
ABSTRACT

LAI, YU-KUEN. Packet Processing on Stream Architecture. (Under the direction of Dr. Gregory

T. Byrd).

Stream processing architectures have been proposed as efficient and flexible platforms for

network packet processing. This is because packet processing shares many of the same character-

istics of media and image processing that motivate stream architectures: little global data reuse,

abundant data parallelism, and high computational complexity.

This dissertation explores the SIMD (Single Instruction, Multiple Data) stream architec-

ture for network packet processing with several security-related applications. The implementations

are based on the stream programming model on the Imagine media processor, which consists of

three tiers of memory hierarchy and eight VLIW clusters operating in SIMD mode.

The applications explored are listed as follows: the Advanced Encryption Standard (AES)

in parallel operation modes with key agility, the Multilinear Modular Hash (MMH) message authen-

tication code, Bloom-filter-based content inspection engine for signature-based intrusion detection,

and the sketch update for Internet traffic analysis. Some novel methodologies are also presented as

applications being transformed and implemented on the stream architecture.

The thesis characterizes the processing throughput of these applications and explores the

tradeoffs on different configurations of stream architecture. Moreover, the sketch update application

is also implemented on the Intel IXP network processor, in order to explore the difference between

Imagine and a traditional architecture. The SIMD operationsimplifies the access to shared data

structure without explicit synchronization and arbitration overhead. As a result, the system achieves

efficient utilization of maximum memory bandwidth.

The architecture demonstrates the flexibility to support computation-intensive packet process-

ing tasks at high performance. Applications such as hash andstatistical based tasks are best fit into

the stream programming model with an abundance of producer and consumer locality: portions of

values computed and stored in the stream register file (SRF) are used for calculating a new set of

values recursively. With a 500-MHz clock, the stream processor is capable of processing packets up

to multi-gigabit-per-second throughput with outstandingpower efficiency.

Although packet processing over the SIMD stream architecture exhibits control flow and

load balancing issues due to packet size variation, the analysis indicates that the multi-core, multi-

SIMD architecture improves the performance and efficiency.Further explorations are proposed as



promising directions for future research.
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Chapter 1

Introduction

Emerging network applications are shifting from routing and traffic management to those

requiring inspection and modification of packet contents. Examples include content-based billing,

quality of service, layer-7 switching, and network security. Such applications act on data streams,

and the requirement to process every byte of a packet exceedsthe already-substantial processing

capabilities of high-speed networking equipment. Hardware (ASIC) implementations are possible

point-solutions to these problems, but they do not offer theflexibility needed to address new appli-

cations or adapt to changing network infrastructure. Programmable solutions based on conventional

microprocessor architectures do not provide enough performance; their memory hierarchies are op-

timized for the spatial and temporal locality present in desktop or workstation applications, but they

are not well-suited to data streaming, which exhibits little or no data reuse. Network processors

(NPs) are application-specific processors that are optimized to bridge the gap between the perfor-

mance of ASIC and the programmability of general-purpose processors. Most current NPs employ

multiple optimized cores, operating independently in MIMD(Multiple Instruction stream, Multi-

ple Data stream) fashion, usually with multiple threads perprocessor to hide latency to memory.

Performance on traditional network applications (routing, queue management, traffic shaping) is

impressive, but we believe that these architectures are notwell-suited for the emerging packet ap-

plications. They are limited by insufficient processing power in the cores, inadequate bandwidth to

memory, and complex programming models.

Stream architectures are specifically designed to apply a consistent set of complex op-

erations to each of a sequence (stream) of elements. Packet processing shares many of the same
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characteristics of media and image processing that motivate stream architectures: little global data

reuse, abundant data parallelism, and high computational complexity. Therefore, stream architec-

tures have been proposed as efficient and flexible platforms for network packet processing [28].

However, to the best of our knowledge, there is no research orpublication available on

the networking applications based on the SIMD stream architecture. Therefore, as part of a broader

investigation into stream-based network processors, we have begun to study and identify several

emerging networking applications and transform them into stream programming model on Imag-

ine SIMD stream architecture [55]. This thesis presents several emerging, security-centric packet

processing applications in stream programming model. Those implementations include AES en-

cryption [66, 95], message authentication based on a familyof almost-universal hash functions [68],

Bloom-filter-based content matching engine [67] for deep packet inspection and the sketch-based

Internet traffic analysis over streaming data model.

1.1 Thesis Organization

The AES encryption algorithm is one of the most important building block for the secure

network operation. It has the characteristics of rich instruction level parallelism (ILP) and data level

parallelism (DLP) in some operation modes. A key-agile AES implementation is demonstrated

in Chapter 2. One of the best performances published [72, 3] in non-feedback mode for a 32-bit

architecture is 232 cycles per block (16-byte block). In contrast to the typical measurement setup [3]

where most of the data is in the level-one cache, the simulation results in this chapter do include the

data movement from the memory to the processor itself. The performance can reach up to 32 cycles

per block in a stream size of 96 blocks. For a system clock of 500 MHz, the throughput of the AES

encryption can reach up to 2 Gbps. The simulation results of OCB-AES operation also demonstrate

compelling performance. We also describe architectural enhancements and the performance impact

of different packet sizes and more complex encryption modes.

The collision property of the universal hash function serves as the foundation for the

applications (message authentication, content inspection and traffic analysis) demonstrated in the

later part of this report. Therefore, in Chapter 3, we provide a detailed discussion on the universal

class of hash functions as well as some implementation examples .

The implementation of MMH, a family of almost-universal hash functions for message

authentication, is shown in Chapter 4. By using eight VLIW clusters, the operation is performed in



3

a Multi-SIMD fashion, achieving multi-Gigabit-per-second throughput with a collision probability

on the order of2−120. The best and worst case throughput of MMH producing a 128-bit pre-tag

is 7.14 Gbps and 2.23 Gbps with packet sizes of 1536 bytes and 128 bytes, respectively. The pre-

tag represents the hash value before XORing with the one-time pad. According to the performance

results of MMH (200MHz Pentium-Pro), the best case throughput (message in cache) for generating

the 32-bit and 64-bit output are 1080 and 500 Mbps respectively [44]. As the throughput decreases

approximately linearly, we estimate the throughput of producing a 96 and 128-bit results are roughly

in the range of 375 and 250 Mbps, respectively. On the other hand, a speculated throughput of

300Mbps is estimated on a 200 MHz Pentium-Pro processor [44,9].

A Bloom-filter-based content matching engine is presented in Chapter 5. By arranging

multiple processors in a pipelined fashion, the system is capable of processing patterns extracted

from the rules of the Snort distribution and achieving a throughput of 400 Mbps for 1500-byte

packets. The packet processing, i.e., hash computation over an entire packet, is best fit into the

stream programming model with an abundance of producer and consumer locality: portions of the

the hash values computed and stored in the stream register file (SRF) are used for calculating a new

set of hash values recursively. We also demonstrate the flexibility and performance of the stream

architecture supporting the realization of the universal class of hash functions for the Bloom filter.

This chapter explores the implementation of important datastructures in the stream architecture,

which may potentially benefit many emerging networking applications.

The accurate statistics collection and measurement of Internet traffic serve as the basis for

infrastructure planning, network provisioning, capacityforecasting and accounting [127, 65, 35].

In Chapter 6, we discuss methodologies for IP traffic analysis on the stream architecture based on

the sketch algorithm [19, 60]. Sketch [15, 1, 80] is a powerful yet compact data structure capable

of synopsizing substantial numbers of data elements without keeping its stateful information. The

sketch algorithms can be applied to many applications such as estimating frequent items, finding

the top-k items and identifying the significant differencesfor anomaly detection. We explore the

data structure through theIndexed SRFaccesses on the Imagine stream processor as a continuing

effort from the previous chapter. The simulation shows the processor is capable of supporting sketch

update at 10.8 Gbps throughput for minimum-sized IP packets.

In Chapter 7, we implement the unique sketch data structure on a different type of proces-

sor architecture. We briefly introduce Intel’s Internet eXchange Architecture (IXA) framework.

Based on the IXP2800 network processor, we focus on the implementation of sketch update since

it is regarded as the bottleneck of the sketch algorithm. We make a brief comparison with the simu-
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lation results of Imagine and discuss the pros and cons of these two approaches. For sketch update

on 40-byte packets, the simulation shows a throughput of 13 Gbps with 16 microengines running

at 1.4 GHz system clock. The IXP2800 achieves approximately22% higher throughput, however it

consumes 7 times more power than that in the Imagine.

Finally, we summarize some of the excellent aspects of the stream architecture supporting

these networking applications. For example, the architecture is capable of handling computation

intensive tasks and achieve high performance with low powerconsumption. The estimated power

consumption of this processor is less than four Watts. It exploits the abundant parallelism and stream

locality effectively. The SIMD architecture provides efficient vector style processing and simplifies

the memory access to share data structure without explicit synchronization overhead. Moreover, the

programming model provides the great flexibility achievinghigh processing performance.

In the end, we provide analyses of performance tradeoffs forpacket processing on stream

architecture. We discuss the issues of architecture scaling for these applications and conclude with

ideas for future work.

1.2 Contributions

While contributions are presented in each chapter, we summarize the major ones we’ve

made in this thesis as follows.

• We survey and identify several emerging network applications (encryption, authentication,

packet inspection and traffic analysis), successfully transform them into SIMD stream pro-

gramming model and compare to state-of-the-art implementation of these applications.

• Provide the details of implementation analysis and algorithm mapping on several applications

over the SIMD stream architecture.

• Explore the limitations and overheads on the Imagine streamarchitecture. The shortcom-

ings of the architecture with regard to these networking applications are revealed as well as

improvements suggested.

• Propose novel methodologies attacking the deficiency of algorithmic transformation in stream

programming model. Examples such as the dual-core implementation for better utilization

and throughput improvement (Chapter 2), the Multi-SIMD operation for authentication tag
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generation (Chapter 4), the reduced-pattern length with central-weighted scheme on pattern

matching (Chapter 5) and the time multiplexed sketch operation over SRF (Chapter 6).

• Study the feasibility of the traffic analysis in streaming data model over the SIMD stream

architecture. Explore the data structure of counting Bloomfilter over the SRF on stream ar-

chitecture and the IXP network processor. Detailed analysis on the sketch update process

between two different approaches is provided, which, we believe, will benefit a lot of net-

working applications based on the same data structure.

1.3 Imagine Stream Processor

Figure 1.1: The Imagine architecture block diagram. [55]

The Imagine Stream Processor [101, 27, 109] is designed and optimized for image process-

ing as a co-processor. The processor contains eight ALU (Arithmetic Logic Unit) clusters, which re-

ceive VLIW (Very Long Instruction Word) instructions broadcast from the on-chip microcontroller

in a SIMD fashion. With a system clock of 500 MHz, the processor reaches a peak performance
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Figure 1.2: The block diagram of arithmetic cluster for Imagine processor [55].

of 40 GOPS (Billion Operations Per Second). A key feature of the architecture is a three-level

memory hierarchy, which consists of the main memory, the Stream Register File (SRF) and the

Local Register File (LRF) within the clusters. The hierarchy captures the characteristics of me-

dia processing applications’ demands on memory bandwidth as well as the producer-and-consumer

locality between kernels. Figure 1.1 shows the block diagram of the Imagine Processor.

In each cluster, as shown in Figure 1.2, there are 3 adders, 2 multipliers, 1 divider, a

256-entry scratchpad and an inter-cluster communication unit.

The programming model consists of two levels, the kernel andstream level. The kernel

level is programmed in KernelC where the computation on the stream of data is specified. KernelC

is compiled by the Kernel Scheduler, IScd [30]. At run-time,kernels are loaded into the Microcode

Store within the on-chip Microcontroller through the SRF. The VLIW instructions are later dis-

patched to the clusters. The stream level program, written in StreamC, is run on the host processor

to coordinate and orchestrate the flow of streams as well as the invocation of the kernels.

The detailed stream operations and programming examples are illustrated and provided

in the next chapter as we transform the AES encryption algorithm into a program for the stream

architecture.
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Chapter 2

AES Packet Encryption

2.1 Introduction

Cryptography has become one of the most important requirements for networked appli-

cations as the Internet grows exponentially. Many Internetactivities and transactions rely heavily

on privacy and authentication services, which demand a lot of computational resources. Therefore,

application-specific integrated circuits (ASICs) are widely used as building blocks for secure gate-

ways and routers. However, due to the cost and time for ASIC development, Network Processor

(NP) technologies are gaining momentum — flexibility is one of the crucial factors in a world of

rapidly evolving networking protocols.

Several NP architectures exploit Packet Level Parallelism(PLP) in a MIMD (Multiple

Instruction stream, Multiple Data stream) fashion. But typically the same operations are applied

to every packet [110], which implies a SIMD (Single Instruction stream, Multiple Data stream)

mode of processing. Many cryptographic algorithms, such asthe AES candidates [81], exhibit an

abundance of both Instruction Level Parallelism (ILP) [17,125] and Data Level Parallelism (DLP).

Several studies [3, 70, 71] show that the performance can be improved significantly by leveraging

the special SIMD extensions for media processing on existing general-purpose processors such as

Intel’s MMX technology.

The encryption algorithm chosen for this study is Rijndael [25], which was named the

Advanced Encryption Standard (AES) in the year 2000 by the National Institute of Standards and
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Figure 2.1: Each incoming packet is processed by a differentcluster.

Technology (NIST). Since its selection, Rijndael has been implemented on all kinds of platforms

[81], and it has proven to be the one of the fastest and most versatile algorithms. It has been applied

to a variety of network protocols, including IPSec [52] and iSCSI [64].

In this paper, the AES algorithm is realized using the StreamProgramming Model [101]

and simulated on the Imagine Stream Architecture platform.The simulation results show promising

performance. We first analyze the SIMD mode of computation asapplied the variety of packet sizes

present in a real-world Internet packet trace. Then, the implementation of the encryption algorithm

in the two-level Stream Programming Model is introduced. Several experiments are presented for

encryption in ECB mode with key agility (i.e., a different key for each packet). OCB mode [106] is

also implemented, and its performance analyzed.

2.2 System Level Analysis

The SIMD architecture achieves the highest speedup and efficiency when working on reg-

ular and purely data-parallel structures. One of the major challenges in applying SIMD processing

to packet encryption is dealing with the control variationsintroduced by varying IP packet lengths.

Assuming there are no inter-packet dependencies among the incoming packets 0 to 7,

shown in Figure 2.1, each cluster can independently encryptits packet at the same time. However,

due to the packet size variation, the efficiency of processing valid data is degraded. The shorter

packets have to wait until the end of processing the longest one, since each cluster operates on

a single instruction stream. Applying load balancing techniques is a good way to improve the
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Figure 2.2: Distributing the data in the same packet to different clusters.

efficiency and processing time. For example, cluster 2 in Figure 2.1 can process part of the data

in packet 0. However, a complicated reorder mechanism has tobe applied on the interleaved data

among each cluster to reconstruct the packets where the loadbalance is applied. Therefore, extra

latency is expected as well. Furthermore, the packet data has to be either laid out in an interleaved

order or a special index formulation needs to be constructedto form the input data stream.

Another way of encrypting the incoming packets is shown in Figure 2.2, where blocks

(16 bytes) of data from a single packet are distributed to each cluster. In this way, the order of

the incoming packet sequence can be maintained without extra effort. The preservation of packet

sequence without degrading performance of parallel processing is a key technical challenge [12] in

network processor design.

However, clusters are idle if packet data does not have enough blocks and it gets worse as

the number of clusters increases. Therefore, the performance scalability by increasing the clusters

is restricted due to the packet size variations if no load balance technique is applied.

A quick, first degree analysis on the packet trace1 is shown in Figure 2.3 and Figure 2.4

labeled as _Mixed in the suffix. The analysis is based on a simple model: given a packet size, the

processing time is decreased proportional to the number of clusters provided. In other words, the

processing time T for a single cluster on a 1K-byte packet will be decreased to T/2 if two clusters

are provided. Therefore, the speedup is doubled. The efficiency is defined as the average ratio of

the number of clusters processing valid data over the total number of clusters involved (the clusters

working on valid data + the clusters working on null data), asshown in Figure 2.2.

1TXG-1054945463-1, where 21.3% of the packets are less then 64 byte, and 32% of the packets are larger than
1000 bytes; total number of packets=1,412,513. National Laboratory for Applied Network Research (NLANR).
http://moat.nlanr.net/pma
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Figure 2.3: The average efficiency with different number of clusters.

The average efficiency drops below 80% if more than 8 clustersare provided, and there

is only ~25% additional speedup when increasing from 8 clusters to 16 clusters. These figures also

show the worst-case and best-case scenarios where every packet is 64 or 1500 bytes, respectively.

Load balance techniques can be applied to concatenate each packet as a single data stream

instead of multiple ones. A relaxed SIMD architecture, the XIMD [124] where multiple instruction

streams are allowed to be executed simultaneously in the machine is proposed to tackle the control

flow variation issue. Another way is to explore Task Level Parallelism (TLP) by using multiple

processors instead of scaling the clusters internally. Further explorations on load balance are pro-

posed as promising directions for future work.

2.3 Implementation

2.3.1 AES Encryption Algorithm

Rijndael has the versatility of taking three different sizes (128, 192 and 256 bits) of data

and key. The standard adopts the data block size of 128 bits, while the key size can be any one of

the three sizes. For this work, we choose the size of 128 bits for both the key and the data block.

The main loop of the cipher body consists of a certain number of rounds, which is a function of data

block and key size, as shown in Table 2.1. The round number will be 10 given the size of 128 bits
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Figure 2.4: The speedup of different number of clusters.

Table 2.1: The number of rounds as a function of the block and key length. Nb represents the block
length (32-bit words) and Nk is key length (32-bit words).

Number of Rounds Nb=4 Nb=6 Nb=8

Nk=4 10 12 14
Nk=6 12 12 14
Nk=8 14 14 14

for both the data block and the key in this implementation.

There are four major functions within each round:SubBytes(), ShiftRows(), MixColumns()

andXorRoundKey(). Following the main loop is the final round where onlySubBytes(), ShiftRows()

andXorRoundKey() is applied. There is a very efficient way of implementing the cipher by using

a lookup table, known as the T-table [4], on a 32-bit processor. The T-table is the result of one

complex transformation onSubBytes(), ShiftRows(), MixColumns() and XorRoundKey(). Hence,

the main loop (without the final round) of encryption processcan be done in a table lookup fashion

as shown in the following equation.
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...
while_VARIABLE( i<ITERATION) {
loopIter();
if_VARIABLE (go_flag==0) {

cout << "Compute a new round key set!\n";
aes_key=aes_key_mem(i, i+8 , im_var_pos);
key_expansion (aes_key);
go_flag=1;

}
...

cout << "Processing Packet# "<<i<< "/" <<ITERATION<<"\n";
packet_data=data_block(i*packet_data_size, (i+1)*packet_data_size, im_var_pos);
core (packet_data, key_source_index, core_out);
final_round (core_out, data_out);
streamCopy(data_out, data_to_mem(i*packet_data_size, (i+1)*packet_data_size));
i=i+1;
}//while

Figure 2.5: An excerpt from the StreamC code for the encryption process. Kernel invocations are
shown in bold-italic.

The parameter ofSr,c represents the cipher state with the row numberr and column

numberc, where0 ≤ r < 4 and0 ≤ c < Nb. Each T-table (Ti) is a rotated version of the previous

T-table (Ti−1). Therefore, with the expense of an extra rotation operation, storing only one T-table

is enough. A detailed derivation of the T-table is shown in the proposal [25]. For the final round,

the S-box (substitution table used in theSubBytes() function) has to be used instead of the T-table,

due to the absence of theMixColumns() operation [25]. The S-box is not implemented in our work

in order to save space in the scratchpad. Rather, the value S-box can be derived by an extra mask

operation on the T-table value.

2.3.2 Programming Model

The stream-programming model consists of two major levels,i.e., the Stream level and

the Kernel level. At the Stream level, StreamC is used to orchestrate the flow of data streams as well

as the invocation of kernels. A snapshot of the StreamC code is listed in Figure 2.5.

The operation flow diagram is shown in Figure 2.6. Both the input key and the data

stream consist of a collection of records. Each record serves as the building block of the stream and

is defined as a data type consisting of four 32-bit words. The input key stream and data stream have

to contain a number of records that is a multiple of the numberof the clusters. In other words, the

minimum number of records in the input key stream is eight fora system with eight clusters. Given
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Figure 2.6: The stream level diagram of the encryption module.

kernel core(istream<BLOCK>in_1, uc<int>& key_source_idx, ostream<BLOCK>data_out) {

target2_T0= Ttable1[(shuffle(b_words.y,3)& 0xff)];
target2_T1=rot(Ttable1[(shuffle(b_words.z,2)&0xff)],-8);
target2_T2=rot(Ttable1[(shuffle(b_words.w,1)&0xff)],-16);
target2_T3=rot(Ttable1[(shuffle(b_words.x,0)& 0xff)],-24);
data_out_tmp.y = (target2_T3 ^ target2_T2 ^ target2_T1 ^ tar-
get2_T0^ key_hold[idx+2]);

}

Figure 2.7: An excerpt of the core kernel code, written in KernelC.

a key stream with eight records, the subkey stream will contain 88 records2 in an interleaved form

after the key expansion process.

The major computation is done in the Kernel level, where KernelC is used and compiled

as VLIW instructions for clusters. Figure 2.7 shows a fragment of the code in the core kernel.

The IScd scheduler provides two hints [30] for loop optimization at the kernel level. The

UNROLL(n) command will instruct the scheduler to unroll theloop body n times. The modulo

software pipeline command PIPELINE(startII) is a technique where a loop is divided into n stages

and different stages of n iterations are executed at once. The code size expands proportionally

as the amount of unrolling increases. Therefore, the time for the on-chip microcontroller to load

2More details are provided in Section 2.5.
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the microcode from the host processor increases as well. Themicrocode store [27] is limited to

1024x512 bits. If the space is not enough for holding all the kernels, then the microcode has to be

reloaded again during runtime, and the performance will be degraded due to the extra latency of the

loading process.

2.4 TheCoreand Final_Round Kernels

The AES encryption operation contains two major kernels. The core kernel consists of

the inter-cluster communication for subkeys, T-table lookup, and the arithmetic operations to en-

crypt a block. The core kernel will take the subkey stream andstore eight sets of the subkeys in the

scratchpad of each cluster. Extra inter-cluster communications are needed to transfer the subkeys

if each cluster is encrypting the data block with the same setof subkeys. The final_round kernel

is implemented such that an extra rotate and mask instruction is applied to the T-table to derive

the S-box value for the byte substitution transformation. Following theShiftRows()andXorRound-

Key() operations, the encrypted data will be sent out as a data stream. Originally, on the Imagine

Processor, each cluster contains a single 256-word scratchpad register file, so that each cluster has

the capability of supporting coefficient storage, short arrays, small lookup tables and some local

register spilling [101]. For our simulations, the size of the scratchpad is changed to 512 words,

in order to accommodate the T-table and the other array variables used in the kernels. The core

kernel consumes 72.5% of the whole encryption cycle. In the core kernel, 216 read operations are

found out of 252 scratchpad accesses. The scratchpad has oneoutput and three input units, which

allows simultaneous read and write access [27]. However, the ratio for read and write accesses to

the scratchpad in the core kernel is 6 to 1, since only read access is needed in the main round oper-

ation. Among the 216 scratchpad read operations, 180 of themare located in Basic Block 4 of the

core kernel, where the T-table lookup is performed. As shownin the first row of Table 2.2, the cycle

counts in the critical path are simply saturated, regardless of the number of adders provided. The

critical path can be reduced up to 15% by adding an additionalscratchpad to allow concurrent reads

of the T-table. Therefore, a second scratchpad is implemented and added into the machine descrip-

tion file to hold the second T-table, such that two simultaneous read accesses can be provided. The

entire simulations in this chapter are based on the configuration of two 512-word scratchpads.

A certain number of overhead cycles have to be paid to setup the constants and loop

initialization inside a kernel. Therefore, if more data blocks can be processed with a fixed overhead,
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Table 2.2: The critical path of Basic Block 4 in the core kernel with different machine configura-
tions.

Adder 3 Adder 4 Adder 6

1 Scratchpad 25 25 25
2 Scratchpads 21 17 17
4 Scratchpads n/a 13 12

then the performance can be increased while more ILP and DLP can be exploited. The dual version

of the core and final_round kernels are implemented such thateach cluster is capable of encrypting

two data blocks at the same time if enough hardware resourcesare available. The speedup of the

dual version over the single one is shown in Figure 2.16 and isdiscussed in Section 2.6.

2.5 TheKey_ExpansionKernel

Thekey_expansionkernel is based on the AES Key Schedule algorithm [25]. For a block

size and key size of 128 bits, the number of rounds is equal to 10 while the number of columns of

theCipher KeyNk andStateNb is equal to 4. The operations of the AES Key Schedule algorithm

are shown as pseudo code in Figure 2.8.

The round keys are based on the initial input key, denoted by W[0], W[1], W[2] and W[3]

in a sequential fashion. The function ofRotByte()will generate the result of word(b, c, d, a) from

the original word(a, b, c, d). TheSubByte()function is the Rijndael S-box transformation where

each byte of the original input word will be replaced.

Due to the sequential nature of the algorithm, thekey_expansionkernel is implemented

such that each cluster can take one key for processing. Therefore, with eight clusters, the processor

can generate up to eight different sets of subkeys at the sametime. As shown in Figure 2.9, the kernel

for (i=4;i<44;i=i+1) {
temp=W[i-1];
if ( i mod 4 ==0)

temp=SubByte(RotByte(temp)) xor Rcon[i/4];
W[i]=W[i-4] xor temp;

}

Figure 2.8: The pseudo code of the AES key schedule algorithmfor block size and key size equal
to 128 bits.
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Figure 2.9: The scheduling result of the key expansion kernel with the critical path being highlighted
in lines.

is compiled by the IScd Kernel Scheduler [109] with the critical path highlighted in a sequence of

lines. The kernel consists of two basic blocks. The first basic block saves the incoming key stream

into the scratchpad. The main key expansion loop is in the second block. The effective parallelism

achieved in basic block1 is only 2.79, with total run time of 379 cycles. The effective parallelism

is defined as the ratio of the total number of instructions perblock to the number of cycles in the

critical path [17]. As indicated by the effective parallelism, the kernel does not fully utilize the ALU

resources provided.

Given the same hardware configuration with eight clusters inthe Imagine, the ILP can

be increased by simply processing 2 different keys at the same time in a cluster. A dual version of

the key_expansion kernel is implemented, in which there areup to 16 different sub-keys calculated

at the same time. In Figure 2.10, the IScd scheduling result shows that the processing capability

is doubled with a 24.2% increase in kernel run time (4-adder configuration) while achieving an

effective parallelism of 4.5. As expected, given the 6-adder configuration, there is no cycle count

increase compared to that of the single version with 4 adders. The IScd compile result with 6-adder

configuration is shown in Figure 2.11.
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Figure 2.10: The IScd compile result with 4-adder configuration for dual key expansion kernel.

Figure 2.11: The IScd compile result with 6-adder configuration for dual key_expansion kernel.
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Figure 2.12: The performance of the AES encryption on a single stream of data. The size of the
stream ranges from 8 to 3072 blocks (128 to 48k bytes).

2.6 Experiments and Discussions

The first set of simulation experiments encrypts a single stream with different sizes. As

shown in Figure 2.12, the stream size ranges from 8 to 3072 blocks (128 to 48k bytes). A key

stream consisting of eight identical (128-bit) keys is sentto the key_expansion kernel. The output

of the key stream is then directed to the core kernel for encrypting the data stream. All eight clusters

use the same subkeys to encrypt the data stream. The cycle counts for encryption are measured

by subtracting the time for loading the microcode and key expansion from the total cycles. Three

different machine configurations are applied during the simulation. Add3 is the original Imagine

machine description file, which has three adders in each cluster. The add4 and add6 configurations

increase the number of adders to four and six, respectively.For all three configurations, there are

two 512-word scratchpads.

The best performance for a stream size of 96 blocks (1536 bytes), as shown in Figure

2.12, is 31.5 cycles per block and the throughput is 2.02 Gbpswith a system clock of 500 MHz.

The performance with a small data stream suffers from the short stream effect [92]. A fixed amount

of cost has to be paid before and after the main loop inside a kernel; therefore, if the size of the

stream is short, the fixed cost cannot be amortized among the run time. The cost is associated with

the variable initialization, constant setup, etc.

Another set of simulations is conducted such that multiple numbers of packets in the size

ranging from 8 to 96 blocks is sent into the kernel. The total amount of data is 61,440 blocks (960K

bytes), which is 7.5 times larger than the stream register file, meaning that packet data must be

transferred from DRAM to the SRF during the calculation. Therefore, if 16 blocks are picked as
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Figure 2.13: The AES performance with multiple fixed-size packets.

the size of a packet, then the total number of packets being processed will be 3840. The simulation

results are shown in Figure 2.13 where the size of 96 blocks has the best performance. The results

are close to those for encrypting a single packet, which shows that the DRAM access is effectively

hidden by computation.

In order to conduct the key agility simulation, the originalkernel codes are modified to be

able to transfer the subkeys within clusters. A fixed cost forinter-cluster communication is imposed

on the core kernel. Therefore, due to the communication overhead and the short-stream effect

described earlier, the performance further decreases withthe packet size of 8 blocks. Compared to

those in Figure 2.12, another factor of the performance decrease is due to the stream derivation and

stream copy operations where another layer of overhead at the stream level is imposed.

The purpose of this setup is to have a full duplex stream flow occurred between the SRF

and the main memory. Therefore, the effectiveness of hidingthe latency with the kernel computation

can be observed. Figure 2.14 demonstrates the ratio of the kernel run time over the total run time.

The total run time consists of the stream operations, stallsand kernel run time. For the packet size of

eight blocks, the kernel takes only 60% of the total run time.However, as the packet size increases,

the kernel runtime can take up to 98% of the total run time.

Figure 2.15 shows the occupancy of the functional units encrypting a single 16-byte block

of data for two different architecture configurations. As more adders are provided, the total execu-

tion time decreases. Therefore, the percentage for the scratchpad, multiplier, divider and commu-

nication unit increases. The occupancy for adders decreases simply due to the instructions being

distributed to the extra adder provided. The multiplier units take the instructions ofselectandshuf-

fled. The divider unit and the two multiplier units can be replaced with adders which also provide
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Figure 2.14: The percentage of the kernel run time within thetotal run time.

Figure 2.15: Occupancy of the functional units.
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Figure 2.16: The speedup of dual over single AES with different sizes of data stream.

the same operations so the area can be saved. The scratchpad utilization is not symmetric. This is

mainly due to some array variables used other than the main T-table lookup.

Figure 2.16 shows the speedup ofdual oversingle. The speedup can reach beyond 1.2 if

the size of the data stream is larger than 64 blocks in the 4-adder or 6-adder configuration.

2.6.1 Key Agility

For a security gateway router, where the encryption processes have to serve for multiple

sessions of users, there exists a worst-case scenario that every incoming packet has to be encrypted

by a different key. Therefore, the ability for a system to efficiently handle the key changes without

degrading performance is a critical performance factor.

One of the commonly used schemes [108] is to compute the roundkey expansion on-

the-fly in pipelined fashion. This is done with dedicated hardware to process the key expansion

in time less than or equal to that of processing the minimum-sized packet. Therefore, the latency

can be hidden without affecting the overall throughput while achieving high key agility. Another

scheme is to pre-compute the round keys in advance, as soon asthe security parameters for a flow

are established, before the actual messages arrive. However, the drawback is that the memory

storing these expanded round keys has to be increased in proportion to the ratio of the expansions.

Furthermore, the memory bandwidth has to be expanded as well.

The easiest way is to do the pre-computation. Once the flow is established through the key

management protocol, the round key expansion process can bestarted. The input key stream will

first be loaded into the SRF and later on processed by the key_expansion kernel. The subkey output
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stream will reside in the SRF temporarily and then spill out to the DRAM. Afterwards, the subkeys

can be loaded by an index stream for the encryption on the incoming packets. The latency of loading

the sub-key stream from the memory can be overlapped with thecore kernel computations. Based

on the AES standard, 10 rounds are needed for a key size and block size of 128 bits. Hence, the

output stream from the key_expansion kernel, which contains the expanded subkeys, is 10 times

larger than the size of the original input stream. The storage of the sub-keys definitely has a huge

impact on the system cost, and there is increased demand on memory bandwidth, as well. On-the-

Fly subkey computation means to calculate the subkeys needed for a particular round just before

using them in the round [81]. Due to the SIMD architecture, all the clusters are processing the blocks

from the same packet based on the same key. There is no reason to implement the on-the-fly subkey

computation inside the core kernel calculating the same subkeys. Furthermore, all the hardware in

the clusters is dedicated to executing the VLIW instructions broadcast from the microcode store.

Therefore, one kernel at a time is being executed. There is noway to take the pipeline scheme

where the key_expansion and the core kernel are being executed at the same time as describe above.

Another way is to expand only the sets of subkeys that are going to be used soon. Based

on the assumption of a store-and-forward architecture, in which the incoming packet will be stored

in the data memory, it is possible for a host processor to look-ahead into the control memory to

identify the next eight packets that are going to be processed. Similar to the previous discussion,

the host processor can initialize the key stream, which contains eight different keys, to the key_

expansion kernel before the packet encryption begins. After the keys are expanded, all the sub-keys

are stored inside the Scratch Pad of cluster 0 to 7, where cluster 0 has the first set of sub-keys,

cluster 1 has the 2nd set of sub-keys, and so forth. Using the inter-cluster communication network,

each set of sub-keys can be broadcast to all the clusters; therefore, all the clusters can process the

blocks of the same packet with the same subkeys. After the endof processing the 8th packet, the

key_expansion kernel will be executed again to calculate the next 8 subkeys for the packets to be

processed. The key_expansion kernel takes about 381 cyclesto process 8 different sets of round

keys. As discussed in the Section 2.5, the dual version of thekey_expansion kernel can process

up to 16 different sets of subkeys at no extra cycle increase given enough hardware resources (the

6-adder configuration). Therefore, the key_expansion kernel needs to be executed only once every

16 packets instead of eight.

The simulation is setup such that a fixed amount of data (61440blocks) is given. A

packet stream is derived with the sizes ranging from 8 to 96 blocks, as shown in Figure 2.17.

The key_expansionkernel is executed once every eight packets since eight different keys can be
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Figure 2.17: Key Agility Performance. (in 4-adder, and 6-adder configurations, code optimized).

Table 2.3: The characteristic matrix of AES encryption.

Simulation Result

Memory_BW (GBps) 1.12
SRF_BW (GBps) 2.23
LRF_BW (GBps) 239.90

GOPS 20.66
Operation per Mem Reference 73.94

expanded at the same time. Therefore, for a packet size of 8 blocks, there are 7680 128-byte packet

streams being sent into the clusters, and 960 key streams (each containing eight 128-bit keys) are

consumed by thekey_expansionkernel. The worst-case scenario is for the packet size of eight

blocks, since thekey_expansionkernel has to be executed more frequently. The run time for the

key_expansionkernel is 381 cycles; therefore, on average, an extra six cycles per block will be the

overhead over encrypting with a single key. The core kernel consumes a fixed amount of time to

transfer a set of subkeys (44 words) from the scratchpad in the cluster. As the packet size gets

smaller, the overhead is obvious. This overhead is in addition to the short stream effect, discussed

earlier.

Table 2.3 shows some standard Imagine performance metrics:bandwidth for each of the

three levels of memory hierarchy, billions of operations per second (GOPS), and the number of oper-

ations performed per memory reference. The measurement is performed where 640 1536-byte pack-

ets are encrypted with a new key for each packet. The whole operation includes 80 key_expansion

kernel invocations.
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The best efficiency can be achieved only in the case where all eight clusters are processing

8 or 16 different keys. On the other hand, if only one new key isneeded while the other 7 or 15 keys

remain the same, the efficiency is the worst because the same calculation is repeated again. To add

an extra layer of memory between the SRF and the Clusters to serve as a subkey cache is another

way to improve the performance and the efficiency where the existing sub-keys can be re-used.

However, this might need a large cache size to achieve a satisfactory hit rate [108].

2.6.2 The simulation of variable-sized packets

The main purpose of this experiment is to characterize the system performance with

variable-sized packet streams based on the length distribution information from an existing Internet

trace.

2.6.2.1 The Internet Trace

The trace (AIX-1054837521-1) [89] used for this simulationwas collected from the NASA

Ames Internet exchange (AIX) [88] in Mountain View, California. It is collected from one of four

(now five) OC-3 ATM links that interconnect AIX and MAE-West in San Jose. As we can see in

Figure 2.18, almost 50% of the packets are under the size of 128 bytes where only less than 6%

of the total bandwidth is taken. On the other hand, there are almost 22% of the packets with the

size of 1500 bytes taking more than 75% of the total traffic. A large proportion of this TCP traffic

is generated by bulk transfer applications such as HTTP and FTP [90]. Consequently, the majority

of the packets seen are the minimum packet size for TCP acknowledgements and the 1500 byte

packets with the maximum Ethernet payload.

A set of Perl scripts were implemented to parse the Internet trace file obtained from

NLANR [88] and generate two input files for the simulation. The packet data file is constructed

with random payloads where proper paddings are inserted. Therefore, the size will be the multiple

of eight blocks, which is the number of the clusters in the system. The length distribution for the

simulation is shown in Figure 2.19. Another file consisting of the packet lengths is given to the host

processor. The host processor derives the packet stream outof the packet data based on the length

information and orchestrates the overall stream operation.
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Figure 2.18: The accumulative statistics for the AIX Internet trace.

Figure 2.19: The Trace statistics after rounding to multiple of total cluster number.
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#define MAX_PKT_SIZE 96 //set 96 blocks as the max pkt size (1536 bytes)
STREAMPROG(aes);// defining stream program
void aes(StreamSchedulerInterface& scd ,String args){
im_stream<BLOCK>NAMED(packet_data)=
newStreamData<BLOCK>(MAX_PKT_SIZE,im_countup);

im_stream<BLOCK>NAMED(add_round_key_out)=
newStreamData<BLOCK>(MAX_PKT_SIZE,im_countup);

im_stream<BLOCK>NAMED(data_out)=
newStreamData<BLOCK>(MAX_PKT_SIZE,im_countup);

...

while_VARIABLE( i<ITERATION) {

loopIter();
packet_data_size=length_array[i]/16;
cout << "Processing Packet# "<< i<< "/"<<ITERATION<<"\n";
cout <<"packet_size="<<packet_data_size<<"blocks"<<"\n";
streamCopy(data_block(delta,lengthpacket_data_size+delta),packet_data);
core_s(packet_data, key_words_b,add_round_key_out);
final_round_s(add_round_key_out, data_out);
streamCopy(data_out,data_to_mem(delta,packet_data_size+delta,im_var_pos));
delta=packet_data_size+delta;
i=i+1;

}//while
}

Figure 2.20: The code fragment of the StreamC main loop.

2.6.2.2 The variable-sized stream

Since the system has no idea of the stream length at the beginning of the declaration

phase, a straightforward way is to specify a count-up stream, im_countup with a maximum size

of 96 blocks (1536 bytes). A maximum size of 96 blocks is givensimply due to the MTU of the

Ethernet protocol.

A count-up stream is declared where the end of a stream varies, depending on the number

of records produced by a stream operation. It is a variable length stream which contains zero records

initially. The size will be set once the dependency is resolved by stream operation or from the results

produced by a kernel.

The packet length information is passed from the host processor to the Imagine Stream

processor by using the array variable. As shown in Figure 2.20, the length of a packet is used to

derive a stream from the main memory and sent to the followingkernels for encryption. The output

of the packet stream is sent to the SRF and stored back to the main memory finally.
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Figure 2.21: The block diagram of the Host Interface, SRF andStream Controller [27].

The use of the count-up stream raises another issue where theperformance is degraded

due to the dependency resolution. This is because the memoryspace within the SRF can not be

allocated until the size of the derived count-up stream is known. Unfortunately, the latency caused

by the host processor operation can not be hidden effectively. Therefore, the system has to wait

until the information is passed to the control logic for further operation. The extra time needed is

approximately 400 cycles. The fixed overhead is associated with the transactions where the host

processor issues the stream instructions to read and configure the Stream Description Registers

(SDR) for the count-up stream.

As shown in Figure 2.21, the host processor issues several stream instructions such as

move and write_imm listed in Figure 2.25, to the Stream Controller through the Host Interface.

Since the data bus is only 32-bit wide, multiple Host Processor bus transactions are needed for

issuing a single stream instruction. The buses at the Host Interface are operated at lower clock

speed (200 MHz) compare to that in the system. The typical busread and write transactions are

illustrated in Figure 2.22 and Figure 2.23.

The stream instructions are stored in the Op Buffer within the Stream Controller. In

addition, the Stream Controller also consists of pending instruction queue and control logics such

as resource analyzer, completion detection unit and scoreboard for bookkeeping the resources and

inter-instruction dependencies. Once the dependencies are resolved, the instructions will be issued

by the issue and decode logic.
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Figure 2.22: The Write operation in the Host Interface [27].

Figure 2.23: The Read operation in the Host Interface [27].



29

STREAMPROG(aes);// defining stream program
voidaes(StreamSchedulerInterface& scd ,String args) {
..
while_VARIABLE( i<ITERATION) {
loopIter();
packet_data_size=length_array[i]/16;
cout << "Processing Packet# "<< i<< "/"<<ITERATION<<"\n";
cout <<"packet_size="<<packet_data_size<<"blocks"<<"\n";

im_stream<BLOCK>NAMED(packet_data)=
data_block(delta,packet_data_size+delta,im_var_pos)

im_stream<BLOCK>NAMED(add_round_key_out)=
newStreamData<BLOCK>(packet_data_size,im_var_size);

im_stream<BLOCK>NAMED(data_out)=
newStreamData<BLOCK>packet_data_size,im_var_size);
core_s(packet_data,key_words_b,add_round_key_out);
final_round_s(add_round_key_out,data_out);
streamCopy(data_out,data_to_mem(delta,packet_data_size+delta,im_var_pos))
delta=packet_data_size+delta;
i=i+1;
}//while

}

Figure 2.24: The code fragment without using the count-up stream.

There is another way to implement the stream operation by declaring the variable-sized

stream within the main loop of the operation. Therefore, as shown in Figure 2.24, the stream length

is available for three derived streams right at the beginning of the main loop. No extra cycles are

paid due to the issue discussed before.

2.6.2.3 The Simulation Results

The simulation is similar to those shown in Figure 2.3 where the average efficiency analy-

sis is done based on a larger Internet trace (TXG-1054945463-1). Because of the SIMD architecture,

almost 10.1% of the byte counts are due to the padding and rounding process. Therefore, the perfor-

mance calculation is based on the processing of effective blocks. Figure 2.26 shows the system can

achieve 41 cycles per block for the AES encryption, comparedto 72 and 35 in the fixed-size packet

of 8 and 96 blocks, respectively. The ratio of kernel run timeover the whole processing time is

shown in Figure 2.27. A higher ratio means more effective hiding of the latencies (memory access

and stream operation) with the real computation work. A 96.5% ratio is observed in the simulation.
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Figure 2.25: The format of Stream Instructions [27].

Figure 2.26: The performance of encrypting variable-size packets compare to those of the fixed-size
ones.
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Figure 2.27: The percentage of kernel run time over total runtime.

Figure 2.28: A load balancing scheme for small-sized packetencryption.

2.7 Load Balancing

As we can observe in the simulation results, the minimum-sized packet suffers the perfor-

mance degradation due to the fixed overhead imposed on each incoming packet stream. In addition,

the efficiency of the clusters is only 50% on processing a 4-block (64-byte) minimum sized packet.

The performance and efficiency can be improved by concatenating two or more packets

as a single stream. Instead of sending each packet as a singlestream, the fixed premium can be

amortized and better performance can be achieved.

Figure 2.28 shows how two packets are merged as a single inputstream. The system can

encrypt the longer stream and avoid the short-stream effectwhich is mainly due to the nature of the

stream language and the system operation.



32

Another major expense besides the short-stream effect is the sub-key distribution through

the inter-cluster communication. As discussed earlier in the previous section, the process is to ensure

each cluster can encrypt the packet based on the sub-keys associated with the incoming packets.

Figure 2.29 demonstrates the example where sub-keys have tobe distributed for two

packet encryption within a single stream. At the beginning of the encryption, eight sets of sub-

keys are sent as a key stream into the kernel and each cluster will store a set of sub-keys into the

scratchpad respectively. Then, based on the property of theincoming packet, each set of sub-keys

will be broadcasted to the rest of clusters through the inter-cluster communication network. In Fig-

ure 2.29, the first set of sub-keys K0 is distributed to the working buffer B1 in all the clusters at

iteration i=0. At the iteration of i=1, a second set of sub-keys K3 have to be distributed to the work-

ing buffer B2 so that cluster 3,4,5,6 and 7 can encrypt the second packet within the data stream.

The working buffer B1 and B2 behaves like a ping-pong buffer holding the sub-keys currently used.

Those are enabled based on the packet length provided through the stream variable issued from host

processor passing into the kernels.

The size of the sub-keys is 44 words, based on the 128-bit key size for AES. Therefore, at

least a total of 88 cycles (read and write access on scratchpad) are needed for the sub-key distribu-

tion, not counting the extra stream operations. This is almost 24.4% of the cycle time processing a

minimize size packet.

Several extra operations are needed both at stream level andkernel level. The first is to

provide the packet length information for the kernels through the microcontroller variable. Then,

the kernels can identify the exact cluster ID and the processing iteration where the boundary of the

packet within the data stream might be. These can be calculated easily by the packet length and

the number of cluster. Therefore the distribution of the sub-keys can be conducted. Leveraging on

the predicate instruction, select(), which is provided by the Imagine processor, the corresponding

sub-key buffers can be used in different clusters for encryption.

The load balancing scheme can improve both the performance and efficiency in the stream

level operation. However, counting on these extra operations, tradeoffs have to be taken care of such

that the benefits gained by adopting the load balancing scheme will not be lost.
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Figure 2.29: The sub-key distribution in the load balancingscheme.

2.8 The Mode of Operation

We have so far considered only the Electronic Codebook (ECB)mode of encryption. This

allows each data block to be processed independently, in parallel. However, a particular plaintext

will always be encrypted to the same ciphertext. Therefore acodebook can be obtained and the

privacy will be compromised once the relation between the ciphertext and plaintext is known.

More sophisticated modes offer protection from repeated plaintext-ciphertext pairs, and

some still allow packets to be processed in parallel. The Counter Mode (CTR) is one such mode

that was recently added to NIST’s approved list [85]. CTR mode demonstrates excellent efficiency

in both of the hardware and software implementation [118]. Moreover, the security is well analyzed

and proved as long as the counter block value is never reused with the same key. As proposed on

the NISTs recent call for modes-of-operation [84] activity, the Offset Codebook mode (OCB) [106]

and the Carter-Wegman + Counter dual-use mode (CWC) [56] canalso be operated in parallel. We

have implemented OCB mode and present the results in this section.

The implementation is based on the assumption that the maximum packet size is 1536

bytes (96 blocks). We further assume that the packet size is amultiple of 128-bit blocks with all 0s
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being padded at the end of packet to form the total length in the multiple of eight blocks. The first

step is to compute theL(0) and the first offset. The computation of the parameterL is based on the

key and the function ofntz(i) where the number of trailing 0-bits in the binary representation of i is

obtained. Eight of theL parameters (L(-1),...,L(6)) are precomputed since they are more than enough

in our case. Since only 96 blocks of the offset is needed, the offsets are also precalculated along

with the L parameters. Theoffset_exp()kernel is executed before the encryption process begins.

The total of sixteen different sets of keys can be processed in theoffset_exp()kernel. An indexed

stream derived from the offset stream output from theoffset_exp()kernel is then directed into the

main kernel for encryption process. The offsets can also be calculated on-the-fly with the incoming

message blocks. The loop for offset calculation is unrolledand optimized, as shown in Figure 2.33.

The operations are distributed to eight clusters as shown inTable 2.4, with the bit position of 1

representing the value ofi in L(i). The regularity [105] can be observed immediately in Table 2.4.

For example, the first column of Table 2.4 presents six iterations ofL(i) parameters for the cluster

zero. The parameters are separated by the underscore in two parts. The first part of it is indeed a

gray code sequence while the second part has a repeated pattern of 001 and101. Therefore, for a

given iteration and cluster number, the offset can be calculated based on the correctL(i) parameters.

The last block of the message is processed differently than the previous ones. Leveraging

on theselect()instruction provided by the Imagine Stream Processor, the original operation can be

transformed as shown in Figure 2.30 for the SIMD operation. This is based on the fact that the

packet length is available in advance, such that the position of the cluster containing the last block

of message is known. Based on the same scheme, the operation on the checksum can be performed

as in Figure 2.31.

At the very end of the iteration, one more step is needed to perform the tree-sum operation

to XOR the partial checksum distributed among the eight clusters and the last block of offset. The

tree-sum operation can be achieved by the inter-cluster communication instruction provided by the

processor. Thus, the final tag can be obtained by directing the checksum data stream into the AES

kernels.

Figure 2.32 shows the OCB_AES performance for 4-adder and 6-adder configurations

(again, using two 512-word scratchpads). The performance is calculated based on the total run time

(including the time for generating the tag) divided by the size of the packet stream. Since the time

for tag generation is fixed, as the size decreases, the performance is degraded due to the fixed cost.
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Figure 2.30: The implementation of OCB encryption algorithm for SIMD architecture.

Figure 2.31: The implementation of checksum operation in the OCB encryption algorithm for SIMD
architecture.

Figure 2.32: The performance of the OCB-AES encryption. (4 adder and 6-adder configurations)
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m[1] –>offset xor L(0)
m[2] –>offset xor L(0) xor L(1)
m[3] –>offset xor L(1)
m[4] –>offset xor L(1) xor L(2)
m[5] –>offset xor L(0) xor L(1) xor L(2)
m[6] –>offset xor L(0) xor L(2)
...
m[53] –>offset xor L(0) xor L(1) xor L(2) xor L(3) xor L(5)
...

Figure 2.33: The corresponding value for offset calculation after loop unrolling and optimization.

Table 2.4: The distribution of the L for offsets calculationamong eight clusters.

C0 C1 C2 C3 C4 C5 C6 C7

0 1 11 10 110 111 101 100 1_100

1 1_101 1_111 1_110 1_010 1_011 1_001 1_000 11_000

2 11_001 11_011 11_010 11_110 11_111 11_101 11_100 10_100

3 10_101 10_111 10_110 10_010 10_011 10_001 10_000 110_000

4 110_001 110_011 110_010 110_110 110_111 110_101 110_100 111_100

5 111_101 111_111 111_110 111_010 111_011 111_001 111_000 101_000

6 101_001 101_011 101_010 101_110 101_111 101_101 101_100 100_100
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2.9 Conclusions

The AES encryption algorithm has already been optimized andimplemented in various

processor platforms. One of the best performances published [72, 3] in non-feedback mode for a

32-bit architecture is 232 cycles per block (16-byte block). In contrast to the typical measurement

setup [3] where most of the data is in the level-one cache, thesimulation results in this chapter do

include the data movement from the memory to the processor itself. The performance can reach up

to 32 cycles per block in a stream size of 96 blocks. For a system clock of 500 MHz, the throughput

of the AES encryption can reach up to 2 Gbps. The DRAM access iseffectively overlapped by

computation, as simulation shows more than 95% of the run time is taken by the kernel computation

for a packet length larger than 16 blocks. The results also demonstrate compelling performance in

the key agility simulation and OCB-AES operation. The encryption process utilized almost 50% of

the theoretical memory and LRF bandwidth while only 7% are reached for the SRF.

In this chapter, the data blocks within a packet are distributed and processed among the

clusters. It’s a simple way to preserve the arriving packet sequence without having an extra re-

ordering mechanism. However, based on the packet length distribution from a real Internet trace,

there is only a limited speedup gained and the efficiency is down below 80% when doubling the

number of clusters from eight to sixteen. This is because of the SIMD structure: the clusters are

idle if packet data does not have enough blocks. Thus, the cluster utilization is low due to the packet

length variation.

AES has been widely implemented in hardware as it was standardized in the year of 2000

by the National Institute of Standards and Technology (NIST). Therefore, the benefits of a high-

performance programmable solution is not so obvious. However, as the first stepping stone into

the exploration of the stream architecture for networking applications, we successfully demonstrate

the processor’s computation power and the unique programming model for encrypting the packet

stream effectively.

In the next chapter, we are going to present and discuss an important data structure: the

universal class of hash functions, which serves as a basic infrastructure for many networkingappli-

cations presented in the following chapters.
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Chapter 3

Hash Functions

The theory of universal class of hash functions is an important building block for several

applications presented in this thesis (Chapters 4, 5 and 6).Generally, there are two main types of

variant after the invention of universal class of hash functions due to Carter and Wegman: the one

with the weaker collision property and the other with stronger one. Based on the needs of different

applications, different functions are applied.

This chapter presents the general background of the universal hash function. We then dis-

cuss some of the variants based on the properties of the hash family. Finally, some implementation

examples are discussed at the end of the chapter.

3.1 The Universal Class of Hash Functions

Carter and Wegman first described the idea of a universal class of hash functions [14] in

1979. Since then, this class has been widely used in many applications and regarded as “one of the

fundamental bag of tricks of every computer scientist” [123]. The universal class of hash functions

is a family of hash functions with a special randomized property. Given two keys, the probability of

hashing these two keys into the same value is bounded as long as the function is randomly selected

from the family.

The universal property[14] is defined as follows: LetH be a finite collection of hash

functions which map a given universe of inputsU into domainB of rangeR. H is said to be
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universal if for all distinct elementsx, y ∈ U wherex 6= y, the number of hash functions selected

from the family ofH that yield collisions (i.e,h(x) = h(y)) is |H|
R . The symbol|H| represents the

number of functions in the collection ofH. It has been proven that, if we randomly pick one hash

functionh from H, the probability of collision forx andy, wherex 6= y is exactly 1
R .

Prh∈H [h(x) = h(y)] =
1

R
(3.1)

3.2 Stronger Collision Properties

Wegman and Carter [122] later defined thestrongly universal1 hash family and utilized

the properly for building unconditionally secure message authentication codes (MACs). The family

of strongly universal hash functions has a stronger property: its collision probability is specified in a

pairwise independent manner. For allx 6= y ∈ U ands, t ∈ B, the probability is defined as follows:

Prh∈H [h(x) = s, h(y) = t] =
1

R2
. (3.2)

An example of such class of hash functions isH1 [14]. The function maps an integer from

a spaceU = {0, 1, 2..., p − 1}, wherep is a prime number, into a domainB = {0, 1, 2...,m − 1}.

The definition ofH1 is:

ha,b(x) = ((ax + b) mod p) mod m (3.3)

H1 = {ha,b(x)|0 < a < p, 0 ≤ b < p}

The family ofH1 has the property of beingstrongly universal, which also implies univer-

sal. However, a universal class of hash functions is not necessarily strongly universal [115].

A family of hash functionsH, is said to bek-universal if for every fixed sequence of

k distinct keys{x0, x1, · · · , xk−1} ∈ U , the sequence of{v0 = h(x0), v1 = h(x1), · · · , vk−1 =

h(x2)} is equally likely to be any of themk sequences of lengthk with elements drawn from the

hashing space{0, 1, · · · ,m − 1}.

The universal class of hash functions can be generalized ask-universal defined in Equation

3.4, wherex < p andp is a prime number. The parameterai is selected randomly where0 < ai < p.

1Also commonly denoted as2-universalor universal2 due to the pairwise independent property.
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h(x) =

k−1
∑

i=0

((aix
i) mod p) mod m (3.4)

Prh∈H[h(xi) = vi,∀ i ∈ (0, 1, · · · , k − 1)] =
1

mk
, where vi ∈ [m]

In general, the family ofk-universal hash functions has stronger property in terms of

collision probability. For example, the4-universal has a lower variance of the expected number of

collisions than that of the2-universal.

3.3 Weaker Collision Properties

Several families of the universal class of hash functions were proposed with weaker colli-

sion probabilities. The computation complexity is reduced, so these hash functions are better suited

for various high-speed or low-power applications. The message authentication described in Chapter

4 is one such application.

Stinson [114] introduced a positive real numberε and formally defined new families of

hash functions: theε-almost universalandε-almost-strongly universal. For the case ofε-almost

universal, the constantε represents the collision probability of the hash function where 1
R ≤ ε ≤ 1.

Therefore, Equation (3.1) can be expressed in more general way for those with this relaxed property.

A family of hash functionsH is said to beε-almost universalif for all x 6= y ∈ U and

the collision probability is less or equal toε.

Prh∈H [h(x) = h(y)] ≤ ε (3.5)

In the case ofε-almost-strongly universal, the probability is defined as follows:

Prh∈H [h(x) = s, h(y) = t] ≤
ε

R
. (3.6)

In other words, given the probability of1R of mappingx ∈ U to s in the hashing spaceB,

the conditional probability of hashingy to t is at mostε.

Rogaway [104] introduced the terminology ofε-almost-xor universalbased on the same

definition ofε-otp-securefrom Krawczyk [57]. As⊕ represents the bitwise exclusive-or operation,

a family of hash functionsH is ε-almost-xor universalif for all x 6= y ∈ U and for anys ∈ B,

Prh∈H [h(x) ⊕ h(y) = s] ≤ ε. (3.7)
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Stinson [115] further generalized the above hash family to arbitrary Abelian groups and

named itε-almost-∆ universal. Assuming thatB is an Abelian group and the group subtraction

operation is denoted by “−”, H is said to beε-almost-∆ universalif for all x 6= y ∈ U and for all

t ∈ B,

Prh∈H [h(x) − h(y) = t] ≤ ε. (3.8)

Although not beingstrongly universal, theε-almost-∆ universalfamily has stronger prop-

erty [7] than that ofε-almost universal. Thus, by using Carter and Wegman’s approach, a message

being forged is bounded byε if the hash function is selected from theε-almost-∆ universalfamily

[44].

3.4 Hashing Byte Strings for Packet Processing Applications

Based on different applications, packet processing needs to calculate the hash value on

some particular attributes in the packet header. Sometimes, the calculation may need to be done

over the entire packet as well. For example, if the traffic flowis defined as the tuple of source and

destination IP address, the system needs to hash two 32-bit source and destination addresses for the

sketch update, as described in Chapter 6, while maintainingthek-universal property.

An efficient way of hashing the data string is critical to the system performance. Depen-

dent on the capability of the processing resources, it can bearranged as a sequence of bytes, 16-bit

halfwords, or 32-bit words.

Generally, there are two main schemes to hash character strings [99]. The first approach

is to directly reduce the long byte string to a shorter one by means of logical or arithmetic opera-

tions without the prime modulo operation. Ramakrishna proposed a class of such hash functions

namedshift-add-xor[99] for hashing 7-bit character strings. As the name suggests, the function

utilizes only the simple and fast operations ofSHIFT, EXCLUSIVE-ORandADD. The construction

is efficient and likely to be universal; simulation results suggest that the analytically-predicted per-

formance can be achieved in practice by randomly choosing functions from this class. The pseudo

code is shown in Figure 3.1 with parameters for processing byte strings.

The second is to convert the byte string into an integer, thena prime modulo operation is

applied thereafter. The use of radix conversion of
∑n−1

i=0 (bytei × basei) mod prime is an example

for the first type. However, care must be taken when using thisscheme [79], because the selection

of thebasenumber and theprimenumber affect the performance significantly.
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// The constants of L and R are pre-defined values
// we set the L=6 and R=2 for processing
// 8-bit strings
// m is the length of the string.

h=seed;// randomly assigned a seed.

for(i=0;i<m;++i) {

h=h ⊕( (h<<L)+(h>>R)+c[i] );
}

h=h % T;

// The MOD operation can be replaced with
// bitwise AND for suitable values for T.

Figure 3.1: The pseudo codes ofshift-add-xorhash function. [99]

In order to avoid the costly integer division (modulo) operation, several reduction tech-

niques are proposed to speed up the process. One of the well-known schemes is the use of a

Mersenne prime in the form of2p − 1, wherep is a prime number. It’s also a widely-used technique

for pseudo-random number generators. Crandall [24] proposed a clever reduction technique based

on a so-called pseudo-Mersenne:2p − c, wherec is a small integer. The reduction techniques do

impact the system design in many applications. Therefore, due to the limited scope of this paper,

we refer to the discussions on more generalized Mersenne numbers in the literature [16].

The Mersenne prime is widely used to speed up the calculationof the hash function. The

largest Mersenne prime available in a 32-bit integer is231 − 1. As indicated in Equation 3.3, the

key space is limited by the prime number used in the function.It means that we may not be able to

maintain the 2-universal property by using the prime of231 − 1 on a 32-bit key. Therefore, we need

to use261 − 1 as a prime number for hashing a 32-bit integer. However, someembedded processors

may not support 64-bit arithmetic operations.

Instead of hashing a single 32-bit key, we can treat the key asa two 16-bit halfwordsx0x1

and hash it by using the prime of231 − 1. That is, the property of being 2-universal can be kept by

doing the hash ofh0(x0) ⊕ h1(x1), wherehi() is randomly picked from a 2-universal class of hash

functions [116].

We can extend this for hashing an-halfword string ofx0x1 · · · xn−1by selectingn hash

functionsh0, h1, · · · , hn−1 from a2-universal class of hash functionH. The mapping ofx0x1 · · · xn−1to

h0(x0) ⊕ h1(x1) ⊕ · · · ⊕ hn−1(xn−1) is 2-universal.

The tabulation method may be a good choice if the computationresource is limited
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and low latency local memory lookup is available. For example, for hashing an-byte string of

x0x1 · · · xn−1, we need a256 × n 2-D arrayat. Each single column consists of 256 pre-calculated

hash values by using a hash function randomly drawn from a2-universal hash family. The whole

table is indexed by each byte value ofxi and position ofi in the string. The hash process, shown in

Equation 3.9, is done by XORing a sequence of valuesat[xi][i], wherei ∈ (0, 1, · · · , n − 1).

htab(x0x1 · · · xn−1) = at[x0][0] ⊕ at[x1][1] ⊕ · · · ⊕ at[xn−1][n − 1] (3.9)

.

The above method is very attractive for applications that require 4-universal hash func-

tions due to its high computational complexity. However, Thorup and Zhang [117] indicate that the

mapping ofx0x1to h0(x0) ⊕ h1(x1) does not hold for4-universal hash functions. Instead, they

prove that the following definitionhash(x0x1) holds the4-universal property ifh0, h1andh2 are

independent4-universal functions.

hash(x0x1) = h0(x0) ⊕ h1(x1) ⊕ h2(x0 + x1) (3.10)

The time consuming4-universal hashing can be pre-calculated and stored in three differ-

ent tablesht0, ht1 andht2 . The final hash is the XOR of the values read from these tables as shown

in Equation 3.11.

hasht(x0x1) = ht0[x0] ⊕ ht1[x1] ⊕ ht2[x0 + x1] (3.11)

There are several different types of universal class of hashfunctions for fast string hashing

with arbitrary length. Those are widely used in message authentication applications. We discuss

some of the newly proposed hashing functions designed for fast message authentication in the next

chapter. For more details, we refer readers to the literature [116, 82, 99, 62].
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Chapter 4

Message Authentication

4.1 Introduction

As the Internet grows rapidly there are strong demands for faster processing speed to

protect network data streams at high speed [39]. Encryptionalone can not guarantee the integrity of

the data. Therefore, message authentication codes (MACs) play a very important role. The MAC

is a one-way, keyed hash function designed for message authentication [75]. The construction of

MACs can be based on block cipher (CBC-based MACs) or one-wayhash functions. MD5 and

SHA-1 are two very popular hash algorithms used in many applications. Due to the nature of these

algorithms, the throughput is limited in both hardware [126] and software [6] implementations. In

particular, it’s difficult to process these hash functions at wire speed with software implementation

on general purpose microprocessors.

However, there is a strong need for greater flexibility in thedevelopment stage and demand

for code portability without much dependency on specific hardware. For these reasons, a software

solution might be the most practical [45].

As the the technology advances, the attacking cost is expected to halve every 18 months.

Dobbertin et al. [34] described in 1996 that “a 128-bit hash-result does not offer sufficient protection

for the next ten years”. Recent successful attacks on MD5 [119, 121] and SHA-1 [120] may be

regarded as the proof of the prediction. In August 2002, NISTannounced the approval of Secure

Hash Standard, FIPS 180-2 that adds 3 additional hash algorithms: SHA-256, SHA-384, SHA-512,
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designed for compatibility with increased security provided by AES.

Although these attacks do not directly affect the use of MD5 and SHA1 for MACs [86],

demands for larger hash results and stronger hash functionsare expected in the near future. The need

for larger hash results andstrongerhash functions means a need for more computational power for

high throughput operation. A parallel architecture is a natural fit for such a requirement.

Carter and Wegman [122] proposed the use of a strongly universal hash function as the

building block for unconditional message authentication.In other words, regardless of the adver-

sary’s computing power, his/her ability to alter the messages is no better than guessing with the

probability of collision provided by the hash family. The computationally fast and mathematical

strong properties of the hash functions open a new paradigm of MAC constructions.

The scheme is to first condense the long message body into a relatively short value by

using the class of universal hash functions. Then, the hash value is encrypted with a One-Time

Pad (OTP). This value is known as the “TAG” and sent to the communicating party along with the

message itself. The Carter and Wegman construct is shown as follows:

TAG = (hk(M) ⊕ OTP). (4.1)

There are several benefits for the universal-hash-and-encrypt paradigm. The first obvious

one is the encryption is performed on the short hash value rather than the long message. Also, by

using the universal hashing family, the computational complexity is much lower than that of the

traditional cryptography-strength hash functions. Therefore, the speed of calculation is fast. Most

of all, hashing performance is guaranteed by the mathematical property: the hash family’s collision

probability. The new paradigm has gained a lot of recent attention, and several new families of hash

functions have been proposed for better performance [58, 59, 104, 112, 44, 7, 36, 62].

The brief definitions and terminologies of universal class of hash functions are provided

in Chapter 3. In Section 4.2, the optimization evolution of two families of universal hash functions

(MMH and NH) are presented. The general techniques related to practical implementation are then

discussed.

We present the implementation of the Multilinear Modular Hash (MMH) over the pro-

grammable SIMD stream architecture for message authentication codes in Section 4.3. The algo-

rithm can be easily parallelized and operated in SIMD fashion, and its data handling requirements

match the tiered memory hierarchy. Thus, high throughput can be achieved effectively.

In Section 4.4, we demonstrate the simulation results of generating 128-bit hash values
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for different sizes of packet. The best throughput achieves7 Gbps with packet size of 1536 bytes.

Finally we end this chapter with in-depth discussion over some issues and conclude with future

work.

4.2 Universal Hash Functions for Message Authentication

In this section, we discuss two families of universal hash functions: MMH and NH, which

are used for condensing long messages. The introductions and definitions of the universal hash

functions are provided in Chapter 3.

4.2.1 MMH

Multilinear Modular Hashing (MMH) [44] was proposed by Halevi and Krawczyk, based

on the well known universal hash construct denoted asMMH ∗ by Carter and Wegman.MMH ∗ is

defined over the finite field of integersZp
1, wherep is a prime number. That is, for anyX =<

x1, x2, . . . , xk > andM =< m1,m2,, . . . ,mk > wherexi,mi ∈ Zp,

hx(M) = M · X mod p =

k
∑

i=0

mixi mod p. (4.2)

TheX is the set of keys that selects hash functionshx( ) from the familyH.

Based onMMH ∗, theMMH ∗
32 shown in Equation (4.4) is initially modified and targeted

for software implementation on 32-bit integers. The costlyinteger division operation is avoided

by using modular reduction technique with a special prime of232 + 15. Thus, it achieves good

performance in calculation speed and maintains low collision probability. The family ofMMH ∗
32 is

ε-almost-∆ universalwith ε = 2−32.

hx(M) = M · X mod (232 + 15) (4.3)

= (

k
∑

i=0

mixi) mod (232 + 15). (4.4)

The family ofMMH ∗
32 is further optimized (denoted asMMH 32 and shown in Equation

(4.5) ) to ignore the carry bit from the 64-bit inner product (mixi) and the most significant bit in the

1Zp consists of all integers between0 andp − 1.
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final output (
∑k

i=0 mixi mod p) of the hash functionMMH ∗
32. Therefore, more speed-up is gained

with an increase in the collision probability.

The family ofMMH 32 is ε-almost-∆ universalwith ε = 1.5 × 2−30. The hash function

is designed to work with fixed-size messages of 32 words, thusthe k is 32. There is a tradeoff

associated with the choice on the size of the message. Clearly, as shown in Equation (4.5), the

longer the message being processed, the lower the average cost for the final modular reduction over

the message. However, the longer the message, the larger theset of keys that must be kept at both

communicating parties.

hx(M) = [((
k

∑

i=0

mixi) mod 264) mod (232 + 15)] mod 232 (4.5)

4.2.2 NH

The New Hash function (NH) [7] was proposed by Black et al., based on the construction

of NMH ∗ invented by Carter and Wegman [44]. The functions of theNMH ∗ family, shown in

Equation (4.6), have fewer multiply instructions than additions. Therefore, the speed of hashing is

improved for processor architectures with higher cost of multiplications.

hx(M) =

k/2
∑

i=1

(m2i−1 + x2i−1)(m2i + x2i) mod p (4.6)

The hash function of the NH family shown in Equation (4.7) is derived by further remov-

ing the prime modulo operation from Equation (4.6). Thus, the hashing speed is greatly enhanced

and very suited for hashing larger size of messages.

hx(M) =

k/2
∑

i=1

[((m2i−1 + x2i−1) mod 2w)×

((m2i + x2i) mod 2w)] mod 22w (4.7)

The NH family isε-almost universalwith the ε equal to2−w. Thew denotes the word

size; thus,w equals to 32 for a 32-bit microprocessor.

The NH family has a weaker property than that ofMMH 32. Therefore, the hash results

can not be used directly XORing the one-time pad in the Carterand Wegman approach. Another

level of hash (e.g., a strongly universal IPHash16 [63]) or pseudo-random function (PRF) [7] is

required for generating the authentication tag.
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Figure 4.1: Two-level tree hash process over a packet size of1500 bytes.

4.2.3 Arbitrary Lengths and Collision Probability

The hash functionMMH 32 works with fixed-size message blocks. Therefore, thetree-

hashingscheme proposed by Carter and Wegman [122] is adopted for hashing messages with arbi-

trary lengths. A message is segmented into 32-word blocks, where the last block may contain fewer

than 32 words. The first level of hash calculation is performed for each of these blocks individually.

The results of thesen hash values are then grouped as blocks of 32 and hashed again,and so on. As

illustrated in Figure 4.1, a packet of 1500 bytes is segmented into multiple 32-word blocks. Then,

the first level of hash calculation is performed based on eachof these blocks. The hash result of

each block is a single 32-bit word, so only one more round of hashing is needed to produce the final

hash value of the packet.

The collision probability is determined by the product of the depth of the tree hashingl

and the parameterε of the universal hash function. For example, MMH hasε = 1.5 × 2−30; if we

do a 2-level hashing (l = 2), the collision probability is3 × 2−30. The linear increase of collision

probability with the depth of the tree can be avoided by usingdifferent hash families on each level

of hashing. A good example can be found in the construction ofthe UMAC(2000) [63], where three

different hash families are used.

Since the collision probability may be too high for some applications, a scheme to lower
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the probability is to hash the same message again with another set of independent keys. By using

this strategy, the probability will be1
p2 instead of the original1p . However, the cost is almost twofold

on the amount of computation, the keys used, and the size of the hash values.

Fortunately, the issue regarding the doubling of the key size can be relaxed by using

the Toeplitz matrix construction. That is, instead of usingtwo different sets of keysK =<

k0, k1, · · · , kn−1 > andK ′ =< k′
0, k

′
1, · · · , k

′
n−1 >, the second key setK ′ can be derived from

the first key set ofK by skewing one position and adding an extra elementkn added. Thus, the

key setK ′ is < k1, k2, · · · , kn > . We are going to discuss more of the issues on the extra cost in

Section 4.5.

4.3 Implementation

In this section, we present a brief overview of the implementation of MMH with multiple

tags over the stream programming model. The stream programming model is composed of two

levels of hierarchy: the stream and kernel. At the stream level, data is organized into streams and

sent to the clusters at the kernel level for hash computation.

4.3.1 The Stream Level

We assume that the maximum packet size is 1536 bytes. Since MMH is designed with a

fixed-size key of 1024 bits, a 2-level hash tree is needed for apacket of 1536 bytes.

The system consists of three main kernels:level-1s, level-1andlevel-2. For packets larger

than 128 bytes, the packet streams will be directed to thelevel-1kernel where first level hash will be

calculated. The output of these hash values, namedL1-Hashstreams, will be stored in the Stream

Register File (SRF) and then consumed by thelevel-2 kernel. Thelevel-2 kernel calculates the

second level hash values similar to that in thelevel-1kernel. Then, the hash values are XORed with

the One-Time-Pad (OTP) stream to yield the final tags. The operation for packet size greater than

128 bytes is shown in Figure 4.2.

For packets of 128 bytes and less, there is no need to do the two-level hashing. Therefore,

only thelevel-1skernel will be invoked to generate theTAGstream. Since the length of the packet is

known ahead of the packet being processed by the kernel, the microcontroller can direct the packet

stream and invoke the kernels accordingly.
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Figure 4.2: The stream level diagram of the MMH system.

4.3.2 The Kernel Level

The major computation2 of the hash values is done in each cluster at the kernel level.

Packets are organized as a stream of records and distributedsequentially across the clusters. De-

pending on the number of authentication tags desired, clusters are organized as groups. The records

in the same group are further broadcast to groups of clustersthrough the inter-cluster network.

Then, each group of clusters calculates hash values based onthe same records. The same end can

be achieved by skewing records of the packet stream at the stream level and resending them to the

clusters. Since the inter-cluster communication network has higher bandwidth and lower latency

than that of SRF, the record distribution is performed in thekernel level. The original collision

probability (1p ) of MMH can be improved to1
p4 by hashing the message four times, generating four

tags. Therefore, the goals of designing the kernel are targeted at parallelizing and maximizing the

efficiency of the computation for four duplicated authentication tags.

As an example shown in Figure 4.3, the clusters are evenly divided into four groups (G0,

G1, G2 and G3). Given a packet stream of eight records, the pair of records within each group are

sent to the other groups through the inter-cluster communications. Therefore, the hash values are

calculated four times in parallel based on the same message with four independent sets of keys.

By using the Toeplitz scheme, the same set of keys is stored inthe scratchpad of each

cluster. Extra computations are then needed for clusters indifferent groups to identify the skewed-

2The Imagine supports two 32-bit multiplication by using two32-bit registers holding the 64-bit result. However, the
64-bit addition is not available. Due to this restriction, we further instrument our code to double the cycles of the 32-bit
add instruction to approximate the cost of 64-bit add operation.
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Figure 4.3: The Kernel in operation. A stream of eight records are distributed across each of the
clusters of four groups. Pairs of the records are further broadcast to the other group for calculating
four different set of authentication tags. The symbol of R0246xK0 denotes the sum of products for
the records (0,2,4,6) and the first set of the keys (k0).

index to access the key.

Basically, the kernels share the same structure of hashing the message. The differences

between the first and second level kernel are the extra XOR operation for the one-time pad, and the

smaller size of the record in theL1-Hashstream.

4.4 Experimental Results

The packet stream consists of records of four 32-bit words. Due to the restriction of the

simulation tools, the packet stream is further padded to be amultiple of eight records (for 8-cluster

configuration). The IScd VLIW scheduling results are presented in Figure 4.4. The un-optimized

result is shown on the left-hand side where the steps of modulo reduction of the prime232 + 15

can be seen at the bottom. By using software pipelining, the IScd compiler can further optimize

the result shown on the right-hand side of Figure 4.4. The cycle count for the second basic block is

reduced by 60% and the average kernel utilization for addersis increased from 35% to 85%.

The throughput of MMH producing a 128-bit pre-tag is shown inFigure 4.5 with different
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Figure 4.4: The VLIW scheduling results by IScd for the first kernel. The optimized result by using
the software pipelining technique is shown in the right. Forthe second basic block, the total cycle
is reduced by 60% and the average kernel utilization for adders is increased from 35% to 85%.

packet sizes. The pre-tag represents the hash value before XORing with the one-time pad. The best

performance of the MMH is 7.14 Gbps with packet size of 1536 bytes. The worst case is for the

packet size of 128 bytes where the throughput is only 2.23 Gbps.

The average throughput increases as the size of the packet increases. This is due to the

fixed cost associated with each run of the calculation. The cost associated with the loop within the

kernel, known as the short stream effect [92, 30], is a dominating factor for small packets.

Generally, the prologue and epilogue blocks are established before and after the main loop

for setting up constants and initializing variables. Shownon the right-hand side of the Figure 4.4,

the main loop (second basic block) only takes 22 cycles for processing 128 bytes of data due to the

lightweight computation of the universal hash function. Therefore, as the stream passing the loop

gets smaller, prologue block takes a significant portion of the kernel run time. That is, the average

cost is higher.
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Figure 4.5: The throughput of MMH and the corresponding kernel runtime ratio with collision
probability of 2−120 with different packet sizes. The system clock is 500 MHz, with 4-adder, 2-
multiplier and 8-cluster configuration.

4.5 Discussion

4.5.1 Small Messages

Several universal hash functions are designed by utilizingspecial instructions provided by

contemporary processor architectures to achieve fast processing speed. Examples such as the use

of fast multiply-and-add instructions and SIMD extensions[7, 36] are very common. Furthermore,

more speedup can be achieved by relaxing the algorithmic property of the hash function. As dis-

cussed in Section 4.2.1 and 4.2.2, techniques include ignoring the carry bits of the multiplication

and summation processes, or even removing the prime modularoperation.

A relatively long message usually requires several levels of hashing. Therefore, the op-

timization philosophy of the universal hash functions is tohash the long message very quickly at

the first level by relaxing its algorithmic property. The relaxed property, on the other hand, can be

compensated by using stronger functions at the other levels. The cost of using the stronger function

at the other level can also be justified and minimized since the message has been greatly condensed.

The use of the NH [7] family in UMAC is a good example. Due to itsweaker property

of not beingstrongly universal, the authentication tag generation is different from the Carter and

Wegman construct shown in Equation (4.1). The major difference is that a pseudo random function

(PRF) is introduced and applied over the hash values to produce the authentication tag. For example,

in a typical implementation of UMAC, the message is divided into segments of 1024 words. The
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NH hashing results of each segment are concatenated together along with nonce and the encoded

length value of the original message. Then, a pseudo random function (PRF), HMAC-SHA1, is

used to hash the concatenated value, producing a 160-bit authentication tag. The whole operation is

shown as follows:

TAG = HMACSHA1 ( (NH (Msg1)||NH(Msg2 )|| · · ·NH(Msgn)||Len) ||Nonce) (4.8)

The optimization schemes at the algorithmic level are very successful, especially for larger

size messages. However, the benefits are limited for smallermessages.

It’s a known fact that there are a large number of small-sizedpackets in the Internet3.

Thus, due to the costly operation of SHA1 for small packets, the improved UMAC(2000) algorithm

[63] discards the use of pseudo-random function shown in Equation (4.8). Instead, UMAC(2000)

relies on the IPHash, a strongly universal, inner-product hash in the form of
∑

miki mod p and

adopts the original Carter and Wegman MAC construct, using aone-time pad.

4.5.2 The One-Time Pad

Shown in Equation (4.1), the one-time pad is used in the Carter and Wegman construct to

XOR the hashing result and produce the authentication tag. Therefore, in the system view point, as

the size of the packet decreases, the cost of producing the one-time pad becomes more significant.

An obvious drawback of the one-time pad is its key distribution and management [75].

Therefore, the use of one-time pad is approximated by the pseudo one-time pad based on some

pseudo random functions [10]. Given the same function and seed, both of the communicating

parties can create the exact same sequence of pseudo random numbers.

The simple random number generator in the form ofxn = (a · xn−1 + b) mod p can not

be used due to its weak property: the sequence can be easily predicted even without knowing the

parameters used [94]. In practice, a stream cipher is used with its property of being computationally

secure [75]. A block cipher is another choice, such as AES in the implementation of one-time pad

for UMAC(2000) [61].

Sometimes, the generation of one-time pad is dependent on the incoming packets and

can’t be done ahead of time. For example, a different nonce may be used to generate the one-

time pad with each message [61]. In order to synchronize the use of nonce between the sender

3Please see Figure 2.18 for detail.
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Figure 4.6: The queue up ofn packets for parallel processing of the one-time pad.

and receiver, nonce is sent along with the message. This implies that the one-time pad has to be

produced on line and the cost has to be taken into consideration.

Given the fastest performance on a 32-bit uniprocessor, theAES calculation on a 16-byte

block in ECB mode is 232 cycles [72]. For an architecture configuration of A4M2C8 (4 adders, 2

multipliers and 8 clusters), the worst case AES calculationoneight16-byte blocks in ECB mode is

77 cycles.4 Therefore, the cost can be amortized by creating the one-time pads for multiple packets

in parallel on the SIMD architecture. Instead of calculating the one-time pad upon receiving a

packet at a time, a batch calculation of eight one-time pads can be done efficiently by processing

eight packets from the queue.

Some protocols (e.g., IPSec) use time-out parameters to constraint the time period be-

tween two receiving packets, so the number of packets in the queue shown in Figure 4.6 has to be

kept within a limit. In other words, the time difference of∆Tp between the last packetPk−1 in the

last batch and the first packetPk of the current batch has to be within the time-out limit.

4.5.3 The Multi-SIMD Operation

Given an authentication tag ofn bits, the attacker can break the MAC with a probability

of 1
2n [61]. That is, the probability of forging a message with a correct authentication tag without

knowing the key is dependent on the length of the tag. While these hash functions are capable of

generating a 32-bit hashing result at high speed, the high collision probability may not be suitable for

4Please see the simulation results in Chapter 2.
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applications demanding high system security. Therefore, hashing the message multiple times using

independent key sets is needed. For example, since the length of 96 bits is the default authenticator

length as specified in IP authentication header [51], a triple-hashing scheme is needed such that

three 32-bit hash values are concatenated to form 96 bits.

According to the performance results of MMH (200MHz Pentium-Pro), the best case

throughput (message in cache) for generating the 32-bit and64-bit output are 1080 and 500 Mbps

respectively [44]. As the throughput decreases approximately linearly, we estimate the throughput

of producing a 96 and 128-bit results are roughly in the rangeof 375 and 250 Mbps, respectively.

On the other hand, a speculated throughput of 300Mbps is estimated on a 200 MHz Pentium-Pro

processor [44, 9]. It is clear that the speed advantage for MMH diminishes as the number of tags

required increases on a uniprocessor implementation.

The SIMD architecture is the best candidate to create multiple tags in parallel for the

universal-hash-and-encrypt paradigm. The hash functionsare easy to be implemented in parallel

achieving high speed of generating multiple tags. In addition, due to theMulti-SIMD operation, the

cluster utilization is better regardless of the packet size.

As the architecture is designed for handling larger data streams efficiently, handling a

small-sized stream between kernels has higher average costsimply because of the inefficiency of

resource utilization. A good example is theL1-Hash streampassing from the first kernel to the

second by computing onlyone authentication tag. Given a 256-byte packet, theL1-Hash stream

consists only two 32-bit words useful for the second level hashing, whereas the bandwidth is capable

of transferring eight 32-bit words ofL1-Hash streamfrom a 1024-byte packet in the same number

of cycles.

Take the same example stated above but computingfour authentication pre-tags: given a

256-byte packet, theL1-Hash streamnow consists of eight 32-bit words useful for the second level

hashing.

As shown in Figure 4.3, two clusters are arranged as a group. Each group processes

the same packet by using the same hash function but differentkeys. We denote this process as

Multi-SIMD, since it’s slightly different from the pure SIMD operation. The efficient architecture

support of such operation can easily be exploited by algorithms of this kind. Another good example

is the Bloom filter [8] implementation (Chapter 5), where themultiple functions used to hash the

same data in each cluster may originated from the same universal hash family, differing only in

parameters.
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4.6 Conclusions

For years, the focus has been targeted on the optimization ofthe universal hash functions

of hk(M). As discussed in previous sections, the evolution fromMMH ∗, MMH ∗
32, MMH 32,

NMH ∗ to NH is a good example of this trend where multi-Gigabit throughput can be achieved in

software implementation.

As more new families of universal hash functions are proposed [36, 62], little has been

addressed with regard to the performance degradation due tothe extra computation needed for more

tags. As the simulation results suggest, the hashing speed is decreased approximately linearly with

increasing the number of the tags. As the number of tag grows,the speed advantage is lost compared

to the conventional MAC schemes.

The SIMD parallel architecture provides a simple yet elegant solution for this increasing

demand for extra tags on the new universal-hash-and-encrypt paradigm. The best performance of

the MMH is 7.14 Gbps with packet size of 1536 bytes and 2.23 Gbps for size of 128 bytes and less.

The cost of one-time pad generation can also be greatly amortized by computing in parallel.

The parallel stream architecture not only provides a good accommodation for such hash

based computation, the benefit of being programmable is alsoobvious: the developers can freely

adopt the best and newest algorithm that fit the system requirements at minimum or no cost at all.
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Chapter 5

Deep Packet Inspection

5.1 Introduction

The content matching process, i.e, hash computation over anentire packet, fits well into

the stream programming model with an abundance of producer-consumer locality: portions of the

the hash values computed and stored in the stream register file (SRF) are used for calculating a new

set of hash values recursively.

One of a good example of such applications is the Network Intrusion Detection System

(NIDS). The NIDS is designed to identify network attacks, based on anomaly traffic profiles or

known patterns, called signatures, in packet payloads. Oneof the most challenging issues that these

systems are facing is the speed of the emerging high-speed networks. The demanding costs make

intrusion detection and analysis over such high-speed traffic in real-time very difficult [83].

Snort [91] is one of the most popular open-source NIDS programs. It uses a collection

of matching rules to identify potential malicious packets.Some of these rules involve only fields in

the packet header, but most require sophisticated string matching against the payload bytes. Most

general-purpose systems are barely able to process minimum-size packets on an 100Mbps network

[107]. The content matching engine for the network intrusion detection system is considered to be

the critical part due to its computation complexity. For Snort, the String-Matching process takes

31% of total processing time on a uniprocessor. Furthermore, the processing time could go up to

80% for web intensive traffic [2]. Thus, most high-speed NIDS’s rely on specialized hardware for
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content matching. For example, Clark et al. [18] use an FPGA-based array of matchers, because

the network processor (Intel IXP1200) does not have sufficient computing power to perform the

task at wire speed. Such solutions are difficult to scale, in terms of the number of matching rules,

and are inherently inflexible, because they are built with a single algorithm for a single purpose.

Many sophisticated pattern match algorithms have been recently proposed. Of particular interest

are probabilistic methods based on Bloom filters [8]. The Bloom filter is an algorithm that is used

to probabilistically test membership in a large set. Content matching is essentially aqueryprocess.

Given a set of signatures or contents seen in the attacking traffic, Bloom filter can quickly inspect the

incoming packet and simultaneously match a large set of patterns for the suspicious target. Similar

to the mechanism of a filter, the majority of packets that do not contain malicious signatures can be

quickly bypassed, while those that do can be identified immediately for further processing. Such a

system has been implemented in hardware [33], achieving high performance.

In this chapter, we present a design space exploration of content matching based on the

Bloom filter using the programmable Imagine Stream processor [50]. In the following sections,

the mathematical background of Bloom filter is first presented. Then, the system design and an

implementation in the stream programming model are discussed. We also demonstrate the flexibility

and performance of the stream architecture supporting the realization of the universal class of hash

functions for the Bloom filter. A detail discussions of implementation tradeoffs and simulation

results are provided at the end of this chapter.

5.1.1 The Bloom Filter and Pattern Matching

The Bloom filter [8] is a single-bit memory array. A set can be succinctly represented by

this unique data structure, on which membership queries canbe performed efficiently at the cost of

rare false positive matches.

The whole operation consists of two phases - membership insertion and query. Initially,

the value of the bit array is set to “0”. At the membership insertion phase, a memberxi is hashed

by k independent hash functions. Thek different hashing results, ranging from0 to m − 1, will

each address a bit in the array and set its value to “1”. If there aren members in the set, and the

size of the filter ism bits, the filter is said to have a bits-per-entry ratio ofm
n . For the query phase,

the same hashing operation is performed again on the memberxjbeing tested. Thek different bit

values addressed by the different hashing results will be read from the memory array. If all of the

bits are “1”, thenxj is said to be a member of the set. This is an approximate algorithm, because
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the hash functions are not unique. Therefore, there is a probability of being false positive; that is,

an item will be identified as a set member, even though it is not.

The pattern matching process is similar to the membership query. Given a byte-string of a

specific length, the query result indicates if there is a match to any malicious patterns in the Bloom

filter. That is essentially multi-pattern matching for patterns with the same length at the same time.

The theory of Bloom filter is based on the ideal property of hashing functions. Assuming

the hashing results are uniformly distributed over the memory, then after the insertion phase the

probability that a specific bit is still “0” isp = (1 − 1
m)kn ≈ (e−

kn
m ). Therefore, the probability of

false positive error can be modeled by the following equation:

Pfpe = (1 − p)k ≈ (1 − e−
kn
m )k. (5.1)

The false positive error probability, shown in Figure 5.1, is dependent on the construction

parametersk, m andn. Increasing the number of hash functions decreases the false error rate, up to

a point. The same effect applies for the bits-per-entry ratio of m
n . When designing the Bloom filter,

several interesting issues arise due to tradeoffs among theperformance metrics, i.e., the number of

hash functions, the size of the memory and the number of entries in the filter. The number of hash

functions is limited by the available computing resources and memory bandwidth. Increasing the

number of hash functions decreases the error rate to a certain degree. It has to go along with the

size-per-entry ratio in order to yield good quality of falsepositive error rate. The higher the ratio,

the lower the error rate. For a given bit-per-entry ratio ofm
n , the false error probabilityPfpe is

minimized fork = (m
n ln 2) hash functions.

5.2 The Implementation of Bloom Filter on Imagine

There are two factors affecting the performance of softwarebased implementation of

Bloom filter: the speed and accuracy of the query phase. In other words, the performance means

how quickly a computation can be done to generate the index and look it up through the memory

array, and the possibility of being false positive if the outcome shows a match.

The design of Bloom filter is based on a family of independent hash functions where

keys are transformed and distributed uniformly into a rangespecified by the size of the memory

array. Therefore, the choice of hash functions and an efficient way to do the hashing over the

entire packet dominate the speed of the computation; the quality of the hash influences the rate



61

Figure 5.1: The false positive error rate of Bloom filter

of false positive errors. Another performance bottleneck for Bloom filter implementation is the

table lookup. Givenk hash functions,k lookups have to be performed for each query operation.

Thus, memory bandwidth may become a critical issue for parallel lookups in a real-time system.

Moreover, conventional cache architectures are unlikely to work well if the Bloom filter is larger

than the cache, since the lookups to the memory array are purely random.

In the following sections, we present a design that relies onthe unique memory structure

of the stream processor, where these lookups can be performed in parallel efficiently. Moreover, the

flexibility of supporting various hash function implementations and the efficient way to compute the

hash values in the streaming model are discussed.

5.2.1 System Design

Sequential lookups can be avoided by incorporating banks ofmulti-port memory. For

example, assume there arek banks of single-read-port memory and each holdsm
k bits of the the

original Bloom filter contents. Given a key andk hash functions, each of thek hash values is used
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Figure 5.2: The scratchpads of eight clusters served as multi-segment memory for Bloom filter.

to index the individual bank simultaneously. Therefore, ak-parallel lookup can be done in one

cycle. The false positive error of this scheme is slightly higher [78] than that in Equation (5.1). The

probability that a specific bit is still “0” after the insertion phase is(1 − k
m)n instead of the original

(1 − 1
m)kn.

The Imagine Processor consists of 8 clusters and each has a 256-entry, 32-bit word scratch-

pad. These scratchpads, as illustrated in Figure 5.2, are good candidates serving as multi-segment

memories which provide 65536 bits in total of storage for theBloom filter. The hash calculations are

distributed into each cluster. As shown in Figure 5.2, givenk = 16, each cluster calculates two hash

values in a 8-cluster configuration. The hash values are usedlocally in each cluster to address the

scratchpad memory. The operation is conducted in a SIMD fashion since a family of hash functions

share the same structure with only differences in parameters or tables. The logical AND operation

is performed on the lookup results from all the clusters through inter-cluster communication. The

single-bit result after the AND operation therefore represents the matching outcome. In order to

minimize inter-cluster communication, the bit values of a sequence of 32 queries are accumulated

by shifting through a 32-bit word. Thus, 32 query results canbe obtained by doing a tree-based

logical AND operation through inter-cluster communication. Bits are further packed in the 32-bit

words and grouped as an output stream for other kernels or host processor to verify and locate the

suspicious pattern within the packet.

Consider a filter with 2000 patterns for an 8-cluster configuration. Each cluster has 8K

bits of scratchpad, for a total of 64K bits and am
n ratio of 32. The theoretical false positive error

rate (i.e., false positive errors per query) can be as low as10−7 by using 16 hash functions. For a
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16-cluster configuration, themn ratio becomes 64, and the false positive error rate is down tothe

level of 10−11, while the number of patterns and hash functions are still the same. Moreover, the

performance is increased as well, since only one scratchpadread is needed in each cluster for the

query.

There are several benefits of holding the Bloom filter in scratchpad memory at each clus-

ter. The most obvious one is the distributed, low latency accesses for the queries. Since it’s relatively

low-cost to scale the number of clusters, rather than the ALUs in each cluster [53], the expanding

of clusters means potential increases on both the size of theBloom filter and the number of hash

functions. The Merrimac streaming supercomputer [26] is anexample where each node consists

of 16 clusters. Therefore, given a fixed amount of patterns, the false positive error rate decreases

significantly with the increase of the clusters while the kernel run time remains the same.

5.2.2 The Hash Functions

The implementation of Bloom filer is based on a set of independent hash functions. Thus,

the choice of hash functions dominates the performance of the system. A good example is the false

positive error rate shown in Equation (5.1) where the derivation is based on the perfect property of

the hash functions. That is, keys are assumed to be uniformlydistributed. Then, keys are hashed

and randomly distributed into each slot of the memory array.

However, in the real world scenario, the byte distribution within packets is not truly ran-

dom. Dependencies among packets are commonly found which yield higher false positive errors.

The universal class of hash functions [14], widely used in many applications [98, 99, 97], are suit-

able for resolving this issue. This is because of its randomized property: by randomly selecting

hash functions from the family, the average performance canbe guaranteed independent of the in-

put keys. The detail descriptions on the universal hash functions as well as the schemes on hashing

strings are provided in Chapter 3.

5.2.3 Programming Model

The stream programming model is composed of two levels of hierarchy: the stream and

kernel. At the stream level, data is organized into streams and sent to the clusters at the kernel

level for major computation. Packets are organized as stream of records and distributed sequentially

across the clusters. Each record will be broadcast to all theclusters through the inter-cluster com-
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munication so that all the clusters calculate hash values based on the same record. In other words,k

different hash values are computed from a family ofk hash functions based on the same record (the

key) at all clusters in a SIMD fashion.

For a given packetP = (p0, p1, p3, ..., pl−1) of l bytes and a sliding window ofm bytes,
mCj denotes the byte string qualified by the window ofm bytes at the position ofj over the packet

stringP . For example, ifm = 5 andj = 0, 5C0 represents the byte string of(p0, p1, p2, p3, p4).

In the query phase, given patterns with the same length ofm bytes and a packet of length

l, wherel > m, a total ofK × (l − m + 1) queries need to be performed. This is simply because

there areK hash functions and a window ofm bytes has to slide through the packet. For example,

in the first iteration(j = 0), K hash values ofhk(
mC0) are used as the indexes to address the

memory array. If all locations of the memory array addressedby thoseK indexes contain “1”,

then it’s highly possible that the packet contains the target pattern ofm bytes at the first position.

For the case of processing patterns withn different lengths, ranging fromm to m + n − 1 bytes

consecutively, the total number of hash values that need to be computed is' K
2 × n × l.

The system consists of two kernels which are shown in Figure 5.3. The design is based

on theappending process,which is suited for processing multiple patterns of contiguous lengths.

Appending is a simple technique to compute the hash value efficiently. Instead of calculating the

hash value of am-byte string mCj starting from the first byte, the hash value ofh( mCj) can be

derived from the value ofh( m−1Cj).

Given a set of patterns with lengths contiguously specified in a fixed range, e.g.,(m, m+

1, m + 2, m + 3), the first kernel calculates the preceding hashes of specified lengths over the

incoming packet. There are 4 sets of hashes:h( mCj) wherej = 0, 1, 2, 3; h( m+1Cj) where

j = 0, 1, 2; h( m+2Cj) wherej = 0, 1; andh( m+3Cj) wherej = 0. These hash values will be

used as indexes to lookup the Bloom filter in the query phase. In the mean time, the initial hash

values ofh( m−1C4), h( mC3), h( m+1C2), andh( m+2C1) will be grouped as an output streamS0

for the base of the appending process. Along with the incoming packet stream, these hash values are

streamed into the second kernel, where a recursive operation takes place. As discussed previously,

hash streamS1 of h( mC4), h( m+1C3), h( m+2C2) andh( m+3C1) can be derived from the stream

S0 of h( m−1C4), h( mC3), h( m+1C2) andh( m+2C1). Therefore, the newly generated hash values

will be treated as a data stream and stored in the stream register file temporarily. Then, the same

kernel will consume the data stream. The same process will berepeated until the end of the packet.

That is, the kernel2 scans through the rest of the packet and calculates the hashes recursively.

Due to the excess amount of computation, the kernel only processes up to four different
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Figure 5.3: The kernel block diagram.

patterns in consecutive lengths. Since the use of patterns with size ranging from 1 to 4 bytes are more

effective to associate with otheroptionsin Snort’sheaderandbodyrules for the matching process,

we deliberately skip those patterns to avoid high matches without loosing generality in this chapter.

A pipeline of n processors shown in Figure 5.4 is capable of handling up to4n different lengths

of patterns. For those patterns with lengths greater than the capacity, a scheme called “reduced-

pattern length” is adopted. This scheme uses the“cutoff length” instead of the original one for the

matching process. Therefore, for a large number of patternsof different lengths, the large number

of hash computations can be bounded at the cost of increasingfalse positive errors. The detail of

this scheme is presented in Section 5.3.1.

The performance of the pipeline is limited by the stage whichconsumes the longest

processing time. The cycle time for the first stage of the pipeline, i.e. on the top of Figure 5.4,

is slightly longer than the rest of the three stages since an extra set ofbase-hash values must be

computed:h( m−1Cj) denotes the extrabase-hash value, which must be calculated at the first stage

of the pipeline. The output stream ofintermediate hash streamcontains hash values ofh( m+3Cj),

wherej = (0, 1.., (l − m + 1) ). For example, at the second stage of the pipeline, the inputinter-

mediate hash streamto Kernel2 can be sourced by the outputintermediate hash streamfrom the

first stage. Therefore, only the first stage has to compute theextra values. For each stage, the com-

putation within the first kernel is only dependent on the input packets. The second kernel depends
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Figure 5.4: The pipelined flow architecture withn processors. Each processor processes patterns in
a fixed range of continuous length. The depth of processors pipeline can be extended dependent on
the number of pattern length distribution.

on theinitial hash streamfrom the first kernel, theinput packet streamand theintermediate hash

streamfrom the previous stage. Since the second kernel consumes more time than the first one, we

focus on the second kernel for further discussion and analysis.

5.3 Experiments and Results

The performance metrics in which we are most interested are (1) false positive error rate

and (2) processing speed. In other words, by implementing the approximate filtering scheme over
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Figure 5.5: The accumulated length distribution of Snort rule contents, where 93% of the total
patterns has the length less and equal to 24 bytes.

the traffic stream, how high are the accuracy and throughput?We describe the methodology of the

pattern-matching experiment based on Snort distribution [91] and DEFCON9 [31] packet traces. A

detail discussion on the heuristic named “reduced pattern length” is presented and the performance

for both false positive error rate and processing speed are shown later in this section.

5.3.1 Reduced Pattern Length

In this experiment, only the pattern signatures (known as “content” in the Snort rules) are

extracted and used as the golden patterns. In Snort, short patterns are usually used along with other

optionssuch as thedepthandoffsetto minimize the false matches. Due to the ineffectiveness of

the short patterns which cause many matches within a packet,the patterns with 4 bytes and less are

skipped in the experiments.

There are approximately 2160+ rules which contain 2700+ distinct patterns in the Snort

distribution. The accumulated pattern length distribution is shown in Figure 5.5. Among those

patterns, 97% have length less than 32 bytes, and the longestone contains 122 bytes. Only 3%

of the patterns have lengths sparsely distributed across the range from 33 to 122 bytes. To scan

only for those pattern lengths, the efficiency gained from the iterative operation model described

in the previous section may be very poor due to the SIMD architecture. On the other hand, the

computational load is too high to scan all the patterns consecutively from length of 33 to 122 bytes.

A scheme namedreduced pattern lengthis adopted for scanning the packet for suspicious

patterns. For a pattern with length greater than a specifiedcutoff lengthl, the lengthl is used instead
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of the original pattern length. This is based on the observation that a large enoughcutoff could

include the entire pattern for the majority.

Several heuristics can be applied to select a portion ofl bytes (thecutoff length) from the original

pattern. Acentral-weightedscheme shown in Figure 5.6 can be used to select the central portion

of the string quite effectively for patterns listed in Table5.1. For example, given acutoff length

of 9 bytes and a30-byte string of ”filename=\”ICQ_GREETINGS.EXE\””, the pattern offset is

10. Therefore, the new cutoff pattern selected from the central portion of the original string is

” ”ICQ_GREE”. Note that, a scheme of selecting the first9 bytes of the original pattern would not

be able to distinguish pairs of patterns that share the same prefix in Table 5.1.

Table 5.1: The example of patterns.

filename=\”CHESTBURST.EXE\”

filename=\”ICQ_GREETINGS.EXE\”

Content-type\: video/x-ms-asf

Content-type\: audio/x-mpegurl

/cfdocs/exampleapp/email/application.cfm

/cfdocs/exampleapp/publish/admin/application.cfm

Although false matches may occur due to the scheme, chances are low and only a fraction

of the patterns actually contribute to this type of errors aswe select longercutoff length. For

example, the chance to find a substring of ”ame=\”ICQ_GREETINGS.” in the packet which does

not contain the exact pattern of ”filename=\”ICQ_GREETINGS.EXE\”” is low.

Simulation results based on several DEFCON traces indicatethe effectiveness of certain

cutoff lengths. Figure 5.7 shows the number of extra packets that need to be further inspected due

to false matches, using differentcutoff lengths. For both theshift-add-xorand tabulation schemes,

if (length>CutoffPatternLength) {
PatternOffset=((int)floor((length-CutoffPatternLength)/2));

}
else {
PatternOffset=0;

}

Figure 5.6: The pseudo code of the central-weighted scheme.Along with theCutoffPatternLength,
thePatternOffsetis used as an offset from the first byte to select a new pattern from the original one.
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there are less than 100 false-match packets once thecutoff lengthis greater than 16 bytes. The

exact-matchcurve shows the false-match packets based on an exact matching algorithm (Boyer-

Moore). We highlight the area under theexact-matchcurve since the false matches are due to the

reduced pattern length. As thecutoff lengthincreases beyond 24 bytes, there are no such false

match packets. Therefore, the false matches for theshift-add-xorand tabulation schemes outside

the shaded area are due to the false positive error rate of theBloom filter. The simulation is based on

the DEFCON9 eth3.dump trace [31] which contains 1,691,267 packets. The true packet hit count

based on the original patterns are 832,484. Therefore, the overhead of inspecting ~100 additional

packets is very small. Although a dynamic method of analyzing the hamming distance on each of the

pattern larger than thecutoff lengthcan be applied, the simplecentral-weightedheuristic is used for

all the simulations. The immediate benefits for this tradeoffs is tremendous since the computation

complexity is reduced toO(n) for a large number of patterns in different lengths. Moreover, the

efficiency of SIMD operation can be maintained and the iterative appending process can be applied.

As expected, both theshift-add-xorand tabulation schemes demonstrate good perfor-

mance with almost the same false positive error rate of5.6 × 10−9. The total number of hash

functions is 16 and thecutoff lengthis 16 bytes. Therefore, themn ratio is 41, which renders the

expected false positive error rate of1.43 × 10−8.

We deliberately set the configuration of the third scheme, marked as “Conv.” in Figure 5.7

to contrast the performance. The third implementation is based on the string-to-integer conversion

scheme shown in Section 5.2.2. The false positive error rateis much higher since the distribution is

not uniform due to thebaseis in the power of two. Moreover the conversion itself is not ideal: it

maps many different strings into the same number1

5.3.2 The Kernel and Stream Level Performance Results

The kernels are implemented based on three different types of universal hash functions.

Those are theshift-add-xorshown in Table 3.1, the tabulation method and theH1 with radix con-

version based on Mersenne prime in Section 5.2.2. The simulation and kernel scheduling results

are based on the system configuration of eight clusters, and each has a single-read-port scratchpad

of 512 words. The system consists of eight hash functions with clock frequency of 500 MHz. The

main processing loop is located in the second kernel. For each iteration, hash values are calculated

1The base number is 512, byte of 0x0 is mapped to 0x100, and two prime numbers,231
− 1 and219

− 1, are used.
A quick fix to lower the probability is to use different prime numbers in the hash family. In other words, the chance of
having the relationh( mC1) = h( mC0) + cpq, is lower thanh( mC1) = h( mC0) + cq.
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Figure 5.7: The extra packets need to be inspected with different cutoff lengths. The simulation is
based on the DEFCON9 Eth3.dump trace, which contains 1,691,267 packets.

based on the same records of the incoming packet stream.

Shown in Figure 5.8, the cycle counts are almost reduced in half with the adders doubled

from 4 to 8. As these results suggest, there is abundant data parallelism within the kernel. The tab-

ulation scheme, on the other hand, reveals itself with lowercycle counts while having limited ALU

resources. By comparing to theshift-add-xorscheme, the cost of the multiplication and Mersenne

prime operations can be seen in Figure 5.8. As expected, the tabulation method has less parallelism

as we increase the number of ALUs.

The cycle-based, stream level simulation forshift-add-xorscheme is shown in Figure 5.9,

using the 8-adder configuration. The throughput for 1500-byte packets is approximately 400 Mbps,

while performance of the shortest one barely tops line of 150Mbps. The lower throughput for

smaller packets is mostly due to the fixed operation cost of the first kernel and the short-stream

effect [50, 95]. According to the kernel scheduling results, the tabulation scheme has shorter cycle

counts than that of theshift-add-xor. However, the stream level simulation of 1500-byte packets

does not show any performance gains, due to SRF stalls in the second kernel.

5.4 Design Exploration and Analysis

The whole system contains two major portions, i.e. the calculation of the hash values and

the queries of Bloom filter. Thus, there are several ways to construct the systems. The first option

is to calculate the hashes by the ALU and hold the Bloom filter in scratchpad at each cluster. The



71

second is to alleviate the computation of hashes within the cluster through table-lookup by using

Index SRF [48] accesses while hosting the Bloom filter in scratchpad. The third is to accommodate

the Bloom filter in SRF while hash values are computed by the ALUs at each cluster.

The realization of universal class of hashing functions canbe roughly categorized into

two styles, i.e. the arithmetic and tabulation. The arithmetic style, in general, requires lots of ALU

resources. Therefore, for a system without enough computing resources, table lookup is popularly

favored to obtain the hash value quickly for better system performance [117].

The Imagine stream processor provides a good infrastructure for implementation of both

styles. At the cluster level, the functional units are designed for handling compute-intensive tasks.

On the other hand, the scratchpad memory, which provides lowlatency data access, is a good

candidate for holding small tables. Sometimes, depending on the hash function used, the size of

the scratchpad may not be enough. Stream Register File (SRF), which is the next closest storage

location to the processing unit can be used instead. The SRF is composed of banks of SRAM array

and is optimized for delivering sequential chunks of data interleaved among the banks. The recent

proposed indexed SRF [48] access extension provides the capability for non-sequential accesses,

which typically require random indexing from each cluster.

5.4.1 Table Lookup for Hashing

An implementation of table lookup for both hashing and Bloomfilter query at different

memory hierarchy levels utilizes most of the memory bandwidth provided by the Imagine architec-

ture. The long latency due to the SRF index read can be overlapped by the computations as well as

the scratchpad access. A class of universal hash functions based on the tabulate method shown in

section 5.2.2 is implemented. A streamSm is assigned to hold a family of tablesat[m][xi] where

t = {1, 2, ..., k}, andk denotes the number of hash functions desired. The parameterm represents

a specific length of a target pattern. For a given bytexi, there are 256 different values. Therefore, a

stream will hold256× k entries, with each entry capable of holding 32 bits of hashing space. Since

a kernel is processing a limited set of pattern lengths, for examplem,m + 1,m + 2,m + 3, only

four streamsSm, Sm+1, Sm+2, Sm+3 are needed.

The realization is based on the “in-lane access” scheme; therefore, each row of the table

at[m][xi], xi = {0, 1, ..., 255} has to be arranged in an interleaved form instead of a linear one

along the stream. In other words, thexith row of a tableat[m][xi] will be located in the position of

cid() + N × xi in the streamSm, whereN represents the total number of cluster in the processor
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and cid() denotes theid of the cluster currently accessing the table. For example, if the second

cluster is accessing row 3 of the table in an 8-cluster system, the stream index of that location is

1 + 8 × 2 = 17. The scheduling result of the tabulation scheme is shown in Figure 5.10.

The cycle counts from the scheduling result is expected to bereduced compared to that of

theshift-add-xorsince less computation is needed. However, the reduction islimited due to the extra

indexing overhead. For example, given a byte value, each cluster has to calculate the new stream

index ofcid() + N × xi for in-lane reads of the hash value. The stream level simulation shows that

the SRF bandwidth utilization increased4.6 times, while the LRF bandwidth decreased only9%

compared to that of theshift-add-xorimplementation. Although the index transformation can be

done by the cluster itself, an extrahardware assistcan be a great help to offload the computation.

Without the extra index calculation overhead, almost 21% ofthe cycles can be further eliminated

in Figure 5.10. Simulation results indicate a nearly 15% improvement in throughput for 1500-byte

packets.

5.4.2 Bloom Filter Query

The Bloom filter is a bit-oriented data structure which can beeasily packed and stored in

the scratchpad memory at each cluster. Therefore, in the query phase, abit-extractionprocedure of

masking and shifting is needed to locate the bit in order to identify the value. For example, given a

13-bit hash value, the upper 8 bits are used to address the scratchpad while the lower 5 bits are used

to pinpoint the bit position within the 32-bit word read fromthe scratchpad. Thebit-extractionalone

takes almost 40% of the operations in the second basic block of kernel 2. This is a good example

showing the inefficiency of processing the bit-oriented data structure in a word-oriented architecture.

A hardware assist implementation which provides a dedicated resources may effectively resolve the

overheads due to thebit-extractionprocess. Performance gain and speedup are commonly seen with

similar approaches by incorporating special hardware assists [95] or special instructions like field

extraction, byte-wise and boolean operations [93, 42].

As we optimize the scheduling results, i.e., offload the computation cycles by hardware

assists, the scheduling result shown in Figure 5.10 revealsthe possible critical path due to sequential

read of the scratchpad memory. The current design of the scratchpad memory has only one read

port, which sometimes leads to the bottleneck for the table-lookup intensive applications [95, 66].

A significant speedup is expected with the implementation ofadditional read-port and the hardware

assists discussed.
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5.4.3 Bloom filter in SRF and Main Memory

The counting Bloom filter [37] is introduced to embrace the membership deletion capa-

bility. This particular construction and its variants are widely used in many network applications

[11], including network traffic measurement, distributed web caching and queue management. The

implementation is based on an array ofm-bit counters instead of a bit-wise memory array. Thus,

the size of the implementation increasesm-fold. The stream register file is a natural place to hold

such data structure since it is the next closest storage location to the ALUs. Moreover, the access

latency may be well overlapped by the computation of the hashvalues.

The design of multi-stage filters for traffic measurement [35] is one good example of such

an implementation. For each stage with 1000 buckets, assuming each bucket has four bytes, the

total storage requirement for an 8-stage (cluster) configuration is only 32,000 bytes, which can be

easily fit into the SRF. Assuming 800Mbps link with 100,000 flows, this configuration is able to

identify the flows above 1% of the link during a one second measurement interval with the error

probability of2.3× 10−8 [35]. We have not yet implemented such application, but we are planning

to do this as future work.

Another option is to hold the data structure in the main memory. This option only makes

sense if the memory access latency is comparable to that of the computation. By using software

pipeline techniques at the stream level, the latency can be effectively hidden. Since the index stream

mechanism is optimized for sequential access, the randomized table lookup may introduce long

delay. Moreover, the large amount of lookups may throttle the limited memory bandwidth, causing

poor system performance. Our cycle-based simulation does show poor performance for this scheme,

with a throughput under 90Mbps for 1500-byte packets.

5.5 Conclusions

This chapter explores the implementation of Bloom filter forcontent matching on the

stream architecture. The calculation of hash values is transformed into stream processing, express-

ing producer and consumer locality and achieving efficient utilization of the unique memory hier-

archy. By arranging multiple processors in a pipelined fashion, the system is capable of processing

patterns extracted from the rules of the Snort distributionand achieving a throughput of 400Mbps

for 1500-byte packets. Since the core of Bloom filter design is based on a family of independent

hash functions, we demonstrate the flexibility and performance of the stream architecture to support
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the realization of such constructs for the Bloom filter. In addition, the efficient implementation of

universal class of hash functions may benefit many applications, such as message authentication

codes (MACs) [82] and streaming data processing [117].

We explore the feasibility and flexibility of supporting Bloom filter in the stream archi-

tecture with some possible modifications suggested for better performance. The unique scheme of

Bloom filter plays an important role in emerging network applications [11]. Its variants can be good

vehicles to perform event counting and classification. For example, instead of using the single-bit

array, the counter-based memory array is used for statistics collection on the traffic with the same

attribute e.g, source/destination IP address, source/destination port address and protocol number.

Moreover, the same concept can be applied to worm and virus signature detection [113].

To continue our investigation into stream-based network processors, we take this as the

base and look forward to exploring the similar data structure for traffic analysis in the next chapter.
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Figure 5.8: The kernel scheduling results for different type of hash functions.

Figure 5.9: The Stream level simulation results for different sizes of packet. The implementation is
based on theshift-add-xorscheme.
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Figure 5.10: The second basic block of the IScd scheduler result for indexed SRF accesses.
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Chapter 6

Streaming Data Processing

6.1 Introduction

The accurate estimation of Internet traffic statistics serves as the basis for infrastructure

planning, network provisioning, capacity forecasting andaccounting [127, 65, 35]. Anomaly de-

tection on worm distribution and prevention of distributeddenial of service (DDoS) attacks are also

based on the same information. Therefore, traffic analysis and measurement have been the impor-

tant tasks for the proper operation of IP networks [38]. As network bandwidth grows exponentially,

the scaling of monitoring and measuring capabilities for collecting accurate statistics becomes a

critical issue [35]. For example, given a bandwidth of 10 Gbps and a minimum-sized IP packet

(40 bytes), the time to process each packet is 32 nsec. Moreover, there is only 8 nsec available for

processing such a packet if the bandwidth increases up to OC-768.

The streaming data processing model is well fitted to measuring and monitoring hetero-

geneous and dynamic phenomena. Internet traffic, too, can benaturally regarded as a data stream

since packet data arrives rapidly as a series of elements. The challenge we are facing is to process

a potentially unlimited amount of data in a limited time and space. In addition, each element or

record of the data stream might have only one chance to be examined. Therefore, these issues

have recently drawn a lot of joint efforts [77, 40, 29, 100] from research communities of database,

networking, architecture and theoretical computer science. Research is conducted in regard to the

fundamental algorithmic models, programming languages and hardware and software support of
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data stream management systems. More details are provided in the comprehensive surveys and

tutorial [4, 41, 80].

With limited storage, computation power, and processing time, achieving the goal ofone

pass processingover a massive volume of data is extremely challenging. As a continuing research

effort, the study of IP traffic analysis in the domain of data stream model over the Imagine stream

architecture is presented in this chapter.

The backgrounds of the streaming data model will be introduced first with the emphasis

on the important statistical attributes of the data stream.Although there are several other techniques

for data reduction and synopsis construction such as sampling and wavelet [80, 4, 41], we focus on

the sketch scheme, due to its wide applicabilities to various networking applications. The general

introduction on Count-Min sketch [19] and K-ary sketch [60]are provided first. We transform the

sketch processing into stream operations provided by the Imagine programming model. The focus

is to explore the applicability of the specialized data structure and operation over the tiered memory

hierarchies: Main Memory, Stream Register File (SRF) and Local Scratchpads.

A pipelined architecture over three Imagine processors is presented for the sketch-based

change detection. We demonstrate the pipelined operation and analyze the system bottleneck

throughput. The simulation shows that the processor is capable of handling the sketch update at

10 Gbps for the minimum-sized IP traffic.

6.2 The Background

A data streamφ = (a1, a2, ...) is a massive sequence of elements. Each element,at =

(kt, ut) consists of akey,kt ∈ {0, 1, . . . n − 1} and anupdate,ut. There are two different models

based on the property of theupdate. It’s namedcash registermodel if ut ≥ 0, andturnstilemodel

for ut ∈ N. In IP traffic analysis, we are interested in enumerative (e.g. the number of packets

in a flow) or cumulative values (e.g. the total number of bytesin a flow). Since these values are

always positive, thecash registermodel applies. The keykt in the data stream model can be used

to represent the traffic flow. Aflow is usually defined as a stream of packets with some common

attributes. For example, it can be packets having the same pair of sourceanddestinationIP address.

Another popular flow consists of the same 5-tuple attributes: the source and destination IP address,

the source and destination port number and the protocol number.

The statistical measurement of data streamφ can be reflected by thefrequency moments.
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Thezth frequency momentFz of data streamφ is defined as follows.

Fz =
n−1
∑

k=0

f z
k (6.1)

The fk represents the number of occurrences of key1 k in the data stream ofφ. Therefore, the

number ofdistinct valuesin the data streamφ can be expressed asF0. The length of the data

streamφ is F1, the first frequency moment ofφ. The second frequency momentF2, also known

as therepeat rateor Gini’s index homogeneity, is of particular interest and is widely used in the

database community [1]. For the higher frequency moment, wherez ≥ 2, it indicates the “degree

of skewness” of a data stream [1].

TheL2 norm, another important statistic attribute for many data streamapplications, has

a close relation to thesecond frequency momentF2. For an update model likecash registerand

turnstile, theL2 norm of the data streamφ is shown as follows:

L2 = (
∑

t

|ut|
2)

1

2 (6.2)

Computing the exact answer of these attributes is very difficult because of thespacecon-

straint. For example, a naive implementation for counting the exact number ofdistinct valuesin

the data streamφ has to use a counter for each element in the key space. Becausethe key space

can be very large, this is not practical. For example, the 124-bit 5-tuple IP key space would require

2124counters.

Therefore, research efforts have been focused on approximation approaches to estimate

these attributes for applications like error estimation [47], data partitioning based on the degree of

skewness [32] and abnormality detection for IP traffic [60].

6.3 The Sketch-based Algorithms

Sketch [15, 1, 80] is a powerful yet compact data structure capable of synopsizing substan-

tial numbers of data elements without keeping its stateful information. The probabilistic property of

this structure also provides a mathematical guarantee for accurate estimation on various attributes

of the data streams.
1For convenience purpose, we discard the time subscriptt for referring to the current state of the element over the

data stream [80].
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Figure 6.1: The two-dimensional (w × d) array of counters. (w rows andd columns)

In general, the sketch algorithms rely on the probabilisticproperty of the universal class

of hash functions (described in Chapter 3). Upon the arrivalof each element in the data stream, the

key is hashed and the update is applied for a counter determined by the hash value. Asketchdata

structure contains the final values of these counters in a specific time interval. Due to its linearity,

we can combine several sketches together for query processing. A query is the estimation of a

specific attribute on the data stream based on the sketch collected. Each algorithm has its own way

of making the estimation. A detailed analysis and comparison of various sketch algorithms can be

found in Cormode’s survey [19].

Generally, there are two phases in the operation of sketch algorithm: theupdateandquery.

We highlight the update phase and then, illustrate two sketch algorithms in the following sections

due to their excellent properties.

6.3.1 Count-Min Sketch

The sketch utilizes a two-dimensional array of countersC[i][j], where0 ≤ i < d, 0 ≤

j < w. As shown in Figure 6.1,d represents the number of arrays andw is the number of entries

within each array. The two-dimensional array of counters isindexed by a set of independent hash

functionsH = {hi, 0 ≤ i < d}. Each hash functionhi maps a keyk ∈ {0, 1, · · · , n − 1} into the

hashing space of{0, 1, · · · , w − 1}.

Initially, all the counters in the 2-D array are set to zero. As each elementa = (k, u) of

the data stream arrives, the keyk will be hashed by the set ofd hash functions. Then, the value ofu
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will be updated into the array of counters indexed by thed hash outcomes, as illustrated in Equation

6.3.

C[i][hi(k)] = C[i][hi(k)] + u, 0 ≤ i < d (6.3)

The Count-Min sketch is capable of providing approximate estimation of a query for which the

accuracy is guaranteed within an error factor ofε at a probability ofδ. The values ofd andw are

determined by the parametersε andδ: d =
⌈

ln1
δ

⌉

andw =
⌈

e
ε

⌉

, wheree denotes the base of the

natural logarithm function. The two-dimensional array of counters is indexed by a set of2-universal

hash functions.

The Count-Min sketch can provide the(ε, δ) approximation of a point query over a data

stream. By given a keyk, the estimated point query is shown in Equation 6.4.

Âk = mini{C[i][hi(k)]}, 0 ≤ i < d (6.4)

The estimated value of̂Ak has the guarantee ofAk ≤ Âk , whereAk represents the total

update value for the keyk. The error is bounded (shown in Equation 6.5) with probability at least

1 − δ, where‖a‖1 =
∑n−1

k=0 |Ak|.

Âk ≤ Ak + ε ‖a‖1 (6.5)

An example of using(ε, δ) = (0.0001, 0.0005) yields an estimation result where there

is a 99.95% chance that the error factor is within0.01%. For this example, the data structure of

the Count-Min sketch consists of8 hash functions (d =
⌈

ln 1
0.0005

⌉

) and 27183 counters (w =
⌈

ln e
0.0001

⌉

) in each array. Assuming a 32-bit counter, the total size of the data structure is869, 856

bytes.

The Count-Min sketch can also provide the estimation for range query and inner product

query. These queries are all related since the range query isessentially“a sum of point queries” and

both point and range queries are“specific inner product queries” [19].

One of the important applications based on the point query isthe finding of top-k items

[15, 21]. For example, the estimated answer can be used to identify the top 10 flows of the IP traffic

or top 100 IP addresses in terms of bandwidth consumption.

Another important contribution is the estimation of the L2 norm. For a skewed data (z > 1

in the Zipf’s distribution model2), the estimated L2 norm is shown as follows.

2In the Zipf’s distribution model, the frequency of thek-th most frequent itemfk is captured by the ratio of a scaling
constant ofCz and thek’s power of parameterz. That is,fk = Cz

kz
.
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mini{(
w−1
∑

j=0

C[i][j]2)
1

2} (6.6)

6.3.2 K-ary Sketch

K-ary Sketch is proposed by Krishnamurthy et al [60] based on the same update process

illustrated in Equation 6.3. It utilizes the same two-dimensional (w × d) array of counters as those

in the Count-Min sketch. However, the counters have to be indexed by a set of4-universalhash

functions.

The approximation of a point query over a data stream is different as well. By given a key

k, the estimated point query is shown in Equation 6.7.

Âk = mediani∈[d]{
C[i][hi(k)] − Z(S)/w

1 − 1/w
}, 0 ≤ i < d (6.7)

where

Z(S) =
∑

j∈w

C[0][j] (6.8)

The variance of the above point query is bounded byF2

w−1 , whereF2 represents the second

moment of the data stream.

The estimation of the second momentF̂2 of the data stream is defined as follows with

bounded variance of2F 2

2

w−1 .

F̂2 = mediani∈[d]{
w

w − 1

∑

j∈[w]

(C[i][j])2 −
Z(S)2

w − 1
} (6.9)

6.4 Sketch Operation on Stream Architecture

6.4.1 The Stream Programming Model

The sketch’s 2-D array data structure can be represented as astreamS in the stream

programming model. The streamS consists ofd×w records, where each record is a 32-bit integer.

Thei-th record of the streamS is located in the entry
⌊

i
d

⌋

of the (i mod d)-th array, as illustrated in

Equation 6.10.
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S[i] = Ct[i mod d][

⌊

i

d

⌋

], 0 ≤ i ≤ d × w − 1 (6.10)

For ad-cluster Imagine processor, each cluster can perform a read-modify-write operation

over thew by d array for eachupdateof the incoming data stream throughindexed SRF accesses

[48] in a SIMD fashion.

The sketchS(t) is usually updated for a time interval4t started at timet. It can be stored

back to the main memory while a new sketchS(t + 4t) is being updated. Given a set of sketches

(or streamsS(t), S(t + 4t), · · · , S(t + (n − 1) 4 t) in stream level programming model), the

processor can linearly combine these sketches very efficiently in a vector style operation. A generic

combining process over a set ofn sketches3 is illustrated as follows.

COMBINE(S) =
n−1
∑

s=0

S(t + s) =
n−1
∑

t=0

Ct[i][j], i ∈ d, j ∈ w (6.11)

An estimation and query operation over the combined time interval can be performed based on the

newly generated combined sketch. As shown in the Equation 6.6, 6.7 and 6.9, these operations are

highly data parallel and fit very well in the SIMD processor architecture.

6.4.2 The Point Query

At the kernel level, the query can be simply accomplished by the indexed SRF access

directly with the hashing values for each cluster in a SIMD fashion. The point query operation can

also be performed efficiently by theIndexed Streamaccess at the stream level. Let’s take a look at

the following example on how a point query can be done by givena keyk1 and a streamS in the

main memory.

There ared different indexesh0(k1), h1(k1), · · · , hd−1(k1) after keyk1is hashed byd

hash functions. Then, an index streamSidx can be formed by converting the above indexes accord-

ing to Equation 6.10.

Sidx = ( (h0(k1) × d + 0), (h1(k1) × d + 1), · · · , (hd−1(k1) × d + (d − 1) ) (6.12)

The query streamSquy can be derived by the following indexed stream operation.

3As the sketch operation is always based on the time interval4t, we use(t + i) for short instead of(t + i · 4t).
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Squy = S( 0, (d × w − 1), im_acc_index, Sidx ) (6.13)

Then, the query streamSquy can be sent to the host processor or another kernel to pick up

the minimum or median value.

6.5 Sketch-based Change Detection

The change detection of network traffic is referred as the monitoring of significant differ-

ences in traffic attributes over two observing intervals. The attributes of interest can be the number

of packets, flows, or total bytes of the traffic.

Finding the significant changes in the network traffic is one of the key building block for

several important applications. For example, it can be usedfor the billing and usage tracking by the

Internet service providers. It can also be used for anomaly detection for network security purpose

to prevent worms and DoS attacks.

Change detection is especially challenging at the network level because a massive amount

of data has to be processed in real time at wire speed. Typically, sampling is a popular method

applied to tackle the processing and storage cost incurred by the huge amount of traffic. Sketch is

another interesting approach as it offers low space requirement and guaranteed accuracy.

The difference of traffic attribute, can be characterized inthe following three types:vari-

ational difference, relative differenceandabsolute difference. The relative differencerefers to the

ratio of difference between two observing time interval. And, thevariational means the large vari-

ance over multiple time periods [20].

In the following section, we take the sketch-based scheme [60] (based on K-ary Sketch)

as an example to illustrate the efficiency of the stream architecture. The scheme is referred as the

absolute differenceas it looks for the large difference between two observing time intervals.

6.5.1 The Pipelined Architecture

The scheme [60] consists of three major modules: sketch, forecasting and detection. The

three modules are transformed as kernels residing in three different stream processors connected by

a communication network. The first kernel constantly updates the observed sketchSo for a specific

time interval4t as illustrated in Equation 6.3. The sketchSo will be sent to the second processor
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Figure 6.2: The architecture of sketch-based change detection over Imagine Stream Processor.
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Figure 6.3: The kernel diagram for thew-moving average calculation at timet + 1.

where sketch combine operation can be performed. In this kernel, it produces a series of forecast

sketchesSf , which can be based on different forecast models as needed. The error sketchSe is

derived at the third processor by subtracting the observed sketchSo with the forecast sketchSf .

The alarm is issued based on the thresholdTA. It is calculated based on the product of a predefined

parameterT and the estimated second moment over the error sketchSe. Given a keyk, the alarm is

raised if the point query ofk over the error sketchSe is larger than the thresholdTA.

Let’s take themoving averageas a forecast model for example to illustrate the stream

operation. Given a data sequence ofD = {di}, wherei ∈ {0, 1, · · · n − 1}, theW-moving average

MAW of data sequenceD is defined as follows.

MAW =
1

W

i+W−1
∑

j=i

di (6.14)

At this kernel, as shown in Figure 6.3, it computes the forecast sketchSf (t + 1) (at time

t + 1 · 4t) based on the previousW observed sketches corresponding to the pastW intervals.

Sf (t + 1) =
1

W

W−1
∑

i=0

So(t − i) (6.15)

Due to its linear property, the forecast sketch calculationcan be computed incrementally

and recursively. For example, at timet + 2, the calculation ofSf (t + 2) is illustrated as follows.

Sf (t + 2) = Sf (t + 1) +
1

W
(So(t + 1) − So(t − W + 1)) (6.16)
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Figure 6.4: The kernel diagram for theW-moving average calculation at timet + 2.

The kernel does not need to calculate the forecast sketch based on the observed sketches

in the pastW interval. Since the SRF still holds the sketches ofSf (t + 1) andSo(t − W + 1),

the kernel only needs to take the latest observed sketchSo(t + 1) as input stream to speedup the

computation.

The kernel diagram shown in Figure 6.4 demonstrates a classic producer-and-consumer

locality captured by SRF in the stream processor.

The whole operation is arranged in a pipelined fashion. Figure 6.5 shows an example

by using a window size of four update intervals(W = 4). The first forecast sketchSf (t + 1) is

generated shortly after the beginning of timet + 1. As the system finishes the update process at

t + 1 where the observed sketchSo(t + 1) is available, the error sketchSe(t + 1) can be computed

immediately at timet + 2. Thus, the alarms can be generated thereafter.

6.5.2 One-pass Processing

The query process of sketch based scheme has to rely on the original key. That is, the

sketch data structure does not contain any information regarding the key itself (the IP source address

in the example above). Therefore, the key streams have to be stored and then used for the query

process. This may limit the scalability due to the extra costfor the storage. A way to avoid this is

to use the current arriving key streams for the query processover the previous sketch data structure

[60].
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Figure 6.5: The pipelined operation of sketch processing.

For example, the alarm is created at the third processor by using the current key over the

previous error sketch. As shown in Figure 6.5, the alarms canbe generated at timet + 2 by using

the current keys based on the error sketchSe(t + 1) created at timet + 1.

The drawback of using the current keys over the previous error sketch is that the system

is likely to miss the detection or produce a false alarm, because the previous keys updated in the

sketch are not showing up again in the current key stream.

As we decrease the update time interval4t, the chance of missing the detection or pro-

ducing the false error may be lower. Moreover, we may be able to boost the accuracy by having

lower chance of collision rate while doing the sketch update. We will discuss this interesting phe-

nomenon in Section 6.6.2.

6.6 Discussions

6.6.1 The System Bottleneck

The counter update process is usually set for a specific time interval 4t in terms of

minutes. It can be one or five minutes [5, 60] depending on the processing capability of a sys-

tem. Thus, shown in Figure 6.2, the sketch processing time for deriving the forecast sketchSf and

error sketchSe in kernel B and C is bounded by the observing interval as the observed sketchSo is

sent every4t time to the second and third processor.
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The hash calculation for point query over the error sketchSe in kernel C are based on the

same set of universal hash functions used in the sketch update stage. There is no need to re-calculate

the hash values again as those can be sent as a stream to kernelC from kernel A. Moreover, the point

query for the alarm can be based on sampling [60] of the incoming key stream. For an interval of

one and five minutes, the processing time is much relaxed compared to that at the first processor.

As the hashing and counter update (read-modify-write access) has to be quick enough for

each incoming packet at line rate, the critical path of the change detection is in the stage of sketch

update at the first processor.

The kernel of sketch update performs the hash calculation and updates the counters in the

SRF by in-lane indexed stream access in a SIMD fashion for eight clusters (as described in Section

6.4.1). The kernel computes the hash value of a 32-bit key by hashing two 16-bit subwords in

parallel4. Therefore, the abundant ILP can be exploited by increasingthe number of ALUs in the

cluster. Figure 6.6 shows the kernel performance of sketch update with different ALU configurations

by using 2-universal and 4-universal hash functions.

For the simulation, each record of the key stream consists ofa 32-bit IP source address and

a packet length. The Imagine stream processor (3-adder and 2-multiplier configuration) is capable of

processing 1,920 keys in total of 28,335 cycles. As each key has to be hashed by eight independent

hash functions, there are total of 15,360 hash calculations(2-universal) and updates on the sketch

counters . That is approximately, in average of 1.84 cycles per hash and update. It takes an average

of 15 cycles to hash and update for a given key. The time for calculating the same number of hash

values by using4-universal hash functions is 63,377 cycles. It takes an average of 33 cycles to hash

and update for a given key.

For a system clock of 500 MHz, Imagine is capable of handling the update of minimum-

sized IP traffic with the throughput of 10.8 Gbps (2-universal) and 4.8 Gbps (4-universal), respec-

tively.

For the example shown in Figure 6.2, the observed sketchSo is sent every4t time to the

second and third processor. Thus, the sketch processing time in kernel B and C is bounded by the

observing interval. For an interval of one and five minutes, it’s much relaxed compared to that in

the first processor. The interconnection network interfaceconsists of eight stream buffers, each is

capable of sustaining 2 GBps of bandwidth for a stream. Thus,the interface supports bandwidth

of 16 GBps in total. However, the maximum memory throughput of 2 GBps may become the

4We use the hash functions described in Chapter 3.
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Figure 6.6: The kernel performance for sketch-update process on different ALU configurations.

Figure 6.7: The cumulative number of flows during one 30 minutes interval (left) and 1 minute
interval (right) for a OC-12 (622 Mbps) Internet backbone [5].

bottleneck of the sketch process as the system is moving datafrom the main memory to the SRF.

It takes about 15,105 cycles to move two 32k-byte sketches from the main memory to the SRF. It

takes about 8,201 cycles for to fetch one 32k-byte sketch.

6.6.2 The Estimation Accuracy

The error factor of the sketch is mostly governed by the number of countersw in the array.

With limited space for holding the sketchS in the SRF, we may not be able to increase the number

of countersw to a large value for better estimation accuracy for high volume traffic consisting of

millions of flows.
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Figure 6.8: The operation of the time multiplexing scheme (TMS). At the end of the sub-sketch
update period4t

n , the newly observed sketch is sent to the main memory along with the Bloom
filter sketch.

Generally, the cumulative number of flows scales linearly (shown in Figure 6.7) with

the observed time interval [5]. Therefore, the expected number of collisions in each of the sketch

array decreases as the measuring period4t reduced. In other words, fewer flows means fewer

opportunities for collision.

This observation brings us an idea of maintainingn sub-sketches instead of one in a time

period4t. As the system performs the sketch update, the previous updated sub-sketch can be stored

back to the main memory within the update time of4t
n without incurring extra latency. Figure 6.8

shows the update ofn sub-sketches.

Based on the linearity, the final estimation of a point query (take Count-Min sketch as an

example) with a keyk, can be presented in Equation 6.17.

Â(k) =

n−1
∑

t=0

mini{Ct[i][hi(k)]}, 0 ≤ i < d (6.17)

Denoted as the time multiplexed scheme (TMS), it can be further enhanced by having each

key k associating a small tag indicating to which the sub-sketchCt the key belongs to during the

updating phase. Therefore, in the query phase, the system only makes the inquiry to the sub-sketch

Ct containing the key, which yields more accurate estimation of point queryÂ(k).
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Figure 6.9: The effectiveness of TMS. PSC-1114637278-1.tsh, OC48c PoS link connecting the
Pittsburgh Supercomputing Center [87]. The Quantum is denoted as the number of smaller update
interval used within the original time period4t.

In order to quantify the improvement on the accuracy for point query, we introduce the

Quantumand the average errorErr. The Quantumis denoted as the number of smaller update

intervals used within the original time period4t. The average error ofErr is defined as follows.

Err =

√

√

√

√

1

n

n
∑

k=1

(
Â(k) − A(k)

A(k)
)2 (6.18)

The simulation is based on a 90-second tracePSC-1114637278-1.tshfrom an OC48c PoS

link connecting the Pittsburgh Supercomputing Center [87]. Each flow, also defined as the key, is

based on a distinct source address. And each point query of the key represents the total size of the

flow. There are 5,167,489 packets consisting of 24,569 different source addresses.

By usingQuantumof 3 and sketch size of w=4,096, the average error of Count-min point

query is lower than the use of a single sketch of size w=7,168.Figure 6.9 shows the effectiveness

of using this scheme.

6.6.3 The Tag Implementation

Given a keyk, the inquiry to see if the key has been hashed and updated intothe sub-

sketch is a classic membership query problem. Therefore, itis a good fit to use the Bloom filter due

to its compact data structure. The query results, however, are associated with a small probability

of false positive error. That is, if the sketch does not contain the key, it may be revealed as the key
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Figure 6.10: The improvement of the point query based on the change of parameters.

does exist. This low probability of false error is acceptable since the sketch algorithm itself is not

precise, either.

The Bloom filter query accuracy is based on three parameters:the number of keys, the

number of hash functions used and them/n ratio5. Depending on the accuracy of the query, the

size (in bits) of the Bloom filter data structure for each sub-sketch is shown as follows.

Size =
Numberkey

Quantum
×

m

n
(6.19)

Let’s take the simulation in the previous section for example. Assume that we construct

32 sub-sketches (quantum=32) for the update process based on the trace consisting of 24,569 flows.

For each sub-sketch, the size of the Bloom filter is 960 bytes with them/n ratio of 10. The false

positive error rate is on the order of10−3 by using the same 8 hash functions for the sketch updating.

We can easily compact the Bloom filter data structure as a stream Sbft(), which only

consists of 240 32-bit records during the update phase.

In the point query phase, the Bloom filter query is proceeded first with the keyk over the

streamSbft(). Then, the kernel can skip the query of the sub-sketch streamSCt() if the result is

false.

In addition, while multiplexing the sketches, the parameters (a and b in Equation 3.3)

of the universal hash function can be changed randomly to achieve the“mathematically predicted

average performance”of using universal hash functions [74]. The change of the parameters is mo-

5Please refer to Chapter 5 for more details of the Bloom filter operation.
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tivated by Makowsky et al [74]:“In order to be mathematically certain that the predicted average

performance will be achieved, it is necessary to change hashfunctions periodically.” As the byte

distribution within packets is not truly random, dependencies among packets are commonly found

which yield the non-ideal behavior of the hash functions. Therefore, by randomly selecting hash

functions from the family frequently, the average performance can be guaranteed, independent of

the input keys. By comparing to the error factor of the Count-Min point query by using TMS, Figure

6.10 shows up to 18% improvement on the same scheme with the change of hash functions. The

drawback of this approach is that we break the linear property within these sub-sketches.

6.7 Conclusions

The sketch algorithms have been widely used in many network management applications

[80, 40, 41]. As many new algorithms [19, 60] and improvements [69, 46] have been proposed

recently, we believe that an exploration on a programmable and efficient processor architecture is

beneficial to applications based on the same algorithms.

In this Chapter, we introduce two sketch algorithms: the K-ary sketch and the Count-Min

sketch. We illustrate the point query operation at the stream programming model with some possible

improvements. These sketch operations are highly data parallel and suited for the SIMD paradigm.

We also present the pipelined architecture for the application of sketch-based change detection [60]

over the Imagine stream processor. As demonstrated, the sketch processing is accomplished in a re-

cursive and incremented way, where the producer-and-consumer locality can be captured efficiently

by the stream programming model.

Maintaining and updating the statistics counters for high-speed network is a challenging

task. For example, upon the arrival of a minimum sized IP packet (40 bytes) in a OC-768 line (40

Gbps), a read-modified-write process has to be applied to a set of counters in 8 nsec. Assuming

there are 8 counters and the size of each is 32 bits, the total memory bandwidth required is 4 GBps.

With the maximum SRF bandwidth of 32 GBps, maintaining and updating the statistics counters

can be effectively realized on Imagine stream processor with its computing resources and unique

memory hierarchies.

As we look over the concurrent hardware architectures capable of supporting the high-

speed statistics counter update [111, 96, 103], they share acommon memory organization. That is,

a set of faster but smaller statistics registers are implemented in SRAM and these register values are
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periodically updated into a larger but slower set of counters in DRAM.

The sketch operation in Imagine processor can be modeled in asimilar but at a coarse-

grained fashion based on the stream programming model and the tiered memory hierarchy effi-

ciently. In order to contrast the performance, we continue to explore the sketch update algorithm on

a different processor architecture in the next chapter.
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Chapter 7

Intel IXP Network Processor

As discussed in the previous chapter, the sketch algorithm can be utilized for many net-

working applications. We continue to explore the unique data structure on a different type of proces-

sor architecture for comparison.

In this chapter, we focus on the implementation of sketch update since it is regarded as

the bottleneck of the sketch algorithm. First, we introduceIntel’s Internet eXchange Architecture

framework. Then, a brief hardware architecture of the IXP2800 is presented.

The implementation on the IXP2800 and the performance results are presented next.

Based on those, we make a brief comparison with the results from the Imagine stream processor.

The pros and cons of each approach are discussed at the end of this chapter.

7.1 Intel Internet eXchange Architecture

The Internet eXchange Architecture (IXA) is a popular network processor framework.

Designers can build the systems with great programming flexibility using the network processor

while still achieving high-performance packet processingat wire speed. Armed with several dedi-

cated hardware assists, the processor architecture exploits the packet-level parallelism with multiple

multi-threaded microengines.

As shown in Table 7.1, there are several network processor families designed for different

performance requirements. The IXP1200 family is the first generation consists of six parallel mi-
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Figure 7.1: The Intel IXP2800 processor architecture diagram [22].
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Table 7.1: Brief Comparison for IXP Network Processors.

Max. Clock Microengines SRAM Bandwidth XScale Core Power

IXP12x0 232MHz 6 464Mbps 232MHz 5W

IXP2400 600MHz 8 2×16Gbps 700MHz 13W

IXP28x0 1400MHz 16 4×16Gbps 700MHz 21-26W

croengines. The IXP 2400 processor, with eight microengines operated at 600 MHz, is capable of

processing tasks up to OC-12 line rate. The IXP2800 family isdesigned with 16 microengines for

handling the traffic throughput up to OC-192.

7.1.1 The IXP2800 Architecture

The IXP2800’s hardware architecture diagram is shown in Figure 7.1. The XScale core,

running at 700 MHz, is designed to take care of the control plane tasks. Some typical examples are

running the signaling stacks, exception packet handling and chip configurations. The receive and

transmit buffer, located in the Media Controller, is responsible for holding the packet data in and out

to the processing elements of the chip. The Media Controlleris connected to the layer 2 devices and

switching fabric through the System Packet Interface Level4 (SPI4) and Common Switch Interface

(CSIX) respectively.

As the packet comes in the receive buffer, it is then processed by the microengines

arranged in two clusters. There are a total of 16 microengines running at a clock frequency of 1.4

GHz. The second-generation microengine (MEv2) features new instructions and hardware assists

for processing packets at high speed. Each microengine has one execution unit, which is capable of

supporting up to 8 different contexts (threads) simultaneously with little switching overhead.

As shown in Figure 7.2, each microengine has 8K bytes of instruction store and its own

CRC unit to offload the intensive computation from the execution unit. The transfer registers hold

the data transferred between the push/pull bus and the execution unit.

7.1.2 Memory Hierarchy

The memory hierarchy, consisting of local register files, local memory, scratchpad, SRAM

and SDRAM, is capable of meeting the storage, bandwidth and latency requirements for various

applications.
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Figure 7.2: The micro architecture of the microengine [22].
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There are two banks of general purpose register files and a local memory with the size of

2,560 bytes. The SHaC unit contains a 16K-byte scratchpad memory, which is commonly used for

communication and data sharing among microengines. The scratchpad is capable of holding up to

16 ring buffer implementation. It also supports atomic get,put and subtract operations.

The SRAM controller has four channels. Each channel is capable of providing 2 GBps

bandwidth running at 250 MHz. The frequently accessed data structure of the processing algo-

rithm such as IPv4 forwarding table can be hold in the external SRAM. The SRAM controller also

supports the atomic operations. It features thequeue arrayimplementation which can be easily

configured as a ring or queue data structure.

The IXP2800 processor can support up to 2G bytes of DRAM with the bandwidth of

50Gbps. The packet payload is usually placed in the DRAM due to its large capacity.

7.1.3 The Programming Model

The programming model can be roughly divided into two layersof hierarchy: thecontrol

anddata plane, as shown in Figure 7.3. The hardware abstraction library hides the lower level of

complexity from the programmer with hardware specific drivers. The microblock library contains

the specially optimized function calls written in Microengine C and Assembly languages. Program-

mers can reuse these functions for packet processing such asIPv4 forwarding, layer 2 bridging and

filtering. The library in the control plane is based on the traditional C and C++ languages. The

resource manager and core component libraries are designedfor the Xscale core processing the

management tasks such as call signaling, queue management and chip configurations.

Generally, the software design in the data plane can be organized into three major stages:

the ingress, process and egress. In each of these stages, packet processing tasks such as receive,

enqueue, dequeue and transmit can be done by using the microblocks provided in the library. A

programmer has to decide a way of data communication and transfer methods among different

processing entities. The processing tasks can be arranged in a pipelined fashion by using a series of

microengines. Or, several microengines can execute the same tasks in parallel. The performance is

highly depend on the proper partition and allocation of microengines for different tasks.
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Figure 7.3: The software hierarchies of the IXA framework [13].

7.2 Implementation of Sketch Update

The sketch data structure is essentially a 2-D counter array. There are several possible

locations within the processor to hold this counter array: Local Memory within each microengine,

Scratchpad, external SRAM and DRAM.

The size of Local Memory within each microengine is 2,560 bytes. Therefore, it can only

hold 640 entries of 32-bit counters. The size of the on-chip Scratchpad is 16K bytes and it is shared

by all the microengines. For a1K × 8 32-bit counter array (as illustrated in Figure 6.1), it requires

32K bytes in total memory size. Thus, the choices of using Local Memory or Scratchpad are out of

the scope. The only good choice is the SRAM since the access latency for the DRAM (300 clock

cycles for IXP2800) is almost twice that of the SRAM (150 clock cycles).

Each thread of the microengine fetches a packet from the receive queue and calculates

d different hashes based on the same attributes in the packet header. Thus, the implementation

is different from that in the Imagine processor whered different hash calculations are distributed

across the clusters. Figure 7.4 shows the differences of eight hash calculation over eight keys in IXP

network processor and Imagine stream processor.

Upon the arrival of a packet, a thread will be assigned to pickup the key (say, IP source

address for example) and calculateeight hash values as indexes to update the counters in SRAM.
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Figure 7.4: Each thread of the Microengine calculates eightdifferent hashes based on the same key
in IXP network processor. For Imagine processor, eight different hash calculations are distributed
to each of the 8 clusters.

The updated value can be the size of the packet or simply a packet count, depending on the applica-

tion. The next thread in the same microengine will be assigned to pick the next key from the packet

queue as the first thread stalls. The IXP2800 is capable of processing 8 threads in each of its 16

microengines. Therefore, there are, in maximum, 128 in-flight threads updating the counters in the

SRAM.

Maintaining the atomicity for each update is critical to theaccuracy of the data structure.

The processor provides several instructions to support theatomic operation. The atomic arithmetic

operation “test_and_add” is used for its efficiency. Instead of issuing two commands:the SRAM

read and SRAM write for each read-and-modify-write access,the microengine issues only one

command that contains the address and increment to the SRAM controller [49].

7.3 Performance

The SRAM access latency is between 70 to 160 clock cycles [13]. The variance is mainly

because of the arbitration latency and limited depth of command FIFO. We’ll assume 120-cycle

latency as typical.

The sketch update based on the2-universal hash function on a 32-bit key is a latency-

bounded operation, because the hash calculation only takes70 cycles and the access to the SRAM

takes 120 cycles, as shown in Figure 7.5. However, it easily turns out to be computation-bounded by

using the4-universal hash function. The hash calculation for a 32-bitkey takes about 220 cycles as
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Figure 7.5: It takes about 70 cycles for a single thread to calculate the hashing of a 32-bit key. The
thread becomes idle due to the memory access latency of 120 cycles.

Figure 7.6: It takes about 220 cycles for calculating a 32-bit source address by using4-universal
hash function.

illustrated in Figure 7.6. As we may have expected, the computation time is definitely longer for a

key consisting of more than one tuple of attributes, such as both IP source and destination addresses.

For an average SRAM access latency of 120 cycles, it takes at least 1030 cycles1 to hash

a key and update counters in the SRAM for a single thread in onemicroengine. That is an average

of 129 cycles per one hash and update. For a perfect scenario on eight microengines where each is

capable of supporting eight threads, it takes an average of 2.01 cycles per one hash and update.

The simulation shows that, for 8 microengines (8 threads in each microengine), it takes

about an average of 59.4 cycles per key. It’s approximately 7.43 cycles for each hash and update as

each key has to be hashed by eight independent hash functions. The performance can be increased to

33.57 cycles per key (an average of 4.2 cycles per each hash and update) by using 16 microengines.

With 16 microengines, the processor is capable of hashing and updating twice the number of keys

with the expense of extra cycles due to conflicts of resource sharing. The extra cycle counts are

approximately 13% as shown in Figure 7.7, and those are because of increased stall and idle cycles

in the microengines. The processing throughput for minimum-sized (40-byte) IP packets is 13.34

Gbps with system clock of 1.4 GHz.

The above simulation is based on hashing and updating 640 and1280 keys for 8- and 16-

microengine configuration respectively. The keys are pseudo-random 32-bit words stored locally

and hashed by the 2-universal hash function. The sketch counters are distributed among 4 banks

of SRAM. On average, the microengine achieves 72.9% utilization. The processing throughput for

1There are eight hash calculations and counter updates for a given key. The cycle count is based on a hash calculation
of 70 cycles plus8×120 cycles of memory latency. The remaining seven hash calculations are overlapped by the memory
accesses.
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Figure 7.7: The variance of performance for different architecture configurations. The configuration
of 16 microengines (M16T8) has more idle and stall cycles comparing to that of 8 (M8T8).

minimum-sized (40-byte) IP packets is 13.34 Gbps with system clock of 1.4 GHz.

7.4 A Brief Comparison with Imagine Stream Processor

The Imagine stream processor is capable of processing 15,360 hash calculations and up-

dating the sketch counters in total of 28,335 cycles. That isapproximately 1.84 cycles per hash and

update. The simulation is based on the implementation of sketch counters over the Stream Register

File (SRF). The kernel performs the2-universal hash calculation on a 32-bit key and updates the

counters by in-lane indexed stream access in a SIMD fashion for 8 clusters.

Given the clock frequency of 500 MHz and 1400 MHz, the processing throughput for

minimum-sized (40 bytes) IP packets is 10.86 and 13.34 Gbps for Imagine and IXP2800 respec-

tively. That is about 3.68ns and 3ns for each hash calculation and counter update. The IXP2800

processor achieves approximately 22% higher throughput.

Another point of interest is the power consumption. Based onthe simulation of NePsim

[73], the estimated power consumption2 for each microengine performing sketch update in IXP2800

is 0.95 watt. The power consumption is 15.2 watt for 16 microengines without counting the other

function units and peripherals.

2Due to the limitation of the simulator, the estimation is based on the SRAM_READ and SRAM WRITE instructions.
We are currently modifying the codes of NePsim [73] to support the atomic SRAM access. We put this as the future work
for more accurate modeling of the power consumption for IXP2800.
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Table 7.2: The power consumption and VLSI characteristics for Imagine [55, 54] and IXP2800 [23].

Imagine IXP2800

Clock 500MHz 1400MHz
Hardware Configuration 8 clusters 16 microengines

Die Size 16 mm× 16 mm 14.33 mm× 19.09 mm
Number of Transistors 21 million 82 million

Memory SDRAM 167MHz QDR SRAM 200MHz
Typical Power 2.89 W 21~26 W

Maximum Power 4 W 30 W
Technology TI 0.15um CMOS Intel 0.13um CMOS

The maximum power rating is provided based on a publicly available benchmark result

[76] for reference purposes. By running the OC192 POS forwarding application with 100% through-

put, the IXP2800 consumes about 30 Watts in the worst case without counting the power in the I/O

interfaces [76]. The typical power consumption in the rangebetween 21 and 26 watts is reported in

the literatures [13, 76].

The typical power for Imagine running the sketch update simulation is 2.89 watts. This

is based on the estimation by using the formulas [53] derivedby Khailany et al. Compared to the

sequential stream access, the use of indexed SRF access has approximately 4x increase of the energy

consumption [48].

The maximum power of 4 Watts is based on the worst-case estimated power consumption

over a range of applications [55]. The IXP2800 processor consumes almost 7 times more power

than that of the Imagine in the maximum power rating as shown in Table 7.2.

7.5 Discussion

The two major steps for the sketch update operation are hash calculation and counter

increment. That is, for a given key, there are series of arithmetic operations followed by memory

accesses. For a relatively small-sized sketch implementation, the local memory (e.g., the L1 or L2

caches ) is the best place to hold the data structure due to itsshort access latency. Therefore, for a

scalar processor, better performance can be achieved by simply minimizing the processing cycle of

the hash calculation.

There are several ways to shorten the hash calculation without compromising its quality.
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Figure 7.8: The performance of sketch update with the same number of keys on different proces-
sor configurations. The sketch update process consists of hash calculation (2-universal) and read-
modify-write counter access.

The use of dedicated hardware assists and the algorithmic optimizations are commonly seen in the

literature [116]. Among them, the tabulation method is a popular choice. The hash values are pre-

computed for all possible input keys and stored in a table. Then, the lengthy calculation cycles can

be replaced by a single table lookup. The tabulation based4-universal hashing proposed by Thorup

and Zhang [117] is a good example of this time-and-space tradeoff.

However, the tabulation scheme may not be effective becauseof the limited space of the

local memory. Different applications may require higher level of query accuracy where larger size

of sketch is required. Thus, the data structure becomes too large to fit in the local memory along with

other data structures. Once we put the sketch in the externalmemory, the cache can not effectively

bridge the latency gap due to the randomized nature of the sketch access pattern.

The multi-threaded processor provides a way to hide the longmemory access latency. The

performance of sketch update with the same number of keys on different processor configurations

is shown in Figure 7.8. For processor configured with eight microengines, the microengine idle

cycles can be eliminated with eight threads. In this regard,minimizing the hash calculation cycle

for higher throughput becomes less effective since the calculation can be overlapped by the memory

access latency. The performance by using tabulation methodmay be even worse if the table can not

fit in the local memory. As a result, the table lookups introduce more memory latencies which may
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Figure 7.9: The worstcase performance degradation by hashing 1,280 keys of the same source IP
address (M16T8_collision). The performance is based on theprocessor configuration of 8 threads
in each of the 16 microengines. The performance with keys of pseudo-random source IP address is
shown on the left (M16T8).

not be effectively overlapped.

The higher the thread count, the more effective latency overlapping can be achieved. How-

ever, more threads may also increase the possibility of contention. Since the counters are located in

the shared memory space, the collision due to the atomic update on the same address may affect the

performance. The simulation results shown in Figure 7.8 reveal the performance degradation as the

thread count increases from four to eight in a 16-microengine configuration. The 11.4% processing

cycle increase is mostly due to microengine stalls.

There are two possibilities where the collision might occur. First, two or more different

keys are hashed to the same SRAM location. Second, it is due tothe “packet train” effect where

a burst of packets originated from the same traffic flow (same source and destination addresses).

Figure 7.9 shows the performance degradation of a worst casescenario: processing the the sketch

update with 1,280 keys of the same source IP address. The total runtime increases almost three-fold

mainly due to the increase of idle and stalled cycles in the microengine.

The hot spot problem [43] can be solved by introducing bufferqueues to aggregate the

requests destined to the same memory address. However, thismay be costly since the queue size

has to be large to capture the traffic locality.

The implementation of sketch update in Imagine processor does not have such issues since

each cluster in the processor updates its corresponding “lane” within the SRF. Furthermore, the in-
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lane indexed SRF latency is only 4 cycles [48]. As long as the cycle for hash calculation is larger

than the arbitration and round-trip access cycle, the atomicity and sequential access order can be

maintained for each cluster.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, we implement several security-centric networking applications based on

the stream programming model. In the stream programming model, a stream is composed of a

sequence of data elements or records. These streams are thenapplied for a set of complex operations

organized as kernels at the clusters. The computation results are stored locally in LRF or SRF and

consumed by another set of operations iteratively.

The applications presented include the AES encryption in parallel operation modes (ECB

and OCB) with key agility, the MMH message authentication code (MACs), the Bloom filter based

content inspection engine for intrusion detection and sketch-based algorithms for traffic analysis.

The thesis explores the tradeoffs on different configurations of stream architecture and character-

izes the processing throughput of these applications. Moreover, we explore the difference between

Imagine and a MIMD architecture by implementing the sketch update application on the Intel IXP

network processor.

In general, the stream processor provides a flexible and powerful computing infrastruc-

ture for these security-centric applications. The simulation results of these applications demonstrate

up to multi-Gigabit-per-second throughput for system clock of 500 MHz. We would like to high-

light some of the key architecture aspects which benefit the processing of packets with excellent

performance.
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Figure 8.1: The spectrum of power consumption for applications discussed in the thesis. The cluster
consumes most of the power because of the major computation performed. There are two types of
implementation for the Bloom filter based packet inspectionapplication. The content hashing in
Insp(SRF)implementation is based on the tabulation method over the Stream Register File (SRF).
The indexed SRFaccesses cause the extra increase of the power consumption.The cost of chip
power consumption is based on the VLSI model proposed by Khailany et al [53]. The power
consumption for the AES does not include the extra dissipation due to the two-port scratchpad.
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1. Hiding the memory access latency with computation:

The DRAM access can be effectively overlapped by the computation. More than 95% of the

AES encryption run time is taken by the kernel computation for a packet length larger than

16 blocks. Different from the way of measurement setup [3] where most of the data is in the

level one cache, the simulation do include the data movementfrom the main memory to the

processor itself. The performance can reach up to 32 cycles per block in a stream size of 96

blocks. One of the best performances published [72, 3] in non-feedback mode for a 32-bit

architecture is 232 cycles per block (16-byte block).

2. Exploiting the stream locality computations in SIMD style:

Explicit support for this computational model results in efficient, coordinated access to mem-

ory and effective exploitation of on-chip internal data movement. For many statistical and

hash based algorithms in the networking applications, the computation is performed in a re-

cursive and incremental fashion. Those operations do benefit from the architecture support

where the producer-and-consumer locality can be captured efficiently without remote memory

references. The operations of MMH authentication code and Bloom filter based content in-

spection engine are good examples. The calculation of hash values is transformed into stream

processing, expressing producer and consumer locality andachieving efficient utilization of

the unique memory hierarchy.

3. Exploiting the abundant parallelism:

The applications presented in the thesis have abundant dataand instruction level parallelism.

They do benefit from the SIMD stream architecture and achievesubstantial speedup. More-

over, without incurring extra computation cycles, the explicit SIMD architecture enhance the

probability of accuracy: a unique performance aspect of therandomized algorithms other than

the timeandspace.

4. Efficient vector style processing:

Not only can the packet be modeled as a stream, a set of shared data structures can also be

represented as a stream. Acting as a stream, the shared data structure can be processed in

an efficientvectorstyle operation. For example, the point query and linear combination of

sketches are simplyvector gatherandvector addoperations respectively.

5. Simplifying the memory access to shared data structure:
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As shown in the sketch-based algorithm, the read-modify-write sketch update process is con-

ducted by clusters based on the operation of in-laneindexed SRFaccess [48]. Different from

the MIMD style implementation on Intel IXP processor, the SIMD operation simplifies the

access to shared data structure without explicit synchronization and arbitration overhead. As

a result, the system achieves high throughput and efficient utilization of maximum memory

bandwidth.

6. High performance and power efficiency:

The stream processor is capable of supporting the computation-intensive tasks with outstand-

ing power efficiency. The estimated power consumption for these applications are shown in

Figure 8.1.

7. Flexibility:

The Imagine’s two-level programming model (stream and kernel) provide the full flexibility

for application implementation. As new algorithms and methodologies being proposed fre-

quently, the benefit of being programmable with high computational capability is apparent:

we can always utilize the latest and newest approaches to tackle the complex tasks while

meeting the ever growing demand of throughput requirement with little or no cost at all.

8.1.1 The Tradeoffs

The applications can be categorized into two major groups: payload and header process-

ing. For payload processing tasks, each packet is arranged as a stream of records. Each record of

the stream can be a collection of bytes, words1, or different data types. These records are arranged

in the SRF sequentially as shown in Figure 8.3, and consumed by the clusters in a SIMD fashion.

Generally, the performance can be improved by exploring thedata parallelism over the

following two axes: the number of clusters and the number of ALUs within each cluster. As the

record size can be increased for more data parallelism in thecluster, scaling up the number of ALUs

is a straightforward way of exploiting the ILP and DLP withineach cluster. However, scaling up

the number of ALUs alone may not be effective as the operationmay depend on the other function

units.
1In the AES application, for example, each record is composedof four 32-bit words. We also denote the record as a

blockaccording to the AES specification.
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Figure 8.2: The Intra-cluster scaling. The cost of chip areaand energy consumption is based on the
VLSI model proposed by Khailany et al [53].

The lookup of the T-table over the scratchpad memory in the AES encryption application

is an example of this kind. The limited bandwidth of single-port memory quickly becomes the

bottleneck due to multiple read accesses. Moreover, the VLSI cost model [53] reveals that the

average area and energy dissipation per ALU is not optimal asthe number of ALUs scales beyond

five.

The inter-cluster scaling provides another way of exploiting the DLP of these networking

applications. As costs can be amortized among more clusters, the average area and energy dissi-

pation per ALU remain approximately constant (3% increase)as the number of clusters increases

from 8 to 32 [53]. Therefore, it makes the inter-cluster scaling more preferable than its counterpart.

Different from the traditional SIMD applications, the stream size of these network ap-

plications is not fixed due to the non-uniform distribution of variable packet sizes. Therefore, the

SIMD processing efficiency is affected as the size of the stream varies. The efficiency of cluster is

defined as the average ratio of the number of clusters processing valid data over the total number

of clusters involved (the clusters working on valid data + the clusters working on null data). For a

fixed number of clusters, the average efficiency goes down as the stream size decreases.

In Figure 8.3, as the size of the stream (in terms of records) has to be a multiple of the

total number of clusters, only half of the clusters are doingthe real work (processing records of R33,

R34, R35, and R36 ) at the fifth iteration.

Figure 8.4 illustrates the AES kernel speedup, estimated efficiency and costs based on a
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Figure 8.3: A stream of packet payload consists of 36 recordsand 4 extra null records are laid out
in the SRF. The clusters are fetching 8 records at a time in a SIMD fashion.

real-world trace2. As the number of clusters increases from 8 to 32, the averagecluster efficiency

decreases from 79% to 50%. The energy dissipation and chip area increase linearly with the number

of clusters, however, the speedup is limited due to a large portion of smaller-sized packets presented

in the trace.

The processing of the small-sized packet (stream) in this architecture incurs another inef-

ficiency denoted as the “short-stream effect” [102, 92]. The “short-stream effect” is mainly due to

the fixed hardware cost and those associated with the setup and teardown of the data structure sup-

porting the stream processing in the kernel. As the number ofclusters is comparable to the stream

size, the processing throughput is critically affected by this effect. These results suggest a limit of

inter-cluster scaling for the payload processing applications.

The header processing tasks, to the contrary, do not incur such inefficiency since the size

of packet header is fixed. Most of the networking systems organize these headers as a set of data

structure stored in separate memory location. Thus, a certain amount of data (a larger stream size)

consisting of several headers can be easily fetched and processed in a SIMD fashion independent of

the packet length.

2AIX-1054837521-1.tsh, where 44.6% of the packets are less then 64 byte, and 31% of the packets are larger than
1000 bytes; total number of packets=13,812.
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Figure 8.4: The estimated payload processing performance and cost with the number of clusters.
The speedup is based on the kernel performance of AES encryption. The cost of chip area and
energy consumption is based on the VLSI model proposed by Khailany et al [53].

Figure 8.5: The sketch update process with 8 universal hash functions on 16 clusters.
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The sketch update process shown in Figure 7.4 can be easily extended from 8 to 16 clus-

ters. As illustrated in Figure 8.5, two headers (p1 and p2) are hashed by the first and second set of

eight clusters simultaneously. The throughput can be scaled up linearly with the number of clusters.

The probability of accuracy is another important performance metric for the randomized

algorithms such as sketch and Bloom filter. As part of the error probability depends on the number

of hash functions used, the system may distribute these hashcalculations in parallel to more clusters

achieving lower error probability without extra processing cycles.

8.2 Future Work

We summarize the future work in three major parts: the simulation framework, software

and hardware architecture.

The simulation of these applications are based on the assumption that the packet header

and payload are located at the memory. It will be of great beneficial to construct the network inter-

faces at Media Access layer (MAC) and integrate with the Imagine processor simulation framework.

The integrated simulation framework can facilitate the exploration of many network system designs.

Example such as the high-speed, real-time intrusion detection system can be constructed based on

a hybrid of content-based and statistical-based approaches on multiple stream processors. A full

system simulation based on the real-world attacking tracescan be performed and beneficial to the

design of network processor architecture.

The handling of packet and data structure as a representation of stream provide a new

paradigm of packet processing. Therefore, in the software level, we would like to explore new

stream instructions to facilitate more efficient stream operations. The array of streams is one of

the example which is not currently supported. Moreover, theimplementation of additional kernel

instructions and hardware assists for bit-level manipulation is crucial for the system performance.

Currently, the number of cluster is explicitly exposed to the programming model. Hence,

the stream size has to be in multiple of cluster size. As the number of cluster changes, the source

code has to be changed accordingly as well. As some of the applications may not fully utilize

the clusters provided, the dynamic reconfiguration of number of clusters may help improving the

efficiency and lowering power consumption. Adding another abstraction to hide the number of

cluster from the programming model is of great beneficial.

Different from the traditional SIMD applications, however, packet processing over the
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SIMD stream architecture exhibit issues such as control flowvariation and load balancing due to

the non-uniform distribution of variable packet sizes. TheMulti-SIMD hybrid architecture: a group

of SIMD clusters share the same microcontroller issuing theinstructions while different group of

these entities behave in MIMD mode, can be one of the solutions not only for the former issue but

also for better performance and power efficiency. As a result, more applications are needed to fully

characterize the new architecture for network processing.
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