

ABSTRACT

MOHAMED SAYEED. A parallel optimization framework for inverse problems. (under

the direction of Dr. G. Mahinthakumar)

Inverse problems that are constrained by large-scale partial differential equation

(PDE) systems demand significant computational resources. These problems generally

require the solution of a large number of complex PDE systems. Three dimensional

subsurface characterization inverse problems fall under this category. A parallel hybrid

optimization framework using global search and local search (LS) techniques is

developed. The global search uses genetic algorithms (GAs). For LS several non-gradient

based algorithms such as Nelder-Meade simplex, Hooke-Jeeves pattern search and

Powell’s method of conjugate directions and a gradient based algorithm namely,

Fletcher-Reeves conjugate gradient method are implemented in the framework.

Subsurface inverse characterization problems are posed as optimization problems and

solved using this framework. The GA or hybrid GA-LS optimizer is employed to drive a

parallel finite-element (FEM) groundwater transport simulator. Multilevel parallelism

opportunities exist at the coarse-grained optimization level and the fine-grained function

evaluation level. Coarse-grained parallelism (task parallelism) in the optimizer is

exploited using a self-scheduling algorithm. Fine-grained parallelism (data parallelism) in

the FEM transport simulator is achieved through a domain decomposition strategy. The

MPI (Message Passing Interface) communication library is used for the parallel

implementation. Parallelism is enhanced for local searches by enabling concurrent

execution of multi-start or multi-type local searches. Performance results for convergence

are examined for different test problems including biological activity zone identification,

contaminant source zone identification (location and concentration) and contaminant

sources release history reconstruction problems showing the applicability of the proposed

approach. The size and complexity of problems solved in this research far exceed what

has been reported to date in the literature. The implementation has been extensively

tested on a single supercomputer and on the grid (TeraGrid). This research illustrates that

the hybrid approaches are generally more effective than either standalone GA or LS for

solving inverse problems.

AN EFFICIENT PARALLEL OPTIMIZATION FRAMEWORK FOR INVERSE

PROBLEMS

by

MOHAMED SAYEED

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

DEPARTMENT OF CIVIL, CONSTRUCTION AND ENVIRONMENTAL
ENGINEERING

Raleigh

2003

APPROVED BY:

_________________________ _________________________

(Dr. Ranji S. Ranjithan) (Dr. Abhinav Gupta)

__________________________ _________________________
Co-chair of Advisory Committee - Co-chair of Advisory Committee

 (Dr. G. Mahinthakumar) (Dr. John. W. Baugh Jr.)

 ii

BIOGRAPHY

Mohamed Sayeed was born in Bangalore, India. He completed his Bachelor of

engineering degree in civil engineering from Bangalore University in 1990. He worked as

a civil engineer in different capacities, as a consultant and entrepreneur. He completed his

Master of engineering degree in structural engineering in 1997 from Bangalore

University. He worked as a structural engineer for a consulting firm before leaving for

higher studies. He joined the Ph.D. program in computer aided engineering in civil

engineering at North Carolina State University, Raleigh in the fall of 1999. His research

interests are in parallel computing, parallel performance analysis, numerical analysis,

optimization and finite elements.

 iii

ACKNOWLEDGEMENTS

I would like to thank all my committee members, teachers, colleagues and friends

for all their help and understanding.

I would like to thank my advisor and co-chair Dr. G. Mahinthakumar for his

valuable advice and support. He is the force behind this research and was always

available for discussion.

I would like to thank Dr. John W. Baugh for being my co-chair and being

supportive. I thank Dr. Ranji S. Ranjithan for being on my committee and for the

valuable discussions we had on the optimization approaches. I appreciate Dr. Abinav

Gupta for being my committee member.

I thank Emily Zechman for her help on MGA approach and Baha Mirghani for

creating an animation of the GA performance.

 I thank Dongju Choi and Leesa Breiger from SDSC, for doing the multi-cluster

runs on the TeraGrid.

I wish to acknowledge North Carolina Supercomputing Center, Oak Ridge

National Laboratory, National Center for Supercomputing Applications, San Diego

Supercomputer Center and National Energy Research Supercomputing Center for

providing the supercomputer resources necessary for this work.

I acknowledge the support indirectly provided by the PERC (Performance

Evaluation Research Center) project (Dept. of Energy’s Scientific Discovery through

Advanced Computing Program) subcontracted through ORNL from September 2001.

This work was partly supported (Oct 2003- present) by National Science

Foundation (NSF) under Grant No. BES- 0238623��

 iv

TABLE OF CONTENTS

LIST OF TABLES ..VI

LIST OF FIGURES .. VII

CHAPTER 1 – INTRODUCTION .. 1

1.1 INVERSE PROBLEMS ... 2
1.2 COMPUTATIONAL METHODS FOR SOLVING INVERSE PROBLEMS.................................. 3
1.3 ROLE OF HIGH PERFORMANCE COMPUTING... 6

CHAPTER 2 – RELATED RESEARCH IN GROUNDWATER INVERSE
MODELING .. 9

2.1 NON-HEURISTIC APPROACHES .. 9
2.2 HEURISTIC APPROACHES .. 12
2.3 HYBRID OPTIMIZATION APPROACHES ... 16

CHAPTER 3 – OPTIMIZATION METHODOLOGIES.. 18

3.1 OVERVIEW OF GENETIC ALGORITHMS ... 18
3.1.1 Genetic Algorithms for inverse modeling... 22
3.1.2 Binary/Integer GA Implementation.. 23
3.1.3 Real Genetic Algorithm (RGA) Implementation .. 24

3.2 LOCAL SEARCH METHODS .. 25
3.2.1 Nelder-Meade Simplex method (NMS)... 25
3.2.2 Hooke - Jeeves pattern search method (HKJ).. 27
3.2.3 Powell’s Method of conjugate directions (PWL) ... 28
3.2.3 Fletcher - Reeves conjugate gradient method (CG)... 29

CHAPTER 4 - PARALLEL IMPLEMENTATION.. 30

4.1 COUPLED FEM-GA-LS IMPLEMENTATION .. 31
4.1.1 Hybrid GA-LS-FEM implementation ... 34

4.2 GRID IMPLEMENTATION ... 35

CHAPTER 5 - TESTING AND EVALUATION ... 39

5.1 DESCRIPTION OF THE FEM TRANSPORT SIMULATOR .. 39
5.2 BIOLOGICAL ACTIVITY ZONE IDENTIFICATION PROBLEMS .. 40

5.2.1 Description of test problems .. 41
5.2.2 GA Encoding scheme ... 42
5.2.3 GA performance results ... 43
5.2.4 Integer encoding problem .. 46

5.3 SOURCE IDENTIFICATION PROBLEMS .. 47
5.3.1 Description of test problems .. 49
5.3.2 Hybrid GA-LS performance results ... 50

5.4 SOURCE RELEASE HISTORY RECONSTRUCTION PROBLEMS.. 53
5.4.1 Hybrid GA-LS performance results for source release history reconstruction
problem ... 55

 v

CHAPTER 6 - PARALLEL ARCHITECTURE AND PERFORMANCE 62

6.1 IBM SP3.. 63
6.2 TERAGRID ITANIUM2 CLUSTERS... 64
6.3 PARALLEL PERFORMANCE .. 65

6.3.1 Speedup .. 65
6.3.2 Load balance .. 67
6.3.3 Scalability analysis of hybrid approach... 68

6.4 GRID COMPUTING... 70
6.4.1 Results .. 71

CHAPTER 7 – RESEARCH CONTRIBUTIONS AND TOPICS FOR FURTHER
RESEARCH... 75

7.1 RESEARCH FINDINGS .. 75
7.2 RESEARCH ACCOMPLISHMENTS.. 75
7.3 TOPICS FOR FURTHER RESEARCH.. 76

BIBLIOGRAPHY ... 78

APPENDIX - A... 85

PRELIMINARY INVESTIGATION OF NOISY-GA... 85

A.1 CURRENT APPROACH... 85
A.2 EXPERIMENTS.. 86
A.3 RESULTS.. 86
A.4 CONCLUSIONS ... 87

APPENDIX - B ... 93

PRELIMINARY INVESTIGATION OF MODELING TO GENERATE
ALTERNATIVES (MGA).. 93

B.1 MGA APPROACH ... 93
B.2 TEST PROBLEM .. 97
B.3 RESULTS.. 98

 vi

LIST OF TABLES

Table 5.1 Error in solutions obtained using various methods for the 3D source
identification problem with ±10% noise in observation data. 53

Table 6.1 MPI Bandwidth for single and cross site run .. 72

Table 6.2 Runtimes for single and cross-site RGA-FEM simulations (using VMI1) 74

Table A.1 Results obtained for the single source release history reconstruction
problem using noisy-RGA approach with multiple realizations and
heterogeneous hydraulic conductivity field. ... 89

Table A.2 RSE values obtained against the full hydraulic conductivity field sample
set (100) using the solutions of noisy-RGA and also actual solution. 90

 vii

LIST OF FIGURES

Figure 3.1 Different optimization algorithms available in the module for solving
inverse problems.. 19

Figure 3.2 Flowchart of genetic algorithms (GA)... 21

Figure 4.1 Schematic layout of parallel hybrid GA-LS-FEM optimization
framework. The GA solution or the MGA alternatives are passed as initial
starting guess to local search methods. The GA has P tasks (individuals)
evaluating using p processors for each function evaluation. The local search can
be performed with n different/same methods using same or different initial
starting points. ... 37

Figure 4.2 Three levels of MPI communicator hierarchy with multiple groups (n)
performing GA/LS operations, and each group using different number of
processors in a group (Pi.pi + 1). Pi is the number of server subgroups for group
i using pi processors for each FEM forward function evaluation. One processor
in each group is dedicated for GA or LS operations.. 38

Figure 5.1 Problem setup for the biological activity zone identification problem. ... 41

Figure 5.2 Two types of zone encoding.. 42

Figure 5.3 GA convergence history for 3-zone problem using uniform crossover. .. 44

Figure 5.4 GA convergence history for 3-zone problem using simple crossover 44

Figure 5.5 GA convergence history for 10-zone problem using uniform crossover. 45

Figure 5.6 GA convergence history for 10-zone problem using simple crossover. ... 46

Figure 5.7 GA convergence history for integer encoding problem. Encoding type B
and simple crossover are used.. 46

Figure 5.8 3D domain with a single source and observation well locations............... 48

Figure 5.9 Concentration extrapolation scheme for a 2D problem. A similar
approach is applied to 3D cases. .. 48

Figure 5.10 Convergence history of Hybrid BGA-LS approach for 3D source
identification problem with no noise. Iterations for Hooke’s and Powell’s
method refer to every reduction in RSE value with forward function
evaluation. .. 51

Figure 5.11 Convergence history of Hybrid BGA-LS approach for 3D source
identification problem with no noise. Iterations for Hooke’s and Powell’s

 viii

method refer to every reduction in RSE value with forward function
evaluation. .. 51

Figure 5.12 Convergence history of Hybrid BGA-LS approach for 3D source
identification problem with ±10% noise in observation data. Iterations for
Hooke’s and Powell’s method refer to every reduction in RSE value with
forward function evaluation... 52

Figure 5.13 Convergence history of Hybrid RGA-LS approach for 3D source
identification problem with ±10% noise in observation data. Iterations for
Hooke’s and Powell’s method refer to every reduction in RSE value with
forward function evaluation... 52

Figure 5.14 Show’s the 2D source release history problem... 54

Figure 5.15 (a) Performance of the hybrid approach for a single source release
history reconstruction problem without noise.. 57

Figure 5.15 (b) Performance of the hybrid approach for a single source release
history reconstruction problem with 10% random white noise in observation
data. .. 57

Figure 5.16 (a) Performance of the hybrid approach for three sources release
history reconstruction problem without noise in observation data.................... 58

Figure 5.16 (b) Performance of the hybrid approach for three sources release
history reconstruction problem with 10% white noise in observation data. 58

Figure 5.17 (a) Performance of the hybrid (RGA-HKJ) approach for five-source
release history reconstruction problem. Each curve represents a source.......... 59

Figure 5.17 (b) Performance of the hybrid (RGA-PWL) approach for five sources
release history reconstruction problem. Each curve represents a source......... 59

Figure 5.17 (c) Performance of the hybrid (RGA-C.G) approach for five sources
release history reconstruction problem. Each curve represents a source.......... 60

Figure 5.18 (a) Performance of the hybrid (RGA-HKJ) approach for five sources
release history reconstruction problem with 10% random white noise added to
the observation data. Each curve represents a source... 60

Figure 5.18 (b) Performance of the hybrid (RGA-PWL) approach for five sources
release history reconstruction problem with 10% random white noise added to
the observation data. Each curve represents a source... 61

Figure 5.18 (c) Performance of the hybrid (RGA-C.G) approach for five sources
release history reconstruction problem with 10% random white noise added to
the observation data. Each curve represents a source... 61

 ix

Figure 6.1 Block diagram showing functional units of a power3-II architecture. 64

Figure 6.2 Standalone fine grained FEM simulation performance. 66

Figure 6.3 Total time taken by 129 processors to complete 10 generations using 1, 2,
4, and 8 processors per individual on the IBM SP. Population size is 128. 66

Figure 6.4 Time taken for 10 GA generations on the IBM SP using 2 processor per
FEM simulation... 67

Figure 6.5 Load balancing efficiency of self-scheduling algorithm. Processor speed is
artificially simulated by varying number of time steps. 68

Figure 6.6 The scalability of hybrid approach using different processor count for
local search, namely simplex. ... 69

Figure 6.7 Performance of single vs. cross-site fine grained parallelism 73

Figure A.1 Variation in RSE values shown for the different noisy-GA realization
solutions using the full hydraulic conductivity sample set (100)......................... 89

Figure B.1 Distribution of MGA solutions for 50 runs. Solutions marked with circles
are the MGA solutions. ... 99

Figures B.2 (a) and (b) Difference between MGA alternatives 1 and 2 for selection
based on fitness for two different runs. ... 100

Figures B.3 (a) and (b) Difference between MGA alternatives 1 and 2 for selection
based on psuedo fitness for two different runs. .. 101

 1

CHAPTER 1 – INTRODUCTION

Inverse problems that are governed by large-scale partial differential equations

(PDE) require significant computational resources and can be several orders of

magnitude more computationally challenging than the corresponding forward problem

(i.e., prediction) because repeated solutions of the forward problem are necessary. These

problems are particularly challenging in subsurface contaminant characterization because

the forward model can consist of several coupled large-scale nonlinear partial differential

equation systems that can vary in three-dimensional space and time. Recent advances in

search techniques such as genetic algorithms (GAs) and emergence of advanced

computing resources such as the computational grid (networked supercomputers), have

opened up new possibilities for solving these inverse problems. The most common

approach for solving subsurface characterization inverse problems is the use of gradient-

based optimization methods. While these methods are very powerful and are appropriate

in many situations, they lack the generality of non-gradient approaches (e.g. genetic

algorithms, simulated annealing) and are less suited for emerging parallel computing

environments.

GAs are popular global search procedures for discrete as well as continuous

problem domains, but yet under-explored for solving these problems. The GA search

process is enhanced by the use of local search (hybrid approach). The main themes for

the proposed research are to investigate: (i) hybrid optimization approaches (global and

local searches) and, (ii) parallel computing techniques to solve inverse problems (in the

groundwater area).

The thesis has seven chapters. This chapter gives an overview of inverse problems

with examples, solution techniques for inverse problems and the application of high

performance computing. The 2nd chapter discusses previous research on optimization-

based approaches for subsurface characterization problems. Hybrid optimization

approaches using GAs and different local search techniques are discussed in the 3rd

chapter. The discussion on parallel implementation is covered in the 4th chapter. The 5th

 2

chapter presents the results of testing and validating the hybrid optimization

methodology. Information on parallel architecture, parallel performance results and grid-

computing results are discussed in 6th chapter. The 7th and final chapter summarizes

research contributions and topics for further research work. In Appendix – A, the noisy-

GA approach is investigated for problems with parameter uncertainty. In Appendix B, a

preliminary investigation of the modeling to generate alternatives (MGA) approach is

carried out for addressing the non-uniqueness problem.

1.1 Inverse Problems

An inverse problem involves the estimation of certain quantities based on indirect

measurements of other dependent quantities. This research focuses on groundwater

inverse problems. Inverse problems also arise in other diverse fields such as geophysical

exploration, medical imaging, non-destructive evaluation, inverse heat conduction or

diffusion problems, and signal processing. In signal and image processing one tries to

recover the original (uncorrupted) signal from the filtered signal with noise. Use of

computer aided tomography and magnetic resonance imaging in medical diagnosis, has

lead to the development of algorithms for the inversion of the Radon transform. The

exploration of oil is often facilitated by knowledge of the electrical conductivity structure

of a rock formation. The conductivity itself is ascertained from establishing a magnetic

field in the rock formation by measuring the induced currents. Seismic exploration yields

measurements of vibrations recorded on the surface. These measurements are only

indirectly related to the subsurface geological formations that are to be determined.

In parameter identification, spatial and/or temporal parameters appearing in, e.g.,

partial differential equations, are determined from measurements of the solution, either in

the whole domain, or on the boundary only. Inverse heat conduction or diffusion

problems for determining the boundary heat flux, and inverse scattering problems to

determine the shape or the location of the obstacle based on measurement of waves

[Santamarina and Fratta 1998]. Many problems in solid mechanics like identification of

cracks singularities, identification of material constants, separation of different energies

in solids, determination of residual stresses etc. may be considered inverse problems.

 3

Other inversion examples are: loading a concrete specimen and measuring its

deformation to determine material properties such as Young’s modulus and Poisson ratio,

or the deflection of the bridge is measured to access the condition of cables and deck [Bui

1993]. A performance based dynamic structural design approach using inverse problem

formulation has been developed [Takewaki 2000].

A number of groundwater problems such as estimating hydraulic conductivity

distributions, biological activity zones (BAZ), dense non-aqueous phase liquids

(DNAPL), or contaminant sources location and release history have been solved using

the inverse problem formulation. A very good reference for inverse problems in ground

water modeling is by Sun, 1994.

While common enough in practice, groundwater problems such as these are

notoriously difficult to solve because of several factors namely, insufficient observation

data, error in model or input data, etc. During the past several year’s significant

developments in probability and control theory methods have helped solve such complex

inverse problems [Sun 1994]. Most of the inverse problems are characterized by an

unusually high sensitivity to perturbations (deterministic as well as stochastic) in the data

so that a small change in the measurements results in disproportionate error in the

recovered signal. Techniques such as regularization methods have been developed to deal

with this Ill-Posedness. Thus, solving such inverse problems is not only numerically

challenging, but they also demand large computational resources.

1.2 Computational methods for solving inverse problems

Any mathematical model or system should be able to solve a forward problem in

order to solve an inverse problem. However obtaining a forward solution accurately does

not guarantee that the inverse solution is also going to be accurate. This is the case

because inverse problems are generally ill posed, which means the solution may be non-

unique, non-existent and unstable. The primary reasons are observation error, model

structure error and the insufficient quantity and/or quality of observation data. If these

difficulties are not considered, a satisfactory inverse solution can never be obtained by

purely changing the performance criteria and/or optimization algorithm.

 4

As stated earlier, before solving an inverse problem a mathematical model for

solving the forward problem should exist. So a concise discussion on mathematical

modeling of forward problems is provided next. Mathematical models can be broadly

classified in to four types: (i) Deterministic models and stochastic models depending on

whether random variables appear in the model; (ii) Linear models and nonlinear models

depending on whether the equations are linear or nonlinear; (iii) Stationary and dynamic

models, depending on if the time variable is included and, (iv) Lumped parameter models

and distributed parameter models depending on whether the space variables are included.

In groundwater modeling distributed parameter modeling is preferred because it is more

general, more accurate and more suitable for the planning and management of

groundwater resources. A distributed parameter model is often described by a PDE or a

set of PDEs and may be classified in to one or several of the above types. Generally, the

distributed parameter model involves the following components: it may have both spatial

and temporal properties, system parameters that characterize the geometry and/or

physical nature of the system, initial condition of the system described by one or more

subsidiary conditions, control variables representing excitation of the system such as

pumping, artificial recharge etc., and state variables that describe the state of the system,

such as head, concentration etc. Solving a forward problem implies to determine state

parameters when the time-space region, system parameters, subsidiary conditions and

control variables are known. The solution can be obtained analytically or using a

numerical approach. Analytical solutions are however available only for simple

problems. The solutions can be obtained by superposition of fundamental solutions,

separation of variables, Laplace transformation, Fourier transformation and other integral

transformations. Numerical methods use discretization of the time-space domain in to

elements and nodes. The governing system of equations (PDEs) is then discretized and

replaced at these nodes by a system of algebraic equations. The solution of the equations

can be obtained using different methods such as finite difference methods, finite element

methods, boundary element methods and their variants and hybrids, including the hybrids

of numerical and analytical solutions [Sun 1994].

 5

If a mathematical model is available to solve a forward problem then it can be

used in an iterative fashion to solve the inverse problem. However the accuracy of the

forward model is no guarantee for the quality of the solution obtained in the inverse

approach. This is normally referred to as the Ill-Posedness of the inverse problem. Three

main criteria describe the Ill-Posedness of the inverse problem

Non-existence: The solution may not exist for the observation data.

Non-uniqueness: The solution may not be unique because different conditions may give

same observation data.

Instability: A small change in input results in a disproportionate output.

The above three properties are associated with many of the inverse problems

encountered in real applications.

As stated earlier inverse problems can be solved in both deterministic and

stochastic frameworks by direct or indirect methods. Indirect methods require repeated

solutions of the forward problem. Many of the methods solve the problem by using an

output least squares criterion, which is a measure of the error between the measured and

the computed values. In general, direct methods can only be used for solving inverse

problems governed by linear system of equations. The commonly used direct methods are

the matrix method and the linear programming method. The matrix method reformulates

the linear least squares problem as a set of matrix equations and solves it directly. The

matrix method normally yields highly ill conditioned matrices and is very sensitive to

measurement errors. Linear programming methods can be used to solve inverse problems

governed by linear equations. Direct methods have very limited applicability to

groundwater inverse problem due to the distributed nature of the parameter space, non-

linearity in the governing equations and measurement errors.

The work here focuses on indirect methods and these are generally optimization-

based approaches. They can be grouped into two broad categories: gradient and non-

gradient based approaches. The commonly used gradient methods are: steepest descent,

 6

Levenberg-Marquadt, Gauss-Newton, conjugate gradients and sequential quadratic

programming methods. The gradient-based approaches use the gradients to find the

solution and hence require the decision space to be continuous (smooth). Thus, the

gradient methods are not suitable for discrete optimization problems. However, the

gradient methods tend to converge faster than non-gradient based approaches if: (i) the

objective function is continuous and differentiable, (ii) the search space is fairly smooth

and not convoluted and (iii) the quadratic assumption is valid near the optimum (for some

approaches).

Non-gradient methods start with one or more initial guesses and follow a set of

rules to move towards the solution. These optimization methods can be global or local.

Examples of global approaches are genetic algorithms (GAs) [Holland 1975, Goldberg

1989], simulated annealing, particle swarm optimization (PSO) [Kennedy and Ehart

1995], and the DIRECT method [Floudas and Pardalos 2001]. Examples of local non-

gradient approaches are, Nelder-Meade simplex method, Hooke-Jeeves pattern search

method, and Powell’s method of conjugate directions. Non-gradient based techniques

such as GAs offer great flexibility in problem formulation and can handle discontinuities

in the search space. Furthermore, they can generally explore a larger search space than

gradient-based approaches. As stated earlier GAs are generally preferred for discrete or

discontinuous domains and is the global method of choice for this research. GAs can also

be used effectively (real GAs) for problems that are not inherently discrete. The focus of

this research is to establish a parallel optimization framework for solving groundwater

inverse problems.

1.3 Role of high performance computing

In recent years high performance computing (HPC) has opened up new

opportunities for modeling and understanding complex systems (e.g., groundwater

modeling). It is driving the frontiers of science to new levels and the need for additional

computing power for solving complex and larger problems keeps growing. Computation

is becoming an equal partner with theory and experimentation in the advancement of

science. It has opened new avenues for understanding complex (natural) phenomenon,

 7

and offered challenges for the development of new and efficient mathematical models.

High performance computing (HPC) offers the ability to compute solutions to problems

not possible on desktop machines. It provides the ability to: (i) use larger and more

detailed computational grids, (ii) develop more complete computational models of

physical processes, and (iii) perform large number of simulations under different

conditions. HPC is enabled by large parallel computers, powerful vector processors, or a

network of individual workstations. These parallel computers link processors or

individual workstations together to increase computational power and use high-speed,

large-memory-capacity computers. Algorithmic improvements with state-of-the-art

numerical techniques such as adaptive meshing, multigrid, and particle methods are

needed in the next generation of high-performance simulation codes (e.g., groundwater).

For problems that require significant computational resources, parallel computing

on supercomputers or newly emerging “grid computing” on a network of geographically

distributed heterogeneous supercomputers connected by high-speed network can be used.

Also, distributed computing on cluster of networked workstations can be helpful. Parallel

computing requires knowledge of parallel machine architectures for efficient

implementation of parallel applications and efficient parallel numerical algorithms. One

or more parallel programming tools such as MPI [Message Passing Interface, Gropp et al.

1999; Dongarra et al. 1994], OPENMP [www.openmp.org], PVM [Parallel Virtual

Machine; Giest et al 1994], etc., are available on high performance computers for use.

Currently MPI has emerged as the de-facto standard and is available on almost all

supercomputers. Parallel codes using MPI are portable. MPI implementations supporting

many languages including popular HPC languages such as Fortran and C are available.

Writing efficient parallel programs to take full advantage of a high-performance

multiprocessor requires a new way of thinking (programming methodology) and effective

software tools to deal with the inherent complexities. While automatic parallelization

tools such as Forge or OpenMP (for shared memory) are now commercially available.

They still require substantial programmer intervention either in adding compiler

directives or restructuring code. Without this intervention, the resulting compiled code

usually performs poorly.

 8

Parallel programming is notoriously difficult because it lacks the single thread of

control that one would have in a conventional serial program. In addition, the data used in

parallel computation are probably spread across a number of distributed computer

systems. This is done to capitalize on locality by leveraging faster local data accesses

against more costly remote data accesses. Often, the data “decompositions” that make a

parallel program the fastest are the ones that are the most complicated [Kohl 1997].

This research requires high performance computational resources as it solves the

forward problem repeatedly. The forward problem (transport) simulator [Mahinthakumar

and Saied 2001] as will be known in a later chapter, is a highly computationally intensive

FEM code, solving large-scale partial differential equations. Hence, a parallel

optimization framework is developed to handle complex 3D groundwater inverse

problems.

 9

CHAPTER 2 – RELATED RESEARCH IN GROUNDWATER
INVERSE MODELING

Much of the previous work in groundwater inverse modeling has been in model

calibration aimed at fitting a few parameters (determine a few parameters in the forward

model based on observation data). With the development of sophisticated forward models

in recent years inverse modeling can now be used for obtaining detailed information

about the subsurface. This subsurface information is critical to the efficacy and cost

efficient groundwater management strategies. The following sections provide an

overview of previous research using optimization approaches for groundwater modeling.

2.1 Non-heuristic approaches

A large amount of research has been done in using gradient-based approaches for

solving groundwater inverse problems (e.g. Gorelick et al 1983, Wagner 1992, Sciortino

et al. 2000, Mahar and Datta 2000). Gorelick et al (1983) used least squares regression

and linear programming for solving a hypothetical two-source groundwater contaminant

problem. They assumed a linear model and incorporated the solute transport model as

constraints in a response matrix approach [Gorelick 1982; Gorelick and Remson 1982b]

for solving. Two hypothetical scenarios were studied: (1) locating unknown pollutant

sources under steady state from concentration data collected at a few well locations, and

(2) reconstructing the release history and location of a source using a complex two

dimensional (2-D) transient system with several monitoring wells. For the steady state

case there were more unknowns than the number of constraining equations. A mixed

integer programming method with additional restrictions was used. The results obtained

were spurious and detracted from true values. For the transient case both methods

identified the pollution source and the disposal episodes, but contained some errors in

determining the disposal flux magnitudes. The method is restricted to cases where data

are available in the form of break through curves.

Given the importance, groundwater source identification and release history

reconstruction problems have received a lot of attention. A variety of methods like the

 10

minimum relative entropy approach - MRE [Woodbury and Ulrych 1996, Skaggs and

Kabala 1998, Woodbury et al. 1998], Tikhonov regularization - TR [Skaggs and Kabala

1994, Liu and Ball 1999], constrained nonlinear optimization [Mahar and Datta 2000,

2001], and Levenberg-Marquadt minimization [Sciortino et al. 2000] have been used. A

paper by Atmadja and Bagzoglou (2001), gives a state of the art report on mathematical

methods for groundwater pollution source identification.

The regularization methods such as TR and MRE try to alleviate the problem of

ill-posedness and computational complexity of inverse problems. For example, the TR

method removes discontinuity in the solution space by smoothing the objective function

(either directly or indirectly). This addresses the problem of instability (small changes in

decision variables lead to large variations in objective function) and non-uniqueness

(multiple solutions) by forcing the convergence to the ‘simplest’ solution (solution that

has the smoothest structure). There is no guarantee, however, that this is the best solution.

MRE method treats each element of the release history as a random variable. The MRE

inversion is a method of statistical inference. It constructs a probability density function

(pdf) for the random variables representing the solution based on prior information and

measurement data; the solution is the mean of this pdf. Neupaur et al. (2000) made a

comparative study of TR and MRE methods for different source release history recovery

problems. The results show the quality of solutions obtained by these methods to be input

and problem dependent.

Sciortino et al. (2000) solved an inverse problem to identify the location of dense

non-aqueous phase liquid (DNAPL) pool in a saturated porous medium under steady flow

conditions. Levenberg-Marquardt method is used to solve the least squares minimization

problem for the identification of the location and the geometry of the DNAPL pool. They

used the method to minimize three types of residuals: ordinary residuals, weighted

residuals with weights equal to the square of the inverse of the observation, and weighted

residuals with weights obtained by adding a constant term to the observed concentrations.

They observed the results being sensitive to the location of observation wells and the type

of residual minimized. The procedure was not robust, since it did not guarantee the

convergence to global minimum, as the inverse problem solved is non-unique and non-

 11

convex even in the absence of observation errors. Also, the results produced by the model

varied according to the number and location of the observations.

Datta et al. (1989) developed an expert system using statistical pattern recognition

techniques to identify sources of groundwater pollution for hypothetical example

problems. The model developed by Gorelick et al. (1983) was used as a preliminary

screening model within the expert system. Performance of their method was found

encouraging in general for the example problems and specifically good under conditions

of missing observed-concentration data. Bagtzoglou (1992) presented the application of a

random walk based model for identification of pollutant sources in groundwater. Wagner

(1992) combined nonlinear maximum likelihood estimation with ground-water flow and

solute transport simulation to simultaneously estimate the aquifer parameters and a

distributed pollutant source term.

Mahar and Datta (1996) combined the concepts of optimal identification of

pollutant sources with the optimal design of a ground-water-quality monitoring network

for the source identification problem. They used a nonlinear optimization model with

embedded flow and transport simulation constraints for optimal source identification.

Crank-Nicolson and implicit finite difference forms along with appropriate initial and

boundary conditions, are embedded as constraints in this identification model. The solute

transport equation is discretized using central difference in both space and time, and the

steady state flow equation is discretized using central difference in space. An integer-

programming based model was used for the monitoring network. The methodology

follows three steps with the first step utilized for preliminary identification of pollutant

sources (magnitude, location and duration of activity) based on observed concentration

data from arbitrarily located existing wells. The preliminary identification results from

first step (source locations) are used to obtain an optimal monitoring network in the

subsequent time periods. In the third step the designed monitoring well locations are

utilized for more accurate identification of pollutant sources. The performance of their

proposed methodology was applied to a hypothetical 2-Dimensional homogeneous,

isotropic, and saturated aquifer for identifying three potential source locations. They

concluded the methodology using optimal network design enhanced the applicability for

 12

real-life scenarios when initially the potential source locations are unknown and where

measurements and parameter estimates are erroneous and/or uncertain. However their

study did not address the effect of parameter uncertainty and only a limited numbers of

cases were tested.

Following their work in 1996, Mahar and Datta (1997, 2000 and 2001) solved

different types of source identification problems using non-linear programming approach.

They used finite differences and the finite difference equations as constraints to model

two-dimensional forward flow with steady state or transient and transport problems. The

governing equations for the physical processes were embedded in the optimization

model. They solved the resulting nonlinear programming problem by a quasi-Newton

constrained optimization method. The model is tested for 2 or 3 potential source

locations, both with and without perturbed observation data and also with data gaps. The

model was not very robust because of the nonconvex and nonunique nature of the inverse

problem and because the results were dependent on the initial guess provided to the

method. They extended the model to simultaneously estimate the aquifer parameters

(2001).

2.2 Heuristic approaches

While heuristic techniques such as GAs have been used widely for groundwater

management problems [McKinny and Lin 1994; Wang and Zheng 1998], or for optimal

placement of monitoring wells [Cieniawski et al. 1995, Ritzel et al. 1994, Huang and

Mayer 1997, Katsifarakis et al. 1999] they have not been used as extensively for solving

groundwater inverse problems.

Aral and Guan (1996) used GAs for searching groundwater pollution sources.

They proposed an improved GA (IGA) procedure in which members of the population

are generated in a restricted solution space and equality constraints are satisfied for a

subset of decision variables. They applied the method to contaminant source location,

leakage rate and release period identification problems for a hypothetical confined

aquifer system by posing it as an optimization problem with equality constraints. They

reported results for a continuous leakage problem and a time dependent leakage problem

 13

with data gaps, for both without noise and random noise in the synthetically generated

reference data cases. Based on their study they concluded that their IGA provides an

efficient and robust means for solving any quadratic optimization problems with linear

equality constraints.

Katsifarakis et al. (1999) used boundary element method (BEM) approach for

modeling groundwater flow and transport and coupled it with GA to solve common

groundwater management and inverse problems. The application examples studied are

(1) determination of transmissivities in zoned aquifers, both with and without field

measurement errors, (2) minimization of pumping cost from a group of wells, and (3)

hydrodynamic control of a contaminant plume. They claimed that the method performed

satisfactorily.

Mahinthakumar et al. (1999) used GAs for identifying zones of biological activity

in the subsurface. They used a parallel computing environment for solving, as repeated

three-dimensional finite-element forward function evaluations are required for every

individual in a GA population. The simulations performed showed the effective

application of GAs in inverse groundwater modeling.

Smalley et al. (2000) presented a risk based in situ bioremediation design using a

noisy genetic algorithm. The model couples a noisy GA with a numerical fate and

transport model and an exposure and risk assessment model that translates the predicted

concentrations into estimates of human health risk, allowing risk-based criteria to be

considered in the corrective action design. In the risk based corrective action (RBCA)

design technique the uncertainty and variability in the parameters associated with

groundwater simulation and exposure modeling significantly influences the risk

assessment. The noisy GA is used for solving the management model with parameter

uncertainty and variability for finding robust solutions. In the model, uncertainty is

incorporated by the spatial distribution of hydraulic conductivity and the variability of

exposure parameters. The noisy GA uses sampling to reduce noise from fitness

evaluations in noisy environments. Unlike Monte Carlo simulation modeling, however,

which requires that numerous samples be drawn from probability distributions to obtain

 14

reasonably accurate results, noisy genetic algorithms perform best without extensive

sampling [Miller and Goldberg, 1996]. On the basis of Aizawa and Wah’s (1994)

sampling strategy for noisy GA’s, the following approach was used. For the first four

generations sampling size was set to 5 and was increased by five sample sets every four

generations. After twelve generations fittest four designs from the previous four

generations (i.e., 9-12) were tested by simulating each with five hundred sample sets. If

any of the four designs are successful in meeting the risk criteria for at least 90% of the

realizations, then sample size was not increased and the optimization process continued

for four more generations before termination. Otherwise, the sample size is increased by

five sample sets in the same manner described above with a test for four fittest designs

from the previous four generations every four generations until successful termination or

until a maximum number of generations was reached. Based on a case study, the authors

concluded that noisy GA was capable of generating highly reliable designs from

relatively small number of sample sets and efficient for computationally intensive

groundwater management models. The authors suggested the need for further

investigation of sampling strategies and termination criteria that affect GA efficiency, the

values of the decision variables for the optimal design, and the reliability of the optimal

design.

Yoon and Shoemaker (2001) proposed an improved real-coded GA (RGA) for

bioremediation. They proposed a new technique for crossover and selection

(replacement) process of GA. The RGA developed was tested for two hypothetical

aquifers developed by Minsker (1995). Based on the study they reported RGA was

efficient and computationally accurate than binary encoded GAs used in previous

groundwater research.

Aral et al. (2001) proposed another combinatorial approach called progressive

genetic algorithm (PGA) for nonlinear optimization. The method uses two steps: (i)

iteration and, (ii) search. In the iteration step ground-water simulation models are run to

generate an approximate optimization model for the subdomain. The solution domain is

divided in to subdomains depending on the number of sources searched. It transforms the

implicit nonlinear optimization problem in to a series of approximate optimization

 15

problems with explicit linearized constraints, which are then solved by GA. In the search

stage GA is used to search for local optimal solution with in the subdomain and closer to

the previous solution. The authors applied the methodology to test several groundwater

applications for a single source in a heterogeneous unconfined aquifer system. They

solved the release history reconstruction problem for known source location, unknown

source location, and release history with some observation data missing (gap). Based on

their study of the above problems they claimed PGA technique as robust and

computationally efficient. Several observations about the factors that influence the

solution of the source identification problem were also reported.

Giacobbo et al. (2001) solved the inverse problem of parameter estimation by GA

for groundwater contaminant transport. They analyzed the sensitivity of the model to the

unknown input parameters from the speed of convergence and stabilization of the GA.

They showed that the GA evolves towards convergence by stabilizing first the most

important parameters (parameters that influence the model output most) and later the

parameters that influence the output less.

Hilton and Culver (2003) used genetic algorithm for groundwater remediation

design under uncertainty. The authors proposed a new modified GA called robust GA and

compared the performance with basic GA and noisy GA. The way parameter uncertainty

is introduced in the model differs from noisy GA. It includes uncertainty by utilizing a

measure of on-going performance to evaluate the robustness and reliability of a possible

design. Thus, robust GA incorporates uncertainty into the optimization procedure, rather

than in the objective function evaluation, as done in the noisy GA. The robust GA is a

multiple realization technique; however, it uses a single but different realization in each

generation. The overall fitness of the string is based on the performance over multiple

generations. The fitness of the string is a function of cost (objective function value) and

“age”. The age indicates the number of generations the string survived. A new rank

fitness based on these parameters is computed and is used during selection. Two test

cases for groundwater remediation design using homogeneous and heterogeneous

hydraulic conductivities are reported. The authors showed that the robust GA performed

as well as the noisy GA, but by using fewer number of objective function evaluations.

 16

Shieh and Peralta (2003) used parallel recombinative simulated annealing (PRSA)

for optimizing in-situ bioremediation system design. PRSA is a global optimization

algorithm with convergence properties of simulated annealing (SA) and parallelism of

GA. The proposed model uses BIOPLUME II model to simulate aquifer hydraulics and

bioremediation, and PRSA to search for an optimal design. They solved for an optimal

pumping (extraction/injection) strategy that minimizes total system cost, reduces

contaminant concentration to the cleanup standard, and prevents contaminant plume

migration. For the test problem the PRSA approach performed better than SA and GA.

They claimed the approach to be efficient and flexible for optimizing system installation

design and time-varying pumping.

2.3 Hybrid optimization approaches

 Very limited amount of work has been done to date using hybrid optimization

approaches for solving groundwater inverse problems [Heidari and Ranjithan 1998, Pan

and Wu 1998]. Heidari and Ranjithan used a hybrid GA- truncated Newton search for a

two-search approach for a two dimensional hydraulic conductivity estimation problem.

Pan and Wu (1998) used a simulated annealing – simplex approach for estimating

unsaturated flow parameters for a one-dimensional column experiment.

More recently, Espinoza et al. (2003) developed self-adaptive hybrid GA

(SAHGA) and non-adaptive hybrid GA (NAHGA) and compared their performance with

simple GA (SGA) for a groundwater remediation problem. The authors also presented a

methodology for selecting the HGA parameters and population size for optimal

performance. They coupled SGA with a local search approach (random walk algorithm).

They discussed several performance and modeling issues relating to hybrid GA such as

local search frequency, probability of local search (LS), and number of local search

iterations. The selection of correct NAHGA parameters is crucial for its performance, and

the “necessary trial-and-error process for parameter evaluation makes the application of

NAHGA impractical”. Even though the proposed NAHGA and SAHGA methods

achieved convergence for the test case with 75% and 85% fewer function evaluations

than SGA, obtaining right parameter settings was still challenging with a trial and error

 17

process. In general the hybrid approach performed better. Also, SAHGA is more robust

than NAHGA because local search is applied only when it is necessary and the

performance does not change for a broad range of different parameter values.

The present research work seeks to enhance existing knowledge. It investigates

the applicability of hybrid optimization methodology for solving complex inverse

problems in a parallel computing environment. Even though the problems tested in this

research is in subsurface characterization the generality of the optimization approaches

will facilitate easy extension to other areas. The rationale for using hybrid GA-LS

approach is that GA being a global search technique will take the solution closer to the

global optimum and the local searches can do the fine local tuning. Other related topics of

interest such as noisy GAs and Modeling to Generate Alternatives (MGA) are also

investigated.

 18

CHAPTER 3 – OPTIMIZATION METHODOLOGIES

This chapter describes the optimization methodologies used in this research. The

research uses hybrid optimization approaches for solving inverse problems. The sections

that follow discuss GA methodology (both binary/integer and real GA) and the four local

search methods, Nelder-Meade simplex (NMS) method, Hookes and Jeeves pattern

search (HKJ) method, Powells conjugate directions (PWL) method, and Fletcher and

Reeves conjugate gradient (CG) method. Figure 3.1 shows the optimization algorithms

implemented in this research.

3.1 Overview of Genetic Algorithms

A number of variants of GAs have been developed, researched and extensively

used for a wide variety of applications. GA’s optimize using a search process that

emulates natural evolution. In a GA, a potential solution to a problem (i.e., a possible set

of values to represent the unknown parameters) is represented as a vector (an

‘individual’). This vector traditionally consists of binary values, although real numbers

are being used increasingly. Potential solutions and parameter values are analogous to

organisms and genes, respectively. The GA starts the process of searching for good

solutions with a set of these potential solutions, called a population, which is often

generated at random. The performance of each solution is characterized by a fitness

value. In the context of inverse problems, fitness is inversely proportional to the

difference, or residual, between computed and observed values. Calculating fitness for

each solution requires a forward solve.

 19

Figure 3.1 Different optimization algorithms available in the module for solving
inverse problems.

During the GA search process, the population is subjected to several probabilistic

operators that are analogous to natural selection, mating (including genetic

recombination), and mutation. In the selection step, pairs of solutions are selected for

reproduction from the population, with fitter individuals being selected more frequently.

Each pair of solutions may then undergo mating, or crossover, in which their vectors are

recombined to form new solutions, which are placed into a new population. The selection

and mating steps continue until the new population is the same size as the previous

population, which is then discarded. After the new population has been generated,

mutation is used to modify a small number of genes in the population. This step

introduces new traits that may not have been present in the initial population. Mutation

may also reintroduce good traits that may have been lost through the probabilistic

selection operator. An additional operator called elitism is used in most GA applications.

Elitism, which generally occurs after mutation, is used to guarantee that the best

individual in a population is not lost.

Function
Evaluator e.g.
FEM transport
simulator

Optimization
Module

Global Search Local Search

BGA IGA RGA
Non-gradient Gradient

NMS HKJ PWL CG

 20

The flowchart for GA is shown in figure 3.2. The steps of evaluating the

population, selection, mating, mutation, and elitism constitute one iteration, or

generation. Because fitter solutions are more likely to be selected for mating, the

incidence of good traits in the new population generally increases with each additional

generation. Crossover serves to test these traits in many different combinations. GA

schema theorem predicts the frequency of good traits (and good combinations of traits) to

increase exponentially as new generations are formed. As this occurs, the GA converges

to increasingly better solutions. Improvements in fitness, however, diminish as the

population diversity decreases and the population converges towards a good solution.

Stopping criteria such as “10 generations without improvement” and a minimum

population diversity are often used to terminate the algorithm when improvements are

sufficiently small and infrequent. These concepts are well described in many texts,

including Goldberg (1989), Davis (1991), and Michalewicz (1996).

The use of GAs for optimization problems in groundwater management and

remediation has been abundant (see section 2.2). Two main factors that have limited the

use of GAs for these and other problems are: (i) GAs have been characterized as being

highly computationally intensive, and (ii) GA performance is a function of the search

parameter values (e.g., population size, mutation rates etc.), the best values of which

cannot be determined a priori. While these are legitimate concerns, each can be addressed

to some extent. For example, the use of parallel computing can address concern (i). Also,

the argument that gradient-based approaches are more computationally efficient is not

always true. For problems with a large number of decision variables, computational

requirements associated with the calculation of gradients can far exceed that of the GA

search process. Limitation (ii) is being addressed through recent research to identify

robust operator implementations and parameter settings [Goldberg and Shastry 2001,

Lobo and Goldberg 2001, Reed et al. 2000b]. The guidelines developed through this

research are resulting in more robust GA formulations, effectively reducing or

eliminating trial-and-error experimentation with alternative GA parameter settings.

 21

Figure 3.2 Flowchart of genetic algorithms (GA).

Start

Generate initial population

Evaluate objective function (Fitness)

Last
individual?

Selection

Crossover

Mutation

No

Yes

Another
Generation?

Stop

No

Yes

Elitism

 22

3.1.1 Genetic Algorithms for inverse modeling

As described earlier, GA starts with a set of potential solutions, or population and

the performance of each solution is characterized by a fitness value. In the context of

inverse problems, fitness is calculated using a forward solve and is inversely proportional

to the difference between computed and observed values. One of the drawbacks of GA is

that it is computationally intensive if the fitness evaluation (or objective function) is

expensive. In this application, the objective function to be minimized is the root square

error (RSE) between the observed and the computed output concentration signals at a few

selected points in the domain. RSE is given by

 2

1

()
n

obs calc
i i

i

RSE C C
=

= −∑

Where obs
iC is the observed concentration and calc

iC is the calculated concentration

at the observation points ‘i’ the observation number and ‘n’ the total number of

observations. In order to compute the output signals for each individual in a GA

operation, a forward transport simulation is performed. Because the time intensive fitness

calculation for each individual in a generation can proceed independently, GA’s are

amenable for use in a parallel or distributed computing environment. Whereas the use of

GAs has long been popular for groundwater optimization problems, only recently GAs

are being used for groundwater inverse modeling [Mahinthakumar et al. 1999, Aral et al.

2001, Giacobbo et al. 2002]. Three types of GAs namely binary, integer and real have

been implemented to study the different classes of problems tested in this research. Some

of the problems such as biological activity zone (BAZ) are inherently discrete.

Binary/Integer GA is used to solve biological activity zone (BAZ) identification problem.

The source identification problem is solved by BGA, RGA, and hybrid GA-LS

approaches. The source release history problem is solved by RGA and hybrid RGA-LS

approaches. More details on the problem and results are given in the next chapter. The

subsections that follow give an overview of the implementation of these methods.

 23

3.1.2 Binary/Integer GA Implementation

The BGA and IGA implementations are required for the BAZ identification

problem (see section 5.2). A slightly enhanced version of the Simple Genetic Algorithm

(SGA) presented in Goldberg (1989) is used for the BGA and IGA implementations. The

primary modifications are elitism (always retain the best solution in the new population),

additional selection procedures (tournament selection in addition to the original roulette

wheel selection), additional crossover strategies (uniform and multi-point crossovers in

addition to the original simple crossover), and support for both binary and integer

encoding. An adaptive mutation operator is implemented so that the mutation probability

can be progressively reduced when the RSE of the best individual drops below an

arbitrary threshold value (if the correct solution is known a priori then this threshold

value can be set close to zero). A restart option is implemented so that the simulation can

be restarted from the last completed generation.

In the simulations performed the following steps are involved:

(1) Encode the unknown zone locations as binary or integer strings.

(2) Generate an initial random ensemble of strings (with a user-defined bias)

equal to the number of individuals in a population or population size.

(3) Perform transport simulation for each individual by decoding the strings into

zone locations.

(4) Compute RSE for each individual by computing the difference between the

observed (stored in a file) and computed output signals.

(5) Select the individuals that perform best (those giving a smaller RSE) using an

appropriate selection strategy and mate the strings randomly (using an appropriate

crossover strategy – single point, uniform, multiple point) to produce the next

generation for individuals.

(6) Repeat steps 3 – 5 until convergence or up to prescribed maximal number of

generations.

(7) If convergence is not achieved within the prescribed number of generations,

then either the zone locations for the best-performing individual of all the

 24

generations or the probability distribution of the entire population at the end of

simulation can be chosen as the optimal solution.

3.1.3 Real Genetic Algorithm (RGA) Implementation

Real GA follows the same steps as BGA/IGA. As stated before, for RGA decision

variables are represented as a vector of real variables (within some bounds). For source

identification and release history reconstruction problems, RGA is more suitable as the

decision variables (source location coordinates, concentrations, and time history of

concentration release) are inherently real. The real encoding can represent large domains

with a smaller string length when compared to its binary representation without

sacrificing the precision of numbers. Also increasing the number of bits considerably

slows down the algorithm [Michalewicz (1996)]. The concepts and operators (selection,

crossover, mutation and replacement) are very similar to BGA.

The RGA implementation has four different crossover strategies simple, uniform,

arithmetic and heuristic crossovers. In arithmetic crossover a linear combination is

performed using the following expression, if x1 and x2 are crossed then the two offsprings

will be x1′= rx1 + (1-r)x2 and x2′ = rx2 + (1-r)x1, where ‘r’ is a random number generated

between 0 and 1. In heuristic crossover a single offspring is produced from two parents

x1 and x2 according to this rule: x3 = r(x2-x1) + x2, where ‘r’ is another random number

generated between 0 and 1, and parent x2 is not worse than x1. The algorithm uses a

combination of crossover strategies instead of just one depending on the random number

generated. The following strategy is adopted, if r ≤ 0.1 – simple, 0.1 > r ≤ 0.3 – uniform,

0.3 > r ≤ 0.8 – arithmetic, and 0.8 > r ≤ 1.0 – heuristic crossover. It should be noted that

these values were obtained after initial experimentation and should not be construed as

the best. These values consistently performed well for our problems. A combination of

crossovers is chosen as it inherits the best properties of individual crossovers. Also either

uniform or non-uniform mutation operators can be used. In non-uniform mutation one of

the elements kx of the vector x (parent) is selected, the offspring { }'
1' ,...., ,....,k qx x x x= .

The element '
kx is calculated as follows

 25

'
k kx x dt= − and ()((1))u b

k kdt x x r a= − − ,

Where, u
kx - upper bound for the element of the chromosome string, r- random

number between 0 and 1, a is the ratio of generation number to maximum number of

generations and b is a system parameter determining the degree of non-uniformity

(assumed to be 1). For all the simulation experiments performed using real GA, non-

uniform mutation is used. Additional information on real GAs is available in many books

on GAs such as by Michalewicz (1996).

3.2 Local search methods

Non-gradient based unconstrained optimization methods are implemented for

local searches. These methods were selected because they do not require the computation

of gradients and are easier to program. The methods are: (1) Nelder-Meade Simplex, (2)

Hooke and Jeeves pattern search, (3) Powells method of conjugate directions and (4)

Fletcher-Reeves conjugate gradient method. The following subsections give brief

description of these methods. More details are available in standard optimization texts

such as Belegundu and Chadrupatla (1999).

3.2.1 Nelder-Meade Simplex method (NMS)

The simplex method of Nelder and Meade is a popular local direct search method

for unconstrained nonlinear optimization problems. Readers should not confuse this with

the popular Linear Programming simplex method applied for linear constrained

optimization problems. The Nelder-Meade simplex method is based on moving and

resizing a multidimensional polygon (simplex) along a downhill direction until a local

minimum is encountered. The simplex is formed by a set of n+1 points in an n-

dimensional decision space. For example, if we have 4 unknown variables in our inverse

problem then we have a 5-point simplex. In the N-M simplex method we traverse the

decision space by resizing and/or moving the simplex until a local optimum is found (in

this case the simplex converges to a single point). The basic operations in the method,

reflection, expansion, and contraction along with the function values at each simplex

point dictate how we resize or move the simplex.

 26

The initial simplex of n+1 corners is constructed from the initial guess by

perturbing each point by a fixed amount. The points with highest, second highest and the

least function values are selected. The point with largest function value is excluded and

mean of the points is computed. A new point is obtained by reflecting about the mean

and the forward function is evaluated at the reflected point. If the reflection is successful

then the point is further expanded. If the expansion step fails then the point is contracted.

If both expansion and contraction stages fail then the previously reflected point is

accepted. If reflection, expansion and contraction stages fail, then a scaling operation is

used to scale the point with the least function value, which shrinks the simplex. The

operations described above can be represented in notation form. Let hX , sX , and lX be

the points with highest, second highest and lowest function value points and
b

X mean of

the points excluding highest, given as
1

1

1
n

b i
i
i h

X X
n

+

=
≠

= ∑ . The new points during reflection,

expansion, contraction and scaling stages are calculated as follows,

()r b b hX X r X X Reflection= + − ←

()e b r bX X e X X Expansion= + − ←

()c b b hX X c X X Contraction= + − ←

()i l i lX X s X X Scaling= + − ←

The coefficients r, e, c and s are assumed as 1, 1, 0.5 and 0.5 respectively. The

steps are repeated until the convergence or stopping criteria is satisfied.

The best performing GA solution is passed as the starting point for the simplex. A

stopping criterion based on the maximum number of cycles or no improvement in the

objective function value for some specified number of cycles is used. Note the procedure

described here is for minimization. More details regarding this method can be found in

several texts including Belegundu and Chandrupatla (1999), Borse (1997), Press et al.

(1996).

 27

3.2.2 Hooke - Jeeves pattern search method (HKJ)

Hooke and Jeeves method is a simple yet powerful exploratory pattern search

method that can be applied to discrete and continuous optimization problems. The

method has two basic steps: (i) explore the neighborhood of the current point and

establish a pattern to move, (ii) move to a new point using the established pattern. The

exploratory step consists of sequentially perturbing (positively and negatively) the current

solution vector (starting with an initial guess) in each direction by a fixed amount (step

size) such that an improvement is found in the solution. If there is no improvement after

perturbations in all directions are completed, then the exploration is conducted with a

reduced step size. The step size is progressively reduced until an improvement is found or

it reduces below a prescribed tolerance (say 1e-6) in which case the algorithm is

terminated. When an improvement is found, a pattern direction vector is evaluated by

taking the difference between the improved solution vector and the old solution vector. In

the second step, the new solution is found by extrapolating the old solution along the

pattern direction.

A step size is chosen and exploration is started from the given starting point.

Assume 0iX is the initial starting point with n decision variables, where
i

e is the unit

vector (n * 1) along direction i and s is the step size. The exploration and pattern step can

be calculated as follows,

0

0

,0

Exploration

, for and , 1,..,

, and , 1,..,

Pattern search

2 1,..., and (exploration succesful)

ij i

ij i i

iJ iJ i

X X i j i j N

X X e s for i j i j N

X X X i N J j

= ≠ =

= ± = =

= − = =

A correct step size is important for good performance of the algorithm. Usually a

value in the range of 0.05 to 1.0 is selected. A stopping criterion based on the maximum

number of iterations or the reduction in step size value below a prescribed tolerance (1e-

3) is used. A complete description of this algorithm can be found in Belegundu and

Chandrupatla (1999).

 28

3.2.3 Powell’s Method of conjugate directions (PWL)

Powell’s method of conjugate directions carries out minimization along

successive directions that are conjugate with respect to all previous directions. Powell

developed an idea of computing conjugate directions without using derivatives [Powell

(1964)]. It requires N single variable minimizations per iteration and sets up a new

conjugate direction at the end of each iteration. The procedure for computing the

conjugate direction set is as follows [Press et al. 1996],

Initialize the set of directions iU to the basis vectors, for 1,....,i iU e i N= =

Repeat the following sequence of steps until function value stops decreasing:

Save starting position as 0P

For 1, ,i N= � move 1iP− to the minimum along direction iU and call this point Pi

For 1, ,i N= � set 1i iU U+ =

Set 0N NU P P= −

Move PN to the minimum along direction UN and call this point P0

Reinitialize the set of directions Ui to the basis vector ei after N or N+1 iterations.

After searching along all conjugate directions, a spacer step is introduced where a

search is made from the current point along the coordinate directions. The process is

repeated until the convergence or termination criterion is satisfied. A stopping criterion

based on the maximum number of cycles or the minimization cycle that produces a small

change in the variable values less than one-tenth of the required accuracy is used. The

method is also sequential and like other methods its performance depends on the initial

guess. A complete description of this algorithm can be found in Belegundu and

Chandrupatla (1999).

 29

1

1 1 1

2 2 1 1 1

1

(1) Start with an arbitrary initial point .

(2) Set the first search direction () .

(3) Find the point according to the relation =

 Where is the optimal step length in

X

S f X f

X X X Sλ
λ

= −∇ = −∇
+

1

2

12

1

the direction . Set 2 and go to the next step.

(4) Find (), and set

(5) Compute the optimum step length in the direction , and find t

i i

i
i i i

i

i i

S i

f f X

f
S f S

f

Sλ

−
−

=
∇ = ∇

∇
= −∇ +

∇

1

1 1

he new point

(6) Test for the optimality of the point . If is optimum , stop the process.

 Otherwise, set the value of 1 and go to step 4.

i i i i

i i

X X S

X X

i i

λ+

+ +

= +

= +

3.2.3 Fletcher - Reeves conjugate gradient method (CG)

Fletcher and Reeves conjugate gradient method is a steepest descent method and

can be considered as a conjugate directions method involving the use of the gradient of

the function. By evaluating the gradients of the objective function, new conjugate

directions are set up at the end of each iteration and hence, faster convergence can be

achieved. The iterative procedure for the method is given below [Rao 1996]:

The process is repeated until the convergence or a termination criterion is

satisfied. A stopping criterion based on the maximum number of cycles or the

minimization cycle produces a small change in the variable values less than one-tenth of

the required accuracy is used. The gradient vector (∇f) is computed using central finite

differences. Task parallelism equal to twice the number of decision variables is inherent

in the algorithm and is exploited while doing the function evaluations for computing the

gradient (∇f). It should be noted that, once the gradient vector is computed step (4)

involves five simple dot products and 9 Saxpy’s. The optimal step length ‘ iλ ’ is

computed using golden section search. Like other methods its performance depends on

the initial guess. A complete description of the algorithm can be found in Rao (1996).

 30

Chapter 4 - Parallel Implementation

Although solving inverse problems using optimization based methodologies offer

great flexibility in problem formulation it can be computationally demanding. Parallel

computing can be used to alleviate this problem. The solution for the inverse problem is

obtained by repeatedly solving the forward problem, and if the solution process of the

forward problem itself is computationally intensive, then it becomes extremely important

to have an efficient parallel implementation. An efficient FEM based parallel

groundwater simulator suite PGREM3D [Mahinthakumar 1999], is used for forward

function evaluations in this investigation. More details regarding the simulator can be

found in the following articles: Saied and Mahinthakumar 1998 (flow simulator) and

Mahinthakumar and Saied 1999 and 2002 (transport simulator).

The two most popular message-passing environments are parallel virtual machine

(PVM) and message-passing interface (MPI). Our parallel implementation utilizes the

latter. MPI is a popular portable, standard, parallel programming library and supports

different languages like Fortran77, Fortran90, C, C++ and Java. It is widely supported on

most parallel supercomputing architectures and distributed computing environments.

MPI provides a convenient mechanism for modularizing parallelism through the use of

“communicators”. A communicator is a handle for facilitating communication among a

specific group of processors. It enables message passing between processors and provides

mechanisms for subdividing existing groups into new partitions and to send messages

within and in between new partitions. Since groups can be further subdivided by the use

of communicators, multiple hierarchical levels of parallelism leading to massive

parallelism can be achieved through the simultaneous exploitation of coarse-grained

parallelism in the optimizer and fine-grained parallelism in the function evaluator.

For example, the coarse-grained task parallelism in GA is generally restricted to

the number of individuals in a population. However, if the forward solution process is

already parallelized, then the amount of parallelism available is not just additive but also

multiplicative. For example, if 10 function evaluations are performed concurrently using

1 processor for each evaluation then only 10 processors can be used; but if 5 processors

 31

are used for each evaluation then 50 processors can be used. In this scenario parallelism

is exploited at a finer level for each forward function evaluation and inherently two levels

of parallelism exist: one at the GA population level and the other at the function

evaluation step. In addition to increased parallelism, such an implementation can lead to

increased flexibility (ability to solve large forward problems) and in some cases,

improved performance due to cache effects [Mahinthakumar and Gwo, 1999: Sayeed and

Mahinthakumar, 2002]. The sections that follow describe the parallel implementation of

the hybrid optimization framework for a single supercomputer and its extension to the

grid environment.

4.1 Coupled FEM-GA-LS implementation

In this implementation, the FEM transport and optimization modules are

combined in to a single executable. This is in contrast to a previous implementation

[Mahinthakumar and Gwo 1999], which used two separate executables for the GA and

FEM modules, and employed the PVM library [Parallel Virtual Machine; Geist et al.

1994] for communication between the GA and FEM executables. While less modular,

combining the optimization and FEM modules into a single executable has two main

advantages: (i) the more portable MPI library can be exclusively used, (ii) the costly

startup overhead for spawning each FEM simulation can be eliminated. The current

implementation uses a three-tier communication hierarchy, and uses communicators at

specific levels for reading input files and broadcasting it to other processors at that level,

thereby reducing costly I/O time. A self-scheduling algorithm keeps all the server

processors in a group busy; however at the end of each generation/cycle the processors

are synchronized. A restart option is also available for the GA to restart its operations

from where it stopped.

An important feature of the present implementation is the exclusive use of the

MPI library. Use of MPI provides improved portability to a wide range of parallel

architectures. The use of “communicators” in MPI provides a convenient way to couple

the GA/LS and FEM modules. In MPI, communicators can be assigned to any group of

processes. Communicator serves as a handle to that group. Within each group, each

 32

processor has its own local process id (also called “rank”). Ranks range from 0 to n-1

within each group, where n is the total number of processes in the group. By default, all

processes are assigned to the “world group” and the group handle is the “MPI world

communicator”. Any number of subgroups can be created from the world group, and

additional groups can be created from each subgroup. Once a subgroup is created, each

processor will have a local process id and all local communication within that group can

be handled using the “group communicator”. By hierarchically creating subgroups we

can elegantly manage multi-level communication. More details on the use of MPI groups

and communicators can be found in any MPI book (e.g., Gropp et al. 1999; Snir et al.

1996; Quinn 2004).

The algorithm/implementation has three levels with all the processors at the top

level (level 0) belonging to the world group. At the next level (level1) the processors are

divided in to several groups depending on the number of concurrent multi-type or multi-

start GA/LS searches. This information about the number of multi-start/multi-type

searches, the total number of processors assigned to each search, the number of

processors assigned to each function evaluation, and the corresponding methods for each

search is provided by the user. One processor in each group exclusively performs the

computationally trivial GA/LS operations and serves as the manager or client processor.

Note that in our discussion the words “processes” and “processors” are interchangeable

since we always associate 1 process with 1 processor (or CPU). Each objective function

evaluation (forward FEM transport simulation) can be assigned to a single process or to

multiple processes of a server subgroup. The subgroup here refers to the number of

processors used for each forward function evaluation. When a single process is used then

each subgroup has just one process and the number of server subgroups equals one less

than the total number of processors in that group. When multiple processes are used, the

number of server subgroups equals the total number of server group processes divided by

the number of processes per subgroup.

The processes and groups corresponding to our implementation are schematically

shown in figures 4.1 and 4.2. Figure 4.1 depicts the structure of our GA/LS hybrid

optimization framework. For GA the task parallelism is limited to the number of

 33

individuals in the GA population. The best performing GA individual or a set of

modeling to generate alternatives (MGA) (see Appendix - B) can be passed as initial

starting guesses to the local searches. Multiple local searches, either same or different

using same/different initial guesses can run concurrently. The multilevel communication

hierarchy for a group (as several groups performing different GA or LS operations can be

created concurrently) is shown in figure 4.2. The communication can be carried out at

three levels between the client process and server processes. Let’s assume we have a total

of N processors for our coupled GA-FEM simulation. At first, all the N processes are first

assigned to the world group with the default communicator MPI_COMM_WORLD

(level-0). The processes are then divided into n groups with specified number of

processors per group. The processes belonging to a group have their own communicator

(level 1) and one of the processes will be the client and the rest are server processors. The

group server processes are then further divided into P subgroups with each subgroup

having p processes. Each of these P subgroups are assigned a server subgroup

communicator (level-2). Each server subgroup will perform one transport simulation at a

time. In each level, local process id numbers (or ranks) will be assigned to each process.

Since the basic input file is the same for all the server subgroups performing the transport

simulations, only one process (in our case, the process with rank 0) at level-1 will need to

read the input file. Once read, the input data can be broadcast to all the other server

processes using the level-1 group communicator. This mechanism avoids the need for

each server process to read the input file and thus preventing I/O conflicts and also

possibly saving on costly I/O time. All local communication within each transport

simulation is handled using the level-2 communicator.

The manager process first sends the string representing the unknowns (decision

variables) to the server processes. The server subgroups complete the transport simulation

and return the RSE value (objective). In each subgroup, only the processor with rank 0 or

“group leader” communicates with the group manager processor. When multiple

processes are used in the server subgroups to do the forward transport run, the process

with local server subgroup rank 0 will receive the individual (chromosome string) from

the manager and does a broadcast within its subgroup. The subgroup processes will

 34

perform the transport run and the process with local rank 0 in this subgroup will

communicate back the RSE value to the manager using the level 1 group communicator.

Initially, all the server processes in the server subgroups with local rank zero will

receive an individual (chromosome string) from the client, after which the individuals are

assigned dynamically to whichever server subgroup returns the RSE value first to the

client. The client process keeps sending the individuals in a population to server subgroup

processes until all individuals in a population of a generation is completed. However, the

client process needs to synchronize the processors at the end of each generation. The

dynamic dispatching of the individuals by the client process will help keep all the

processes busy in a homogeneous or heterogeneous grid-computing environment, where

the processors with different speeds and architectures are used. This dynamic task

scheduling policy helps achieve load balancing especially if we have a small number of

processors and a large population size. Typically we use a population size of 128 or 256

and 65 or 129 processors on IBM SP, with one process (client) dedicated to do the GA

computations. The load balance results obtained are presented in chapter 6.

4.1.1 Hybrid GA-LS-FEM implementation

As mentioned earlier the LS methods are generally used for local fine tuning.

Once the GA has exhausted in its search by not improving the function value or by

reaching the pre-specified number of generations, the best solution is passed as the initial

guess to the local search methods. The search is then carried on by these methods. The

LS methods are basically sequential in nature except for NMS and CG methods. In NMS

method limited amount of task parallelism (up to the number of decision variables) is

available and exploited during some of the iterations when multiple points of a simplex

need to be computed each requiring a function evaluation. In the CG method when

gradients are computed using central finite-differencing, task parallelism equal to twice

the number of decision variables is available and is exploited. The sequential bottleneck

in local searches can be alleviated by either increasing the fine-grained parallelism or by

performing simultaneous multi-type or multi-start local searches. Similar to GA the LS

methods send the decision variable string to the server processes for forward function

 35

evaluation and the function value is returned back to the client process. The creation of

groups, subgroups and the communication operations performed are the same as

described before except that now the optimizer is a LS method instead of GA. Normally

we restrict the maximum number of server subgroups to the number of decision variables

for the simplex method. For CG method the maximum number of processors is restricted

to twice the number of decision variables, excluding one for the client. Dynamic task

scheduling is also implemented in the NMS and CG methods. Different convergence and

termination criteria can be used to stop the simulation. The LS algorithm is terminated

when: (a) it has completed the total number of cycles/iterations, (b) there is very small

improvement for five iterations and (c) no improvement in the search direction.

4.2 Grid implementation

Grid-computing environments are an emerging trend in parallel computing

resources that typically consist of a collection of geographically distributed

heterogeneous supercomputer resources (e.g., the NSF’s proposed new distributed

terascale facilty1 (DTF)). Parallel implementations for these environments are inherently

multilevel and obtaining efficient mapping of work to processors can be extremely

challenging. Extension of our previous implementation to the grid can be accomplished

by using “grid-enabled” version of MPI libraries. Using the Globus toolkit and grid-

enabled MPI (MPICH-G2 or VMI2-MPICH), required number of resources can be

requested from multiple supercomputers. Grid-enabled MPI is a special version of MPI

suitable for computational grids and is based on the “Globus” meta-computing toolkit

(MPICH-G2) or the virtual machine interface2 (VMI). MPICH-G2 is a Globus flavor of

MPICH using services from the Globus toolkit (such as job startup, security etc.,). VMI2-

MPICH uses middleware communication layer VMI with MPICH. MPI applications can

be run on multiple machines potentially of different architectures using grid enabled MPI

libraries. These libraries automatically convert data in messages sent between machines

of different architectures and support multiple underlying communication protocols.

1 http://www.nsf.gov/od/lpa/news/press/01/pr0167.htm
2 http://vmi.ncsa.uiuc.edu/

 36

Initially all the processors requested on different machines (supercomputers)

belong to the world group and have MPI_COMM_WORLD as the global communicator

at top level (level 0). Similar to the implementation described above multiple groups can

be created with their own communicators (level 1). One of the processors in each of the

groups will be the client and the rest server processors. The server processors of the

group (level 1) are then divided in to server subgroups (level 2). All the processes of a

server subgroup (level 2) performing fine-grained FEM computations should be confined

to a single supercomputer to prevent costly latency overheads. Of course the challenge

here is that at the top level all the processes may have a global ranking independent of the

location of processes on the supercomputers, i.e., the MPI library may assign processor

ranks that may not be in a sequential order. Therefore the server processes with different

global rankings on a supercomputer have to be identified and regrouped into subgroups

that are local to each machine.

To address this we use the MPI call “MPI_Get_processor_name” to get the

processor’s name and then check its locality during subgroup formation. Once these

multilevel groups and communicators are created for the heterogeneous or homogeneous

grid environment, the communications or computations follow the same approach

described for a single supercomputer. We investigate parallel performance and other

issues related to the grid-computing environment for this application in chapter 6. A

discussion of grid and grid applications are available in several recent papers [Waldrop

2002, Johnston 2002, Abramson et al 2002, Natrajan et al].

 37

Figure 4.1 Schematic layout of parallel hybrid GA-LS-FEM optimization
framework. The GA solution or the MGA alternatives are passed as initial starting
guess to local search methods. The GA has P tasks (individuals) evaluating using p
processors for each function evaluation. The local search can be performed with n
different/same methods using same or different initial starting points.

G A

 GA

MGA

MGA

FEM 1

LS n
Powell

s

LS 1
Simplex

CG

LS 3
Hookes

FEM 2

FEM P

FEM 1

FEM 2

FEM P

FEM

FEM

Global Search Local Search

FEM 1
1
2

 p procs

FEM 2
1
2

 p procs

FEM P
1
2

 p procs

FEM P
1
2

 p procs

FEM
1
2

 p procs

 38

Figure 4.2 Three levels of MPI communicator hierarchy with multiple groups (n)
performing GA/LS operations, and each group using different number of processors
in a group (Pi.pi + 1). Pi is the number of server subgroups for group i using pi
processors for each FEM forward function evaluation. One processor in each group
is dedicated for GA or LS operations.

1 client, P Server subgroups
Level 1 communicator
FEM Subgroups

1

1 Client CPU
Manager
Level 1

communicator
GA/LS

pi Server CPUS
level 2 server

communicator
FEM Subgroup Pi

2

 Client

1 2

… pi

 … Pi

Group

1

Group

2

Group

n

Group
 .i.

Level 0 World
Communicator
(Total of N CPUs)

 39

CHAPTER 5 - TESTING AND EVALUATION

The optimization framework has been tested for the following classes of

subsurface characterization problems: biological activity zone identification, source

identification and source release history reconstruction. For all test problems reference or

“measured” data is synthetically generated and compared to the simulated observation

data. Before presenting the test problems and results in the sections ahead, a brief

explanation of the FEM transport simulator follows in the next section.

5.1 Description of the FEM transport simulator

The parallel transport simulator employed in the GA function evaluations solves

the multi-component groundwater transport problem. The general system of equations

describing transport of nc dissolved components undergoing reactions in saturated media

is given by

 0() () () 1, 2,3...,i
i i i i i

C q
C C C C R i nc

t θ
∂

= ∇ ⋅ ⋅∇ − ∇ ⋅ + − − =
∂

D v

where v is the 3x1 velocity field vector, D is the 3x3 dispersion tensor dependent on v,

and Ci is the dissolved concentration of component i. The term q(Ci-C0i)/θ represents

the source term with volumetric flux q, medium porosity θ , and injected concentration

C0i (e.g. from injection wells). Ri is the rate of mass loss of component i due to sorption

and bioremediation reactions and is the main coupling term for the system of equations.

The term, Ri, may contain many terms and can be nonlinear. For example, if only

bioremediation reactions are present then Ri is given by

 max
1
0

 1, 2,3,...,

ij

j nc
j

i i ji
j j j

f

C
R F X f i nc

K C
µ

=

=
≠

= =
+

 
 
 

∏

Where Fi is the stoichiometric ratio, X is the biomass concentration, µmax is the maximum

utilization rate, and fji is a factor controlling component j’s contribution to component i’s

 40

biodegradation process. If fji = 0 then component j does not participate in component i’s

biodegradation process.

The system of transport and reaction equations is discretized using the Galerkin

finite element method (FEM) with 8-noded linear hexahedral elements. A logically

rectangular grid structure is assumed but irregular geometries are supported using

distorted elements. A Crank-Nicolson approximation (central finite-difference) is used

for the time derivative terms. A lumped mass formulation [Huyakorn and Pinder 1983] is

used for all time-derivative and non-derivative (zeroth spatial derivative) terms. The

coupled non-linear system is solved using a modified form of the Sequential Iterative

Algorithm (SIA). Several Krylov subspace iterative solvers are implemented in the code

for the matrix solution [Mahinthakumar et al. 1997]. In this research BiCGSTAB solver

is chosen for the simulations, which performs reasonably well for most problems.

This transport simulator is parallelized using a two-dimensional domain

decomposition (in the x and y directions) using explicit message passing (MPI library) to

exchange information between these domains. The simulator has been tested extensively

for scalability and performance on a variety of parallel architectures. Details can be found

elsewhere [Mahinthakumar and Saied 1999, Mahinthakumar and Saied 2002].

5.2 Biological activity zone identification problems

Identifying zones of biological activity is critical to the efficacy of bioremediation

measures. Bio-stimulants such as dissolved oxygen and methane are injected and the

observed breakthroughs of methane are used to deduce BAZ. Bio-stimulants (methane,

dissolved oxygen) are commonly injected into the subsurface to stimulate the growth of

bacteria so that they can eventually degrade the contaminant to desired levels [Semprini

and McCarty 1991].

The GA-FEM framework developed is used to solve the inverse problem of

determining possible biological activity zones (BAZ) from the results of a bio-stimulation

experiment. In these experiments indigenous methanotropic bacteria are stimulated by

continuous periodic injection of dissolved oxygen and methane (see Figure 5.1). The

 41

observed breakthroughs of methane are used to deduce possible biological activity zones

in the subsurface.

Figure 5.1 Problem setup for the biological activity zone identification problem.

The problem domain is divided in to several distinct zones (for e.g. 36) resulting

in the same number of binary or integer bits for GA encoding. The binary representation

encodes the zone location and activity, with 0 for inactive and 1 for active. Integer

encoding additionally indicates the activity (concentration) levels. This problem is

inherently discrete and therefore BGA/IGA is suitable for these problems. Since the

standalone BGA/IGA performed reasonably well and because local searches are not

amenable for discrete representation the hybrid approach was not investigated. GA

performance is investigated for problems of varying complexity (e.g., for identifying

three and ten BAZs) using different zonal encoding and GA operators.

5.2.1 Description of test problems

We chose a moderate size problem with a grid resolution of 51 x 31 x 11 (17,391

finite element nodes). The grid spacing is fixed at 0.2 m in each direction leading to a

problem domain of 10m x 6m x 2m. Stimulated methane concentrations are observed at 9

downstream locations for a time period of 40 days (200 time steps). The observed

methane concentrations are pre-calculated using an assumed zonal distribution. GA will

attempt to find this distribution by minimizing the error between these pre-calculated

values (observed or reference signals) and the computed values for each trial solution.

Two types of zone identification problems are examined, three zone identification and ten

zone identification, and the results are reported in the following sections.

 42

5.2.2 GA Encoding scheme

The 10 x 6 x 2 m domain is divided into 36 rectangular zones (4 x 3 x 3

decomposition) numbered in the two different encoding schemes as shown in figure 5.2.

The length of binary/integer bit string for GA encoding is 36, one for each of the 36

zones. For the binary strings, the bits are either 0 or 1, and for integer strings, the bits are

0, 1, 2 or 3. If the bit is 0 for some zone location, then that zone is inactive and if it is not

0, then the zone is active. For integer encoding, the values denote an activity level of the

zone; i.e., 0 – inactive, 1 – low, 2 – medium, and 3- high. These values are decoded into

appropriate BAZ concentrations in the transport code. The locations of the bits in the

chromosome string are encoded to correspond to the actual zone locations. As noted, for

integer encoding, each string not only encodes the zone locations but also the

corresponding biological activity level. We have studied two different encoding schemes.

In encoding type A, a zone at x = 1, y = 1, z = 2 would correspond to a zone number 13,

where as in encoding type B a zone at x = 1, y = 1, z = 2 would correspond to zone

number 24. One would expect encoding Type B to perform better with single point

crossover. This is because in encoding Type B, adjacent locations in the string

correspond to adjacent locations in the real domain.

Figure 5.2 Two types of zone encoding.

 43

5.2.3 GA performance results

The performance of GA for 3 and 10 zone identification problems is studied using

binary and integer GA, and results are reported here. GA performance is measured in

terms of convergence to the exact solution. For both three zone and ten zone cases, the

initial population is generated using a probability of 0.5 whether a location is active or

not (with activity levels in the case of integer encoded problems). Note that in real life,

we may not actually know how many zones are active. If we had prior information

regarding the number of zones that are active then we would have used a probability of

0.1 (3/36) for the three zones case and a probability of 0.3 (10/36) for the ten zones case.

Thus an unbiased initial population generation is more realistic. Several random seeds

were tried out for generating the initial population. Convergence rate varied slightly for

different random seeds and the results corresponding to the median performing seed are

reported below. In all cases, a crossover probability of 0.4 and an initial mutation

probability of 0.01 are used. These values were chosen based on a few trial runs.

 Three zone problem

For the reference case three arbitrary zones were chosen with numbers, 17, 20 and

34. For encoding type A, these numbers would correspond to (x,y,z) coordinates of

(1,2,2), (4,2,2), and (2,3,3) respectively and for encoding type B, these numbers would

correspond to (2,2,2), (4,2,2), and (2,3,3). A fixed population size of 256 is used for all

cases based on the approximate thumb rule of 3 to 4 times the chromosome string length.

A fixed initial random seed is used for all cases. The GA convergence plots are shown in

figures 5.3 and 5.4 for both encoding schemes using uniform and simple crossover

respectively. The figures show the average RSE values for the population after each

generation. The results show that for both simple and uniform crossover, encoding type

B performed better. Encoding B’s advantage, however, is more pronounced for simple

crossover. This result is expected as discussed earlier.

 44

0

20

40

60

80

100

120

0 10 20 30 40

Number of generations

R
S

E
 A

ve
ra

ge

Encoding Type A

Encoding Type B

Figure 5.3 GA convergence history for 3-zone problem using uniform crossover.

0

20

40

60

80

100

120

0 10 20 30 40

Number of Generations

R
S

E
 A

ve
ra

ge

Encoding Type A

Encoding Type B

Figure 5.4 GA convergence history for 3-zone problem using simple crossover

.

 45

Ten zone problem

This is a more difficult problem than the three-zone identification problem for the

GA to solve, as it is trying to identify ten active sites out of a possible 36. Doing

elementary combinatorial analysis (Spiegel 1975) shows that there are 36P10,26 = 36!/(10! .

26!) = 2.5 x 108 possibilities! The arbitrarily chosen BAZ in the reference case are zone

numbers 1, 2, 5, 7, 10, 14, 18, 19, 25 and 32. The figures 5.5 and 5.6 show the

performance of GA for this problem using simple and uniform crossover respectively.

The same GA parameters as in the three zones case are used.

Although it is not entirely clear as to which encoding scheme or crossover

strategy is better for this problem, from the initial convergence behavior we see that

encoding type B and simple crossover perform better. We note here that the convergence

of encoding type A in figure 5.6 around the 70th generation seems to be a random

phenomenon as this behavior could not be consistently reproduced. Obviously, the GA

convergence is much better for the 3-zone identification problem than this 10-zone

problem (compare figures 5.3 and 5.4 with 5.5 and 5.6). For the 3 BAZ problem the exact

solution is obtained as indicated by the zero RSE value, where as the ten zone BAZ

problem is more complicated and only nine out of ten zones were correctly identified for

encoding type B and uniform crossover strategy.

Figure 5.5 GA convergence history for 10-zone problem using uniform crossover.

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Number of Generations

R
S

E
 A

ve
ra

ge

Encoding Type A

Encoding Type B

 46

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Number of Generations

R
M

S
E

 A
ve

ra
ge

Encoding Type A

Encoding Type B

Figure 5.6 GA convergence history for 10-zone problem using simple crossover.

5.2.4 Integer encoding problem

As noted earlier, in this problem we are trying to determine the locations as well

as the activity level of each zone. This is a more difficult problem than the previous BAZ

problems for the GA to solve, as it is trying to identify ten active sites out of a possible 36

Figure 5.7 GA convergence history for integer encoding problem. Encoding type B
and simple crossover are used.

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120

Number of Generations

R
S

E
 A

ve
ra

ge

3 Zone
Identification

10 Zone
Identification

 47

and also their activity level (4 levels). Doing elementary combinatorial analysis [Spiegel

1975] shows that there are 4 times 36P10,26 = 4. 36!/(10! . 26!) = 1.0 x 109 possibilities!

The arbitrarily chosen BAZ in the reference case are zone numbers 1, 2, 5, 7, 10, 14, 18,

19, 25, and 32. The convergence results are shown in figure 5.7 for both the 3 zone and

10 zone problems. Obviously, the 10-zone case is a difficult problem and thus we see that

the GA did not find the exact solution. Further examination of the solution found by GA

indicated that it had correctly identified 9 out of 10 zones in this case. Given that GA is a

global search technique, this is very good!

5.3 Source identification problems

Identifying contaminant sources (locations and concentrations) is important in the

design of efficient remediation strategies and identifying responsible parties in a

contamination incident. This is an inverse problem and the solution has to be generally

inferred from sparsely available concentration measurements. A hybrid GA-LS approach

is used for solving, as preliminary tests using standalone GA or LS failed to perform

well. A number of observation wells uniformly distributed at the mid and downstream

vertical sections are situated as shown in figure 5.8 for sampling the synthetically

generated plume. The unknown decision variables are the coordinates of the zones and

their concentration values. For example, for a single source problem the 7 decision

variables are the 6 coordinate values [(x1, y1, z1), (x2, y2, z2)] and the initial concentration

C0. A more detailed description is provided in section 5.3.1.

Satisfying the continuity requirement

The inverse problem, as posed above, is a mixed discrete-continuous optimization

problem since the decision variables are mixed with discrete integer valued grid

coordinates x1, y1, z1, x2, y2, z2 and a continuous real valued initial concentration C0. While

discrete decision variables are not a problem with GA, most of the local search methods

employed here (with the exception of Hooke-Jeeves (HKJ)) requires that the decision

variables be continuous with respect to the objective function (continuity requirement).

This restriction called for a modification of the forward problem such that a small real-

valued change in the coordinates is guaranteed to produce a corresponding change in

 48

objective function. This was accomplished by transforming the problem by extrapolating

the concentration values to the nearest exterior grid points of the source zone. This

extrapolation procedure is shown in figure 5.9 for a 2D problem. While the use of integer

Figure 5.8 3D domain with a single source and observation well locations.

C0 C0

C0 C0 C0

C0

C0 C0 C0

C0

C0

C0 Cx1

Cx1

Cx1 Cx2

Cx2

Cy1

Cx2

Cy1 Cy1 Cy1

Cy2 (Cx1+Cy2)/2 Cy2 Cy2 Cy2

(Cx2+Cy1)/2

(Cx2+Cy2)/2

(Cx1+Cy1)/2

dy2

dx2 dx1

dy1

1
1 0

dy
Cy C

dy
= 1

1 0

dx
Cx C

dx
=

2
2 0

dy
Cy C

dy
= 2

2 0

dx
Cx C

dx
=

dx

dy

Figure 5.9 Concentration extrapolation scheme for a 2D problem. A similar
approach is applied to 3D cases.

Source (Co)

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

wells

(x1,y1,z1)

(x2,y2,z2)

flow
direction

 49

valued grid points to represent the boundaries of the source is somewhat artificial for this

particular problem, there may be other inverse problems where integer valued

representation may be a necessity (e.g., zone identification problems).

5.3.1 Description of test problems

The problem solves 3D pollutant source location from measured concentrations

downstream of the source. The problem domain and grid resolution are the same as that

of the BAZ identification problems. The 3D problem uses a heterogeneous flow field and

the steady state flow field is generated using a parallel groundwater flow solver [Saied

and Mahinthakumar 1998]. The randomly heterogeneous hydraulic conductivity field for

the flow solver is generated using a 3-Dimensional turning bands code. The turning bands

code is a parallelized version of the original code developed by Andy Thompson

[Thompson 1987]. The log conductivity field uses a mean of zero and a variance of 1.

The source release is observed for 20 days (1000 time steps). The assumed source

corresponds to coordinates x1=8, y1=9, z1=3, x2=16, y2=15 and z2=7 and having an initial

concentration of 72 mg/L. A total of 18 observation wells with 9 each uniformly

distributed at the mid and downstream vertical sections are utilized. The observations are

recorded once every 10 time steps. Therefore, a total of 1800 observations are used

corresponding to 18 wells and 100 time periods. The problem was made continuous for

local search methods by using the weighting approach described earlier (Figure 5.9). By

using a weighting approach any small change in the coordinates is guaranteed to produce

a change in the objective function value. The objective function is the root square error

(RSE) between the observed and calculated values

 2

1

()
n

obs calc
i i

i

RSE C C
=

= −∑

where obs
iC is the observed concentration and calc

iC is the calculated concentration at the

observation points, i the observation number and n the total number of observations.

 50

5.3.2 Hybrid GA-LS performance results

 An investigation on 2D problems showed that stand-alone GA is not adequate for

these problems and a hybrid approach is warranted [Mahinthakumar and Sayeed 2003]. A

more realistic scenario is used for the 3D case tested here with heterogeneous flow field

and an increased number of observation points (18 points). Hybrid GA-LS approaches

based on both BGA and RGA were tested on this problem. The GA portion was run for

35 generations and the best solution was further fine-tuned by the local searches. The

BGA used the following parameters: simple crossover, tournament selection with no

replacement, population size = 128, probability of crossover=0.5, and probability of

mutation=0.04. For RGA the parameter values are: population size =50, probability of

crossover=0.7, probability of mutation=0.01, tournament selection with replacement, and

non-uniform mutation. Instead of using the option to seamlessly switch from GA to LS,

we terminate GA and then restart the local searches using the restart option. This enables

us to test different local search methods from the same initial guess provided by GA

without rerunning GA for each local search method. Multiple GA-LS runs were

conducted and the results are reported for the average performing case. The results for the

hybrid GA-LS approach for 3D source reconstruction problem are as shown in figures

5.10 (BGA) and 5.11 (RGA) for the problems without noise and figures 5.12 (BGA) and

5.13 (RGA) for problems with noisy data. The noisy data is obtained by adding a random

white noise of ± 10% to the synthetically generated observation data. Figures 5.10–5.13

show that the Nelder-Meade simplex method (NMS) performed well initially but as the

size of the simplex starts to reduce, the convergence rate dropped. The same can be said

about Powell’s method (PWL). Table 5.1 shows that even though all the hybrid

approaches are able to find a reasonably good approximation to the solution, the Hooke

and Jeeves method (HKJ) required the least number of function evaluations to converge .

Also, RSE values do not always correspond to the error in the solution indicating a non-

uniqueness problem. For example the BGA has higher RSE value (41.27) than RGA

(21.89), but has a lower % error in solution of 9.7 compared to 11.4 for RGA.

 51

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350

��������	�
�����
�����������
���
���������

R
S

E
 B

es
t

BGA-Simplex

BGA-Hookes

BGA-Powells

Figure 5.10 Convergence history of Hybrid BGA-LS approach for 3D source
identification problem with no noise. Iterations for Hooke’s and Powell’s method
refer to every reduction in RSE value with forward function evaluation.

�

���

���

���

���

���

���

���

� �� �� �� ��� ��� ��� ��� ���

��������	�
�����
�����������
���
���������

�
�
�
��

�
�

 ��

 ��!���"#�$

 ��!%��&��

 ��!'�(�##�

Figure 5.11 Convergence history of Hybrid BGA-LS approach for 3D source
identification problem with no noise. Iterations for Hooke’s and Powell’s method
refer to every reduction in RSE value with forward function evaluation.

 52

�

��

���

���

���

���

���

� �� �� �� ��� ��� ��� ��� ���

��������	�
�����
�����������
���
���������

�
�
�

�
�
�
�

)��

)��!���"#�$

)��!%��&��

)��!'�(�##�

Figure 5.12 Convergence history of Hybrid BGA-LS approach for 3D source
identification problem with ±10% noise in observation data. Iterations for Hooke’s
and Powell’s method refer to every reduction in RSE value with forward function
evaluation.

�

��

��

��

���

���

���

���

���

� �� �� �� ��� ��� ��� ��� ���

��������	�
�����
�����������
���
���������

�
�
�

�
�
�
�

 ��

 ��!���"#�$

 ��!%��&��

 ��!'�(�##�

Figure 5.13 Convergence history of Hybrid RGA-LS approach for 3D source
identification problem with ±10% noise in observation data. Iterations for Hooke’s
and Powell’s method refer to every reduction in RSE value with forward function
evaluation.

 53

Table 5.1 Error in solutions obtained using various methods for the 3D source
identification problem with ±10% noise in observation data.

The true solutions is x1=8, y1=9, z1=3, x2=16, y2=15, z2=7 and C0=72 mg/L. RGA = real
genetic algorithm, BGA=Binary, NMS (Nelder-Meade Simplex), HKJ (Hooke-Jeeves)
and PWL (powells).

Method

Number of
Function

Evaluations

Converged Solution
(x1, y1, z1, x2, y2, z2, C0)

RSE Value

Error in
Solution (%)

BGA 1660 (7, 9, 3, 17, 17, 7, 46) 41.27 9.7%
RGA 2340 (10, 9, 3, 15, 15, 8, 65) 21.89 11.4%

BGA-NMS 3086 (8, 9, 3, 16, 16, 7, 50) 15.86 8.0%
BGA-HKJ 2035 (8, 8, 3, 16, 16, 7, 49) 14.92 9.4%
BGA-PWL 2460 (8, 9, 3, 16, 16, 7, 52) 17.96 6.8%
RGA-NMS 3771 (8, 9, 3, 16, 15, 7, 68) 8.85 0.8%
RGA-HKJ 2724 (9, 9, 2, 15, 15, 8, 66) 14.58 7.4%
RGA-PWL 3142 (10, 9, 2, 15, 15, 8, 73) 13.03 10.0%

5.4 Source release history reconstruction problems

In most practical situations the locations of contaminant sources are known, but

the time history of contaminant release in to the subsurface is not known. Reconstructing

the temporal release history from available concentration measurements (i.e., solving the

source release history reconstruction problem) is important in environmental forensics

where potential polluters are identified so that financial and other liabilities can be

imposed on the responsible parties. The hypothetical multiple sources are present at

different locations in the domain (see figure 5.14). Concentration observations are

available at the middle and downstream-end vertical cross-sections of the domain at

various time intervals. A heterogeneous flow field generated by the flow code is used as

described for the source identification problem.

For this problem, the possible contaminant source locations are known but the

contaminant release concentrations corresponding to a specified number of time durations

(time history of contaminant release at the source) are unknown resulting in the same

number of unknown decision variables. For example, ten time durations corresponding to

a single source will require ten decision variables. Typically, the desired resolution in

 54

time is a single year. In this case, the release history (concentrations) is sought for 10

time durations corresponding to a 10-year release of the contaminant. Depending on the

number of contaminant sources the number of decision variables is equal to the product

of the number of time durations times the number of contaminant sources. For example,

if the number of time durations is ten and five contaminant sources then the number of

decision variables is 50 (unknowns).

Figure 5.14 Show’s the 2D source release history problem.

The problem domain, grid resolution and other specifications are same as for the

source identification problem except that the potential source locations are known and the

release history is sought for each source for the specified number of time durations. A

hypothetical study of single and multiple (3 and 5) sources release is investigated. The

sources are present upstream or downstream of the middle set of the observation wells.

For these problems a total of 1800 observations (18 wells × 100 time durations) are

recorded similar to the source identification problem. For these problems the locations

are known and the contaminant release concentrations at each source over ten-year period

are unknown resulting in 10, 30 or 50 decision variables for 1, 3 or 5 sources

respectively.

Source 1

Source 2

Source 3

t

c

t

c
t

c

Source 4
t

c

Well 1

Well 2

Well 3 Well 4

Well 5

Well 6

Source 1

Source 2

Source 3

t

c

t

c
t

c

Source 4
t

c

Well 1

Well 2

Well 3 Well 4

Well 5

Well 6

 55

5.4.1 Hybrid GA-LS performance results for source release history reconstruction
problem

Convergence results are presented for single and multiple source problems with

and without noise in the observations. For the cases with noise a random white noise of

10% is added to the observation data. The RGA is run with a population size of 100 and

for 50 generations. The output profile frequency is set at 100. The main RGA parameters

used are probability of crossover = 0.5, probability of mutation = .05. Of the individuals

selected for crossover 40% undergo arithmetic crossover, 30% heuristic crossover, 20%

uniform crossover and remaining 10% simple crossover. The mutation strategy selected

for these runs is nonuniform mutation. The RGA was run for 50 generations using 101

processors on an IBM SP3 taking approximately 2 hrs 15 mins. The local searches are

performed with fewer number of processors.

The performance of the hybrid approach for a single source problem is shown in

Figures 5.15 (a) and 5.15 (b) for cases without and with noise. The values used for deltat

and maxt parameters are 0.2 and 1000 respectively. The results show that the hybrid

approach is a feasible approach for solving release history problems. Most of the LS

approaches perfomed well, but the best is observed for CG method.

Results for the more complex multiple source release history (3 and 5 sources)

problems are presented next. In both cases, one of the sources is assumed to be dummy;

i.e., this source does not release any contaminants (zero concentration values). Dummy

sources are not uncommon in practice as one or more of the potential pollution sources

may not be leaching any contaminants. The parameters used for three-source release

history reconstruction problem are same as the single source problem with the exception

that deltat and maxt parameters are now 0.05 and 2500 respectively. The three-source

results are shown in Figures 5.16 (a) and (b) for the cases without and with 10% white

noise in observation data respectively. The performance of GA-LS varied and only the

hybrid C.G approach perfomed well for both cases (with and without noise). However in

most cases the dummy sources were clearly identified. It should be noted here that

standalone GA or LS would have failed for multiple sources case.

 56

 For the five-source release history reconstruction problem population size is

increased to 200 and the deltat and maxt parameters are set to 0.05 and 3500 respectively.

Figures 5.17 (a), (b), (c) and 5.18 (a), (b), (c) show performance of the hybrid approach

for the five-source problem for three LS methods (HKJ, PWL, and CG) for cases with

and witout noise in observation data. The worst peformance is observed for simplex

method and is not reported. Even the fine tuning of simplex method parameters such as

step size didn’t provide any significant benefit. These results are presented in a different

format. From the figures it is very clear that the performance of local searches varied

even though all of them start with the same initial guess provided by RGA. The hybrid

approach using CG (Fletcher-Reeves conugate gradient method) local search, performed

better than other approaches. This is mainly because it uses the gradient information for

finding the search direction. This underscores the need for having multiple local search

methods as these methods are sometimes problem dependent. Note that we did not

experiment with optimizing the location and number of observation points in these

analyses. With careful placement of observation wells we could have reduced the number

of observation locations and frequency of observatiobns. This is should be considered as

a topic for future research. In practice, the observation wells should be placed judiciously

to maximize detection and minimize cost.

 57

With 10% white noise

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

Actual

Recovered (RGA)

Recovered (RGA-NMS)

Recovered (RGA-HKJ)

Recovered (RGA-PWL)

Recovered (RGA-FRCG)

Figure 5.15 (a) Performance of the hybrid approach for a single source release
history reconstruction problem without noise.

Figure 5.15 (b) Performance of the hybrid approach for a single source release
history reconstruction problem with 10% random white noise in observation data.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

Actual

Recovered (RGA)

Recovered (RGA-NMS)

Recovered (RGA-HKJ)

Recovered (RGA-PWL)

Recovered (RGA-FRCG)

 58

Figure 5.16 (a) Performance of the hybrid approach for three sources release
history reconstruction problem without noise in observation data.

Figure 5.16 (b) Performance of the hybrid approach for three sources release
history reconstruction problem with 10% white noise in observation data.

0

10

20

30

40

50

60

70

80

90

(1
,1

)

(1
,2

)

(1
,3

)

(1
,4

)

(1
,5

)

(1
,6

)

(1
,7

)

(1
,8

)

(1
,9

)

(1
,1

0)

(2
,1

)

(2
,2

)

(2
,3

)

(2
,4

)

(2
,5

)

(2
,6

)

(2
,7

)

(2
,8

)

(2
,9

)

(2
,1

0)

(3
,1

)

(3
,2

)

(3
,3

)

(3
,4

)

(3
,5

)

(3
,6

)

(3
,7

)

(3
,8

)

(3
,9

)

(3
,1

0)

Source (Number, Duration)

R
el

ea
se

 C
o

n
ce

n
tr

at
io

n
 (

m
g

/l)
Actual

Recovered (RGA-HKJ)

Recovered (RGA-PWl)

Recovered (RGA-FRCG)

With 10 % white noise

0

10

20

30

40

50

60

70

80

90

(1
,1

)

(1
,2

)

(1
,3

)

(1
,4

)

(1
,5

)

(1
,6

)

(1
,7

)

(1
,8

)

(1
,9

)

(1
,1

0)

(2
,1

)

(2
,2

)

(2
,3

)

(2
,4

)

(2
,5

)

(2
,6

)

(2
,7

)

(2
,8

)

(2
,9

)

(2
,1

0)

(3
,1

)

(3
,2

)

(3
,3

)

(3
,4

)

(3
,5

)

(3
,6

)

(3
,7

)

(3
,8

)

(3
,9

)

(3
,1

0)

Source (Number, Duration)

R
el

ea
se

 c
o

n
ce

n
tr

at
io

n
 (

m
g

/l)

Actual

Recovered (RGA-HKJ)

Recovered (RGA-PWL)

Recovered (RGA-CG)

 59

Figure 5.17 (a) Performance of the hybrid (RGA-HKJ) approach for five-source
release history reconstruction problem. Each curve represents a source.

Figure 5.17 (b) Performance of the hybrid (RGA-PWL) approach for five sources
release history reconstruction problem. Each curve represents a source.

 Actual
----Reconstructed (RGA-HKJ)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

Duration

C
o

n
ce

n
tr

at
io

n

 Actual
----Reoncstructed (RGA-PWL)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

Duration

C
o

n
ce

n
tr

at
io

n

 60

Figure 5.17 (c) Performance of the hybrid (RGA-C.G) approach for five sources
release history reconstruction problem. Each curve represents a source.

Figure 5.18 (a) Performance of the hybrid (RGA-HKJ) approach for five sources
release history reconstruction problem with 10% random white noise added to the
observation data. Each curve represents a source.

 Actual
----Reconstructed (RGA-CG)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

Duration

C
o

n
ce

n
tr

at
io

n
s

 Actual
 ----Reconstructed (RGA-HKJ with 10% white noise)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

Duration

C
o

n
ce

n
tr

at
io

n
s

 61

Figure 5.18 (b) Performance of the hybrid (RGA-PWL) approach for five sources
release history reconstruction problem with 10% random white noise added to the
observation data. Each curve represents a source.

Figure 5.18 (c) Performance of the hybrid (RGA-C.G) approach for five sources
release history reconstruction problem with 10% random white noise added to the
observation data. Each curve represents a source.

 Actual
----Reconstructed (RGA-PWL with 10% white noise)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

Duration

C
o

n
ce

n
tr

at
io

n

 Actual
----Reconstructed (RGA-CG with 10% white noise)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

Duration

C
o

n
ce

n
tr

at
io

n
s

 62

CHAPTER 6 - PARALLEL ARCHITECTURE AND
PERFORMANCE

An emerging trend in the supercomputer market is to build parallel systems using

commodity off the shelf (COTS) components. For example, SMP cluster architectures

having more than thousands of processors can be formed by connecting hundreds of

commodity SMP (symmetric multi processor) nodes, with each SMP node using a

moderate number of processors (typically 2 to 32 processors per node). The processors

used in these systems can be either vector processors (e.g. earth simulator1) or super

scalar RISC (reduced instruction set computer) processors (e.g. IBM SP’s, teragrid Linux

clusters2 etc). The programming model suited for many of these cluster systems is

message passing, although shared memory programming may be used within an SMP

node. Even though the shared memory programming paradigm is easy to program, it is

severely limited by the number of processors available in the SMP node (or system). It

should be noted that while message-passing model could also be used within the

processors of an SMP node, it might not be the most covenient way of parallel

programming. A hybrid approach using shared memory programming within a SMP node

and message passing between nodes is also attractive.

As mentioned earlier our GA-LS-FEM implementation uses message-passing

paradigm (MPI library) and has been ported to different architectures. Most of the

simulations for this research are performed on the IBM SP3 with exception of the grid

computing simulations, which are performed on the TeraGrid clusters at National Center

for Supercomputing Applications (NCSA) and San Diego Supercomputing center

(SDSC). A brief description of these machine architectures is given in the following

sections.

1 http://www.es.jamstec.go.jp/esc/eng/
2 http://www.teragrid.org/

 63

6.1 IBM SP3

This cache based supercomputer from IBM uses 64 bit POWER3-II processors

running at 375 MHz with different processor counts (2, 4, 6, 8 or 16) per node. The

theoretical peak performance of each processor is 1.5 Gflops. The processors super scalar

architecture is capable of performing up to 8 instructions per clock cycle (2 floating-

point, 2 single-cycle integer, 1 multi-cycle integer, 2 load/store, and 1 branch). The

processor has 2 floating point units (FPUs), 3 fixed point execution units (FXU), two

load/store units, and 3 levels of cache (Figure 6.1). The level-1 (L1) on chip cache is 64

KB and takes only 1 clock cycle to access. Each cache line is 128 bytes long. The L1

cache is very small (for data sets used in scientific applications) and to fix this an L2

cache is installed between L1 cache and main memory. The L2 cache is 8MB and is

slower than L1 cache at 6 or 7 cycles. If there is a cache miss from both L1 and L2

caches, data has to be retrieved from main memory and the penalty for this is 36 cycles.

The unified instruction and data cache (L2) sizes vary from 1 MB to 16 MB. The

memory configuration based on user requirements can be any where from 256 MB to 16

GB or more. Each node has local disk space (~5 GB or more) and can be used as

temporary scratch space. Users home directories are in the distributed file system on

other servers. The disk access is much slower compared to memory access. Hence the

users should try to store temporary data in memory to avoid frequent disk accesses,

which may slow down the code. Figure 6.1 shows the functional units of this processor.

The performance of most parallel applications depends on the communication

network condition. The SP node has two separate connections. The first is a standard 100

Mbps (mega-bits per second) Ethernet interface that connects each node to the outside

world. The second interface is the SP Switch, which is a fast private network whose sole

purpose is to carry data from parallel computations among the nodes. The peak

bandwidth for the 100 Mbps Ethernet is around 90 Mbps and the lowest latency is 50 µs,

although these numbers can vary greatly depending on the type and number of network

switches traversed. The SP switch has a peak advertised performance of 1200 Mbps

bandwidth and 1.2 µs latency, although only a peak performance of about 1000 Mbps

 64

Instruction flow unit
(IFU)

Instruction processing unit
(IPU)

Bus interface unit

L2 cache
1-16 MB

Fixed-point unit

 FXU0 FXU1 FXU2

 GP registers

Load/store unit

 LSU0 LSU1

Floating-point unit

 FPU0 FPU1

FP registers

Data cache unit
(DCU)

32 bytes

32 bytes

32 bytes
16 bytes 6XX bus

bandwidth and 26 µs latency has been reported using MPI. Thus the SP Switch has a

significant performance advantage over Ethernet for parallel computations3.

Figure 6.1 Block diagram showing functional units of a power3-II architecture.

6.2 Teragrid Itanium2 clusters

The teragrid Linux clusters at National Center for Supercomputing Applications

at Illinois (TG-NCSA) and San Diego Supercomputer Center (TG-SDSC) are used in grid

computing investigations (see section 6.4). These clusters are 256 or 128 dual processor

systems using Intel Itanium2 1.3 GHz, 3MB integrated L3 cache Madison chip. The L1

and L2 caches are small compared to the IBM SP3 at 32 KB (instruction and data) and

256 KB respectively. The system bus is 400 MHz, 128 bits wide with a bandwidth of 6.4

GB/sec. The theoretical performance of this processor is 5.2 Gflops. The dual processors

3 http://www-rcd.cc.purdue.edu/Performance/power3/hardware.html

 65

nodes are connected by Myrinet interconnect and other networking to file system

servers uses Gigabit Ethernet. The storage channel is reported as fiber channel. The peak

theoretical bandwidth reported by vendors (Myricom4) is one way 2 Gbits/s and short

messages latencies of 4 µs.

6.3 Parallel performance

Parallel performance of the implementation has been studied for the IBM SP3

architecture for speedup and load balance. The code has also been ported to SGI Origin

2400 and Compaq EV6 architectures.

6.3.1 Speedup

A measure of parallel efficiency is speedup. Figure 6.2 shows the fine grained

standalone FEM simulation performance in terms of speedup. The impact of fine-grained

parallelism on the overall GA-FEM efficiency was performed by using different number

of processors (e.g., 1, 2, 4 and 8 processors) for each FEM forward function evaluation

(see figure 6.3). The best performance was observed for 2 processors per case, as cache

benefits outweigh the communication costs. The fine-grained FEM parallelism is

especially useful for inherently sequential LS methods (PWL and HKJ), as the function

evaluation in LS process can be performed using more number of processors (say 8). The

impact of coarse-grained parallelism is studied by measuring the total runtime for 10 GA

generations with increasing number of processors on the IBM SP3 (see figure 6.4).

Increasing the number of processors from 2 to 128 we see a speedup of 58 against an

ideal linear speedup of 64. These simulations used a fixed fine-grained parallelism of 2

processors per FEM simulation. The coarse-grained parallelism in the GA optimizer

(embarassingly parallel) is beneficial for using large number of processors and helps

achieve very good parallel efficiency.

4 http://www.myricom.com/myrinet/overview/

 66

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10

Num ber of processors

S
p

ee
d

u
p

Ideal

IBM SP3

Figure 6.2 Standalone fine grained FEM simulation performance.

1629

1379
1526

1982

0

500

1000

1500

2000

2500

1 2 4 8

Number of processors per individual

E
xe

cu
tio

n
T

im
e

(s
ec

)

Figure 6.3 Total time taken by 129 processors to complete 10 generations using 1, 2,
4, and 8 processors per individual on the IBM SP. Population size is 128.

 67

41659

21350

10818

5534
2754 1421 717

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

E
xe

cu
tio

n
T

im
e

(s
ec

s)

2 4 8 16 32 64 128

Number of Processors

Figure 6.4 Time taken for 10 GA generations on the IBM SP using 2 processor per
FEM simulation

6.3.2 Load balance

The load balance study is performed by artificially simulating the processor speed

by forcing different processor groups to perform different number of FEM time steps.

Four classes of processors are created and each class performs 50, 100, 150, and 200 time

steps respectively. The processor class that performs 50 time steps will complete a

transport simulation approximately 4 times faster than the processor class that performs

200 time steps. This way we simulate different processor speeds on the same machine. A

fixed population size of 256 is used and simulations run for one GA generation. A total of

5, 9 and 17 processors are used with 1, 2, and 4 processors per subgroup for function

evaluations respectively. One processor (master) does the GA computations. Figure 6.4

shows the load balance results. For perfect load balance each processor class should

perform the same number of time steps. However, this is not generally feasible due to the

startup round and the fact that each time step in the transport simulations may involve

slightly different work load. Given these caveats, the load balance observed in Figure 6.4

is reasonably good illustrating the efficiency of the dynamic scheduling algorithm. For

example, in the case with 2 processors per group, the processor class that performs 50

 68

time steps complete 137 transport simulations (6850 time steps) and the group that

performs 200 time steps complete 27 transport simulations (5800 time steps). Thus the

processor class that is 4 times faster is performing about 5 times more work. The load

balance efficiency (defined as the least number of time steps performed by a processor

class divided by the most number of time steps performed by a processor class) is about

74%, 74%, and 69% for the 1, 2, and 4 processor groups respectively. While this is not

perfect, it is still good given the caveats mentioned above.

70
00

68
50

68
50

59
00

58
00

57
00

48
0051

00

51
00

50
0054

0056
00

1 process 2 processes 4 processes

Processes per group

T
o

ta
l t

im
e

st
ep

s

50 100 150 200 time steps

Figure 6.5 Load balancing efficiency of self-scheduling algorithm. Processor speed is
artificially simulated by varying number of time steps.

6.3.3 Scalability analysis of hybrid approach

A simulation experiment to study the scalabilty of the hybrid approach by using

the simplex method as the local search approach was conducted. As stated earlier, task

parallelism in the simplex method is limited to the number of decision variables. The

RGA with a population size of 100 is run for 50 generations and then the simplex method

is continued for 100 cycles. The study was performed for 4 cases using total processor

 69

counts of 17, 33, 65 and 129 for the RGA and simplex methods. The single source release

history problem is tested (10 decision variables). The results are shown in figure 5.13.

For RGA, 2 processors are used for each FEM simulation. For the simplex method, due

to the reduction in coarse grained parallelism, the fine-grained FEM parallelism is

increased to 4 or 8. The case using 129 processors takes 10000 seconds while the case

using 17 processors takes 45000 seconds to complete the simulation (a speedup of 4.5 out

of a possible maximum of 8). This shows that while the use of a local search inhibhits

parallelim to some extent, by increasing the fine grained parallelism we are able to

alleviate some of this.

0

5

1 0

1 5

2 0

2 5

3 0

0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0

W a ll c lo c k ru n tim e (S e c o n d s)

R
S

E
 B

es
t

R G A (1 2 9 p ro c s , 2 p ro c s p e r c a s e)

S im p le x (1 2 9 p ro c s , 8 p ro c s p e r c a s e)

R G A (6 5 p ro c s)

S im p le x (6 5 p ro c s , 4 p ro c s p e r c a s e)

R G A (3 3 p ro c s)

S im p le x (3 3 p ro c s , 4 p ro c s p e r c a s e)

R G A (1 7 p ro c s)

S im p le x (1 7 p ro c s , 4 p ro c s p e r c a s e)

Figure 6.6 The scalability of hybrid approach using different processor count for
local search, namely simplex.

 70

6.4 Grid computing

The grid computing investigations are carried on the TeraGrid. The National

Science Foundation (NSF) funded TeraGrid project is a collection of heterogeneous

geographically distributed high performance computer resources (typically parallel

supercomputers) connected by high bandwidth and low latency network. The coarse-

grained task parallelism and fine-grained data parallelism make this application ideal for

the grid environment since the application has two-levels of communication hierarchy

(one loosely coupled and the other tightly coupled) analogous to the hardware

characteristics of the grid. TeraGrid is continually evolving and currently five sites,

National Center for Supercomputing Applications (NCSA), San Diego super computer

center (SDSC), Pittsburgh Supercomputing Center (PSC), Argonne National labs (ANL),

and California Institute of Technology (Caltech) are part of the TeraGrid. Several new

sites are to be added in the near future. At the time of this writing the systems are still in

testing phase and are not available to general users for production runs. The accounts on

these machines were available for testing only in August 2003. Therefore the systems are

not fully stable and the tests are carried only at NCSA and SDSC sites. The

TeraGridLinux clusters at NCSA (TG-NCSA) and SDSC (TG-SDSC) are similar systems

with 256 and 128 dual processor nodes respectively. For hardware information see

section 6.2. Additional hardware and software features of the TG machines are available

on the internet5.

The first step was to port the GA-LS-FEM code to the NCSA and SDSC TeraGrid

Linux clusters. It primarily required minor compilation error fixes. Extensive single site

runs and limited number of cross-sites were done to evaluate performance. Recall that our

GA-LS-FEM implementation has both fine and coarse-grained levels of parallelism. The

fine-grained parallelism (FEM transport simulator) computations are communication

intensive. Thus for cross-site runs, the processors forming the FEM subgroups are

ensured to be local to a single site and are not across sites (section 4.2).

5 www.teragrid.org

 71

6.4.1 Results

During this investigation MPICH-G2 (Globus flavor of MPICH) was unavailable

(see section 4.2). Thus Virtual Message Interface (VMI) flavor of MPICH (MPICH-

VMI-INTEL) is used in the runs. The two sub sections that follow give the bandwidth

benchmark test results and the FEM/RGA-FEM simulation results.

Teragrid bandwidth (ping-pong) test

Ping-pong MPI bandwidth tests are performed for single cluster (both intranode

and internode) and cross-cluster cases. The interconnect/network bandwidth is measured

by sending and receiving messages of varying sizes between two processors using

MPI_send/MPI_Recv. This test provides information about the actual available

bandwidth if one were to run a real application. Table 6.1 gives the single site intra and

inter node interconnect bandwidths and the cross-site network bandwidth. While the MPI

bandwidth increases with message size, a peak intranode bandwidth of 1.5 GB/sec (for

256 KB messages) and a peak internode bandwidth of 0.23 GB/sec (for 512 KB

messages) is observed. The cross-site network bandwidth peaks at 42 MB/sec for 4MB

size messages. This is very small compared to theoretical network bandwidth of

40Gbits/sec. The network latency between SDSC and NCSA has been measured to be

around 30ms and is very high. Hence, for cross site runs proper care must be taken to

reduce the number of small messages sent across and bundle the messages if necessary.

Also latency hiding mechanisms such as overlapping computations with communication

should be considered to further improve performance.

 72

Table 6.1 MPI Bandwidth for single and cross site run

FEM and RGA-FEM performance on TeraGrid

The performance of standalone FEM code is compared in figure 6.7 for single-site

and cross-site runs. While we see a superlinear speedup behavior for runs within a

cluster, the cross-site FEM runs show a very large communication overhead. This is

mainly due to the high network latency (30ms) between TG-NCSA and TG-SDSC. For

example, for the 8 processors per FEM simulation case single cluster run takes only 8

seconds whereas the cross-site run takes approximately 1300 seconds. This clearly

highlights the importance of performing FEM simulations locally on a single cluster.

RGA-FEM performance results are given in table 6.2. The runs using MPICH-

GM-INTEL perform better in most cases than the MPICH-VMI-INTEL for single and

cross-site runs since the GM interface uses the faster Myrinet connection within cluster

instead of TCP throughout.

Cross Site
(MB/sec)

Single Site
Bytes Internode

(MB/sec)
Intranode
(MB/sec)

42.7302 234.43 649.45 4194304

29.7817 233.39 659.67 2097152

11.8127 231.11 942.22 1048576

7.3102 228.84 1492.93 524288

3.4516 224.87 1513.78 262144

2.2856 217.22 1429.44 131072

0.8622 203.44 1262.05 65536

0.4274 180.39 1016.64 32768

0.2738 146.85 720.51 16384

0.1819 128.78 788.5 8192

0.093 103.02 596.83 4096

0.03 50.82 245.92 1024

 73

Figure 6.7 Performance of single vs. cross-site fine grained parallelism

S in g le vs . c ros s s ite f in e g r in ed p a ra lle lis m (V M I2)

1 0 5 .8 4
3 9 .0 8 1 3 .4 8 .4 3

1 3 4 2 1 3 2 1 1 3 0 4

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

1 4 0 0

1 6 0 0

1 2 4 8

N u m b er o f p roc es s o rs p er F E M s im u la tion

W
al

lc
lo

ck
 ti

m
e

(s
ec

.)

S in g le s ite (T G -N C S A)

C ros s s ite (T G -N C S A an d T G -S D S C)

 74

Table 6.2 Runtimes for single and cross-site RGA-FEM simulations (using VMI1)

8 4 2 1

428 183 131 129 (64 + 65)

667 390 217 261 65 (32 + 33)

890 421 369 478 33 (16 + 17)

1937 1215 700 835 17 (8 + 9)

Cross site runtime (sec) using VMI1+TCP(Gig)
interconnection

67 53 104 129

168 125 174 268 65

276 201 316 475 33

491 351 596 834 17

Single site runtime (sec) using VMI1+GM
interconnection

268 136 122 129

467 230 - 259 65

870 438 366 474 33

- 966 681 848 17

Single site runtime (sec) using VMI1+TCP(Gig)
interconnection

Number of processors per FEM simulation Number of
processors for
RGA-FEM
simulation

 75

Chapter 7 – Research contributions and topics for further research

This research has centered on three areas of exploration: (i) development of

optimization algorithms for inverse modeling, (ii) application to various groundwater

inverse problems, and (iii) enabling parallel computing technologies for the compute

intensive simulations. Emphasis is given in the following order: optimization, parallel

computing, and application. This chapter provides a summary of findings,

accomplishments, and areas for future research.

7.1 Research findings

• Hybrid optimization approaches are generally more effective than standalone GA

or LS for inverse modeling.

• Release history problems are easier to solve since the signature of the decision

variables are more effectively carried in the break through curves. For source

identification problems, the location information is less effectively carried by the

signals and are more difficult to solve.

• The biological activity zone identification problems are more naturally posed as

discrete optimization problems and are less suited for real GA’s or local searches.

• The two level of parallelism encountered in these types of problems, namely,

coarse grained in the optimizer and fine grained in function evaluation is ideal for

grid environments.

• The middleware tools (or technology) for grid computing is not yet mature and

needs further development for more wide spread acceptance.

7.2 Research accomplishments

• An efficient and flexible parallel hybrid optimization framework has been

developed for solving inverse problems [Sayeed and Mahinthakumar, 2002].

• The parallel implementation can handle multi-type/multi-start GA or local

searches (LS) concurrently [Sayeed and Mahinthakumar 2003 (1) and

Mahinthakumar and Sayeed, 2003].

 76

• The following methods have been implemented in the optimization module: (i)

Three variations of GA: binary GA, integer and real GA’s, (ii) Three non-gradient

based local search techniques: Nelder-Meade simplex (NMS), Hooke-Jeeves

pattern search (HKJ), and Powell’s method of conjugate directions (PWL), and

(iii) One gradient-based method: Fletcher-Reeves conjugate gradient (CG)

[Sayeed and Mahinthakumar, 2003 (3)].

• The optimization module has been optionally configured to perform noisy-GA

and modeling to generate alternatives (MGA) simulations.

• The implementation is portable to most parallel environments as it is written in

Fortran 77/90 and parallelized using the message passing interface (MPI) library.

• The GA-LS-FEM framework has been tested on the Teragrid [Sayeed and

Mahinthakumar 2003 (2)].

• The parallel optimization framework has facilitated solutions to complex three-

dimensional groundwater inverse problems that have not been attempted before.

7.3 Topics for further research

• Additional optimization algorithms can be added to the existing framework.

• Preliminary investigations of Noisy-GA approach to handle uncertainty in

groundwater problems needs further study. Also, it is necessary to identify the

best possible approach to handle uncertainty during local searches.

• The optimization and function evaluation (groundwater FEM simulator) codes are

tightly coupled in this implementation for improved portability at the expense of

modularity. However, future implementations should look into more elegant

formulations that can use two separate executables that communicate to one

another via the new features of MPI-2.

• The modeling to generate alternatives (MGA) approach to address non-

uniqueness nature of some of the groundwater inverse problems should be

explored further with new test problems.

• The optimization approaches should be studied for other problems in the

groundwater area such as hydraulic conductivity inversion.

 77

• The hybrid optimization approaches developed in this thesis should be tested for

real field characterization problems.

 78

BIBLIOGRAPHY

Abramson D, Rajkumar Buyya, Jonathan Giddy, 2002. A computational economy for

grid computing and its implementation in the Nimrod-G resource broker, , Future

generation Computer System 18 (2002) 1061-1074.

Aral, M.M., and J. Guan, (1996). Genetic algorithm in search of groundwater

pollution sources, in Advances in Groundwater Pollution Control and Remediation,

edited by M.M. Aral, NATO ASI Series, 2(9), 347-369.

Aral, M.M., J. Guan and M L Maslia, (2001). Identification of contaminant source

location and release history in aquifers, Journal of hydrologic engineering, Vol. 6, No.

3, May/June, 2001.

Atmadja J and Bagtzoglou AC, (2001). State of the art report on mathematical

methods for groundwater pollution source identification, Environmental Forensics, 2

(3): 205-214 SEP 2001.

Belegundu D. Ashok and Chandrupatla R. Tirupathi, 1999. Optimization concepts and

applications in engineering, Prentice Hall Inc.

Brill E.D. Jr., J.M. Flach, L.D. Hopkins, and S. Ranjithan, (1990). MGA: A Decision

Support System for Complex, Incompletely Defined Problems, IEEE Trans. on

Systems, Man, and Cybernetics, vol. 20, no. 4, pp. 745-757, 1990.

Cieniawski S. E., Eheart, J.W., Ranjithan, S. (1995). Using genetic algorithms to solve

a multi-objective groundwater monitoring problem, Water Resources Res., 31(2),

399-409.

Davis, L. (ed). (1991). Handbook of genetic algorithms. Van Nostrand Reinhold, New

York, N.Y

Espionza, P. F, B. S. Minsker and D. E. Goldberg (2003). An adaptive hybrid genetic

algorithm for groundwater remediation design, Journal of water resurces planning and

management ASCE (accepted 2003).

Floudas, C.A., and Pardalos, P.M., (2001). Encyclopedia of Optimization, v.1-6,

Kluwer Academic Publishers, Dordrecht and London.

 79

Giest, A., et al. (1994). PVM: Parallel Virtual Machine – A uers guide and tutorial

for network computing. MIT Press, Cambridge, Mass.

Giacobbo F, Marseguerra M, and Zio E, (2002). Solving the inverse problem of

parameter estimation by genetic algorithms: the case of a groundwater contaminant

transport model, Annals of Nuclear Energy, 29 (8): 967-981 MAY 2002.

Goldberg, D., (1989). Genetic Algorithms in Search, Optimization, and Machine

Learning, Addison-Wesley, 412 pp.

Goldberg, D.E., and K. Sastry (2001). A practical schema theorem for genetic

algorithm design and tuning, IlliGAL Report No. 2001022, University of Illinois at

Urbana-Champaign.

Gopalakrishnan, G., Minsker, B. S., and Goldberg, D. E. (2003). Optimal sampling in a

noisy genetic algorithm for risk-based remediation design. Journal of

Hydroinfomatics 5, 11-25, 2003.

Gorelick, S. M. A review of distributed parameter groundwater management

modeling methods. Water Resources Research, 19(2), 305-319, 1983.

Gropp, W., Lusk W., and Skjellum A., (1999). Using MPI: Portable Parallel

Programming with the Message-Passing Interface, 2nd edition, The MIT Press,

Cambridge, MA.

Heidari, M and S. Ranjithan, (1998). A hybrid optimization approach to the

estimation of distributed parameters in two-dimensional confined aquifers, Journal

of American Water Resources Association, 34(4), pp. 909-920, 1998.

Hilton, Amy B. Chan and T. B. Culver (2003). Groundwater remediation design under

uncertainity using genetic algorithms, Journal of water resurces planning and

management, ASCE (accepted 2003).

Holland, J.H., (1975). Adaptation in Natural and Artificial Systems, University of

Michigan Press, Ann Arbor.

Huang CL, and Mayer AS, (1997). Pump-and-treat optimization using well locations

and pumping rates as decision variables, Water Resources Research, 33 (5): 1001-

1012 MAY 1997.

 80

Johnston E Williams (2002). Computational and data Grids in large scale science and

engineering, Future Generation Computer Systems 18 (2002) 1085-1100.

Katsifarakis, K. L, Karpouzos, D.K and N. Theodossiou, (1999). Combined use of BEM

and genetic algorithm in groundwater flow and mass transport problems,

Engineering Analysis with Boundary Elements, 23 (1999) 555-565.

Kennedy, J., and Eberhart, R.C. (1995). Particle swarm optimization. In proceedings of

IEEE International Conference on Neural Networks, Perth, Australia, IEEE Service

Center, Piscataway, NJ., pp. 1942-1948.

Kohl, J. A., (1997) High Perfomance Computing: Innovative Assistant to Science.

ORNL Review Volume 30, Numbers 3 & 4, 1997

Liu C. and W. P. Ball, (1999). Application of inverse methods to contaminant source

identification from aquitard diffusion profiles at Dover AFB, Delaware, Water

Resources Research, 35(7), 1975-1985, 1999.

Loughlin, D. H., and S. Ranjithan, (1999). Chance-constrained genetic algorithms,

Genetic and Evolutionary Computation Conference (GECCO), p.369-376.

Loughlin, D. H., S. Ranjithan, J. W. Baugh, and E. D. Brill, (2001). Genetic Algorithm

Approaches for Addressing Unmodeled Objectives, Engineering Optimization, 33 (5):

549 – 569, 2001.

Natarajan Anand, Marty Humprey, Andrew S. Grimshaw, (2002). The Legion support

for advanced parameter-space studies on a grid, Future generation Computer System

18 (2002) 1033-1052.

Mahar PS, and Datta B, (1997). Optimal monitoring network and ground-water-

pollution source identification, Journal Of Water Resources Planning And

Management-ASCE, 123 (4): 199-207 JUL-AUG 1997.

Mahar PS, and Datta B, (2000). Identification of pollution sources in transient

groundwater systems, Water Resources Management, 14 (3): 209-227 JUN 2000.

Mahar, P.S., and B. Datta, (2001). Optimal identification of groundwater pollution

sources and parameter estimation, ASCE Journal of Water Resources Planning and

Management, 27(1), 20-29.

 81

Mahinthakumar G., and Saied F. (1999). Implementation and Performance Analysis of

a Parallel Multicomponent Groundwater Transport Code, CD-ROM Proceedings of

the 1999 SIAM Parallel Processing Meeting, San Antonio, TX, March 1999.

Mahinthakumar G., Gwo J.P., Moline G.R., Webb O. F., (1999). Subsurface biological

activity zone detection using genetic search algorithms, ASCE Journal of

Environmental Engineering. Vol. 125, No. 12, p.1103-1112. December 1999.

Mahinthakumar, G., (1999). PGREM3D: Massively Parallel Codes for Groundwater

Flow and Transport, Unpublished Report.

http://www4.ncsu.edu/~gmkumar/pgrem3d.pdf .

Mahinthakumar,G., and Sayeed, M. (2003). Hybrid genetic algorithm - local search

approaches for groundwater source identification problems, Special Issue on

Evolutionary Computation, ASCE J. of Water Resources Planning and Management,

2003.

Mckinney, D.C., and M.D. Lin, (1994). Genetic algorithm solution of groundwater

management models, Water Resources Research, 30(6), 1897-1906, 1994.

McLaughlin D, and Townley LR, (1996). A reassessment of the groundwater inverse

problem, Water Resources Research, 32 (5): 1131-1161 MAY 1996.

Michalewicz, Z. (1996). Genetic algorithms + data structures = evolution programs,

3rd Edition, Springer-Verlag, New York, 387 p.

Miller, B. L and D. E. Goldberg, (1996), Optimal Sampling for Genetic Algorithms,

Intelligent Engineering Systems through artificial Neural Networks (ANNIE’ 96), Vol. 6,

pp 291-298, NewYork, ASME Press, 1996.

Miller, B.L. (1997). Noise, sampling and genetic algorithms, PhD Thesis, University of

Illinois at Urbana-Champaign.

Morrison, R.D. (2000). Application of Forensic Techniques for Age Dating and

Source identification in environmental litigation, Environmental Forensics, 1, 131-

153.

National Research Council, (1990). Groundwater models – scientific and regulatory

applications, National Academic Press, Washington, D.C.

 82

Neupauer, R. M., B. Borchers, and J. L. Wilson, (2000). Comparison of inverse

methods for reconstructing the release history of a groundwater contaminant

source, Water Resources Research, 36(9), 2469-2475.

Pan LH, and Wu LS (1998). A hybrid global optimization method for inverse

estimation of hydraulic parameters: Annealing-simplex method, Water Resources

Research, 34 (9): 2261-2269 SEP 1998.

Powell, M. J. D, (1964). An efficient method for finding the minimum of a function of

several variables without calculating derivatives, Computer Journal, Vol. 7, No. 4, p.

303-307, 1964.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. Numerical recipes in

Fortran, Second edition. Cambridge University Press, New York, NY, 1996.

Quinn, M. J, Parallel Programming in C with MPI and OpenMP. –1st ed. 2004.

McGraw Hill, ISBN 0-07-282256-2.

Ritzel, B. J, Eheart, J. E., and Ranjithan, S. (1994). Using genetic algorithms to solve a

multiple objective groundwater pollution containment, Water Resources Research,

30(5), 1589-1603.

Santamarina, J. C and Fratta, D (1998). Introduction to Discrete Signals and Inverse

Problems in Civil Engineering, ASCE PRESS

Sayeed, M. and G. Mahinthakumar, (2002). A multilevel parallelization scheme based

on MPI communicators for solving groundwater inverse problems, High

performance computing 2002, Society for Computer Simulation International, p. 137-144

Sayeed, M. and Mahinthakumar .G (2003). Hybrid optimization approaches for

solving groundwater inverse problems in a parallel computing environment,

Accepted by World Water & Environmental Resources Congress 2003 & related

symposia, ASCE EWRI conference.

Sayeed. M., Mahinthakumar .G, Dongju Choi, Leesa Brieger, Dominic Holland, Nick.

Karonis, (2003). Parallel hybrid optimization approaches for the solution of large

 83

scale groundwater inverse problems on the teragrid, Poster presentation at SC 2003,

Phoenix AZ.

Sayeed, M. and Mahinthakumar .G (2003). An efficient parallel optimization

framework for solving inverse problems. Draft in preparation for submission to ASCE

Journal of Computing in Civil Engineering.

Sciortino, A., T. C. Harmon, and W-G Yeh, (2000). Inverse modeling for locating

dense nonaqueous pools in groundwater under steady flow conditions, Water

Resources Research, 36(7), 1723-1735, 2000.

Semprini L., and P.L. McCarty, 1991. Comparison between model simulations and

field results for in-situ biorestoration of chlorinated aliphatics: Part 1.

Biostimulation of methanotropic bacteria. Ground Water, 29(3), 365-374.

Shieh, Horng-Jer and Peralta, R. C, 2003. Optimal in-situ bioremediation system

design using parallel recombinative simulated annealing, Journal of water resurces

planning and management ASCE (in press 2003).

Skaggs, T.H., and Z. J. Kabala (1994), Recovering the release history of a

groundwater contaminant, Water Resources Research, 3-, 71-79, 1994.

Smalley JB, Minsker BS, Goldberg DE, (2000). Risk-based in situ bioremediation

design using a noisy genetic algorithm, Water Resources Research, 36 (10): 3043-3052

OCT 2000.

Sun, Ne-Zheng (1994). Inverse problems in groundwater modeling, Theory and

Applications of Transport in Porous Media (Ed. Jacob Bear), Vol. 6, Kluwer

Academic Publishers, 337 p.

Takewaki, I (2000) Dynamic Structural Design, Inverse Problem Approach, WIT

PRESS.

Tompson, A.F.B., R. Aboubu, and L.W. Gelhar. (1989). Implementation of the three-

dimensional turning bands random field generator. Water Resources Research. vol.

25, no. 10 (Oct.): 2227-2243.

 84

Waldrop M. M, (2002) Grid Computing could put the planet’s information-

processing power on tap, Technology Review May 2002.

Wang M, and Zheng C, (1997). Optimal remediation policy selection under general

conditions, Ground Water, 35 (5): 757-764 SEP-OCT 1997.

Wang M, and Zheng C, (1998). Application of genetic algorithms and simulated

annealing in groundwater management: formulation and comparison. Journal of

American Water Resources Association, 34(3), 519-530, 1998.

Woodbury A, Sudicky E, Ulrych TJ, Ludwig R (1998). Three-dimensional plume

source reconstruction using minimum relative entropy inversion, Journal Of

Contaminant Hydrology, 32 (1-2): 131-158 JUL 1998.

Woodbury AD, and Ulrych TJ, (2000). A full-Bayesian approach to the groundwater

inverse problem for steady state flow, Water Resources Research, 36 (8): 2081-2093

AUG 2000.

Yoon JH, and Shoemaker CA, (2001). Improved real-coded GA for groundwater

bioremediation, Journal Of Computing In Civil Engineering, 15 (3): 224-231 JUL 2001.

 85

Appendix - A

PRELIMINARY INVESTIGATION OF NOISY-GA

The Noisy-GA approach uses multiple realizations (sampling) to reduce the

amount of noise from fitness evaluations in noisy environments. This is similar to Monte-

Carlo type sampling and provides a more realistic estimate of the fitness [Gopalakrishnan

and Minsker 2001]. However, Monte-Carlo simulation modeling uses a large sampling

set compared to a few samples per design used by noisy GA to identify robust designs.

The noise in the system can arise from any factor that affects the accurate evaluation of

fitness. These factors can be approximate fitness function, the use of noisy data,

uncertainty in the input parameters and human error. For example, in groundwater

modeling noisy fitness functions can arise from uncertainty in input parameters (e.g.

hydraulic conductivity, porosity and chemical reaction rate coefficients) or measurement

errors (e.g. hydraulic heads, flow rates, contaminant arrival times, solute concentrations,

and/or mass removal rates at monitoring points).

A.1 Current approach

Uncertainties in results can be associated with model input parameters or with

numerical and conceptual difficulties present in the model [Zheng and Bennett, 2002].

While there are several factors that contribute to uncertainty, this study focuses on

uncertainty resulting from the input hydraulic conductivity data. Several studies have

identified this to be the most challenging parameter to predict correctly for any particular

site [Zheng and Bennett, 2002].

Multiple realizations are used for the noisy-RGA approach. Random

heterogeneous hydraulic conductivity fields (K-field) are generated using the 3D turning

bands code. The turning bands code is a parallelized version of the original code

developed by Andy Thompson (Thompson et al. 1989). Then the steady state flow fields

(velocity and flux) are generated using the PGREM3D flow solver using the K-fields

 86

generated. Since the sample size plays a critical role in obtaining a robust solution,

several sample sizes are experimented.

For the noisy-RGA a sample set of 100 is chosen for generating the K-field. The

100 hydraulic conductivity fields are generated synthetically by running 100 Monte-Carlo

simulations of the turning bands code. These 100 K-fields are used by the flow code to

generate the 100 steady state flux and velocity fields. Several test cases, each with

different sets of realizations are experimented to analyze the behavior of noisy-RGA’s for

a single source release history reconstruction problem. One of the K-field is chosen for

generating the reference concentration profiles (observed values).

A.2 Experiments

The experiments carried out are

• One randomly selected K-field for each individual in a population for every

generation.

• 1, 2, 4, 8 and 16 K-field realizations for each GA generation (all individuals use

the same set of realizations). The fitness for each individual is the average of the

realizations.

While it is not clear how exactly one would proceed with the LS when using noisy-

GAs, one could envision the following options:

• Using the same velocity and flux field as used for generating reference observed

concentration values.

• Randomly selecting one of the velocity and flux fields from the sample set for the

whole LS run.

• Randomly selecting any one of the velocity and flux fields from the sample set.

• Using the average of the sample set.

• Perform LS for each realization and then take the average as the solution.

A.3 Results

From the results shown in table A.1 the solutions produced using multiple

realizations are very different in the decision space but are close in their objective

 87

function value. After the noisy-RGA approach, hybrid optimization using different local

searches can be performed using the actual hydraulic conductivity field used in

generating the observed concentration profiles or some other approach such as using the

same number of realizations from the sample set for each forward function evaluation.

The post-processing of solutions of different realizations obtained by the noisy-

RGA are necessary to estimate the degree of robustness of the solutions. This can be

estimated by calculating the average RSE produced by the actual and noisy-RGA

solutions (1, 2, 4, 8 and 16 multiple realization cases) against the full sample set (i.e.

running with all the 100 hydraulic conductivity fields). For identifying a robust solution,

one hypothesis is that the solution giving the least average RSE will be the robust

solution. This would show the robustness of the solution against any perturbation or noise

in the hydraulic conductivity field. However, the post-processing yielded very similar

average RSE values for the different multiple realizations noisy-GA solutions, as shown

in table A.2. This necessitated another approach such as fixing a threshold RSE value and

counting the number of samples that pass this threshold. Even this failed as is evident

from table A.2 (or figure A.1) for RSE threshold values of 10 and 20. Also, notice the

behavior of noisy-GA solutions is similar to the actual case (see figure A.1). This

behavior can be attributed to some factors such as: (i) the hydraulic conductivity sample

set size being small (100), (ii) during the noisy-GA selection process, average of the RSE

values is used for multiple realizations sampling, or (iii) sub optimal GA parameters such

as population size or the number of generations. However, it should be noted that

complete set of runs could not be carried out because of time constraints and could be an

area for future research work.

A.4 Conclusions

Based on the limited results the noisy-RGA approach may require further pre and

post-processing analysis in order to find a robust solution for this test problem. However,

some general observations and reasons for the noisy-RGA behavior are given:

 88

• Small variation in hydraulic conductivity fields does not necessarily reflect the

same behavior in the concentration profiles generated. It can also result in large

variations.

• The variations in the K-fields are disruptive to GA convergence.

• Increasing the number of realizations and averaging the fitness did not improve

the GA performance.

• Sampling set size is critical in identifying a robust solution.

• The selection process may influence noisy-GA performance.

 89

Table A.1 Results obtained for the single source release history reconstruction
problem using noisy-RGA approach with multiple realizations and heterogeneous
hydraulic conductivity field.

Noisy-GA solutions obtained using different realizations Actual
Solution Number of realizations

(mg/L) 1 2 4 8 16
70 86.88 90.16 77.62 75.02 89.14
50 82.73 66.22 86.79 94.6 87.06
90 64.61 58.26 59.82 44.02 54.74
40 49.9 54.49 66.27 67.65 63.84
50 46.75 54 44.52 56.77 48.11
60 22.69 31.56 17.89 46.48 27.54
55 32.75 30.32 33.19 11.17 18.79
1 19.23 27.65 19.07 14.86 7.19
1 22.55 14.2 15.79 11.17 26.57
0 0.53 0.37 0.38 0.35 0.28

RSE Value
0 4.71 9.6 14.16 13.82 7.85

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7

Case number of Noisy-GA realizations

R
S

E
 V

al
u

e

Case 1: actual solution Case 2: 1 realization solution Case 3: 2 realizations solution

Case 4: 4 realizations solution Case 5: 8 realizations solution Case 6: 16 realizations solution

Threshold < 10 RSE

Threshold < 20 RSE

Figure A.1 Variation in RSE values shown for the different noisy-GA realization
solutions using the full hydraulic conductivity sample set (100).

 90

Table A.2 RSE values obtained against the full hydraulic conductivity field sample
set (100) using the solutions of noisy-RGA and also actual solution.

Number of realizations used in noisy-GA Actual
Solution 1 2 4 8 16

22.16 20.16 20.92 20.61 19.92 19.75
52.73 51.22 51.81 51.46 51.08 50.75
36.66 35.47 36.23 35.00 34.60 33.90
25.95 27.39 26.27 27.83 28.62 29.29
22.12 23.67 22.83 23.44 24.20 24.56
16.73 18.68 18.07 17.66 18.32 18.41
14.04 12.27 13.07 12.23 11.57 11.24
16.93 15.31 16.13 15.14 14.46 14.02
22.50 20.54 21.37 20.72 20.08 19.71
13.71 12.92 13.43 12.45 11.95 11.68
15.73 15.08 15.20 15.15 15.16 15.22
16.37 16.21 15.89 16.75 16.77 17.26
24.14 22.24 23.03 22.43 21.89 21.51
19.39 21.57 21.00 20.27 20.93 20.86
35.48 33.82 34.62 33.79 33.24 32.73
18.43 19.41 18.57 19.74 20.34 20.92
28.77 26.85 27.67 27.03 26.46 26.04
16.37 14.65 15.52 14.45 13.78 13.30
36.83 35.12 35.97 34.98 34.50 33.86
15.98 15.86 16.30 14.87 14.47 13.98
61.14 59.94 60.50 59.90 59.63 59.17
19.48 21.77 20.85 21.01 21.89 22.15
14.39 13.29 13.74 13.31 12.80 12.77
23.69 23.15 23.46 22.75 22.77 22.38
0.00 4.71 3.44 3.78 3.86 4.93

36.04 34.47 35.29 34.23 33.80 33.13
19.36 17.46 18.11 17.98 17.38 17.33
28.73 28.82 29.39 27.34 27.25 26.34
22.69 24.37 23.59 23.86 24.68 24.88
17.02 17.83 17.55 17.32 17.54 17.66
10.61 11.08 10.87 10.68 10.75 10.99
16.34 14.68 15.35 14.81 14.30 14.08
26.23 24.41 25.16 24.58 24.12 23.72
18.97 21.20 20.39 20.24 21.12 21.25
36.19 37.61 36.80 37.39 38.32 38.52
38.99 37.58 38.38 37.26 36.79 36.12
16.10 15.41 15.28 16.07 16.04 16.43
34.53 33.85 34.51 33.03 32.75 32.01
21.50 20.68 21.36 19.86 19.57 18.87
10.56 10.55 10.32 10.46 10.79 11.00
28.01 26.36 27.21 26.20 25.61 25.05
8.34 10.50 9.74 9.42 10.10 10.34

53.75 52.43 53.09 52.31 51.96 51.42
16.21 16.09 15.82 16.40 16.60 16.93
10.39 11.44 10.81 11.17 11.68 12.07
28.66 26.73 27.60 26.84 26.21 25.75
17.82 16.39 17.17 15.98 15.56 14.96
8.98 7.24 7.99 7.10 6.38 6.19

 91

24.68 22.66 23.55 22.77 22.14 21.66
7.17 7.25 7.09 6.93 6.89 7.26

35.45 34.15 34.98 33.61 33.20 32.42
33.01 34.51 33.65 34.26 35.28 35.48
30.55 32.01 31.39 31.41 32.23 32.26
27.65 25.86 26.74 25.77 25.18 24.62
36.90 38.58 37.57 38.51 39.49 39.86
16.84 16.61 16.40 16.88 17.12 17.37
17.81 19.00 18.08 19.26 19.92 20.51
12.51 13.36 13.12 12.60 12.91 12.93
31.79 30.60 31.35 30.10 29.75 29.05
28.89 27.19 27.98 27.20 26.62 26.15
30.12 29.23 29.75 28.90 28.63 28.15
26.49 24.75 25.35 25.23 24.68 24.58
31.55 30.31 30.93 30.13 29.82 29.33
34.36 33.71 34.23 33.19 32.93 32.43
12.21 12.75 12.72 11.78 12.06 11.84
21.03 19.47 20.03 19.85 19.29 19.25
29.80 28.12 28.97 27.95 27.42 26.83
10.56 11.03 10.48 11.20 11.53 12.05
38.73 37.04 37.79 37.14 36.63 36.19
16.62 16.21 16.38 15.89 15.96 15.76
16.19 15.16 15.74 14.87 14.27 13.98
26.56 25.27 26.04 24.84 24.38 23.74
15.79 14.72 15.05 14.96 14.56 14.64
21.61 20.57 20.80 20.93 20.77 20.79
17.82 17.63 17.22 18.26 18.52 19.00
21.73 20.03 20.88 19.84 19.34 18.78
37.39 36.12 36.93 35.62 35.18 34.44
37.39 38.96 38.00 38.85 39.92 40.22
33.75 31.88 32.59 32.26 31.72 31.45
32.17 30.25 30.99 30.59 30.09 29.76
13.32 14.23 13.87 13.66 14.08 14.22
11.32 10.67 10.45 11.28 11.34 11.82
17.09 19.25 18.60 18.09 18.79 18.81
17.84 18.94 19.10 17.16 17.40 16.71
26.12 28.12 27.24 27.52 28.44 28.63
13.81 13.92 14.12 12.88 13.16 12.68
18.82 17.75 18.30 17.49 17.16 16.81
11.52 12.22 12.02 11.41 11.81 11.74
19.23 19.58 19.89 18.23 18.32 17.65
10.16 9.82 9.67 10.09 9.98 10.45
32.99 34.86 33.78 34.70 35.80 36.15
28.65 27.31 28.14 26.83 26.33 25.63
26.43 24.47 25.28 24.74 24.09 23.76
34.74 37.03 35.87 36.68 37.74 38.11
19.90 17.98 18.88 17.98 17.30 16.84
17.52 17.31 16.92 17.97 18.17 18.70
15.76 15.54 15.81 14.78 14.92 14.51
19.59 17.88 18.60 18.03 17.43 17.16
28.56 27.26 27.87 27.16 26.83 26.41
12.24 11.95 11.90 12.05 11.96 12.25
22.16 20.16 20.92 20.61 19.92 19.75

 92

Average RSE values

23.26 22.90 23.07 22.68 22.62 22.47
Number of RSE values < 10

4 4 5 4 4 3
Number of RSE values < 20

49 47 46 49 48 48

 93

Appendix - B

Preliminary Investigation of Modeling to Generate Alternatives (MGA)

Inverse problems are generally ill posed i.e. they suffer from non-uniqueness

(multiple solutions), non-existence (no solution) and instability (small error in the

measured observations results in large variation in parameter estimates) of the solution.

To address the “non-uniqueness” issue, a small set of alternative solutions that are far

apart in the decision space but close in the objective function space can be obtained using

the MGA technique. For example, in groundwater modeling two different source

locations can produce same observation data (i.e. concentration release histories etc).

Each alternative solution obtained by GA can be further fine-tuned using local search

methods (multi-point local search). From the small set of alternatives a single best

solution can be selected based on additional constraints or human judgment. Special GA

operators based on niching by sharing or crowding mechanisms have been developed by

[Loughlin et al. 2001] for the MGA technique.

B.1 MGA approach

The initial MGA implementation adopted in this work is very similar to the

approach of Loughlin et al. At the end of each GA generation a small set of MGA

alternatives is selected from a “candidate pool” that is within some cutoff range of the

best in the population (e.g. within 15% of the best in objective space). The first MGA

alternative is the best performing GA individual. The second alternative is selected from

the candidate pool such that it is farthest from the first in decision space based on a

Euclidean distance metric to be described later in the following section.

The remaining alternatives are selected such that they are farthest from all

previous alternatives. These selected MGA candidates are assigned higher fitness values

so that they are more likely to be carried over to the next generation. This ensures that the

MGA solutions have the unfair advantage of getting selected during the selection process.

Preliminary test results for the 3D source reconstruction problem were not encouraging,

 94

probably due to absence of restricted mating and subpopulation concepts in this

implementation. A modified implementation was adopted for further investigation

incorporating the following: (1) restricted mating and co-evolutionary strategies by

maintaining subpopulations (2) Varying the size of the candidate pool with the generation

number, i.e. by having a higher cutoff value initially and then reducing it with the

generation index, and (3) elitism for MGA alternatives. The effectiveness of this

approach was initially tested with a two-dimensional multi-modal test problem and then

applied to our groundwater inverse problems. The steps involved in the new MGA

approach are as follows:

Step 1. Select the candidate pool for MGA alternatives within certain range of the best in

the population

gen_factor = 0.15 +0.35*(maxgen-gen)/maxgen

rsemin ≤ rse_value(candidates) ≤ (1+gen_factor)*rsemin

Where, gen = current generation number and maxgen = maximum number of

generations.

If the candidate pool size is larger than the number of MGA alternatives desired,

then go to next step; otherwise do nothing for the MGA process. It is hoped that since the

gen_factor will be large (~0.5) in the beginning many individuals will qualify for the

candidate pool and the candidate pool will be larger than the alternatives.

Step 2. The next step is to select the MGA alternatives. The first MGA alternative is the

best individual in the population. The other alternatives are selected from the candidate

pool based on the distance metric given below, so that they are farthest from all previous

alternatives.

Distance, 2 2 2
1 1 2 2

1

() () ()
n

i i
i

r x y x y x y
=

= − + − + + −∑

Where, n = number of decision variables

1 2

1 2

{ , ,........., }

{ , ,........., }
n

n

x x x x

y y y y

=
=

 95

 and x y are the two alternate solutions.

When identifying more than two MGA solutions and for finding the 3rd or later

alternatives, the minimum of the distances from already selected alternatives is

calculated. The candidate solution with the maximum of the minimum distance from the

other alternatives is selected as the next alternative. This can be can be represented by the

following expression.

3,...,
1,..,3,..,
1,..,

max(min ())

where

 = number of MGA solutions desired

 = candidate pool size

 = number of MGA solutions already known (2)

 = distance (computed as shown above)

m ijk
j pi m
k q

MGA r

m

p

q

r

== =

=

≥

Step 3. Divide the population in to subpopulations equal to the desired number of MGA

alternatives. If more than one MGA alternative belongs to a subpopulation, retain the best

for that subpopulation and exchange the remaining alternatives with similar individuals

(based on distance metric) in subpopulations without any MGA alternatives. With this

approach every subpopulation will be seeded with exactly one MGA alternative.

Step 4. Once the MGA alternatives are properly seeded, reproduction is restricted to

subpopulations.

Step 5. Several approaches are available for selection. Some of them were implemented

and experimented, and are given below:

• In this approach fitness scaling is performed before selection. The individual

fitness is a combination of fitness and distance from the MGA alternative in that

subpopulation.

 96

* *

where

 and are weight factors for fitness and distance.

 fitness of individual

 Euclidean distance between between MGA alternative and individual .

i f i d i

f d

i

i

fitness w fit w dist

w w

fit i

dist i

= +

=
=

Note the weighting factors were chosen such that slightly more preference is given to

solutions with better fitness.

• In this second approach a record of the number of fit individuals in each of the

subpopulations is maintained. Here the fit corresponds to the threshold fitness

used in selecting the candidate population in step 1. If more than 50% of

individuals in the subpopulation are fit, then a flag is set to identify the

subpopulation. This criteria is used during the selection process, so that the

populations are balanced and do not prematurely converge to an inferior solution.

During the selection process (tournament selection) the individuals in the first

subpopulation, which has the best performing individual (based on fitness), are

selected solely based on fitness. For other subpopulations the selection can be

based on fitness and/or distance metric approaches as described below:

��In this approach the centroid of the subpopulations is used in the

calculation of the distance metric. The centroid is simply the average of all

the individuals in the subpopulation and can be represented by the

following expression.

 ,
1,..,

 , 1,..,nj i j
i m

X X m j
=

= =∑

Where,

m = subpopulation size

n = number of decision variables

X = vector of decision variables

The distance metric is now the distance (Euclidian) between the centroid

of a subpopulation and the individual and is calculated using a similar

expression given in step 2.

 97

(1) If less than 50% of the population is fit then the selection is based on

fitness only.

(2) If the subpopulation has more than 50% fit individuals, then the

selection between two fit individuals is based on the distance metric

only. If one of the individual is fit and the other below the fitness

threshold then the selection is based on fitness alone and the fitter

individual is selected. If both the individuals selected are below the

fitness threshold, then also the selection is based on fitness alone.

��In this approach, instead of using the centroid of the subpopulation, the

distance metric is computed from individual MGA alternatives in those

subpopulations. The distance (Euclidean) is computed between the MGA

alternative and a individual of the subpopulation using an expression

similar to the one given in step 2.

However, the approach using the centroid of the population worked better for the

test problem and is used for any further simulations using MGA’s.

Step 6. The MGA process in steps 1-5 is performed for every GA generation.

B.2 Test problem

As mentioned earlier the MGA implementation is evaluated with a test problem

where the alternatives are known. The two dimensional multi-modal problem tries to

maximize the following function:

(,) sin(19) 1.7 / sin(19) 1.7 / 2F x y x x y yπ π= + + + +

This function has the peak value of 5.15 at location (0.974, 0.974) and is the

global optimum. The other alternative solutions in the decision space that are maximally

different in the decision space but are reasonably good in the objective space are (0.018,

0.974) (0.974, 0.018) and (0.45, 0.55) or (0.55, 0.45). Additional information and

solutions to this multi-modal problem are reported in [Loughlin et al. 2001]. The results

obtained by using our implementation for this test problem are discussed in the next

section.

 98

Once the MGA implementation was validated based on the results, it is used for

the real 3D three sources release history reconstruction problem using heterogeneous

flow field. The problem setup is similar to the source release history reconstruction

problem described earlier in section 5.4. The results for this problem are discussed in the

next section.

B.3 Results

For the 2D test function problem, an initial GA population size of 100 is used and

other GA parameters are assumed. Four MGA alternatives are desired and the population

is divided (virtually) in to four subpopulations that undergo restricted mating as described

earlier. The MGA procedure described earlier is adopted. The GA+MGA process is run

for 50 generations and with different initial random seeds. Figure B.1 shows the

distribution of the solutions obtained for 50 different runs. The mean distance of MGA

alternatives (based on 50 runs) is computed as 0.75. This suggested the implementation is

working.

Results for the three sources release history reconstruction problem, using the

MGA approach with two different selection approaches, one based on fitness only and

the other based on psuedo fitness (objective function value and distance metric) are

shown in figures B.2 (a) and (b) and B.3 (a) and (b). These figures show that the selection

based on psuedo-fitness produced a very different 2nd MGA alternative compared to the

fitness only approach. However, other remaining two alternatives 3rd and 4th were very

similar for both selection approaches. The primary reason for this behavior can be

attributed to the lack of non-uniqueness nature of the release history problems.

Preliminary tests carried out on 2D problems indicate that the source

reconstruction problems (location and concentrations) exhibit more non-uniqueness

properties than release history problems. Therefore, the MGA approach is more suited for

these problems. This research could not be carried further for time constraints and can be

a potential topic for future research.

 99

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

Y

Alt-1

Alt-2

Alt-3

Alt-4

Figure B.1 Distribution of MGA solutions for 50 runs. Solutions marked with circles
are the MGA solutions.

 100

 (a)

Selection based on fitness

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Decision variables

C
o

n
ce

n
tr

at
io

n
 (

m
g

/L
)

MGA-1 (RSE 37.76)

MGA-2 (RSE 38.48)

(b)
Figures B.2 (a) and (b) Difference between MGA alternatives 1 and 2 for selection
based on fitness for two different runs.

Selec tion based on f itness

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Decision variables

C
o

n
ce

n
tr

at
io

n
 (

m
g

/L
)

M G A-1 (R SE 34.69)

M G A-2 (R SE 35.74)

 101

Selection based on psuedo fitness

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Decision variables

C
o

n
ce

n
tr

at
io

n
 (

m
g

/L
)

MGA-1 (RSE 33.65)

MGA-2 (RSE 37.79)

(a)

(b)

Figures B.3 (a) and (b) Difference between MGA alternatives 1 and 2 for selection
based on psuedo fitness for two different runs.

Selection based on psuedo fitness

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Decision variables

C
o

n
ce

n
tr

at
io

n
 (

m
g

/L
)

MGA-1 (RSE 43.16)

MGA-2 (RSE 46.94)

