
ABSTRACT

ANANTHARAJU, SRINATH. Resilient Data Aggregation in Wireless Sensor Networks.

(Under the direction of Assistant Professor Peng Ning).

Sensor nodes are low-cost and low-power devices that are prone to node compro-

mises, communication failures and malfunctioning of sensing hardware. As a result, some

nodes may report outlying data values, introducing significant deviations in the aggregated

sensor readings. This thesis presents a practical resilient outlier detection technique to fil-

ter out the influence of the outlying data reported by faulty or compromised nodes. The

proposed outlier detection algorithm is based on event localization using minimum mean

squared error (MMSE) estimation combined with threshold-based consistency checking to

detect outliers. Data aggregation is one of the key techniques commonly used to develop

lightweight communication protocols applicable to wireless sensor networks. The proposed

approach handles localization of multiple events by grouping the sensor readings into spa-

tially correlated clusters and performing an event-centric detection of outliers. In the entire

process of data aggregation, the outlier detection technique fits as a preprocessing stage for

reducing the effect of outliers on the aggregated result. Suitable extensions to the basic

outlier detection algorithm are proposed to effectively apply the algorithm to both central-

ized and decentralized sensor network architectures. This thesis further includes studies

that test the effectiveness of the proposed approach, including the detection rate, the false

positive rate, degree of damage and the resilience to malicious readings introduced by the

attackers. The experimental results show that on average the proposed approach detects as

high as 80-90% of the outliers while resulting in 5-15% false positive rate when the network

consists of 40-45% outliers. The experiments also show that the extent of damage on the

aggregated result is below 50% due to the elimination of outliers before aggregation. Finally,

the resilient data aggregation process requires modest computational and memory require-

ments with zero communication overhead in the centralized case and about 20% overhead

in the decentralized settings.
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Chapter 1

Introduction

1.1 Background

Recent advances in wireless communications have enabled the development of tiny,

low-cost, low-power sensor nodes that are capable of sensing environment phenomena, com-

municating over short distances and processing small amounts of data. Sensor nodes mainly

use a broadcast communication paradigm and are limited in power, computational capac-

ities, and memory. For instance, the processing unit of a smart dust mote prototype is

a 7.3MHz microcontroller, with 8KB instruction flash memory, 4KB RAM and and a 916

MHz wireless transceiver capable of data transfer at 38.4 kbps with the radio range of 500

feet, and is powered by two AA batteries [23]. TinyOS operating system is used on this

processor, which has 3500 bytes OS code and 4500 bytes available space for application

programs.

A number of sensor nodes are deployed to monitor events of interest in the target

field, which form an ad hoc network to communicate sensor readings from the source to the

sink. Wireless sensor network applications are gaining popularity at a rapid rate due to

their applicability in sensing environmental phenomena, traffic monitoring, critical health

care monitoring and tracking of enemy battlefield operations. Sensors are usually deployed

in harsh environments that are prone to failures and node captures. Sensor nodes are highly

cost effective. As a result, it is feasible to accomplish a redundant deployment with several
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nodes vouching for an event in a particular region. The aim of redundant deployment is to

build reliable sensor network applications in a cost effective way.

The data collected by the sensor nodes is usually transmitted wirelessly to a com-

putationally powerful and sophisticated node called the base station. The base station is

entrusted with the task of processing the received sensor data and derive meaningful infor-

mation representing the events in the target field. Sensor networks may contain intermediate

powerful nodes called aggregators deployed on the path between the sensor nodes and the

base station. The aggregators collect data from a subset of the network, aggregate the data

using a suitable aggregation function and transmit the aggregated result to a higher level

aggregator or to the base station.

1.2 Motivation

Sensor nodes are not usually equipped with tamper-resistant hardware. As a

result, an attacker can take control of a sensor node by physically compromising it. Using

the compromised nodes, an attacker can easily manipulate the result of aggregation by

reporting malicious readings that introduce significant deviations in the aggregated result.

For example, a protocol that computes the average of sensor readings is insecure against

a single large reading introduced by an attacker. Current data aggregation techniques are

not designed with security in mind. Some of the popular aggregation functions such as

SUM, AVG, MIN, MAX and COUNT are shown to be insecure in [55]. Apart from node

compromises, an attacker can introduce significant deviations in the aggregated results by

creating fake events. For example, an adversary can artificially inflate a sensor reading by

holding a cigarette lighter in the vicinity of a heat sensor. Cryptographic authentication

mechanisms alone cannot solve this problem because an attacker may have access to valid

cryptographic keys via compromised nodes, and easily introduce deviating readings into

the network. Sensor nodes are also vulnerable to system faults that enable malfunctioning

sensors to report outlying data values. We denote all these deviating sensor readings as

outliers. It is of utmost importance to detect and eliminate the influence of the outliers on

the aggregated result by designing a resilient aggregation scheme that can tolerate some

percentage of outliers.

In [55], Wagner identifies functions that can achieve resilient aggregation and uses
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certain general robust statistical techniques such as truncation, trimming and statistical

location estimators for eliminating outliers. However, these statistical techniques do not

use any of the properties specific to sensor networks. These techniques can only mitigate

the problem of reducing the effect of deviating readings on the aggregated result. A direct

application of robust statistical techniques for resilient aggregation leads to problems associ-

ated with deciding the appropriate range of expected sensor readings, fixing the percentage

of highest and lowest readings to ignore, limitations of statistical location estimators such

as lower convergence rate, impractical for all but small datasets, inconsistency due to ran-

dom resampling techniques and unbounded influence in the case of high leverage points

as suggested in [43]. As a result, robust statistical techniques alone cannot guarantee re-

silient data aggregation. We believe that a complimentary approach that exploits some

of the properties specific to sensor networks can lead to an effective resilient aggregation

technique. Another important shortcoming of Wagner’s approach is that it does not handle

data aggregation in distributed network architectures. In a distributed sensor network, the

key challenge is that all the sensor readings required for aggregation may not be available

at a single node.

We believe that a practical data aggregation approach that incorporates some of

the properties specific to sensor network applications is a solution to all the above mentioned

shortcomings. In this thesis, we propose a resilient data aggregation technique based on

the attack-resistant minimum mean squared error estimation of the event location and the

threshold-based consistency checking among the sensor readings. Our approach detects and

eliminates outliers before proceeding with the aggregation of the sensor data. Unlike [55],

our method does not rely on the resilient properties of certain data aggregation functions and

works with any aggregation scheme, thus increasing its applicability in a variety of scenarios.

For example, our outlier detection algorithm can be incorporated into an acoustic sensor

network application irrespective of the aggregation function used. Our approach does not

rely on robust statistical techniques to eliminate the effect of outliers on the aggregated

result and guarantees detection rates as high as 80-90% while resulting in 5-15% false

positive rate.

Distributed network architectures are typically used to achieve energy efficient

information flow by aggregating the data values along the way from the source to the

sink. Our distributed resilient data aggregation algorithm compresses non-outlying sensor

readings into the parameters of an event detection model and transmit only the model
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parameters instead of the actual readings. The readings are regenerated at each of the

intermediate aggregators to determine the set of outliers that are transmitted to the higher

level aggregators. Finally, the base station executes the outlier detection algorithm to

eliminate the outliers before aggregating the sensor readings.

Sensor networks possess certain unique properties not commonly found in typical

distributed or centralized systems. Nodes physically located close to each other are likely

to report related data values, thus exhibiting spatial correlation properties. We make use of

this observation to group sensors into clusters and perform an event-centric outlier detection

when multiple events are present in the target field.

1.3 Contributions

The scientific contributions of this thesis are fivefold:

• The thesis describes an outlier detection algorithm based on minimum mean square

estimation (MMSE) for event localization. Using MMSE for determining the location

of the sensors is not novel, but estimating the location of the event based on the sensor

readings and the node localization information using MMSE is new.

• The thesis introduces a resilient outlier detection technique based on the distance-

based event detection model for consistency checking among sensor readings with a

capability of handling multiple events in the target field.

• The thesis proposes an effective spatial correlation technique using spherical covari-

ance model from geostatistics and maximal clique detection algorithm.

• The thesis describes a resilient data aggregation approach to detecting and eliminating

outliers applicable to a distributed network architecture. To the best of our knowledge,

this work is the first on resilient data aggregation that can eliminate outlying sensor

readings before aggregation in a distributed network. The proposed approach can

handle outliers belonging to multiple clusters by combining outlier information at a

higher level for effective aggregation.

• The thesis evaluates the effectiveness of the proposed resilient data aggregation al-

gorithm, including the detection rate, the false positive rate, degree of damage and
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the resilience to node captures. We present a comparison of the performance of our

algorithm as applied to centralized and distributed network architectures.

1.4 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 describes in detail our

outlier detection process that combines the MMSE based event localization method while

checking for consistency among sensor reported readings. It outlines an algorithm for group-

ing the sensors into spatially correlated clusters in order to detect outliers when multiple

events are present in the target field. It also describes a distributed outlier detection algo-

rithm applicable to a network of distributed sensor nodes, with intermediate aggregators

deployed between the source and the sink. Chapter 3 presents an evaluation of the approach

using extensive simulations to demonstrate the effectiveness, including the detection rate,

the false positive rate and resilience to outliers. Chapter 4 describes the related work, and

Chapter 5 summarizes the thesis and points out some future research directions.
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Chapter 2

Resilient Data Aggregation

The damage caused by the compromised or faulty sensor nodes in the form of

outlying data values, on the aggregated result is tremendous. An attacker can introduce

significant deviations from the expected result if a non-resilient data aggregation function

is used for aggregation purposes. Computation of sum, average, minimum and maximum

are shown to be non-resilient [55]. In this thesis we do not concentrate on building resilient

aggregation operators but develop techniques to identify and eliminate outliers before pro-

ceeding with the task of data aggregation. We also highlight the resilient properties and

demonstrate the effectiveness of our outlier detection algorithm. In this chapter, we first

elucidate the assumptions we make throughout the thesis followed by a description of our

outlier detection process that can handle single and multiple events. We then describe our

outlier detection algorithms as applied to a centralized network consisting of a single base

station. We propose a distributed outlier detection algorithm applicable to a distributed

network scenario with low communication overheads and excellent scalable properties.

2.1 Assumptions

We assume sensor nodes are deployed with sufficient redundancy so that any two

sensors are within the sensing range of each other, redundantly monitoring an event that

occurs in the vicinity. This assumption does not restrict the applicability of our approach
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because sensor nodes are usually deployed in large numbers to achieve sufficient reliability

in the absence of costly fault-tolerant hardware. Throughout this work we would be dealing

with static sensors. Static sensors are widely used in sensor network applications, including

acoustics, light sensing, magnetic field and harmful radiation detection, seismic vibration

sensing, tracking enemy tanks in a battlefield, temperature, pressure, surveillance and many

more. A sensor network application might make use of some computationally powerful

and sophisticated nodes called aggregators. The sensor readings are aggregated by the

intermediate aggregators, as the data passes from the source (sensor node) to the sink

(base station). This results in energy efficient information flow in the network due to low

communication overheads.

In this work we assume the availability of the sensor location information either

hardcoded into each of the static sensors at the time of deployment or determined using one

of the localization techniques proposed in [44, 32, 11, 14, 49, 40]. Throughout this work we

consider an event-based system with one or more events occuring at any point in time and

the snapshot of sensor readings is analyzed for outliers. We also assume a simple model for

sensor measurement errors, where the measurement error is uniformly distributed between

−ǫ and ǫ.

Sensor networks are used to monitor a variety of events in the target field. The

monitored events are either caused by environmental phenomena such as temperature and

pressure or due to visible objects such as enemy tanks in the battlefield. Our outlier

detection algorithm can only be applied to sensor applications that monitor the events

caused by visible entities, with a physical location in the field. We denote such events as

point events. Monitoring point events due to moving objects emitting light and magnetic

radiations or the events causing vibrations fall under this category. It is not possible to

extend our approach to environment sensing applications like temperature or pressure. We

do not consider temporal correlation of the events. Our outlier detection algorithm is

executed periodically based on a snapshot of events monitored by the sensor nodes in the

target field.

We assume that all packets that are exchanged between the sensor nodes and the

aggregators are authenticated so that malicious data values introduced by the attackers

are easily filtered out without being considered for data aggregation. Some of the existing

practical approaches such as [28, 31] can be used for authenticating the messages exchanged

between the nodes in a sensor network. TinySec [28] is a practical technique available for
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Base Station Sensor Node

B

Figure 2.1: Example of a centralized sensor network with a single aggregator (base station)

packet authentication and TinyKeyMan [31] is a key management scheme for pairwise key

establishment in wireless sensor networks. We also assume that each node in the sensor

network is uniquely represented based on an identifier that is derived as a function of the

secret keying material specific to each of the nodes.

A sensor network usually consists of hundreds or thousands of tiny, low-cost, low-

power sensor nodes. We consider two kinds of sensor network architectures: a centralized

architecture consisting of a single base station acting as a sink, and a distributed architecture

with intermediate aggregators. In the centralized case the base station is computationally

powerful and entrusted with the responsibility of aggregating the raw values reported by the

sensors. Figure 2.1 shows an example of a centralized network. A distributed architecture

consists of several intermediate aggregators that are responsible for aggregating the data

from a subset of sensors and report the aggregated results either to a higher level aggregator

or to the base station. Figure 2.2 shows an example of a distributed architecture with

multiple aggregators, located on the path from the source to the sink. In a distributed

network, aggregating the data within the network prevents transmission of all the sensor

readings directly to the base station. This results in energy efficient information flow due

to low communication overhead.
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Base Station Sensor Node

B

Aggregator

Figure 2.2: Example of a distributed sensor network with intermediate aggregators

Sensors deployed in a field could be heterogeneous in terms of sensing range, com-

munication range, battery power, computation and memory resources. The sensitivity of

the sensors to the event occuring at a particular distance could vary due to a drift caused

by age, decay, damage and accumulation of dust on the sensing hardware. There is a need

to identify and compensate the time-invariant systematic bias component of the error in

sensor measurements by employing certain calibration methods. We assume the existence

of a simple calibration technique used prior to deployment, so that sensors are calibrated to

provide consistent readings. An example calibration technique involves recording the sensor

measurements of all sensors placed at a fixed distance from the event and choosing one of

the sensors as a reference. The difference between the chosen sensor value and the rest of

the sensors are stored for compensating the errors before proceeding with outlier detection.

2.1.1 Attack model

Sensor nodes are deployed in hostile environments that are prone to node failures

and compromises. Using a compromised node, an attacker can induce highly deviating

values, with the purpose of introducing significant deviations in the aggregated result. Al-
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ternatively, if the nodes are protected by tamper-resistant packaging, then an attacker can

artificially inflate sensor readings by creating fake events. Outlying values are also an out-

come of failures in the sensing hardware. In all these cases it is highly desired to detect

these outlying values before proceeding with aggregating the sensor data.

We assume that an adversary’s capabilities in compromising sensor nodes or arti-

ficially inflating the readings are limited. Introducing significant deviations in each of the

sensor readings involve some cost for an attacker. Therefore an adversary can influence

only a limited number of sensor readings at a given point in time. We further assume that

the base station and intermediate aggregators are deployed fewer in number than regular

sensors, and it is possible to afford protecting them using highly tamper-resistant hardware.

These nodes remain trustworthy and difficult to be compromised by an adversary.

In this work, we do not consider the problem of colluding sensor nodes for the

purpose of introducing highly deviating readings into the network. In the case of a distrib-

uted network architecture, an attacker can compromise a local majority of the sensor nodes

and easily succeed in introducing outlying values into the aggregated result. However, a

redundant deployment of sensor nodes mitigates the effect of collusion to a great extent.

2.2 Resilient Outlier Detection: Single Event

The readings reported by the sensors correspond to events occuring in the field.

Depending on the sensing modality, the magnitude of a sensor reading for a point event is

influenced by the distance between the sensor node and the target causing the event. We

use an event detection model to estimate sensor readings based on the distance to the target

causing the event. Detecting and eliminating the influence of outliers is essential to avoid

deviating aggregated results representing an event in the target field. In this subsection,

we describe an outlier detection process adopted mainly from [49, 32]. However, our outlier

detection algorithm estimates the location of the event instead of node localization, using

minimum mean squared error (MMSE) estimation described in [49]. We use a distance-

based event detection model to estimate a sensor reading based on the location of the

sensor from the estimated event location. Unlike [32], we compute the difference between

the actual and estimated sensor readings to check for threshold-based consistency among

sensor readings.
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The outlier detection algorithm described in this section works with a snapshot

of sensor readings representing a single event of interest in the field. However in a typical

sensor field multiple events can occur simultaneously. In the next section, we propose an

extension to our outlier detection algorithm that can handle multiple events by grouping

spatially correlated sensor readings.

2.2.1 Event Detection

Standard energy models for signal transmission is based on the fact that the energy

measured by a sensor i is a function of its distance di to the target object generating the

event. The strength of the signal emitted by a target object decays as a polynomial of

the distance between the sensor and the target [8]. The following equation generalizes this

notion of an energy model:

ri = c/(1 + di)
k, (2.1)

where ri is the energy reading measured by the sensor, c is the maximum energy at the

target object called the energy constant, and k is a constant called the decay factor. The

value of k typically ranges from 2.0 to 5.0 depending on the environment as shown by field

experiments in [21].

We conducted field experiments using Mica2 motes to validate the above signal

strength equation. In our experiment, the target is a light emitting source and the ex-

perimental platform consists of a base station and a photo sensor. The sensor node is

programmed to sense the light from the target object and broadcast the detected signal

values. The base station is coded to receive the signals from the sensor node. Figure 2.3

shows the result of our experiments as a plot of photo sensor readings against the distance

of the light source from the sensor node. We used two different sensor nodes to record our

observations, and different sensors generated different readings for the same distance values.

For comparison purposes, we show the computed energy values for c = 1000 and k = 2.5, 3.0

and 3.5 in figure 2.3. It can be seen that the energy readings reported by the sensor nodes

closely match the computed energy values for k = 3.0. Based on our field experiment results

and the suggestion made in [51] we use a value of k = 3.0 in all our simulations. The rea-

son for small deviations in our recorded observations could be attributed to the shadowing

effects and the sensitivity of the reading to the direction of the light falling on the photo

sensor at an angle. In section 3.2 we present detailed experiments with acoustic and photo
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sensors for estimating the decay constant and the energy constant parameters in the event

detection model.
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Figure 2.3: The effect of distance to the light source on the photo sensor readings

As mentioned in section 2.1, one of our key assumptions is that we consider only

sensor applications that monitor point events caused by tangible entities characterized by

a physical location. It is not possible to extend our approach to environment sensing

applications like monitoring of temperature or pressure.

2.2.2 Event Localization Using MMSE

Our outlier detection process is based on the estimate of the event location using

the sensor node location information and a snapshot of sensor readings. The problem of

event localization is similar to node localization, and our method is adopted from the node

localization technique proposed in [49]. In the remainder of this subsection, we briefly

describe the event localization process using MMSE estimation.

The readings reported by the sensor nodes correspond to the events detected in

their vicinity. Sensor nodes are equipped with energy detectors that are typically used for

event detection. These detectors monitor signal energy over a period of time, and events

are recorded when the energy exceeds an application specific threshold [5]. We denote the

value reported by the sensor i as vi.

As described earlier, the location of the sensor node is either hard-coded into the

nodes at the time of deployment, or securely estimated prior to the data aggregation phase.

For the sake of presentation, we denote sensor locations and their reported readings as a



13

triple 〈xi, yi, ri〉, where (xi, yi) is the location of sensor i, and ri is the value reported by

sensor i. Given a set of triples 〈xi, yi, ri〉 representing sensor node locations and reported

values, we need to estimate the location of the event. The matrix solution to MMSE, as

described in [17], is used to estimate the location of the event monitored by a group of

sensors. The error of the measured distance between an unknown event and the ith sensor

detecting this event can be expressed as the difference between the measured distance and

the estimated distance, as indicated by equation 2.2. In 2.2 the estimated distance is derived

from equation 2.1.

f(xe, ye, c) = ((c/ri)
1/k − 1) − die (2.2)

Given a sufficient number of triples 〈xi, yi, ri〉, the location of the event can be computed

by taking the MMSE estimate of a system of f(xe, ye, c) equations. If at least four triples

are available then it is possible to solve the system of equations for an estimate of the event

location (xe, ye) and the energy constant c.

2.2.3 The Algorithm

Our algorithm to detect outliers uses the method of threshold-based consistency

checking among sensor readings. Our approach is similar to the attack-resistant MMSE

location estimation described in [32]. In [32], Liu et. al use the difference between the

distance measured using the beacon signal and an estimate of the distance as a measure

of the error to check for consistency among a set of location references. However, in our

approach we use the difference between the actual sensor reading and the distance-based

estimated reading computed using equation 2.1. We check for consistency among the sensor

readings using a threshold value estimated by a procedure described in [32].

In the current approach, we consider all the sensor readings to estimate the location

of the event and the subsequent detection of outliers. The reading reported by a sensor

node that is located far away from the event is not influenced by the energy emitted by

the event. As a result, we can simply exclude these readings from the outlier detection

process. This reduces the number of sensor readings being considered for outlier detection

and a significant reduction in the computational complexity of the algorithm. If the sensor

readings are consistent, our outlier detection algorithm does not detect a distant non-outlier

as an outlier due to the low energy values reported by the sensor.

Sensor nodes are usually deployed in hostile environments that are prone to node
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captures and failures. As a result, the event location estimated using the method described

in section 2.2.2 is prone to large influence by outliers. These outliers can easily influence

the event localization process and subsequently the data aggregation results computed by

the aggregator. In order to minimize this effect, we compute the mean square error ζ2 of

the distance measurements based on the reported sensor readings and the estimated event

location. Given a set of m triples 〈xi, yi, ri〉 representing sensor node locations and reported

values, we use MMSE to estimate the location of the event (xe, ye) and the energy constant

c. After that we compute the mean square error ζ2 of this location estimate using the

following equation:

ζ2 =
m

∑

i=1

(ri − (c/(1 +
√

(xe − xi)2 + (ye − yi)2)
k)2

m
(2.3)

We check for consistency among sensor readings by comparing the mean square

error against a given threshold value. All the inconsistent readings are branded as outliers

and not considered for data aggregation. Based on equation 2.1, we compute the difference

between the estimated reading, and the actual reading corresponding to a group of m

sensors, using equation 2.3. We check if a given set of sensor-specific triples 〈xi, yi, ri〉 are

τ -consistent w.r.t. the localization estimate obtained using MMSE as described in [32],

where τ -consistency among m sensor readings is determined as follows:

ζ2 =
m

∑

i=1

(ri − c/(1 + die)
k)2

m
≤ τ2 (2.4)

The parameters τ and m are crucial in branding a group of sensors as outliers. In

what follows, we address the problem of estimating these parameters.

It is required to estimate a maximal subset of sensor readings that are τ -consistent

so that the aggregated result is close to the actual result and only the genuine outliers are

discarded. An obvious method is to check all possible subsets starting from considering all

sensor readings until we obtain a subset that is found to be τ -consistent. In the worst case,

this boils down to a powerset computation problem that is known to have an exponential

time solution. If a set contains m elements then the search space for computing the powerset

contains 2m elements. A sensor network with 20 nodes would require exploring all 220 =

1048576 subsets. Therefore, this algorithm is computationally expensive and does not scale

well when applied to large networks.
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We make use of a suboptimal greedy strategy described in [32]. We start with

all sensor readings in the first round, compute the mean square error and check for τ -

consistency. If they are τ -consistent then we conclude that there are no outliers in the

given set of readings. If they are not τ -consistent then we eliminate one triple such that the

subset obtained produces the least mean square error as the input to the next round. The

algorithm continues until a τ -consistent subset of sensor readings is found. The number

of rounds in this algorithm grows linearly with the number of nodes in the network. The

computational complexity is significantly reduced but the results obtained are suboptimal.

Estimating Threshold

It is difficult to propose a generic procedure to estimate an optimum value of the

threshold τ that is suitable to detect outliers in various sensor network applications. We

make use of the threshold estimation method described in [32]. For the sake of completeness,

we present a brief overview of the threshold estimation procedure. Further details can be

found in [32].

As suggested in section 2.1, we assume the availability of a simple measurement

error model, where the measurement error is uniformly distributed between −ǫ and ǫ. De-

termining an appropriate value of the threshold τ is dependent on the measurement error

model. The distribution of the mean square error ζ2 in the absence of malicious attacks is

used to compute an appropriate value of the threshold. The measurement error correspond-

ing to a non-outlier triple 〈xi, yi, ri〉 can be computed as ei = (ri − c/(1 + die)
k), where die

is the distance between the real location of the event (xe, ye) and the location of the sensor

node si. Using the lemma proposed in [32], we can obtain the probability distribution of

ζ2 as limm→∞F [ζ2 ≤ ζ2
0 ] = φ(

mζ2

0
−µ

′

σ
′ ), where µ

′

= Σm
i=1µi, σ

′

=
√

Σm
i=0σ

2
i , and φ(x) is the

probability of a standard normal random variable being less than x. Assuming a uniform dis-

tribution of the measurement error between −ǫ and ǫ, the mean and variance for any e2
i are

ǫ2

3 and 4ǫ4

45 respectively. Substituting these values, we obtain F (ζ2 ≤ (kǫ)2) = φ(
√

5m(3k2−1)
2 ).

Using the probability distribution of ζ2 obtained from the lemma, and the simulation results

using the estimated event locations, we can determine an appropriate value of τ .

Figure 2.4 shows the probability distribution of the mean square error ζ2 obtained

from two different simulations using sensors’ estimated locations. We use two different sets of

sensor triples 〈xi, yi, ri〉 to study the probability distribution of ζ2, one with m = 5 references
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Figure 2.4: Cumulative distribution of the mean square error ζ2. Let k = ζ0

ǫ
.

and the other with m = 10 references. We can see that the cumulative distribution function

mimics an S-shaped curve. The figure gives a hint about the appropriate choice of the

threshold τ . Specifically, the value of τ corresponding to a desired cumulative probability

is chosen for outlier detection. It is desirable to choose a threshold value corresponding

to a high cumulative probability (say 0.9). Figure 2.4 shows a threshold value of τ = 1.9ǫ

achieves a probability of the mean square error greater than 0.9 observed in both the

simulated scenarios. This means more than 90% of the cases results in a mean square error

lesser than that computed using ζ0 = 1.9ǫ. A similar experiment can be conducted to

derive the actual distribution of the mean square error, and then determine the value of τ

accordingly.

We present the result of our experiments to demonstrate the effect of the threshold

values on the outlier detection rate and the false positive rate in section 3.3.

2.3 Resilient Outlier Detection: Multiple Events

The outlier detection scheme outlined in the previous chapter is designed with a

single target in mind. In the presence of multiple targets, the raw energy value detected

by a sensor is influenced by different targets to a different extent based on the distance

between the sensor and each of the targets. As a result, a simple application of our outlier

detection algorithm in a field with multiple targets would result in highly deviating event
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location estimation using MMSE and the consequent erratic detection of outliers. In this

subsection, we propose an extension to our outlier detection algorithm in order to handle

multiple events. We present a clustering technique to group the sensor readings into spatially

correlated clusters, and make use of these clusters to isolate sufficiently separated events

for outlier detection. This is the essence of our event-centric outlier detection process when

multiple events are present in the field.

2.3.1 Spatial Correlation

Typically sensor network applications require a dense deployment of sensor nodes

that are spatially close to each other for a reliable coverage of the region. The high network

density results in spatially proximal sensor observations that are highly correlated. The

extent of correlation increases with decreasing inter-sensor separation. In the remainder of

this subsection, we introduce a novel maximal cliques based approach to group spatially

correlated sensor readings for the purpose of outlier detection, in the presence of multiple

events.

As stated in section 2.1, we assume the availability of the sensor nodes location

information. Let us denote (xi, yi) as the 2-dimensional location of a sensor node si. The

distance between any two sensors si and sj , denoted by dij , can be computed easily with

the help of the available location information. The sensing range of a sensor si, denoted as

Ri, varies from node to node in a network of heterogeneous sensors. With this information

in hand, we construct a graph of sensor nodes G(S, E) with S representing a set of sensor

nodes and E corresponding to a set of edges connecting sensor nodes based on inter-node

distances and the sensing ranges using the following condition.

if dij < Ri and dij < Rj then

add an edge between sensors si and sj

end if

After constructing a graph of sensor nodes, we need a covariance measure to quan-

tify the spatial correlation property existing between any two sensor nodes. In what follows,

we discuss a simple covariance measure used in our approach followed by a description of the

maximal cliques detection algorithm for clustering the spatially correlated sensor readings.
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The maximal cliques detection algorithm works with the pairwise correlation co-efficients

and a threshold τc as the input, to group the sensors into spatially correlated clusters.

Covariance Measure

A covariance measure quantifies the spatial correlation property based on the inter-

node distance between any two sensor nodes. Based on the covariance measure, sensor

readings are grouped into spatially correlated clusters. These clusters are used to generate

event-centric groupings specific to each event in the field. The outlier detection algorithm

is then executed within each of these groupings for detecting outlying values.

Spatially varying phenomena are often modeled using Gaussian random fields,

specified by their mean function and covariance function. In [4], Berger et. al suggest four

standard families of covariance functions to model spatial correlation. One of these standard

families of covariance functions is borrowed from the field of geostatistics. Geostatistics is

a rapidly evolving branch of applied mathematics which originated in the mining industry.

It is now a popular technique in many fields of science and engineering where there is

a need to evaluate spatially or temporally correlated data [54]. Inspired by the field of

geostatistics, we choose spherical covariance model mainly due to its simplicity. Besides

simplicity, another motivation for choosing the spherical correlation model is its ability to

model continuous phenomena. Sensor nodes are typically equipped with energy detectors

which monitor signal energy in a time window and these energy values are consolidated into

a sensor reading using a method specific to the sensed phenomena. For example, discrete

events are reported by sensor nodes using a threshold based approach [5]. The spherical

covariance model is defined by the following equation:

ρij =







1 − 3
2(

dij

θ1
) + 1

2(
dij

θ1
)3 if 0 ≤ dij ≤ θ1;

0 if dij > θ1

(2.5)

and θ1 > 0.

In the above equation, ρij is the pairwise correlation coefficient that quantifies the spatial

correlation property existing between two sensors si and sj , separated by a distance dij

in the field. The parameter θ1 is called the range parameter and it indicates the range of

the spherical covariance. Any two observations taken more than θ1 distance units apart
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are uncorrelated. The range parameter is the maximal distance at which the volumes of

influence of two spheres, representing sensor node ranges, can overlap and share information.

Therefore, in our simulations we use θ1 as the average diameter of the sphere that represents

the sensing range of a typical sensor node. The covariance function is assumed to be non-

negative and decrease monotonically with the distance dij , having limiting values of 0 at

dij = ∞ and of 1 at dij = 0; see [54] for a complete derivation of the spherical covariance

function.

Maximal Cliques Detection

Sensors can be coalesced into different groups such that nodes monitoring more

or less the same region are clustered into a clique. The idea behind this grouping is to

bring together sensors responsible for a particular event in a given area. Depending on the

sensing application, the sensor nodes in each clique are likely to report correlated values,

and the inconsistent data values within a clique are used to track outliers using our outlier

detection algorithm. It is well-known that finding maximal cliques in a given graph is

an NP-complete problem [9]. However, if the degree of a node is small, then finding all

maximal cliques a particular node belongs to is computationally feasible [52]. This is due

to the possibility of enumerating all maximal cliques in a reasonable amount of time.

In order to group the sensors into spatially correlated cliques, we make use of the

pairwise correlation coefficients computed using equation 2.5. An application dependent cut-

off value τc based on the pairwise correlation coefficients determines the level of similarity

necessary for clique membership. This cut-off value is a metric used by the maximal clique

detection algorithm to determine if two entities are spatially colocated.

The maximal cliques detection algorithm takes a matrix of pairwise correlation

coefficients corresponding to sensor pairs and an application dependent cut-off value τc.

Only the upper half of the correlation matrix values can be considered because of the

symmetric nature of correlation coefficients, i.e., ρij = ρji. Also self comparisons ρii can be

omitted to save some computational time and space. The output produced by the maximal

cliques detection algorithm consists of a list of all maximal cliques found with the given data

and a cutoff value. The sensors are coalesced into different groups based on this output.

Note that due to the possible overlap among cliques, a particular sensor node can be a part

of multiple groups.
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Figure 2.5: Spatial grouping of sensors in a
10m x 10m field(τc = 0.5)
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Figure 2.6: Spatial grouping of sensors in a
10m x 10m field (τc = 0.7)

The optimum cut-off value is decided by the node performing outlier detection, so

that the maximum possible nodes are clustered and any two nodes within a cluster are in

the sensing range of each other. We use a binary search process to determine the optimum

value of τc. Determination of τc starts with a cut-off value of τc = 1.0. At each step in

the binary search process, we test for the nodes being clustered and any two nodes within

a cluster to be in the sensing range of each other. The search process terminates when an

appropriate value of τc is obtained such that the maximum possible nodes are clustered and

any two nodes within a given cluster are located in the sensing range of each other.

The effect of the cut-off value on the clique detection algorithm applied to a group

of 20 sensors in a field of size 10m x 10m is shown in figure 2.5 and figure 2.6. A comparison

of these two figures indicate that a lower cut-off value causes dense clustering of sensor nodes.

An increase in cluster density implies more sensor nodes vouching for events in a particular

geographical region, thus endorsing each other’s readings while checking for consistency. It

might seem to be a good idea to group all nodes into a single cluster by using a lowest

possible cut-off value, but this might result in a cluster containing non-correlated readings.

There is no point in grouping sensors widely separated from each other that do not report

spatially correlated readings. Figure 2.5 shows a grouping of almost all sensors into clusters

with a cut-off value of 0.5 while figure 2.6 indicates some sensors not grouped into any of

the clusters based on a cut-off value of 0.7.
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2.3.2 The Algorithm

In this section, we describe our event-centric outlier detection algorithm in order

to handle multiple events present in the field. Counting the number of targets in the field

is presented as a peak counting problem in [5]. A non-outlying sensor node located closest

to an event is expected to report a reading that represents a peak in a two-dimensional

sensor field. In the past multiple events in the sensor monitored field has been studied as a

target tracking problem by correlating the sensor readings at different points of time. Our

approach is based on a snapshot of sensor readings representing a set of events in the target

field. As mentioned in section 2.1, we do not consider temporal correlation of the events.

The effect of multiple events on the energy values sensed by the nodes is dependent on the

application and the physical layout of the field. The key idea used in our algorithm is to

isolate sufficiently separated events by grouping the readings reported by the sensors close

to each of the events. When two or more events are closely located, then they are treated

as a single event in the process of detecting outliers.

We initially sort all the sensor readings representing a snapshot of the sensor field

and pick the sensor S reporting the highest reading. We then collect the readings reported

by the sensors belonging to all the spatially correlated clusters which the chosen sensor

S is a part. This gives an event-centric cluster of sensor readings. The outlier detection

algorithm described in section 2.2, is applied within each of the event-centric clusters to

identify the set of outliers. This is guaranteed to reduce the influence of multiple targets

on the outlier detection process except when multiple events are closely located. After the

first round of outlier detection, the algorithm proceeds by selecting the next highest reading

among the remaining nodes, and performing the outlier detection on the newly computed

event-centric cluster of sensor readings. The algorithm terminates when all the nodes are

checked for outlyingness.

We often encounter event-centric clusters with overlapping sensor nodes. A sensor

reading in two or more clusters is influenced by the events occuring in each of the clusters. If

the event-centric clusters arrive at inconsistent decisions about a given sensor measurement

then we need a metric to resolve this inconsistency. We use the distance between location

of the sensor and the estimated event location as a metric to resolve the inconsistency

among the decisions taken by each of the event-centric clusters. A sensor node closer to the

event has greater impact on the event localization process compared to the node located
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far away from the event. So, we consider only the decision of the event-centric cluster that

contains an event located closer to the overlapping sensor node and ignore the remaining

decisions. If we consider an additive energy model to study the effect of multiple events on

a given sensor reading then such a reading is likely to be identified as an outlier by both

the clusters. However, detecting outliers in the presence of multiple events increases the

rate of false positives. We do not come across such a situation when the events are either

sufficiently separated or located close to each other.

Higher data values reported by a sensor indicates the occurence of an event in the

vicinity of the sensor. In a given set of sensor readings, we select the sensor reporting the

highest value as the closest point to the center of the event-centric cluster within which we

execute our outlier detection algorithm. Intuitively, this process assures a reduction in the

influence of multiple targets on the outlier detection process because each of the targets are

considered individually when the targets are sufficiently spread out. In the case of closely

located events, multiple events would be estimated as being produced by a single target

which again does not affect the detection of outliers to a great extent. When the algorithm

terminates all sensor readings are guaranteed to have passed through the outlier detection

process, being a part of the temporarily formed event-centric cluster in atleast one round of

the outlier elimination process. The end result is a set of sensor readings that have survived

all the outlier elimination rounds.

2.4 Distributed Outlier Detection

A sensor network usually consists of a large number of tiny, low-cost, low-power

sensor nodes deployed to monitor events of interest in the target field. These sensors are

highly limited in terms of their processing power, memory resources and battery life. Several

architectures have been proposed to save computation and communication overheads for

query processing in sensor networks [26, 34, 36]. The two most commonly used architectures

are: a centralized case with a powerful base station that collects and aggregates raw data

reported by individual sensor nodes and a distributed case with intermediate powerful and

sophisticated nodes called aggregators that are deployed in small numbers. Each aggregator

is responsible for aggregating raw data from a subset of sensor nodes within its range and

the aggregated result is in turn reported back to the higher level aggregators or the base
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station. This is called in-network aggregation. Figure 2.1 and figure 2.2 shows an example

of a centralized and a distributed network architecture respectively.

The outlier detection algorithm described in the previous sections is applicable to

a simple centralized network scenario consisting of a set of sensor nodes reporting raw data

to a single aggregating node that could be the base station itself. In this section, we will

extend our approach to a distributed network setting comprised of a multi-hop network of

intermediate aggregators, each of which is responsible for aggregating the data reported by

a subset of sensors. A centralized network architecture is preferred when there is a need

to avoid the additional overheads associated with the establishment of the aggregation tree

that is required in the distributed setting. Additionally the base station is not required to

trust any other intermediate nodes in the network. But in a centralized scenario the base

station might be a bottle neck due to the processing of huge amounts of data collected

from a large network of sensor nodes. All the sensor readings are transmitted from the

source to the sink resulting in higher communication overheads. In a distributed network,

an aggregator shares the task of processing a subset of data values and performs in-network

data aggregation. Compressing a group of sensor readings into a single aggregated value

that is transmitted to the higher level aggregators leads to energy efficient information flow

in the network due to reduced communication costs.

2.4.1 The Algorithm

Figure 2.2 shows a multi-hop sensor network with multiple levels of aggregators

on the path from the sensor nodes to the base station. The aggregators apply our outlier

detection algorithm within each cluster to identify the set of local outliers before the data

aggregation process. In this subsection, we present a distributed algorithm to build the

outlier detection hypotheses based on the information received from each of the lower-level

aggregators in the network hierarchy. Our aim is to reduce the number of false positives by

combining the outlier information from different clusters at the higher levels of aggregators.

We assume that all the aggregators in the sensor network are aware of sensor

locations. The location information could be hard coded into the nodes at the time of

deployment or determined as a part of the localization process. This is going to be a

one-time process since we are dealing with static sensors and aggregators. A higher level

aggregator can determine which sensor node reports data to the lower level aggregators using
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the available location information and the transmission range of the nodes. This information

is used by the higher level aggregators in the distributed outlier detection process.

Each aggregator Ai collects raw energy readings from the sensors that are located

within the communication range, apply the outlier detection algorithm to estimate the

location of the event (xei, yei), the energy constant ci and the set of local outliers LOi

using a value of the local threshold τli. With in-network aggregation, an aggregator Ai is

expected to send the aggregated result to the higher level aggregator instead of forwarding

all the sensor readings. An advantage of using in-network aggregation is energy-efficient

information flow in a given network. However, in our approach the aggregators are not

required to send the aggregated result to the higher level aggregators but only forward

the estimated event location (xei, yei) and the energy constant ci along with a list of local

outliers LOi. For all those sensors not present in the set LOi, the higher level aggregator

recomputes the readings using equation 2.1, based on the information received from the

lower level aggregator.

The higher level aggregator Aj combines the set of computed readings with the

set of local outliers received and executes the outlier detection algorithm, described in

section 2.2. We obtain an estimate of the event location (xej , yej), the energy constant cj and

the set of local outliers LOj . The event location and the energy constant estimated by the

higher level aggregator is expected to be closer to the actual event location compared to the

values estimated by the lower level aggregators. This is due to more sensor readings being

available at the higher level and the effect of combining the readings from nodes belonging

to multiple clusters. The higher level aggregator Aj in turn forwards the estimated event

detection model parameters along with the set of local outliers to the upper level aggregators

in the network hierarchy. This process continues until the base station receives the model

parameters required to regenerate all the sensor readings. The base station determines

the final set of outliers O using the global threshold τg on the set of all computed sensor

readings. The outliers present in the set O are discarded and only the non-outlying readings

are considered for data aggregation. Thus the base station is able to compute an outlier-free

aggregated result in a distributed network scenario.

A sensor node can be physically located within the transmission range of more than

one aggregators. In such a case the higher level aggregator computes the sensor reading

based on the received event location estimate that is closest to the sensor node location. This

is because a node closer to the event has a higher influence on the event localization and the
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subsequent outlier detection process. A key factor influencing the outcome of our distributed

algorithm is the local threshold τl used by the lower level aggregators in the process of

deciding outliers. In section 3.3.2, we present the result of our simulation experiments to

study the effect of the local threshold τl on the distributed outlier detection process. A

stringent threshold value results in a bigger set of outliers required to be transmitted to

the higher level aggregators, thus adding to the communication overhead. On the contrary

a more relaxed τl gives a smaller set of outliers but at the cost of a higher rate of false

positives. The result of our simulations presented in section 3.4.6 and section 3.5.1 confirms

this observation.

A distributed network with intermediate aggregators scales well in the manage-

ment of a large network of sensor nodes. It reduces communication overheads by eliminating

the transmission of redundant information as the sensor readings move from the source to

the sink. It is a known fact that communication consumes more energy than computa-

tion. In-network data aggregation has been proposed as an effective technique to reduce

energy consumption due to communication by compressing the readings using a suitable

aggregation function by the intermediate aggregators. Our outlier detection process is built

on these ideas and makes an effective contribution to reduce communication overheads by

compressing the sensor readings into a distance-based energy model. The event detection

model parameters such as the estimated location of the event and the energy constant are

sufficient to re-generate the sensor readings at higher level aggregators based on the avail-

able sensor node location information. In section 3.5.1, we compare the communication

overhead incurred in both the centralized and distributed settings.

2.5 Limitations

In the previous sections, we have described our outlier detection schemes that

can handle single and multiple events. We also described the distributed outlier detection

applicable to distributed network architectures. In this section, we would like to address

some of the limitations of our outlier detection schemes. The limitations of our schemes are

mainly due to the assumptions we make in this work.

• We assume that the location information of the sensors is available either estimated

using a node localization technique or embedded into the node at the time of deploy-
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ment. An error introduced by the sensor node localization process can have a profound

impact on the detection of outliers. This is because we use the distance-based event

detection model to compute the estimated sensor reading based on the location of

the sensor. With a bunch of incorrectly estimated sensor readings, MMSE can give

sufficiently deviating estimate of the event location. This results in more and more

non-outliers being detected as outliers, thus increasing the rate of false positives.

• Sensor nodes can collude to introduce significant deviations in the aggregated result.

We assume that in a given set of sensor readings considered for outlier detection, an

attacker is not in a position to compromise a majority of these readings. Suppose an

attacker is able to manipulate 60% of the sensor readings then we face a situation that

brands all the remaining 40% genuine non-outliers as outliers. Detecting and elimi-

nating these non-outliers can result in the final aggregation of completely malicious

sensor readings.

• Data aggregation schemes are highly dependent on the deployment of the sensor nodes

in the target field. Consider a situation with a sparse deployment of sensor nodes.

In such a situation, the spatial correlation algorithm fails to cluster all the sensor

readings. As a result, we are forced to treat every sensor reading as a separate cluster

that does not help in the event-centric detection of outliers when multiple events are

present in the field. We also ignore the effect of obstacles that can have a significant

impact on the outlier detection process depending on the type of the event being

monitored. For example, a wall separating the light source (causing the event) and

the sensor node does not follow the pattern expected from the event detection model

described in section 2.2.1.

• Our outlier detection algorithm works on a snapshot of sensor readings. The frequency

at which the snapshot is taken is dependent on the application. The outlier detection

process is carried out offline based on the collection of sensor readings. This method

based on a snapshot of sensor readings is not suitable for the real-time detection of

outliers due to the delay involved in the collection of the readings and the execution

of the outlier detection algorithm. Without time synchronization among the nodes, it

is difficult to take a snapshot of sensor readings such that all the readings represent

the state of the target field at a given point in time. A possible solution is to use an



27

appropriate time synchronization algorithm and tag all the readings with a timestamp

when the event is detected.

• We assume that the aggregators are equipped with tamper-resistant hardware. As

a result, they are completely trusted. This means an attacker cannot compromise

an aggregator to gain access to the cryptographic authentication keys shared with

each of the sensor nodes. However, aggregators are primary attack targets because

they process large amounts of sensor readings and compromising a single aggregator

can result in bringing down a significant portion of the network. So, an attacker

can use sophisticated techniques to compromise the aggregators in the network. A

compromised aggregator can either report malicious aggregation results or simply

drop the packets received from the sensors. Combining our outlier detection schemes

with techniques such as [12] that can detect compromised aggregators will result in a

more practical solution for secure data aggregation.



28

Chapter 3

Evaluation

This chapter presents the result of our experiments to demonstrate the perfor-

mance of the outlier detection approach described in the previous chapter. We concentrate

on demonstrating the effectiveness of our approach using a simulation testbed consisting of

randomly deployed sensor nodes in a given target field. Our experiments do not take into

account the deployment of beacon nodes or some such special nodes that might be required

for estimating the location of the nodes. We also validate the event detection model with

the help of field experiments, using MICA2 motes equipped with acoustic and photo sen-

sors. While recording the results we take an average over multiple runs of the algorithm in

order to reduce the variations introduced by the choice of certain parameters like threshold,

sensing range and randomly generated event locations across simulation runs.

3.1 Evaluation Setup

The field experiments were carried out on MICA2 motes with acoustic and photo

sensors developed at UC Berkeley as a research platform for low-power wireless sensor

networks [27]. A MICA2 mote is equipped with a 7.3MHz microcontroller, 4KB RAM and

a 916 MHz wireless transceiver capable of data transfer at 38.4 kbps with the radio range of

500 feet, and is powered by two AA batteries [23]. We use Crossbow’s MTS310 sensor board

with sensors for light, sound, temperature, acceleration and magnetic field. The maximum
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attainable sampling rate is around 18 kHz and the nominal frequency of the sounder is 4.4

kHz.

We have developed a simulation testbed in C language to analyze the performance

of our outlier detection algorithm along with the proposed extensions. The design of the

simulator allows for keying in relevant configuration parameters such as number of nodes in

the network, size of the target field, percentage of outliers, maximum measurement error,

sensing and communication range of sensor nodes, bound on the malicious error introduced

by the attackers, threshold τ and the cut-off values. We assume the sensing range of each

of the sensor nodes is Rs = 3m though our approach can support heterogeneous nodes

with different sensing ranges. We assume a simple sensor measurement error model with

a measurement error that is uniformly distributed between −ǫ and ǫ, where the maximum

sensor reading measurement error ǫ is set to 5units.

We define three metrics to demonstrate the effectiveness of our resilient data ag-

gregation process: detection rate, false positive rate and degree of damage. In what follows,

we define these three metrics before presenting the result of our experiments.

Definition 1 (Detection rate) Let Od represent the number of outliers detected and Oa

represent the actual number of outliers present in the network. Detection rate is defined as

the ratio of the number of outliers detected Od to the actual number of outliers Oa present

in the network.

Detection rate = Od

Oa

Definition 2 (False positive rate) Let Fd represent the number of false positives reported

and N represent the total number of data values considered in the outlier detection process.

We define false positive rate as the ratio of the number of false positives detected Fd to the

total number of data values N considered by the algorithm.

False positive rate = Fd

N

Definition 3 (Degree of damage) Let Ao represent the aggregated under the influence of

outliers. Let Ano represent the aggregated result after removing the outliers using a suitable

outlier detection algorithm. We define the degree of damage as the ratio of the absolute
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difference between Ao and Ano to the actual aggregated result Ano.

Degree of damage = |Ao−Ano|
Ano

A problem with the above definition of the degree of damage metric is that if the ag-

gregated result after removing the effect of outliers Ano is very small (close to zero) then

we obtain a very high value for the (relative) degree of damage. In order to avoid this

problem, we can use the absolute degree of damage instead of the relative degree of damage.

The absolute degree of damage is defined as the absolute difference between the aggregated

result with and without outliers. However, we study the impact of our outlier detection

schemes on the data aggregation process using the relative degree of damage metric defined

above. In what follows, we refer to relative degree of damage when we talk about the degree

of damage metric.

In the remainder of this chapter, we discuss the results obtained by our field

experiments for establishing the validity of the event detection model followed by the results

of our simulations to evaluate the effectiveness of our approach.

3.2 Estimation of Event Detection Model Parameters

In section 2.2.1, we described an event detection model with the signal strength

detected by a sensor decaying as a polynomial of the distance between the sensor and

the target. Figure 2.3 shows a graph of comparing the result of our experiments with

the computed signal strength values using a set of suitable guesses for the decay factor

k and the energy constant c. In this section, we present an experimental procedure to

determine the values of the energy constant c and the decay factor k. The key idea is

to estimate the approximate value of these constants by fitting an appropriate curve to

the readings obtained by field experiments. We make use of XLfit [33], a curve fitting

software for Microsoft Excel to define a new model based on equation 2.1, and fit the best

matching curve to our experimental readings. XLfit software also produces an estimate of

the parameters defined in the model. Figure 3.1 shows the result of fitting a curve to our

experimental readings obtained by varying the distance of MICA2 motes from a point light

source (bulb of a table lamp). It can be clearly seen that different sensors are characterized
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by different values of the decay factor k and the energy constant c (sensor #1: k = 1.09,

c = 1200 and sensor #2: k = 1.24, c = 1300). The sensitivity of a photo sensor to a light

source at a particular distance varies from sensor to sensor and this could be due to sensor

drift caused by age, decay, damage or accumulation of dust on the sensing hardware. As a

result, there is a need to calibrate the sensor nodes in order to identify and compensate for

the time-invariant systematic bias component of the error in sensor measurements.
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Figure 3.1: Determining the values of constants k and c by fitting a suitable curve to the photosensor
readings obtained using field experiments

As an additional support to our event detection model, we also conducted field

experiments using MICA2 motes with Crossbow’s MTS310 acoustic sensor boards. In our

experiment, one mote is programmed to periodically buzz the sounder on an MTS310 sensor

board and another mote is configured to detect and report the raw acoustic signal strength

values recorded by the microphone circuit. A base station is programmed to receive the

data values and forward it on a UART to be displayed on a PC. A serial port monitoring

application called XListen, provided by Crossbow, is used to display the sound energy values

received over the serial port. We recorded several acoustic sensor readings by varying the

distance between the sensor and the point source producing the sound. The recorded signal

strength values were averaged over a set of four different experimental runs for consistency

purposes. Figure 3.2 shows a plot of acoustic sensor readings vs. distance. Fitting the best

possible curve yields a value of k = 0.15 and c = 550.

3.3 Effect of Threshold

Choosing an appropriate value of the threshold τ is a crucial factor in the process

of outlier detection. A suitable value of τ can be chosen using the method outlined in
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Figure 3.2: The effect of the distance to the target on the acoustic sensor readings

section 2.2.3. In this subsection, we present the result of our simulation experiments to

study the effect of the threshold on the outlier detection process. We also present the result

of our experiments depicting the effect of the local threshold τl on the detection rate and

the false positive rate in the distributed outlier detection process.

3.3.1 Threshold vs. Detection rate and False Positive rate

Our experimental setup consists of 50 sensor nodes randomly deployed in a field

of size 10m x 10m. We study the effect of the threshold τ on the outlier detection process,

in terms of the detection rate and the rate of false positives. We vary the percentage of

outliers and record the detection rate and the false positive rate obtained due to applying

our outlier detection algorithm.

The effect of different possible threshold values on the detection rate is shown in

figure 3.3. We can observe a decrease in the detection rate as the threshold increases. A

smaller threshold value results in higher detection rates because more and more outliers

are filtered to satisfy a stringent value of τ . For example, a threshold value of τ = 2ǫ

results in the detection of 83% of the outliers as compared to a detection rate of 68% with

τ = 8ǫ. Similarly, figure 3.4 shows a decrease in the false positive rate as the threshold value

increases, for the same set of experimental parameters. With higher threshold values, we

achieve lower false positive rates. A similar trend is observed irrespective of the percentage

of outliers present in the network. Comparing figures 3.3 and 3.4 we can see that when the
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Figure 3.3: The effect of threshold on the outlier detection rate with a confidence interval
of 90%. Let k = τ

ǫ
.

network consists of 30% outliers, the highest detection rate (93.3%) is obtained at the cost

of a large number of false positives (51.4%).

Depending on the specific requirement of a sensor network application, an appro-

priate value of the threshold τ is chosen using the threshold estimation procedure outlined

in section 2.2.3. A critical application might require higher detection rates at the cost of

a large number of false positives. For example, a typical 10m x 10m target field with 50

deployed sensor nodes for monitoring tanks in an enemy area might require τ = 4ǫ to detect

90% of the outliers tolerating a high 30% false positives in the presence of 20% outliers. On

the other hand a non-critical sensor application like traffic monitoring might need τ = 7ǫ

to detect 80% outliers with a low false positive rate of 15% in the presence of 10% outliers.

3.3.2 Local Threshold vs. Detection rate and False Positive rate

We conducted experiments to study the effect of the local threshold on the de-

tection rate and the false positive rate. Our experimental setup consists of a distributed

network with approximately 9% aggregators and 30% of the sensor nodes report outlying

readings. In our simulation, we use two different sensor network deployments, one contain-

ing 100 sensor nodes and the other with 50 nodes, randomly deployed in a field of size 10m

x 10m.

Figure 3.5 shows the effect of τl on the outlier detection rate and the rate of false
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Figure 3.4: The effect of threshold on the false positive rate with a confidence interval of
90%. Let k = τ

ǫ
.

positives for a simple distributed scenario consisting of a single aggregator between the

sensor nodes and the base station. We can see that lower values of the local threshold τl

results in better detection rates and lower false positive rates when compared to the case

with higher threshold values. But this is achieved at the cost of battery draining commu-

nication overhead as described in section 3.5.1. Using the method outlined in section 2.2.3,

an appropriate value of τl is chosen based on the specific sensor network application re-

quirements. A critical application such as monitoring enemy tanks in the battlefield might

require higher detection rates with lesser false positives when compared to a non-critical

application such as traffic monitoring.

3.4 Effectiveness

We evaluate the effectiveness of our approach in terms of the detection rate, false

positive rate and the degree of damage. This section provides a detailed quantitative analysis

to evaluate the performance of our outlier detection scheme. We also present a comparison

of the effectiveness of our algorithm when applied to centralized and distributed sensor

network architectures.
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3.4.1 Detection Rate vs. Percentage of Outliers

The ability to tolerate outliers by providing higher acceptable detection rates with

low false positive rates is the primary aim of the proposed outlier detection approach.

In this section, we examine the resiliency of our outlier detection algorithm. Our first

experiment investigates the effect of the percentage of outliers on the detection rate for a

set of population sizes and threshold values. Figure 3.6 illustrates the performance of our

outlier detection algorithm with four different thresholds when the network consists of a

different percentage of outliers. This figure shows that when appropriate threshold values

are chosen it is possible to achieve very high detection rates (> 85%) in most of the cases.

It is worth noting that the performance becomes worse with low threshold values resulting

in more outliers going undetected. This is due to the low threshold value providing a tighter

bound on the mean square error causing low detection rates.

3.4.2 False Positive Rate vs. Percentage of Outliers

In the process of detecting outliers, a few benign sensor readings may be branded

as outliers and such readings are not considered for data aggregation. These are commonly

referred to as false positives. Figure 3.7 shows the effect of varying the percentage of
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Figure 3.6: The effect of the percentage of outliers on the detection rate with a confidence
interval of 90%

outliers on the false positive rate. There is no particular pattern that is observed due to

this experiment but an important point worth noting is that the false positive rate is below

22% in all the experiments. An interesting result is that a higher network density with

400 nodes deployed in a 20m x 20m target field resulted in surprisingly low false positives

because of the dense deployment of nodes redundantly vouching for events in a particular

region. From both these experiments it is clear that a higher detection rate is achieved at

the cost of a higher rate of false positives. As discussed earlier there is a clear trade-off to

be made between removing malicious outliers and benign readings. Despite the fact that

some benign nodes are branded as outliers and some readings are allowed to influence the

aggregated results, our outlier detection technique performs much better than the existing

insecure data aggregation techniques identified in [55].

3.4.3 Network Density vs. Detection rate and False Positive rate

In this previous section, while describing the effect of the percentage of outliers on

the false positive rate we briefly touched upon the effect of the network density on the rate of

false positives. This provoked us to further investigate the effect of network density on both

the detection rate and false positive rate. Figure 3.8 shows the result of our experiments

focused on the density of the nodes deployed in a sensor field. The detection rate is above
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Figure 3.7: The effect of the percentage of outliers on the false positive rate with a
confidence interval of 90%

80% in almost all the scenarios obtained by varying the number of deployed nodes in a 10m

x 10m field and in the presence of 30% − 40% outliers. The figure also shows the effect

of network density on the rate of false positives. On an average our experiments resulted

in 20% false positives. We expect to observe a decrease in the false positive rate and an

increase in the detection rate due to the high network density. This is true in most of the

cases as indicated in figure 3.8. However we do observe some deviations from this trend

due to the suboptimal greedy strategy used for computing the maximal subset of readings

in order to satisfy the given threshold criterion for detecting outliers.

3.4.4 Degree of Damage vs. Percentage of Outliers

In this section, we present the result of our experiments to study the damage

caused by the undetected outliers on the aggregated result. We compare the degree of

damage caused on the aggregated result, before and after applying our outlier detection

algorithm. In our simulations, we studied the effect of outliers on some of the commonly

used aggregation functions such as MIN, MAX, SUM, AVERAGE and MEDIAN. In this

section, we present the result of our experiments with MEDIAN and AVERAGE as the

aggregation functions. Both SUM and AVERAGE aggregation functions produce the same

effect on the degree of damage. The degree of damage caused due to the influence of
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Figure 3.8: The effect of network density on the outlier detection rate and the false
positive rate with a confidence interval of 90%

outliers is recorded by varying the percentage of outliers in the network. Figure 3.9 shows

a comparison of the degree of damage caused on the aggregated result before the removal

of outliers and after removing the outliers. We use MEDIAN as the aggregation function

in this experiment. We see that the degree of damage is limited to a small value (< 1.0)

compared to the damage caused before excluding the outliers from aggregation.

Similarly, figure 3.10 shows a comparison of the degree of damage before the outlier

detection process and after eliminating the outliers with AVERAGE as the aggregation

function. We can see that initially the degree of damage due to our outlier elimination

process is higher but the extent of damage is confined to a small range as the percentage of

outliers increases in the network. One of the popular robust statistics techniques commonly

used for eliminating outliers is trimming. It involves ignoring the highest 5% and lowest

5% (for instance) of the sensor readings, and then compute the aggregate on the remaining

90% of the readings. Figure 3.10 also shows the effect of 5% trimming on the degree of

damage. The results obtained using trimming alone is not satisfactory. Our outlier detection

process causes lesser degree of damage when compared to that using 5% trimming technique.

However, combining 5% trimming technique with our outlier detection algorithm results in

very low damage rates, as shown in the figure. This experiment clearly demonstrates the

resilient properties of our approach by keeping the degree of damage to a minimum even

under the influence of a large percentage of outliers.
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3.4.5 Multiple Events

In this section, we analyze the effectiveness of our outlier detection algorithm in

the presence of multiple events of interest in the target field. We conducted experiments to

study the effect of multiple events on our outlier detection process and compare the results

with those obtained in the case of a single event in the network. Our results show that an

event-centric approach to tackle the problem of multiple events is an effective approach to

outlier detection. When multiple events are present in the target field, we assume a simple

additive energy model to handle the influence of multiple targets on the sensor readings.

Figure 3.11 and 3.12 demonstrates the effect of the percentage of outliers on the detection

rate and the false positive rate respectively. The figures show a comparison of the results

obtained in the presence of one, two, three and four events in the target field. It can be seen

that the single event case clearly outperforms the case of multiple events, in terms of higher

detection rates and lower false positive rates. This is due to the combined effect of multiple

events on the sensor readings. However, the false positive rates obtained are comparable to

the single event case when the network consists of a large percentage of outliers. This adds

to the resiliency of our approach in tolerating higher percentage of outliers.
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Figure 3.11: Effect of percentage of outliers on the outlier detection rate with a confidence
interval of 90% (Network size = 100, Field size = 10m x 10m, Threshold = 6ǫ)
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Figure 3.12: Effect of percentage of outliers on the false positive rate with a confidence
interval of 90% (Network size = 100, Field size = 10m x 10m, Threshold = 6ǫ)

3.4.6 Centralized vs. Distributed

We have proposed the outlier detection algorithms applicable to both the central-

ized and distributed network scenarios. A centralized network architecture avoids additional

overheads associated with the establishment of the aggregation tree and does not require

the base station to trust other intermediate nodes in the network. A distributed network

architecture is easily scalable to a large network of sensors with reduced communication

overheads due to in-network data aggregation. In this section, we compare the performance

of our outlier detection algorithm as applied to the centralized and the distributed network

architectures.

The experimental setup consists of a centralized network with a single base sta-

tion and a network of 50 sensor nodes randomly deployed in a field of size 10m x 10m.

The network consists of 30% outliers and we use a global threshold value τg = 4ǫ in the

outlier detection process. Our distributed scenario consists of a multi-hop network with

10% aggregators uniformly distributed in the target field. We use a simple flooding based

routing scheme in the establishment of the aggregation tree for our simulations. We study

the effect of the local threshold on the outlier detection process in terms of the detection

rate and the false positive rates.

Figure 3.13 compares the centralized case with the distributed case by showing

the effect of the local threshold values on the detection rate and the false alarm rate. The

results obtained from the centralized case is shown as a straight line due to a fixed value
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Figure 3.13: Effect of the local threshold on the detection rate and false positive rate in
the centralized and distributed network scenarios with k = τl

ǫ
and a confidence interval of

90% (N = 50, Field size = 10m x 10m, τg = 4ǫ, Percentage of outliers = 30%)

of the threshold, τg = 4ǫ used in the outlier detection process. As shown in the figure, the

distributed case boils down to the centralized case when τl = 0 because all the readings are

branded as the local outliers by the intermediate aggregators and passed on to the higher

level aggregators. The base station determines the final set of outliers using a threshold

τg = 4ǫ. However, it can be seen from the figure that the distributed case deviates from the

centralized network results starting from τl = 4ǫ.

In general, the centralized case gives higher detection rates and lower false positive

rates compared to the results obtained in the distributed case. The performance of the

distributed case deteriorates with an increasing value of the local threshold because more

outliers escape the local outlier detection process and the higher level aggregators are forced

to work with a set of computed sensor readings rather than the actual outlying values

reported by the sensors. These computed readings are based on an estimate of the event

location computed using a limited set of local sensor readings. This reduces the outlier

detection rate and increases the false positive rate as shown in figure 3.13.
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3.5 Performance Overhead

Sensors are low-cost, low-power and tiny resource-constrained nodes deployed in a

target field to monitor the events of interest. An analysis of any protocol applicable to sensor

networks is considered incomplete without addressing the topic of performance overhead.

In this section, we present a feasibility analysis of the proposed outlier detection process

by addressing the performance overhead issues related to computation, communication and

memory overheads. In our approach, the actual outlier detection process is executed by the

computationally powerful aggregators or the base station on the set of sensor readings re-

ceived from the lower level aggregators or the sensor nodes. The highly resource-constrained

sensor nodes are only expected to sense the environmental phenomena and communicate

the readings to the neighboring sensor or the nearest aggregator.

3.5.1 Communication Overhead

Our outlier detection process requires each sensor to report raw readings to the

aggregator, as against reporting a simple yes/no about a point event detected in the target

field. This causes considerable communication overhead increasing the size of the packet

transmitted by the sensor nodes. However, it is possible to reduce the communication

overhead by sending only differential values with reference to a base value, agreed upon

prior to deployment as suggested in [20]. The communication overhead is also influenced

by the frequency with which the sensor nodes are queried for a snapshot of the target

field. We believe that the frequency of the outlier detection process is selected depending

on the criticality of the sensor network application. A critical application might require

frequent exchange of sensor readings to detect and eliminate the influence of outliers on the

aggregated result.

Compared to the centralized architecture, a distributed network with intermediate

aggregators is expected to reduce the communication overhead to a great extent depending

on the number of aggregators on the path between the sensor nodes and the base station.

Communication consumes more battery than computation. As a result, computing the

aggregate along the way to the base station reduces a lot of communication overheads and

saves battery power. However, this can be achieved at the additional cost of deploying more

tamper-resistant and computationally powerful intermediate aggregators in the network.
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The base station is required to trust the intermediate nodes to provide correct aggregation

results. In what follows, we present the result of our experiments to study and compare the

communication overheads in both centralized and distributed network settings.
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Sensor Nodes Outliers Aggregators Base station
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A1

A2

A3

A4

A5

A6

A7

A8
A9

A10

Figure 3.14: Physical layout of the sensor nodes, aggregators and the base station (N =
100, Aggregators = 10, Outliers = 30%)

Local Threshold vs. Communication Overhead

For the centralized scenario, our experimental setup consists of a single base station

with 100 randomly deployed sensor nodes in a field of size 20m x 20m. The distributed

scenario consists of 10 intermediate aggregators uniformly distributed to form a multi-hop

network with a maximum path length of 4. Figure 3.14 shows the deployment layout of

the sensor field used in our experiments with 100 sensor nodes, 10 aggregators and a base

station. We use a 4-hop network with the maximum path length of four between the source

(sensor node) and the sink (base station). An example of one such maximum path length

present in the network is sensor node→ A6→ A7→ A4→ base station. Given a randomly

deployed network, a suitable routing algorithm can be used for the efficient formation of

the aggregation tree. We use a simple flooding based routing scheme for constructing the

routing tree in both the scenarios. In our experiments, we assume 30% of the nodes are

outliers and all the aggregators are trusted. We model the communication overhead in

terms of the number of floating point values exchanged between the nodes in the network.

Figure 3.15 shows a comparison of the communication overhead incurred in the
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Figure 3.15: Comparison of the communication overhead as a function of the local thresh-
old in the centralized and distributed network scenarios. Let k = τl

ǫ
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= 30%)

centralized and distributed network scenarios. We see that the distributed outlier detection

process incurs higher communication overhead when the value of the local threshold is

close to zero. This is because a low value of τl results in a bigger set of local outliers,

communicated to higher level aggregators contributing to greater communication overheads.

For example, in a network of 100 sensor nodes and 10% aggregators, a local threshold value

of τl = ǫ resulted in a high communication overhead of 261 values compared to a low 115

values with τl = 16ǫ. On the contrary a low threshold results in smaller communication

overheads at the cost of an increased rate of false positives as shown by our experiments

described in section 3.3.2. The distributed scenario incurs more communication overhead

compared to the centralized case at low values of the local threshold. In general, the

distributed case consumes less energy due to communication when an appropriate local

threshold value is chosen for outlier detection. In the distributed scenario, a local threshold

value of τl = 12ǫ results in almost double the energy savings due to communication compared

to the centralized architecture. A similar trend is observed in a larger network with 400

randomly deployed nodes, 30% of which are outliers and 24 (6%) aggregators, forming a

network with a maximum path length of five.
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Degree of Damage vs. Communication Overhead

As seen in the previous experiment, the communication overhead decreases with

an increase in the local threshold values in the distributed network scenario. In order to

decide on an appropriate value of the local threshold it is essential to study the effect of

the local threshold on the degree of damage. Degree of damage is a metric that highlights

the amount of damage caused by the influence of outliers on the final aggregated result.

In this section, we present the results of our experiments on the distributed architecture

showing the effect of communication overhead on the degree of damage. Our experimental

setup consists of a distributed network with 50 sensor nodes and 5 aggregators randomly

deployed in a field of size 10m x 10m. We conduct the experiments with three different sets

of outliers and compare the degree of damage before the outlier detection process and after

eliminating them. We use AVERAGE as the aggregation function in these experiments.
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Figure 3.16: Comparison of the degree of damage as a function of the communication
overhead in a distributed network (N = 50, Aggregators = 5, Field size = 10m x 10m)

Figure 3.16 shows the effect of the communication overhead on the degree of dam-

age when AVERAGE is used as the aggregation function by the base station. A comparison

of the degree of damage with each set of outliers shows that the outcome of our outlier elimi-

nation process results in a significant decrease in the extent of damage caused by the outliers

on the aggregated result. For example, when 20% outliers are present in the network, the

degree of damage is reduced by 60% with a communication overhead of 76 values. There

is a clear tradeoff in deciding the desired degree of damage depending on the communica-

tion overhead that can be handled by the low-power sensor nodes in the network. As seen
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from the figure, a low communication overhead inflicts greater degree of damage on the

aggregated result. The difference between the degree of damage before and after the outlier

elimination is larger at higher communication overheads. For instance, when 30% outliers

are present, the difference is as high as 245% with the highest communication overhead of

135 values as compared to 54% with an overhead of 61 values.

Higher communication overheads are due to low local threshold values that causes

more actual outlying values to be sent to the higher level aggregators. This enables the

higher level aggregators, to determine the set of outliers based on the actual sensor readings

rather than those generated using the event detection model parameters. The lower level

aggregators determine the set of local outliers based on a limited set of sensor readings

representing a particular event in the field. This results in slight deviations in the estimated

event location. The model parameters determined based on this estimate results in deviating

sensor readings at the higher level aggregator. As a result, the final aggregated result

computed by the base station produces greater degree of damage at low communication

overheads.

3.5.2 Computational Overhead

The computational complexity of our outlier detection process is influenced by the

method of exploring the optimal subset of sensor readings that satisfies the given threshold

criteria. As suggested in section 2.2 an obvious method involves checking all possible subsets

until a subset is found to be τ -consistent. This is an exponential time algorithm and requires

an aggregator to estimate the location of the event using MMSE method, 2n times in the

worst case with n being the number of readings considered. In our work, we assume the

aggregating node such as the base station to be computationally powerful but an exponential

time algorithm is not feasible considering the fact that a cluster size of 100-200 nodes is

quite common in sensor applications. So, we make use of a sub-optimal greedy strategy,

suggested in [32], to explore different subsets of sensor readings in the outlier detection

process. This algorithm works in rounds starting with all sensor readings in the first round

and reducing one reading in subsequent rounds such that the eliminated reading produces

a subset with the least mean square error. This algorithm scales linearly with the size of

the network.

We make use of the MAXIMAL CLIQUE detection algorithm for clustering the
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sensor nodes into spatially correlated clusters based on the location information. It is

well-known that finding maximal cliques in a given graph is an NP-complete problem [9].

However, if the degree of a node is small then finding all maximal cliques containing a

particular node is computationally feasible [52]. This is due to the possibility of enumerating

all maximal cliques in a reasonable amount of time. As a result, it is feasible to apply the

MAXIMAL CLIQUE detection algorithm to a sensor network where the size of a typical

cluster is expected to be around 100-200 nodes depending on the sensing range and the

spatial deployment of the sensor nodes.

3.5.3 Memory Overhead

Our outlier detection algorithm works with the snapshot of sensor readings and is

not reliant on the history of the sensor data unlike most of the reputation based approaches.

As a result, the space complexity of our approach is linear in the number of sensor nodes

considered in the outlier detection process. However, the matrix solution to the MMSE

method constructs temporary matrices that are destroyed after each round of threshold-

based consistency checking. Thus, we estimate the space complexity of our algorithm to be

O(n2). In the case of multiple events, there is a considerable amount of overhead involved

with storing the information about spatially correlated clusters depending on the cut-off

value chosen for clustering, specific to a sensor network deployment. In such a case, it is

not possible to estimate the worst case space complexity because the number of clusters

can easily exceed the number of sensor nodes based on a low cut-off value.
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Chapter 4

Related Work

4.1 Data Aggregation in Sensor Networks

Sensor nodes are highly resource constrained entities that run on batteries and

it is a known fact that communication consumes more battery than computation. This

suggests aggregating the raw data at the intermediate nodes as the data moves from the

sensors to the base station. The impact of in-network data aggregation for energy-efficient

flow of information in a sensor network is discussed in [29, 25]. In [3], Beaver et. al

propose yet another energy-saving aggregation technique that constructs routing trees in

order to minimize the size of transmitted data for sensor networks that support in-network

aggregation.

TAG [37] is a tiny aggregation service for wireless sensor networks. It works

in two stages: firstly it allows users to express declarative queries inspired by database

query language functionalities and secondly it provides an efficient method to distribute

and execute these queries in large networks of wireless sensors. Synopsis diffusion [41], is

a general framework for achieving significantly accurate and reliable answers to queries by

using multi-path routing schemes together with duplicate-insensitive in-network aggregation

schemes.

In relation to providing database queries over sensor networks, TinyDB [35] and

Cougar [56] are the two major directions that provide algorithms for many popular aggre-
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gates such as max, min, average, sum and count. Shrivastava et. al [50] propose a data

aggregation scheme extending the class of queries to include quantiles such as median, con-

sensus value, a histogram of the data distribution and range queries. It also introduces

some performance optimization by aggregating the data from other sensors into a fixed size

message with theoretical guarantees on the approximation quality of the queries. In our

work we consider the effect of our outlier detection technique on the popular aggregation

functions such as AVERAGE and MEDIAN.

A performance optimization scheme proposed by Qi et. al [46], prevents movement

of the data while the execution code is moved to the data sites for aggregating the data

efficiently. This method of data aggregation saves the network bandwidth and provides

an effective way to overcome network latency. Data aggregation in sensor networks has

also been studied as a fault-tolerance technique for collaborative target detection in distrib-

uted sensor networks [7]. Their work compares two distinct approaches, value-fusion and

decision-fusion, for achieving fault-tolerance in terms of the probability of correct detection

and false alarms.

4.1.1 Secure Data Aggregation

Adding security to the process of data aggregation has received a lot of attention

from researchers. In [45], Przydatek et. al use certain nodes called aggregators to aggregate

the information requested by a query and provide a mechanism for interactive proofs that

enable the user to verify the answer given by an aggregator. In our work we use a simi-

lar network architecture consisting of intermediate aggregators for decentralized reasoning

about the outliers in the sensor network. In [12], Du et. al have studied the security of the

data fusion process in sensor networks and proposed a witness-based approach to assure the

integrity of the data sent by the data fusion nodes to the base station. In this scheme the

authors assume a single data fusion node between the raw sensors and the base station, but

in practice there could be many aggregators depending on the size of the network. However

the witness-based approach addresses an important problem of detecting compromised data

fusion nodes which is beyond the scope of our current approach and is left as an exercise for

future work. CDA [16] is an approach for concealed data aggregation for confidential data

exchange in sensor networks using end-to-end encryption. The aggregation is performed on

the encrypted data without requiring the intermediate aggregating nodes to operate on the
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sensed plaintext data. This prevents a compromised aggregator from introducing deviations

in the aggregated results.

An attacker can introduce malicious sensor measurements with an intension of

producing significant deviation in the aggregated result. In [10], Deng et. al address the

challenges associated with securing in-network processing within wireless sensor networks by

proposing a collection of mechanisms for delegating trust to aggregators that are not trusted

by sensor nodes collecting raw data. SRDA [48] is a reference-based secure data aggregation

protocol that minimizes the number of bits transmitted by sending only the difference

between the sensed value and the reference data value. This work proposes a key distribution

scheme with deployment estimation and an aggregation security protocol. This work aims

to establish secure connectivity among sensor nodes while keeping key storage memory

requirements as low as possible. In [24], Hu and Evans propose yet another secure protocol

for resilient data aggregation against intruder devices and single device key compromises.

It provides a method to increase the confidence in the integrity of sensor readings without

giving up the opportunity to aggregate intermediate results in the network by making use

of delayed aggregation and delayed authentication. Our approach is not reliant on any

cryptographic primitives in the process of building a data aggregation technique that is

resilient to the malicious readings introduced by the compromised sensor nodes.

4.1.2 Trust Management in Sensor Networks

Trust issues in wireless sensor networks has not received significant attention from

the security research community. This is partly due to inherent dependence of any trust

management model on the misbehavior detectors. Battery intensive malicious behavior

detectors like Watchdog and Pathrater proposed by Marti et. al [38], are not suitable for

misbehavior detection in sensor networks. The difficulties involved in the design of malicious

behavior detectors applicable to resource constrained sensor nodes has setback researchers

from proposing efficient trust management models.

Our current work is an approach for resilient data aggregation that also aids in

the detection of misbehaving sensor nodes. Our generic outlier detection framework can be

easily embedded into a trust management model for efficient aggregation of sensor data.

Ganeriwal et. al [15], propose a reputation-based framework for sensor networks where

nodes maintain reputation for other nodes and use it to evaluate their trustworthiness as
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a complimentary technique against unconventional attacks. Similar to our approach, the

authors propose a lightweight, scalable and generalized framework for countering all types

of misbehavior resulting from malicious and faulty nodes. Palpanas et. al [42] propose

a technique for online deviation detection in streaming data produced by a sensor node.

This work examines the problem of identifying outliers in a sensor network by proposing

a technique to model the data distribution using the kernel density estimators. However a

data distribution based technique does not handle point events due to the sudden changes

in the data distribution. Our approach works with a snapshot of sensor readings without

requiring temporal correlation of events or continuous streaming data from the sensors.

4.1.3 Resilient Data Aggregation

Ability to tolerate attacks is a highly desirable feature in any security protocol.

Sensor nodes are deployed in hostile environments that are prone to node captures and

failures. A compromised or faulty node is likely to introduce malicious data into the network.

A resilient data aggregation technique is required to minimize the effect of these faulty values

on the aggregated result. In [55], Wagner describes some attacks on aggregation functions

such as average, sum, count, minimum and maximum with the mathematical theory of

security for aggregation. This work also proposes a theory of resilient aggregation with novel

connections to statistical estimation theory and the field of robust statistics. It analyzes

certain satisfactory and unsatisfactory aggregation functions followed by suggestions to

use certain robust statistical tools such as truncation and trimming for achieving resilient

aggregation. On the contrary our work proposes a resilient data aggregation technique

based on minimum mean square estimation of event location in order to reduce the effect

of outliers on the aggregated result. Our method does not rely on the resilient properties

of certain data aggregation functions and can be used with any aggregation primitives.

Guestrin et. al [18], present distributed regression as an efficient framework for

in-network modeling of sensor data that allows sensors to determine if a particular reading

is an outlier. The key idea is to brand a new reading as an outlier if it substantially affects

the coefficients of the basis functions, or lies far from the value that the regression predicts.

Unlike our approach this technique is not applicable to monitor asynchronous events that

cannot be estimated using a weighted sum of local basis functions for building a model based

on kernel linear regression. Our work also avoids temporal correlation of sensor readings
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eliminating all the overheads involved with time syncrhonization.

4.2 Localization in Sensor Networks

Estimation of sensor node locations in an already deployed sensor network has

drawn considerable attention in the sensor network research community largely due to its

critical role in many applications. AHLoS [49] is a distributed technique that requires a

fraction of the nodes called beacons to know their exact location to enable other sensor

nodes to dynamically discover their own location by ranging and estimation. Some other

beacons based localization schemes are [40, 39, 22]. In [14], Fang et al. propose a beacon-less

location discovery scheme that uses prior deployment knowledge based on the observation

that sensors are usually deployed in groups. As applications become increasingly dependent

on localization schemes they are prone to malicious attacks. A list of possible attacks on

localization algorithms is presented in [30]. The authors also propose, robust statistical

methods for attack-resistant localization. In [13], Du et. al suggest a general scheme to

detect localization anomalies that is independent of the localization techniques by formu-

lating it as an anomaly intrusion detection problem. Our approach requires incorporation

of one of these localization schemes to predetermine the location of the sensor nodes if it is

not already hardcoded in each of the sensors at the deployment phase.

4.3 Spatial Correlation

The ideas of spatial correlation and data aggregation is not new to the field of

wireless sensor network research. Dense deployment of sensor nodes to redundantly mon-

itor events of interest in the deployed region is characterized by sensor observations that

possess spatial correlation properties. Monitoring certain physical phenonmenon exhibits

temporal correlation between each consecutive observation of a sensor node. In [53], Vuran

et. al exploit spatial and temporal correlation properties to build efficient communication

protocols and their application to construct efficient medium access and reliable event trans-

port in wireless sensor networks. Chan and Perrig [6] propose ACE that focuses on uniform

cluster formation to reduce the amount of overlap among clusters to efficiently organize a

sensor network into a hierarchical network for efficient data aggregation, routing, broadcast
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and query processing purposes.

We focus on grouping closely located sensors reporting spatially correlated obser-

vations with the help of spherical covariance models proposed in [4]. In this work we do

not concentrate on the uniformity of the cluster formation. We use the spatial correlation

property to cluster the sensor nodes in the process of detecting outliers when multiple events

are present in the field.

4.4 Localization and Detection of Events

Certain sensor network applications watch out for occurance of events involving

physical objects that are characterized by location information. Location of such events is

estimated based on the signal strength received by the energy detectors in sensor nodes.

In [19], Guha et. al propose Sextant, an energy-efficient sensor node and event localization

scheme for accurately determining the position of the events in a sensor field by solving

a system of geographic non-convex constraints based on network connectivity information.

Most of the schemes proposed for determining sensor node location information can be

directly applied for event localization. AHLoS [49] uses minimum mean squared error

(MMSE) to estimate the location of the nodes in a sensor field. We apply the MMSE

technique to estimate the location of the event in the absence of compromised nodes in a

network. However when malicious nodes are present it is possible to achieve resiliency in

the event localization process using techniques proposed in [32, 13].

The strength of the signal corresponding to an event as detected by a sensor node

is used to detect the presence or absence of events. The raw signal energy values detected by

sensor circuitry is a function of the distance between the target and the sensor location. We

use an event detection model suggested in [8] that relates the strength of the signal emitted

by the target as a decaying function of the polynomial of the distance between the target

and the sensor. In [21], Hata proposes an empirical formula for determining the propagation

loss in mobile radio services with a procedure to determine the value of the decay factor.

The decay factor is dependent on the environment, type of event under detection, sensitivity

of the sensor node to the target and the height of the antenna. Hata’s model also proposes

a formula to determine the value of the decay factor based on the height of the antenna

used for detection.
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A practical implementation of any data collection based sensor network application

requires a method to handle multiple events or targets in the field of interest. When multiple

targets are detected in the vicinity of a sensor the signal strength detected by a sensor is

influenced by each of the target to a different degree. Given a signal strength measure it

is not possible to determine the number of targets or the location of the targets from the

sensor. Zhao et. al [57], propose a collaborative signal processing approach for tracking

individual targets as well as tracking multiple objects. But the method suggested can be

used only for counting targets and it is not possible to extract the signal strength values

corresponding to each target being tracked. Some other multitarget tracking methods are

multiple hypothesis tracking (MHT) [47] and joint probabilistic data association (JPDA) [2]

which addresses the problem of associating the sensor data with the targets by creating

association hyptheses. Our approach is based on a snapshot of sensor readings and does

not require tracking of multiple targets. We also ignore the effect of temporal correlation of

the events during the event-centric outlier detection process, proposed to handle multiple

events in the target field.
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Chapter 5

Conclusions and Future Work

Wireless sensor networks are a unique type of resource-constrained distributed

event-based system. We have proposed a generic outlier detection algorithm based on a

distance based event detection model and resilient MMSE-based consistency verification

among sensor readings. This method fits in as a preprocessing stage in the data aggrega-

tion process to filter out the influence of malicious sensor readings aimed at introducing

significant deviations from the actual results. One of the main contributions of the thesis is

to propose a robust outlier detection algorithm that gives high detection rates even when

the percentage of outliers in the network is as high as 40%− 50%. We achieve this by keep-

ing the number of false positives within the tolerable limits. The thesis uses MMSE-based

event localization as a solution to the problem of secure information aggregation and en-

courages further investigation in the field of outlier detection applicable to sensor networks.

An effective spatial correlation technique combined with an event-centric outlier detection

is used to handle multiple events in the target field. We have also proposed extensions to

the basic outlier detection technique to make it applicable to a general class of distributed

network architectures. To the best of our knowledge, this work is the first on resilient

data aggregation that can eliminate outlying sensor readings before data aggregation in a

distributed network scenario. Our experiences indicate that the proposed resilient aggrega-

tion techniques are practical solutions for securing the data aggregation process in wireless

sensor networks.

We utilize the spatial correlation property inherent in sensor readings to detect
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outliers in a sensor network. Similarly the readings reported by sensor nodes are temporally

correlated as described in [1]. In our current approach we completely ignore the effect of

temporal correlation. We believe that integrating temporal correlation into our resilient

data aggregation process would result in better outlier detection rates and lower number of

false positives at the cost of additional overheads necessary for time synchronization among

the nodes. Combining robust statistics techniques such as least median of squares with

spatio-temporally correlated vectors of sensor readings to detect outliers might lead to an

effective approach worth considering for future research work.

The essence of our outlier detection process is to introduce resiliency into the exist-

ing data aggregation techniques. Throughout this work we assume that the aggregators and

the base station are equipped with tamper-resistant hardware and are completely trusted.

But these nodes are primary attack targets in a sensor field. We believe that combining

our approach with mechanisms such as [12], can detect the compromise of intermediate

aggregators resulting in promising ideas for further investigation. The resilient techniques

proposed in this thesis does not handle the problem of colluding sensor nodes. As a result,

an attacker can introduce highly deviating readings into the network by compromising a

local majority of the sensors. Techniques to mitigate this problem would be an interesting

direction to pursue for future research. We also plan to evaluate our current approach

with extensive field experiments using complicated distributed network architectures when

multiple events are present in the target field.

Intrusion detection is a mature area of research that has been studied for more

than twenty years. Most of the misuse detection techniques proposed in the literature is

not directly applicable to trace anamalies in sensor networks. The key challenge in applying

these techniques to sensor networks is due to special resource constraints offered by these

tiny devices and the difficulties involved with proposing a generic misbehavior detector

applicable to all sensor network applications. Detecting outliers in a sensor network not only

improves the aggregated results but also helps in the construction of reputation information

related to the sensor nodes. An essential component of any trust management framework is

a practical misbehavior detection tool and we plan to use the outlier detection algorithms

proposed in this thesis to construct a trust management framework applicable to sensor

networks.
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