Pseudo code for Algorithm AS . 93

6.4 Pseudo code for Algorithm LI . 96

xi

Chapter 1

Introduction

The q-mode problem is a combinatorial optimization problem that arises in several

contexts. Clustering of categorical data as required in Data mining and manufactur-

ing of switching cabinets in the telecommunications industry are two scenarios about

which published literature exists. The q-mode problem requires the partitioning of

objects into clusters and hence can be considered a special case of the partitioning

problem. In the first two sections of this chapter we briefly introduce the two scenar-

ios that we mentioned above and describe how the q-mode problem arises in these

contexts. In the third section we provide a formal problem definition for the q-mode

problem along with the terminology and notation that we use throughout this disser-

tation. In section 4 we discuss an integer programming formulation for the q-mode

problem. The last section contains an overview of this dissertation.

1.1 Electronic Manufacturing.

The q-mode problem arises in electronic manufacturing in the context of a proposed

scheme described in [16] and in [17], for manufacturing of switching cabinets. A

switching cabinet is a piece of electronic equipment that consists of a collection of

circuit packs mounted on slots on a frame. Every switching cabinet is configured

1

to perform a specific task based on customer requirements. Each slot on a frame is

mounted with a circuit pack from a given collection of circuit packs and the type

of circuit pack assigned to the different slots determine the configuration and hence

the functionality of the switching cabinet. Each switching cabinet ordered by the

customer requires a specific configuration that depends on its application and hence

the number of distinct configurations manufactured at a given time is extremely large.

The manufacturing of switching cabinets involves two distinct operations, circuit

pack assembly and cabinet configuration. We are only concerned with cabinet config-

uration and testing. In order to streamline the production process a manufacturing

scheme is proposed in [16, 17]. This scheme is based on manufacturing a collection

of fully configured model switching cabinets and then modifying these model config-

urations so as to match the configurations demanded by the customer. This scheme

is expected to improve the quality of the switching cabinets produced and also re-

duce the cost of manufacturing. We can maintain one or more distinct configurations

among these model cabinets. Every switching cabinet configuration demanded by the

customer is compared with the model configurations that we have maintained and is

assigned to the model configuration that is closest to it.

If a particular slot in the model configuration has a circuit pack type that is

different from the type required on the demanded cabinet, then the circuit pack

on the model cabinet is replaced with the circuit pack required on the demanded

cabinet. Thus, slot by slot the model cabinet is reconfigured by replacing circuit

packs so as to obtain the configuration of the demanded cabinet. If a cabinet k is

assigned to model configuration l and in reconfiguring this model cabinet to obtain

the demanded cabinet k, a removal of a circuit pack is required on a particular slot j

of the model cabinet, then we say that a replacement is required for slot j of cabinet k.

The number of replacements required so that the model cabinet having configuration

l is reconfigured into cabinet configuration k is known as the replacement number

of cabinet k for model configuration l. Thus when the replacement number of a

2

cabinet for a model is less, then time spent on reconfiguration is less and the cabinet

configuration is said to be closer to the said model.

The model configuration problem is defined to be a problem of determining a col-

lection of distinct model configurations to be used in this manufacturing scheme. For

the purpose of determining the model configurations historical data on actual cabinet

configurations ordered over a fixed time horizon is used. The model configurations

are determined so as to minimize the total number of replacements for all the cabinet

configurations in the selected historical data. In the context of the model configura-

tion problem each switching cabinet present in the customer demand is referred to as

an order and each slot is referred to as a position. The configuration of an order is

determined by the circuit pack type assigned to each position on it. A cabinet having

one of the model configurations is referred to as a model.

1.2 Data Mining.

In this section we give a brief introduction to data mining. We limit our discussion

to those aspects of data mining that are relevant to the q-mode problem. Detailed

explanations and descriptions of the various aspects of data mining are available in

[10]. Data mining, also known in more general terms as knowledge discovery, is a term

given to a collection of tasks that are performed in obtaining useful information from

available data. Knowledge discovery involves the discovery of patterns in the given

data allowing us to describe general properties of the data or derive inference from

the current data in order to make predictions. The discovery of patterns may further

lead to the discovery of association rules, i.e., attribute-value conditions that may

occur frequently together in a given set of data. Two important processes involved in

data mining are classification and prediction. Classification is the process of finding

a set of functions that distinguish and describe the classes in the given data. This set

of functions can be used to predict the class of records whose class label is unknown.

3

The set of functions is derived on the basis of a set of training records (i.e., a data

set of records whose class labels are known). Further the functions found can be used

to predict missing values in some records whose class label is known. In data mining

terminology this would be known as prediction.

Unlike classification and prediction which deal with records whose classes are

known, in clustering we investigate the records without consulting known class labels.

The class labels are not present in the training data set simply because they may not

be known to begin with. Clustering can be used to generate such labels. The records

are clustered or grouped by maximizing intraclass similarity or minimizing interclass

similarity. Each cluster that is formed can be viewed as a class of objects from which

rules can be derived. Clustering also facilitates taxonomy formation, i.e., organization

of the data in a hierarchy of classes that group similar events together.

Data available for data mining can be in various formats. We assume that in-

formation on which data mining needs to be done describes several entities. Thus

the information available, that we call a data set, contains a set of records, and each

record describes various attributes of a single entity. As an example, we may have

a data set that describes the physical characteristics of mushrooms. This data set

would have one record per mushroom and each record would consist of a fixed set

of attributes. Further, each attribute can take values from a fixed set of categories.

Thus, in the data set, every record may have attributes like shape, size, color etc, and

the attribute shape can take one value from the categories conical, bell and convex

etc.

We can formally define categorical data in the following manner. Let Aj be the

jth out of a total of n attributes that describe a space Ω. Each attribute has a

domain D(Aj). The domain of an attribute will be regarded as categorical if it is

finite and unordered, i.e., if a, b ∈ D(Aj) then either a = b or a 6= b. Also, all

a ∈ D(Aj) will be referred to as the categories (or values) of the attribute Aj. The

space Ω will be considered categorical if the domain of each of the attributes Aj

4

describing each record is categorical. Every record X in the categorical space Ω is

described by a conjunction of attribute-value pairs (A1 = x1)∩ . . .∩ (An = xn) where

x1 ∈ D(A1), . . . , xn ∈ D(An). Thus, each record can be represented as a vector

X = (x1, . . . , xn) having exactly n elements.

Depending on our objective in clustering a given collection of records, different

approaches can be employed to cluster these records. In this thesis we focus on an

approach which is based on creating q data modes. The data mode has the same

number of attributes as the records in the data set and the configuration of the data

mode is defined by an assignment of a value, chosen from the appropriate domain, to

every attribute on the data mode. Each attribute of a record can be compared to the

corresponding attribute of a data mode. Every attribute in the record that does not

have the same value as the corresponding attribute of the mode is said to correspond

to a replacement. The total number of replacements for the record is the replacement

number of that record for the mode that it was compared to. The record is assigned

to the mode which corresponds to the least replacement number. Thus based on

the criterion of minimizing the sum of the replacement numbers for all records the

clustering of the given categorical data into q clusters effectively reduces to finding

the configurations of q data modes.

One can clearly perceive that there is a one to one correspondence between the

two scenarios of clustering of switching cabinets and clustering of categorical data.

In fact, a collection of switching cabinets can be thought of as a data set where each

switching cabinet is a record, every slot on the cabinet is an attribute and the circuit

pack types that can be assigned to each slot constitute a set of categories that form

the domain of that particular attribute. The model configuration problem in the

manufacturing of switching cabinets and the problem of finding data modes in the

context of clustering of categorical data are two applications of the q-mode problem.

In the following section we present a formal definition of the q-mode problem along

with a notation and terminology that is independent of the contexts in which this

5

problem may arise.

1.3 Definition of the q-mode Problem and Nota-

tion.

In the context of q-mode problem our objective is to partition a given collection of

objects into q mutually exclusive and collectively exhaustive groups so as to minimize

the total distance from the objects to the “mode” of the cluster to which each object

is assigned. We refer to each object in this context as a record, and each record is

represented by a vector of size n. Each element (position) of this vector corresponds

to an attribute of the object, and we assume that all attributes are categorical in

nature, i.e., each attribute can take one of m different values (or categories) for that

attribute. Without loss of generality we assume that all attributes have the same

number m of possible values or categories, but this assumption can be easily removed

with minor adjustments. We refer to the space of all such vectors of size n as CV nm.

For a given collection (group) of records Φ in CV nm, and for each value of i = 1

to m and j = 1 to n, let F (i, j) = Number of records in the collection Φ that have

value i in position j, and let Fmax(j) = maxi F (i, j) and i∗(j) = arg maxi F (i, j).

Clearly i∗(j) represents the category that is most frequently observed in position j

among all members of the collection Φ. If more than one category tie at achieving this

maximum value at position j we break the tie arbitrarily and select any one of these

categories as i∗(j). We now define mode of Φ as a vector of size n where its jth element

is i∗(j), for all j = 1 to n. We denote this vector by mod(Φ) and its jth element by

modj(Φ) = i∗(j) for all j. Note that given a collection of p vectors Φ ⊆ CV nm

its mode vector can be determine efficiently and the corresponding computational

requirement is o(np) [17].

Given two vectors U1 and U2 of the same size we define the distance between

these vectors D(U1, U2) as the number of positions at which the two vectors are not

6

identical; i.e., letting dj(U
1, U2) = 1 for all j such that u1

j 6= u2
j , and dj(U

1, U2) = 0

otherwise, it follows that D(U1, U2) =
∑n

j=1 dj(U
1, U2). In these expressions the

notation uj is used to represent the jth element of the vector U .

For a given collection of p vectors in CV nm (i.e., vectors of categorical data as

defined above), say Φ = {U1, · · · , Up}, it can be shown that [17] the total distance

between these vectors and their mode is smaller than or equal to the total distance

between these vectors and any other vector of the same size in CV nm. In other words

p∑
k=1

D[Uk,mod(Φ)] = min
V ∈CV nm

{
p∑

k=1

D[Uk, V)

}

Clearly
∑p

k=1D[Uk,mod(Φ)] is a characteristic value of the collection Φ; we denote

this value by MD(Φ) and refer to it as the total distance of the collection Φ from

its mode. In context, this value is comparable to the total distance of a collection of

vectors in <n from their geometric center.

We can interpret the distance between a vector Uk ∈ Φ and its mode, i.e.,

D[Uk,mod(Φ], as the total number of positions where a replacement of the value

(change of category) is required to make this vector identical to the mode vector.

This interpretation is particularly useful in the context of the switching cabinet man-

ufacturing as described earlier or in a similar manufacturing environment. In the

context of the data mining, an interpretation for MD(Φ) depends on the specific ap-

plication at hand, but this value serves as a metric to measure the similarity of objects

in the given collection of vectors. Obviously a smaller value for MD(Φ) implies that

the members of the collection Φ are more similar to each other, and a larger value

implies otherwise. For a comprehensive discussion of various measures that can be

employed in this context see [12].

We are now prepared to give a formal definition of the q−mode problem.

The q-mode problem: Given a collection of p vectors in CV nm and a positive

integer q, partition these vectors into q mutually exclusive and collectively exhaustive

groups (clusters) Φ1 through Φq so as to minimize
∑q

`=1 MD(Φ`).

7

In this context, and for ease of discussion, throughout this paper we refer to∑q
`=1 MD(Φ`) as the total number of replacements associated with partitions Φ1

through Φq of Φ. Note that the 1-mode problem is simply the problem of find-

ing the mode of the given collection of vectors, and hence it can solved efficiently

as discussed earlier. For q ≥ 2 the q-mode problem is conjectured to be NP -hard,

although no proof is available in the open literature as of this writing.

1.4 An MIP Model for the q-mode Problem.

An integer programming formulation for the q-mode problem is discussed in [17]. We

have included this formulation, which we refer to as (IP), below for ease of reference.

A collection of p records and an integer q define an instance of the q-mode problem.

Here q represents the number of clusters into which the given collection of records

is to be partitioned. The records are represented in the form of a three dimensional

array aijk where

aijk =

 1 if value i is present at position j in record k.

0 otherwise.

The decision variables in the formulation are

vijl =

 1 if value i is assigned to position j in mode l.

0 otherwise.

ykl =

 1 if record k is assigned to cluster l.

0 otherwise.

tjk =

 1 if a replacement is required in position j for record k.

0 otherwise.

(1.1)

8

min
∑
j

∑
k

tjk (1.2)

s. t. aijkykl − vijl ≤ tjk ∀i, j, k, l (1.3)

(IP)
∑
i

vijl = 1 ∀j, l (1.4)

∑
l

ykl = 1 ∀k (1.5)

vijl ∈ {0, 1}, ykl ∈ {0, 1}, tjk ≥ 0 ∀ i, j, k, l (1.6)

In this formulation equation (1.4) ensures that exactly one value is assigned to

each position in every mode, and equation (1.5) ensures that each record is assigned

to exactly one cluster. Equation (1.3) is the constraint that allows for counting of

replacements. Whenever a record k having value i at the jth position is assigned to

cluster l, i.e., aijkykl = 1, and the mode for cluster l does not have value i in position

j, i.e., vijl = 0 then tjk is forced to be equal to 1. The objective is to minimize the

total number of replacements for the entire collection of records. This formulation

has mnq + pq + np variables and mnpq + nq + p constraints.

A special case of the q-mode problem arises when q = 1, i.e., we need to find

the mode of a given collection of records, i.e., the 1-mode problem. As mentioned

earlier an efficient procedure with computational requirement of the order of o(np),

is described in Morgan et. al. [17] for solving the 1-mode problem. In this thesis we

focus on the problem with q ≥ 2.

1.5 Organization of Thesis.

In this dissertation we focus on the development of exact and heuristic algorithms

for the q-mode problem. The exact algorithms are based on integer programming

models for the q-mode problem. The heuristic algorithm is a local improvement

9

algorithm that is based on a very large scale neighborhood structure. We have already

introduced the q-mode problem, provided a brief explanation of the applications where

this problem arises, and also discussed an integer programming model for it. Chapter

2 is a review of the literature pertaining to the q-mode problem. In Chapter 3 we

propose a relaxation of the integer programming model (IP) discussed earlier in this

chapter and describe a Benders’ decomposition based on this relaxed model. We also

propose an alternative model for the q-mode problem and further modifications to the

relaxed IP model. Chapter 4 discusses the collection of problem instances that we use

in the computational experiments. Chapter 5 contains the details of a computational

experiment performed to evaluate the exact algorithms. Chapter 6 presents the design

of a local improvement algorithm for the q-mode problem along with details of a very

large scale neighborhood that it is based on. The discussion and details regarding the

computational experiments performed to evaluate the local improvement algorithm

are included in chapter 7. Finally, chapter 8 contains the conclusion and ideas for

future research.

10

Chapter 2

Literature Review

In this chapter we review literature related to both contexts in which the q-mode

problem arises as described earlier i.e., in electronic manufacturing and also in clus-

tering of data having categorical attributes. There is a large body of work in the area

of clustering but most of this literature is primarily related to clustering of numeric

data. Several ideas originating in the literature regarding clustering of numeric data

have been used in developing algorithms for clustering of categorical data but the

algorithms developed for numeric data have not shown great success in clustering

categorical data. In this chapter, we limit our attention to literature that pertains to

algorithms for the clustering of categorical data. After this survey, we include here a

brief overview of the use of large scale neighborhood structures in search algorithm

for combinatorial optimization problems.

In the first section, we mainly discuss algorithms developed for the 2-model prob-

lem arising in electronic manufacturing. This section has five subsections, four differ-

ent algorithms are described in the first four sections and the fifth subsection describes

results of a computational experiment. Section 2.2 describes the K-modes algorithm

along with a formal definition of categorical data. This algorithm is basically an ex-

tension of the K-means algorithm [15] for categorical data. In section 2.3 we review an

algorithm referred to as ROCK, that has been developed for transaction data. Section

11

2.4 briefly describes an algorithm referred to as CACTUS and presents the ideas of

summarization of the categories used in the development of this algorithm. Finally,

section 2.5 we briefly introduce very large scale neighborhood search techniques.

2.1 Algorithms for the 2-model Problem.

A comprehensive study of the 2-model problem in the context of manufacturing of

switching cabinets is presented in [16]. This work includes description of two main

schemes for manufacturing of switching cabinets and proposes several algorithms for

the 2-model problem. In the context of the two model problem every switching cabinet

configuration that is ordered is referred to as an order. All algorithms are based on

the objective function of minimizing the total number of replacements. We describe

these algorithms in the following subsections.

2.1.1 Constructive Clustering Scheme.

The constructive clustering scheme begins by selecting any two of the given orders as

models. Each of the remaining orders are compared to these two models. An order

is assigned to the model that corresponds to less number of replacements for that

order. The assignment of every given order in this manner creates two clusters. We

then find the model corresponding to each of the two clusters. The total number of

replacements required for both the clusters is noted. This procedure is now repeated

for every possible pair of orders within the given collection of orders and the clustering

corresponding to the smallest value of the total number of replacements is selected.

In this scheme, the major computational step is in selecting the best clusters.

For every pair of orders in the given collection we need to calculate two models, this

requires computation of the order of o(np). There are a possible of
(
p
2

)
= p(p−1)

2

distinct pairs of orders that can be used as models, where n is the total number of

positions on each order and p is the total number of orders in the given collection.

12

Thus the computational requirement of this algorithm is of the order of o(np3).

2.1.2 Iterative Clustering Scheme.

The first step in this algorithm is to select two orders from the given collection of

orders that are as unlike each other as possible. This is done by comparing every

possible pair of orders to each other. The pair which has a minimum number of

identical positions in common is chosen and designated as the initial pair of models.

The remaining orders are compared to both of these models and each order is assigned

to the model which corresponds to less number of replacements for that order. This

gives us two initial clusters. We now obtain the models for each cluster. If the

new models obtained are different from the older models then the new models are

selected as the current models and all the orders are reassigned by comparing each

order with the current models and changing its assignment only if it results in less

number of replacements for that order. We obtain two new models corresponding

to the two new clusters and check if the models have changed. The procedure stops

when the models obtained in two consecutive iterations are the same. This procedure

is finite because every iteration results in a clustering that has strictly less number of

replacements than the clustering in the last iteration and the number of replacements

is lower bounded by 0. This procedure can, in theory, take a large number of iterations

but computational experiments have shown that the algorithm generally terminates

within 2 or 3 iterations.

2.1.3 Single Switch Neighborhood (SSN) Algorithm.

The SSN algorithm is a local search algorithm. In this algorithm a feasible solution

of the 2-model problem is represented by a vector V . The kth element of this vector

indicates the cluster to which order k is assigned in the current solution. Thus every

element of this vector takes value either 1 or 2. A neighbor V ′ of a feasible solution V is

obtained by switching the cluster assignment of one of the orders. All the neighbors

13

of a solution V constitute its neighborhood. Any feasible solution V corresponds

to two clusters and the models for these clusters can be efficiently obtained. Once

models are obtained the total number of replacements required for all the orders in the

current solution is known and this is the cost of the solution V . The algorithm begins

by selecting an initial feasible solution V 0, i.e., every order in the given collection

is assigned to one of the two clusters. We now look for a neighbor of V 0 that has

less cost i.e., a neighbor that has a clustering of the orders that correspond to total

number of replacements that is less than that for V 0. The first neighbor found that

has less cost becomes the current feasible solution. This procedure terminates when

the current feasible solution has lesser cost than all its neighbors. This algorithm

finds a local optimal solution to the problem and the quality of solution obtained

depends upon the choice of the starting solution.

2.1.4 Variable Depth Search (VDS) Algorithm.

This algorithm is based on a neighborhood search strategy that has been introduced

by Kernighan and Lin for the uniform graph partitioning problem [13]. Here, instead

of switching the cluster assignment of just one of the orders (as in the SSN algorithm) a

sequence of switches is performed to obtain a neighbor of the current feasible solution.

Thus the neighborhood consists of the solutions obtained by all possible sequences of

switches that can be performed on the current feasible solution. This neighborhood

definition is less restrictive in the sense that all interim switches in the sequence

of switches selected may not individually lead to an improved neighbor. But, the

switches taken together in a sequence must lead to a lower cost neighbor.

This algorithm also starts with a randomly generated initial feasible solution. The

cluster assignment of an order k is switched. The total number of replacements for

the solution obtained after the switch, i.e., D(k) is calculated. The value of D(k)

is calculated for all the orders in the collection. The order corresponding to the

lowest value of D(k) is selected, its cluster assignment is tentatively switched and

14

the change in the total number of replacements (which we refer to as the replacement

change in this subsection) is noted. This order becomes the first order in the sequence

of switches that is built. Now we recalculate the values of D(k) for all remaining

orders (i.e., those that are not already in the sequence) and select the next order that

gets added to the sequence. The replacement change for each order that gets added

to the sequence is also noted. This procedure continues until all orders have been

included as part of the current sequence. Note that the total change in the number of

replacements when the first two orders in the sequence are actually switched can be

calculated by adding the first two replacement changes that we have noted. Similarly,

the total change in the number of replacements when the first r orders are actually

switched equals the sum of the first r insertion changes that we have stored. Also,

note that the sum of the replacement changes for all p orders in the sequences is zero,

as performing all p switches will lead us back to the original solution.

The algorithm selects the size of the sequence to be the one that corresponds to the

largest total decrease in the total number of insertions. Once the size of the sequence

of switches to be performed is selected, the switches are performed as indicated in the

sequence to obtain an improved neighbor. This procedure continues until the current

solution is such that the associated sequences of all sizes correspond to a net increase

in the number of replacements.

2.1.5 Computational Results.

Extensive computational experiments have been carried out to evaluate the perfor-

mance of these four algorithms and a complete discussion of the results is given in

[16]. The instances used for this computational experiment are randomly generated

and the authors give details about these instances and the ideas used in generating

them.

The computational experiment shows that the VDS algorithm is the best of the

four algorithms in terms of the quality of solutions obtained and the SSN algorithm

15

is a close second. The solutions obtained using VDS and SSN algorithms were con-

siderably better than the constructive algorithms. In many of the instances, both

VDS and SSN obtained identical results. In very few instances VDS was slightly

better while in one instance SSN obtained a better solution. In terms of solution

time the iterative clustering algorithm was the fastest, while the time taken by the

enumerative clustering algorithm was comparable with the time taken by the search

algorithms (VDS and SSN). Also, the VDS and SSN algorithms were used on 90

very small sized instances for which the optimal solution was obtained by exhaustive

enumeration of all the solutions. In all these instances, both algorithms were able to

obtain the optimal solution.

2.2 The K-modes Algorithm.

The K-means algorithm proposed in [15] for clustering of numeric data has clustering

cost based on the Euclidean distance between the records. The K-modes algorithm

[11] is a clustering algorithm that extends the paradigm of the K-means algorithm

to domains that are categorical. The letter K in this phrase refers to the number of

clusters in the data which is the same as the letter q that we use in the context of

the q-mode problem. The clustering cost function used in the K-modes algorithm is

the total number of mismatches of the corresponding attribute categories of the two

records. Smaller number of mismatches correspond to greater similarity between the

two records. This is the same cost function that we use in the q-mode problem.

Formally, for two records X = (x1, . . . , xn), and Y = (y1, . . . , yn) the degree of

dissimilarity is given by d(X, Y) =
∑

j δ(xj, yj) where

δ(xj, yj) =

 0 xj = yj

1 xj 6= yj

The dissimilarity measure d(X, Y) gives equal importance to each category of an

16

attribute. A cost function dχ2(X, Y) that takes into account the frequencies of the

categories in a data set is also defined

dχ2(X, Y) =
n∑
j=1

(fxj + fyj)

fxjfyj
δ(xj, yj)

where, fxj and fyj are the number of objects in the data set that have values xj and yj

for attribute j. This dissimilarity measure gives more importance to rare categories

than frequent ones.

In the K-modes algorithm each cluster has a representative known as the mode

which is conceptually close to the idea of a centroid. In fact, the value of each attribute

on the mode is the statistical mode of the values of that attribute of all the records

in that cluster. The cost of each cluster Ck, i.e., I(Ck), in the K-modes algorithm is

the sum of the dissimilarity measure calculated for each record Xi in cluster k and

the mode of that cluster Qk i.e., I(Ck) =
∑

∀Xi∈Ck

∑
j d(xij, q

k
j), where xij is the value

of the jth attribute of record Xi and qkj is the value of the jth attribute of mode Qk.

The K-modes algorithm proceeds so as to create clusters that minimize the sum of

the cost of all clusters i.e.,

min
∑
k

I(Ck) = min
K∑
k=1

∑
∀Xi∈Ck

n∑
j=1

d(xij, q
k
j)

The K-modes algorithm explained briefly consists of the following steps

1. Select K initial modes one for each cluster. There are several strategies that can

be used to select these K initial modes, two of these strategies are explained in

the paper.

2. Compare each order in the given collection with each of the K modes and

calculate the dissimilarity measure d(xij, q
k
j). Allocate record X to that cluster

k where the corresponding mode Qk has the least value of the dissimilarity

measure. Once an order is assigned to a particular cluster, the mode of that

17

cluster is recalculated.

3. After all records have been allocated to clusters, compare all records with all

the current modes. If a record is found such that its nearest mode belongs to

another cluster rather than its current one, reallocate the record to that cluster

and update the modes of both clusters.

4. Repeat 3 until no record has changed clusters after a full cycle test of the whole

data set.

The K-modes algorithm obtains locally optimal solutions and a solution found

from this algorithm is dependent on the initial modes selected and the order of records

in the dataset. This algorithm is very similar to the iterative clustering scheme that

is proposed in [16] for the 2-model problem, as discussed earlier.

Experimental results show that K-modes algorithm shows very good classification

performance when tested with the well known soybean data base. The authors have

also included an experiment to demonstrate the scalability of the algorithm for large

data set.

2.3 The ROCK Algorithm.

ROCK (RObust Clustering using linKs) proposed in [9] is an agglomerative hier-

archical clustering algorithm that uses the concept of links to cluster transactional

data. Transactional data is a special type of categorical data where the data set con-

sists of records that have variable number of attributes. A cluster in a transactional

data set may have a very large number of attributes present among all the records

in it. But individual records in the cluster, on the average, may have a very small

number of these attributes. Example of a transaction is a set of items purchased by

a single individual at a grocery store. A database of such records is called a market

basket database. Records that belong to a particular cluster because they represent

18

individuals that have similar buying patterns, may contain a very small number of

items from a very large set of items that defines the cluster. Thus every transaction

in a cluster does not contain all the attributes but a small subset of them. Thus it

is possible that a pair of items in a cluster have very few items in common but they

are linked by a number of other transactions in the cluster that have a substantial

number of items in common with the two transactions. Further the number of items

that define different clusters may not have uniform sizes.

The notion of links between the various transactions can be explained as follows.

A pair of transactions are defined to be neighbors if the degree of their similarity is

greater than some threshold value. The degree of similarity can be quantified using

any function or also from some sort of a similarity table given by a domain expert.

The number of links (links(ts, tr)) between a pair of transactions, ts and tr, is then

the number of common neighbors for those transactions. Transactions belonging

to the same cluster will have in general a large number of common neighbors and

consequently more links.

This concept of links is used to develop a cost function on the basis of which

clustering is performed. A cluster should be such that all pairs of transactions in it

must have a large number of links. In other words, two transactions ts and tr that

belong to the same cluster should have a high value of link(ts, tr). At the same time

two transactions ts and tr′ that belong to different clusters should have a low value

of link(ts, tr′). This leads the authors to propose the following cost function

El =

q∑
l=1

nl
∑

ts,tr∈Cl

link(ts, tr)

n
1+2f(θ)
l

The cost function not only tries to maximize link(ts, tr) between all pairs of trans-

actions in a cluster but it is also able to distinguish between clusters that need to be

merged together and those that need to be separate in an agglomerative algorithm.

This is very important because the cost function is used in the cost of a hierarchical

algorithm which proceeds by merging of clusters. Thus a cost function that simply

19

maximizes the sum of the links between pairs of transactions would not prevent all

the transactions to become part of a single cluster. To prevent this from happening

the total number of links from any pair of transactions in a cluster l is divided by the

total expected pairs of links in the cluster which is estimated to be n
1+2f(θ)
l . Here f(θ)

is a function such that the cluster Ck has approximately n
f(θ)
l links. The function

f(θ) depends on the data set as well as on the type of clusters that we are trying to

obtain. Dividing by the expected number of links in Ck prevents points with very

few links between them from getting assigned to the same cluster. The other main

issue here is the determination of the function f(θ). The authors have found that

if the clusters in the instance are well defined then even inaccurate but reasonable

estimates work well in practice.

The ROCK algorithm begins by accepting as input a set of sampled records ran-

domly drawn from the original data set and the number of desired clusters K. The

ROCK algorithm finds optimal clusters based on these sample records. Initially, each

record is a cluster. At each iteration the clusters are stored in decreasing order of

the value of the cost function. The algorithm proceeds by selecting the cluster with

the largest value of the cost function and merging it with another cluster that it is

closest to. The closeness of the two clusters is decided based on the value of a good-

ness measure which itself is based on the cost function. The number of clusters thus

decrease at each iteration and the algorithm is stopped when there are K clusters

left or when there are no links between the clusters formed at the end of a particular

iteration. The clusters formed using just the sampled records are then used to assign

the remaining records to the appropriate clusters.

The ROCK algorithm is run on three data sets taken from the UCI machine

learning repository: Mushroom data set, Congressional Votes data set and the US

mutual Funds data set. The ROCK algorithm has limited success in the Congressional

votes data set. This data set contains two natural classes of records (Democrats and

Republicans). The ROCK algorithm is able to cluster this data set into two clusters,

20

one containing a large number of democrats and the other containing a large number

of republicans, but it is unable to obtain clusters that separate out the two classes.

The Mushroom data set has two classes Edible and Poisonous. The ROCK algorithm

clusters the data set into 21 clusters of which 20 clusters contain either all poisonous

mushrooms or all edible mushrooms, only one cluster contains mushrooms of both

classes.

2.4 The CACTUS Algorithm.

The CACTUS algorithm is proposed in [7]. This paper introduces a novel formaliza-

tion of a cluster for categorical attributes by generalizing the definition of a cluster

for numerical attributes. This algorithm is unique in the sense that the set of values

that the attributes can take are partitioned into disjoint clusters and these clusters

are used to assign the records in the data set to different clusters.

CACTUS (CAtegorical ClusTering Using Summaries) has two important char-

acteristics. First, the algorithm requires only two scans of the dataset, and hence is

very fast and scalable. Second the algorithm creates summaries and each record is

assigned to clusters based on these summaries.

To define the summaries of the given dataset the authors introduce and define

various terms which we explain briefly below. Let A1, . . . , An be a set of categorical

attributes with domainsD1, . . . , Dn, respectively. Let the datasetD be a set of records

where each record t contains values for each of the n attributes. i.e., t : t ∈ D1×· · ·×

Dn. We call S = S1 × · · · × Sn an interval region if for all i ∈ {1, . . . , n}, Si ⊆ Di.

Let ai ∈ Di and aj ∈ Dj, i 6= j then the support σ(ai, aj) of the attribute value

pair (ai, aj) with respect to dataset D is defined as the number of records in the data

set D that have the ith attribute equal to ai and the jth attribute equal to aj, i.e.,

σ(ai, aj) = |{t ∈ D : t.Ai = ai and t.Aj = aj}|. A record t = 〈t.A1, . . . , t.An〉 ∈ D is

said to belong to the region S if for all i ∈ {1, . . . , n}, t.Ai ∈ Si. The support σ(S) of

21

S is the number of records in D that belong to S.

Now, we define the concepts strong connection and similarity. If all the attributes

are independent then all attribute values within an attribute are equally likely and an

expected value can be calculated for the number of records which have a particular

combination of attribute values. Intuitively clusters occur in a dataset because the

attribute values are not equally likely. If there are a large number of records have

attribute value pair (ai, aj) then they are said to be connected and if the support

σ(ai, aj) exceeds a certain threshold then these two attribute values are said to be

strongly connected. Further, let Si ⊂ Di and Sj ⊂ Dj, i 6= j, be two sets of attribute

values. An element ai ∈ Si is strongly connected with Sj if, for all x ∈ Sj, ai and x

are strongly connected. Si and Sj are said to be strongly connected if each ai ∈ Si
is strongly connected with Sj and each aj ∈ Sj is strongly connected with Si. Also,

let a1, a2 ∈ Di. The similarity γj(a1, a2) between a1 and a2 with respect to Aj(j 6= i)

is defined as follows. γj(a1, a2) = |{x ∈ Dj : σ(a1, x) > 0 and σ(a2;x) > 0}|.

These concepts of strong connection and similarity between attribute values is used

to determine summaries required for the CACTUS algorithm.

The summary information is of two types: (1) inter-attribute summaries and (2)

intra-attribute summaries. The inter-attribute summaries (ΣIJ) consist of all strongly

connected attribute value pairs where each pair has attribute values from different

attributes, i.e.,

ΣIJ = {Σij : i, j ∈ {1, . . . , n} and i 6= j} where,

Σij = {(ai, aj, σ∗(ai, aj) : ai ∈ Di, aj ∈ Dj, and σ∗(ai, aj) > 0}.

The intra-attribute summaries consist of similarities between attribute values of

the same attribute i.e.,

ΣII = {Σj
ii : i, j ∈ {1, . . . , n} and i 6= j} where,

Σii = {(ai1, ai2, γj(ai1, ai2) : ai1, ai2 ∈ Di, and γj(ai1, ai2) > 0}.

Further, for i = 1, . . . , n, Ci ⊆ Di, |Ci| > 1, and α > 1, C = 〈C1, . . . , Cn〉 is a

cluster over {A1, . . . , An} if the following three conditions are satisfied.

22

1. For all i, j ∈ {1, . . . , n}, i 6= j, Ci and Cj are strongly connected.

2. For all i, j ∈ {1, . . . , n}, i 6= j, there exists no C ′i ⊃ Ci such that for all j 6= i,

C ′i and Cj are strongly connected.

3. The support σ(C) of C is at least α times the expected support of C under the

attribute-independence assumption.

The CACTUS algorithm is based on the above concepts and consists of three

phases, Summarization, Clustering and Validation.

1. Summarization: This phase consists of calculation of inter-attribute and intra-

attribute summaries and the paper describes effecient techniques to calculate

these summaries for a given data set.

2. Clustering: This phase involves the use of summaries to develop disjoint sets of

values which have been defined as interval regions. These interval regions have

to satisfy the three conditions given above. Thus in this step the domain of

attributes is partitioned into disjoint clusters.

3. Validation: In this phase each record from the data set is individually scanned.

The interval regions to which the values present in the record belong determines

the cluster to which the record should be assigned. If membership of some some

cluster is below a threshold value then that cluster is dropped.

The CACTUS algorithm is tested on a synthetic data set having 1 million records.

Each record has 10 attributes and the number of attribute values for each attribute

equal 100. The records are created in such a manner that there are strong clusters in

the data set. The CACTUS algorithm is able to identify the clusters of each record

correctly and in a reasonable amount of computer time. CACTUS is also applied to a

data set that contains a combination of two sets of bibliographic entries. The results

from this application show that CACTUS finds intuitively meaningful clusters in the

data set.

23

Here we conclude our survey pertaining to algorithms that can be used for solving

the q-mode problem. In the next section we present a brief overview of very large scale

neighborhood structures and the techniques used for searching these neighborhoods in

the context of designing search algorithms for combinatorial optimization problems.

2.5 Very Large Scale Neighborhood Search Tech-

niques.

The structure of the neighborhood is by far the most important feature that af-

fects the quality of the local optima obtained via neighborhood search algorithms

in combinatorial optimization problems (also referred to in literature as local search

algorithms). It is generally desirable to have large neighborhoods so as to improve the

possibility of having good quality local optima. On the other hand, a large amount of

time may have to be spent on searching large neighborhoods leading to large amount

of time being spent for every run. One generally desires to perform several runs of

an algorithm with different starting points so as to increase the chance of finding a

global optimal solution, and having large execution times for each run leads to fewer

runs. Thus a large neighborhood may not necessarily produce an effective heuristic

unless we can search the neighborhood efficiently.

Very large scale neighborhood (VLSN) search algorithms can be considered to

belong to three broad classes : (1) variable-depth methods in which large neighbor-

hoods are searched heuristically, (2) large neighborhoods in which the neighborhoods

are searched using network flow techniques or dynamic programming, and (3) large

neighborhoods induced by restrictions of the original problem that are solvable in

polynomial time. A comprehensive survey of algorithms belonging to all three classes

can be found in Ahuja et al. [5]. Below, we introduce relevant literature on search

algorithms for the first two of the above three classes.

The heuristic proposed by Lin and Kernighan [14] is one of the earliest vari-

24

able depth methods and many variable depth methods for the traveling salesman

problem can be considered as generalizations of this heuristic. Further extensions

and generalizations of the ideas of Lin and Kernighan by Glover [8] have lead to

a structured class of variable depth methods called ejection chains. Variable depth

methods and ejection chains have been used to develop heuristic methods that have

been successful in obtaining good quality solutions for a wide variety of combinato-

rial optimization problems. The second class of VLSN search algorithms are those

where the neighborhoods are searched using network flow techniques. The techniques

used can be classified as follows (i) minimum cost cycle finding methods (ii) shortest

path or dynamic programming based methods and (iii) methods based on minimum

cost matchings or assignments. Thompson and Orlin [19] have proposed a cyclic ex-

change neighborhood for solving partitioning problems, a large sub-class of problems

that find significant applications in logistics, manufacturing telecommunications and

scheduling. The large neighborhood formed out of cyclic exchanges has been used by

Ahuja et al. [3], along with techniques to identify an improved neighbor (based on

finding the minimum cost cycle), for solving the capacitated minimum spanning tree

problem. A more detailed discussion on search algorithms based on cyclic exchange

neighborhoods along with a network optimization based methodology to efficiently

search the neighborhood is given in [2].

25

Chapter 3

MIP models and Benders’

Decomposition.

In this chapter we present theoretical developments related to MIP formulations for

the q-mode problem. These developments are directed towards designing an exact

algorithm for the q-mode problem that can solve relatively large size instances. In the

first section of this chapter we demonstrate that the MIP formulation (IP) can be

relaxed and the resulting formulation (IPR) can be used to obtain an optimal solution

of the q-mode problem. In the second section we discuss a Benders decomposition for

the formulation (IPR). In the third section we propose an alternate MIP formulation

for the q-mode problem. In the same section we also present a modification for the

formulation (IPR) with the aim of improving the optimal objective value of its LP

relaxation. This modification leads to considerable computational efficiency when

solving this model using a branch and bound algorithm.

26

3.1 A Relaxed MIP Formulation for the q-mode

Problem.

We consider the mixed integer programming (MIP) formulation (IP) discussed in

section 1.4 and replace the binary restriction on vijl, i.e., vijl ∈ {0, 1}, with a simple

non-negativity restriction, vijl ≥ 0. The resulting model is still an MIP formulation

as it has ykl variables that are constrained to be binary. Clearly this MIP model is

a relaxation of the formulation (IP) and we refer to this formulation as (IPR). The

model (IPR) is given below and the notation used in this model is the same as that

used for model (IP).

min
∑
j

∑
k

tjk (3.1)

(IPR) s. t. aijkykl − vijl ≤ tjk ∀i, j, k, l (3.2)∑
i

vijl = 1 ∀j, l (3.3)

∑
l

ykl = 1 ∀k (3.4)

vijl ≥ 0, tjk ≥ 0, ykl ∈ {0, 1} ∀ i, j, k, l (3.5)

In this section we show that (IPR) has an optimal solution in which all vijl

variables are integer (binary); hence this solution is also an optimal solution for (IP).

We further show that every basic feasible solution of a corresponding LP model,

obtained from (IPR) by fixing the ykl variables at any feasible values, has integer

values for all vijl variables. This property is important in the context of obtaining an

optimal solution of (IPR) using a branch and bound algorithm.

27

3.1.1 Separability of (IPR) for a Fixed Value of y.

We begin by assuming that we have an instance of the q-mode problem and also

an appropriate set of binary values for the ykl variables, i.e., we fix the values of all

variables of type ykl such that they satisfy constraints (3.4) and (3.5). In other words,

we have ykl ∈ Y ∀ k, l where Y is defined as Y = {ykl|ykl ∈ {0, 1},
∑

l ykl = 1, ∀ k, l}.

Henceforth, we shall use y to collectively refer to all the variables of type ykl. Once

we fix y ∈ Y , all constraints of type (3.2) can be rewritten as tjk + vijl ≥ aijkykl,

where aijkykl is either 0 or 1. Also, since constraint (3.4) is already satisfied, it can

be dropped. The reduced formulation (IPRy) thus obtained is given below. We use

ν(y) to represent the optimal value of the problem as a function of y.

ν(y) = min
∑
j

∑
k

tjk (3.6)

s.t. tjk + vijl ≥ aijkykl ∀ i, j, k, l (3.7)

(IPRy)
∑
i

vijl = 1 ∀ j, l (3.8)

vijl ≥ 0, tjk ≥ 0 ∀ i, j, k, l (3.9)

It can be seen by inspection that (IPRy) is separable in variable j as shown below.

Hence, we can split the formulation (IPRy) into n subproblems, i.e., for each j = 1

to n we have

(IPRj
y)

νj(y) = min
∑

k tjk

s.t. tjk + vijl ≥ aijkykl ∀ i, k, l∑
i vijl = 1 ∀ l

vijl ≥ 0, tjk ≥ 0 ∀ i, k, l

and ν(y) =
n∑
j

νj(y).

28

As defined before, let Φ represent the set of all records and let Φl represent the set

of all records assigned to cluster l. We know that y ∈ Y implies that each record k is

assigned to exactly one cluster l. Thus, Φ1∪Φ2∪· · ·∪Φq = Φ and Φl1∩Φl2 = ∅ ∀ l1, l2.

We can re-write the objective function
∑

k tjk as
∑

l

∑
k∈Φl

tjk by bringing together

tjk variables corresponding to records belonging to the same cluster.

Let record k be assigned to cluster l′, then ykl′ = 1 and ykl = 0 ∀ l 6= l′. Therefore,

for all clusters l 6= l′, we can replace aijkykl with 0 and the constraints tjk+vijl ≥ aijkykl

become tjk + vijl ≥ 0. Since, vijl ≥ 0 and tjk ≥ 0, these constraints are satisfied by

all feasible values of vijl and tjk. Thus these constraints are redundant and can be

dropped. After dropping all constraints of the form tjk + vijl ≥ aijkykl where ykl = 0

i.e., k /∈ Φl, and rewriting the remaining constraints that correspond to ykl = 1, i.e.,

k ∈ Φl, as tjk + vijl ≥ aijk, we can write IPRj
y as

min
∑

l

∑
k∈Φl

tjk

s.t. tjk + vijl ≥ aijk ∀ i, l, k ∈ Φl∑
i vijl = 1 ∀ l

vijl ≥ 0, tjk ≥ 0 ∀ i, k, l

Clearly the above model is separable in variable l. Hence, each of the subproblems

(IPRj
y) is separable into q subproblems which implies that (IPRy) is separable into

nq subproblems. Thus for each j = 1 to n and each l = 1 to q we have a subproblem

(IPRjl
y) as follows

(IPRjl
y)

νjl(y) = min
∑

k∈Φl
tjk

s.t. tjk + vijl ≥ aijk ∀ i, k ∈ Φl∑
i vijl = 1

vijl ≥ 0, tjk ≥ 0 ∀ i, k

where ν(y) =
∑

j

∑
l νjl(y). In its fully separated form (IPRy) can now be written

as

29

(IPRy)
∑
j

∑
l


min

∑
k∈Φl

tjk

s.t. tjk + vijl ≥ aijk ∀ i, l, k ∈ Φl∑
i vijl = 1 ∀ j, l

vijl ≥ 0, tjk ≥ 0 ∀ i, j, k, l


3.1.2 Formulation (IPRjl

y) has an Integer Optimal Solution.

In this subsection we prove that (IPRjl
y) has an integer optimal solution. We also

derive a formula to calculate the optimal objective value for any subproblem (IPRjl
y)

and finally show that (IPR) is a valid formulation for the q-mode problem. These

results are particularly useful in the context of the Benders’ decomposition algorithm

discussed in section 3.2. First let us consider the subproblem (IPRjl
y) that we have

introduced earlier.

min
∑

k∈Φl
tjk

(IPRjl
y) s.t. tjk + vijl ≥ aijk ∀ i, k ∈ Φl∑

i vijl = 1

vijl ≥ 0, tjk ≥ 0 ∀ i, k

We know that aijk takes values 0 or 1 and hence the constraints tjk + vijl ≥ aijk

can be written as one constraint of type tjk + vijl ≥ 1 and m− 1 constraints of type

tjk+vijl ≥ 0. The proof proceeds by showing that we can transform problem (IPRjl
y)

by dropping constraints of type tjk + vijl ≥ 0 and rewriting the remaining “≥ 1”

constraints as “= 1” constraints without affecting the optimal solution. Then we

show that the optimal solution to this transformed problem is integer. We also need

the following definition for Fl(i, j). For all records assigned to cluster l, Fl(i, j) is the

number of records having value i in position j. Therefore, Fl(1, j) + Fl(2, j) + · · · +

Fl(m, j) = |Φl| = number of records assigned to cluster l, and Fl(i, j) =
∑

k∈Φl
aijk.

30

Theorem 3.1. (IPRjl
y) has an integer optimal solution and the optimal objective

value is |Φl| −maxi Fl(i, j).

Proof : Every record k corresponds to a group of m constraints of which exactly

one constraint is of the form tjk + vijl ≥ 1 and m − 1 constraints are of the form

tjk + vijl ≥ 0. In problem IPRjl
y , apart from these m constraints no other constraints

affect the value of the corresponding variable tjk. Since tjk ≥ 0 and vijl ≥ 0, it follows

that constraints of type tjk+vijl ≥ 0 are satisfied by every feasible value of tjk and vijl

and hence such constraints are redundant. We focus on the only remaining constraint

in the group, i.e., tjk + vijl ≥ 1, and show that this constraint must be satisfied as an

equality at every optimal solution for this problem.

Let us assume that {t∗jk, v∗ijl} represents an optimal solution to IPRjl
y and that for

some i′ and k′ the optimal solution is such that we have t∗jk′+v
∗
i′jl > 1. ∴ t∗jk′ > 1−v∗i′jl.

Let, t′jk′ = 1− v∗i′jl. It follows that t′jk′ < t∗jk′ , hence we have

∑
k∈Φl,
k 6=k′

t∗jk + t′jk′ <
∑
k∈Φl,
k 6=k′

t∗jk + t∗jk′ =
∑
k∈Φl

t∗jk

Also, t′jk′ ≥ 0 and hence satisfies all constraints. Thus t∗jk′ cannot be part of an

optimal solution, and this implies that for any record k if the corresponding variable

t∗jk is optimal, then we can write t∗jk = 1− v∗ijl, where i is such that aijk = 1.

We can thus transform problem IPRjl
y by dropping the “≥ 0” constraints and

rewriting the remaining “≥ 1” constraints as equality. Let us call this transformed

problem as (IPDjl
y).

We have already shown that if t∗jk is optimal then for every record k assigned to

cluster l there is a value ik s.t. t∗jk = 1− v∗ikjl and aikjk = 1. It follows that

31

∑
k∈Φl

t∗jk =
∑
k∈Φl

(1− v∗ikjl)

=
∑
k∈Φl,
a1jk=1

(1− v∗1jl) +
∑
k∈Φl,
a2jk=1

(1− v∗2jl) + . . .+
∑

k∈Φl,
amjk=1

(1− v∗mjl)

=
∑
i

Fl(i, j)(1− v∗ijl)

Problem (IPDjl
y) becomes

 min
∑

i Fl(i, j)(1− vijl)

s.t.
∑

i vijl = 1, vijl ≥ 0



Now, min
∑
i

Fl(i, j)(1− vijl) =
∑
i

Fl(i, j)−max
∑
i

Fl(i, j)vijl

= |Φl| −max
∑
i

Fl(i, j)vijl

Since, vijl ≥ 0 and
∑

i vijl = 1,
∑

i Fl(i, j)vijl is actually a convex combination

of the m numbers represented as Fl(i, j), for i = 1 to m. Thus max
∑

i Fl(i, j)vijl =

maxiFl(i, j) and |Φl| − max
∑

i Fl(i, j)vijl = |Φl| − maxi Fl(i, j). Thus the optimal

solution to (IPDjl
y) is such that v∗ijl = 1 when i = argmaxi Fl(i, j) and 0 otherwise.

The optimal objective value is |Φl| − maxi Fl(i, j). Thus (IPDjl
y) has an integer

optimal solution, which in turn indicates that (IPRjl
y) has an integer optimal solution.

�

Further, we can see that when argmaxi Fl(i, j) is unique, (IPRjl
y) has a unique

optimal solution and it is integer. When argmaxi Fl(i, j) is not unique then the total

number of integer optimal solutions for (IPRjl
y) equals the number of values i such

that i = argmaxi Fl(i, j). In this case (IPRjl
y) has an infinite number of non-integer

optimal solutions as any convex combination of the integer optimal solutions will be

optimal. This result directly leads to the following theorem stating that (IPR) has

32

an integer optimal solution.

Theorem 3.2. (IPR) has an optimal solution in which all vijl variables are binary.

Proof : From section 3.1.1 we know that problem (IPRy) is separable into nq

subproblems represented as (IPRjl
y). Hence the collection of variables in every opti-

mal solution of (IPRy) corresponding to the subproblem IPRjl
y will be an optimal

solution to that subproblem. Further from theorem 3.1 we know that every sub-

problem (IPRjl
y) has an optimal solution where all variables are integer. Hence we

can conclude that IPRy for y ∈ Y , has an optimal solution where all variables have

integer values.

Further, we know that (IPRy) is obtained by fixing the values of the ykl variables

with a feasible set of values. Hence v(IPR) = miny∈Y v(IPRy) = v(IPRy∗), where

y∗ = arg miny∈Y v(IPRy). We have already shown that IPRy∗ has an integer optimal

solution, hence IPR has an optimal solution in which all the variables are integer. �

3.1.3 Integrality of Basic Feasible Solutions of (IPRy)

In this subsection we show that every basic feasible solution of the formulation (IPRy)

has integer values for all variables. We begin by first proving a property of the

subproblem (IPRjl
y). Then we use this property to show that that all basic feasible

solutions of (IPRjl
y) have integral values for all variables. These two results are

used to demonstrate the integrality of basic feasible solutions of (IPRy), and further

to show that a branch and bound algorithm that is based on the LP relaxation of

(IPR) finds an optimal solution for the IP model of the q-mode problem. We begin

by re-writing the formulation (IPRjl
y) in “standard form” by adding slack variables

rijkl.

33

min
∑
k∈Φl

tjk (3.10)

(IPRjl
y) s.t. tjk + vijl − rijkl = aijk ∀ i, k ∈ Φl (3.11)∑

i

vijl = 1 (3.12)

vijl ≥ 0, tjk ≥ 0, rijkl ≥ 0 ∀ i, k (3.13)

Clearly, this model has m|Φl|+ 1 constraints and m|Φl|+ |Φl|+m variables (|Φl|

variables of type tjk, m variables of type vijl and m|Φl| variables of type rijkl).

Lemma 3.1. Every basic feasible solution of problem (IPRjl
y) has exactly one variable

vi′jl such that vi′jl = 1 and vijl = 0 ∀ i 6= i′.

Proof : There are two possible cases, the first case, where the basic feasible

solution has at least one variable of type tjk that is equal to 0 and the second case

where all variables of type tjk are strictly greater than 0.

Case 1 : At least one variable of type tjk = 0. i.e., tjk = 0 for at least one k ∈ Φl

It is clear from constraint (3.11) that every variable of type tjk is present in m

constraints of type tjk + vijl− rijkl = aijk. One of these constraints has ai′jk = 1, and

the remaining m− 1 constraints, that correspond to all i 6= i′, have aijk = 0. Hence,

corresponding to the variable of type tjk that is equal to zero, we have one constraint

of type vi′jl−ri′jkl = 1. Since vijl ≥ 0, rijkl ≥ 0 ∀ i, k and
∑

i vijl = 1, the only feasible

solution is vi′jl = 1, ri′jkl = 0.

Therefore, if tjk = 0 for at least one k ∈ Φl, then the only feasible solution is such

that vi′jl = 1 and vijl = 0 ∀ i 6= i′.

Case 2 : tjk > 0 ∀k ∈ Φl.

As mentioned before, for each variable of type tjk we have (m− 1) constraints of

type tjk + vijl − rijkl = 0. Hence for each variable of type tjk such that tjk > 0, we

34

have (m−1) variables of type rijkl such that rijkl > 0. Thus each tjk > 0 corresponds

to m variables that are strictly greater than 0. Therefore when all variables of type

tjk > 0 then we must have m|Φl| variables strictly greater than 0 at every feasible

solution.

We know that for {tjk, vijl, rijkl} to be a basic feasible solution of (IPRjl
y) we need

at least (m|Φl|+|Φl|+m) - (m|Φl|+1) = (m+|Φl|-1) variables in the solution to be

equal to 0. In other words, we can have no more than (m|Φl|+1) non-zeros. Since we

already have m|Φl| non-zeros (all the tjk and rijkl variables) and we have to satisfy

constraint (3.12), we can have exactly one of the variables of type vijl > 0. Hence,

when all tjk > 0 every basic feasible solution will have exactly one vi′jl = 1 and

vijl = 0 ∀ i 6= i′. �

Lemma 3.2. Every basic feasible solution of (IPRjl
y) has integer values for all the

variables.

Looking at the standard form formulation of (IPRjl
y) one can see that every record

k corresponds to m constraints of type (3.11). We refer to this set of m constraints

as Ck. From the results of lemma 3.1 we see that for a record k in any solution of

(IPRjl
y) exactly two possibilities exist. The first case is where record k is such that

ai′jk = 1, vi′jl = 1 and aijk = vijl = 0 ∀i 6= i′. The second case is where the record

k is such that, there are distinct i′, i′′ such that ai′′jk = 1 and aijk = 0 ∀i 6= i′′, and

vi′jl = 1 and vijl = 0 ∀i 6= i′. We look at both cases separately.

Case 1 : ai′jk = 1, vi′jl = 1 and aijk = vijl = 0 ∀i 6= i′.

In this case, each constraint in the constraint set Ck will take the form tjk = rijkl.

Any tjk ≥ 0 satisfies all these constraints. Let A be a feasible solution such that the

variable tjk takes the value t > 0. Note that when tjk = t then rijkl = t ∀i. Let B

be a solution where tjk = rijkl = 2t and C be a solution where tjk = rijkl = 0. All

other corresponding variables in solutions A, B and C have identical values. From

the definitions of the solutions A, B and C, it is clear that solution A is a convex

35

combination of solutions B and C and hence it cannot be a basic solution. Thus, if a

basic feasible solution has a record k such that aijk = vijl = 1, then the corresponding

variable tjk and variables rijkl are equal to 0.

Case 2 : ai′′jk = 1 and aijk = 0 ∀i 6= i′′ and vi′jl = 1 and vijl = 0 ∀i 6= i′.

In this case, the constraints from the constraint set Ck will be of three types

1. One constraint of type tjk−ri′jkl+1 = 0, that corresponds to vi′jl = 1, ai′jk = 0.

2. One constraint of type tjk−ri′′jkl−1 = 0 that corresponds to vi′′jl = 0, ai′′jk = 1

and

3. A set of constraints of type tjk = rijkl ∀i 6= i′, i′′ that correspond to vijl =

0, aijk = 0.

Any tjk ≥ 1 satisfies these constraints. We consider a solution A such that tjk =

t > 1, a solution B such that tjk = 2t − 1 and a solution C such that tjk = 1.

The table below indicates the value of the other variables. The second column gives

the values of variables in solution A, while the third and the fourth column give the

values of the variables in solutions B and C respectively. The second row labeled

“tjk =” gives the values that the variable tjk takes in solutions A, B and C. Similarly

the third, fourth and the fifth row give the values that variables ri′jkl, ri′′jkl and rijkl

respectively take in solutions A, B and C. Note that rijkl actually represents all the

variables rijkl where i 6= i′, i′′

A B C

tjk = t 2t− 1 1

ri′jkl = t+ 1 2t 2

ri′′jkl = t− 1 2t− 2 0

rijkl = t 2t− 1 1

(∀i6=i′,i′′)

36

All other corresponding variables take identical values in the three solutions. We

see that solution A is a convex combination of solutions B and C and thus it cannot

be basic for any t > 1. It follows that if a basic feasible solution has a record k

such that ai′′jk = 1 and aijk = 0 ∀i 6= i′′ and vi′jl = 1 and vijl = 0 ∀i 6= i′ then

the corresponding tjk variable takes value 1 and the corresponding rijkl variables are

integer. �

Theorem 3.3. For any fixed y ∈ Y , every basic feasible solution of formulation

(IPRy) has integer values for all the variables.

Proof : From the results of lemma 3.2 we know that every basic feasible solution

of each subproblem (IPRjl
y) has integer values for all variables. From the separability

of (IPRy) into nq subproblems (IPRjl
y), that we demonstrated in subsection 3.1.1,

it follows that in every basic feasible solution of (IPRy) the collection of variables

associated with each subproblem (IPRjl
y) will form a basic feasible solution for that

subproblem. Further in lemma 3.2 we have proved that every basic feasible solution

of subproblem (IPRjl
y) has integer values. Thus, we can conclude that all variables

in every basic feasible solution of (IPRy) have integer values. �

Corollary 3.1. If formulation (IPR) is solved using a branch and bound algorithm

that uses the LP relaxation of (IPR), the solution obtained has integer values for all

variables and hence is optimal for (IP).

Proof : A branch and bound algorithm based on the LP relaxation of (IPR) will

find basic feasible solutions to (IPRy) for some y ∈ Y and hence from theorem 3.3,

the optimal solution found by a branch and bound algorithm will have integer values

for all variables and hence would be optimal for (IP). �

37

3.2 Benders Decomposition for the q-mode prob-

lem.

J. F. Benders developed an algorithmic strategy to solve mixed integer programming

problems. In section 3.1 we have described a formulation (IPR) where only the ykl

variables are binary and the remaining variables are linear. The algorithmic strategy

developed by Benders can be used to iteratively solve this mixed integer programming

formulation. The details of our implementation are presented in the subsections that

follow. The theory and detailed analysis of Benders decomposition is available in [18].

3.2.1 Benders’ Reformulation for the q-mode Problem.

We look at the problem (IPRy) created by fixing the values of the ykl variables in

the formulation (IPR) of the q-mode problem. As discussed in the earlier section,

there exists a y∗ ∈ Y that solves (IPR) and for any fixed value of y ∈ Y , the q-mode

problem reduces to a linear programming problem in variables tjk and vijl. In the

context of Benders’ decomposition we shall refer to this linear programming problem

as (BPy) or the Benders’ primal subproblem.

(BPy)


min

∑
j

∑
k tjk

s.t. tjk + vijl ≥ aijkykl ∀ i, j, k, l∑
i vijl = 1 ∀ j, l

vijl ≥ 0, tjk ≥ 0 ∀ i, j, k, l


This linear programming problem has a dual which we refer to as (BDy) or the

Benders’ dual subproblem. The formulation of (BDy), consisting of dual variables

αijkl and βjl ∀ i, j, k, l, is given below.

38

(BDy)


max

∑
i

∑
j

∑
k

∑
l αijklaijkykl +

∑
j

∑
l βjl

s.t.
∑

i

∑
l αijkl ≤ 1 ∀ j, k∑

k αijkl + βjl ≤ 0 ∀ i, j, l

αijkl ≥ 0, βjl ∈ <nq ∀ i, j, k, l


Before proceeding further in our discussion of the Benders decomposition of (IPR)

we discuss an efficient procedure for solving (BPy) and (BDy) for any fixed value of

y.

Proposition 3.1. Given a valid data set (aijk), i.e., each record k has exactly n po-

sitions and each position has one of the m available values, and a valid assignment of

records to clusters, i.e., y ∈ Y , the Benders primal problem (BPy) and its dual (BDy)

are bounded and feasible and the optimal objective value is np−
∑

j

∑
l maxi Fl(i, j).

Proof : The Benders’ primal subproblem was obtained by fixing the values of the

ykl variables and we showed in Section 3.1.2 that the optimal solution of a subproblem

(IPRjl
y) is |Φl| −maxi Fl(i, j), where |Φl| is the total number of records assigned to

cluster l and Fl(i, j) is the number of records in cluster l having value i in position j.

The optimal objective value for BPy is the sum of the optimal values of each of

the subproblems that constitute BPy.

i.e., v(BPy) =
∑

j

∑
l (|Φl| −maxi Fl(i, j))

=
∑

j

∑
l |Φl| −

∑
j

∑
l maxi Fl(i, j)

= np−
∑

j

∑
l maxi Fl(i, j)

(3.14)

Given a problem instance (aijk) and a set of values y ∈ Y we can now construct a

feasible solution (ᾱijkl, β̄jl) for the Benders dual subproblem (BDy). Let ᾱijkl = aijkykl

and β̄jl = −maxi
∑

k ᾱijkl ∀i, j, k, l. From the definition of the variables ykl, we know

that for each record k, ykl = 1 for a unique cluster l = l∗ and ykl = 0 ∀ l 6= l∗. Hence

39

∑
i

∑
l ᾱijkl =

∑
i

∑
l aijkykl =

∑
i aijk. Moreover, for a given position j of a given

record k, aijk = 1 for a unique value i∗ and aijk = 0 ∀ i 6= i∗. Hence
∑

i aijk = 1 and

it follows that
∑

i

∑
l ᾱijkl = 1.

Also from the definition of β̄jl all constraints of type
∑

k αijkl+βjl ≤ 0 are satisfied.

Thus, the solution (ᾱijkl, β̄jl) that we have constructed is feasible for the dual problem

(BDy). Further, for the corresponding value of the objective function we have

∑
i

∑
j

∑
k

∑
l

ᾱijklaijkykl =
∑
i

∑
j

∑
k

∑
l

aijkykl (from definition of αijkl)

=
∑
j

∑
k

(∑
i

∑
l

aijkykl

)
=
∑
j

∑
k

(1) = np

(3.15)

and,
∑
k

ᾱijkl =
∑
k

aijkykl =
∑
k∈Φl

aijk = Fl(i, j) ∴ −max
i

∑
k

αijkl = −max
i
Fl(i, j)

∴
∑
j

∑
l

βjl = −
∑
j

∑
l

max
i
Fl(i, j) (3.16)

From equations (3.14), (3.15) and (3.16) it is clear that the objective value of

the Benders’ dual subproblem corresponding to the solution (ᾱijkl, β̄jl) equals the

optimal objective value of the Benders’ primal. Hence the feasible solution for the

dual problem that we have constructed is in fact optimal for (BDy). �

In the next section we resume the discussion of Benders decomposition for (IPR)

by explaining the formulation of the master problem.

3.2.2 The Benders Master Problem.

From the definition of the primal problem (BPy) and its dual (BDy) it is clear that

v(IP) = miny∈Y v(BPy) = miny∈Y v(BDy).

Let A be the set of extreme points of the region defined by the constraints of

the Benders’ dual (BDy) and let (α̃rijkl, β̃
r
jl) ∈ A for r = 1 to |A|. From linear

40

programming theory we know that the optimal solution of (BDy) lies at one of the

extreme points of its feasible region hence we can rewrite miny∈Y v(BDy) as

min
y∈Y

{
max

r=1 to |A|

{∑
i

∑
j

∑
k

∑
l

α̃rijklaijkykl +
∑
j

∑
l

β̃rjl

}}

or,

(BM)


min Ω

s.t.
∑

i

∑
j

∑
k

∑
l α̃

r
ijklaijkykl +

∑
j

∑
l β̃

r
jl ≤ Ω ∀r = 1 to |A|

y ∈ Y


The above formulation (BM) is called the master problem of the Benders de-

composition and from the above discussion it is clear that the optimal value of the

master problem (BM) is the same as the optimal value for (IPR). Next we present

an iterative algorithm for solving the Benders’ master problem.

3.2.3 Details of the Algorithm based on Benders Decompo-

sition.

The master problem formulation (BM) involves a large number of constraints as it has

one constraint for every extreme point in the set A. Solving such a large problem may

be computationally very expensive. Moreover, the master problem solution involves

the issue of generating all the extreme points in set the A which by itself is a daunting

task. This is resolved by using an iterative framework developed by Benders in which

constraints of the master problem are generated one at a time (one constraint at each

iteration). At each iteration in this iterative algorithm we have a relaxed version of

the master problem (BMr) containing only the constraints generated in the past r

iterations. Thus (BMr) has only a subset of the total constraints present in (BM).

We solve the relaxed problem (BMr) to obtain a solution yr+1 and then solve the

41

0 Ω0 ← −∞, r ← 1, A0 ← ∅, and y1 ∈ Y
1 Solve (BDyr), obtain (α̃rijkl, β̃

r
jl)

2 If Ωr−1 ≥ v(BDyr) then
3 STOP. yr is an optimal solution.

4 else Ar ← Ar−1 ∪ (α̃rijkl, β̃
r
jl)

5 Create and add constraint corresponding to (α̃rijkl, β̃
r
jl) to BMr−1 to get (BMr)

6 Solve (BMr) to get solution yr+1 and Ωr, let r ← r + 1. goto 1.

Figure 3.1: Pseudo Code for Algorithm Bopt

dual problem (BDyr+1). The solution to the dual problem will give rise to a new

constraint which is then added to (BMr) to obtain (BMr+1) and so on. Below, we

describe in detail this iterative algorithm, which we shall refer to as Bopt. The major

steps of this algorithm are explained in figure 3.1.

Line 0 of the algorithm Bopt is an initialization step. The iteration counter r

is initialized to 1 and we let Ω0 be a negative number with a large absolute value.

The initial solution y1 can be chosen by randomly allotting the records to clusters or

we can use the solution of a constructive heuristic algorithm. In line 1, we use the

method shown in proposition 3.1 to find the optimal solution (α̃rijkl, β̃
r
jl) of problem

(BDyr). In line 2 we evaluate the optimality criteria. If it is satisfied then we go

to line 3 where the iterative procedure terminates with an optimal vector yr. We

can now find the corresponding mode of each of the q collections of records and also

obtain the corresponding optimal solution to the problem instance. If the optimality

criteria is not satisfied, i.e., Ωr−1 < v(BDyr), then we go to line 4 where the optimal

solution (α̃rijkl, β̃
r
jl) is added to the set of extreme points Ar−1 to obtain Ar. Further,

in Line 5 we use the optimal solution (α̃rijkl, β̃
r
jl) to create the rth constraint and add

it to the relaxed master problem (BMr−1) to obtain (BMr). In line 6 we solve the

relaxed master problem (BMr) to get new solution yr+1 and its corresponding lower

bound, Ωr, for the optimal value, v(IP). We also increase the value of the iteration

counter by 1 and then go to line 1. An important point to notice here is that the

42

optimal solution of the earlier iteration, i.e., yr, can be used as a starting solution for

problem BMr. This gives the branch and bound algorithm that is used to solve BMr

a good quality integer feasible starting solution.

This algorithm can be applied for two purposes. The first one is to obtain an

integer optimal solution to the q-mode problem. The second purpose is to obtain a

high quality lower bound in reasonable time for large problem instances which cannot

be optimally solved. The lower bound obtained from Bopt can be used in the context

of a branch and bound algorithm or to serve as a benchmark to evaluate the quality

of solutions obtained from a heuristic algorithm.

Each iteration of the Bopt algorithm involves solving the relaxed master problem,

(BMr), which by itself is a combinatorial optimization problem. Further (BMr)

contains r constraints at the rth iteration and hence it grows in size with each iteration.

Preliminary computational experiments reveal that the value of r does become quite

large before the algorithm terminates. We modify algorithm Bopt so as to reduce

its computational requirements. This modification involves solving of the relaxed

master problem sub-optimally so that the corresponding computational requirements

at every iteration are considerably reduced.

From the theory of Benders’ decomposition we know that at every iteration of

Bopt where Ωr−1 = v(BMr−1) < v(BDyr), a distinct extreme point of the feasible

region of the dual subproblem is identified. This in turn ensures that the algorithm

Bopt does not cycle and terminates in a finite number of iterations. Thus, if we

solve the relaxed master problem sub-optimally, but obtain a solution, ȳr such that

v̄(BMr−1) < v(BDȳr) then we have essentially identified a distinct extreme point and

the algorithm can proceed without any theoretical difficulty. Here v̄(BMr−1) refers to

the objective value of BMr−1 corresponding to solution ȳr. This idea is used to modify

Bopt and we refer to the modified algorithm as BNopt. At the rth iteration of BNopt we

use the CPLEX MIP solver to find an integer solution, ȳr (not necessarily optimal),

to BMr−1. We use the solution, ȳr, to obtain v(BDȳr) and evaluate the stopping

43

criterion. If the stopping criterion is not satisfied, i.e., v̄(BMr−1) < v(BDȳr), then

we calculate the corresponding optimal solution to the dual subproblem (α̃rijkl, β̃
r
jl)

using ȳr. The solution (α̃rijkl, β̃
r
jl) identifies a distinct extreme point of the dual feasible

region and we can use it to create the next constraint for the Benders master problem.

This constraint is added to the relaxed master problem to obtain BMr and then we

proceed to the next iteration.

Note that whenBMr−1 is solved sub-optimally the objective value Ω̄r−1 = v̄(BMr−1)

is no longer a valid lower bound for the q-mode problem. If the stopping criterion is

satisfied i.e., v̄(BMr−1) ≥ v(BDȳr), then we go back to the relaxed master problem

BMr−1 and solve it to obtain a better integer solution ŷr. This process of finding

better solutions to BMr−1 goes on until we find a solution that violates the stopping

criterion or we find an optimal solution to BMr−1. If the stopping criterion is not

satisfied then we can obtain a distinct extreme point and if it is satisfied with an

optimal solution to BMr−1 then we have an optimal integer solution to the q-mode

problem. Further, if algorithm BNopt is terminated using a different stopping crite-

rion before it finds the optimal solution (e.g., it is forced to terminate after a fixed

time period) then we have to re-solve the relaxed master problem in the last iteration

optimally so that we obtain a valid lower bound for the q-mode problem. We shall

refer to this modified algorithm as BNopt. Flowcharts of both algorithms, Bopt and

BNopt, are displayed in figure 3.2.

Both algorithms Bopt and BNopt are such that we obtain a solution yr for the

relaxed Benders’ master problem BMr−1 at each iteration. Then the optimal value of

(BDyr) is obtained using the procedure discussed in proposition 3.1 and an efficient

procedure to calculate the mode of a collection of records. Next we calculate the op-

timal solution (α̃rijkl, β̃
r
jl) to the Benders dual subproblem BDyr . This is required so

that we can create a new constraint to be added to BMr−1 to obtain BMr. The com-

putation of the optimal solution of BDr can be avoided by re-writing the constraints

of the relaxed Benders’ master problem BMr in terms of the solutions of the relaxed

44

Figure 3.2: Flowcharts for algorithms BNopt and Bopt.

45

Benders’ master problem from the earlier iterations, y1, . . . , yr−1, instead of writing

in terms of the optimal solutions of the Benders’ dual subproblem. We demonstrate

this in the proposition below.

Proposition 3.2. The relaxed master problem (BMr) can be written as

(BM ′
r)


min Ω

s.t. n
∑

k

∑
l y

e
klykl −

∑
j

∑
l maxi

∑
k aijky

e
kl ≤ Ω ∀ e = 1 to r∑

l ykl = 1 ∀ k

ykl ∈ {0, 1} ∀ k, l


where yekl represents the assignment of records to clusters that correspond to the ex-

treme point point (α̃eijkl, β̃
e
kl) of the feasible region of the dual subproblem ∀ e = 1 to

r.

Proof : The relaxed master problem is

(BMr)


min Ω

s.t.
∑

i

∑
j

∑
k

∑
l α̃

e
ijklaijkykl +

∑
j

∑
l β̃

e
jl ≤ Ω ∀ e = 1 to r∑

l ykl = 1 ∀ k

ykl ∈ {0, 1} ∀ k, l


Consider the left hand side of the eth constraint of problem BMr.

46

∑
i

∑
j

∑
k

∑
l (α̃

e
ijkl)aijkykl +

∑
j

∑
l β̃

e
jl

=
∑

i

∑
j

∑
k

∑
l (aijky

e
kl)aijkykl +

∑
j

∑
l β̃

e
jl (∵ by def. α̃eijkl = aijky

e
kl)

=
∑

i

∑
j

∑
k

∑
l (aijky

e
kl)aijkykl −

∑
j

∑
l maxi

∑
k aijky

e
kl


∵ β̃ejl = −max

i
α̃eijkl

= −max
i

∑
k

aijky
e
kl


=
∑

k

∑
l

∑
i

∑
j aijky

r
klykl −

∑
j

∑
l maxi

∑
k aijky

r
kl (∵ a2

ijk = aijk)

=
∑

k

∑
l y

r
klykl

(∑
j

∑
i (aijk)

)
−
∑

j

∑
l maxi

∑
k aijky

r
kl

=
∑

k

∑
l y

r
klykl (n)−

∑
j

∑
l maxi

∑
k aijky

r
kl

= n
∑

k

∑
l y

r
klykl −

∑
j

∑
l maxi

∑
k aijky

r
kl

Hence we can rewrite the relaxed master problem (BMr) as (BM ′
r). �

3.3 Additional MIP formulations for the q-mode

Problem.

3.3.1 An Alternate MIP Formulation.

Here we present an alternate MIP formulation for the q-mode problem. This formula-

tion is based on the definition of the mode of a collection of records. Given a collection

of records and an assignment of every record to one of q clusters then the q-mode

problem is transformed into “q” 1-mode problems. In other words, the assignment of

every record to a unique cluster creates q different sub-collections of records from the

47

original collection, and solution to the q-mode problem involves calculating a mode

for each of the q sub-collections. We use this concept to propose an alternative integer

programming model for the q-mode problem.

We keep the same notation that we used in the previous section and repeat some

of the notation below for easy reference. An instance of the q-mode problem is given

in the form of a three dimensional array aijk.

aijk =

 1 if value i is present at position j in record k.

0 otherwise.

We also need the decision variable ykl.

ykl =

 1 if record k is assigned to cluster l.

0 otherwise.

Since every record is to be assigned to a unique cluster, we have
∑

l ykl = 1 ∀ k.

Further, the total number of records assigned to cluster l that have value i in position j

is given by
∑
k

aijkykl, i.e., Fl(i, j) =
∑
k

aijkykl. By definition, the value at position j in

the mode corresponding to cluster l is given by arg maxi Fl(i, j) = arg maxi
∑

k aijkykl.

All the records that do not have value i in position j will require a replacement

for that position. Hence the total number of replacements required for position j

in cluster l is given by number of records not having value i at position j, i.e.,

|Φl| − Fl(i, j) =
∑

k ykl −maxi
∑

k aijkykl.

Proceeding in similar fashion for each slot j and each cluster l we can say that

the total number of replacements required for the complete set of given records is∑
l

∑
j (
∑

k ykl −maxi
∑

k aijkykl).

Further, the q-mode problem requires the assignment of each record to a unique

cluster so as to minimize the sum of the replacements corresponding to all the clusters

i.e.,

48

min

{∑
l

∑
j

(
∑
k

ykl −max
i

∑
k

aijkykl)

∣∣∣∣∣∑
l

ykl = 1 ∀ k

}
(?)

We know that at every feasible solution
∑

l ykl = 1, hence
∑

l

∑
j

∑
k ykl =∑

j

∑
k(1) = np. Thus we can rewrite the objective function as

np+ min (−
∑
l

∑
j

(max
i

∑
k

aijkykl)) = np−max (
∑
l

∑
j

(max
i

∑
k

aijkykl))

Let us now refer to Fmax
l (i, j) = maxi

∑
k aijkykl as wjl. Thus wjl represents the

frequency count of the most frequently occurring value at position j in all the records

assigned to cluster l. It follows that, for each j and l, the corresponding wjl can be

obtained by enforcing the following constraints

∑
k

aijkykl ≤ wjl ∀i∑
k

aijkykl ≥ wjl − Aj(1− vijl) ∀i where Aj >
∑
k

aijkykl ∀i e.g. Aj = p∑
i

vijl = 1

vijl ∈ {0, 1} ∀i

Using this constraint structure, the formulation marked (?) reduces to the follow-

ing integer programming model.

49

np−max
∑
l

∑
j

wjl

s.t.
∑
k

aijkykl ≤ wjl ∀i, j, l (3.17)

∑
k

aijkykl ≥ wjl − Aj(1− vijl) ∀i, j, l (3.18)

∑
i

vijl = 1 ∀j, l (3.19)

∑
l

ykl = 1 ∀k (3.20)

wjl ≥ 0, vijl ∈ {0, 1}, ykl ∈ {0, 1} ∀i, j, k, l (3.21)

In the above model, constraints (3.17), (3.18) and (3.19) collectively ensure that

wjl is equal to the frequency of the most frequently occurring value i in position j of

all records assigned to cluster l, i.e, wjl = Fmax
l (i, j) =

∑
k

aijkykl ∀ j, l. Since the ob-

jective function in our model involves maximizing (
∑

l

∑
j wjl), the constraints (3.18)

and (3.19) would select wjl such that wjl = max
i

∑
k aijkykl and constraints (3.17)

become redundant. It is interesting to note here that when wjl = maxi
∑

k aijkykl

the corresponding vijl = 1. Thus every vijl variable that is equal to 1 identifies the

value i that occurs most frequently in position j for all records in cluster l. Thus the

vijl variables have the same significance here as they had in the formulation (IPR),

i.e., they determine the configuration of the modes. The integer programming model,

which we refer to as (IPA) henceforth, is given below.

50

np−max
∑
l

∑
j

wjl

s.t.
∑
k

aijkykl ≥ wjl − Aj(1− vijl) ∀i, j, l

(IPA)
∑
i

vijl = 1 ∀j, l∑
l

ykl = 1 ∀k

wjl ≥ 0, vijl ∈ {0, 1}, ykl ∈ {0, 1} ∀i, j, k, l

The value assigned to the set of numbers Aj determines how tight the formulation

is. We select the value of Aj to be maxi
∑p

k=1 aijk ∀j = 1, . . . , n.

The formulation (IPA) has mnq+nq+p constraints and nq+mnq+np variables

as compared to mnpq+nq+p constraints and np+mnq+pq variables in formulation

(IPR). Thus the LP relaxation of (IPA) will have a far smaller size of the basis

as compared to the LP relaxation of (IPR). On the other hand (IPR) has only

np binary variables while (IPA) has np + mnq binary variables 1. We conduct a

computational experiment to compare the LP relaxations of IPA and IPR. We

present the details of this experiment and the related discussion later in section 5.2.

3.3.2 A Modification of the Formulation (IPR).

In this subsection, we present a modification to the formulation (IPR) such that

the linear programming relaxation of the resulting formulation can potentially have

a higher objective value than the linear programming relaxation of (IPR). This

modification involves replacing the decision variable tjk with the variables tjkl which

are defined as

tjkl =

 1 if a replacement is required at position j of record k at cluster l

0 otherwise.

1Through a numerical example we can show that, unlike (IP), in this model if the
binary constraints on the vijl variables are relaxed then the resulting formulation might
have fractional vijl values in the optimal solution.

51

The objective value is also changed to
∑

j

∑
k

∑
l tjkl. We shall refer to this

modified formulation as (IP ′). It is trivial to show that the formulation (IP ′) is a valid

formulation for the q-mode problem. Further, we can relax the integer requirements

on the variables vijl to obtain formulation (IPT) which is given below. Next we show

that the formulation (IPT) can be used to obtain an optimal solution to the q-mode

problem and also prove that the LP relaxation of (IPT) is greater than or equal to

the LP relaxation of (IPR).

min
∑
j

∑
k

∑
l

tjkl (3.22)

s. t. aijkykl − vijl ≤ tjkl ∀i, j, k, l (3.23)

(IPT)
∑
i

vijl = 1 ∀j, l (3.24)

∑
l

ykl = 1 ∀k (3.25)

ykl ∈ {0, 1}, vijl ≥ 0, tjkl ≥ 0 ∀ i, j, k, l (3.26)

Using arguments similar to those presented in section 3.1.1 for (IPR), we can show

that for any fixed y ∈ Y in formulation (IPT), the corresponding model (IPTy) is

fully separable in index variables j and l. The fully separated form of (IPTy) is given

below.

(IPTy)
∑
j

∑
l


min

∑
k tjkl

s.t. tjkl + vijl ≥ aijkykl ∀ i, k,∑
i vijl = 1

vijl ≥ 0, tjkl ≥ 0 ∀ i, k


If record k does not belong to cluster l, i.e., k /∈ Φl, then ykl = 0. Thus the

52

constraint tjk + vijl ≥ aijkykl becomes tjk + vijl ≥ 0 and since vijl ≥ 0, tjkl ≥ 0, ∀

i, j, k, l, this constraint is satisfied by any feasible values of vijl and tjkl and hence it

is redundant. This implies that the constraints tjk + vijl ≥ aijkykl can be dropped for

all k /∈ Φl and the formulation (IPTy) can be written as

(IPTy)
∑
j

∑
l


min

∑
k∈Φl

tjkl

s.t. tjk + vijl ≥ aijk ∀ i, k ∈ Φl,∑
i vijl = 1

vijl ≥ 0, tjk ≥ 0 ∀ i, k


We can also use arguments similar to those presented in section 3.1.3 to demon-

strate that every basic feasible solution of (IPTy) has integer values for all variables.

Similar to Theorem 3.3 and Corollary 3.1 corresponding to (IPR), we have Theorem

3.4 and corollary 3.2 corresponding to (IPT). We state these below without a proof.

Theorem 3.4. For any fixed y ∈ Y , every basic feasible solution of formulation

(IPTy) has integer values for all the variables.

Corollary 3.2. If formulation (IPT) is solved using a branch and bound algorithm

that uses the LP relaxation of (IPT), the solution obtained has integer values for all

variables and hence is optimal for (IP).

Next we prove that the optimal objective value of the LP relaxation of the for-

mulation (IPT) is greater than or equal to the optimal objective value of the LP

relaxation of (IPR). Let LPT and LPR be the linear programming models obtained

from IPR and IPT respectively, by replacing the binary restrictions, i.e., ykl ∈ {0, 1},

with simple non-negativity restrictions, i.e., ykl ≥ 0 for all k, l. Further, let v(LPT)

and v(LPR) be the optimal objective values of LPT and LPR respectively.

Theorem 3.5. The optimal objective value of LPT is no worse than that of LPR,

i.e., v(LPR) ≤ v(LPT).

53

Proof : Let S∗T = {y∗kl, t∗jkl, v∗ijl} be an optimal solution for (LPT) and let its

corresponding objective value be given by v(S∗T), i.e.,

v(LPT) = v(S∗T) =
∑
j

∑
k

∑
l

t∗jkl (3.27)

Since S∗T is a feasible solution for (LPT), it follows that

aijky
∗
kl − v∗ijl ≤ t∗jkl ∀ i, j, k, l,

∑
l

y∗kl = 1 ∀ k,
∑
i

v∗ijl = 1 ∀ j, l

Now let t′jk = max
l
t∗jkl ∀ j, k. It follows that, aijky

∗
kl − v∗ijl ≤ t′jk ∀ i, j, k, l and

SR = {y∗kl, t′jk, v∗ijl} is a feasible solution for (LPR). The objective value of (LPR)

corresponding to solution SR is given by

v(SR) =
∑
j

∑
k

t′jk (3.28)

Let S∗R be an optimal solution to (LPR). Since SR is merely a feasible solution

for LPR, it follows that

v(LPR) = v(S∗R) ≤ v(SR) (3.29)

From equations (3.28) and (3.29), and from the definition of t′jk, it follows that

v(S∗R) ≤ v(SR) =
∑
j

∑
k

t′jk =
∑
j

∑
k

max
l
t∗jkl (3.30)

Since it is clearly true that max
l
t∗jkl ≤

∑
l t
∗
jkl ∀ j, k, it follows that

∑
j

∑
k

max
l
t∗jkl ≤

∑
j

∑
k

∑
l

t∗jkl = v(S∗T) (3.31)

Therefore equations (3.27), (3.29), (3.30) and (3.31) imply that v(LPR) ≤ v(LPT).

�

54

The formulation (IPT) has the same number of constraints as (IPR) but the

np variables of type tjk are replaced by npq variables of type tjkl. Hence (IPT) is

a larger formulation as compared to (IPR). But preliminary computational experi-

ments reveal that v(LPT) is indeed much larger than v(LPR) for many instances of

the q-mode problem. Later, in section 5.2, we present a computational experiment in

which we empirically compare the LP relaxations of the (IPT), (IPR) and (IPA).

55

Chapter 4

Random generation of problem

instances for the q-mode problem.

4.1 Introduction.

An instance of the q-mode problem is characterized by the parameters m,n, p and

q. Given these parameters, an instance of the q-mode problem consists of p records,

each record is described by n attributes. Further, we need to partition these p records

into q distinct clusters. We number the values that a specific attribute can take using

integers and hence each attribute in every record contains a value i lying between

1 and m. Here we are assuming that each attribute has m possible values but this

assumption can be removed with minor changes. For clarity of presentation, we shall

refer to the attribute value as “a-value” throughout this chapter. Effectively, a record

in an instance of the q-mode problem is a vector with n positions, and each position

contains an a-value lying between 1 and m.

The instances that we create have subsets of vectors such that vectors belonging

to the same subset have a lower degree of dissimilarity, i.e., they tend to be closer to

each other, as compared to the vectors from other subsets. In other words, we create

artificial instances that have natural clusters. We then use different algorithms to

56

“discover” these natural clusters in the instances and report the findings. To obtain

a problem instance that has natural clusters we use the concept of profiles with non-

uniform probability mass functions. This idea has been used by Morgan [16] to create

problem instances for the 2-model problem.

4.2 Notation.

Let an instance of the q-mode problem be represented as an n×p matrix V , where Vjk

represents the a-value present at position j in vector k. Each column of this matrix,

i.e., vector k, represents a separate record from the given collection. A solution to the

q-mode problem is an assignment of every record k (k = 1 to p) to a distinct cluster l

(l = 1 to q). In this chapter we shall use the terms vector and record interchangeably.

We represent a probability mass function associated with the position j in the lth

subset as fjl = (π1jl, . . . , πmjl), where πijl is the probability that a-value i is assigned

to position j of vector k that belongs to subset l, i.e., Pr{Vjk = i} = πijl, for all

i ∈ (1, . . . ,m) and
∑

i πijl = 1. A profile Πl is defined as a vector consisting of n

probability mass functions, i.e., Πl = (f1l, . . . , fnl). To create an instance with q

subsets we first identify q different profiles. A vector k corresponding to profile Πl

can be created by using the jth pmf, fjl, to identify an a-value i ∈ (1, . . . ,m) that will

be assigned to the jth position of the vector for every value of j = 1 to n. Thus each

profile is used to create a subset of vectors and these q subsets together constitute a

problem instance.

The degree of dissimilarity of the q profiles and hence the degree of dissimilarity

of the vectors created using the different profiles is influenced by the type of pmfs

used in the profiles. A uniform pmf will give no preference to any a-value i and the

dissimilarity between records created using different profiles will be low giving rise to

weak clusters in the instance created. On the other hand, a pmf such as (1,0,0,0,0)

will cause the a-values assigned in a particular position in all records corresponding

57

to that profile to be identical. Thus we will have strong dissimilarity between records

of different subsets leading to strong clusters in the instance.

Figure 4.1: The type of pmfs used in the selection of profiles.

The probability mass functions that we use in creating instances can be classified

into 6 pmf types. We refer to these six pmf types as Uniform, Linear, partLinear,

oneStep, oneHuge and Geometric. These pmf types (apart from the Uniform pmf

type) are illustrated in figure 4.1. In the first pmf type, Uniform, all a-values that

can be assigned to a position of a vector have the same positive probability. To

evaluate the probabilities of all the a-values in an Uniform pmf type we need just one

parameter, m, which is the total number of a-values. The Linear pmf type also has all

a-values having positive probabilities. We refer to the largest probability as πa and the

smallest one as πb. Furthermore, when the a-values are arranged in the decreasing

order of the probabilities the difference between any two adjacent probabilities is

constant. A pmf of type Linear is defined using two parameters m and r. Here, m is

the total number of a-values that a position in a vector can have and r is the ratio of

the largest probability to the smallest probability, i.e., r = πa
πb

. The third pmf type

is referred to as partLinear. This pmf type is similar to the Linear pmf type, the

difference is that some values in the partLinear type can have probabilities equal to

zero, while in the case of pmf type Linear the probabilities for all values are positive.

The partLinear pmf type also requires two parameters k(< m) and r. The parameter

k represents the number of a-values that have positive probabilities and r is the ratio

58

of the largest probability to the smallest probability. It is to be noted that when

k = m, all probabilities in type partLinear will be identical to probabilities in pmf

type Linear.

The fourth pmf type is referred to as oneStep. This pmf is similar to the Uniform

pmf type discussed earlier. The difference between the two is that some a-values in

the oneStep pmf type have probabilities equal to zero while the uniform pmf type has

all the a-values with positive probabilities. This pmf consists of some values having

probability 0 and the other values having the same positive probability. The oneStep

pmf type requires only one parameter k(< m) which is equal to the number of values

that have positive probabilities. Obviously, when k = m, the oneStep pmf type is the

same as the Uniform pmf type. The next pmf type is referred to as oneHuge. This

pmf type consists of exactly one a-value that has a large probability while the other

a-values have the same positive but relatively smaller probability. This pmf type

requires two parameters m, the total number of possible a-values and r, the ratio of

the larger probability to the smaller probability.

The last pmf type in our classification is referred to as Geometric. This pmf type

consists of all a-values having a positive probability. Further, when the a-values are

arranged in the decreasing order of the probability then the ratio of adjacent probabil-

ities (i.e., the larger probability divided by the smaller probability) is constant. The

Geometric pmf type requires two parameters m, the total number of possible a-values

and r, the ratio between two adjacent probabilities when the values are arranged in

the decreasing order of the probabilities.

A summary of the pmf types is given in table 4.1. The table consists of 6 rows

each row corresponding to a pmf type. The first column identifies the pmf type. The

second column displays the parameters that are required and the third column gives

the formula which can be used to calculate the probabilities of the corresponding pmf

type once the values of the parameters are given. The fourth and the fifth column

are used to display an example of each of the pmf types; the fourth column contains

59

Table 4.1: The 6 pmf types.

pmf type param formula e.g. pmf

Uniform m a = b = 1
m

5 (0.2,0.2,0.2,0.2,0.2)

Linear (m, r) 2
m(r+1)

(
1 + µ(r+1)

m−1

)
0 ≤ µ ≤ m− 1. (5, 3) (0.30,0.25,0.20,0.15,0.10)

partLinear (k, r) 2
k(r+1)

(
1 + µ(r+1)

k−1

)
0 ≤ µ ≤ k − 1. (3, 3) (0.50,0.33,0.17,0,0)

oneStep k a = 1
k
. 2 (0.5,0.5,0,0,0)

oneHuge (m, r) a = r
r+m−1

, b = 1
r+m−1

. (5,5) (0.55,0.11,0.11,0.11,0.11)

Geometric (m, r) rµ
(
r−1
rm−1

)
0 ≤ µ ≤ m− 1 (5,3) (0.67,0.22,0.07,0.02,0.01)

the values of the parameters for each example and the fifth column contains the pmfs

calculated based on the parameters in column 4. The pmfs displayed in figure 4.1 are

the same as the those displayed in column 5.

4.3 Creation of Profiles.

To create the q profiles corresponding to an instance of the q-mode problem we use

the following strategy. The first step in this strategy is selecting a pmf type. In

the second step, we identify n sets of pmfs, one set of pmfs corresponding to each

position. Each set has at least q pmfs. Finally, in the third step we create the profiles

one position at a time by assigning one pmf from the corresponding set of pmfs to

every profile. Below, we explain the steps in this strategy in more detail.

The first step in this strategy is very clear. We have to choose one pmf type from

the six types that we have described earlier. The pmf type Uniform assigns equal

probability to all a-values, and vectors created using profiles that have the Uniform

pmf type will not contain natural clusters. Hence we eliminate Uniform from the

possible choices of pmf types. Note that according to this strategy all pmfs belonging

to the q profiles that are used to create an instance have the same pmf type.

60

The second step in the strategy is to identify n sets of pmfs such that each set

contains at least q pmfs. To create natural clusters in the instance, we need to create

profiles which are dissimilar. We create dissimilar profiles by creating each set of

pmfs in such a manner that the pmfs belonging to a set are as different from each

other as possible. This is achieved by ensuring that no two pmfs belonging to the

same position assign the highest probability to the same a-value. Below we describe

a method that we shall refer to as scheme I, that we use to create a set of pmfs.

Figure 4.2: Creation of pmf sets.

Scheme I: This scheme expects as input the values of the parameters m,n, p

and q, the pmf type, and the values of the parameters corresponding to that pmf

type. This scheme creates q different permutations of the m a-values such that the

same a-value does not have highest probability in more than one pmf. If more than

one a-value have the same “highest” probability in a particular pmf than we make

sure that all such a-values for each position would be different in different subsets.

We begin by arranging the a-values in a circle in clockwise fashion. We divide the

circle into sectors. The first q sectors have
⌊
m
q

⌋
(= f) a-values each and the last

sector has (m− f × q) a-values. If m = f × q then we have only q sectors otherwise

we will have (q+1) sectors. We now identify q permutations of the a-values in the

following manner. To obtain the lth permutation we start from the first a-value in

61

the lth sector and keep adding the a-values to the permutation vector as we traverse

the circle in clockwise direction. The first element in the lth permutation will be the

((l − 1)f + 1)th a-value. Next, we use the appropriate formula given in table 4.1 to

calculate the probabilities corresponding to the pmf type that has been selected. We

arrange these probabilities in decreasing order. The lth pmf is obtained by assigning

the first probability to the first a-value in the lth permutation, the second probability

to the second value and so on. Using this scheme the maximum number of different

pmfs that can be created for each of the pmf type is equal to the maximum number

of different permutations that we can get with the above procedure, which is m (and

in case of pmf type oneStep it is bm
k
c). Thus this scheme is valid only if q ≤ m (and

in case of pmf type oneStep, q ≤ bm
k
c).

As an example, let us consider that we have to create q(= 3) pmf sets and there

are m(= 7) possible values, and we have chosen pmf type Geometric, with parameters

(m = 7, r = 3). We will demonstrate the steps in scheme I to obtain one pmf set.

The total number of a-values in each sector is given by f =
⌊
m
q

⌋
=
⌊

7
3

⌋
= 2. We

arrange the a-values in a circle and divide the circle into four sectors as shown in

figure 4.2. The first sector has a-values 1 and 2, the second sector has a-values 3 and

4, the third sector has a-values 5 and 6, and the fourth sector has a-value 7. The three

permutations that we get along with the three corresponding pmfs are displayed in

figure 4.3. We apply scheme I n times to obtain n pmf sets, one pmf set for each of

the n positions in a vector. This is the end of step 2.

In the third step, using these n pmf sets the q profiles are created one position at

a time. For each position j, we randomly select one pmf from the jth pmf set and

assign it as the jth pmf of the first profile. This pmf is then removed from the pmf

set. From the remaining pmfs in the pmf set we randomly choose another pmf and

assign it to the jth position of the second profile. We continue in this manner until

the jth position of each one of the q profiles has been assigned a pmf. We repeat this

procedure for all n positions i.e., until each of the q profiles has n pmfs. Presently,

62

permutation pmf
1 (1, 2, 3, 4, 5, 6, 7) (0.666, 0.222, 0.074, 0.024, 0.0082, 0.0027, 0.009)
2 (3, 4, 5, 6, 7, 1, 2) (0.0027, 0.009, 0.666, 0.222, 0.074, 0.024, 0.0082)
3 (5, 6, 7, 1, 2, 3, 4) (0.024, 0.0082, 0.0027, 0.009, 0.666, 0.222, 0.074)

Figure 4.3: Creation of pmf sets.

the n pmf sets that we create are exact copies of each other because of two reasons.

The first reason is that we use one pmf type for every instance and the second reason

is the use of scheme I for creating a pmf set. We can create different pmf sets for

each of the n positions by either using a different pmf type for each position or using

different schemes for creating the pmf sets for different positions.

The profiles we create are such that no two pmfs present in the same position in

different profiles have the same a-value with the highest probability. Let us assume

that pmf 1 shown in figure 4.3 is assigned to the first position of profile 1. Further let

pmf 2 and pmf 3 be assigned to the first position of profile 2 and profile 3 respectively.

We know that for all vectors created using pmf 1 the probability that position 1 has

a-value equal to 1 is 0.666 and the probability that position 1 has a-value equal to

2 is 0.222, because π111 = 0.666 and π211 = 0.222. Hence, the vectors created using

profile 1 will be such that around 88% of them will have a-value either equal to 1

or equal to 2 in their first position. While close to 12% of these vectors will have

a-values other than 1 and 2 at the first position. Similarly, a-values 3 and 4 will be

most frequent at the first position in vectors created using profile 2 and values 5 and

6 will be most frequent in the first position of all vectors created using profile 3. In

63

this manner vectors created from the same profile will be similar to each other while

those created using different profiles will be dissimilar. The degree of dissimilarity

will be affected by the difference in magnitute of the different probabilities i.e., the

pmf type and the value of corresponding parameters for that pmf type.

4.4 Classification of the Problem Instances.

The artificially created problem instances can be classified by pmf type, by the pa-

rameters m, n, p, and the number of subsets (i.e., number of profiles used to create

records) in the instance.

The instances that we create can be grouped in such a manner that all instances

that use profiles having the same pmf type are together. We shall refer to these groups

of instances as group Gl, group Gh, group Gs, group Gp and group Gg corresponding

to the pmf types Linear, oneHuge, oneStep, partLinear and Geometric, respectively.

The pmf type used affects the strength of the clusters in the instance and hence

instances present in different groups differ significantly in the strength of the clusters.

The parameters m, n and p define the size of the problem instance. Hence when

the instances need to be grouped by size we put all instances with the same values of

m, n and p together. For the instances that we create the values of m, n and p that we

use are given in table 4.2. The first column lists the 5 pmf types, the second column

lists the different values of the parameters m, n and p used in creating the instances.

Finally, the third column lists the number of subsets, i.e., the number of profile used

in creating all the records belonging to that instance. Further, the parameter r takes

value equal to 3 for all instances created using pmf types Linear, partlinear, oneHuge

and Geometric. For all instances created using pmf type partLinear and oneStep the

parameter k is assigned the same value as the number of subsets that we intend to

create in that instance.

The artificial instances are named based on the type of pmf used and the param-

64

Table 4.2: Parameter values for creating artificial instances

pmf type
Linear
oneHuge
partLinear
oneStep
Geometric

Instance size
m n p
8 10 10
10 20 20
20 20 50
20 20 100

Num. of subsets (q)
2
3
5
8

eters m, n, p and q. The first letter in the name identifies the pmf type, we use ‘p’

for partLinear, ‘s’ for oneStep, ‘g’ for Geometric, ‘h’ for oneHuge and ‘l’ for Linear.

The remaining part of the name comes from appending the parameters m,n, p and q

and the number 1 in that order to the first letter, each separated by the character ‘-’.

The parameters and the scheme I used in the creation of these pmfs force the

groups Gs and Gp to have very strong clusters, group Gg has instances with weaker

clusters, group Gh has still weaker clusters and finally group Gl has the weakest

clusters. The names of all instances created are displayed in table 4.3. Every column

in this table corresponds to one group of instances (based on the pmf type) and each

column contains all instances belonging to the corresponding group. The instances

are arranged in the column in the increasing order of size.

Table 4.3: Names of all the artificial instances.

Group Gl Group Gh Group Gg Group Gs Group Gp
l-8-10-10-2-1 h-8-10-10-2-1 g-8-10-10-2-1 s-8-10-10-2-1 p-8-10-10-2-1
l-8-10-10-3-1 h-8-10-10-3-1 g-8-10-10-3-1 s-8-10-10-3-1 p-8-10-10-3-1
l-10-20-20-2-1 h-10-20-20-2-1 g-10-20-20-2-1 s-10-20-20-2-1 p-10-20-20-2-1
l-10-20-20-3-1 h-10-20-20-3-1 g-10-20-20-3-1 s-10-20-20-3-1 p-10-20-20-3-1
l-20-20-50-2-1 h-20-20-50-2-1 g-20-20-50-2-1 s-20-20-50-2-1 p-20-20-50-2-1
l-20-20-50-3-1 h-20-20-50-3-1 g-20-20-50-3-1 s-20-20-50-3-1 p-20-20-50-3-1
l-20-20-50-5-1 h-20-20-50-5-1 g-20-20-50-5-1 s-20-20-50-5-1 p-20-20-50-5-1
l-20-20-100-2-1 h-20-20-100-2-1 g-20-20-100-2-1 s-20-20-100-2-1 p-20-20-100-2-1
l-20-20-100-3-1 h-20-20-100-3-1 g-20-20-100-3-1 s-20-20-100-3-1 p-20-20-100-3-1
l-20-20-100-5-1 h-20-20-100-5-1 g-20-20-100-5-1 s-20-20-100-5-1 p-20-20-100-5-1
l-20-20-100-8-1 h-20-20-100-8-1 g-20-20-100-8-1 s-20-20-100-8-1 p-20-20-100-8-1

65

Chapter 5

Computational Experiments for

Algorithms based on the MIP

Models.

In chapter 3 we have discussed three (MIP) formulations for the q-mode problem.

The LP relaxations of these MIP formulations provide a lower bound for the opti-

mal objective value. Any one of these MIP formulations can be used as part of a

branch and bound algorithm to solve the q-mode problem optimally and we conduct

a computational experiment designed to identify the formulation that will be most

appropriate for this purpose. As mentioned before, we refer to the LP relaxations of

the MIP formulations (IPT), (IPR) and (IPA) as (LPT), (LPR) and (LPA) re-

spectively, and the optimum objective values of any model (B) is referred to as v(B),

where (B) can take any of the following 6 values, (IPT), (IPR), (IPA), (LPT),

(LPR) and (LPA). Once we identify an MIP formulation that is most appropriate

for use in the context of a branch and bound algorithm, we use that formulation to

solve a collection of instances of the q-mode problem optimally.

Apart from comparing the lower bounds obtained from the LP relaxations of

the MIP formulations we also conduct a computational experiment to evaluate the

66

performance of the algorithms based on the Benders’ decomposition for formulation

(IPR) that we discussed in section 3.2, i.e., algorithms Bopt and BNopt. These two

algorithms iteratively solve the relaxed master problem (BMr) and primarily differ

in the strategy for obtaining a solution for (BMr). Both algorithms, Bopt and BNopt,

provide a lower bound for the optimal solution that we shall refer to as LBM and the

objective value of the best integer solution found during a run of the algorithm will

be referred to as νM . The time taken is referred to as τM and the total number of

iterations performed by the algorithm is referred to as r.

In this chapter, the first section introduces the performance measures that we use

to analyze the quality of the lower bounds and the performance of the algorithms

related to the Benders’ Decomposition. The details and the discussion related to the

computational experiments are presented in sections 5.2, 5.3 and 5.4.

5.1 Performance Measures.

We know from preliminary computational results that v(LPT) is larger than both,

v(LPA) and v(LPR). Hence we use v(LPT) as the benchmark for evaluating the

lower bounds obtained from the LP relaxations of the MIP formulations (IPA) and

(IPR). These lower bounds are evaluated based on their deviation from the corre-

sponding value of v(LPT) for every instance in the computational experiment. The

performance measure that we use to compare the quality of these lower bounds is the

fractional deviation of the lower bound under consideration from v(LPT). We refer

to this performance measure as δA and δR corresponding to the formulations (IPA)

and (IPR) respectively. This performance measure is defined as

δA =
v(LPT)− v(LPA)

v(LPT)
, δR =

v(LPT)− v(LPR)
v(LPT)

(5.1)

67

We also compare the execution time in seconds, τT , τA and τR, required to solve

(LPT), (LPA) and (LPR) respectively. Another performance measure that we use is

the fractional deviation of a lower bound obtained for each instance from the optimal

objective value of that instance. We shall refer to this performance measure as ∆∗T .

∆∗T =
ν∗ − v(LPT)

ν∗
, (5.2)

where, ν∗ is the optimal value for an instance of the q-mode problem.

5.2 Comparison of the Lower Bounds.

The current section and the two sections that follow correspond to the three compu-

tational experiments that we conduct. In the current section, we compare the lower

bounds v(LPT), v(LPA) and v(LPR). Next, in section 5.3, we discuss the results of

a computational experiment where we use the MIP formulation (IPT) corresponding

to each instance to optimally solve the randomly generated instances via the CPLEX

branch and cut algorithm. Finally, in section 5.4 we compare the performance of the

two algorithms Bopt and BNopt. All the computational experiments are conducted on

a Sun Solaris Sun Blade 100 machine and the branch and cut solver provided as part

of CPLEX version 8.0 is used for solving the LP relaxations, to find optimal integer

solutions and also to solve the relaxed master problem in the algorithms related to

the Benders’ decomposition.

The comparison of the lower bounds obtained using the linear programming re-

laxations (LPT), (LPA) and (LPR) is presented in table 5.1. There are 50 different

problem instances used in this comparison. Based on parameter p, i.e., the number

of records in the instance and parameter q, i.e., the total number of clusters to be

formed out of the p records we divide these instances into sets. Thus every instance

belonging to a particular set has the same value of p and q. Furthermore, every set

contains one instance from each of the five groups, Gp, Gs, Gg, Gh, and Gl described

68

earlier in chapter 4. Hence, there are a total of 10 sets and each set has 5 instances.

Every row in table 5.1 corresponds to one set and displays values that are averages

taken over all the instances belonging to that set. For every instance in this com-

putational experiment we partition the records into the same number of clusters as

the number of profiles used to create the records in that instance. The first column

in the table identifies the set and displays the corresponding parameters m,n, p and

q. The second column gives the number of instances belonging to that set (this is

5 for every set). The third column labeled LPT contains two sub-columns. The

sub-column labeled v(LPT) displays the average v(LPT) taken over all 5 instances

in each set. The sub-column labeled τT displays the average time taken to calculate

v(LPT) taken over all instances in the set. The next two columns labeled LPA and

LPR, correspond to formulation (LPA) and (LPR) respectively, and they contain

the average values δ̄A, τ̄A, δ̄R, and τ̄R, as shown. Furthermore, we also display the

values of δA and δR in the form of a graph which has the δ-values on the vertical axis

and each of the 50 problem instances on the horizontal axis. This graph is displayed

in figure 5.1.

Table 5.1: Comparison of the LP relaxation of the all the MIP formulations.

Problem size Num LPT LPA LPR

m n p q v(LPT) τT δA τA δR τR
8 10 10 2 5 38.60 0.06 0.28 0.04 0.50 0.05
8 10 10 3 5 25.20 0.12 0.84 0.09 0.67 0.11
10 20 20 2 5 181.80 0.63 0.20 0.2 0.50 0.47
10 20 20 3 5 153 2.34 0.37 0.72 0.67 1.58
20 20 50 2 5 544.6 3.61 0.10 0.62 0.50 3.18
20 20 50 3 5 508.6 18.39 0.16 2.17 0.67 13.27
20 20 50 5 5 451.4 83.65 0.39 13.85 0.80 57.20
20 20 100 2 5 1118.8 16.45 0.06 0.91 0.50 15.92
20 20 100 3 5 1073.4 79.09 0.15 5.23 0.67 68.97
20 20 100 5 5 965.2 523.85 0.27 43.18 0.80 300.48

We summarise the observations that we make from table 5.1 as follows.

69

1. It is very clear from table 5.1 that on the average, the time required to obtain

v(LPT) increases with increase in the size of the problem instance, i.e., with

increase in the value of parameter p. This is expected as a larger problem

instance corresponds to larger number of variables and constraints in the (IPT)

formulation for that instance.

2. All other parameters remaining the same, on the average, the time required

to calculate v(LPT) increases with increase in the parameter q. Increase in

the value of parameter q leads to increase in the number of variables and the

number of constraints in formulation (IPT).

3. This trend, where the time required increases with increase in parameters p and

q, is observed for (LPA) and (LPR) too.

4. The lower bound v(LPA) is worse than lower bound v(LPT) for all 10 sets as

indicated by the positive value of δA for all sets. Further, δA ranges between

0.06 and 0.84.

5. The formulation (IPA) has the least number of constraints when compared to

the other 2 formulations and as expected the solution time corresponding to

(LPA) is the least among all the formulations for all groups of instances.

6. The formulation (IPR) shows the worst overall performance, the average value

of v(LPR) is worse than the average of v(LPT) for all 10 sets and the average

solution time for each set is comparable to that of formulation (IPT).

7. As a comparison between (LPT) and (LPA), the time required for obtaining

v(LPA), on the average, is considerably less than the time for v(LPT). But

v(LPA) is much worse than v(LPT) in many instances and hence a branch

and bound algorithm based on (IPA) can potentially have a lot more nodes

as compared to a branch and bound algorithm based on (IPT). And even

though the sub-problem at each node can be solved faster in case of (IPA)

70

the algorithm could potentially take a large amount of time due to the large

number of branch and bound nodes that need to be enumerated. In a limited

computational experiment in which the same collection of instances are solved

using their respective (IPA) and (IPT) models, we observed that solving the

(IPA) model indeed requires significantly larger computation time.

From the above discussion it is clear that formulation (IPT) is the most appropri-

ate, among the MIP formulations that we have discussed, to be used in the context

of a branch and bound algorithm to optimally solve instances of the q-mode problem.

This is re-enforced by the graph in figure 5.1 which clearly shows that δA and δR

values are strictly positive for all 50 instances. In fact, for all 50 instances δR ≥ 0.5

and hence for all the instances v(LPT) is greater than or equal to twice the value of

v(LPR).

Figure 5.1: Comparison of the Linear Programming Relaxations.

71

5.3 Optimal Solutions using Formulation (IPT)

We use the MIP formulation (IPT) to solve a collection of randomly generated in-

stances of the q-mode problem. The MIP formulation of each instance is submitted

to the CPLEX 8.0 branch and cut solver. The results of this computational exper-

iment are presented in table 5.2 and table 5.3. In table 5.2, we include the results

corresponding to all problem instances in which we find the optimal solution within

3600 seconds of computer time and the results related to the remaining instances are

presented in table 5.3. Table 5.2 contains 8 columns and each row in this table corre-

sponds to one problem instance. The first column contains the name of the problem

instance. The second and third columns display the optimal objective value of the LP

relaxation, v(LPT) and the execution time for the LP relaxation, τT , respectively,

for the corresponding problem instance. The fourth and fifth columns display the

optimal value ν∗ for the problem instance and the solution time, τ ∗, required by the

CPLEX branch and cut solver, respectively. The total number of simplex iterations

and total number of branch and bound nodes are displayed in columns six and seven

which are labeled as “Simplex Iter.” and “B&B nodes”, respectively. Finally, the

last column displays the fractional deviation of the lower bound v(LPT) from the

optimal solution ν∗, i.e., ∆∗T . Moreover, the instances are arranged in table 5.2 in

such a manner that all the instances belonging to the same group (by pmf type) are

together.

All instances such that the CPLEX branch and cut algorithm did not terminate

with an optimal solution within 3600 seconds are included in table 5.3. For these

instances, the CPLEX branch and cut algorithm was run for exactly 3600 seconds.

After such a premature termination, instead of the optimal soution, the CPLEX

algorithm provides the objective value of the best integer feasible solution. We refer

to this value as νb. The execution time is referred to as τ b and it equals 3600 seconds

for all instances. CPLEX also provides a lower bound for the optimum value that

we refer to as ν̃. Further, we define α as νb−ν̃
νb

and note that since νb−ν̃
νb
≥ νb−ν∗

νb
, α

72

gives an upper bound on the fractional deviation of the optimal solution from the

best known solution νb.

The columns of table 5.3 are similar to those in table 5.2 with a few changes. The

fourth column in 5.2 reports νb instead of ν∗. Further the column reporting ∆∗ is

dropped and two columns, one reporting ν̃ and the second reporting α, are added

after the column that reports τ b.

Based on tables 5.2 and 5.3 we make the following observations.

1. The last column in table 5.2 displaying ∆∗T indicates that the value of ∆∗T is af-

fected by the strength of the clusters present in the problem instance. Instances

belonging to group Gp and group Gs have the least value of ∆∗T . The value of

this performance measure increases further as we observe instances in group

Gg which has slightly weaker clusters. Instances in group Gh have even higher

values of ∆∗T and finally instances in group Gl has the highest values. Thus the

quality of the lower bound available from formulation (LPT) improves as the

strength of the clusters in the instance becomes greater.

2. In some problem instances with strong natural clusters, the value of the lower

bound, v(LPT) equals the optimal value ν∗. In table 5.2, we report 13 in-

stances, all of them with strong natural clusters, where the lower bound equals

the optimal solution. In all these instances the CPLEX branch and cut algo-

rithm terminates without having to create any branch and bound node, i.e.,

the optimal integer solution is available at the root node in the branch-and-cut

tree.

3. Instances of the same size but with strong natural clusters have smaller solution

times as compared to instances with weaker clusters. This observation is con-

sistent with the above two observations. Since instances with stronger clusters

have a better lower bound they require fewer branches (i.e., fewer nodes) in

the branch and cut algorithm leading to shorter solution times. Instances of

73

the same size but with weaker clusters have weak lower bounds and hence have

larger solution times.

4. The solution time is affected by both parameters p, i.e., total number of records

in the instance and q, i.e., number of clusters required, and increases sharply

with increase in the value of both these paramaters.

5. The CPLEX branch and cut algorithm was able to obtain the optimal solution

via model (IPT) in 38 problem instances within a time limit of 3600 seconds.

These include instances with strong natural clusters and some smaller instances

having weak natural clusters. The remaining 12 instances for which the optimal

solution could not be obtained in less than 3600 seconds are larger instances

with weak clusters or very large instances (having large values of both p and q)

with stronger natural clusters.

6. For the instances where the optimal solution is not available in 3600 seconds,

CPLEX provides a lower bound ν̃ which is higher than the previously best

known lower bound, v(LPT), for all the 12 instances.

7. From table 5.3, we can see that some problem instances have a large value of

α, 6 instances have α > 0.1 with the largest value being 0.263. Thus for large

sized instances with higher values of q and having weak natural clusters, the

best integer solution obtained by CPLEX within the time limit of 3600 seconds

can have objective value that is far away from the optimal value.

8. The approach of using the CPLEX branch and cut algorithm on the (IPT) for-

mulation for optimally solving the q-mode problem is viable for large instances

if the number of clusters required is relatively small and the data contains rel-

atively strong natural clusters.

74

5.4 Comparison of the Algorithms based on Ben-

ders’ Decomposition.

In order to explore the computational requirements of the algorithms based on Ben-

ders decomposition, i.e., Bopt and BNopt, we perform a limited computational exper-

iment in which we solve a collection of randomly generated instances of the q-mode

problem using the two algorithms. Since the solution time for both algorithms is

large, we have included only small size instances in this experiment. Every instance

in this collection is also solved using the corresponding (IPT) model via CPLEX and

hence we know the corresponding optimal value.

The results are summarised in table 5.4. Each row in this table corresponds to

a problem instance. The first column identifies the instance along with the optimal

value, ν∗. Every instance is solved using both algorithms, Bopt and BNopt, described

earlier. For this computational experiment we terminate the algorithm once the

execution time exceeds 300 seconds. The time taken is counted at the end of each

iteration and hence the algorithms run for slightly more than 300 seconds for each

instance. In some instances the algorithm terminates within 300 seconds as it can

be guaranteed that the best integer solution found is indeed optimal and hence the

algorithm has running time which is less than 300 seconds for those instances. For each

instance and for each algorithm, we report the following values in its corresponding

row; the best solution obtained via the Benders’ algorithm, νM , the lower bound

obtained via the Benders’ algorithm, LBM , the fractional deviation of the lower bound

from the optimal, ∆∗M (= ν∗−LBm
ν∗

), the total execution time in seconds, τM , and the

total number of iterations r. When we run BNopt the relaxed master problem BMr is

solved sub-optimally at each iteration and to obtain a valid lower bound we need to

run BMr optimally at the last iteration and the time required for the last iteration

is referred to as tip. For the algorithm BNopt we also include the value of tip in table

5.4. The observations based on table 5.4 are presented below.

75

1. Both algorithms, Bopt and BNopt, terminate with the optimal solution for 4

instances within the time limit of 300 seconds. These four instances are p-8-10-

10-2-1, s-8-10-10-2-1, g-8-10-10-2-1 and h-8-10-10-2-1. These four instances are

among the 5 smallest instances that we consider in this experiment.

2. The algorithms, Bopt and BNopt, require a considerably large number of iter-

ations for termination. In the above four instances there are 10 records that

need to be partitioned into 2 clusters. Thus there are 210

2
= 512 possible distinct

solutions. In three instances, s-8-10-10-2, g-8-10-10-2 and h-8-10-10-2, both al-

gorithms require more than 240 iterations. In other words, nearly half the total

number of solutions are enumerated for the three instances.

3. For these four instances algorithm BNopt has smaller execution time than algo-

rithm Bopt, even though BNopt requires more iterations than Bopt.

4. In fact, for all instances in this computational experiment BNopt goes through

more iterations than Bopt and finds a lower bound that is at least as good as

the lower bound found by algorithm Bopt.

5. Clearly, as the problem size increases the relaxed master problem becomes more

time consuming to solve optimally at each iteration and hence as the problem

size increases the number of iterations that algorithm Bopt can perform in 300

seconds become considerably less than the number of iterations performed by

BNopt.

6. The fact that the relaxed master problem takes a considerable time to solve can

also be seen by observing that the time required (tip) to solve BMr in the last

iteration for algorithm BNopt increases with the size of the instance.

7. For all instances in this table we can observe that the objective value of the

best solution found by BNopt is no worse than the objective value of the best

solution found by Bopt. Since BNopt requires less time to solve the relaxed master

76

problem at each iteration it performs more iterations than Bopt within the time

limit of 300 seconds. Thus it effectively enumerates more solutions (y ∈ Y)

than Bopt and consequently the best value is no worse than Bopt.

8. In 9 out of the 11 instances reported in table 5.4, the algorithm BNopt finds the

optimal solution within the 300 seconds time limit; since the corresponding lower

bound is still less than the optimal value, the algorithm does not terminate.

9. Computationally, both algorithms based on Benders decomposition are ineffec-

tive in their present form. In order to improve the effectiveness of these algo-

rithms a more efficient procedure to solve the relaxed Benders’ master problem

is required.

10. For the four instances where algorithms BNopt and Bopt terminate with a guar-

anteed optimal solution, the number of constraints in the relaxed master master

problem in the final iteration for algorithm BNopt is more than that for Bopt.

Thus there are a lot of redundant constraints in the case of BNopt. It is likely

that Bopt also has some redundant constraints in the final relaxed master prob-

lem that it solves. To obtain good quality lower bounds in reasonable time,

we need to design a procedure that efficiently identifies a few “good” solutions,

i.e., solutions such that the relaxed master problem formed with the constraints

generated from these solutions either provides a guaranteed optimal solution to

the q-mode problem or at least provides a good quality lower bound.

77

Table 5.2: Optimal solutions using formulation (IPT)
Simplex B&B ∆∗T

type-m-n-p-q-1 v(LPT) τT ν∗ τ∗ Iter. nodes
l-8-10-10-2-1 45 0.07 55 0.59 1154 33 0.182
l-8-10-10-3-1 29 0.12 45 6.90 10664 353 0.356
l-10-20-20-2-1 246 0.68 273 36.72 48263 1509 0.099
h-8-10-10-2-1 34 0.06 41 0.35 477 6 0.171
h-8-10-10-3-1 25 0.13 37 4.30 5523 152 0.324
h-10-20-20-2-1 153 0.59 172 2.54 1726 14 0.110
h-10-20-20-3-1 150 2.28 195 330.58 166193 1320 0.231
h-20-20-50-2-1 463 2.58 494 24.85 8242 126 0.063
h-20-20-100-2-1 916 6.66 968 190.02 64837 1022 0.054
g-8-10-10-2-1 33 0.06 40 0.37 476 6 0.175
g-8-10-10-3-1 20 0.12 26 1.93 1299 11 0.231
g-10-20-20-2-1 126 0.55 127 0.66 851 0 0.008
g-10-20-20-3-1 112 2.02 121 15.66 3761 13 0.074
g-20-20-50-2-1 494 4.28 494 4.28 2346 0 0
g-20-20-50-3-1 471 18.93 475 69.36 7715 10 0.008
g-20-20-50-5-1 437 84.63 464 > 2400 329186 628 0.058
g-20-20-100-2-1 984 14.76 984 15.50 4018 0 0
g-20-20-100-3-1 982 100.78 991 250.44 16554 10 0.009
s-8-10-10-2-1 50 0.07 50 0.08 260 0 0
s-8-10-10-3-1 28 0.13 28 0.15 374 0 0
s-10-20-20-2-1 248 0.66 251 1.86 1249 2 0.012
s-10-20-20-3-1 188 2.48 193 13.85 3680 4 0.026
s-20-20-50-2-1 639 4.42 641 11.39 3064 2 0.003
s-20-20-50-3-1 616 18.83 622 86.57 7745 13 0.010
s-20-20-50-5-1 573 80.86 578 903.80 89881 209 0.009
s-20-20-100-2-1 1343 18.79 1344 14.57 5232 0 0.001
s-20-20-100-3-1 1303 96.17 1310 329.96 22976 34 0.005
s-20-20-100-5-1 1256 571.99 1260 > 2400 126188 170 0.003
p-8-10-10-2-1 31 0.06 31 0.08 224 0 0
p-8-10-10-3-1 24 0.12 28 1.69 919 7 0.143
p-10-20-20-2-1 136 0.67 136 0.71 993 0 0
p-10-20-20-3-1 125 2.12 125 2.42 1684 0 0
p-20-20-50-2-1 345 4.62 345 4.70 2038 0 0
p-20-20-50-3-1 341 19.24 341 22.65 5078 0 0
p-20-20-50-5-1 327 80.46 327 103.64 12006 0 0
p-20-20-100-2-1 730 21.52 730 21.87 4191 0 0
p-20-20-100-3-1 732 93.19 732 111.93 11321 0 0
p-20-20-100-5-1 713 527.22 713 528.72 25475 0 0

78

Table 5.3: Near Optimal solutions using formulation (IPT)
Simplex B&B

type-m-n-p-q-1 v(LPT) τT νb τ b ν̃ α Iter. nodes
l-10-20-20-3-1 190 2.79 251 3600 235.66 0.061 3056039 33596
l-20-20-50-2-1 782 2.13 820 3600 809 0.013 1883885 43919
l-20-20-50-3-1 686 19.86 790 3600 701.66 0.111 584417 3850
l-20-20-50-5-1 556 93.85 757 3600 557.66 0.263 245150 279
l-20-20-100-2-1 1621 12.15 1710 3600 1641.5 0.040 883583 21965
l-20-20-100-3-1 1471 28.03 1670 3600 1479.83 0.114 247039 1040
l-20-20-100-5-1 1215 559.85 1651 3600 1243.2 0.247 63281 21
h-20-20-50-3-1 429 15.09 491 3600 483.66 0.015 687403 3462
h-20-20-50-5-1 364 78.45 486 3600 384.6 0.209 558029 1165
h-20-20-100-3-1 879 77.3 984 3600 921.84 0.063 479426 2361
h-20-20-100-5-1 742 419.46 945 3600 747.73 0.209 138194 120
g-20-20-100-5-1 900 511.62 973 3600 910.60 0.064 117360 80

Table 5.4: Results for the Benders’ algorithm
Bopt BNopt

type-m-n-p-q-1 ν∗ νM LBM ∆∗M τM r νM LBM ∆∗M τM r tip
l-8-10-10-2-1 55 55 49 0.109 301.31 272 55 49 0.109 300.67 551 4.78
h-8-10-10-2-1 41 41 41 0 216.54 244 41 41 0 120.3 323 -
g-8-10-10-2-1 40 40 40 0 212.24 245 40 40 0 151.94 341 -
s-8-10-10-2-1 50 50 50 0 210.42 271 50 50 0 152.74 349 -
p-8-10-10-2-1 31 31 31 0 13.46 69 31 31 0 6.86 74 -
g-8-10-10-3-1 26 38 10 0.615 301.93 79 26 12 0.538 301.35 353 17.51
s-8-10-10-3-1 28 35 14 0.643 303.38 87 28 17 0.393 300.89 355 24.93
p-8-10-10-3-1 28 38 10 0.5 306.95 81 28 14 0.5 300.36 354 14.81
g-10-20-20-2-1 127 127 93 0.268 325.8 52 127 104 0.181 300.82 290 73.05
s-10-20-20-2-1 251 270 154 0.386 301.81 50 264 176 0.299 301.87 326 120.91
p-10-20-20-2-1 136 163 93 0.316 320.45 56 147 109 0.199 300.67 298 90.26

79

Chapter 6

A local improvement algorithm

based on a very large scale

neighborhood.

In this chapter, we describe a local improvement algorithm that we have designed

for the q-mode problem. The first section describes the solution representation. This

local improvement algorithm uses a very large scale neighborhood structure that we

describe in the second section. The third section is devoted to the explanation of the

move mechanism that we refer to as cyclic-exchanges. The large scale neighborhood

is implicitly searched by creating an improvement graph associated with the current

solution; this is discussed in section 4. Further in section 5, we discuss the procedure

used to search this improvement graph for minimum cost cluster disjoint cycles. The

basic steps of the local improvement algorithm are presented in section 6 and three

alternative search strategies are explained in the last section.

80

6.1 Solution Representation.

The q-mode problem requires an assignment of records to clusters such that the sum

of the total number of replacements corresponding to each cluster is minimized. Any

assignment where every record is assigned to a unique cluster is a feasible solution to

the problem. Therefore a feasible solution can be represented as an array C having

p elements (i.e., the number of elements of the vector C equals the total number of

records in the problem instance). The kth element of the array, C[k], represents the

kth record and identifies the cluster l to which the record k is assigned, i.e., C[k] = l.

Let us assume for the purpose of demonstration that we have a problem instance

containing p = 6 records that are to be partitioned into q = 3 clusters. Let us assign

records k1 and k2 to cluster l1, records k3 and k4 to cluster l2, and records k5 and k6

to cluster l3, as shown in figure 6.1. This represents a feasible solution which we shall

refer to as S1. The vector C for feasible solution S1 will be (1, 1, 2, 2, 3, 3).

For an instance of the q-mode problem, if we are given the vector C corresponding

to a solution S, then we can identify all the records that belong to each cluster in

solution S. Now, the total number of replacements corresponding to solution S can be

obtained by finding the mode corresponding to each cluster. Thus an instance of the

q-mode problem is transformed into a problem of finding q modes. Morgan et al. [17]

describe an efficient algorithm, having computational requirement o(np), to obtain

the mode of a collection of records, where n is the number of positions in a record and

p is the number of records. Thus, once the vector C is known a calculation having

computational requirement o(qnp) is needed to obtain the corresponding modes and

the objective value for solution S.

6.2 Neighborhood Definition.

A neighborhood structure for a combinatorial optimization problem is defined by the

move mechanism, i.e., the sequence of steps carried out to obtain a different feasible

81

Figure 6.1: Example of a 2-exchange move in solution S.

solution from a given feasible solution. The move mechanism that we adopt for

the q-mode problem involves exchange of records between different clusters. Let us

consider that we are given a collection of p records, Φ, and a feasible solution S, i.e.,

an assignment of each of the p records to one of the q clusters. The removal of a

record ki from the cluster to which it is presently assigned and its reassignment to

a different cluster l is represented as (ki → Φl). Further, if record ki is moved from

its present cluster and reassigned to the cluster that contains record kj then this is

represented as (ki → kj). The moves described above require the reassignment of

just one record. We now describe moves that require reassignments of more than one

record.

In solution S, let record ki belong to cluster li and let record kj belong to cluster lj.

We can obtain a new feasible solution S ′ from S by exchanging the cluster assignments

of records ki and kj. This move would be referred to as a 2-exchange move and is

represented as (ki → kj →). All the solutions obtained by all possible 2-exchanges

would constitute a 2-exchange neighborhood. This is a very popular neighborhood

structure that has been used in the context of several partitioning problems. The

2-exchange move is demonstrated through an example in figure 6.1. The figure shows

a feasible solution to a problem containing 6 records, (k1, . . . , k6), that need to be

partitioned into 3 clusters, (l1, l2 and l3). The two arrows indicate a 2-exchange move

that we represent as (k1 → k3 →).

The 2-exchange idea can be extended by including more than 2 clusters in the

exchange, to obtain what is known as a cyclic-exchange. The cyclic-exchange involves

82

a transfer of records represented as (k1 → k2 → k3 → · · · → kr →), i.e., record k1 is

assigned to the cluster that contained record k2, record k2 is assigned to the cluster

that contained record k3 and so on till the last record kr is assigned to the cluster

that contained the first record k1. Each record in a cyclic-exchange belongs to a

different cluster. Hence, no more than one record per cluster is involved in a single

cyclic-exchange. Thus the total number of records (and clusters) in a cyclic-exchange

is no more than q and no less than 2, i.e., 2 ≤ r ≤ q. In figure 6.2, the three filled

arrows together represent a cyclic-exchange of three records which will be represented

as (k1 → k3 → k5 →).

The cyclic-exchange can be modified slightly to obtain what is called a path-

exchange. A path-exchange is an exchange such that, similar to the cyclic exchange,

record k1 is assigned to the cluster that contained record k2, record k2 is assigned to

the cluster that contained record k3 and so on till the record kr−1 is assigned to cluster

containing record kr, but no record moves from the last cluster (lr) to the first cluster.

Thus a path-exchange is basically a cyclic exchange where no record is re-assigned

to the first cluster in the cycle and no record leaves the last cluster in the cycle. We

use the notation (k1 → k2 → k3 → · · · → kr) to represent this path exchange. In

every path-exchange move the size of the first cluster in the path will reduce by 1

and the size of the last cluster in the path will increase by 1. Here, the size of each

cluster is given by the total number of records assigned to that cluster. Thus, path

exchanges include exchanges that change the size of the clusters; on the other hand

cyclic exchanges will maintain the cluster sizes as they were in the initial solution.

The dashed arrows in figure 6.2 represent a path exchange that is represented as

(k2 → k4 → k6). Here, cluster l1 will reduce its size by 1 while cluster l3 will increase

its size by 1.

A cyclic-exchange or a path-exchange performed on solution S1 will give us an-

other feasible solution S2 and the difference in the total number of replacements

corresponding to solutions S1 and S2 (i.e., number of replacements in solution S2 -

83

number of replacements for solution S1) is defined as the cost of the exchange. Thus

a neighbor S2 obtained from S1 through a negative cost exchange is a better neigh-

bor, and the neighbor corresponding to the exchange having the least cost is the best

neighbor of solution S1.

The cyclic exchange neighborhood is extremely large and the size of the neighbor-

hood is exponential in the number of clusters required in the problem instance. For

a problem instance with p records and q clusters, if we consider a solution S in which

all the clusters have the same number of records p
q
, then the total number of cyclic-

exchange moves associated with the solution is
∑q

i=2

(
q
i

)
i!
(
p
q

)q
≥
(
p
q

)q∑q
i=2

(
q
i

)
=(

2p
q

)q
. Hence the total number of cyclic exchange neighbors will be Ω

(
2p
q

)q
i.e., the

size of the cyclic-exchange neighborhood grows exponentially with growth in q. Here,(
q
i

)
stands for q choose i, i! stands for factorial of i, and Ω(g(x)) means asymptotically

lower bounded by function g(x).

In general, the cyclic-exchange neighborhood is much larger than the two exchange

neighborhood and also subsumes it and hence it is reasonable to expect that the so-

lutions obtained from the cyclic-exchange neighborhood will be much better than the

2-exchange neighborhood. However, since the neighborhood size increases exponen-

tially with the size of the problem we need an efficient method to find a cost decreasing

neighbor. A search algorithm that explicitly enumerates and evaluates all neighbors

in such a large neighborhood will be computationally ineffective. In practice, we

overcome this difficulty by implicitly enumerating this neighborhood via a network

optimization based method that efficiently identifies a good cyclic-exchange neighbor

for any given solution. This concept is explained in detail in the next subsection.

6.3 Identification of a Cyclic Exchange Neighbor.

The first step in identifying a good cyclic-exchange neighbor for a given solution S is

to create an associated graph G(S). Following Ahuja et al. [2] we refer to G(S) as

84

Figure 6.2: Example of cyclic and path exchange in solution S.

an improvement graph associated with solution S. The improvement graph G(S) is

a directed graph with p nodes, one node for each record k in the problem instance.

Each directed edge of the graph G(S) corresponds to a re-assignment of a record to

a cluster different from the cluster that it is presently assigned to in the solution S.

More specifically, the directed edge from node corresponding to record ki (that is

assigned to cluster li in S) to node kj (that is assigned to cluster lj in S) represents

a re-assignment where record ki leaves cluster li and is assigned to cluster lj and

record kj leaves cluster lj. We define the cost of the directed edge (ki, kj) to be the

increase in the number of replacements in cluster lj caused by the removal of record

kj from cluster lj and the addition of record ki to cluster lj, regardless of its impact on

other clusters. Clearly, the cost of an edge in the improvement graph can be negative.

Moreover, a cycle in G(S) that has no more than 1 record from each cluster represents

a cyclic-exchange and the cost of this exchange is the sum of the cost of each edge

in the cycle. Thus the cycle of lowest cost in the improvement graph G(S) that has

no more than one node from every cluster corresponds to the best cyclic neighbor of

solution S.

Enhancements can be made to the improvement graph G(S), by adding extra

nodes and arcs so that every path-exchange also corresponds to a cycle in this aug-

mented improvement graph. We shall refer to the set of nodes in the augmented

improvement graph as V and the set of edges as E . Given a solution S, an augmented

85

improvement graph is constructed as follows. Consistent with the above discussion,

each record k corresponds to a node in the augmented improvement graph. We refer

to these nodes as regular nodes. Apart from the regular nodes every augmented im-

provement graph, G(S), contains q pseudo nodes, one pseudo node corresponding to

each of the q clusters, and exactly one origin node. Each regular node k is connected

by an arc to every other regular node k′ which does not belong to its own cluster.

The cost calculation for all such arcs has been explained earlier. Further, each regular

node k is connected to all pseudo nodes except for the pseudo node that corresponds

to the cluster containing node k. The arc from regular node k to the pseudo node

corresponding to cluster l represents the addition of record k to cluster l with no

removal of records from cluster l. Thus the cost of any such arc is the increase in

total replacements in cluster l caused by addition of record k to this cluster. Each

pseudo node is connected to the origin node through an arc of zero cost. Finally,

there is an arc from the origin node to every regular node. An arc from the origin

node to regular node k represents the removal of record k from its cluster without

any addition of records. Hence the cost of such an arc is the increase in total replace-

ments in the corresponding cluster caused by removal of record k from this cluster

(typically a negative value). Any cycle that contains the origin node will also include

one of the pseudo nodes and it represents a path-exchange, while all cyclic-exchanges

correspond to cycles in the augmented improvement graph which contain neither the

origin nor any pseudo nodes.

6.4 Efficient Calculation of the Improvement Graph.

Given a solution S, where Φl is the set of records assigned to cluster l for l = 1 to

q, every possible pair of records (k1, k2), where both records do not belong to the

same cluster (i.e., k1 /∈ Φl and k2 ∈ Φl for some l = 1, . . . , q), corresponds to an arc

in the improvement graph, G(S). Thus calculation of G(S) requires calculation of

86

the cost of O(p2) arcs. A naive calculation of the improvement graph would involve

calculation of a mode for calculating the cost of each arc. We can reduce the compu-

tational requirements by a two-fold strategy of increasing the memory requirements

(i.e., maintaining an appropriate database) and using the fact that the arc costs are

interrelated.

As defined earlier, let the number of records in cluster l having value i at position

j be denoted by Fl(i, j) and let maxi Fl(i, j) be denoted by Fmax
l (j). Let incjl(k1, k2)

be the increase in the replacements corresponding to position j in cluster l caused

by the simultaneous addition of a record k1 to and removal of record k2 from this

cluster. Thus, the cost of arc (k1, k2) is given by
∑

j incjl(k1, k2). Also, let inc+
jl(k)

and inc−jl(k) be the increase in the number of replacements corresponding to position

j caused by the addition of a record k to cluster l (k /∈ Φl) and the increase in the

number of replacements corresponding to position j caused by the removal of a record

k from cluster l (k ∈ Φl), respectively.

The idea of creating a database to significantly reduce the computations required

in the calculation of a mode of a cluster of records has been used by Morgan [16] in the

context of the 2-model problem. The database that we create consists of three items.

The first item in the database is an m×n×q matrix, F , which stores the frequency of

every value i at position j in all records belonging to cluster l, i.e., F [i, j, l] = Fl(i, j).

The second item in the database is a q × n matrix M, which stores the frequency

of the most frequently occurring value at position j among all records belonging to

cluster l, i.e., M[l, j] = Fmax
l (j). The third item in the database is a q × n boolean

matrix U . The matrix U indicates whether there is a unique value i∗ that occurs

most frequently at position j in all records belonging to cluster l, i.e., U [l, j] = 1 if

arg maxi Fl(i, j) = i∗ is unique and 0 otherwise.

Now, let us assume that we are calculating the cost of arc (k1, k2), i.e., the cost

of adding record k1 and removing record k2 from cluster l, and let us further assume

that at a particular position j, record k1 has value i1 and record k2 has value i2.

87

In order to describe our procedure for calculating incjl(k1, k2), let us first describe

the corresponding values of inc+
jl(k1) and inc−jl(k2). It can be verified easily that

inc+
jl(k1) equals 0 when the value i1 is the most frequently occurring value at position

j among all records belonging to cluster l, i.e., Fl(i1, j) = Fmax
l (j), and inc+

jl(k1)

equals 1 otherwise. Further, inc−jl(k2) equals 0 only when the frequency of value i2 is

strictly greater than the frequency of any other value at position j among all records

belonging to cluster l, i.e., when Fl(i2, j) = Fmax
l (j), and arg maxi Fl(i, j) is unique.

In all other cases inc−jl(k2) equals -1. These two facts, along with the database that

we described earlier, can be used to efficiently calculate the cost of the arc (k1, k2)

in the following manner. First we calculate the cost of adding record k1 to cluster l,

i.e.,
∑

j inc
+
jl(k1). Next we update the database to reflect the addition of record k1 to

cluster l. Then we calculate the cost of removing k2 from cluster l, i.e.,
∑

j inc
−
jl(k2).

To calculate G(S) we need to do this for every pair of regular nodes where both nodes

do not belong to the same cluster. An equivalent procedure can be used to calculate

the cost of arcs from every regular node to (q − 1) pseudo nodes and the cost of arcs

from the source node to every regular node. We refer to this implementation of the

improvement graph calculation as IGC1.

Further reduction in computation comes out of the fact that in a vast majority

of positions, the increase in replacements corresponding to position j caused by the

simultaneous addition of record k1 to cluster l and removal of record k2 from cluster

l is equal to the sum of two values, the first one being the increase in replacements

corresponding to position j caused by the lone addition of record k1 to cluster l and

the second one is the increase in replacements corresponding to position j caused by

the lone removal of record k2 from cluster l. In other words, for most positions j

incjl(k1, k2) = inc+
jl(k1) + inc−jl(k2) (6.1)

To clarify this statement we enumerate all possible cases corresponding to a partic-

ular position j in table 6.1 and identify the cases where equation (6.1) is not satisfied.

88

Table 6.1: Different cases for reducing the computations for calculating the Improve-
ment Graph arc costs.

Major case Minor case k1 in k2 out Both
|l| max inc |l| max inc |l| max inc

Fl(i1, j) = Fl(i2, j) = max 1 1 0 -1 0 -1 0 1 -1
Fl(i1, j) Fl(i1, j) = Fl(i2, j) = max-1 1 0 1 -1 0 -1 0 0 0
= Fl(i2, j) Fl(i1, j) = Fl(i2, j) < max -1 1 0 1 -1 0 -1 0 0 0

Fl(i2, j) = umax, Fl(i1, j) = umax-1 1 0 1 -1 -1 0 0 0 0
Fl(i2, j) = umax, Fl(i1, j) < umax-1 1 0 1 -1 -1 0 0 1 1

Fl(i1, j) Fl(i2, j) = max, Fl(i1, j) = max-1 1 0 1 -1 0 -1 0 0 0
< Fl(i2, j) Fl(i2, j) = max, Fl(i1, j) < max-1 1 0 1 -1 0 -1 0 0 0

Fl(i2, j) = max-1, Fl(i1, j) < max-1 1 0 1 -1 0 -1 0 0 0
Fl(i1, j) Fl(i1, j) = max, Fl(i2, j) < max 1 1 0 -1 0 -1 0 1 -1
> Fl(i2, j) Fl(i1, j) < max 1 0 1 -1 0 -1 0 0 0
i1 = i2=i Fl(i, j) = umax 1 1 0 -1 -1 0 0 0 0

Fl(i, j) = max 1 1 0 -1 0 -1 0 0 0

For convenience of discussion, in the table 6.1, we shall represent Fmax
l (j) as max.

Further, when there is a unique value i for which this maximum value, i.e., max, is

attained, we refer to it as umax.

In table 6.1 we consider a scenario where record k1 is to be added to cluster l

and record k2 is to be removed from it. Further record k1 has value i1 and record k2

has value i2 in position j. Based on the values Fl(i1, j) and Fl(i2, j), there can be

four possible cases which we refer to as the major cases. The first column of table

6.1 identifies the four major cases, Fl(i1, j) = Fl(i2, j), i.e., records with values i1

and i2 are equal in number, Fl(i1, j) < Fl(i2, j), i.e., value i1 is less frequent than

i2, Fl(i1, j) > Fl(i2, j), i.e., value i1 is more frequent than i2 and the fourth major

case where the record k1 coming in and the record k2 leaving cluster l have the same

value i1 = i2 = i at position j. The second column identifies the minor cases within

each major case. The different minor cases occur depending upon whether Fl(i1, j)

and/or Fl(i2, j) is equal to max, umax, (max-1) or less than (max-1). The third

column represents the impact of addition of record k1 to cluster l, the fourth column

represents the impact of removal of record k2 from cluster l, and the fifth column

89

represents the impact of both operations performed simultaneously. The third, fourth

and fifth columns are further divided into three sub-columns. The first sub-column

labeled as |l| gives the increase in the number of records in cluster l. The second sub-

column labeled as max gives the increase in the value of maxi Fl(i, j) corresponding

to position j for cluster l and the third sub-column labeled as inc gives the increase

in the number of replacements once the corresponding operation is completed. Thus

the first sub-column that we encounter in the table that has title inc displays the

value of inc+
jl(k1), the second column with the same title inc displays the value of

inc−jl(k2) and the third one displays the value of incjl(k1, k2).

From table 6.1, we can see that there are exactly two cases when equation (6.1) is

not satisfied. The corresponding rows are highlighted for easy recognition. The first

case is where Fl(i2, j) = umax and Fl(i1, j) = (umax-1), i.e., the number of records

in cluster l that have value i2 at position j is strictly greater than records with any

other value at this position and the number of records in cluster l that have value i1

at position j is exactly one less than this number. In this case,

incjl(k1, k2) = inc+
jl(k1) + inc−jl(k2)− 1

The second case is where i1 = i2 = i and Fl(i, j) = max, i.e, the record k1 coming

in and the record k2 leaving cluster l have the same value i1 = i2 = i at position j

and for cluster l there is another value i′ 6= i that has the same frequency as i. In

this case,

incjl(k1, k2) = inc+
jl(k1) + inc−jl(k2) + 1

Using this relationship, we can now calculate the improvement graph as follows.

The cost of removing a record k2 from cluster l, i.e,
∑

j inc
−
jl(k2) is calculated only

once. Moreover, when this cost is calculated we create two lists, the first list (list

1) contains all positions where Fl(i2, j) = umax and the second one (list 2) contains

90

all positions where Fl(i2, j) = max. Now the cost of arc (k1, k2) can be calculated

by adding
∑

j inc
−
jl(k2) and

∑
j inc

+
jl(k1) and then adding one to this sum for each

position in list 1 where Fl(i1, j) = (umax− 1) and subtracting one for every position

in list 2 where i1 = i2.

We shall refer to this implementation of the improvement graph calculation as im-

plementation IGC2. As compared to IGC1, IGC2 avoids the update of the database

between the calculation of
∑

j inc
−
jl(k2) and

∑
j inc

+
jl(k1). Further, it calculates the

cost of the removal of a record k2 from its cluster l exactly once for every pair of

records (k1, k2) where k2 ∈ Φl. Thus, in implementation IGC2, we have reduced the

number of times the record removal costs are calculated and also reduced the number

of positions for which addition or subtraction operations are performed in the calcu-

lation of every arc cost. We empirically demonstrate that IGC2 is faster than IGC1

through a computational experiment. The results of this experiment are presented in

table 7.2 which is included along with some discussion later in chapter 7.

6.5 Identification of Valid Cycles in the Improve-

ment Graph.

From the definition of the augmented improvement graph G(S) corresponding to a

solution S, presented in subsection 6.3, we know that finding the best cyclic-exchange

or path-exchange neighbor of a solution S is equivalent to finding a cycle in G(S) of

minimum cost such that no two nodes in this cycle are present in the same cluster.

Let us refer to such a cycle in G(S) as a cluster disjoint cycle. Further, we refer to

a cluster disjoint cycle that has a negative cost as a valid cycle. Thus every cyclic-

exchange or path-exchange performed on the solution S corresponds to a cluster

disjoint cycle in G(S), and every cyclic-exchange or path-exchange that leads to an

improving neighbor corresponds to a valid cycle in G(S). If the neighborhood search

requires us to find a strictly improving neighbor in an iteration then we need to have

91

an algorithm to search for valid cycles in G(S). On the other hand, if we require the

best neighbor of S regardless of whether it has a lower cost or not (such as in a tabu

search algorithm), then we need an algorithm that searches for the minimum cost

cluster disjoint cycle in G(S).

The problem of finding a valid cycle in a graph has been proved to be an NP-

complete problem [19]. Hence any exact algorithm developed for finding valid cycles

or cluster disjoint cycles in G(S) will have computational requirements that grow

exponentially with the size of the problem. Presently, exact algorithms developed

for finding both the minimum cost cluster disjoint cycle and valid cycles are based

on algorithms for the all pair shortest path problem in graphs. These algorithms are

described in detail in [1] and [6]. Ahuja et al. [4] describe a “label-setting” algorithm

for the minimum cost subset disjoint cycle problem. We propose to implement this

algorithm for solving the minimum cost cluster disjoint cycle problem (MCCDCP) in

the context of the q-mode problem. We describe in brief our implementation of this

algorithm below.

Every ordered pair of nodes (i, j) in the improvement graph has at least one label

associated with it. A label Lij, consists of three parts. The first part is a variable

sized vector, ρ(i, j), that stores all the nodes in the cluster disjoint path from source

node i to terminal node j in the correct sequence. In places where the context is

clear we refer to this path simply as ρ. Note that a cluster disjoint path from node i

to node j corresponds to a cluster disjoint cycle in G(S) only if there is an arc from

node j to node i in G(S). The size of a cluster disjoint path, ρ(i, j), is given by the

total number of nodes present in it. The second part of the label Lij is the cost of

the cluster disjoint path from i to j, ρ(i, j), i.e., c(ρ(i, j)). If there is no path from

node i to node j , then c(ρ(i, j)) =∞. The third part of the label Lij is a 0-1 vector,

wij(l) of size q that identifies the clusters that are present in the path, i.e., if cluster

l is present in the path then wij(l) = 1, and 0 otherwise for all l = 1 to q. Moreover,

a label Lij is said to dominate label L′ij, if and only if, c(ρ(i, j)) ≤ c′(ρ(i, j)) and

92

Figure 6.3: Pseudo code for Algorithm AS

1 MinCost = ∞, Bestpath = Φ
2 for each s ∈ V do
3 for all j > s
4 if (s, j) ∈ E then
5 L1

sj = {(ρ = (s, j), c(ρ) = c(s, j), wρ(cl(s)) = wρ(cl(j)) = 1)}
6 else L1(i, j) = φ
7 endfor
8 for each l = 2, . . . , Q do
9 for each (i, s) ∈ E, i > s and each (ρ, c(ρ), wρ) ∈ Ll−1

si do
10 if MinCost > c(ρ) + c(i, s) then
11 MinCost ⇐ c(ρ) + c(i, s) and Bestpath ⇐ ρ
12 endif
13 endfor
14 for each j ∈ V and j > s do
15 for each (i, j) ∈ E, i > s & each (ρ, c(ρ), wρ) ∈ Ll−1

si with wρ(i) 6= wρ(j) do
16 Extend ρ along (i, j) to get ρ′

17 c(ρ′)⇐ c(ρ) + c(i, j), wρ′ ⇐ wρ and wρ′(cl(j))⇐ 1
18 if (ρ′, c(ρ′), wρ′) is not dominated by any label in Llsj then
19 Remove all labels in Llsj dominated by (ρ′, c(ρ′), wρ′)
20 Llsj ⇐ Llsj ∪ (ρ′, c(ρ′), wρ′)
21 endif
22 endfor
23 endfor
24 endfor
25 endfor

wij(l) ≤ w′ij(l) for all l = 1 to q. A cluster disjoint path between nodes i and j is said

to be efficient if no other path between these two nodes dominates it. It has been

shown by Ahuja et al. [4] that we need to maintain labels only on pairs of nodes (i, j)

such that i < j. Given these ideas, we can now describe the algorithm for calculating

minimum cost cluster disjoint cycles that we shall refer to as AS.

The algorithm proceeds by selecting one regular node from the augmented im-

provement graph as the source node. From the source node s the algorithm finds

efficient cluster disjoint paths of size 2 to every other node i in G(S). This can be

accomplished easily because every arc in G(S) connecting node s to a node i that

93

belongs to a different cluster corresponds to a cluster disjoint path of size 2. Now we

move on to finding cluster disjoint paths of size 3. This is accomplished as follows.

From every node i, we look at every neighbor j and check if the cluster disjoint path

from s to i can be extended to node j, and if yes, then we create a label correspond-

ing to node j. Thus we now have efficient cluster disjoint paths of size at most 3

nodes from source s to all other nodes. We continue to obtain cluster disjoint paths

of larger sizes untill cluster disjoint paths of size at most q are known from s to all

other nodes in the improvement graph. This procedure is performed p times, every

time with a different regular node in G(S) as the source node. Note that it is possible

that there are two nodes i1 and i2 that have j as a neighbor, and all three nodes i1,

i2 and j belong to different clusters. Thus it is possible that there are two cluster

disjoint paths from s to j, one through i1 and the other through i2. Hence every

pair of nodes can have more than one label associated with it. We refer to the set

of labels corresponding to cluster disjoint paths of size l with end points (i, j) as Llij.

All labels belonging to Llij will be refered to as Llij.

The algorithm is given in figure 6.3. In line 2 we select one node from the improve-

ment graph as the source node s. In the loop from lines 3 to 7, we initialize the set

of labels for each pair of nodes i, j where the edge (i, j) ∈ E . In the loop, from lines 9

to 13 we update the value of the minimum cost cycle based on the information that

is currently known, i.e., the sets of labels Llsi which store all cluster disjoint paths of

size at most l from source s to all other nodes i. This calculation can be done because

addition of edge (i, s), if it exists, to a cluster disjoint path from s to i corresponds to

a cycle. The loop from lines 14 to 23 creates new labels on all pairs of nodes s, j. The

algorithm looks at each node i such that the edge (i, j) exists in the improvement

graph and the node j is such that j ∈ V , j > s. The cluster disjoint path from s to

i of size (l − 1) is extended to node j to obtain a cluster disjoint path of size l from

s to j, and in lines 16 and 17 the label Llsj corresponding to this path is created. In

line 18, we ensure that label created is not dominated by any label in the set Llsj. We

94

then add label Llsj to set Llsj and remove all labels in Llsj that are dominated by the

label Llsj. Thus, only those labels that correspond to efficient cluster disjoint paths

are maintained. This procedure finds the minimum cost cluster disjoint cycle that

contains source node s. This procedure is run p times, every time with a different

regular node in G(S) as source, to obtain the minimum cost cluster disjoint cycle in

the improvement graph G(S).

6.6 Local Improvement Algorithm.

We have designed a local improvement algorithm for the q-mode problem based on

the very large scale neighborhood structure that we have just discussed. We refer to

this algorithm as LI. The major steps in LI are given in figure 6.4. In line 1, we

generate an initial solution S1 by randomly assigning every record to a unique cluster.

We then calculate the cost c(S1) of solution S1 by calculating the modes of each of

the q clusters corresponding to solution S1. This ends the initialisation section of the

algorithm. Now, in every iteration, we construct the augmented improvement graph

corresponding to the current solution Sk as shown in line 4. Next, we use algorithm

AS to identify the minimum cost cluster disjoint cycle, ζk, in G(Sk). If the cycle has

non-negative cost, i.e., c(ζk) ≥ 0, we stop the algorithm with Sk as the best solution.

On the other hand, if the cycle has strictly negative cost, i.e., c(ζk) < 0, then we

can use ζk to obtain solution Sk+1 from Sk. Here, we also update the values in the

database that we build to efficiently calculate the cost of the arcs in the improvement

graph G(Sk). Further, the cost of solution Sk+1 can be calculated with just a single

operation as shown in line 8. We then go back to step 4.

95

Figure 6.4: Pseudo code for Algorithm LI

1 Generate initial solution, S1

2 Calculate c(S1)
3 k ⇐ 1
4 Construct G(Sk)
5 Run algorithm AS on G(Sk) to obtain ζk

6 if c(ζk) < 0 then
7 use ζk to construct Sk+1 and update database
8 c(Sk+1)⇐ c(Sk) + c(ζk)
9 k ⇐ k + 1
10 goto 4
11 else STOP, Sk is optimal

6.7 Search Strategy

The local improvement algorithm LI that we discussed above uses the procedure AS

to identify the least cost neighbor S ′ of the current solution S in every iteration. The

algorithm proceeds as long as the least cost neighbor S ′ is improving, i.e., cost of S ′

is strictly less than cost of current solution S. We refer to this strategy of searching

the neighborhood as best improvement strategy.

In a preliminary computational experiment we noted that the procedure AS ac-

counts for a very high percentage of the computations performed by algorithm LI.

In order to reduce the overall computational requirements of the algorithm we mod-

ify our search strategy. To this end we implemented two modifications of procedure

AS. The first modification involves a change in the stopping criterion used to ter-

minate procedure AS. Instead of identifying the least cost cluster disjoint cycle in

the improvement graph G(S), we terminate AS as soon as it identifies a negative

cost cluster disjoint cycle in G(S). We refer to this modified procedure as AS1. It

must be noted that if G(S) has exactly one or no negative cost cluster disjoint cycle

then the cycle identified by both procedures, AS and AS1, at termination, will be

identical. When procedure AS1 is used, in every iteration of the local improvement

96

algorithm we move to the first neighbor that we find that has lower cost than the

current solution. Thus use of AS1 in the local improvement algorithm implies a first

improvement search strategy. We refer to this algorithm as LI1.

The second modification of procedure AS involves limiting the number of nodes in

the improvement graph G(S) that we use as source nodes. We refer to this procedure

as ASα. In ASα only a fraction of the regular nodes, b αp100c, will be used as source

nodes as compared to procedure AS where each of the p regular nodes is used as

the source node. Based on some preliminary computational experiments, we decided

to use α = 10 so as to get a significant reduction in the solution time for the local

improvement algorithm. Unfortunately, this also lead to a significant reduction in

the solution quality. To counter this effect, we modified the steps of the local im-

provement algorithm. Whenever ASα is unable to find a negative cost cluster disjoint

cycle in G(S) we revert back to procedure AS. We refer to this version of the lo-

cal improvement algorithm as LIα. Algorithm LIα differs from algorithm LI at two

steps. Firstly at step 5, we use procedure ASα in algorithm LIα instead of procedure

AS. Secondly, if c(ζk) > 0 then we do not stop. Instead, we revert to procedure AS

to find the minimum cost cluster disjoint cycle, ζk
′
. Now if c(ζk

′
) > 0 then we stop,

otherwise we identify a new neighbor Sk+1 using Sk and ζk
′
, make Sk+1 the current

solution, and resume algorithm LIα using procedure ASα.

97

Chapter 7

Computational experiments for the

Local Improvement Algorithm.

We carried out a computational experiment to empirically evaluate the effectiveness

of the algorithms, LI, LIα and LI1, that we discussed earlier, and to compare them to

each other. The computational experiment is carried out by running these algorithms

on randomly generated problem instances that we created as described in chapter 4.

We used an exact algorithm to optimally solve these randomly generated instances

and we refer to the objective value obtained using the exact algorithm as V ∗. In some

instances, the exact algorithm is unable to find the optimal solution in a reasonable

amount of time. For these instances V ∗ refers to the objective value of the best

known integer feasible solution. Details regarding the exact algorithm are discussed

in chapter 3. Further, we refer to the objective value obtained by algorithms LI,

LIα and LI1 as VLI , VLIα and VLI1 respectively. Each of the three algorithms start

with the same initial solution for any given instance. This solution is obtained by a

random assignment of every record to a unique cluster and the objective value of this

solution is referred to as Vini. We also discuss a second computational experiment

conducted to compare the two implementations IGC1 and IGC2 for calculating the

arc costs in an improvement graph.

98

In this chapter the first section describes the performance measures used in the

analysis of the computational experiment and in the second section we present the

results of the two computational experiments that we performed.

7.1 Performance Measures

For each algorithm B, where B refers to either LI, or LI1 or LIα, we define the

following two performance measures for each problem instance that we solve.

δiniB =
Vini − VB
Vini

, and δ∗B =
VB − V ∗

V ∗
(7.1)

where VB is the objective value obtained via algorithm B, V ∗ is the a priori best

known objective value, and Vini is the objective value of the initial solution.

Further, the time required in seconds by each algorithm is used as the third

performance measure, and it is referred to as tB, where B can take values LI, LI1

and LIα, respectively.

7.2 Observations

In our first computational experiment we ran all the three algorithms on the 55

randomly generated instances that we created. The results of this computational

experiment are presented in table 7.1. Each row in the table corresponds to one of

the instances. The information in table 7.1 is displayed in such a manner that all

instances belonging to the same group (by pmf type) are together. Further, within

each group the instances are arranged in the increasing order of the size of the instance.

The first column in the table displays the name of the instance while the second

and third columns contain the corresponding values V ∗ and Vini, respectively. All

problem instances where the corresponding value V ∗ is not guaranteed to be optimal

are marked with the symbol •. After the third column, table 7.1 contains 3 groups

99

of columns each corresponding to one of the performance measures that we described

earlier. Each group contains three columns corresponding to the three algorithms

that we are comparing. Finally, the last column contains the best objective value

(Vfb) that we have for each instance at the end of the computational experiment.

In all instances where the optimal is known, we have Vfb = V ∗. In some instances

where the optimal is not known, one or more of the algorithms finds a solution which

is better than the best solution that we previously knew for that instance. In these

cases, Vfb < V ∗, and these cases are displayed using bold characters.

We know that the groups Gp, Gs and Gg contain strongly clustered instances

as compared to the other two groups. In the following discussion, we shall refer to

instances in groups Gp, Gs and Gg as strongly clustered and instances in groups Gh

and Gl as weakly clustered. We know the optimal value for 38 out of the 55 instances

that are displayed in table 7.1 (29 out of 33 strongly clustered instances and 9 out of

22 weakly clustered instances).

Initially let us concentrate on the 38 instances where we can guarantee that V ∗ is

the optimal value. The three algorithms, LI, LIα and LI1 obtain the optimal value

in all 29 strongly clustered instances where V ∗ is known to be optimal. Among the

9 weakly clustered instances, LI and LI1 obtain the optimal value in the same 5

instances. LIα obtains the optimal value in 6 instances that include the 5 instances

where LI and LI1 obtain the optimal value. In the remaining three instances none

of the algorithms obtain the optimal value, these instances are l-8-10-10-2-1, l-8-10-

10-3-1 and h-8-10-10-3-1. Overall, within the 38 instances, the search algorithms

obtain the optimal value in 35 instances and in the remaining three instances, the

worst solution found by any of the three algorithms is within 8% of the corresponding

optimal value.

Next we discuss the performance of the three algorithms on the 17 instances where

we cannot guarantee that V ∗ is the optimal value. Of these 17 instances, 4 are strongly

clustered and 13 are weakly clustered. Among the strongly clustered instances, LI

100

and LI1 find solutions with objective values equal to V ∗ in 2 out of the 4 instances.

In the third instance, LI obtains value equal to V ∗ while the value obtained by LI1

is 7% above V ∗. In the fourth instance, both LI and LI1 obtain values that are 18%

higher than the optimal value. Algorithm LIα obtains values equal to V ∗ in all four

instances. Among the weakly clustered instances, LI and LIα find solutions with

objective values that are equal to V ∗ in 5 instances. In 6 instances, LI and LIα find

solutions with objective values that are less than V ∗ but not always equal to each

other. In the remaining two instances the values obtained by LI and LIα are equal to

each other and they are 4% and 12% higher than V ∗. Algorithm LI1 finds solutions

with objective values that are equal to or lesser than V ∗ in 12 out of the 13 instances.

In the last instance it finds the same value as found by LI and LIα which is 12%

higher than V ∗.

On the average, for all the 33 strongly clustered instances that are displayed in

table 7.1, LI obtains solutions with objective values that are 0.54% higher than V ∗

and LI1 finds solutions that are 0.75% above the corresponding V ∗. On the other

hand, objective values obtained by LIα for all 33 strongly clustered instances are equal

to V ∗. On the average, for the 22 weakly clustered instances, LI obtains solutions

with objective values that are less than V ∗ by 0.03% , LI1 obtains values that are less

than V ∗ by 0.12% and LIα obtains values that are less than V ∗ by 0.22%. In summary,

we can conclude that in terms of solution quality LIα marginally outperforms the two

other algorithms LI and LI1.

Since all three algorithms start from the same initial solution, the performance

measure, δini, indicates the same trend as shown by δ∗. On the average, over all the

55 instances that are part of the computational experiment, LI finds solutions that

are 29.8% better than the corresponding initial solution Vini, LI
1 finds solutions that

are 29.74% better than the corresponding initial solution Vini and LIα finds solutions

that that are 30.01% better than the corresponding initial solution Vini. In general

we observe that this performance measure is larger for the instances with stronger

101

natural clusters. This is consistant with the intuitive argument that for a group of

records that does not contain strong clusters any randomly generated assignment of

records to clusters can lead to a solution which is not far away from the optimal

assignment.

In terms of the time required, LI1 considerably outperforms the other two algo-

rithms. In all the 55 instances LI1 is faster than LIα and on the average the time

required by LI1 is 22.14% of the time required by LIα. For instances that have 100

records and require 8 clusters the time required by LI is greater than 3600 seconds

(the upper limit that we used in this experiment) and the exact time value is not avail-

able. Thus on the average for the 50 instances where the time values are available

LIα takes 51.9% of the time taken by LI.

Our second computational experiment was performed to compare the two imple-

mentations IGC1 and IGC2, that calculate the cost of all the arcs in an improvement

graph. In this experiment we ran the algorithm LIα on 45 problem instances and

the cost of all arcs in the improvement graph at every iteration was calculated using

both implementations. For each problem instance we kept track of the total time

required by both implementations to calculate the improvement graph arc costs in all

iterations that algorithm LIα performed for that problem instance. The results are

presented in table 7.2. For the analysis of this computational experiment we group

together the problem instances that we have created based on parameter p, i.e., the

number of records in the instance and parameter q, i.e., the total number of clusters

to be formed out of the p records. Thus every instance belonging to one group has

the same value of p and q. There are total of 9 groups in this experiment and each

group has 5 instances. Every row in the table 7.2 displays the average time over all

the instances belonging to that group. The first column in the table represents the

problem size and displays the parameters m,n, p and q. The second column gives the

number of instances belonging to that group (5 in every case). The third column,

labeled Time, has two sub-columns which give the average time required by each

102

implementation for all instances in that group in seconds.

The average time required by IGC2 is significantly less than the time required by

IGC1 in all the groups of instances shown in table 7.2. Further, as the size of the

instance increases the difference in the time required by IGC1 and IGC2 increases.

This supports our earlier discussions that the additional measures we introduced in

IGC2 indeed result in significant reduction in computational effort in determining the

arc costs in the improvement graph.

Using both tables 7.1 and 7.2 we also observe that the time taken by IGC2 to

calculate the arc costs is relatively insignificant as compared to the total solution

time. Procedure AS, that finds the cluster disjoint cycle in the improvement graph

requires the bulk of the overall computational effort of the algorithm. Hence fur-

ther improvements in the overall efficiency of the algorithm depends on determining

a more efficient algorithm for finding a cluster disjoint minimum cost cycle in the

improvement graph as opposed to more efficient determination the arc costs.

103

Table 7.1: Computational results for LI, LI1 and LIα.
type-m-n-p-q-1 V ∗ Vini δ∗LI δ∗LI1 δ∗LIα δiniLI δiniLI1 δiniLIα

tLI tLI1 tLIα Vfb
l-8-10-10-2-1 55 59 0.0182 0.0182 0.0182 0.05 0.05 0.05 0.01 0.00 0.00 55

l-8-10-10-3-1 45 53 0.022 0.022 0.022 0.13 0.13 0.13 0.00 0.01 0.01 45

l-10-20-20-2-1 273 291 0.022 0.022 0.0 0.04 0.04 0.06 0.01 0.01 0.01 273

l-10-20-20-3-1 251• 277 0.04 -0.04 0.012 0.09 0.10 0.08 0.04 0.03 0.02 250

l-20-20-50-2-1 820• 850 0.122 0.122 0.122 0.02 0.02 0.02 0.10 0.15 0.11 830

l-20-20-50-3-1 790• 825 -0.0063 -0.0114 -0.0190 0.05 0.05 0.06 0.57 0.29 0.67 775

l-20-20-50-5-1 757• 785 -0.0343 -0.0304 -0.041 0.07 0.06 0.08 7.22 1.45 6.31 726

l-20-20-100-2-1 1710• 1749 -0.0018 -0.0047 -0.0023 0.02 0.03 0.02 1.03 1.10 0.76 1702

l-20-20-100-3-1 1670• 1734 -0.015 -0.0114 -0.0102 0.05 0.05 0.05 7.27 1.34 2.36 1645

l-20-20-100-5-1 1651• 1672 -0.046 -0.097 -0.0509 0.06 0.06 0.06 81.20 10.76 85.70 1567

l-20-20-100-8-1 1584• 1613 -0.06 -0.07 -0.07 0.08 0.09 0.09 - 177.16 1489.66 1472

h-8-10-10-2-1 41 59 0.00 0.00 0.00 0.31 0.31 0.31 0.00 0.00 0.00 41

h-8-10-10-3-1 37 47 0.08 0.08 0.08 0.15 0.15 0.15 0.01 0.01 0.01 37

h-10-20-20-2-1 172 243 0.00 0.00 0.00 0.29 0.29 0.29 0.02 0.02 0.01 172

h-10-20-20-3-1 195 253 0.00 0.00 0.00 0.23 0.23 0.23 0.04 0.04 0.04 195

h-20-20-50-2-1 494 690 0.00 0.00 0.00 0.28 0.28 0.28 0.18 0.25 0.18 494

h-20-20-50-3-1 491• 710 0.00 0.00 0.00 0.31 0.31 0.31 0.77 0.48 0.33 491

h-20-20-50-5-1 486• 737 0.00 0.00 0.00 0.34 0.34 0.34 9.68 2.12 4.08 486

h-20-20-100-2-1 968 1384 0.00 0.00 0.00 0.30 0.30 0.30 1.72 1.74 1.23 968

h-20-20-100-3-1 984• 1502 0.00 0.00 0.00 0.34 0.34 0.34 8.85 3.29 5.46 984

h-20-20-100-5-1 945• 1566 0.00 0.00 0.00 0.40 0.40 0.40 143.13 22.79 74.86 945

h-20-20-100-8-1 943• 1577 0.00 0.00 0.00 0.40 0.40 0.40 - 334.09 1747.57 943

g-8-10-10-2-1 40 56 0.00 0.00 0.00 0.29 0.29 0.29 0.01 0.01 0.00 40

g-8-10-10-3-1 26 53 0.00 0.00 0.00 0.51 0.51 0.51 0.01 0.01 0.00 26

g-10-20-20-2-1 127 242 0.00 0.00 0.00 0.48 0.48 0.48 0.01 0.01 0.02 127

g-10-20-20-3-1 121 253 0.00 0.00 0.00 0.52 0.52 0.52 0.04 0.02 0.03 121

g-20-20-50-2-1 494 690 0.00 0.00 0.00 0.28 0.28 0.28 0.16 0.23 0.16 494

g-20-20-50-3-1 475 755 0.00 0.00 0.00 0.37 0.37 0.37 0.78 0.30 0.31 475

g-20-20-50-5-1 464 765 0.00 0.00 0.00 0.39 0.39 0.39 11.56 1.26 3.73 464

g-20-20-100-2-1 984 1440 0.00 0.00 0.00 0.32 0.32 0.32 1.78 1.91 1.31 984

g-20-20-100-3-1 991 1541 0.00 0.00 0.00 0.36 0.36 0.36 8.55 2.55 3.33 991

g-20-20-100-5-1 973• 1613 0.00 0.00 0.00 0.40 0.40 0.40 150.44 38.14 79.12 973

g-20-20-100-8-1 964• 1566 0.00 0.00 0.00 0.38 0.38 0.38 - 366.62 1124.11 964

s-8-10-10-2-1 50 68 0.00 0.00 0.00 0.26 0.26 0.26 0.01 0.00 0.01 50

s-8-10-10-3-1 28 54 0.00 0.00 0.00 0.48 0.48 0.48 0.01 0.01 0.01 28

s-10-20-20-2-1 251 298 0.00 0.00 0.00 0.16 0.16 0.16 0.01 0.02 0.01 251

s-10-20-20-3-1 193 288 0.00 0.00 0.00 0.33 0.33 0.33 0.04 0.04 0.04 193

s-20-20-50-2-1 641 787 0.00 0.00 0.00 0.19 0.19 0.19 0.19 0.18 0.15 641

s-20-20-50-3-1 622 797 0.00 0.00 0.00 0.22 0.22 0.22 0.69 0.44 0.36 622

s-20-20-50-5-1 578 799 0.00 0.00 0.00 0.28 0.28 0.28 13.32 2.57 5.15 578

s-20-20-100-2-1 1344 1620 0.00 0.00 0.00 0.17 0.17 0.17 1.84 1.03 1.10 1344

s-20-20-100-3-1 1310 1642 0.00 0.00 0.00 0.20 0.20 0.20 8.48 3.31 3.44 1310

s-20-20-100-5-1 1260 1697 0.00 0.00 0.00 0.26 0.26 0.26 153.67 20.92 59.35 1260

s-20-20-100-8-1 1053• 1574 0.00 0.07 0.00 0.33 0.28 0.33 - 235.99 1585.92 1053

p-8-10-10-2-1 31 58 0.00 0.00 0.00 0.47 0.47 0.47 0.01 0.00 0.00 31

p-8-10-10-3-1 28 53 0.00 0.00 0.00 0.47 0.47 0.47 0.01 0.00 0.01 28

p-10-20-20-2-1 136 182 0.00 0.00 0.00 0.25 0.25 0.25 0.01 0.02 0.01 136

p-10-20-20-3-1 125 244 0.00 0.00 0.00 0.49 0.49 0.49 0.04 0.03 0.03 125

p-20-20-50-2-1 345 635 0.00 0.00 0.00 0.46 0.46 0.46 0.19 0.11 0.15 345

p-20-20-50-3-1 341 715 0.00 0.00 0.00 0.52 0.52 0.52 0.73 0.34 0.40 341

p-20-20-50-5-1 327 734 0.00 0.00 0.00 0.55 0.55 0.55 8.89 3.55 5.58 327

p-20-20-100-2-1 730 1309 0.00 0.00 0.00 0.44 0.44 0.44 1.82 2.29 1.38 730

p-20-20-100-3-1 732 1449 0.00 0.00 0.00 0.49 0.49 0.49 8.66 2.84 3.97 732

p-20-20-100-5-1 713 1587 0.00 0.00 0.00 0.55 0.55 0.55 148.87 31.71 55.22 713

p-20-20-100-8-1 690• 1608 0.18 0.18 0.00 0.49 0.49 0.57 - 430.96 1344.88 690

104

Table 7.2: Comparison of implementations IGC1 and IGC2 for calculation of the
improvement graph costs.

Problem size Num Time
m n p q IGC1 IGC2

8 10 10 2 5 0.004 0.002
8 10 10 3 5 0.008 0.002
10 20 20 2 5 0.06 0.004
10 20 20 3 5 0.072 0.004
20 20 50 3 5 1.56 0.044
20 20 50 5 5 1.868 0.066
20 20 100 2 5 8.818 0.168
20 20 100 3 5 10.646 0.22
20 20 100 5 5 12.93 0.306

105

Chapter 8

Conclusion and Future Work.

8.1 Summary of Results

In this work we design algorithms for the q-mode problem using two different ap-

proaches. The first approach is based on MIP formulations for the q-mode problem

which leads to exact algorithms, i.e., algorithms that obtain an optimal solution to

the q-mode problem. The second approach includes the design of a very large scale

neighborhood for the q-mode problem which can be used to develop a heuristic search

algorithm for this problem.

As part of the first approach, we first demonstrate that the binary constraints on

vijl variables in the formulation (IP) can be relaxed to non-negativity restrictions.

We show that the resulting formulation (IPR) can be used to obtain an optimal

solution for the q-mode problem. Next we propose a Benders decomposition for

the formulation (IPR) which can be used to develop an exact algorithm for the q-

mode problem. Further we propose an alternate MIP formulation and also modify

the formulation (IPR) such that the corresponding LP relaxation of the resulting

formulation (IPT) has a potentially larger optimal value.

As part of the second approach, we design a very large scale neighborhood for the

q-mode problem using the concept of cyclic-exchange moves. Further, we use this

106

neighborhood to design three closely related local improvement algorithms for the

q-mode problem.

A computational experiment that we conduct reveals that the LP relaxation of

formulation (IPT) has a higher optimal objective value as compared to the LP relax-

ations of (IPR) and (IPA). Based on this observation we select formulation (IPT)

to optimally solve instances of the q-mode problem using the CPLEX branch and cut

algorithm. The ability to solve large problem instances using MIP formulations of

the q-mode problem via CPLEX is directly related to the quality of the lower bound

obtained from the LP relaxation of the model. The computational experiment that

we perform reveals that the quality of the LP relaxation of the formulation (IPT)

depends on the strength of the clusters present in the problem instance. The opti-

mal value of the LP relaxation has a high value in the case of instances with strong

clusters while the optimal value of the LP relaxation is relatively low for instances

with weak clusters. Using formulation (IPT), the CPLEX branch and cut algorithm

is able to optimally solve reasonably large size problem instances that have strong

natural clusters. On the other hand, the CPLEX branch and cut algorithm is unable

to obtain the optimal solution in smaller problem instances that have weak clusters.

The Benders decomposition for the formulation (IPR) presents an alternative

strategy that can be used to solve the q-mode problem optimally. The computational

experiments reveal that this strategy can be used to obtain an optimal solution for

small size problems. However the algorithms based on Benders decomposition, either

Bopt or BNopt, are ineffective in their present form to solve medium or large size

problem instances. This is primarily due to the fact that we presently solve the

relaxed master problem at each iteration as a general integer programming problem.

We employ the CPLEX branch and cut algorithm for this problem and it is simply

too time consuming. A more computationally effective approach for solving the the

relaxed master problem can lead to significant improvement in the algorithms based

on Benders decomposition.

107

Our computational experiments with the local improvement algorithm that we

propose demonstrate that it can obtain very good quality local optima. The local

improvement algorithm finds optimal or near optimal solutions for problem instances

which have strong clusters. For problem instances with weak clusters, on the average,

the algorithm improves on the best known solutions using significantly less computer

time than the time for which the exact algorithm was run. Since this algorithm takes

less computer time it can be used to solve considerably larger instances, though we

cannot comment on the solution quality for these large instances at this moment.

8.2 Future Research.

In the context of the work presented in this dissertation, we propose the following

subjects for further research.

1. MIP models for the q-mode problem.

To increase the size of the problem instances for which optimal solutions can be

obtained we have to investigate methods by which the size of the branch and cut

tree built by CPLEX can be reduced. This can be achieved by strengthening

the formulation (IPT) by the addition of valid inequalities so that the optimal

value of the LP relaxation is further improved.

2. Algorithms based on Benders decomposition.

(a) To increase the effectiveness of the algorithms based on Benders decom-

position we need to investigate alternative methods for the solution of the

relaxed master problem at every iteration. The special structure of the

relaxed master problem and its close relationship with the clustering con-

cepts discussed throughout this thesis might be employed to devise a more

effective algorithm for solving it. This approach is of course directed at the

possiblity of reducing the computational requirements at each iteration.

108

(b) Another approach is to reduce the total number of iterations required by

the algorithms. The Benders master problem needs to be investigated to

be able to efficiently identify a subset of the constraints of the master

problem (BM). This subset should be such that when we optimally solve

the corresponding relaxed master problem (BMr) (consisting of only these

constraints) then we obtain a lower bound which equals the optimal value.

3. Efficient algorithms for the minimum cost cluster disjoint cycle problem in

graphs.

A significant portion of the computations in the local improvement algorithm

is accounted for by the procedure that finds cluster disjoint cycles in the im-

provement graphs. Thus the effectiveness of the local improvement algorithm

can be improved by employing a more efficient heuristic for finding negative

cost cluster disjoint cycles in graphs instead of using the procedure AS or its

variations.

109

References

[1] Ahuja, R., K., Magnanti, T., L., Orlin, J., B., “Network Flows: Theory Algo-

rithms and Applications.”, Prentice Hall, NJ, USA, 1993.

[2] Ahuja, R., K., Orlin, J., B., Sharma, D., “Very Large-Scale Neighborhood

Search”, Intl. Trans in Oper. Res., Vol. 7, pp 301-317, 2000.

[3] Ahuja, R., K., Orlin, J., B., Sharma, D., “Multi-exchange Neighborhood Struc-

tures for the Capacitated Minimum Spanning Problem.”, Math. Prog., pp 71-

97, 2001.

[4] Ahuja, R. K., Boland, N., Dumitrescu, I., “Exact and heuristic

algorithms for the subset disjoint minimum cost cycle problem”,

http://www.ise.ufl.edu/ahuja/vlsn/Papers/Pap-ABD.pdf, 2001.

[5] Ahuja, R., K., Ergun, O., Orlin J., B., Punnen, A., P., “A survey of very large-

scale neighborhood search techniques”, Disc. App. Math., 123 pp 75-102, 2002.

[6] Desrosiers, J., Dumas, Y., Solomon, M. M., Soumis, F., “Time Constrained

Routing and Scheduling”, Network Routing, HandBooks in Operations Research

and Management Science 8, North Holland, Amsterdam, pp 35-139, 1995.

[7] Ganti, V., Gehrke, J., Ramakrishnan, R., “CACTUS-Clustering Categorical

Data Using Summaries”, Proceedings of the fifth ACM SIGKDD international

conference on knowledge discovery and data mining, San Diego, California, pp

73-83, 1999.

110

[8] Glover, F., “Ejection chains, Reference structures, and alternating path algo-

rithms for the traveling salesman problem”, Disc. App. Math., 65, pp 223-253,

1996.

[9] Guha, S., Rastogi, R., Shim, K., “ROCK: A Robust Clustering Algorithm for

Categorical Attributes”, Info. Sys., Vol 25, pp 345-366, 2000.

[10] Han, J., Kamber, M., “Data Mining: Concepts and Techniques”, Morgan Kauf-

mann, San Francisco, USA, 2001.

[11] Huang, Z., “A Fast Clustering Algorithm to Cluster Very Large Categorical Data

Sets in Data Mining.”, SIGMOD Workshop on Research Issues on Data Mining

and Knowledge Discovery (SIGMOD-DMKD’97), Tucson, Arizona, May 1997.

[12] Jain, A., K., Murty, M., N., Flynn, P., J., “Data Clustering: A Review ”, ACM

Computing Surveys, Vol 31(3), 264-323, 1999.

[13] Kernighan, B., W., Lin, S., “An Efficient Heuristic Procedure for Partitioning

Graphs”, The Bell Systems Technical Journal, Vol 49(2), 291-307, 1970.

[14] Lin, S., Kernighan, B., W., “An Efficient Heuristic Algorithm for the Travelling

Salesman Problem”, Operations Research, Vol 21, 498-516, 1970.

[15] MacQueen, J., B., “Some Methods of Classification and Analysis of Multivariate

Observations”, Proceedings of the 5th Berkeley Symposium on Mathematical

Statistics and Probability, pp 281-297, 1967.

[16] Morgan, S., “Cluster Analysis in Electronic Manufacturing”, PhD Dissertation,

Operations Research Program, NC State University, Raleigh, NC, 2001.

[17] Morgan, S., D., Fathi, Y., Taheri, J., “Algorithms for the Model Configuration

Problem.”, IIE Transactions, Vol 36, pp 169-180, 2004.

[18] Parker, R. G., Rardin, R., L., “Discrete Optimization” Academic Press Inc, 1988.

111

[19] Thomson, P. M., Orlin, J., B., “The Theory of Cyclic Transfers”, Working paper

No. OR 200-89, Operations Research Center, MIT, Cambridge, MA, 1989.

112

Appendix A

Lower Bounds for the q-mode

Problem.

In this appendix, we present a lower bound for the q-mode problem which we shall

refer to as LBF . This lower bound was first introduced by Morgan et al. [16] in

the context of the 2-model problem. In the first section we introduce some notation

and demonstrate the validity of the lower bound. We also theoretically compare LBF

with the lower bound obtained from the LP relaxation of the IP model (IPT). In

particular, we show that v(LPT) ≤ LBF . In the next section we discuss a class

of q-mode problems for which v(LPT) is 0. Finally, after section 2, we present the

results of a computational experiment carried out to compare LBF and v(LPT) on

an empirical basis. We use the randomly generated problem instances described in

chapter 4 for this experiment. We observe that for each of the 50 problem instances

in this experiment v(LPT) = LBF .

113

A.1 An Alternate Lower Bound for the q-mode

Problem.

As defined before, let Fl(i, j) be the number of records in the cluster l that have

value i in position j, and let maxi Fl(i, j) = Fmax
l (j). Similarly, F (i, j) denotes

the number of records in the entire collection Φ that have value i in position j and

maxi F (i, j) = Fmax(j). Thus Fl(i, j) is the frequency of occurance of value i at

position j in all records assigned to cluster l and F (i, j) is the frequency of occurance

of value i at position j among all records in the collection. Further, we denote

the frequency of the eth most frequent value at position j among all records in the

entire collection by Fmaxe(j), for all e = 1 to m, i.e., the frequency of the most

frequently occurring value in Φ is denoted by Fmax1(j), the frequency of the second

most frequently occurring value in Φ is denoted by Fmax2(j), and so on. In the event

that two values have the same frequency we break the tie arbitrarily. It follows from

the definition of Fmaxe(j) that,

m∑
e=1

Fmaxe(j) =
m∑
i=1

F (i, j) = p (A.1)

A solution to the q-mode problem is a partitioning of the given collection of

records, Φ into q clusters Φ1, . . . ,Φq. Assuming q ≤ m it follows that, the sum of

the frequencies of the most frequently occurring values at position j in each of the q

clusters has to be less than or equal to the sum of the q largest frequencies of values

at position j in the entire colection Φ, i.e.,

∑
l

Fmax
l (j) ≤

q∑
e=1

Fmaxe(j) (A.2)

Let us assume that for the given collection of records Φ, y∗ ∈ Y is an optimal

assignment of records to clusters, i.e., ν∗ = miny∈Y v(IPRy) = v(IPRy∗). Here ν∗ is

114

the optimal objective value, while (IPRy) is the IP model obtained by fixing the values

of the ykl variables in model (IPR). Let the cluster assignment given by y∗ partition

the given collection of records into q clusters, Φ∗1, . . . ,Φ
∗
q, i.e., Φ∗1 ∪ . . . ∪ Φ∗q = Φ.

Further, let |Φ∗l | represent the number of records present in cluster l. By definition,

the value at position j in the mode vector corresponding to cluster l is arg maxi Fl(i, j)

and the associated number of replacements corresponding to the position j of cluster

l equals |Φ∗l | − Fmax
l (j). Hence, the optimal objective value, ν∗ = v(IPRy∗), is given

by
∑

j

∑
l (|Φ∗l | − Fmax

l (j)) = np−
∑

j

∑
l F

max
l (j).

From equation A.2 we can see that

ν∗ = np−
∑
j

∑
l

Fmax
l (j) ≥ np−

∑
j

q∑
e=1

Fmaxe(j) (A.3)

i.e., LBF = np −
∑

j

∑q
e=1 F

maxe(j) is a lower bound for ν∗. We now compare

this lower bound with the lower bound v(LPT) that we discussed earlier.

Lemma A.1. The optimal value of the LP relaxation of formulation (IPT) is no

greater than the lower bound LBF , i.e., v(LPT) ≤ LBF .

Proof : We prove this statement assuming that q < m. If q ≥ m this lemma

follows trivially from our discussion in Appendix A.2. The linear programming relax-

ation of the formulation (LPT) is given as

(LPT)



min
∑

j

∑
k

∑
l tjkl

s.t aijkykl − vijl ≤ tjkl ∀ i, j, k, l∑
i vij1 = 1 ∀ j, l∑
l ykl = 1 ∀ k

tjkl, vijl, ykl ≥ 0 ∀ i, k


If we fix each of the ykl variables to be equal to 1

q
, i.e, ykl = 1

q
∀ k, l then we get a

linear programming model that we refer to as (LPT •). Since (LPT •) is obtained by

115

fixing the values of the ykl variables in model (LPT), we have

v(LPT) ≤ v(LPT •) (A.4)

We know that for each value of j and k we have aijk = 1 for exactly one value i

and aijk = 0 otherwise. Let this value assigned to position j in record k be denoted

by ijk. Thus, aijkjk = 1 and aijk = 0 ∀ i 6= ijk. Further the constraint
aijk
q
− vijl ≤ tjkl

is redundant when aijk = 0. Thus we can rewrite LPT • as

(LPT •)


min

∑
j

∑
k

∑
l tjkl

s.t 1
q
− vijkjl ≤ tjkl ∀j, k, l∑
i vijl = 1 ∀ j, l

tjkl, vijl ≥ 0 ∀ i, j, k, l


This problem is separable in index variable j and we obtain a subproblem (LPT •j)

for each value of j.

(LPT •j)


min

∑
k

∑
l tjkl

s.t 1
q
− vijkjl ≤ tjkl ∀k, l∑
i vij1 = 1 l

tjkl, vijl ≥ 0 ∀ i, k, l


Every subproblem (LPT •j) is further separable in index variable l and hence the

problem (LPT •) is separable into nq subproblems, one for each value of j = 1 to n

and l = 1 to q. Each subproblem denoted by (LPT •jl) can be written as

116

(LPT •jl)


min

∑
k tjkl

s.t 1
q
− vijkjl ≤ tjkl ∀k∑
i vijl = 1

tjkl, vijl ≥ 0 ∀ i, k


Thus in its fully separated form (LPT •) can be written as

(LPT •)
∑
j

∑
l


min

∑
k tjkl

s.t 1
q
− vijkjl ≤ tjkl ∀ k∑
i vij1 = 1

tjkl, vijl ≥ 0 ∀ i, k


and, v(LPT •) =

∑
j

∑
l v(LPT •jl).

We can show that all the “≤” constraints in the subproblem (LPT •jl) can be

replaced with “=” constraints without affecting the optimal solution. Let {t∗jkl, v∗ijl} be

an optimal solution for problem (LPT •jl). Also, for some k′, suppose t∗jk′l >
1
q
− v∗ijk′jl.

Let t′jk′l = 1
q
− v∗ijk′jl. It follows that

∑
k

t∗jkl >
∑
k 6=k′

t∗jkl + t′jk′l

It is also true that t′jk′l ≥ 0. Hence, {t∗jk′l, v∗ijl} is not an optimal solution to (LPT •jl).

Hence we can write (LPT •jl) as follows

(LPT •jl)


min

∑
k tjkl

s.t 1
q
− vijkjl = tjkl ∀ k∑
i vij1 = 1

tjkl, vijl ≥ 0 ∀ i, k



117

We can further deduce that 1
q
− vijkjl = tjkl and tjkl ≥ 0 together imply that

min
∑

k tjkl = min
[∑

k (1
q
− vijkjl)

]
and vijl ≤ 1

q
.

Hence, problem (LPT •j) can be further re-written as

(LPT •jl)


min

[∑
k (1

q
− vijkj1)

]
s.t.

∑
i vijl = 1

0 ≤ vijl ≤ 1
q

∀i


Now, min

∑
k (1

q
− vijkjl) = p

q
−max

∑
k vijkjl. Hence (LPT •jl) can be written as

(LPT •jl)


p
q
−max

[∑
k vijkjl

]
s.t.

∑
i vijl = 1

0 ≤ vij1 ≤ 1
q

∀i


We observe that at every feasible solution to problem (LPT •jl) we have

∑
k vijkjl =∑

i F (i, j)vijl. Thus after replacing the objective function the problem (LPT •jl) be-

comes

(LPT •jl)


p
q
−max [

∑
i F (i, j)vijl]

s.t.
∑

i vijl = 1

0 ≤ vij1 ≤ 1
q

∀i



∴ v(LPT •jl) =


p
q
−max(

∑
i F (i, j)vijl)

s.t.
∑

i vijl = 1

0 ≤ vij1 ≤ 1
q

∀i

 =
p

q
−

q∑
e=1

1

q
Fmaxe(i, j) (A.5)

118

From, equation (A.5) we can conclude that

v(LPT •) =
∑
j

∑
l

v(LPT •jl) =
∑
j

∑
l

[
p

q
−

q∑
e=1

1

q
Fmaxe(j)

]

=
∑
j

q

[
p

q
−

q∑
e=1

1

q
Fmaxe(j)

]

=
∑
j

[
p−

q∑
e=1

Fmaxe(j)

]

= np−
∑
j

q∑
e=1

Fmaxe(j) = LBF

(A.6)

Hence from equations (A.4) and (A.6), v(LPT) ≤ v(LPT •) = LBF . �

A.2 Special class of Instances of the q-mode Prob-

lem.

In this section we show that for the q-mode problem, if q ≥ m we have v(LPT) = 0.

We include the formulation (LPT) below for ease of reference.

(LPT)



min
∑

j

∑
k

∑
l tjkl

s.t aijkykl − vijl ≤ tjkl ∀ i, j, k, l∑
i vij1 = 1 ∀ j, l∑
l ykl = 1 ∀ k

tjkl, vijl, ykl ≥ 0 ∀ i, k


Assuming q ≥ m let us consider a solution to (LPT) that is given as ykl = 1

q
, vijl =

1
m
, tjkl = 0 ∀ i, j, k, l. We refer to this solution as S. It is easy to verify that S is a

feasible solution to (LPT) since

119

∑
l

ykl = q · 1

q
= 1 ∀ k (A.7)

∑
i

vijl = m · 1

m
= 1 ∀ j, l (A.8)

and,

since m ≤ q it follows that
1

q
≤ 1

m
∴ ykl ≤ vijl ∀ i, j, k, l

∴ aijkykl ≤ vijl ∀ i, j, k, l

∴ aijkykl − vijl ≤ 0 ∀ i, j, k, l

(A.9)

The objective value of solution S is 0. Hence we can conclude that the optimal

objective value of the LP relaxation of (IPT) equals 0, i.e., v(LPT) = 0, for all

problem instances where q ≥ m.

120

Table A.1: Comparison of LBF and v(LPT): Instances with weak clusters.

type-m-n-p-q-1 v(LBT) LBF

l-8-10-10-2-1 45 45
l-8-10-10-3-1 29 29
l-10-20-20-2-1 246 246
l-10-20-20-3-1 190 190
l-20-20-50-2-1 782 782
l-20-20-50-3-1 686 686
l-20-20-50-5-1 556 556
l-20-20-100-2-1 1621 1621
l-20-20-100-3-1 1471 1471
l-20-20-100-5-1 1215 1215
h-8-10-10-2-1 34 34
h-8-10-10-3-1 25 25
h-10-20-20-2-1 153 153
h-10-20-20-3-1 150 150
h-20-20-50-2-1 463 463
h-20-20-50-3-1 429 429
h-20-20-50-5-1 364 364
h-20-20-100-2-1 916 916
h-20-20-100-3-1 879 879
h-20-20-100-5-1 742 742

121

Table A.2: Comparison of LBF and v(LPT): Instances with strong clusters.

type-m-n-p-q-1 v(LBT) LBF

g-8-10-10-2-1 33 33
g-8-10-10-3-1 20 20
g-10-20-20-2-1 126 126
g-10-20-20-3-1 112 112
g-20-20-50-2-1 494 494
g-20-20-50-3-1 471 471
g-20-20-50-5-1 437 437
g-20-20-100-2-1 984 984
g-20-20-100-3-1 982 982
g-20-20-100-5-1 900 900
s-8-10-10-2-1 50 50
s-8-10-10-3-1 28 28
s-10-20-20-2-1 248 248
s-10-20-20-3-1 188 188
s-20-20-50-2-1 639 639
s-20-20-50-3-1 616 616
s-20-20-50-5-1 573 573
s-20-20-100-2-1 1343 1343
s-20-20-100-3-1 1303 1303
s-20-20-100-5-1 1256 1256
p-8-10-10-2-1 31 31
p-8-10-10-3-1 24 24
p-10-20-20-2-1 136 136
p-10-20-20-3-1 125 125
p-20-20-50-2-1 345 345
p-20-20-50-3-1 341 341
p-20-20-50-5-1 327 327
p-20-20-100-2-1 730 730
p-20-20-100-3-1 732 732
p-20-20-100-5-1 713 713

122

Appendix B

Detailed Computational Results.

123

Table B.1: Comparison of v(LPR), v(LPT) and v(LPA): Instances with weak clus-
ters.

type-m-n-p-q-1 v(LPR) τR v(LPT) τT v(LPA) τA
l-8-10-10-2-1 22.5 0.06 45 0.07 34 0.05
l-8-10-10-3-1 9.67 0.1 29 0.12 0 0.1
l-10-20-20-2-1 123 0.5 246 0.68 223.2 0.33
l-10-20-20-3-1 63.33 1.88 190 2.79 147.3 0.96
l-20-20-50-2-1 391 3.42 782 2.13 761 0.86
l-20-20-50-3-1 228.67 15.7 686 19.86 639 3.65
l-20-20-50-5-1 111.2 61.45 556 93.85 430.25 24.54
l-20-20-100-2-1 810.5 20.94 1621 12.15 1568 1.78
l-20-20-100-3-1 490.33 85.06 1471 28.03 1355 11.32
l-20-20-100-5-1 243 347.64 1215 568.67 1031.25 61.12
h-8-10-10-2-1 17 0.05 34 0.06 22 0.03
h-8-10-10-3-1 8.33 0.11 25 0.13 0 0.09
h-10-20-20-2-1 76.5 0.44 153 0.59 108 0.18
h-10-20-20-3-1 50 1.62 150 2.28 72.1 0.77
h-20-20-50-2-1 231.5 1.95 463 2.58 396 0.62
h-20-20-50-3-1 143 11.1 429 15.09 313 2.79
h-20-20-50-5-1 72.8 49.7 364 78.45 155.5 11.12
h-20-20-100-2-1 458 6.73 916 6.66 833 1.13
h-20-20-100-3-1 293 49.09 879 77.3 695 6.63
h-20-20-100-5-1 148.4 252.99 742 419.46 439 40.77

124

Table B.2: Comparison of v(LPR), v(LPT) and v(LPA): Instances with strong
clusters.

type-m-n-p-q-1 v(LPR) τR v(LPT) τT v(LPA) τA
g-8-10-10-2-1 16.5 0.05 33 0.06 20 0.03
g-8-10-10-3-1 6.67 0.1 20 0.12 0 0.09
g-10-20-20-2-1 63 0.44 126 0.55 92 0.16
g-10-20-20-3-1 37.33 1.34 112 2.02 40.7 0.53
g-20-20-50-2-1 247 3.67 494 4.28 432 0.64
g-20-20-50-3-1 157 13.68 471 18.93 391 2.16
g-20-20-50-5-1 87.4 56.14 437 84.63 265 10.1
g-20-20-100-2-1 492 15.85 984 23.12 916 0.71
g-20-20-100-3-1 327.33 67.38 982 100.78 815 3.47
g-20-20-100-5-1 180 292.09 900 511.62 618 18.69
s-8-10-10-2-1 25 0.06 50 0.07 44 0.05
s-8-10-10-3-1 9.33 0.11 28 0.13 13.25 0.11
s-10-20-20-2-1 124 0.54 248 0.66 223 0.24
s-10-20-20-3-1 62.67 1.75 188 2.48 160 0.73
s-20-20-50-2-1 319.5 3.71 639 4.42 614 0.57
s-20-20-50-3-1 205.33 14.3 616 18.83 565 0.96
s-20-20-50-5-1 114.60 68.98 573 80.86 454 19.03
s-20-20-100-2-1 671.5 20.7 1343 18.79 1304 0.5
s-20-20-100-3-1 434.33 79.1 1303 96.17 1235 2.54
s-20-20-100-5-1 251.2 348.31 1256 571.99 1068.5 88.88
p-8-10-10-2-1 15.5 0.04 31 0.06 22 0.04
p-8-10-10-3-1 8 0.12 24 0.12 7.75 0.08
p-10-20-20-2-1 68 0.42 136 0.67 104 0.11
p-10-20-20-3-1 41.67 1.33 125 2.12 82.2 0.61
p-20-20-50-2-1 172.5 3.14 345 4.62 288 0.39
p-20-20-50-3-1 113.67 11.56 341 19.24 268 1.29
p-20-20-50-5-1 65.4 49.74 327 80.46 145 4.46
p-20-20-100-2-1 365 15.40 730 21.52 662 0.41
p-20-20-100-3-1 244 64.22 732 93.19 572 2.20
p-20-20-100-5-1 142.6 261.36 713 547.52 485 6.44

125

Table B.3: Detailed computational results for the local improvement algorithm :
weakly clustered instances.

type-m-n-p-q-1 V ∗ Vini VLI τLI VLI1 τLI1 VLIα τLIα

l-8-10-10-2-1 55 59 56 0.01 56 0 56 0
l-8-10-10-3-1 45 53 46 0 46 0.01 46 0.01
l-10-20-20-2-1 273 291 279 0.01 279 0.01 273 0.01
l-10-20-20-3-1 251 277 252 0.04 250 0.03 254 0.02
l-20-20-50-2-1 820 850 830 0.1 830 0.15 830 0.11
l-20-20-50-3-1 790 825 785 0.57 781 0.29 775 0.67
l-20-20-50-5-1 757 785 731 7.22 734 1.45 726 6.31
l-20-20-100-2-1 1710 1749 1707 1.03 1702 1.1 1706 0.76
l-20-20-100-3-1 1670 1734 1645 7.27 1651 1.34 1653 2.36
l-20-20-100-5-1 1651 1672 1574 81.2 1569 10.76 1567 85.7
l-20-20-100-8-1 1584 1613 1484 - 1473 177.16 1472 1489.66
h-8-10-10-2-1 41 59 41 0 41 0 41 0
h-8-10-10-3-1 37 47 40 0.01 40 0.01 40 0.01
h-10-20-20-2-1 172 243 172 0.02 172 0.02 172 0.01
h-10-20-20-3-1 195 253 195 0.04 195 0.04 195 0.04
h-20-20-50-2-1 494 690 494 0.18 494 0.25 494 0.18
h-20-20-50-3-1 491 710 491 0.77 491 0.48 491 0.33
h-20-20-50-5-1 486 737 486 9.68 486 2.12 486 4.08
h-20-20-100-2-1 968 1384 968 1.72 968 1.74 968 1.23
h-20-20-100-3-1 984 1502 984 8.85 984 3.29 984 5.46
h-20-20-100-5-1 945 1566 945 143.13 945 22.79 945 74.86
h-20-20-100-8-1 943 1577 943 - 943 334.09 943 1747.57

126

Table B.4: Detailed computational results for the local improvement algorithm :
strongly clustered instances.

type-m-n-p-q-1 V ∗ Vini VLI τLI VLI1 τLI1 VLIα τLIα

g-8-10-10-2-1 40 56 40 0.01 40 0.01 40 0
g-8-10-10-3-1 26 53 26 0.01 26 0.01 26 0
g-10-20-20-2-1 127 242 127 0.01 127 0.01 127 0.02
g-10-20-20-3-1 121 253 121 0.04 121 0.02 121 0.03
g-20-20-50-2-1 494 690 494 0.16 494 0.23 494 0.16
g-20-20-50-3-1 475 755 475 0.78 475 0.3 475 0.31
g-20-20-50-5-1 464 765 464 11.56 464 1.26 464 3.73
g-20-20-100-2-1 984 1440 984 1.78 984 1.91 984 1.31
g-20-20-100-3-1 991 1541 991 8.55 991 2.55 991 3.33
g-20-20-100-5-1 973 1613 973 150.44 973 38.14 973 79.12
g-20-20-100-8-1 964 1566 964 - 964 366.62 964 1124.11
s-8-10-10-2-1 50 68 50 0.01 50 0 50 0.01
s-8-10-10-3-1 28 54 28 0.01 28 0.01 28 0.01
s-10-20-20-2-1 251 298 251 0.01 251 0.02 251 0.01
s-10-20-20-3-1 193 288 193 0.04 193 0.04 193 0.04
s-20-20-50-2-1 641 787 641 0.19 641 0.18 641 0.15
s-20-20-50-3-1 622 797 622 0.69 622 0.44 622 0.36
s-20-20-50-5-1 578 799 578 13.32 578 2.57 578 5.15
s-20-20-100-2-1 1344 1620 1344 1.84 1344 1.03 1344 1.1
s-20-20-100-3-1 1310 1642 1310 8.48 1310 3.31 1310 3.44
s-20-20-100-5-1 1260 1697 1260 153.67 1260 20.92 1260 59.35
s-20-20-100-8-1 1053 1574 1053 - 1127 235.99 1053 1585.92
p-8-10-10-2-1 31 58 31 0.01 31 0 31 0
p-8-10-10-3-1 28 53 28 0.01 28 0 28 0.01
p-10-20-20-2-1 136 182 136 0.01 136 0.02 136 0.01
p-10-20-20-3-1 125 244 125 0.04 125 0.03 125 0.03
p-20-20-50-2-1 345 635 345 0.19 345 0.11 345 0.15
p-20-20-50-3-1 341 715 341 0.73 341 0.34 341 0.4
p-20-20-50-5-1 327 734 327 8.89 327 3.55 327 5.58
p-20-20-100-2-1 730 1309 730 1.82 730 2.29 730 1.38
p-20-20-100-3-1 732 1449 732 8.66 732 2.84 732 3.97
p-20-20-100-5-1 713 1587 713 148.87 713 31.71 713 55.22
p-20-20-100-8-1 690 1608 813 - 813 430.96 690 1344.88

127

Appendix C

File Format: Instance of the

q-mode problem.

Line 1:
paramters

The first line contains the values of the paramaters m, n, p and
q in this sequence. Each parameter value is separated by a single
space.

Lines 2 to (p+1):
The records

Each line contains one record, i.e., each line contains n numbers
each number separated by a single space. The jth number in the
(k + 1)th line is the value assigned to position j of record k.

Line (p+ 2) contains either 0 or -1.

Line (p+ 2)
contains 0

The next q lines contain the q mode vectors corresponding to
a solution, i.e., there are q more lines and each line contains n
numbers separated by a single space.

Line (p+ 2)
contains -1

The next p lines contain a cluster assignment of records to clus-
ters, i.e., there are p more lines, each line containing two num-
bers separated by a single space. The first number identifies
the record and the second number identifies the cluster to which
that record is assigned.

128

Appendix D

C++ program: Random

Generation of q-mode Instances.

129

/* This program generates data for the q−model problem
 The paramaters that need t be supplied are
 1. p −> number of records.
 2. q −> number of clusters.
 3. n −> number of attributes for each record.
 4. m −> number of values for each attribute.
 5. type −> type of pmf to be used.
 6. ns −> number of pmfs in the pmf_set.

*/

#define debug 1

#include " genData.h"

// begin main program
int main(int argc, char * argv[])
{

int n,m,p,q,ns,type; //parameter variables
int i,j,k,l;
int temp;

/*
Check for the command line input if correct number
of parameters are entered then store them in the appropriate
variables else prompt user for input.

*/

if (argc != 7)
{

cout<<" Incorrect number of parameters. USAGE is: \n";
cout<<" >> "<<argv[0]<<" m n p q ns type \n";
return 0;

}
else
{

m = atoi(argv[1]);
n = atoi(argv[2]);
p = atoi(argv[3]);
q = atoi(argv[4]);
ns = atoi(argv[5]);
type = atoi(argv[6]);
//n = atoi(argv[1]);
#if debug ==1

cout<<m<<" "<<n<<" "<<p<<" "<<q<<" "<<ns<<" "<<type;
#endif

}

/*
Allocate memory to all variables
1. permutation(ns,m)
2. pmf_set(ns,m)
3. cpf_set(ns,m)
4. record_set(p,n)
5. prob_values(m)
6. profile(q,n)

*/

int **permutation;
int **record_set;
int **final_record;
float *prob_values;
float **pmf_set;
float **cpf_set;
int **profile;
int *clustAssign;
int *finalClustAssign;

char *pmfname;

May 05, 05 19:43 Page 1/11genData.cpp

permutation = new int *[ns+1];
for (l=1;l<=ns;l++)
{

permutation[l] = new int [m+1];
for (i=1;i<=m;i++)
{

permutation[l][i] =0;
}

}

pmf_set = new float *[ns+1];
for (l=1;l<=ns;l++)
{

pmf_set[l] = new float [m+1];
for (i=1;i<=m;i++)
{

pmf_set[l][i] =0;
}

}

cpf_set = new float *[ns+1];
for (l=1;l<=ns;l++)
{

cpf_set[l] = new float [m+1];
for (i=1;i<=m;i++)
{

cpf_set[l][i] =0;
}

}

record_set = new int *[p+1];
for (k=1;k<=p;k++)
{

record_set[k] = new int [n+1];
for (j=1;j<=n;j++)
{

record_set[k][j]=0;
}

}

final_record = new int *[p+1];
for (k=1;k<=p;k++)
{

final_record[k] = new int [n+1];
for (j=1;j<=n;j++)
{

final_record[k][j]=0;
}

}

prob_values = new float [m+1];
for (i=1;i<=m;i++)
{

prob_values[i] = 0;
}

profile = new int *[q+1];
for (k=1;k<=q;k++)
{

profile[k] = new int [n+1];
for (j=1;j<=n;j++)
{

profile[k][j]=0;
}

}

clustAssign = new int [p+1];
for (k=1;k<=p;k++)
{

clustAssign[k] = 0;
}

May 05, 05 19:43 Page 2/11genData.cpp

130

finalClustAssign = new int [p+1];
for (k=1;k<=p;k++)
{

finalClustAssign[k] = 0;
}

/* Assign the probability values based on the type selected
type name function
1 −> uniform
2 −> linear setLinearProb(m,r, prob_values)
3 −> manyStep
4 −> oneStep
5 −> partLinear
6 −> oneLarge
7 −> oneHuge
8 −> onlyOne
9 −> geometric

*/

int r;

switch (type)
{

case 1 :
cout<<" case Uniform\n";
pmfname = " Uniform";
setUniformProb(m,prob_values);
createLinearCpfset(m, ns, pmf_set, cpf_set, prob_values);
break ;

case 2 :
cout<<" case Linear\n";
pmfname = " Linear";
cout<<" Input r\n";
cin>>r;
setLinearProb(m,r, prob_values);
createLinearCpfset(m, ns, pmf_set, cpf_set, prob_values);
break ;

case 3:
cout<<" case manyStep\n";
pmfname = " manyStep";
cout<<" Input r\n";
cin>>r;
//setmanyStepProb(m,r, prob_values);
createLinearCpfset(m, ns, pmf_set, cpf_set, prob_values);
break ;

case 4 :
cout<<" case oneStep\n";
pmfname = " oneStep";
//cout<<"Input r\n";
//cin>>r;
k = 3;
setoneStepProb(m,k, prob_values);
createLinearCpfset(m, ns, pmf_set, cpf_set, prob_values);
break ;

case 5 :
cout<<" case partLinear\n";
pmfname = " partLinear";
cout<<" Input r\n";
cin>>r;
setpartLinearProb(m,3, r, prob_values);
createLinearCpfset(m, ns, pmf_set, cpf_set, prob_values);
break ;

case 6 :
cout<<" case oneLarge\n";
pmfname = " oneLarge";
cout<<" Input r\n";
cin>>r;
//setoneLargeProb(m,r, prob_values);
createLinearCpfset(m, ns, pmf_set, cpf_set, prob_values);
break ;

May 05, 05 19:43 Page 3/11genData.cpp
case 7 :

cout<<" case oneHuge\n";
pmfname = " oneHuge";
cout<<" Input r\n";
cin>>r;
setoneHugeProb(m,r, prob_values);
createLinearCpfset(m, ns, pmf_set, cpf_set, prob_values);
break ;

case 8 :
cout<<" case onlyOne\n";
pmfname = " onlyOne";
cout<<" Input r\n";
cin>>r;
//setonlyOneProb(m,r, prob_values);
createLinearCpfset(m, ns, pmf_set, cpf_set, prob_values);
break ;

case 9 :
cout<<" case Geometric\n";
pmfname = " Geometric";
cout<<" Input r\n";
cin>>r;
setGeoProb(m,r, prob_values);
createLinearCpfset(m, ns, pmf_set, cpf_set, prob_values);

}

createRecordset(n,p,m,q, ns, record_set, cpf_set,profile);

#if debug == 1
cout<<" \nPrinting out the pmf to be used \n[";
for (i=1;i<=m;i++)
{

cout<<prob_values[i]<<" ";
}
cout<<"]\n";

cout<<" Printing out the cpf set to be used to create the "<<ns<<" clusters";
for (l=1;l<=ns;l++) // for each pmf
{

cout<<endl;
for (i=1;i<=m;i++)
{

cout<<cpf_set[l][i]<<" ";
}

}
cout<<endl;

#endif

/* print out the profiles
cout<<"The profiles are \n"<<endl;
for(l=1;l<=q;l++)
{

for(j=1;j<=n;j++)
{

cout<<profile[l][j]<<" ";
}
cout<<endl;

}

// print out the most likely largest occurring value
cout<<endl;
cout<<"The most likely models are\n";
for(l=1;l<=q;l++)
{

for(j=1;j<=n;j++)
{

temp = profile[l][j];
cout<<(temp−1)*floor(m/ns) +1<<" ";

}
cout<<endl;

May 05, 05 19:43 Page 4/11genData.cpp

131

}*/
//predicted optimal solution
int rpc = int (p/q);
for (l=1;l<=q;l++)
{

for (temp=1;temp<=rpc;temp++)
{

clustAssign[((l−1)*rpc+temp)]=l;
}

}
for (temp=q*rpc+1;temp<=p;temp++)
{

clustAssign[temp]=q;
}

//reordering the record set
int *recordflag = new int [p+1];
for (k=0;k<=p;k++)
{

recordflag[k] =1;
}

int i_in;
int temprnd=0;
int k1,k2;
for (k=p;k>=1;k−−)
{

//select a random number between 1 and k
srand48(k*type);
temprnd = int (k*drand48())+1;
cout<<k<<" "<<(temprnd = int (k*drand48()) +1)<<endl;
k1=0;
k2=1;
//cin>>i_in;
while (k2 <= p)
{

if (recordflag[k2]==1)
{

k1++;
if (k1==temprnd)
{

break ;
}

}
k2++;

}
//k2=k2−1;
recordflag[k2]=0;

//assign record number k to k2 position
for (j=1;j<=n;j++)
{

final_record[k2][j] = record_set[k][j];
}
finalClustAssign[k2] = clustAssign[k];

}

//cin>>i_in;

// create filename
char * file = new char [100];

sprintf(file," %s%s%i%s%i%s%i%s%i%s%i%s",pmfname," _",m," _",n," _",p," _"
 ,q," _",1," .data");

//open file
ofstream out(file);
if (!out)
{

cout<<" Error writing to file"<<file<<endl;
return 1;

}

May 05, 05 19:43 Page 5/11genData.cpp

#if debug == 1
cout<<m<<" "<<n<<" "<<p<<" "<<q<<endl;
for (k=1;k<=p;k++)
{

for (j=1;j<=n;j++)
{

cout<<final_record[k][j]<<" ";
}
cout<<endl;

}
cout<<" −1\n";
for (k=1;k<=p;k++)
{

cout<<k<<" "<<finalClustAssign[k]<<endl;
}

#endif

out<<m<<" "<<n<<" "<<p<<" "<<q<<endl;
for (k=1;k<=p;k++)
{

for (j=1;j<=n;j++)
{

out<<final_record[k][j]<<" ";
}
out<<endl;

}
out<<" −1\n";
for (k=1;k<p;k++)
{

out<<k<<" "<<finalClustAssign[k]<<endl;
}
out<<k<<" "<<finalClustAssign[k];
out.close();

//calcModelProb(m,n,p,q,pmf_set);

/* Calculate permutation based on type */

/* Calculate pmf_set based on permutation and prob_values */

/* Calculate cpf_set based on pmf_set */

/* Create records based on cpf_set */
}

//This functions creates the standard form of the Linear pmf

void setUniformProb(int m, float *prob)
{

int i;
float em = m;
float b = 1/em;
for (i=1;i<=m;i++)
{

prob[i] = b;

}
}

//This functions creates the standard form of the Linear pmf

void setLinearProb(int m, int r, float *prob)
{

float a,b;

b= float (m*(r+1));
b = 2/b;

May 05, 05 19:43 Page 6/11genData.cpp

132

#if debug == 1
cout<<" m ="<<m<<" r ="<<r<<" b = "<<b<<endl;

#endif

int i;
for (i=m−1;i>=0;i−−)
{

prob[m−i] = b + (float)(i*(r−1)*b)/(m−1);

}
}

//This functions creates the standard form of the Geometric pmf
void setGeoProb(int m, int r, float *prob)
{

int i;
double rm=1;
float a,b;

for (i=1;i<=m;i++)
{

rm = rm*r;
#if debug == 1

cout<<" rm ="<<rm<<" i="<<i<<endl;
#endif

}

#if debug == 1
cout<<" rm ="<<rm<<" r="<<r<<endl;

#endif

b = float (r−1)/ float (rm−1);

#if debug == 1
cout<<" m ="<<m<<" r ="<<r<<" b = "<<b<<endl;

#endif

prob[m]=b;
for (i=m−1;i>=1;i−−)
{

#if debug == 1
cout<<prob[i+1];

#endif

prob[i] = r*prob[i+1];

}

#if debug == 1
cout<<prob[i+1];

#endif
}

//This functions creates the standard form of the partLinear pmf
void setpartLinearProb(int m, int k, int r, float *prob)
{

float a,b;

b = float (k*(r+1));
b = 2/b;

#if debug == 1
cout<<" k ="<<k<<" r ="<<r<<" b = "<<b<<endl;

#endif

int i;

for (i=1;i<=m;i++)

May 05, 05 19:43 Page 7/11genData.cpp
{

prob[i]=0;
}

for (i=1;i<=k;i++)
{

prob[i] = b + float (((k−i)*(r−1)*b)/(k−1));
}

/*for(i=1;i<=m;i++)
{

cout<<prob[i]<<" ";
}
cout<<endl;*/

}

//This functions creates the standard form of the oneStep pmf
void setoneStepProb(int m, int k, float *prob)
{

int i;
float kay=k;
#if debug == 1

cout<<" m ="<<m<<" k ="<<k<<endl;
#endif

for (i=1;i<=m;i++)
{

prob[i] =0;
}

for (i=1;i<=k;i++)
{

prob[i] = 1/kay;

}
}

//This functions creates the standard form of the oneHuge pmf
void setoneHugeProb(int m, int r, float *prob)
{

int i;
float em=m;
float er=r;

#if debug == 1
cout<<" m ="<<m<<" r ="<<r<<endl;

#endif

prob[1]=er/(er+em−1);
cout<<prob[1]<<endl;
for (i=2;i<=m;i++)
{

prob[i] = 1/(er+em−1);
cout<<prob[i];

}

}

/* This function creates "ns" different pmfs.
This scheme for creating pmfs can be used only if ns<=m.
All the pmfs are of the same pmf type.

*/
void createLinearCpfset(int m, int ns, float **pmfset, float ** cpfset, float *p
rob)
 {
 int l,i;

int start =0;
int f = m/ns;

May 05, 05 19:43 Page 8/11genData.cpp

133

 // create ns different pmfs
for (l=1;l<=ns;l++) // for each pmf
{

start = (l−1)*f +1;
for (i=1;i<=m;i++)
{

if (start != m+1)
{

pmfset[l][start] = prob[i];
start++;

}
else
{

pmfset[l][1] = prob[i];
start =2;

}

}
}

// use the pmfs to create "ns" different cpfs
for (l=1;l<=ns;l++) // for each pmf
{

cpfset[l][1] = pmfset[l][1];
for (i=2;i<=m;i++)
{

cpfset[l][i] = pmfset[l][i] + cpfset[l][i−1];
}

}

 }

void createRecordset(int n, int p, int m, int q, int ns, int **recordset, float **c
pfset, int **profile)
{

int *pmf_no;
int randInt;
int temp, i,j,l,l2;
int rpc= (int) (p/q); /*records per cluster. The last cluster has an

additional p%q records */
int temprpc;
int pmfSelected;
int attrib;

float randFloat;

#if debug ==1
cout<<" rpc = "<<rpc;

#endif

pmf_no = new int [m+1];
for (i=1;i<=m;i++)
{

pmf_no[i]=1;
}

for (j=1;j<=n;j++) // for each attibute j
{

for (l2=1;l2<=ns;l2++)
{

pmf_no[l2] =1;
}

for (l=1;l<=q;l++)
{

#if debug ==1
cout<<" \nl = "<<l<<" j= "<<j<<endl;

#endif
// randomly selecting one pmf from the pmf set
randInt = (int) ((ns−l+1)*drand48()) +1;

May 05, 05 19:43 Page 9/11genData.cpp
#if debug ==1

cout<<" randInt = "<<randInt;
#endif
temp=0;
pmfSelected=0;

/* identify the pmf that has number "randInt"
 in the pmf_set that remains */
for (l2=1;l2<=ns;l2++)
{

if (pmf_no[l2] ==1)
{

temp++;
if (temp == randInt)
{

pmf_no[l2]=0;
pmfSelected= l2;
#if debug ==1

cout<<" pmfSelected ="<<pmfSelected<<endl;
#endif
profile[l][j] = pmfSelected;
break ;

}
}

} //end for l2

/* assign values to the jth attibute of
 records in the lth cluster using pmf pmfSelected */

for (temprpc=1;temprpc<=rpc;temprpc++)
{

randFloat = drand48();
#if debug ==1

//cout<<"randFloat="<<randFloat<<endl;
#endif
for (i=1;i<=m;i++)
{

if (randFloat<cpfset[pmfSelected][i])
{

attrib = ((l−1)*rpc+temprpc);
#if debug ==1

cout<<" attrib = "<<attrib<<" l= "<<l<<" rpc= "<<rpc<<" temprpc = "<<temprpc<
<endl;

#endif
recordset[attrib][j] = i;
#if debug ==1

cout<<i<<" ";
#endif
break ;

}
}

} // end for temprpc

} //end for l

for (temprpc=rpc*q+1;temprpc<=p;temprpc++)
{

randFloat = drand48();
for (i=1;i<=m;i++)
{

if (randFloat<cpfset[pmfSelected][i])
{

recordset[temprpc][j] = i;
break ;

}
}

} //end for temprpc

May 05, 05 19:43 Page 10/11genData.cpp

134

} //end for j

} // end function

long NchooseR(int n, int r)
{

int i;
long num=1;
long denom=1;

if (r< int (n/2))
{

r = n−r;
}

for (i=1;i<=n−r;i++)
{

num = (num* long (n−i+1))/ long (i);
}

//num = num/denom;

return num;
}

double power(double r, int n)
{

double pow=1;
int i;

for (i=1;i<=n;i++)
{

pow = pow*r;
}
return pow;

}

int power(int r, int n)
{

int pow=1;
int i;

for (i=1;i<=n;i++)
{

pow = pow*r;
}
return pow;

}

May 05, 05 19:43 Page 11/11genData.cpp

135

Appendix E

C++ Program: Reading a q-mode

Instance from File.

136

void dataset::readinData(char *filename)
{

int i,j,k,l;

// variables related to reading data file
char *line;
char *tempch;
char *file;
int tempi;
int tempr;
int i_in; // temp variable for read
int iLineNo; // number of the line being read −1;
int iPos; // position being read for an order
int ifirstline; // check if first line has been read
int recordNo;

#if debug == 1
cout<<" *** Inside function dataset::readinData ***";

#endif

line = new char [2000];
tempch = new char [4];
file = new char [1000];
file = filename;
// obtain data from file

/* Data file has format
 M N P Q <− first line
 one order per line */

#if debug ==1
cout<<" Opening file "<<file<<endl;

#endif

ifstream filestr(file); //input file stream

if (!filestr.is_open())
{

cout<<" Could not open file :"<<endl;
exit;

}

// Read parameters M N P Q from first line
if (!filestr.getline(line,2000).eof())
{

#if Debug == 1
cout<<" Line is : "<<line<<endl;

#endif

//reading M
tempch = strtok(line," ");
M = atoi(tempch);
#if Debug == 1

cout<<M<<endl;
#endif

//reading N
tempch = strtok(NULL," ");
N = atoi(tempch);
#if Debug == 1

cout<<N<<endl;
#endif

//reading P
tempch = strtok(NULL," ");
P = atoi(tempch);
#if Debug == 1

cout<<P<<endl;
#endif

May 05, 05 19:48 Page 1/4readDatafile.cpp
//reading Q
tempch = strtok(NULL," ");
Q = atoi(tempch);
#if Debug == 1

cout<<Q<<endl;
#endif

}
else
{

cout<<" ERROR in the input file\n";
exit;

}

//allocating memory to the variables

try
{

record = new int *[P+1];
for (k=1;k<=P;k++)
{

record[k] = new int [N+1];
for (j=1;j<=N;j++)
{

record[k][j]=0;
}

}

model = new int *[Q+1];
for (l=1;l<=Q;l++)
{

model[l] = new int [N+1];
for (j=1;j<=N;j++)
{

model[l][j]=0;
}

}

clustAssign = new int [P+1];
for (k=1;k<=P;k++)
{

clustAssign[k]=0;
}

#if debug == 1
cout <<" Memory allocation completed\n";

#endif

}
catch (bad_alloc mem_exp)
{

cout<<" Memory Allocation failure \n";
exit;

}

// Read the data file for order data

iLineNo = 1;
int modelData =0;
int clustAssFlag =0;
int tempint=0;
while (!filestr.getline(line,2000).eof())
{

#if Debug == 1
cout<<" Line is : "<<line<<endl;

#endif

tempch = strtok(line," ");
if (atoi(tempch) ==0)
{

May 05, 05 19:48 Page 2/4readDatafile.cpp

137

modelData=1;
break ;

}
else if (atoi(tempch) <0)
{

clustAssFlag=1;
break ;

}
else
{

record[iLineNo][1] = atoi(tempch);

#if Debug == 1
cout<<endl<<record[iLineNo][1]<<" ";

#endif

iPos = 2;
while (iPos<=N)
{

tempch = strtok(NULL," ");
record[iLineNo][iPos] = atoi(tempch);
#if Debug == 1

cout<<record[iLineNo][iPos]<<" ";
#endif
iPos++;

}

iLineNo++;
}

}

// This reads in model data
if (modelData==1)
{

iLineNo=1;
while (!filestr.getline(line,2000).eof())
{

#if Debug == 1
cout<<" Line is : "<<line<<endl;

#endif

tempch = strtok(line," ");
model[iLineNo][1] = atoi(tempch);

#if Debug == 1
cout<<endl<<model[iLineNo][1]<<" ";

#endif

iPos = 2;
while (iPos<=N)
{

tempch = strtok(NULL," ");
model[iLineNo][iPos] = atoi(tempch);
#if Debug == 1

cout<<model[iLineNo][iPos]<<" ";
#endif
iPos++;

}
iLineNo++;

}

}

//This reads cluster assignment data
if (clustAssFlag==1)
{

iLineNo=1;
while (!filestr.getline(line,2000).eof())
{

#if Debug == 1
cout<<" Line is : "<<line<<endl;

May 05, 05 19:48 Page 3/4readDatafile.cpp
#endif

tempch = strtok(line," ");
recordNo = atoi(tempch);
#if Debug == 1

cout<<endl<<recordNo<<" ";
#endif

tempch = strtok(NULL," ");
clustAssign[recordNo] = atoi(tempch);
#if Debug == 1

cout<<clustAssign[recordNo];
#endif

iLineNo++;

}

#if Debug == 1
cout<<" ,Initial solution is "<< this −>create_model(record,clustAssign,

 M,N,P,Q)<<endl;
#endif

}

filestr.close();

#if debug == 1
cout<<" file "<<file<<" closed\n *** End of function dataset::readinData ***\n";

#endif

// delete[] line;
// delete[] tempch;
// delete[] file;

}

May 05, 05 19:48 Page 4/4readDatafile.cpp

138

