
Abstract

Davenport, Catherine Elizabeth. Optimization in Job Shop Scheduling Using

Alternative Routes. (Under the direction of Dr. Russell King.)

The ability of a production system to complete orders on time is a critical measure of

customer service. While there is typically a preferred routing for a job through the

processing machines, often an alternative route is available that can be used to avoid

bottleneck operations and improve due date performance. In this paper a heuristic

approach is given to dynamically select routing alternatives for a set of jobs to be

processed in a job shop. The approach is coupled with a job shop scheduling algorithm

developed by Hodgsonet al. (1998, 2000) to minimize the latest job (Lmax).
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Chapter 1

Introduction

1.1 Problem Definition

This research focuses on scheduling jobs in a job shop in order to satisfy customer due

dates. Each job has a standard process plan, i.e. ordered set of operations, that must be

performed on specified machines. However, an alternative process plan may be used in

order to improve due date performance. In general, this alternative plan may take one of

three different forms. First, some operation in the process route may be performed on an

alternative machine or set of machines. Second, an entirely different route may be used.

Finally, the ordering of consecutive operations may be switched. This paper will focus

on alternative process plans that involve an alternative machine or set of machines to

replace the bottleneck operation. The purpose of this research is to determine the

appropriate set of routings to use for a given set of jobs and sequencing the operations on

all machines in order to minimize the latest job (Lmax).

The objective of minimizingLmax is supported in Raman (1995) who notes that the

surveys of Panwalkaret al. (1973) and Smithet al. (1986) reported that ‘operating

managers consider meeting due-dates as their most important objective, and other

scheduling criteria are considered only after the best schedule for meeting job due-dates

has been determined’. In the application that prompted this research, the customer was

the final assembly process. If one part of an assembly was tardy, the final assembly



2

schedule was delayed. The company’s objective was to satisfy all due-dates, i.e. never

starve the final assembly.

1.2 Thesis Organization

This thesis is organized in the following manner. In Chapter 2, a literature review

is presented. Both general research involving alternative routes and more specific

research using revised slack and the Virtual Factory Application are discussed. In

Chapter 3, the critical path approach used in this research is explained. The new tabu

search procedure involving the critical path is discussed in Chapter 4 and the algorithm is

presented in detail. Computational results are presented in Chapter 5. Chapter 6 gives

final conclusions and future research ideas.
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Chapter 2

Literature Review

2.1 Previous Research in Job Shop Scheduling using Alternative

Routings

There has been much research involving job shop scheduling with alternative routes. In

the last few years, several papers deal with the use of genetic algorithms (GAs). Kimet

al. (2002) deal with alternative routings in the process planning stage using a co-

evolutionary algorithm in order to minimize makespan and minimize mean flow time

over all the jobs. They integrate process planning and scheduling such that a change in

the process planning stage also changes the scheduling stage. They evaluate alternative

routes using all three possibilities (operations, sequencing, and processing) as well as a

network consisting of all three together. They also assume that there are a large number

of process plans for each job. Their algorithm is tested on problems with 6-18 jobs and

8-22 operations per job.

Candidoet al. (1998) consider alternative routes by dividing the routes into sub-

processes, where every sub-process is a technologically similar sequence of operations.

An alternative route must be able to perform all sub-processes. They also consider route

changes due to alternate machines that the job can go through. They create an initial
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schedule using dispatch rules such that no operation can start earlier without preempting

another operation. This technique relies on the assumption that some parts are sub-

assemblies for others and must be completed first. A simple hill climbing algorithm is

then implemented to find the local minimum makespan. Lastly, a GA is used to further

minimize the makespan. Alternative routing is only one of seven “constraints” that are

used.

Chryssolouris and Subramaniam (2000) present a scheduling method based on

extreme value theory (SEVAT) to solve the dynamic job shop problem. SEVAT, which

is traditionally used to predict rare events, in this case creates a “statistical profile of

schedules through random selection, and predicts the quality…of a feasible schedule.”

The objective is to minimize mean job tardiness and mean job cost.

Chryssolouris and Subramaniam (2001) present a GA for scheduling a dynamic

job shop using mean job tardiness and mean job cost as performance measures. The

problem they consider has both random machine breakdowns and alternative job

routings. They consider up to 6 machines and up to 6 different resources to process an

operation.

Leeet al. (2002) look at an APS (advanced planning and scheduling) model to

minimize makespan using alternative machines, alternative operations sequencing and

outsourcing. They consider a supply chain to be job-shop-like and use a GA to optimize

the process. Their goal is to minimize the makespan of each order, where an order is a

set of jobs with the same due date. Their algorithm is tested on 8-64 jobs, 6 machines

and 160 operations total among all the jobs.



5

Algorithms other than GAs have also been researched. Dauzère-Pérès and Paulli

(1997) deal with the multi-processor job shop where every operation has more than one

machine on which it can be performed. They use the objective of minimizing makespan

and consider an integrated approach for assigning machines and scheduling the parts on

those machines using a tabu search algorithm with a new neighborhood structure.

Kim and Egbelu (1999) develop two local search heuristics to find alternative

routings in order to minimize makespan. The heuristics are greedy in nature and

terminate at local optima. The largest problems solved with these procedures are 10 jobs

and 10 machines, with 2-5 routings per job. It is noted that with an increase in the

number of jobs or the number of routings, the heuristic performs worse.

Thomalla (2001) solves the job shop scheduling problem with alternative routes

using Lagrangian relaxation. The largest problem solved is 6 jobs, 6 machines, and 10

operations per job with the objective being to minimize the sum of the weighted quadratic

tardiness of the jobs.

Sayginet al. (2001) present an algorithm, the Dissimilarity Maximization Method

(DMM), to solve a real-time rescheduling problem that arises due to machine

breakdowns and other unexpected occurrences on the shop floor. The goal of the

research is to maximize the throughput rate. They assume that processing times on

alternate machines are the same as on the originally scheduled machine. Alternate routes

consist of changing one or two machines on a route to a parallel alternative. DMM picks

which routings to use in order to maximize the dissimilarity between machines used in

the set of routings. The algorithm is solved on small problems; 6 parts, 7 machines and

up to 8 alternate routings per part.
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Choi and Choi (2002) consider alternative routes and sequence dependent setups

together. They develop a mathematical programming model and a local search algorithm

using dispatching rules with an objective of minimizing makespan.

Weintraubet al. (1999) contains an extensive review of the literature up to 1997.

Most of these papers, however, consider the problem from a process planning viewpoint

rather than that of detailed scheduling. The interested reader is referred to that article for

review.

2.2 Previous Research in Job Shop Scheduling using Revised Slack

and Alternative Routings

Weintraubet al. (1999) consider the problem of determining the appropriate set of

routings to use for a given set of jobs and to sequence the operations on all machines in

order to minimize the latest job (Lmax). Each job has a primary route as well as an

alternative route that uses an alternative machine for the bottleneck machine. The

primary route for each job has the lowest production cost.

Determining the optimal solution for this problem is computationally intractable,

even for small problems. Therefore, Weintraubet al. (1999) develop a tabu search-based

heuristic with the objective to minimize cost. In the tabu search a solution is the set of

routes to use for every job. The neighborhood of a given solution is the set of all

solutions that differ only in the route selection for one job, i.e., if there areN jobs, then

there areN neighbors of a given solution. Solutions are evaluated based upon a lower

bound calculation using a relaxation proposed by Carlier and Pinson (1989). The lower
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bound can be calculated very quickly, however it does not solve the sequencing problem.

A detailed, dynamic job shop scheduling tool (Virtual Factory Algorithm, VFA) is used

for this purpose (Hodgsonet al. 1998, 2000).

VFA is a deterministic, iterative/adaptive simulation model including both single

(Hodgsonet al. 1998, 2000, Weintraubet al. 1999) and batch processors (Thoney 2000

and Thoneyet al. 2002). It is capable of providing optimal or near-optimal solutions for

industrial-sized problems with a relative minimum of computation. The scheduling

procedure in the VFA is based on an approach that was first proposed by Lawrence and

Morton (1986) and Vepsalainen and Morton (1988). The approach consists of repeatedly

simulating the system to be scheduled while simultaneously updating job sequences

based on the results of the previous simulation. During the first iteration, jobs are

sequenced on machines in order of increasing slack. Letdi be the due date of jobi andpij

be the processing time of jobi on machinej. The slack of jobi on machinem is

computed as

ÿ
+∈

−=
mj

ijiim pdslack ,

wherem+ is the set of all operations on jobi’s route subsequent to the one performed on

machinem. Slack is a measure of the amount of time a job can queue and still meet its

deadline. In general, however, dispatching in order of increasing slack may not provide

good results (Caroll 1965). This can be attributed to the fact that slack does not take

queuing time into account. In subsequent iterations, the queuing time of the previous

iteration is used to modify slack, and jobs are resequenced in order of revised slack. Let

qij be the queuing time of jobi at machinej. Revised slack is computed as
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ÿ ÿ
+∈ +∈

−−=
mj mj

ijijiim qpdslack
*

' ,

wherem+* is the set of all operations on jobi’s route subsequent to the one performed on

machinem except the one immediately followingm. The slack calculation introduces an

intermediate due date for the job. This is the time at which the job needs to begin

processing at the next machine to meet its overall due date.

The procedure is run for a fixed number of iterations and the best solution saved.

The procedure tends to converge monotonically over the first 10 iterations or so

(regardless of the size of the problem). In other words the queuing time estimates

become more accurate during the first 10 iterations, producing better and better solutions.

After that, the solutions tend to fluctuate with no particular pattern involved. However,

additional iterations typically yield better solutions. It should be noted that job

expediting is handled implicitly.
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Chapter 3

A Critical Path Approach for Scheduling using

Alternative Routings

3.1 Previous Research using a Critical Path Neighborhood

In this paper, we attempt to improve the Weintraubet al. (1999) procedure by reducing

the neighborhood to include only those jobs on the “critical path” of theLmax job. Other

researchers have also explored this idea, including Nowiski and Smutnicki (1996) and

Kolisch and Hess (2000).

The research by Nowiski and Smutnicki (1996) studies a tabu search on job shop

scheduling with minimizing makespan as their objective. Their tabu search is unique

because they limit their neighborhood by only looking on a predefined critical path.

Moves are based on adjacent or non-adjacent pairs of operations on a machine. There are

no predetermined alternative routes mentioned. The neighborhood is reduced by

eliminating those moves for which it is known that they do not improve the makespan.

This method is based on research by Van Laarhoovenet al and is cited in Nowiski and

Smutnicki (1996). They test their algorithm on medium to large size problems and report

good results; however, they point out that their neighborhood is very specialized to their

problem and probably will not work in other situations.
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Kolisch and Hess (2000) consider the scheduling of large-scale make-to-order

assemblies using several methods including tabu search. Their objective is to minimize

the sum of the weighted tardiness. Using a list scheduling approach to create feasible

schedules, they consider two tabu searches, one with a simple neighborhood and one with

a “critical neighborhood” which uses “problem insight.” For the “critical neighborhood”

tabu search, they determine for each operation the “set of blocking operationsB j which

hampers operationj from being started one period earlier.” A neighbor of the listÿ, with

respect toj, is reached by “shiftingj (and it predecessors) in front of the operation

jBh∈ which has the smallest list position.” A large-step optimization tabu search that

attempts to improve only local optima is then used while employing this neighborhood.

3.2 Definitions for the New Critical Path Neighborhood

As seen in the literature, the idea of a tabu search using a critical path for job shop

scheduling is not a new concept. However, this neighborhood reduction idea has not

been applied to scheduling with alternative routings. In light of that, this research

attempts to solve the same problem as approached by Weintraubet al. (1999) using a

more intelligent tabu search by choosing alternative routings based on a critical path.

For this tabu search algorithm, theLmax job is identified as the job with the largest

lateness, where lateness is the completion time minus the due date. After theLmax job is

identified, a localized neighborhood is developed to form a candidate group of jobs and a

critical path. For each operation of theLmax job, a path is determined by tracing theLmax
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job, on that particular machine, backward to a break in the plan. A break is the last idle

time on the machine just prior to the arrival of theLmaxjob. The candidate group of jobs

to be switched is the set of jobs on that machine from theLmaxjob back to the break.

Since a candidate group of jobs is found for more than one machine, a larger

candidate set of jobs, the global candidate set, is formed. A local candidate set is added

to the global set as follows. The first candidate set to be added is that of theLmax job on

its final machine. TheLmax job is then traced backward through its route. If there is no

idle time between processing theLmax job on its current machine and processing theLmax

job on its previous machine, then the candidate group of the previous operation is also

added to the global candidate group. This continues until we reach idle time in the path

of theLmax job. The critical path contains every job in the global candidate group of jobs.

The alternative routings of this set of jobs are then searched in order to improveLmax.

A lower bound forLmax is determined using a method developed by Carlier and

Pinson (1989). For each jobi on machinem, the earliest possible start time (ESim) and

latest possible finish time (LFim) are computed as follows,

ÿ
−∈

=
imj

ijim pES

ÿ
+∈

−=
imj

ijiim pdLF

where −
im is the set of all operations for jobi that occur before machinem, +

im is the set

of all operations for jobi that occur after machinem, pij is the processing time for jobi on

machinej, and id is the due date for jobi. SinceLFim is seen as the effective due date for

job i andESim is seen as the effective release time for jobi (ri), solving the N/1/Lmax|ri
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problem creates a lower bound for the N/M/Lmax problem. Therefore, the lower bound

for Lmax can be computed as follows,

)}({max)( max
,1

max LLBLLB m
Mm=

=

where )( maxLLBm is the solution to the N/1/Lmax|ri problem for machinem. To enable

)( maxLLB to be computed quickly, each )( maxLLBm is computed using preemption.

The job/routing combination that yields the best (i.e. minimum) lower bound from

the tabu search is then input into the VFA in order to determine the best possible schedule

for those jobs on the machines available.

The problems to be considered are large, industrial-size problems, (50-500 jobs

and 10-100 machines). As inspired by the furniture industry, the preferred routing of a

job has the shortest processing time; while the alternative routing uses older or less

computerized equipment that bypasses the bottleneck machine. Therefore, all alternative

routes will have a longer processing time than the original routes.
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Chapter 4

A Tabu Search Procedure using a Critical Path

Neighborhood to Schedule with Alternative Routings

4.1 Definitions for the Tabu Search

The following definitions are used in the proposed heuristic.

Routing selection representation– the routing selection for each job. Figure 1 shows a

routing selection representation for a 5-job problem. Jobs 1, 3 and 5 use their route 1

while jobs 2 and 4 use their route 2.

Job 1 2 3 4 5

Selection 1 2 1 2

Figure 1: Routing selection representation

Critical Path – the critical path is defined as above. The backward trace needed is made

using the schedule supplied by theLPsolverheuristic (Schultzet al., working paper) that

is the optimal schedule given a fixed sequence of jobs on each machine.

r1 r1 r2 r1r2
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CP Neighborhood– the critical path neighborhood is a set consisting of solutions (job

route selections) that differ from the current solution by a single alternative routing

switch for a job on the critical path.

Machine A

Lmax job

Figure 2: Lmax Candidate group

TheLmax candidate group in Figure 2 includes the jobs 2, 3, and 4. Job 1 is not in the

candidate group because idle time exists prior to job 2. Job 6 is not in the candidate

group because it follows theLmax job in the sequence.

4.2 The Critical Path Tabu Search Algorithm

1. Set the global minimum, ∞=minG .

2. Run VFA forX iterations and save theY best solutions,si, i = 1,2,…,Y

3. Seti = 1

4. Set solution lower bound,SLB, equal to the lower bound value corresponding tosi. If

theLmax value corresponding tosi is less thanGmin, setGmin equal to theLmax value

corresponding tosi.

5. Set the current solution,S, equal tosi.

6. Set the counter,C, equal to 0.

1 3 4 52 6
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7. If mC < (the number of neighbor moves), find the critical path forS. Otherwise, go

to step 18.

8. Find the neighbors,ni, i = 1,2,…ton the critical path that have alternative routes. If

there are no neighbors that qualify, go to step 18.

9. Compute the lower bound for allni, tinLB i ,...2,1),( = .

10. Set the neighbor lower bound,NLB, to infinity.

11. If SLBnLB i <)( , set )( inLBSLB= and set )( inLBNLB = . (aspiration criteria)

Otherwise, if NLBnLB i <)( and the move is not tabu, set )( inLBNLB = . Repeat for

all ni, i = 1,2,…t .

12. If NLB is not infinity (i.e. not every possible move is tabu), then isS = where

)( inLBNLB = .

13. Make the job switch from the formerSto the currentStabu.

14. Run the VFA forx iterations onS.

15. Record the best solution,Lmax.

16. If maxL < minG , set minG = maxL .

17.C = C+1. Go to step 7.

18. 1+= ii . If Yi < , go to step 4.

19. OutputGmin.
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Chapter 5

Computational Results

5.1 Initial Trials

5.1.1 Data Generation

Problems are generated that have a single bottleneck machine, which, without loss of

generality, is arbitrarily set to machine 1. For each job, a primary route is generated. A

selected portion of the jobs that visit the bottleneck machine will have an alternative

route. This alternative route is identical to the primary route with the exception that one

or more alternative machines replace the bottleneck machine. This is the first form of

alternative routes described earlier. Jobs that do not visit the bottleneck machine have

only a primary route.

The following parameters are used to generate problems.B is the percentage of

jobs whose primary route includes the bottleneck machine. Of those jobs visiting the

bottleneck machine,A is the percentage with an alternative route.M is a multiplier by

which the process time increases on the alternative operation, and, hence,0.1≥M . R is

the maximum number of operations (or machines) that can replace the bottleneck

operation on the alternative route.
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Jobs are first identified as being on or off the bottleneck based on the value ofB.

If a job does not use the bottleneck machine, routes are generated as in a standard job

shop with the only exception that machine numbers are generated between 2 andp, where

p is the maximum number of machines in the shop (i.e. Machine 1 can not be generated

since machine 1 is the bottleneck machine.) If a job is routed through the bottleneck, it

has a certain probability (based onA) of possessing a second route. Jobs on the

bottleneck with only one route use a similar route generator as in a standard job shop with

the exception that machine 1 must be on the route.

For those jobs with an alternative route, the second route is identical to the first

with the following exceptions: (1) the operation containing machine 1 is randomly

replaced with other machine(s) in the shop. The number of replacement operations is

generated from a uniform distribution U[1,R] and (2) the process time for the original

operation is multiplied by theM parameter. If multiple operations replace the bottleneck

operation, then the process time for each operation is the original process time multiplied

by M, then divided by the number of replacement operations.

5.1.2 Setting Parameters

The critical path algorithm (CPA)explained above has several parameters that must be

determined. The number of tabu search moves,m, and the number of VFA iterations,x,

performed for each move in the tabu, both directly impact the quality of the solution, as

well as the runtime of the algorithm. The values of these parameters must be determined

experimentally.



18

The quality of solution is defined as )()( maxmaxmax CPLWLdiffL −= , where

Lmax(W) is the bestLmax value found using the Weintraubet al. (1999) algorithm (WA)

andLmax(CP) is the bestLmax value found using the critical path algorithm. The time is

measured using )()( CPtWttdiff −= wheret(W) is the runtime for the Weintraubet al.

(1999) algorithm andt(CP) is the runtime for the critical path algorithm. These measures

are evaluated over several due date ranges where the given value is the average of 10

replications.

Smaller problems have been evaluated in order to understand the effect that the

number of tabu search moves,m, and the number of VFA iterations,x, have onLmaxdiff

andtdiff. Random problems were created with 40 jobs and 20 machines. All of these

jobs are routed through the bottleneck machine and they all have alternative routes. All

processing time for each operation is U[1, 8] and all jobs have a U[5, 7] distribution for

the number of operations.

Figure 3 showsLmaxdiff andtdiff for 20 tabu moves and 20 VFA iterations.

Likewise, figure 4 showsLmaxdiff andtdiff for 20 tabu moves and 100 VFA iterations.

Figures 5 and 6 showLmaxdiff andtdiff for 50 tabu moves, 20 VFA iterations and 50 tabu

moves, 100 VFA iterations, respectively. In each graph,Lmaxdiff is shown on the left

vertical axis andtdiff is shown on the right. Due date ranges from 0-100 are shown on

the x-axis. Analysis of these graphs shows that an increase inm from 20 to 50 moves

greatly affectsLmaxdiff, especially at lower due date ranges. For 50 moves, all theLmax

(CP) averages are less than theLmax(W) averages. However, this is also associated with a

decrease intdiff, seen more clearly with the higher number of iterations,x. As x is

increased from 20 iterations to 100 iterations,tdiff decreases significantly butLmaxdiff is
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Figure 3: Lmaxdiff and tdiff vs. due date range form = 20 andx = 20

20 Tabu Moves, 20 VFA iterations
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Figure 4: Lmax diff and tdiff vs. due date range form = 20 andx = 100

20 Tabu Moves, 100 VFA iterations
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Figure 5: Lmax diff and tdiff vs. due date range form = 50 andx = 20

50 Tabu Moves, 20 VFA iterations
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Figure 6: Lmax diff and tdiff vs. due date range form = 50 andx = 100

50 Tabu Moves, 100 VFA iterations
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Figure 7: Number of iterations, x, vs. tdiff for m = 50

x vs. tdiff
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x vs. Lmaxdiff
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affected very little.

For these trials, the higher number of moves and lower number of iterations is

better when the goal is to maximizeLmaxdiff andtdiff. In other words, raising the number

of moves seems to improve the solution quality without too much increase in

computation time while raising the number of iterations only serves to increase the

amount of time without improving the quality of solution.

After observing this pattern, further trials were run with value ofm ranging from

50 to 100, while values ofx ranged from 1 iteration to 20 iterations. An increase inm

from 50 to 100 resulted in almost identicalLmaxdiff values, with some points showing a

slight improvement. It may be noted here that in order to preserve solution quality when

a higher percentage of jobs go through the bottleneck, it may be necessary to run the

simulation with more moves than at lower percentage.

At m = 50, tdiff is about -2 seconds. However,tdiff decreases by 2 seconds, on

average, whenm is increased to 100. For that decrease intdiff , the increase inLmaxdiff

is not enough. For this reason,m is kept constant at 50. As seen above, a lower number

of VFA iterations produces a goodLmaxdiff while minimizing the computation time

required. Therefore,x is varied further to determine the fewest number of iterations that

will still yield an acceptableLmaxdiff. In Figure 7, asx increases,tdiff decreases linearly.

In Figure 8, it is seen that asx begins to increase,Lmaxdiff increases. However, at about

10 iterationsLmaxdiff levels off. This may be expected since similar results were found in

the original VFA analysis (Weintraubet al, 1999). After 10 iterations, the VFA

procedure converges to a good solution.
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5.1.3 Computation Time

The next major issue is thatCPAconsistently has a longer runtime thanWA. The

first step in determining the solution to this problem is to find out ift(CP) is erratic or in

a tight distribution. Ift(CP) has a small variance centered on its mean, then the best

course of action is to change the mean runtime. This will allow the times of all problem

instances to be relatively similar. Ift(CP) has a large variance then more work will be

required to reduce the runtime for all problem instances, since both the mean and the

variance will have to be reduced. Botht(CP) andt(W) are evaluated for 10 randomly

generated problems at each due date range. Problems were generated with 40 jobs and 20

machines. All of the jobs are routed through the bottleneck machine and they all have

alternative routes. All processing time for each operation is U[1, 8] and all jobs have a

U[5, 7] distribution for the number of operations. The results are seen in Figures 9 and

10.

CPAproduces very consistent results, time-wise. It shows a tight distribution

centered on the average for each due date range.WA, however, has a much larger

variation in runtimes for each replication. Sincet(CP) is a very tight process, meaning

the variation among instances is small, finding a general way to reduce time in the

algorithm should help lower the runtime for every instance.

To better understand this, each time the minimumLmax(CP) is updated, the time,

t(CP) , is recorded and both values are output. This information is used to determine

when the bestLmax(CP) is found and compared to the time when the algorithm ends

according to its predetermined stopping criteria. Figure 11 shows these results.
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Figure 9: Time distribution for t(CP) for 40 jobs, 20 machines
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Figure 10: Time distribution for t(W) for 40 jobs, 20 machines
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10 Replications of Lmax(CP) vs. Time for a Due Date Range of 0
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Figure 11: Ten Replications ofLmax (CP) vs. t(CP) for all jobs due at time 2000
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The best solutions occur several seconds before the algorithm ends. The dark

single point on the right is the average time forCPAto run to completion. The dark

single point on the left is the average time until the algorithm findsLmax(CP). In the

worst case, the algorithm runs 45 times longer than needed to findLmax(CP). In the best

case, it only runs 0.3 seconds longer, reaching the bestLmax(CP) about the same time it

ends. On average,CPAruns 16 times longer than needed.

The stopping criteria forCPA is based on several parameters: (1)X, the number of

initial VFA iterations, (2)Y, the number of starting solutions chosen fromX that are

explored using the tabu search, (3)m, the number of tabu search moves made for each

starting solution, (4)x, the number of VFA iterations made for each move, and (5) TLL,

the length of the tabu list. The parameters,m andx, were examined and set above. Their

impact on time was noted and as the problem size (i.e. the number of jobs and machines)

increases, the number of tabu moves and VFA iterations per move are adjusted

accordingly.

That leavesX, Y, and TLL that can be changed. For all initial trials,CPAran 100

VFA iterations and chose the best 20 solutions to explore; and the tabu list length was

chosen to be very small. These parameters are now varied and tested on problems with

40 jobs, 20 machines, 100% of the jobs passing through the bottleneck machine and all of

those having an alternate route available. The processing time for each operation was

U[1, 200] with each job having U[5, 7] operations. The number of initial VFA iterations,

X, is tested at values, 10, 50 and 100; and the number of starting solutions explored,Y, is

tested at 10 and 20. The tabu list length, TLL, is held constant as the number of jobs.
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Lmaxdiff with X and Y varied
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Figure 13: tdiff with X and Y varied
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In the legend of Figure 12, the first number represents the value ofX and the

second represents the value ofY. As shown in both Figures 12 and 13, all of these trials

yield faster results thanWA(i.e. tdiff > 0), while they also result in very similar values for

Lmaxdiff. The best explanation for this is that when the tabu list length is increased, it

causes the search to be more particular in its move choices. Limiting the number of

possible moves limits the runtime, since the algorithm stops if all possible moves are

tabu. The trials with 10 starting solutions are consistently faster than those with 20

starting solutions, as expected. Since they also produce comparable values forLmaxdiff, Y

is chosen to be 10. Changing the value forX has little impact onLmaxdiff or tdiff, so the

original value ofX = 100 is kept.

5.2 Final Trials

The strength of the VFA is that large, industrial problems can be run quickly yielding

very good sequences. Thus, the real test is to see whether theCPAcan produce “good”

results for industrial size problems in a reasonable amount of time. Problems are

randomly generated for 500 jobs, 50 machines, 5 operations per job, a U[1, 200]

processing time per operation, and due date ranges from 0 to 10,000 in increments of 500.

The percentage of jobs that pass through the bottleneck machine is tested at 100% and

20%. Of those going through the bottleneck, all have alternative routes available. Each

parameter set was run on 10 randomly generated problems.

In order to better compare theCPAwith theWA, the same parameters are run for

each algorithm. The given set of parameters is first run using theWA. The algorithm is
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run for 1000VFA iterations and 100 starting solutions. The runtime,t(W), is recorded, as

well as the number of neighbors that the algorithm searches. Then theCPA is run for the

same amount of time while varying the number of starting solutions and tabu search

moves.

5.2.1 Trials using 100% of Jobs Passing Through Bottleneck Machine

The first set of trials are run using 100% of the jobs passing through the bottleneck

machine and 100% of those having alternative routes. The results shown in Table 1

reflect the average of all runs and all due date ranges for the given set of parameters.

WhenWA is tested, it runs, on average, 0.4658 seconds and searches 101 neighbors. The

total number ofVFA iterations during the run is 20 on average. This means that theWA

is reaching its lower bound before completing all 1000 iterations of theVFA.

TheCPA is then run for the same parameters using 1 starting solution and a large

number of moves. For the initial run, 500 moves were chosen. The algorithm is allowed

to run for one second or until the end of its current tabu move, whichever is longer. As

seen in Table 1, on average, these parameters cause the algorithm to run for 2.40 seconds.

It searches 497 neighbors and runs for 101VFA iterations. This run is inferior to that of

WA in each due date range.

Table 1: Summary of Results for 100% of jobs through the bottleneck machine
Time No. Nbrs No. Iterations No. SS No. Moves % w/better Lmax

WA 0.4658 101 20 - - -
CPA (1SS) 2.40 497 101 1 1 0.00%
CPA (2SS) 2.32 500 101 1 1 0.00%
CPA (5SS) 2.31 500 101 1 1 0.00%
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TheLmaxdiff values for each of the three scenerios, 1, 2 and 5 starting solutions

can be seen in figure 14. All three data sets follow the same pattern. At first these results

do not seem to be consistent with those found in earlier trials. However, expanding the

search area by increasing the problem size causes theCPAto take longer to find a good

solution. In the above trials, the search time is limited, which limits the number of

neighbors that theCPAcan search. Table 1 shows that the algorithm ended on the first

move every time. This means that the algorithm looked at every neighbor of one solution

(maximum of 500 neighbors), moved to the best neighbor and was forced to stop due to

the time constraint. The same results are found when the number of starting solutions is

increased to 2 starting solutions and 5 starting solutions.

Further analysis reveals that since all jobs pass through the bottleneck, most, if

not all, of the jobs will also be included in the critical path. The search space, then, is

proportional to the number of jobs in the problem.

In comparison, theWAhas a neighborhood that searches all of the available

neighbors for each starting solution searched, 500 neighbors for each of 100 starting

solutions in this case. The newCPAsearches its critical path neighborhood every time a

move is made. The total number of moves can be calculated as (the number of starting

solutions) * (the number of tabu moves per solution). The total number of neighbors

searched is therefore, (the total number of moves) * (the number of jobs). This can get

very large when the number of jobs is large. This fundamental difference in the two

algorithms causes theCPA to run longer thanWAwhen larger problems are studied.
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5.2.2 Trials using 25% of Jobs Passing Through Bottleneck Machine

After observing the algorithm’s behavior for 100% of jobs passing through the

bottleneck, the next step is to lower that percentage and analyze the results. The same

sets of parameters are again run, however this time only 25% of the jobs go through the

bottleneck. All 100% of these have alternative routes.

TheWA is run and takes, on average, 34 seconds per replication. Using this as the

time limit, CPA is run for three different scenarios. To determine the initial number of

starting solutions to run, the number of starting solutions was increased from 1 untilCPA

ran for 34 seconds. This happened after 4 starting solutions; therefore, the first run of the

CPAwas with 4 starting solutions. For the initial run a large number of moves, 500, was

chosen. After analyzing the results of this run, the algorithm was run again, but with

twice as many starting solutions. The number of tabu moves was chosen to be half of the

average number of moves found when running 4 starting solutions. This was repeated for

5 times the number of starting solutions and one-fifth of the initial trial’s average number

of tabu moves. Figure 15 and Figure 16 show these results.

Figure 15 showsLmaxdiff for the three different scenarios, while Figure 16 shows

tdiff. Only in one instance, the 9500 due date range, doesCPAproduce a betterLmax

Table 2: Summary of Results for 25% of jobs through the bottleneck machine
Time No. Nbrs No. Iterations No. SS No. Moves % w/better Lmax

WA 34.18 4877 5420 - - -
CPA (4SS) 30.96 12893 710 4 30 4.76%
CPA (8SS) 34.71 2791 141 2 8 0.00%
CPA (20SS) 34.68 3057 136 6 3 0.00%
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thanWAwhen 4 starting solutions (4SS) are used. When the number of starting solutions

is raised and the number of moves is lowered, the results are much worse.WA

outperformsCPAevery time.

Table 2 shows the results for this experiment in a similar fashion to Table 1.

While the average time between algorithms is very similar,WAsearches more neighbors

thanCPA for every instance except when 4 starting solutions are used. This can be

accounted for by noting thatCPAmust limit the number of neighbors it searches due to

the time constraint. When 4 starting solutions are used,CPArequires more tabu moves

per starting solution. By doing this, the solution space is searched more in depth for each

starting solution; however, the search may not be expanding into the necessary areas of

the space.
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Chapter 6

Conclusions and Future Research

6.1 Thesis Summary and Conclusions

The experimentation in this thesis is related to research done by Weintraubet al (1999).

In that paper, a tabu search algorithm was created in order to select job routings for jobs

to determine the lowest possibleLmax. To improve on that algorithm, this research must

solve the same problem yielding betterLmax results, or yielding the sameLmax results in

less time. The original conjecture was that reducing the search neighborhood by using

the critical path approach will produce these results.

The initial trials were done using small problems, 40 jobs, 20 machines, 5-7

operations per job, and U[1, 8] hours processing time per operation. All jobs were routed

through the bottleneck machine and had alternative routes available. For these problems,

theCPAproduces mixed results. For almost all cases, the new algorithm finds better

Lmax values than the originalWA. However, it takes longer to find these values than the

earlier algorithm. After varying the number of starting solutions, even better numbers are

reported. TheCPAalmost always has a shorter runtime thanWA. When the due date

range is medium to large,CPAoutperformsWA in solution quality.
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The results change, however, when the problem size is increased. The large

problems were run with 500 jobs, 50 machines, 5 operations per job and U[1, 200]

processing time per operation. When all jobs pass through the bottleneck machine and

have alternative routes available,WAperforms better thanCPA.

The analysis shown in this thesis leads to an alternative conjecture.CPA

performs better thanWA for very small problems sinceCPA investigates a lot more lower

bounds of neighboring solutions. The solution time forCPA is smaller sinceWAspends

a long time running itsVFA iterations, as compared to the time it takes to evaluate its

neighbors. The same conjecture can be made for larger problems except that theCPA

solution time is much larger when the number of jobs increases. If allowed to run to

longer,CPAmay produce betterLmax results at the expense of more computation time.

6.2 Future Research

6.2.1 Conditions for a Lower Bound

During the course of the research for this thesis, several observations were made about

conditions in which it can be known that a minimum lower bound has been reached.

1. If theLmax job starts at its earliest start time on theLmax machine (the machine

where theLmaxjob queues the longest), is not pre-empted, and uses its shortest

processing times for all upstream operations, then the minimum lower bound has

been found.

2. If all jobs in theLmax candidate group have their alternative operation on some

other machine and if the alternative operation is earlier in the sequence than on
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theLmax machine and the shorter sequence is in use, then the minimum lower

bound is found.

Note that by condition 2, for the case of alternative operations on the critical machine

only, the minimum lower bound is found when all jobs use their primary route since their

alternative routes are longer than their primary route.

These conditions were observed during the current research, but they were not

proven or implemented. After proving the validity of these statements, incorporating

these conditions into theCPAcould help shorten the runtime by allowing the lower

bound search to stop when it is known that a minimum lower bound has been reached.

Since a large part of the calculations for the algorithm are those involved in finding the

lower bounds of neighbors, the addition of these conditions could have a great impact on

computation time.

6.2.2 Generate Problems using Other Assumptions

The problems generated for this thesis all involve jobs in a job shop traveling through a

bottleneck machine. A change from the bottleneck machine to an alternate machine or

machines is the only type of alternative route studied. As seen in the section 6.1, the new

CPAcreated does not always perform well using these alternative routing assumptions.

Several varying assumptions have been studied using theWA. The first

assumption is that the ordering of consecutive operations within a route may be switched.

The second assumption is that an alternative route can be entirely different from the

original route. In this case, the alternative route is randomly generated; and it may or

may not have operations in common with the original route.
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Running new trials usingCPAon these alternate assumptions may yield better

results as compared withWA. The main problem of the current research is that in order

to find good solutions, too much computation time is required. This happens because the

number of neighbors to be searched is proportional to the problem size. The hypothesis

is that when the underlying bottleneck machine assumption is changed, this will also

change the neighborhood size. The number of neighbors will no longer be directly

proportional to the problem size, and a smaller neighborhood requires less time to search.

Then an additional question can be answered. Does theCPAtruly search a better

neighborhood than theWA?

6.2.3 Increase Runtime of Search with 25% through the Bottleneck

For this research, although almost all of the trials were run with 100% of jobs passing

through the bottleneck, the final trials were done with only 25% of jobs using the

bottleneck machine. However, these experiments did not allow theCPA to run to

completion,i.e. to the end of the specified number of moves for each starting solution.

Instead, theLmaxdiff was evaluated after the program had run for a given number of

seconds. The purpose of these experiments was to compare the quality of solution

betweenWAandCPAwhen the computation time was held constant.

Even though computation time is an important performance measure, it is not

always a limiting factor. In other words, while some situations require a schedule in a

very short amount of time, others do not. In light of this, further trials should be run with

25% of the jobs passing through the bottleneck machine. These trials should allow the

algorithm to run to completion and compare the results found with the results of theWA.
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Studies using other, varied bottleneck percentages should also be performed and

compared to those reported in this paper. That analysis will show how sensitiveCPA is

to changing the percentage of jobs going through the one bottleneck machine in a job

shop.

Also, more in-depth studies of the relationship between the number of moves and

the percentage of jobs on the bottleneck should be studied. Sincem, the number of tabu

moves per starting solution, is a large factor contributing to the computation time of the

algorithm, varying this while varying the percentage through the bottleneck will give

great insight into the strength and speed of the algorithm.

6.2.4 Revised Tabu Search within Lower Bound

The tabu search algorithm developed in this paper switches between performing

computations in the lower bound when evaluating neighbors and computing the actual

Lmax through theVFA when determining the critical path for a solution. Revising the

algorithm to involve only lower bound calculations may help limit the computation time

required to runCPA. A new critical path definition would have to be created using only

the job schedule and sequence found while evaluating the lower bound.

The new lower bound algorithm would be as follows. For each starting solution,

the algorithm would run form tabu moves computing the best neighbor and the critical

path using only the lower bound calculation. After the last move for a given starting

solution, the bestv lower bound solutions found would be input into theVFA. When the

previous procedure had been run for all starting solutions, the best overallVFA solution

would be output.
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