ABSTRACT

LAI, YU-KUEN. Packet Processing on Stream Architecturender the direction of Dr. Gregory
T. Byrd).

Stream processing architectures have been proposed &efficd flexible platforms for
network packet processing. This is because packet progesksares many of the same character-
istics of media and image processing that motivate streamitactures: little global data reuse,
abundant data parallelism, and high computational coritglex

This dissertation explores the SIMD (Single Instructionyltiple Data) stream architec-
ture for network packet processing with several secugtgited applications. The implementations
are based on the stream programming model on the Imagineameatessor, which consists of
three tiers of memory hierarchy and eight VLIW clusters agiag in SIMD mode.

The applications explored are listed as follows: the Adeaencryption Standard (AES)
in parallel operation modes with key agility, the MultilemeModular Hash (MMH) message authen-
tication code, Bloom-filter-based content inspection eador signature-based intrusion detection,
and the sketch update for Internet traffic analysis. Somelnoethodologies are also presented as
applications being transformed and implemented on tharsti&@ chitecture.

The thesis characterizes the processing throughput of gygslications and explores the
tradeoffs on different configurations of stream architextivioreover, the sketch update application
is also implemented on the Intel IXP network processor, @eoto explore the difference between
Imagine and a traditional architecture. The SIMD operasonplifies the access to shared data
structure without explicit synchronization and arbitpatoverhead. As a result, the system achieves
efficient utilization of maximum memory bandwidth.

The architecture demonstrates the flexibility to suppontgotation-intensive packet process-
ing tasks at high performance. Applications such as hashstatidtical based tasks are best fit into
the stream programming model with an abundance of produtecansumer locality: portions of
values computed and stored in the stream register file (SRR)sed for calculating a new set of
values recursively. With a 500-MHz clock, the stream preoess capable of processing packets up
to multi-gigabit-per-second throughput with outstandpoogver efficiency.

Although packet processing over the SIMD stream architeatthibits control flow and
load balancing issues due to packet size variation, the/sisdhdicates that the multi-core, multi-

SIMD architecture improves the performance and efficiefrayther explorations are proposed as



promising directions for future research.
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Chapter 1

Introduction

Emerging network applications are shifting from routingl araffic management to those
requiring inspection and modification of packet contentsariples include content-based billing,
quality of service, layer-7 switching, and network seguruch applications act on data streams,
and the requirement to process every byte of a packet extkeddready-substantial processing
capabilities of high-speed networking equipment. Hardw&SIC) implementations are possible
point-solutions to these problems, but they do not offerflidsability needed to address new appli-
cations or adapt to changing network infrastructure. Rnognable solutions based on conventional
microprocessor architectures do not provide enough paeoce; their memory hierarchies are op-
timized for the spatial and temporal locality present inkiigs or workstation applications, but they
are not well-suited to data streaming, which exhibitsdittk no data reuse. Network processors
(NPs) are application-specific processors that are opitnia bridge the gap between the perfor-
mance of ASIC and the programmability of general-purposegssors. Most current NPs employ
multiple optimized cores, operating independently in MINIultiple Instruction stream, Multi-
ple Data stream) fashion, usually with multiple threads greicessor to hide latency to memory.
Performance on traditional network applications (routiggeue management, traffic shaping) is
impressive, but we believe that these architectures arevelbsuited for the emerging packet ap-
plications. They are limited by insufficient processing pow the cores, inadequate bandwidth to
memory, and complex programming models.

Stream architectures are specifically designed to applynaistent set of complex op-

erations to each of a sequence (stream) of elements. Paddeisping shares many of the same



characteristics of media and image processing that metsta¢éam architectures: little global data
reuse, abundant data parallelism, and high computatimmplexity. Therefore, stream architec-
tures have been proposed as efficient and flexible platfoomsetwork packet processing [28].
However, to the best of our knowledge, there is no researgiublication available on

the networking applications based on the SIMD stream achite. Therefore, as part of a broader
investigation into stream-based network processors, we hagun to study and identify several
emerging networking applications and transform them imteasn programming model on Imag-
ine SIMD stream architecture [55]. This thesis presentersd\emerging, security-centric packet
processing applications in stream programming model. &limplementations include AES en-
cryption [66, 95], message authentication based on a fashdymost-universal hash functions [68],
Bloom-filter-based content matching engine [67] for deegkpaiinspection and the sketch-based

Internet traffic analysis over streaming data model.

1.1 Thesis Organization

The AES encryption algorithm is one of the most importantding block for the secure
network operation. It has the characteristics of rich intton level parallelism (ILP) and data level
parallelism (DLP) in some operation modes. A key-agile AB®lementation is demonstrated
in Chapter 2. One of the best performances published [72) 8ph-feedback mode for a 32-bit
architecture is 232 cycles per block (16-byte block). Intcast to the typical measurement setup [3]
where most of the data is in the level-one cache, the sinoalagisults in this chapter do include the
data movement from the memory to the processor itself. THenmpeance can reach up to 32 cycles
per block in a stream size of 96 blocks. For a system clock 6fMBlz, the throughput of the AES
encryption can reach up to 2 Gbps. The simulation resultsGB®ES operation also demonstrate
compelling performance. We also describe architecturaaroements and the performance impact
of different packet sizes and more complex encryption modes

The collision property of the universal hash function seras the foundation for the
applications (message authentication, content inspeetial traffic analysis) demonstrated in the
later part of this report. Therefore, in Chapter 3, we prevaddetailed discussion on the universal
class of hash functions as well as some implementation eesmp

The implementation of MMH, a family of almost-universal hasinctions for message

authentication, is shown in Chapter 4. By using eight VLIWstérs, the operation is performed in



a Multi-SIMD fashion, achieving multi-Gigabit-per-seabthroughput with a collision probability
on the order oR~12°, The best and worst case throughput of MMH producing a 12@ei-tag

is 7.14 Gbps and 2.23 Gbps with packet sizes of 1536 bytes 2Bithyttes, respectively. The pre-
tag represents the hash value before XORing with the one4piaal. According to the performance
results of MMH (200MHz Pentium-Pro), the best case througimessage in cache) for generating
the 32-bit and 64-bit output are 1080 and 500 Mbps respédgiidd]. As the throughput decreases
approximately linearly, we estimate the throughput of pi@dg a 96 and 128-bit results are roughly
in the range of 375 and 250 Mbps, respectively. On the othed,ha speculated throughput of
300Mbps is estimated on a 200 MHz Pentium-Pro processoB}44,

A Bloom-filter-based content matching engine is preseme@hapter 5. By arranging
multiple processors in a pipelined fashion, the system jimloke of processing patterns extracted
from the rules of the Snort distribution and achieving a tigftpput of 400 Mbps for 1500-byte
packets. The packet processing, i.e., hash computationaoventire packet, is best fit into the
stream programming model with an abundance of producer @msuener locality: portions of the
the hash values computed and stored in the stream registéBRIF) are used for calculating a new
set of hash values recursively. We also demonstrate théifigxiand performance of the stream
architecture supporting the realization of the univer&ads of hash functions for the Bloom filter.
This chapter explores the implementation of important datactures in the stream architecture,
which may potentially benefit many emerging networking aggpions.

The accurate statistics collection and measurement ahlettéraffic serve as the basis for
infrastructure planning, network provisioning, capadityecasting and accounting [127, 65, 35].
In Chapter 6, we discuss methodologies for IP traffic analgsi the stream architecture based on
the sketch algorithm [19, 60]. Sketch [15, 1, 80] is a powley&t compact data structure capable
of synopsizing substantial numbers of data elements witkeeping its stateful information. The
sketch algorithms can be applied to many applications saatsimating frequent items, finding
the top-k items and identifying the significant differendes anomaly detection. We explore the
data structure through tHadexed SRRccesses on the Imagine stream processor as a continuing
effort from the previous chapter. The simulation shows tloeg@ssor is capable of supporting sketch
update at 10.8 Gbps throughput for minimum-sized IP packets

In Chapter 7, we implement the unique sketch data structueedifferent type of proces-
sor architecture. We briefly introduce Intel's Internet @xinge Architecture (IXA) framework.
Based on the 1XP2800 network processor, we focus on the imgaieation of sketch update since

it is regarded as the bottleneck of the sketch algorithm. \&kewa brief comparison with the simu-



lation results of Imagine and discuss the pros and cons eéttveo approaches. For sketch update
on 40-byte packets, the simulation shows a throughput of i@sGvith 16 microengines running
at 1.4 GHz system clock. The IXP2800 achieves approxim&2¥ higher throughput, however it
consumes 7 times more power than that in the Imagine.

Finally, we summarize some of the excellent aspects of tearst architecture supporting
these networking applications. For example, the architecis capable of handling computation
intensive tasks and achieve high performance with low pasesumption. The estimated power
consumption of this processor is less than four Watts. llogtgxhe abundant parallelism and stream
locality effectively. The SIMD architecture provides effint vector style processing and simplifies
the memory access to share data structure without explicitsonization overhead. Moreover, the
programming model provides the great flexibility achievingh processing performance.

In the end, we provide analyses of performance tradeoffpdoket processing on stream
architecture. We discuss the issues of architecture gctdimthese applications and conclude with
ideas for future work.

1.2 Contributions

While contributions are presented in each chapter, we suinendne major ones we've

made in this thesis as follows.

e We survey and identify several emerging network appliceti¢encryption, authentication,
packet inspection and traffic analysis), successfullysfiezim them into SIMD stream pro-

gramming model and compare to state-of-the-art implentientaf these applications.

e Provide the details of implementation analysis and algorimapping on several applications
over the SIMD stream architecture.

e Explore the limitations and overheads on the Imagine straeshitecture. The shortcom-
ings of the architecture with regard to these networkindiegions are revealed as well as

improvements suggested.

¢ Propose novel methodologies attacking the deficiency afreilgnic transformation in stream
programming model. Examples such as the dual-core impletien for better utilization
and throughput improvement (Chapter 2), the Multi-SIMD raien for authentication tag



generation (Chapter 4), the reduced-pattern length witltrakeweighted scheme on pattern
matching (Chapter 5) and the time multiplexed sketch omeratver SRF (Chapter 6).

e Study the feasibility of the traffic analysis in streamingadenodel over the SIMD stream
architecture. Explore the data structure of counting Blditer over the SRF on stream ar-
chitecture and the IXP network processor. Detailed armlgsithe sketch update process
between two different approaches is provided, which, weste] will benefit a lot of net-

working applications based on the same data structure.

1.3 Imagine Stream Processor

Imagine Stream Processor
L || Network
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|
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Figure 1.1: The Imagine architecture block diagram. [55]

The Imagine Stream Processor [101, 27, 109] is designedgtimdined for image process-
ing as a co-processor. The processor contains eight ALUWH#etic Logic Unit) clusters, which re-
ceive VLIW (Very Long Instruction Word) instructions brozakt from the on-chip microcontroller
in a SIMD fashion. With a system clock of 500 MHz, the processaches a peak performance
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Figure 1.2: The block diagram of arithmetic cluster for Inmagprocessor [55].

of 40 GOPS (Billion Operations Per Second). A key featurehef architecture is a three-level
memory hierarchy, which consists of the main memory, thedtr Register File (SRF) and the
Local Register File (LRF) within the clusters. The hieraraaptures the characteristics of me-
dia processing applications’ demands on memory bandwglthedl as the producer-and-consumer
locality between kernels. Figure 1.1 shows the block diago&the Imagine Processor.

In each cluster, as shown in Figure 1.2, there are 3 adderyjltpliers, 1 divider, a
256-entry scratchpad and an inter-cluster communicatiin u

The programming model consists of two levels, the kernelsirehm level. The kernel
level is programmed in KernelC where the computation on tiream of data is specified. KernelC
is compiled by the Kernel Scheduler, 1Scd [30]. At run-tirkernels are loaded into the Microcode
Store within the on-chip Microcontroller through the SRReTVLIW instructions are later dis-
patched to the clusters. The stream level program, writtetieamC, is run on the host processor
to coordinate and orchestrate the flow of streams as wellesigigbcation of the kernels.

The detailed stream operations and programming exampge#iustrated and provided
in the next chapter as we transform the AES encryption algarinto a program for the stream

architecture.



Chapter 2

AES Packet Encryption

2.1 Introduction

Cryptography has become one of the most important requitesnier networked appli-
cations as the Internet grows exponentially. Many Inteautivities and transactions rely heavily
on privacy and authentication services, which demand &f lobmputational resources. Therefore,
application-specific integrated circuits (ASICs) are ydesed as building blocks for secure gate-
ways and routers. However, due to the cost and time for ASKeldpment, Network Processor
(NP) technologies are gaining momentum — flexibility is orighe crucial factors in a world of
rapidly evolving networking protocols.

Several NP architectures exploit Packet Level Paralle(iBioP) in a MIMD (Multiple
Instruction stream, Multiple Data stream) fashion. Butidglly the same operations are applied
to every packet [110], which implies a SIMD (Single Instiant stream, Multiple Data stream)
mode of processing. Many cryptographic algorithms, sucth@AES candidates [81], exhibit an
abundance of both Instruction Level Parallelism (ILP) [125] and Data Level Parallelism (DLP).
Several studies [3, 70, 71] show that the performance campeoved significantly by leveraging
the special SIMD extensions for media processing on exgigigneral-purpose processors such as
Intel's MMX technology.

The encryption algorithm chosen for this study is Rijnd&#][ which was named the
Advanced Encryption Standard (AES) in the year 2000 by thiéoNal Institute of Standards and



PackstLangth

Nullz
e o Joes
Nullz
e e
Nulls
Inputs Ot

Figure 2.1: Each incoming packet is processed by a differieister.

Technology (NIST). Since its selection, Rijndael has beeplémented on all kinds of platforms
[81], and it has proven to be the one of the fastest and mosatiler algorithms. It has been applied
to a variety of network protocols, including IPSec [52] aB€SI [64].

In this paper, the AES algorithm is realized using the Str@aagramming Model [101]
and simulated on the Imagine Stream Architecture platfdrhe simulation results show promising
performance. We first analyze the SIMD mode of computaticepgéied the variety of packet sizes
present in a real-world Internet packet trace. Then, théamepntation of the encryption algorithm
in the two-level Stream Programming Model is introducedve®a experiments are presented for
encryption in ECB mode with key agility (i.e., a differentykior each packet). OCB mode [106] is

also implemented, and its performance analyzed.

2.2 System Level Analysis

The SIMD architecture achieves the highest speedup anéefficwhen working on reg-
ular and purely data-parallel structures. One of the mdjatlenges in applying SIMD processing
to packet encryption is dealing with the control variatiomsoduced by varying IP packet lengths.

Assuming there are no inter-packet dependencies among¢bening packets 0 to 7,
shown in Figure 2.1, each cluster can independently enaiypticket at the same time. However,
due to the packet size variation, the efficiency of procegssulid data is degraded. The shorter
packets have to wait until the end of processing the longest since each cluster operates on

a single instruction stream. Applying load balancing teghes is a good way to improve the
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Figure 2.2: Distributing the data in the same packet to difieclusters.

efficiency and processing time. For example, cluster 2 infei.1 can process part of the data
in packet 0. However, a complicated reorder mechanism has applied on the interleaved data
among each cluster to reconstruct the packets where théblladce is applied. Therefore, extra
latency is expected as well. Furthermore, the packet datadchae either laid out in an interleaved
order or a special index formulation needs to be constructéorm the input data stream.

Another way of encrypting the incoming packets is shown iguFé 2.2, where blocks
(16 bytes) of data from a single packet are distributed td eshgster. In this way, the order of
the incoming packet sequence can be maintained withowt effiort. The preservation of packet
sequence without degrading performance of parallel peiegss a key technical challenge [12] in
network processor design.

However, clusters are idle if packet data does not have dénblagks and it gets worse as
the number of clusters increases. Therefore, the perfaenacalability by increasing the clusters
is restricted due to the packet size variations if no loadriz technique is applied.

A quick, first degree analysis on the packet tfaiseshown in Figure 2.3 and Figure 2.4
labeled as _Mixed in the suffix. The analysis is based on alsimpdel: given a packet size, the
processing time is decreased proportional to the numbelusfers provided. In other words, the
processing time T for a single cluster on a 1K-byte packetlveldecreased to T/2 if two clusters
are provided. Therefore, the speedup is doubled. The eféigies defined as the average ratio of
the number of clusters processing valid data over the totalber of clusters involved (the clusters

working on valid data + the clusters working on null data)slaswn in Figure 2.2.

1TXG-1054945463-1, where 21.3% of the packets are less they®, and 32% of the packets are larger than
1000 bytes; total number of packets=1,412,513. Nationddotatory for Applied Network Research (NLANR).
http://moat.nlanr.net/pma
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Figure 2.3: The average efficiency with different numberlaoéters.

The average efficiency drops below 80% if more than 8 clusteggrovided, and there
is only ~25% additional speedup when increasing from 8 elgdb 16 clusters. These figures also
show the worst-case and best-case scenarios where evést 64 or 1500 bytes, respectively.

Load balance techniques can be applied to concatenate acloft jas a single data stream
instead of multiple ones. A relaxed SIMD architecture, thBIR [124] where multiple instruction
streams are allowed to be executed simultaneously in théimeds proposed to tackle the control
flow variation issue. Another way is to explore Task Leveldialism (TLP) by using multiple
processors instead of scaling the clusters internallythEeurexplorations on load balance are pro-

posed as promising directions for future work.

2.3 Implementation

2.3.1 AES Encryption Algorithm

Rijndael has the versatility of taking three different siZ&28, 192 and 256 bits) of data
and key. The standard adopts the data block size of 128 Hiite the key size can be any one of
the three sizes. For this work, we choose the size of 128 dmitbdth the key and the data block.
The main loop of the cipher body consists of a certain numbeyunds, which is a function of data

block and key size, as shown in Table 2.1. The round numbéb@il0 given the size of 128 bits
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Table 2.1: The number of rounds as a function of the block ayddngth. Nb represents the block
length (32-bit words) and Nk is key length (32-bit words).

| Number of Rounds Nb=4 | Nb=6 | Nb=8 |

Nk=4 10 12 14
Nk=6 12 12 14
Nk=8 14 14 14

for both the data block and the key in this implementation.

There are four major functions within each rouglibByte§, ShiftRow§), MixColumng)
andXorRoundKef). Following the main loop is the final round where oybByte§, ShiftRowg§)
and XorRoundKef) is applied. There is a very efficient way of implementing tipher by using
a lookup table, known as the T-table [4], on a 32-bit proces3de T-table is the result of one
complex transformation oBubByte§, ShiftRow§), MixColumng) and XorRoundKef). Hence,
the main loop (without the final round) of encryption procear be done in a table lookup fashion

as shown in the following equation.

SO,c

Sl,c
g =Tp [SO,C[O}] ®Th [Sl,c[l]] 1> [5270[2]] T3 [5370[3]] S5 Wroundeb—i-c (21)
2.c

S3,c
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while_VARIABLE(i<ITERATION) {

looplter();

if VARIABLE (go_flag==0) {
cout << "Compute a new round key set\n";
aes_key=aes_key_mem(i, i+8 , im_var_pos);
key_expansion (aes_key);
go_flag=1;

}

cout << "Processing Packet# "< <i<< "[" <<ITERATION<<"\n";
packet_data=data_block(i*packet_data_size, (i+1)*packet_data_size, im_var_pos);
core (packet_data, key_source_index, core_out);

final_round (core_out, data_out);

streamCopy(data_out, data_to_mem(i*packet_data_size, (i+1)*packet_data_size));
i=i+1;

Yiwhile

Figure 2.5: An excerpt from the StreamC code for the enapyptirocess. Kernel invocations are
shown in bold-italic.

The parameter of, . represents the cipher state with the row numbemd column
numberc, where0 < r < 4 and0 < ¢ < Nb. Each T-tableT}) is a rotated version of the previous
T-table (I;_1). Therefore, with the expense of an extra rotation openastoring only one T-table
is enough. A detailed derivation of the T-table is shown i pnoposal [25]. For the final round,
the S-box (substitution table used in tBabByte§ function) has to be used instead of the T-table,
due to the absence of tivixColumng) operation [25]. The S-box is not implemented in our work
in order to save space in the scratchpad. Rather, the vahox $an be derived by an extra mask

operation on the T-table value.

2.3.2 Programming Model

The stream-programming model consists of two major levads, the Stream level and
the Kernel level. At the Stream level, StreamC is used toasthte the flow of data streams as well
as the invocation of kernels. A snapshot of the StreamC litéd in Figure 2.5.

The operation flow diagram is shown in Figure 2.6. Both theuirfey and the data
stream consist of a collection of records. Each record seaséehe building block of the stream and
is defined as a data type consisting of four 32-bit words. Tpatikey stream and data stream have
to contain a number of records that is a multiple of the nunabéhe clusters. In other words, the

minimum number of records in the input key stream is eighefeystem with eight clusters. Given
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Figure 2.6: The stream level diagram of the encryption madul

kernel core(istream<BLOCK>in_1, uc<int>& key_source_idx, ostream<BLOCK>data_out) {

target2_TO=  Ttablel[(shuffle(b_words.y,3)& Oxff)];
target2_T1=rot(Ttablel[(shuffle(b_words.z,2)&0xff)],-8);
target2_T2=rot(Ttablel[(shuffle(b_words.w,1)&0xff)],-16);
target2_T3=rot(Ttablel[(shuffle(b_words.x,0)& 0xff)],-24);
data_out_tmp.y = (target2_T3 " target2_T2 " target2_T1 " tar-
get2_TO" key_hold[idx+2]);

Figure 2.7: An excerpt of the core kernel code, written infd€.

a key stream with eight records, the subkey stream will ¢or&8 record$ in an interleaved form
after the key expansion process.

The major computation is done in the Kernel level, where KEns used and compiled
as VLIW instructions for clusters. Figure 2.7 shows a fragtra# the code in the core kernel.

The 1Scd scheduler provides two hints [30] for loop optirticaa at the kernel level. The
UNROLL(n) command will instruct the scheduler to unroll tleep body n times. The modulo
software pipeline command PIPELINE(startll) is a techeiguhere a loop is divided into n stages
and different stages of n iterations are executed at once cble size expands proportionally

as the amount of unrolling increases. Therefore, the timehi® on-chip microcontroller to load

2More details are provided in Section 2.5.
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the microcode from the host processor increases as well.nlitr®code store [27] is limited to
1024x512 bits. If the space is not enough for holding all tmkls, then the microcode has to be
reloaded again during runtime, and the performance willdgrated due to the extra latency of the

loading process.

2.4 TheCoreand Final_Round Kernels

The AES encryption operation contains two major kernelse @btre kernel consists of
the inter-cluster communication for subkeys, T-table lqmkand the arithmetic operations to en-
crypt a block. The core kernel will take the subkey streamsiack eight sets of the subkeys in the
scratchpad of each cluster. Extra inter-cluster commtinita are needed to transfer the subkeys
if each cluster is encrypting the data block with the sameotstibkeys. The final_round kernel
is implemented such that an extra rotate and mask instrudgi@pplied to the T-table to derive
the S-box value for the byte substitution transformatioolldwing theShiftRows(and XorRound-
Key() operations, the encrypted data will be sent out as a datanstr©riginally, on the Imagine
Processor, each cluster contains a single 256-word spadategister file, so that each cluster has
the capability of supporting coefficient storage, shortigsr small lookup tables and some local
register spilling [101]. For our simulations, the size oé tbcratchpad is changed to 512 words,
in order to accommodate the T-table and the other arrayhlasaused in the kernels. The core
kernel consumes 72.5% of the whole encryption cycle. In tite &ernel, 216 read operations are
found out of 252 scratchpad accesses. The scratchpad hasitpg and three input units, which
allows simultaneous read and write access [27]. Howeverrdtio for read and write accesses to
the scratchpad in the core kernel is 6 to 1, since only reaglsads needed in the main round oper-
ation. Among the 216 scratchpad read operations, 180 of #rertocated in Basic Block 4 of the
core kernel, where the T-table lookup is performed. As shiovine first row of Table 2.2, the cycle
counts in the critical path are simply saturated, regasdtdshe number of adders provided. The
critical path can be reduced up to 15% by adding an additiecraltchpad to allow concurrent reads
of the T-table. Therefore, a second scratchpad is implesdegmid added into the machine descrip-
tion file to hold the second T-table, such that two simultaise@ad accesses can be provided. The
entire simulations in this chapter are based on the configaraf two 512-word scratchpads.

A certain number of overhead cycles have to be paid to setedhstants and loop
initialization inside a kernel. Therefore, if more datadis can be processed with a fixed overhead,
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Table 2.2: The critical path of Basic Block 4 in the core kémvigh different machine configura-
tions.

\ | Adder 3| Adder 4| Adder 6 |

1 Scratchpad 25 25 25
2 Scratchpads 21 17 17
4 Scratchpads n/a 13 12

then the performance can be increased while more ILP and BhBe exploited. The dual version
of the core and final_round kernels are implemented sucheti@dt cluster is capable of encrypting
two data blocks at the same time if enough hardware resoareeavailable. The speedup of the
dual version over the single one is shown in Figure 2.16 adé@issed in Section 2.6.

2.5 TheKey_ ExpansiorKernel

Thekey_expansiokernel is based on the AES Key Schedule algorithm [25]. Fdoekb
size and key size of 128 bits, the number of rounds is equad tetiile the number of columns of
the Cipher KeyN,, andStatelV, is equal to 4. The operations of the AES Key Schedule algarith
are shown as pseudo code in Figure 2.8.

The round keys are based on the initial input key, denoted [8},WV[1], W[2] and W[3]
in a sequential fashion. The function RbtByte()will generate the result of word(b, ¢, d, a) from
the original word(a, b, ¢, d). Th8ubByte(function is the Rijndael S-box transformation where
each byte of the original input word will be replaced.

Due to the sequential nature of the algorithm, kieg expansiokernel is implemented
such that each cluster can take one key for processing. foheravith eight clusters, the processor
can generate up to eight different sets of subkeys at the sam®eAs shown in Figure 2.9, the kernel

for (i=4;i<44;i=i+1) {
temp=WI[i-1];
if (i mod 4 ==0)

temp=SubByte(RotByte(temp)) xor Rcon[i/4];
WI[i]=WI[i-4] xor temp;

Figure 2.8: The pseudo code of the AES key schedule algofiitihrblock size and key size equal
to 128 bits.
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Figure 2.9: The scheduling result of the key expansion kevitk the critical path being highlighted
in lines.

is compiled by the IScd Kernel Scheduler [109] with the catipath highlighted in a sequence of
lines. The kernel consists of two basic blocks. The firstdbhkick saves the incoming key stream
into the scratchpad. The main key expansion loop is in thergkblock. The effective parallelism

achieved in basic blockl is only 2.79, with total run time @®Xycles. The effective parallelism

is defined as the ratio of the total number of instructionsippeck to the number of cycles in the

critical path [17]. As indicated by the effective parakefi, the kernel does not fully utilize the ALU

resources provided.

Given the same hardware configuration with eight clustethénimagine, the ILP can
be increased by simply processing 2 different keys at theedane in a cluster. A dual version of
the key_expansion kernel is implemented, in which theraipr® 16 different sub-keys calculated
at the same time. In Figure 2.10, the IScd scheduling rebolvs that the processing capability
is doubled with a 24.2% increase in kernel run time (4-adaefiguration) while achieving an
effective parallelism of 4.5. As expected, given the 6-adamfiguration, there is no cycle count
increase compared to that of the single version with 4 addérs IScd compile result with 6-adder

configuration is shown in Figure 2.11.
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Figure 2.12: The performance of the AES encryption on a sisgfeam of data. The size of the
stream ranges from 8 to 3072 blocks (128 to 48k bytes).

2.6 Experiments and Discussions

The first set of simulation experiments encrypts a singkeasir with different sizes. As
shown in Figure 2.12, the stream size ranges from 8 to 307&kbI@28 to 48k bytes). A key
stream consisting of eight identical (128-bit) keys is derthe key _expansion kernel. The output
of the key stream is then directed to the core kernel for guitry the data stream. All eight clusters
use the same subkeys to encrypt the data stream. The cyaiésdou encryption are measured
by subtracting the time for loading the microcode and keyaesmn from the total cycles. Three
different machine configurations are applied during theusation. Add3 is the original Imagine
machine description file, which has three adders in eacletluiBhe add4 and add6 configurations
increase the number of adders to four and six, respectivay.all three configurations, there are
two 512-word scratchpads.

The best performance for a stream size of 96 blocks (1536G}yés shown in Figure
2.12, is 31.5 cycles per block and the throughput is 2.02 Ghftsa system clock of 500 MHz.
The performance with a small data stream suffers from the stream effect [92]. A fixed amount
of cost has to be paid before and after the main loop insiderzeketherefore, if the size of the
stream is short, the fixed cost cannot be amortized amongith#me. The cost is associated with
the variable initialization, constant setup, etc.

Another set of simulations is conducted such that multipisbers of packets in the size
ranging from 8 to 96 blocks is sent into the kernel. The totabant of data is 61,440 blocks (960K
bytes), which is 7.5 times larger than the stream registey fileaning that packet data must be
transferred from DRAM to the SRF during the calculation. fEfere, if 16 blocks are picked as
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Figure 2.13: The AES performance with multiple fixed-sizekesds.

the size of a packet, then the total number of packets bemgepsed will be 3840. The simulation

results are shown in Figure 2.13 where the size of 96 blockgh®best performance. The results
are close to those for encrypting a single packet, which sttbat the DRAM access is effectively

hidden by computation.

In order to conduct the key agility simulation, the origilkalnel codes are modified to be
able to transfer the subkeys within clusters. A fixed cosirftar-cluster communication is imposed
on the core kernel. Therefore, due to the communicationheast and the short-stream effect
described earlier, the performance further decreasesthatpacket size of 8 blocks. Compared to
those in Figure 2.12, another factor of the performanceedeser is due to the stream derivation and
stream copy operations where another layer of overheae attbam level is imposed.

The purpose of this setup is to have a full duplex stream flosuwed between the SRF
and the main memory. Therefore, the effectiveness of hitfiadatency with the kernel computation
can be observed. Figure 2.14 demonstrates the ratio of thelk&in time over the total run time.
The total run time consists of the stream operations, statiskernel run time. For the packet size of
eight blocks, the kernel takes only 60% of the total run tildewever, as the packet size increases,
the kernel runtime can take up to 98% of the total run time.

Figure 2.15 shows the occupancy of the functional unitsygrtitrg a single 16-byte block
of data for two different architecture configurations. Asrmadders are provided, the total execu-
tion time decreases. Therefore, the percentage for theckpead, multiplier, divider and commu-
nication unit increases. The occupancy for adders deseasgly due to the instructions being
distributed to the extra adder provided. The multipliettsiteke the instructions skelectandshuf-

fled The divider unit and the two multiplier units can be repthedth adders which also provide
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The Speedup for the Dual over Single AE S Encryption
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Figure 2.16: The speedup of dual over single AES with difiesizes of data stream.

the same operations so the area can be saved. The scratttigatian is not symmetric. This is
mainly due to some array variables used other than the mtabl&-lookup.

Figure 2.16 shows the speedupdofal oversingle The speedup can reach beyond 1.2 if
the size of the data stream is larger than 64 blocks in thedéraar 6-adder configuration.

2.6.1 Key Agility

For a security gateway router, where the encryption preselave to serve for multiple
sessions of users, there exists a worst-case scenariozérgtiecoming packet has to be encrypted
by a different key. Therefore, the ability for a system tocdfintly handle the key changes without
degrading performance is a critical performance factor.

One of the commonly used schemes [108] is to compute the rkemdexpansion on-
the-fly in pipelined fashion. This is done with dedicateddweare to process the key expansion
in time less than or equal to that of processing the minimiraespacket. Therefore, the latency
can be hidden without affecting the overall throughput wfathieving high key agility. Another
scheme is to pre-compute the round keys in advance, as sdba sscurity parameters for a flow
are established, before the actual messages arrive. Hpwheedrawback is that the memory
storing these expanded round keys has to be increased iarpoopto the ratio of the expansions.
Furthermore, the memory bandwidth has to be expanded as well

The easiest way is to do the pre-computation. Once the flostabkshed through the key
management protocol, the round key expansion process csiafded. The input key stream will
first be loaded into the SRF and later on processed by the kpgnsion kernel. The subkey output
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stream will reside in the SRF temporarily and then spill ouhie DRAM. Afterwards, the subkeys
can be loaded by an index stream for the encryption on therimgppackets. The latency of loading
the sub-key stream from the memory can be overlapped withdtekernel computations. Based
on the AES standard, 10 rounds are needed for a key size ackl ¥ile of 128 bits. Hence, the
output stream from the key_expansion kernel, which costtie expanded subkeys, is 10 times
larger than the size of the original input stream. The s®mafgthe sub-keys definitely has a huge
impact on the system cost, and there is increased demandmomeandwidth, as well. On-the-
Fly subkey computation means to calculate the subkeys defede particular round just before
using them in the round [81]. Due to the SIMD architecturkthed clusters are processing the blocks
from the same packet based on the same key. There is no reasguiément the on-the-fly subkey
computation inside the core kernel calculating the samkesigh Furthermore, all the hardware in
the clusters is dedicated to executing the VLIW instructitmoadcast from the microcode store.
Therefore, one kernel at a time is being executed. There iwayto take the pipeline scheme
where the key_expansion and the core kernel are being exkatthe same time as describe above.

Another way is to expand only the sets of subkeys that areggoibe used soon. Based
on the assumption of a store-and-forward architecture hichivthe incoming packet will be stored
in the data memory, it is possible for a host processor to-Ewad into the control memory to
identify the next eight packets that are going to be procksSémilar to the previous discussion,
the host processor can initialize the key stream, whichatosteight different keys, to the key
expansion kernel before the packet encryption beginsr feekeys are expanded, all the sub-keys
are stored inside the Scratch Pad of cluster 0 to 7, wher¢eclQshas the first set of sub-keys,
cluster 1 has the 2nd set of sub-keys, and so forth. Usingitbe ¢luster communication network,
each set of sub-keys can be broadcast to all the clustergfahe all the clusters can process the
blocks of the same packet with the same subkeys. After theokptbcessing the 8th packet, the
key_expansion kernel will be executed again to calculagenttxt 8 subkeys for the packets to be
processed. The key_expansion kernel takes about 381 dgcfgecess 8 different sets of round
keys. As discussed in the Section 2.5, the dual version okdlgeexpansion kernel can process
up to 16 different sets of subkeys at no extra cycle increasmgnough hardware resources (the
6-adder configuration). Therefore, the key expansiondtareeds to be executed only once every
16 packets instead of eight.

The simulation is setup such that a fixed amount of data (614d€ks) is given. A
packet stream is derived with the sizes ranging from 8 to @@Kksd, as shown in Figure 2.17.
The key_expansiokernel is executed once every eight packets since eiglardiff keys can be



23

Performance with K ey Agility
(960KB of data)

100

80

40 4 B addg

Cycles per Block

=]
=
1

=

8 15 32 54 95
Size of the Packet Stream (16-byte block)

Figure 2.17: Key Agility Performance. (in 4-adder, and @ledconfigurations, code optimized).

Table 2.3: The characteristic matrix of AES encryption.

\ \ Simulation Resulq

Memory_ BW (GBps) 1.12
SRF_BW (GBps) 2.23
LRF_BW (GBps) 239.90

GOPS 20.66
Operation per Mem Referenge 73.94

expanded at the same time. Therefore, for a packet size oic8dlthere are 7680 128-byte packet
streams being sent into the clusters, and 960 key strearts ¢eataining eight 128-bit keys) are
consumed by th&ey expansiorkernel. The worst-case scenario is for the packet size ¢t eig
blocks, since thé&ey_ expansiokernel has to be executed more frequently. The run time #r th
key expansiokernel is 381 cycles; therefore, on average, an extra sibesyaer block will be the
overhead over encrypting with a single key. The core kernoekomes a fixed amount of time to
transfer a set of subkeys (44 words) from the scratchpaderclinster. As the packet size gets
smaller, the overhead is obvious. This overhead is in addith the short stream effect, discussed
earlier.

Table 2.3 shows some standard Imagine performance mebacstwidth for each of the
three levels of memory hierarchy, billions of operationsgerond (GOPS), and the number of oper-
ations performed per memory reference. The measuremesrtfisimed where 640 1536-byte pack-
ets are encrypted with a new key for each packet. The wholeatipe includes 80 key expansion
kernel invocations.
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The best efficiency can be achieved only in the case wherghtl @dusters are processing
8 or 16 different keys. On the other hand, if only one new kewisded while the other 7 or 15 keys
remain the same, the efficiency is the worst because the saimdation is repeated again. To add
an extra layer of memory between the SRF and the Clustersye as a subkey cache is another
way to improve the performance and the efficiency where thgtieg sub-keys can be re-used.
However, this might need a large cache size to achieve disgatisy hit rate [108].

2.6.2 The simulation of variable-sized packets

The main purpose of this experiment is to characterize tls¢eBy performance with
variable-sized packet streams based on the length digtribinformation from an existing Internet
trace.

2.6.2.1 The Internet Trace

The trace (AIX-1054837521-1) [89] used for this simulatwas collected from the NASA
Ames Internet exchange (AIX) [88] in Mountain View, Califda. It is collected from one of four
(now five) OC-3 ATM links that interconnect AIX and MAE-West Ban Jose. As we can see in
Figure 2.18, almost 50% of the packets are under the size ®&bgfes where only less than 6%
of the total bandwidth is taken. On the other hand, there lnest 22% of the packets with the
size of 1500 bytes taking more than 75% of the total trafficayé proportion of this TCP traffic
is generated by bulk transfer applications such as HTTP afd[80]. Consequently, the majority
of the packets seen are the minimum packet size for TCP adkdgements and the 1500 byte
packets with the maximum Ethernet payload.

A set of Perl scripts were implemented to parse the Intemaetetfile obtained from
NLANR [88] and generate two input files for the simulation. eTpacket data file is constructed
with random payloads where proper paddings are inserteereldre, the size will be the multiple
of eight blocks, which is the number of the clusters in theeys The length distribution for the
simulation is shown in Figure 2.19. Another file consistirighe packet lengths is given to the host
processor. The host processor derives the packet streaof tha packet data based on the length

information and orchestrates the overall stream operation
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#define MAX_PKT_SIZE 96 //set 96 blocks as the max pkt size (1536 bytes)

STREAMPROG(aes);// defining stream program

void aes(StreamSchedulerinterface& scd ,String args){

im_stream<BLOCK>NAMED(packet_data)=
newStreamData<BLOCK>(MAX_PKT_SIZE,im_countup);

im_stream<BLOCK>NAMED(add_round_key_out)=
newStreamData<BLOCK>(MAX_PKT_SIZE,im_countup);

im_stream<BLOCK>NAMED(data_out)=
newStreamData<BLOCK>(MAX_PKT_SIZE,im_countup);

while_VARIABLE(i<ITERATION) {

looplter();

packet_data_size=length_array[i]/16;

cout << "Processing Packet# "< < i<< "["<<ITERATION<<"\n";

cout <<"packet_size="<<packet_data_size<<"blocks"<<"\n";
streamCopy(data_block(delta,lengthpacket_data_size+delta),packet_data);
core_s(packet_data, key_words_b,add_round_key_out);
final_round_s(add_round_key_out, data_out);
streamCopy(data_out,data_to_mem(delta,packet_data_size+delta,im_var_pos));
delta=packet_data_size+delta;

i=i+1;

Yiwhile
}

Figure 2.20: The code fragment of the StreamC main loop.

2.6.2.2 The variable-sized stream

Since the system has no idea of the stream length at the liegiohthe declaration
phase, a straightforward way is to specify a count-up streamcountup with a maximum size
of 96 blocks (1536 bytes). A maximum size of 96 blocks is gigenply due to the MTU of the
Ethernet protocol.

A count-up stream is declared where the end of a stream ydepgnding on the number
of records produced by a stream operation. Itis a variablgtfestream which contains zero records
initially. The size will be set once the dependency is restlyy stream operation or from the results
produced by a kernel.

The packet length information is passed from the host pemda® the Imagine Stream
processor by using the array variable. As shown in Figur®,at# length of a packet is used to
derive a stream from the main memory and sent to the followargels for encryption. The output
of the packet stream is sent to the SRF and stored back to timenmemnory finally.
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Figure 2.21: The block diagram of the Host Interface, SRFStneam Controller [27].

The use of the count-up stream raises another issue whepetftsmance is degraded
due to the dependency resolution. This is because the mespage within the SRF can not be
allocated until the size of the derived count-up stream @Am Unfortunately, the latency caused
by the host processor operation can not be hidden effegtividherefore, the system has to wait
until the information is passed to the control logic for het operation. The extra time needed is
approximately 400 cycles. The fixed overhead is associatddtiae transactions where the host
processor issues the stream instructions to read and comfige Stream Description Registers
(SDR) for the count-up stream.

As shown in Figure 2.21, the host processor issues seveealnstinstructions such as
move and write_imm listed in Figure 2.25, to the Stream Galetr through the Host Interface.
Since the data bus is only 32-bit wide, multiple Host Prooe$sis transactions are needed for
issuing a single stream instruction. The buses at the Hostfate are operated at lower clock
speed (200 MHz) compare to that in the system. The typicalr&ad and write transactions are
illustrated in Figure 2.22 and Figure 2.23.

The stream instructions are stored in the Op Buffer withia 8tream Controller. In
addition, the Stream Controller also consists of pendistrirction queue and control logics such
as resource analyzer, completion detection unit and soardidor bookkeeping the resources and
inter-instruction dependencies. Once the dependenaeaesolved, the instructions will be issued

by the issue and decode logic.
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STREAMPROG(aes);// defining stream program
voidaes(StreamSchedulerinterface& scd ,String args) {

while_VARIABLE(i<ITERATION) {
looplter();
packet_data_size=length_array[i]/16;
cout << "Processing Packet# "< < i<< "["<<ITERATION<<"\n";
cout <<"packet_size="<<packet_data_size<<"blocks"<<"\n";
im_stream<BLOCK>NAMED(packet_data)=
data_block(delta,packet_data_size+delta,im_var_pos)
im_stream<BLOCK>NAMED(add_round_key_out)=
newStreamData<BLOCK>(packet_data_size,im_var_size);
im_stream<BLOCK>NAMED(data_out)=
newStreamData<BLOCK>packet_data_size,im_var_size);
core_s(packet_data,key_words_b,add_round_key_out);
final_round_s(add_round_key_out,data_out);
streamCopy(data_out,data_to_mem(delta,packet_data_size+delta,im_var_pos))
delta=packet_data_size+delta;
i=i+1;
Yiwhile

Figure 2.24: The code fragment without using the count-tgast.

There is another way to implement the stream operation bladeg the variable-sized
stream within the main loop of the operation. Therefore hasve in Figure 2.24, the stream length
is available for three derived streams right at the begmmihthe main loop. No extra cycles are

paid due to the issue discussed before.

2.6.2.3 The Simulation Results

The simulation is similar to those shown in Figure 2.3 whiaeeaverage efficiency analy-
sisis done based on a larger Internet trace (TXG-105494%)6Because of the SIMD architecture,
almost 10.1% of the byte counts are due to the padding andlimmgiprocess. Therefore, the perfor-
mance calculation is based on the processing of effectivekbl Figure 2.26 shows the system can
achieve 41 cycles per block for the AES encryption, comptrét? and 35 in the fixed-size packet
of 8 and 96 blocks, respectively. The ratio of kernel run tiover the whole processing time is
shown in Figure 2.27. A higher ratio means more effectivénigiabf the latencies (memory access
and stream operation) with the real computation work. A @6t&tio is observed in the simulation.
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operation fields
ATT a 32 64 69 74
operations compI_mask Tsswe_mask scorebd_assign opcode
74 79 82 87 90 91
move
dst_num dst_type src_num src_type uc_synch
wrid tecdmm 74 79 82 143 144
dst_num dst_type imm uc_synch
. - 74
barrier : N
(no arguments)
= 74
reset
(no arguments)
host_transfer 4 e 82
host_sdt
—— 74 82 Q0 93
P data_sdr idx_sdr data_mar
74 82 93
Tead_ucode s
pgm_sdr mpc
; 74 130 138 149
clustop N e ]
sdr0 .. sdr7 mpc
4 : 3 p
clust_restart g i 1_50__ L3g . 13
sdr0 .. sdr7 uc_synch
- 7
synch_uc ) ) '
(no arguments)
e 74 82 83 90 9& 103
P net_sdr net_sb tag vcmask nrr
net_restart 74 82 85
net_sdr net_sb

Figure 2.25: The format of Stream Instructions [27].
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Figure 2.26: The performance of encrypting variable-saekpts compare to those of the fixed-size
ones.
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Figure 2.28: A load balancing scheme for small-sized pagRketyption.

2.7 Load Balancing

As we can observe in the simulation results, the minimuraesfacket suffers the perfor-
mance degradation due to the fixed overhead imposed on eawhiimy packet stream. In addition,
the efficiency of the clusters is only 50% on processing aot#(64-byte) minimum sized packet.

The performance and efficiency can be improved by concabtgnatvo or more packets
as a single stream. Instead of sending each packet as a stregen, the fixed premium can be
amortized and better performance can be achieved.

Figure 2.28 shows how two packets are merged as a singlestrgain. The system can
encrypt the longer stream and avoid the short-stream effieich is mainly due to the nature of the

stream language and the system operation.
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Another major expense besides the short-stream effeat sui-key distribution through
the inter-cluster communication. As discussed earlien@yirevious section, the process is to ensure
each cluster can encrypt the packet based on the sub-keygadsed with the incoming packets.

Figure 2.29 demonstrates the example where sub-keys have thstributed for two
packet encryption within a single stream. At the beginnifghe encryption, eight sets of sub-
keys are sent as a key stream into the kernel and each clugitetore a set of sub-keys into the
scratchpad respectively. Then, based on the property ohtloening packet, each set of sub-keys
will be broadcasted to the rest of clusters through the-cligster communication network. In Fig-
ure 2.29, the first set of sub-keys KO is distributed to thekimgr buffer B1 in all the clusters at
iteration i=0. At the iteration of i=1, a second set of sulyk&3 have to be distributed to the work-
ing buffer B2 so that cluster 3,4,5,6 and 7 can encrypt therskpacket within the data stream.
The working buffer B1 and B2 behaves like a ping-pong buffddimg the sub-keys currently used.
Those are enabled based on the packet length provided thtbegtream variable issued from host
processor passing into the kernels.

The size of the sub-keys is 44 words, based on the 128-bitikeyf& AES. Therefore, at
least a total of 88 cycles (read and write access on scratilspa needed for the sub-key distribu-
tion, not counting the extra stream operations. This is atr@d.4% of the cycle time processing a
minimize size packet.

Several extra operations are needed both at stream levédeaindl level. The first is to
provide the packet length information for the kernels tigtothe microcontroller variable. Then,
the kernels can identify the exact cluster ID and the praegsteration where the boundary of the
packet within the data stream might be. These can be cacukdsily by the packet length and
the number of cluster. Therefore the distribution of the-keNss can be conducted. Leveraging on
the predicate instruction, select(), which is provided by Imagine processor, the corresponding
sub-key buffers can be used in different clusters for ertwyp

The load balancing scheme can improve both the performamnteficiency in the stream
level operation. However, counting on these extra oparstitvadeoffs have to be taken care of such

that the benefits gained by adopting the load balancing sehainot be lost.
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Figure 2.29: The sub-key distribution in the load balan@oggeme.

2.8 The Mode of Operation

We have so far considered only the Electronic Codebook (E@@}e of encryption. This
allows each data block to be processed independently, allglarHowever, a particular plaintext
will always be encrypted to the same ciphertext. Therefocedebook can be obtained and the
privacy will be compromised once the relation between tpbaitext and plaintext is known.

More sophisticated modes offer protection from repeataihf@xt-ciphertext pairs, and
some still allow packets to be processed in parallel. Then@yuMode (CTR) is one such mode
that was recently added to NIST’s approved list [85]. CTR emddmonstrates excellent efficiency
in both of the hardware and software implementation [118)rédver, the security is well analyzed
and proved as long as the counter block value is never reugkdh& same key. As proposed on
the NISTs recent call for modes-of-operation [84] activibe Offset Codebook mode (OCB) [106]
and the Carter-Wegman + Counter dual-use mode (CWC) [56alsanbe operated in parallel. We
have implemented OCB mode and present the results in thisisec

The implementation is based on the assumption that the nuexipacket size is 1536
bytes (96 blocks). We further assume that the packet sizenisliple of 128-bit blocks with all Os
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being padded at the end of packet to form the total lengthamihltiple of eight blocks. The first
step is to compute thie(0) and the first offset. The computation of the paraméter based on the
key and the function afitz(i) where the number of trailing 0-bits in the binary represemtaof i is
obtained. Eight of th& parametersl(-1),...,L(6) are precomputed since they are more than enough
in our case. Since only 96 blocks of the offset is needed, tisete are also precalculated along
with the L parameters. Theffset_exp(kernel is executed before the encryption process begins.
The total of sixteen different sets of keys can be processédeioffset_exp(kernel. An indexed
stream derived from the offset stream output from dffeset_exp(kernel is then directed into the
main kernel for encryption process. The offsets can als@lmiated on-the-fly with the incoming
message blocks. The loop for offset calculation is unradiad optimized, as shown in Figure 2.33.
The operations are distributed to eight clusters as showralie 2.4, with the bit position of 1
representing the value ofin L(i). The regularity [105] can be observed immediately in Table 2
For example, the first column of Table 2.4 presents six itamatofL(i) parameters for the cluster
zero. The parameters are separated by the underscore imattgo fphe first part of it is indeed a
gray code sequence while the second part has a repeateh pdt®®1 and 101 Therefore, for a
given iteration and cluster number, the offset can be cafedlbased on the corrddf) parameters.

The last block of the message is processed differently thapievious ones. Leveraging
on theselect()instruction provided by the Imagine Stream Processor, tiginal operation can be
transformed as shown in Figure 2.30 for the SIMD operatiohisTs based on the fact that the
packet length is available in advance, such that the pasitidhe cluster containing the last block
of message is known. Based on the same scheme, the openatioa checksum can be performed
as in Figure 2.31.

At the very end of the iteration, one more step is needed fopeithe tree-sum operation
to XOR the partial checksum distributed among the eighttetgsand the last block of offset. The
tree-sum operation can be achieved by the inter-clustenmaamtation instruction provided by the
processor. Thus, the final tag can be obtained by directiaghlecksum data stream into the AES
kernels.

Figure 2.32 shows the OCB_AES performance for 4-adder aaddé+ configurations
(again, using two 512-word scratchpads). The performagcalculated based on the total run time
(including the time for generating the tag) divided by theesdf the packet stream. Since the time

for tag generation is fixed, as the size decreases, the penfme is degraded due to the fixed cost.
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m[1] —>offset xor L(0)

m[2] —>offset xor L(0) xor L(1)

m[3] —>offset xor L(1)

m[4] —>offset xor L(1) xor L(2)

m[5] —>offset xor L(0) xor L(1) xor L(2)
m[6] —>offset xor L(0) xor L(2)

;1.1'[53] —>offset xor L(0) xor L(1) xor L(2) xor L(3) xor L(5)

Figure 2.33: The corresponding value for offset calcutatifter loop unrolling and optimization.

Table 2.4: The distribution of the L for offsets calculatiamong eight clusters.

| | co | c@ | c2 | ca | ca | cs | c6 | c7 |

1 11 10 110 111 101 100 1100
1101 | 1,111 | 1,110 | 1.010 | 1011 | 1,001 | 1.000 | 11 000
11 001 | 11 011 | 11 010 | 11 110 | 11 111 | 11 101 | 11 100 | 10_100
10 101 | 10 111 | 10_110 | 10 010 | 10 011 | 10_001 | 10_000 | 110_000
110_001| 110 011| 110 010| 110 _110] 110 111 110_101| 110_100| 111_100
111 101 111_111| 111 _110| 111_010] 111 011 111_001| 111_000| 101_000
101_001| 101_011| 101_010| 101_110] 101_111] 101_101| 101_100| 100_100

oo~ W|IN|FPL|O
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2.9 Conclusions

The AES encryption algorithm has already been optimizediampdemented in various
processor platforms. One of the best performances pulligte 3] in non-feedback mode for a
32-bit architecture is 232 cycles per block (16-byte blodk)contrast to the typical measurement
setup [3] where most of the data is in the level-one cachesithalation results in this chapter do
include the data movement from the memory to the processalf.iiThe performance can reach up
to 32 cycles per block in a stream size of 96 blocks. For a systeck of 500 MHz, the throughput
of the AES encryption can reach up to 2 Gbps. The DRAM accesffastively overlapped by
computation, as simulation shows more than 95% of the rua isrtaken by the kernel computation
for a packet length larger than 16 blocks. The results alsootstrate compelling performance in
the key agility simulation and OCB-AES operation. The eption process utilized almost 50% of
the theoretical memory and LRF bandwidth while only 7% aeehed for the SRF.

In this chapter, the data blocks within a packet are distedbuand processed among the
clusters. It's a simple way to preserve the arriving paclefusnce without having an extra re-
ordering mechanism. However, based on the packet lengttibditon from a real Internet trace,
there is only a limited speedup gained and the efficiency vendoelow 80% when doubling the
number of clusters from eight to sixteen. This is becausé@fIIMD structure: the clusters are
idle if packet data does not have enough blocks. Thus, tleterlutilization is low due to the packet
length variation.

AES has been widely implemented in hardware as it was stdizéakin the year of 2000
by the National Institute of Standards and Technology (NlSherefore, the benefits of a high-
performance programmable solution is not so obvious. Heweas the first stepping stone into
the exploration of the stream architecture for networkippgliaations, we successfully demonstrate
the processor’'s computation power and the unique progragnmiodel for encrypting the packet
stream effectively.

In the next chapter, we are going to present and discuss aortiamp data structure: the
universal class of hash functionshich serves as a basic infrastructure for many networajpi-

cations presented in the following chapters.
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Chapter 3

Hash Functions

The theory of universal class of hash functions is an impotailding block for several
applications presented in this thesis (Chapters 4, 5 an@éherally, there are two main types of
variant after the invention of universal class of hash fiomst due to Carter and Wegman: the one
with the weaker collision property and the other with strengne. Based on the needs of different
applications, different functions are applied.

This chapter presents the general background of the uaiMasish function. We then dis-
cuss some of the variants based on the properties of the fiadly.fFinally, some implementation

examples are discussed at the end of the chapter.

3.1 The Universal Class of Hash Functions

Carter and Wegman first described the idea of a universa ofalsash functions [14] in
1979. Since then, this class has been widely used in manicafiphs and regarded asrie of the
fundamental bag of tricks of every computer sciehiit23]. The universal class of hash functions
is a family of hash functions with a special randomized prigp&siven two keys, the probability of
hashing these two keys into the same value is bounded as $athg function is randomly selected
from the family.

The universal property{14] is defined as follows: Lefi be a finite collection of hash

functions which map a given universe of inpdfsinto domainB of range R. H is said to be
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universal if for all distinct elements,y € U wherex # y, the number of hash functions selected
from the family of H that yield collisions (i.eh(z) = h(y)) is ‘—2". The symbol H| represents the
number of functions in the collection df. It has been proven that, if we randomly pick one hash
functionh from H, the probability of collision forx andy, wherex # y is exactly}%.

Prpeplh(z) = h(y)] = i) (3.1)

3.2 Stronger Collision Properties

Wegman and Carter [122] later defined steongly universal hash family and utilized
the properly for building unconditionally secure messaggh@ntication codes (MACs). The family
of strongly universal hash functions has a stronger prgpastcollision probability is specified in a

pairwise independent manner. Foralt y € U ands, t € B, the probability is defined as follows:

Priculh(e) = s hy) =] = = (3.2)

An example of such class of hash functiongfis[14]. The function maps an integer from
aspacd/ = {0,1,2....,p — 1}, wherep is a prime number, into a domai® = {0, 1,2...,m — 1}.
The definition ofH; is:

hap(z) = ((axz +b) mod p) mod m (3.3)

Hi = {hap(@)l0<a<p 0<b<p}

The family of H; has the property of beingfrongly universalwhich also implies univer-
sal. However, a universal class of hash functions is notsseeiy strongly universal [115].

A family of hash functionsH, is said to bek-universal if for every fixed sequence of
k distinct keys{xg,z1,---,zx_1} € U, the sequence dfvy = h(xg),v1 = h(x1), -, vp_1 =
h(z2)} is equally likely to be any of then* sequences of lengthwith elements drawn from the
hashing spac¢0, 1,---,m — 1}.

The universal class of hash functions can be generalizediaersal defined in Equation

3.4, wherer < p andpis a prime number. The parametglis selected randomly whefe< a; < p.

! Also commonly denoted @universalor universals due to the pairwise independent property.
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h(z) = ((a;z’) mod p) mod m (3.4)

Prpen[h(z;) = v;,Vie (0,1,---  k—1)] = wherev; € [m)]

mk’
In general, the family ok-universal hash functions has stronger property in terms of
collision probability. For example, th&universal has a lower variance of the expected number of

collisions than that of th@-universal.

3.3 Weaker Collision Properties

Several families of the universal class of hash functionseveoposed with weaker colli-
sion probabilities. The computation complexity is redycamthese hash functions are better suited
for various high-speed or low-power applications. The ragesauthentication described in Chapter
4 is one such application.

Stinson [114] introduced a positive real numbeaind formally defined new families of
hash functions: the-almost universahnd c-almost-strongly universalFor the case of-almost
universal the constant represents the collision probability of the hash functidrewe% <e<l1.
Therefore, Equation (3.1) can be expressed in more genayalonthose with this relaxed property.

A family of hash functionsH is said to bes-almost universalf for all x # y € U and

the collision probability is less or equal to
Prien[h(z) = h(y)] < e (3.5)
In the case o-almost-strongly universathe probability is defined as follows:

Prpen[h(z) = s, h(y) =1t] < (3.6)

£
7
In other words, given the probability qE{ of mappingz € U to s in the hashing spacB,
the conditional probability of hashingto ¢ is at most.
Rogaway [104] introduced the terminology sshlmost-xor universabased on the same
definition ofc-otp-securdrom Krawczyk [57]. As® represents the bitwise exclusive-or operation,

a family of hash functiong? is e-almost-xor universaif for all x # y € U and for anys € B,

Prpep[h(z) ® h(y) = s] <e. (3.7)
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Stinson [115] further generalized the above hash familyriitrary Abelian groups and
named ite-almostA universal. Assuming thatB is an Abelian group and the group subtraction
operation is denoted by, H is said to bes-almostA universalif for all = £ y € U and for all
te B,

Pricylh(z) — h(y) = 1] <e. (3.8)

Although not beingstrongly universalthes-almostA universalfamily has stronger prop-
erty [7] than that ok-almost universal Thus, by using Carter and Wegman'’s approach, a message
being forged is bounded hyif the hash function is selected from thealmostA universalfamily
[44].

3.4 Hashing Byte Strings for Packet Processing Applicatios

Based on different applications, packet processing needaltulate the hash value on
some patrticular attributes in the packet header. Sometithescalculation may need to be done
over the entire packet as well. For example, if the traffic fiswlefined as the tuple of source and
destination IP address, the system needs to hash two 3@tbitesand destination addresses for the
sketch update, as described in Chapter 6, while maintathimk-universal property.

An efficient way of hashing the data string is critical to tlygstem performance. Depen-
dent on the capability of the processing resources, it cartamged as a sequence of bytes, 16-bit
halfwords, or 32-bit words.

Generally, there are two main schemes to hash charactegs{f9]. The first approach
is to directly reduce the long byte string to a shorter one leams of logical or arithmetic opera-
tions without the prime modulo operation. Ramakrishna psed a class of such hash functions
namedshift-add-xor[99] for hashing 7-bit character strings. As the name suggéise function
utilizes only the simple and fast operationsSHIFT, EXCLUSIVE-ORINdADD. The construction
is efficient and likely to be universal; simulation resultgjgest that the analytically-predicted per-
formance can be achieved in practice by randomly choosingtiftns from this class. The pseudo
code is shown in Figure 3.1 with parameters for processiig $tyings.

The second is to convert the byte string into an integer, ¢hprime modulo operation is
applied thereafter. The use of radix conversioﬁfz‘ol(bytei x base') mod prime is an example
for the first type. However, care must be taken when usingstthieme [79], because the selection

of thebasenumber and therime number affect the performance significantly.
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/I The constants of L and R are pre-defined values
/l we set the L=6 and R=2 for processing

/I 8-bit strings

/l m is the length of the string.

h=seed;// randomly assigned a seed.
for(i=0;i<m;++i) {
h=h @( (h<<L)+(h>>R)+c[i] );
h=h% T;

/l The MOD operation can be replaced with
/I bitwise AND for suitable values for T.

Figure 3.1: The pseudo codesgifift-add-xorhash function. [99]

In order to avoid the costly integer division (modulo) opiena, several reduction tech-
nigues are proposed to speed up the process. One of the meglikkschemes is the use of a
Mersenne prime in the form @° — 1, wherep is a prime number. It's also a widely-used technique
for pseudo-random number generators. Crandall [24] pexpasclever reduction technigue based
on a so-called pseudo-Mersenr#: — ¢, wherec is a small integer. The reduction techniques do
impact the system design in many applications. Therefare,td the limited scope of this paper,
we refer to the discussions on more generalized Mersennéensiin the literature [16].

The Mersenne prime is widely used to speed up the calculafitiee hash function. The
largest Mersenne prime available in a 32-bit integez®ls— 1. As indicated in Equation 3.3, the
key space is limited by the prime number used in the functibmeans that we may not be able to
maintain the 2-universal property by using the prim@df— 1 on a 32-bit key. Therefore, we need
to use26! — 1 as a prime number for hashing a 32-bit integer. However, ssmimedded processors
may not support 64-bit arithmetic operations.

Instead of hashing a single 32-bit key, we can treat the keytas 16-bit halfwords:gx
and hash it by using the prime 2! — 1. That is, the property of being 2-universal can be kept by
doing the hash oy (zo) @ hi(x1), whereh;() is randomly picked from a 2-universal class of hash
functions [116].

We can extend this for hashingrahalfword string ofxgx; - - - z,,_1by selectingn hash
functionshg, h1, - - -, hp—1 from a2-universal class of hash functidih. The mapping okpx; - - - z,_1t0
ho(zg) @ hi(x1) ® -+ ® hp—1(xp—1) IS 2-universal.

The tabulation method may be a good choice if the computatgsource is limited
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and low latency local memory lookup is available. For exampbr hashing au-byte string of
Tox1 - Tn_1, We Need 56 x n 2-D arraya;. Each single column consists of 256 pre-calculated
hash values by using a hash function randomly drawn frd2vuaiversal hash family. The whole
table is indexed by each byte valuexgfand position of in the string. The hash process, shown in
Equation 3.9, is done by XORing a sequence of valyés|[i], wherei € (0,1,---,n — 1).

htab (2021 *+* Tn—1) = ar[z0][0] ® ar[z1][1] ® - - & ar[wn—1][n — 1] (3.9)

The above method is very attractive for applications thquire 4-universal hash func-
tions due to its high computational complexity. Howeverpiup and Zhang [117] indicate that the
mapping ofzgz1to ho(xo) ® hi(x1) does not hold fod-universal hash functions. Instead, they
prove that the following definitiohash(xzox1) holds thed-universal property if.g, hyandhs are

independendl-universal functions.

hash(;voxl) = ho(l’o) @ hy (ZL’1) D hg(l’o + :L'1) (3.10)

The time consuming-universal hashing can be pre-calculated and stored ie tffer-
ent tableditg, ht1 andht, . The final hash is the XOR of the values read from these tablsb@vn
in Equation 3.11.

hashi(zoz1) = hto[zo] © ht1[z1] © hto[zo + 21] (3.11)

There are several different types of universal class of hasttions for fast string hashing
with arbitrary length. Those are widely used in messageesutitation applications. We discuss
some of the newly proposed hashing functions designed $viniassage authentication in the next
chapter. For more details, we refer readers to the litezdtLlk6, 82, 99, 62].
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Chapter 4

Message Authentication

4.1 Introduction

As the Internet grows rapidly there are strong demands f&tefgprocessing speed to
protect network data streams at high speed [39]. Encrygtimme can not guarantee the integrity of
the data. Therefore, message authentication codes (MA&g)pvery important role. The MAC
is a one-way, keyed hash function designed for messagerdigtiteon [75]. The construction of
MACs can be based on block cipher (CBC-based MACS) or onelveah functions. MD5 and
SHA-1 are two very popular hash algorithms used in many egfitins. Due to the nature of these
algorithms, the throughput is limited in both hardware [[L26d software [6] implementations. In
particular, it's difficult to process these hash functiohsvge speed with software implementation
on general purpose microprocessors.

However, there is a strong need for greater flexibility indbeelopment stage and demand
for code portability without much dependency on specifidhare. For these reasons, a software
solution might be the most practical [45].

As the the technology advances, the attacking cost is exgpe¢athalve every 18 months.
Dobbertin et al. [34] described in 1996 that128-bit hash-result does not offer sufficient protection
for the next ten yeafs Recent successful attacks on MD5 [119, 121] and SHA-1 128y be
regarded as the proof of the prediction. In August 2002, Na8iounced the approval of Secure
Hash Standard, FIPS 180-2 that adds 3 additional hash g SHA-256, SHA-384, SHA-512,
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designed for compatibility with increased security preddy AES.

Although these attacks do not directly affect the use of MB& 8HA1 for MACs [86],
demands for larger hash results and stronger hash funetierexpected in the near future. The need
for larger hash results anstrongerhash functions means a need for more computational power for
high throughput operation. A parallel architecture is aurgdtfit for such a requirement.

Carter and Wegman [122] proposed the use of a strongly walbiash function as the
building block for unconditional message authenticatiomother words, regardless of the adver-
sary's computing power, his/her ability to alter the messaig no better than guessing with the
probability of collision provided by the hash family. Thengputationally fast and mathematical
strong properties of the hash functions open a new paradidtA€ constructions.

The scheme is to first condense the long message body intatavel short value by
using the class of universal hash functions. Then, the hakkevs encrypted with a One-Time
Pad (OTP). This value is known as thEAG’ and sent to the communicating party along with the

message itself. The Carter and Wegman construct is showallass:

TAG = (he(M) & OTP). (4.1)

There are several benefits for the universal-hash-andsginparadigm. The first obvious
one is the encryption is performed on the short hash vallerahan the long message. Also, by
using the universal hashing family, the computational dewxity is much lower than that of the
traditional cryptography-strength hash functions. Tfare the speed of calculation is fast. Most
of all, hashing performance is guaranteed by the matheah@ioperty: the hash family’s collision
probability. The new paradigm has gained a lot of recenhatte, and several new families of hash
functions have been proposed for better performance [58,&8 112, 44, 7, 36, 62].

The brief definitions and terminologies of universal clakhash functions are provided
in Chapter 3. In Section 4.2, the optimization evolutionwed families of universal hash functions
(MMH and NH) are presented. The general techniques relatpdactical implementation are then
discussed.

We present the implementation of the Multilinear ModularsHgMMH) over the pro-
grammable SIMD stream architecture for message authénticeodes in Section 4.3. The algo-
rithm can be easily parallelized and operated in SIMD fashamd its data handling requirements
match the tiered memory hierarchy. Thus, high throughpatosaachieved effectively.

In Section 4.4, we demonstrate the simulation results oégdimg 128-bit hash values
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for different sizes of packet. The best throughput achigv€ps with packet size of 1536 bytes.
Finally we end this chapter with in-depth discussion ovansassues and conclude with future

work.

4.2 Universal Hash Functions for Message Authentication

In this section, we discuss two families of universal hasttfions: MMH and NH, which
are used for condensing long messages. The introductiahgledimitions of the universal hash

functions are provided in Chapter 3.

421 MMH

Multilinear Modular Hashing (MMH) [44] was proposed by Haland Krawczyk, based
on the well known universal hash construct denoted/d$¢H™* by Carter and Wegman/MH* is

defined over the finite field of integeﬁpl, wherep is a prime number. That is, for any =<

x1,T2,...,T, > andM =< my,ma, ..., my > Wherex;, m; € Zy,
k
hy(M)=M -X modp = Zmlxl mod p. 4.2)
i=0

The X is the set of keys that selects hash functibpg) from the family H.

Based onM/MH*, the MMH 3, shown in Equation (4.4) is initially modified and targeted
for software implementation on 32-bit integers. The costhgger division operation is avoided
by using modular reduction technique with a special prim@%f+ 15. Thus, it achieves good
performance in calculation speed and maintains low cohliigirobability. The family oM MH?, is

g-almostA universalwith ¢ = 2732,

hy(M) = M -X mod (232 + 15) (4.3)
k
= (Z m;x;) mod (232 +15). (4.4)
=0

The family of MMH?, is further optimized (denoted dgM/H 3, and shown in Equation
(4.5) ) to ignore the carry bit from the 64-bit inner produet; {;) and the most significant bit in the

1 Z, consists of all integers betweérandp — 1.
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final output Ef:o m;x; mod p) of the hash functiod/MH?3,. Therefore, more speed-up is gained
with an increase in the collision probability.

The family of MMH 3, is e-almostA universalwith ¢ = 1.5 x 273, The hash function
is designed to work with fixed-size messages of 32 words, tiheig is 32. There is a tradeoff
associated with the choice on the size of the message. ¢laarkshown in Equation (4.5), the
longer the message being processed, the lower the aversigeictine final modular reduction over
the message. However, the longer the message, the largeettbEkeys that must be kept at both
communicating parties.

k
hy(M) = [((Z mx;) mod 2%) mod (232 + 15)] mod 232 (4.5)
=0

422 NH

The New Hash function (NH) [7] was proposed by Black et alsdabon the construction
of NMH™ invented by Carter and Wegman [44]. The functions of M&H* family, shown in
Equation (4.6), have fewer multiply instructions than giddis. Therefore, the speed of hashing is

improved for processor architectures with higher cost oftipiications.

k/2
ha(M) = (mai_1 + T2i—1)(ma; + 22;) mod p (4.6)
=1
The hash function of the NH family shown in Equation (4.7)ésided by further remov-
ing the prime modulo operation from Equation (4.6). Thus, lthshing speed is greatly enhanced

and very suited for hashing larger size of messages.

k/2
ho(M) = > [((mai—1 + 7i—1) mod 2")x

=1

((ma; + ;) mod 2%)] mod 2% (4.7

The NH family ise-almost universaivith the e equal to2=. Thew denotes the word
size; thusw equals to 32 for a 32-bit microprocessor.

The NH family has a weaker property than thatMfi/H 3. Therefore, the hash results
can not be used directly XORing the one-time pad in the CardrWegman approach. Another
level of hash (e.g., a strongly universal IPHash16 [63]) ssyslo-random function (PRF) [7] is
required for generating the authentication tag.
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Figure 4.1: Two-level tree hash process over a packet sit8@d bytes.

4.2.3 Arbitrary Lengths and Collision Probability

The hash functiom/MH 35 works with fixed-size message blocks. Therefore, tthe-
hashingscheme proposed by Carter and Wegman [122] is adopted fomigasiessages with arbi-
trary lengths. A message is segmented into 32-word blockersvthe last block may contain fewer
than 32 words. The first level of hash calculation is perfatrfoe each of these blocks individually.
The results of these hash values are then grouped as blocks of 32 and hashed agaisp on. As
illustrated in Figure 4.1, a packet of 1500 bytes is segntemi® multiple 32-word blocks. Then,
the first level of hash calculation is performed based on edi¢these blocks. The hash result of
each block is a single 32-bit word, so only one more round shima is needed to produce the final
hash value of the packet.

The collision probability is determined by the product oé ttepth of the tree hashirig
and the parameterof the universal hash function. For example, MMH has 1.5 x 2730; if we
do a 2-level hashing (= 2), the collision probability i3 x 273°. The linear increase of collision
probability with the depth of the tree can be avoided by usiiffgrent hash families on each level
of hashing. A good example can be found in the constructiaghe@tUMAC(2000) [63], where three
different hash families are used.

Since the collision probability may be too high for some @&#tlons, a scheme to lower
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the probability is to hash the same message again with ansgthef independent keys. By using
this strategy, the probability will bzéf instead of the origina%. However, the cost is almost twofold
on the amount of computation, the keys used, and the sizedfabh values.

Fortunately, the issue regarding the doubling of the keg s@n be relaxed by using
the Toeplitz matrix construction. That is, instead of ustag different sets of keyd( =<
ko, ki, -+, kn—1 > and K’ =< kj,k},---,k,_, >, the second key s&k’ can be derived from
the first key set ofK” by skewing one position and adding an extra elemignadded. Thus, the
key setK’ is < ki, ks, -+, k, > . We are going to discuss more of the issues on the extra cost in
Section 4.5.

4.3 Implementation

In this section, we present a brief overview of the impleragan of MMH with multiple
tags over the stream programming model. The stream progirsgnmodel is composed of two
levels of hierarchy: the stream and kernel. At the strearal@lata is organized into streams and
sent to the clusters at the kernel level for hash computation

4.3.1 The Stream Level

We assume that the maximum packet size is 1536 bytes. SincH MMesigned with a
fixed-size key of 1024 bits, a 2-level hash tree is needed farciet of 1536 bytes.

The system consists of three main kernédsel-1s level-landlevel-2 For packets larger
than 128 bytes, the packet streams will be directed ttetred-1kernel where first level hash will be
calculated. The output of these hash values, nainieHashstreams, will be stored in the Stream
Register File (SRF) and then consumed by liael-2 kernel. Thelevel-2 kernel calculates the
second level hash values similar to that in lineel-1kernel. Then, the hash values are XORed with
the One-Time-Pad (OTP) stream to yield the final tags. Theabpa for packet size greater than
128 bytes is shown in Figure 4.2.

For packets of 128 bytes and less, there is no need to do thlewebhashing. Therefore,
only thelevel-1skernel will be invoked to generate ti&Gstream. Since the length of the packet is
known ahead of the packet being processed by the kernel,ittheaontroller can direct the packet
stream and invoke the kernels accordingly.
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Figure 4.2: The stream level diagram of the MMH system.

4.3.2 The Kernel Level

The major computatidhof the hash values is done in each cluster at the kernel level.
Packets are organized as a stream of records and distribetgeaentially across the clusters. De-
pending on the number of authentication tags desired,ezkugre organized as groups. The records
in the same group are further broadcast to groups of clugtessigh the inter-cluster network.
Then, each group of clusters calculates hash values basin@ same records. The same end can
be achieved by skewing records of the packet stream at t@nstievel and resending them to the
clusters. Since the inter-cluster communication netwa higher bandwidth and lower latency
than that of SRF, the record distribution is performed in kbenel level. The original collision
probability (%) of MMH can be improved toplT by hashing the message four times, generating four
tags. Therefore, the goals of designing the kernel areteaget parallelizing and maximizing the
efficiency of the computation for four duplicated autheatiion tags.

As an example shown in Figure 4.3, the clusters are evenigiativinto four groups (GO,
G1, G2 and G3). Given a packet stream of eight records, tleopeecords within each group are
sent to the other groups through the inter-cluster comnatiniecs. Therefore, the hash values are
calculated four times in parallel based on the same messitigéonr independent sets of keys.

By using the Toeplitz scheme, the same set of keys is stordlteiscratchpad of each
cluster. Extra computations are then needed for clustedsgferent groups to identify the skewed-

2The Imagine supports two 32-bit multiplication by using t8&bit registers holding the 64-bit result. However, the
64-bit addition is not available. Due to this restrictiore further instrument our code to double the cycles of theiB2-b
add instruction to approximate the cost of 64-bit add opanat



51

GO G1 G3

I | |

Cluster 0 Cluster Cluster 2 Cluster 3 —_ Cluster & Cluster 7

t5 RO246xK0 R1357xK0 RO246xK1 R1357xK1 ROZ246xK3 R1357xK3

l Q//

6 RO1234567KD RO1234567K1 RO1234567K

7 preTAGH= ; preTAGI= preTAG3=
(RO123456TKD mod P) (RO12345678K1 mod P) (RO12345678K3 mod P)

8 TAGD=preTAGO* O.TP. TAG1=preTAG! *O.TP TAG3I=preTAG3 * O.T.P.

Figure 4.3: The Kernel in operation. A stream of eight resoade distributed across each of the
clusters of four groups. Pairs of the records are furtheadirast to the other group for calculating
four different set of authentication tags. The symbol of B&O0 denotes the sum of products for
the records (0,2,4,6) and the first set of the keys (k0).

index to access the key.
Basically, the kernels share the same structure of hashingnessage. The differences
between the first and second level kernel are the extra XORatipe for the one-time pad, and the

smaller size of the record in thel-Hashstream.

4.4 Experimental Results

The packet stream consists of records of four 32-bit wordse @ the restriction of the
simulation tools, the packet stream is further padded torpaléiple of eight records (for 8-cluster
configuration). The IScd VLIW scheduling results are préseénin Figure 4.4. The un-optimized
result is shown on the left-hand side where the steps of reogiduction of the prim@3? + 15
can be seen at the bottom. By using software pipelining, $uel lcompiler can further optimize
the result shown on the right-hand side of Figure 4.4. Théeayount for the second basic block is
reduced by 60% and the average kernel utilization for addeénereased from 35% to 85%.

The throughput of MMH producing a 128-bit pre-tag is showFigure 4.5 with different
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Figure 4.4: The VLIW scheduling results by IScd for the firstrkel. The optimized result by using
the software pipelining technique is shown in the right. #& second basic block, the total cycle
is reduced by 60% and the average kernel utilization for eddeéncreased from 35% to 85%.

packet sizes. The pre-tag represents the hash value befifRenyg with the one-time pad. The best
performance of the MMH is 7.14 Gbps with packet size of 153t&&y The worst case is for the
packet size of 128 bytes where the throughput is only 2.23Gbp

The average throughput increases as the size of the packeases. This is due to the
fixed cost associated with each run of the calculation. Tlsé @ssociated with the loop within the
kernel, known as the short stream effect [92, 30], is a dotimgdactor for small packets.

Generally, the prologue and epilogue blocks are estallibkéore and after the main loop
for setting up constants and initializing variables. Shamrthe right-hand side of the Figure 4.4,
the main loop (second basic block) only takes 22 cycles focgssing 128 bytes of data due to the
lightweight computation of the universal hash function.efidfore, as the stream passing the loop
gets smaller, prologue block takes a significant portiorhefkernel run time. That is, the average

cost is higher.
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The Throughput & Kemel Runtime Ratio
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Figure 4.5: The throughput of MMH and the corresponding &kmntime ratio with collision
probability of 27129 with different packet sizes. The system clock is 500 MHz hwitadder, 2-
multiplier and 8-cluster configuration.

45 Discussion

45.1 Small Messages

Several universal hash functions are designed by utilizgpegial instructions provided by
contemporary processor architectures to achieve fasepsowy speed. Examples such as the use
of fast multiply-and-add instructions and SIMD extensipns36] are very common. Furthermore,
more speedup can be achieved by relaxing the algorithmisepty of the hash function. As dis-
cussed in Section 4.2.1 and 4.2.2, techniques include iigndine carry bits of the multiplication
and summation processes, or even remaoving the prime mooldaation.

A relatively long message usually requires several levelsashing. Therefore, the op-
timization philosophy of the universal hash functions ish&sh the long message very quickly at
the first level by relaxing its algorithmic property. Theaetd property, on the other hand, can be
compensated by using stronger functions at the other leVaks cost of using the stronger function
at the other level can also be justified and minimized sineariessage has been greatly condensed.

The use of the NH [7] family in UMAC is a good example. Due tovteaker property
of not beingstrongly universalthe authentication tag generation is different from thet€zaand
Wegman construct shown in Equation (4.1). The major diffeegs that a pseudo random function
(PRF) is introduced and applied over the hash values to pmthe authentication tag. For example,
in a typical implementation of UMAC, the message is dividetbisegments of 1024 words. The
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NH hashing results of each segment are concatenated togébimg with nonce and the encoded
length value of the original message. Then, a pseudo randastién (PRF), HMAC-SHAL, is
used to hash the concatenated value, producing a 160-b#ratidation tag. The whole operation is

shown as follows:

TAG = HMACsya;((NH(Msg,)||NH(Msgz)||--- NH(Msgy)||Len)||Nonce) (4.8)

The optimization schemes at the algorithmic level are vecgsssful, especially for larger
size messages. However, the benefits are limited for snma#esages.

It's a known fact that there are a large number of small-sigackets in the Internét
Thus, due to the costly operation of SHA1 for small packéis iinproved UMAC(2000) algorithm
[63] discards the use of pseudo-random function shown irafio (4.8). Instead, UMAC(2000)
relies on the IPHash, a strongly universal, inner-prodasthhin the form of) | m;k; mod p and
adopts the original Carter and Wegman MAC construct, usiogeatime pad.

45.2 The One-Time Pad

Shown in Equation (4.1), the one-time pad is used in the Cang \Wegman construct to
XOR the hashing result and produce the authentication tagtefore, in the system view point, as
the size of the packet decreases, the cost of producing #xirae pad becomes more significant.

An obvious drawback of the one-time pad is its key distritmutand management [75].
Therefore, the use of one-time pad is approximated by thedosene-time pad based on some
pseudo random functions [10]. Given the same function aed,skoth of the communicating
parties can create the exact same sequence of pseudo randurars.

The simple random number generator in the form,0f= (a - z,,—1 + b) mod p can not
be used due to its weak property: the sequence can be eadiicted even without knowing the
parameters used [94]. In practice, a stream cipher is ustdta/property of being computationally
secure [75]. A block cipher is another choice, such as AE&enmplementation of one-time pad
for UMAC(2000) [61].

Sometimes, the generation of one-time pad is dependenteomtioming packets and
can't be done ahead of time. For example, a different nonceg eaused to generate the one-

time pad with each message [61]. In order to synchronize feeofi nonce between the sender

3Please see Figure 2.18 for detail.
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Figure 4.6: The queue up afpackets for parallel processing of the one-time pad.

and receiver, nonce is sent along with the message. Thisesblat the one-time pad has to be
produced on line and the cost has to be taken into considerati

Given the fastest performance on a 32-bit uniprocessoAE calculation on a 16-byte
block in ECB mode is 232 cycles [72]. For an architecture gumétion of A4AM2C8 (4 adders, 2
multipliers and 8 clusters), the worst case AES calculadioright 16-byte blocks in ECB mode is
77 cycles Therefore, the cost can be amortized by creating the oneftidls for multiple packets
in parallel on the SIMD architecture. Instead of calculgtihe one-time pad upon receiving a
packet at a time, a batch calculation of eight one-time padsbe done efficiently by processing
eight packets from the queue.

Some protocols (e.g., IPSec) use time-out parameters w&traom the time period be-
tween two receiving packets, so the number of packets intlke&shown in Figure 4.6 has to be
kept within a limit. In other words, the time difference Aff;, between the last packé}._; in the
last batch and the first packeg}, of the current batch has to be within the time-out limit.

4.5.3 The Multi-SIMD Operation

Given an authentication tag afbits, the attacker can break the MAC with a probability
of Zin [61]. That is, the probability of forging a message with areot authentication tag without
knowing the key is dependent on the length of the tag. Whiésarhash functions are capable of
generating a 32-bit hashing result at high speed, the higjsioa probability may not be suitable for

“Please see the simulation results in Chapter 2.
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applications demanding high system security. Therefashimg the message multiple times using
independent key sets is needed. For example, since théilehg6 bits is the default authenticator
length as specified in IP authentication header [51], aetfiy@shing scheme is needed such that
three 32-bit hash values are concatenated to form 96 bits.

According to the performance results of MMH (200MHz Pentitmno), the best case
throughput (message in cache) for generating the 32-bibdrit output are 1080 and 500 Mbps
respectively [44]. As the throughput decreases approeipdinearly, we estimate the throughput
of producing a 96 and 128-bit results are roughly in the rasfg&/5 and 250 Mbps, respectively.
On the other hand, a speculated throughput of 300Mbps imat&d on a 200 MHz Pentium-Pro
processor [44, 9]. It is clear that the speed advantage foHWilininishes as the number of tags
required increases on a uniprocessor implementation.

The SIMD architecture is the best candidate to create nhltggs in parallel for the
universal-hash-and-encrypt paradigm. The hash func@nasasy to be implemented in parallel
achieving high speed of generating multiple tags. In aoldjtdue to théViulti-SIMD operation, the
cluster utilization is better regardless of the packet.size

As the architecture is designed for handling larger dateasts efficiently, handling a
small-sized stream between kernels has higher averageiogsly because of the inefficiency of
resource utilization. A good example is th&-Hash streanpassing from the first kernel to the
second by computing onlgne authentication tag. Given a 256-byte packet, litieHash stream
consists only two 32-bit words useful for the second levshirag, whereas the bandwidth is capable
of transferring eight 32-bit words dfl-Hash streanfrom a 1024-byte packet in the same number
of cycles.

Take the same example stated above but compiimgauthentication pre-tags: given a
256-byte packet, thel-Hash streanrmow consists of eight 32-bit words useful for the secondlleve
hashing.

As shown in Figure 4.3, two clusters are arranged as a growyth Broup processes
the same packet by using the same hash function but diffkeys. We denote this process as
Multi-SIMD, since it’s slightly different from the pure SIMD operatioithe efficient architecture
support of such operation can easily be exploited by algmstof this kind. Another good example
is the Bloom filter [8] implementation (Chapter 5), where thaltiple functions used to hash the
same data in each cluster may originated from the same saiveash family, differing only in

parameters.
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4.6 Conclusions

For years, the focus has been targeted on the optimizatitreafmiversal hash functions
of hi(M). As discussed in previous sections, the evolution frbfWH*, MMH3,, MMH 39,
NMH™ to NH is a good example of this trend where multi-Gigabit throughgan be achieved in
software implementation.

As more new families of universal hash functions are propd86, 62], little has been
addressed with regard to the performance degradation dhe &xtra computation needed for more
tags. As the simulation results suggest, the hashing spadgtieased approximately linearly with
increasing the number of the tags. As the number of tag githespeed advantage is lost compared
to the conventional MAC schemes.

The SIMD parallel architecture provides a simple yet el¢gatution for this increasing
demand for extra tags on the new universal-hash-and-enparadigm. The best performance of
the MMH is 7.14 Gbps with packet size of 1536 bytes and 2.23sGipsize of 128 bytes and less.
The cost of one-time pad generation can also be greatly amdiy computing in parallel.

The parallel stream architecture not only provides a goadrmmodation for such hash
based computation, the benefit of being programmable isadismus: the developers can freely
adopt the best and newest algorithm that fit the system mmeints at minimum or no cost at all.



58

Chapter 5

Deep Packet Inspection

5.1 Introduction

The content matching process, i.e, hash computation oventmre packet, fits well into
the stream programming model with an abundance of prodiaestmer locality: portions of the
the hash values computed and stored in the stream registéBRIF) are used for calculating a new
set of hash values recursively.

One of a good example of such applications is the Networkidntn Detection System
(NIDS). The NIDS is designed to identify network attackssdxh on anomaly traffic profiles or
known patterns, called signatures, in packet payloads.dDiee most challenging issues that these
systems are facing is the speed of the emerging high-speéawnks. The demanding costs make
intrusion detection and analysis over such high-speefictiafreal-time very difficult [83].

Snort [91] is one of the most popular open-source NIDS progralt uses a collection
of matching rules to identify potential malicious packe&d®me of these rules involve only fields in
the packet header, but most require sophisticated stririghing against the payload bytes. Most
general-purpose systems are barely able to process minsiagnpackets on an 100Mbps network
[107]. The content matching engine for the network introgietection system is considered to be
the critical part due to its computation complexity. For Bnthe String-Matching process takes
31% of total processing time on a uniprocessor. Furtherptbeeprocessing time could go up to
80% for web intensive traffic [2]. Thus, most high-speed NEX8ly on specialized hardware for
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content matching. For example, Clark et al. [18] use an FR@#ed array of matchers, because
the network processor (Intel IXP1200) does not have sufficd®@mputing power to perform the
task at wire speed. Such solutions are difficult to scaleeliim$ of the number of matching rules,
and are inherently inflexible, because they are built witlingle algorithm for a single purpose.
Many sophisticated pattern match algorithms have beemtlggaroposed. Of particular interest
are probabilistic methods based on Bloom filters [8]. TheoBidilter is an algorithm that is used
to probabilistically test membership in a large set. Conteatching is essentially gueryprocess.
Given a set of signatures or contents seen in the attaclkdffgciBloom filter can quickly inspect the
incoming packet and simultaneously match a large set ofpattfor the suspicious target. Similar
to the mechanism of a filter, the majority of packets that diocoatain malicious signatures can be
quickly bypassed, while those that do can be identified imately for further processing. Such a
system has been implemented in hardware [33], achievirtypegformance.

In this chapter, we present a design space exploration déobmatching based on the
Bloom filter using the programmable Imagine Stream progefsd). In the following sections,
the mathematical background of Bloom filter is first presént&hen, the system design and an
implementation in the stream programming model are discli98/e also demonstrate the flexibility
and performance of the stream architecture supportingeidezation of the universal class of hash
functions for the Bloom filter. A detail discussions of implentation tradeoffs and simulation

results are provided at the end of this chapter.

5.1.1 The Bloom Filter and Pattern Matching

The Bloom filter [8] is a single-bit memory array. A set can bednctly represented by
this unique data structure, on which membership queriebegerformed efficiently at the cost of
rare false positive matches.

The whole operation consists of two phases - membershiptimsend query. Initially,
the value of the bit array is set to “0”. At the membership itiesa phase, a membey; is hashed
by & independent hash functions. Thelifferent hashing results, ranging frodnto m — 1, will
each address a bit in the array and set its value to “1”. Ifette@en members in the set, and the
size of the filter ism bits, the filter is said to have a bits-per-entry ratio”ef For the query phase,
the same hashing operation is performed again on the membeing tested. Thé different bit
values addressed by the different hashing results will bd feom the memory array. If all of the

bits are “1”, thenz; is said to be a member of the set. This is an approximate #igoribecause



60

the hash functions are not unique. Therefore, there is aapitiy of being false positive; that is,
an item will be identified as a set member, even though it is not

The pattern matching process is similar to the membershépyqGiven a byte-string of a
specific length, the query result indicates if there is a m&icany malicious patterns in the Bloom
filter. That is essentially multi-pattern matching for patts with the same length at the same time.

The theory of Bloom filter is based on the ideal property ohiivag functions. Assuming
the hashing results are uniformly distributed over the nmwgmibhen after the insertion phase the
probability that a specific bit is still “0” i = (1 — %)"m ~ (e‘%”). Therefore, the probability of
false positive error can be modeled by the following equmtio

kn

Prpe = (1—p)F = (1 —e m)" (5.1)

The false positive error probability, shown in Figure 5slgdépendent on the construction
parameterg, m andn. Increasing the number of hash functions decreases tleedatsr rate, up to
a point. The same effect applies for the bits-per-entryrati’*. When designing the Bloom filter,
several interesting issues arise due to tradeoffs amongettiermance metrics, i.e., the number of
hash functions, the size of the memory and the number ofesnitnithe filter. The number of hash
functions is limited by the available computing resourced memory bandwidth. Increasing the
number of hash functions decreases the error rate to arceidgree. It has to go along with the
size-per-entry ratio in order to yield good quality of fajsesitive error rate. The higher the ratio,
the lower the error rate. For a given bit-per-entry ratio’bf the false error probability?s,. is

minimized fork = (** In 2) hash functions.

5.2 The Implementation of Bloom Filter on Imagine

There are two factors affecting the performance of softwaased implementation of
Bloom filter: the speed and accuracy of the query phase. leratrds, the performance means
how quickly a computation can be done to generate the indéxamk it up through the memory
array, and the possibility of being false positive if theammhe shows a match.

The design of Bloom filter is based on a family of independeaghhfunctions where
keys are transformed and distributed uniformly into a rasgecified by the size of the memory
array. Therefore, the choice of hash functions and an afticday to do the hashing over the

entire packet dominate the speed of the computation; thktyqed the hash influences the rate
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Figure 5.1: The false positive error rate of Bloom filter

of false positive errors. Another performance bottlenemkBloom filter implementation is the
table lookup. Giverk hash functionsk lookups have to be performed for each query operation.
Thus, memory bandwidth may become a critical issue for [ghdalokups in a real-time system.
Moreover, conventional cache architectures are unlikelwark well if the Bloom filter is larger
than the cache, since the lookups to the memory array aré/parelom.

In the following sections, we present a design that relietherunique memory structure
of the stream processor, where these lookups can be pedamparallel efficiently. Moreover, the
flexibility of supporting various hash function implemetidas and the efficient way to compute the
hash values in the streaming model are discussed.

5.2.1 System Design

Sequential lookups can be avoided by incorporating banksuwfi-port memory. For
example, assume there drébanks of single-read-port memory and each héfdsits of the the
original Bloom filter contents. Given a key aikchash functions, each of ttkehash values is used
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Figure 5.2: The scratchpads of eight clusters served assagiinent memory for Bloom filter.

to index the individual bank simultaneously. Therefore;-parallel lookup can be done in one
cycle. The false positive error of this scheme is slightlyhiar [78] than that in Equation (5.1). The
probability that a specific bit is still0” after the insertion phase {8 — %)” instead of the original
(1— L)kn.

The Imagine Processor consists of 8 clusters and each h&sem®Yy, 32-bit word scratch-
pad. These scratchpads, as illustrated in Figure 5.2, aré ggndidates serving as multi-segment
memories which provide 65536 bits in total of storage forBlamom filter. The hash calculations are
distributed into each cluster. As shown in Figure 5.2, givea 16, each cluster calculates two hash
values in a 8-cluster configuration. The hash values are loseadly in each cluster to address the
scratchpad memory. The operation is conducted in a SIMDdastince a family of hash functions
share the same structure with only differences in parasetetables. The logical AND operation
is performed on the lookup results from all the clustersubpfointer-cluster communication. The
single-bit result after the AND operation therefore représ the matching outcome. In order to
minimize inter-cluster communication, the bit values okeguence of 32 queries are accumulated
by shifting through a 32-bit word. Thus, 32 query results barobtained by doing a tree-based
logical AND operation through inter-cluster communicatidBits are further packed in the 32-bit
words and grouped as an output stream for other kernels ¢phasessor to verify and locate the
suspicious pattern within the packet.

Consider a filter with 2000 patterns for an 8-cluster configjon. Each cluster has 8K
bits of scratchpad, for a total of 64K bits and’aratio of 32. The theoretical false positive error

rate (i.e., false positive errors per query) can be as low0as$ by using 16 hash functions. For a
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16-cluster configuration, thg ratio becomes 64, and the false positive error rate is dowtheo
level of 10—, while the number of patterns and hash functions are sélistime. Moreover, the
performance is increased as well, since only one scratchgzatlis needed in each cluster for the
query.

There are several benefits of holding the Bloom filter in styaéd memory at each clus-
ter. The most obvious one is the distributed, low latencgsses for the queries. Since it’s relatively
low-cost to scale the number of clusters, rather than the @ilkach cluster [53], the expanding
of clusters means potential increases on both the size d@ltwm filter and the number of hash
functions. The Merrimac streaming supercomputer [26] i®@ample where each node consists
of 16 clusters. Therefore, given a fixed amount of pattetms false positive error rate decreases
significantly with the increase of the clusters while thenledirun time remains the same.

5.2.2 The Hash Functions

The implementation of Bloom filer is based on a set of indepahtash functions. Thus,
the choice of hash functions dominates the performanceeadythtem. A good example is the false
positive error rate shown in Equation (5.1) where the dédwas based on the perfect property of
the hash functions. That is, keys are assumed to be unifatistgibuted. Then, keys are hashed
and randomly distributed into each slot of the memory array.

However, in the real world scenario, the byte distributiathim packets is not truly ran-
dom. Dependencies among packets are commonly found whedth lyigher false positive errors.
The universal class of hash functions [14], widely used imyregpplications [98, 99, 97], are suit-
able for resolving this issue. This is because of its randethiproperty: by randomly selecting
hash functions from the family, the average performancebeaguaranteed independent of the in-
put keys. The detail descriptions on the universal hashtifiume as well as the schemes on hashing
strings are provided in Chapter 3.

5.2.3 Programming Model

The stream programming model is composed of two levels ohlthy: the stream and
kernel. At the stream level, data is organized into streantssent to the clusters at the kernel
level for major computation. Packets are organized asrattdaiecords and distributed sequentially

across the clusters. Each record will be broadcast to attitigters through the inter-cluster com-
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munication so that all the clusters calculate hash valussdan the same record. In other workls,
different hash values are computed from a family:dfash functions based on the same record (the
key) at all clusters in a SIMD fashion.

For a given packeP = (po, p1,ps, ..., pi—1) Of [ bytes and a sliding window of: bytes,
™ (C; denotes the byte string qualified by the windowhobytes at the position of over the packet
string P. For example, ifn = 5 andj = 0, °C, represents the byte string @fo, p1, p2, p3, p4)-

In the query phase, given patterns with the same length bytes and a packet of length
[, wherel > m, atotal of K x (I — m + 1) queries need to be performed. This is simply because
there are hash functions and a window et bytes has to slide through the packet. For example,
in the first iteration(j = 0), K hash values of("Cj) are used as the indexes to address the
memory array. If all locations of the memory array addredsgdhoseK indexes contain “1”,
then it’s highly possible that the packet contains the tapg#tern ofm bytes at the first position.
For the case of processing patterns witllifferent lengths, ranging frorm to m + n — 1 bytes
consecutively, the total number of hash values that need tmmputed s % xn xl.

The system consists of two kernels which are shown in FiguBe Bhe design is based
on theappending processyhich is suited for processing multiple patterns of cornigsl lengths.
Appending is a simple technique to compute the hash valugesffly. Instead of calculating the
hash value of an-byte string™C; starting from the first byte, the hash value/df™C;) can be
derived from the value ofi( ™ ~1C;).

Given a set of patterns with lengths contiguously specifiealfixed range, e.g(m, m +
1, m + 2, m + 3), the first kernel calculates the preceding hashes of spgddiggths over the
incoming packet. There are 4 sets of hashe§™C;) wherej = 0,1,2,3; h(™"1C;) where
j =0,1,2; h(™*2C;) wherej = 0,1; andh(™"3C;) wherej = 0. These hash values will be
used as indexes to lookup the Bloom filter in the query phasdhd mean time, the initial hash
values ofh( ™~ 1Cy), h(™C3), h(™F1Cy), andh(™F2Cy) will be grouped as an output streasy
for the base of the appending process. Along with the incgmpacket stream, these hash values are
streamed into the second kernel, where a recursive opetaties place. As discussed previously,
hash strean$; of h(™Cy), h(™1C3), h(™T2Cy) andh(™F3Cy) can be derived from the stream
So of h(™=1Cy), h(™C3), h(™T1Cy) andh(™+2C;). Therefore, the newly generated hash values
will be treated as a data stream and stored in the streantaefjie temporarily. Then, the same
kernel will consume the data stream. The same process widlesated until the end of the packet.
That is, the kernet scans through the rest of the packet and calculates thesheshesively.

Due to the excess amount of computation, the kernel onlygss®s up to four different
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Figure 5.3: The kernel block diagram.

patterns in consecutive lengths. Since the use of pattathsize ranging from 1 to 4 bytes are more
effective to associate with otheptionsin Snort'sheaderandbodyrules for the matching process,
we deliberately skip those patterns to avoid high matchésowrt loosing generality in this chapter.
A pipeline of n processors shown in Figure 5.4 is capable of handling umtdifferent lengths
of patterns. For those patterns with lengths greater tharcdipacity, a scheme callecetiuced-
pattern length is adopted. This scheme uses tioatoff length’ instead of the original one for the
matching process. Therefore, for a large number of pattefrd#fferent lengths, the large humber
of hash computations can be bounded at the cost of increéseypositive errors. The detail of
this scheme is presented in Section 5.3.1.

The performance of the pipeline is limited by the stage whiohsumes the longest
processing time. The cycle time for the first stage of thelpipei.e. on the top of Figure 5.4,
is slightly longer than the rest of the three stages sincextia set ofbase-hash values must be
computed:h( ™~1C;) denotes the extrause-hash value, which must be calculated at the first stage
of the pipeline. The output stream iotermediate hash streanontains hash values &f "),
wherej = (0,1.., (I —m + 1) ). For example, at the second stage of the pipeline, the infert
mediate hash streamo Kernel2 can be sourced by the outpmtermediate hash streafmom the
first stage. Therefore, only the first stage has to computextra values. For each stage, the com-
putation within the first kernel is only dependent on the inpackets. The second kernel depends
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Figure 5.4: The pipelined flow architecture witlprocessors. Each processor processes patterns in
a fixed range of continuous length. The depth of processpeipe can be extended dependent on
the number of pattern length distribution.

on theinitial hash streanfrom the first kernel, thénput packet streamand theintermediate hash
streamfrom the previous stage. Since the second kernel consumesstime than the first one, we

focus on the second kernel for further discussion and aisalys

5.3 Experiments and Results

The performance metrics in which we are most interestedlarialse positive error rate
and (2) processing speed. In other words, by implementiagafiproximate filtering scheme over
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Figure 5.5: The accumulated length distribution of Snohe montents, where 93% of the total
patterns has the length less and equal to 24 bytes.

the traffic stream, how high are the accuracy and throughplg2lescribe the methodology of the
pattern-matching experiment based on Snort distribu@dh dnd DEFCONS9 [31] packet traces. A
detail discussion on the heuristic nameedduced pattern lengthis presented and the performance

for both false positive error rate and processing speedhanerslater in this section.

5.3.1 Reduced Pattern Length

In this experiment, only the pattern signatures (knowncastent in the Snort rules) are
extracted and used as the golden patterns. In Snort, shitetrsare usually used along with other
optionssuch as thelepthandoffsetto minimize the false matches. Due to the ineffectiveness of
the short patterns which cause many matches within a pablegpatterns with 4 bytes and less are
skipped in the experiments.

There are approximately 2160+ rules which contain 2700tindispatterns in the Snort
distribution. The accumulated pattern length distributie shown in Figure 5.5. Among those
patterns, 97% have length less than 32 bytes, and the longestontains 122 bytes. Only 3%
of the patterns have lengths sparsely distributed acr@ssatige from 33 to 122 bytes. To scan
only for those pattern lengths, the efficiency gained fromithrative operation model described
in the previous section may be very poor due to the SIMD achite. On the other hand, the
computational load is too high to scan all the patterns aartaely from length of 33 to 122 bytes.

A scheme namerkduced pattern lengtis adopted for scanning the packet for suspicious

patterns. For a pattern with length greater than a spedifitaff lengthl, the lengthl is used instead
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of the original pattern length. This is based on the obsemvabhat a large enougbutoff could
include the entire pattern for the majority.

Several heuristics can be applied to select a portianbgtes (thecutoff length from the original
pattern. Acentral-weightedscheme shown in Figure 5.6 can be used to select the centtadrpo
of the string quite effectively for patterns listed in Talle. For example, given eutoff length
of 9 bytes and &0-byte string of filename=\"ICQ_GREETINGS.EXE\", the pattern offset is
10. Therefore, the new cutoff pattern selected from the ceptaion of the original string is
"”ICQ_GREE". Note that, a scheme of selecting the fi9dbytes of the original pattern would not
be able to distinguish pairs of patterns that share the sagfi@ pn Table 5.1.

Table 5.1: The example of patterns.

filename=\"CHESTBURST.EXE\"
filename=\"ICQ_GREETINGS.EXE\"
Content-type\: video/x-ms-asf

Content-type\: audio/x-mpegurl
/cfdocs/exampleapp/email/application.cfm
/cfdocs/exampleapp/publish/admin/application.cfm

Although false matches may occur due to the scheme, charetsweand only a fraction
of the patterns actually contribute to this type of errorsnasselect longecutoff length For
example, the chance to find a substring afe=\"ICQ_GREETINGS in the packet which does
not contain the exact pattern ofifename=\"ICQ_GREETINGS.EXE\" is low.

Simulation results based on several DEFCON traces indibateffectiveness of certain
cutoff lengths Figure 5.7 shows the number of extra packets that need tortteef inspected due
to false matches, using differeotitoff lengths For both theshift-add-xorand tabulation schemes,

if (length>CutoffPatternLength) {
PatternOffset=((int)floor((length-CutoffPatternLength)/2));

}

else {
PatternOffset=0;

}

Figure 5.6: The pseudo code of the central-weighted schéinag with the CutoffPatternLength
thePatternOffsets used as an offset from the first byte to select a new pattemn the original one.
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there are less than 100 false-match packets onceutwdf lengthis greater than 16 bytes. The
exact-matchcurve shows the false-match packets based on an exact ngatalgiorithm (Boyer-
Moore). We highlight the area under thgact-matctcurve since the false matches are due to the
reduced pattern length. As tleaitoff lengthincreases beyond 24 bytes, there are no such false
match packets. Therefore, the false matches fosshi-add-xorand tabulation schemes outside
the shaded area are due to the false positive error rate Bidloen filter. The simulation is based on
the DEFCONS9 eth3.dump trace [31] which contains 1,691,2&kets. The true packet hit count
based on the original patterns are 832,484. Therefore,vitihead of inspecting ~100 additional
packets is very small. Although a dynamic method of anatyt#ire hamming distance on each of the
pattern larger than theutoff lengthcan be applied, the simptentral-weightecheuristic is used for
all the simulations. The immediate benefits for this trafteisf tremendous since the computation
complexity is reduced t®)(n) for a large number of patterns in different lengths. Moreptiee
efficiency of SIMD operation can be maintained and the iteeaippending process can be applied.

As expected, both thehift-add-xorand tabulation schemes demonstrate good perfor-
mance with almost the same false positive error rat6.6fx 10~°. The total number of hash
functions is 16 and theutoff lengthis 16 bytes. Therefore, th& ratio is 41, which renders the
expected false positive error ratelofi3 x 1078,

We deliberately set the configuration of the third schemekeathas “Conv.” in Figure 5.7
to contrast the performance. The third implementation geldan the string-to-integer conversion
scheme shown in Section 5.2.2. The false positive errolisateich higher since the distribution is
not uniform due to thédaseis in the power of two. Moreover the conversion itself is ragal: it

maps many different strings into the same number

5.3.2 The Kernel and Stream Level Performance Results

The kernels are implemented based on three different typesiwersal hash functions.
Those are thshift-add-xorshown in Table 3.1, the tabulation method and fhewith radix con-
version based on Mersenne prime in Section 5.2.2. The siimwland kernel scheduling results
are based on the system configuration of eight clusters, actt lgas a single-read-port scratchpad
of 512 words. The system consists of eight hash functionis glitck frequency of 500 MHz. The

main processing loop is located in the second kernel. Fdr gation, hash values are calculated

1The base number is 512, byte of 0x0 is mapped to 0x100, and riwe mumbers2®! — 1 and2!® — 1, are used.
A quick fix to lower the probability is to use different prim@&mbers in the hash family. In other words, the chance of
having the relatiorh( ™ C1) = h(™Co) + cpg, is lower thanh (™ C1) = h(™Co) + cq.
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Figure 5.7: The extra packets need to be inspected withrdiffeutoff lengths The simulation is
based on the DEFCON9 Eth3.dump trace, which contains 2.69Jackets.

based on the same records of the incoming packet stream.

Shown in Figure 5.8, the cycle counts are almost reducedlimfith the adders doubled
from 4 to 8. As these results suggest, there is abundant desiglism within the kernel. The tab-
ulation scheme, on the other hand, reveals itself with layele counts while having limited ALU
resources. By comparing to tls@ift-add-xorscheme, the cost of the multiplication and Mersenne
prime operations can be seen in Figure 5.8. As expectedaltodation method has less parallelism
as we increase the number of ALUs.

The cycle-based, stream level simulationgbift-add-xorscheme is shown in Figure 5.9,
using the 8-adder configuration. The throughput for 150@-imackets is approximately 400 Mbps,
while performance of the shortest one barely tops line of Wips. The lower throughput for
smaller packets is mostly due to the fixed operation cost effitist kernel and the short-stream
effect [50, 95]. According to the kernel scheduling resut® tabulation scheme has shorter cycle
counts than that of thehift-add-xor However, the stream level simulation of 1500-byte packets

does not show any performance gains, due to SRF stalls iretiomd kernel.

5.4 Design Exploration and Analysis

The whole system contains two major portions, i.e. the d¢aticun of the hash values and
the queries of Bloom filter. Thus, there are several ways ttract the systems. The first option

is to calculate the hashes by the ALU and hold the Bloom filiesaratchpad at each cluster. The
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second is to alleviate the computation of hashes within theter through table-lookup by using
Index SRF [48] accesses while hosting the Bloom filter intstyaad. The third is to accommodate
the Bloom filter in SRF while hash values are computed by th&Jé\at each cluster.

The realization of universal class of hashing functions lsamroughly categorized into
two styles, i.e. the arithmetic and tabulation. The arithengtyle, in general, requires lots of ALU
resources. Therefore, for a system without enough compuéisources, table lookup is popularly
favored to obtain the hash value quickly for better systerfopmance [117].

The Imagine stream processor provides a good infrastriéturimplementation of both
styles. At the cluster level, the functional units are des@for handling compute-intensive tasks.
On the other hand, the scratchpad memory, which providesldtemcy data access, is a good
candidate for holding small tables. Sometimes, dependinthe hash function used, the size of
the scratchpad may not be enough. Stream Register File (3Rikh is the next closest storage
location to the processing unit can be used instead. The SB¥mposed of banks of SRAM array
and is optimized for delivering sequential chunks of datarleaved among the banks. The recent
proposed indexed SRF [48] access extension provides trabitip for non-sequential accesses,

which typically require random indexing from each cluster.

5.4.1 Table Lookup for Hashing

An implementation of table lookup for both hashing and Blofiller query at different
memory hierarchy levels utilizes most of the memory banthwvovided by the Imagine architec-
ture. The long latency due to the SRF index read can be oyaxthpy the computations as well as
the scratchpad access. A class of universal hash functasedion the tabulate method shown in
section 5.2.2 is implemented. A stre&fy, is assigned to hold a family of tableg[m][z;] where
t ={1,2,...,k}, andk denotes the number of hash functions desired. The parametepresents
a specific length of a target pattern. For a given hytdhere are 256 different values. Therefore, a
stream will hold256 x k entries, with each entry capable of holding 32 bits of hagkpace. Since
a kernel is processing a limited set of pattern lengths, farmelem, m + 1, m + 2, m + 3, only
four streamsS,,,, Sina1, Sma2, Smis are needed.

The realization is based on thm*lane accessscheme; therefore, each row of the table
as[m][z;], z; = {0,1,...,255} has to be arranged in an interleaved form instead of a linear o
along the stream. In other words, thgh row of a tablex; [m|[z;] will be located in the position of

cid() + N x z; in the streamS,,,, whereN represents the total number of cluster in the processor
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and cid() denotes thed of the cluster currently accessing the table. For exampliaei second
cluster is accessing row 3 of the table in an 8-cluster systkenstream index of that location is
14 8 x 2 = 17. The scheduling result of the tabulation scheme is showrgarg 5.10.

The cycle counts from the scheduling result is expected teteced compared to that of
theshift-add-xorsince less computation is needed. However, the reductlomited due to the extra
indexing overhead. For example, given a byte value, eadterlinas to calculate the new stream
index ofcid() + N x z; for in-lanereads of the hash value. The stream level simulation shaats th
the SRF bandwidth utilization increasdd times, while the LRF bandwidth decreased of%
compared to that of thehift-add-xorimplementation. Although the index transformation can be
done by the cluster itself, an exthardware assistan be a great help to offload the computation.
Without the extra index calculation overhead, almost 21%hefcycles can be further eliminated
in Figure 5.10. Simulation results indicate a nearly 15%riapment in throughput for 1500-byte

packets.

5.4.2 Bloom Filter Query

The Bloom filter is a bit-oriented data structure which carebsily packed and stored in
the scratchpad memory at each cluster. Therefore, in they girase, dit-extractionprocedure of
masking and shifting is needed to locate the bit in order ¢ntifly the value. For example, given a
13-bit hash value, the upper 8 bits are used to address thielgoad while the lower 5 bits are used
to pinpoint the bit position within the 32-bit word read frahe scratchpad. THat-extractionalone
takes almost 40% of the operations in the second basic blbk&roel 2. This is a good example
showing the inefficiency of processing the bit-orientedadsitucture in a word-oriented architecture.
A hardware assist implementation which provides a dedicagsources may effectively resolve the
overheads due to thst-extractionprocess. Performance gain and speedup are commonly séen wit
similar approaches by incorporating special hardwarestssf5] or special instructions like field
extraction, byte-wise and boolean operations [93, 42].

As we optimize the scheduling results, i.e., offload the agtaon cycles by hardware
assists, the scheduling result shown in Figure 5.10 retealigossible critical path due to sequential
read of the scratchpad memory. The current design of théchpad memory has only one read
port, which sometimes leads to the bottleneck for the tidm&up intensive applications [95, 66].
A significant speedup is expected with the implementatioadufitional read-port and the hardware

assists discussed.
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5.4.3 Bloomfilter in SRF and Main Memory

The counting Bloom filter [37] is introduced to embrace thembership deletion capa-
bility. This particular construction and its variants arglely used in many network applications
[11], including network traffic measurement, distributedbacaching and queue management. The
implementation is based on an arrayrofbit counters instead of a bit-wise memory array. Thus,
the size of the implementation increasedold. The stream register file is a natural place to hold
such data structure since it is the next closest storagéidoc the ALUs. Moreover, the access
latency may be well overlapped by the computation of the hakkes.

The design of multi-stage filters for traffic measurement [85ne good example of such
an implementation. For each stage with 1000 buckets, asguegch bucket has four bytes, the
total storage requirement for an 8-stage (cluster) cordigum is only 32,000 bytes, which can be
easily fit into the SRF. Assuming 800Mbps link with 100,000M$9 this configuration is able to
identify the flows above 1% of the link during a one second meament interval with the error
probability of2.3 x 10~® [35]. We have not yet implemented such application, but vegaanning
to do this as future work.

Another option is to hold the data structure in the main mgmohis option only makes
sense if the memory access latency is comparable to thaeafdimputation. By using software
pipeline techniques at the stream level, the latency cafféetigely hidden. Since the index stream
mechanism is optimized for sequential access, the ran@éahigble lookup may introduce long
delay. Moreover, the large amount of lookups may throttéelitmited memory bandwidth, causing
poor system performance. Our cycle-based simulation dewg goor performance for this scheme,
with a throughput under 90Mbps for 1500-byte packets.

5.5 Conclusions

This chapter explores the implementation of Bloom filter ¢ontent matching on the
stream architecture. The calculation of hash values isfoamed into stream processing, express-
ing producer and consumer locality and achieving efficiditization of the unique memory hier-
archy. By arranging multiple processors in a pipelinedifashthe system is capable of processing
patterns extracted from the rules of the Snort distribuiod achieving a throughput of 400Mbps
for 1500-byte packets. Since the core of Bloom filter desgyhased on a family of independent

hash functions, we demonstrate the flexibility and perforoezof the stream architecture to support
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the realization of such constructs for the Bloom filter. Imli#éidn, the efficient implementation of
universal class of hash functions may benefit many appieafisuch as message authentication
codes (MACs) [82] and streaming data processing [117].

We explore the feasibility and flexibility of supporting Bl filter in the stream archi-
tecture with some possible modifications suggested foebp#rformance. The unique scheme of
Bloom filter plays an important role in emerging network aggtions [11]. Its variants can be good
vehicles to perform event counting and classification. amgple, instead of using the single-bit
array, the counter-based memory array is used for statistitection on the traffic with the same
attribute e.g, source/destination IP address, sourd@idéen port address and protocol humber.
Moreover, the same concept can be applied to worm and vignsitsire detection [113].

To continue our investigation into stream-based netwodcgssors, we take this as the
base and look forward to exploring the similar data struector traffic analysis in the next chapter.
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Chapter 6

Streaming Data Processing

6.1 Introduction

The accurate estimation of Internet traffic statistics sgms the basis for infrastructure
planning, network provisioning, capacity forecasting acdounting [127, 65, 35]. Anomaly de-
tection on worm distribution and prevention of distributkehial of service (DDoS) attacks are also
based on the same information. Therefore, traffic analysisraeasurement have been the impor-
tant tasks for the proper operation of IP networks [38]. Aswoek bandwidth grows exponentially,
the scaling of monitoring and measuring capabilities fdiecting accurate statistics becomes a
critical issue [35]. For example, given a bandwidth of 10 &lapd a minimum-sized IP packet
(40 bytes), the time to process each packet is 32 nsec. Merdtrere is only 8 nsec available for
processing such a packet if the bandwidth increases up tG&3C-

The streaming data processing model is well fitted to meaguind monitoring hetero-
geneous and dynamic phenomena. Internet traffic, too, caratoeally regarded as a data stream
since packet data arrives rapidly as a series of elementschidllenge we are facing is to process
a potentially unlimited amount of data in a limited time anmhse. In addition, each element or
record of the data stream might have only one chance to beieadm Therefore, these issues
have recently drawn a lot of joint efforts [77, 40, 29, 10@rfr research communities of database,
networking, architecture and theoretical computer s@eresearch is conducted in regard to the

fundamental algorithmic models, programming languagesterdware and software support of
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data stream management systems. More details are providis icomprehensive surveys and
tutorial [4, 41, 80].

With limited storage, computation power, and processimgtiachieving the goal afne
pass processingver a massive volume of data is extremely challenging. Asndirtuing research
effort, the study of IP traffic analysis in the domain of dat@@m model over the Imagine stream
architecture is presented in this chapter.

The backgrounds of the streaming data model will be intreduirst with the emphasis
on the important statistical attributes of the data stre@ltiiough there are several other techniques
for data reduction and synopsis construction such as sagatid wavelet [80, 4, 41], we focus on
the sketch scheme, due to its wide applicabilities to varioetworking applications. The general
introduction on Count-Min sketch [19] and K-ary sketch [@0§ provided first. We transform the
sketch processing into stream operations provided by tlagilme programming model. The focus
is to explore the applicability of the specialized datadite and operation over the tiered memory
hierarchies: Main Memory, Stream Register File (SRF) anchlL&cratchpads.

A pipelined architecture over three Imagine processorsdsemted for the sketch-based
change detection. We demonstrate the pipelined operatidnaaalyze the system bottleneck
throughput. The simulation shows that the processor isldapa handling the sketch update at

10 Gbps for the minimum-sized IP traffic.

6.2 The Background

A data streamy = (ay,ag,...) IS @ massive sequence of elements. Each element,
(kt,ut) consists of &ey,k; € {0,1,...n — 1} and anupdate,u;. There are two different models
based on the property of thgpdate It's namedcash registemodel if u; > 0, andturnstile model
for u; € N. In IP traffic analysis, we are interested in enumerative. (¢hg number of packets
in a flow) or cumulative values (e.g. the total number of bytea flow). Since these values are
always positive, theash registemodel applies. The key; in the data stream model can be used
to represent the traffic flow. Mlow is usually defined as a stream of packets with some common
attributes. For example, it can be packets having the samefp@ourceanddestinationlP address.
Another popular flow consists of the same 5-tuple attributiess source and destination IP address,
the source and destination port number and the protocol aumb

The statistical measurement of data streanan be reflected by tHeequency moments
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The 2" frequency momertt, of data streana is defined as follows.
n—1
F.=) ff (6.1)
k=0

The £, represents the number of occurrences of'keyn the data stream af. Therefore, the
number ofdistinct valuesin the data streanp can be expressed d%. The length of the data
stream¢ is F1, the first frequency moment @f. The second frequency momeht, also known
as therepeat rateor Gini's index homogeneityis of particular interest and is widely used in the
database community [1]. For the higher frequency momengredh > 2, it indicates the degree
of skewnesf a data stream [1].

The L, norm, another important statistic attribute for many data stregplications, has
a close relation to theecond frequency momeh$. For an update model likeash registerand
turnstile the L, norm of the data streamis shown as follows:

Ly = (O Juf?)? (6.2)
t

Computing the exact answer of these attributes is very diffiiecause of thepacecon-
straint. For example, a naive implementation for countimg éxact number distinct valuesn
the data stream has to use a counter for each element in the key space. Bettwmukey space
can be very large, this is not practical. For example, theldiR8-tuple IP key space would require
2124counters.

Therefore, research efforts have been focused on appro@imapproaches to estimate
these attributes for applications like error estimatior][4lata partitioning based on the degree of
skewness [32] and abnormality detection for IP traffic [60].

6.3 The Sketch-based Algorithms

Sketch [15, 1, 80] is a powerful yet compact data structupaloke of synopsizing substan-
tial numbers of data elements without keeping its statefiokmation. The probabilistic property of
this structure also provides a mathematical guaranteectarrate estimation on various attributes

of the data streams.

LFor convenience purpose, we discard the time substiipt referring to the current state of the element over the
data stream [80].
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Figure 6.1: The two-dimensionalv(x d) array of counters.w rows andd columns)

In general, the sketch algorithms rely on the probabiligtimperty of the universal class
of hash functions (described in Chapter 3). Upon the ardfalach element in the data stream, the
key is hashed and the update is applied for a counter detedntiy the hash value. sketchdata
structure contains the final values of these counters in eifgpgme interval. Due to its linearity,
we can combine several sketches together for query proces#\ query is the estimation of a
specific attribute on the data stream based on the sketattmll Each algorithm has its own way
of making the estimation. A detailed analysis and compar@fovarious sketch algorithms can be
found in Cormode’s survey [19].

Generally, there are two phases in the operation of skegchitim: theupdateandquery.
We highlight the update phase and then, illustrate two bkalgorithms in the following sections
due to their excellent properties.

6.3.1 Count-Min Sketch

The sketch utilizes a two-dimensional array of countéfg[;], where0 < i < d,0 <
j < w. As shown in Figure 6.1 represents the number of arrays ands the number of entries
within each array. The two-dimensional array of counternsdexed by a set of independent hash
functionsH = {h;, 0 < i < d}. Each hash functioh; maps a key: € {0,1,---,n — 1} into the
hashing space df0, 1,---,w — 1}.

Initially, all the counters in the 2-D array are set to zera éach element = (k, u) of
the data stream arrives, the kiewill be hashed by the set afhash functions. Then, the valuewf
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will be updated into the array of counters indexed bydlmash outcomes, as illustrated in Equation
6.3.
Cli][hi(k)] = C[i][hi(k)] +u, 0 < i< d (6.3)

The Count-Min sketch is capable of providing approximatenmestion of a query for which the
accuracy is guaranteed within an error factoe @t a probability of. The values ofl andw are
determined by the parametersands: d = [In}| andw = [£], wheree denotes the base of the
natural logarithm function. The two-dimensional array ofinters is indexed by a set®funiversal
hash functions.

The Count-Min sketch can provide tlie §) approximation of a point query over a data

stream. By given a key, the estimated point query is shown in Equation 6.4.

Ay = mini{C[i][hi(k)]},0 <i < d (6.4)

The estimated value of,, has the guarantee df, < A, , whereAy represents the total
update value for the key. The error is bounded (shown in Equation 6.5) with probghbdi least
1— 6, wherellal|, = S325 | Axl-

Ay < Ay +¢ellall, (6.5)

An example of usinge, §) = (0.0001, 0.0005) yields an estimation result where there
is 299.95% chance that the error factor is within01%. For this example, the data structure of
the Count-Min sketch consists 8fhash functionsd = ””mb and 27183 counters @v =
[Ing5s7|) in each array. Assuming a 32-bit counter, the total sizéefdata structure 869, 856
bytes.

The Count-Min sketch can also provide the estimation fogeagquery and inner product
guery. These queries are all related since the range quesgéntially‘a sum of point querie€sand
both point and range queries &specific inner product queriéd19].

One of the important applications based on the point quettyadinding of top-k items
[15, 21]. For example, the estimated answer can be usedrtifidthe top 10 flows of the IP traffic
or top 100 IP addresses in terms of bandwidth consumption.

Another important contribution is the estimation of the ldi2m. For a skewed data (> 1

in the Zipf’s distribution modé)), the estimated L2 norm is shown as follows.

2In the Zipfs distribution model, the frequency of theh most frequent itenf;, is captured by the ratio of a scaling
constant of”, and thek's power of parameter. That is, fr, = %
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mini{ (3 Cllli]*)*} (6.6)

6.3.2 K-ary Sketch

K-ary Sketch is proposed by Krishnamurthy et al [60] based on thesgpdate process
illustrated in Equation 6.3. It utilizes the same two-disienal (v x d) array of counters as those
in the Count-Min sketch. However, the counters have to bexed by a set ofi-universalhash
functions.

The approximation of a point query over a data stream isreiffeas well. By given a key
k, the estimated point query is shown in Equation 6.7.

Ay = medianie[d]{(c[i] [hlikz] 1—/5(5)/20}7 0<i<d (6.7)
where
Z(S) = _ Clo][j] 6.8)
JjEw

The variance of the above point query is boundequ%y, whereF; represents the second
moment of the data stream.
The estimation of the second momdiit of the data stream is defined as follows with

. 12
bounded variance 031%1

w 2
Fy = median,gg {2 3" (€l - 200 (6.9)

J€w]
6.4 Sketch Operation on Stream Architecture

6.4.1 The Stream Programming Model

The sketch’s 2-D array data structure can be representedsaeansS in the stream
programming model. The streashconsists ofl x w records, where each record is a 32-bit integer.
Thei-th record of the strearfi is located in the entry: | of the ¢ mod d)-th array, as illustrated in
Equation 6.10.
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S[i] = Cyfi mod d][m], 0<i<dxw—1 (6.10)

For ad-cluster Imagine processor, each cluster can perform amemtify-write operation
over thew by d array for eaclupdateof the incoming data stream througidexed SRF accesses
[48] in a SIMD fashion.

The sketchS(t) is usually updated for a time intervalt started at time. It can be stored
back to the main memory while a new sketgft + At) is being updated. Given a set of sketches
(or streamsS(t), S(t + At),---,S(t + (n — 1) A t) in stream level programming model), the
processor can linearly combine these sketches very etiigigra vector style operation. A generic

combining process over a setwkketched is illustrated as follows.

n—1 n—1
COMBINE(S) =Y S(t+s)=>» Cliljl,icd jcw (6.11)
s=0 t=0

An estimation and query operation over the combined timerial can be performed based on the
newly generated combined sketch. As shown in the Equat®re6l and 6.9, these operations are
highly data parallel and fit very well in the SIMD processarharecture.

6.4.2 The Point Query

At the kernel level, the query can be simply accomplishedh®jindexed SRF access
directly with the hashing values for each cluster in a SIMBEhfan. The point query operation can
also be performed efficiently by tHadexed Streamaccess at the stream level. Let's take a look at
the following example on how a point query can be done by gavdreyk; and a streant in the
main memory.

There ared different indexesh(k1), hi(k1),- -, hq—1(k1) after keyk;is hashed byl
hash functions. Then, an index stre&tp, can be formed by converting the above indexes accord-
ing to Equation 6.10.

Side = ((ho(k1) X d 4 0), (hi(k1) x d+1), -+, (hg-1(k1) x d+ (d = 1)) (6.12)

The query strean$,,,,, can be derived by the following indexed stream operation.

3As the sketch operation is always based on the time inteékvalve use(t + i) for short instead oft + i - AAt).
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Squy = S(0, (d x w—1), im_acc_index, Siqy ) (6.13)

Then, the query streaiy,,,, can be sent to the host processor or another kernel to pick up
the minimum or median value.

6.5 Sketch-based Change Detection

The change detection of network traffic is referred as theitoong of significant differ-
ences in traffic attributes over two observing intervalse attributes of interest can be the number
of packets, flows, or total bytes of the traffic.

Finding the significant changes in the network traffic is ohthe key building block for
several important applications. For example, it can be metthe billing and usage tracking by the
Internet service providers. It can also be used for anometigation for network security purpose
to prevent worms and DoS attacks.

Change detection is especially challenging at the netvwawdd because a massive amount
of data has to be processed in real time at wire speed. Tpisaimpling is a popular method
applied to tackle the processing and storage cost incugrébdebhuge amount of traffic. Sketch is
another interesting approach as it offers low space remapgingé and guaranteed accuracy.

The difference of traffic attribute, can be characterizethefollowing three typesvari-
ational differencerelative differenceandabsolute differenceTherelative differenceaefers to the
ratio of difference between two observing time interval.dAthevariational means the large vari-
ance over multiple time periods [20].

In the following section, we take the sketch-based schep(f&sed on K-ary Sketch)
as an example to illustrate the efficiency of the stream srchire. The scheme is referred as the

absolute differencas it looks for the large difference between two observimgtintervals.

6.5.1 The Pipelined Architecture

The scheme [60] consists of three major modules: sketchc#sting and detection. The
three modules are transformed as kernels residing in thifeestht stream processors connected by
a communication network. The first kernel constantly upsitlie observed sketc$), for a specific

time interval At as illustrated in Equation 6.3. The sketghwill be sent to the second processor
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Figure 6.3: The kernel diagram for temoving average calculation at tinhe- 1.

where sketch combine operation can be performed. In thisekeit produces a series of forecast
sketchesSy, which can be based on different forecast models as needeel.effor sketcls, is
derived at the third processor by subtracting the obserkettls.S, with the forecast sketcli .
The alarm is issued based on the threshold It is calculated based on the product of a predefined
parametefl’ and the estimated second moment over the error skgtcBiven a keyk, the alarm is
raised if the point query of over the error sketch. is larger than the thresholt,.

Let's take themoving averageas a forecast model for example to illustrate the stream
operation. Given a data sequencef= {d;}, wherei € {0, 1,---n — 1}, theW-moving average
M Ay of data sequenc® is defined as follows.

1 +W-1
MAw = = > d; (6.14)
j=t

At this kernel, as shown in Figure 6.3, it computes the fosesketchS, (¢ + 1) (at time
t+ 1 - At) based on the previoud” observed sketches corresponding to the pashtervals.

1 wW—-1 .
Sp(t+1) = > St —i) (6.15)
=0

Due to its linear property, the forecast sketch calculatian be computed incrementally
and recursively. For example, at time- 2, the calculation o5 (t + 2) is illustrated as follows.

Sp(t+2) = Sp(t+1) + %(SO(H—I) C St —W 1)) (6.16)
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Figure 6.4: The kernel diagram for thNé-moving average calculation at tinae- 2.

The kernel does not need to calculate the forecast skete lmasthe observed sketches
in the pastiV interval. Since the SRF still holds the sketchesSeft + 1) and S, (t — W + 1),
the kernel only needs to take the latest observed sk&ith+ 1) as input stream to speedup the
computation.

The kernel diagram shown in Figure 6.4 demonstrates a clpssducer-and-consumer
locality captured by SRF in the stream processor.

The whole operation is arranged in a pipelined fashion. feigu5 shows an example
by using a window size of four update interv@ld” = 4). The first forecast sketcH;(t + 1) is
generated shortly after the beginning of time 1. As the system finishes the update process at
t + 1 where the observed sketé)(¢ + 1) is available, the error sketc. (¢ + 1) can be computed
immediately at time + 2. Thus, the alarms can be generated thereafter.

6.5.2 One-pass Processing

The query process of sketch based scheme has to rely on theabtkey. That is, the
sketch data structure does not contain any informatiorrdaggthe key itself (the IP source address
in the example above). Therefore, the key streams have ttobedsand then used for the query
process. This may limit the scalability due to the extra ¢osthe storage. A way to avoid this is
to use the current arriving key streams for the query prooessthe previous sketch data structure
[60].
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Figure 6.5: The pipelined operation of sketch processing.

For example, the alarm is created at the third processoribyg tise current key over the
previous error sketch. As shown in Figure 6.5, the alarmsbeagenerated at time+ 2 by using
the current keys based on the error skefcft + 1) created at time + 1.

The drawback of using the current keys over the previous sketch is that the system
is likely to miss the detection or produce a false alarm, beedhe previous keys updated in the
sketch are not showing up again in the current key stream.

As we decrease the update time interfal, the chance of missing the detection or pro-
ducing the false error may be lower. Moreover, we may be ableobst the accuracy by having
lower chance of collision rate while doing the sketch update will discuss this interesting phe-
nomenon in Section 6.6.2.

6.6 Discussions

6.6.1 The System Bottleneck

The counter update process is usually set for a specific titevial At in terms of
minutes. It can be one or five minutes [5, 60] depending on tbhegssing capability of a sys-
tem. Thus, shown in Figure 6.2, the sketch processing timeduving the forecast sketchi; and
error sketchS, in kernel B and C is bounded by the observing interval as tlseed sketcly, is
sent every\t time to the second and third processor.
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The hash calculation for point query over the error skeficin kernel C are based on the
same set of universal hash functions used in the sketcheiptiage. There is no need to re-calculate
the hash values again as those can be sent as a stream takéomalkernel A. Moreover, the point
query for the alarm can be based on sampling [60] of the incgrkey stream. For an interval of
one and five minutes, the processing time is much relaxed amdpo that at the first processor.

As the hashing and counter update (read-modify-write @}dess to be quick enough for
each incoming packet at line rate, the critical path of thenge detection is in the stage of sketch
update at the first processor.

The kernel of sketch update performs the hash calculatidrupdates the counters in the
SRF by in-lane indexed stream access in a SIMD fashion ftt elgsters (as described in Section
6.4.1). The kernel computes the hash value of a 32-bit keydshing two 16-bit subwords in
parallef. Therefore, the abundant ILP can be exploited by increasiagiumber of ALUs in the
cluster. Figure 6.6 shows the kernel performance of skegidate with different ALU configurations
by using 2-universal and 4-universal hash functions.

For the simulation, each record of the key stream consistS@fbit IP source address and
a packet length. The Imagine stream processor (3-adder-andtplier configuration) is capable of
processing 1,920 keys in total of 28,335 cycles. As each keyttbe hashed by eight independent
hash functions, there are total of 15,360 hash calcula{i@umiversal) and updates on the sketch
counters . That is approximately, in average of 1.84 cyckspsh and update. It takes an average
of 15 cycles to hash and update for a given key. The time fautating the same number of hash
values by usingl-universal hash functions is 63,377 cycles. It takes aregeeof 33 cycles to hash
and update for a given key.

For a system clock of 500 MHz, Imagine is capable of handlimgupdate of minimum-
sized IP traffic with the throughput of 10.8 Gbsuniversal) and 4.8 Gbpguniversal), respec-
tively.

For the example shown in Figure 6.2, the observed sk&tdh sent every\t time to the
second and third processor. Thus, the sketch processimrgrikernel B and C is bounded by the
observing interval. For an interval of one and five minutés,much relaxed compared to that in
the first processor. The interconnection network interfamesists of eight stream buffers, each is
capable of sustaining 2 GBps of bandwidth for a stream. Tthgsjnterface supports bandwidth

of 16 GBps in total. However, the maximum memory throughpu @&sBps may become the

“We use the hash functions described in Chapter 3.
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Figure 6.7: The cumulative number of flows during one 30 r@aunhterval (left) and 1 minute
interval (right) for a OC-12 (622 Mbps) Internet backbong [5

bottleneck of the sketch process as the system is movingfrdetathe main memory to the SRF.

It takes about 15,105 cycles to move two 32k-byte sketclma the main memory to the SRF. It
takes about 8,201 cycles for to fetch one 32k-byte sketch.

6.6.2 The Estimation Accuracy

The error factor of the sketch is mostly governed by the nurabeountersw in the array.

With limited space for holding the sketchin the SRF, we may not be able to increase the number

of countersw to a large value for better estimation accuracy for high n@uraffic consisting of

millions of flows.
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Generally, the cumulative humber of flows scales linearlyo{ in Figure 6.7) with
the observed time interval [5]. Therefore, the expectedmemof collisions in each of the sketch
array decreases as the measuring perfiadreduced. In other words, fewer flows means fewer
opportunities for collision.

This observation brings us an idea of maintainingub-sketches instead of one in a time
periodAt. As the system performs the sketch update, the previouseghdab-sketch can be stored
back to the main memory within the update time%fwithout incurring extra latency. Figure 6.8
shows the update of sub-sketches.

Based on the linearity, the final estimation of a point quésikg Count-Min sketch as an
example) with a key:, can be presented in Equation 6.17.

n—1
A(k) = min{Cli)[ha(k))}, 0 < i < d (6.17)
t=0

Denoted as the time multiplexed scheme (TMS), it can bedéughhanced by having each
key k associating a small tag indicating to which the sub-skéigihe key belongs to during the
updating phase. Therefore, in the query phase, the systgnmatkes the inquiry to the sub-sketch
C; containing the key, which yields more accurate estimatiguomnt queryA(k).
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Figure 6.9: The effectiveness of TMS. PSC-111463727&1@C48c PoS link connecting the
Pittsburgh Supercomputing Center [87]. The Quantum is dehas the number of smaller update
interval used within the original time periatit.

In order to quantify the improvement on the accuracy for pgurery, we introduce the
Quantumand the average errdirr. The Quantumis denoted as the number of smaller update
intervals used within the original time periadt. The average error dfrr is defined as follows.

Err = %;(WP (6.18)

The simulation is based on a 90-second tRAS€-1114637278-1.tdlom an OC48c PoS
link connecting the Pittsburgh Supercomputing Center.[&dch flow, also defined as the key, is
based on a distinct source address. And each point queng dethrepresents the total size of the
flow. There are 5,167,489 packets consisting of 24,569rdiffiesource addresses.

By usingQuantumof 3 and sketch size of w=4,096, the average error of Countpaint
guery is lower than the use of a single sketch of size w=7,F68ure 6.9 shows the effectiveness

of using this scheme.

6.6.3 The Tag Implementation

Given a keyk, the inquiry to see if the key has been hashed and updatedhiatsub-
sketch is a classic membership query problem. Therefoigeaigjood fit to use the Bloom filter due
to its compact data structure. The query results, howeverassociated with a small probability
of false positive error. That is, if the sketch does not ciontiae key, it may be revealed as the key
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Figure 6.10: The improvement of the point query based onlthege of parameters.

does exist. This low probability of false error is acceptasihce the sketch algorithm itself is not
precise, either.

The Bloom filter query accuracy is based on three parametieesnumber of keys, the
number of hash functions used and the¢n ratic>. Depending on the accuracy of the query, the
size (in bits) of the Bloom filter data structure for each subtch is shown as follows.

Numberye, m

Size = —— ey 1T (6.19)

Quantum n

Let's take the simulation in the previous section for exanplssume that we construct
32 sub-sketches (quantum=32) for the update process batkd tvace consisting of 24,569 flows.
For each sub-sketch, the size of the Bloom filter is 960 bytiéls tve 12 /n ratio of 10. The false
positive error rate is on the order tf—3 by using the same 8 hash functions for the sketch updating.

We can easily compact the Bloom filter data structure as arst$b f;(), which only
consists of 240 32-bit records during the update phase.

In the point query phase, the Bloom filter query is proceedstiviith the keyk over the
streamSbf;(). Then, the kernel can skip the query of the sub-sketch stig@p() if the result is
false.

In addition, while multiplexing the sketches, the paramei{g andb in Equation 3.3)
of the universal hash function can be changed randomly teeelhe*mathematically predicted

average performancedf using universal hash functions [74]. The change of thaipaters is mo-

SPlease refer to Chapter 5 for more details of the Bloom fileration.
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tivated by Makowsky et al [74]¢In order to be mathematically certain that the predictecesage
performance will be achieved, it is necessary to change hasttions periodically.” As the byte
distribution within packets is not truly random, dependes@mong packets are commonly found
which yield the non-ideal behavior of the hash functionserBifiore, by randomly selecting hash
functions from the family frequently, the average perfonce can be guaranteed, independent of
the input keys. By comparing to the error factor of the CaMim-point query by using TMS, Figure
6.10 shows up to 18% improvement on the same scheme with #mgetof hash functions. The
drawback of this approach is that we break the linear prgpeithin these sub-sketches.

6.7 Conclusions

The sketch algorithms have been widely used in many netwarkagement applications
[80, 40, 41]. As many new algorithms [19, 60] and improversg6®, 46] have been proposed
recently, we believe that an exploration on a programmaikeedficient processor architecture is
beneficial to applications based on the same algorithms.

In this Chapter, we introduce two sketch algorithms: theriKsketch and the Count-Min
sketch. We illustrate the point query operation at the strppogramming model with some possible
improvements. These sketch operations are highly datdgdaaad suited for the SIMD paradigm.
We also present the pipelined architecture for the apicaif sketch-based change detection [60]
over the Imagine stream processor. As demonstrated, thehgkecessing is accomplished in a re-
cursive and incremented way, where the producer-and-cosslocality can be captured efficiently
by the stream programming model.

Maintaining and updating the statistics counters for léghed network is a challenging
task. For example, upon the arrival of a minimum sized IP pat¥0 bytes) in a OC-768 line (40
Gbps), a read-modified-write process has to be applied td af ®®unters in 8 nsec. Assuming
there are 8 counters and the size of each is 32 bits, the tetalany bandwidth required is 4 GBps.
With the maximum SRF bandwidth of 32 GBps, maintaining andatipg the statistics counters
can be effectively realized on Imagine stream processdr Matcomputing resources and unique
memory hierarchies.

As we look over the concurrent hardware architectures dapafbsupporting the high-
speed statistics counter update [111, 96, 103], they shemenenon memory organization. That is,

a set of faster but smaller statistics registers are imphtededn SRAM and these register values are
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periodically updated into a larger but slower set of comieDRAM.

The sketch operation in Imagine processor can be modeledimitar but at a coarse-
grained fashion based on the stream programming model andetted memory hierarchy effi-
ciently. In order to contrast the performance, we contirmuexplore the sketch update algorithm on

a different processor architecture in the next chapter.
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Chapter 7

Intel IXP Network Processor

As discussed in the previous chapter, the sketch algoridmbe utilized for many net-
working applications. We continue to explore the uniquad#tucture on a different type of proces-
sor architecture for comparison.

In this chapter, we focus on the implementation of sketchatgpdince it is regarded as
the bottleneck of the sketch algorithm. First, we introditel’'s Internet eXchange Architecture
framework. Then, a brief hardware architecture of the IXBRB presented.

The implementation on the IXP2800 and the performance tesuke presented next.
Based on those, we make a brief comparison with the reswolts fhe Imagine stream processor.

The pros and cons of each approach are discussed at the dnsl didpter.

7.1 Intel Internet eXchange Architecture

The Internet eXchange Architecture (IXA) is a popular netvprocessor framework.
Designers can build the systems with great programmingbiléxi using the network processor
while still achieving high-performance packet processhgvire speed. Armed with several dedi-
cated hardware assists, the processor architecture exjieipacket-level parallelism with multiple
multi-threaded microengines.

As shown in Table 7.1, there are several network processuliégs designed for different

performance requirements. The IXP1200 family is the firstegation consists of six parallel mi-
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Table 7.1: Brief Comparison for IXP Network Processors.

‘ Max. Clock‘ Microengines‘ SRAM Bandwidth‘ XScale Core‘ Power

IXP12x0 | 232MHz 6 464Mbps 232MHz 5W
IXP2400 | 600MHz 8 2x16Gbps 700MHz 13W
IXP28x0 | 1400MHz 16 4% 16Gbps 700MHz 21-26W

croengines. The IXP 2400 processor, with eight microersyoperated at 600 MHz, is capable of
processing tasks up to OC-12 line rate. The IXP2800 famitjesigned with 16 microengines for
handling the traffic throughput up to OC-192.

7.1.1 The IXP2800 Architecture

The IXP2800's hardware architecture diagram is shown imf€ig.1. The XScale core,
running at 700 MHz, is designed to take care of the controi@lasks. Some typical examples are
running the signaling stacks, exception packet handlirdycmp configurations. The receive and
transmit buffer, located in the Media Controller, is resgible for holding the packet data in and out
to the processing elements of the chip. The Media Contrigleonnected to the layer 2 devices and
switching fabric through the System Packet Interface Lé&P14) and Common Switch Interface
(CSIX) respectively.

As the packet comes in the receive buffer, it is then proct$sethe microengines
arranged in two clusters. There are a total of 16 microesginening at a clock frequency of 1.4
GHz. The second-generation microengine (MEv2) featur@sinstructions and hardware assists
for processing packets at high speed. Each microenginerfgasx@cution unit, which is capable of
supporting up to 8 different contexts (threads) simultaisgowith little switching overhead.

As shown in Figure 7.2, each microengine has 8K bytes ofunstn store and its own
CRC unit to offload the intensive computation from the exiecutinit. The transfer registers hold

the data transferred between the push/pull bus and the te®cunit.

7.1.2 Memory Hierarchy

The memory hierarchy, consisting of local register filesalanemory, scratchpad, SRAM
and SDRAM, is capable of meeting the storage, bandwidth ateh¢y requirements for various

applications.
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There are two banks of general purpose register files anchhrimemory with the size of
2,560 bytes. The SHaC unit contains a 16K-byte scratchpadamg which is commonly used for
communication and data sharing among microengines. Théchgad is capable of holding up to
16 ring buffer implementation. It also supports atomic get,and subtract operations.

The SRAM controller has four channels. Each channel is dapafiproviding 2 GBps
bandwidth running at 250 MHz. The frequently accessed dat@tare of the processing algo-
rithm such as IPv4 forwarding table can be hold in the exteésfRAM. The SRAM controller also
supports the atomic operations. It features dneue arrayimplementation which can be easily
configured as a ring or queue data structure.

The IXP2800 processor can support up to 2G bytes of DRAM with landwidth of
50Gbps. The packet payload is usually placed in the DRAM diis farge capacity.

7.1.3 The Programming Model

The programming model can be roughly divided into two laydrisierarchy: thecontrol
anddata plane as shown in Figure 7.3. The hardware abstraction libragesithe lower level of
complexity from the programmer with hardware specific dgverhe microblock library contains
the specially optimized function calls written in Microeng C and Assembly languages. Program-
mers can reuse these functions for packet processing suhdforwarding, layer 2 bridging and
filtering. The library in the control plane is based on thalitianal C and C++ languages. The
resource manager and core component libraries are designélde Xscale core processing the
management tasks such as call signaling, queue managenaechip configurations.

Generally, the software design in the data plane can be iagghinto three major stages:
the ingress, process and egress. In each of these stagkst peacessing tasks such as receive,
enqueue, dequeue and transmit can be done by using the rokslprovided in the library. A
programmer has to decide a way of data communication andftramethods among different
processing entities. The processing tasks can be arrangepipelined fashion by using a series of
microengines. Or, several microengines can execute the &esks in parallel. The performance is

highly depend on the proper partition and allocation of mécrgines for different tasks.
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7.2 Implementation of Sketch Update

The sketch data structure is essentially a 2-D counter .aifagre are several possible
locations within the processor to hold this counter arragcdl Memory within each microengine,
Scratchpad, external SRAM and DRAM.

The size of Local Memory within each microengine is 2,56Gby(Therefore, it can only
hold 640 entries of 32-bit counters. The size of the on-clu@a®hpad is 16K bytes and it is shared
by all the microengines. ForaK x 8 32-bit counter array (as illustrated in Figure 6.1), it regsl
32K hytes in total memory size. Thus, the choices of usingal. btemory or Scratchpad are out of
the scope. The only good choice is the SRAM since the acceswiafor the DRAM (300 clock
cycles for IXP2800) is almost twice that of the SRAM (150 daycles).

Each thread of the microengine fetches a packet from theveegeieue and calculates
d different hashes based on the same attributes in the paekeeh Thus, the implementation
is different from that in the Imagine processor whérdifferent hash calculations are distributed
across the clusters. Figure 7.4 shows the differences lof kagh calculation over eight keys in IXP
network processor and Imagine stream processor.

Upon the arrival of a packet, a thread will be assigned to pjzkhe key (say, IP source

address for example) and calculaight hash values as indexes to update the counters in SRAM.
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Figure 7.4: Each thread of the Microengine calculates alifgrent hashes based on the same key
in IXP network processor. For Imagine processor, eightdhifit hash calculations are distributed
to each of the 8 clusters.

The updated value can be the size of the packet or simply a&packnt, depending on the applica-
tion. The next thread in the same microengine will be assigagick the next key from the packet
gqueue as the first thread stalls. The IXP2800 is capable aepsing 8 threads in each of its 16
microengines. Therefore, there are, in maximum, 128 imfligreads updating the counters in the
SRAM.

Maintaining the atomicity for each update is critical to #ieeuracy of the data structure.
The processor provides several instructions to supportiraic operation. The atomic arithmetic
operation test_and_addis used for its efficiency. Instead of issuing two commanitie SRAM
read and SRAM write for each read-and-modify-write accéss, microengine issues only one
command that contains the address and increment to the SRAlvbler [49].

7.3 Performance

The SRAM access latency is between 70 to 160 clock cycles I8 variance is mainly
because of the arbitration latency and limited depth of caminFIFO. We'll assume 120-cycle
latency as typical.

The sketch update based on theniversal hash function on a 32-bit key is a latency-
bounded operation, because the hash calculation only #kegcles and the access to the SRAM
takes 120 cycles, as shown in Figure 7.5. However, it eagihstout to be computation-bounded by

using thed-universal hash function. The hash calculation for a 3Z&jttakes about 220 cycles as
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Figure 7.5: It takes about 70 cycles for a single thread toutale the hashing of a 32-bit key. The
thread becomes idle due to the memory access latency of tRéscy
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Figure 7.6: It takes about 220 cycles for calculating a 3%burce address by usiguniversal
hash function.

illustrated in Figure 7.6. As we may have expected, the cdatjmn time is definitely longer for a
key consisting of more than one tuple of attributes, sucho#is I source and destination addresses.

For an average SRAM access latency of 120 cycles, it takessitt 1030 cyclésto hash
a key and update counters in the SRAM for a single thread im@ineengine. That is an average
of 129 cycles per one hash and update. For a perfect scemaeiglat microengines where each is
capable of supporting eight threads, it takes an averag®bfcles per one hash and update.

The simulation shows that, for 8 microengines (8 threadsaghamicroengine), it takes
about an average of 59.4 cycles per key. It's approximat&l@ €ycles for each hash and update as
each key has to be hashed by eight independent hash funclibagerformance can be increased to
33.57 cycles per key (an average of 4.2 cycles per each hddlpaate) by using 16 microengines.
With 16 microengines, the processor is capable of hashidgupdating twice the number of keys
with the expense of extra cycles due to conflicts of resounegirsy. The extra cycle counts are
approximately 13% as shown in Figure 7.7, and those are bea#uncreased stall and idle cycles
in the microengines. The processing throughput for mininsimed (40-byte) IP packets is 13.34
Gbps with system clock of 1.4 GHz.

The above simulation is based on hashing and updating 64028@keys for 8- and 16-
microengine configuration respectively. The keys are pseaddom 32-bit words stored locally
and hashed by the 2-universal hash function. The sketcht&muare distributed among 4 banks
of SRAM. On average, the microengine achieves 72.9% uiitima The processing throughput for

!There are eight hash calculations and counter updates feea key. The cycle count is based on a hash calculation
of 70 cycles pluss x 120 cycles of memory latency. The remaining seven hash caionkare overlapped by the memory
accesses.
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Variance of Performance Statistics
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Figure 7.7: The variance of performance for different aedture configurations. The configuration
of 16 microengines (M16T8) has more idle and stall cyclespaming to that of 8 (M8T8).

minimum-sized (40-byte) IP packets is 13.34 Gbps with systiock of 1.4 GHz.

7.4 A Brief Comparison with Imagine Stream Processor

The Imagine stream processor is capable of processing @5 calculations and up-
dating the sketch counters in total of 28,335 cycles. Thapoximately 1.84 cycles per hash and
update. The simulation is based on the implementation d€sl@unters over the Stream Register
File (SRF). The kernel performs tt&universal hash calculation on a 32-bit key and updates the
counters by in-lane indexed stream access in a SIMD fasbio8 ¢lusters.

Given the clock frequency of 500 MHz and 1400 MHz, the proicgsshroughput for
minimum-sized (40 bytes) IP packets is 10.86 and 13.34 Gbpbrfagine and IXP2800 respec-
tively. That is about 3.68ns and 3ns for each hash calcualatial counter update. The IXP2800
processor achieves approximately 22% higher throughput.

Another point of interest is the power consumption. Basethersimulation of NePsim
[73], the estimated power consumptidor each microengine performing sketch update in IXP2800
is 0.95 watt. The power consumption is 15.2 watt for 16 mingiees without counting the other

function units and peripherals.

2Due to the limitation of the simulator, the estimation iséxen the SRAM_READ and SRAM WRITE instructions.
We are currently modifying the codes of NePsim [73] to suppa atomic SRAM access. We put this as the future work
for more accurate modeling of the power consumption for ISR
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Table 7.2: The power consumption and VLSI characteristicgmagine [55, 54] and 1XP2800 [23].

\ \ Imagine \ IXP2800 \
Clock 500MHz 1400MHz
Hardware Configuratior] 8 clusters 16 microengines
Die Size 16 mmx 16 mm | 14.33 mmx 19.09 mm
Number of Transistors 21 million 82 million
Memory SDRAM 167MHz | QDR SRAM 200MHz
Typical Power 2.89W 21~-26 W
Maximum Power 4 W 30 W
Technology T10.15um CMOS| Intel 0.23um CMOS

The maximum power rating is provided based on a publiclylalile benchmark result
[76] for reference purposes. By running the OC192 POS fattimgrapplication with 100% through-
put, the IXP2800 consumes about 30 Watts in the worst cas@uticounting the power in the I1/10O
interfaces [76]. The typical power consumption in the rabgeveen 21 and 26 watts is reported in
the literatures [13, 76].

The typical power for Imagine running the sketch update ktmn is 2.89 watts. This
is based on the estimation by using the formulas [53] deriye&hailany et al. Compared to the
sequential stream access, the use of indexed SRF accesphadraately 4x increase of the energy
consumption [48].

The maximum power of 4 Watts is based on the worst-case dstipawer consumption
over a range of applications [55]. The IXP2800 processosgomes almost 7 times more power

than that of the Imagine in the maximum power rating as showrable 7.2.

7.5 Discussion

The two major steps for the sketch update operation are hashlation and counter
increment. That is, for a given key, there are series of radtic operations followed by memory
accesses. For a relatively small-sized sketch implenmentabhe local memory (e.g., the L1 or L2
caches)) is the best place to hold the data structure dueghats access latency. Therefore, for a
scalar processor, better performance can be achieved pyysinnimizing the processing cycle of
the hash calculation.

There are several ways to shorten the hash calculation wtittonpromising its quality.
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Figure 7.8: The performance of sketch update with the sameau of keys on different proces-
sor configurations. The sketch update process consistsshfdaculation Z-universal) and read-
modify-write counter access.

The use of dedicated hardware assists and the algorithrtimieptions are commonly seen in the
literature [116]. Among them, the tabulation method is aydapchoice. The hash values are pre-
computed for all possible input keys and stored in a tablenTthe lengthy calculation cycles can
be replaced by a single table lookup. The tabulation bdasuiversal hashing proposed by Thorup
and Zhang [117] is a good example of this time-and-spacedfad

However, the tabulation scheme may not be effective beoafuge limited space of the
local memory. Different applications may require highateleof query accuracy where larger size
of sketch is required. Thus, the data structure becomesitge to fit in the local memory along with
other data structures. Once we put the sketch in the exteraadory, the cache can not effectively
bridge the latency gap due to the randomized nature of thelskecess pattern.

The multi-threaded processor provides a way to hide thehognory access latency. The
performance of sketch update with the same number of keysffenetht processor configurations
is shown in Figure 7.8. For processor configured with eightragingines, the microengine idle
cycles can be eliminated with eight threads. In this reganidjmizing the hash calculation cycle
for higher throughput becomes less effective since thaitztion can be overlapped by the memory
access latency. The performance by using tabulation mettaydbe even worse if the table can not
fitin the local memory. As a result, the table lookups introeltnore memory latencies which may



107

Worstcase Performance Degradation
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Figure 7.9: The worstcase performance degradation by mgagh280 keys of the same source IP
address (M16T8_collision). The performance is based ompitheessor configuration of 8 threads
in each of the 16 microengines. The performance with keysefigo-random source IP address is
shown on the left (M16T8).

not be effectively overlapped.

The higher the thread count, the more effective latencylapping can be achieved. How-
ever, more threads may also increase the possibility oktdioh. Since the counters are located in
the shared memory space, the collision due to the atomidejpdahe same address may affect the
performance. The simulation results shown in Figure 7.8akthe performance degradation as the
thread count increases from four to eight in a 16-microemgonfiguration. The 11.4% processing
cycle increase is mostly due to microengine stalls.

There are two possibilities where the collision might ocdtirst, two or more different
keys are hashed to the same SRAM location. Second, it is dine t¢packet train” effect where
a burst of packets originated from the same traffic flow (saougce and destination addresses).
Figure 7.9 shows the performance degradation of a worststas®ario: processing the the sketch
update with 1,280 keys of the same source IP address. Theuotiane increases almost three-fold
mainly due to the increase of idle and stalled cycles in themehgine.

The hot spot problem [43] can be solved by introducing buffieeues to aggregate the
requests destined to the same memory address. Howevemadlyie costly since the queue size
has to be large to capture the traffic locality.

The implementation of sketch update in Imagine processes dot have such issues since
each cluster in the processor updates its corresponding™ia&ithin the SRF. Furthermore, the in-
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lane indexed SRF latency is only 4 cycles [48]. As long as ffodecfor hash calculation is larger
than the arbitration and round-trip access cycle, the afitynand sequential access order can be

maintained for each cluster.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, we implement several security-centric ogkimg applications based on
the stream programming model. In the stream programmingemadstream is composed of a
sequence of data elements or records. These streams aeptiiexd for a set of complex operations
organized as kernels at the clusters. The computationtsesd stored locally in LRF or SRF and
consumed by another set of operations iteratively.

The applications presented include the AES encryption iialjgh operation modes (ECB
and OCB) with key agility, the MMH message authenticatiodee(VACSs), the Bloom filter based
content inspection engine for intrusion detection andctkéaised algorithms for traffic analysis.
The thesis explores the tradeoffs on different configunatiof stream architecture and character-
izes the processing throughput of these applications. ddere we explore the difference between
Imagine and a MIMD architecture by implementing the sketptlate application on the Intel IXP
network processor.

In general, the stream processor provides a flexible and o mputing infrastruc-
ture for these security-centric applications. The sinioiatesults of these applications demonstrate
up to multi-Gigabit-per-second throughput for system klo€ 500 MHz. We would like to high-
light some of the key architecture aspects which benefit thegssing of packets with excellent

performance.
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Figure 8.1: The spectrum of power consumption for applicetidiscussed in the thesis. The cluster
consumes most of the power because of the major computatidormed. There are two types of
implementation for the Bloom filter based packet inspectipplication. The content hashing in
Insp(SRF)mplementation is based on the tabulation method over tteaft Register File (SRF).
The indexed SRFaccesses cause the extra increase of the power consumptiencost of chip
power consumption is based on the VLSI model proposed by l&inaiet al [53]. The power
consumption for the AES does not include the extra dissipatue to the two-port scratchpad.
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1. Hiding the memory access latency with computation:

The DRAM access can be effectively overlapped by the contiputaMore than 95% of the
AES encryption run time is taken by the kernel computatianafpacket length larger than
16 blocks. Different from the way of measurement setup [3&mhmost of the data is in the
level one cache, the simulation do include the data movefnamithe main memory to the
processor itself. The performance can reach up to 32 cyeleblpck in a stream size of 96
blocks. One of the best performances published [72, 3] infaedback mode for a 32-bit
architecture is 232 cycles per block (16-byte block).

2. Exploiting the stream locality computations in SIMD sty

Explicit support for this computational model results ifi@ént, coordinated access to mem-
ory and effective exploitation of on-chip internal data rament. For many statistical and
hash based algorithms in the networking applications, timeputation is performed in a re-
cursive and incremental fashion. Those operations do hdrmfi the architecture support
where the producer-and-consumer locality can be captdfiegbatly without remote memory
references. The operations of MMH authentication code dodrB filter based content in-
spection engine are good examples. The calculation of lelakwis transformed into stream
processing, expressing producer and consumer localityaehigving efficient utilization of

the uniqgue memory hierarchy.

3. Exploiting the abundant parallelism:

The applications presented in the thesis have abundanaddtastruction level parallelism.
They do benefit from the SIMD stream architecture and achselstantial speedup. More-
over, without incurring extra computation cycles, the @ipSIMD architecture enhance the
probability of accuracy: a unique performance aspect ofdhdomized algorithms other than

thetimeandspace

4. Efficient vector style processing:

Not only can the packet be modeled as a stream, a set of shat@dtductures can also be
represented as a stream. Acting as a stream, the sharedrdatare can be processed in
an efficientvector style operation. For example, the point query and linearkioation of
sketches are simplector gatherandvector addoperations respectively.

5. Simplifying the memory access to shared data structure:
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As shown in the sketch-based algorithm, the read-modifyeveketch update process is con-
ducted by clusters based on the operation of in-ladexed SRRccess [48]. Different from
the MIMD style implementation on Intel IXP processor, thé/8l operation simplifies the
access to shared data structure without explicit synchation and arbitration overhead. As
a result, the system achieves high throughput and efficidigation of maximum memory
bandwidth.

6. High performance and power efficiency:

The stream processor is capable of supporting the compuitiensive tasks with outstand-
ing power efficiency. The estimated power consumption fes¢happlications are shown in

Figure 8.1.

7. Flexibility:

The Imagine’s two-level programming model (stream and &nprovide the full flexibility

for application implementation. As new algorithms and rodthlogies being proposed fre-
quently, the benefit of being programmable with high comital capability is apparent:
we can always utilize the latest and newest approaches ktetde complex tasks while

meeting the ever growing demand of throughput requiremédtht liktle or no cost at all.

8.1.1 The Tradeoffs

The applications can be categorized into two major groupgload and header process-
ing. For payload processing tasks, each packet is arrarggadsteam of records. Each record of
the stream can be a collection of bytes, wérds different data types. These records are arranged
in the SRF sequentially as shown in Figure 8.3, and consumdukclusters in a SIMD fashion.

Generally, the performance can be improved by exploringdtta parallelism over the
following two axes: the number of clusters and the number lofJa within each cluster. As the
record size can be increased for more data parallelism idds¢er, scaling up the number of ALUs
is a straightforward way of exploiting the ILP and DLP witheach cluster. However, scaling up
the number of ALUs alone may not be effective as the operatiayp depend on the other function

units.

In the AES application, for example, each record is compagddur 32-bit words. We also denote the record as a
blockaccording to the AES specification.
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Figure 8.2: The Intra-cluster scaling. The cost of chip @@ energy consumption is based on the
VLSI model proposed by Khailany et al [53].

The lookup of the T-table over the scratchpad memory in th& &BRcryption application
is an example of this kind. The limited bandwidth of singtetpmemory quickly becomes the
bottleneck due to multiple read accesses. Moreover, thel ¥bS model [53] reveals that the
average area and energy dissipation per ALU is not optimtieasaumber of ALUs scales beyond
five.

The inter-cluster scaling provides another way of expigitihe DLP of these networking
applications. As costs can be amortized among more clydtersaverage area and energy dissi-
pation per ALU remain approximately constant (3% increasedhe number of clusters increases
from 8 to 32 [53]. Therefore, it makes the inter-cluster spmore preferable than its counterpart.

Different from the traditional SIMD applications, the stra size of these network ap-
plications is not fixed due to the non-uniform distributioihvariable packet sizes. Therefore, the
SIMD processing efficiency is affected as the size of theastrearies. The efficiency of cluster is
defined as the average ratio of the number of clusters piiogegalid data over the total number
of clusters involved (the clusters working on valid data e tfusters working on null data). For a
fixed number of clusters, the average efficiency goes dowheastteam size decreases.

In Figure 8.3, as the size of the stream (in terms of records)th be a multiple of the
total number of clusters, only half of the clusters are dadlivegreal work (processing records of R33,
R34, R35, and R36 ) at the fifth iteration.

Figure 8.4 illustrates the AES kernel speedup, estimatiéciezfcy and costs based on a
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Figure 8.3: A stream of packet payload consists of 36 recands4 extra null records are laid out
in the SRF. The clusters are fetching 8 records at a time ifviibSashion.

real-world tracé. As the number of clusters increases from 8 to 32, the avertageer efficiency
decreases from 79% to 50%. The energy dissipation and oképierease linearly with the number
of clusters, however, the speedup is limited due to a largiomoof smaller-sized packets presented
in the trace.

The processing of the small-sized packet (stream) in tllsiteicture incurs another inef-
ficiency denoted as theshort-stream effet{102, 92]. The ‘short-stream effettis mainly due to
the fixed hardware cost and those associated with the setbigardown of the data structure sup-
porting the stream processing in the kernel. As the numbelugters is comparable to the stream
size, the processing throughput is critically affected tig £ffect. These results suggest a limit of
inter-cluster scaling for the payload processing appbost

The header processing tasks, to the contrary, do not inclrisefficiency since the size
of packet header is fixed. Most of the networking systemsrorgathese headers as a set of data
structure stored in separate memory location. Thus, aicextaount of data (a larger stream size)
consisting of several headers can be easily fetched andgsed in a SIMD fashion independent of

the packet length.

2AIX-1054837521-1.tsh, where 44.6% of the packets are less 64 byte, and 31% of the packets are larger than
1000 bytes; total number of packets=13,812.
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Figure 8.4: The estimated payload processing performandecast with the number of clusters.
The speedup is based on the kernel performance of AES eimrypthe cost of chip area and
energy consumption is based on the VLSI model proposed bildfiyeet al [53].
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Figure 8.5: The sketch update process with 8 universal hastibns on 16 clusters.
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The sketch update process shown in Figure 7.4 can be easgiyd®d from 8 to 16 clus-
ters. As illustrated in Figure 8.5, two headers (pl and p@hashed by the first and second set of
eight clusters simultaneously. The throughput can be daaddinearly with the number of clusters.

The probability of accuracy is another important perforoemetric for the randomized
algorithms such as sketch and Bloom filter. As part of thergarobability depends on the number
of hash functions used, the system may distribute thesedadshiations in parallel to more clusters

achieving lower error probability without extra procesgsuycles.

8.2 Future Work

We summarize the future work in three major parts: the sitarigramework, software
and hardware architecture.

The simulation of these applications are based on the asmmipat the packet header
and payload are located at the memory. It will be of great figiabto construct the network inter-
faces at Media Access layer (MAC) and integrate with the imagrocessor simulation framework.
The integrated simulation framework can facilitate thelesggion of many network system designs.
Example such as the high-speed, real-time intrusion detesystem can be constructed based on
a hybrid of content-based and statistical-based appreamhenultiple stream processors. A full
system simulation based on the real-world attacking traaesbe performed and beneficial to the
design of network processor architecture.

The handling of packet and data structure as a representatistream provide a new
paradigm of packet processing. Therefore, in the softwawell we would like to explore new
stream instructions to facilitate more efficient streamrafiens. The array of streams is one of
the example which is not currently supported. Moreover,itin@ementation of additional kernel
instructions and hardware assists for bit-level manifparais crucial for the system performance.

Currently, the number of cluster is explicitly exposed te ffnogramming model. Hence,
the stream size has to be in multiple of cluster size. As thmbmur of cluster changes, the source
code has to be changed accordingly as well. As some of thecapphs may not fully utilize
the clusters provided, the dynamic reconfiguration of nunabelusters may help improving the
efficiency and lowering power consumption. Adding anothesti@action to hide the number of
cluster from the programming model is of great beneficial.

Different from the traditional SIMD applications, howeygacket processing over the
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SIMD stream architecture exhibit issues such as control flamation and load balancing due to
the non-uniform distribution of variable packet sizes. Mudti-SIMD hybrid architecture: a group
of SIMD clusters share the same microcontroller issuingitstuctions while different group of
these entities behave in MIMD mode, can be one of the solsitiart only for the former issue but
also for better performance and power efficiency. As a resute applications are needed to fully

characterize the new architecture for network processing.
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