
 
  

ABSTRACT 

MOHAMED SAYEED. A  parallel optimization framework for inverse problems. (under 

the direction of Dr. G. Mahinthakumar) 

Inverse problems that are constrained by large-scale partial differential equation 

(PDE) systems demand significant computational resources. These problems generally 

require the solution of a large number of complex PDE systems. Three dimensional 

subsurface characterization inverse problems fall under this category. A parallel hybrid 

optimization framework using global search and local search (LS) techniques is 

developed. The global search uses genetic algorithms (GAs). For LS several non-gradient 

based algorithms such as Nelder-Meade simplex, Hooke-Jeeves pattern search and 

Powell’s method of conjugate directions and a gradient based algorithm namely, 

Fletcher-Reeves conjugate gradient method are implemented in the framework. 

Subsurface inverse characterization problems are posed as optimization problems and 

solved using this framework. The GA or hybrid GA-LS optimizer is employed to drive a 

parallel finite-element (FEM) groundwater transport simulator. Multilevel parallelism 

opportunities exist at the coarse-grained optimization level and the fine-grained function 

evaluation level. Coarse-grained parallelism (task parallelism) in the optimizer is 

exploited using a self-scheduling algorithm. Fine-grained parallelism (data parallelism) in 

the FEM transport simulator is achieved through a domain decomposition strategy. The 

MPI (Message Passing Interface) communication library is used for the parallel 

implementation. Parallelism is enhanced for local searches by enabling concurrent 

execution of multi-start or multi-type local searches. Performance results for convergence 

are examined for different test problems including biological activity zone identification, 



 
  

contaminant source zone identification (location and concentration) and contaminant 

sources release history reconstruction problems showing the applicability of the proposed 

approach. The size and complexity of problems solved in this research far exceed what 

has been reported to date in the literature. The implementation has been extensively 

tested on a single supercomputer and on the grid (TeraGrid). This research illustrates that 

the hybrid approaches are generally more effective than either standalone GA or LS for 

solving inverse problems.  
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CHAPTER 1 – INTRODUCTION 

 

Inverse problems that are governed by large-scale partial differential equations 

(PDE) require significant computational resources and can be several orders of 

magnitude more computationally challenging than the corresponding forward problem 

(i.e., prediction) because repeated solutions of the forward problem are necessary. These 

problems are particularly challenging in subsurface contaminant characterization because 

the forward model can consist of several coupled large-scale nonlinear partial differential 

equation systems that can vary in three-dimensional space and time. Recent advances in 

search techniques such as genetic algorithms (GAs) and emergence of advanced 

computing resources such as the computational grid (networked supercomputers), have 

opened up new possibilities for solving these inverse problems. The most common 

approach for solving subsurface characterization inverse problems is the use of gradient-

based optimization methods. While these methods are very powerful and are appropriate 

in many situations, they lack the generality of non-gradient approaches (e.g. genetic 

algorithms, simulated annealing) and are less suited for emerging parallel computing 

environments.  

GAs are popular global search procedures for discrete as well as continuous 

problem domains, but yet under-explored for solving these problems. The GA search 

process is enhanced by the use of local search (hybrid approach). The main themes for 

the proposed research are to investigate: (i) hybrid optimization approaches (global and 

local searches) and, (ii) parallel computing techniques to solve inverse problems (in the 

groundwater area).  

The thesis has seven chapters. This chapter gives an overview of inverse problems 

with examples, solution techniques for inverse problems and the application of high 

performance computing. The 2nd chapter discusses previous research on optimization-

based approaches for subsurface characterization problems. Hybrid optimization 

approaches using GAs and different local search techniques are discussed in the 3rd 

chapter. The discussion on parallel implementation is covered in the 4th chapter. The 5th 
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chapter presents the results of testing and validating the hybrid optimization 

methodology. Information on parallel architecture, parallel performance results and grid-

computing results are discussed in 6th chapter. The 7th and final chapter summarizes 

research contributions and topics for further research work.  In Appendix – A, the noisy-

GA approach is investigated for problems with parameter uncertainty. In Appendix B, a 

preliminary investigation of the modeling to generate alternatives (MGA) approach is 

carried out for addressing the non-uniqueness problem.  

1.1 Inverse Problems 

An inverse problem involves the estimation of certain quantities based on indirect 

measurements of other dependent quantities. This research focuses on groundwater 

inverse problems. Inverse problems also arise in other diverse fields such as geophysical 

exploration, medical imaging, non-destructive evaluation, inverse heat conduction or 

diffusion problems, and signal processing. In signal and image processing one tries to 

recover the original (uncorrupted) signal from the filtered signal with noise. Use of 

computer aided tomography and magnetic resonance imaging in medical diagnosis, has 

lead to the development of algorithms for the inversion of the Radon transform. The 

exploration of oil is often facilitated by knowledge of the electrical conductivity structure 

of a rock formation. The conductivity itself is ascertained from establishing a magnetic 

field in the rock formation by measuring the induced currents. Seismic exploration yields 

measurements of vibrations recorded on the surface. These measurements are only 

indirectly related to the subsurface geological formations that are to be determined.   

In parameter identification, spatial and/or temporal parameters appearing in, e.g., 

partial differential equations, are determined from measurements of the solution, either in 

the whole domain, or on the boundary only. Inverse heat conduction or diffusion 

problems for determining the boundary heat flux, and inverse scattering problems to 

determine the shape or the location of the obstacle based on measurement of waves 

[Santamarina and Fratta 1998]. Many problems in solid mechanics like identification of 

cracks singularities, identification of material constants, separation of different energies 

in solids, determination of residual stresses etc. may be considered inverse problems. 



 
 3 

Other inversion examples are: loading a concrete specimen and measuring its 

deformation to determine material properties such as Young’s modulus and Poisson ratio, 

or the deflection of the bridge is measured to access the condition of cables and deck [Bui 

1993]. A performance based dynamic structural design approach using inverse problem 

formulation has been developed [Takewaki 2000].  

A number of groundwater problems such as estimating hydraulic conductivity 

distributions, biological activity zones (BAZ), dense non-aqueous phase liquids 

(DNAPL), or contaminant sources location and release history have been solved using 

the inverse problem formulation. A very good reference for inverse problems in ground 

water modeling is by Sun, 1994.  

While common enough in practice, groundwater problems such as these are 

notoriously difficult to solve because of several factors namely, insufficient observation 

data, error in model or input data, etc. During the past several year’s significant 

developments in probability and control theory methods have helped solve such complex 

inverse problems [Sun 1994]. Most of the inverse problems are characterized by an 

unusually high sensitivity to perturbations (deterministic as well as stochastic) in the data 

so that a small change in the measurements results in disproportionate error in the 

recovered signal. Techniques such as regularization methods have been developed to deal 

with this Ill-Posedness. Thus, solving such inverse problems is not only numerically 

challenging, but they also demand large computational resources. 

1.2 Computational methods for solving inverse problems 

Any mathematical model or system should be able to solve a forward problem in 

order to solve an inverse problem. However obtaining a forward solution accurately does 

not guarantee that the inverse solution is also going to be accurate. This is the case 

because inverse problems are generally ill posed, which means the solution may be non-

unique, non-existent and unstable. The primary reasons are observation error, model 

structure error and the insufficient quantity and/or quality of observation data. If these 

difficulties are not considered, a satisfactory inverse solution can never be obtained by 

purely changing the performance criteria and/or optimization algorithm. 
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As stated earlier, before solving an inverse problem a mathematical model for 

solving the forward problem should exist. So a concise discussion on mathematical 

modeling of forward problems is provided next. Mathematical models can be broadly 

classified in to four types: (i) Deterministic models and stochastic models depending on 

whether random variables appear in the model; (ii) Linear models and nonlinear models 

depending on whether the equations are linear or nonlinear; (iii) Stationary and dynamic 

models, depending on if the time variable is included and, (iv) Lumped parameter models 

and distributed parameter models depending on whether the space variables are included. 

In groundwater modeling distributed parameter modeling is preferred because it is more 

general, more accurate and more suitable for the planning and management of 

groundwater resources. A distributed parameter model is often described by a PDE or a 

set of PDEs and may be classified in to one or several of the above types. Generally, the 

distributed parameter model involves the following components: it may have both spatial 

and temporal properties, system parameters that characterize the geometry and/or 

physical nature of the system, initial condition of the system described by one or more 

subsidiary conditions, control variables representing excitation of the system such as 

pumping, artificial recharge etc., and state variables that describe the state of the system, 

such as head, concentration etc. Solving a forward problem implies to determine state 

parameters when the time-space region, system parameters, subsidiary conditions and 

control variables are known. The solution can be obtained analytically or using a 

numerical approach. Analytical solutions are however available only for simple 

problems. The solutions can be obtained by superposition of fundamental solutions, 

separation of variables, Laplace transformation, Fourier transformation and other integral 

transformations. Numerical methods use discretization of the time-space domain in to 

elements and nodes. The governing system of equations (PDEs) is then discretized and 

replaced at these nodes by a system of algebraic equations. The solution of the equations 

can be obtained using different methods such as finite difference methods, finite element 

methods, boundary element methods and their variants and hybrids, including the hybrids 

of numerical and analytical solutions [Sun 1994].                                                                                            
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If a mathematical model is available to solve a forward problem then it can be 

used in an iterative fashion to solve the inverse problem. However the accuracy of the 

forward model is no guarantee for the quality of the solution obtained in the inverse 

approach. This is normally referred to as the Ill-Posedness of the inverse problem. Three 

main criteria describe the Ill-Posedness of the inverse problem 

Non-existence: The solution may not exist for the observation data. 

Non-uniqueness: The solution may not be unique because different conditions may give 

same observation data. 

Instability: A small change in input results in a disproportionate output.  

The above three properties are associated with many of the inverse problems 

encountered in real applications.  

As stated earlier inverse problems can be solved in both deterministic and 

stochastic frameworks by direct or indirect methods. Indirect methods require repeated 

solutions of the forward problem. Many of the methods solve the problem by using an 

output least squares criterion, which is a measure of the error between the measured and 

the computed values. In general, direct methods can only be used for solving inverse 

problems governed by linear system of equations. The commonly used direct methods are 

the matrix method and the linear programming method. The matrix method reformulates 

the linear least squares problem as a set of matrix equations and solves it directly. The 

matrix method normally yields highly ill conditioned matrices and is very sensitive to 

measurement errors. Linear programming methods can be used to solve inverse problems 

governed by linear equations. Direct methods have very limited applicability to 

groundwater inverse problem due to the distributed nature of the parameter space, non-

linearity in the governing equations and measurement errors. 

The work here focuses on indirect methods and these are generally optimization-

based approaches. They can be grouped into two broad categories: gradient and non-

gradient based approaches. The commonly used gradient methods are: steepest descent, 
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Levenberg-Marquadt, Gauss-Newton, conjugate gradients and sequential quadratic 

programming methods. The gradient-based approaches use the gradients to find the 

solution and hence require the decision space to be continuous (smooth). Thus, the 

gradient methods are not suitable for discrete optimization problems. However, the 

gradient methods tend to converge faster than non-gradient based approaches if: (i) the 

objective function is continuous and differentiable, (ii) the search space is fairly smooth 

and not convoluted and (iii) the quadratic assumption is valid near the optimum (for some 

approaches). 

Non-gradient methods start with one or more initial guesses and follow a set of 

rules to move towards the solution. These optimization methods can be global or local. 

Examples of global approaches are genetic algorithms (GAs) [Holland 1975, Goldberg 

1989], simulated annealing, particle swarm optimization (PSO) [Kennedy and Ehart 

1995], and the DIRECT method [Floudas and Pardalos 2001]. Examples of local non-

gradient approaches are, Nelder-Meade simplex method, Hooke-Jeeves pattern search 

method, and Powell’s method of conjugate directions. Non-gradient based techniques 

such as GAs offer great flexibility in problem formulation and can handle discontinuities 

in the search space. Furthermore, they can generally explore a larger search space than 

gradient-based approaches. As stated earlier GAs are generally preferred for discrete or 

discontinuous domains and is the global method of choice for this research. GAs can also 

be used effectively (real GAs) for problems that are not inherently discrete. The focus of 

this research is to establish a parallel optimization framework for solving groundwater 

inverse problems. 

1.3 Role of high performance computing 

In recent years high performance computing (HPC) has opened up new 

opportunities for modeling and understanding complex systems (e.g., groundwater 

modeling). It is driving the frontiers of science to new levels and the need for additional 

computing power for solving complex and larger problems keeps growing. Computation 

is becoming an equal partner with theory and experimentation in the advancement of 

science. It has opened new avenues for understanding complex (natural) phenomenon, 
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and offered challenges for the development of new and efficient mathematical models. 

High performance computing (HPC) offers the ability to compute solutions to problems 

not possible on desktop machines. It provides the ability to: (i) use larger and more 

detailed computational grids, (ii) develop more complete computational models of 

physical processes, and (iii) perform large number of simulations under different 

conditions. HPC is enabled by large parallel computers, powerful vector processors, or a 

network of individual workstations. These parallel computers link processors or 

individual workstations together to increase computational power and use high-speed, 

large-memory-capacity computers. Algorithmic improvements with state-of-the-art 

numerical techniques such as adaptive meshing, multigrid, and particle methods are 

needed in the next generation of high-performance simulation codes (e.g., groundwater). 

For problems that require significant computational resources, parallel computing 

on supercomputers or newly emerging “grid computing” on a network of geographically 

distributed heterogeneous supercomputers connected by high-speed network can be used. 

Also, distributed computing on cluster of networked workstations can be helpful. Parallel 

computing requires knowledge of parallel machine architectures for efficient 

implementation of parallel applications and efficient parallel numerical algorithms. One 

or more parallel programming tools such as MPI [Message Passing Interface, Gropp et al. 

1999; Dongarra et al. 1994], OPENMP [www.openmp.org], PVM [Parallel Virtual 

Machine; Giest et al 1994], etc., are available on high performance computers for use. 

Currently MPI has emerged as the de-facto standard and is available on almost all 

supercomputers. Parallel codes using MPI are portable. MPI implementations supporting 

many languages including popular HPC languages such as Fortran and C are available. 

Writing efficient parallel programs to take full advantage of a high-performance 

multiprocessor requires a new way of thinking (programming methodology) and effective 

software tools to deal with the inherent complexities. While automatic parallelization 

tools such as Forge or OpenMP (for shared memory) are now commercially available. 

They still require substantial programmer intervention either in adding compiler 

directives or restructuring code. Without this intervention, the resulting compiled code 

usually performs poorly.  
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Parallel programming is notoriously difficult because it lacks the single thread of 

control that one would have in a conventional serial program. In addition, the data used in 

parallel computation are probably spread across a number of distributed computer 

systems. This is done to capitalize on locality by leveraging faster local data accesses 

against more costly remote data accesses. Often, the data “decompositions” that make a 

parallel program the fastest are the ones that are the most complicated [Kohl 1997].  

This research requires high performance computational resources as it solves the 

forward problem repeatedly. The forward problem (transport) simulator [Mahinthakumar 

and Saied 2001] as will be known in a later chapter, is a highly computationally intensive 

FEM code, solving large-scale partial differential equations. Hence, a parallel 

optimization framework is developed to handle complex 3D groundwater inverse 

problems. 
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CHAPTER 2 – RELATED RESEARCH IN GROUNDWATER 
INVERSE MODELING 

 

Much of the previous work in groundwater inverse modeling has been in model 

calibration aimed at fitting a few parameters (determine a few parameters in the forward 

model based on observation data). With the development of sophisticated forward models 

in recent years inverse modeling can now be used for obtaining detailed information 

about the subsurface. This subsurface information is critical to the efficacy and cost 

efficient groundwater management strategies. The following sections provide an 

overview of previous research using optimization approaches for groundwater modeling.  

2.1 Non-heuristic approaches 

A large amount of research has been done in using gradient-based approaches for 

solving groundwater inverse problems (e.g. Gorelick et al 1983, Wagner 1992, Sciortino 

et al. 2000, Mahar and Datta 2000). Gorelick et al (1983) used least squares regression 

and linear programming for solving a hypothetical two-source groundwater contaminant 

problem. They assumed a linear model and incorporated the solute transport model as 

constraints in a response matrix approach [Gorelick 1982; Gorelick and Remson 1982b] 

for solving. Two hypothetical scenarios were studied: (1) locating unknown pollutant 

sources under steady state from concentration data collected at a few well locations, and 

(2) reconstructing the release history and location of a source using a complex two 

dimensional (2-D) transient system with several monitoring wells. For the steady state 

case there were more unknowns than the number of constraining equations. A mixed 

integer programming method with additional restrictions was used. The results obtained 

were spurious and detracted from true values. For the transient case both methods 

identified the pollution source and the disposal episodes, but contained some errors in 

determining the disposal flux magnitudes. The method is restricted to cases where data 

are available in the form of break through curves.   

Given the importance, groundwater source identification and release history 

reconstruction problems have received a lot of attention. A variety of methods like the 
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minimum relative entropy approach - MRE [Woodbury and Ulrych 1996, Skaggs and 

Kabala 1998, Woodbury et al. 1998], Tikhonov regularization - TR  [Skaggs and Kabala 

1994, Liu and Ball 1999], constrained nonlinear optimization [Mahar and Datta 2000, 

2001], and Levenberg-Marquadt minimization [Sciortino et al. 2000] have been used. A 

paper by Atmadja and Bagzoglou (2001), gives a state of the art report on mathematical 

methods for groundwater pollution source identification.  

The regularization methods such as TR and MRE try to alleviate the problem of 

ill-posedness and computational complexity of inverse problems. For example, the TR 

method removes discontinuity in the solution space by smoothing the objective function 

(either directly or indirectly). This addresses the problem of instability (small changes in 

decision variables lead to large variations in objective function) and non-uniqueness  

(multiple solutions) by forcing the convergence to the ‘simplest’ solution (solution that 

has the smoothest structure). There is no guarantee, however, that this is the best solution. 

MRE method treats each element of the release history as a random variable. The MRE 

inversion is a method of statistical inference. It constructs a probability density function 

(pdf) for the random variables representing the solution based on prior information and 

measurement data; the solution is the mean of this pdf. Neupaur et al. (2000) made a 

comparative study of TR and MRE methods for different source release history recovery 

problems. The results show the quality of solutions obtained by these methods to be input 

and problem dependent.   

Sciortino et al. (2000) solved an inverse problem to identify the location of dense 

non-aqueous phase liquid (DNAPL) pool in a saturated porous medium under steady flow 

conditions. Levenberg-Marquardt method is used to solve the least squares minimization 

problem for the identification of the location and the geometry of the DNAPL pool. They 

used the method to minimize three types of residuals: ordinary residuals, weighted 

residuals with weights equal to the square of the inverse of the observation, and weighted 

residuals with weights obtained by adding a constant term to the observed concentrations. 

They observed the results being sensitive to the location of observation wells and the type 

of residual minimized. The procedure was not robust, since it did not guarantee the 

convergence to global minimum, as the inverse problem solved is non-unique and non-
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convex even in the absence of observation errors. Also, the results produced by the model 

varied according to the number and location of the observations. 

Datta et al. (1989) developed an expert system using statistical pattern recognition 

techniques to identify sources of groundwater pollution for hypothetical example 

problems. The model developed by Gorelick et al. (1983) was used as a preliminary 

screening model within the expert system. Performance of their method was found 

encouraging in general for the example problems and specifically good under conditions 

of missing observed-concentration data. Bagtzoglou (1992) presented the application of a 

random walk based model for identification of pollutant sources in groundwater. Wagner 

(1992) combined nonlinear maximum likelihood estimation with ground-water flow and 

solute transport simulation to simultaneously estimate the aquifer parameters and a 

distributed pollutant source term. 

Mahar and Datta (1996) combined the concepts of optimal identification of 

pollutant sources with the optimal design of a ground-water-quality monitoring network 

for the source identification problem. They used a nonlinear optimization model with 

embedded flow and transport simulation constraints for optimal source identification. 

Crank-Nicolson and implicit finite difference forms along with appropriate initial and 

boundary conditions, are embedded as constraints in this identification model. The solute 

transport equation is discretized using central difference in both space and time, and the 

steady state flow equation is discretized using central difference in space. An integer-

programming based model was used for the monitoring network. The methodology 

follows three steps with the first step utilized for preliminary identification of pollutant 

sources (magnitude, location and duration of activity) based on observed concentration 

data from arbitrarily located existing wells. The preliminary identification results from 

first step (source locations) are used to obtain an optimal monitoring network in the 

subsequent time periods. In the third step the designed monitoring well locations are 

utilized for more accurate identification of pollutant sources. The performance of their 

proposed methodology was applied to a hypothetical 2-Dimensional homogeneous, 

isotropic, and saturated aquifer for identifying three potential source locations. They 

concluded the methodology using optimal network design enhanced the applicability for 
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real-life scenarios when initially the potential source locations are unknown and where 

measurements and parameter estimates are erroneous and/or uncertain. However their 

study did not address the effect of parameter uncertainty and only a limited numbers of 

cases were tested. 

Following their work in 1996, Mahar and Datta (1997, 2000 and 2001) solved 

different types of source identification problems using non-linear programming approach. 

They used finite differences and the finite difference equations as constraints to model 

two-dimensional forward flow with steady state or transient and transport problems. The 

governing equations for the physical processes were embedded in the optimization 

model. They solved the resulting nonlinear programming problem by a quasi-Newton 

constrained optimization method. The model is tested for 2 or 3 potential source 

locations, both with and without perturbed observation data and also with data gaps. The 

model was not very robust because of the nonconvex and nonunique nature of the inverse 

problem and because the results were dependent on the initial guess provided to the 

method. They extended the model to simultaneously estimate the aquifer parameters 

(2001). 

2.2 Heuristic approaches 

While heuristic techniques such as GAs have been used widely for groundwater 

management problems [McKinny and Lin 1994; Wang and Zheng 1998], or for optimal 

placement of monitoring wells [Cieniawski et al. 1995, Ritzel et al. 1994, Huang and 

Mayer 1997, Katsifarakis et al. 1999] they have not been used as extensively for solving 

groundwater inverse problems.  

Aral and Guan (1996) used GAs for searching groundwater pollution sources. 

They proposed an improved GA (IGA) procedure in which members of the population 

are generated in a restricted solution space and equality constraints are satisfied for a 

subset of decision variables. They applied the method to contaminant source location, 

leakage rate and release period identification problems for a hypothetical confined 

aquifer system by posing it as an optimization problem with equality constraints.  They 

reported results for a continuous leakage problem and a time dependent leakage problem 
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with data gaps, for both without noise and random noise in the synthetically generated 

reference data cases. Based on their study they concluded that their IGA provides an 

efficient and robust means for solving any quadratic optimization problems with linear 

equality constraints.  

Katsifarakis et al. (1999) used boundary element method (BEM) approach for 

modeling groundwater flow and transport and coupled it with GA to solve common 

groundwater management and inverse problems. The application examples studied are 

(1) determination of transmissivities in zoned aquifers, both with and without field 

measurement errors, (2) minimization of pumping cost from a group of wells, and (3) 

hydrodynamic control of a contaminant plume. They claimed that the method performed 

satisfactorily. 

Mahinthakumar et al. (1999) used GAs for identifying zones of biological activity 

in the subsurface. They used a parallel computing environment for solving, as repeated 

three-dimensional finite-element forward function evaluations are required for every 

individual in a GA population. The simulations performed showed the effective 

application of GAs in inverse groundwater modeling. 

Smalley et al. (2000) presented a risk based in situ bioremediation design using a 

noisy genetic algorithm. The model couples a noisy GA with a numerical fate and 

transport model and an exposure and risk assessment model that translates the predicted 

concentrations into estimates of human health risk, allowing risk-based criteria to be 

considered in the corrective action design. In the risk based corrective action (RBCA) 

design technique the uncertainty and variability in the parameters associated with 

groundwater simulation and exposure modeling significantly influences the risk 

assessment. The noisy GA is used for solving the management model with parameter 

uncertainty and variability for finding robust solutions. In the model, uncertainty is 

incorporated by the spatial distribution of hydraulic conductivity and the variability of 

exposure parameters. The noisy GA uses sampling to reduce noise from fitness 

evaluations in noisy environments. Unlike Monte Carlo simulation modeling, however, 

which requires that numerous samples be drawn from probability distributions to obtain 
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reasonably accurate results, noisy genetic algorithms perform best without extensive 

sampling [Miller and Goldberg, 1996]. On the basis of Aizawa and Wah’s (1994) 

sampling strategy for noisy GA’s, the following approach was used. For the first four 

generations sampling size was set to 5 and was increased by five sample sets every four 

generations. After twelve generations fittest four designs from the previous four 

generations (i.e., 9-12) were tested by simulating each with five hundred sample sets. If 

any of the four designs are successful in meeting the risk criteria for at least 90% of the 

realizations, then sample size was not increased and the optimization process continued 

for four more generations before termination. Otherwise, the sample size is increased by 

five sample sets in the same manner described above with a test for four fittest designs 

from the previous four generations every four generations until successful termination or 

until a maximum number of generations was reached. Based on a case study, the authors 

concluded that noisy GA was capable of generating highly reliable designs from 

relatively small number of sample sets and efficient for computationally intensive 

groundwater management models. The authors suggested the need for further 

investigation of sampling strategies and termination criteria that affect GA efficiency, the 

values of the decision variables for the optimal design, and the reliability of the optimal 

design. 

Yoon and Shoemaker (2001) proposed an improved real-coded GA (RGA) for 

bioremediation. They proposed a new technique for crossover and selection 

(replacement) process of GA. The RGA developed was tested for two hypothetical 

aquifers developed by Minsker (1995). Based on the study they reported RGA was 

efficient and computationally accurate than binary encoded GAs used in previous 

groundwater research. 

Aral et al. (2001) proposed another combinatorial approach called progressive 

genetic algorithm (PGA) for nonlinear optimization. The method uses two steps: (i) 

iteration and, (ii) search. In the iteration step ground-water simulation models are run to 

generate an approximate optimization model for the subdomain. The solution domain is 

divided in to subdomains depending on the number of sources searched. It transforms the 

implicit nonlinear optimization problem in to a series of approximate optimization 
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problems with explicit linearized constraints, which are then solved by GA. In the search 

stage GA is used to search for local optimal solution with in the subdomain and closer to 

the previous solution. The authors applied the methodology to test several groundwater 

applications for a single source in a heterogeneous unconfined aquifer system. They 

solved the release history reconstruction problem for known source location, unknown 

source location, and release history with some observation data missing (gap). Based on 

their study of the above problems they claimed PGA technique as robust and 

computationally efficient. Several observations about the factors that influence the 

solution of the source identification problem were also reported. 

Giacobbo et al. (2001) solved the inverse problem of parameter estimation by GA 

for groundwater contaminant transport. They analyzed the sensitivity of the model to the 

unknown input parameters from the speed of convergence and stabilization of the GA. 

They showed that the GA evolves towards convergence by stabilizing first the most 

important parameters (parameters that influence the model output most) and later the 

parameters that influence the output less. 

Hilton and Culver (2003) used genetic algorithm for groundwater remediation 

design under uncertainty. The authors proposed a new modified GA called robust GA and 

compared the performance with basic GA and noisy GA. The way parameter uncertainty 

is introduced in the model differs from noisy GA. It includes uncertainty by utilizing a 

measure of on-going performance to evaluate the robustness and reliability of a possible 

design. Thus, robust GA incorporates uncertainty into the optimization procedure, rather 

than in the objective function evaluation, as done in the noisy GA. The robust GA is a 

multiple realization technique; however, it uses a single but different realization in each 

generation. The overall fitness of the string is based on the performance over multiple 

generations. The fitness of the string is a function of cost (objective function value) and 

“age”. The age indicates the number of generations the string survived. A new rank 

fitness based on these parameters is computed and is used during selection. Two test 

cases for groundwater remediation design using homogeneous and heterogeneous 

hydraulic conductivities are reported. The authors showed that the robust GA performed 

as well as the noisy GA, but by using fewer number of objective function evaluations. 
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Shieh and Peralta (2003) used parallel recombinative simulated annealing (PRSA) 

for optimizing in-situ bioremediation system design. PRSA is a global optimization 

algorithm with convergence properties of simulated annealing (SA) and parallelism of 

GA. The proposed model uses BIOPLUME II model to simulate aquifer hydraulics and 

bioremediation, and PRSA to search for an optimal design.  They solved for an optimal 

pumping (extraction/injection) strategy that minimizes total system cost, reduces 

contaminant concentration to the cleanup standard, and prevents contaminant plume 

migration. For the test problem the PRSA approach performed better than SA and GA. 

They claimed the approach to be efficient and flexible for optimizing system installation 

design and time-varying pumping.  

2.3 Hybrid optimization approaches 

 Very limited amount of work has been done to date using hybrid optimization 

approaches for solving groundwater inverse problems [Heidari and Ranjithan 1998, Pan 

and Wu 1998]. Heidari and Ranjithan used a hybrid GA- truncated Newton search for a 

two-search approach for a two dimensional hydraulic conductivity estimation problem. 

Pan and Wu (1998) used a simulated annealing – simplex approach for estimating 

unsaturated flow parameters for a one-dimensional column experiment. 

More recently, Espinoza et al. (2003) developed self-adaptive hybrid GA 

(SAHGA) and non-adaptive hybrid GA (NAHGA) and compared their performance with 

simple GA (SGA) for a groundwater remediation problem. The authors also presented a 

methodology for selecting the HGA parameters and population size for optimal 

performance.  They coupled SGA with a local search approach (random walk algorithm). 

They discussed several performance and modeling issues relating to hybrid GA such as 

local search frequency, probability of local search (LS), and number of local search 

iterations. The selection of correct NAHGA parameters is crucial for its performance, and 

the “necessary trial-and-error process for parameter evaluation makes the application of 

NAHGA impractical”. Even though the proposed NAHGA and SAHGA methods 

achieved convergence for the test case with 75% and 85% fewer function evaluations 

than SGA, obtaining right parameter settings was still challenging with a trial and error 
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process. In general the hybrid approach performed better. Also, SAHGA is more robust 

than NAHGA because local search is applied only when it is necessary and the 

performance does not change for a broad range of different parameter values. 

The present research work seeks to enhance existing knowledge. It investigates 

the applicability of hybrid optimization methodology for solving complex inverse 

problems in a parallel computing environment. Even though the problems tested in this 

research is in subsurface characterization the generality of the optimization approaches 

will facilitate easy extension to other areas. The rationale for using hybrid GA-LS 

approach is that GA being a global search technique will take the solution closer to the 

global optimum and the local searches can do the fine local tuning. Other related topics of 

interest such as noisy GAs and Modeling to Generate Alternatives (MGA) are also 

investigated. 

 



 
 18 

CHAPTER 3 – OPTIMIZATION METHODOLOGIES 

This chapter describes the optimization methodologies used in this research. The 

research uses hybrid optimization approaches for solving inverse problems. The sections 

that follow discuss GA methodology (both binary/integer and real GA) and the four local 

search methods, Nelder-Meade simplex (NMS) method, Hookes and Jeeves pattern 

search (HKJ) method, Powells conjugate directions (PWL) method, and Fletcher and 

Reeves conjugate gradient (CG) method. Figure 3.1 shows the optimization algorithms 

implemented in this research. 

3.1 Overview of Genetic Algorithms 

A number of variants of GAs have been developed, researched and extensively 

used for a wide variety of applications. GA’s optimize using a search process that 

emulates natural evolution. In a GA, a potential solution to a problem (i.e., a possible set 

of values to represent the unknown parameters) is represented as a vector (an 

‘individual’). This vector traditionally consists of binary values, although real numbers 

are being used increasingly. Potential solutions and parameter values are analogous to 

organisms and genes, respectively. The GA starts the process of searching for good 

solutions with a set of these potential solutions, called a population, which is often 

generated at random. The performance of each solution is characterized by a fitness 

value. In the context of inverse problems, fitness is inversely proportional to the 

difference, or residual, between computed and observed values. Calculating fitness for 

each solution requires a forward solve. 
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Figure 3.1 Different optimization algorithms available in the module for solving 
inverse problems. 

During the GA search process, the population is subjected to several probabilistic 

operators that are analogous to natural selection, mating (including genetic 

recombination), and mutation. In the selection step, pairs of solutions are selected for 

reproduction from the population, with fitter individuals being selected more frequently. 

Each pair of solutions may then undergo mating, or crossover, in which their vectors are 

recombined to form new solutions, which are placed into a new population. The selection 

and mating steps continue until the new population is the same size as the previous 

population, which is then discarded. After the new population has been generated, 

mutation is used to modify a small number of genes in the population. This step 

introduces new traits that may not have been present in the initial population. Mutation 

may also reintroduce good traits that may have been lost through the probabilistic 

selection operator. An additional operator called elitism is used in most GA applications. 

Elitism, which generally occurs after mutation, is used to guarantee that the best 

individual in a population is not lost.  
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The flowchart for GA is shown in figure 3.2. The steps of evaluating the 

population, selection, mating, mutation, and elitism constitute one iteration, or 

generation. Because fitter solutions are more likely to be selected for mating, the 

incidence of good traits in the new population generally increases with each additional 

generation. Crossover serves to test these traits in many different combinations. GA 

schema theorem predicts the frequency of good traits (and good combinations of traits) to 

increase exponentially as new generations are formed. As this occurs, the GA converges 

to increasingly better solutions. Improvements in fitness, however, diminish as the 

population diversity decreases and the population converges towards a good solution. 

Stopping criteria such as “10 generations without improvement” and a minimum 

population diversity are often used to terminate the algorithm when improvements are 

sufficiently small and infrequent. These concepts are well described in many texts, 

including Goldberg (1989), Davis (1991), and Michalewicz (1996).  

The use of GAs for optimization problems in groundwater management and 

remediation has been abundant (see section 2.2). Two main factors that have limited the 

use of GAs for these and other problems are: (i) GAs have been characterized as being 

highly computationally intensive, and (ii) GA performance is a function of the search 

parameter values (e.g., population size, mutation rates etc.), the best values of which 

cannot be determined a priori. While these are legitimate concerns, each can be addressed 

to some extent. For example, the use of parallel computing can address concern (i). Also, 

the argument that gradient-based approaches are more computationally efficient is not 

always true. For problems with a large number of decision variables, computational 

requirements associated with the calculation of gradients can far exceed that of the GA 

search process. Limitation (ii) is being addressed through recent research to identify 

robust operator implementations and parameter settings [Goldberg and Shastry 2001, 

Lobo and Goldberg 2001, Reed et al. 2000b]. The guidelines developed through this 

research are resulting in more robust GA formulations, effectively reducing or 

eliminating trial-and-error experimentation with alternative GA parameter settings. 
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Figure 3.2 Flowchart of genetic algorithms (GA). 

Start 

Generate initial population 

Evaluate objective function (Fitness) 

Last 
individual? 

Selection 

Crossover 

Mutation 

No 

Yes 

Another 
Generation? 

Stop 

No 

Yes 

Elitism 



 
 22 

3.1.1 Genetic Algorithms for inverse modeling 

As described earlier, GA starts with a set of potential solutions, or population and 

the performance of each solution is characterized by a fitness value. In the context of 

inverse problems, fitness is calculated using a forward solve and is inversely proportional 

to the difference between computed and observed values. One of the drawbacks of GA is 

that it is computationally intensive if the fitness evaluation (or objective function) is 

expensive. In this application, the objective function to be minimized is the root square 

error (RSE) between the observed and the computed output concentration signals at a few 

selected points in the domain. RSE is given by 

                2

1

( )
n

obs calc
i i

i

RSE C C
=

= −∑    

Where obs
iC  is the observed concentration and calc

iC is the calculated concentration 

at the observation points ‘i’ the observation number and ‘n’ the total number of 

observations. In order to compute the output signals for each individual in a GA 

operation, a forward transport simulation is performed. Because the time intensive fitness 

calculation for each individual in a generation can proceed independently, GA’s are 

amenable for use in a parallel or distributed computing environment. Whereas the use of 

GAs has long been popular for groundwater optimization problems, only recently GAs 

are being used for groundwater inverse modeling [Mahinthakumar et al. 1999, Aral et al. 

2001, Giacobbo et al. 2002]. Three types of GAs namely binary, integer and real have 

been implemented to study the different classes of problems tested in this research. Some 

of the problems such as biological activity zone (BAZ) are inherently discrete. 

Binary/Integer GA is used to solve biological activity zone (BAZ) identification problem. 

The source identification problem is solved by BGA, RGA, and hybrid GA-LS 

approaches. The source release history problem is solved by RGA and hybrid RGA-LS 

approaches. More details on the problem and results are given in the next chapter. The 

subsections that follow give an overview of the implementation of these methods. 
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3.1.2 Binary/Integer GA Implementation 

The BGA and IGA implementations are required for the BAZ identification 

problem (see section 5.2). A slightly enhanced version of the Simple Genetic Algorithm 

(SGA) presented in Goldberg (1989) is used for the BGA and IGA implementations. The 

primary modifications are elitism (always retain the best solution in the new population), 

additional selection procedures (tournament selection in addition to the original roulette 

wheel selection), additional crossover strategies (uniform and multi-point crossovers in 

addition to the original simple crossover), and support for both binary and integer 

encoding. An adaptive mutation operator is implemented so that the mutation probability 

can be progressively reduced when the RSE of the best individual drops below an 

arbitrary threshold value (if the correct solution is known a priori then this threshold 

value can be set close to zero). A restart option is implemented so that the simulation can 

be restarted from the last completed generation.  

In the simulations performed the following steps are involved: 

(1) Encode the unknown zone locations as binary or integer strings. 

(2) Generate an initial random ensemble of strings (with a user-defined bias) 

equal to the number of individuals in a population or population size. 

(3) Perform transport simulation for each individual by decoding the strings into 

zone locations. 

(4) Compute RSE for each individual by computing the difference between the 

observed (stored in a file) and computed output signals.  

(5) Select the individuals that perform best (those giving a smaller RSE) using an 

appropriate selection strategy and mate the strings randomly (using an appropriate 

crossover strategy – single point, uniform, multiple point) to produce the next 

generation for individuals. 

(6) Repeat steps 3 – 5 until convergence or up to prescribed maximal number of 

generations. 

(7) If convergence is not achieved within the prescribed number of generations, 

then either the zone locations for the best-performing individual of all the 
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generations or the probability distribution of the entire population at the end of 

simulation can be chosen as the optimal solution.  

 
3.1.3 Real Genetic Algorithm (RGA) Implementation 
 

Real GA follows the same steps as BGA/IGA. As stated before, for RGA decision 

variables are represented as a vector of real variables (within some bounds).  For source 

identification and release history reconstruction problems, RGA is more suitable as the 

decision variables (source location coordinates, concentrations, and time history of 

concentration release) are inherently real. The real encoding can represent large domains 

with a smaller string length when compared to its binary representation without 

sacrificing the precision of numbers. Also increasing the number of bits considerably 

slows down the algorithm [Michalewicz (1996)]. The concepts and operators (selection, 

crossover, mutation and replacement) are very similar to BGA. 

The RGA implementation has four different crossover strategies simple, uniform, 

arithmetic and heuristic crossovers. In arithmetic crossover a linear combination is 

performed using the following expression, if x1 and x2 are crossed then the two offsprings 

will be x1′= rx1 + (1-r)x2 and x2′ = rx2 + (1-r)x1, where ‘r’ is a random number generated 

between 0 and 1.  In heuristic crossover a single offspring is produced from two parents 

x1 and x2 according to this rule: x3 = r(x2-x1) + x2, where ‘r’ is another random number 

generated between 0 and 1, and parent x2 is not worse than x1. The algorithm uses a 

combination of crossover strategies instead of just one depending on the random number 

generated. The following strategy is adopted, if r ≤  0.1 – simple, 0.1 > r ≤ 0.3 – uniform, 

0.3 > r ≤ 0.8 – arithmetic, and 0.8 > r ≤ 1.0 – heuristic crossover. It should be noted that 

these values were obtained after initial experimentation and should not be construed as 

the best. These values consistently performed well for our problems. A combination of 

crossovers is chosen as it inherits the best properties of individual crossovers. Also either 

uniform or non-uniform mutation operators can be used. In non-uniform mutation one of 

the elements kx of the vector x (parent) is selected, the offspring { }'
1' ,...., ,....,k qx x x x= . 

The element '
kx is calculated as follows 
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'
k kx x dt= − and ( )( (1 ))u b

k kdt x x r a= − − , 

Where, u
kx - upper bound for the element of the chromosome string, r- random 

number between 0 and 1, a is the ratio of generation number to maximum number of 

generations and b is a system parameter determining the degree of non-uniformity 

(assumed to be 1). For all the simulation experiments performed using real GA, non-

uniform mutation is used. Additional information on real GAs is available in many books 

on GAs such as by Michalewicz (1996). 

 

3.2 Local search methods 

Non-gradient based unconstrained optimization methods are implemented for 

local searches. These methods were selected because they do not require the computation 

of gradients and are easier to program. The methods are: (1) Nelder-Meade Simplex, (2) 

Hooke and Jeeves pattern search, (3) Powells method of conjugate directions and (4) 

Fletcher-Reeves conjugate gradient method. The following subsections give brief 

description of these methods. More details are available in standard optimization texts 

such as Belegundu and Chadrupatla (1999). 

3.2.1 Nelder-Meade Simplex method (NMS) 

The simplex method of Nelder and Meade is a popular local direct search method 

for unconstrained nonlinear optimization problems. Readers should not confuse this with 

the popular Linear Programming simplex method applied for linear constrained 

optimization problems. The Nelder-Meade simplex method is based on moving and 

resizing a multidimensional polygon (simplex) along a downhill direction until a local 

minimum is encountered. The simplex is formed by a set of n+1 points in an n-

dimensional decision space. For example, if we have 4 unknown variables in our inverse 

problem then we have a 5-point simplex. In the N-M simplex method we traverse the 

decision space by resizing and/or moving the simplex until a local optimum is found (in 

this case the simplex converges to a single point). The basic operations in the method, 

reflection, expansion, and contraction along with the function values at each simplex 

point dictate how we resize or move the simplex.  
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The initial simplex of n+1 corners is constructed from the initial guess by 

perturbing each point by a fixed amount.  The points with highest, second highest and the 

least function values are selected. The point with largest function value is excluded and 

mean of the points is computed.  A new point is obtained by reflecting about the mean 

and the forward function is evaluated at the reflected point. If the reflection is successful 

then the point is further expanded. If the expansion step fails then the point is contracted. 

If both expansion and contraction stages fail then the previously reflected point is 

accepted. If reflection, expansion and contraction stages fail, then a scaling operation is 

used to scale the point with the least function value, which shrinks the simplex. The 

operations described above can be represented in notation form. Let hX , sX , and lX be 

the points with highest, second highest and lowest function value points and 
b

X mean of 

the points excluding highest, given as 
1

1

1
n

b i
i
i h

X X
n

+

=
≠

= ∑ . The new points during reflection, 

expansion, contraction and scaling stages are calculated as follows,  

( )r b b hX X r X X Reflection= + − ←  

( )e b r bX X e X X Expansion= + − ←  

( )c b b hX X c X X Contraction= + − ←  

( )i l i lX X s X X Scaling= + − ←  

The coefficients r, e, c and s are assumed as 1, 1, 0.5 and 0.5 respectively. The 

steps are repeated until the convergence or stopping criteria is satisfied.  

The best performing GA solution is passed as the starting point for the simplex. A 

stopping criterion based on the maximum number of cycles or no improvement in the 

objective function value for some specified number of cycles is used. Note the procedure 

described here is for minimization. More details regarding this method can be found in 

several texts including Belegundu and Chandrupatla (1999), Borse (1997), Press et al. 

(1996). 
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3.2.2 Hooke - Jeeves pattern search method (HKJ) 

Hooke and Jeeves method is a simple yet powerful exploratory pattern search 

method that can be applied to discrete and continuous optimization problems. The 

method has two basic steps: (i) explore the neighborhood of the current point and 

establish a pattern to move, (ii) move to a new point using the established pattern. The 

exploratory step consists of sequentially perturbing (positively and negatively) the current 

solution vector (starting with an initial guess) in each direction by a fixed amount (step 

size) such that an improvement is found in the solution. If there is no improvement after 

perturbations in all directions are completed, then the exploration is conducted with a 

reduced step size. The step size is progressively reduced until an improvement is found or 

it reduces below a prescribed tolerance (say 1e-6) in which case the algorithm is 

terminated. When an improvement is found, a pattern direction vector is evaluated by 

taking the difference between the improved solution vector and the old solution vector. In 

the second step, the new solution is found by extrapolating the old solution along the 

pattern direction.  

A step size is chosen and exploration is started from the given starting point. 

Assume 0iX is the initial starting point with n decision variables, where 
i

e  is the unit 

vector (n * 1) along direction i and s is the step size. The exploration and pattern step can 

be calculated as follows, 

0
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ij i i
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= ± = =
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A correct step size is important for good performance of the algorithm. Usually a 

value in the range of 0.05 to 1.0 is selected. A stopping criterion based on the maximum 

number of iterations or the reduction in step size value below a prescribed tolerance (1e-

3) is used. A complete description of this algorithm can be found in Belegundu and 

Chandrupatla (1999). 
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3.2.3 Powell’s Method of conjugate directions (PWL) 

Powell’s method of conjugate directions carries out minimization along 

successive directions that are conjugate with respect to all previous directions. Powell 

developed an idea of computing conjugate directions without using derivatives [Powell 

(1964)]. It requires N single variable minimizations per iteration and sets up a new 

conjugate direction at the end of each iteration. The procedure for computing the 

conjugate direction set is as follows [Press et al. 1996], 

Initialize the set of directions iU to the basis vectors,   for 1,....,i iU e i N= =  

Repeat the following sequence of steps until function value stops decreasing: 

Save starting position as 0P  

For 1, ,i N= �  move 1iP−  to the minimum along direction iU and call this point Pi 

For 1, ,i N= �  set 1i iU U+ =   

Set 0N NU P P= −  

Move PN to the minimum along direction UN and call this point P0 

Reinitialize the set of directions Ui to the basis vector ei after N or N+1 iterations. 

After searching along all conjugate directions, a spacer step is introduced where a 

search is made from the current point along the coordinate directions. The process is 

repeated until the convergence or termination criterion is satisfied. A stopping criterion 

based on the maximum number of cycles or the minimization cycle that produces a small 

change in the variable values less than one-tenth of the required accuracy is used. The 

method is also sequential and like other methods its performance depends on the initial 

guess. A complete description of this algorithm can be found in Belegundu and 

Chandrupatla (1999). 
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3.2.3 Fletcher - Reeves conjugate gradient method (CG) 

Fletcher and Reeves conjugate gradient method is a steepest descent method and 

can be considered as a conjugate directions method involving the use of the gradient of 

the function. By evaluating the gradients of the objective function, new conjugate 

directions are set up at the end of each iteration and hence, faster convergence can be 

achieved. The iterative procedure for the method is given below [Rao 1996]: 

 

The process is repeated until the convergence or a termination criterion is 

satisfied. A stopping criterion based on the maximum number of cycles or the 

minimization cycle produces a small change in the variable values less than one-tenth of 

the required accuracy is used. The gradient vector (∇f) is computed using central finite 

differences. Task parallelism equal to twice the number of decision variables is inherent 

in the algorithm and is exploited while doing the function evaluations for computing the 

gradient (∇f). It should be noted that, once the gradient vector is computed step (4) 

involves five simple dot products and 9 Saxpy’s. The optimal step length ‘ iλ ’ is 

computed using golden section search. Like other methods its performance depends on 

the initial guess. A complete description of the algorithm can be found in Rao (1996). 
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Chapter 4 - Parallel Implementation 

Although solving inverse problems using optimization based methodologies offer 

great flexibility in problem formulation it can be computationally demanding. Parallel 

computing can be used to alleviate this problem. The solution for the inverse problem is 

obtained by repeatedly solving the forward problem, and if the solution process of the 

forward problem itself is computationally intensive, then it becomes extremely important 

to have an efficient parallel implementation. An efficient FEM based parallel 

groundwater simulator suite PGREM3D [Mahinthakumar 1999], is used for forward 

function evaluations in this investigation. More details regarding the simulator can be 

found in the following articles: Saied and Mahinthakumar 1998 (flow simulator) and 

Mahinthakumar and Saied 1999 and 2002 (transport simulator). 

The two most popular message-passing environments are parallel virtual machine 

(PVM) and message-passing interface (MPI). Our parallel implementation utilizes the 

latter. MPI is a popular portable, standard, parallel programming library and supports 

different languages like Fortran77, Fortran90, C, C++ and Java. It is widely supported on 

most parallel supercomputing architectures and distributed computing environments.   

MPI provides a convenient mechanism for modularizing parallelism through the use of 

“communicators”. A communicator is a handle for facilitating communication among a 

specific group of processors. It enables message passing between processors and provides 

mechanisms for subdividing existing groups into new partitions and to send messages 

within and in between new partitions. Since groups can be further subdivided by the use 

of communicators, multiple hierarchical levels of parallelism leading to massive 

parallelism can be achieved through the simultaneous exploitation of coarse-grained 

parallelism in the optimizer and fine-grained parallelism in the function evaluator. 

For example, the coarse-grained task parallelism in GA is generally restricted to 

the number of individuals in a population. However, if the forward solution process is 

already parallelized, then the amount of parallelism available is not just additive but also 

multiplicative. For example, if 10 function evaluations are performed concurrently using 

1 processor for each evaluation then only 10 processors can be used; but if 5 processors 
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are used for each evaluation then 50 processors can be used. In this scenario parallelism 

is exploited at a finer level for each forward function evaluation and inherently two levels 

of parallelism exist: one at the GA population level and the other at the function 

evaluation step. In addition to increased parallelism, such an implementation can lead to 

increased flexibility (ability to solve large forward problems) and in some cases, 

improved performance due to cache effects [Mahinthakumar and Gwo, 1999: Sayeed and 

Mahinthakumar, 2002]. The sections that follow describe the parallel implementation of 

the hybrid optimization framework for a single supercomputer and its extension to the 

grid environment. 

4.1 Coupled FEM-GA-LS implementation 

In this implementation, the FEM transport and optimization modules are 

combined in to a single executable. This is in contrast to a previous implementation 

[Mahinthakumar and Gwo 1999], which used two separate executables for the GA and 

FEM modules, and employed the PVM library [Parallel Virtual Machine; Geist et al. 

1994] for communication between the GA and FEM executables. While less modular, 

combining the optimization and FEM modules into a single executable has two main 

advantages: (i) the more portable MPI library can be exclusively used, (ii) the costly 

startup overhead for spawning each FEM simulation can be eliminated. The current 

implementation uses a three-tier communication hierarchy, and uses communicators at 

specific levels for reading input files and broadcasting it to other processors at that level, 

thereby reducing costly I/O time. A self-scheduling algorithm keeps all the server 

processors in a group busy; however at the end of each generation/cycle the processors 

are synchronized. A restart option is also available for the GA to restart its operations 

from where it stopped. 

An important feature of the present implementation is the exclusive use of the 

MPI library. Use of MPI provides improved portability to a wide range of parallel 

architectures. The use of “communicators” in MPI provides a convenient way to couple 

the GA/LS and FEM modules. In MPI, communicators can be assigned to any group of 

processes. Communicator serves as a handle to that group. Within each group, each 
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processor has its own local process id (also called “rank”). Ranks range from 0 to n-1 

within each group, where n is the total number of processes in the group. By default, all 

processes are assigned to the “world group” and the group handle is the “MPI world 

communicator”. Any number of subgroups can be created from the world group, and 

additional groups can be created from each subgroup. Once a subgroup is created, each 

processor will have a local process id and all local communication within that group can 

be handled using the “group communicator”.  By hierarchically creating subgroups we 

can elegantly manage multi-level communication. More details on the use of MPI groups 

and communicators can be found in any MPI book (e.g., Gropp et al. 1999; Snir et al. 

1996; Quinn 2004). 

The algorithm/implementation has three levels with all the processors at the top 

level (level 0) belonging to the world group. At the next level (level1) the processors are 

divided in to several groups depending on the number of concurrent multi-type or multi-

start GA/LS searches. This information about the number of multi-start/multi-type 

searches, the total number of processors assigned to each search, the number of 

processors assigned to each function evaluation, and the corresponding methods for each 

search is provided by the user. One processor in each group exclusively performs the 

computationally trivial GA/LS operations and serves as the manager or client processor. 

Note that in our discussion the words “processes” and “processors” are interchangeable 

since we always associate 1 process with 1 processor (or CPU). Each objective function 

evaluation (forward FEM transport simulation) can be assigned to a single process or to 

multiple processes of a server subgroup. The subgroup here refers to the number of 

processors used for each forward function evaluation. When a single process is used then 

each subgroup has just one process and the number of server subgroups equals one less 

than the total number of processors in that group. When multiple processes are used, the 

number of server subgroups equals the total number of server group processes divided by 

the number of processes per subgroup.  

The processes and groups corresponding to our implementation are schematically 

shown in figures 4.1 and 4.2. Figure 4.1 depicts the structure of our GA/LS hybrid 

optimization framework. For GA the task parallelism is limited to the number of 
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individuals in the GA population. The best performing GA individual or a set of 

modeling to generate alternatives (MGA) (see Appendix - B) can be passed as initial 

starting guesses to the local searches. Multiple local searches, either same or different 

using same/different initial guesses can run concurrently. The multilevel communication 

hierarchy for a group (as several groups performing different GA or LS operations can be 

created concurrently) is shown in figure 4.2. The communication can be carried out at 

three levels between the client process and server processes. Let’s assume we have a total 

of N processors for our coupled GA-FEM simulation. At first, all the N processes are first 

assigned to the world group with the default communicator MPI_COMM_WORLD 

(level-0). The processes are then divided into n groups with specified number of 

processors per group. The processes belonging to a group have their own communicator 

(level 1) and one of the processes will be the client and the rest are server processors. The 

group server processes are then further divided into P subgroups with each subgroup 

having p processes. Each of these P subgroups are assigned a server subgroup 

communicator (level-2). Each server subgroup will perform one transport simulation at a 

time. In each level, local process id numbers  (or ranks) will be assigned to each process. 

Since the basic input file is the same for all the server subgroups performing the transport 

simulations, only one process (in our case, the process with rank 0) at level-1 will need to 

read the input file. Once read, the input data can be broadcast to all the other server 

processes using the level-1 group communicator. This mechanism avoids the need for 

each server process to read the input file and thus preventing I/O conflicts and also 

possibly saving on costly I/O time. All local communication within each transport 

simulation is handled using the level-2 communicator. 

The manager process first sends the string representing the unknowns (decision 

variables) to the server processes. The server subgroups complete the transport simulation 

and return the RSE value (objective). In each subgroup, only the processor with rank 0 or 

“group leader” communicates with the group manager processor. When multiple 

processes are used in the server subgroups to do the forward transport run, the process 

with local server subgroup rank 0 will receive the individual (chromosome string) from 

the manager and does a broadcast within its subgroup. The subgroup processes will 
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perform the transport run and the process with local rank 0 in this subgroup will 

communicate back the RSE value to the manager using the level 1 group communicator. 

Initially, all the server processes in the server subgroups with local rank zero will 

receive an individual (chromosome string) from the client, after which the individuals are 

assigned dynamically to whichever server subgroup returns the RSE value first to the 

client. The client process keeps sending the individuals in a population to server subgroup 

processes until all individuals in a population of a generation is completed. However, the 

client process needs to synchronize the processors at the end of each generation. The 

dynamic dispatching of the individuals by the client process will help keep all the 

processes busy in a homogeneous or heterogeneous grid-computing environment, where 

the processors with different speeds and architectures are used. This dynamic task 

scheduling policy helps achieve load balancing especially if we have a small number of 

processors and a large population size. Typically we use a population size of 128 or 256 

and 65 or 129 processors on IBM SP, with one process (client) dedicated to do the GA 

computations. The load balance results obtained are presented in chapter 6. 

4.1.1 Hybrid GA-LS-FEM implementation 

As mentioned earlier the LS methods are generally used for local fine tuning. 

Once the GA has exhausted in its search by not improving the function value or by 

reaching the pre-specified number of generations, the best solution is passed as the initial 

guess to the local search methods. The search is then carried on by these methods. The 

LS methods are basically sequential in nature except for NMS and CG methods. In NMS 

method limited amount of task parallelism (up to the number of decision variables) is 

available and exploited during some of the iterations when multiple points of a simplex 

need to be computed each requiring a function evaluation. In the CG method when 

gradients are computed using central finite-differencing, task parallelism equal to twice 

the number of decision variables is available and is exploited. The sequential bottleneck 

in local searches can be alleviated by either increasing the fine-grained parallelism or by 

performing simultaneous multi-type or multi-start local searches. Similar to GA the LS 

methods send the decision variable string to the server processes for forward function 
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evaluation and the function value is returned back to the client process. The creation of 

groups, subgroups and the communication operations performed are the same as 

described before except that now the optimizer is a LS method instead of GA. Normally 

we restrict the maximum number of server subgroups to the number of decision variables  

for the simplex method. For CG method the maximum number of processors is restricted 

to twice the number of decision variables, excluding one for the client. Dynamic task 

scheduling is also implemented in the NMS and CG methods. Different convergence and 

termination criteria can be used to stop the simulation. The LS algorithm is terminated 

when: (a) it has completed the total number of cycles/iterations, (b) there is very small 

improvement for five iterations and (c) no improvement in the search direction. 

4.2 Grid implementation 
 

Grid-computing environments are an emerging trend in parallel computing 

resources that typically consist of a collection of geographically distributed 

heterogeneous supercomputer resources (e.g., the NSF’s proposed new distributed 

terascale facilty1 (DTF)). Parallel implementations for these environments are inherently 

multilevel and obtaining efficient mapping of work to processors can be extremely 

challenging. Extension of our previous implementation to the grid can be accomplished 

by using “grid-enabled” version of MPI libraries. Using the Globus toolkit and grid-

enabled MPI (MPICH-G2 or VMI2-MPICH), required number of resources can be 

requested from multiple supercomputers. Grid-enabled MPI is a special version of MPI 

suitable for computational grids and is based on the “Globus” meta-computing toolkit 

(MPICH-G2) or the virtual machine interface2 (VMI). MPICH-G2 is a Globus flavor of 

MPICH using services from the Globus toolkit (such as job startup, security etc.,). VMI2-

MPICH uses middleware communication layer VMI with MPICH. MPI applications can 

be run on multiple machines potentially of different architectures using grid enabled MPI 

libraries. These libraries automatically convert data in messages sent between machines 

of different architectures and support multiple underlying communication protocols. 

                                                 
1 http://www.nsf.gov/od/lpa/news/press/01/pr0167.htm 
2 http://vmi.ncsa.uiuc.edu/ 
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Initially all the processors requested on different machines (supercomputers) 

belong to the world group and have MPI_COMM_WORLD as the global communicator 

at top level (level 0). Similar to the implementation described above multiple groups can 

be created with their own communicators (level 1). One of the processors in each of the 

groups will be the client and the rest server processors. The server processors of the 

group (level 1) are then divided in to server subgroups (level 2). All the processes of a 

server subgroup (level 2) performing fine-grained FEM computations should be confined 

to a single supercomputer to prevent costly latency overheads. Of course the challenge 

here is that at the top level all the processes may have a global ranking independent of the 

location of processes on the supercomputers, i.e., the MPI library may assign processor 

ranks that may not be in a sequential order. Therefore the server processes with different 

global rankings on a supercomputer have to be identified and regrouped into subgroups 

that are local to each machine. 

To address this we use the MPI call “MPI_Get_processor_name” to get the 

processor’s name and then check its locality during subgroup formation. Once these 

multilevel groups and communicators are created for the heterogeneous or homogeneous 

grid environment, the communications or computations follow the same approach 

described for a single supercomputer. We investigate parallel performance and other 

issues related to the grid-computing environment for this application in chapter 6. A 

discussion of grid and grid applications are available in several recent papers [Waldrop 

2002, Johnston 2002, Abramson et al 2002, Natrajan et al]. 
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Figure 4.1 Schematic layout of parallel hybrid GA-LS-FEM optimization 
framework. The GA solution or the MGA alternatives are passed as initial starting 
guess to local search methods. The GA has P tasks (individuals) evaluating using p 
processors for each function evaluation. The local search can be performed with n 
different/same methods using same or different initial starting points.  
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Figure 4.2 Three levels of MPI communicator hierarchy with multiple groups (n) 
performing GA/LS operations, and each group using different number of processors 
in a group (Pi.pi + 1). Pi is the number of server subgroups for group i using pi 
processors for each FEM forward function evaluation. One processor in each group 
is dedicated for GA or LS operations. 
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CHAPTER 5 - TESTING AND EVALUATION 

 

The optimization framework has been tested for the following classes of 

subsurface characterization problems: biological activity zone identification, source 

identification and source release history reconstruction. For all test problems reference or 

“measured” data is synthetically generated and compared to the simulated observation 

data. Before presenting the test problems and results in the sections ahead, a brief 

explanation of the FEM transport simulator follows in the next section. 

5.1 Description of the FEM transport simulator 

The parallel transport simulator employed in the GA function evaluations solves 

the multi-component groundwater transport problem. The general system of equations 

describing transport of nc dissolved components undergoing reactions in saturated media 

is given by 

 0( ) ( ) ( )        1, 2,3...,i
i i i i i

C q
C C C C R i nc

t θ
∂

= ∇ ⋅ ⋅∇ − ∇ ⋅ + − − =
∂
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where v is the 3x1 velocity field vector, D is the 3x3 dispersion tensor dependent on v, 

and Ci is the dissolved concentration of component i. The term q(Ci-C0i)/θ   represents 

the source term with volumetric flux q, medium porosity θ , and injected concentration 

C0i (e.g. from injection wells). Ri is the rate of mass loss of component i due to sorption 

and bioremediation reactions and is the main coupling term for the system of equations. 

The term, Ri, may contain many terms and can be nonlinear. For example, if only 

bioremediation reactions are present then Ri is given by 
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Where Fi is the stoichiometric ratio, X is the biomass concentration, µmax is the maximum 

utilization rate, and fji is a factor controlling component j’s contribution to component i’s 
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biodegradation process. If fji = 0 then component j does not participate in component i’s 

biodegradation process. 

The system of transport and reaction equations is discretized using the Galerkin 

finite element method (FEM) with 8-noded linear hexahedral elements.  A logically 

rectangular grid structure is assumed but irregular geometries are supported using 

distorted elements. A Crank-Nicolson approximation (central finite-difference) is used 

for the time derivative terms. A lumped mass formulation [Huyakorn and Pinder 1983] is 

used for all time-derivative and non-derivative (zeroth spatial derivative) terms. The 

coupled non-linear system is solved using a modified form of the Sequential Iterative 

Algorithm (SIA). Several Krylov subspace iterative solvers are implemented in the code 

for the matrix solution [Mahinthakumar et al. 1997]. In this research BiCGSTAB solver 

is chosen for the simulations, which performs reasonably well for most problems. 

This transport simulator is parallelized using a two-dimensional domain 

decomposition (in the x and y directions) using explicit message passing (MPI library) to 

exchange information between these domains. The simulator has been tested extensively 

for scalability and performance on a variety of parallel architectures. Details can be found 

elsewhere [Mahinthakumar and Saied 1999, Mahinthakumar and Saied 2002]. 

5.2 Biological activity zone identification problems 

Identifying zones of biological activity is critical to the efficacy of bioremediation 

measures. Bio-stimulants such as dissolved oxygen and methane are injected and the 

observed breakthroughs of methane are used to deduce BAZ. Bio-stimulants (methane, 

dissolved oxygen) are commonly injected into the subsurface to stimulate the growth of 

bacteria so that they can eventually degrade the contaminant to desired levels [Semprini 

and McCarty 1991]. 

The GA-FEM framework developed is used to solve the inverse problem of 

determining possible biological activity zones (BAZ) from the results of a bio-stimulation 

experiment. In these experiments indigenous methanotropic bacteria are stimulated by 

continuous periodic injection of dissolved oxygen and methane (see Figure 5.1). The 
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observed breakthroughs of methane are used to deduce possible biological activity zones 

in the subsurface. 

 

Figure 5.1 Problem setup for the biological activity zone identification problem. 

The problem domain is divided in to several distinct zones (for e.g. 36) resulting 

in the same number of binary or integer bits for GA encoding. The binary representation 

encodes the zone location and activity, with 0 for inactive and 1 for active. Integer 

encoding additionally indicates the activity (concentration) levels. This problem is 

inherently discrete and therefore BGA/IGA is suitable for these problems. Since the 

standalone BGA/IGA performed reasonably well and because local searches are not 

amenable for discrete representation the hybrid approach was not investigated. GA 

performance is investigated for problems of varying complexity (e.g., for identifying 

three and ten BAZs) using different zonal encoding and GA operators. 

5.2.1 Description of test problems 

We chose a moderate size problem with a grid resolution of 51 x 31 x 11 (17,391 

finite element nodes). The grid spacing is fixed at 0.2 m in each direction leading to a 

problem domain of 10m x 6m x 2m. Stimulated methane concentrations are observed at 9 

downstream locations for a time period of 40 days (200 time steps). The observed 

methane concentrations are pre-calculated using an assumed zonal distribution. GA will 

attempt to find this distribution by minimizing the error between these pre-calculated 

values (observed or reference signals) and the computed values for each trial solution. 

Two types of zone identification problems are examined, three zone identification and ten 

zone identification, and the results are reported in the following sections. 
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5.2.2 GA Encoding scheme 

The 10 x 6 x 2 m domain is divided into 36 rectangular zones (4 x 3 x 3 

decomposition) numbered in the two different encoding schemes as shown in figure 5.2. 

The length of binary/integer bit string for GA encoding is 36, one for each of the 36 

zones. For the binary strings, the bits are either 0 or 1, and for integer strings, the bits are 

0, 1, 2 or 3. If the bit is 0 for some zone location, then that zone is inactive and if it is not 

0, then the zone is active. For integer encoding, the values denote an activity level of the 

zone; i.e., 0 – inactive, 1 – low, 2 – medium, and 3- high. These values are decoded into 

appropriate BAZ concentrations in the transport code. The locations of the bits in the 

chromosome string are encoded to correspond to the actual zone locations. As noted, for 

integer encoding, each string not only encodes the zone locations but also the 

corresponding biological activity level. We have studied two different encoding schemes. 

In encoding type A, a zone at x = 1, y = 1, z = 2 would correspond to a zone number 13, 

where as in encoding type B a zone at x = 1, y = 1, z = 2 would correspond to zone 

number 24. One would expect encoding Type B to perform better with single point 

crossover. This is because in encoding Type B, adjacent locations in the string 

correspond to adjacent locations in the real domain. 

  

Figure 5.2 Two types of zone encoding. 
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5.2.3 GA performance results 

The performance of GA for 3 and 10 zone identification problems is studied using 

binary and integer GA, and results are reported here. GA performance is measured in 

terms of convergence to the exact solution. For both three zone and ten zone cases, the 

initial population is generated using a probability of 0.5 whether a location is active or 

not (with activity levels in the case of integer encoded problems). Note that in real life, 

we may not actually know how many zones are active. If we had prior information 

regarding the number of zones that are active then we would have used a probability of 

0.1 (3/36) for the three zones case and a probability of 0.3 (10/36) for the ten zones case. 

Thus an unbiased initial population generation is more realistic. Several random seeds 

were tried out for generating the initial population. Convergence rate varied slightly for 

different random seeds and the results corresponding to the median performing seed are 

reported below. In all cases, a crossover probability of 0.4 and an initial mutation 

probability of 0.01 are used. These values were chosen based on a few trial runs. 

 Three zone problem 

For the reference case three arbitrary zones were chosen with numbers, 17, 20 and 

34. For encoding type A, these numbers would correspond to (x,y,z) coordinates of 

(1,2,2), (4,2,2), and (2,3,3) respectively and for encoding type B, these numbers would 

correspond to (2,2,2), (4,2,2), and (2,3,3). A fixed population size of 256 is used for all 

cases based on the approximate thumb rule of 3 to 4 times the chromosome string length. 

A fixed initial random seed is used for all cases. The GA convergence plots are shown in 

figures 5.3 and 5.4 for both encoding schemes using uniform and simple crossover 

respectively. The figures show the average RSE values for the population after each 

generation.  The results show that for both simple and uniform crossover, encoding type 

B performed better. Encoding B’s advantage, however, is more pronounced for simple 

crossover. This result is expected as discussed earlier. 
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Figure 5.3 GA convergence history for 3-zone problem using uniform crossover. 
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Figure 5.4 GA convergence history for 3-zone problem using simple crossover 
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Ten zone problem 

This is a more difficult problem than the three-zone identification problem for the 

GA to solve, as it is trying to identify ten active sites out of a possible 36. Doing 

elementary combinatorial analysis (Spiegel 1975) shows that there are 36P10,26 = 36!/(10! . 

26!) = 2.5 x 108 possibilities! The arbitrarily chosen BAZ in the reference case are zone 

numbers 1, 2, 5, 7, 10, 14, 18, 19, 25 and 32. The figures 5.5 and 5.6 show the 

performance of GA for this problem using simple and uniform crossover respectively. 

The same GA parameters as in the three zones case are used.  

Although it is not entirely clear as to which encoding scheme or crossover 

strategy is better for this problem, from the initial convergence behavior we see that 

encoding type B and simple crossover perform better. We note here that the convergence 

of encoding type A in figure 5.6 around the 70th generation seems to be a random 

phenomenon as this behavior could not be consistently reproduced. Obviously, the GA 

convergence is much better for the 3-zone identification problem than this 10-zone 

problem (compare figures 5.3 and 5.4 with 5.5 and 5.6). For the 3 BAZ problem the exact 

solution is obtained as indicated by the zero RSE value, where as the ten zone BAZ 

problem is more complicated and only nine out of ten zones were correctly identified for 

encoding type B and uniform crossover strategy. 

Figure 5.5 GA convergence history for 10-zone problem using uniform crossover. 
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Figure 5.6 GA convergence history for 10-zone problem using simple crossover. 
 
5.2.4 Integer encoding problem 

As noted earlier, in this problem we are trying to determine the locations as well 

as the activity level of each zone. This is a more difficult problem than the previous BAZ 

problems for the GA to solve, as it is trying to identify ten active sites out of a possible 36  

Figure 5.7 GA convergence history for integer encoding problem. Encoding type B 
and simple crossover are used. 
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and also their activity level (4 levels). Doing elementary combinatorial analysis [Spiegel 

1975] shows that there are 4 times 36P10,26 = 4. 36!/(10! . 26!) = 1.0 x 109 possibilities! 

The arbitrarily chosen BAZ in the reference case are zone numbers 1, 2, 5, 7, 10, 14, 18, 

19, 25, and 32. The convergence results are shown in figure 5.7 for both the 3 zone and 

10 zone problems. Obviously, the 10-zone case is a difficult problem and thus we see that 

the GA did not find the exact solution. Further examination of the solution found by GA 

indicated that it had correctly identified 9 out of 10 zones in this case. Given that GA is a 

global search technique, this is very good!  

5.3 Source identification problems 

Identifying contaminant sources (locations and concentrations) is important in the 

design of efficient remediation strategies and identifying responsible parties in a 

contamination incident. This is an inverse problem and the solution has to be generally 

inferred from sparsely available concentration measurements. A hybrid GA-LS approach 

is used for solving, as preliminary tests using standalone GA or LS failed to perform 

well. A number of observation wells uniformly distributed at the mid and downstream 

vertical sections are situated as shown in figure 5.8 for sampling the synthetically 

generated plume. The unknown decision variables are the coordinates of the zones and 

their concentration values. For example, for a single source problem the 7 decision 

variables are the 6 coordinate values [(x1, y1, z1), (x2, y2, z2)] and the initial concentration 

C0. A more detailed description is provided in section 5.3.1. 

Satisfying the continuity requirement 

The inverse problem, as posed above, is a mixed discrete-continuous optimization 

problem since the decision variables are mixed with discrete integer valued grid 

coordinates x1, y1, z1, x2, y2, z2 and a continuous real valued initial concentration C0. While 

discrete decision variables are not a problem with GA, most of the local search methods 

employed here (with the exception of Hooke-Jeeves (HKJ)) requires that the decision 

variables be continuous with respect to the objective function (continuity requirement). 

This restriction called for a modification of the forward problem such that a small real-

valued change in the coordinates is guaranteed to produce a corresponding change in 
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objective function. This was accomplished by transforming the problem by extrapolating 

the concentration values to the nearest exterior grid points of the source zone. This 

extrapolation procedure is shown in figure 5.9 for a 2D problem. While the use of integer 

 

Figure 5.8 3D domain with a single source and observation well locations. 
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Figure 5.9 Concentration extrapolation scheme for a 2D problem. A similar 
approach is applied to 3D cases. 
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valued grid points to represent the boundaries of the source is somewhat artificial for this 

particular problem, there may be other inverse problems where integer valued 

representation may be a necessity (e.g., zone identification problems). 

5.3.1 Description of test problems 

The problem solves 3D pollutant source location from measured concentrations 

downstream of the source. The problem domain and grid resolution are the same as that 

of the BAZ identification problems. The 3D problem uses a heterogeneous flow field and 

the steady state flow field is generated using a parallel groundwater flow solver [Saied 

and Mahinthakumar 1998]. The randomly heterogeneous hydraulic conductivity field for 

the flow solver is generated using a 3-Dimensional turning bands code. The turning bands 

code is a parallelized version of the original code developed by Andy Thompson 

[Thompson 1987]. The log conductivity field uses a mean of zero and a variance of 1. 

The source release is observed for 20 days (1000 time steps). The assumed source 

corresponds to coordinates x1=8, y1=9, z1=3, x2=16, y2=15 and z2=7 and having an initial 

concentration of 72 mg/L. A total of 18 observation wells with 9 each uniformly 

distributed at the mid and downstream vertical sections are utilized. The observations are 

recorded once every 10 time steps. Therefore, a total of 1800 observations are used 

corresponding to 18 wells and 100 time periods. The problem was made continuous for 

local search methods by using the weighting approach described earlier (Figure 5.9). By 

using a weighting approach any small change in the coordinates is guaranteed to produce 

a change in the objective function value. The objective function is the root square error 

(RSE) between the observed and calculated values 

                  2

1

( )
n

obs calc
i i

i

RSE C C
=

= −∑  

where obs
iC  is the observed concentration and calc

iC is the calculated concentration at the 

observation points, i the observation number and n the total number of observations. 
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5.3.2 Hybrid GA-LS performance results 

 An investigation on 2D problems showed that stand-alone GA is not adequate for 

these problems and a hybrid approach is warranted [Mahinthakumar and Sayeed 2003]. A 

more realistic scenario is used for the 3D case tested here with heterogeneous flow field 

and an increased number of observation points (18 points). Hybrid GA-LS approaches 

based on both BGA and RGA were tested on this problem. The GA portion was run for 

35 generations and the best solution was further fine-tuned by the local searches. The 

BGA used the following parameters: simple crossover, tournament selection with no 

replacement, population size = 128, probability of crossover=0.5, and probability of 

mutation=0.04. For RGA the parameter values are: population size =50, probability of 

crossover=0.7, probability of mutation=0.01, tournament selection with replacement, and 

non-uniform mutation. Instead of using the option to seamlessly switch from GA to LS, 

we terminate GA and then restart the local searches using the restart option.  This enables 

us to test different local search methods from the same initial guess provided by GA 

without rerunning GA for each local search method. Multiple GA-LS runs were 

conducted and the results are reported for the average performing case. The results for the 

hybrid GA-LS approach for 3D source reconstruction problem are as shown in figures 

5.10 (BGA) and 5.11 (RGA) for the problems without noise and figures 5.12 (BGA) and 

5.13 (RGA) for problems with noisy data. The noisy data is obtained by adding a random 

white noise of ± 10% to the synthetically generated observation data. Figures 5.10–5.13 

show that the Nelder-Meade simplex method (NMS) performed well initially but as the 

size of the simplex starts to reduce, the convergence rate dropped. The same can be said 

about Powell’s method (PWL). Table 5.1 shows that even though all the hybrid 

approaches are able to find a reasonably good approximation to the solution, the Hooke 

and Jeeves method (HKJ) required the least number of function evaluations to converge . 

Also, RSE values do not always correspond to the error in the solution indicating a non-

uniqueness problem. For example the BGA has higher RSE value (41.27) than RGA 

(21.89), but has a lower % error in solution of 9.7 compared to 11.4 for RGA. 
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Figure 5.10 Convergence history of Hybrid BGA-LS approach for 3D source 
identification problem with no noise. Iterations for Hooke’s and Powell’s method 
refer to every reduction in RSE value with forward function evaluation. 
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Figure 5.11 Convergence history of Hybrid BGA-LS approach for 3D source 
identification problem with no noise. Iterations for Hooke’s and Powell’s method 
refer to every reduction in RSE value with forward function evaluation. 
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Figure 5.12 Convergence history of Hybrid BGA-LS approach for 3D source 
identification problem with ±10% noise in observation data. Iterations for Hooke’s 
and Powell’s method refer to every reduction in RSE value with forward function 
evaluation. 
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Figure 5.13 Convergence history of Hybrid RGA-LS approach for 3D source 
identification problem with ±10% noise in observation data. Iterations for Hooke’s 
and Powell’s method refer to every reduction in RSE value with forward function 
evaluation. 
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Table 5.1 Error in solutions obtained using various methods for the 3D source 
identification problem with ±10% noise in observation data. 
 
The true solutions is x1=8, y1=9, z1=3, x2=16, y2=15, z2=7 and C0=72 mg/L. RGA = real 
genetic algorithm, BGA=Binary, NMS (Nelder-Meade Simplex), HKJ (Hooke-Jeeves) 
and PWL (powells). 
 

              
Method 

Number of 
Function 

Evaluations 

Converged Solution    
(x1, y1, z1, x2, y2, z2, C0) 

               
RSE Value 

Error in 
Solution (%) 

BGA 1660 (7, 9, 3, 17, 17, 7, 46) 41.27 9.7% 
RGA 2340 (10, 9, 3, 15, 15, 8, 65) 21.89 11.4% 

BGA-NMS 3086 (8, 9, 3, 16, 16, 7, 50) 15.86 8.0% 
BGA-HKJ 2035 (8, 8, 3, 16, 16, 7, 49) 14.92 9.4% 
BGA-PWL 2460 (8, 9, 3, 16, 16, 7, 52) 17.96 6.8% 
RGA-NMS 3771 (8, 9, 3, 16, 15, 7, 68) 8.85 0.8% 
RGA-HKJ 2724 (9, 9, 2, 15, 15, 8, 66) 14.58 7.4% 
RGA-PWL 3142 (10, 9, 2, 15, 15, 8, 73) 13.03 10.0% 

  
 
5.4 Source release history reconstruction problems 

In most practical situations the locations of contaminant sources are known, but 

the time history of contaminant release in to the subsurface is not known. Reconstructing 

the temporal release history from available concentration measurements (i.e., solving the 

source release history reconstruction problem) is important in environmental forensics 

where potential polluters are identified so that financial and other liabilities can be 

imposed on the responsible parties. The hypothetical multiple sources are present at 

different locations in the domain (see figure 5.14). Concentration observations are 

available at the middle and downstream-end vertical cross-sections of the domain at 

various time intervals. A heterogeneous flow field generated by the flow code is used as 

described for the source identification problem.  

For this problem, the possible contaminant source locations are known but the 

contaminant release concentrations corresponding to a specified number of time durations 

(time history of contaminant release at the source) are unknown resulting in the same 

number of unknown decision variables. For example, ten time durations corresponding to 

a single source will require ten decision variables. Typically, the desired resolution in 
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time is a single year. In this case, the release history (concentrations) is sought for 10 

time durations corresponding to a 10-year release of the contaminant. Depending on the 

number of contaminant sources the number of decision variables is equal to the product 

of the number of time durations times the number of contaminant sources. For example, 

if the number of time durations is ten and five contaminant sources then the number of 

decision variables is 50 (unknowns). 

 
Figure 5.14 Show’s the 2D source release history problem. 

 

The problem domain, grid resolution and other specifications are same as for the 

source identification problem except that the potential source locations are known and the 

release history is sought for each source for the specified number of time durations. A 

hypothetical study of single and multiple (3 and 5) sources release is investigated. The 

sources are present upstream or downstream of the middle set of the observation wells. 

For these problems a total of 1800 observations (18 wells × 100 time durations) are 

recorded similar to the source identification problem. For these problems the locations 

are known and the contaminant release concentrations at each source over ten-year period 

are unknown resulting in 10, 30 or 50 decision variables for 1, 3 or 5 sources 

respectively.  
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5.4.1 Hybrid GA-LS performance results for source release history reconstruction 
problem 

Convergence results are presented for single and multiple source problems with 

and without noise in the observations. For the cases with noise a random white noise of 

10% is added to the observation data. The RGA is run with a population size of 100 and 

for 50 generations. The output profile frequency is set at 100. The main RGA parameters 

used are  probability of crossover = 0.5, probability of mutation = .05. Of the individuals 

selected for crossover 40% undergo arithmetic crossover, 30% heuristic crossover, 20% 

uniform crossover and remaining 10% simple crossover. The mutation strategy selected 

for these runs is nonuniform mutation. The RGA was run for 50 generations using 101 

processors on an IBM SP3 taking approximately 2 hrs 15 mins. The local searches are 

performed with fewer number of processors.  

The performance of the hybrid approach for a single source problem is shown in 

Figures 5.15 (a) and 5.15 (b) for cases without and with noise. The values used for deltat 

and maxt parameters are 0.2 and 1000 respectively. The results show that the hybrid 

approach is a feasible approach for solving release history problems. Most of the LS 

approaches perfomed well, but the best is observed for CG method.  

Results for the more complex  multiple source release history (3 and 5 sources) 

problems are presented next. In both cases, one of the sources is assumed to be dummy; 

i.e., this source does not release any contaminants (zero concentration values). Dummy 

sources are not uncommon in practice as one or more of the potential pollution sources 

may not be leaching any contaminants. The parameters used for three-source release 

history reconstruction problem are same as the single source problem with the exception 

that deltat and maxt parameters are now 0.05 and 2500 respectively. The three-source 

results are shown in Figures 5.16 (a) and (b) for the cases without and with 10% white 

noise in observation data respectively. The performance of GA-LS varied and only the 

hybrid C.G approach perfomed well for both cases (with and without noise). However in 

most cases the dummy sources were clearly identified. It should be noted here that 

standalone GA or LS would have failed for multiple sources case. 
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 For the five-source release history reconstruction problem population size is 

increased to 200 and the deltat and maxt parameters are set to 0.05 and 3500 respectively. 

Figures 5.17 (a), (b), (c) and 5.18 (a), (b), (c) show performance of the hybrid approach 

for the five-source problem for three LS methods (HKJ, PWL, and CG) for cases with 

and witout noise in observation data. The worst peformance is observed for simplex 

method and is not reported. Even the fine tuning of simplex method parameters such as 

step size didn’t provide any significant benefit. These results are presented in a different 

format. From the figures it is very clear that the performance of local searches varied 

even though all of them start with the same initial guess provided by RGA. The hybrid 

approach using CG (Fletcher-Reeves conugate gradient method) local search, performed 

better than other approaches. This is mainly because it uses the gradient information for 

finding the search direction. This underscores the need for having multiple local search 

methods as these methods are sometimes problem dependent. Note that we did not 

experiment with optimizing the location and number of observation points in these 

analyses. With careful placement of observation wells we could have reduced the number 

of observation locations and frequency of observatiobns. This is should be considered as  

a topic for future research. In practice, the observation wells should be placed judiciously 

to maximize detection and minimize cost.  
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Figure 5.15 (a) Performance of the hybrid approach for a single source release 
history reconstruction problem without noise. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 5.15 (b) Performance of the hybrid approach for a single source release 
history reconstruction problem with 10% random white noise in observation data. 
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Figure 5.16 (a) Performance of the hybrid approach for three sources release 
history reconstruction problem without noise in observation data. 
 

 
Figure 5.16 (b) Performance of the hybrid approach for three sources release 
history reconstruction problem with 10% white noise in observation data.  
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Figure 5.17 (a) Performance of the hybrid (RGA-HKJ) approach for five-source 
release history reconstruction problem. Each curve represents a source.   
 

 
Figure 5.17 (b) Performance of the hybrid (RGA-PWL) approach for five sources 
release history reconstruction problem.  Each curve represents a source. 
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Figure 5.17 (c) Performance of the hybrid (RGA-C.G) approach for five sources 
release history reconstruction problem. Each curve represents a source. 

 
Figure 5.18 (a) Performance of the hybrid (RGA-HKJ) approach for five sources 
release history reconstruction problem with 10% random white noise added to the 
observation data. Each curve represents a source. 
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Figure 5.18 (b) Performance of the hybrid (RGA-PWL) approach for five sources 
release history reconstruction problem with 10% random white noise added to the 
observation data. Each curve represents a source. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.18 (c) Performance of the hybrid (RGA-C.G) approach for five sources 
release history reconstruction problem with 10% random white noise added to the 
observation data. Each curve represents a source. 
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CHAPTER 6 - PARALLEL ARCHITECTURE AND 
PERFORMANCE 

 

An emerging trend in the supercomputer market is to build parallel systems using 

commodity off the shelf (COTS) components. For example, SMP cluster architectures 

having more than thousands of processors can be formed by connecting hundreds of 

commodity SMP (symmetric multi processor) nodes, with each SMP node using a 

moderate number of processors (typically 2 to 32 processors per node). The processors 

used in these systems can be either vector processors (e.g. earth simulator1) or super 

scalar RISC (reduced instruction set computer) processors (e.g. IBM SP’s, teragrid Linux 

clusters2 etc). The programming model suited for many of these cluster systems is 

message passing, although shared memory programming may be used within an SMP 

node. Even though the shared memory programming paradigm is easy to program, it is 

severely limited by the number of processors available in the SMP node (or system). It 

should be noted that while message-passing model could also be used within the 

processors of an SMP node, it might not be the most covenient way of parallel 

programming. A hybrid approach using shared memory programming within a SMP node 

and message passing between nodes is also attractive. 

As mentioned earlier our GA-LS-FEM implementation uses message-passing 

paradigm (MPI library) and has been ported to different architectures. Most of the 

simulations for this research are performed on the IBM SP3 with exception of the grid 

computing simulations, which are performed on the TeraGrid clusters at National Center 

for Supercomputing Applications (NCSA) and San Diego Supercomputing center 

(SDSC). A brief description of these machine architectures is given in the following 

sections. 

                                                 
1 http://www.es.jamstec.go.jp/esc/eng/ 
2 http://www.teragrid.org/ 
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6.1 IBM SP3 

This cache based supercomputer from IBM uses 64 bit POWER3-II processors 

running at 375 MHz with different processor counts (2, 4, 6, 8 or 16) per node. The 

theoretical peak performance of each processor is 1.5 Gflops. The processors super scalar 

architecture is capable of performing up to 8 instructions per clock cycle (2 floating-

point, 2 single-cycle integer, 1 multi-cycle integer, 2 load/store, and 1 branch). The 

processor has 2 floating point units (FPUs), 3 fixed point execution units (FXU), two 

load/store units, and 3 levels of cache (Figure 6.1). The level-1 (L1) on chip cache is 64 

KB and takes only 1 clock cycle to access. Each cache line is 128 bytes long. The L1 

cache is very small (for data sets used in scientific applications) and to fix this an L2 

cache is installed between L1 cache and main memory. The L2 cache is 8MB and is 

slower than L1 cache at 6 or 7 cycles. If there is a cache miss from both L1 and L2 

caches, data has to be retrieved from main memory and the penalty for this is 36 cycles. 

The unified instruction and data cache (L2) sizes vary from 1 MB to 16 MB. The 

memory configuration based on user requirements can be any where from 256 MB to 16 

GB or more. Each node has local disk space (~5 GB or more) and can be used as 

temporary scratch space. Users home directories are in the distributed file system on 

other servers. The disk access is much slower compared to memory access. Hence the 

users should try to store temporary data in memory to avoid frequent disk accesses, 

which may slow down the code. Figure 6.1 shows the functional units of this processor. 

The performance of most parallel applications depends on the communication 

network condition. The SP node has two separate connections.  The first is a standard 100 

Mbps (mega-bits per second) Ethernet interface that connects each node to the outside 

world. The second interface is the SP Switch, which is a fast private network whose sole 

purpose is to carry data from parallel computations among the nodes.  The peak 

bandwidth for the 100 Mbps Ethernet is around 90 Mbps and the lowest latency is 50 µs, 

although these numbers can vary greatly depending on the type and number of network 

switches traversed. The SP switch has a peak advertised performance of 1200 Mbps 

bandwidth and 1.2 µs latency, although only a peak performance of about 1000 Mbps 
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bandwidth and 26 µs latency has been reported using MPI. Thus the SP Switch has a 

significant performance advantage over Ethernet for parallel computations3. 

 

 
 

Figure 6.1 Block diagram showing functional units of a power3-II architecture. 
 
6.2 Teragrid Itanium2 clusters 

The teragrid Linux clusters at National Center for Supercomputing Applications 

at Illinois (TG-NCSA) and San Diego Supercomputer Center (TG-SDSC) are used in grid 

computing investigations (see section 6.4). These clusters are 256 or 128 dual processor 

systems using Intel Itanium2 1.3 GHz, 3MB integrated L3 cache Madison chip. The L1 

and L2 caches are small compared to the IBM SP3 at 32 KB (instruction and data) and 

256 KB respectively. The system bus is 400 MHz, 128 bits wide with a bandwidth of 6.4 

GB/sec. The theoretical performance of this processor is 5.2 Gflops. The dual processors 

                                                 
3 http://www-rcd.cc.purdue.edu/Performance/power3/hardware.html 
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nodes are connected by Myrinet interconnect and other networking to file system 

servers uses Gigabit Ethernet. The storage channel is reported as fiber channel. The peak 

theoretical bandwidth reported by vendors (Myricom4) is one way 2 Gbits/s and short 

messages latencies of 4 µs.  

6.3 Parallel performance 

Parallel performance of the implementation has been studied for the IBM SP3 

architecture for speedup and load balance. The code has also been ported to SGI Origin 

2400 and Compaq EV6 architectures.  

6.3.1 Speedup 

A measure of parallel efficiency is speedup. Figure 6.2 shows the fine grained 

standalone FEM simulation performance in terms of speedup. The impact of fine-grained 

parallelism on the overall GA-FEM efficiency was performed by using different number 

of processors (e.g., 1, 2, 4 and 8 processors) for each FEM forward function evaluation 

(see figure 6.3). The best performance was observed for 2 processors per case, as cache 

benefits outweigh the communication costs. The fine-grained FEM parallelism is 

especially useful for inherently sequential LS methods (PWL and HKJ), as the function 

evaluation in LS process can be performed using more number of processors (say 8).  The 

impact of coarse-grained parallelism is studied by measuring the total runtime for 10 GA 

generations with increasing number of processors on the IBM SP3 (see figure 6.4).  

Increasing the number of processors from 2 to 128 we see a speedup of 58 against an 

ideal linear speedup of 64. These simulations used a fixed fine-grained parallelism of 2 

processors per FEM simulation. The coarse-grained parallelism in the GA optimizer 

(embarassingly parallel) is beneficial for using large number of processors and helps 

achieve very good parallel efficiency. 

 
 
 
 

                                                 
4 http://www.myricom.com/myrinet/overview/ 
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Figure 6.2 Standalone fine grained FEM simulation performance. 
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Figure 6.3 Total time taken by 129 processors to complete 10 generations using 1, 2, 
4, and 8 processors per individual on the IBM SP. Population size is 128. 
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Figure 6.4 Time taken for 10 GA generations on the IBM SP using 2 processor per 
FEM simulation 
 
6.3.2 Load balance 

The load balance study is performed by artificially simulating the processor speed 

by forcing different processor groups to perform different number of FEM time steps. 

Four classes of processors are created and each class performs 50, 100, 150, and 200 time 

steps respectively. The processor class that performs 50 time steps will complete a 

transport simulation approximately 4 times faster than the processor class that performs 

200 time steps. This way we simulate different processor speeds on the same machine. A 

fixed population size of 256 is used and simulations run for one GA generation. A total of 

5, 9 and 17 processors are used with 1, 2, and 4 processors per subgroup for function 

evaluations respectively. One processor (master) does the GA computations. Figure 6.4 

shows the load balance results. For perfect load balance each processor class should 

perform the same number of time steps. However, this is not generally feasible due to the 

startup round and the fact that each time step in the transport simulations may involve 

slightly different work load. Given these caveats, the load balance observed in Figure 6.4 

is reasonably good illustrating the efficiency of the dynamic scheduling algorithm. For 

example, in the case with 2 processors per group, the processor class that performs 50 
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time steps complete 137 transport simulations (6850 time steps) and the group that 

performs 200 time steps complete 27 transport simulations (5800 time steps). Thus the 

processor class that is 4 times faster is performing about 5 times more work. The load 

balance efficiency (defined as the least number of time steps performed by a processor 

class divided by the most number of time steps performed by a processor class) is about 

74%, 74%, and 69% for the 1, 2, and 4 processor groups respectively. While this is not 

perfect, it is still good given the caveats mentioned above. 
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Figure 6.5 Load balancing efficiency of self-scheduling algorithm. Processor speed is 
artificially simulated by varying number of time steps. 
 
6.3.3 Scalability analysis of hybrid approach 

A simulation experiment to study the scalabilty of the hybrid approach by using 

the simplex method as the local search approach was conducted. As stated earlier, task 

parallelism in the simplex method is limited to the number of decision variables. The 

RGA with a population size of 100 is run for 50 generations and then the simplex method 

is continued for 100 cycles. The study was performed for 4 cases using total processor 
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counts of 17, 33, 65 and 129 for the RGA and simplex methods. The single source release 

history problem is tested (10 decision variables). The results are shown in figure 5.13. 

For RGA, 2 processors are used for each FEM simulation. For the simplex method, due 

to the reduction in coarse grained parallelism, the fine-grained FEM parallelism is 

increased to 4 or 8. The case using 129 processors takes 10000 seconds while the case 

using 17 processors takes 45000 seconds to complete the simulation (a speedup of 4.5 out 

of a possible maximum of 8). This shows that while the use of a local search inhibhits 

parallelim to some extent, by increasing the fine grained parallelism we are able to 

alleviate some of this. 
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Figure 6.6 The scalability of hybrid approach using different processor count for 
local search, namely simplex. 
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6.4 Grid computing 

The grid computing investigations are carried on the TeraGrid. The National 

Science Foundation (NSF) funded TeraGrid project is a collection of heterogeneous 

geographically distributed high performance computer resources (typically parallel 

supercomputers) connected by high bandwidth and low latency network. The coarse-

grained task parallelism and fine-grained data parallelism make this application ideal for 

the grid environment since the application has two-levels of communication hierarchy 

(one loosely coupled and the other tightly coupled) analogous to the hardware 

characteristics of the grid. TeraGrid is continually evolving and currently five sites, 

National Center for Supercomputing Applications (NCSA), San Diego super computer 

center (SDSC), Pittsburgh Supercomputing Center (PSC), Argonne National labs (ANL), 

and California Institute of Technology (Caltech) are part of the TeraGrid.  Several new 

sites are to be added in the near future. At the time of this writing the systems are still in 

testing phase and are not available to general users for production runs. The accounts on 

these machines were available for testing only in August 2003. Therefore the systems are 

not fully stable and the tests are carried only at NCSA and SDSC sites. The 

TeraGridLinux clusters at NCSA (TG-NCSA) and SDSC (TG-SDSC) are similar systems 

with 256 and 128 dual processor nodes respectively. For hardware information see 

section 6.2. Additional hardware and software features of the TG machines are available 

on the internet5. 

The first step was to port the GA-LS-FEM code to the NCSA and SDSC TeraGrid 

Linux clusters. It primarily required minor compilation error fixes. Extensive single site 

runs and limited number of cross-sites were done to evaluate performance. Recall that our 

GA-LS-FEM implementation has both fine and coarse-grained levels of parallelism. The 

fine-grained parallelism (FEM transport simulator) computations are communication 

intensive. Thus for cross-site runs, the processors forming the FEM subgroups are 

ensured to be local to a single site and are not across sites (section 4.2). 

                                                 
5 www.teragrid.org 
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6.4.1 Results 

During this investigation MPICH-G2 (Globus flavor of MPICH) was unavailable 

(see section 4.2). Thus Virtual Message Interface (VMI) flavor of MPICH (MPICH-

VMI-INTEL) is used in the runs. The two sub sections that follow give the bandwidth 

benchmark test results and the FEM/RGA-FEM simulation results. 

Teragrid bandwidth (ping-pong) test 

Ping-pong MPI bandwidth tests are performed for single cluster (both intranode 

and internode) and cross-cluster cases. The interconnect/network bandwidth is measured 

by sending and receiving messages of varying sizes between two processors using 

MPI_send/MPI_Recv. This test provides information about the actual available 

bandwidth if one were to run a real application. Table 6.1 gives the single site intra and 

inter node interconnect bandwidths and the cross-site network bandwidth. While the MPI 

bandwidth increases with message size, a peak intranode bandwidth of 1.5 GB/sec (for 

256 KB messages) and a peak internode bandwidth of 0.23 GB/sec (for 512 KB 

messages) is observed. The cross-site network bandwidth peaks at 42 MB/sec for 4MB 

size messages. This is very small compared to theoretical network bandwidth of 

40Gbits/sec. The network latency between SDSC and NCSA has been measured to be 

around 30ms and is very high. Hence, for cross site runs proper care must be taken to 

reduce the number of small messages sent across and bundle the messages if necessary. 

Also latency hiding mechanisms such as overlapping computations with communication 

should be considered to further improve performance. 
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Table 6.1 MPI Bandwidth for single and cross site run 

 
 
FEM and RGA-FEM performance on TeraGrid 

The performance of standalone FEM code is compared in figure 6.7 for single-site 

and cross-site runs. While we see a superlinear speedup behavior for runs within a 

cluster, the cross-site FEM runs show a very large communication overhead. This is 

mainly due to the high network latency (30ms) between TG-NCSA and TG-SDSC. For 

example, for the 8 processors per FEM simulation case single cluster run takes only 8 

seconds whereas the cross-site run takes approximately 1300 seconds. This clearly 

highlights the importance of performing FEM simulations locally on a single cluster.  

RGA-FEM performance results are given in table 6.2. The runs using MPICH-

GM-INTEL perform better in most cases than the MPICH-VMI-INTEL for single and 

cross-site runs since the GM interface uses the faster Myrinet connection within cluster 

instead of TCP throughout.  

 

 
Cross Site 
(MB/sec) 

Single Site  
Bytes Internode 

(MB/sec) 
Intranode 
(MB/sec) 

42.7302 234.43 649.45 4194304 

29.7817 233.39 659.67 2097152 

11.8127 231.11 942.22 1048576 

7.3102 228.84 1492.93 524288 

3.4516 224.87 1513.78 262144 

2.2856 217.22 1429.44 131072 

0.8622 203.44 1262.05 65536 

0.4274 180.39 1016.64 32768 

0.2738 146.85 720.51 16384 

0.1819 128.78 788.5 8192 

0.093 103.02 596.83 4096 

0.03 50.82 245.92 1024 
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Figure 6.7 Performance of single vs. cross-site fine grained parallelism 
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Table 6.2 Runtimes for single and cross-site RGA-FEM simulations (using VMI1) 

 

 

8 4 2 1 

428 183 131  129 (64 + 65) 

667 390 217 261 65 (32 + 33) 

890 421 369 478 33 (16 + 17) 

1937 1215 700 835 17 (8 + 9) 

Cross site runtime (sec) using VMI1+TCP(Gig) 
interconnection  

 

67 53 104  129 

168 125 174 268 65 

276 201 316 475 33 

491 351 596 834  17 

Single site runtime (sec) using VMI1+GM 
interconnection 

 

268 136 122  129 

467 230 - 259 65 

870 438 366 474 33 

- 966 681 848 17 

Single site runtime (sec) using VMI1+TCP(Gig) 
interconnection 

Number of processors per FEM simulation Number of 
processors for 
RGA-FEM 
simulation 
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Chapter 7 – Research contributions and topics for further research 

 

This research has centered on three areas of exploration: (i) development of 

optimization algorithms for inverse modeling, (ii) application to various groundwater 

inverse problems, and (iii) enabling parallel computing technologies for the compute 

intensive simulations. Emphasis is given in the following order: optimization, parallel 

computing, and application. This chapter provides a summary of findings, 

accomplishments, and areas for future research. 

7.1 Research findings 
 

• Hybrid optimization approaches are generally more effective than standalone GA 

or LS for inverse modeling. 

• Release history problems are easier to solve since the signature of the decision 

variables are more effectively carried in the break through curves. For source 

identification problems, the location information is less effectively carried by the 

signals and are more difficult to solve. 

• The biological activity zone identification problems are more naturally posed as 

discrete optimization problems and are less suited for real GA’s or local searches. 

• The two level of parallelism encountered in these types of problems, namely, 

coarse grained in the optimizer and fine grained in function evaluation is ideal for 

grid environments. 

• The middleware tools (or technology) for grid computing is not yet mature and 

needs further development for more wide spread acceptance. 

 
7.2 Research accomplishments 
 

• An efficient and flexible parallel hybrid optimization framework has been 

developed for solving inverse problems [Sayeed and Mahinthakumar, 2002]. 

• The parallel implementation can handle multi-type/multi-start GA or local 

searches (LS) concurrently [Sayeed and Mahinthakumar 2003 (1) and 

Mahinthakumar and Sayeed, 2003]. 
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• The following methods have been implemented in the optimization module: (i) 

Three variations of GA: binary GA, integer and real GA’s, (ii) Three non-gradient 

based local search techniques: Nelder-Meade simplex (NMS), Hooke-Jeeves 

pattern search (HKJ), and Powell’s method of conjugate directions (PWL), and 

(iii) One gradient-based method: Fletcher-Reeves conjugate gradient (CG) 

[Sayeed and Mahinthakumar, 2003 (3)]. 

• The optimization module has been optionally configured to perform  noisy-GA 

and modeling to generate alternatives (MGA) simulations. 

• The implementation is portable to most parallel environments as it is written in 

Fortran 77/90 and parallelized using the message passing interface (MPI) library. 

• The GA-LS-FEM framework has been tested on the Teragrid [Sayeed and 

Mahinthakumar 2003 (2)]. 

• The parallel optimization framework has facilitated solutions to complex three-

dimensional groundwater inverse problems that have not been attempted before. 

 
7.3 Topics for further research  
 

• Additional optimization algorithms can be added to the existing framework.  

• Preliminary investigations of Noisy-GA approach to handle uncertainty in 

groundwater problems needs further study. Also, it is necessary to identify the 

best possible approach to handle uncertainty during local searches. 

• The optimization and function evaluation (groundwater FEM simulator) codes are 

tightly coupled in this implementation for improved portability at the expense of 

modularity. However, future implementations should look into more elegant 

formulations that can use two separate executables that communicate to one 

another via the new features of MPI-2. 

• The modeling to generate alternatives (MGA) approach to address non-

uniqueness nature of some of the groundwater inverse problems should be 

explored further with new test problems. 

• The optimization approaches should be studied for other problems in the 

groundwater area such as hydraulic conductivity inversion. 
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• The hybrid optimization approaches developed in this thesis should be tested for 

real field characterization problems. 
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Appendix  - A 

PRELIMINARY INVESTIGATION OF NOISY-GA  

 

The Noisy-GA approach uses multiple realizations (sampling) to reduce the 

amount of noise from fitness evaluations in noisy environments. This is similar to Monte-

Carlo type sampling and provides a more realistic estimate of the fitness [Gopalakrishnan 

and Minsker 2001]. However, Monte-Carlo simulation modeling uses a large sampling 

set compared to a few samples per design used by noisy GA to identify robust designs. 

The noise in the system can arise from any factor that affects the accurate evaluation of 

fitness. These factors can be approximate fitness function, the use of noisy data, 

uncertainty in the input parameters and human error. For example, in groundwater 

modeling noisy fitness functions can arise from uncertainty in input parameters (e.g. 

hydraulic conductivity, porosity and chemical reaction rate coefficients) or measurement 

errors (e.g. hydraulic heads, flow rates, contaminant arrival times, solute concentrations, 

and/or mass removal rates at monitoring points).  

A.1 Current approach 

Uncertainties in results can be associated with model input parameters or with 

numerical and conceptual difficulties present in the model [Zheng and Bennett, 2002]. 

While there are several factors that contribute to uncertainty, this study focuses on 

uncertainty resulting from the input hydraulic conductivity data. Several studies have 

identified this to be the most challenging parameter to predict correctly for any particular 

site [Zheng and Bennett, 2002].   

Multiple realizations are used for the noisy-RGA approach. Random 

heterogeneous hydraulic conductivity fields (K-field) are generated using the 3D turning 

bands code. The turning bands code is a parallelized version of the original code 

developed by Andy Thompson (Thompson et al. 1989). Then the steady state flow fields 

(velocity and flux) are generated using the PGREM3D flow solver using the K-fields 
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generated. Since the sample size plays a critical role in obtaining a robust solution, 

several sample sizes are experimented.  

For the noisy-RGA a sample set of 100 is chosen for generating the K-field. The 

100 hydraulic conductivity fields are generated synthetically by running 100 Monte-Carlo 

simulations of the turning bands code. These 100 K-fields are used by the flow code to 

generate the 100 steady state flux and velocity fields. Several test cases, each with 

different sets of realizations are experimented to analyze the behavior of noisy-RGA’s for 

a single source release history reconstruction problem. One of the K-field is chosen for 

generating the reference concentration profiles (observed values).  

A.2 Experiments 
 

The experiments carried out are  

• One randomly selected K-field for each individual in a population for every 

generation. 

• 1, 2, 4, 8 and 16 K-field realizations for each GA generation (all individuals use 

the same set of realizations). The fitness for each individual is the average of the 

realizations. 

While it is not clear how exactly one would proceed with the LS when using noisy-

GAs, one could envision the following options:  

• Using the same velocity and flux field as used for generating reference observed 

concentration values. 

• Randomly selecting one of the velocity and flux fields from the sample set for the 

whole LS run. 

• Randomly selecting any one of the velocity and flux fields from the sample set. 

• Using the average of the sample set. 

• Perform LS for each realization and then take the average as the solution. 

 
A.3 Results 

From the results shown in table A.1 the solutions produced using multiple 

realizations are very different in the decision space but are close in their objective 
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function value. After the noisy-RGA approach, hybrid optimization using different local 

searches can be performed using the actual hydraulic conductivity field used in 

generating the observed concentration profiles or some other approach such as using the 

same number of realizations from the sample set for each forward function evaluation.  

The post-processing of solutions of different realizations obtained by the noisy-

RGA are necessary to estimate the degree of robustness of the solutions. This can be 

estimated by calculating the average RSE produced by the actual and noisy-RGA 

solutions (1, 2, 4, 8 and 16 multiple realization cases) against the full sample set (i.e. 

running with all the 100 hydraulic conductivity fields). For identifying a robust solution, 

one hypothesis is that the solution giving the least average RSE will be the robust 

solution. This would show the robustness of the solution against any perturbation or noise 

in the hydraulic conductivity field. However, the post-processing yielded very similar 

average RSE values for the different multiple realizations noisy-GA solutions, as shown 

in table A.2. This necessitated another approach such as fixing a threshold RSE value and 

counting the number of samples that pass this threshold. Even this failed as is evident 

from table A.2 (or figure A.1) for RSE threshold values of 10 and 20. Also, notice the 

behavior of noisy-GA solutions is similar to the actual case (see figure A.1). This 

behavior can be attributed to some factors such as: (i) the hydraulic conductivity sample 

set size being small (100), (ii) during the noisy-GA selection process, average of the RSE 

values is used for multiple realizations sampling, or (iii) sub optimal GA parameters such 

as population size or the number of generations. However, it should be noted that 

complete set of runs could not be carried out because of time constraints and could be an 

area for future research work.  

A.4 Conclusions 
 

Based on the limited results the noisy-RGA approach may require further pre and 

post-processing analysis in order to find a robust solution for this test problem. However, 

some general observations and reasons for the noisy-RGA behavior are given: 
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• Small variation in hydraulic conductivity fields does not necessarily reflect the 

same behavior in the concentration profiles generated. It can also result in large 

variations. 

• The variations in the K-fields are disruptive to GA convergence. 

• Increasing the number of realizations and averaging the fitness did not improve 

the GA performance. 

• Sampling set size is critical in identifying a robust solution. 

• The selection process may influence noisy-GA performance. 
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Table A.1 Results obtained for the single source release history reconstruction 
problem using noisy-RGA approach with multiple realizations and heterogeneous 
hydraulic conductivity field. 
 

Noisy-GA solutions obtained using different realizations Actual 
Solution Number of realizations 

(mg/L) 1 2 4 8 16 
70 86.88 90.16 77.62 75.02 89.14 
50 82.73 66.22 86.79 94.6 87.06 
90 64.61 58.26 59.82 44.02 54.74 
40 49.9 54.49 66.27 67.65 63.84 
50 46.75 54 44.52 56.77 48.11 
60 22.69 31.56 17.89 46.48 27.54 
55 32.75 30.32 33.19 11.17 18.79 
1 19.23 27.65 19.07 14.86 7.19 
1 22.55 14.2 15.79 11.17 26.57 
0 0.53 0.37 0.38 0.35 0.28 

RSE Value      
0 4.71 9.6 14.16 13.82 7.85 
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Figure A.1 Variation in RSE values shown for the different noisy-GA realization 
solutions using the full hydraulic conductivity sample set (100). 
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Table A.2 RSE values obtained against the full hydraulic conductivity field sample 
set (100) using the solutions of noisy-RGA and also actual solution. 
 

Number of realizations used in noisy-GA Actual 
Solution 1 2 4 8 16 

22.16 20.16 20.92 20.61 19.92 19.75 
52.73 51.22 51.81 51.46 51.08 50.75 
36.66 35.47 36.23 35.00 34.60 33.90 
25.95 27.39 26.27 27.83 28.62 29.29 
22.12 23.67 22.83 23.44 24.20 24.56 
16.73 18.68 18.07 17.66 18.32 18.41 
14.04 12.27 13.07 12.23 11.57 11.24 
16.93 15.31 16.13 15.14 14.46 14.02 
22.50 20.54 21.37 20.72 20.08 19.71 
13.71 12.92 13.43 12.45 11.95 11.68 
15.73 15.08 15.20 15.15 15.16 15.22 
16.37 16.21 15.89 16.75 16.77 17.26 
24.14 22.24 23.03 22.43 21.89 21.51 
19.39 21.57 21.00 20.27 20.93 20.86 
35.48 33.82 34.62 33.79 33.24 32.73 
18.43 19.41 18.57 19.74 20.34 20.92 
28.77 26.85 27.67 27.03 26.46 26.04 
16.37 14.65 15.52 14.45 13.78 13.30 
36.83 35.12 35.97 34.98 34.50 33.86 
15.98 15.86 16.30 14.87 14.47 13.98 
61.14 59.94 60.50 59.90 59.63 59.17 
19.48 21.77 20.85 21.01 21.89 22.15 
14.39 13.29 13.74 13.31 12.80 12.77 
23.69 23.15 23.46 22.75 22.77 22.38 
0.00 4.71 3.44 3.78 3.86 4.93 

36.04 34.47 35.29 34.23 33.80 33.13 
19.36 17.46 18.11 17.98 17.38 17.33 
28.73 28.82 29.39 27.34 27.25 26.34 
22.69 24.37 23.59 23.86 24.68 24.88 
17.02 17.83 17.55 17.32 17.54 17.66 
10.61 11.08 10.87 10.68 10.75 10.99 
16.34 14.68 15.35 14.81 14.30 14.08 
26.23 24.41 25.16 24.58 24.12 23.72 
18.97 21.20 20.39 20.24 21.12 21.25 
36.19 37.61 36.80 37.39 38.32 38.52 
38.99 37.58 38.38 37.26 36.79 36.12 
16.10 15.41 15.28 16.07 16.04 16.43 
34.53 33.85 34.51 33.03 32.75 32.01 
21.50 20.68 21.36 19.86 19.57 18.87 
10.56 10.55 10.32 10.46 10.79 11.00 
28.01 26.36 27.21 26.20 25.61 25.05 
8.34 10.50 9.74 9.42 10.10 10.34 

53.75 52.43 53.09 52.31 51.96 51.42 
16.21 16.09 15.82 16.40 16.60 16.93 
10.39 11.44 10.81 11.17 11.68 12.07 
28.66 26.73 27.60 26.84 26.21 25.75 
17.82 16.39 17.17 15.98 15.56 14.96 
8.98 7.24 7.99 7.10 6.38 6.19 
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24.68 22.66 23.55 22.77 22.14 21.66 
7.17 7.25 7.09 6.93 6.89 7.26 

35.45 34.15 34.98 33.61 33.20 32.42 
33.01 34.51 33.65 34.26 35.28 35.48 
30.55 32.01 31.39 31.41 32.23 32.26 
27.65 25.86 26.74 25.77 25.18 24.62 
36.90 38.58 37.57 38.51 39.49 39.86 
16.84 16.61 16.40 16.88 17.12 17.37 
17.81 19.00 18.08 19.26 19.92 20.51 
12.51 13.36 13.12 12.60 12.91 12.93 
31.79 30.60 31.35 30.10 29.75 29.05 
28.89 27.19 27.98 27.20 26.62 26.15 
30.12 29.23 29.75 28.90 28.63 28.15 
26.49 24.75 25.35 25.23 24.68 24.58 
31.55 30.31 30.93 30.13 29.82 29.33 
34.36 33.71 34.23 33.19 32.93 32.43 
12.21 12.75 12.72 11.78 12.06 11.84 
21.03 19.47 20.03 19.85 19.29 19.25 
29.80 28.12 28.97 27.95 27.42 26.83 
10.56 11.03 10.48 11.20 11.53 12.05 
38.73 37.04 37.79 37.14 36.63 36.19 
16.62 16.21 16.38 15.89 15.96 15.76 
16.19 15.16 15.74 14.87 14.27 13.98 
26.56 25.27 26.04 24.84 24.38 23.74 
15.79 14.72 15.05 14.96 14.56 14.64 
21.61 20.57 20.80 20.93 20.77 20.79 
17.82 17.63 17.22 18.26 18.52 19.00 
21.73 20.03 20.88 19.84 19.34 18.78 
37.39 36.12 36.93 35.62 35.18 34.44 
37.39 38.96 38.00 38.85 39.92 40.22 
33.75 31.88 32.59 32.26 31.72 31.45 
32.17 30.25 30.99 30.59 30.09 29.76 
13.32 14.23 13.87 13.66 14.08 14.22 
11.32 10.67 10.45 11.28 11.34 11.82 
17.09 19.25 18.60 18.09 18.79 18.81 
17.84 18.94 19.10 17.16 17.40 16.71 
26.12 28.12 27.24 27.52 28.44 28.63 
13.81 13.92 14.12 12.88 13.16 12.68 
18.82 17.75 18.30 17.49 17.16 16.81 
11.52 12.22 12.02 11.41 11.81 11.74 
19.23 19.58 19.89 18.23 18.32 17.65 
10.16 9.82 9.67 10.09 9.98 10.45 
32.99 34.86 33.78 34.70 35.80 36.15 
28.65 27.31 28.14 26.83 26.33 25.63 
26.43 24.47 25.28 24.74 24.09 23.76 
34.74 37.03 35.87 36.68 37.74 38.11 
19.90 17.98 18.88 17.98 17.30 16.84 
17.52 17.31 16.92 17.97 18.17 18.70 
15.76 15.54 15.81 14.78 14.92 14.51 
19.59 17.88 18.60 18.03 17.43 17.16 
28.56 27.26 27.87 27.16 26.83 26.41 
12.24 11.95 11.90 12.05 11.96 12.25 
22.16 20.16 20.92 20.61 19.92 19.75 
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Average RSE values 

23.26 22.90 23.07 22.68 22.62 22.47 
Number of RSE values < 10 

4 4 5 4 4 3 
Number of RSE values < 20 

49 47 46 49 48 48 
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Appendix  - B 

Preliminary Investigation of Modeling to Generate Alternatives (MGA) 

 

Inverse problems are generally ill posed i.e. they suffer from non-uniqueness 

(multiple solutions), non-existence (no solution) and instability (small error in the 

measured observations results in large variation in parameter estimates) of the solution. 

To address the “non-uniqueness” issue, a small set of alternative solutions that are far 

apart in the decision space but close in the objective function space can be obtained using 

the MGA technique. For example, in groundwater modeling two different source 

locations can produce same observation data (i.e. concentration release histories etc). 

Each alternative solution obtained by GA can be further fine-tuned using local search 

methods (multi-point local search). From the small set of alternatives a single best 

solution can be selected based on additional constraints or human judgment. Special GA 

operators based on niching by sharing or crowding mechanisms have been developed by 

[Loughlin et al. 2001] for the MGA technique.  

B.1 MGA approach 

The initial MGA implementation adopted in this work is very similar to the 

approach of Loughlin et al. At the end of each GA generation a small set of MGA 

alternatives is selected from a “candidate pool” that is within some cutoff range of the 

best in the population (e.g. within 15% of the best in objective space). The first MGA 

alternative is the best performing GA individual. The second alternative is selected from 

the candidate pool such that it is farthest from the first in decision space based on a 

Euclidean distance metric to be described later in the following section. 

The remaining alternatives are selected such that they are farthest from all 

previous alternatives. These selected MGA candidates are assigned higher fitness values 

so that they are more likely to be carried over to the next generation. This ensures that the 

MGA solutions have the unfair advantage of getting selected during the selection process. 

Preliminary test results for the 3D source reconstruction problem were not encouraging, 
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probably due to absence of restricted mating and subpopulation concepts in this 

implementation. A modified implementation was adopted for further investigation 

incorporating the following: (1) restricted mating and co-evolutionary strategies by 

maintaining subpopulations (2) Varying the size of the candidate pool with the generation 

number, i.e. by having a higher cutoff value initially and then reducing it with the 

generation index, and (3) elitism for MGA alternatives. The effectiveness of this 

approach was initially tested with a two-dimensional multi-modal test problem and then 

applied to our groundwater inverse problems. The steps involved in the new MGA 

approach are as follows: 

Step 1. Select the candidate pool for MGA alternatives within certain range of the best in 

the population 

gen_factor = 0.15 +0.35*(maxgen-gen)/maxgen 

rsemin ≤  rse_value(candidates) ≤  (1+gen_factor)*rsemin 

Where, gen = current generation number and maxgen = maximum number of 

generations. 

If the candidate pool size is larger than the number of MGA alternatives desired, 

then go to next step; otherwise do nothing for the MGA process. It is hoped that since the 

gen_factor will be large (~0.5) in the beginning many individuals will qualify for the 

candidate pool and the candidate pool will be larger than the alternatives. 

Step 2. The next step is to select the MGA alternatives. The first MGA alternative is the 

best individual in the population. The other alternatives are selected from the candidate 

pool based on the distance metric given below, so that they are farthest from all previous 

alternatives. 

Distance, 2 2 2
1 1 2 2
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i i
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 and x y  are the two alternate solutions.     

When identifying more than two MGA solutions and for finding the 3rd or later 

alternatives, the minimum of the distances from already selected alternatives is 

calculated. The candidate solution with the maximum of the minimum distance from the 

other alternatives is selected as the next alternative. This can be can be represented by the 

following expression. 

3,...,
1,..,3,..,
1,..,

max( min ( ))

where 

 = number of MGA solutions desired

 = candidate pool size

 = number of MGA solutions already known ( 2)

 = distance (computed as shown above)

m ijk
j pi m
k q

MGA r

m

p

q

r

== =

=

≥

 

Step 3. Divide the population in to subpopulations equal to the desired number of MGA 

alternatives. If more than one MGA alternative belongs to a subpopulation, retain the best 

for that subpopulation and exchange the remaining alternatives with similar individuals 

(based on distance metric) in subpopulations without any MGA alternatives. With this 

approach every subpopulation will be seeded with exactly one MGA alternative. 

Step 4. Once the MGA alternatives are properly seeded, reproduction is restricted to 

subpopulations. 

 
Step 5. Several approaches are available for selection. Some of them were implemented 

and experimented, and are given below:  

 
• In this approach fitness scaling is performed before selection. The individual 

fitness is a combination of fitness and distance from the MGA alternative in that 

subpopulation.  
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* *

where 

 and  are weight factors for fitness and distance.

 fitness of individual 

 Euclidean distance between between MGA alternative and individual .

i f i d i

f d

i

i

fitness w fit w dist

w w

fit i

dist i

= +

=
=

 

Note the weighting factors were chosen such that slightly more preference is given to 

solutions with better fitness. 

 
• In this second approach a record of the number of fit individuals in each of the 

subpopulations is maintained. Here the fit corresponds to the threshold fitness 

used in selecting the candidate population in step 1. If more than 50% of 

individuals in the subpopulation are fit, then a flag is set to identify the 

subpopulation. This criteria is used during the selection process, so that the 

populations are balanced and do not prematurely converge to an inferior solution. 

During the selection process (tournament selection) the individuals in the first 

subpopulation, which has the best performing individual (based on fitness), are 

selected solely based on fitness. For other subpopulations the selection can be 

based on fitness and/or distance metric approaches as described below: 

��In this approach the centroid of the subpopulations is used in the 

calculation of the distance metric. The centroid is simply the average of all 

the individuals in the subpopulation and can be represented by the 

following expression.   

   ,
1,..,

   ,  1,..,nj i j
i m

X X m j
=

= =∑   

Where, 

m = subpopulation size 

n = number of decision variables 

X =  vector of decision variables 

The distance metric is now the distance (Euclidian) between the centroid 

of a subpopulation and the individual and is calculated using a similar 

expression given in step 2. 
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(1) If less than 50% of the population is fit then the selection is based on 

fitness only.  

(2) If the subpopulation has more than 50% fit individuals, then the 

selection between two fit individuals is based on the distance metric 

only. If one of the individual is fit and the other below the fitness 

threshold then the selection is based on fitness alone and the fitter 

individual is selected. If both the individuals selected are below the 

fitness threshold, then also the selection is based on fitness alone. 

��In this approach, instead of using the centroid of the subpopulation, the 

distance metric is computed from individual MGA alternatives in those 

subpopulations. The distance (Euclidean) is computed between the MGA 

alternative and a individual of the subpopulation using an expression 

similar to the one given in step 2.  

However, the approach using the centroid of the population worked better for the 

test problem and is used for any further simulations using MGA’s.   

 
Step 6. The MGA process in steps 1-5 is performed for every GA generation. 
 
B.2 Test problem 

As mentioned earlier the MGA implementation is evaluated with a test problem 

where the alternatives are known. The two dimensional multi-modal problem tries to 

maximize the following function: 

( , ) sin(19 ) 1.7 / sin(19 ) 1.7 / 2F x y x x y yπ π= + + + +  

This function has the peak value of 5.15 at location (0.974, 0.974) and is the 

global optimum. The other alternative solutions in the decision space that are maximally 

different in the decision space but are reasonably good in the objective space are (0.018, 

0.974) (0.974, 0.018) and (0.45, 0.55) or (0.55, 0.45). Additional information and 

solutions to this multi-modal problem are reported in [Loughlin et al. 2001]. The results 

obtained by using our implementation for this test problem are discussed in the next 

section. 
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Once the MGA implementation was validated based on the results, it is used for 

the real 3D three sources release history reconstruction problem using heterogeneous 

flow field. The problem setup is similar to the source release history reconstruction 

problem described earlier in section 5.4. The results for this problem are discussed in the 

next section. 

B.3 Results 

For the 2D test function problem, an initial GA population size of 100 is used and 

other GA parameters are assumed. Four MGA alternatives are desired and the population 

is divided (virtually) in to four subpopulations that undergo restricted mating as described 

earlier. The MGA procedure described earlier is adopted. The GA+MGA process is run 

for 50 generations and with different initial random seeds. Figure B.1 shows the 

distribution of the solutions obtained for 50 different runs. The mean distance of MGA 

alternatives (based on 50 runs) is computed as 0.75. This suggested the implementation is 

working.  

Results for the three sources release history reconstruction problem, using the 

MGA approach with two different selection approaches, one based on fitness only and 

the other based on psuedo fitness (objective function value and distance metric) are 

shown in figures B.2 (a) and (b) and B.3 (a) and (b). These figures show that the selection 

based on psuedo-fitness produced a very different 2nd MGA alternative compared to the 

fitness only approach. However, other remaining two alternatives 3rd and 4th were very 

similar for both selection approaches. The primary reason for this behavior can be 

attributed to the lack of non-uniqueness nature of the release history problems.  

Preliminary tests carried out on 2D problems indicate that the source 

reconstruction problems (location and concentrations) exhibit more non-uniqueness 

properties than release history problems. Therefore, the MGA approach is more suited for 

these problems. This research could not be carried further for time constraints and can be 

a potential topic for future research.   
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Figure B.1 Distribution of MGA solutions for 50 runs. Solutions marked with circles 
are the MGA solutions. 
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Selection based on fitness
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(b) 
Figures B.2 (a) and (b) Difference between MGA alternatives 1 and 2 for selection 
based on fitness for two different runs. 
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Selection based on psuedo fitness
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(a) 

(b) 

Figures B.3 (a) and (b) Difference between MGA alternatives 1 and 2 for selection 
based on psuedo fitness for two different runs. 
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