
Abstract

TULLIE, TRACEY ANDREW. Variance Reduction for Monte Carlo Simulation of

European, American or Barrier Options in a Stochastic Volatility Environment. (Un-

der the direction of Jean-Pierre Fouque.)

In this work we develop a methodology to reduce the variance when applying

Monte Carlo simulation to the pricing of a European, American or Barrier option in

a stochastic volatility environment. We begin by presenting some applicable concepts

in the theory of stochastic differential equations. Secondly, we develop the model

for the evolution of an asset price under constant volatility. We next present the

replicating portfolio and equivalent martingale measure approaches to the pricing of

a European style option. Modeling an asset price utilizing constant volatility has been

shown to be an inefficient model[8, 16]. One way to compensate for this inefficiency

is the use of stochastic volatility models, which involves modeling the volatility as

a function of a stochastic process[26]. A class of these models is presented and a

discussion is given on how to price European options in this framework.

After developing the methods of how to price, we begin our discussion on Monte

Carlo simulation of European options in a stochastic volatility environment. We

start by describing how to simulate Monte Carlo for a diffusion process modeled as

a stochastic differential equation. The essential element to our variance reduction

technique, which is known as importance sampling, is hereafter presented. Impor-

tance sampling requires a preliminary approximation to the expectation of interest,

which we obtain by a fast mean-reversion expansion of the pricing partial differential

equation[22, 6].



A detailed discussion is given on this fast mean-reversion expansion technique,

which was first presented in [10]. We shall compare utilizing this method of expansion

with that developed in [11], which is known as small noise expansion, and demonstrate

numerically the efficiency of the fast mean-reversion expansion, in particular in the

presence of a skew. We next wish to apply our variance reduction technique to the

pricing of an American and barrier option. A discussion is given on how to price

these options under constant volatility and in the presence of stochastic volatililty.

Applying the importance sampling variance reduction method to a barrier option is

similar to that of a European option since there exists a closed form solution to the

price of this option in the context of constant volatility[4, 15]. However, in the case

of an American option Monte Carlo simulation and applying importance sampling

are more complex. We present an algorithm to compute an American option price

via Monte Carlo and describe an approximation technique to obtain a preliminary

estimate to the pricing function under constant volatility. Hence, we are able to

apply our variance reduction methodology to pricing of an American option. We

subsequently present numerical results for both of these options.
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Chapter 1

Introduction

Asset prices, such as a stock for a company, are often modeled using stochastic dif-

ferential equations. The simplest of these models involves modeling the return on

the stock as the mean growth rate plus a random term. The random term consists

of a parameter, called the volatility, and an increment of Brownian motion. This

particular model is often referred to as geometric Brownian motion or the lognormal

model of an asset.

Although the lognormal model serves as a good basis for modeling an asset, there

has been a wide-range of research done to improve upon this model. Empirical ev-

idence suggests that the volatility may be modeled as a function of a stochastic

process[14]. This class of models is known as stochastic volatility models. In par-

ticular, a mean-reverting stochastic process is a suitable model for volatility. Mean-

reversion refers to a linear pull back term in the mean growth rate of the volatility

process.

Contracts that are based on an underlying asset are called derivatives. We are

primarily interested in contracts known as options. Three types of options will be
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discussed in this work. A European option gives its holder the right to buy or sell

stock for a predetermined price at a specified maturity date. An American option

gives its holder the right to buy or sell stock for predetermined price at any time

before or on a specified maturity date. Barrier options are options where the right

to exercise is forfeited if the underlying asset crosses a certain value or the option

only comes into existence only if the asset crosses a certain level. Computation of the

premium of such contracts is the focal point of this work.

Fisher Black and Myron Scholes formulated a method, based on no-arbitrage,

which gives a closed-form solution for the price of a European style option when the

underlying asset is modeled as a geometric Brownian motion and no dividends are

paid on the stock[3, 19]. A closed-form solution for the price of a Barrier option under

the lognormal model has also been developed. However, there is very rarely a closed-

form solution for the price of any type of option when a stochastic volatility model is

used to describe the evolution of an asset. Solving partial differential equations with

two space dimensions or Monte Carlo simulation are two methods used to compute

the premium for these types of contracts[5, 9, 13, 1].

Computing option premiums utilizing Monte Carlo simulation has become popu-

lar among many financial institutions[27, 21]. Therefore, numerical techniques that

provide variance reduction for Monte Carlo methods are in demand. We introduce a

variance reduction methodology for Monte Carlo simulation of a European, Ameri-

can or Barrier option premium when the underlying asset has volatility modeled as

a mean-reverting process. The variance reduction technique consists of two major

components: Importance sampling and asymptotic analysis.

A preliminary approximation for the expectation of interest is the main feature of

the importance sampling technique. Two methods of expansion will be used in order
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to obtain an apriori estimate of the expectation of interest. The first, introduced [11],

corresponds to a regular perturbation of the pricing B-S partial differential equation.

The second, the focal point of this work and introduced in [10], is based on fast mean-

reverting stochastic volatility asymptotics. It corresponds to a singular perturbation

of the pricing partial differential equation.

The dissertation is organized as follows. In Chapter 2 we provide background on

stochastic differential equations. The multi-dimensional model for a diffusion process

is established as well as the existence and uniqueness of a solution. Also, we discuss

several results of diffusion theory that include Ito’s lemma, the martingale repre-

sentation theorem, infinitesimal generators, the Feyman-Kac formula and Girsanov’s

theorem. These are essential tools needed when modeling with stochastic differential

equations in finance. In addition, we develop the Euler scheme for simulation of sto-

chastic differential equations. In chapter 3 we formulate mathematically how an asset

is modeled. We also establish how the price of a European style option is obtained

utilizing replicating portfolios or an equivalent martingale measure. In chapter 4, a

discussion is given on why volatility should be modeled as a function of a stochastic

process. In addition, pricing a European option when an asset has volatility modeled

as a function of a stochastic process is also addressed. In chapter 5, we describe how

Monte Carlo simulation is utilized for pricing a European option. Also, we define

the Importance Sampling procedure that is used for variance reduction of the Monte

Carlo method. In chapter 6, we develop the asymptotic analysis for the price of an

European option in a stochastic volatility environment. This involves two methods of

expansion of the pricing partial differential equation. In chapter 7, we implement the

importance sampling variance reduction technique to price a European option when

the underlying has volatility modeled as a mean-reverting process. In chapter 8, we

3



formulate mathematically an American option and describe how to compute the pre-

mium of this type of contract under constant volatility. This computation involves

evaluating an expectation or formulating a linear complementarity problem. Also,

we present the asymptotic results when the underlying asset has volatility modeled

as a mean-reverting process. Next, we establish how the price of an American option

may be computed using Monte Carlo. Variance reduction for Monte Carlo simulation

of an American option utilizing Importance sampling and asymptotic expansion is

subsequently considered. In chapter 9, we define the Barrier option mathematically

and describe how to price an option this type when volatility is taken to be constant

in the underlying asset. Next, we provide the asymptotic results when the underlying

asset has volatility modeled as a function of a stochastic process. Lastly, we perform

variance reduction for Monte Carlo simulation of a barrier option when the underlying

has volatility modeled as a mean-reverting process.

4



Chapter 2

Stochastic Differential Equations

Stochastic differential equations are used to model processes that have continuous

time paths and have a source of randomness contained within them. This source

of randomness is commonly referred to as white noise and is modeled as increments

of Brownian motion. The term Brownian refers to the Scottish botanist Robert

Brown who, in 1828, observed an irregular motion when pollen grains were suspended

in liquid. We begin our discussion on stochastic differential equations by defining

mathematically Brownian motion. Secondly, we construct a multi-dimensional model

and establish an existence and uniqueness result. Subsequently, we present some

theoretical results on diffusion processes that appear frequently in financial modeling.

Lastly, we introduce the Euler scheme for simulating stochastic differential equations

and develop a convergence criterion for this method.

2.1 Brownian Motion

Brownian motion is a real-valued stochastic Gausssian process with continuous tra-

jectories that have independent and stationary increments. We shall denote the tra-

5



jectories of the Brownian motion by t → Wt. In particular, the one-dimensional

standard Brownian motion has the following properties:

• for any 0 < t1 < . . . < tk, the random variables (Wt1 ,Wt2−Wt1 , . . . ,Wtk−Wtk−1
)

are independent,

• E(Wt|F0) = 0,

• for any s ≤ t, E(Wt − Ws|Fs) = 0 and E((Wt − Ws)
2|Fs) = t − s,

where we denote the probability space that our Brownian motion is defined and

expectation E{·} is computed by (Ω,F , P). Ω may be taken as the space of all

continuous trajectories ω such that Wt(ω) = ω(t). F is a σ-algebra which contains

sets of the form {ω ∈ Ω : |ω(s)| < M, s ≤ t} and {Ft, t ≥ 0} is defined as an

increasing family of sub-σ algebras of F such that Wt is Ft measurable and that

also contains sets of probability 0 in F . This completion is important because if two

random variables are equal almost surely then if one of the random variables is Ft

measurable, then so is the other. Ft may be thought of as the history of Ws, s ≤ t, up

to time t[24]. Lastly, P is the Wiener measure, which is the probability distribution

of the standard Brownian motion.

Similarly, let Wt = (W 1
t ,W 2

t , · · · ,W n
t ) represent an n-dimensional Brownian mo-

tion with independent components associated with an increasing family of sub-σ

algebras {Ft}. Each W i
t for i = 1, 2, · · · , n, is a scalar Brownian motion with re-

spect to {Ft, t ≥ 0} with the usual properties. In addition, we include the property

E[(W i
t − W i

s)(W
j
t − W j

s )|Fs] = (t − s)δij, for s ≤ t and i, j = 1, 2, · · · , n, where δij is

the Kronecker delta function.

6



2.2 Multi-dimensional Model

An n-dimensional stochastic differential equation may be formulated as follows

dXt = a(t,Xt)dt + b(t,Xt)dWt, t ∈ [0, T ] (2.1)

X0 = X̂

where Xt ∈ Rn represents the state of the process being modeled at any time t and

dWt ∈ Rn is an increment of Brownian motion. In addition, a : [0, T ] × Rn → Rn is

called the drift vector of the process and b : [0, T ]×Rn → Rm×n is called the diffusion

matrix.

Equation (2.1) may equivalently be written as an integral equation of the following

form

Xt = X0 +

∫ t

0

a(τ,Xτ )dτ +

∫ t

0

b(τ,Xτ )dWτ , (2.2)

for any 0 ≤ t ≤ T , which may be interpreted component-wise as

X i
t = X i

0 +

∫ t

0

ai(τ,X i
τ )dτ +

n∑
j=1

∫ t

0

bij(τ,X i
τ )dW j

τ , (2.3)

for i = 1, 2, · · · , n. The first term is a standard Lebesgue or Riemann integral for

each sample path ω while the second integral represents a stochastic Ito integral. An

essential element to the proof of the existence and uniqueness of a solution to (2.1)

is the Ito integral, which we define rigorously.

We wish to provide a concise definition for an integral of the form

∫ t

0

q(s, ω)dWs t ∈ [0, T ] (2.4)

We start by establishing a class for which (2.4) is defined and then define the Ito

integral for a step function in this class.

7



Definition 2.2.1 Let Γ = Γ(0, T ) be the class of functions

f(t, ω) : [0,∞) × Ω → R

such that

• f(t, ω) is B × F- measurable, where B denotes the Borel σ-algebra on [0,∞).

• f(t, ω) is Ft-adapted.

• E
[∫ T

0
f(t, ω)2dt

]
< ∞.

Let φ(t, ω) ∈ Γ be a step function corresponding to a partition 0 = t0 < t2 <

· · · < tn = T and random functions φ1, φ2, · · · , φn, then the stochastic integral of φ

is defined as ∫ T

0

φ(s, ω)dWs =
n∑

j=1

φn(ω){Wtj+1
(ω) − Wtj(ω)}

Definition 2.2.2 (Ito Integral) Let q ∈ Γ. Then the Ito integral of q is defined by

∫ t

0

q(τ, ω)dWτ (ω) = lim
m→∞

∫ t

0

qm(τ, ω)dWτ (ω),

where {qm} is a sequence of step functions and such that

E
[∫ t

0

(q(τ, ω) − qm(τ, ω))2dτ

]
→ 0 as m → ∞

Having defined formally the Ito integral, we next state without proof the following

existence and uniqueness theorem for the stochastic differential equation defined in

(2.1).

Theorem 2.2.1 (Existence and uniqueness theorem) [23] Let a and b be Borel

measurable functions satisfying

|a(t, u)| + |b(t, u)| ≤ M(1 + |u|); u ∈ Rn, t ∈ [0, T ]

8



for some constant M and such that

|a(t, u) − a(t, v)| + |b(t, u) − b(t, v)| ≤ D|u − v|; u, v ∈ Rn, t ∈ [0, T ],

for some constant D. Let X̂ be a random variable which is independent of the σ-

algebra F∞ generated by Wt and such that

E
[
|X̂|2

]
< ∞,

then (2.1) has a unique t-continuous solution Xt(ω) with the property that Xt is Ft-

measurable and

sup
0≤t≤T

E
[|Xt|2

]
< ∞.

2.3 Diffusion Theory

We next present some theoretical results that are prevalent in modeling diffusion

processes in finance. We begin by stating the well-known Ito formula.

2.3.1 Ito’s Formula

Ito’s formula gives an explicit formula for computing the differential for a function

of a stochastic diffusion process. This is analogous to the chain rule in elementary

differential calculus.

Theorem 2.3.1 (Ito’s formula) [23] Let Xt be an n-dimensional stochastic process

which evolves as (2.1) and let g : [0,∞] × Rn → Rp be C2(Rn). Then the process

Yt(ω) = g(t,X(t)) has differential defined component-wise as

dY k
t =

∂gk

∂t
(t,Xt)dt +

∑
i

∂gk

∂xi

(t,Xt)dX i
t +

1

2

∑
i,j

∂2gk

∂xi∂xj

(t,Xt)dX idXj, (2.5)

where dW i
t dW j

t = δijdt, dW i
t dt = dtdW i

t = 0.

9



2.3.2 Martingale Representation Theorem

Before presenting the martingale representation theorem we define a martingale with

respect to an increasing family of σ-subalgebras {Rt, t ≥ 0}.

Definition 2.3.1 (Martingle) An n-dimensional stochastic process Mt on a proba-

bility space (Ω,R, P) is called a martingale with respect to {Rt, t ≥ 0} if the following

hold

• Mt is Rt-measurable for all t.

• E[|Mt|] < ∞ for all t.

• E[Ms|Rt] = Mt for all s ≥ t.

The martingale representation theorem is utilized to show that any Ft-martingale

can be represented as an Ito integral and is presented as follows

Theorem 2.3.2 [Martingale representation theorem][23] Let Wt be an n-dimensional

Brownian motion. Suppose Mt is an Ft-martingale, where Ft is the natural filtration

of Wt and that Mt ∈ L2(P) for all t ≥ 0. Then there exists a unique stochastic process

q(t, ω) such that for all t ≥ 0

Mt(ω) = E[M0] +

∫ t

0

q(s, ω)dWs a.s., t ≥ 0

2.3.3 Generator of an Ito Diffusion

Given an n-dimensional Ito diffusion of the form

dXt = a(t,Xt)dt + b(t,Xt)dWt, t ∈ [0, T ] (2.6)

X0 = X̂,

10



we wish to characterize this process by a second order partial differential equation

operator L. We call L the infinitesimal generator of the process Xt and it is defined

as follows

Definition 2.3.2 [Infinitesimal generator of an Ito process][23] Let {Xt} be an Ito

diffusion in Rn. The infinitesimal generator L of Xt is defined by

Lh(x) = lim
t↓0

E[h(Xt)] − h(x)

t
,

where the set of functions for which the limit exist for all x ∈ Rn is denoted by DL.

The infinitesimal generator of the Ito process given by (2.6) is given by

Lh(x) =
∑

i

ai(t, x)
∂h

∂xi

+
1

2

∑
i,j

(bb′)ij(t, x)
∂2h

∂xi∂xj

, (2.7)

where h ∈ DL = C2(Rn) and has compact support.

2.3.4 Kolmogorov’s backward equation and the Feyman-Kac

formula

We now present two results, which are applications of the infinitesimal generator de-

fined in the previous section, that describe the evolution of the conditional expectation

of a function of an Ito process.

Theorem 2.3.3 [Kolgomorov’s backward equation][23] Let Xt be an Ito diffusion of

the form (2.6) with infinitesimal generator L given by (2.7).

1. Define

u(t, x) = E[f(XT )|Xt = x]. (2.8)
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Then u(t, x) satisfies the Kolmogorov equation given by

∂u

∂t
+ Lu = 0; 0 ≤ t ≤ T (2.9)

u(T, x) = f(x) (2.10)

where we assume f ∈ C2(Rn).

2. Moreover, if w(t, x) ∈ C1,2(R×Rn) that satisfies (2.9) and (2.10), then w(t, x) =

u(t, x), given by (2.8).

The following theorem is a important extension of the Kolmogorov backward equation.

Theorem 2.3.4 [Feyman-Kac formula][23] Let Xt be an Ito diffusion of the form

(2.6) with infinitesimal generator L given by (2.7).

1. Define

u(t, x) = E
[
exp

(∫ T

t

r(Xs)ds

)
f(XT )|Xt = x

]
. (2.11)

Then

∂u

∂t
+ Lu + ru = 0; 0 ≤ t ≤ T (2.12)

u(T, x) = f(x); (2.13)

where we assume f ∈ C2(Rn) and r ∈ C(Rn).

2. Moreover, if w(t, x) ∈ C1,2(R×Rn) that satisfies (2.12) and (3.37), then w(t, x) =

u(t, x), given by (2.11).
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2.3.5 Girsanov’s Transformation

The following result states that altering the drift vector of an Ito diffusion does not

dramatically change the probability law of the process.

Theorem 2.3.5 [Girsanov’s theorem][23] Let Zt be an Ito process of the form

dZt = β(t, ω)dt + θ(t, ω)dWt; t ∈ [0, T ]. (2.14)

Suppose there exist processes γ(t, ω) ∈ Γ(0, T ) and α(t, ω) ∈ Γ(0, T ) such that

θ(t, ω)γ(t, ω) = β(t, ω) − α(t, ω) (2.15)

and assume γ(t, ω) satisfies the Novikov condition

E
[
exp

(
1

2

∫ T

0

γ(s, ω) · γ(s, ω)ds

)]
< ∞. (2.16)

Define

Mt = exp

(
−

∫ t

0

γ(t, ω) · dWs − 1

2

∫ t

0

γ(t, ω) · γ(t, ω)ds

)
; t ≤ T. (2.17)

Since E[MT ] = 1, we may define a new probability measure Q as follows

dQ(ω) = MT (ω)dP(ω) on FT . (2.18)

The process

Ŵt =

∫ t

0

γ(s, ω)ds + Wt; t ≤ T (2.19)

is a Brownian motion with respect to Q and in terms of Ŵt the process Zt has the

representation

dZt = α(t, ω)dt + θ(t, ω)dŴt. (2.20)
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2.4 Euler’s Method

Many stochastic differential equations in practical applications do not have an explicit

solution. Therefore, there has been a great deal of research done on numerical simula-

tion of these types of equations. In this work, we shall utilize the Euler scheme since

we are implementing a variance reduction methodology for Monte Carlo simulation

and this scheme is sufficient to test for variance reduction. Efficient implementation

of the variance reduction methodology using higher order schemes is a subject of

future work. We begin by describing the convergence criterion for an approximation

to an Ito process. Secondly, we describe the stochastic Taylor expansion technique.

Subsequently, we provide the time discrete approximations for the Euler numerical

method and discuss its convergence properties. Detailed descriptions of various other

numerical methods are provided in [18].

2.4.1 Convergence criterion

Strong Convergence

In many applications, such as filtering, it is important that the sample paths be

close to the true Ito process. This indicates that there should be a strong form of

convergence. We say that the approximation X̃δ
T converges in the strong sense to the

true process, XT , with order γ if there exists a constant L such that

E[|XT − X̃T
δ|] ≤ Lδγ

for any time discretization with a bounded step size δ.
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Weak Convergence

In many practical applications, such as Monte Carlo simulation, it is important that

the sample paths be close in distribution to the true Ito process. This indicates that

there should be a weak form of convergence. We say that the approximation X̃δ
T

converges in the weak sense to the true process, XT , with order β if for any f ∈ C2

there exists a constant L such that

|E[f(XT )] − E[ ˜f(XT )
δ
]| ≤ Lδβ

for any time discretization with a bounded step size δ.

2.4.2 Stochastic Taylor expansion

We next present stochastic Taylor expansion, which will lead to the formulation of

the Euler numerical scheme. We shall derive the one-dimensional stochastic Taylor

expansion for an Ito diffusion in integral form, which is given in full detail [18]. The

multi-dimensional case follows similarly.

Xt = X0 +

∫ t

0

a(τ,Xτ )dτ +

∫ t

0

b(τ,Xτ )dWτ t ∈ [0, T ], (2.21)

X0 = X̂ (2.22)

For any g : R × R → R and g ∈ C1×2(R × R) the Ito formula gives

g(t,Xt) = g(0, X0) +

∫ t

0

(
∂g(τ,Xτ )

∂t
+ (a(τ,Xτ )

∂

∂x
g(τ,Xτ ) +

1

2
b2(τ,Xτ )

∂2

∂x2
g(τ,Xτ )

)
dτ

+

∫ t

0

b(τ,Xτ )
∂

∂x
g(τ,Xτ )dWτ

= g(0, X0) +

∫ t

0

K0g(τ,Xτ )dτ +

∫ t

0

K1g(τ,Xτ )dWτ , (2.23)

where we have introduced the following operators

K0 =
∂

∂t
+ a(s,Xs)

∂

∂x
+

1

2
b2(s,Xs)

∂2

∂x2
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and

K1 = b(s,Xs)
∂

∂x
.

We perform an expansion of the functions a(t,Xt) and b(t,Xt) in (2.21) about t = 0

by using (2.23) as follows

Xt = X0 +

∫ t

0

(
a(0, X0) +

∫ τ

0

K0a(z,Xz)dz +

∫ τ

0

K1a(z,Xz)dWz

)
dτ

+

∫ t

0

(
b(0, X0) +

∫ τ

0

K0b(z,Xz)dz +

∫ τ

0

K1b(z,Xz)dWz

)
dWτ

= X0 + a(0, X0)

∫ t

0

dτ + b(0, X0)

∫ t

0

dWτ + R, (2.24)

where R is the remainder defined by

R =

∫ t

0

∫ τ

0

K0a(z,Xz)dzdτ +

∫ t

0

∫ τ

0

K1a(z,Xz)dWzdτ∫ t

0

∫ τ

0

K0b(z,Xz)dzdWτ +

∫ t

0

∫ τ

0

K1b(z,Xz)dWzdWτ (2.25)

Equations (2.24) and (2.25) together represent the simplest form of stochastic Ito-

Taylor expansion. We may continue the expansion by applying Ito’s formula to the

function K1b(z,Xz) in (2.25) as follows

Xt = X0 + a(0, X0)

∫ t

0

dτ + b(0, X0)

∫ t

0

dWτ

+K1b(0, X0)

∫ t

0

∫ τ

0

dWzdWτ + R̄, (2.26)

where R̄ is given by

R̄ =

∫ t

0

∫ τ

0

K0a(z,Xz)dzdτ +

∫ t

0

∫ τ

0

K1a(z,Wz)dWzdτ

+

∫ t

0

∫ τ

0

K0b(z,Xz)dzdWτ +

∫ t

0

∫ τ

0

∫ z

0

K0K1b(u,Xu)dudWzdWτ

+

∫ t

0

∫ τ

0

∫ z

0

K1K1b(u,Xu)dWudWzdWτ
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Equation (2.26) leads to the Milstein approximation, where we refer to [18] for

more details, while (2.24) leads the Euler approximation, which we describe here.

2.4.3 Euler Numerical Scheme

Euler Scheme

The Euler numerical method consists of truncating the remainder term of the Ito-

Taylor expansion given by (2.24) keeping only the time and Ito integrals that appear

first in (2.24).

Suppose we have a discretization of the time interval [0, T ] of the form

0 = t1 < t2 < t3 < · · · < tS = T

The one-dimensional Euler method is defined as follows

Xs+1 = Xs + a(s,Xs)∆s + b(s,Xs)∆Ws (2.27)

for s = 0, 1, 2, · · · , S − 1 with initial value given by X0 = X̂,

where ∆s = ts+1 − ts and ∆Ws = Wts+1 − Wts . The random variables ∆Ws are

independent and N (0, ∆s), which may be simulated using a pseudo-random number

generator on any computer.

The multi-dimensional scheme may similarly be defined component-wise as follows

X i
s+1 = X i

s + ai(s,Xs)∆s +
m∑

j=1

bij(s,Xs)∆W j
n , (2.28)

for i = 1 · · ·n and s = 0, 1, 2, · · · , S − 1.

In addition

∆W j = W j
tn+1

− W j
tn (2.29)
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represents the jth component of the n-dimensional increment of Brownian motion on

[tn, tn+1]. Also, W l an Wm are independent for l 6= m.

We shall now state, without proof, sufficient conditions for the Euler scheme to

have strong order of convergence 1
2
.

Theorem 2.4.1 (Strong convergence of Euler’s method) [18] Suppose that Xt

represents the true Ito process while X̃δ
t represents the Euler approximation of the

process with time step δ. Then if

E([|X0|2]) < ∞

E(|X0 − X̃0
δ|) 1

2 ≤ L1δ
1
2 ,

|a(t, x) − a(t, y)| + |b(t, x) − b(t, y)| ≤ L2|x − y|,

|a(t, x)| + |b(t, x)| ≤ L3(1 + |x|)

and

|a(s, x) − a(t, x)| + |b(s, x) − b(t, x)| ≤ L4(1 + |x|)|s − t| 12

for all s, t ∈ [0, T ] and x, y ∈ Rn, where the constants L1, L2, L3, L4 do not depend

on δ. Then for X̃δ the estimate

E(|XT − X̃δ
T |) ≤ L5δ

1
2

holds. Hence the Euler approximation has strong order convergence 1
2
.

Lastly, we present sufficient conditions for the Euler approximation X̃δ
T to be a weak

approximation of order 1 to the true Ito process XT .

Theorem 2.4.2 (Weak convergence of Euler’s method) [18] Given Xt and X̃δ
t .

Then if a and b are Lipschitz continuous with components ak, bij ∈ C4×1 for all
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i = 1, · · · , n and j = 1, · · · ,m and the following linear growth bound is satisfied

|a(t, x) + b(t, x)| < L(1 + |x|)

for all x ∈ Rn and t ∈ [0, T ]. Then for all f : Rn → R with f ∈ C2(Rn), there exist a

constant K, which does not depend on δ, such that

|E[f(XT )] − E[f(X̃δ
T )]| ≤ Kδ1.

Hence the Euler approximation, with the above assumptions, has weak convergence of

order one.
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Chapter 3

Pricing European Options

We begin our discussion of the Black and Scholes analysis for pricing European options

by defining the models of two assets involved in a market. For simplicity, we first

consider the one-dimensional case. Upon development of a market model, we formally

define mathematically a European option. We shall consider two methodologies for

the computation of the premium of a European option. The first method is based on

replicating self-financing portfolios and a no-arbitrage argument. The second consists

of finding an equivalent martingale measure under which the discounted risky asset

price is a martingale. This is also known as risk-neutral valuation. We shall show

that utilizing classical stochastic differential equation theory that the second method

is just a probabilistic interpretation of the first.

3.1 Market Model

The Black and Scholes analysis considers a riskless asset such as a bond and a risky

asset, which we assume is a stock index. The two assets are modeled as follows
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3.1.1 Riskless Asset

A bond price, Bt, is modeled with the following ordinary differential equation

dBt

Bt

= rdt t ∈ [0, T ]. (3.1)

This may be interpreted as the infinitesimal return on the bond is given by rdt. The

parameter r represents the instantaneous rate of return, which is commonly called the

instantaneous interest rate. Using the separation of variables technique for ordinary

differential equations, the solution to (3.1) is given by

Bt = B0e
rt, (3.2)

where B0 represents the initial investment in the bond.

3.1.2 Risky Asset

The corresponding Black and Scholes model for the stock price, St, is a stochastic

differential equation as follows

dSt

St

= µdt + σdWt t ∈ [0, T ]. (3.3)

Equation (3.3) has the interpretation that the infinitesimal return on the stock has

mean µdt and centered random fluctuations independent of the past up to time t.

The parameter µ is the constant mean return rate and the random fluctuations are

modeled by σdWt, where dWt is an increment of Brownian motion. The parameter σ

is a positive constant, which we call the volatility of the stock. For simplicity we do

not model the dividends paid in the time interval we are considering.

Equation (3.3) may be expressed in differential form as

dSt = µStdt + σStdWt, (3.4)
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while in integral form we have

St = S0 +

∫ t

0

µSτdτ +

∫ t

0

σSτdWτ , (3.5)

where the last integral is the stochastic Ito integral described in section 2.2.2. Since

µ(t, s) = µs and σ(t, s) = σs are linearly growing at infinity and S0 is the initial

condition that is square integrable and independent of the Brownian motion, then

by theorem 2.2.1 this is enough to guarantee existence and uniqueness of an adapted

square integrable solution St.

Utilizing Ito’s formula we may obtain an explicit solution to (3.3). We may suspect

that the solution would involve log St since from elementary calculus
∫

ds
s

= log s. We

compute the differential of log St utilizing the one-dimensional form of Ito’s formula

given by (2.5) with g(t, s) = log s, µ(t, s) = µs and σ(t, s) = σs

d log St = (µ − σ2

2
)dt + σdWt.

Therefore, the logarithm of the stock price is given by

log St = log S0 + (µ − σ2

2
)t + σWt.

Hence, we have the following solution for the stock price

St = S0 exp

(
(µ − 1

2
σ2)t + σWt

)
.

Since St

S0
is the exponential of a process that is normally distributed with mean (µ− 1

2
)t

and variance σ2t at time t, then we say St

S0
has a lognormal distribution or St is a

geometric Brownian motion.

Notice in this model that if the stock price ever becomes 0, then it remains there

until the terminal time. Hence, bankruptcy is a permanent state in this model.

22



However, if S0 is nonzero, then does not go to zero in finite time with probability one

because 1
t
Wt tends to zero as t tends to infinity, with probability one [10].

In figure 3.1 we show a sample path or trajectory of a stock price modeled by a

geometric Brownian motion. Notice how the stock price has a mean growth rate plus

”noise” attributed to the random fluctuations.
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Figure 3.1: A sample path or trajectory of a stock price modeled by a geometric Brownian

given by (3.3), with S0 = 100 and µ = .15, σ = .10 and T = 1.

3.2 European Style Option

We now formally define a European call or put option and formulate a functional

form for the payoff of each of these contracts.
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3.2.1 Call Option

A European call option is a contract that gives its owner the right, but not the

obligation, to purchase one unit of an underlying asset for a predetermined strike

price K at a specified maturity T . If ST represents the asset price at time T , then

the value of the contract at time T, its payoff, is given by

φ(ST ) = (ST − K)+ =




ST − K if ST > K

0 if ST < K

3.2.2 Put Option

Analogously, a European put option is a contract that gives its owner the right, but

not the obligation, to sell one unit of an underlying asset for a predetermined strike

price K at a specified maturity T . If ST represents the asset price at time T , then

the value of the contract at time T, its payoff, is given by

φ(ST ) = (K − ST )+ =




K − ST if ST < K

0 if ST > K

The question that remains is ”What premium should be paid in advance in order

to enter into one of these contracts that pays φ(ST ) at the terminal time?” We present

two methods by which this premium may be computed. We start with the replicating

portfolio strategy.

3.3 Replicating Portfolio Pricing Strategy

The Black and Scholes analysis for pricing a European option leads to a precise trading

strategy in the underlying stock and bond whereby the terminal price of the portfolio

is equivalent to the price of the option at the terminal time, regardless of the path of

24



the stock[7]. Thus, implementing this trading strategy when an investor is short an

option protects him against all risk of eventual loss because a loss at the final time in

one part of the portfolio will be balanced by a gain in the other part. This is called a

replicating strategy and it provides an insurance policy for an investor who is short an

option. Since the trading strategy will require continuous adjustments in each part of

the portfolio, we call it a dynamic hedging strategy, where hedge means to eliminate

risk. The primary step in the Black and Scholes methodology is the constructing of

this hedging strategy and arguing based on no-arbitrage that the replicated portfolio

is the fair price of the option at any given time. We begin by defining replicating

self-financing portfolio and then derive the Black-Scholes pricing partial differential

equation.

3.3.1 Replicating Self-Financing Portfolios

We assume that St represents the price process that is modeled as a geometric Brown-

inan motion and φ(ST ) the payoff of the stock at terminal time T . A trading strategy

is a pair of adapted processes, (αt, βt), which represent the number of stock and bond

units held at time t. We shall assume that αt is square integrable and βt is integrable

so that the stochastic integral involving αt and the usual integral involving βt are well

defined.

Given that the price of a bond at time t is Bt = B0e
rt, the value of a portfolio

with αt units of stock and βt units of bond is given by αtSt + βte
rt. For simplicity,

we have assumed that B0 = 1. We say that the portfolio will replicate an option at

time T if its value is almost surely equal to the payoff of the option

αT ST + βT erT = φ(ST ). (3.6)
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Also, we say that the portfolio is self-financing if the only changes in the portfolio

over time are due to the variations in the stock and the bond. For example, if more

of the stock is bought, then it would be paid for by selling bonds.[10] Using the

integration by parts formula to compute d(αtSt), we may express the self-financing

principle mathematically as follows

d(αtSt + βte
rt) = αtdSt + rβte

rtdt, (3.7)

where we have assumed the following because the change in the portfolio is due only

to the movement of the stock or bond

Stdαt + ertdβt + d < α, S >t= 0. (3.8)

The self-financing property given by (3.7) may be written in integral form as

αtSt + βte
rt = α0 + β0 +

∫ t

0

aτSτ +

∫ t

0

rβτe
rτdτ (3.9)

3.3.2 Black-Scholes Pricing Partial Differential Equation

We denote P (t, s) as the price of a European option at any time t and stock price s

with payoff given by φ(ST ). We make the assumption that the pricing function P (t, s)

is regular enough to apply Ito’s formula. Our goal is to construct a self-financing

portfolio (αt, βt) that will replicate the option at maturity time T .

Arbitrage refers to there being an opportunity to make an instantaneous risk-free

profit. Therefore, to ensure there are no arbitrage opportunities we require the value

of the portfolio at any time t to equal the value of the option as follows:

αtSt + βte
rt = P (t, St), t ∈ [0, T ]. (3.10)

An arbitrage opportunity would exist, for example, if the left side of (3.10) were

less than right side, by an investor selling the over-priced option immediately and
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investing in the under-priced stock-bond strategy. This yields an instant profit and

there is no risk to future loss because the portfolio replicates the option at the terminal

time.[10]

We begin the derivation of the Black-Scholes pricing partial differential equation

by using Ito’s formula to differentiate (3.10). Applying Ito’s formula and the self-

financing property yields the following equation

(αtµSt + βtre
rt)dt + αtσStdWt =

(
∂P

∂t
+ µSt

∂P

∂s
+

1
2
σ2S2

t

∂2P

∂s2

)
dt + σSt

∂P

∂s
dWt, (3.11)

where the partial derivatives of P are evaluated at (t, St). By equating the coefficients

of the dWt terms of (3.11) we obtain

αt =
∂P

∂s
(t, St) (3.12)

and from (3.10) we have

βt = (P (t, St) − αtSt)e
−rt. (3.13)

Equating dWt terms in (3.10) gives

r

(
P − St

∂P

∂s

)
=

∂P

∂t
+

1

2
σ2S2

t

∂2P

∂s2
. (3.14)

Equation (3.14) describes the evolution of the price of an option and is called the

Black-Scholes pricing partial differential equation. In operator notation we may ex-

press (3.14) as

LBS(σ)P = 0, (3.15)

where the operator LBS(σ) is defined as

LBS(σ) =
∂

∂t
+

1

2
σ2s2 ∂2

∂s2
+ r

(
s

∂

∂s
− ·

)
. (3.16)
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This equation holds for t ≤ T and s > 0, since in our model the stock price remains

positive. Since we know the payoff of the option, then (3.15) may be solved backward

in time with the final condition P (T, s) = φ(s). This yields a unique solution, which

is the value of the self-financing replicating portfolio at any time t. Once the price

of the option is obtained, we may compute the trading strategy (αt, βt) by using

equations (3.12) and (3.13).

A European call option may be priced by solving equation (3.15) with the terminal

condition being P (T, s) = (s − K)+. We shall denote the price of the call option by

CBS(t, s). An explicit solution for CBS is given as

CBS(t, s) = sN(d1) − Ke−r(T−t)N(d2), (3.17)

where

d1 =
log(s/K) + (r + 1

2
σ2)(T − t)

σ
√

T − t
, (3.18)

d2 = d1 − σ
√

T − t (3.19)

and

N(z) =
1

2π

∫ z

−∞
e−y2/2dy (3.20)

The popularity of this formula in the finance industry since the mid-1970’s is

attributed to the fact that the price may be explicitly computed once the volatil-

ity parameter σ has been estimated from data. We will also denote CBS(t, s) by

CBS(t, s, T,K, σ) to explicitly show the additional dependency of the function on

terminal time T , strike price K and and volatility σ.

Figure 3.2 gives a plot of the pricing function CBS(0, s, 100, 1, .15) versus the

present stock value s.
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Figure 3.2: Black-Scholes call option pricing function at time t = 0, with σ = .15, K = 100,

T = 1, σ = .15 and r = .06

We begin our discussion on the price of a put option, which we denote by PBS(t, s),

by introducing the relationship between a call and put option, which is called put-call

parity

CBS(t, St) − PBS(t, St) = St − Ke−r(T−t). (3.21)

Equation (3.21) follows from no-arbitrage arguments. For example, buying a call,

selling a put and one unit of stock and investing the difference in a bond, creates a

profit at time T regardless of the path of the stock.[10]

Combining equations (3.21) and (3.17) give the price of the put option as follows

PBS(t, s) = Ke−r(T−t)N(−d2) − sN(−d1), (3.22)

where d1, d2 and N(z) are given by (3.18), (3.19) and (3.20) respectively.

Figure 3.3 gives a plot of the pricing function PBS(0, s, 100, 1, .15) versus the

present stock value s.
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Figure 3.3: Black-Scholes put option pricing function at time t = 0, with σ = .15, K = 100,

T = 1, σ = .15 and r = .06

3.4 Pricing under an Equivalent Martingale Mea-

sure

In this section we wish to compute the price of a European option from a probabilistic

point of view. It would seem reasonable that the price or premium of a European

option would be the expected payoff of the stock discounted back to the present time.

More precisely, suppose the stock process evolves as a geometric Brownian motion

and let St = s, then the price at time t = 0 of the option is

P (0, s) = E[e−rT φ(ST )|St = s]. (3.23)

In equation (3.23), the expectation is computed with respect to the probability mea-

sure associated with the stock. This is also known as the physical measure, which

we denote by P. However, pricing an option in this manner leads to an arbitrage

opportunity because the discounted stock price process is not a martingale under this
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measure. Therefore, we find an equivalent measure under which the discounted stock

price process is a martingale. We call this new measure, which we denote by P∗, an

equivalent martingale measure. We first show that the discounted stock price process

is a martingale under this new measure. This leads to the discounted self-financing

portfolio process being a martingale under this measure and hence we may obtain the

price of the option at any time t.

3.4.1 Equivalent Martingale Measure

Let Ŝt = e−rtSt denote the discounted price process. Using Ito’s formula, we see that

the evolution of the discounted stock price process is as follows

dŜt = (µ − r)Ŝtdt + σŜtdWt. (3.24)

We wish to apply Girsanov’s theorem to the above equation in order to obtain a

measure under which Ŝt is a martingale. We proceed as follows.

Let

γσ = µ − r

and define

Mt = exp

(
−

∫ t

0

γdWs − 1

2

∫ t

0

γ2ds

)
= exp

(
−γWt − 1

2
γ2t

)
; t ≤ T.

Since E[MT ] = 1, we may a define new probability measure as follows

dP∗|Ft = MtdP|Ft .

By Girsanov’s theorem(2.3.5) the process

W ∗
t =

∫ t

0

γds + dWt = γt + Wt
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is a Brownian motion with respect to P∗ and in terms of W ∗
t the process Ŝt has the

representation

dŜt = σŜtdW ∗
t ,

which shows that Ŝt is a martingale under the measure P∗.

3.4.2 Self-Financing Portfolios

We shall show that the value of a self-financing portfolio under the measure P∗,

which we term the risk-neutral measure, is a martingale. In addition, we establish a

relationship between martingales and no-arbitrage.

We denote a portfolio that consists of αt units of stock and βt units of bonds as

Vt:

Vt = αtSt + βtBt. (3.25)

Utilizing the self-financing property we now show that the discounted portfolio

price, which we denote as V̂t = e−rtVt, is a martingale under P∗ as follows:

dV̂t = −re−rtVtdt + e−rtdVt

= −re−rt(αtSt + βte
rt)dt + e−rt(αtdSt + rβte

rtdt)

= −rertαtStdt + e−rtαtdSt

= αtd(e−rtSt)

= αtdŜt

= σαtŜtdW ∗
t . (3.26)

In addition, a similar computation shows that if a discounted portfolio is a martingale,

then it is self-financing.
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We now demonstrate the relationship between martingales and no-arbitrage. Sup-

pose that (αt, βt) is a self-financing arbitrage strategy. In other words

VT ≥ erT V0 P − a.s. (3.27)

with

P[VT > erT V0] > 0, (3.28)

so that this trading strategy always makes at least money-in-the-bank. However,

E∗[VT ] = erT V0

because VT = erT V̂T and V̂T is a martingale. Therefore, equations (3.27) and (3.28)

can not hold because they should hold for P and P∗ since P and P∗ are equivalent.[10]

3.4.3 Risk-Neutral Valuation

We make the same assumption as in (3.6) that (αt, βt) is a self-financing portfolio

that replicates an option at terminal time T as follows:

αT ST + βT erT = φ(ST ) (3.29)

In section 3.3.2 a no-arbitrage argument shows that the price of a European option at

time t is the value of this portfolio. The previous section shows that the discounted

portfolio process is a martingale under the risk-neutral measure P∗ that states

V̂t = E∗[V̂T |Ft],

and hence

Vt = E∗[e−r(T−t)φ(ST )|Ft]. (3.30)
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Utilizing the markov property of St, which states that conditioning with respect to

the filtration Ft is the same as conditioning with respect St, (3.30) may be rewritten

as:

Vt = E∗[e−r(T−t)φ(ST )|St]. (3.31)

Denoting by P (t, s), the price of a European option at time t for an observed stock

price St = s is given as

P (t, s) = E∗[e−r(T−t)φ(ST )|St = s]. (3.32)

W ∗
t is a standard Brownian motion under the risk-neutral measure P ∗, the increment

W ∗
T −W ∗

t is distributed as N (0, T − t), hence (3.34) may be written as the Gaussian

integral

P (t, s) =
1√

2π(T − t)

∫ ∞

−∞
e−r(T−t)φ(se(r−σ2

2
)(T−t)+σz)e−

z2

2(T−t) dz. (3.33)

3.4.4 Risk-Neutral Expectations and Partial Differential Equa-

tions

In this section we wish to establish the connection between risk-neutral expectation

and partial differential equations.

From the previous section, we know that the price of a European option at any

time t is given by

P (t, s) = E∗[e−r(T−t)φ(ST )|St = s]. (3.34)

Using the definition of infinitesimal generator given by definition 2.3.2 the infini-

tesimal generator of St under the risk neutral measure P∗ is given by

L = rs
∂

∂s
+

1

2
σ2s2 ∂2

∂s2
(3.35)
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Utilizing the Feyman-Kac formula, which is given by theorem 2.11, we may for-

mulate the following partial differential equation

∂P

∂t
+ LP − rP = 0, t ∈ [0, T ] (3.36)

with

P (T, s) = φ(s). (3.37)

Equations (3.36) and (3.37) are exactly the Black and Scholes pricing partial differ-

ential equation given by (3.15).
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Chapter 4

Pricing European Options under

Stochastic Volatility

Thus far we have assumed that the stock price process being modeled is a geometric

Brownian motion as follows

dSt = µStdt + σStdWt, (4.1)

where we have assumed a constant mean rate of return µ and constant volatility σ.

We shall relax the assumption that volatility is constant and allow it to be randomly

varying for the following reason: a well-known discrepancy between Black-Scholes pre-

dicted European option prices and market traded option prices, which is known as the

smile curve, is resolved by stochastic volatility models[10]. We begin this chapter by

defining implied volatility, the smile curve and explain why stochastic volatility mod-

els are a viable option. Secondly, we formulate mathematically stochastic volatility

models and provide some of the more common types; in particular a mean-reverting

stochastic volatility model. Lastly, we address how to price a European option in a

stochastic volatility environment.
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4.1 Implied Volatility and the Smile Curve

Given an observed European call option price COBS for a contract, the implied volatil-

ity, which we denote by I, is the value of the parameter σ that must be input in the

Black-Scholes pricing formula to match this price

CBS(t, s,K, T, I) = COBS (4.2)

Implied volatility is a great way to compare model predicted option prices with ob-

served prices. It is also the unit by which traders quote option prices with the con-

version to price computed using the Black-Scholes formula.

In general, I = I(t, s; K,T ), but if observed option prices equaled the Black-

Scholes prices, then the implied volatility would be constant across all option contracts

and hence modeling the volatility with a constant parameter would be an accurate

model; however this is not the case, which signifies the limitation of modeling with

constant volatility.

The smile effect is a widely known phenomenon testifying to the inaccuracy of the

Black and Scholes model[12]. This means that implied volatilities of observed prices

are not constant across the range of options, but vary with respect to their strike

price and time-to-maturity of the option. The graph of I(K) tends to be downward

sloping for at- and around-the-money call option prices (95% ≤ K/s ≤ 105%) and

then curves upwards for far out-of-the-money (K >> s) call option prices [10]. This

is known as a downward sloping skew. Therefore, using implied volatility from an at-

the-money call option will result in a premium charged for in-the-money call options

and out-of-the-money put options. This tells us the market prices as though the

geometric Brownian motion model fails to capture probabilities of large downward

stock price movements and adds a premium to Black-Scholes prices to account for
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this.

We have shown that the market prices options contrary to the Black-Scholes pric-

ing formula and we next present stochastic volatility models which capture the down-

ward sloping skew property of the implied volatility.

4.2 Stochastic Volatility Models

A stochastic volatility model is a model in which the evolution of the stock price is

described in the following manner

dSt = µStdt + σ(Yt)StdWt, (4.3)

where µ represents the mean return rate and σ(·) represents the volatility, which

is driven by another stochastic process Yt. We shall assume that σ(·) is positive,

bounded and bounded away from zero: 0 ≤ σ1 ≤ σ(·) ≤ σ2 for two constants σ1

and σ2. The volatility is driven by an Ito process, Yt, satisfying another stochastic

differential equation driven by a second Brownian motion. In order to account for

the downward sloping skew we allow these Brownian motions to be dependent.

The process, Yt, which drives the volatility is commonly modeled as a mean-

reverting process. The term mean-reverting refers to the fact that the process returns

to the average value of its invariant distribution-the long run distribution of the

process. In terms of financial modeling, mean-reverting often refers to a linear pull-

back term in the drift of the volatility process. Usually, Yt takes the following form:

dYt = α(m − Yt)dt + · · ·dẐt , (4.4)

where Ẑt is a Brownian motion correlated with Wt. The rate of mean reversion

is represented by the parameter α and the mean level of the invariant distribution
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of Yt is given by m. We consider here the simplest model, which is known as the

Ornstein-Uhlenbeck process:

dYt = α(m − Yt)dt + βdẐt , (4.5)

where β > 0 is a constant and Ẑt is a Brownian motion expressed as

Ẑt = ρWt +
√

1 − ρ2 Zt ,

where Zt is a standard Brownian motion independent of Wt. The parameter ρ ∈
(−1, 1) is the constant instantaneous correlation coefficient between Ẑt and Wt defined

by

d < W, Ẑ >t= ρdt. (4.6)

The process Yt may be explicitly written in terms of its initial value, which we

denote by y, as

Yt = m + (y − m)e−αt + β

∫ t

0

e−α(t−s)dẐs. (4.7)

We see by equation (4.7) that Yt is distributed as

Yt ∼ N (m + (y − m)e−αt,
β2

2α
(1 − e−2αt)). (4.8)

Hence, the distribution of Yt as t → ∞, which is the invariant distribution, is given

by N (m, β2

2α
). Denoting the variance of the invariant distribution by ν2 = β2

2α
, we may

rewrite (4.5) as

dYt = α(m − Yt)dt + ν
√

2α dẐt . (4.9)

Rewriting equation (4.5) in the above form is effective for when we perform as-

ymptotic analysis.
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A couple of other common driving processes for Yt are the following

Lognormal:

dYt = c1Ytdt + c2YtdẐt,

which is not mean-reverting and

Cox-Ingersall-Ross:

dYt = κ(m̂ − Yt)dt + v
√

Y tdẐt.

4.3 Pricing in a Stochastic Volatility Environment

We now focus on pricing European options when the volatility is modeled as a func-

tion of a stochastic process. One approach, which is detailed in [10], is to construct a

hedged portfolio of assets which can be priced by the no-arbitrage principle. With this

approach we hedge with the underlying stock and another option because volatility is

not a tradeable asset. The second approach, which we describe here, is the construc-

tion of an equivalent martingale measure so that the discounted stock price process is

a martingale. In addition, we also present the partial differential equation represen-

tation of the option price that is obtained utilizing the Feyman-Kac formula, which is

the same partial differential equation formulated through the no-arbitrage principle.

4.3.1 Equivalent Martingale Measure Approach

We denote P (t, s, y) to be the price of a European option at time t, stock price s

and volatility level σ(y) that has payoff φ(ST ). Although volatility is not directly

observable we shall assume for this work that the level at time t has been estimated.

We wish to obtain a pricing formula when the volatility is a function of a mean-
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reverting OU process. We formulate the two-dimensional model as

dSt = µStdt + σ(Yt)StdWt

dYt = α(m − Yt)dt + ν
√

2α(ρdWt +
√

1 − ρ2dZt), (4.10)

where Wt and Zt are independent Brownian motions.

We may obtain, as in section 3.4.1, an equivalent martingale measure utilizing

Girsanov’s theorem; however, there will be a family of equivalent martingale measures

since any shift in the Brownian motion Zt will still result in the discounted price

process being a martingale.

We apply Girsanov’s theorem by defining the following:

ψt =


 µ−r

σ(Yt)

γt


 , Nt =


Wt

Zt


 ,

where γt is any adapted square integrable process. We assume that ψt satisfies the

Novikov condition given in theorem 2.3.5 and define

Mt = exp

(
−

∫ t

0

ψs · dNs − 1

2

∫ t

0

ψs · ψsds

)
.

Since E[MT ] = 1, we may define a new probability measure P∗(γ) as follows

dP∗(γ)|Ft = MtdP|Ft .

By Girsanov’s theorem we conclude the process

N∗
t =

∫ t

0

ψsds + Nt

is a Brownian motion with respect to P∗(γ), where N∗
t has the representation

N∗
t =


W ∗

t

Z∗
t


 .
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Under the measure P∗(γ), equation (4.10) may be rewritten as

dSt = rStdt + σ(Yt)StdW ∗
t

dYt = [α(m − Yt) − ν
√

2α Λ(y)]dt + ν
√

2α (ρdW ∗
t +

√
1 − ρ2 dZ∗

t ) (4.11)

where

Λ(y) =
ρ(µ − r)

σ(y)
+ γ(y)

√
1 − ρ2. (4.12)

Any admissible choice of γt leads to a risk-neutral measure P∗(γ) and the no-arbitrage

price computed as

P (t, x, y) = E∗(γ)[e−r(T−t)φ(ST )|St = s, Yt = y]. (4.13)

The process (γt) is called the market price of volatility risk from the second source of

randomness Zt that drives the volatility. We refer to [10] for a full detailed explanation

of the market price of volatility risk. Notice that it parameterizes the space of risk-

neutral measures {P∗(γ)}. We note the market chooses the equivalent martingale

measure {P∗(γ)}.

4.3.2 Partial differential equation approach

By the Feynman-Kac formula, the pricing function given by equation (8.27) satisfies

the following partial differential equation with two space dimensions:

∂P

∂t
+

1

2
σ2(y)s2∂2P

∂s2
+ ρν

√
2α sσ(y)

∂2P

∂s∂y
+ ν2α

∂2P

∂y2

+ r(s
∂P

∂s
− P ) +

[
(α(m − y)) − ν

√
2α Λ(y)

] ∂P

∂y
= 0 , (4.14)

where Λ(y) is given by (9.5). This is same partial differential equation that is ob-

tained through hedging and using a no-arbitrage argument as shown in [10]. In order
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to find P (t, s, y), this PDE is solved backward in time with the terminal condition

P (T, s, y) = φ(s) which is (s − K)+ in the case of a call option. We introduce the

following convenient operator notation:

L0 = ν2 ∂2

∂y2
+ (m − y)

∂

∂y
(4.15)

L1 = ρν
√

2 sσ(y)
∂2

∂s∂y
− ν

√
2 Λ(y)

∂

∂y
(4.16)

L2 =
∂

∂t
+

1

2
σ2(y)s2 ∂2

∂s2
+ r

(
s

∂

∂s
− ·

)
, (4.17)

where

• αL0 is the infinitesimal generator of the OU process Yt.

• L1 contains the mixed partial derivative due to the correlation ρ between the

W ∗ and Z∗. It also contains the first order derivative with respect to y due to

the market prices of risk.

• L2 is the Black-Scholes operator with volatility σ(y), also denoted by LBS(σ(y)).

Equation (9.11) may be written in the compact form:

(
αL0 +

√
αL1 + L2

)
P = 0 , (4.18)

to be solved with the payoff terminal condition at maturity T .
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Chapter 5

Monte Carlo and Importance

Sampling

In this chapter we present the importance sampling variance reduction technique for

Monte Carlo simulation when modeling with stochastic differential equations. The

reader is referred to [22] and [11] for more details.

Let (Vt)0≤t≤T be an n-dimensional stochastic process which evolves as follows

dVt = b(t, Vt)dt + a(t, Vt)dηt , (5.1)

where ηt is a standard n-dimensional P-Brownian motion and b(·, ·) ∈ Rn, a(·, ·) ∈
Rn×n which satisfy the usual regularity and boundedness assumptions to ensure ex-

istence and uniqueness of the solution. Given a real function φ(v), which is bounded

for instance, we define the following function u(t, v)

u(t, v) = E{φ(VT )|Vt = v} .

A Monte Carlo simulation consists of approximating u(t, v) in the following manner

u(t, v) ≈ 1

N

N∑
k=1

φ(V
(k)
T ) , (5.2)
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where (V
(k)
s , k = 1, · · · , N) are independent realizations of the process Vs for t ≤ s ≤

T and V
(k)
t = v.

There is an alternative way to construct a Monte Carlo approximation of u(t, v).

Given a square integrable Rn-valued, ηt-adapted process of the form h(t, Vt), we con-

sider the following process Qt

Qt = exp

{∫ t

0

h(s, Vs) · dηs +
1

2

∫ t

0

‖h(s, Vs)‖2ds

}
.

If E(Q−1
T ) = 1, then (Qt)0≤t≤T is a positive martingale and a new probability measure,

P̃, may be defined by the density

dP̃
dP

= (QT )−1 .

With respect to this new measure, u(t, v) may be written as

u(t, v) = Ẽ{φ(VT )QT |Vt = v} . (5.3)

By Girsanov’s theorem, the process(η̃t)0≤t≤T defined by η̃t = ηt +
∫ t

0
h(s, Vs)ds is a

standard Brownian motion under the new measure P̃. In terms of the Brownian

motion η̃t, the processes Vt and Qt may be rewritten as

dVt = (b(t, Vt) − a(t, Vt)h(t, Vt))dt + a(t, Vt)dη̃t (5.4)

Qt = exp

{∫ t

0

h(s, Vs) · dη̃s − 1

2

∫ t

0

‖h(s, Vs)‖2ds

}
(5.5)

which will be used in the simulations for the approximation of (5.3) by

u(t, v) ≈ 1

N

N∑
k=1

φ(V
(k)
T )Q

(k)
T . (5.6)

The importance sampling variance reduction method consists of determining

a function h(t, v) that leads to a smaller variance for the Monte Carlo approximation

given in (9.27) than the variance for (5.2).
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Applying Ito’s formula to u(t, Vt)Qt and using the Kolmogrov’s backward equation

for u(t, v) one gets

d(u(t, Vt)Qt) = u(t, Vt)Qth(t, Vt) · dη̃t + Qta
T (t, Vt)∇u(t, Vt) · dη̃t

= Qt(a
T∇u + uh)(t, Vt) · dη̃t .

where aT denotes the transpose of a, and ∇u the gradient of u with respect to the

space variable v.

In order to obtain u(0, v), for instance, one can integrate between 0 and T and

deduce

u(T, VT )QT = u(0, V0)Q0 +

∫ T

0

Qt(a
T∇u + uh)(t, Vt) · dη̃t ,

which reduces to

φ(VT )QT = u(0, v) +

∫ T

0

Qt(a
T∇u + uh)(t, Vt) · dη̃t .

Therefore, the variances for the two Monte Carlo simulations (5.2) and (9.27) are

given by

VarP̃ (φ(VT )QT ) = Ẽ
{∫ T

0

Q2
t‖aT∇u + uh‖2dt

}

VarP (φ(VT )) = E
{∫ T

0

‖aT∇u‖2dt

}
.

If u(t, v) were known, then the problem would be solved and the optimal choice for

h, which gives a zero variance, would be

h = −1

u
aT∇u . (5.7)

The main idea of the variance reduction methodology is find an appropriate approxi-

mation apriori for the unknown u in the previous formula so that the following holds

VarP̃ (φ(VT )QT ) < VarP (φ(VT ))
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In the following chapter we present two ways by which we may obtain an approx-

imation apriori to the expectation of interest when we analyze stochastic volatility

models. Upon determining a procedure by which to find an approximation to the ex-

pectation of interest, we shall apply the importance sampling technique to the pricing

of a European option when the stock is modeled with stochastic volatility.
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Chapter 6

Asymptotic Analysis

In this chapter we provide two approaches to the asymptotic expansion of the sto-

chastic volatility model used to compute the price of a European option. We utilize

these two approaches to find an initial approximation for the price of a European

option. The first approach, introduced in [11], involves a regular perturbation of the

pricing partial differential equation. The second approach, introduced by [10],and

detailed here, corresponds to a singular perturbation of the pricing partial differential

equation.

6.1 Small Noise Expansion

We consider the following stochastic volatility model under the the risk-neutral mea-

sure P∗(γ)

dSt = rStdt + σ(Yt)StdW ∗
t

dYt = [α(m − Yt) − ν
√

2α Λ(y)]dt + ν
√

2α (ρdW ∗
t +

√
1 − ρ2 dZ∗

t ) (6.1)
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where

Λ(y) =
ρ(µ − r)

σ(y)
+ γ(y)

√
1 − ρ2. (6.2)

Any admissible choice of γ(y) leads to a risk-neutral measure P∗(γ) and the no-

arbitrage European price computed as

P (t, x, y) = E∗(γ)[e−r(T−t)φ(ST )|St = s, Yt = y]. (6.3)

By the Feyman-Kac formula we know that (8.27) solves the following partial differ-

ential equation in compact form

(
αL0 +

√
αL1 + L2

)
P = 0 , (6.4)

where the operators L0, L1 and L2 are given by (4.15). Equation (6.4) is to be

solved with the payoff terminal condition as P (T, s, y) = φ(s − K)+.

If α = 0, then (6.4) becomes

L2P = 0 .

Since L2 is simply the Black-Scholes operator with constant volatility σ(y), then an

approximation PBS(σ(y)) of P is given by the Black-Scholes formula

PBS(σ(y))(t, s) = sN(d1) − KerT N(d2) , (6.5)

where N(d) = 1√
2π

∫ d

−∞ e−z2/2dz, d1 = ln(s/K)+(r+σ2(y)/2)(T−t)

σ(y)
√

T−t
, d2 = d1 − σ(y)

√
T − t.

The function PBS(σ(y))(t, s) is the first term in the small noise expansion of P (t, s, y)

around α = 0 or, in other words, when volatility is slowly varying and, in the limit,

Yt being “frozen” at its initial point y. A complete proof of the expansion result with
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higher order terms is given in [11] as well as numerical results showing that the im-

portant gain in variance reduction when utilizing this expansion as an approximation

to the pricing function in importance sampling is obtained by using the leading order

term PBS(σ(y)) alone as an approximation of P .

6.2 Fast Mean-Reverting Expansion

In this section we present fast mean-reverting asymptotics, which corresponds to a

singular perturbation of the pricing partial differential equation. However, we first

present the concept of effective volatility, which will be utilized in the development

of the expansion.

6.2.1 Effective Volatility

The process Yt has an invariant distribution which admits the density Φ(y) obtained

by solving the adjoint equation

L∗
0Φ = 0 ,

where L∗
0 denotes the adjoint of the infinitesimal generator L0 given by (4.15). In the

case of the Ornstein-Uhlenbeck process, which we consider in this work, the invariant

distribution is N (m, ν2) and the density is explicitly given by

Φ(y) =
1√

2πν2
exp

(
−(y − m)2

2ν2

)
.

Let 〈·〉 denote the average with respect to this invariant distribution

〈g〉 =

∫ ∞

−∞
g(y)Φ(y)dy .
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Given a bounded function g, by the ergodic theorem, the long-time average of g(Yt)

is close to the average with respect to the invariant distribution

lim
t→∞

1

t

∫ t

0

g(Ys)ds =< g > .

In our case the “real time” for the process Yt is the product αt and the long time

behavior is the same in distribution as a large rate of mean-reversion, and therefore

1

t

∫ t

0

g(Ys)ds ≈< g > ,

for α large and any fixed t > 0. In particular, in the context of stochastic volatility

models, we consider the mean-square-time-averaged volatility σ2 defined by

σ2 =
1

T − t

∫ T

t

σ2(Ys)ds .

The result above shows that, for α large

σ2 ≈ 〈σ2〉 ≡ σ̄2 , (6.6)

which defines the constant effective volatility σ̄. This quantity is easily estimated

from the observed fluctuations in returns. We refer to [10] for more details.

6.2.2 Fast Mean-Reverting Asymptotics

We begin our discussion on fast mean-reverting asymptotics by letting α = 1
ε

through-

out our model. The Feyman-Kac representation of the European option pricing func-

tion may be expressed in terms of ε in operator form as

(
1

ε
L0 +

1√
ε
L1 + L2

)
P = 0 , (6.7)

with the payoff terminal condition as P (T, s, y) = φ(s − K)+.
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Fast mean-reversion corresponds to epsilon becoming small. This is the same as

the rate of mean-reversion, α, becoming large, which may be interpreted as the intrisic

decorrelation in volatility being small. Equation (6.7) is called a singular perturbation

because of the diverging terms when ε → 0, keeping the time derivative in L2 of order

one.

The main idea of the asymptotic analysis is to expand the pricing function in

powers of
√

ε as follows

P (t, s, y) = P0(t, s, y) +
√

εP1(t, s, y) + εP2(t, s, y) + ε
√

εP3(t, s, y) + · · · , (6.8)

where P0, P1 and P2 are functions to determined such that P0(T, s, y) = φ(s). We

will only find representations for the first two terms P0 +
√

εP1 and we shall impose

the terminal condition P1(T, s, y) = 0. Substituting (6.8) into (6.7) we obtain

1

ε
L0P0 +

1√
ε
(L0P1 + L1P0) + (L0P2 + L1P1 + L2P0)

+
√

ε(L0P3 + L1P2 + L2P1) + · · · = 0 (6.9)

We find a representation for P0 and
√

εP1 by analyzing the equations obtained when

equating terms of the same order. We begin with the terms of order 1
ε

in (6.9).

Equating terms of order 1
ε

we have

L0P0 = 0. (6.10)

Since the operator L0 includes only derivatives in the space variable y, then we choose

P0 to be constant with respect to that variable and hence P0 must be a function of

only t and s

P0(t, s, y) = P0(t, s). (6.11)

Similarly, we equate terms of order 1√
ε

in (6.9) to obtain

L0P1 + L1P0 = 0. (6.12)
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From (6.11) we know that L1P0 = 0 because L1 consists of derivatives with respect

to y. Therefore, we are left with L0P1 = 0. Using the same argument as in (6.10) we

have P1 as a function of only t and s

P1(t, s, y) = P1(t, s). (6.13)

Note that the first two terms of the expansion will not depend upon the present

volatility level.

We continue the expansion by equating terms of order one of (6.9). The order one

terms give

L0P2 + L1P1 + L2P0 = 0. (6.14)

We know that L1P1 = 0 because P1 does not depend on y. Hence (6.14) reduces to

L0P2 + L2P0 = 0. (6.15)

The s variable being fixed, L2P0 is a function of y since L2 involves σ(y). Considering

only the dependency of y, equation (6.15) is of the form

L0ψ(y) + g(y) = 0, (6.16)

which is known as a Poisson equation for ψ(y) with respect to the operator L0 in

the y variable. This equation does not admit a solution on a suitable space unless

g(y) is centered with respect to the invariant distribution of the Markov process Yt

with infinitesimal generator given by L0. We denote the density of the invariant

distribution of Yt by Φ(y), which is given by

Φ(y) =
1√
2πν

e−
(y−m)2

2ν2 . (6.17)

The centering condition necessary so that there exist a solution to (6.16) is

< g >=

∫
g(y)Φ(y)dy = 0. (6.18)
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The Zero-Order Term

We now present how the zero-order term of the expansion given by (6.8) may be

obtained. Since (6.15) is a Poisson equation, then it only admits a solution if L2P0

satisfies the centering condition

< L2P0 >= 0. (6.19)

P0 is a function of only s and t and since we average with respect to the y variable

(6.19) may be reduced to

< L2 > P0 = 0. (6.20)

From the definition of L2 we may deduce that < L2 >= LBS(σ̄), where σ̄ corresponds

to the effective volatility defined by (6.6). Therefore, the zero-order term P0(t, s) is

the solution of the the Black-Scholes partial differential equation

LBS(σ̄)P0 = 0, (6.21)

with terminal condition given by P0(T, s) = φ(s).

Knowing the centering condition is satisfied we may express L2P0 as

L2P0 = L2P0− < L2P0 >=
1

2
(σ(y)2 − σ̄2)s2∂2P0

∂s2
. (6.22)

The solution of the Poisson equation (6.15), P2, may now be expressed as

P2(t, s, y) = −1

2
L−1

0 (σ(y)2 − σ̄2)s2∂2P0

∂s2

= −1

2
(ψ(y) + c(t, s))s2∂2P0

∂s2
, (6.23)

where ψ(y) is a solution of the Poisson equation

L0ψ = σ2− < σ2 >, (6.24)
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and c(t, s) is a constant in y.

When we compute P1(t, s) we shall utilize ψ′, which is derived in [10] and given

as

ψ′(y) =
1

ν2Φ(y)

∫ y

−∞
(σ2(s)− < σ2 >)Φ(s)ds (6.25)

The First Correction

We continue the process of equating terms in (6.8) by setting the terms of order
√

ε

equal to zero, which gives

L0P3 + L1P2 + L2P1 = 0. (6.26)

The above equation is also a Poisson equation that must have the centering condition

< L1P2 + L2P1 >= 0 (6.27)

in order to admit the solution P3 on a suitable space.

Using equation (6.23) for P2, the fact that P1 and c do not depend on y and < L2 >=

LBS(σ̄) we conclude P1 solves

LBS(σ̄)P1 =
1

2
< L1ψ(y) > s2∂2P0

∂s2
. (6.28)

The operator < L1ψ(y) > may be computed as

< L1ψ(y)• >=
√

2ρν < σ(y)ψ′(y) > s
∂

∂s
−
√

2ν < Λ(y)ψ′(y) > •, (6.29)

which leads to the following partial differential equation for P1(t, s)

LBS(σ̄)P1 =
√

2
2

ρν < σψ′ > s3 ∂3P0

∂s3
+

(√
2ρν < σψ′ > −

√
2

2
ν < Λψ′ >

)
s2 ∂2P0

∂s2
, (6.30)

with the terminal condition P1(T, s) = 0.
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We now introduce the first correction, which is defined as follows

P̃1(t, s) =
√

εP1(t, s). (6.31)

The first correction satisfies the following partial differential equation

LBS(σ)P̃1 = V2s
2∂2P0

∂s2
+ V3s

3∂3P0

∂s3
, (6.32)

where V2 and V3 are small coefficients. In terms of α they may be expressed as

V2 =
ν√
2α

(2ρ < σψ′ > − < Λψ′ >), (6.33)

V3 =
ρν√
2α

< σψ′ > . (6.34)

We may express V2 and V3 in terms of the original model parameters by computing

< σψ′ > and < Λψ′ > utilizing integration by parts

< σψ′ > = <
σ

ν2Φ

∫ y

−∞
(σ2(s)− < σ2 >)Φ(s)ds > (6.35)

=
1

ν2

∫ ∞

−∞
σ(τ)

(∫ τ

−∞
(σ2(s)− < σ2 >)Φ(s)ds

)
dτ

= − 1

ν2
< Σ(σ2− < σ2 >) >,

where Σ denotes the antiderivative of σ. Similarly, we obtain < Λψ′ > as

< Λψ′ > = ρ(µ − r) <
ψ′

σ
> +

√
1 − ρ2 < γψ′ > (6.36)

= −ρ(µ − r)
ν2

< Σ̃(σ2− < σ2 >) > −
√

1 − ρ2

ν2
< Γ(σ2− < σ2 >) >,

where Σ̃ and Γ represent the antiderivatives of 1
σ

and γ respectively. We may relate

V2 and V3 to the original model parameters as follows

V2 =
1

ν
√

2α
< [−2ρΣ + ρ(µ − r)Σ̃ +

√
1 − ρ2Γ](σ2− < σ2 >) >, (6.37)

V3 =
−ρ

ν
√

2α
< Σ(σ2− < σ2 >) > . (6.38)
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The first correction satisfies the Black-Scholes partial differential equation with

a zero terminal condition and a small source term computed from the leading order

term P0(t, s). It has a closed form solution that is given by

P̃1(t, s) = −(T − t)

(
V2s

2∂2P0

∂s2
+ V3s

3∂P0

∂s3

)
. (6.39)

By combining P0 and P̃1 we obtain a O(
√

ε) approximation of the pricing function

for a European option, which is given explicitly by

P (t, s, y) = P0(t, s) − (T − t)

(
V2s

2∂2P0

∂s2
+ V3s

3∂P0

∂s3

)
. (6.40)
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Chapter 7

Variance Reduction for European

Option

In this chapter we apply the Importance Sampling variance reduction technique to

computing the price of a European option. We shall use the two methods of expansion

described in the previous chapter to obtain a preliminary estimate of the expecta-

tion utilized to compute the premium. Secondly, we present some numerical results

obtained from implementing the methodology in Matlab.

7.1 Application of Importance Sampling to Pric-

ing Model

We apply the importance sampling variance reduction technique to the stochastic

volatility model (9.4) used for computing European call options. In matrix form the

evolution under the risk neutral measure P∗ is given by

dVt = b(Vt)dt + a(Vt)dηt , (7.1)
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where we have set

ηt =


W ∗

t

Z∗
t


 , Vt =


St

Yt


 ,

and

a(v) =


 sσ(y) 0

νρ
√

2α ν
√

2α(1 − ρ2)


 , b(v) =


 rs

α(m − y) − ν
√

2α Λ(y)


 .

The price of a call option at time 0 is computed by

P (0, v) = E∗{e−rT φ(VT )|V0 = v} , (7.2)

where v = (s, y) and φ(v) = (s − K)+.

We now apply the importance sampling technique described in chapter 5.

Define η̃t = ηt +
∫ t

0
h(s, Vs)ds, which is a Brownian motion under the probability P̃∗

which admits the density Q−1
T as described in chapter 5

Q−1
T = exp

{
−

∫ t

0

h(s, Vs) · dη̃s +
1

2

∫ t

0

‖h(s, Vs)‖2ds

}
.

Under the new measure, the price of the call option at time 0 is then computed

by

P (0, v) = Ẽ∗{e−rT φ(VT )QT |V0 = v} , (7.3)

where the expectation is taken with respect to the measure P̃∗.

By (8.50), if P (0, v) were known, the optimal choice for h that gives the minimal

variance is

h = − 1

P


sσ(y) νρ

√
2α

0 ν
√

1 − ρ2
√

2α





∂P

∂s

∂P
∂y


 . (7.4)
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Once we have found an approximation of P by using small noise expansion or fast

mean-reversion expansion, then we may determine h in order to approximate (9.25)

via Monte Carlo simulation

P (0, v) ≈ 1

N

N∑
k=1

φ(V
(k)
T )Q

(k)
T (7.5)

under the evolution

dVt = (b(Vt) − a(Vt)h(t, Vt))dt + a(Vt)dη̃t (7.6)

Qt = exp

{∫ t

0

h(s, Vs) · dη̃s − 1

2

∫ t

0

‖h(s, Vs)‖2ds

}
. (7.7)

When we utilize small noise expansion as an apriori estimate for the price of a call

option, the function h(t, v) given by (9.26) will have the following form

h(t, v) = − 1

PBS(σ(y))


sσ(y)

∂PBS(σ(y))

∂s

0


 , (7.8)

where PBS(σ(y))(t, s) and
∂PBS(σ(y))

∂s
(t, s) = N(d1) are given by (6.5).

Similarly, using the zero order term of the fast mean-reversion expansion leads to

the function h(t, v) of the following form

h(t, v) = − 1

PBS(σ̄)


sσ(y)

∂PBS(σ̄)

∂s

0


 , (7.9)

where the effective volatility, σ̄, is given by (6.6).

The order O(
√

ε) term of the expansion of the price P (t, s, y) is given by

P̃1(t, s) = −(T − t)

(
V2s

2∂2PBS(σ̄)

∂s2
+ V3s

3∂3PBS(σ̄)

∂s3

)
. (7.10)

We denote the order O(
√

ε) approximation to the pricing function by PFMR and it is

given by

PFMR = PBS(σ̄) − (T − t)

(
V2s

2∂2PBS(σ̄)

∂s2
+ V3s

3∂3PBS(σ̄)

∂s3

)
, (7.11)
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where V2 and V3 are given by (6.37) and (6.38). Therefore, h takes the following form

h(t, v) = − 1

PFMR


sσ(y)∂PFMR

∂s

0


 . (7.12)

Since we have control over how to choose this function h, we choose it in the

following manner so that the Novikov condition will hold

h(M) = min(max(−M,h),M),

where M is large. Therefore, Girsanov’s theorem may be applied and Qt has finite

variance.

7.2 Numerical Results

In this section we present some numerical results from applying the importance sam-

pling variance reduction methodology to the pricing of a European call option. We

shall test the variance methodology developed by implementing the technique on the

three types of call options: in-the-money (S0 > K), at-the-money(S0 = K) and

out-of-the-money (S0 < K), where S0 represents the stock price at time 0 and K

represents the strike price. Since each method of expansion is characterized by the

rate of mean-reversion, we present results for various values of α ranging from slow

mean reversion α = .5 to fast mean-reversion α = 100.

In table 7.1 we present the model parameters utilized when performing the sim-

ulations. We note in our choice of parameters that σ(y) is bounded and that the

effective volatility, σ̄, is computed using

σ̄2 =< (max{.0001, min{exp(y), 5}})2 >=

∫ ∞

−∞
(max{.0001, min{exp(y), 5}})2 Φ(y)dy,
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Table 7.1: Model Parameters for the European Pricing Problem

Parameter Value

m −2.6

r .1

ν 1

ρ −.3

σ(y) max{.0001, min{exp(y), 5}}
µ .1

γ(y) 0

Λ(y) 0

σ̄ .1971

V2
.0090√

α

V3
.0045√

α

where

Φ(y) =
1

2π
exp

(
−(y + 2.6)2

2

)
.

For simplicity we choose µ = r and γ = 0. The parameters V2 and V3 are computed

from (6.37) and (6.38) as follows

V2 =
−2ρ

ν
√

2α
< Σ(σ2− < σ2 >) >,

V3 =
1

2
V2,

where Σ(y) = max{.0001, min{exp(y), 5y}}.
We use the Euler scheme, which is detailed in chapter 2, to approximate the
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Table 7.2: Empirical variance for an in-the-money European call option.

S0 Y0 K T α BMC PBS(σ(y)) PBS(σ̄) PFMR

110 −2.32 100 1 .5 .0164 .0026 .0028 .0021

110 −2.32 100 1 1 .0205 .0046 .0044 .0013

110 −2.32 100 1 5 .0232 .0081 .0036 .0012

110 −2.32 100 1 10 .0237 .0083 .0028 .0008

110 −2.32 100 1 25 .0257 .0115 .0010 .0007

110 −2.32 100 1 50 .0288 .0150 .0007 .0006

110 −2.32 100 1 100 .0319 .0184 .0004 .0003

diffusion process Vt given by (9.28). Suppose the time interval [0, T ] is discretized as

0 = t1 < t2 < t3 < · · · < tN = T,

then the Euler scheme may be explicitly written as

Sn+1 = (rSn − σ(Yn)Snh1(n, Sn, Yn))∆s + σ(Yn)Sn∆W 1
n (7.13)

Yn+1 = (α(m − Yn) − ρν
√

2αh1(n, Sn, Yn))∆s + ν
√

2α(ρ∆W 1
n +

√
1 − ρ2∆W 2

n),

where n = 0, 1, 2, · · · , N − 1 with initial values S0 = s and Y0 = y. In addition,

∆s = ts+1 − ts and ∆Ws = Wts+1 −Wts . In our simulation we shall take the time step

to be a fixed increment: ∆s = 10−3. The function h1 represents the first component

of the h vector given in the three methods of expansion. In the case of basic Monte

Carlo, where we do not apply importance sampling, h1 = 0. Lastly, the number of

sample paths computed in our simulations is 10000.

In table 7.2 we present the empirical variance of each Monte Carlo simulation

for an in-the-money call option when using basic Monte Carlo or using importance
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sampling with the two forms of expansion. BMC refers to computing the price un-

der the measure P∗, while PBS(σ(y)) refers to using importance sampling with small

noise expansion. The quantities PBS(σ̄) and PFMR refer to using fast mean-reversion

expansion as an initial estimate of the expectation in importance sampling.
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Figure 7.1: Monte Carlo simulations of an in-the-money European call option with a rate

of mean-reversion α = 1.

Figures 9.1 and 9.2 present the results of our Monte Carlo simulations as a func-

tion of the number of realizations. The simulations are for an in-the-money call

option. The two illustrations given are for α = 1 and α = 10. It is clear from table

7.2 and the figures that the basic Monte Carlo estimator performs extremely poorly

when compared to the other three estimators. Also, notice that when α = 1 the vari-

ance for small noise expansion and the order zero fast mean-reversion expansion are
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Figure 7.2: Monte Carlo simulations of an in-the-money European call option with a rate

of mean-reversion α = 10.

approximately the same; however, when the first correction is added to the approxi-

mation we obtain a greater reduction in the variance. Additionally, when the rate of

mean-reversion is extremely large, the order zero and order one approximations are

about the same.

We also wish to present results for an at-the-money call option and an out-of-the

call option so that we have tested our methodology on the three types of call options.

In tables 7.3 and 7.4 we present the empirical variance for each method of expan-

sion and basic Monte Carlo for an at-the-money and out-of-the-money European call

option. As in the case of an in-the-money European call option basic Monte Carlo

estimator performs extremely poorly when compared to the other three estimators.
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Table 7.3: Empirical variance for an at-the-money European call option.

S0 Y0 K T α BMC PBS(σ(y)) PBS(σ̄) PFMR

100 −2.32 100 1 .5 .0264 .0019 .0025 .0022

100 −2.32 100 1 1 .0279 .0034 .0038 .0017

100 −2.32 100 1 5 .0288 .0068 .0028 .0015

100 −2.32 100 1 10 .0240 .0093 .0015 .0012

100 −2.32 100 1 25 .0347 .0092 .0011 .0009

100 −2.32 100 1 50 .0388 .0170 .0010 .0008

100 −2.32 100 1 100 .0319 .0184 .0007 .0005

Also, we once again notice that when the first correction is added to the expansion

we obtain greater reduction of the variance when α = 1. Additionally, when the rate

of mean-reversion is extremely large, the order zero and order one approximations are

about the same, which occurs in the case of an in-the-money European call option.
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Table 7.4: Empirical variance for an out-the-money European call option.

S0 Y0 K T α BMC PBS(σ(y)) PBS(σ̄) PFMR

90 −2.32 100 1 .5 .0110 .0017 .0023 .0018

90 −2.32 100 1 1 .0205 .0038 .0036 .0015

90 −2.32 100 1 5 .0235 .0055 .0028 .0011

90 −2.32 100 1 10 .0337 .0093 .0021 .0009

90 −2.32 100 1 25 .0369 .0112 .0012 .0008

90 −2.32 100 1 50 .0355 .0144 .0009 .0007

90 −2.32 100 1 100 .0388 .0174 .0004 .0002

67



Chapter 8

American Option

In this chapter we wish to apply the importance sampling variance reduction tech-

nique developed in chapters 5 and 6 to the pricing of an American option. We begin

by formally defining an American option and how to compute its price. Secondly,

we present a computational inexpensive procedure, developed by Barone-Adesi and

Whaley, which computes the price of an American option under constant volatility.

We utilize this method to compute a preliminary estimate of the price of an Ameri-

can option when applying importance sampling. Next, we consider the pricing of an

American option when the underlying asset is modeled with stochastic volatility and

develop the asymptotic analysis in this framework. A numerical technique utilized to

compute an American option price via Monte Carlo simulation, which was developed

by Longstaff and Schwartz, is subsequently presented. Finally, we apply the impor-

tance sampling variance reduction technique when pricing an American option in a

stochastic volatility environment and present some numerical results.
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8.1 Pricing an American option

An American style option is a contract that gives its owner the right, but not the

obligation to exercise the option at any time before the terminal time of the contract.

The two types of American options we consider are the call, where to exercise means

to buy one unit of the underlying asset for the strike price and the put, where the

owner has the right to sell one unit of stock at the predetermined strike price. We

shall denote the time the contract is exercised in either case as τ . At time t, the

holder must decide whether to exercise the option given information in the σ-algebra

Ft. In other words, the owner observes the stock up to the present time and then

decides whether or not to exercise the option. The exercise time τ is called a random

time that is Ft measureable i.e. the event {τ ≤ t} belongs to Ft for any t ≤ T , where

T represents the terminal time of the contract. We regard τ as a stopping time with

respect to the filtration Ft.

We again denote the payoff function as φ, which is given as

φ(s) = (s − K)+ =




s − K if s > K

0 if s < K

in the case of the call and

φ(s) = (K − s)+ =




K − s if K > s

0 if K < s

in the case of the put and where K represents the strike price of the contract.

Hence, the value of the payoff function at the stopping time τ is given by φ(Sτ ).

Due to the early exercise feature of the American option, pricing is more com-

plicated than pricing a European option. The price of an American option gives its

holder more rights than that of a European option and therefore its price is greater
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than or equal to that of a European option that has the same payoff function and

terminal date. Using the theory of optimal stopping it can be shown that the price of

an American option with payoff function φ is obtained by maximizing the expected

discounted payoff over all possible stopping times[3]. The expected value is computed

under the risk-neutral probability P ∗ as we should expect. The price of an American

option may be computed using

P (t, s) = max
t≤τ≤T

E∗ [
e−r(τ−t)φ(Sτ )|St = s

]
. (8.1)

It can be shown through no-arbitrage arguments that for nonnegative interest rates

and no dividends paid that the price of an American call option is equivalent to the

price of a European call option[3]. Therefore, we shall perform all of our analysis on

the American put option. The price of an American put option is computed as

P a(t, s) = max
t≤τ≤T

E∗ [
e−r(τ−t)(K − Sτ )

+|St = s
]
. (8.2)

By taking τ = t we deduce that P a(t, s) ≥ (K − s)+ which we should suspect since if

P a(t, s) < (K − s)+ then there is an arbitrage opportunity. This is illustrated by the

following argument.

Figure 8.1 gives an example of a European put pricing function. Suppose that

P (t, s) < φ(s) and consider the consequence of exercising the option. An arbitrage

opportunity may created as follows: we buy the underlying asset in the market for

s and purchase an option for P ; if we immediately exercise the option by the selling

the asset for K, a profit of K − (P + s) is obtained.[5]

An alternate method for computing the premium for an American option is the

formulation of a free boundary problem. The phrase free boundary refers to the

fact that we must determine for a fixed time which values of s should we exercise the

option. These values of s or boundary at any time are not known apriori. Therefore,
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Figure 8.1: Black-Scholes put option pricing function at time t = 0, with σ = .15, K = 100,

T = 1, σ = .15 and r = .06

we do not know where in advance to apply the boundary conditions. Hence the name

free boundary.

No-arbitrage arguments state the price of an American put option must be greater

than equal to its payoff and the infinitesimal return from an option must be less than

or equal to the return from a bank deposit. Also, at any time the price must equal

the payoff or the Black-Scholes equation must be satisfied. From these assumptions

a linear complementarity problem may be constructed as follows

P a ≥ φ, (8.3)

∂P a

∂t
+

1

2
σ2∂2P a

∂s2
+ rs

∂P a

∂s
≤ rP a, (8.4)

(P a − φ)

(
∂P a

∂t
+

1

2
σ2∂2P a

∂s2
+ rs

∂P a

∂s
− rP a

)
= 0. (8.5)

Inequality (8.5) would be strict equality in the case of a European option. In the

case of the American option it is optimal to hold the option when the Black and
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Scholes equation is satisfied. Otherwise, when we have strict inequality in equation

(8.5) it is optimal to exercise the option because the infinitesimal return on the option

is less than the return from a bank deposit.

We may now formulate the free boundary problem as follows. We begin by dividing

the S axis into two distinct regions for each time t. We shall denote the boundary

between the two regions as s∗. At any fixed time, the first region where 0 ≤ s < s∗

and early exercise is optimal, the following hold

P a = K − s,
∂P a

∂t
+

1

2
σ2∂2P a

∂s2
+ rs

∂P a

∂s
< rP a.

In the other region where s∗ < s < ∞ and early exercise is not optimal, the following

hold

P a > K − s,
∂P a

∂t
+

1

2
σ2∂2P a

∂s2
+ rs

∂P a

∂s
= rP a.

Therefore, we have the following partial differential equation with a free boundary

P a(t, s) = K − s, s < s∗(t)

∂P a

∂t
+

1

2
σ2s2∂2P a

∂s2
+ rs

∂P a

∂s
− rP a = 0, s > s∗(t), (8.6)

with

P a(T, s) = (K − s)+

s∗(T ) = K. (8.7)

Also, we shall impose that P a and ∂P a

∂s
are continuous across the boundary s∗(t), so

that

P a(t, s∗(t)) = K − s∗(t), (8.8)

∂P a

∂s
(t, s∗(t)) = −1. (8.9)
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We may think of the conditions given on the free boundary by (8.8) and (8.9) as a

condition that determines the price of the option on the boundary and as a condition

that determines the location of the free boundary.

8.2 Analytic Quadratic Approximation of an Amer-

ican Put Premium

In this section we present an efficient analytic approximation to the price of an Amer-

ican put option under constant volaility, which was first introduced by Giovanni

Barone-Adesi and Robert Whaley. One method that has often been utilized to com-

pute the price of an American put option is finite difference; however finite difference

methods are often computationally expensive. To ensure a high degree of accuracy, it

is necessary to partition the asset price and time dimensions into a fine grid and enu-

merate every possible path, which is very cumbersome and can only be accomplished

on a high speed computer[2]. We shall present a brief review of how the quadratic

approximation is obtained and we refer to [2] for full details.

An American option may be thought of as a European option with an early exercise

feature added to it. Hence, the premium of an American option may be computed as

the price of a European option plus an early exercise premium.

We define the early exercise premium for a put option as

ep(t, s) = P a(t, s) − PBS(t, s), (8.10)

where P a and PBS represent the price of an American and European put option

respectively. The essential element behind the quadratic approximation method is

that since the European and the American option price movements in the region
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where the option is not exercised are both modeled by

∂P

∂t
+

1

2
σ2s2∂2P

∂s2
+ rs

∂P

∂s
− rP = 0, (8.11)

then the early exercise premium, by linearity, must also satisfy (8.11). The partial

differential equation for the early exercise premium is therefore

∂ep

∂t
+

1

2
σ2s2∂2ep

∂s2
+ rs

∂ep

∂s
− rep = 0. (8.12)

We consider the decomposition of the early exercise premium as

ep(t, s) = G(t)f(s,G(t)), (8.13)

where G is an invertible function of t. Equation (8.12) may be written in terms of

the early exercise premium as

1

2
σ2∂2f

∂s2
+ rs

∂f

∂s
− rf

[
1 −

(
G′

rG

) [
1 − G ∂f

∂G

f

]]
= 0. (8.14)

We shall choose G and using an approximation along with some assumptions we will

be able to determine f . Hence, we will have determined the early exercise premium.

We choose G(t) = 1 − e−r(T−t). Substituting G into (8.14) and simplifying gives

1

2
σ2∂2f

∂s2
+ rs

∂f

∂s
− rf

G
− (1 − G)r

∂f

∂G
= 0. (8.15)

We begin our approximation procedure by assuming that (1−G)r ∂f
∂G

= 0. This is

justified by the following reason. For commodity options with very short (long) times

to expiration, this assumption is reasonable since, as T − t approaches 0 (∞), ∂f
∂G

ap-

proaches 0 (G approaches 1), and the last term on the left side of (8.15) disappears[2].

The approximation of the early exercise premium partial differential equation becomes

1

2
σ2∂2f

∂s2
+ rs

∂f

∂s
− rf

G
= 0. (8.16)
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Equation (8.16) is a second order differential equation with two linearly indepen-

dent solution of the form λsκ. The general solution of (8.16) is given by

f(s) = λ1s
κ1 + λ2s

κ2 , (8.17)

where κ1 and κ2 are given by

κ1 =
−(M − 1) − √

(M − 1)2 + 4M/G

2
(8.18)

κ2 =
−(M − 1) +

√
(M − 1)2 + 4M/G

2
, (8.19)

where M = 2r
σ2 . Note that since M

G
> 0 then, κ1 < 0 and κ2 > 0.

With κ1 and κ2 known, we are left to determine λ1 and λ2. The early exercise

premium of the American put must approach 0 as s approaches positive infinity.

Since κ2 > 0, then the term λ2s
κ2 will violate this boundary condition and thus we

set λ2 = 0. Therefore, the approximate value of an American put option is given by

P a(t, s) = PBS(t, s) + Gλ1s
κ1 . (8.20)

To find λ1, we shall impose the following two conditions

• The exercise value of the option on the free boundary s∗ is set equal to the value

of the option on s∗.

• The slope of the exercise value, -1, is set equal to the slope of the option at s∗.

The above conditions may be expressed mathematically as a system of nonlinear

equations as follows

K − s∗ = PBS(t, s∗) + Gλ1s
∗ κ1 (8.21)

−1 = −N(−d1(s
∗)) + Gλ1κ1s

∗ κ1−1, (8.22)
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where N(·) is given by (3.20) and d1(s
∗) is given by evaluating (3.18) at s = s∗.

Upon obtaining s∗ and λ1, the price of an American put may be computed using

P a(t, s) = PBS(t, s) + A1(s/s
∗)κ1 s > s∗ (8.23)

P a(t, s) = K − s s ≤ s∗, (8.24)

where A1 = −(s∗/κ1)[1 − N(−d1(s
∗))].

This quadratic approximation is an attractive method because the price may be

easily obtained once we have computed s∗ using a nonlinear solver such as Newton’s

method. The numerical results given in [2] show that a solution of s∗ may be obtained

in three iterations of Newton’s method. We shall utilize this quadratic approxima-

tion to compute a preliminary estimate of the American put option when we apply

importance sampling to pricing an American option in the presence of stochastic

volatility.

8.3 American Option under Stochastic Volatilty

In this section we present the problem of pricing an American option when the stock

price is modeled with stochastic volatility. We also present the small noise and fast

mean-reverting asymptotics when applied to the American problem.

8.3.1 Pricing under Stochastic Volatility

We again consider the following stochastic volatility model under the the risk-neutral

measure P∗(γ)

dSt = rStdt + σ(Yt)StdW ∗
t

dYt = [α(m − Yt) − ν
√

2α Λ(y)]dt + ν
√

2α (ρdW ∗
t +

√
1 − ρ2 dZ∗

t ) (8.25)
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where

Λ(y) =
ρ(µ − r)

σ(y)
+ γ(y)

√
1 − ρ2. (8.26)

The market selects a unique risk-neutral measure P∗(γ) and the no-arbitrage American

put price may be computed as

P a(t, x, y) = max
t≤τ≤T

E∗(γ)[e−r(τ−t)(K − Sτ )
+|St = s, Yt = y], (8.27)

where the maximum is taken over all possible stopping time τ ∈ [0, T ].

The pricing function P a(t, s, y) once again satisfies a free boundary problem that

is similar to (8.6) with the additional space variable y. The free boundary s∗ is now

a function of time t and y, which must be computed as part of the problem. The free

boundary problem is formulated as

P a(t, s, y) = K − s, s < s∗(t, y)

∂P a

∂t
+

1
2
σ2(y)s2 ∂2P a

∂s2
+ ρν

√
2α sσ(y)

∂2P a

∂s∂y
+ ν2α

∂2P a

∂y2
(8.28)

+ r(s
∂P a

∂s
− P a) +

[
(α(m − y)) − ν

√
2α Λ(y)

] ∂P a

∂y
= 0 , s > s∗(t, y)

with

P a(T, s, y) = (K − s)+ (8.29)

s∗(T, y) = K.

Additionally, P a, ∂P a

∂s
and ∂P a

∂y
are continuous across the boundary

P a(t, s∗(t, y), y) = (K − s∗(t, y))+ (8.30)

∂P a

∂s
(t, s∗(t, y), y) = −1

∂P a

∂y
(t, s∗(t, y), y) = 0
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8.3.2 Small Noise Expansion

Utilizing the convenient compact operator notation given by (4.15), the evolution of

the price in the continuation region is given by

(
αL0 +

√
αL1 + L2

)
P a(t, s, y) = 0. (8.31)

Expanding the above partial differential equation about α = 0 once again yields

L2P
a(t, s, y) = 0.

Recall that L2 is simply the Black-Scholes operator with constant volatility σ(y).

Since the process Yt is degenerate when α = 0 then neither the pricing function nor

the free boundary will not depend on y: P a(t, s, y) = P a(t, s), s∗(t, y) = s∗(t). Hence,

the free boundary problem becomes

P a(t, s) = K − s, s < s∗(t)

∂P a

∂t
+

1
2
σ2(y)s2 ∂2P a

∂s2
+ +r

(
s
∂P a

∂s
− P a

)
= 0 , s > s∗(t)

with

P a(T, s) = (K − s)+

s∗(T ) = K.

Additionally, P a, ∂P a

∂s
and ∂P a

∂y
are continuous across the boundary

P a(t, s∗(t)) = (K − s∗(t))+

∂P a

∂s
(t, s∗(t)) = −1.

This is exactly the American put pricing problem with constant volatility level

σ(y). There is no explicit solution for P a
0 (t, s) and s∗0(t), but utilizing the quadratic

approximation method developed by Barone-Adesi and Whaley, we can compute an

efficient solution that is computationally inexpensive.
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8.3.3 Fast Mean-Reversion Expansion

As with the European option we shall make the substitution α = 1
ε

into equation

(9.10), which yields

(
1

ε
L0 +

1√
ε
L1 + L2

)
P a(t, s, y) = 0 . (8.32)

We wish to construct an asymptotic expansion of the pricing function and the free

boundary as follows

P a(t, s, y) = P a
0 (t, s, y) +

√
εP a

1 (t, s, y) + εP a
2 (t, s, y) + · · · , (8.33)

s∗(t, y) = s∗0(t, y) +
√

εs∗1(t, y) + εs∗2(t, y) + · · · (8.34)

We shall construct an order O(
√

ε) approximation similar to that of the European

pricing function. We begin by substituting (8.33) and (8.34) into (8.32). We next look

at the resulting equations of each order of
√

ε in both the hold and exercise region.

The term s∗0(t, y) is used as the boundary for each problem and thus the extension

or truncation of the hold region to the s∗0 boundary is assumed to introduce only an

O(
√

ε) error into each term P a
i (t, s, y) of the expansion of the price[3].

Since the partial differential equation in the hold region is the same as with the

European option, then substituting (8.33) and (8.34) into (8.32) again yields

1

ε
L0P

a
0 +

1√
ε
(L0P

a
1 + L1P

a
0 ) + (L0P

a
2 + L1P

a
1 + L2P

a
0 )

+
√

ε(L0P
a
3 + L1P

a
2 + L2P

a
1 ) + · · · = 0. (8.35)

Substitution in the exercise region yields

P a
0 +

√
εP a

1 + εP a
2 + · · · = K − s. (8.36)

Lastly, we substitute the approximation to the price up to the
√

ε term of the
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expansion into the boundary conditions as follows

P a
0 (t, s∗(t, y), y) +

√
ε(s∗1(t, y)

∂P a
0

∂s
(t, s∗(t, y), y) (8.37)

+P1(t, s
∗(t, y), y)) = K − s∗(t, y) −√

εs∗1(t, y)

∂P a
0

∂s
(t, s∗0(t, y), y) +

√
ε(s∗1(t, y)

∂2P a
0

∂s2
(t, s∗(t, y), y) (8.38)

+
∂P1

∂s
(t, s∗(t, y), y)) = −1

∂P a
0

∂y
(t, s∗0(t, y), y) +

√
ε(s∗1(t, y)

∂2P a
0

∂s∂y
(t, s∗(t, y), y) (8.39)

+
∂P a

1

∂y
(t, s∗(t, y), y)) = −1

The terminal condition gives P a
0 (T, s, y) = (K − s)+ and P a

1 (T, s, y) = 0, and the

condition P a = (K − s)+ in the exercise region gives that P a
0 (t, s, y) = (K − s)+ and

P a
1 (t, s, y) = 0 in that region.

Zero Order Term

Looking at terms of O(1
ε
) in the hold region and terms of O(1) in the exercise region

and the boundary conditions gives the following problem

L0P
a
0 (t, s, y) = 0 s > s∗0(t, y)

P a
0 (t, s, y) = (K − s)+ s < s∗0(t, y)

P a
0 (t, s∗0(t, y), y) = (K − s∗0(t, y))+

∂P a
0

∂s
(t, s∗0(t, y), y) = −1.

Since the generator L0 does not depend on y the same argument as in section 6.2

holds and hence P a
0 does not depend on y on both sides of the boundary. Further, it

also can not depend on y on the surface s∗0 and hence the free boundary is a function

of s alone: s∗0(t, y) = s∗0(t).
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We next analyze terms of O( 1√
ε
) in the hold region and terms of O(

√
ε) in the

exercise region and the boundary conditions. The operator L1 contains y derivatives

in each term and hence L1P0 = 0. Therefore, we obtain the problem

L0P1(t, s, y) = 0 s > s∗0(t)

P a
1 (t, s, y) = 0 s < s∗0(t)

P a
1 (t, s∗0(t), y) = 0

s∗1(t, y)
∂2P a

0

∂s2
(t, s∗0(t)) +

∂P1

∂s
(t, s∗0(t), y) = 0.

By the same argument utilized for P a
0 we see that P a

1 (t, s, y) is only a function of t

and s: P a
1 (t, s, y) = P a

1 (t, s).

From the O(1) terms in (8.35) and the O(ε) term in (8.36) we obtain

L0P
a
2 (t, s, y) + L2P

a
0 (t, s) = 0 s > s∗0(t) (8.40)

P a
2 (t, s, y) = 0 s < s∗0(t), (8.41)

since L2P
a
1 = 0. The equation obtained in the hold region is a poisson equation.

A solution on a suitable space to this equation exists only if L2P
a
0 is centered with

respect to the invariant distribution of the OU process Yt as follows

< L2P
a
0 > = 0. (8.42)

Since P a
0 does not depend on y then < L2P

a
0 >=< L2 > P a

0 . From section 6.2 we

know that < L2 > is computed as

< L2 >= LBS(σ̄) =
∂

∂t
+

1

2
σ̄2s2 ∂2

∂s2
+ r

(
s

∂

∂s
− ·

)
, (8.43)

where σ̄2 =< σ2 >.
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Therefore, P a
0 (t, s) and s∗0(t) satisfy the following problem

P a
0 (t, s) = K − s, s < s∗0(t)

∂P a
0

∂t
+

1

2
σ̄2s2∂2P a

0

∂s2
+ rs

∂P a
0

∂s
− rP a

0 = 0, s > s∗0(t),

with

P a
0 (T, s) = (K − s)+,

s∗0(T ) = K,

P a
0 (t, s∗0(t)) = K − s∗0(t),

∂P a
0

∂s
(t, s∗0(t)) = −1.

This is exactly the problem of pricing an American put option with constant volatility

σ̄. There is again no explicit solution for P a
0 (t, s) and s∗0(t), but utilizing the quadratic

approximation method we may compute an efficient solution.

Order
√

ε Term

We next wish to compute the function
√

εP a
1 (t, s, y), which is the second term in the

O(
√

ε) approximation of the pricing function P a(t, s, y).

We analyze the O(
√

ε) terms in the hold region and the O(ε) terms in the exercise

region, which gives

L0P
a
3 (t, s, y) + L1P

a
2 (t, s, y) + L2P

a
1 (t, s) = 0 s > s∗0(t),

P a
3 (t, s, y) = 0 s < s∗0(t).

The equation in the hold region is a Poisson equation for P a
3 , which has a solution

on a suitable space only if L1P
a
2 (t, s, y) + L2P1(t, s) is centered with respect to the

invariant distribution of the OU process. This is given by

< L1P
a
2 + L2P1 >= 0.
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Utilizing the same techniques as in section 6.2 the second term of the expansion,

which is defined to be P̃ a
1 =

√
εP a

1 , evolves in the hold region according to

LBS(σ̄)P̃ a
1 = V3s

3∂3P a
0

∂s2
+ V2s

2∂2P a
0

∂s2
, (8.44)

where P a
0 (t, s) is the Black-Scholes American put price with constant volatility and

V2 and V3 are given by (6.37) and (6.38) respectively.

Therefore, we may formulate the complete problem of P̃ a
1 as follows

P̃ a
1 (t, s) = 0 s < s∗0(t),

LBS(σ̄)P̃ a
1 (t, s) = V3s

3∂3P a
0

∂s2
+ V2s

2∂2P a
0

∂s2
s > s∗0(t),

with the boundary condition given by

P̃ a
1 (t, s∗0(t)) = 0.

Since the boundary s∗0(t) is computed when we compute P a
0 , the problem formulated

above is therefore a fixed boundary problem. However, this boundary is determined

up to an error of
√

ε, so there is an O(
√

ε) error in P̃ a
1 within an O(

√
ε) neighborhood

of sa
0.[3] We note the solution of the partial differential equation given by (8.44) is

−(T − t)

(
V3s

3∂3P a
0

∂s2
+ V2s

2∂2P a
0

∂s2

)
.

However, this solution does not satisfy the zero boundary condition given by P̃ a
1 .

Hence, we compute the solution numerically after obtaining P a
0 . When implementing

the importance sampling variance reduction technique on an American put we will

not consider using P̃ a
1 since this may be computationally expensive in Monte Carlo

if for instance we use finite difference approximation method. However, finding an

analytic approximation to P̃ a
1 is a topic on future research.

83



8.4 Monte Carlo Simulation of an American Op-

tion

In this section we present the Least Squares Monte Carlo technique, which was de-

veloped by Francis Longstaff and Eduardo Schwartz, that estimates the following

American put pricing function via Monte Carlo simulation

P a(t, s) = max
t≤τ≤T

E∗[e−(τ−t)φ(Sτ )|St = s]. (8.45)

We begin by discussing the theoretical formulation of the method and then discuss

the implementation.

8.4.1 Theoretical Valuation

The objective of the LSM method is to provide a pathwise approximation to the

optimal stopping rule that maximizes the value of the American option.[20]

We begin by denoting the payoff of the option at time z on sample path ω condi-

tioned on not being exercised before or on time v by

J(ω, z; v, T ),

where t ≤ v < z ≤ T . We note in this function that if the option is exercised at

time z = z1 on any path ω, then there is no payoff for any z > z1 since the option is

only exercised once during its life. In addition, we shall partition the possible exercise

times as follows

t = t0 < t1 < t2 < t3 < · · · < tN−2 < tN−1 < tN = T.

The holder of the option at time T exercises the option if it is in the money or the

option expires worthless. At any time tn before T , the holder must decide whether
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to exercise the option immediately or continue to hold the option and subsequently

revisit this decision at the next possible exercise time. The payoff upon exercising

the option at the time tn is known to its owner. The payoff from continuing to hold

the option at tn is not known; however no-arbitrage theory suggests that the value

of continuation is given by taking the expectation with respect to the risk-neutral

measure P ∗ of the remaining payoffs J(ω, z; tn, T ) discounted back to tn[25]. We may

represent the value of continuation as follows

F (ω; tn) = E∗
[

N∑
j=n+1

e−r(tj−tn)J(ω, tj; tn, T )|Stn

]
. (8.46)

With this representation, the problem of optimal exercise reduces to comparing the

immediate exercise value with this conditional expectation, and then exercise as soon

as the immediate exercise value is greater than or equal to the conditional expecta-

tion.[5] Hence, we able to compute the optimal exercise time along each path. Upon

finding the optimal time along each path we discount the payoff back to time t and

then average over all sample paths. Thus the value the American option is computed.

8.4.2 Implementation

The initial step of the implementation of the LSM technique is to simulate M tra-

jectories of the asset process from the initial time t to its terminal date T as if we

were computing a Monte Carlo approximation for a European option. We store these

simulated paths of the process because they will be used to find an approximation

for the conditional expectation F (ω; tn).

We assume that the conditional expectation F (ω; tn) can be represented as a linear

combination of countable set of Ftn- measurable basis functions. There are numerous

examples of which basis to choose. Schwarz and Longstaff show the polynomial basis
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is an accurate choice of the basis functions

F (ω; tn) =
∞∑

j=0

ajs
j,

where s represents the value of the underlying asset.

To find the optimal stopping rule along each simulated path we work backwards

from time tN = T . Therefore, we assume initially that the optimal stopping time

along each path is the terminal time. Beginning at time tN−1 we approximate the

conditional expected value of continuation F (ω; tN−1), denoted by F̂ (ω; tN−1), by

regressing the discounted values of J(ω, z; tN−1, T ) onto the basis functions for the

paths where the option is in the money at time tN−1. Using only in-the-money paths

allows us to use fewer basis functions when computing the least squares regression.

Once F̂ (ω; tN−1) has been computed, we determine whether early exercise is opti-

mal by comparing the payoff from immediate exercise with F̂ (ω; tN−1) evaluated at

StN−1
(ω). We then update our optimal stopping rule along each path by letting the

new stopping time be tN−1 if the value of immediate exercise is greater than F̂ (ω; tN−1)

evaluated at StN−1
(ω). We continue this process by rolling back to time tN−2. At tN−2

we compute F̂ (ω; tN−2) by regressing the discounted values of J(ω, z; tN−2, T ) onto

the basis functions for the paths where the option is in the money at time tN−2. We

note here that values of J(ω, z; tN−2, T ) are discounted back one period if the optimal

stopping time along a given path is tN−1 and discounted 2 periods if the optimal stop-

ping time is tN . Once F̂ (ω; tN−2) has been computed, we determine whether early

exercise is optimal by comparing the payoff from immediate exercise with F̂ (ω; tN−2)

evaluated at StN−2
(ω). We then update our optimal stopping rule along each path by

letting the new stopping time be tN−2 if the value of immediate exercise is greater

than F̂ (ω; tN−2) evaluated at StN−2
(ω). The recursion proceeds by rolling back to
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time t and hence we will have determined the optimal exercise time along each path.

Upon finding the optimal time along each path we discount the payoff back to time

t and then average over all sample paths. Hence, we have computed the value of an

American option.

8.5 Variance Reduction for an American Put Op-

tion

In this section we wish to apply the importance sampling variance reduction technique

to the pricing of an American put option. As in the case with the European option, we

utilize small noise and fast mean-reversion expansion to obtain a preliminary estimate

to the expectation of interest. However, in this case we compute the preliminary

estimate using the analytic quadratic approximation technique developed in section

8.2. Secondly, we present some numerical results obtained from implementing the

method in Matlab.

8.5.1 Importance Sampling Applied to American Pricing Model

We apply the importance sampling variance reduction technique to the stochastic

volatility model (9.4) used for computing American put options. In matrix form the

evolution under the risk neutral measure P∗ is given by

dVt = b(Vt)dt + a(Vt)dηt , (8.47)

where we have set

ηt =


W ∗

t

Z∗
t


 , Vt =


St

Yt


 ,
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and

a(v) =


 sσ(y) 0

νρ
√

2α ν
√

2α(1 − ρ2)


 , b(v) =


 rs

α(m − y) − ν
√

2α Λ(y)


 .

The price of a put option at time 0 is computed by

P a(0, v) = max
0≤τ≤T

E∗{e−rτφ(Vτ )|V0 = v} , (8.48)

where v = (s, y) and φ(v) = (K − Sτ )
+.

We now apply the importance sampling technique described in chapter 5.

Define η̃t = ηt +
∫ t

0
h(s, Vs)ds, which is a Brownian motion under the probability

P̃∗. Since τ is a random terminal time, we know P̃∗ still admits the density Q−1
τ as

described in chapter 5

Q−1
τ = exp

{
−

∫ τ

0

h(s, Vs) · dη̃s +
1

2

∫ τ

0

‖h(s, Vs)‖2ds

}
.

Under the new measure, the price of the put option at time 0 is then computed

by

P a(0, v) = max
0≤τ≤T

Ẽ∗{e−rτφ(Vτ )Qτ |V0 = v} , (8.49)

where the expectation is taken with respect to the measure P̃∗.

Recall that the importance sampling variance reduction method consists of deter-

mining a function h(t, v) that leads to a smaller variance for the Least Squares Monte

Carlo approximation computed using (8.48) than the variance for (8.47).

Applying Ito’s formula to P a(t, Vt)Qt and using the Kolmogrov’s backward equa-

tion for P a(t, v) one gets

d(P a(t, Vt)Qt) = P a(t, Vt)Qth(t, Vt) · dη̃t + Qta
T (t, Vt)∇P a(t, Vt) · dη̃t

= Qt(a
T∇P a + P ah)(t, Vt) · dη̃t .
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where aT denotes the transpose of a, and ∇P a the gradient of P a with respect to the

space variable v.

In order to obtain P a(0, v), for instance, one can integrate between 0 and τ and

deduce

P a(τ, Vτ )Qτ = P a(0, V0)Q0 +

∫ τ

0

Qt(a
T∇P a + P ah)(t, Vt) · dη̃t ,

which reduces to

φ(Vτ )Qτ = P a(0, v) +

∫ τ

0

Qt(a
T∇P a + P ah)(t, Vt) · dη̃t .

Therefore, the variances for the two Monte Carlo simulations (5.2) and (9.27) are

given by

VarP̃ (φ(Vτ )Qτ ) = Ẽ
{∫ τ

0

Q2
t‖aT∇P a + P ah‖2dt

}

VarP (φ(Vτ )) = E
{∫ τ

0

‖aT∇u‖2dt

}
.

If P a(t, v) were known, then the problem would be solved and the optimal choice for

h, which gives a zero variance, would be

h = − 1

P a
aT∇P a , (8.50)

which may be explicitly written as

h = − 1

P a


sσ(y) νρ

√
2α

0 ν
√

1 − ρ2
√

2α





∂P a

∂s

∂P a

∂y


 . (8.51)

Once we have found an approximation of P a by using small noise expansion or

fast mean-reversion expansion, then we may determine h in order to approximate

(8.49) via Least Squares Monte Carlo simulation under the evolution

dVt = (b(Vt) − a(Vt)h(t, Vt))dt + a(Vt)dη̃t (8.52)

Qt = exp

{∫ t

0

h(s, Vs) · dη̃s − 1

2

∫ t

0

‖h(s, Vs)‖2ds

}
. (8.53)
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Since there is no closed form solution for a preliminary estimate of P a in either case

of expansion, we utilize the quadratic approximation method developed in section 8.2

to compute an efficient estimate to the price.

In either case we still define the function h(M) as follows

h(M) = min(max(−M,h),M),

where M is large. Hence, the Novikov condition will hold and thus Girsanov’ theorem

may be applied and Qt has finite variance.

8.6 Numerical Results

In this section we present some numerical results from implementing the importance

sampling variance reduction methodology to the pricing of a American put option.

We shall test the variance methodology developed by implementing the technique on

the three types of put options: in-the-money (S0 < K), at-the-money(S0 = K) and

out-of-the-money (S0 > K), where S0 represents the stock price at time 0 and K

represents the strike price. Since each method of expansion is characterized by the

rate of mean-reversion, we present results for various values of α ranging from slow

mean reversion α = .5 to fast mean-reversion α = 100.

In table 8.1 we present the model parameters utilized when performing the simu-

lations. We note in our choice of parameters that σ(y) is bounded and bounded away

from 0 and that the effective volatility, σ̄, is computed using

σ̄2 =< (max(min(exp(y), 5), .0001))2 >=

∫ ∞

−∞
(max(min(exp(y), 5), .0001))2 Φ(y)dy,

where

Φ(y) =
1

2π
exp

(
−(y + 2.6)2

2

)
.
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Table 8.1: Model Parameters for the American Put Pricing Problem

Parameter Value

m −2.6

r .1

ν 1

ρ −.3

σ(y) max(.0001, min(exp(y), 5))

µ .1

γ(y) 0

Λ(y) 0

σ̄ .1971

In tables 8.2, 8.3 and 8.4 we present the empirical variance for each method of

expansion and basic Monte Carlo for an in-the-money, at-the-money and out-of-the-

money American put option. We see as in the case of the European call option

basic Monte Carlo estimator performs extremely poorly when compared to the other

two estimators. Additionally, when the rate of mean-reversion is large, we obtain a

greater reduction of the variance when utilizing the fast mean-reversion expansion as

opposed to the small noise expansion. Lastly, figures 8.1 and 8.2 show sample runs

of the simulation.
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Table 8.2: Empirical variance for an at-the-money American put option.

S0 Y0 K T α BMC P a
σ(y) P a

σ̄

100 −1.62 100 1 .5 .0010 .00029 .00067

100 −1.62 100 1 1 .0015 .00058 .00056

100 −1.62 100 1 5 .0025 .0007 .00045

100 −1.62 100 1 10 .0040 .0010 .00022

100 −1.62 100 1 25 .0155 .0085 .00021

100 −1.62 100 1 50 .0175 .0010 .00019

100 −1.62 100 1 100 .0219 .0011 .00017

Table 8.3: Empirical variance for an in-the-money American put option.

S0 Y0 K T α BMC P a
σ(y) P a

σ̄

90 −1.62 100 1 .5 .0014 .00039 .00052

90 −1.62 100 1 1 .0019 .00036 .00038

90 −1.62 100 1 5 .0029 .00042 .00028

90 −1.62 100 1 10 .0044 .00063 .00019

90 −1.62 100 1 25 .0128 .00093 .00015

90 −1.62 100 1 50 .0185 .0011 .00014

90 −1.62 100 1 100 .0220 .0016 .00014
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Table 8.4: Empirical variance for an out-of-the-money American put option.

S0 Y0 K T α BMC P a
σ(y) P a

σ̄

110 −1.62 100 1 .5 .0018 .00031 .00057

110 −1.62 100 1 1 .0015 .00038 .00043

110 −1.62 100 1 5 .0025 .00040 .00035

110 −1.62 100 1 10 .0044 .00053 .00019

110 −1.62 100 1 25 .0125 .00096 .00016

110 −1.62 100 1 50 .0175 .0011 .00012

110 −1.62 100 1 100 .0219 .0014 .00010
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Figure 8.2: Monte Carlo simulations of an in-the-money American put option with a rate

of mean-reversion α = 1.
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Figure 8.3: Monte Carlo simulations of an in-the-money American put option with a rate

of mean-reversion α = 10.
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Chapter 9

Barrier Option

In this final chapter we shall apply our variance reduction methodology to the pricing

of a European style barrier option. We begin by formally defining a barrier option

and how it is priced when the underlying asset is modeled with constant volatility.

Next, we consider the pricing of this option under a stochastic volatility model and

develop the asymptotic analysis in this framework. Finally, we apply the importance

sampling variance reduction technique when pricing a barrier option under stochastic

volatility and present some numerical results.

9.1 Pricing a Barrier option

The four basic forms of these options include ’down-and-out’, ’down-and-in’, ’up-

and-out’ and ’up-and-in’. We shall concentrate on the down-and-out type in this

work. A ’down-and-out’ barrier option of European style gives its owner the right,

but not the obligation to buy(Call) or sell(Put) one unit of an underlying asset for

a predetermined price K as long as the asset remains above a predetermined price

or barrier B during the period of the option. If the price of the asset falls below B,
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then the option expires worthless. We again denote the payoff function as φ, which

is given as

φ(s) = (s − K)+ =




s − K if s > K

0 if s < K

in the case of the call and

φ(s) = (K − s)+ =




K − s if K > s

0 if K < s

in the case of the put and where K represents the strike price of the contract.

Hence, the value of the payoff function at the terminal time T is given by φ(ST ). For

simplicity, we shall consider the down-and-out call option and assume B < K.

Given that the underlying asset has constant volatility, the no-arbitrage price of

a down-and-out call option with payoff given above is computed as

P (t, s) = E∗[er(T−t)(ST − K)+1(mint≤T St>B)|St = s]. (9.1)

We may again utilize the Feyman-Kac formula to represent (9.1) as a partial

differential equation. The representation is same as a vanilla European call option

with the additional boundary condition that the price of the option along the barrier

B is zero. Hence we may formulate the evolution of the pricing function as follows

∂P

∂t
+

1

2
σ2s2∂2P

∂s2
+ r

(
s
∂P

∂s
− P

)
= 0, (9.2)

P (T, s) = φ(s),

P (t, B) = 0.

Using the method of images, which is described in [27], a closed form solution for

(9.2) is given by

P (t, s) = CBS(t, s) −
( s

B

)1− 2r
σ2

CBS

(
t,

B2

s

)
, (9.3)
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where CBS represents the price for a European call option.

9.2 Barrier Option under Stochastic Volatility

In this section we present the problem of pricing a down-and-out barrier call option

when the stock price is modeled with stochastic volatility. We also present the small

noise and fast mean-reverting asymptotics when applied to the barrier problem.

9.2.1 Pricing under Stochastic Volatility

We again consider the following stochastic volatility model under the the risk-neutral

measure P∗(γ)

dSt = rStdt + σ(Yt)StdW ∗
t

dYt = [α(m − Yt) − ν
√

2α Λ(y)]dt + ν
√

2α (ρdW ∗
t +

√
1 − ρ2 dZ∗

t ) (9.4)

where

Λ(y) =
ρ(µ − r)

σ(y)
+ γ(y)

√
1 − ρ2. (9.5)

The market selects a unique risk-neutral measure P∗(γ) and the no-arbitrage down-

and-out call price may be computed as

P (t, s, y) = E∗[er(T−t)(ST − K)+1(mint≤T St>B)|St = s, Yt = y]. (9.6)

Once again utilizing the Feynman-Kac formula, the pricing function given by

equation (9.6) satisfies the following partial differential equation with two space di-
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mensions:

∂P

∂t
+

1

2
σ2(y)s2∂2P

∂s2
+ ρν

√
2α sσ(y)

∂2P

∂s∂y
+ ν2α

∂2P

∂y2

+ r

(
s
∂P

∂s
− P

)
+

[
(α(m − y)) − ν

√
2α Λ(y)

] ∂P

∂y
= 0 , (9.7)

with boundary and final conditions given by

P (T, s, y) = φ(s), (9.8)

P (t, B, y) = 0. (9.9)

9.2.2 Small Noise Expansion

Utilizing the convenient compact operator notation given by (4.15), the evolution of

the price is given by

(
αL0 +

√
αL1 + L2

)
P (t, s, y) = 0. (9.10)

Expanding the above partial differential equation about α = 0 once again yields

L2P (t, s, y) = 0.

Recall that L2 is simply the Black-Scholes operator with constant volatility σ(y).

Since the process Yt is degenerate when α = 0 then the pricing function will not

depend on y: P (t, s, y) = P (t, s). Hence, the evolution of the pricing function is as

follows

∂P

∂t
+

1

2
σ2(y)s2∂2P

∂s2
+ r

(
s
∂P

∂s
− P

)
+

[
(α(m − y)) − ν

√
2α Λ(y)

] ∂P

∂y
= 0 ,(9.11)

with boundary and final conditions given by

P (T, s) = φ(s), (9.12)

P (t, B) = 0. (9.13)
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This is exactly the down-and-out barrier pricing problem with constant volatility level

σ(y). The closed form solution is given by

P (t, s) = CBS(t, s) −
( s

B

)1− 2r
σ(y)2

CBS

(
t,

B2

s

)
, (9.14)

where CBS represents the price of a European call option. We shall utilize (9.14)

as an initial approximation to the pricing function when implementing importance

sampling.

9.2.3 Fast Mean-Reversion Expansion

The fast mean-reverting asymptotics of the barrier option are derived in the same

fashion as in the European case except we must keep track of the boundary condition

P (t, B) = 0. Our fast mean-reverting approximation is once again given by

P (t, s) = P0(t, s) +
√

εP1(t, s). (9.15)

The zero-order term, P0, is given by the Black-Scholes price with volatility level σ̄

P (t, s) = CBS(t, s) −
( s

B

)1− 2r
σ̄2

CBS

(
t,

B2

s

)
. (9.16)

The evolution of the correction P̃1 =
√

εP1 may described by the following partial

differential equation

LBS(σ)P̃1 = V3s
3∂3P0

∂s3
+ V2s

2∂2P0

∂s2
, (9.17)

which is the same as the European case; however, we have the additional boundary

condition P̃1(t, B) = 0. The solution to this equation is not simply given by

−(T − t)

[
V3s

3∂3P0

∂s3
+ V2s

2∂2P0

∂s2

]
,
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as in the case of the European option because it does not satisfy the boundary con-

dition P̃1(t, B) = 0. There is still a closed form solution to this partial differential

equation and is presented hereafter. We transform the equation into a backward

heat equation and then utilizing the probabilistic interpretation of the transformed

equation a solution to (9.17) is obtained.

Let

w(t, s) = P̃1 + (T − t)

[
V3s

3∂3P0

∂s3
+ V2s

2∂2P0

∂s2

]
,

for s ≥ B. Then w(t, s) solves the simpler problem

LBS(σ̄)w = 0 s > B, t < T (9.18)

w(T, s) = 0

w(t, B) = f(t),

where

f(t) = (T − t) lim
s→B+

(
V3s

3∂3P0

∂s3
+ V2s

2∂2P0

∂s2

)
(t, s).

An explicit formulation of f is given by

f(t) = (T − t)F (t, B),

where

F (t, s) = V3s
3∂3CBS

∂s3
+ V2s

2∂2CBS

∂s2
−

( s

B

)1−k

(9.19)

·
[
V2

B4

s2

∂2CBS

∂s2

(
t,

B2

s

)
V3

B6

s3

∂3CBS

∂s3

(
t,

B2

s

)
+ q

(
t,

B2

s

)]
,
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and

q(t, s) = κ0CBS(t, s) + κ1s
∂CBS(t, s)

∂s
+ κ2s

2∂2CBS

∂s2
(t, s)

κ0 = k(k − 1)(V2 − V3(k + 1))

κ1 = 2kV2 − 3k

(
2r

σ̄2
+ 1

)
V3

κ2 = −3(k + 1)V3

k =
2r

σ̄2

We use the following assignments to transform (9.18) into a backward heat equa-

tion

z = log(s)

w(t, s) = exp

[(
− 1

2σ̄2
(r − 1

2
σ̄2)2 − r

)
(T − t) − 1

σ̄2
(r − 1

2
σ̄2)z

]
v(t, z)

Defining C = log B, then v(t, z) solves

∂v

∂t
+

1

2
σ̄2∂2v

∂z2
= 0, z > l, t < T (9.20)

v(t, L) = f̃(t), (9.21)

where

f̃(t) = exp

[(
1

2σ̄2
(r − 1

2
σ̄2)2 + r

)
(T − t)

]
Br/σ̄2− 1

2 g(t)

The solution to (9.20) has a probabilistic interpretation that is given by

v(t, z) = E[g̃(t)1τ≤T |Wt = z > L], (9.22)

where Wt is a Brownian motion with < B >t= σ̄2t and τ is the first time after t that

it hits L[17]. Utilizing the distribution of the hitting time τ , v has closed solution

given by the integral form

v(t, z) =
1

σ̄
√

2π

∫ T

t

(z − L)

(x − t)3/2
e−(z−L)2/2σ̄2(x−t)g̃(x)dx.
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From this we may deduce the following solution for P̃1

P̃1(t, s) = −(T − t)

[
V3s

3∂3P0

∂s3
+ V2s

2∂2P0

∂s2

]

+s−
1

σ̄2 (r− 1
2
σ̄2) exp

[(
− 1

2σ̄2
(r − 1

2
σ̄2)2 − r

)
(T − t)

]
v(t, log(s))

We have developed the O(
√

ε) approximation for a down-and out barrier option

that could be used along with importance sampling for variance reduction. However,

we were unsuccessful in our attempt to implement the O(
√

ε) term along with the

the zero order term. Therefore, we shall only consider the implementation of the zero

order term of the fast mean-reverting approximation to the pricing function when

utilizing importance sampling.

9.3 Variance Reduction for Barrier Option

In this chapter we apply the Importance Sampling variance reduction technique to

computing the price of a down-and-out call option. We shall use the two methods of

expansion described in the previous chapter to obtain a preliminary estimate of the

expectation utilized to compute the premium. Secondly, we present some numerical

results obtained from implementing the methodology in Matlab.

9.4 Application of Importance Sampling to Pric-

ing Model

We apply the importance sampling variance reduction technique to the stochastic

volatility model (9.4) used for computing European call options. In matrix form the
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evolution under the risk neutral measure P∗ is given by

dVt = b(Vt)dt + a(Vt)dηt , (9.23)

where we have set

ηt =


W ∗

t

Z∗
t


 , Vt =


St

Yt


 ,

and

a(v) =


 sσ(y) 0

νρ
√

2α ν
√

2α(1 − ρ2)


 , b(v) =


 rs

α(m − y) − ν
√

2α Λ(y)


 .

The price of a down-and-out call option at time 0 is computed by

P (0, v) = E∗{e−rT φ(VT )1mint≤T St>B|V0 = v} , (9.24)

where v = (s, y) and φ(v) = (s − K)+.

We now apply the importance sampling technique described in chapter 5.

Define η̃t = ηt +
∫ t

0
h(s, Vs)ds, which is a Brownian motion under the probability P̃∗

which admits the density Q−1
T as described in chapter 5

Q−1
T = exp

{
−

∫ t

0

h(s, Vs) · dη̃s +
1

2

∫ t

0

‖h(s, Vs)‖2ds

}
.

Under the new measure, the price of a down-and-out call option at time 0 is then

computed by

P (0, v) = Ẽ∗{e−rT φ(VT )1mint≤T St>BQT |V0 = v} , (9.25)

where the expectation is taken with respect to the measure P̃∗.

Once again, if P (0, v) were known, the optimal choice for h that gives the minimal

variance is

h = − 1

P


sσ(y) νρ

√
2α

0 ν
√

1 − ρ2
√

2α





∂P

∂s

∂P
∂y


 . (9.26)
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Once we have found an approximation of P by using small noise expansion or fast

mean-reversion expansion, then we may determine h in order to approximate (9.25)

via Monte Carlo simulation

P (0, v) ≈ 1

N

N∑
k=1

φ(V
(k)
T )Q

(k)
T 1

mint≤T S
(k)
t >B

(9.27)

under the evolution

dVt = (b(Vt) − a(Vt)h(t, Vt))dt + a(Vt)dη̃t (9.28)

Qt = exp

{∫ t

0

h(s, Vs) · dη̃s − 1

2

∫ t

0

‖h(s, Vs)‖2ds

}
. (9.29)

When we utilize small noise expansion as an apriori estimate for the price of a call

option, the function h(t, v) given by (9.26) will have the following form

h(t, v) = − 1

P b
BS(σ(y))


sσ(y)

∂P b
BS(σ(y))

∂s

0


 , (9.30)

where P b
BS(σ(y))(t, s) is the price of a down-and-out call option with volatility level

given by σ(y).

Similarly, using the zero order term of the fast mean-reversion expansion leads to

the function h(t, v) of the following form

h(t, v) = − 1

P b
BS(σ̄)


sσ(y)

∂P b
BS(σ̄)

∂s

0


 , (9.31)

where σ̄ again represents the effective volatility.

Since we have control over how to choose this function h, we choose it in the

following manner so that the Novikov condition will hold

h(M) = min(max(−M,h),M),

where M is large. Therefore, Girsanov’s theorem may be applied and Qt has finite

variance.
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9.5 Numerical Results

In this section we present some numerical results from applying the importance sam-

pling variance reduction methodology to the pricing of a down-and out call option.

We shall test the variance methodology developed by implementing the technique on

the three types of down-and-out European call options: in-the-money (S0 > K), at-

the-money(S0 = K) and out-of-the-money (S0 < K), where S0 represents the stock

price at time 0 and K represents the strike price. Since each method of expansion is

characterized by the rate of mean-reversion, we present results for various values of

α ranging from slow mean reversion α = .5 to fast mean-reversion α = 100.

In table 7.1 we present the model parameters utilized when performing the sim-

ulations. We note in our choice of parameters that σ(y) is bounded and that the

effective volatility, σ̄, is computed using

σ̄2 =< (max(min(exp(y), 5), .0001))2 >=

∫ ∞

−∞
(max(min(exp(y), 5), .0001))2 Φ(y)dy,

where

Φ(y) =
1

2π
exp

(
−(y + 2.6)2

2

)
.

In tables 9.2, 9.3 and 9.4 we present the empirical variance for each method of

expansion and basic Monte Carlo for an in-the-money, at-the-money and out-of-the-

money down-and-out call option. We see as in the case of the European call option

and American put option that basic Monte Carlo estimator performs extremely poorly

when compared to the other two estimators. Additionally, when the rate of mean-

reversion is large, we obtain a greater reduction of the variance when utilizing the

fast mean-reversion expansion as opposed to the small noise expansion. We note in
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Table 9.1: Model Parameters for the Barrier Pricing Problem

Parameter Value

m −2.6

r .1

ν 1

ρ −.3

σ(y) max(.0001, min(exp(y), 5))

µ .1

γ(y) 0

Λ(y) 0

σ̄ .1971

the table that B represents the barrier. Lastly, we also provide sample simulations in

figures 9.1 and 9.2.
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Table 9.2: Empirical variance for an in-the-money down-and-out European call op-

tion.

S0 Y0 K B T α BMC PBS(σ(y)) PBS(σ̄)

110 −1.82 100 80 1 .5 .0164 .0026 .0038

110 −1.82 100 80 1 1 .0205 .0046 .0044

110 −1.82 100 80 1 5 .0232 .0081 .0036

110 −1.82 100 80 1 10 .0237 .0083 .0028

110 −1.82 100 80 1 25 .0257 .0115 .0010

110 −1.82 100 80 1 50 .0288 .0150 .0007

110 −1.82 100 80 1 100 .0319 .0184 .0004

Table 9.3: Empirical variance for an at-the-money down-and-out European call op-

tion.

S0 Y0 K B T α BMC PBS(σ(y)) PBS(σ̄)

100 −1.82 100 80 1 .5 .0178 .0032 .0045

100 −1.82 100 80 1 1 .0235 .0058 .0059

100 −1.82 100 80 1 5 .0232 .0093 .0044

100 −1.82 100 80 1 10 .0227 .0097 .0038

100 −1.82 100 80 1 25 .0237 .0117 .0027

100 −1.82 100 80 1 50 .0298 .0120 .0014

100 −1.82 100 80 1 100 .0280 .0140 .0010
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Table 9.4: Empirical variance for an out-of-the-money down-and-out European call

option.

S0 Y0 K B T α BMC PBS(σ(y)) PBS(σ̄)

90 −1.82 100 80 1 .5 .0152 .0034 .0037

90 −1.82 100 80 1 1 .0205 .0045 .0041

90 −1.82 100 80 1 5 .0288 .0070 .0032

90 −1.82 100 80 1 10 .0238 .0077 .0022

90 −1.82 100 80 1 25 .0257 .0095 .0013

90 −1.82 100 80 1 50 .0248 .0150 .0010

90 −1.82 100 80 1 100 .0250 .0184 .0007
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Figure 9.1: Monte Carlo simulations of an in-the-money down-and-out call option with a

rate of mean-reversion α = 1.
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Figure 9.2: Monte Carlo simulations of an in-the-money down-and-out call option with a

rate of mean-reversion α = 10.
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Chapter 10

Conclusions/Future Work

In this work we consider the pricing of European, American and barrier options in

a stochastic volatility environment. We have presented a technique, which is based

on applying fast mean-reverting asymptotics to importance sampling to reduce the

variance of Monte Carlo simulation in this framework. We began by applying the

method to a standard European style option. Numerical results show that applying

this technique results in substantial reduction in the variance as shown by tables 7.2,

7.3 and 7.4, even if the rate of mean-reversion is slow. In particular, in the presence

of a skew, utilizing the first correction in the preliminary estimate of the expectation

results in an even greater reduction of variance when the rate of mean-reversion is

slow. This contrasts with the method of expansion proposed in [11], which states

that adding the next term of the small noise expansion does not improve the variance

reduction significantly.

Although Monte Carlo simulation of an American option is more complex than

that of a European, we have shown that importance sampling applied with small noise

expansion or fast mean-reverting expansion may be implemented to again obtain a
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substantial reduction in the variance as illustrated by tables 8.2, 8.3 and 8.4. Lastly,

we implemented this methodology on a barrier option and the results presented in

tables 9.2, 9.3 and 9.4 once again again show the efficiency of the method. However,

in both the American and barrier case the first correction has not been implemented.

These are subjects of future research.

Another area of future research is the introduction of jumps in the model. Jumps

may be introduced in the model in different ways. For instance, one may consider

jumps in volatility. In that case the fast mean-reversion may be performed as shown

in [10]. This again leads an effective volatility used to compute to approximate price.

Another way to introduce jumps is to consider possible jumps in the underlying asset

itself, combined with stochastic volatility. Fast mean-reverting asymptotics may be

performed, leading to a model with jumps and constant effective volatility. If prices

can be computed effeciently with this simplified model then our variance reduction

technique may be applied. Lastly, another area of future research is the application

of this variance reduction technique to fixed income markets. In particular, we will

consider the computation of bond option prices.
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