
ABSTRACT

CHEN, DONGFENG. Information Integration: The Semantic-Model Approach. (Under
the direction of Professor Rada Chirkova and Professor Fereidoon Sadri).

This dissertation describes a multiple-coordinator system for large-scale informa-

tion integration and interoperability, presents algorithms for query processing and opti-

mization based on semantic-model approach, and experimentally evaluates the algorithms

on real-life and synthetic data. In addition to supporting gradual large-scale information

integration and efficient inter-source processing, the semantic-model approach eliminates

the need for mediation in deriving the global schema, thus addressing the main limitation

of information-integration systems.

This dissertation focuses on performance-related characteristics of several alterna-

tive approaches proposed for efficient query processing in the semantic-model environment.

The theoretical results and practical algorithms are of independent interest and can be

used in any information-integration system that avoids loading all the data into a single

repository.

Query-processing approaches proposed in this dissertation are applicable both to

the original stored data and to materialized views, including restructured views, which

are a framework for representing, e.g., the pivot operation available in many database-

management systems. These approaches account for the practical issues of information

overlap across data sources and of inter-source processing. While most of these algorithms

are platform- and implementation-independent, XML-specific optimization techniques that

allow for system-level tuning of query-processing performance are proposed as well. Finally,

using real-life datasets and the implementation of an information-integration system shell,

this dissertation provides experimental results that demonstrate that these algorithms are

efficient and competitive in the information-integration setting.
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Chapter 1

Introduction

In this chapter, we discuss the problem of information integration and previous

works related to information integration (Section 1.1). We also outline our contributions to

information integration and interoperability in Section 1.2 and present the structure of this

dissertation in Section 1.3.

1.1 Information Integration

The need for decentralized data sharing arises naturally in a wide range of applica-

tions, including enterprise data management, scientific projects undertaken across univer-

sities or research labs, data sharing among governmental databases, and the World-Wide

Web. The recent advent of XML as a standard for online data interchange holds much

promise toward promoting interoperability and data integration. In addition the focus of

information integration has shifted from small-scale integration to providing integration and

interoperability among a large number of independent and autonomous information sources.

Historically, research and practice in data sharing have focused on information-integration

systems, which query distributed shared data through a single central point with a fixed

mediated schema [69].

Information-integration projects have been a research and commercial success for

applications requiring integration of relatively few data sources. At the same time, the

need for the mediated schema is a major bottleneck in developing data-sharing products for

many real-life applications [65]. Peer data-management systems (PDMS) (e.g., see [34] and

references therein) address this limitation by eliminating the need for a mediated schema
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altogether. In PDMS, each (physical) peer uses its own schema of its stored data and

typically interacts with one or more other peers using agreed-on local mappings between

the respective schemas. This framework makes it easy for a peer to join or leave the peer

system at any point in time (more details in Chapter 2).

PDMS mechanisms for querying the shared data must take into account composi-

tions of the peer-to-peer mappings, which may lead to unsatisfactory query-processing costs

in large-scale systems. In addition, in many practical applications — such as banking, large-

scale collaboration among scientific projects undertaken across universities or research labs,

data sharing among governmental databases and agencies, and medical information systems

— several information sources may store fragments of the same kind of data (conceptually,

of the same logical relation), such as information about employees or user accounts in in-

dividual bank branches. Coupled with the need for evaluating queries that involve joins of

data stored in more than one data source (inter-source processing), such data configurations

present a further complication in query processing in peer-to-peer systems.

In this dissertation we address these and other query-processing challenges in large-

scale data-sharing systems, by developing algorithms for query evaluation and optimization

in our semantic-model approach to information integration and interoperability. In the

semantic-model (SM) approach, introduced in [46], information at each source is viewed

as a collection of (logical) binary relations, which we call the semantic-model view. These

relations are basically a decomposition of the information into its “atomic components”.

(For practical simplicity, we allow views that combine binary relations with the same key

into a single relation.) The SM approach is consistent with approaches based on ontological

modeling [55] in the Semantic-Web initiative, where applications are modeled by the relevant

concepts and their properties (basically, by binary relationships), and the semantic-model

view for a given source can be designed using an available ontology. To include a source in

the integration effort, the source’s owner provides mappings from the source’s data to the

SM view. A source can participate by providing mapping for as few as a single relation, and

add more mappings if desired at will. Hence the system supports gradual (pay-as-you-go)

integration, where new sources can join incrementally and with small overhead.
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1.2 Contributions

In general, there could be a number of ways to process user queries, with widely dif-

ferent performances. No single query-processing strategy would be optimum for all queries

and cases. Rather, an intelligent query-optimization approach would be to be able to choose

from a number of alternatives. In this dissertation we focus on the problem of efficiency

of query evaluation in information-integration systems, with the objective of developing

query-processing strategies that are widely applicable and easy to implement in real-life

applications. In our algorithms we take into account the following important features of

today’s data-sharing applications:

• XML as representation for data sources: The recent advent of XML as a standard for

online data interchange (and perhaps even for data storage, see, e.g.,the datasets of [19,

63]) holds much promise toward promoting interoperability and data integration.

• Overlapping information in data sources: In many practical applications (e.g., banking

or medical information systems) data sources may overlap on the data they store, such

as information about user accounts in individual bank branches.

• Inter-source processing: Some applications (e.g., banking or data sharing among gov-

ernmental agencies) require evaluation of queries that involve joins of data stored

across data sources.

While our theoretical results and most of our proposed techniques are implementation-

neutral and thus applicable in a variety of settings for information-integration systems, we

are also introducing platform-specific approaches (such as our semantic optimization,1 see

Section 4.5) that allow for system-level tuning of query-processing performance.

To compare and rate the proposed approaches, we have obtained experimental

results using our information-integration system shell [70] that incorporates an implemen-

tation of all the algorithms and optimizations proposed in this paper. This software system

enables interaction between (i) data sources that store data using the XML data model,

and (ii) relational mediators whose schemas conform to the Semantic Model. To include a

data source in the integration effort, the source owner provides mappings from the source

data to the semantic-model view. The semantic-model approach is consistent with recent

work on large-scale information integration [27, 50], as well as with approaches based on
1Our proposed semantic-optimization techniques are also more widely applicable to general XQuery

optimization.
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ontological modeling [55] in the Semantic-Web initiative. For methods for building source-

to-mediator mappings in this setting, we refer the reader to [22, 23, 60] and to references

therein. Our system can also serve as a building block in a three-tiered architecture [70]

for information integration. The purpose of the architecture is to decouple query process-

ing and optimization into “intra-coordinator processing” and “inter-coordinator processing”

(conceptually analogous to query processing in peer-to-peer systems), thus keeping the op-

timization choices relatively local and improving the overall query-processing performance

of the system.

Our specific contributions are as follows:

• We propose query-processing algorithms for information integration; the algorithms

do not involve building source-to-mediator mappings but they do need the mappings,

and are platform- and implementation-independent. To the best of our knowledge,

our methods are the first that account for information overlap and for inter-source

processing.

• We present theoretical results that allow for further reduction of inter-source process-

ing by using information about integrity constraints in the data sources.

• We develop a suite of algorithms for efficient query processing in presence of material-

ized restructured views [10] (as exemplified by, e.g., operation unfold, or pivot [48]); the

algorithms are applicable to views materialized in both mediators and data sources.

• We propose XML-specific optimization techniques that allow for system-level tuning

of query-processing performance.

• Using real-life datasets and our implementation of an information-integration system

shell [70], we report experimental results that demonstrate that our algorithms are

efficient and competitive.

1.3 Structure of the Dissertation

The thesis is organized as follows: In Chapter 2, we give a survey on the re-

lated work including semantic web, mediated schema, and peer data management systems

(PDMS). Chapter 3 - Chapter 5 provide the Semantic-Model approach and discuss efficiency
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issues and optimization opportunities. Chapter 6 introduces the preliminaries of restruc-

tured views and our experiments on restructured views in a single database management

system. We also describe query optimization using restructured views in the distributed

systems in Chapter 7, and conclude our work and discuss future directions in Chapter 8.
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Chapter 2

Related Work

There has been an increased interest in information integration and interoperability

and its applications in recent years. The degree of research activities and publications in

information integration and related areas, such as schema matching, model management,

and information exchange, have also increased substantially. In this chapter, we first review

ontological modeling and semantic web tools (Section 2.1) which are used to implement data

integration systems, and then a classic system with a fixed mediated schema (Section 2.2).

We discuss Peer Data Management Systems (PDMS) and its revelent projects in Section 2.3.

In the rest of this section we examine interoperability on XML data in Section 2.4.

2.1 Semantic Web

There has been a revitalization of ontological modeling as a result of the W3C

Semantic Web initiative [62]. Some information integration systems have been proposed and

implemented using ontological modeling concepts. For example, the ICS-FORTH Semantic

Web Integration Middleware (SWIM) [11, 12] uses Semantic Web tools for integration. Main

difference with our approach is in our use of database tools and concepts, and emphasis

on query optimization, versus their reliance on Semantic Web tools, such as RDF and

query language RQL [42]. Further, we pay special attention to queries that require data

from multiple sources (inter-source processing), while this important issue has not been

addressed in SWIM.

In a recent work on indexing large volumes of data [27], authors advocate a triple

model as a global model for all data. Triples are closely related to RDF and ontologies,
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and to our Semantic-Model view model, demonstrating the validity and naturalness of our

approach for modeling the information contents of information sources.

2.2 Mediated Schema

Historically, significant research effort has been directed toward information-integration

systems that query data sources through a single central point with a fixed mediated schema

[69]. A common integration architecture is shown in Figure 2.1. Several sources are wrapped

by software that translates between the source’s local language, model, and concepts and

the global concepts shared by some or all of the sources. System components, here called

mediators, obtain information from one or more components below them, which may be

wrapped sources or other mediators. Mediators also provide information to components

above them and to external users of the system.

Figure 2.1: Mediator-based architecture.

In the mediator-based framework, the need to establish the mediated schema and

translation rules, or mappings, between the data sources and the central mediator is a major

bottleneck in integration efforts for real-life applications [65].

Some works from mediated schema focused on integrating schemas by defining a

global schema in an expressive data model and defining mappings from local schemas to

the global one, for instance, local-as-view (LAV) systems, where “local” refers to the local

sources/databases, or global-as-view (GAV) systems, where “global” refers to the global

(mediated) schema [31, 67, 45]. However, these works neglect the following situations: (i)
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data sources may model data in heterogeneous ways, and (ii) sources may employ various

terminology. Besides, designing the global schema typically leads to significant overhead in

creating and maintaining data systems.

2.3 PDMS

The Piazza and related projects [32, 34, 35, 57, 66] cover various aspects of large-

scale data integration, including: (1) Peer-based data management [35, 51, 65, 66], (2)

Schema mapping [20, 23, 24, 26, 36, 49], and (3) Theoretical foundations, indexing, and

access control [25, 28, 41]. The main idea behind data integration/interoperability in Piazza

Peer Data Management System (PDMS) is that users provide mappings between pairs of

information sources [35]. There is no need to provide mappings for all pairs. In fact, all that

is needed is that the sources graph that represents available mappings be connected. As

some peers in a PDMS may act as mediators (coordinators) with respect to other peers, a

PDMS can be used as a basis for sharing data on the World-Wide Web, as in the Semantic-

Web initiative [5]. See Figure 2.2 for an example of a PDMS. The key challenge in query

answering in a PDMS is how to make use of the mappings to answer a query. A query

should be rewritten using sources reachable through the transitive closure of all mappings.

However, mappings are defined “directionally” with query expressions, and a given user

query may have to be evaluated against the mapping in either the “forward” or “backward”

direction. This means that PDMS’s query answering algorithm performs query unfolding

and query reformulation using views.

Mappings between any two sources can then be obtained by composing the pairwise

mappings along a path connecting the two sources [51, 65]. However, this works well

for sources belonging to the same application domain, with similar data. Otherwise the

composition process will result in information loss.

As we mentioned in Chapter 1, the main disadvantage of a PDMS is that it doesn’t

deal with inter-source queries very well. Another advantage of our multiple-coordinator

system is that the system is more resilient to erroneous mappings (only one source is affected

by an erroneous mapping). In contrast, an erroneous mapping in Piazza affects all query

processing that uses a path that includes the mapping.

The Clio [14, 54] and Hyperion [3, 37] projects have developed tools for automating
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Figure 2.2: A PDMS for the database research domain. A fragment of each peer’s XML
schema is shown as a labeled tree (from [65]).

common data and structure management tasks underlying many data integration, transla-

tion, transformation, and evolution tasks. The thrust of these projects has been on sup-

porting schema management, such as generating, matching, and mapping queries between

schemas in multi-source and peer-to-peer systems [44, 53]. Semi-automatic techniques have

been developed for general schema matching and for generating mappings between schemas

[58, 72]. The projects introduce the mapping table approach to represent schema mappings,

and discuss query processing in this environment [43, 44]. The architecture is similar to

that of Piazza: A query is submitted at a peer, which passes it, possibly in translated form,

to (some of) its acquaintances, which repeat this process.

2.4 Interoperability on XML Data

The authors of [46] present a lightweight infrastructure based on local semantic

declarations for enabling interoperability across data sources. The main idea underlying

this approach is based on the observation that ontology-specification frameworks such as

RDF and OWL provide mechanisms for specifying metadata about a source: the metadata

includes not only metadata such as the author and creation date, but also the semantic

concepts present therein. The strength of this coordinator-based model is that it has inter-

source query processing. However, its main disadvantage is that it doesn’t scale very well,

and the coordinator may become the bottleneck when people try to design large-scale data
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sharing systems.

Our semantic-model approach extends the approach in the coordinator-based model

by introducing multiple coordinators. It differs from data-warehousing approaches in that

it does not generate a repository of all data, and hence is flexible and can dynamically ac-

commodate sources and scale up to a large number of sources. It differs from information-

integration systems that use a mediated schema in that it avoids the lengthy and error-prone

process of schema mediation. Intuitively, our SM approach uses ready-made ontologies, or

even a much simpler identification of binary relations to serve as an atomic decomposi-

tion of the application domain. Again, this allows incremental information integration and

scalability. Finally, it differs significantly from peer data-management systems in its capa-

bilities and efficiency in inter-source processing, and its ability to handle sources coming

from different application domains.
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Chapter 3

The Semantic-Model Approach

In this chapter we discuss the semantic-model approach to large-scale data inte-

gration and interoperability. Section 3.1 provides the multiple-coordinator and three-tiered

hierarchical system based on the distributed system with only one coordinator proposed

in [46]. In Section 3.2 we discuss the semantic-model approach to query processing and

query optimization. Many examples are provided for this kind of three-tiered hierarchical

distributed systems in Section 3.3. Finally we concentrate on the optimization challenges

and opportunities in the semantic-model approach in Section 3.4.

3.1 System Architecture

The architecture of our system is shown in Figure 3.1. We introduce multiple

coordinators (or “super peers”) into the heterogeneous structure. The main advantage

of this approach that we propose is to design large-scale data sharing system, without

losing semantic interoperability among data sources. In general, we can have a network of

communicating coordinators, where each coordinator is in charge of a set of sources and,

possibly, other coordinators. In fact, a coordinator can be regarded as a source, or, more

accurately, as a broker for the information under its oversight. An information source can

also function as a coordinator. In the simplest form (see Figure 3.2), all information sources

are connected to a single coordinator, which is in charge of coordinating query processing.

A pure peer-to-peer system (see Figure 3.3) is a special case of a peer/coordinator system

where every source is its own coordinator.
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Figure 3.1: System architecture.

Figure 3.2: The simplest form.

3.2 Overview of the SM Approach

The semantic-model (SM) approach to information integration and interoperability

was first introduced in [46]. In the SM approach, an information source joins an information-

integration effort by providing a semantic-model view (SM view) of its information, as well

as a mapping from its data to this model. The SM view for a source is a view of the

information as a collection of binary relations, possibly based on an ontology for the source’s

application domain. These are basically a decomposition of the information into its “atomic

components”. (For practical simplicity, we allow views that combine binary relations with

the same key into a single relation.)

The task of defining the view and providing data mappings is the responsibility of
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Figure 3.3: A pure P2P system.

the database administrator (DBA) and/or users of local sources. Tools, such as [52], can

greatly simplify the task of defining mapping rules. An SM system contains many sites,

where a site can be either an information source or a coordinator that oversees query decom-

position and execution. A user query can be submitted at any site. It can be formulated in

terms of the SM view, or in terms of the local (original) schema if submitted at an informa-

tion source. Currently, the implementation of the SM system supports XML and relational

sources, but the SM approach is applicable to any source type as long as mappings from

the source data format (e.g., RDF, Microsoft Excel, etc.) to the SM view can be provided.

The integration and interoperability system is responsible for processing the query in such

a way that the answer corresponds to the answer of the query on the collection of all data

in the participating information sources. There are many ways to achieve this goal, with

widely varying performance characteristics. Query optimization, in particular, is critical to

such an interoperability system. The SM approach is consistent with approaches based on

ontological modeling [55], where applications are modeled by domain-specific concepts and

their properties, which are, basically, binary relationships. The following examples (adopted

from [46]) illustrate the SM approach.

Example 1 (The semantic model) Consider a federation of catalog sales businesses. In

this example we concentrate on their warehousing operations. A possible ontology for this

application may use objects (concepts) such as item, warehouse, city, state, and rela-

tionships (properties) such as item-name, item-warehouse, warehouse-city, and
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warehouse-state.

The SM view consists of binary relations representing the relationships. Sources

with heterogeneous models and schemas can model their warehousing operations using this

SM view. For example, the DTDs of two XML sources are shown below 1. (We discuss the

mappings from these schemas to the SM view in Example 2.)

<!ELEMENT store (warehouse*)>
<!ELEMENT warehouse (city, state, item*)>
<!ELEMENT item (id, name, description)>
<!ATTLIST warehouse id ID #REQUIRED>

<!ELEMENT store (items, warehouses)>
<!ELEMENT items (item*)>
<!ELEMENT item (id, name, description)>
<!ELEMENT warehouses (warehouse*)>
<!ELEMENT warehouse (city, state)>
<!ATTLIST item warehouse-id IDREFS #REQUIRED>
<!ATTLIST warehouse id ID #REQUIRED>

The language we use to specify XML-to-SM mappings is based on (a subset of)

XPath [71] and is similar to mapping languages, also called “transformation rules” or

“source-to-target dependencies” in the literature (see, e.g., [4, 18]). A mapping for a binary

relation p has the following general form:
p($X, $Y) <- path1 $G, $G/path2 $X, $G/path3 $Y.

where $X and $Y correspond to the arguments of p. The variable $G in the body of the

rule is called the “glue” variable, and is used to restrict ($X,$Y) pairs to have the same $G

ancestor element in the document.

Example 2 (Mapping rules) Consider the first information source of Example 1. Some

of the mapping rules that map data in this source to the SM view are as follows:

item-name($I,$N) <-

/store/warehouse/item $X, $X/id $I, $X/name $N.

item-warehouse($I,$W) <-

/store/warehouse $X, $X/item/id $I, $X/@id $W.

warehouse-state($W,$S) <-

/store/warehouse $X, $X/@id $W, $X/state $S.

1We omit declarations of elements of type #PCDATA.
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3.3 Examples for the SM Approach

This section presents various examples for the SM approach from a simple system

to a complex system with a three-tiered architecture.

3.3.1 A Simple System

A simple system consists of one coordinator and two data sources shown in Fig-

ure 3.4. This coordinator stores binary predicates for both data sources (A and B). The

data format of A and B is XML. Note that sources can have different schemas and different

(possibly overlapping) data and coverage (see Section 3.3.2). A user query is relational,

which is based on binary predicates, such as r 1 s. For example, sources contain student

information, and id-lname, id-fname and id-major are relations in the semantic-model

view. A user query “List students’ id, last name and major” is written in a relational query

as following:

Q(id, lname,major) := (id− lname) 1 (id−major)

Figure 3.4: A simple system with only two sources.

The subqueries query processing (which will be described formally in Section 4.2)

for this user query is the following:

1. A user query is posed on the coordinator.

2. The coordinator translates the user query into local subqueries and inter-source sub-

queries, whose format is XQuery. During the query translation, it should take the

sources’ schemas and mappings into consideration (see Section 4.2).
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3. Those subqueries are executed at both Source A and Source B.

4. The coordinator collects the results of subqueries, and merges them into a final answer

in a meaningful way (Merge operation is described in details in Section 4.6).

3.3.2 System with Heterogenous Sources

In the simple system, all sources are homogenous, although they may have various

schemas. In a system with heterogenous sources, sources could store various formats of

data, e.g., XML, relational tables, plain texts, etc.

Figure 3.5 shows that Source B stores relational tables instead of XML documents.

From the user’s point of view, the only difference between a simple system and system with

heterogenous sources is mapping rules from sources to the SM view. XML-to-SM mappings

are applied to a simple system; while in a system with heterogenous sources, Relation-to-SM

mappings or mappings from other formats of data to SM view are used.

Figure 3.5: A system with heterogenous sources.

3.3.3 System with Multiple Coordinators

Figure 3.1 and Figure 3.6 show two examples of system with more than one coordi-

nator. A system with multiple coordinators has a network of communicating coordinators,

where each coordinator is in charge of a set of sources and, possibly, other coordinators.

This architecture is basically a peer-to-peer arrangement of a set of single-coordinator sys-

tems, where each coordinator is in charge of its own community of sources. This system

comprises a three-tiered architecture, with an extra group of mappings defined over SM

views of a set of coordinators.
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Figure 3.6: A system with two coordinators.

Multiple coordinators bring a new issue: how is a user query processed in the

system with a three-tiered architecture?

Coordinators (or super peers) can serve as mapping providers, logical mediators,

and/or mere query nodes. View mappings between disparate SM views are given locally

between two (or a small set of) coordinators. Using these view mappings transitively, coor-

dinators can make use of relevant data anywhere in the system. Consequently, queries in a

system with multiple coordinators can be posed using the local SM view of the coordinator,

without having to learn the SM view of other coordinators. This system with multiple co-

ordinators are different from classic data integration systems, where queries are formulated

via a global mediated schema, and all peers or sources must provide mappings from their

schemas to this mediated schema.

3.4 Efficiency Issues and Optimization Opportunities

For each relation r in the SM view, a source i either stores the information for a

fragment ri of r, or has no data relevant to r. The fragment ri is not materialized; only

the mapping rule to generate ri from the data at source i is available. We assume the data

in the system corresponding to a relation r is the union of its fragments at every source,

possibly subject to value mappings to reconcile heterogeneities.2

The answer to a user query Q should reflect the total data in information sources.

That is, if Q mentions relation r, the answer is obtained as if the query were executed on

r = r1 ∪ . . . ∪ rn, where r1, . . . , rn are the fragments of r at the information sources in

the federation. There are a number of ways to process user queries, with widely different
2The issue of data heterogeneity, such as different units of measurement, different scales, different terms

for the same property, or the same term used for different properties, and ways to handle them are well
known and will not be addressed in this dissertation.



18

performances. No single scheme is optimum for all queries and cases. Rather, an intelligent

query-optimization approach needs to choose from a number of alternatives. We discuss our

specific query-processing approaches and algorithms in Chapter 4, and present experimental

results in Chapter 5. In the remainder of this section we discuss optimization challenges

and opportunities in the semantic-model approach.

Consider a user query Q involving k relations r1, . . . , rk in the SM view.3 Since

each relation is the union of its fragments, Q can be regarded as a collection of nk subqueries,

where each subquery corresponds to one combination of single-source fragments of r1, . . . , rk.

In fact, one way of executing Q is to execute its corresponding subqueries, and then to merge

the results. A subquery where all fragments are from the same source is called local; such

subqueries can be executed at the source with no additional data transfer. A subquery

with fragments from two or more sources is an inter-source subquery; its execution requires

data transfer. Note that out of nk subqueries, only n are local. The majority (nk − n) are

inter-source subqueries.

The need for inter-source processing arises naturally in information integration.

An application may need information from many sources with different kinds of data. For

example, a security application may benefit from integrating many sources involving bank-

ing, travel, investment, employment, or taxes. There are important queries that need data

from many of these sources simultaneously. Even when all sources belong to the same do-

main, there may be a need for inter-source processing. For example, academic data sources

list information about their faculty, students, research, or publications. Each source has

complete information about its personnel, but there may be collaboration between groups

from different universities. There are queries where the results of local subqueries are only a

strict subset of all answers. The need for inter-source processing poses a significant challenge

to query optimization in data integration. Blindly executing all subqueries, or, alternatively,

materializing the SM view relations by computing their fragments and unioning them, can

be very costly. Our approach is based on using known integrity constraints, such as key and

foreign-key constraints, to minimize the amount of inter-source processing that is needed.

We present a method to determine when no inter-source processing is required to process a

given query (Section 4.7). For queries that require some inter-source processing, we present

a method to determine the minimum number of subqueries that are required (Section 4.8).

3We use superscripts for relations and subscripts for fragments. For example, rj
i represents the fragment

of relation rj at source i.
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These results are of general interest and can be used in any information-integration system

that avoids loading all the data into a single repository.
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Chapter 4

Algorithms and Theoretical

Results

In this chapter we discuss the main query-processing algorithms and theoretical

results that will play a significant role in query optimization. In addition to the basic

materialization approach for query evaluation, we describe the subqueries, the optimized-

subqueries, the wrapper approaches, and their semantically optimized versions. Then we

discuss the theoretical results that allow us (1) to determine when no inter-source pro-

cessing is needed (Section 4.7), and, (2) when inter-source processing cannot be avoided, to

determine minimal equivalence sets of subqueries that are adequate to provide the complete

answer to a user query (Section 4.8). These optimization techniques are then discussed in

Chapter 5, along with the experimental results.

4.1 Query Processing I: Materialization

This is the base query-processing approach against which we evaluate other ap-

proaches. In the simple materialization approach, we materialize the SM view relations that

appear in the user query, and execute the query on the materialized relations. Example 3

illustrates the approach.

Example 3 Consider a system with four information sources and a mediator. Suppose

query Q = ΠB,C σP (r 1 s) involves relations r(A,B) and s(A,C) in the mediator schema,

with selection condition P . Assume XML data sources; Figure 4.1 shows a small part of

two of the sources. Note that the sources have different schemas.
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... ...
<X> <Z>

<A>a1</A> <C>c3</C>
<B>b1</B> <W>
<Y> <A>a2</A>

<C>c1</C> </W>
<C>c2</C> </Z>

</Y> <Z>
</X> <C>c4</C>
<X> <W>

<A>a2</A> <A>a3</A>
<B>b2</B> <B>b3</B>

</X> </W>
... </Z>

...
source 1 source 2

Figure 4.1: Part of information in two data sources.

In the materialization approach, we create two materialized relations (fragments)

for r(A,B) and s(A,C) in each source. The conditions of predicate P that involve only r or

s are enforced at this point. The queries to create these fragments are generated using the

mapping rules for each source. These materialized relations (r1, s1, r2, s2, r3, s3, r4, s4 in

this example) are sent to the mediator. The mediator merges these relations and executes

the user query on them.

Although the approach is not efficient in general, we were surprised to find that

this approach was relatively efficient in certain situations, see discussion in Chapter 5.

4.2 Query Processing II: Subqueries

The subqueries approach is based on generating local and inter-source subqueries

for the user query, executing the subqueries, and merging their (partial) results. A local

subquery uses data from a single source and can be executed at the source. An inter-source

subquery needs data from multiple sources, and requires some data transmission for its

execution. The algorithm for generating local subqueries was presented in [46].

Example 4 Consider the user query ΠB,C σP (r ./ s) of Example 3. We have (up to)
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42 = 16 subqueries.1 Only four of these subqueries, ΠB,C σP (ri ./ si), i = 1, . . . , 4, are

local; the remaining twelve are inter-source subqueries. The local subqueries are translated

to queries on the source schemas and executed locally; the results are sent to the mediator.

For an inter-source subquery such as ΠB,C σP (r1 ./ s2), either the data for r1 is sent to

Source 2, or the data for s2 is sent to Source 1. (We have developed algorithms for data

transmission and subquery execution for XML data sources.) Finally, the mediator merges

all partial results in order to obtain the final answer to the user query.

The pseudocode for generating inter-source subqueries is shown in Algorithm 1.

Algorithm 1: Inter-source subquery generation
input : User query Q, order of data sources, set of binary predicate

mappings

output: Inter-source subquery(XQuery) Q′

foreach binary predicate p in Q do1

create one variable for p with specifying data locations by p’s mapping2

and the order of data sources in Q′;

foreach attribute attr in p do3

create one variable for attr using the variable p above in the FOR4

clause of Q′;
end5

end6

construct a WHERE clause in Q′ if Q has constraints;7

foreach element ele in Q’s head do8

specify ele which should be returned in Q′;9

end10

return Q′ with a FLWOR expression;11

4.3 Query Processing III: Optimized Subqueries

The optimized subqueries approach uses formal results to eliminate, to the extent

possible, inter-source processing. Based on key and foreign-key constraints that are relevant
1If source i has no data for relation r then all subqueries involving fragment ri are empty and need not

be executed.
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to the query, all or some of inter-source subqueries may be redundant and will not be

evaluated. The savings can be substantial; for instance, given a query involving k mediator-

based relations in a system with n sources, there are only n local subqueries, while the

number of inter-source subqueries can be as large as nk − n. The details are presented in

Sections 4.7-4.8.

Example 5 In the setting of Example 3, suppose that attribute A is the key for r and that

a foreign-key constraint holds from s.A to r.A. Then, by Theorem 2 (see Section 4.7), no

inter-source processing is needed. This reduces the processing from sixteen to four (all local)

subqueries that are translated and executed locally on the data sources.

4.4 Query Processing IV: Wrapper

In the wrapper approach, we generate one subquery per information source; the

subquery extracts from the source the minimum amount of information that is needed to

answer the user query. We call this the “wrapper” approach because this extraction can

be viewed as a (query-specific) wrapper that collects the needed information from each

source. Compared to the subqueries and optimized subqueries approaches, the information

extracted from each source in the wrapper approach is richer than the result of the local

subquery on the same source, and makes it possible to obtain the full answer to user query

by further processing. In a large class of applications, an efficient chase-based algorithm

can be applied to the extracted information to obtain the full answer to the user query.

The pseudocode for the wrapper algorithm is shown in Algorithm 2. The function to decide

whether inter-source processing is needed mentioned in Line 6 is described in Algorithm 5.

Example 6 Consider the user query ΠB,C σP (r ./ s) of Example 3. Suppose that A is

the key of r, but no foreign-key constraint holds from s to r (thus, according to Theorem 2

in Section 4.7, inter-source processing is needed.) In the wrapper approach, each source i

generates a relation ti(A,B,C) corresponding to the full outer-join of ri and si and sends

it to the mediator. The mediator combines these relations, applies the chase, and enforces

the query conditions and projections. In our example, source 1 (see Figure 4.1) has the

following tuples (among others): (a1, b1), (a2, b2) for r1 and (a1, c1) and (a1, c2) for s1.

Hence t1 contains (a1, b1, c1), (a1, b1, c2), and (a2, b2, null). Source 2 has tuple (a3, b3)

for r and tuples (a2, c3) and (a3, c4) for s. Then t2 contains (a2, null, c3) and (a3, b3,
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c4). The result of unioning t1 and t2 (and t3 and t4) and chasing with respect to the key

constraint generates a new tuple (a2, b2, c3) in the result, since A is the key of r(A,B),

null in (a2, null, c3) is replaced by b2 which comes from (a2, b2, null). The final step is to

enforce predicate P and to project over B,C. The answer contains (b2, c3) (unless filtered

out by P ).

Algorithm 2: The Wrapper Algorithm
input : User query Q, set of sources SRCS and their mappings MPS

output: Single XML document Doc

foreach source s in SRCS do1

create a local subquery which allows nulls in the result for s;2

execute the subquery locally, then send the local result to the3

coordinator;
end4

merge the local results into query answer ans at the coordinator;5

if inter-source processing is needed then6

chaseSteps();7

end8

eliminate duplicates in ans;9

save ans into an XML document Doc;10

return Doc;11

Function chaseSteps()12

foreach constraint cstrt in Q and MPS do13

replace nulls at ans using Chase algorithm with cstrt;14

end15

End Function16

Note that in the subquery-based approaches, the answer (b2, c3) of Example 6

is generated by the inter-source subquery ΠB,C σP (r1 ./ s2) (tuple (a2, b2) ./ tuple (a2,

c3)). Thus, while executing only local queries, the wrapper approach is able to generate the

results of inter-source subqueries at the coordinator (mediator).
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4.5 Semantic Optimization for XQuery

In the approaches presented in Sections 4.2–4.4, the system generates queries to

be executed on local data (e.g., XQuery queries on XML data). In our implementation

framework of [70], user queries tend to have a relatively large number of joins of binary

relations in the semantic-model view. When the above translation algorithms are adapted

to this setting, they create one variable in the XQuery query for each binary relation in the

user query. Our platform-specific semantic optimization rewrites XQuery queries into more

efficient equivalent queries with fewer joins and variables. The algorithm uses information

from mapping rules and from key constraints of the binary relations in the semantic model.

Instead of creating one variable for each binary relation in the user query, the new algorithm

generates a single variable for all binary relations that have a common “glue” variable in

their mappings and the same key. Consider the following illustration of our semantic-

optimization rewriting process.

Example 7 Suppose an application involves multiple data sources with information on

stocks (see Section 6.7.2 for the background). The semantic-model view for this applica-

tion contains binary relations k-ticker, k-year, k-month, k-day, k-price, k-priceType,

where k is the unique key. Each relation name refers to a non-key stock attribute. For

example, k-ticker has two attributes: k is a unique key, and ticker is the ticker (stock) id.

For each stock, we recorded four price types: open, close, high, and low. A mapping rule

for k-ticker in an XML source could be:

k-ticker($X, $Y) <-

/stocks/stock $G, $G/@uid $X, $G/ticker $Y

As an example for the improvement obtained by semantic query rewriting, consider

a user query that produces the average closing price for IBM in October 2005. This query

uses five of the above binary relations, and a corresponding XQuery will have five variables

on the XML stocks document. But since these five binary relations have the common glue

variable /stocks/stock and the same key k, we would obtain the following local subquery

with just one variable:

LET $br := /stocks/stock[year=2005 and month=‘Oct’ and

ticker=‘IBM’ and prices/priceType = ‘close’]

RETURN avg($br/prices/price)
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The effect of the semantic optimization, as demonstrated by the experimental eval-

uation in Section 5.5 and Section 7.4, can be significant (up to two orders of magnitude for

certain queries). By utilizing this technique of semantic optimization, we develop new algo-

rithms (semantically optimized versions) of subqueries, optimized subqueries, and wrapper,

which are subqueries*, optimized subqueries*, and wrapper* respectively.

4.5.1 Query Processing V: Subqueries*

Note that the subqueries approach is based on generating local and inter-source

subqueries for the user query, executing the subqueries, and merging their (partial) results.

The semantic optimization takes effect when local and inter-source subqueries are generated.

The rest of query processing in the subqueries* approach is exactly same as that in the

subqueries approach. An example of the subqueries* approach is shown in Section 5.5.1.

4.5.2 Query Processing VI: Optimized Subqueries*

The optimized subqueries* approach is a semantically optimized version of the

optimized subqueries approach, where local and inter-source subqueries which are needed to

be evaluated in the optimized subqueries approach are semantically optimized.

4.5.3 Query Processing VII: Wrapper*

Recall that in the wrapper approach, we generate one subquery per information

source; the subquery extracts from the source the minimum amount of information that is

needed to answer the user query. In the wrapper* approach, this subquery is transformed

by generating a single variable for all binary relations that have a common “glue” variable

in their mappings and the same key.

4.6 Merging XML Data

Given two or more XML documents on the same schema, our merge algorithm

produces one XML document on the same schema; the document contains all the data from

the input documents. In case merging the input documents is not possible, the algorithm

outputs the discrepancies that hindered the merge operation.
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As an example, consider several XML documents of personnel information. Certain

natural consistency constraints are expected to hold on this kind of data. For example, each

individual has a social security number that uniquely identifies the person’s name and date

of birth. A person may have multiple phone numbers, but the date of birth should be

unique. The output of running the merge algorithm on such personnel data should contain

all individuals mentioned in the input files. In addition, the information for one individual

(determined by the same SSN in different inputs) is combined in the output document in

the intuitive way: The date of birth of the same individual from different inputs, if known,

should be identical. If not, merge is not possible and a discrepancy in the date of birth

of this individual is identified. Further, phone numbers from multiple inputs for the same

individual are all included in the merged information for that individual. In our prototype

implementation, merge is halted if a discrepancy is detected. Many other approaches are

possible, including approaches that use information about the degree of reliability of sources

to guide the merge in presence of discrepancies, and can be incorporated with relative ease.

In general, assume D1 and D2 are two documents with the same schema S. Let

E be an element type in S that has a logical identifier, and is at a maximal level (i.e., it

does not have any ancestor with a logical identifier). Let e1 be an element (instance) in

D1 of type E, and e2 be an element of type E in D2 that has the same value for its logical

identifier as e1. In order to retrieve the merged document D(D = D1 + D2), we classify E

into several types as follows:

• If E has a single − valued, required child or descendent C that is a leaf (i.e., is

an attribute or an element with no subelements), then e1 and e2 must have the

same value for C (if not, issue an error message). The merged element e = e1 + e2

should have the same value for C. A descendent is called single-valued, required when

all elements on the path from the ancestor to the descendent are single-valued and

required. For Example, element person may have a single-valued, required subelement

dateOfBirth. It may also have s single-valued, required subelement name, with its

own single-valued, required subelements firstName and lastName.

• If E has a single − valued, optional child or descendent C that is a leaf (i.e., is an

attribute or an element with no subelements), then e1 and e2 must have the same

value for C, or one or both can be empty (if not, issue an error message). The merged

element e = e1 + e2 should have the same value for C (if both, or one of e1 and
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e2 have a value). For example, Element person may have a single-valued, required

subelement name, which has a single-valued, optional subelement middleInitial (as

well as required subelements firstName and lastName).

• If E has a single-valued, required child or descendent C that is not a leaf, but has a

logical identifier of its own, then the instances c1 and c2 belonging to e1 and e2, re-

spectively must be logically equal. This means, they should have the same identifiers.

The merged element e will have a subelement c obtained by (recursively) merging e1

and e2.

• E is a single-valued, optional child or descendent that is not a leaf, where e1 or e2 is

optional, or e1 and e2 must have same value.

• For multi − valued children and descendants (e.g., children declared with a + or *

in DTD schema, or maxOccurs with the value of more than 1 in the XML Schema),

the merge rule is somewhat similar to combining these children with duplicate elim-

ination. For example, each when merging person elements, the books written by a

person (from different documents) are combined, keeping one instance of each book.

To determine duplicates, logical equivalence discussed above is used. For example, a

book element is a duplicate of another book element if it has the same value for its

logical identifier. The resulting book element in the merged document is the merge of

the two book elements. The multi− valued class is divided into a few subclasses ac-

cording the “maxOccurs” and “minOccurs” attributes in the XML Schema: Optional

(minOccurs=0), Unique (no duplicate instance is allowed), Reduplicate (duplicate

instances are allowed).

The pseudocode for the merge algorithm is shown in Algorithms 3 and 4.

4.7 Eliminating Inter-Source Subqueries

In this subsection and in Section 4.8, we present theoretical results that play a

significant role in query optimization in the semantic-model approach. Our first result

addresses the question “when is inter-source processing not needed?” To motivate this

investigation, let us first obtain an intuition about the amount of inter-source processing

that may be needed: Consider a system with n information sources, and a user query
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Algorithm 3: The Merge Algorithm
input : XML documents xmls and their schema sma

output: Single XML document Doc

retrieve keys, unique nodes and other constraints from sma;1

treewalk all elements from the root and classify elements into types such as2

single− valued, required, leaf , non− leaf , multi− valued, and so on;

Doc = fetchUnV isitedDocumentFrom(xmls);3

while xmls has any other document which has not been visited do4

nextDoc = fetchUnV isitedDocumentFrom(xmls);5

while (E = getElementFromTreewalk(sma)) !=null do6

e1 = getInstanceFromDoc(Doc,E);7

e2 = getInstanceFromDoc(nextDoc,E);8

mergeElements(e1, e2);9

end10

end11

return Doc12

involving k relations in the semantic model. The total number of possible subqueries,

where the data for each of the k relations come from one of the n sources, is nk. Only n of

these are local, in the sense that all data come from the same source. The remaining nk−n
may require some degree of inter-source processing. This is, of course, a worst-case scenario.

In practice, even when the total number of sources is very large, a specific relation in the

SM view has a limited number of sources with data pertaining to that relation, reducing the

possible inter-source queries to mk−n, where m << n is the number of sources with data for

a given relation, on the average. Nevertheless, in large-scale information integration, where

n can be in the hundreds or even thousands or higher, this number can still be quite large.

If we are able to identify the minimum amount of inter-source processing that is required,

and restrict our query evaluation to avoid any extra work, we can potentially achieve orders

of magnitude faster query processing in large-scale integration.

Before we introduce a new theorem of eliminating inter-source subqueries, we study

the characteristics of binary relations in the SM approach. Recall that binary relations

specify metadata and semantic concepts about data sources. Some binary relations with



30

Algorithm 4: The Merge Algorithm (continued)
Procedure mergeElements(e1, e2)

typeV al = getType(e1);

switch typeV al do

case single-valued and required

if e1 ! = e2 then
print ERROR;

end

break;
end

case single-valued and optional

if (e1 ! = null) AND (e2 ! = null) then

if e1 ! = e2 then
print ERROR;

end

end

if e1 == null then
e1 = e2;

end

break;
end

case multi-valued
append e2 and its descendants to e1;

eliminate duplicates according to E’s attribute;

break;
end

end
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a key are generated to explain complex relationship between attributes in a source. For

example, a source has a relational table with its schema R(A,B,C), where a set of attributes

R.A and R.B is the key of R. In the SM view for this source, a unique id uid is created,

and the following binary relations as well: UID-A (uid, A), UID-B (uid, B), and UID-C

(uid, C).

In [46], the authors study user queries that involve the natural join of two relations

of the SM view and defines cases when inter-source processing is not needed. We generalize

their result to user queries with any number of relations. First, we state the result from

[46]:

Theorem 1 Consider a user query involving the natural join of relations ri(A,B) and

rj(B,C). No inter-source processing is needed for this query if all the following conditions

hold:

1. Key constraint: For every source k, B is the key for the fragment rj
k.

2. Foreign-key constraint: For every source k, there is a foreign-key constraint from

ri
k(B) to rj

k(B).

3. Consistency constraint: If rj
k(b, c) and rj

l (b, c′) hold at two sources k and l, then c = c′.

In our generalization we use the following definition:

Definition 1 (Local-Join Graph) Given ri(A,B) and rj(B,C), if the three conditions

of Theorem 1 hold then we say ri and rj have the local-join property, and their relationship

is illustrated in Figure 4.2.

Figure 4.2: Relationship between two binary relations

Let r1, . . . , rm be all the relations in the SM view. The local-join graph is a directed

graph G = (N,E), where the set of nodes N corresponds to the relations r1, . . . , rm, and

(ri, rj) ∈ E if ri and rj have the local-join property.
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A new theorem follows:

Theorem 2 Given a user query involving the natural join of two or more relations r1, . . . , rk,

if the local-join graph restricted to the query relations {r1, . . . , rk} contains a directed span-

ning tree, then no inter-source processing is needed for this query.

In the proof of Theorem 2 we use the following lemma.

Lemma 1 If there is an edge from ri to rj in the local-join graph, then (r1s1
1 · · · 1 ri

x 1

· · · 1 rj
x 1 · · · 1 rk

sk
) subsumes (r1s1

1 · · · 1 ri
x 1 · · · 1 rj

y 1 · · · 1 rk
sk

) for all si, x, and y.

Proof (Lemma 1): By the local-join property, since ri has a foreign-key constraint

to rj , then all tuples of the fragment ri
x at a source x participate in the join with the

fragment rj
x at the same source. Further, by the consistency condition, ri

x 1 rj
y cannot

generate any tuple that is not already in ri
x 1 rj

x. Then, ri
x 1 rj

x ⊇ ri
x 1 rj

y for all x and y.

Join both sides with r1s1
· · · rk

sk
. The result of the lemma follows.

Proof of Theorem 2:

Let G be the local-join graph of the predicates, and H be the restriction of G to the

query relations. Then we want to show that if H has a directed spanning tree T ′, then the

query does not require inter-source processing. Without loss of generality, assume r1 is the

root of T , and r1, r2, . . . , rk is the depth-first search order of T (any ordering compatible with

the parent-child ordering of T will work, including the DFS order). The user query can be

written as r1 1 · · · 1 rk. We will show that each inter-source subquery r1s1
1 r2s2

1 · · · 1 rk
sk

is subsumed by the local subquery at source s1, namely r1s1
1 r2s1

1 · · · 1 rk
s1

. For simplicity,

we use (s1, s2, . . . , sk) to represent the subquery r1s1
1 r2s2

1 · · · 1 rk
sk

. We now show, by

(backward) induction, from j = k to j = 1, that (s1, . . . , s1) ⊇ (s1, . . . , s1, sj+1, . . . , sk)

Basis j = k: Obviously, (s1, s1, . . . , s1) ⊇ (s1, s1, . . . , s1).

Induction: Assume the inductive hypothesis holds for j + 1, that is, (s1, . . . , s1) ⊇
(s1, . . . , s1, s1, sj+1, . . . , sk). We want to show (s1, . . . , s1) ⊇ (s1, . . . , s1, sj , sj+1, . . . , sk).

Let ri be the parent of rj in the directed spanning tree. Then, since r1, . . . , rk is the depth-

first ordering of the tree, we must have i < j. By Lemma 1, we have (rs1
1 1 · · · 1 rs1

i 1 · · · 1
rs1
j 1 · · · 1 rsk

k ) subsumes (rs1
1 1 · · · 1 rs1

i 1 · · · 1 ry
j 1 · · · 1 rsk

k ), for all y. Let y = sj .

Written in our notation: (s1, . . . , s1, sj+1, . . . , sk) ⊇ (s1, . . . , sj , sj+1, . . . , sk). Combined

with the inductive hypothesis and by transitivity of subsumption we get: (s1, . . . , s1) ⊇
(s1, . . . , sj , sj+1, . . . , sk). This completes the proof of the induction.
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Hence, the n local subqueries (s1, . . . , s1), s1 = 1, . . . , n (n is the number of sources)

subsume all inter-source subqueries. Thus, no inter-source processing is needed in the

computation of the user query.

Table 4.1 presents the position of a node (binary relation) in a local-join graph

when no inter-source processing is needed. For example, if a binary relation r has no primary

key, but has a foreign-key constraint to other relation’s attribute, the position of r is a root

in the local-join graph when no inter-source processing is needed.

Table 4.1: Position of nodes in a local-join graph when no inter-source processing is needed.
Primary Key Foreign-key Constraint Position at the graph

- - N/A
-

√
root√

- leaf√ √
any

Example 8 According to Theorem 2, no inter-source processing is needed for a user query

(r ./ s ./ t) with a local-join graph shown in Figure 4.3 (a) and (b); while in Figure 4.3

(c), inter-source processing is needed for this user query (we will see in Section 4.8 that,

even when inter-source subquereis are needed, we are still able to determine, based on key

and foreign key constraints, a subset of all subquereis that are adequate for the evaluation

of user query).

Figure 4.3: Examples for local-join graphs

Theorem 2 gives a sufficient condition, based on key and foreign-key constraints,

where no inter-source processing is needed for the evaluation of a user query. The question
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naturally arises as to whether the condition of Theorem 2 is also necessary. In other words,

if the restriction of the local-join graph to query relations does not have a directed spanning

tree, does the evaluation of the query require evaluation of some inter-source subqueries?

We should first mention that there are weaker semantic constraints (than key, foreign-key

constraints) that may provide conditions for Theorem 2 [46]. However, these semantic con-

straints are, to the best of our knowledge, not available as standard features in commercial

databases. (At the same time, it is possible to enforce such conditions by means of triggers.)

Hence, we restrict ourselves to key and foreign-key constraints. This means that if there is

no edge from ri to rj in the local-join graph, then no constraints of any form exist between

ri and rj . The following theorem addresses the issue of whether the conditions of Theorem

2 are also necessary in the positive.

Theorem 3 Given a user query involving the natural join of two or more relations r1, . . . , rk,

if the local-join graph restricted to the query relations {r1, . . . , rk} does not contain a di-

rected spanning tree, then a database instance exists where at least one inter-source subquery

is not subsumed by any local subqueries.

Proof: Let G be the local-join graph restricted to query relations. We show the

nodes N of G can be partitioned to 3 subsets: N1 contains a node ri and all nodes reachable

from ri; N2 contains a node rj that can not reach ri and is not reachable from ri, plus all

nodes that can reach rj ; and N3 contains the remaining nodes. We show that N1 and N2

are nonempty. Now, we build an instance involving two information sources, where the

fragments (1) satisfy the constraints dictated by G, while, (2) there is at least one tuple t

in the inter-source join involving relations corresponding to N1 from source 1, and relations

corresponding to N2 from source 2, such that t is not in the result of any local subquery.

The pseudocode for how to decide whether inter-source processing is needed is

shown in Algorithm 5. This algorithm is a modified Depth-First Search (DFS) over G:

firstly, check each vertex in turn and, when an un-visited vertex is found, add it into a set S

and visit it using the following modified DFS-VISIT: if a vertex in the set S is visited from

vertexes who are finished after it (that’s, are out of its tree), this vertex is removed from

this set S. Secondly, check the amount of elements in S: if the amount is more than one,

return true; otherwise, return false. The running time is exactly same to that of Depth-First

Search, Θ(V+E), where V is the number of nodes (binary relations in the user query), and

E is the number of edges in the local-join graph of this user query.
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Algorithm 5: Algorithm to decide whether inter-source processing is needed
input : A local-join graph G

output: A boolean value: true or false. If true, inter-source processing is

needed; otherwise, it is not needed.

foreach vertex u in V[G] do1

color[u] = WHITE;2

end3

S = null;4

foreach vertex u in V[G] do5

if color[u] == WHITE then6

S.add(u);7

DFS − V ISIT (u);8

end9

end10

if S.size() > 1 then11

return true;12

else13

return false;14

end15

Function DFS-VISIT(u)16

color[u] = GRAY;17

foreach vertex v in Adj[u] do18

if S.find(v) == true then19

S.erase(v);20

end21

if color[v] == WHITE then22

DFS − V ISIT (v);23

end24

end25

color[u] = BLACK;26

END Function27
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4.8 Partitioning Inter-Source Subqueries

Given a user query, if the condition of Theorem 2 does not hold then some inter-

source processing is needed. In this section we discuss the problem of determining the set

of subqueries that are needed for the evaluation of the user query. In particular, we will

show a counterintuitive result, namely that the set of needed subqueries is not unique,

rather, there can be multiple equivalence sets of subqueries. More specifically, we show by

a simple example that the set of subqueries can be partitioned into (1) required subqueries,

(2) redundant subqueries, with each subquery in this group being subsumed by a subquery

in the required group, and (3) zero or more sets of equivalent subqueries, where we need to

execute only one subquery from each equivalence class.

Example 9 Consider a system with two sources (n = 2), and a user query involving the

join of three relations r(A,B), s(A,C), t(A,D). Further, assume A is the key for r, and

foreign-key constraints hold from s.A and t.A to r.A. Also assume the consistency condition

(condition 3 in Theorem 1) holds for r. Note that the local-join graph, restricted to r, s,

and t, has edges from s and t to r, and does not have a directed spanning tree.

There are 23 = 8 subqueries. Two of them are local subqueries, namely, r1 1 s1 1

t1 and r2 1 s2 1 t2 (where ri represents the fragment of r that comes from source i, similarly

for s and t.) It is easy to verify that (see Section 4.8.1 below), for this query,

• r1 1 s1 1 t1 and r2 1 s2 1 t2 are required.

• r1 1 s2 1 t2 and r2 1 s1 1 t1 are redundant: r1 1 s2 1 t2 is subsumed by r2 1 s2 1 t2,

and r2 1 s1 1 t1 is subsumed by r1 1 s1 1 t1.

• r1 1 s1 1 t2 and r2 1 s1 1 t2 are equivalent, and so are r1 1 s2 1 t1 and r2 1 s2 1 t1.

Hence, the user query can be evaluated fully by evaluating four subqueries (out of the total

8). There are four sets of such minimally-sufficient subqueries: Each set includes the two

required subqueries, plus one subquery from each of the two equivalence classes in the third

bullet above.

4.8.1 Determining the partition

We use a graph G = (N,E), which we call the subsumes graph, to determine

required, redundant, and equivalence classes of subqueries. Each node q ∈ N represents
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a subquery. There is also a special node φ, intended to represent subqueries with empty

results. There is an edge from qi to qj if qi subsumes (i.e., is a superset of) qj . Further,

there is an edge from node φ to a node q if the subquery represented by q includes an empty

fragment — that is, q represents a subquery involving r1s1
1 · · · 1 rk

sk
where at least one of

the sources si does not provide a mapping for the corresponding relation ri, and hence, ri
si

is empty. The following procedure can be used to partition the set of subqueries:

• Eliminate all nodes reachable from φ (these are the subqueries with empty answers);

• A node with in-degree zero in the remaining graph represents a required subquery;

• Nodes reachable from the required subqueries represent the redundant subqueries;

• Eliminate all nodes representing the required and redundant subqueries; the remaining

nodes, if any, must be on cycles; all nodes on a given cycle represent equivalent

subqueries.

Finally, how do we determine if one subquery subsumes another? We demonstrate

the idea of the algorithm with an example.

Example 10 Consider the same user query and constraints as in Example 9. Consider

the edge from s to r in the local-join graph. The following is immediate from the key,

foreign-key, and consistency conditions:

ri ./ si ⊇ rj ./ si, for all 1 < i < n and 1 < j < n (n is the number of sources). It follows

that ri ./ si 1 tk ⊇ rj ./ si 1 tk, for all 1 < i < n, 1 < j < n, and 1 < k < n. Hence,

there is an edge from ri ./ si 1 tk to rj ./ si 1 tk, for all 1 < i < n, 1 < j < n, j 6= i, and

1 < k < n, in the subsumes graph.
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Chapter 5

Optimization Techniques and

Experimental Results

Query-processing performance is a key issue in large-scale information integration.

In this section we discuss query-optimization techniques for the semantic-model approach

and present experimental results to evaluate the impact of the techniques on the query-

processing performance and on the network traffic. We present our experimental results in

Section 5.5, after discussing, in Section 5.1 - Section 5.2, the optimization techniques we

used in our approach, and illustrating our experimental setup in Section 5.3 and Section 5.4.

Our experimental results show that (a) our methods are competitive with respect

to the baseline materialization, and further more, the semantically optimized versions per-

form much better, and (b) the performance is query-type and environment dependent,

suggesting learning approach can be used to establish robust rules or to develop cost func-

tions to be used for dynamically selecting the best query processing method for a given

query in a specific integration instance.

5.1 Reducing Inter-Source Processing

The results presented in Sections 4.7 and 4.8 allow us (1) to determine whether

inter-source processing is needed, and, (2) if such processing is needed, to determine equiv-

alent sets of inter-source subqueries that are required and adequate for answering the user

query. These results can go a long way toward reducing the overall query-execution costs.

Constraints (key and foreign-key) used in these results are quite common and should, in
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many practical cases, enable us to avoid a large portion of costly inter-source processing. If

no inter-source processing is required, the amount of processing needed is O(n), where n is

the number of sources, and the processing can be performed locally at each source. Only

the last step, merging partial results, needs data transmission. Compare this to a naive ex-

ecution of all subqueries, where the processing effort is significantly larger — O(nk), where

k is the number of relations in the user query. The amount of data transfer in this case is

also significant due to additional data transmission required for inter-source processing.

5.2 The Chase Approach

Our wrapper approach generates for each source local subqueries that, intuitively,

extract the minimum amount of information needed to answer the user query. More specif-

ically, if the user query involves the join of relations r1, . . . , rk, the wrapper extracts the

outer join of r1i , . . . , r
k
i from each source i. (Recall that rj

i denotes the fraction of rj stored

at source i.) With care, selections can also be pushed down to the wrapper. But we have to

be careful not to miss any valid answers because of null values. Intuitively, this means we

need to treat comparisons with nulls as true at the wrapper level, and repeat the comparison

once the null has been replaced by a value in our chase process.

An important optimization approach in the wrappers technique is the application

of the well-known chase method [68]. In some cases we can obtain the complete answer

to the user query by unioning the extracted data, performing a chase with respect to key

constraints, enforcing the remaining conditions and projecting on the desired attributes.

The chase (with respect to a key constraint, or, more generally, with respect to a functional

dependency) can be used to fill in values for nulls in certain cases. The following example

illustrates the idea of our algorithm.

Example 11 Consider a user query on the SM view that involves r(A,B) 1 s(A,C), and

assume A is the key of r. Assume the wrapper generates (among other tuples) (a, b, null)

from source 1 and (a, null, c) from source 2. The result of unioning these two answers and

chasing with respect to the key constraint generates the tuple (a, b, c), since the A-value a is

associated with B-value b in the first tuple, hence the null in the second tuple can be replaced

by b. Note that (a, b, c) is in the (inter-source join) r1 1 s2 and belongs in the answer to

the user query.
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An efficient sort-based or hashing-based algorithm can be used to implement the

chase with respect to functional dependencies. The question arises as to when this simple

processing would generate all answers to the user query. The answer is, not surprisingly,

when the key constraints guarantee the lossless join property for the join in the user query.

5.3 Scenario I: DB-Research

[proceeding]
proceeding-title
proceeding-year
proceeding-location
proceeding-gc(general-chair)
proceeding-pc(program-chair)
proceeding-member(program-committee)

[paper]
paper-title
paper-author
paper-conference
paper-cite
paper-status

[project and person]
project-member
project-paper
project-area
project-topic
person-adviser

[review]
person-advisee
review-reviewer
person-affiliation
review-rating
person-homepage
review-paper
review-comment

Figure 5.1: Semantic model for DB-Research.

In our experiments we used the setup of [65] 1, with the modification that in
1We are grateful to Igor Tatarinov and Alon Halevy for providing us with their experimental setup for
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addition to the queries used in [65] we defined several extra queries that would require more

inter-source processing. Our first set of experiments used the “DB-Research” dataset, which

contains data sources pertaining to several universities such as UC Berkeley and University

of Washington, research organizations, and publications information from sources such as

CiteSeer [13], DBLP [19], and SIGMOD [63]. Our semantic model for the DB-research

dataset, shown in Figure 5.1, is based on the academic department ontology [1] from the

DAML ontology library [17].

<!-- paper -->
<bp name="paper-title">

<key>paper</key>
<fkeys>paper-conference</fkeys>

</bp>
<bp name="paper-author">

<fkeys>paper-title</fkeys>
<fkeys>paper-conference</fkeys>

</bp>
<bp name="paper-conference">

<key>paper</key>
<fkeys>paper-title</fkeys>
<fkeys>proceedings-title</fkeys>
<fkeys>proceedings-year</fkeys>

</bp>
<bp name="paper-status">

<key>paper</key>
<fkeys>paper-title</fkeys>
<fkeys>paper-conference</fkeys>

</bp>

Figure 5.2: Configuration for local-join property.

A configuration XML document is used to store key, foreign-key and consistency

constraints for each binary relation in the SM view in DB-research. If binary relation R and

S have the local-join property, and there is a foreign-key constraint from R to S, then

S is an “fkey” of R. Figure 5.2 illustrates the key constraint and local-join property

for binary relations involving paper information. In the following subsections, we examine

each source in this scenario and user queries we will evaluate.

[65], including the data, schemas, and queries.
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5.3.1 Data Sources

In this scenario, two coordinators share the same SM view, and therefore, view

mappings between these two SM views are easy to generate. Using the view mapping tran-

sitively, coordinators can make use of relevant data anywhere in the system. Consequently,

queries in a system with multiple coordinators can be posed by using the local SM view

of one coordinator. Data sources are connected to one of two coordinators through binary

relation mappings from the SM view to data sources (see Figure 5.3). In this experiment,

sources are of various XML schemas shown in Figure 5.4 and Figure 5.5.

Figure 5.3: Scenario I: DB-research.

Coordinator-1 is in charge of a set of sources: berkeley, citeseer, and sigmod.

Actually, this coordinator can be regarded as a source, or as a broker for the information

under its oversight.

DS-1 presents data of “database research” groups at UC Berkeley including projects,

group members and their publications. The following is a part of data from the DS-1’s XML

document:

...
<direction>
<name>Adaptive Information Systems</name>
<project>
<name>Telegraph XML</name>

<people>
<faculty>Joseph Hellerstein</faculty>
<faculty>Michael Franklin</faculty>
<student>Sirish Chandrasekaran</student>
<student>Amol Deshpande</student>
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Figure 5.4: Schemas of data sources in Scenario I.

<student>Ryan Huebsch</student>
<student>Sailesh Krishnamurthy</student>
<student>Boon Thau Loo</student>
<student>Sam Madden</student>
<student>Fred Reiss</student>
<student>Mehul Shah</student>

</people>

<paper>
<id>ChandrasekaranF02</id>
<title>Streaming Queries over Streaming Data</title>
<author>Sirish Chandrasekaran</author>
<author>Michael Franklin</author>
<author></author>
<publishedIn>VLDB02</publishedIn>
<year>2002</year>

</paper>

</project>



44

Figure 5.5: Schemas of data sources in Scenario I (continued).

</direction>
...

We also generate a set of mappings (discussed in Section 3.2) from the SM view

to DS-1. For example, we create one rule for each binary relation in DS-1:

...
<mapping>

<predicate>paper-title</predicate>
<pathGlue>berkeley/direction/project/paper</pathGlue>
<firstarg type="variable">id</firstarg>
<secondarg type="variable">title</secondarg>

</mapping>
<mapping>
<predicate>paper-author</predicate>
<pathGlue>berkeley/direction/project/paper</pathGlue>
<firstarg type="variable">id</firstarg>
<secondarg type="variable">author</secondarg>

</mapping>
<mapping>
<predicate>paper-conference</predicate>
<pathGlue>berkeley/direction/project/paper</pathGlue>
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<firstarg type="variable">id</firstarg>
<secondarg type="variable">publishedIn</secondarg>

</mapping>
...

DS-2 contains publications indexed by CiteSeer including title, author, year and

citation, etc. We create mappings for DS-2 as well. Samples from DS-2’s mapping configu-

ration are shown as follows:

...
<!-- paper -->
<mapping>

<predicate>paper-title</predicate>
<pathGlue>citeseer/document</pathGlue>
<firstarg type="variable">key</firstarg>
<secondarg type="variable">title</secondarg>

</mapping>
<mapping>

<predicate>paper-author</predicate>
<pathGlue>citeseer/document</pathGlue>
<firstarg type="variable">key</firstarg>
<secondarg type="variable">author</secondarg>

</mapping>
<mapping>

<predicate>paper-conference</predicate>
<pathGlue>citeseer/document</pathGlue>
<firstarg type="variable">key</firstarg>
<secondarg type="variable">conference</secondarg>

</mapping>
<mapping>

<predicate>paper-cite</predicate>
<pathGlue>citeseer/document</pathGlue>
<firstarg type="variable">key</firstarg>
<secondarg type="variable">citation</secondarg>

</mapping>
...

DS-3 stores SIGMOD’s organizations and publications. DS-3 provides mappings

for each binary relation: proceeding-title, proceeding-year, proceeding-pc, and

proceeding-gc, etc.
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...
<!-- proceeding -->
<mapping>

<predicate>proceeding-title</predicate>
<pathGlue>sigmod/conf</pathGlue>
<firstarg type="variable">id</firstarg>
<secondarg type="variable">title</secondarg>

</mapping>
<mapping>

<predicate>proceeding-year</predicate>
<pathGlue>sigmod/conf</pathGlue>
<firstarg type="variable">id</firstarg>
<secondarg type="variable">year</secondarg>

</mapping>
<mapping>

<predicate>proceeding-gc</predicate>
<pathGlue>sigmod/conf</pathGlue>
<firstarg type="variable">id</firstarg>
<secondarg type="variable">org/general-chair</secondarg>

</mapping>
<mapping>

<predicate>proceeding-pc</predicate>
<pathGlue>sigmod/conf</pathGlue>
<firstarg type="variable">id</firstarg>
<secondarg type="variable">org/program-chair</secondarg>

</mapping>
...

Coordinator-2 is in charge of Source uwashington, Source dblp, Source digreview,

and Source submissions. Each source provides mappings for the SM view as sources do in

Coordinator-1.

5.3.2 User Queries

The user queries we evaluated are shown in Figure 5.6. The first seven queries are

from [65]; Q8 and Q9 are our extra queries.

The full queries are described at a high level here and are provided in full in Figure

5.7 as relational queries.

Q1: Find all XML related projects. This requires a search for projects whose area contains

a substring “XML”. The binary relation project-area is used for Q1. The local-

join graph is restricted to the only one relation project-area, so that it contains a
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Q1: Find all XML related projects

Q2: Find all projects a given person was involved in

Q3: Find all co-authors of a given researcher

Q4: Find all papers by a given pair of authors

Q5: Find papers written by researchers who lead an XML project

Q6: Find Jayavel Shanmugasundaram’s paper on VLDB’99

Q7: Find PC chairs of recent conferences and their papers

Q8: Find people at UC Berkeley and their home pages

Q9: List persons who are PC chairs at a conference both in 2003 and in 2004.

Figure 5.6: Queries for the DB-research experiments.

directed spanning tree. According to Theorem 2, no inter-source processing is needed

for this query and all subqueries in the subqueries approach (see Section 4.2) are local

subqueries.

Q2: Only binary relation project-member can satisfy this query where the member is a

given person (for example, “Alon Halevy”). Similarly, no inter-source processing is

needed for this query with only one relation.

Q3: Here we perform a join between paper-author and paper-author. As paper is not

the key of paper-author, the local-join graph restricted to these two relations doesn’t

contain a directed spanning tree. Therefore, we can’t eliminate inter-source processing

for Q3 according to Theorem 2. For example, one of inter-source subqueries is made

up of paper-author in berkeley join paper-author in citeseer.

Q4: Find all papers by a given pair of authors. This query is similar to Q3, and also

contains a join between paper-author and paper-author. Inter-source processing is

needed due to Q4’s local-join graph without a directed spanning tree.

Q5: Find papers written by researchers who lead an XML project. For this query, we

join project-leader and paper-author together. Unfortunately, there is no local-

join property between them and the local-join graph restricted to project-leader

and paper-author doesn’t contain a directed spanning tree, so that inter-source sub-

queries are necessarily generated for Q5.

Q6: Find someone’s paper on the specified conference. paper-conference and paper-author

are used in Q6. Note that paper-conference.paper is the key and paper-conference
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and paper-author have the local-join property. Q6’s local-join graph contains a di-

rected spanning tree, so no inter-source processing is mandatory for Q6’s evaluation.

Q7: proceeding-pc, paper-author, and proceeding-year are involved in Q7. Since we

can’t generate a directed spanning tree for the local-join graph restricted to these

three relations, we can’t eliminate inter-source processing for Q7. However, if we

apply the technique of partitioning inter-source subqueries described in Section 4.8 to

Q7’s processing, only some of inter-source subqueries are mandatory to be evaluated,

since some redundant subqueries could be removed from Q7’s evaluation.

Q8: Find people at UC Berkeley and their home pages. This query needs a join of

person-affiliation and person-homepage. Similar to Q3, inter-source processing

is needed for this query.

Q9: Finally, we include a little complex query which contains four binary relations. The

local-join graph restricted to the four query relations contains a directed spanning

tree, so no inter-source processing is needed for this query according to Theorem 2.

5.4 Scenario II: XML.org

Our second set of experiments used schemas from XML.org. We generated the

data for these schemas, since the original data are no longer available on the Internet. As

our experiments compare relative performance of our algorithms, the comparison is valid

no matter what data are used.

In this experiments, we created one coordinator, and under this coordinator, three

sources: customers (buyers and sellers), xcbl1 (E-commerce), and papi1 (Accounting).

Our semantic model for the XML.org dataset is shown in Figure 5.8. The queries are shown

in Figure 5.9; the last query is our extra query.

5.5 Experimental Results on the SM Approach

Now that we have described our two benchmark datasets and the queries that we

run over them, we compare and study their performance in seven different algorithms:
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• The materialization technique generates the relations in the user query at the coordi-

nator, and executes the query on the materialized data.

• The subqueries technique executes all local and inter-source subqueries, and merges

the results at the coordinator.

• The subqueries* technique is the semantically optimized version of the subqueries

technique.

• The optimized-subqueries technique is similar to the subqueries approach, except that

it avoids executing redundant inter-source subqueries.

• The optimized-subqueries* technique is the improved optimized-subqueries technique

where local and inter-source subqueries are semantically optimized.

• The wrapper technique extracts the minimum required information from each source,

combines them at the coordinator, and applies the chase.

• The wrapper* technique is the semantically optimized version of the wrapper technique.

All the experiments were executed using PostgreSQL [59] version 8.1.3 and SAXON

[61] version 8 on a 2.0 GHz Pentium M computer with 768 MB memory and 40 GB hard

disk running Windows XP Pro.

5.5.1 Semantic Optimization

As described in Section 4.5, we propose a new algorithm that rewrites XQuery

queries into more efficient equivalent queries with fewer joins and variables. Instead of

creating one variable for each binary relation in the user query, the new algorithm generates a

single variable for all binary relations that have a common “glue” variable in their mappings

and the same key.

Example 12 When Q3 in Section 5.3.2 is processed by the subqueries approach, one vari-

able is created in the XQuery query for each binary relation in Q3. A local subquery at

Source berkeley for Q3 is the following:

FOR $g0 in /berkeley/direction/project/paper,

$g00 in $g0/id, $g01 in $g0/author,

$g1 in /berkeley/direction/project/paper,

$g10 in $g1/id, $g11 in $g1/author
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WHERE $g00 = $g10 AND $g01 = ‘Alon Halevy’ AND $g11 != ‘Alon Halevy’

RETURN <author> {$g11} </author>

After semantic optimization is applied, that’s, Q3 is processed by the subqueries*

approach, only one variable is generated for two binary relations in Q3 that have a common

“glue” variable (/berkeley/direction/project/paper) and the same key (id). As a

result, an optimized version of this local subquery at Source berkeley turns to be:

FOR $br IN /berkeley/direction/project/paper[author=‘Alon Halevy’]

LET $coauthor := $br/author

WHERE $coauthor != ‘Alon Halevy’

RETURN <author> {$coauthor} </author>

5.5.2 Results

Our experimental results for the DB-Research dataset are shown in Figures 5.10-

5.11 and Figures 5.13-5.14, and the results for the XML.org dataset are shown in Figure

5.12.

The horizontal (X) axis of each of Figures 5.10-5.14 lists the queries, and the

vertical (Y) axis — the respective execution times in milliseconds. (The 9 queries used

in the DB-Research experiments are shown in Figure 5.6, and the 6 queries used in the

XML.org experiments are shown in Figure 5.9.)

Figures 5.10-5.11 show the results of four algorithms without semantic optimiza-

tion. From Figures 5.10-5.11 and Figure 5.12, we know that although the optimized-

subqueries technique seems to be the algorithm of choice for most cases, it is not always

the most efficient. In fact, we should not write off any of the algorithms. Rather, we expect

that, depending on the information sources and the user query, any of the algorithms may

outperform the other three.

In Section 4.5, we proposed a new algorithm for subquery generation in the

subqueries approach, the optimized-subqueries approach and the wrapper approach. Fig-

ures 5.13 and 5.14 illustrate the performance of the semantically optimized versions of these

three algorithms for the DB-Research dataset experiments. The semantically optimized ver-

sions, shown in the graphs as subqueries*, optimized subqueries* and wrapper*, apply

the semantic optimization to the queries then execute them.

As shown in the figures, the semantically optimized versions perform much better,
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and the subqueries* and optimized-subqueries* techniques seem to be the algorithms

of choice for most cases.

For example, Q3 and Q4, which used to take 7.648 and 4.859 seconds respectively

on the Subqueries approach, now take about two seconds (see Table 5.1) when semantic

optimization is applied.

Table 5.1: Query times (in milliseconds) for Q3 and Q4 after semantic optimization is
applied. %faster = 100|original−new|

original .
Q3 Q4

Subqueries 2301 (69.9%) 2251 (53.7%)
Optimized Subqueries 2906 (61.6%) 2108 (56.0%)

Wrapper 4806 (71.7%) 1769 (69.2%)

5.5.3 Observations

Our experimental environment may have had an impact on the results, which

should be carefully considered when interpreting these results. For XML processing, which

included local and inter-source subqueries, and the subqueries for the extraction of minimum

required information in the wrapper technique, we used XQuery on SAXON [61]. In fact,

the entire wrapper algorithm, including chase and duplicate elimination, is implemented in

XQuery. On the other hand, for the materialization technique, we used PostgreSQL [59].

This seems to have penalized the efficiency for the wrapper and, to a lesser degree, for the

subqueries approach, while favoring materialization.

We have experimentally established that our proposed methods are very compet-

itive, although, in some cases, the basic materialization method turns out to be the best.

The subqueries approach is, in general, more efficient than materialization. The optimized

subqueries technique is more efficient than the other methods without semantic optimiza-

tion for most (but not all) user queries. This is witnessed, in particular, in Q6 of the

DB-Research experiments as well as in most XML.org experiments. Despite the handicap

of the XQuery-engine inefficiencies, the wrapper technique has the best performance for

some of the XML.org experiments. Our conjecture is that when data is very regular at ev-

ery source, in the sense that each source contributes to all relations in a user query, then the

wrapper method is the most efficient. For queries where semantic constraints enable us to

eliminate all or most of the inter-source processing, the optimized subqueries is expected to
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outperform the other methods. Materialization is preferred for queries with large number of

relations where all or most inter-source subqueries are required. Finally, subqueries method

is preferable for queries with small to moderate number of relations. If we take semantic

optimization into consideration, the semantically optimized versions perform much better,

and the optimized subqueries* techniques seem to be the algorithms of choice for most cases.

From the result analysis in Section 5.5.2, although the optimized subqueries* tech-

nique seems to be the best algorithm for most cases, it is not always the most efficient.

Many aspects have an impact on the experimental results. What we should consider are

the followings: data sources, user queries and experimental tools such as SAXON, Post-

greSQL and XMLBeans. If we want to choose the best approach dynamically, we must

investigate and classify the experimental environments. The following observations comes

from both Scenario I and Scenario II.

The materialization approach may run good under one or more of the following

rules:

• Small number of unique binary relations in the user query.

• Small size of data in each source.

• The user query with some “like” clauses.

As for the subqueries-based approaches, e.g., the subqueries or subqueries* ap-

proach and the optimized subqueries or optimized subqueries* approach, they may be:

• Large size of data in each source.

• The user query with only 2 to 6 binary predicates.

• The query without any “like” clause.

• Few required inter-source queries for the Semantic Model in the optimized subqueries

or optimized subqueries* approach.

The wrapper or wrapper* approach could be better when the environment matches

one or more of the followings:

• Small size of local results before chase steps.

• Chase steps are not needed, according to our theorems.
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• Few chase steps are needed, when less key constraints and less equalities in the user

query.

• Each source has all predicates that appear the user query. As a result, less nulls are

in local results.
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Q1: select project-area.project from project-area
where project-area.project like ‘%XML%’

Q2: select project-member.project from project-member
where project-member.member = ‘Alon Halevy’

Q3: select p2.author from paper-author as p1, paper-author as p2
where p1.paper = p2.paper and p1.author = ‘Alon Halevy’ and
p2.author != ‘Alon Halevy’

Q4: select p1.paper from paper-author as p1, paper-author as p2
where p1.paper = p2.paper and p1.author = ‘Alon Halevy’ and
p2.author = ‘Zack Ives’

Q5: select paper-author.paper from paper-author, project-leader
where paper-author.author = project-leader.leader and
project-leader.project like ‘%XML%’

Q6: select paper-conference.paper from paper-conference,
paper-author where paper-conference.paper = paper-author.paper and
paper-author.author =‘Jayavel Shanmugasundaram’ and
paper-conference.conference = ‘VLDB99’

Q7: select proceeding-pc.pc, paper-author.paper from proceeding-pc,
paper-author, proceeding-year where proceeding-pc.pc =
paper-author.author and proceeding-pc.proceeding =
proceeding-year.proceeding and proceeding-year.year like ‘%200%’

Q8: select person-affiliation.person, person-homepage.homepage from
person-affiliation, person-homepage where person-affiliation.person
= person-homepage.person and person-affiliation.affiliation =
‘UC Berkeley’

Q9: select pp1.pc from proceeding-pc as pp1, proceeding-pc as pp2,
proceeding-year as py1, proceeding-year as py2 where pp1.proceeding
= py1.proceeding and pp2.proceeding = py2.proceeding and pp1.pc =
pp2.pc and py1.year = 2003 and py2.year = 2004

Figure 5.7: Relational-like queries for the DB-research experiments.

[person] [order] [item]
person-name order-buyer item-description
person-address order-seller item-price
person-phone order-price item-qty

order-item
order-itemNum

Figure 5.8: Semantic model for the XML.org schemas.
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Q1. Find all customers

Q2. Find the parts supplied by a given supplier

Q3. Find customers of a given supplier

Q4. Find suppliers who sell a given part

Q5. Find customers who also supply parts

Q6. Find customers’ ids and phones of a given supplier

Figure 5.9: Queries for the XML.org experiments.

Figure 5.10: Experimental results for the DB-Research dataset. All query times are given
in milliseconds.
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Figure 5.11: Experimental results for DB-Research (continued). All query times are in
milliseconds.

Figure 5.12: Experimental results for the XML.org dataset. All query times are given in
milliseconds.
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Figure 5.13: Semantic optimization in the DB-Research dataset. All query times are given
in milliseconds.

Figure 5.14: Semantic optimization in DB-Research (continued). All query times are in
milliseconds.
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Chapter 6

Restructured Views: Preliminaries

Classical query optimization using restructured views can result in significant addi-

tional savings in query-evaluation costs, and some commercial database systems are adding

facilities for the definition and materialization of restructured views. In this chapter, we

first present the background of restructured views (Section 6.1), and then propose our ap-

proach to define restructured views and rewrite queries using restructured views in the

remainder of this chapter. Section 6.2 provides some definitions and presents examples for

restructured views. In Section 6.3, we present conditions for determining when a (regular or

restructured) view is usable in answering a SQL query, and develop algorithms for rewrit-

ing queries in terms of usable views. We develop these results for select-project-join queries

and views without aggregation, as well as for queries and views involving group by and

aggregation. Next, we focus on our ultimate goal of combining query optimization using

regular and restructured views into a single framework for relational databases. As such,

materialized restructured views should be stored as relations, and should participate in SQL

query evaluation. In Section 6.4 we present our approach to enhancing an SQL system with

query optimization using restructured views. In Section 6.5 we present techniques to derive

such semantic information, specifically the primary-key constraints, for a restructured view.

In Section 6.6 we show how to use integrity constraints on restructured views to further

optimize rewritten queries. Finally, we carry out experiments to evaluate the effectiveness

of query optimization using restructured views, and illustrate that our approach is simple

and easily understood in Section 6.7.

In the next chapter (Chapter 7), we will incorporate the concept of materialized

restructured views into query processing and optimization in the semantic-model approach.
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6.1 Background and Motivation

We study optimization of relational queries using materialized views, where views

may be regular or restructured. In a restructured view, some data from the base table(s)

are represented as metadata — that is, schema information, such as table and attribute

names — or vice versa. Often, data from one or multiple tables can be restructured into

a new representation with significant reduction in the overall size of data. Intuitively, by

moving data values that appear frequently and repeatedly in a relation to metadata in the

view, we can represent the information in the view more compactly than by using a regular

view.

Consider, for example, the salesInfo relation of Figure 6.1, which lists stores

and their monthly sales information over a number of years. Figure 6.2 shows a restruc-

tured view of salesInfo. This salesInfoView relation represents the same information

as salesInfo, but the months (Jan, Feb, ... , Dec) now play the role of attribute names,

and the sales values for the months of each year are organized “horizontally” into a single

tuple for each store. Note that each tuple of the view salesInfoView represents the same

information that is represented by 12 tuples of the base table salesInfo. Figure 6.3 shows

another view, annualSalesView, which involves aggregation and restructuring. Each tuple

of annualSalesView represents the complete annual sales values for each store for all years.

storeID year month sales
1 2005 Jan 120000
1 2005 Feb 100000
· · · · · · · · · · · ·
1 2005 Dec 150000
2 2005 Jan 300000
· · · · · · · · · · · ·

Figure 6.1: Base relation salesInfo.

storeID year Jan Feb · · · Dec
1 2005 120000 100000 · · · 150000
2 2005 300000 · · · · · · · · ·

Figure 6.2: Restructured view salesInfoView.



60

storeID · · · 2003 2004 2005 · · ·
1 · · · 1500000 1650000 1770000 · · ·
2 · · · 3000000 2870000 2800000 · · ·

Figure 6.3: Restructured view annualSalesView.

Using restructured views in query optimization opens up a new spectrum of views

that were not previously available, and can result in significant additional savings in query-

evaluation costs. The savings can be obtained due to a significantly larger set of views

to choose from, and may involve reduced table sizes, elimination of self-joins, clustering

produced by restructuring, and horizontal partitioning.

Commercial database systems are adding facilities for the definition and materi-

alization of restructured views [16]. Our goal is to tap into this new capability for query

optimization. Semantic information, such as knowledge of the key of a view, can be used

to further optimize a rewritten query. We consider the problem of determining the key

of a (regular or restructured) view, and show how this information can be used to further

optimize a rewritten query.

Restructuring operations unfold, fold, split, and unite were introduced in [29]; the

first two operations are also known in database literature as pivot and unpivot, respectively.

Combined with relational algebra, these operations form an extended algebra capable of

querying data and metadata uniformly, and of defining restructured views within the rela-

tional data model [48].

Consider the relation salesInfo of Figure 6.1. The unfold operation takes two

attributes (column names) as parameters. Performing the operation unfoldmonth,sales on

salesInfo generates the salesInfoView relation shown in Figure 6.2. The values in column

month of salesInfo are moved to schema (attribute names) in the view, and corresponding

values in column sales are organized (horizontally) as values for these newly formed attribute

names. The fold operation is the converse of unfold.

The split operation takes one attribute as parameter, and performs a horizontal

partitioning according to the values of the specified attribute. Each partition, minus the

specified attribute column, is made into a new relation, and the value of the specified

attribute is used as the name of the relation. The unite operation is the converse of split.

Restructuring operations together with regular aggregation and group by opera-
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tions can define a broad spectrum of views that enhance regular views with restructuring.

Figure 6.3 shows one such view, annualSalesView. It represents aggregated annual sales

values for stores in a restructured view that has years as attributes (column names).

Using the full spectrum of regular and restructured views for query optimization

can result in a significant reduction in query-processing costs over using only regular views.

The extra efficiency is due to two factors:

1. Information can be represented more compactly in restructured views, hence reducing

the size (number of disk blocks) of the relation, which can benefit all queries.

2. Restructuring amounts to different physical clusterings of data. Some classes of queries

can be processed more efficiently as a result of the clustering.

The following example demonstrates some of the advantages of using materialized

restructured views in query optimization.

Example 13 (Query Optimization Using Materialized Restructured Views) We

have shown a regular relation, salesInfo, and two restructured views, salesInfoView and

annualSalesView, in Figures 6.1, 6.2, and 6.3, respectively. View salesInfoView pivots

sales amounts by month, that is, it uses months as attributes and records sales figures

of the months of each year “horizontally”. View annualSalesView aggregates (sums) the

sales amounts for the months of each year, and then pivots the sum by year. The effect

of restructuring should be evident in these views: Each tuple of salesInfoView records

the same information that is represented by twelve tuples of salesInfo, and thus the

size of the relation for salesInfoView will be smaller than that of salesInfo (generally

two to four times smaller). Similarly, each tuple of annualSalesView records the same

information that is represented by n tuples of a regular view that aggregates monthly sales

for each year, where n is the number of years sales data are available in the base table

salesInfo. Again, annualSalesInfo is, in general, smaller than a regular view that does

the same aggregation. Size reduction in this case may amount to one or two orders of

magnitude. (Note that salesInfoView clusters monthly sales for each year into one tuple,

while annualSalesView clusters all annual sales for each store into a single tuple.)

Now consider the following queries:

Q1. List stores that have a sales volume of at least one million dollars in January of 2006.
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Q2. List stores that show a rapid decline (10% or more per month) in the fourth quarter

of 2005.

Q3. List stores that doubled their annual sales between 1995 and 2005.

Q4. List hardware stores that doubled their annual sales between 1995 and 2005.

These four queries can all be expressed in SQL; for instance, a SQL definition for
Q1 is

Q1: SELECT storeID FROM salesInfo WHERE year = 2006
AND month = ‘January’ AND sales >= 1000000;

Q1 is a simple query whose evaluation requires a full scan of the table salesInfo

in the absence of an index on month or year. It can be processed more efficiently using the

restructured view salesInfoView due to its smaller size.

Evaluating the query Q2 can benefit from the clustering that salesInfoView pro-

vides, as the view clusters the information of interest (sales amounts for the fourth quarter

of 2005) into a single tuple for each store. Evaluating Q2 on the base table salesInfo

requires two self-joins, which can be eliminated using salesInfoView; in addition, the size

of the view is smaller than the size of salesInfo. As a result, the savings in evaluation costs

for Q2 using salesInfoView can amount to an order of magnitude or more. We discuss Q2

in detail in Example 22 in Section 6.6.

Q3 can benefit from the clustering annualSalesView provides. Similarly to Q2,

evaluating Q3 using a restructured view is more efficient than evaluating it on a regular

view that aggregates monthly sales amounts for each year.

While similar to Q3, Q4 has an additional restriction to only one type of store:

hardware stores. The second view of Example 17 (Section 6.2.1) is usable in answering this

query. Note that this view is basically a horizontal partitioning, on the store type attribute,

of a restructured view that lists stores and their annual sales (such as annualSalesView).

The size of the materialized view for hardware stores can be orders of magnitude smaller

than the size of the base table or of a regular view, due to horizontal partitioning as well

as to representing in a single tuple all annual-sales figures for a store. Hence, our general

framework also accommodates optimization techniques based on horizontal partitioning.

(Compare this to the current practice that deals with horizontal partitioning separately

from query optimization using materialized views.)
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6.2 Restructured Views: Definitions and Examples

Traditionally, the relational model distinguishes between the schema (intention)

and data (extension). But in a restructured view, data values can play the role of schema

elements — such as attribute and relation names — and vice versa. (As an illustration,

consider the two relations in Figures 6.1 and 6.2.) We use the following definitions to

accommodate restructured views as an extension of the relational model.

Definition 2 (Flexible Schema; Fact) A flexible schema (schema, for short) is a pair

(A,D) where A is a set of attributes, and D is a set of values (a domain). A schema is

regular if it has attributes only.

Let S = (A,D), A = {A1, . . . , An}, D = {d1, . . . , dm}, be a flexible schema. A

fact r on the schema S is a statement of the form p(A1 : u1, . . . , An : un, di : v), where p is

a predicate symbol, u1, . . . , un, v are values, and di ∈ D.

Our formalism makes it convenient to discuss in a uniform way views (regular and

restructured), view definitions, view usability, and query rewriting (Sections 6.2.1 and 6.3).

This is achieved by separating the issue of representing data from that of relational (tabular)

storage of data. Our ultimate goal, however, is to use these results for query optimization

in a practical setting in an SQL system, where materialized views are stored and accessed

as relations. Hence, in this section we also address relational storage of restructured views.

To accommodate relational (tabular) representation, we borrow from [47] the notion of

molecule. A molecule combines multiple facts into a single representation.

Definition 3 (Molecule) Let S = (A,D), A = {A1, . . . , An}, D = {d1, . . . , dm}, be a

flexible schema. A partial molecule m on the schema S is a statement of the form p(A1 :

u1, . . . , An : un, e1 : v1, . . . , ek : vk), where p is a predicate symbol, u1, . . . , un, v1, . . . , vk are

values, and e1, . . . ek ∈ D, ei 6= ej , i, j = 1, . . . , k. We denote {e1, . . . , ek} ⊆ D by Dm and

call it the domain of the molecule m. A molecule m is total if Dm = D, i.e., every value of

the domain D appears in the molecule. Note that a fact is (a special case of) a molecule.

Given a molecule m, we write m(Ai) (or m(di)) to refer to Ai (or di) component of m. We

use m(A) as a shorthand for m(A1), . . . ,m(An).

Example 14 (Regular and Restructured Relations) Consider a regular schema

salesInfo(storeID,year,month, sales) and the relation of Figure 6.1 on salesInfo.

This relation is represented by the following facts:
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salesInfo(storeID: 1, year: 2005, month: Jan, sales: 120000)

· · ·
salesInfo(storeID: 1, year: 2005, month: Dec, sales: 150000)

salesInfo(storeID: 2, year: 2005, month: Jan, sales: 300000)

· · ·
Now consider a restructured view salesInfoView that “unfolds” (or “pivots”)

salesInfo on month. The tabular representation of this view is shown in Figure 6.2. In

our abstraction, each tuple of this relation is represented by twelve facts. For example, the

first tuple is represented as follows:

salesInfoView(storeID: 1, year: 2005, Jan: 120000)

· · ·
salesInfoView(storeID: 1, year: 2005, Dec: 150000)

The same tuple is represented by the following molecule:

salesInfoView(storeID: 1, year: 2005, Jan: 120000, Feb:100000, ..., Dec:150000)

We need the following definitions to bridge the gap between facts and molecules:

Definition 4 (Mergeable Molecules) Two molecules m1 and m2 on the schema S =

(A,D), A = {A1, . . . , An} are mergeable if (i) m1(A) = m2(A), and (ii) Dm1 ∩ Dm2 = φ.

The merge of two mergeable molecules m1 and m2, written m1 ⊕m2, is a molecule m on

S where m(A) = m1(A), Dm = Dm1 ∪Dm2 , and for all d ∈ Dm, m(d) = m1(d) if m1(d) is

defined, otherwise m(d) = m2(d).

Definition 5 (Maximal Molecule) Given a molecule m and a set of molecules M , we

say m is maximal with respect to M if there is no molecule in M that is mergeable with m.

A set of molecules M is called maximal if every molecule in M is maximal with respect to

M .

Definition 6 (Canonical Representation) Given a set F of facts on the schema S =

(A,D), we define a canonical (molecular) representation of F as a set of maximal molecules

obtained by repeatedly merging facts of F.
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In general, a given set of facts F on a schema S = (A,D) can have more than

one canonical representation. But if A is the key of S, then the canonical representation is

unique:

Lemma 2 (Uniqueness of Canonical Representation) A set of facts F on a schema

S = (A,D) has a unique canonical representation if A is the key for S.

Proof: We can construct a canonical representation for F by (1) partitioning facts

F according to their A values, and (2) merging the facts in each partition. Since A is the

key, each partition can have at most one fact with a value for a given d ∈ D. Hence, all

facts in a partition can be merged into a single molecule. The set of molecules obtained in

this way is maximal since each has a different A value.

Given a set of facts F on schema S = (A,D), a canonical representation M of

F can be represented in relational (tabular) form. Each molecule m ∈ M is represented

by a tuple on the (regular) schema (A1, . . . , An, d1, . . . , dk), where {A1, . . . , An} = A and

{d1, . . . , dk} = D. If molecule m is partial, it should be padded with a special value for

missing values in D to make it into a full tuple. We denote this special (padding) value by

π. The reason we use this special value instead of a null is to be able to distinguish between

nulls that may exist in the base relation and the padding values used to represent partial

molecules by full tuples. In this way, the relational representation is lossless, meaning that

we can obtain the original set of facts from the relational representation.

Example 15 (Relational Representation) Suppose a store with storeID 567 was opened

in February 2003. It would have sales figures for February through December of 2003, but

no sales figure for January 2003. Its canonical representation for salesInfoView will have

the following partial molecule (plus possibly total and partial molecules for 2004 and later

years).

salesInfoView(storeID: 567, year: 2003, Feb: 300000, Mar: 330000, ..., Dec: 400000)

The corresponding relational representation will have the following tuple for this

store for 2003:
storeID year Jan Feb Mar · · · Dec

567 2003 π 300000 330000 · · · 400000
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6.2.1 View Definition

We use S-LOG, a Prolog-like language, to define views in our framework. In this

subsection we first present some examples, then give a brief discussion of S-LOG.

Example 16 (View Definition) The view definition for salesInfoView in Example 14

is the following S-LOG rule (uppercase letters represent variables):

salesInfoView(storeID: I, year: Y, M: S) ←

salesInfo(storeID: I, year: Y, month: M, sales: S)

Note that while salesInfo has the regular schema (storeID, year, month, sales),

salesInfoView has the (flexible) schema ({storeID, year}, D), with domain D = {Jan,
Feb, ..., Dec}. This is achieved by using variable M; M is bound to data (months Jan,

Feb, . . .) in the body, while playing the role of an attribute name in the head of the rule.

Example 17 (Restructured spj views) This example demonstrates that S-LOG can

combine select-project-join (SPJ) view capability with a variety of aggregation and restruc-

turing operations. Suppose relation storeType(store ID, type) specifies a type (e.g.,

grocery, hardware, etc.) for each store. The following definition generates multiple rela-

tions, one per store type. It is basically a partitioning of storeInfoView of Example 16

according to store type.

T(storeID: I, year: Y, M: S) ←

salesInfo(storeID: I, year: Y, month: M, sales: S), storeType(storeID: I, type: T)

As another example, consider view definition

T(storeID: I, Y: sum(S)) ←

salesInfo(storeID: I, year: Y, month: M, sales: S), storeType(storeID: I, type: T)

It generates multiple relations, one per store type. Each relation lists for each store all total

annual sales figures in a single tuple, arranged horizontally.

Introduction to S-LOG

S-LOG is a simplified version of schemaLOG [47]. The main difference between S-LOG and

schemaLOG is that schemaLOG facts contain a tuple-id component while S-LOG facts do
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not, which makes S-LOG simpler and closer to the relational model. Atoms of S-LOG

correspond to facts on (flexible) schemas (see Definition 2), where components can be

constants or variables. View definitions use S-LOG rules, defined as follows:

Definition 7 An S-LOG rule has the form h(x)←b(x, y), where (1) h(x), the head of the

rule, is a single S-LOG atom containing the set of variables x, and (2) b(x, y), the body of the

rule, is a conjunction of S-LOG atoms and comparison conditions containing the set of vari-

ables x and y. The set of variables x in the head of the rule is called distinguished variables.

Note that we require the “safety condition” — that is, in an S-LOG rule, distinguished

variables must also appear in the atoms of the body.

Semantics of S-LOG

The valuation-based semantics of schemaLOG [47] is applicable to S-LOG as well. For

example, given the fact

salesInfo(storeID: 1, year: 2005, month: Jan, sales: 120000)

the instantiation of the definition for salesInfoView of Example 16 binds variables I, Y ,

M , and S to 1, 2005, Jan, and 120000, respectively, which generates this fact in the view:

salesInfoView(storeID: 1, year: 2005, Jan: 120000)

It is easy to see that applying the view-definition rule of Example 16 to salesInfo

facts produces the salesInfoView facts represented in Example 14.

Aggregation

A query or view definition can involve aggregation. To accommodate aggregation, we

extend S-LOG rules by allowing aggregate functions in the head of the rules. We adopt the

convention of [15, 56] that an implicit “group by” by the non-aggregated variables in the

head is applied to the query or view definition.

Example 18 (Aggregation) This definition

annualSalesInfo(storeID: I, year: Y, annualSales: sum(S)) ←

salesInfo(storeID: I, year: Y, month: M, sales: S)

of a regular view is equivalent to the SQL view definition
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CREATE VIEW annualSalesInfo(storeID,year,annualSales) AS SELECT
storeID, year, SUM(sales) FROM salesInfo GROUP BY storeID, year;

Now consider this definition of a restructured view:

annualSalesView(storeID: I, Y: sum(S)) ←

salesInfo(storeID: I, year: Y, month: M, sales: S)

Similarly to annualSalesInfo, annualSalesView performs a group by storeID

I and year Y , and aggregates the sales figures. But the schema of annualSalesView

is ({storeID}, D), where domain D contains the years that appear in the base relation

salesInfo. A tabular representation of annualSalesView has the

schema (storeID,...,2003,2004,...). That is, it lists the annual-sales figures “hori-

zontally” in columns labeled by the year. Figure 6.3 depicts this view. Note that each

tuple of the table in Figure 6.3 represents the information of n tuples of the regular view

annualSalesInfo, where n is the number of years for which sales information is available

in the base table salesInfo.

6.3 View Usability and Query Rewriting

We would like to extend view usability and query optimization using materialized views

[64] to restructured views. This provides the database system (and the DBA) with a

significantly larger set of views to choose from for materialization and utilization in query

optimization, which can result in significant improvements in query-answering performance.

In this section we concentrate on view usability and query rewriting for restructured views.

As regular views are special cases of restructured views, our results form the basis for a

unified approach for query optimization using materialized regular and restructured views

in database systems. We formulate our view-usability results first for unaggregate queries

and views (Section 6.3.1), and then for aggregate queries and views (Section 6.3.2), with

aggregate functions SUM, COUNT, MAX, and MIN.

6.3.1 Unaggregate Queries and Views

Let Q be a query in S-LOG, and V be a view defined by an S-LOG rule r. Let Vr,

VQ, and CQ denote the set of variables in r, the set of variables in Q, and the set of constants

in Q, respectively. The following definitions, from [8], apply equally to our framework:
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Definition 8 (Valid Renaming) A valid renaming σ of r with respect to Q is a mapping

from Vr to VQ ∪ CQ, σ : Vr → VQ ∪ CQ, such that

(1) If v ∈ Vr is a distinguished variable (see Definition 7), then σ(v) ∈ VQ ∪ CQ.

(2) If v ∈ Vr is a non-distinguished variable, then σ(v) ∈ VQ, and σ(v) 6= σ(v′) for

any other variable v′ ∈ Vr.

The purpose of renaming is to make the body of the view (with the exception of

comparison predicates) to become equal to (part of) the body of the query.

Definition 9 (Safe Occurrence; Safe Substitution) Given a view V (defined as an

S-LOG rule r) and a query Q, we say Q has a safe occurrence of V if there is a valid

renaming of r with respect to Q, such that

1. The renamed rule has the form V (x)←L(x, y), I(x), where I(x) is a conjunction of

comparison conditions on (possibly a subset of) variables in x. Note that L(x, y) may

contain comparison conditions on variables in y (but not x).

2. The query Q has the form Q(u)←L(x, y), I ′(x), G(v), where y is disjoint from x, v,

and u.

3. Conditions I ′(x) of the query logically imply conditions I(x) of the view: I ′(x)⇒ I(x).

The safe substitution corresponding to the above safe occurrence is: Q′(u)←V (x), I ′(x), G(v).

We can now state the following result for S-LOG queries and views without ag-

gregation.

Theorem 4 (View Usability) Let Q and V be select-project-join S-LOG query and view,

respectively. Then view V is usable for query Q if Q has a safe occurrence of V , in which

case Q can be rewritten into a (multi-set [7]) equivalent query that uses the view V in its

body. The rewritten query is the safe substitution mentioned above.

Proof: Let Q be a query that has a safe occurrence of view V . Then Q has the

form Q(u)←L(x, y), I ′(x), G(v), and V can be renamed as V (x)←L(x, y), I(x). Consider

query Q′(u)←V (x), I ′(x), G(v), which is the safe substitution of V in Q. We show Q ≡ Q′

by showing a 1:1 correspondence between the facts generated for Q and those generated for
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Q′. Suppose that values x1, y1, and v1 in facts corresponding to L and G generate a fact

Q(u1) by valuation Q(u1)←L(x1, y1), I ′(x1), G(v1). Then, since I ′(x) =⇒ I(x), conditions

I(x1) are also true, and V (x1) is generated by V (x1)←L(x1, y1), I(x1) in the view V . Hence

Q′(u1) will be generated for the query Q′ by Q′(u1)←V (x1), I ′(x1), G(v1).

Conversely, assume values x1, y1, and v1 generate V (x1) and Q′(u1) by instan-

tiations V (x1)←L(x1, y1), I(x1) and Q′(u1)←V (x1), I ′(x1), G(v1), respectively. Then they

also generate Q(u1) by Q(u1)←L(x1, y1), I ′(x1), G(v1).

Theorem 4 gives us a sound algorithm (that is, each output of the algorithm is

valid) for obtaining equivalent rewritings of SQL queries using restructured views. Note

that the soundness result holds (1) for all of SQL select-project-join queries and of regular

or restructured select-project-join views, all possibly with arithmetic comparisons, and (2)

under each of set, bag (i.e., multi-set [7]), and bag-set [7] semantics for query evaluation.

6.3.2 Queries and Views with Aggregation

We now extend our approach to rewriting SQL queries with aggregation SUM,

COUNT, MAX, or MIN using restructured views. We begin by giving a motivating example.

Example 19 Consider a SQL query Q “Return the sum of sales per store since the begin-

ning of the year 2003.” In S-LOG, Q can be defined as

q(storeID: I, since2003sales: sum(S)) ←

salesInfo(storeID: I, year: Y, month: M, sales: S), Y ≥ 2003

We can evaluate the query Q by using the following two equivalent rewritings of Q, R1 and

R2, which use restructured views. Rewriting R1 uses view salesInfoView, and rewriting

R2 uses view annualSalesView; see Examples 16 and 18 for the definitions of these two

restructured views.

r1(storeID: I, since2003sales: sum(S)) ←

salesInfoView(storeID: I, year: Y, M: S), Y ≥ 2003

r2(storeID: I, since2003sales: sum(S)) ←

annualSalesView(storeID: I, Y: S), Y ≥ 2003

As discussed above, using restructured view salesInfo View instead of salesInfo may re-

sult in a reduction in evaluation costs for Q. Moreover, using instead the aggregate restruc-
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tured view annualSalesView may result in further significant reductions in the evaluation

costs for the query.

Our goal in this subsection is to provide an analog of Theorem 4 for aggregate SQL

queries and restructured views with and without aggregation. These results will allow us to

obtain equivalent rewritings of aggregate queries using restructured views, such as rewritings

R1 and R2 in Example 19. Our approach, which is an extension of the contributions

of [15, 56] to restructured views, is twofold. First, we define rules (Lemma 3) that tell

us when an aggregate rewriting using a restructured view is equivalent to its expansion

in terms of the base relations. As has been shown in [15], such equivalence-to-expansion

problems need to be addressed essentially on a case-by-case basis, by defining and using

rewriting templates that allow only certain types of views in the body of the rewriting and

only certain group-by and aggregation attributes in the head of the rewriting.

Second, we use our rules to reduce the problem of determining equivalence of an

aggregate query to a rewriting to the problem of determining equivalence of the query to

the expansion of the rewriting (Theorem 5). The latter problem has been solved in [56] for

queries with aggregate functions SUM, COUNT, MAX, and MIN.

We now formulate Lemma 3 that spells out our rules that define when an aggregate

rewriting using a restructured view is equivalent to its expansion in terms of the base

relations. (In this subsection we use the term “rewriting” to denote queries defined in

terms of views.) Our rewriting templates are an extension of central rewritings of [2]

to restructured views. Intuitively, in central rewritings the unaggregated core is a SPJ

query, and only one view (the central view) contributes to computing the aggregated query

output. Both rewritings in Example 19 are central rewritings. Central rewritings are a

natural choice in many applications; for instance, in the star-schema framework [6] the fact

table provides the aggregate view, and the dimension tables provide the other views in the

rewritings. In our analysis, we chose central rewritings for their simplicity. As there is a

natural relationship between some classes of rewritings in [2] and in [15], our results also

apply to rewritings of [15].

Lemma 3 uses the notion of an expansion Rexp of a central rewriting R. We

obtain Rexp by (1) replacing all view literals in R by the bodies of their definitions, using

fresh variables for non-distinguished variables as usual, and by (2) replacing the aggregate

function in the head of R by the aggregate function of the central view. (As a special case, if
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the central view is unaggregated, the heads of R and Rexp use the same aggregate function.)

For instance, the expansion of rewriting R2 in Example 19 is defined as

rexp
2 (storeID: I, since2003sales: sum(S)) ←

salesInfo(storeID: I, year: Y, month: M, sales: S), Y ≥ 2003

Lemma 3 (Rewriting Templates) Let R be a regular central rewriting with aggregation

SUM, COUNT, MAX, or MIN that uses no more than one restructured view and zero or more

regular views. Then Rexp ≡ R provided that (1) R is a MAX or MIN rewriting, or the

following rule is observed: (2) In case R is a SUM or COUNT rewriting, all noncentral views

are unaggregated and are evaluated using bag projection.

Proof: The key intuition behind restructured aggregate views is that they are

just a different tabular representation such as based on a pivot operation behind some

regular aggregate view. (For an example, consider view annualSalesView.) Thus, the result

of the lemma follows directly from the results in [2] on aggregate rewritings with regular

views, and from Theorem 4 on view usability for restructured views. Note that rewriting

R can be viewed as the result of doing a safe substitution of the central view of R into the

expansion Rexp of R.

We refer to rewritings that satisfy the equivalence test of Lemma 3 as admissible

aggregate rewritings. Note that the rules of Lemma 3 work for rewritings that use restruc-

tured (and regular) views, as well as for rewritings that use only regular views. Thus, the

role of Lemma 3 in our general framework is to extend the applicability of central rewritings

of [2] to restructured as well as regular views.

We now use the rules of Lemma 3 to reduce the problem of determining equivalence

of an aggregate query Q to a rewriting R to the problem of determining equivalence of Q

to the expansion Rexp of R. As we have already mentioned, once the reduction has been

done we can decide whether Q is equivalent to Rexp (and thus whether Q is equivalent to

R) by using the results of [56].

Theorem 5 Let Q and V be select-project-join S-LOG query and view, respectively, such

that Q has aggregation SUM, COUNT, MAX, or MIN, and V may or may not have aggregation.

Then V is usable for Q if (1) Q has a safe occurrence of V , and (2) the result R of rewriting

Q using V is an admissible aggregate rewriting. If both (1) and (2) are satisfied, the rewriting

R is equivalent to the query Q.



73

Proof: The result of the theorem is straightforward from the definition of central

rewritings [2], from Theorem 4, and from Lemma 3.

Theorem 5 gives us a sound algorithm for equivalently rewriting aggregate queries

using regular and restructured views. Note that the soundness result holds for all of SQL

aggregate select-project-join queries and of SQL regular or restructured select-project-join

views (possibly with aggregation), all possibly with arithmetic comparisons. In particular,

by Theorem 5 both rewritings (R1 and R2) of Example 19 are equivalent to the query Q in

the example. As a result, each of R1 and R2 can be used to reduce the evaluation costs of the

query Q on a relational database where the views used in the rewritings (salesInfoView

in R1 and annualSalesView in R2) are materialized as stored relations.

6.4 SQL Optimization

In this section we address the additional details needed to apply our results in an SQL

database system. In this setting, all materialized views — including restructured views

— should be stored and accessed as relations, and queries (including rewritten queries)

should be definable in SQL. The additional capability required is the ability to define and

materialize restructured views, which has been incorporated into some commercial database

systems [16].

Given an SQL query, we can use our usability results of Section 6.3 to rewrite the

query with respect to a usable view. But the resulting query may not be expressible in

SQL. The reason is that S-LOG is more powerful than SQL in its ability to treat data and

metadata (schema information) uniformly. To make sure the rewritten query is expressible

in SQL, the variables in V (x) in the body of the rewritten query should only correspond

to data. That is, no variable should appear in V (x) in the position of a schema element

(attribute name, relation name). Or, if a variable v does appear in a metadata position,

then a condition of the form v = constant should also exist in the rewritten query. The

following result guarantees that the rewritten query is in SQL. Let V be a restructured view

defined by the S-LOG rule r, and Q be an SQL query. Let Vr be the set of variables in the

rule r, and V m
r ⊆ Vr be those variables in the head of r that are in metadata positions.

Theorem 6 (SQL Usability) V is SQL-usable in answering Q if it is usable in answering

Q with respect to a valid renaming σ, and, further, for all variables v ∈ V m
r , if σ(v) is a
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variable, then the rewritten query contains a condition σ(v) = c for some constant c, or

such a condition is implied by the conditions of the rewritten query.

Proof: Let Q′ be the rewritten query w.r.t. the renaming σ. For each variable

v ∈ V m
r , we replace σ(v) in Q′ by the constant c from σ(v) = c, and remove any condition

that involves σ(v). The result is an S-LOG query with variables in data positions only,

which is expressible in SQL.

Finally, query rewriting needs one additional detail in an SQL database setting.

Conditions should be added to the rewritten query to ensure that “padding” values π do

not impact the answer to a query.

We notice that padding values can be generated in the relational representation

of a view only when the view-definition rule has a variable in an attribute-name position

in the head of the rule. Let Q be an SQL query, and V be an SQL-usable view for Q.

Let V (x) be the head of the rule defining the view V , and xa be the set of variables that

appear in attribute-name positions in V (x). Let σ be the renaming function used for testing

SQL-usability and for rewriting the query, and let Q′ be the rewritten query according to

Theorem 4 or to Theorem 5.

Example 20 (SQL Query Rewriting) Consider the relational representation of the view

salesInfoView defined on the base relation salesInfo (Example 16). The query “List

maximal sales for the month of January for each store for their sales since 2000” is written

as follows:

maxJanSales(storeID: I, janSales: max(S)) ←
salesInfo(storeID:I,year:Y,month:‘Jan’,sales:S), Y>1999

The view salesInfoView is SQL-usable in answering this query. According to

Theorem 5, the rewritten query is:

maxJanSales(storeID: I, janSales: max(S)) ←
salesInfoView(storeID: I, year:Y, Jan: S), Y > 1999

The rewritten query for the relational representation is obtained by adding the

condition S 6= π to the body:

maxJanSales(storeID: I, janSales: max(S)) ←
salesInfoView(storeID:I,year:Y,Jan:S), Y>1999, S 6= π
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Or, in SQL:

SELECT storeID, MAX(Jan) FROM salesInfoView WHERE year>1999 AND
Jan<>padding-value GROUP BY storeID

6.5 Deriving Integrity Constraints in Restructured Views

Integrity constraints, such as key and foreign-key constraints, play an important role in

database design and in query optimization. They become even more important for query

optimization using materialized restructured views. As we will discuss in Section 6.6,

knowledge of integrity constraints for restructured views can be used for certain classes

of queries to further optimize the rewritten query with significant improvements in the

query-evaluation efficiency.

In this section we concentrate on the problem of deriving integrity constraints in

views. Two factors determine integrity constraints in views: (1) the view definition, and

(2) integrity constraints in the corresponding base relations.

6.5.1 Integrity Constraints in Aggregate Views

The group-by operation of aggregate views naturally generates key constraints in the view.

For example, consider the views annualSalesInfo and annualSalesView of Example 18.

The key of annualSalesInfo is (storeID, year), as a result of grouping by these two

attributes. The case of annualSalesView, which is a restructured view, is somewhat differ-

ent. Here, the group-by is also by storeID and year. However, year (or rather the variable

that is bound to year), is used as attribute name in the aggregation part of the head of

the view-definition rule. The key of annualSalesView is the single attribute storeID, see

Figure 6.3.

We can state the following result regarding integrity constraints in aggregate views.

Let an aggregate view V be defined by an S-LOG rule. The head of the rule has the form

view-name(target), where target contains non-aggregation components of the form att:var

and aggregation components of the form att:agg-function(var), where agg-function is an

aggregate function such as MIN, MAX, SUM, etc.

Theorem 7 (Key of an Aggregate View) Let view V be as above. The key of V is the

set of attributes that appear in non-aggregation components in the head of the view-definition

rule.
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We should note that attribute field (att in att:var) can be a constant or a variable.

By “set of attributes” in Theorem 7 we mean the union of (1) the set of constant attributes,

and of (2) the domain of the variable attribute (if any) in the non-aggregation components in

the head. In Example 18, the view definition for annualSalesView has only one (constant)

attribute, storeID, in the non-aggregation components of its head. Hence, storeID is the

key of annualSalesView.

6.5.2 Constraints Implied by Base Relations

Given key constraints on base tables, or, more generally, a set of functional dependencies

(FDs) on base tables, we would like to derive the constraints that hold in a restructured

view defined by an S-LOG rule r. We will use an S-LOG-based declaration for FDs. For

example, consider the relation salesInfo(storeID, year, month, sales). Suppose that

(storeID, year, month) is the key of sales Info, that is, the FD storeID, year, month

→ sales holds in salesInfo. We express this FD as follows:

salesInfo(storeID: I, year: Y, month: M, sales: S),

salesInfo(storeID: I, year: Y, month: M, sales: S’) ⇒ S = S’

which is stating that two salesInfo facts with the same values for storeID, year, and month

must also have the same value for sales. This representation is suitable for our flexible-

schema framework. For example, consider the view salesInfoView of Example 16. The

above FD is expressed as follows for salesInfoView:

salesInfoView(storeID: I, year: Y, M: S),

salesInfoView(storeID: I, year: Y, M: S’) ⇒ S = S’

For certain restructured views, integrity constraints implied by FDs in base ta-

bles cannot be expressed as FDs. Yet, our S-LOG formalism allows us to represent these

constraints. In the rest of this section, we briefly discuss the closed-world semantics of

view-definition rules, then present a logical process to derive integrity constraints in views.

Semantics of View-Definition Rules

We follow the closed-world semantics for view-definition rules. This is the usual semantics

for query processing and query optimization using materialized views. In contrast, the

open-world semantics has been used for data-integration applications. Interested readers
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are referred to [30] for a comprehensive discussion.

Intuitively, the closed-world semantics states that a view defined in S-LOG consists

of the facts derived by the rule and nothing else. We can represent this semantics for a view

V defined as v(x)←b(x, y) by the logical statement

∀x(v(x) =⇒ ∃y(b(x, y)))

The following example demonstrates our logical method for verifying integrity

constraints that hold in a view.

Example 21 Consider the view salesInfoView of Example 16. The corresponding base

relation is salesInfo(store ID, year, month, sales). Suppose that (storeID, year,

month) is the key of salesInfo.

We can verify that the following FD holds in the view:

salesInfoView(storeID: I, year: Y, M: S),

salesInfoView(storeID: I, year: Y, M: S’) =⇒ S = S’

We observe that, by the closed-world semantics:

salesInfoView(storeID: I, year: Y, M: S),

salesInfoView(storeID: I, year: Y, M: S’) =⇒
salesInfo(storeID: I, year: Y, month: M, sales: S),

salesInfo(storeID: I, year: Y, month: M, sales: S’)

But, since (storeID, year, month) is the key for salesInfo:

salesInfo(storeID: I, year: Y, month: M, sales: S),

salesInfo(storeID: I, year: Y, month: M, sales: S’) =⇒ S = S’

Hence, we have verified the following FD in the view:

salesInfoView(storeID: I, year: Y, M: S),

salesInfoView(storeID: I, year: Y, M: S’) =⇒ S = S’

6.6 Optimizing Rewritten Queries

In Section 6.5 we discussed how to determine the key of a view. This knowledge can be

used to optimize rewritten queries, with a potential for significant improvements in the

evaluation efficiency for certain classes of queries.
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As we saw in Section 6.1, the added efficiency due to restructured views is pos-

sible because (1) a restructured view can represent the information of a regular view in a

much smaller relation, and (2) restructured views naturally perform clustering of data by

organizing many tuples of a regular view into a single tuple, or by horizontal partitioning.

Optimization of rewritten queries discussed in this section allows us to maximize the benefit

from the second factor.

We demonstrate this further optimization by the following example. The opti-

mizer uses semantic knowledge (key constraints) to determine that information needed for

answering a user query is clustered within single tuples, and hence, it is able to eliminate

costly self-joins:

Example 22 (Optimization of Rewritten Queries) Consider a query “List stores

that show a rapid decline in sales (10% or more per month) in the fourth quarter of 2005.”

Using the relation salesInfo, the query is:

decliningStores(storeID: I) ←
salesInfo(storeID: I, year: 2005, month: ’Oct’, sales: S1),

salesInfo(storeID: I, year: 2005, month: ’Nov’, sales: S2),

salesInfo(storeID: I, year: 2005, month: ’Dec’, sales: S3),

S2 ≤ 0.9 × S1, S3 ≤ 0.9 × S2

The view salesInfoView is SQL-usable for this query. The rewriting is applied

three times to replace the three occurrences of salesInfo in the body with salesInfoView.

The rewritten query is:

decliningStores(storeID: I) ←
salesInfoView(storeID: I, year: 2005, Oct: S1),

salesInfoView(storeID: I, year: 2005, Nov: S2),

salesInfoView(storeID: I, year: 2005, Dec: S3),

S2 ≤ 0.9 × S1, S3 ≤ 0.9 × S2

In the absence of key constraints, the rewritten query for relational representation

of salesInfoView view is the same as the query above with the addition of constraints

S1 6= π, S2 6= π, and S3 6= π. The rewritten query is more efficient than the original query

due to the reduced size of the view salesInfoView (which is, in general, two to four times

smaller than salesInfo), resulting in an evaluation time possibly 6 to 12 times faster than
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the original query, assuming linear time for join operation.

However, the optimizer also knows that (storeID, year) is the key for

storeInfoView (see Example 21). Then the rewritten query can be further optimized into:

decliningStores(storeID: I) ←
salesInfoView(storeID:I, year:2005, Oct:S1, Nov:S2, Dec:S3),

S1 6= π, S2 6= π, S3 6= π, S2 ≤ 0.9 × S1, S3 ≤ 0.9 × S2

The reason is that the three atoms in the body of the first rewritten query all have

the same values for (storeID, year), which is the key for salesInfoView. Hence, these

atoms are represented by a single tuple in the view. In relational terms, this optimization

eliminates (multiple) self-joins of salesInfoView, further reducing the execution time by

a factor of 3 or more, for an overall reduction of 18 to 36 times in execution time. Note

that this additional optimization becomes possible by the knowledge of the key for the

restructured view, which was determined by techniques discussed in the previous section.

6.7 Experiments on Restructured Views

We have carried out extensive experiments to evaluate the effectiveness of query

optimization using restructured views. All the experiments were executed on a 2.0 GHz

Pentium M computer with 768 MB memory and 40 GB hard disk running Windows XP

Pro. To improve the accuracy of the results, each query was executed 12 times, then the

smallest and largest execution times were eliminated, and the remaining 10 execution times

were averaged to obtain the final results.

In the first set of experiments, we used the salesInfo database (Section 6.7.1)

introduced in Section 6.1. We present the second set of experiments on the Stocks database

in Section 6.7.2. In Section 6.7.3, we repeated our experiments with the salesInfo database

using the IBM DB2 to evaluate the effects of our proposed optimization approaches using

restructured views with a commercial-strength database.

6.7.1 Scenario III: SalesInfo

In this subsection we report the results of our experiments that were run using

PostgreSQL [59] version 8.1.3. In the first set of experiments we used the salesInfo database
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schema introduced in Section 6.1. Different database sizes were generated for 5000, 10000,

and 20000 stores, corresponding to database sizes 69MB, 137MB, and 275MB, respectively.

Although these databases are not too large, the experiment results clearly demonstrate the

relative merits of using restructured views in query optimization. We added two queries to

the four listed in Example 13. The queries are listed below for convenience. The results of

our experiments are summarized in Table 6.1.

Q1. List stores that have a sales volume of at least one million dollars in January of 2006.

Q2. List stores that show a rapid decline (10% or more per month) in the fourth quarter

of 2005.

Q3. List stores that doubled their annual sales between 1995 and 2005.

Q4. List hardware stores that doubled their annual sales between 1995 and 2005.

Q5. List sales of storeID “500” for January 2000.

Q6. List annual sales of storeID “500” for the year 2000.

Table 6.1: Results of our PostgreSQL experiments using the SalesInfo databases.
Query 5K stores 10K stores 20K stores average

(69MB) (137MB) (275MB) speedup
Q1 748.7 128.3 1325.8 245.0 2506.0 358.8 6
Q2 2178.1 118.2 4443.3 218.2 8690.9 247.4 25
Q3 1740.9 32.9 3450.4 67.1 6725.6 138.5 51
Q4 1259.7 6.7 2492.3 13.9 4799.6 27.8 180
Q5 683.6 107.4 1250.8 220.4 2336.5 338.5 6
Q6 88.3 4.8 192.2 9.4 333.6 19.0 19

Discussion:

In Table 6.1 two execution times are shown for each query and each database

size. The first value is the execution time using materialized regular views. The second

value shows the execution time using materialized restructured views. The last column,

labeled “speedup”, shows the average ratio of execution time using regular view to the

execution time using restructured view. Hence, Q1 executes 6 times faster on the average

when restructured views are used, Q2 executes 25 times faster, and so forth.
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Queries Q1 and Q5 are simple, involving a scan of salesInfo table (for regu-

lar view) or a scan of the restructured view salesInfoView (See Figures 6.1 and 6.2).

The speedups for these queries are due to the reduced size of salesInfoView, which is

about 6 times smaller than salesInfo. Query Q6 is similar, except it scans the regular

view annualSales, which aggregates sales annually and has the schema (storeID, year,

annualSales), versus the restructured view annualSalesView of Figure 6.3. In this case

the restructured view is about 19 times smaller than the regular view, resulting in a speedup

of 19. Queries Q2 and Q3 benefit from restructured views in two ways: First the smaller

sizes of restructured views (compared to corresponding regular views) makes query process-

ing more efficient. In addition, the clustering archived by restructuring, and elimination

of self joins discussed in Section 6.6, increase the efficiency of the rewritten query using

restructured views. The speedups are 25 and 51 times, respectively. Finally, query Q4

demonstrates the impact of the above two factors, in combination with the well-known

horizontal partitioning. In this case the restructured view is further partitioned on the

storeType attribute. The combined effects result in the query to run 180 times faster than

when only regular views were used.

6.7.2 Scenario IV: Stocks

For the second set of experiments, we wrote code to download historical stock

information from Yahoo! Finance (http://finance.yahoo.com/) for various stocks (tick-

ers) over a period of 20 years and to upload it into a PostgreSQL database. The URL

http://itable.finance.yahoo.com/table.csv?a=0&b=1&c=1987&d=10&e=24&f=2006&g=d&s=ibm

illustrates the structure of the specific URLs we used for the downloads; the parameters

specify the start and end dates and the stock (ticker) ID. In the above URL the dates

are 1987/01/01 to 2006/10/24 and the stock ID is “IBM”. The information was loaded in

a relation stocks(year, month, day, ticker, price, priceType). Price type is one

of “open, close, high, low”. Different database sizes were obtained by downloading stock

prices for 20, 40, 60, and 80 tickers. Database sizes for these experiments are not large either

(largest table, for 80 tickers, was slightly over 100 MB), but the experiments still demon-

strate the relative improvement in query processing speed when materialized restructured

views are used. For each database size, a number of regular and restructured views were

materialized and used in query evaluation.
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The following queries were used in these experiments:

Q’1. List the closing price of IBM stock on Nov. 21, 2006.

Q’2. List the average closing price of IBM stock for October 2006.

Q’3. List stocks (tickers) that had a high value 20% or more than their low value on a day

in 2005.

Q’4. List dates in 2005 when IBM had a closing value 50% or more than the closing value

of Microsoft.

Q’5. List stocks (tickers) that show a rapid decline in the fourth quarter of 2005 (their

average closing value drops at least 10% in November and December 2005 compared

to previous month.)

The results of our experiments are summarized in Table 6.2.

Table 6.2: Results of our PostgreSQL experiments using the Stocks databases.
Query 20 tickers 40 tickers 60 tickers 80 tickers speedup

Q’1 366.7 22.4 572.9 40.1 803.3 44.6 992.1 46.8 17
Q’2 5.5 0.6 10.5 1.1 15.4 1.6 20.9 2.2 9
Q’3 661.0 91.7 1252.9 213.7 1823.4 280.2 2385.2 355.8 7
Q’4 554.5 24.1 978.2 41.9 1404.2 46.9 1823.1 49.3 28
Q’5 14.0 0.6 28.2 1.0 42.1 1.5 56.0 2.2 26

6.7.3 Experiments Using IBM DB2

To evaluate the effects of our proposed optimization approaches using restruc-

tured views with a commercial-strength database that uses various optimization techniques,

we repeated our experiments with the salesInfo dataset using the IBM DB2 database-

management system.1 We generated the databases and executed the queries (see Sec-

tion 6.7.1 for the details on each) in the following settings:

• Base tables, materialized regular and restructured views with no indexes.
1The authors are grateful to the IBM University Relations Division (http://www-

304.ibm.com/jct09002c/university/scholars/ur/index.html) for providing DB2 for our experiments.
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• Base tables, materialized regular and restructured views with indexes on primary keys.

• Base tables, materialized regular and restructured views with indexes on primary keys

and additional secondary indexes on relevant attributes.

• We also used “window queries” for Q3 and Q4 on the base table. Window functions

and window queries, introduced in the 1989 and 2003 SQL standards [40], facilitate

the formulation of data-analysis queries. Commercial databases have incorporated

special optimization techniques for window queries.

These experiments were executed using IBM DB2 9.1 on an IBM x340 Pentium

III 997 MHz, with 3GB RAM and 108GB SCSI disk, running Red Hat Enterprise Linux 5

(RHEL5).

Table 6.3: IBM DB2 experiments (best performances) for the salesInfo databases.
Query 5K stores 10K stores 20K stores average

(69MB) (137MB) (275MB) speedup
Q1 816 78 1692 170 3291 337 10
Q2 1148 133 2338 264 4599 552 9
Q3 850 25 2201 50 4437 98 41
Q4 342 5.4 467 11 1368 20 58
Q5 0.62 0.54 0.77 0.64 0.79 0.69 1.1
Q6 0.78 0.51 0.84 0.58 1.07 0.61 1.6

Our results are summarized in Table 6.3. We report the best performance obtained

for each of regular views and restructured views. For Q3 and Q4, the best performance for

regular views was obtained when we used window queries. All other queries achieved their

best performance with indexed (both base and view) tables. The performance gains for

Q1-Q4 are similar to those obtained in our PostgreSQL experiments (see Section 6.7.1),

with speedups of an order of magnitude and higher. For Q5 and Q6, the speedup is smaller,

with 10% to 60% gain. These experiments clearly show that adding query optimization

using restructured views to a commercial database-management system has the potential

of significantly improving query-processing performance for some queries.
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Chapter 7

Query Optimization Using

Restructured Views

The experimental results in Section 6.7 show that classical query optimization

using restructured views can result in significant additional savings in query-evaluation

costs. In this chapter we incorporate the concept of materialized restructured views into

query processing and optimization in the semantic-model approach, and present a suite of

algorithms for efficient query processing in presence of materialized restructured views.

In Section 7.1 we describe our eighth query processing approach: restructured

view. Note that we have discussed the following seven query processing approaches: mate-

rialization (Section 4.1), subqueries (Section 4.2), optimized subqueries (Section 4.3), wrap-

per (Section 4.4), subqueries* (Section 4.5.1), optimized subqueries* (Section 4.5.2), and

wrapper* (Section 4.5.3). We present the experimental setup and restructured views in DB-

Research in Section 7.2 and Stocks in Section 7.3. Our experimental results in Section 7.4

demonstrate that using restructured views may result in orders-of-magnitude improvement

in query-processing time for certain classes of queries.

7.1 Query Processing VIII: Restructured View

In the restructured view approach, we materialize restructured views in coordina-

tors, rewrite user queries on the semantic-model view to equivalent queries on restructured

views, and then execute them over restructured views. In the remainder of this section we

discuss our approach to integrating restructured views into our semantic-model framework,
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and address the following questions:

• How are the restructured views represented in the semantic-model approach?

• What are the queries that materialize restructured views?

• How do we rewrite user queries using restructured views?

7.1.1 Defining restructured views

Restructured views can be defined by S-LOG mappings described in Section 6.2.1

from the mediator schema. For example, the stocksByTicker view (see Section 7.3 for the

background) is defined as:

stocksByTicker (year:Y,month:M,day:D,priceType:R,T:P) <-
k-ticker(k:K,ticker:T),k-year(k:K,year:Y),k-month(k:K,month:M),
k-day(k:K,day:D),k-priceType(k:K,priceType:R),k-price(k:K,price:P).

In order to further reduce the size of restructured view, we decompose it into a

set of restructured views, one for each ticker: stocksByIBM, stocksByMSFT, and so on. The

s-LOG rule for stocksByIBM is as follows:

stocksByIBM (year:Y,month:M,day:D,priceType:R,ibm:P) <-
k-ticker(k:K,ticker:‘ibm’),k-year(k:K,year:Y),k-month(k:K,month:M),
k-day(k:K,day:D),k-priceType(k:K,priceType:R),k-price(k:K,price:P).

Similarly, if we take priceType (whose value is one of “open”, “close”, “high”

and “low”) and price as parameters for the pivot operation, we get a restructured view

stocksByPriceType (ticker,year,month,day,open,close,high,low). We can also de-

fine aggregate restructured views. As an example, consider the following view definition

that stores the monthly average closing prices for the tickers.

monthlyAvgByTicker (year:Y,month:M,T:avg(P)) <-
k-ticker(k:K,ticker:T), k-year(k:K,year:Y), k-month(k:K,month:M),
k-priceType(k:K,priceType:‘close’), k-price(k:K,price:P).

7.1.2 View materialization

Once restructured views are defined (e.g., by the database administrator), queries

are needed for materializing the view answers. The algorithm that generates queries for

view materialization composes the mappings from each data source to the mediator schema
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with the mapping from the mediator schema to the restructured view; the latter can be

obtained automatically from S-LOG view definitions.

As an illustration, for the view stocksByIBM defined above one would obtain the

query:

<stocksByIBM>{
FOR $br in /stocks/stock WHERE $br/ticker = ‘IBM’
RETURN
<stock>
{$br/year}
{$br/month}
{$br/day}
{$br/priceType}
<ibm>{$br/price/text()}</ibm>

</stock>
}</stocksByIBM>

7.1.3 Query rewriting

We now propose an algorithm for taking advantage of restructured views, by using

them to rewrite user queries. Algorithms for view usability and query rewriting for materi-

alized restructured views have been presented in Section 6.3, and Algorithm 6 summarizes

our approach.

Example 23 The following user query lists the average closing price for IBM in October

2005:

Q(monthlyAvg:avg(P)) <-

k-ticker(k:K, ticker:‘IBM’), k-year(k:K, year:2005),

k-month(k:K, month:‘Oct’), k-priceType(k:K, priceType:‘close’),

k-price(k:K, price:P)

Our proposed algorithm can be used to rewrite Q into a query that uses view

monthlyAvgByTicker:

select t.ibm

from monthlyAvgByTicker t

where t.year = 2005 and t.month = ‘Oct’

or into a query that uses view monthlyAvgByMonth:
select m.oct

from monthlyAvgByMonth m

where m.year = 2005 and m.ticker = ‘IBM’
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Algorithm 6: Query rewriting using restructured views
input : User query Q and set of restructured views V

output: Equivalent query Q′ that uses views in V

foreach view v in V do1

foreach safe substitution σ from v to Q do2

if (Q is an unaggregate query) AND (rewriting Q′ of Q satisfies3

conditions of Theorem 4) then

return Q’;4

else if (Q is an aggregate query) AND (rewriting Q′ of Q satisfies5

conditions of Theorem 5) then

return Q’;6

end7

end8

end9

7.2 Scenario V: DB-Research with Restructured Views

In Scenario V, we define three restructured views in the DB-Research dataset (see

Section 5.3 for the background): paperByAHalevy, paperByVLDB99, and

proceeding-title-2001-2002-2003-2004.

The paperByAHalevy view represents all information about paper whose author

is “Alon Halevy”, where horizontal partitioning based on paper-author.author = ‘Alon

Halevy’ is performed. The paperByAHalevy view is defined as:

paperByAHalevy(title:T, conference:C, coauthor:A) <-
paper-title(paper:P, title:T), paper-conference(paper:P, conference:C),
paper-author(paper:P, author:‘Alon Halevy’),
paper-author(paper:P, author:A), A !=‘Alon Halevy’.

The paperByVLDB99 view contains all publications in VLDB’99, which is defined

in S-LOG as:

paperByVLDB99(title:T, author:A) <-
paper-title(paper:P, title:T), paper-author(paper:P, author:A),
paper-conference(paper:P, conference:‘VLDB99’).
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We take year and pc (program-chair) as parameters for the pivot operation, we get

a restructured view proceeding-title-2001-2002-2003-2004 which is defined as: (note

that the value of year is between 2001 and 2004.)

proceeding-title-YEARS(title:T, Y:PC) <-
proceeding-title(proceeding:P, title:T),
proceeding-year(proceeding:P, year:Y),
proceeding-pc(proceeding:P, pc:PC).

Once restructured views are defined, queries are generated for materializing the

view answers. For example, the following query is created for the paperyByAHalevy view

in Source berkeley:

for $br in /berkeley/direction/project/paper[author=‘Alon Halevy’],
$coauthor in $br/author

where $coauthor != ‘Alon Halevy’
return
<rs>
<id>{$br/id/text()}</id>
<title>{$br/title/text()}</title>
<coauthor>{$coauthor/text()}</coauthor>
<conf>{$br/publishedIn/text()}</conf>

</rs>

There are four queries (Q3, Q4, Q6, and Q9 in Figure 5.6) which are evaluated

using restructured views. The paperyByAHalevy view is usable for Q3 and Q4. Q6 can be

rewritten by using the paperByVLDB99 view. The proceeding-title-2001-2002-2003-2004

view is usable for Q9. The equivalent queries using restructured views for these four user

queries are:

Q3: SELECT id, coauthor FROM paperByAHalevy

Q4: SELECT id FROM paperByAHalevy WHERE coauthor = ‘Zack Ives’

Q6: SELECT title FROM paperByVLDB99 WHERE author = ‘Jayavel Shanmugasundaram’

Q9: SELECT title, y2003 FROM proceedingPCByYear WHERE y2003=y2004

7.3 Scenario VI: Stocks with Restructured Views

We modified the Stocks dataset described in Section 6.7.2. Instead of loading stock

information into a relation stocks(year, month, day, ticker, price, priceType), we
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loaded it into two sources with various XML schemas (see Figure 7.1). We also developed a

simple semantic-model view based on an ontology for stocks consisting of binary relations

k-ticker, k-year, k-month, k-day, k-price, and k-priceType, where k is a unique key.

Figure 7.1: Schemas of data sources in Scenario VI.

We materialized four restructured views in this scenario: stocksByTicker,

stocksByPriceType, monthlyAvgByTicker, and monthlyAvgByMonth. The stocksByTicker

view, a restructured view which represents the same information as the base relation

Stocks, but the tickers (ibm, msft, ... , dell) now play the role of attribute names,

and the stock values for a given price type are organized “horizontally” into a single tuple

for each day. Note that each tuple of the view stocksByTicker represents the information

represented by many tuples of the base table Stocks. For example, if Stocks table stores

information about 20 different tickers, then each tuple of stocksByTicker represents the

same information as the corresponding 20 tuples in the Stocks table. Similarly, the price

types (open, close, high, and low) play the role of attribute names in stocksByPriceType.

monthlyAvgByTicker and monthlyAvgByMonth are aggregate restructured views.

stocksByTicker and monthlyAvgByTicker are defined in Section 7.1.1. The S-

LOG rules for stocksByPriceType and monthlyAvgByMonth are as follows:

stocksByPriceType (year:Y,month:M,ticker:T,day:D,R:P) <-
k-ticker(k:K,ticker:T),k-year(k:K,year:Y),k-month(k:K,month:M),
k-day(k:K,day:D),k-priceType(k:K,priceType:R),k-price(k:K,price:P).
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monthlyAvgByMonth (year:Y,ticker:T,M:avg(P)) <-
k-ticker(k:K,ticker:T), k-year(k:K,year:Y), k-month(k:K,month:M),
k-priceType(k:K,priceType:‘close’), k-price(k:K,price:P).

User queries (the first five come from Section 6.7.2) and their equivalent queries

using restructured views are listed as follows:

Q1. List the closing price of IBM stock on Nov. 21, 2005.

SQL: SELECT ibm FROM stocksByTicker WHERE year = 2005 AND month = ‘Nov’ AND

day = 21 AND priceType = ‘close’

Q2. List the average closing price of IBM stock for October 2005.

SQL: SELECT ibm FROM monthlyAvgByTicker WHERE month = ‘Oct’ AND year = 2005

Q3. List stocks (tickers) that had a high value 20% or more than their low value on a day in 2005.

SQL: SELECT DISTINCT ticker FROM stocksByPriceType WHERE year = 2005 AND high

>= low*1.2

Q4. List dates in 2005 when IBM had a closing value 50% or more than the closing value of

Microsoft.

SQL: SELECT month, day FROM stocksByTicker WHERE year = 2005 AND priceType =

‘close’ AND ibm >= msft*1.5

Q5. List stocks (tickers) that show a rapid decline in the fourth quarter of 2005 (their average clos-

ing value drops at least 10% in November and December 2005 compared to previous month.)

SQL: SELECT ticker FROM monthlyAvgByMonth WHERE year = 2005 AND dec >=

nov*1.1 AND nov >= oct*1.1

Q6. List the maximum closing price for ibm in October 2005.

SQL: SELECT max(ibm) FROM stocksbyTicker WHERE year = 2005 AND month = ‘Oct’

AND pricetype = ‘close’ GROUP BY year, month, pricetype

Q7. List days when IBM’s price decreased rapidly(i.e., by 10% or more) two consecutive days.

SQL: SELECT v1.year, v1.month, v1.day FROM stocksbyTicker v1, stocksbyTicker v2 WHERE

v1.year = v2.year AND v1.month = v2.month AND v1.day = v2.day-1 AND v1.pricetype =

‘close’ AND v2.pricetype = ‘close’ AND v1.ibm = v2.ibm * 1.1

7.4 Experimental Results Using Restructured Views

In this section we present the results of our evaluation of the impact of query

optimization using restructured views in our information-integration system shell.
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Figure 7.2: Performance comparison (on the DB-Research dataset) for optimization using
restructured views.

Our experimental results for Scenario V are shown in Figure 7.2, and the results

for Scenario VI are shown in Figure 7.3. Note that the Y-axis, the execution time (measured

in milliseconds), is logarithmic.

As shown in Figure 7.2, optimization using materialized restructured views is

applicable and yields better performance. Figure 7.3 shows that the improvement over the

other techniques amounts to one to three orders of magnitude. Note also that the semantic

optimization, the optimized subqueries* approach, which uses key-constraint information

to optimize the XQuery subqueries, yields an order of magnitude or better performance

than that of the (native) optimized subqueries approach. We notice that user queries in

the Stocks dataset are much more “complicated” than queries in the DB-Research dataset

according to the amount of binary relations in user queries. Depending on the allocated

memory, large numbers of variables in an XQuery query may have a pronounced effect on

execution time by SAXON.

We expect the gains obtained by the optimized algorithm to be typical for all

user queries with moderate to large number of joins. In addition, our optimization using

restructured views can be applied whenever the data exhibits certain regularity properties,

thus resulting in substantial size reduction via restructured views.
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Figure 7.3: Performance comparison (on the Stocks dataset) for optimization using restruc-
tured views.
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Chapter 8

Conclusions

We have presented a set of algorithms for query processing and optimization in

the semantic-model approach to large-scale information integration and interoperability.

In addition to supporting gradual large-scale information integration and efficient inter-

source processing, the SM approach eliminates the need for mediation in deriving the global

schema, thus addressing the main limitation of data-integration systems.

To the best of our knowledge, our methods are the first to account for the practical

issues of information overlap across data sources and of inter-source processing. While most

of algorithms presented in this dissertation are platform- and implementation-independent,

we also proposed XML-specific optimization techniques that allow for system-level tuning

of query-processing performance.

We discussed a general query-optimization framework that treats regular and re-

structured views in a uniform manner and is applicable to select-project-join queries and

views without or with aggregation. Within the framework we provided (1) algorithms to

determine when a view (regular or restructured) is usable in answering a query, and (2)

algorithms to rewrite queries using usable views. Semantic information, such as knowledge

of the key of a view, can be used to further optimize a rewritten query. Within our general

query-optimization framework, we developed techniques for determining the key of a (regu-

lar or restructured) view, and showed how this information can be used to further optimize

a rewritten query.

We then incorporated the concept of materialized restructured views into query

processing and optimization in the semantic-model approach. Using restructured views in

query optimization opens up a new spectrum of views that were not previously available in
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information-integration projects, and can result in significant additional savings in query-

evaluation costs. We developed algorithms for materializing restructured views for XML

information sources, and for rewriting user queries on the semantic-model view to equivalent

queries on restructured views. It has been shown that classical query optimization using

restructured views can improve query-processing efficiency significantly for certain classes

of queries, sometimes by an order of magnitude or more. Our experimental results demon-

strated that query optimization using restructured views can and does result in similarly

significant performance gains.

Currently we are continuing our study on the performance and improvements

of algorithms for query processing and optimization in the semantic-model approach to

large-scale information integration and interoperability. Because of the complexity of infor-

mation integration problem itself, no single query-processing strategy would be optimum

for all queries and cases. The restructured view approach also gives us a problem of (ma-

terialized) restructured view maintenance. Restructured views shall be updated correctly

and efficiently whenever data in sources are changed. This is also an interesting topic for

future research directions. Besides, as for our implementation of an information-integration

system shell, we are incorporating schema mapping, data exchange and query translation

in Peer Data Management Systems into “inter-coordinator processing” modules.
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