ABSTRACT

XU, DINGBANG. Correlation Analysis of Intrusion Alerts. (idler the direction of Dr. Peng Ning).

Security systems such as intrusion detection systems)IBx@swidely deployed into
networks to better protect digital assets. However, thegesaveral problems related to current
IDSs. (1) IDSs may flag a large number of alerts everyday, threswhelming the security officers.
(2) Among the alerts flagged by IDSs, false alerts (i.e. ef@gsitives) are mixed with true ones,
and usually it is difficult to differentiate between them) EXisting IDSs may not detect all attacks
launched by adversaries. These problems make it very dgatig for human users or intrusion
response systems to understand the alerts and take appeogctions. Thus, it is necessary to
perform alert correlation. My dissertation focuses on @ation analysis of intrusion alerts. In
particular, | have worked on the following issues.

The first issue is the efficiency of alert correlation. Thigkis extended from our previ-
ous correlation method [83]. The initial implementatior[®3] is a Database Management System
based toolkit. To improve its performance, we propose tgtdain memory index structures
and database query optimization techniques to faciliiately correlation of intensive alerts. We
present three techniques namnggpber-alert container, two-level indexnd sort correlation and
study the performance of these techniques.

The second issue is to learn attack strategies. We notiteliarstanding the strategies
of attacks is crucial for security applications such as oetwforensics and intrusion response.
We propose techniques to automatically learn attack giesgtdrom intrusion alerts, where attack
strategies are modeled as directed graphs with nodes esirgs attacks and edges representing
constraints between corresponding nodes. We further mirésehniques to measure the similarity
between attack strategies using the techniques in erematal graph/subgraph isomorphism.

The third issue is how to hypothesize and reason about attaigsed by IDSs. We
notice that current alert correlation methods depend heamithe underlying IDSs for providing
alerts, and cannot deal with attacks missed by IDSs. We présehniques to hypothesize attacks
possibly missed by the IDSs, to infer attribute values fgrdtiiesized attacks, to validate and prune
hypothesized attacks through examining raw audit dataf@odnsolidate hypothesized attacks to
get concise attack scenarios.

The fourth issue is to correlate alerts from different sigwgystems. We notice that

complementary security systems such as IDSs and firewallwidely deployed in networks. We

propose a correlation approach based on triggering evaedte@mmon resources. Our approach
first performs alert clustering such that the alerts in edsbter share “similar” triggering events.
We further propose techniques to build attack scenariasutir identifying “common” resources
between different attacks.

The fifth issue is privacy-privacy alert correlation. Weinetthat there are privacy con-
cerns when intrusion alerts are shared and correlated adiffagent organizations. We propose
one generalization based scheme and three perturbatied balsemes to anonymize alerts to pro-
tect data privacy. To evaluate privacy protection, we esgopyto guide alert anonymization.
In addition, to learn the utility of anonymized alerts, wetfier perform correlation analysis for
anonymized data sets. We focus on estimating similarityesmbetween anonymized attributes and
building attack scenarios from anonymized data sets.

Finally, the conclusion of my dissertation is provided antlife work is pointed out.

Correlation Analysis of Intrusion Alerts
by
Dingbang Xu

A dissertation submitted to the Graduate Faculty of
North Carolina State University
in partial fulfillment of the
requirements for the Degree of
Doctor of Philosophy

Computer Science

Raleigh
2006

Approved By:

Dr. Douglas S. Reeves Dr. Ting Yu

Dr. Peng Ning Dr. S. Purushothaman lyer
Chair of Advisory Committee

To my parents Yuxin Xu and Juying Xue.

Biography

Dingbang Xu received a Bachelor's degree from Huazhong ésgity of Science and Technology,

and a Master’s degree from Tsinghua University. He is a P$tiRlent in Computer Science Depart-
ment at North Carolina State University from 2001 to 2006s igisearch interests are information
and network security. In particular, he is interested inusibn detection techniques, security data

management, and privacy-preserving techniques.

Acknowledgements

This dissertation would not be possible without the suppod help from many professors, friends
and my parents over many years.

I would like to thank my Ph.D. advisor Dr. Peng Ning. His guida, encouragement, and
support is so valuable to my Ph.D. research. | feel very fatiei to work with him. Sincere thanks
are also extended to my committee members Dr. S. Purushathéyar, Dr. Douglas S. Reeves
and Dr. Ting Yu for their valuable comments, suggestions, faglp. | also would like to thank Dr.
Annie I. Anton for her valuable feedback and comments on my research.

The work in this dissertation is supported by the Nationake®me Foundation (NSF)
under grants ITR-0219315 and CCR-0207297, and by the Ui8y/&Research Office (ARO) under
grant DAAD19-02-1-0219.

I would like to thank Director of Graduate Program (DGP) D2l J. Thuente for his
help during my Ph.D. study. | am also grateful to Ms. Margeagé&for her help.

I would like to thank many friends in Cyber Defense Laboratsrinath Anantharaju, Yun
Cui, Yiquan Hu, Qinglin Jiang, Hua Li, An Liu, Donggang Ligideep Mahalati, Pai Peng, Alfredo
Serrano, Pratik Shah, Kun Sun, Pan Wang, Yan Zhai, Qing Z@imghua Zhang, Yi Zhang, and
Yuzheng Zhou for their help.

Finally, | am deeply grateful to my parents Yuxin Xu and JgykKue for their continued

support and encouragement.

Contents

List of Figures viii
List of Tables X
1 Introduction 1
1.1 Intrusion Detection and Intrusion Alert Correlation 1
1.2 Efficiency of Intrusion Alert Correlation 3
1.3 Learning Attack Strategies e 4
1.4 Hypothesizing and Reasoning about Attacks Missed lydittn Detection Systems 5
1.5 Alert Correlation through Triggering Events and ComrR&sources 5
1.6 Privacy-Preserving Alert Correlation: A GeneraliaatBased Approach 6
1.7 Privacy-Preserving Alert Correlation: A Perturbat®ased Approach 7
1.8 Dissertation Organization i i i e 8
2 Related Work 9
2.1 Intrusion Detection 10
2.1.1 Misuse Detection 10
2.1.2 AnomalyDetection e 10
2.2 AlertCorrelation e 13
2.3 Privacy-Preserving Techniques e 15
2.4 Previous Work: Alert Correlation Using Prerequisited &onsequences of Attacks 17
2.4.1 An Overview of Correlation Method [83] 17
2.4.2 Implementationof[83] 20
3 Adapting Query Optimization Techniques for Efficient Corr elation 22
3.1 Adapting Query Optimization Techniques 23
3.1.1 Main Memory Index Structures e 24
3.1.2 Correlating Streamed Intrusion Alerts 25
3.1.3 Correlating Intrusion AlertsinBatch 28
3.1.4 Correlating Intrusion Alerts with Limited Memory 30
3.2 Implementation and Experiments i . 31

3.21 ExperimentalResults 32

Vi

3.3 SUMMANY . . . e e 39
Learning Attack Strategies from Intrusion Alerts 40
4.1 Modeling Attack Strategies e e 41
4.1.1 Attack Strategy Graph e 42
4.1.2 Dealing with Variations of Attacks 47
4.2 Measuring the Similarity between Attack Strategies b0
4.2.1 Error Tolerant Graph/Subgraph Isomorphism 51
4.2.2 Working with Attack Strategy Graphs 52
4.3 EXPeriments e e e e 55
4.3.1 Learning Attack Strategies from Correlated Intrasiderts 56
4.3.2 Measuring the Similarity between Alert Sequences 58
4.3.3 Identification of Missing Detections 61
4.4 SUMMANY o o e e e e e e e e e e e e e e e 62
Hypothesizing and Reasoning about Attacks Missed by Intrsion Detection Systems 64
5.1 Hypothesizing and Reasoning about Attacks Missed bgIDS 66
5.1.1 Integrating Possibly Related Correlation Graphs 67
5.1.2 Hypothesizing about Missed Attacks 70
5.1.3 Reasoning about Missed Attacks 73
5.1.4 Inferring Attribute Values for Hypothesized Attacks 82
5.1.5 Pruning Hypothesized Attacks with Raw AuditData 85
5.1.6 Consolidating Hypothesized Attacks 88
5.2 ExperimentalResults e 91
5.3 Discussionand Summary e e 99
Alert Correlation through Triggering Events and Common Resources 100
6.1 TheModel. e 031
6.1.1 Alerts, Events, Configurations and Resources 103
6.1.2 Triggering EventsforAlerts, 105
6.1.3 Inference betweenEvents 106
6.1.4 Clustering Alerts Using Triggering Events 108
6.1.5 Consistency and Inconsistency between Alerts anelVRel Configurations 109
6.1.6 Attack Scenario Construction based on Input and @®Rpsources 111
6.2 ExperimentalResults e 115
6.3 Summary e e e 012
Privacy-Preserving Alert Correlation: A Generalization Based Approach 121
7.1 Entropy Guided Alert Sanitization 123
7.1.1 Entropy Guided Sanitization of Categorical Attrdmt 124
7.1.2 Differential Entropy Guided Sanitization of Contousg Attributes 126
7.2 Correlation Analysis of Sanitized Alerts 128
7.2.1 Calculating the Similarity between Sanitized Atitds 128
7.2.2 Building Attack Scenarios 0. 132

7.3 ExperimentalResults e 138

Vii

7.3.1 Evaluating Similarity Functions 138
7.3.2 Building Attack Scenarios Lo 0. 139
T4 SUMMANY o e e e e e e e 314
8 Privacy-Preserving Alert Correlation: A Perturbation Ba sed Approach 145
8.1 Three Schemes for Alert Anonymization 147
8.1.1 Scheme I: Artificial Alert Injection Based on Concepetdrchies 148
8.1.2 Scheme II: Attribute Randomization Based on Concegrarchies 154
8.1.3 Scheme llI: Alert Set Partitioning and Attribute Rarmdzation 156
8.2 Anonymized Alert Correlation e 157
8.2.1 Similarity Estimation between Anonymized Attribeite 157
8.2.2 Building Attack Scenarios L 0 0. 160
8.3 ExperimentalResults e 164
8.3.1 ExperimentsonSchemel 164
8.3.2 ExperimentsonSchemell 166
8.3.3 ExperimentsonSchemelll. 167
8.3.4 Experiments on Similarity Estimation 168
8.3.5 Experiments on Building Attack Scenarios 169
8.4 SumMmMary e e 217
9 Conclusion and Future Work 174
9.1 Conclusion e 174
9.2 Future Work 177
Bibliography 179
Appendix 189

A Additional Experimental Results Using TIAA 190

viii

List of Figures

2.1

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4

4.5

51
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
511
5.12
5.13
5.14

6.1
6.2
6.3

An example of alert correlationgraphs 20
Outline of the nested loop alert correlation methods 26
The sort correlationmethod L 28
Experimentalresults (1) e 33
Experimentalresults (2) e 34
Experimental results of correlations with memorycaist 38
An example of attack strategy graph L. 44
An algorithm to extract attack strategy graph from a Imgdert correlation graph . 46
Attack Strategy Graphs Extracted from Our Experiments. 57
Generalization hierarchies for hyper-alert types irRPA 2000 datasets. Threshold
E=0.0. 59
Additional generalization hierarchies of hyper-atgpes in our experiments 59
Two correlation graphs e 67
A straightforward combination ¢fG; andCGy 70
Integration ofCG; andC'G4 with hypotheses of missed attacks 71
Anexampletypegraph e 73
Algorithm to compute indirect equality constraints fwo hyper-alerttypes 75
Algorithm to compute indirect equality constraints &tlrpairs of hyper-alert types 78
Algorithm to infer attribute values for hypothesizetheks 84
Integration ofG; andC'G», after refinement with raw auditdata. 88
Hypothesized attacks when integrati¢gr, andCGs 89
Algorithm to consolidate hypothesized attacks 91
The type graph used in our experiments 94
Four correlation graphs constructed from LLDOS 1.@mgaffic 96
The integrated correlation graph constructed from O31..0 inside traffic 97
Experimental results using the DMZ dataset in LLDOS1.0. 98
A network deployed with multiple heterogeneous seg@ggistems 101
An algorithm to discover implication relationship beem events. 108
An algorithm to perform alert clustering based on trigggeevents. 110

6.4
6.5

7.1
7.2
7.3
7.4

8.1
8.2
8.3
8.4
8.5
8.6

Al
A.2
A3
A4

An example scenariograph e
One Scenario GraphinHQEnclave

Two Examples of Concept Hierarchies
An algorithm to aggregate an alert correlation graph
An alert correlation graph in LLDOS 1.0 inside dataset
Aggregation to the alert correlation graph inFigure 7.3

An example concept hierarchy for IP addresses
An algorithm to generate artificialalerts
An algorithm to randomize sensitive attributes
PMFs in original alert set and after applying Scheme I
PMFs after applying Schemes lland Ill
A correlation graph in LLDOS 1.0 Insidedataset

An MS SQL server related attack scenario in campus deiedataset.
Some attack scenarios in campus collected data set e
One attack scenario in DEF CONQdataset
Another attack scenario in DEFCON9dataset

List of Tables

4.1
4.2

5.1

5.2

5.3

54

6.1
6.2
6.3
6.4

7.1
7.2
7.3

8.1
8.2
8.3
8.4

The similarity w.r.t. attack strategy between attacatey graphs in Figure 4.3 . . 60
The similarity w.r.t. attack sub-strategy betweenckttrategy graphs in Figure 4.3 60

Hyper-alert types used in Example 4 (The sdbof attributes for each hyper-alert

type is{SrclP, SrcPort, DestIP, DestPdt 73
Equality constraints for hyper-alert types in Figuré Where onanay (indirectly)
prepare fothe other. e 81
Hyper-alert types used in our experiments (The s&atfttributes for each hyper-

alert type is{SrcIP,SrcPort,DestIP,DestPdit 93
Implication relationships between the predicates 95
Triggering event types for each alerttype. 116
All 2-alert clusters. e 117
Resource typesintheexperiments. cc..... 118
Input and output resource types for alerttypes. 119
The results of evaluating similarity functions 139
Soundness and completeness measures in our experiments. 142
Detection rates and false alert rates in our experiments. 142
Alert type frequency distribution in LLDOS 1.0insiderpa 165
Local and global privacyS,: original set,S,,: mixed set, attributeDestiP. 167
Correct classification rate and misclassificationrate. 169

Recall and precision measures in our experiments 171

Chapter 1

Introduction

The focus of my dissertation is correlation analysis ofuisikon alerts. To defend against
various attacks, various security systems such as intruggtection systems (IDSs) are widely de-
ployed into hosts and networks. These systems may flag albeis suspicious events are observed.
Correlating the alerts from these security systems can Urelgnderstand the security threats and
take appropriate response. This chapter gives an intriotduahd also motivates my research.

1.1 Intrusion Detection and Intrusion Alert Correlation

With the development of the Internet, more and more orgéinizset manage their data in
networked information systems. Due to the open nature dfteenet, network intrusions have be-
come an increasingly serious problem in recent years. Fanple, Code Red worm infected more
than 250,000 machines in about 9 hours on July 19, 2001Cantputer Economicsstimated the
financial loss of Code Red was $2.6 billion [20]. Intrusionedtion, which is aimed at detecting
activities violating the security policies of the netwatdkmformation systems, has been consid-
ered a necessary component to protect these systems altngtier prevention-based security
mechanisms such as access control.

Generally speaking, intrusion detection techniques catldssified into two categories:
misuse detection and anomaly detection [10, 85]. Misusectieh builds signatures (patterns)

for known attacks or vulnerabilities, and raises alerts nvltanonitors the activities that match

the signatures. Anomaly detection builds models (e.gtisttal profiles) for normal activities,
and raises alerts when the monitored activities (signifiganeviate from the normal operations.
Intrusion detection systems (IDSs) are widely deployed hdsts and networks to protect digital
assets.

Despite more than 20 years’ efforts on intrusion detectmumrent intrusion detection
systems still have several well-known problems. Firststaxgy IDSs cannot detect all intrusions.
While a misuse detection system cannot detect an unknownkafor an unknown variation of
a known attack), an anomaly detection system may fail togeize stealthy malicious activities,
too. Second, current IDSs cannot ensure that all alertcteftdual attackstrue positivegattacks
detected as intrusive) are usually mixed vfdlse positivegbenign activities detected as intrusive).
Third, an IDS usually produces a large number of alerts [916D, 61]. As indicated in [59], five
IDS sensors reportethMB of alert data within ten days, and a large fraction of thelsets are false
positives. In our experience with IDSs in campus networkes glyserved more than 320,000 alerts
on a small subnet in less than five days. The high volumes amdjlmlity (i.e., missed attacks
and false positives) of the intrusion alerts make it veryllehging for human users or intrusion
response systems to understand the alerts and take ajppeogctions. Thus, it is necessary to
develop techniques to deal with the large volumes and lowvityw intrusion alerts.

Besides the aforementioned problems, current IDSs areuffatiently prepared for sev-
eral trends in attacks. According to a 2002 CERT report [@@;e are increasingly more automated
attack tools, which typically consist of several (evolNipipases such as scanning for potential vic-
tims, compromising vulnerable systems, propagating tteelkd, and coordinated management of
attack tools. Moreover, attack tools are increasingly nsoghisticated. In particular, “today’s au-
tomated attack tools can vary their patterns and behavesedon random selection, predefined
decision paths, or through direct intruder management]. [2Bese attack trends require more ca-
pable systems than the current IDSs to handle large volurakeids that potentially belong to
different complex attack scenarios.

Intrusion alert correlation, focusing on discovering tledationships between the alerts
raised by security systems, is necessary and crucial torstade the security threats from inside
and outside sources and take appropriate actions. In rgeart, several alert correlation techniques
have been proposed to facilitate the analysis of intrusierisa These techniques can be roughly
divided into four categories: (1) the methods based on antyl between alerts (e.g, [109, 98, 60,
61, 33, 91, 28]), which essentially perform alert clustgrihrough computing similarity between
alert attributes, (2) methods based on predefined attaclasos (e.g., [36, 34, 78]), which build

attack scenarios through matching alerts to predefinecagoetemplates, (3) techniques based on
prerequisites (pre-conditions) and consequences (poslitons) of attacks (e.g., [102, 29, 83]),
which build attack scenarios through (partially) matchesunsequences of earlier attacks to the
prerequisites of earlier attacks, and (4) approaches wsirigple information sources (e.g., [90, 79,
115, 116], which correlate alerts from multiple securitgteyns such as firewalls and IDSs.

We are interested in the prerequisites and consequenced bagelation method such
as [83] (We give an overview of [83] in Chapter 2). These mdthmodel each attack through
specifying its prerequisite and consequence. Intuitjwbly prerequisite of an attack is the necessary
condition to launch an attack successfully (e.g., a vulblerBTP service running on a victim host
is the prerequisite to launch &P buffer overflow attack), and the consequence of an attack is
the possible outcome if the attack succeeds (e.g., the goesee of afr TP buffer overflow attack
may be gaining the root privilege on the victim host). Thidougatching the consequences of earlier
attacks with the prerequisites of later ones (e.g., an manirsng attack may discover vulnerable
FTP ports, which is the prerequisite for latef P buffer overflow attacks), causal relations between
attacks are identified, and we can build attack scenarioobgiacting different attacks through a
sequence of causal relations.

In my dissertation, | have addressed some important issuegrusion alert correlation
(especially for prerequisites and consequences baseads@tiVe motivate these problems in the

following subsections.

1.2 Efficiency of Intrusion Alert Correlation

Our previous correlation method [83] has been implemenseahneoffline intrusion alert
correlator (the details of [83] are given in Chapter 2). (nitial experiments with 2000 DARPA
intrusion detection scenario specific data sets [77] inditiaat our approach is promising in con-
structing attack scenarios and differentiating true angefalerts [83]. However, our solution
still faces some challenges. In particular, we implemertitedprevious intrusion alert correlator
as a DBMS-based application [83]. Involving a DBMS in therat®rrelation process provided
enormous convenience and support in our initial implem@mahowever, relying entirely on the
DBMS also introduced performance penalty. For example otoetate about 65,000 alerts gen-
erated from the DEF CON 8 CTF dataset [37], it took the DBMSeuhintrusion alert correla-
tor around 45 minutes with the JDBC-ODBC driver included aval 2 SDK, Standard Edition

(http://java.sun.com/j2se/), and more than 4 minutes tghMicrosoft SQL Server 2000 Driver
for JIDBC (http://www.microsoft.com/sqgl/). Such perfomaa is clearly not sufficient to make alert
correlation a practical tool, especially for interactivealysis of intensive alerts. Our timing analysis
indicates that the performance bottleneck lies in the awliion between the intrusion alert correlator
and the DBMS. In particular, the processing of each singlé ahtails interaction with the DBMS,
which introduces significant performance overhead.

Our solution to this problem is to adapt main memory indexcttires and query opti-
mization techniques to perform alert correlation effidgmwhich is discussed in Chapter 3.

1.3 Learning Attack Strategies

It is often desirable, and sometimes necessary, to unddrstack strategies in security
applications such as computer and network forensics angsioh responses. For example, attack
strategies may be used to profile hackers or hacking toolsrimpater and network forensics. As
another example, it is easier to predict attacker's nextenand reduce the damage caused by
intrusions, if the attack strategy is known during intrusiesponse. However, in practice, it usually
requires that human users manually analyze the data alekiring intrusions to understand the
corresponding attack strategies. This process is not amky-tonsuming, but also error-prone.
An alternative to manual analysis is to enumerate and realsout attack strategies through static
vulnerability analysis (e.qg., [97, 6]). However, theseht@ques usually require predefined security
properties so that they can identify possible attack sempgethat lead to the violation of these
properties. Although it is easy to specify certain secupitgperties such as the compromise of
root privileges, it is non-trivial to enumerate all possiloines. Moreover, analyzing intrusion alerts
allows inspecting actual execution of attack strategiah wifferent levels of details. Thus it is
desirable to have complementary techniques that can patfdek strategies from intrusion alerts.

In Chapter 4, we present techniques to automatically |eaalastrategies from intrusion
alerts reported by IDSs.

1.4 Hypothesizing and Reasoning about Attacks Missed by Intision

Detection Systems

As we mentioned earlier, several alert correlation tealmsghave been proposed in re-
cent years to facilitate the analysis of intrusion alertfiege techniques include similarity based
approaches, predefined attack scenarios based methodsjyisées and consequences based ap-
proaches, and multiple information sources based techsigw/e observe that a common require-
ment of these approaches is that they all heavily dependeoarttierlying IDSs for providing alerts.
As a result, the performance of alert correlation is stritithited by the performance of IDSs. In
particular, if the IDSs miss critical attacks, the correthtilerts cannot reflect the actual attack sce-
narios due to the lack of the corresponding alerts, and traysprovide misleading information.

In Chapter 5, we develop a series of technigues to hypothesid reason about attacks
possibly missed by IDSs, aiming at constructing high-lextedck scenarios even if the underlying
IDSs miss critical attacks.

1.5 Alert Correlation through Triggering Events and Common Re-

sources

Current approaches on intrusion alert correlation arectffe at addressing some chal-
lenges, however, it is also clear that none of them domiriatesthers. Similarity based approaches
group alerts based on the similarity between alert atedyubhowever, they are not good at discov-
ering steps in a sequence of attacks. Predefined attackriecbased approaches work well for
known scenarios; however, they cannot discover novel lkagaenarios. Prerequisites and conse-
guences based approaches can discover novel attack ssehakvever, the procedure of specifying
prerequisites and consequences are time-consuming amepesne. Multiple information sources
based approaches correlate alerts from multiple infonmasiources such as firewalls and IDSs;
however, they are not good at discovering novel attack sina

To address some limitations of the current correlation riggres, we propose an alert
correlation approach based on triggering events and comesources. In particular, we propose a
novel similarity measure based on triggering events, whighs us group alerts into clusters such

that the alerts in the same cluster share “similar” trigggggvents. We enhance the prerequisites and

consequences based approaches through using input and i@gpurces to facilitate the specifica-
tion of prerequisites and consequences. Intuitivelyjripat resourcesf an attack are the necessary
resources for the attack to succeed, andotltput resourcesf the attack are the resources that the
attack can supply if successful.

Compared with the approaches in [29, 83] which use predidatdescribe prerequisites
and consequences, our input/output resources based appraa several advantages. (1) When
using predicates to specify prerequisites and consegsdoceach type of attacks, it may introduce
too many predicates. Whereas input and output resource greeaather limited compared with the
types of predicates and are easy to specify. (2) Since €iffeexperts may use different predicates
to represent the same condition, or use the same predicagpriesent different conditions, it is
usually not easy to discover implication relationshipsagsn predicates and match consequences
with prerequisites. Whereas input and output resourcestgpe rather stable, straightforward to

match and easy to accommodate new attacks. This corretagtimod is presented in Chapter 6.

1.6 Privacy-Preserving Alert Correlation: A Generalization Based Ap-

proach

In recent years, the security threats from infrastructutacks such as worms and dis-
tributed denial of service attacks are increasing [19].yHdféect large numbers of hosts and services
on the Internet, and may bring serious financial loss. Torak&mainst these attacks, the coopera-
tion among different organizations is necessary. Sevegalnizations such as CERT Coordination
Center [17] and DShield [106] collect data (including séguncident data) over the Internet, per-
form correlation analysis, and disseminate informationgers and vendors. The security incident
data are usually collected from different companies, degdions or individuals, and their privacy
concerns have to be considered. To prevent the misuse démiailata, appropriate data sanitization
through which the sensitive information is obfuscated ghhyi preferable. For example, DShield
[106] lets audit log submitters perform partial or complebduscation to destination IP addresses
in the datasets, where partial obfuscation changes thedist of an IP address to decimidl, and
complete obfuscation changes any IP address to a fixed val0@.1.

As we mentioned earlier, to protect networks and hosts onrteenet, many security
systems such as IDSs and firewalls are widely deployed. Terh#tderstand the security threats,

it is necessary to perform alert correlation. Current atertelation approaches generally assume
all alert data (e.g., the source and destination IP addsesse available for analysis, which is
true when there are no privacy concerns. However, when pieiltirganizations provide sanitized
alert and incident data (because of privacy concerns) tousion analysis, alert correlation will
be affected due to the lack of precise data. It is desirableat@ techniques to perform privacy-
preserving alert correlation such that the privacy of pioéiting organizations is preserved, and
at the same time, alert correlation can provide useful tesdlo our best knowledge, [69] is the
only paper addressing privacy issues in alert correlatiamch uses hash functions (e.g., MD5)
and keyed hash functions (e.g., HMAC-MD5) to sanitize demstata. This approach is effective
in detecting some high-volume events (e.g., worms). Howesiace hash functions destroy the
semantics of alert attributes (e.g., the loss of topoldgidfarmation due to hashed IP addresses),
the interpretation of correlation results is non-triviad.addition, hash functions may be vulnerable
to brute-force attacks due to limited possible values ot aléributes, and keyed hash functions may
introduce difficulties in correlation analysis due to thiéedtent keys used by different organizations.

In Chapter 7, we propose a privacy-preserving alert cdioglaapproach through gener-
alization based on concept hierarchies.

1.7 Privacy-Preserving Alert Correlation: A Perturbation Based Ap-

proach

As we mentioned in Section 1.6, to defend against largeestiatributed attacks such as
worms and distributed denial of service (DDoS) attackss wsually desirable to deploy security
systems such as intrusion detection systems (IDSs) ovdnthmet, monitor different networks,
collect security related data, and perform analysis to tilected data to extract useful informa-
tion. In addition, different organizations, institutioasd users may also have the willingness to
share their data for security research as long as theirgyrizancerns about the data can be fully
satisfied. For example, Department of Homeland Securitpsmps PREDICT [51] project to create
a repository collecting network operational data for cydurity research.

Data generated by security systems may include sensifioamation (e.g., IP addresses
of compromised servers) that data owners do not want toadisar share with other parties. Itis
always desirable and sometimes mandatory to anonymizéigertata before they are shared and

correlated. To address this problem, In Chapter 8, we pefiuge perturbation based schemes
to flexibly perform alert anonymization. These schemes lsety related but can also be applied
independently. In Scheme |, we generate artificial alertsraix them with original alerts. Attribute
values related to any alert in the mixed set may or may notddewdich helps hide original attribute
values. In Scheme Il, we map sensitive attributes to randaloes based on concept hierarchies. In
Scheme lll, we propose to partition an alert set into mudtiglibsets and apply Scheme Il in each
subset independently. To evaluate privacy protection aikegalert anonymization, we defitaeal
privacy andglobal privacy and usesntropyto compute their values. Though we emphasize alert
anonymization techniques in Chapter 8, to examine datallirgatve further perform correlation
analysis for data sets anonymized by our three schemes. &ife &m computing similarity values
between anonymized attributes and building attack scen&om anonymized data sets.

1.8 Dissertation Organization

The remainder of this dissertation is organized as follo@kapter 2 gives an overview
of approaches in intrusion detection and intrusion alemtetation. Chapter 3 discusses the tech-
niques that efficiently correlate intrusion alerts throaglapting main memory index structures and
guery optimization techniques. Chapter 4 provides the authhat learn attack strategies from in-
trusion alerts. Chapter 5 presents approaches to hypoihgsind reasoning about attacks missed
by IDSs. Chapter 6 presents an alert correlation methoddbaseriggering events and common
resources. Chapter 7 provides an approach for privacyeprieg alert correlation through general-
ization based on concept hierarchies. Chapter 8 discussasyppreserving alert correlation based
on perturbation based techniques. Chapter 9 concludedidisisrtation and points out some future

research directions.

Chapter 2

Related Work

In 1980, James Anderson published his seminal v@oknputer Security Threat Monitor-
ing and Surveillancd8], which introduced the concept @ftrusion detection Intrusion detection
focuses on detecting activities that violate the systemcusty policy [10, 85]. Amoroso [7] de-
finesintrusion detectioras “the process of identifying and responding to malicictivity targeted
at computing and networking resources.” With the develamtroéthe Internet and the wide usage
of networked systems, network intrusions have become auseproblem. Intrusion detection is
necessary to detect the intrusions and take appropridtsact

As we mentioned in Introduction, intrusion detection tdghes can be roughly classified
into two categories: misuse detection and anomaly dete¢fi®, 85]. Misuse detection builds
signatures (patterns) for known attacks, and raises aldws it monitors the activities that match
the signatures. Anomaly detection builds models (e.disstal profiles) for normal activities, and
raises alerts when the monitored activities (significgnilgviate from the models. These misuse
and anomaly detection systems are widely deployed to grttecsecurity of hosts and networks.
Correlation analysis of the alerts from these intrusiorecdkdn systems and other security systems,
is crucial for security officers to understand the secuhtgats from inside and outside sources and
take appropriate actions.

In this chapter, we first discuss intrusion detection tegies, then review the methods
for intrusion alert correlation and privacy-preservingheiques, and finally give an overview of
our previous correlation method [83] (it is an approach Baseprerequisites and consequences of

attacks).

10

2.1 Intrusion Detection

In this subsection, we first review misuse detection systumh afNetSTAT 112, 111],
USTAT [50], IDIOT [66] and ASAX [80]. For anomaly detectioedhniques, we further classify
them into two classes: user activity based approaches agdgon behavior based approaches. We
first discuss user activity based anomaly detection syssewcis asSRI IDES56], ADAM [12] and
W&S [108], and then we review program behavior based anormetgction techniques such as
[43].

2.1.1 Misuse Detection

Misuse detection systems detect intrusions through nragobibserved events with pre-
defined attack signatures. Specifying attack signaturesigal for misuse detection systems. For
each known attack, NetSTAT [112, 111] creates the attaakasige through state transition dia-
grams. State transition diagrams are directed graphs. tata ansition diagram, each state is
represented by a set of assertions, which describes tledftdie systems (e.g., the service name
in a host), and the transitions between states are trigdgsre@ynature actions, which represent the
events that are necessary for the attack to be successfulgenessage delivery between a source
and a destination host). NetSTAT has four components: (&jwork fact base, (2) a state transition
scenario database, (3) a set of probes, and (4) an analyaerugh the interaction between these
four components, NetSTAT monitors the events occurrinchan network and raises alerts when
suspicious events are observed. Likewise, USTAT [50] ad&s state transition diagrams to specify
attack signatures. IDIOT [66] applies Colored Petri Netspecify attack signatures. ASAX [80]
uses a rule-based language (RUSSEL) to describe attacktsign. The IDSs NetSTAT, USTAT,
IDIOT and ASAX can detect the attacks with the correspondittgck signatures defined in the sys-
tems. Their limitation is that if novel attacks are creatdthwo corresponding signatures available

in the systems, these IDSs are not able to detect them.

2.1.2 Anomaly Detection

Based on the subjects being monitored, we divide anomadctien technigues into two
classes: user activity based techniques and program letmsed techniques. User activity based
approaches create statistical models based on the ussitsital data, and raise alerts when the

11

user’s activity is significantly deviate from the statistimodel. Program behavior based approaches
create system call models for the normal execution of thgnaras, and raise alerts when monitored
system call sequences do not satisfy the model.

SRIIDES [56], ADAM [12] and W&S [108] are anomaly detectioysgems based on user
activities, which flag alerts based on audit record dataugauditing systems can generate audit
records for each user’s activities. SRI IDES examines tlaestt records and tries to determine
whether the corresponding user’s activities are abnormabb Notice that each audit record may
include several aspects about the activities, for exantpke files being accessed, and the CPU
processing time. Based on the statistics such as the useessfrequencies, means and covariances
(these are called the users’ profiles), for each audit re@iRil IDES can calculate the test statistic
value to measure the abnormality of the corresponding sisetivities. If this value is large, the
corresponding activities would be considered as abnorAral.a value close to zero would suggest
the activities are normal. ADAM [12] detects intrusionsadingh applying association analysis and
clustering analysis [49] to network connections, wher@eission analysis is used to identify the
suspicious connections, and clustering analysis is usethssify the suspicious connections into
known attacks, unknow attacks, or false alerts. W&S [10&pruatically creates detection rules
based on the statistics of historical audit records, and feagpmalies when a user’s activities are
“unusual.” The advantage of SRI IDES, ADAM and W&S is thatytimeay detect the attacks that
are significantly deviate from the normal activities. Thigmitation is that they may not detect
stealthy attacks.

Program behavior based techniques target on monitoringegthaviors of programs. Once
a program’s behavior does not satisfy a predefined modellesihig flagged. A critical question
to these techniques is how to build normal behavior modelgrfograms. To our knowledge, all
proposed techniques monitor program behaviors throughitarong system calls that the program
invokes. Current approaches to building system call modais be roughly classified into two
categories: program training based approaches, and atetigsis based approaches.

The seminal work [43] proposed by Forrest et al. is one of igr@aches based on pro-
gram training. During the (attack-free) training phaséfedent sequences of system calls have been
observed. These long system call sequences are choppet spdant sequences (the lengths of se-
guences are 5, 6, and 11) and are put into a database reprgdbetprogram’s normal behaviors.
In the detection phase, the system calls that a program éisvate monitored and matched with the
system call sequences in the database. Once there existsraatuh, an alert is triggered. Given

system call sequences, Warrander et al. [114] further etiudifferent data modeling methods to

12

specify the program’s normal behaviors. They tested fouhous: simple enumeration of observed
sequences, comparison of relative frequencies of diffesequences, a rule induction technique,
and Hidden Markov Models (HMMs). Based on the experimergsiliits, HMMs produce the most
accurate models. Warrander et al. also pointed out thatswgple modeling methods can perform
well given enough system call sequences. [96] proposesei@udmpact finite state automaton
(FSA) to learn the program’s normal behaviors. This autemdtased modeling is able to capture
both long and short term behaviors (in term of system cadisy, may reduce false positives. Feng
et al. [42] further incorporated call stack informationdrthe model. Their approach is to retrieve
return addresses from call stacks, and construct virtuhkgdaetween system calls. Their approach
can detect some intrusions that may be missed by other ag@ea

Static analysis based approaches such as [113, 41, 47karthly program source code
or executable to formalize the program'’s normal behavildrs3] proposes to specify the program’s
normal behaviors through analyzing program source codeoufin source code analysis, [113]
proposes four models to capture the normal behaviors ofranog; (1) the trivial model, (2) the
callgraph model, (3) the abstract stack model, and (4) theagdh model. As an example, the call-
graph model describes the program behaviors through a etemrdinistic finite automaton. In this
automaton, each node is a state, and each edge (labeled syittean call) between nodes repre-
sents a transition triggered by the corresponding systéin Tae benefit of this approach is that
it is free of false positives. [41] formally analyzes the tadst stack model (it is also referred as
pushdown automaton (PDA) model). Due to the non-determirdgstack activities, the operation
of PDA model is inefficient. [41] proposes two techniques ¢tedminize PDA model: the obser-
vational technique and the instrumentation technique.fifsigechnique implemented by VP Static
model extracts the stack activity information. The secauthhique implemented by Dyck’s model
transforms the program to add more code to expose the progiedes. Giffin, Jha, and Miller [47]
propose to statically analyze the program binary to crdsariodel of normal behaviors. During
detection, the system monitors the system calls that thgrgmo invokes, and the system calls are
allowed to make only if they satisfy the model. [47] furthetroduces two techniques for program

transforms: renaming and null call insertion, which magetfthe model's precision and efficiency.

13

2.2 Alert Correlation

Current intrusion detection systems suffer from severaltditions. First, an intrusion
detection system may generate thousands of alerts a dagytfié$]overwhelming security officers.
Second, among the alerts reported by intrusion detectistesys, false alerts may be combined
with true alerts, and it is challenging to differentiate vioeén them. Third, intrusion detection
systems cannot detect all attacks (i.e., they may miss sttarkg). Alert correlation, focusing on
discovering the relationships between individual alesised by intrusion detection systems and
other security systems, is necessary to address theseraesl

Several alert correlation techniques have been proposattloy past a few years. These
techniques can be roughly classified into four categoriBstheé approaches based on the similarity
between alerts [33, 91, 109, 98, 60, 61], (2) the approacassdoon the predefined attack scenarios
[78, 36, 34], (3) the approaches based on prerequisites@arstquences [29, 83, 82, 84, 102], and
(4) the approaches based on multiple information sourdgs/[®, 115].

Similarity based approaches [33, 91, 109, 98, 60, 61] perfalert correlation through
measuring the similarity between alerts. Each alert ugleds several attributes associated with
them, for example, source and destination IP addressestufahavay to discover the relationships
between alerts is to measure the similarity between algitbates. For example, if two alerts have
the same source and destination IP addresses, it may bélpdbsit the corresponding attacks are
launched by the same attacker. If the alerts are similautiraalculating the similarity between
their attributes, they can be put into the same group toitiatgl the future analysis. One critical
issue in these approaches is how to define similarity mea3uaditional similarity measures used
in data mining [49, 63] may not be appropriate for alert datien, because many alert attributes
are categorical (e.g., TCP/UDP Port numbers) rather tharenigal. Several techniques have been
proposed to solve this problem. In particular, Julisch ef@l, 60] use conceptual clustering and
generalization hierarchy to aggregate alerts into claster

The predefined attack scenarios based approaches comkdetebased on known sce-
nario templates, which are patterns of known sequencegaufkat consisting of individual attack
steps. Such methods then match IDS alerts to attack steps iscenario templates (in a similar
way to misuse detection). Examples in this category inc[@6e34, 78]. Some approaches in this
category specify attack scenarios through attack langusigeh as STATL [40] and Chronicles [78].
For example, [78] models attack scenarios through chretéciguage (a chronicle is a set of events
that are connected by temporal constraints). [36] proptsesrrelate alerts based on the explicit or

14

derived rules. [34] builds attack scenarios through coimggsrobabilities that an alert may be in a
set of scenarios, and always choosing the most possiblarscéo add a new alert. The probability
measure is derived based on training data. Though effeatikecognizing known attack scenarios,
a limitation of these techniques is that they cannot discoegel attack scenarios.

The prerequisites and consequences based approache8,[832, 84, 102] model each
attack through describing its prerequisite (the necessamgition to launch an attack successfully)
and its consequence (the outcome if an attack succeedspugdthmatching the consequences of
earlier attacks with the prerequisites of later ones, tlaggeoaches link different attacks together
to build attack scenarios. These techniques have the patémtdiscover novel attack scenarios.
However, specifying prerequisites and consequences alatirequires knowledge of individual
attacks, and is time-consuming and error-prone.

The multiple information sources based approaches [90,1/&,process alerts from sev-

eral security systems such as IDS sensors, firewalls, \abiigy scanners and anti-virus tools.

e [90] uses M-Correlator to process alerts, where alert msing can be divided into four
stages. In the first stage, M-Correlator applies dynanyicahtrollable filters to remove low-
interest alerts for various subscribers. In the secondesthg alerts are examined based on
the known network topology, and a relevance score is assimeugh comparing the alert’s
related network topology with the know vulnerabilities. the third stage, M-Correlator cal-
culates the priority for each alert, which denoting the sgvef the alert. In the last stage,
each alert is assigned an incident rank, which denotes thalbdegree that the alert’s cor-
responding incident affects the network’s mission. Thepse of M-Correlator is to reduce
the number of alerts and to evaluate the severity of alerdifierent analysts. Thus it usually

does not provide high-level attack scenarios.

e [79] proposes a formal model M2D2 for alert correlation. M2Performs alert correla-
tion using four types of information: (1) the charactedstof the information system (e.qg.,
network topologies), (2) vulnerability information (e.@gn SNMP vulnerability CAN-2002-
0012), (3) security tool information (e.g., an IDS sensaa gulnerability scanning tool), and
(4) monitored events (e.g., an IDS sensor flagsFaR_Glob_Expansionalert). These four
types of information are formally defined. Based on thesmédlly defined concepts, M2D2
examines the relationship between them and performs alertlation. In [79], M2D2 fo-
cuses on alert aggregation, and how to use M2D2 for otherogegsuch as building attack
scenarios is still to be explored.

15

e [115] proposes an architecture DOMINO (Distributed Oweflar Monitoring InterNet Out-
breaks) for distributed intrusion detection. Multiple 138nsors in DOMINO are deployed
in various locations. Each IDS is responsible for monitptiine corresponding local network
and hosts, and different IDSs also share their intrusioa datl collaborate with each other to
detect global coordinated attacks (e.qg., Internet worifisgre are several challenges involved

in DOMINO such as how to effectively sharing intrusion data.

Notice different security systems may put different empkam protecting the network components
and applications. Combining them can potentially obtaimer@mmprehensive understanding about
the security of the protected systems. However, we notagtiie information provided by different
sources may be syntactically or semantically differentew@n conflict with each other. How to

reconcile them remains challenging.

2.3 Privacy-Preserving Techniques

Privacy-preserving techniques need to balance the reqaires of data privacy as well as
data usability. There are several privacy-preservingrtiegles have been proposed in the field of
statistical databases and data mining. However, to ourknestledge, the approach proposed by
Lincoln et al. [69] is the only paper to address privacy issinethe field of alert correlation. Here
we give an overview of these privacy-preserving techniques

To protect the privacy of alert data, privacy-preservinghteques need to hide or obfus-
cate sensitive attribute values for individual alerts. rEhare several techniques that can possibly
achieve this goal, for example, cryptographic techniqueb as data encryption and hash functions
[72], data perturbation techniques [92, 68] used in statistatabases [1], or privacy-preserving
data mining techniques [3, 2, 110].

Cryptographic techniques usually do not maintain the sé¢icgof original values. They
transform sensitive attribute values to an unintelligifolem, and based on transformed values, it is
difficult to know original values. Possible candidate taghes in this category are (secret-key) data
encryption techniques such as DES and Triple DES [107]togrpphic hash functions such MD5
[93] and SHA-1 [39]%, or keyed hash functions such HMAC-MD5 and HMAC-SHA1 [14].65
Comparing these different cryptographic techniques, \aeathat hash functions (and keyed hash

'In Crypto 2004, researches announced that collisions hesa found in MD4, MD5, HAVAL-128 and RIPEMD,
however, no collisions have been found for SHA-1 [81].

16

functions) are more appropriate than data encryption igoks: (1) from performance perspective,
hash functions generally are faster than encryption alyos. For example, on a Pentium 4 CPU
(2.1 GHz) with Windows XP Service Pack 1, MD5 perforgi$.674MB/second, SHA-1 performs
67.977MB/second, while DES perfornml.340MB/second [32], and (2) from storage perspective,
the length of ciphertext usually is longer than the corresiieg hash output especially when the
length of plaintext is long. Hash functions usually have dixength of output. For example, the
output of MD5 is16 bytes, and the output of SHA-1 &) bytes, while the output of encryption
could be arbitrarily large depending on plaintext (originalues). We also argue that keyed hash
functions may be more appropriate than hash functions,ceslyewhen an attribute only has a
small number of possible values. For example, the possitierpumbers are fror® to 216 — 1,
and the possible IP (IPv4) addresses are witliif/8 to 255/8. Hence hash functions may be
vulnerable to brute-force (exhaustion) attacks. To defemh possible brute-force attacks, keyed-
hash functions can be applied to attribute values. Sincem@iskey is introduced in keyed hash
operations, original attribute values cannot be discloggdout the knowledge of the secret key.
However, this technique may have difficulty in correlatioralysis due to different keys introduced
by different organizations. In addition, correlation résoterpretation is non-trivial. The privacy-
preserving alert correlation technique proposed by Lm&blal. [69] uses both hash functions and
keyed hash functions to sanitize sensitive alert attributeheir approach is effective on detecting
high-volume events such as worms, but may have the limitatiee mentioned above.

The techniques proposed in statistical databases andatpivaserving data mining may
potentially be adapted to privacy-preserving alert catieh. These techniques may (asymptoti-
cally) preserve statistical properties (e.g., frequermynt and mean) about original attribute val-
ues, while individual alert’s attribute values are peragtthrough randomness or other techniques.
Attackers cannot estimate original attribute values witliteary precision.

Data distortion technique proposed by Liew et al. [68] islapple to both categorical
and continuous data. It first estimates the distribution rifical dataset, then generates a new
dataset with the estimated distribution, and finally repsaihe original data with the new data.

Data swapping technique proposed by Reiss [92] is appéctbtategorical attributes.
This technique is based on a key concepbrder frequency counts. Givensensitive attributes, a
t-order frequency count (= 0,1,2,--- ,q) is the number of alerts satisfying,; = v1 A a2 =
Vo A+ A Ay = U, WhErea,,1, ama, -+ , am are attribute names, andl, v, - - - , vy are attribute
values. The basic idea of data swapping is to generate a n@asetldhat preserves thieorder
frequency counts of the original dataset.

17

Data perturbation techniques such as [103, 3] are appéidalitontinuous attributes. The
basic idea is to transform attribute valigto a new valueX’, whereX’ = X + ¢ and is an
independent random variable. To control the perturbaitde,necessary to give the mean and the
variance of5, for example,E(5) = 0 andVar(§) = 202.

DShield [106] lets audit log submitters perform partial omplete obfuscation to desti-
nation IP addresses in data sets, where partial obfuscetimmges the first octet of an IP address to
decimall0, and complete obfuscation changes any IP address to a fikegl¥va0.0.1.

Ourwork in this thesis is also closely related to th&nonymityapproaches [95, 100, 99],
where an entity’s information may be released only if thetisteat leastc — 1 other entities in the
released data that are indistinguishable from this enfitgse approaches also apply generalization
hierarchies to help obfuscate attributes, wheie the pre-defined parameter to control the gener-
alization process. Our approach in Chapter 7 differs inwWstuse entropy to control the attribute
sanitization as well as to help design satisfactory conhegtirchies. Our approach in Chapter 8
uses concept hierarchies to facilitate artificial alertegation and attribute randomization. More-
over, we also study methods to correlate sanitized alertlisnthesis. Our work in this thesis is
also related to packet trace anonymization techniquesB@_8 For example, Pang and Paxson [88]
propose a high-level language based approach to anonyadetpheaders and payloads. These

approaches are complementary to our work.

2.4 Previous Work: Alert Correlation Using Prerequisites and Conse-

guences of Attacks

My thesis work is related to the alert correlation methodppied in [83]. In this section,
we briefly describe this method with a slight modification,iethsimplify our discussion without
losing the essence of the method.

2.4.1 An Overview of Correlation Method [83]

[83] proposes to correlate intrusion alerts based on theeguésites and consequences
of attacks. Intuitively, thererequisiteof an attack is the necessary condition to launch the attack
successfully, and the consequence of an attack is the possittome if the attack does succeed.

18

For example, consider an attaekP_Glob_Expansion The prerequisite of this attack is a vulnerable
FTP service running on the victim machine, and the consequeritesaattack is the root privilege
the attacker may possibly gain. Attackers usually launagaence of attacks to achieve their goals,
where the earlier attacks usually prepare for the later.orfidee connections between different
attacks may be discovered through investigating the caresegs of the earlier attacks and the
prerequisites of the later ones. Based on these obsersagjiven a set of attacks, we first identify
the prerequisites and consequences for each attack, theorvedate the attacks through (partially)
matching the consequences of earlier attacks with the quiesiges of later ones.

The correlation method [83] uses logical formulas (logicaibinations of predicates)
to represent the prerequisites and consequences of att&cksexample, aforementioned attack
FTP_Glob_Expansionmay gain root privilege on the victim host if it succeeds,sthwe can use
predicateGainRootAccess(VictimIRY represent its consequence. For simplicity, [83] lindtgi¢al
operations to AND (A”) and OR (“v”) in logical formulas.

Prerequisites, consequences and attributes of attackeraralized as hyper-alert types
(or alert types). Ayper-alert typgor alert typd is a triple fact, prerequisite, consequencehere
(1) factis a set of alert attribute names associated with the canepg domains, (2prerequisite
is a logical formula, and (3gonsequenceés a set of logical formulas. Note all the variables in
prerequisiteandconsequencare infact

We give an example for hyper-alert types here. (For sintglieve do not list the cor-
responding domain for each attribute.) FAP_Glob_Expansionhyper-alert type can be defined
asFTP_Glob_Expansion= ({SrclIP, SrcPort, DestIP, DestPdrt ExistServicgDestIP, DestPojt A
VulnerableFTPRequest(Dest)P]GainRootAccegPestlP) }), where four attributeSrcIP, SrcPort,
DestlIP, DestPorarre used to describe the attack, the prerequisite of thekaétdhat aFTP service
runs on hosDestlPat portDestPortand this service is vulnerable to certain request, and theezo
guence is attackers may gain root privilege on HestiP.

We notice that manually specifying hyper-alert types istioonsuming and error-prone.
To facilitate the hyper-alert type specification, a pradtiway is to predefine a set of predicates
(which can be extended if necessary), classify attacksdifferent categories based on certain
criteria (e.g., the resources related to attacks), andltiudefor desirable predicates in prerequisites
and consequences for each category of attacks.

Given a hyper-alert typ& = (fact, prerequisite, consequencatype T alert tis a tuple
onfact, and this tuple is associated with an interval-based tiamegtbegintime, endtimeg). A type
T hyper-alert his a finite set of typd alerts. The notion of hyper-alerts provide us the flexipiti

19

treating multiple alerts with the same type collectively.

The correlation method in [83] is aimed at discovering &tts@enarios among intrusion
alerts, where an attack scenario is a sequence of attadkhéhadversaries launch to achieve their
goal. [83] discovers attack scenarios through identifyimgprepare-forrelations between hyper-
alerts (alerts).

Intuitively, aprepare-forrelation exists if an earlier alecbntributesto the prerequisite of
a later one. In the formal model, alert correlations aregraréd via prerequisite and consequence
sets. Given a hyper-alert tyg@e= (fact, prerequisite, consequengcéhe prerequisite sefor conse-
quence setesp.) ofl", denotedPrereqT") (or ConsedT’), resp.), is the set of all predicates that ap-
pear inprerequisite(or consequenge Theexpanded consequence s&f’, denotedExpConse(l’),
is the set of all predicates implied onsedT") (e.g.,0SSolaris(DestIP)mpliesOSUnix(DestIP)
Thus we haveConsel’) C ExpConse({l’). Given a typeT alertt, the prerequisite set, conse-
quence setandexpanded consequence eét, denotedPrereqt), Consedt), andExpConse(t),
respectively, are the instantiated predicate$iareq7’), Conseql’), and ExpConse({l’) with
arguments replaced by the corresponding attribute valtigs dlert t; prepares foralert ¢ if
ti.end_time < to.begin_time and there exist instantiated predicates ExpConse(t;) andp €
Prereqts) such thatc = p. Similarly, consider two hyper-alerts, andhs. h; prepares forhy if
there exist alerts; € hy; andty € ho such thatt; prepares fot,. For convenience, we may also
refer to prepare-for relations aausal relationsn this thesis.

An alert (or hyper-alert) correlation graph is used to repr¢ a sequence of correlated
alerts (or hyper-alerts). Formally, aert (or hyper-alert) correlation graptCG = (N, E) is a
connected directed acyclic graph, where any N is an alert (or a hyper-alert), and each directed
edge(ni,n2) € E denotes thah; prepares forns. Note that a hyper-alert correlation graph is
acyclic, since if one attacrepares forthe other, then the former must occurs before the latter. As
an example, Figure 2.1 shows an alert correlation graphteddmm [83]. The numbers inside the
nodes represent the alert IDs, and the types of alerts akehbelow the corresponding nodes. For
brevity, we refer to an alert correlation graph (or a hydertacorrelation graph) as eorrelation
graphin this report. For brevity, we also refer to this correlatimethod as theausal correlation
method since its goal is to discover the causal relations betwewisa

20

@ Stream_Do¢

Mstream_Zombie

Sadmind_Ping

Sadmind_Amslverify_Overflow Rsh

Figure 2.1: An example of alert correlation graphs

2.4.2 Implementation of [83]

We have implemented the correlation method based on piisieguand consequences in
[83]. To save our development efforts, our initial implerteion takes advantage of the database
systems. We store all hyper-alert types and alert data iMaceosoft SQL Server 2000 database.
We use Java as a programming language, and use JDBC (JDBCommoent in Java to ac-
cess databases) to interact with the database to perfomelatn. For each alert, the predicates
in the prerequisite and expanded consequence sets aretiststd as strings (e.gGainRootAc-
cess(DestlIPmay be instantiated aSainRootAccess(10.10.1)1ysing alert attributes and saved
into the tablesPreregSetand ExpandedConseqSeespectively. To facilitate the correlation, we
also store the corresponding alert (or hyper-alert) IDstamedstamps in the aforementioned tables.
Thus each table has four columitertID (or HyperAlertlD), InstantiatedPredicatebegintime and
endtime As a result, the matching of the consequences of the eatbess with the prerequisites
of the later alerts can be performed through the followind-S@tement [83].

SELECT DISTINCT c.AlertID, p.AlertID
FROM PrereqSet p, ExpandedConseqSet ¢
WHERE p.InstantiatedPredicate = c.InstantiatedPreglicat

AND c.endtime < p.begintime

Based on the output of the above SQL statement, we can idatitgrepare-forrelations

21

among the given alerts. Connecting thesepare-forrelations can provide us the attack scenarios
hidden in the alert datasets.

This correlation method is effective according to the expents with 2000 DARPA in-
trusion detection scenario specific data sets [77] and DER 8@apture The Flag (CTF) event
datasets [37]. For details of these experimental resu#tasp refer to [82, 83].

22

Chapter 3

Adapting Query Optimization
Techniques for Efficient Correlation

As we mentioned in Chapter 2, to assist the analysis of iitnualerts, several alert
correlation methods (e.qg., [34, 36, 109]) have been praposeently to process the alerts reported
by IDS. As one of these methods, we have been developingsiatralert correlation and analysis
techniques based on prerequisites and consequencescEd8a, 83]. Intuitively, the prerequisite
of an intrusion is the necessary condition for the intrusembe successful, while the consequence of
an intrusion is the possible outcome of the intrusion. Basethe prerequisites and consequences
of different types of attacks, our method correlates aleyt¢partially) matching the consequence
of some previous alerts and the prerequisite of some lats.on

We have implemented an offline intrusion alert correlatongi®ur previous correlation
method [83]. Notice that to save our development efforts,initial implementation is a DBMS-
based application [83]. Involving a DBMS in the alert coatedn process provided enormous con-
venience and support in our initial implementation; howgvelying entirely on the DBMS also
introduced performance penalty. For example, to correlbtaut 65,000 alerts generated from the
DEF CON 8 CTF dataset, it took the DBMS-based intrusion aertelator around 45 minutes
with the JDBC-ODBC driver included in Java 2 SDK, Standardi&ad, and more than 4 minutes
with the Microsoft SQL Server 2000 Driver for JDBC. Such penfiance is clearly not sufficient

23

to make alert correlation a practical tool, especially faeractive analysis of intensive alerts. Our
timing analysis indicates that the performance bottlerieskin the interaction between the intru-
sion alert correlator and the DBMS. Since our current intruslert correlator completely relies
on the DBMS, processing of each single alert entails intemaavith the DBMS, which introduces
significant performance overhead.

To address this problem, we propose to perform alert caiwelantirely in main memory,
while only using the DBMS as the storage of intrusion aleffge study several main memory
index structures, including Array Binary Search [5], AVLEEs [4], B Trees [21], Chained Bucket
Hashing [64], Linear Hashing [70], and T Trees [67], as welsame database query optimization
techniques such as nested loop join and sort join [105] titittete timely correlation of intrusion
alerts. By taking advantage of the characteristics of the abrrelation process, we develop three
techniques nameayper-alert container, two-level indeandsort correlation which further reduce
the execution time required by alert correlation.

We performed a series of experiments to evaluate theseitpmwith the DEF CON
8 CTF data set [37]. The experimental results demonstrate(i) hyper-alert containers improve
the efficiency of index structures with which an insertioregtion involves search (e.g., B Trees,
T Trees), (2) two-level index improves the efficiency of alléx structures, (3) a two-level index
structure combining Chained Bucket Hashing and Linear Hasis most efficient for correlating
streamed alerts, and (4) sort correlation with heap soorilgn is most efficient for alert correlation
in batch. With the most efficient method, the execution tiorecbrrelating the alerts generated from
the DEF CON 8 CTF data set is reduced from over four minutesss than one second.

3.1 Adapting Query Optimization Techniques

The essential problem in our approach is how to perform thie @ry (see “Implemen-
tation of [83]" in Chapter 2 for the query) efficiently. Onetimm is to use database query optimiza-
tion techniques, which have been studied extensively ftn sk based and main memory based
databases. However, alert correlation has a differentsaqoattern than typical database applica-
tions; this may lead to different performance than traddiodatabase applications. In addition,
the unigue characteristics in alert correlation may givéhesopportunity for further improvement.
Thus, in this and the next sections, we seek the possibiliiemprove alert correlation by adapt-

ing existing query optimization techniques, evaluateowsitechniques and their adaptations, and

24

identify the most suitable ones for intrusion alert cortieta
In the following, we first go over some main memory index dinues, and then present
our adaptations for correlating streamed as well as ba&tsaln Section 3.2, we report our exper-

imental results.

3.1.1 Main Memory Index Structures

Main memory index structures have been studied extensinghe context of search al-
gorithms and main memory databases. Many different kindtsdeix structures have been proposed
in the literature. In our study, we focus on the following snArray Binary Search [5], AVL Trees
[4], B Trees [21], Chained Bucket Hashing [64], Linear Haghj70], and T Trees [67].

In the following, we briefly describe these index structur&etailed information can
be found in the corresponding references. For comparisgpopa, we also implement a naive,
sequential scan method, which simply scans in an (unorjiareay for the desired data item. We
only care about insertion and search operations due to #tkfoe alert correlation.

Sequential Scarnis only implemented for reference purposes. In our studgu8etial Scan stores
data items in an array. Search is performed by sequentizdiyring the data items in the array, and
insertion is simply to append to the end of the array.

Array Binary Search [64, 5] stores sorted data items in an array and locates ieeddtem via
binary search. Array Binary Search is pretty efficient whearshing in a static array. However,
it has certain drawbacks in a dynamic environment. Firg,airay has to have enough space to
accommodate new data items; otherwise, memory reallocatial copy of the entire array will
have to be performed. In addition, even if there is enougleespasertion into the array involves
O(N) data movements.

AVL Trees [4] are balanced binary search trees. Each node in an AVL doatins a data item,
control information, a left pointer which points to the swdat that contains the smaller data items
(than the current data item), and a right pointer which oiatthe subtree that contains the bigger
items (than the current data item). Search in an AVL Tree iy f&st, since the binary search is
intrinsic to the tree structure [67]. Insertion into an AVLEE always involves a leaf node, and may
lead to a rotation operation if it results in an unbalanced.tr

B Trees[21] are also balanced search trees. Unlike an AVL Tree, & ioch B Tree may have
multiple data items and pointers. Data items in a B Tree noe®@lered, and each pointer points

to a subtree that consists of the data items that fall intardéinge identified by the adjacent data

25

items. B trees are shallower than AVL Trees, and thus invi#és node accesses for a search
operation. Insertion into a B Tree is fast, which usuallyoimes only one node.

T Trees[67] are binary trees with many elements in a node, whichweebfrom AVL Trees and B
Trees. The T Tree retains the intrinsic binary search natitfee AVL Tree, but it also has the good
update and storage characteristics of the B Tree, since e€liiide contains many elements. Search
in a T Tree consists of a search in the binary tree followed sgaach within a node. Insertion into
a T Tree involves data movements within a single node, ansitplesotations to rebalance the tree
structure.

Chained Bucket Hashing[64] uses a static hash table and a chain of buckets for eathemry. It

is efficient in a static environment where the number of data$ can be predetermined. However,
in a dynamic environment in which the number of data itemsisknown (e.g., alert correlation),
Chained Bucket Hashing may have poor performance. If thedafithe hash table is too small, too
many buckets may be chained for each hash entry; if the siggedfiash table is too large, space
may be wasted due to the empty entries.

Linear Hashing [70] uses a dynamic hash table, which splits hash bucketseidefined linear
oder. Each time when the candidate bucket (i.e., the nextebuo split according to the linear
order) overflows, Linear Hashing splits the candidate buicike two, and the size of the hash table
grows by one. The overflowed data items in the non-candidat&dts are placed in the overflow
buckets for the same hash entries. The buckets are ordeqeergrlly, allowing the bucket address

to be computed from a base address.

3.1.2 Correlating Streamed Intrusion Alerts

We first study alert correlation methods that deal with isitvn alert streams continuously
generated by IDS. With such methods, an alert correlatistesy can be pipelined with IDS and
produce correlation result in a timely manner.

Figure 3.1 presents a nested loop method that can accomenstlamed alerts. (As
the name suggests, nested loop correlation is adapted festechloop join [45].) It assumes that
the input hyper-alerts are ordered ascendingly in terméaif beginning time. The nested loop
method takes advantage of main memory index structures asithinear Hashing and T Trees.
While processing the hyper-alerts, the nested loop methaidtains an index structurg for the
instantiated predicates in the expanded consequencda@agsndth the corresponding hyper-alerts.

Each time when a hyper-aleft is processed, the algorithm searchesZifior each instantiated

26

Outline of Nested Loop Correlation
Input: A list H of hyper-alerts ordered ascendingly in their beginninge8m
Output: All pairs of (#/, h) such that botth andh’ are inH andh’ prepares fofh.
Method:
Maintain an index structurg for instantiated predicates in the expanded
consequence sets of hyper-alerts. Each instantiatedcpteds associated
with the corresponding hyper-alert. Initially,is empty.
1. for each hyper-alerk in H (accessed in the given order)
2. for each instantiated predicagtan the prerequisite set df

3. Search the set of hyper-alerts with index ken Z. Let H' be the result.
4. for eachh’ in H’

5. if (0'.EndTime< h.BeginTime)then output ¢/, h).

6. for eachp in the expanded consequence sek of

7. Insertp along withh into Z.

end

Figure 3.1: Outline of the nested loop alert correlationhods

predicatep that appears ih'’s prerequisite set. A match of a hyper-aléftimplies thath’ has the
same instantiated predicaién its expanded consequent sethIfEndTime is beforé:.BeginTime,
then’’ prepares forh according to the definition gfrepare-forrelation. If the method processes
all the hyper-alerts in the ascending order of their begigriime, it is not difficult to see that the
nested loop method can find all and only the prepare-foriogistbetween the input hyper-alerts.
The nested loop correlation method has different perfooaaidifferent index structures
are used. Thus, one of our tasks is to identify the index siraanost suitable for this method. In
addition, we further develop two adaptations to improvepgbdormance of these index structures.

Our first adaptation is based on the following observation.

Observation 1 Multiple hyper-alerts may share the same instantiated ioggd in their expanded
conseguence sets. Almost all of them prepare for a laterrkglpét that has the same instantiated

predicate in its prerequisite set.

Observation 1 implies that we can associate hyper-alettsam instantiated predicate
if p appears in the expanded consequence sets of all thesedigger- As a result, locating an

instantiated predicate directly leads to the locationdldha hyper-alerts that share the instantiated

27

predicate in their expanded consequence sets. We call thed bgper-alerts associated with an
instantiated predicatelgyper-alert container

However, using hyper-alert containers does not alwaydtrieshetter performance. There
are two types of accesses to the index structure in the nesipdtorrelation method (Figure 3.1):
insertion and search. For the index structures that preskevorder of data items in them, insertion
implies search, since each time when an element is insettiethie index structure, we have to place
it in the “right” place. Using hyper-alert container doeg mzrease the insertion cost significantly
in this case, while at the same time reduces the search coste\r, for the non-order preserving
index structures such as Linear Hashing, insertion doegmolve search. Using hyper-alert con-
tainers would force to perform a search, since the hypetsahave to be put into the right container.
In this case, hyper-alert container decreases the seastbwtancreases the insertion cost, and it is
not straightforward to determine whether the overall cosieicreased or not. We study this through
experiments in Section 3.2.

Our second adaptation is based on the following observation

Observation 2 There is a small, static, and finite set of predicates. Twtaimgated predicates are

the same only if they are instantiated from the same preglicat

Observation 2 leads totevo-level index structureEach instantiated predicate can be split
into two parts, the predicate name and the arguments. Thiewepindex is built on the predicate
names. Since we usually have a static and small set of ptedieemes, we use Chained Bucket
Hashing for this purpose. Each element in the top-levelridgher points to a second-level index
structure. The second-level index is built on the argumehthie instantiated predicates. When
an instantiated predicate is inserted into a two-levelxrgteucture, we first locate the right hash
bucket based on the predicate name, then locate the seeidrdex structure within the hash
bucket (by scanning the bucket elements), and finally insao the second-level index structure
using the arguments.

We expect the two-level index structure to improve the peménce due to the following
reasons. First, since the number of predicates is smalltatid,s1sing Chained Bucket Hashing on
predicate names is very efficient. In our experiments, the af the hash table is set to the number
of predicates, and it usually takes one or two accesses dteltise second-level index structure for
a given predicate name. Second, the two-level index streickescomposes the entire index structure

28

Outline of Sort Correlation
Input: A setH of hyper-alerts.
Output: All pairs of (#/, h) such that botth andh’ are inH andh’ prepares fof.
Method:
Prepare two arrayd,,.. and A.,,, each entry of which is a hyper-alert associated
with a key field. Each array is initialized with a reasonable size, &allocated
with doubled sizes if out of space. Existing content is copeethe new buffer
if reallocation happens.
1. for eachh in H
2. for eachp in the prerequisite set df
3 Appendh to A, with key = p.
4. for eachp in the expanded consequence seht of
5 Appendh to A.,, with key = p.
6. SortA,,. and A.,, ascendingly in terms of theey field (with, e.g., heap sort).
7. Partition the entries id,,,.. and A.,, into maximal blocks that share the same instantiated
predicate. Assumd,,,.. andA,.,, haveB,,. andB.,, blocks, respectively.
i=0,7=0.
.While (< B, andj < Be,y,) do
10. if (Apre.Block(i).InstantiatedPredicate A..,,.Block(j).InstantiatedPredicatéfen
11. t=1+ 1.
12. else if(A,,..Block(i).InstantiatedPredicate A..,.Block(j).InstantiatedPredicatéhen
13. j=j5+1.
14. else foreachh in A,,..Block(i) and eacth’ in A.,,.Block(j)

©

15. if h’.EndTime < h.BeginTime then output ¢/, h).
16. i—i+1,j=j+1
end

Figure 3.2: The sort correlation method

into smaller ones, and thus reduces the search time in tbadédevel index. We verify our analysis

through extensive experiments in Section 3.2.

3.1.3 Correlating Intrusion Alerts in Batch

Some applications allow alerts to be processed in batch femgnsic analysis with an
alert database). Though the nested loop method discusHest iastill applicable, there are more
efficient ways for alert correlation in batch.

Figure 3.2 presents a sort correlation method, which istadapom sort join [105]. The

sort correlation method achieves good performance by gakilvantage of efficient main memory

29

sorting algorithms. Specifically, it uses two arrayk,.. and A.,,. A,.. stores the instantiated

predicates in the prerequisite sets of the hyper-alertmg@awith the corresponding hyper-alerts),
and A, stores the instantiated predicates in the expanded comsegsets (along with the cor-
responding hyper-alerts). This method then sorts botlysiiraterms of the instantiated predicate
with an efficient sorting algorithm (e.g., heap sort).

Assume both arrays are sorted ascendingly in terms of iistad predicate. The sort
correlation method partitions both arrays into blocks thladre the same instantiated predicate,
and scans both arrays simultaneously. The sort correlatiethod maintains two indices,and
J, that references to the current blocksA4p,. and A.,,,, respectively. The method compares the
instantiated predicates in the two current blocks. If thetdntiated predicate in the current block
of A,,. is smaller, it advances the indexif the instantiated predicate in the current blagk,,
is smaller, it advances the indgxotherwise, the current blocks df,,,. and A.,, share the same
instantiated predicate. The method then examines eacbfgaiper-alertsy’ andh, whereh’ andh
are in the current block of.,,, andA,,., respectively. If the end time df is before the beginning
time of i, thenh’ prepares foh according to the definition gfrepare-forrelation.

It is easy to see that the sort correlation method can findaatk pf hyper-alerts such
that the first prepares for the second. Consider two hygetsdl and»’ whereh' prepares for.
There must exist an instantiated predicata both the expanded consequence seb/cénd the
prerequisite set of. Thus,p along with’’ must be placed in the arra¥.,,,, andp along withh
must be placed in the array,,.. The scanning method in Figure 3.2 (lines 9 - 16) will eveliyua
pointi to p's block in A,,. andj to p's block in A.,,, at the same time, and thus outgtprepares
for h. Therefore, the sort correlation can discover all and omliyspof hyper-alerts such that the
first prepares for the second.

We also study the possibility of adapting two-index join arash join methods [105]
to improve the performance of batch alert correlation. H@weour analysis indicates they cannot
outperform nested loop correlation due to the fact that atarelation is performed entirely in main
memory.

A naive adaptation of two-index join leads to the followingptindex correlation method:
Build two index structures for the instantiated predicatethe prerequisite sets and the expanded
consequence sets, respectively. For each instantiatditaiep, locate the hyper-alerts relatedjto
in both index structures, and compare the correspondingstaamps. However, this method cannot
perform better than the nested loop method. The nested latpha only involves insertion of

instantiated predicates in the expanded consequencensitsarch of those in the prerequisite sets.

30

In contrast, the above adaptation requires insertion déntgted predicates in both prerequisite
and expanded consequence sets, and search of instantiatbchpes in at least one of the index
structures.

A possible improvement over the naive adaptation is to m#érgdwo index structures.
We can associate two sets of hyper-alerts with each inatedtpredicate, denotedH,.(p) and
H_on(p), and build one index structure for the instantiated pred&d?,,,.(p) and H,,(p) consist
of the hyper-alerts that hayan their prerequisite sets and expanded consequenceesgisgtively.
After all the instantiated predicates in the prerequisitéhe consequence set of the hyper-alerts are
inserted into the index structure, we can simply scan alink&ntiated predicates, and compare the
corresponding timestamps of the hyper-alertddig..(p) and H..,(p) for each instantiated pred-
icatep. However, each insertion of an instantiated predicateilsrdasearch operation, since the
corresponding hyper-alert has to be inserted into eijgr(p) or Hc.,(p). Thus, this method can-
not outperform the nested loop method, which involves ogeriion for each instantiated predicate
in the expanded consequence sets, and one search for eactiated predicate in the prerequisite
sets. A similar conclusion can be drawn for hash join.

Another possibility to have a faster batch correlation isise Chained Bucket Hashing.
Since the number of alerts is known beforehand, we may ba@bkecide a relatively accurate hash
table size, and thus have a better performance than itseopatt for streamed alerts. We study

this through experiments in Section 3.2.

3.1.4 Correlating Intrusion Alerts with Limited Memory

The previous approachs to in-memory alert correlation laseamed that all index struc-
tures fit in memory during the alert correlation process.sThay be true for analyzing intrusion
alerts collected during several days or weeks; howeveggital operational scenarios, the IDSs
produce intrusion alerts continuously and the memory ofitha correlation system will eventually
be exhausted. A typical solution is to use a “sliding windde'focus on alerts that are close to
each other; at any given point in time, only alerts after avipes time point are considered for
correlation. Such a method has been adopted by many IDSsasusBAM [13].

We adopt a sliding window which can accommodate upitdrusion alerts. The param-
etert is determined by the amount of memory available to the iidruslert correlation system.
Each time when a new intrusion alert is coming, we check iiitisg this new alert will result in

more thart alerts in the index structure. If yes, we remove the oldest &lom the index structure.

31

In either case, we will perform the same correlation proeessi Section 3.1.2. It is also possible
to add multiple intrusion alerts in batch. In this case, ipldtold alerts may be removed from the
index structure. Note that though choosing a slidingewindow is another option, it doesn't reflect
the memory constraint we have to face in this application.

Using a sliding window in our application essentially inggideleting old intrusion alerts
when there are more thanalerts in the memory. This problem appeared to be triviahatfirst
glance, since all the data structures have known deletgoritims. However, we soon realized
that we had to go through a little trouble to make the deleéffitient. The challenge is that the
index structures we build in all the previous approachedraterms of instantiated predicates to
facilitate correlation. However, to remove the oldestusion alerts, we need to locate and remove
alerts in terms of their timestamps. Thus, the previousxreirictures cannot be used to perform
the deletion operation efficiently. Indeed, each deletinplies a scan of all the alerts in the index
structures.

To address this problem, we addecondary data structute facilitate locating the oldest
intrusion alerts. Since the intrusion alerts are insersadell as removed in terms of their time order,
we use a queue (simulated with a circular buffer) for thisopse. Each newly inserted intrusion
alert also has an entry added into this queue, which pointts tmcation in theprimary index
structurein terms of the instantiated predicates. Thus, when we reesshtove the oldest intrusion
alert, we can simply dequeue an alert, find its location inghmnary index structure, and delete
it directly. Indeed, this is more efficient than the geneitetion method of the order preserving

index structures (e.g., AVL Trees), since deletion usuafiglies search in those index structures.

3.2 Implementation and Experiments

We have implemented all the techniques discussed in SegtionAll the programs are
written in Java, with JDBC to connect to the DBMS. Howevelikenour previous prototype system,
the current implementation only uses the DBMS as the starBlygper-alert types and hyper-alerts.
All the processing of alerts is handled in main memory by tleg@am. To make the execution time
comparable, we reuse the code as much as possible, and makeesuse the most efficient way in
coding.

Some index structures need array to store the data, whichneey memory reallocation
in dynamic environments. We implemented a simple memorljoezdion strategy to handle all

32

the array reallocation. Each array is initialized with ataer size. When the array is not enough,
the program reallocates another array with a doubled sidecapy over all the data items in the
previous array.

Several index structures require some other parameter® Frees, we need to specify
node size (i.e., how many data items to store in one B Tree)ntatel Trees, we need minimum
and maximum node sizes; for Chained Bucket Hashing and tihashing, we need the bucket size
(i.e., how many elements in each bucket). Different parameanay result in different performance.
A common feature of these parameters is that both too largécamnsmall values will result in poor
performance. We found the experimentally optimal valuestfese parameters in the corresponding
references, performed a series of experiments to comparexticution time, and picked the best
values. As a result, the node size of B Trees is 7, the minimmuairtlze maximum node sizesofa T
Tree node are 8 and 10, respectively, the bucket size of LiHashing is 20, and the bucket size of
Chained Bucket Hashing is 5.

3.2.1 Experimental Results

We performed a series of experiments to compare the tealmidiscussed in Section
3.1. All the experiments were run on a DELL Precision Workstawith 1.8GHz Pentium 4 CPU
and 512M memory. The alerts used in our experiments werergieaeby a RealSecure Network
Sensor 6.0 [52], which monitors an isolated network in whighreplayed the network traffic col-
lected at the DEF CON 8 CTF event [37]. The Network Sensor wasigured to use th&laxi-
mumcCoveragepolicy with a slight change, which forced the Network Sente@ave all the reported
alerts.

In these experiments, we mapped each alert type reportée:iRRealSecure Network Sen-
sor to a hyper-alert type (with the same name), and geneoaiedhyper-alert from each alert. The
prerequisite and consequence of each hyper-alert typesperfied according to the descriptions
of the attack signatures provided by RealSecure. Thereotaltyt 65,058 hyper-alerts generated
by the RealSecure Network Sensor, among which 52,318 talpdas have prerequisite or conse-
guence. The remaining hyper-alerts are maiMipdowsAccessError andIPDuplicate which we
decided to ignore due to their overly general semantics.s&liyper-alerts cannot be correlated
with any other ones, and do not contribute to the time reduirg alert correlation. In order to
precisely evaluate the relationship between the exectitiom and the number of hyper-alerts, we
did not include them in our experiments.

33

—e— BinarySearch —*— ContainerBinarySearch

‘ —a&— LinearHash —»— ContainerLinearHash ‘
—a— SequentialScan —+— ContainerSegqScan
250000 1200
)a
200000 7/ 1000
@ / 800 1
0
£ 150000 £
E g 600
= 100000 - =
= = 400
50000
=l e
0 it :—!;a“;ﬁ 0 : : : : :
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
Number of Hyper-alerts Number of Hyper-alerts
(a) Hyper-alert containers (1) (b) Hyper-alert containers (2)
—e— SequentialScan —+— SequentialScan2L
—a&— ContainerBinarySearch ~ —%— ContainerBinarySearch2L TTree TTree2l —a—AVLTree AVLTree2l
30000 1400
25000 /f 1200 /‘
20000 1000 ///)?
[%] e~
E [%2)
515000 E 800
E Q
£ £ 600
10000 =
400
5000 -
200
0 - e i f T o
0 10000 20000 30000 40000 50000 60000 ‘ ‘ ‘ ‘ ‘ ‘
0 10000 20000 30000 40000 50000 60000
Number of Hyper-alerts Number of Hyper-alerts
(c) Two-level index structures (1) (d) Two-level index structures (2)
—o—BTree —*—BTree2L
—A— LinearHash —+— LinearHash2L
1200
1000 /;
800
(%2}
£
S 600 -
£
= 400 1
200 +
0+ T T T T T
0 10000 20000 30000 40000 50000 60000
Number of Hyper-alerts

(e) Two-level index structures (3)

Figure 3.3: Experimental results (1)

Nested-Loop Correlation without Memory Constraint

Our first set of experiments was intended to evaluate thetefémess of hyper-alert con-
tainer in the nested loop correlation method. Accordinguoanalysis, hyper-alert container may

34

—— AVLTree2L —a— LinearHash2L —e— HeapSortCorrelation —&— LinearHash2L (V)
—e— ContainerBinary2L —a— LinearHash2L (O) —6— ChainedBacketHash (U)
2500 —%— ChainedBucketHash(O)
1400
2000 | 1200 o2
1000 -
2 1500 é 800 4
i [}
£ £ 600
£ 1000 IS
400 -
500 A 200 4
0 T T T T T
0 0 10000 20000 30000 40000 50000 60000
0 10000 20000 30000 40000 50000 60000
Number of Hyper-alerts
Number of Hyper-alerts
(a) Efficient methods for streamed alerts (b) Efficient methods for batch alerts
‘ —e— HeapSortCorrelation —*— QuickSortCorrelation ‘ ‘ LinearHash2L Sort Conelamn‘
1800 25
1600 S -
1400 - \(H 24
T ~
__ 1200 e
@ 3
£ 1000 1 g 151
g 800 A . 8E
2E
= [
= 600 4 M \’f:é/v 23 11
x @
400 l M g %]
200 g 08
0

o

0 10000 20000 30000 40000 50000 60000

10000 20000 30000 40000 50000 60000
Number of Hyper-alerts

Number of Hyper-alerts

=}

(c) Impact of sorting algorithms (d) Space overhead

Figure 3.4: Experimental results (2)

reduce the execution time if we use the order-preservingxistructures. We compared the execu-
tion time for Sequential Scan, Array Binary Search, and &airidashing, with or without hyper-alert
container. We did not perform a similar comparison for tlee index structures (i.e., T Tree, B Tree,
and AVL Tree), since not having hyper-alert container ndy amcreases both insertion and search
cost, but also the complexity of the programs. As shown iufgg 3.3(a) and 3.3(b), hyper-alert
container reduces the execution time for Array Binary Seabat increases the execution time for
Sequential Scan significantly, and Linear Hashing slightly
Our second set of experiments was intended to evaluate fbetieéness of two-level

index structure in the nested loop correlation method. Adiog to our analysis and the earlier
experimental results, we used hyper-alert container inyABinary Search and tree index structures,

but not in Sequential Scan and Linear Hashing. As indicajeBigures 3.3(c) to 3.3(e), two-level

35

index reduces execution time for all index structures.

In Figure 3.3(c), the lines for Sequential Scan and twoll&equential Scan have an
interesting flat area when the number of input hyper-alartsetween 8,000 and 40,000. Our in-
vestigation revealed that the majority of hyper-alertshis range do not have any prerequisite.
Thus, processing of these hyper-alerts does not involvelséiee., sequential scan) in a large array,
and there is no big increase in execution time. In other watttks difference between insertion
and search cost and the fact that there is not many searahie floyper-alerts between 8,000 and
40,000 resulted in the flat area in Figure 3.3(c). In the aitex structures, there is no significant
difference between insertion and search costs. Thus, ihadramatic change in execution time
for the hyper-alerts between 8,000 and 40,000, though weluserve the slow down in the increase
of execution time.

Our next goal is to find out which index structure (with or vaitt the two adaptations) has
the best performance for nested loop correlation. We ta&dastest methods from Figure 3.3(c),
3.3(d), and 3.3(e), which are two-level Array Binary Seangth hyper-alert container, two-level
AVL Tree, and two-level Linear Hashing, and put them in FggBr4(a). The resulting figure shows
both two-level AVL Tree and two-level Linear Hashing arengfigantly faster than two-level Array
Binary Search with hyper-alert container, and two-leveldar Hashing outperforms two-level AVL
Tree by up to 20%. Thus, nested loop correlation achievebdise performance with two-level

Linear Hashing.

Batch Correlation (without Memory Constraint)

Our next set of experiments is focused on methods for caimglalerts in batch. Cer-
tainly, all the previously evaluated methods can be uselldtwh processing of intrusion alerts. Our
evaluation here is to determine whether any method canvachétter performance than nested loop
correlation with two-level Linear Hashing, the best metlfimdcorrelating streamed alerts. For the
index structures other than Chained Bucket Hashing, krppwvia hyper-alerts before alert correla-
tion will not change anything in the index structures. Thus,believe their relative performance
will not change for batch alert correlation. However, knogvhow many hyper-alerts gives more
information for Chained Bucket Hashing, since we can egénfae number of elements to be in-
serted into the hash table and thus have a good guess abalgsihed size of the hash table. In our
experiments, we chose to set the hash table size the sanmeerastiber of input hyper-alerts. More-

over, the sort correlation method can potentially outpenfoested loop correlation with two-level

36

Linear Hashing, since it adopts a different way to correthgehyper-alerts. Thus, we decided to
compare the execution time of nested loop correlation with-tevel Linear Hashing, nested loop
with Chained Bucket Hashing, and sort correlation. To fergsxamine the impact of the time order
of input hyper-alerts, we examined the timing results wittheoed and unordered input. With input
hyper-alerts not ordered in their beginning time, the atbor must insert all of the instantiated
predicates in the expanded consequence sets before itspescany instantiated predicate in the
prerequisite sets. The time order of input does not haverapgét on sort correlation.

Figure 3.4(b) shows the timing results of these methodspr&imgly, Chained Bucket
Hashing has the worst performance. Our further investigaéixplains this result: The average
number of data items per hash entry is between 1.0 and 1.82Mveo, the maximum number of data
items per hash entry is between 162 and 518. That is, thébdistn of the instantiated predicates
resulted in uneven distribution of hyper-alerts in the laisk Having input hyper-alerts ordered by
beginning time only reduced the execution time slightlyeténces for nested loop correlation with
both two-level Linear Hashing and Chained Bucket Hashimigalfy, sort correlation with heap sort
achieves the best performance among these four methods.

We also studied the impact of different sorting algorithmstloe execution time of sort
correlation. We compared two sorting algorithms, heap and quick sort. Heap sort has the
least complexity in the worst case scenarios, while quickis@onsidered the best practical choice
among all the sorting algorithms [22]. Figure 3.4(c) shotes timing results of both algorithms:
Sort correlation with quick sort performs significantly werthan the heap sort case. In addition,
the execution time is not very stable in terms of the numbeénmifit hyper-alerts. This is because
quick sort is sensitive to the input. In contrast, heap saststably increasing execution time as the

number of hyper-alerts increases. Thus, we believe heassogood choice for sort correlation.

Space Utilization

We examined the space overhead of these methods by comgagingpace requirements

#bytes to use the method
#bytes to use sequential scan

for this purpose. As shown in Figure 3.4(d), the highest spatios of sort correlation and nested

with the sequential scan method. We use a quantitative meszace ratio=

loop correlation with two-level Linear Hashing are 2.34 dn82, respectively. Sort correlation
requires about twice space as nested loop with two-levetdritdashing, since it has to store in-
stantiated predicates in both prerequisite and expandeskegoence sets. In addition, nested loop

correlation with two-level Linear Hashing requires moragpthan sequential scan when the input

37

size is small, but less space when the input size is larges i$fiecause two-level Linear Hashing
usually has wasted cells in the hash table when the inpuis&mall. When the input size is large,
not only the hash table is better utilized, but storing pratdi names in the top level index can also
reduce the storage requirement. The spike in the line ofcaorelation is due to the irregular dis-
tribution of instantiated predicates in the prerequisdes swhich are only saved in sort correlation,
but not in the nested loop correlation method. (There is danidncrease of hyper-alerts that only
have prerequisites between 3,000 and 6,000 input hypds.ale

Nested-Loop Correlation with Memory Constraint

Our last set of experiments is focused on evaluating theieiity of different index-
ing structures when there is memory constraint. Based omioir experimental results, we only
compare the execution time of AVL Tree, T Tree, B Tree, andeamHashing. We do not con-
sider Sequential Scan and Array Binary Search becauseiopth@ performance (in insertion and
search). It's quite clear that their performance will notthenparable with the other methods.

In this set of experiments, we first use a sliding window o&s&0,000 to compare the
execution time for different number of input hyper-alertds shown in Figure 3.5(a), when the
two-level index structure is not used, Linear Hashing hashidsst performance compared with the
three tree based indexing structures. Figure 3.5(b) shaivsikar performance order, when the two
level index structure is used. We also notice that B Treefoparthe best among the tree based
index structures, whereas AVL Tree is the best when there im@mory constraint. Our further
investigation indicates that the deletion algorithm of AViee is not only more complex than that
of B Tree, but also more complex than the insertion algoritfmAVL Tree. In an AVL Tree, one
deletion may trigger several subtree rotations. As a resute operations are need to rebalance
the tree. Figure 3.5(c) further shows the comparison ofdiiméashing and B Tree with and without
the two-level index structure. The result shows that thelevel index does improve the efficiency
of the index structures, and two-level Linear Hashing isrtuost efficient one among all the index
structures.

To reconfirm the performance results, we perform anothasfestperiments with varying
sliding window sizes, using all of the hyper-alerts as ingtigures 3.5(d), 3.5(e), and 3.5(f) show
the results. These results indicate that two-level Lineastihg is the most efficient and the two
level index structure improves the performance for all fa@thods.

An interesting observation is that there is a bump in the foreT Tree in both Figure

38

—e—LinearHash ~ —&—TTree ~—%—AVLTree —+—BTree

—8— LinearHash2L. —@—TTree2l —&—AVLTree2l +BTrse2L‘

2000
1800

1400
1600 f“
1400 1200 ///(-
7 1200 1000
3

1600

Time (
@
8

Time (ms)

800
600

600

400 400

200 200 f-‘.r‘p"
0 0
0 10000 20000 30000 40000 50000 60000

Number of Hyper-alerts

0 10000 20000 30000 40000 50000 60000
Number of Hyper-alerts

(@) Single-level index structures with fix¢d) Two-level index structures with fixed win-

window size dow size

‘ —e—LinearHash ~—#—LinearHash2l. —+—BTree —#—BTree2l ‘ ‘ —e—LinearHash —4—BTree —%—AVLTree —#—TTree ‘

1600

2000
1400 — 1600 ./N%.
/f" 1600
1200 A M H———H——k——K
W o) e
5 1000 % 1200
E £
< 800 % 1000
E E
= 600 = 800
600
400
400
200 200
o 0
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000

Number of Hyper-alerts Window Size

(c) Selected efficient index structures with) Single-level index structures with varying

fixed window size window size
‘ s k'\”/f.?{ggghz'- * .Br-l-l:{gg'[‘ ‘ —e—LinearHash —#— LinearHash2L —»—BTree +BTreeZL‘
1800 1600
1600 m 1400
—F %
1400 1200 M e
e =" —
- — 1000
£ 1000 E p— e
e 88— —8—a o 800
g 800 £
F = 600
600
100 400
200 200
0 0 - - - -
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
Window Size Window Size

(e) Two-level index structures with varyi§ Selected efficient index structures with

window size varying window size

Figure 3.5: Experimental results of correlations with meyreonstraint

3.5(d) and Figure 3.5(e) when the window size is between0l6ahd 25,000. Our investigation

reveals that the numbers of node balancing operationsdeetivindow sizes are more than the other

39

window sizes. (There are 16,611, 16,684, and 16,232 nodadiah operations for the window
sizes 15,000, 20,000, and 25,000, respectively.)

3.3 Summary

This chapter studies main memory index structures and dsgadpuery optimization tech-
niques to facilitate timely correlation of intensive agertiin addition to experimental study of the
performance of various main memory index structures, thgter presents three techniques named
hyper-alert container, two-level indeandsort correlationby taking advantage of the characteristics
of the alert correlation process. The experimental stusgatestrates that (1) hyper-alert contain-
ers improve the efficiency of order-preserving index strred, with which an insertion operation
involves search, (2) two-level index improves the efficieofall index structures, (3) a two-level in-
dex structure combining Chained Bucket Hashing and Lineeshiithg is most efficient for streamed
alerts, (4) sort correlation with heap sort algorithm isninest efficient for alert correlation in batch,
and (5) two-level Linear Hashing is the most efficient foraé®mrrelation when sliding window is
used to cope with memory constraint. Though these obsengtire based on the experiments for
DEF CON 8 CTF event data sets, we expect some observatigns((g.and (2)) are also applicable

to other data sets especially when data sets are large.

40

Chapter 4

Learning Attack Strategies from

Intrusion Alerts

It has become a well-known problem that current intrusiciect@n systems (IDSs) pro-
duce large volumes of alerts, including both actual andefalerts. As the network performance
improves and more network-based applications are beimgdinted, the IDSs are generating in-
creasingly overwhelming alerts. This problem makes iteartly challenging to understand and
manage the intrusion alerts, let alone respond to intrgsiomely.

It is often desirable, and sometimes necessary, to understidack strategies in security
applications such as computer and network forensics angsioh responses. For example, attack
strategies may be used to profile hackers or hacking toolerimpater and network forensics. As
another example, it is easier to predict attacker's nextanawd reduce the damage caused by
intrusions, if the attack strategy is known during intrusiesponse. However, in practice, it usually
requires that human users analyze the data collected dimtingions manually to understand the
attack strategy. This process is not only time-consuming,also error-prone. An alternative to
manual analysis is to list all possible attack strategiésgusulnerability analysis tools such as
attack graphs [97, 6]. However, these tools require a pmeelfsecurity property so that they can
use model checking techniques to identify possible attagkiesnces that may lead to the violation

of the security property.

41

In this chapter, we present techniques to automaticallgnlestack strategies from in-
trusion alerts reported by IDSs. Our approach is based oalénecorrelation methods [83, 29].
By examining correlated intrusion alerts, our method ettrghe constraints intrinsic to the attack
strategy automatically. Specifically, an attack strategyepresented as a directed acyclic graph
(DAG), which we call amattack strategy grapfwith nodes representing attacks, edges representing
the (partial) temporal order of attacks, and constraintshemnodes and edges. These constraints
represent the conditions that any attack instance musiisati order to use the strategy. To cope
with variations in attacks, we use generalization techesgio hide the differences not intrinsic to
the attack strategy.

To facilitate intrusion analysis in applications such ampater and network forensics,
we further develop technigues to measure the similaritwéeh sequences of intrusion alerts based
on their attack strategies. Similarity measurement oft alequences is a fundamental problem in
many security applications such as profiling hackers oringctools, identification of undetected
attacks, attack prediction, and so on. To achieve this goaharness the results on error tolerant
graph/subgraph isomorphism in the pattern recognitiod.fiBly analyzing the semantics and con-
straints in similarity measurement of alert sequencesravesform this problem into error tolerant
graph/subgraph isomorphism problem.

Our contribution in this chapter is three-fold. First, wevelep a model to represent
attack strategies as well as algorithms to extract attaekesfies from correlated alerts. Second, we
develop techniques to measure the similarity between seggeof alerts on the basis of the attack
strategy model. Third, we perform a number of experimentgatimate the proposed techniques.
Our experimental results show that our techniques can ssftdly extract invariant attack strategies
from sequences of alerts, measure the similarity betweemn s¢équences conforming to human
intuition, and identify attacks possibly missed by IDSse™etails of our approach are given in the

following sections.

4.1 Modeling Attack Strategies

In this section, we present a method to represent and autaiyatiearn attack strate-
gies from a sequence of related intrusion alerts. Our meithaéveloped by extending the alert

correlation model [83].

42

4.1.1 Attack Strategy Graph

The goal of attack strategy modeling is to capture the iavesiin attack strategies that do
not change across multiple instances of attacks. The gyraehind a sequence of attacks is indeed
about how to arrange earlier attacks to prepare for the tates so that the attacker can reach
his/her final goal. Thus, therepare-forrelations between the intrusion alerite(detected attacks)
is intrinsic to attack strategies. However, in method [8Bg prepare-forrelations are between
specific intrusion alerts; they do not directly capture thaditions that have to be met by related
attacks. To facilitate the representation of the invaratack strategy, we transform thespare-for
relation into some common conditions that have to be salisfyall possible instances of the same
strategy. In the following, we formally represent such aditton as arequality constraint

Definition 1 Given a pair of hyper-alert type€l,T5), an equality constraint fo7y,7%) is a
conjunction of equalities in the form a@f, = v; A - -+ A u,, = vy, Whereuy, - - - , u, are attribute
names in7; and vy, --- , v, are attribute names iff%, such that there exig(u;,--- ,u,) and
p(v1,- -+ ,vy,), Which are the same predicate with possibly different argis, inExpConseq(T})
and Prereq(T5), respectively. Given a typg hyper-alerth; and a typel’, hyper-alerths, hy and
ho satisfy the equality constrainftthere existt; € hy andty € hy such thatty.uy = to.vg A -+ A

t1.u, = to.v, evaluates to True.

There may be several equality constraints for a pair of hgpet types. However, if a
type T} hyper-alerth; prepares for a typ&, hyper-alerthy, thenh; andhs must satisfy at least one
of the equality constraints. Indeekl, preparing forh, is equivalent to the conjunction @ and
ho satisfying at least one equivalent constraint apaccurring beforew,. Assume that,; occurs
beforehs. If hy andhy satisfy an equality constraint f@#}, 75), then by Definition 1, there must
be a predicate(ui, - - ,u,) In ExpConseq(T1) such that the same predicate with possibly dif-
ferent arguments)(vy, - - - ,vy,), isin Prereq(T5). Sinceh; andhy satisfy the equality constraint,
p(uy,- -+ ,uy) andp(vy,--- ,v,) will be instantiated to the same predicatefimpConseq(hy) and
Prereq(hy). This implies thath, prepares forhe. Similarly, if h; prepares forhs, there must be
an instantiated predicate that appear&irpConseq(h1) and Prereq(hz). This implies that there
must be a predicate with possibly different argument&ipConseq(11) and Prereq(T;) and that

43

this predicate leads to an equality constraint(fbr, 7%) satisfied by, andhs.

Let us use an example from [83] to illustrate the notion ofadidy constraint. Consider
the following hyper-alert typesSadmindPing= ({VictimIP, VictimPor}, ExistsHogiVictimIP),
{VulnerableSadmin@victimIP)}), andSadmindBufferOverflow ({VictimIP, VictimPor}, ExistHost
(VictimIP) A VulnerableSadmindgVictimIP), {GainRootAccesgéVictimIP)}). The first hyper-alert
type indicates thaSadmindPingds a type of attacks that requires the existence of a hostalith
timIP to succeed, and as a result, the attacker may find out thatdbkishas a vulnerabl®admind
service. The second hyper-alert type indicates that this ¢f attacks requires a vulneraldadmind
service at th&/ictimIP, and as a result, the attack may gain root access. It is eaggtthat there is
a common predicat®ulnerableSadminaéh both Prereq(SadmindBufferOverflovend ExpConseq
(SadmindPing) Thus, we have an equality constrainttimIP = VictimIP for (SadmindPingSad-
mindBufferOverflogy where the first/ictimlP comes fromSadmindPingand the secontfictimIP
comes fromSadmindBufferOverflow

We observe in many occasions that one step in a sequenceacksathay trigger mul-
tiple intrusion alerts, and the number of alerts may varyiffecknt situations. This is partially
due to the existing vulnerabilities and the hacking tooler &le,uni code_shel | [87],
which is a hacking tool against Microsoft [IS web server, ddseabout 20 vulnerabilities at the
scanning stage and usually triggers the same number of.alkst another example, in the attack
scenario reported in [83], the attacker tried 3 differemicktpointers and 2 commands $ad-
mind AmslverifyOverflowattacks for each victim host until one attempt succeedednkvnot
necessary, an attacker may still deliberately repeat thee sgep multiple times to confuse IDSs
and/or system administrators. However, such variationsa@tochange the corresponding attack
strategy. Indeed, these variations make the attack sosnamnecessarily complex, and may hinder
manual or automatic analysis of the attack strategy. Thesjecide to disallow such situations in
our representation of attack strategies.

In the following, an attack strategy is formally represends an attack strategy graph.

Definition 2 Given a setS of hyper-alert types, aattack strategy graplover S is a quadruple
(N, E, T,C), where (1)(N, E) is a connected DAG (directed acyclic graph); (2)is a mapping
that maps each € N to a hyper-alert type i5; (3) C'is a mapping that maps each edga, nq) €

F to a set of equality constraints f@f'(n1), T (n2)); (4) For anyni,ne € N, T'(n1) = T(n2)

44

Sadmind_Ping Sadmind_Amslverify_Overflow Rsh Mstream_zombie Stream_Dos

{n1.DestlP=n2.DestIP} m{nz.oestlpzns.Srclp} m {n3.SrcIP=n4.SrcIP} {}

Figure 4.1: An example of attack strategy graph

implies that there exists; € N such thatl'(n3) # T'(n1) andngs is in a path between; andn..

In an attack strategy graph, each node represents a steequarse of related attacks.
Each edggnq,n2) represents that a typE(n,) attack is needed to prepare for a successful type
T(n,) attack. Each edge may also be associated with a set of ggeatfistraints satisfied by the
intrusion alerts. These equality constraints indicate bow attack prepares for another. Finally,
as represented by condition 4 in Definition 2, the same tymdtatks should be considered as one
step, unless they are in different stages of the attacks.

Note that attack strategies may also be specified manudinguages such as LAMBDA
[30] and STATL [40]. However, manual specification of attatiategies requires prior knowledge
of the strategies, and is also time-consuming and errareprolools based on modeling check-
ing techniquesd.g, attack graphs [97, 58]) can certainly be used to build kttategies from
knowledge of individual types of attacks. However, thes¢hods require clearly identified secu-
rity properties to run the model checking tools, which may alavays be available in reality. In
contrast, our notion of attack strategy graph is intendexkpoesent the strategies extracted from
correlated intrusion alerts. Based on the knowledge almalitidual attack types, a program can
automatically extract attack strategies from correlatgclsion alerts.

Now let us see an example of an attack strategy graph. Figlrés4he attack strat-
egy graph extracted from the hyper-alert correlation giagfigure 2.1. The hyper-alert types are
marked above the corresponding nodes, and the equalitjramts are labeled near the correspond-
ing edges. This attack strategy graph clearly shows the coerg attacks and the constraints that

the component attacks must satisfy.

Learning Attack Strategies from Correlated Intrusion Aler ts

As discussed earlier, our goal is to learn attack stratemigésmatically from correlated

intrusion alerts. This requires that we extract the comggantrinsic to attack strategy from alerts

45

so that the same constraints apply to all the other instaoidibe same strategy.

Our strategy to achieve this goal is to process the corebiateusion alerts in two steps.
First, we aggregate intrusion alerts that belong to the ssteeof a sequence of attacks into one
hyper-alert. For example, in Figure 2.1, alerts 002 thro0§5 are indeed attempts of the same
attack with different parameters, and thus they should lpgeggted as one step in the attack se-
guence. Second, we extract the constraints between tlo& ateps and represent them as an attack
strategy graph. For example, after we aggregate the hypes-an the first step, we may extract the
attack strategy graph shown in Figure 4.1.

The challenge lies in the first step. Because of the varigtmfnattacks as well as the
signatures that IDSs use to recognize attacks, there isean wlay to identify intrusion alerts that
belong to the same step in a sequence of attacks. In the fnfipwe first attempt to use the attack
type information to do so. The notion afigregatablehyper-alerts is introduced formally to clarify

when the same type of hyper-alerts can be aggregated.

Definition 3 Given a hyper-alert correlation grapb’'G = (N, E), a subsetN’ C N is aggregat-
ablg if (1) all nodes inN’ are the same type of hyper-alerts, and\{2),, no € N/, if there is a path
fromn, to ns, then all nodes in this path must be N

Intuitively, in a hyper-alert correlation graph, whererusion alerts have been correlated
together, the same type of hyper-alerts can be aggregatedgas they are not used in different
stages in the attack sequence. Condition 1 in Definition i etraightforward, but condition 2
deserves more explanation. Consider the same type of laygesh, andhs. If h; prepares for
a different type of hyper-aledt’ (directly or indirectly), and:’ further prepares foh, (directly or
indirectly), h; andhs obviously belong to different steps in the same sequenctaafia. Thus, we
should not allow them to be aggregated together. Althoughave never observed such situations,
we cannot rule out such possibilities.

Based on the notion of aggregatable hyper-alerts, the fapgtis learning attack strategy
from a hyper-alert correlation graph is quite straightfardk We only need to identify and merge
all aggregatable hyper-alerts. To proceed to the secopdrstrategy learning, we need a hyper-
alert correlation graph in which each hyper-alert repressarseparate step in the attack sequence.

Formally, we call such a hyper-alert correlation graph egdiacible hyper-alert correlation graph.

Definition 4 A hyper-alert correlation grapl®’G = (N, E) isirreducibleif for all N’ C N, where

46

Algorithm 1. ExtractStrategy
Input: A hyper-alert correlation grapb'G.
Output: An attack strategy grapASG.
Method:
1. LetC G’ = GraphReduction(G).
2. LetASG = (N, E,T,C) be an empty attack strategy graph.
3. for each hyper-alert in CG’
4. Add a new node, denoted,, into NV and sefl'(n;,) be the type of.
5. for each edgé¢h, ') in CG’
6. Add (’I’Lh, ’I’Lh/) into E.
7. for eachp. € ExpConseq(h) andp, € Prereq(h’)
8. ifp. = p, then
9. Add intaC'(ny,, nyy) the equality constraintu; = vi) A -+ A (up = vy).
Notewu; andv; are theith variable ofp. andp, before instantiation, respectively.
10.return ASG(N, E,T,C).

Subroutine GraphReduction
Input: A hyper-alert correlation grapf'G = (N, E).
Output: An irreducible hyper-alert correlation graglG’ = (N', E').
Method:
1. Partition the hyper-alerts iV into groups such that the same type of hyper-alerts
are all in the same group.
. for each grougz
if there is a patly, ny,--- ,nk, ¢’ in CG such that only andg’ are inG then
Divide G into G1, Go, andGs such that all hyper-alerts i@, occur beforenq,
all hyper-alerts inG5 occur afternsy, and all the other hyper-alerts are.
5. Repeat steps 2 to 4 until no group can be divided.
6. Aggregate the hyper-alerts in each group into one hyjeet-a
7. Let N’ be the set of aggregated hyper-alerts.
8
9

AN

forall ny,ny € N’
if there existghq, hy) € E andh, andh, are aggregated inte; andn,, respectively
10. add(ny,n9) into E'.
11.return CG' = (N', E').

Figure 4.2: An algorithm to extract attack strategy grapimfra hyper-alert correlation graph

|IN’| > 1, N’ is not aggregatable.

Figure 4.2 shows the algorithm to extract attack strategplgs from hyper-alert correla-
tion graphs. The subroutin@raphReductions used to generate an irreducible hyper-alert correla-
tion graph, and the rest of the algorithm extracts the coraptsof the output attack strategy graph.
The steps in this algorithm are self-explanatory; we do eptat them in the text. Lemma 4.1.1
ensures that the output of algorithm 1 indeed satisfies thsti@ints of an attack strategy graph.

a7

Lemma 4.1.1 The output of Algorithm 1 is an attack strategy graph.

Proof: We first prove the output of the subrouti@gaphReductioris an irreducible hyper-alert cor-
relation graph by contradiction. Consider the outpi@¥’ = (N’, E’) of GraphReductionSuppose
there existsVy, C N’, where|Ng| > 1, such thatV, is aggregatable. Thus, all nodesin are
the same type of hyper-alerts, and for any two different sedeny, € Ny, if there is a path from
ny to no, then all nodes in the path are . SinceCG’ is aggregated from the input hyper-alert
correlation graph, for all pairs of node$ andn/,, wheren andn/, are aggregated inte; andn,
respectively, if there exists a path frash to »/, in the input graph, all the nodes in the path must be
in the group of nodes aggregated into the nodeS jnAccording to steps 3 and 4 @raphReduc-
tion, they should have been kept in the same group and aggregédezhie node it G’. This leads
to a contradiction to the assumption thgtandn), are aggregated inte; andny, respectively.

Now we prove the output of Algorithm 1 is an attack strategypdy. Consider the output
of Algorithm 1 ASG = (N, E,T,C). ltis easy to see th&f is a mapping that maps eaghe N
to a hyper-alert type, and is a mapping that maps each edge F to a set of equality constraints.
In addition, because the input hyper-alert correlatiorprs a DAG, (N, E) must be a directed
graph. Suppose there is a cyelg na,--- ,nq in (N, E). There must exist two nodes, nio,
andns; in the input hyper-alert correlation graph such that andni, are aggregated inta,
nsy IS aggregated intas, and there exists a pathy,--- ,no1,--- ,n12. HOwever, according to
the subroutingGraphReductionny; andn, should have been put into two separate groups. Thus,
(N, E) cannot have any cycle. Finally, for any, ne € N, since the output oGraphReductioris
irreducible, ifT'(ny) = T'(n2), then there must exist; € N in a path between; andns such that

4.1.2 Dealing with Variations of Attacks

Algorithm 1 in Figure 4.2 has ignored equivalent but diffgrattacks in sequences of
attacks. For example, an attacker may use eipmeapdumpor SadmindPing to find a vulnera-
ble Sadmind service. As another example, an attacker magitissr SadmindBufferOverflowr
TooltalkBufferOverflovattack to gain remote access to a host. Obviously, at the stage of two
sequences of attacks, if an attacker uses equivalent ffertedif attacks, Algorithm 1 will return two
different attack strategy graphs, though the strategibstléhem are the same.

We propose to generalize hyper-alert types so that thedjmthifference between equiv-

48

alent hyper-alert types is hidden. For example, we may gdinerbothSadmindBufferOverfloand
TooltalkBufferOverflovattacks intaRPCBufferOverflow

A generalized hyper-alert type is created to hide the ursserg difference between spe-
cific hyper-alert types. Thus, an occurrence of any of theifipenyper-alerts should imply an
occurrence of the generalized one. This is to say that aetish of the prerequisite of a specific
hyper-alert implies the satisfaction of the prerequisit¢he generalized hyper-alert. Moreover, to
cover all possible impact of all the specific hyper-aleittg, ¢onsequences of all the specific hyper-
alert types should be included in the consequence of thergerezl hyper-alert type. It is easy to
see that this generalization may cause loss of informalfibns, generalization of hyper-alert types
must be carefully handled so that information essentiatttch strategy is not lost.

In the following, we formally clarify the relationship bet&n specific and generalized
hyper-alert types.

Definition 5 Given two hyper-alert type$, and T, whereT, = (facty, prereqy, conseq,) and
Ts = (facts, preregs, conseqs), we sayl, is more general thaff; (or, equivalently, T is more

specific tharil})) if there exists an injective mappingfrom fact, to facts such that the following

conditions are satisfied:
e If we replace all variables: in prereg, with f(x), prereq, impliesprereq,, and

o If we replace all variables: in conseq, with f(x), then all formulas irconseg; are implied

by conseqy.

The mappingf is called thegeneralization mappinfjom 7’ to 7},.

Let us look at an example. Suppose the hyper-alert t@gastmindBufferOverflovand
TooltalkBufferOverflovare specified as followsSadmindBufferOverflow ({VictimIP, VictimPort,
ExistHost(VictimIP) A VulnerableSadmin@VictimIP), { GainRootAcces/ictimIP)}), andTooltalk-
BufferOverflow= ({VictimIP, VictimPor}, ExistHost(VictimIP) A VulnerableTooltalk(VictimIP),
{GainRootAccesgvictimIP)}). Assume thaVulnerableSadmingVictimIP) imply VulnerableRPC
(VictimIP). Intuitively, this represents that if there is a vulnemBladmind service &fictimIP, then
there must be a vulnerable RPC service.,(the Sadmind service) &fctimlP. Similarly, we assume

49

VulnerableTooltalkVictimIP) also impliesvulnerableRPGVictimIP). Then we can generalize both
SadmindBufferOverflowand TooltalkBufferOverfloninto RPCBufferOverflow= ({VictimIP}, Ex-
istHost (VictimIP) A VulnerableRPQVictimIP), {GainRootAccesévictimIP)}), where the gener-
alization mapping isf (VictimIP) = VictimIP.

By identifying a generalization mapping, we can specify laospecific hyper-alert can be
generalized into a more general hyper-alert. Followinggheeralization mapping, we can find out
what attribute values of a specific hyper-alert should bigaed to the attributes of the generalized
hyper-alert. The attack strategy learning algorithm caedmsly modified: We first generalize the
hyper-alerts in the input hyper-alert correlation grapto igeneralized hyper-alerts following the
generalization mapping, and then apply Algorithm 1 to esttthe attack strategy graph.

Although a hyper-alert can be generalized in different glanities, it is not an arbitrary
process. In particular, if one hyper-alert prepares fottagrohyper-alert before generalization, the
generalized hyper-alerts should maintain the same rakttip. Otherwise, the dependency between
different attack stages, which is intrinsic in an attacktgigy, will be lost.

The remaining challenge is how to get the “right” generalibgper-alert types and gen-
eralization mappings. The simplest way is to manually spebem. For exampleApache2, Back
andCrashiisare all Denial of Service attacks. We may simply generalizefahem into oneWeb-
ServiceDOSHowever, there are often different ways to perform gefeatibn. To continue the
above exampleApache2and Back attacks are against the apache web servers, irdshiisis
against the Microsoft IIS web server. To keep more infororafibout the attacks, we may want to
generalizeApacheand Backinto ApacheDOSwhile generalizeCrashiisand possibly other DOS
attacks against the 11S web server ilf8DOS Nevertheless, this does not affect the attack strategy
graphs extracted from correlated intrusion alerts as lanthe constraints on the related alerts are
satisfied.

Automatic Generalization of Hyper-Alert Types. It is time-consuming and error-prone to man-
ually generalize hyper-alert types. One way to partiallifomate this process is to use clustering
techniques to identify the hyper-alert types that shouldjéreeralized into a common one. In our
experiments, we use the bottom-up hierarchical clustg&ato group hyper-alert types hierarchi-
cally on the basis of the similarity between them, which igviel from the similarity between the

prerequisites and consequences of hyper-alert types. €hwrhused to compute the similarity is
described below.

To facilitate the computation of similarity between prarsifes of hyper-alert types, we
convert each prerequisite into arpanded prerequisite sethich includes all the predicates that

50

appear or are implied by the prerequisite. Similarly, we gahthe expanded consequence set.
Consider two sets of predicates, denofgdand .S,, respectively. We adopt the Jaccard similar-
ity coefficient [54] to compute the similarity betweéfi and S, denotedSim/(Sy, S2). That is,

Sim(Sy,S2) =
predicates only irb, andc is the number of predicates only 3.

ﬁ, wherea is the number of predicates in bofh and.Ss, b is the number of
Consider hyper-alert typd§ and7%. The similarity betweeff}; andT%, denotedSim (11, Ts),
is then computed aSim (11, T>) = Sim(X Py, X Py) x w, + Sim(X C1, X Cs) x w,, whereX P
and X P, are the expanded prerequisite setd'pfand7;, Xy and X C, are the expanded conse-
quence sets d@f; and73, andw, andw, = 1—w, are the weights for prerequisite and consequence,
respectively. (In our experiments, we usg = w. = 0.5 to give equal weight to both prerequisite
and consequence of hyper-alert types.) We may then setshtilde so that two hyper-alert types

are grouped into the same cluster only if their similarityasere is greater than or equaltto

4.2 Measuring the Similarity between Attack Strategies

In this section, we present techniques to measure the sitpitzetween attack strategy
graphs based on error tolerant graph/subgraph isomorphignch has been studied extensively
in pattern recognition [15, 75, 74, 76, 73]. Since the attsttitegy graphs are extracted from se-
qguences of correlated alerts, the similarity between twachkitstrategy graphs are indeed the simi-
larity between the original alert sequences in terms of #teategies. Such similarity measurement
is a fundamental problem in intrusion analysis; it has pidémpplications in incident handling,
computer and network forensics, and other security manageaneas.

We are particularly interested in two problems. First, hawilar are two attack strate-
gies? Second, how likely is one attack strategy a part oh@n@ittack strategy? These two problems
can be mapped naturally to error tolerant graph isomorplaistherror tolerant subgraph isomor-
phism problems, respectively.

To facilitate the later discussion, we give a brief overvigwerror tolerant graph/subgraph
isomorphism. Further details can be found in the rich lite'a on graph/subgraph isomorphism
[15, 75, 74, 76, 73].

51

4.2.1 Error Tolerant Graph/Subgraph Isomorphism

In graph/subgraph isomorphism, a graph is a quadrgple- (N, E,T,C), where N
is the set of nodesE is the set of edges]’ is a mapping that assigns labels to the nodes, and
C'is a mapping that assigns labels to the edges. Given two g@ph= (N, E1,77,C) and
Go = (N9, E5, Ty, C5), a bijective functionf is agraph isomorphisnfrom G, to G5 if

o foralln, € Ny, Ti(n1) = To(f(n1));

o foralle; = (n1,n)) € Ey, there existes = (f(n1), f(n})) € Ey such thatC(e;) = C(ea),
and for alley = (ng,nb) € Fs, there existee; = (f~1(n2), f~1(n})) € E; such that
0(62) = C’(el).

Given agraptG = (N, E, T, C), asubgraphof G is a graphGs = (N, Es, Ts, Cs) such
that (1) Ny C N, (2) Es = EN (N x Ny), (3) for allng € Ny, Ts(ns) = T'(ns), and (4) for all
es € FEg, Cs(es) = C(es). Given two graph&s; = (N1, E1,T1,C1) andGe = (Na, Es, T, Cs),
an injective functionf is asubgraph isomorphisifiom G, to Go, if there exists a subgraphs of
G such thatf is a graph isomorphism froif¥; to Go,.

As a further step beyond graph/subgraph isomorphism, erenant graph/subgraph iso-
morphism (which is also known as error correcting graphgsash isomorphism) is introduced to
cope with noises or distortion in the input graphs. Theretase approaches for error tolerant
graph/subgraph isomorphism: graph edit distance and naxiommon graph. In this chapter, we
focus on graph edit distance to study the application ofréalerant graph/subgraph isomorphism
in intrusion detection.

The edit distance method assumes a set of edit operatogsdeletion, insertion and
substitution of nodes and edges) as well as the costs of tipesations, and defines the similarity
of two graphs in terms of the least cost sequence of edit bpesathat transforms one graph into
the other. We denote the edited graph after a sequence afpeEttionsA asA(G). Consider two
graphs; andGs,. ThedistanceD(G1, G2) from G, to G w.r.t. graph isomorphisris theminimum
sum of edit costs associated with a sequence of edit opesafioon G; that leads to a graph
isomorphism fromA(G1) to G,. Similarly, thedistanceD, (G4, G2) from G to G2 w.r.t. subgraph
isomorphisms theminimumsum of edit costs associated with a sequence of edit opesatian
G that leads to @ubgraphisomorphism fromA(G;) to G,. An error tolerant graph/subgraph
isomorphisnfrom G to G is a pair (A, f), whereA is a sequence of edit operations@np, and f
is a graph/subgraph isomorphism fra{G,) to Gs.

52

It is well known that subgraph isomorphism detection is ardgmplete problem [46].
Error tolerant subgraph isomorphism detection, whichlwve® subgraph isomorphism detection, is
also in NP and generally harder than exact subgraph isonsongletection [74]. Nevertheless, error
tolerant subgraph isomorphism has been widely applied agerprocessing and pattern recognition
[15, 75, 74, 76, 73]. In our application, all the attack stggtgraphs we have encountered are small
graphs with less than 10 nodes. We argue that it is very uUpltkehave very large attack strategy
graphs in practice. Thus, we believe error tolerant grafiigisaph isomorphism can be applied to
measure the similarity between attack strategy graphs ne#@honable response time. Indeed, we

did not observe any noticeable delay in our experiments.

4.2.2 Working with Attack Strategy Graphs

To successfully use error tolerant graph/subgraph isoniempdetection techniques, we
need to answer at least the following three questions. Wieathee edit operations on an attack
strategy graph? What are reasonable edit costs of thesepedétions? What is the right similarity
measurement between attack strategy graphs?

All the edit operations on a labeled graph are applicablét&zla strategy graphs. Specif-
ically, anedit operationon an attack strategy graphSG = (N, E, T, C) is one of the following:

1. Inserting a node: $ — n. This represents adding a stage into an attack strategy. €t

operation is only needed for error-tolerant graph isomisrmph

2. Deleting a noder: n — $. This represents removing a stage from an attack strategie N
that this implies deleting all edges adjacent with

3. Substituting the hyper-alert type of a nadeT'(n) — ¢, wheret is a hyper-alert type. This
represents changing the attack at one stage of the attat&gstr

4. Inserting an edge = (n1,n2): $ — e, whereny,no € N. This represents adding depen-

dency (.e. prepare-for relation) between two attack stages.

5. Deleting an edge = (n1,n2): e — $. This represents removing dependeniog.,(prepare-
for relation) between two attack stages.

6. Substituting the label of an edge= (ni,n2): C(e) — ¢, wherec is a set of equality
constraints. This represents changing the way in which ttazla stages are related to each
other. (Note that is not necessarily a set of equality constraints(fb(n;), T'(n2)).)

53

These edit operations do not necessarily transform onekagteategy graph into another
attack strategy graph. Indeed, a labeled graph must sabsfie constraints to be an attack strategy
graph. For example, all the equality constraints in thellabsociated witt{n4, n,) must be valid
equality constraints fofT'(n1),T(n2)). It is easy to see that the edit operations may violate some
of these constraints.

One may suggest these constraints be enforced throughottatisformation of attack
strategy graphs. As an additional benefit, this can be usesbitece the search space required for
graph/subgraph isomorphism. However, this approach mayjimbthe least expensive sequence
of edit operations, and may even fail to find a transformafimm one attack strategy graph to
(the subgraph of) another. Indeed, editing distance is anetw measure the difference between
attack strategy graphs; it is not necessary to require thiieaintermediate edited graphs are attack
strategy graph. As long as the final edited graph is isomorfahian attack strategy graph, it is
guaranteed to be an attack strategy graph. Thus, we do notedhe intermediate graphs during
graph transformation be attack strategy graphs.

Assignment of edit costs to edit operations is a criticgb gteerror tolerant graph/subgraph
isomorphism. The actual costs are highly dependent on theihoin which these techniques are
applied. In our application, there are multiple reasonatégs to assign the edit costs. In the
following, we attempt to give some constraints that the essignment must satisfy.

In an attack strategy graph, a node represents a stage itaak strategy, while an edge
represents the causal relationship between two steps sirditegy. Obviously, changing the stages
in an attack strategy affects the attack strategy significamore than modifying the causal relation-
ships between stages. Thus, the edit costs of node relagdtimms should be significantly more
expensive than those of the edge related operations.

Inserting or deleting a node implies having one more or festep in the strategy, while
substituting a node type implies to replace the attack instep in the strategy. Thus, inserting or
deleting a node has at least the same impact on the strategpstituting the node type. Moreover,
deleting a node and inserting a node are both manipulatibastage; there is no reason to say one
operation has more impact than the other. Therefore, thayldinave the same cost. Both inserting
and deleting an edge changes the causal relationship betweeattack stages, and they should
have the same impact on the attack strategy. However, itlygii the label of an edge is just to
change the way in which two attack stages are related. Thshpuld have less cost than edge

insertion and deletion. In summary, we can derive the fahgweonstraint in edit cost assignments.

54

Constraint 4.2.1 Cost,,_g = Costg_,,, > Costrp(,)—; >> Costg_,, = Costo_g > Cosl(e)—e-

The labels in an attack strategy graph is indeed a set of igguahstraints. As a result,
labels are not entirely independent of each other. Thisidurimplies that edit costs for edge label
substitution should not be uniformly assigned. For exapglbstituting an edge lab¢i, B} for
{A, C'} should have less cost than substitut{nty B} for {C, D}. This observation leads to another

constraint.

Constraint 4.2.2 Assume that the edit operati@ri(e) — c replacesC(e) = cyq With ¢je. The
edit costCost (). should be smaller whet,; andc,,.., have more equality constraints in com-

mon.

Here we give a simple way to accommodate Constraint 4.2.2. a¥geme there is a
maximum edit cost for label substitution operation, ded@eM axCostc(.)—... The edit cost of
a label substitution is the@ostc (). = MazCostc(e) . X % wherec,;q andc,,,, are
the labelsi(e., sets of equality constraints) before and after the opmrati

Error tolerant graph/subgraph isomorphism detectionriggctes can conveniently give a
distance between two labeled graphs, which is measuredrirstef edit cost. As we discussed
earlier, we use these techniques to help answer two qusstfbhHow similar are two sequences
of attacks in terms of their attack strategy? (2) How likebed one sequence of attacks use a part
of attack strategy in another sequence of attacks? In thewiolg, we transform the edit distance
measures into more direct similarity measures.

Consider an attack strategy graglsGG. We refer to the distance froldSG to an empty
graph as theeductive weight oASG, denoted a3V, (ASG). Similarly, we refer to the distance

from an empty graph telSG as theconstructive weight afASG, denotedV.(ASG).

Definition 6 Consider two attack strategy grapisSG; and ASG,. Thesimilarity betweemrdSG,

and ASG, w.rt. (attack) strategis Sim(ASG:, ASGy) = SmASG1oASCh) £5im(A5C, —A5Ch)

)

whereSim(ASG, — ASG,) =1 — 5 @g‘gﬁmﬁg =5

55

Definition 7 Consider two attack strategy grapisSG, and ASG,. Thesimilarity betweemrd.SG1

and ASG, w.r.t. (attack) sub-strategg Simgu,(ASG1, ASGa) =1 — WT(DX%%(;J:%@(%)@).

Simple analysis of the impact of edit costs on the similaritymeasurement. Suppose
we have two grapliz, and Gy, which haven, andn; nodes, ang, ande, edges, respectively.
Assume we perform an error tolerant graph isomorphism #gnto G, the node operations have
the same cogt'y;, and edge operations have the same €gstwhereCy > Cg. Inthe sequence of
edit operations, suppose there aAfg node operations, anlz edge operations. Then the similarity

measure can be simplified as follows.

. D(Ga,Gb) Cny x Ny +Cg x Ng
Sim(Ga, Gy) =1 — -
MG, Go) = 1= GG WlGr) - O % (g +) ¥ O X (e +)

Further lete, + e, = k x (ng + np), andNg = s x Ny. Then we have

Sim(Ga,Gp) = 1— On X Ny + Cp x s X Ny _ 1 Nnx(On+Cp xs)
@)= CNx(na—i—nb)—l—CExkx(na—l—nb)_ (na—l—nb)x(CN—i—CExk)

Whenk ands are not large, sinc€'y, > Cg, the formula can be further simplified.

Ny
Ng + Ny

Sim(Ga,Gb) =1-

Thus, under the above assumptions, the similarity is apmabely determined by the
proportion of the number of edited nodes to the total numlberooles. In summary, when the
number of edges are not substantially more than the numbeod#s, and the number of edge
operations are not substantially more than the number of npérations, the similarity measure is

mainly determined by the number of nodes and node operaiibher than the edit costs.

4.3 Experiments

We have performed a series of experiments to study the pedptschniques. In our
experiments, for alert correlation method, we used theempintation of [83]. We used GraphViz
[9] to visualize graphs. In addition, we us€dUB [73], A Toolkit for Graph Matching, to perform
error tolerant graph/subgraph isomorphism detection antpaite distances between attack strategy
graphs. We used RealSecure Network Sensor [52] and Sn@$33ur IDS sensors (Accordingly,
we labeled the alerts generated by different sensorsRétdSecur@r Snort respectively).

56

Our test data sets include the 2000 DARPA intrusion detecg@nario specific data sets
[77]. The data sets contain two scenarios: LLDOS 1.0 and LBX®.2. In LLDOS1.0, the se-
guence of attacks includes IPsweep, probes of sadmindesnhireakins through sadmind exploits,
installations of DDoS programs, and finally the DDoS attackDOS 2.0.2 is similar to LLDOS
1.0; however, the attacks in LLDOS 2.0.2 are more stealthy those in LLDOS 1.0. In addition
to the DARPA data sets, we also performed three sequencéscfsin an isolated network. In all
these three attack sequences, the attacker started with [ddhlascans of the victim. Then, in the
first sequence, the attacker sent malformed urls [24] to itievs Internet Information Services
(IIS) to get a cmd.exe shell. In the second sequence, thekattéook advantage of the flaws of
IP fragment reassembly on Windows 2000 [23] to launch a Daflat In the third sequence, the
attacker launched a buffer overflow attack against theretdPrinting Protocol accessed via 11S 5.0
[25, 18].

4.3.1 Learning Attack Strategies from Correlated Intrusion Alerts

Our first goal is to evaluate the effectiveness of our apgraat extracting the attack
strategies. Figure 4.3 shows all of the attack strategyhgrapmtracted from the test data sets. The
label of each node is the node ID followed by the hyper-algretof the node. The label of each
edge describes the set of equality constraints for the kglper types associated with the two end
nodes.

The attack strategy graphs we extracted from LLDOS 1.0depart) are shown in Figure
4.3(a) and 4.3(b). Comparing them with the description efdhata set [77], we know that both
Figures 4.3(a) and 4.3(b) have captured most of the attaakegy. The missing parts are due
to the attacks missed by the IDSs. Since we did not generedimations of hyper-alert types,
these graphs still have syntactic differences despiteedf tommon strategy. (Note that the “RPC
sadmind UDP PING” alert reported by Snort is indeed the “Sadmmslverify_Overflow” alert
by RealSecure, and the “RPC portmap sadmind request UDR’bgl&nort is the “SadmindPing”
alert by RealSecure.) Moreover, false alerts are also tefldo the attack strategy graphs. For
example, the hyper-alert types “Emailmail _Overflow” and “FTRSyst” in Figure 4.3(a) do not
belong to the attack strategy, but they are included beaziube false detection.

The attack strategies extracted from LLDOS 2.0.2 are shaigures 4.3(c) and 4.3(d).
Compared with the five phases of attack scenarios [77], ih$y €0 see that Figure 4.3(c) reveals

most of the adversary’s strategy. However, Figure 4.3(Bals two steps fewer than Figure 4.3(c).

{n1.DestIP=n2.DestIP}

n2: Sadmind_Ping

{n2.DestIP=n3.DestIP}

ni: RPC portmap request sadmind
{nL.DestiP=n3.DestIP}

n1.DestlP=n2.DestIP}

n3: Sadmind_Amslverify_Overflow

n2: RPC sadmind UDP PING

na: Email_Almail_Overflow

{n3.DestiP=n5.SrclP} [{n4.DestIP=n5.SrcIP}|

{n2.DestIP=n3.Srcli}

{n3.DestIP=n6.SrcIP}

2.DestIP=n4.SrclP)
{n4.DestIP=n6.SrcIP} {n2.DestiP=n4.SrclP}

{n5.SrcIP=n6.SrcIP} {n3.SrclP=nd.SrclP}

n6: Mstream_Zombie

{n3.SrcIP=n5.Srcl}_ n4: RSERVICES rsh root

{n4.SrcIP=n5.SrclP}

n5: DDOS shaft client to handler

n7: Stream_DoS

(@) LLDOSL1.0 inside dataset (RealSecure) (b) LLDOS1.0 inside dataset (Snort)

{nL.DestIP=n2.DestIP}

n2: Email_Almail_Overflow

{n2.DestiP=n3.DestIP}

{n1.DestiP=n2.SrclP} {n2.DestlP=n4.SrclP}
{n3.DestiP=n2.SrciP}

nl: TELNET access

f\l SrclP=n2.SrclP}
{} ‘

n2: DDOS shaft client to handler

(c) LLDOS2.0.2 inside dataset (RealSecure)

nd: Mstream_Zombie

(d) LLDOS2.0.2 inside dataset (Snort)

nl: ICMP PING NMAP

{n1.DestlP=n2.DestIH

n2: SCAN namp fingerprint attempt

{n2.DestIP=n6.DestIP|

[} {n1.DestiP=n4.DestIP} {n1.DestIP=n3.DestIP}

n3: SCAN namp TCP

{n4.DestIP=n5.DestIP}

n4: SCAN namp XMAS

{n4.DestIP=n6.DestIP. {n2.DestIP=n5.DestIP} {n3.DestIP=n6.DestIP} {n3.DestIP=n5.DestIP}

n6: WEB-IIS cmd.exe access

Nn5: WEB-IIS unicode directory traversal attempt

{n6.DestIP=n7.SrcIP}

{n5.DestIP=n7.SrcIP}

n7: ATTACK RESPONSES http dir listing

(e) WEB-IIS unicode exploits (Snort)

nl: ICMP PING NMAP

{nl1.DestIP=n2.DestIP}

n2: SCAN namp fingerprint attempt

{n2.DestIP=n3.DestIP}

nl: ICMP PING NMAP
{n1.DestIP=n2.DestIA]

n2: SCAN namp fingerprint attempt

{n2.DestIP=n5.DestIP}

{n1.DestIP=n3.DestIP} {n1.DestIP=n4.DestIP}

n4: SCAN namp XMAS

{n3.DestIP=n5.DestIP}

n3: SCAN namp TCP.

{n4.DestIP=n5.DestIP}

n3: (spp_frag2) Oversized fragment, probable Dos

n5: WEB-IIS ISAPI printer access

(f) jolt2 DoS attack (Snort) (g) WEB-IIS ISAPI .printer access (Snort)

Figure 4.3: Attack Strategy Graphs Extracted from Our Eixpents

57

58

Our further investigation indicates that this is because @itical attack step, the buffer overflow
attacks against sadmind service, was completely misseant. F-igures 4.3(e), 4.3(f), and 4.3(g)
show the attack strategies extracted from the three seqa@fi@ttacks we performed. By compar-
ing with the attacks, we can see that the stages as well astistraints intrinsic to these attack
strategies are mostly captured by these graphs.

Though showing some potential, these experimental resisitsreveal a limitation of the
attack strategy learning method. That is, our method dependhe underlying IDSs as well as the
alert correlation method. If the hyper-alert correlatioaghs do not reveal the entire attack strategy,
or include false alerts, the attack strategy graphs gesgeiat our method will not be perfect. Nev-
ertheless, our technique is intended to automate the amphecess typically performed by human
analysts, who may make the same mistake if no other infoomadi used. More research is clearly
needed to mitigate the impact of imperfect IDS and corretati

Another observation is that alerts from heterogeneous Ea8selp complete the attack
strategies. For example, combining Figures 4.3(c) andi®.@(€ know that an attacker may launch
buffer overflow attacks against sadmind service and themahset to access the victim machine.

Note that we do not give a quantitative performance evaloaif attack strategy extrac-
tion (i.e. the false positive and false negative of the extractedtlattérategies). This is because
such measures are indeed determined by the underlyingsimtralert correlation algorithm. As
long as correlation is performed correctly, our method daays extract the strategy reflected by

the correlated alerts.

4.3.2 Measuring the Similarity between Alert Sequences

We performed experiments to measure the similarity betwberpreviously extracted
seven attack strategy graphs. To hide the unnecessargedifies between alert types, we performed
generalized to alert types.

The generalization of hyper-alert types. We first performed automatic generalization
of hyper-alert types. Figure 4.4 shows the results we obthfor the hyper-alert types in the 2000
DARPA data sets. Here the string inside the non-leaf nodens@aneralization Typdollowed
by an ID. From Figure 4.4(b), we know theT P_PutandRshcan be generalized to the same type.
These results were used in our later experiments when wewteahfhe similarity measures between
attack strategy graphs. Besides Figure 4.4, additionadrgdination hierarchies of hyper-alert types

in our experiments are shown in Figure 4.5.

59

@ HTTP_Shells @ @

Sadmind_Amslverify HTTP_Cisco
_Overflow _Catalyst_Exec HTTP_Java HTTP_ActiveX FTP_Put Rsh
(a) Hierarchy 1 (b) Hierarchy 2

FTP_Pass

Email_Almail

DNS_Hinfo FTP_Syst Email_Debug Overflow

(c) Hierarchy 3

Figure 4.4: Generalization hierarchies for hyper-alepes/in DARPA 2000 datasets. Threshold

t=0.5.

Sadmind_Amslverify_Overflow RPC sadmind UDP PING Rsh RSERVICES rsh root
(a) Hierarchy 4 (b) Hierarchy 5
Mstream_Zombie DDOS shaft client to handler

(c) Hierarchy 6

Figure 4.5: Additional generalization hierarchies of hypkert types in our experiments

Similarity Measurement. We assume the edit costs for node operations are all 10, and
the edit costs for the edge operations are all 1. Tables 44 2wshow the similarity measurements

between each pair of attack strategy graphs w.r.t. attaekegly and attack sub-strategy, respec-

60

Table 4.1: The similarity w.r.t. attack strategy betwednckt strategy graphs in Figure 4.3

Gu3@) | Gasw) | Guse) | Gas@ | Gase) | Gasy) | Gz
Cas |/ 0.72 | 073 | 021 | 029 | 031 | 0.25
Glay) | 0.72] 066 | 055 | 025 | 0.25 | 0.29
G4_3(C) 0.73 0.66 / 0.40 0.34 0.38 0.30
G4.3(d) 0.21 0.55 0.40 / 0.21 0.40 0.38
G4.3(8) 0.29 0.25 0.34 0.21 / 0.48 0.74
G4.3(f) 0.31 0.25 0.38 0.40 0.48 / 0.61
G4.3(g) 0.25 0.29 0.30 0.38 0.74 0.61 /

Table 4.2: The similarity w.r.t. attack sub-strategy betwattack strategy graphs in Figure 4.3

Gu3(a) | Gasw) | Gase) | Gas@ | Gase) | Gasy) | Gas
Cisa) |/ 072 | 0.66 | 031 | 053 | 0.31 | 043
Clsw) | 089] 067 | 055 | 061 | 038 | 051
Cise | 090 | 068 | 7 040 | 061 | 038 | 052
Gisa | 089 | 1.00 | 086 | 1 079 | 060 | 0.73
G4.3(e) 0.51 0.58 0.58 0.21 / 0.48 0.26
G4.3(f) 0.72 0.65 0.65 0.40 0.91 / 0.89
G4_3(g) 0.59 0.51 0.48 0.27 0.93 0.61 /

tively. Each subscript in the tables denotes the graph iesgmts. We notice tha&timg,,(G;, G;)
may not necessarily be equal§emg,,(G;, G;).

Table 4.1 indicates that Figure 4.3(a) is more similar touFeg 4.3(b) and 4.3(c). In
addition, Figure 4.3(g) is more similar to Figures 4.3(eld 4rB8(f) than the other graphs. Based on
the description of these attack sequences, we can see timilsgity measures conform to human
perceptions.

Table 4.2 shows the similarity between attack strategyhgrapr.t. attack sub-strategy.
We can see that Figures 4.3(b), 4.3(c), and 4.3(d) are vemjesito a sub-strategy of Figure 4.3(a).
In addition, Figure 4.3(d) is exactly a sub-strategies guFe 4.3(b). Similarly, Figures 4.3(g) and
4.3(f) are both similar to sub-strategies of Figure 4.3&) Figure 4.3(f) is also similar to a sub-
strategy of Figure 4.3(g). Comparing these measure valiibghese attack sequences, we can see
these measures also conform to human perceptions.

The experiments also reveal some remaining problems tkatrtta been addressed by our
techniques. First, the similarity measures make sensenrstef their relative values. However, we
still do not understand what a specific similarity measupeegents. Second, false alerts generated

by IDSs have a negative impact on the measurement. It cigrtaiquires further research to address

61

these issues.

4.3.3 Identification of Missing Detections

Our last set of experiments is intended to study the poggilid apply the similarity
measurement method to identify attacks missed by IDSs. Hesake of presentation, we first
introduce two terms: precedent set and successive seitivaly the precedent sebf a noden in
an attack strategy graph is the set of nodes from which threr@aths ton, while thesuccessive
setof n is the set of nodes to which has a path. In the following, we show two examples we
encountered in our experiments.

Example 1 The attack strategy graph in Figure 4.3(c) has no networkbprphase, but Figure
4.3(a) does. The similarity measuremsmt s, (G4 3(c), Ga.3a)) = 0.90 andSim (G 3(c) Ga.3(a)) =
0.73 indicate that these two strategies are very similar andvesy likely that Figure 4.3(c) is a
sub-strategy of Figure 4.3(a). Thus, it is possible that sqgrobe attacks are missed by the IDS
when the IDS detected the attacks corresponding to Figiy.Indeed, this is exactly what hap-

pened in LLDOS 2.0.2. The adversary used some stealthksaitfae, HINFO query to the DNS

server) to get the information about the victim host.

Example 2 Consider Figures 4.3(d) and 4.3(b). We ha¥8n.s.s(G4.3(4), Ga.3)) = 1.0. Thus,
G4.3(0) 1S exactly a sub-strategy @, 5;). By checking the LLDOS2.0.2 alerts reported by Snort,
we know that there are also “RPC portmap sadmind request URRIts as in Figure 4.3(b).
However, since Snort did not detect the later buffer overfittack, these “RPC portmap sadmind
request UDP” alerts are not correlated with the later alerts

We then perform the following steps, trying to identify ek&apossibly missed in LLDOS
2.0.2. We pick nodel in Figure 4.3(d), and find its corresponding nod8 in Figure 4.3(b),

which is mapped ta1 by the subgraph isomorphism. It is easy to see that in Figudéd, the

62

precedent set of3 is {nl1, n2}, andnl has the type “RPC portmap sadmind request UDP”. We
then go back to LLDOS 2.0.2 alerts, and find “RPC portmap sadmequest UDP” alerts before
“TELNET ACCESS". By comparing the precedent set bin Figure 4.3(d) and the precedent set
of n3 in Figure 4.3(b), we suspect that “RPC sadmind UDP PING” (aelhicorresponds to node
n2 in Figure 4.3(b)) has been missed in LLDOS 2.0.2. If we adti sicalert, we may correlate it
with “RPC portmap sadmind request UDP” and further with “TRET access” in Figure 4.3(d).

Indeed, “RPC sadmind UDP PING” is the buffer overflow attadksed by Snort in LLDOS 2.0.2.

The later part of Example 2 is very similar to the abductiver&ation proposed in [29].
The additional feature provided by the similarity measuwrahis the guidelines about what attacks
may be missed. In this sense, the similarity measurememnmgplementary to the abductive cor-
relation. Moreover, these examples are provided to dermageghe potential of identifying missed
attacks through measuring similarity of attack sequenitésalso possible that the attacker did not
launch those attacks. Additional research is necessammie the performance and reduce false

identification rate.

4.4 Summary

In this chapter, we develop techniques to extract attacitegjies from correlated intru-
sion alerts based on the alert correlation methods [83, 28).propose a model to represent and
algorithms to extract attack strategies from intrusiomtaleMoreover, to accommodate variations in
attacks that are not intrinsic to attack strategies, wegsepo generalize different types of intrusion
alerts to hide the unnecessary difference between therallfsiwe develop techniques to measure
the similarity between sequences of attacks based on thetiegies. Our experimental results have
shown that our techniques can successfully extract invaattack strategies from sequences of
alerts, measure the similarity between alert sequencegvayaonforming to human intuition, and
has a potential to identify attacks missed by IDSs.

Notice that our techniques on attack strategy extractiqgrede on the underlying alert
correlation approaches. If alert correlation methods agf83] discover attack scenarios from
alert data sets, then our approach can extract attackgstrgteaphs from them. In the worst case, if

63

no attack scenarios can be identified, our techniques cavoriitwell. Fortunately, our preliminary
experimental results demonstrate the potential of oumiecies.

64

Chapter 5

Hypothesizing and Reasoning about
Attacks Missed by Intrusion Detection

Systems

With the development of the Internet, more and more orgéinizes manage their data in
networked information systems. Due to the open nature ofrttegnet, network intrusions have
become an increasingly serious problem in recent yearsusion detection, which is aimed at
detecting activities violating the security policies oéthetworked information systems, has been
considered a necessary component to protect these sydtamysvath other prevention-based se-
curity mechanisms such as access control.

As we mentioned in Chapter 2, intrusion detection techrédre generally classified into
two categoriesanomaly detectiomndmisuse detectionAnomaly detection builds profiles (e.g.,
statistical models) for normal activities, and raisestalethen the monitored behaviors significantly
deviate from the normal operations. Misuse detection cockst signatures (patterns) based on
known attacks or vulnerabilities, and reports alerts ifrti@nitored activities match the signatures.

Despite over 20 years’ efforts on intrusion detection, eurintrusion detection systems

(IDSs) still have several well-known problems. First, &rig IDSs cannot detect all intrusions.

65

While a misuse detection system cannot detect an unknownkafor an unknown variation of
a known attack), an anomaly detection system may fail togeize stealthy malicious activities,
too. Second, current IDSs cannot ensure that all alertctefttual attackstrue positivegattacks
detected as intrusive) are usually mixed vfdlse positivegbenign activities detected as intrusive).
Third, an IDS usually produces a large number of alerts [B1,80, 61]. As indicated in [59],
five IDS sensors reportethMB of alert data within ten days, and a large fraction of thaksts
are false positives. The high volumes and low quality (imissed attacks and false positives)
of the intrusion alerts make it very challenging for humaerasor intrusion response systems to
understand the alerts and take appropriate actions. Thigsnécessary to develop techniques to
deal with the large volumes and low quality of intrusion tder

Besides the aforementioned problems, current IDSs areuffatiently prepared for sev-
eral trends in attacks. According to a 2002 CERT report [@@re are increasingly more automated
attack tools, which typically consist of several (evoljiipases such as scanning for potential vic-
tims, compromising vulnerable systems, propagating tteeld, and coordinated management of
attack tools. Moreover, attack tools are increasingly nsmyghisticated. In particular, “today’s au-
tomated attack tools can vary their patterns and behavasedon random selection, predefined
decision paths, or through direct intruder management]. [28ese attack trends require more ca-
pable systems than the current IDSs to handle large volurhakeids that potentially belong to
different complex attack scenarios.

As we discussed in Chapter 2, several alert correlationnigqabs have been proposed
in recent years to facilitate the analysis of intrusion talerThese methods attempt to correlate
IDS alerts based on the similarity between alert attrib{@8s 109, 33, 28], previously known (or
partially known) attack scenarios [36, 34], or preregesiand consequences of known attacks
[29, 83, 82]. A common requirement of these approaches isthieg all heavily depend on the
underlying IDSs for alerts. As a result, the performanceleftaorrelation is strictly limited by
the performance of IDSs. In particular, if the IDSs missicaitattacks, the correlated alerts cannot
reflect the actual attack scenarios due to the lack of thegponding alerts, and thus may provide
misleading information.

In this chapter, we develop a series of techniques to hypith@nd reason about attacks
possibly missed by IDSs, aiming at constructing high-lextedck scenarios even if the underlying
IDSs miss critical attacks. Our approach is to integratgtitentially relevant attack scenarios gen-
erated by the alert correlation technique in [83], and usdrttrinsic relationships between related
attacks to hypothesize and reason about attacks misse@ tp#s. We observe that if two attacks

66

are causally related, they usually satisfy certain comgge.g., sharing the same destination IP ad-
dress), even if they are not directly adjacent to each otharsequence of attacks. If the IDSs miss
some critical attacks, alerts from the same attack scenatilal be split into multiple attack scenar-
ios. Thus, combining different attack scenarios and vergfjthe above constraints over possibly
related alerts can potentially overcome the problem iniced by missed attacks.

Our approach works as follows. We first obtain (multiple)elt scenarios through a
correlation method based on prerequisites and consecueh@tacks such as those in [29, 83],
and identify what attack scenarios (and possibly individuacorrelated alerts) may be combined by
examining the attributes of the alerts in different attamdegrios. If those attribute values satisfy the
aforementioned constraints, we consider integrating dneesponding attack scenarios. We assume
the missed attacks are most likely unknown variations ofknattacks, or attacks equivalent to
some known attacks. We then hypothesize and reason abauokatmnissed by IDSs based on
possible causal relationships between known attacksngiati constructing more complete attack
scenarios. The hypothesized attacks can be further vatidatough raw audit data. For example,
we might hypothesize that variations IMAP_AuthenOverflowand/orRPC CmsdOverflowwere
missed by the IDSs. However, if during the target time fratinere is only IMAP traffic but no RPC
traffic related to the target host, we can conclude that ttierlaypothesis is incorrect. Finally, to
improve the usability of the constructed attack scenakasconsolidate the hypothesized attacks
and generate concise representations of the combined attanarios.

Our main contribution in this chapter is a series of techeiqjto combine multiple at-
tack scenarios and to hypothesize and reason about attaskibly missed by the IDSs. These
techniques are critical to constructing high-level attacknarios from low-level intrusion alerts in
situations where the IDSs cannot detect all attacks. Thagmigues complement the underlying
IDSs by hypothesizing and reasoning about missed attacksthais provide valuable additional

evidence to support further intrusion investigation arspomse.

5.1 Hypothesizing and Reasoning about Attacks Missed by I3S

If IDSs miss some critical attacks, an attack scenario ésgmted as a correlation graph)
may be split into multiple smaller ones, each of which onlffeets a part of the original attack
scenario. To better understand the whole attack scenaiggdesirable to integrate related attack
scenarios, and hypothesize and reason about the attadiblpaosissed by the IDSs. In this section,

67

ICMP_PING_NMAP1

SCAN_NMAP_TCP2 Mstream_Zombie4

(@) CG, (b) CGa

Figure 5.1: Two correlation graphs

we develop a sequence of techniques for these purposes. sSiM@@sve have applied the causal
correlation method to the alerts before using the newly gsed techniques.
In the following, we start with a straightforward approachiritegrating possibly related

attack scenarios, and gradually develop more sophisticatdhniques to enhance this approach.

5.1.1 Integrating Possibly Related Correlation Graphs

We observe that the causal correlation method can be paitgrthhanced by a similarity-
based correlation method (e.g., [109, 98, 60, 61]), whicistelrs alerts based on the similarity be-
tween alert attribute values. Intuitively, when the IDSs$niertain attacks, though the causal cor-
relation method may split the alerts from the same attackasa® into several correlation graphs,
a similarity-based correlation method still has the po#nd identify the common features shared
by these alerts, and thus help re-integrate the relate@lation graphs together. To take advan-
tage of this observation, we integrate correlation gragset on the alert clusters generated by a
similarity-based correlation method.

The integration process may be conceptually divided into dteps: (1) identify the cor-
relation graphs to be integrated, and (2) determine p@ssilisal relationships between alerts in
different correlation graphs. In this chapter, we choosergle technique for the first step: we
integrate two correlation graphs when they both containtsafeom a common cluster generated
by a similarity-based correlation method. For exampleegithe two correlation graphs shown in
Figures 5.1(a) and 5.1(h)if the clustering method groupgSCAN_.NVAP_TCP2 andRsh3 in the
same cluster based on their common source and destinatiaddifésses, we consider integrating
these two graphs together.

The first step is pretty straightforward once we select alaiity-based correlation method.

The string inside each node is a hyper-alert type name feliolay an alert ID.

68

However, the second step remains challenging, since we deastvith missed attacks that cause
an attack scenario to split into multiple correlation gmpFhhus, we focus on the second step in the
following discussion. As we will see later, the first step dr@es unnecessary as we develop our
approach. Without loss of generality, we assume that weiate two correlation graphs.

We propose to harness the prior knowledge of attacks anddtdimestamp information
to hypothesize about possible causal relationships betwbksts in different correlation graphs.
For example, suppose an attacker usasp[44] to find out a vulnerable service, then uses a buffer
overflow attack to compromise that service, and finally ifstnd starts a DDoS daemon program.
When we observe an eari&@CANNMAP_TCP and a lateMstreamZombiealert in two correla-
tion graphs that are identified for integration, we may higpsize that th&CANNMAP_TCPalert
indirectly prepares for thistreamZombiealert through an unknown attack (or an unknown vari-
ation of the above buffer overflow attack). As a result, we Mdwypothesize an indirect causal
relationship between these two alerts.

To further characterize this intuition and facilitate fadéscussion, we introduce two defi-
nitions. (Note that Definition 8 is based on the model in [BBpr convenience, we denote the type

of an alertt (or an hyper-alerh) asType(t) (or Type(h)).

Definition 8 Given two hyper-alert typeE andT”, we sayl’ may prepare fol” if ExpConse(I")

andPreredT") share at least one predicate (with possibly different argots).

Example 3 Consider two hyper-alert typeSadmindPing= (fact, prereq, cons@cgnd Sadmind-
BufferOverflow = (fact’, prereq’, conseq, wherefact = {VictimIP, VictimPort}, prereq= Ex-
istHost(VictimIP) conseg= {VulnerableSadmind (VictimIRB) fact’ ={VictimIP, VictimPort}, pre-
req’ = ExistHost(VictimIP) A VulnerableSadmind(VictimIR)and conseq’= {GainRootAccess
(VictimIP)}. We observe botBxpConse@SadmindPinyand PrereSadmindBufferOverfloyin-
clude the predicat&ulnerableSadmind(VictimIP)Then we know thabadmindPingnay prepare

for SadmindBufferOverflow

Definition 9 Given a setl’ of hyper-alert types, we say may indirectly prepare fdf’ w.r.t. T if

there exists a sequence of hyper-alert types;, ..., T, 7" such that (1) all these hyper-alert types

69

are in7, and (2)T may prepare foly, T; may prepare fol’; 1, wherei = 1,2, ...k — 1, andT},

may prepare fol”’.

Let us look at an example. Suppose we have aZsetf hyper-alert types, wher&
={ICMP_PING_.NMAP, SCANNMAP_TCP, FTPGlob_Expansion, Rsh, Mstrea@ombig. Fur-
ther assume the followingnay-prepare-forelations exist:ICMP_PING_NMAP may prepare for
SCANNMAP.TCP, SCANNMAP.TCPmay prepare fof TP_Glob_ExpansionFTP_Glob_Expansion
may prepare forRsh andRshmay prepare fo¥streamZombie Thus itis cleatCMP_PING_.NMAP
may indirectly prepare favstreamZombiew.r.t. 7.

Intuitively, given two hyper-alert typeE andT”, T may prepare fof” if there exist a type
T alertt and a typel” alertt’ such that prepares fot'. May-indirectly-prepare-forelation, which
is a natural extension ahay-prepare-forelation, is defined through a sequenceray-prepare-for
relations.

Definition 10 Given a set7 of hyper-alert types and two alertsand ¢/, where T'ype(t) and
Type(t') € T andt.end_time < t'.begin_time, t may indirectly prepare fot' if Type(t) may
indirectly prepare fofl'ype(t') w.r.t. 7. Given a sequence of alertst, ..., tx, t' wherek > 0, ¢
indirectly prepares fo' if t prepares foty, t; prepares fot; | fori =1, ...,k — 1, andt,, prepares

fort'.

Intuitively, t may indirectly prepare faf if there mayexist a path front to ¢ in an alert
correlation graph (with additional alerts), whileéndirectly prepares fot' if such alerts do exist.
We are particularly interested in the case whereay indirectly prepare fot' but there do not
exist additional alerts showing thatindirectly prepares fot'. Indeed, a possible reason for such
a situation is that the IDSs miss some critical attacks, ihifcdetected, would lead to additional
alerts showing that indirectly prepares for'.

A simple way to take advantage of the above observation issorae a possible causal
relationship between alert@andt’ if they belong to different correlation graphs anahay indirectly
prepare fot’. Let us continue the example in Figure 5.1. If the hypertalgre SCANNMAP_TCP
may prepare fof TP_Glob_Expansionwhichmay prepare foRsh then we hav&é CANNMAP_TCP
may indirectly prepare fdRsh Thus, we may hypothesize tHaRCANNMAP.TCP2indirectly pre-

70

ICMP_PING_NMAP1

SCAN_NMAP_TCP2

Mstream_Zombie4

Figure 5.2: A straightforward combination 6fG; andC'G»

pares foRsh3 We add avirtual edge displayed in a dashed line, froBCANNMAP_TCP2to Rsh3

in Figure 5.2, indicating that there may be some attacks dmtwhem that are missed by the IDSs.
Though this simple approach can identify and integratetedl@orrelation graphs and

hypothesize about possible causal relationships betwlees,dt is limited in several ways. First,

the virtual edges generated with this approach provide foorimation about attacks possibly missed

by the IDSs. Second, the virtual edges are determined sofetiie basis of prior knowledge about

attacks. There is no “reality check.” It is possible that tiypothesized virtual edges are not true

due to the limitations of the expert knowledge and the lackimirmation about the missed attacks.

5.1.2 Hypothesizing about Missed Attacks

The may-prepare-foand may-indirectly-prepare-forelations identified in Definitions 8,
9 and 10 provide additional opportunities to hypothesiztraason about missed attacks, especially
unknown variations of known attacks.

Consider two alerts andt’ that belong to different correlation graphs prior to intgm.
If ¢t may indirectly prepare fot', we can then identify possible sequences of hyper-alegstyp
in the form of Ty, Ty, ..., T}, such thatl'ype(t) may prepare fofy, T; may prepare foll; 1, i =
1,2,...,k—1, andT}, may prepare fofype(t'). These sequences of hyper-alert types are candidates
of attacks possibly missed by the IDSs. (More preciselyatians of these attacks, which could be
used by an attacker and then missed by the IDSs, are the eahditiates of missed attacks.) We can
then search in the alerts and/or the raw audit data betwaedt’ to check for signs of these attacks
(or their variations). For example, to continue the exampl&igure 5.2, we may hypothesize
that variations of eithelMAP_AuthenOverflow or FTP_Glob_Expansion or both may have been

missed by the IDSs based on our prior knowledge about attdodsetter present these hypotheses,

71

ICMP_PING_NMAP1L
SCAN_NMAP_TCP2
- N
-~ ~

IMAP_Authen_Overflow5 FTP_Glob_Expansion6

~ -
\ _ e

N
AURRN a” 7

\

7

Mstream_Zombie4

Figure 5.3: Integration of'G; andC'G4 with hypotheses of missed attacks

we may add the hypothesized attacks into the correlatigohgaa virtual nodes (displayed in gray).
Figure 5.3 shows the resulting correlation graph.

To facilitate hypothesizing about missed attacks, we eaand knowledge of the rela-
tionships between hyper-alert types ihygper-alert type graphor simply atype graph Let us first
introduce the concept afquality constraintwhich was adapted from our techniques on learning
attack strategies (Chapter 4), to help formally descrileentttion of type graph.

Definition 11 Given a pair of hyper-alert types, and 75, an equality constraint fof7y,7%) is a
conjunction of equalities in the form @f, = v; A --- A u,, = v, Whereuq, - - - , u,, are attribute
names in7y and vy, --- , v, are attribute names iff%, such that there exigt(uy,--- ,u,) and
p(v1,--- ,v,), Which are the same predicate with possibly different arguots, inExpConsedl)
and PreredT5), respectively. Given a tygg, alertt; and a typ€l’ alert t5, t; and ¢, satisfy the

equality constrainif t1.uy = to.v1 A -+ - A t1.uy = to.v, evaluates to True.

Here we give an example. Consider the hyper-alert tyf@mdmindPingand Sadmind-
BufferOverflowin Example 3. ExpConsefSadmindPinjandPrereq SadmindBufferOverflowboth
contain the predicatéulnerableSadmind(VictimIPYThus, it is easy to see th@admindPing.VictimIP
= SadmindBufferOverflow.Victimlis an equality constraint forS@dmindPing SadmindBuffer-
Overflow. Further consider a typBadmindPingalertt; and a typeSadmindBufferOverflowlert
to. If t; andt, both havevictimIP = 152.1.19.5, we can conclude that andt, satisfy the equality

constraint.

72

An equality constraint characterizes the equality retetibetween attribute values of two
alerts when on@repares fothe other. There may exist several equality constraintafpair of
hyper-alert types. However, if a tyfg alertt; prepares foa typeTs alertts, thent; andty must
satisfy at least one equality constraint. Indegdpreparing fort, is equivalent to the conjunction
of t; andi, satisfying at least one equivalent constraint andccurring before..

Given a set of hyper-alert types (representing the knovatlks), by matching all possible
predicates in the expanded consequence set and the psiieecpat, we can derive all possible
may-prepare-forelations between them together with the correspondingléguonstraints. This
information can help us understand how these known attaelsh@ combined to launch sequences
of attacks, and thus hypothesize about which attacks (nreegely, their variations) may be missed
when we observe alerts thaty indirectly prepare foeach other. The following definition formally

captures this intuition.

Definition 12 Given a set of hyper-alert types, éhyper-alert) type grapii'G over7 is a quadru-
ple (N, E,T,C), where (1)(N, E) is a DAG (directed acyclic graph), (2) is a bijective mapping
from N to 7', which maps each node iN to a hyper-alert type ir7, (3) there is an edgény, ns) in
Eifand only ifT'(ny) may prepare fof (n2), and (4)C'is a mapping that maps each edge , ns)

in E' to a set of equality constraints associated Wil(n1), 7'(n2)).

Example 4 Consider a set of hyper-alert types ={ICMP_PING.NMAP, SCAN.NMAP_TCP,
IMAP _Authen Overflow, FTRGlob_Expansion, Rsh, Mstrea@iombie}. (The specification of these
hyper-alert types are given in Table 5.1.) We can comput&/fieegraph ovefl as shown in Figure
5.4. The string inside each node is the node name followeldebkyiper-alert type name. The label

of each edge is the corresponding set of equality consgaint

Obviously, given multiple correlation graphs that may begnated together, we can hy-
pothesize about possibly missed attacks that break thekattenario according to the type graph.
Let us revisit the example in Figure 5.1. Given the type grapkigure 5.4, we carsystem-
atically hypothesize that the IDSs may have missed variation#1éf°_AuthenOverflowand/or

73

nl:ICMP_PING_NMAP

{n1.DestlP=n2.DestIP}

n2:SCAN_NMAP_TCP

{n2.DestlP=n3.DestIP
~n2.DestPort=n3.DestPort}

n4:FTP_Glob_Expansion

{n4.DestIP=n5.SrcIP,
n4.DestIP=n5.DestIP}

{n2.DestIP=n4.DestIP
~n2.DestPort=n4.DestPort}

n3:IMAP_Authen_Overflow

{n3.DestIP=n5.SrcIP,
n3.DestIP=n5.DestIP}

{n4.DestIP=n6.SrcIP,
n4.DestIP=n6.DestIP}

{n3.DestIP=n6.SrcIP,
n3.DestIP=n6.DestIP}

{n5.SrcIP=n6.SrclIP,
n5.DestlP=n6.DestIP,
n5.SrclP=n6.DestIP,
n5.DestIP=n6.SrclP}

n6:Mstream_Zombie

Figure 5.4: An example type graph

Table 5.1: Hyper-alert types used in Example 4 (The séacifattributes for each hyper-alert type
is {SrcIP, SrcPort, DestIP, DestPgit

Hyper-alert Type Prerequisite Consequence
ICMP_PING_.NMAP ExistHost(DestIP)
SCAN.NMAP_TCP ExistHost(DestIP) {ExistService(DestIP,DestPoyt

IMAP _Authen Overflow| ExistService(DestIP,DestPort) | {GainAccess(DestIP)
AVulnerableAuthenticate(DestlP)
FTP_Glob Expansion | ExistService(DestIP,DestPort) | {GainAccess(DestIR)
AVulnerableFTPRequest(DestIP)

Rsh GainAccess(DestIP) {SystemCompromised(DestIP),
AGainAccess(SrclP) SystemCompromised(SrclpP)
MstreamZombie SystemCompromised(DestIP) | {ReadyForDDOSAttack(DestIP),

ASystemCompromised(SrcIP) | ReadyForDDOSAttack(Srclp)

FTP_Glob_Expansionattacks. As a result, we obtain the integrated correlati@ply shown in

Figure 5.3.

5.1.3 Reasoning about Missed Attacks

In a type graph, the label of an edge encodes all possibldigoe@nstraints for the cor-

responding pair of hyper-alert types. Moreover, even if twper-alert types are not adjacent to

74

each other, they may still satisfy some constraints if theycnnected through some intermedi-
ate nodes (hyper-alert types) in the type graph (due to thaligg constraints those intermediate
nodes must satisfy). For example, consider node$:3, andnb in Figure 5.4. There is an equal-
ity constraintn2.DestIP = n3.DestIP A n2.DestPort = n3.DestPort for (n2, n3), and
two equality constrainta3.DestI P = n5.SrcI P andn3.DestI P = n5.DestI P for (n3, nb).
Take together, these imply2.DestIP = nb.SrcIP or n2.DestIP = nb.DestIP. In other
words, if a typeSCANNMAP_TCP alert indirectly prepares foa typeRshalert (through a type
IMAP_AuthenOverflowalert), together they must satisfy one of these two comgaiWe obtain
the same constraints if we consider nod@sn4, andn5 in Figure 5.4. In general, we can derive
constraints for two hyper-alert types when anay indirectly prepare fahe other. Informally, we
call such a constraint a@ndirect equality constraintThese constraints can be used to study whether
two alerts in two different correlation graphs could be iadily related. This in turn allows us to
filter out incorrectly hypothesized attacks.

Indirect equality constraints can be considered a gezetan of the equality constraints
specified in Definition 11. In this chapter, we combine theniaplogy and simply refer to an
indirect equality constraint as an equality constraint wités not necessary to distinguish between
them.

To take advantage of the above observation, we must dedveat equality constraints.
In the following, we will first present an algorithm to compunhdirect equality constraints féwo
hyper-alert types where onmay indirectly prepare fothe other, and then extend it to compute
indirect equality constraints fall pairs of hyper-alert types at the same time. We will also discuss

how to use such indirect equality constraints to reasontain@sed attacks.

Computing Indirect Equality Constraints between Two Hyper-Alert Types

Before we discuss the algorithm on how to compute indireciabty constraints, let
(Th,Ts,--- ,Ty) denotes a directed pathy, — 7, — --- — Tj in a type graph. For conve-
nience, we uséabel(ec) to denote the corresponding path in a type graph that pratiecequality
constraintec. Algorithm 2 shown in Figure 5.5 outlines an approach foregating the set of indi-
rect equality constraints between two hyper-alert typesnd 7’ whereT' may indirectly prepare
for T'. We assume a type grafiG is already constructed from a set of hyper-alert types, whic
are specified based on all the attacks known to the IDSs (avadqntly, the set of signatures). For

each pair of hyper-alert typél and”, this algorithm identifies all paths froffi to 7" in the type

75

Algorithm 2: Computation of Indirect Equality Constraints for Two Hyper-Alert Types.
Input: A type graphl'G, and two hyper-alert typeg and7” in TG,
whereT may indirectly prepare fof’.
Output: A set of equality constraints faf and7”.
Method:
1. Let Result = 0.
2. For each patiT, Ty, -+, T}, T') In TG
3. Denotel” asTy, andT” asTy. .
4, For each combination of constraints,, eca, - - -, ecgr1,
whereec; is an equality constraint foff{_1, T;)
5. LetS(To.ai) = {TQ.CLZ‘},
whereTy.a;, 1 =1,2,--- 1, are all the attributes dfy that appear irc; .
6. Forj=1tok+1
7. For each conjunctj_.a = T}.bin ec;
8. For eachS(Ty.a;) that containg’;_;.a
9. LetS(To.ai) = S(To.ai) U {T]b}
10. Remove variables df;_; from eachS(Ty.a;),i=1,2,--- L.
11. Lettemp = 0.
12. For each non-empty(7p.a;) and eact, 1.0 in S(Tp.a;)
13. Lettemp = temp U {Tp.a; = Ty41.b}.
14. Letec be the conjunction of all elementsiamp.
15. If ecisin Result Then
16. LetLabel(ec) = Label(ec) U {(T, Ty, -+ , Ty, T')}
17. ElseLet Label(ec) = {(T,T1,--- , T}, T")}, andResult = Result U {ec}.
18. Return Result.
End

Figure 5.5: Algorithm to compute indirect equality consita for two hyper-alert types

graph, and computes an indirect equality constraint foh emnbination of equality constraints
between consecutive hyper-alert types along the path. akie iea is to propagate the equality

relations between attributes of hyper-alert types (in tigeréghm, we useS(7j.a;) to propagate

equality relations and get attribute names along the gath7;, - -- ,Tx.1)). We also label each

indirect equality constraint with the corresponding péiit produces the constraint. This provides
guidelines for hypothesizing about missed attacks. Thiibmess of this algorithm is demonstrated

by Lemma5.1.1.

Lemma 5.1.1 Consider a type grapi’'G and two alertst andt’, whereT'ype(t) and Type(t') are

in TG. Assume Algorithm 2 (Figure 5.5) outputs a 6ebf equality constraints fo ype(t) and

76

Type(t'). If C is non-empty and indirectly prepares fot', thent and¢’ must satisfy at least one

equality constraint irC'.

Proof: According to Definition 10, ift indirectly prepares fot', there must exist a sequence of
alertsty, ..., tx, wherek > 0, such that prepares fot,, t; prepares fot;, fori = 1,....k — 1,
andt,, prepares fot'. Thus, we hav&8'ype(t) may prepare fof ype(t1), Type(t;) may prepare for
Type(t;r1) fori =1,....k — 1, andType(t;.) may prepare fol 'ype(t'). Following the convention
of Algorithm 2, we denot& ype(t) asTy, T'ype(t;) asT;, wherei = 1, ..., k, andType(t') asTy. 1.

It is easy to see there must be a pdih 71, ..., Tx+1 in the corresponding type graphGG. For
convenience, we also denatast,, andt’ asty 1.

If ¢; prepares fott; 1, we can conclude; and¢;.; must satisfy at least one equality
constraint for(7;, T;+1). This is because if; andt;;, does not satisfy any equality constraints for
(T3, T;+1), then none of the instantiated predicateExpConsef};) can match any iPrereqt; 1),
which violates the given condition that prepares fott;,. Fori = 0,1,...,k, we denote the
constraintt; andt; 1 satisfy asec;; 1. According to Figure 5.5, Algorithm 2 will process the path
Ty, T1, ..., T+1 (in step 2) and the combination of equality constramts, eca, ..., ecy11 thatty,
t1, ...,tx11 Satisfy (in step 4).

Now consider the process of the above sequence of equatistraints in steps 5 to 10.
For eachS(Ty.a;), we can prove by induction that all attribut€s.b added intaS(7y.a;) are equal
to Tjy.a;, since each addition is based on a conjufigt;.a = T7}.b, whereT;_;.a is already in
S(Tp.a). Further because step 10 removes the attribut@$_of, only attributes ofl},, ; remain in
S(Ty.a;), i = 1,2,...,1. Thus, after step 10, ead¥(Tp.a;) includes all the attributes df;; that
are equal tdly.a;, wherei = 1,2, ...,1. Steps 11 to 14 then transform these equality relations into
a conjunctive formulac. Since the sequence of constraiatg, i = 1,2, ..., k + 1, where eaclec;
is satisfied byt;_; andt;, is used in the above process, we can easily concludetigtandi
(') satisfyec. Thus, ift indirectly prepares fot', they must satisfy at least one equality constraint
in C.

Example 5 Consider the type graph in Figure 5.4 and two hyper-aleres§CAN.NMAP_TCP
(noden2) and Rsh (noden5). Using Algorithm 2 in Figure 5.5, we can easily compute the i

direct equality constraints for them{n2.DestI P = n5.DestI P, n2.DestIP = n5.SrcIP}.

e

Both indirect equality constraints are labeled with two lpgt one path iSSSCAN.NMAP_TCP,

IMAP _AuthenOverflow, Rsh), and the other iSSCAN_.NMAP_TCP, FTP_Glob_ExpansionRsh.

Given two hyper-alert typeg and7” in a type graph, Algorithm 2 in Figure 5.5 derives
the indirect equality constraints between them by consideall combinations of (direct) equality
constraints between two adjacent hyper-alert types in patthfromT to 7”. Theoretically, there is
a potential problem of combinatorial explosion. Howewvepiactice, because of the limited number
of predicates and hyper-alert types, this problem shoulddotable. Moreover, this algorithm only
needs to be executed once for two given hyper-alert typestypeagraph. Thus, the cost of this

algorithm does not have significant impact on alert conatat

Computing Indirect Equality Constraints for All Pairs of Hy per-Alert Types

Algorithm 2 in Figure 5.5 focuses on the problem of computimgirect equality con-
straints for two hyper-alert types. An extension to thishpem is: given a sef of n hyper-alert
types, how to calculate indirect equality constraints fbpairs of hyper-alert types where the first
one in the paimay indirectly prepare fahe second one? This is a realistic problem, since we do
need to get the equality constraints between all pairs oéhgfert types to reason about missed
attacks.

We can apply Algorithm 2 for up tae? times, once for each pair of hyper-alert typ&s,
T;) whereT; may indirectly prepare fof; (1 < 7,7 < n). Unfortunately, this is not an efficient
solution. To see the inefficiency more clearly, consider th fham 7; to T; whereT} is further
connected td/;, by an edge. If we compute the indirect equality constraietsvben all pairs of
hyper-alert types with Algorithm 2, the computation frand7;, with the path involvingT;, T;
and T, will repeat the computation far; and 7} with the same path frorl; and7;. A better
approach is to reuse the equality constraints already ctedgdar 7; and7; to derive those foff;
andTy,.

To take advantage of the above observation, Algorithm 3wsha Figure 5.6) outlines
a method to compute equality constraints for all pairs ofdmgdert types at the same time. The
output of Algorithm 3 is a constraint matrix. Givenhyper-alert typed?, 15, - - - ,T},, aconstraint
matrix M is an x n table, where the celM/ (i, 5) (1 < i,j < n) consists of all and only equality
constraints for{(;, T;) if T; may (indirectly) prepare fdF;.

In Algorithm 3, for convenience, we udeubel(ec) to denote the corresponding path in a

Algorithm 3. Computation of Equality Constraints for All Pa irs of Hyper-alert Types
Input: A type graphl'G over a set of hyper-alert typd§y, 75, --- , T, }.
Output: A n x n constraint matrix\/ with each cellM (4, j) containing a set of equality
constraints fo(7;, 7).
Method:
1. Create a x (n — 1) matrix L, and initialize each cell of. to empty.
/Il Each cellL(i, j) is intended to contain the equality constraints (market wéth
I labels) for the lengtlhj paths inT'G starting from typé€r;.
2. k = 1./l The variablek represents the possible lengths of the pathBaGh
3. For each edg¢T;, T;) in the type grapii'G
4. For each equality constrairt for (7;,7;)
5. Label(ec) = (T3,T}); L(i,1) = L(i, 1) U {ec}.
6.Fork=2ton—1
7. Fori:=1ton
8. For each equality constraimt in L(i,k — 1)
9. Get the last hyper-alert ty@ein Label(ec).

10. Get the sef of hyper-alert types wher€ has edges to each typedn
11. For each hyper-alert typ&” in 7

12. For each equality constrairt’ whereLabel(ec') = (T, T")

13. Get a constraintc” via InferredConstraint (ec, ec).

14. LetLabel(ec”) = (Label(ec), T").

15. LetL(i, k) = L(i, k) U {ec’}.

16.Fori=1ton

17. Forj=1ton

18. In row: of L, find all equality constraints where the last type in theiela
is T};, and put these constraints into the celli, j).

19. Output the matrix/.

End.

Subroutine InferredConstraint
Input: An equality constraintsc for (7}, T;,) and an equality constraiat’ for (T}, T%).
Output: An equality constraintc” for (T, T.) derived fromec andec’.
Method:
1. Leted” = {}.
2. For each conjunct,.u = T,.vin ec

3. If there exists a conjundt,.v = T,.w in ec, then
4, LetT,.u = T,.w be a conjunct irec”.

5. Output ec”.

End.

78

Figure 5.6: Algorithm to compute indirect equality conaits for all pairs of hyper-alert types

79

type graph that produces the equality constraintand we usd.abel(eca) = (Label(ecy),T) to
denote thatcs's label isecy’s label appended by a ty®. As we discussed in Algorithm 2, a path
between hyper-alert type§ and7} in a type graph represents thgt may indirectly prepare for
T;, and we can derive equality constraints f@f,(7;) by reasoning about the equality constraints
along the path. The basic idea behind Algorithm 3 is to reheesqjuality constraints derived from
short paths to compute those for long paths. In a type graghmliyper-alert typesr(nodes), the
possible lengths of paths range frdnto n» — 1. To compute the indirect equality constraints for a
path with lengtht (1 < & < n — 1), it is always possible to first carry out the computationtef t
(indirect) equality constraints for length— 1 paths, and then combine the results for such paths
with the equality constraints for individual edges to get tonstraints for length paths. Lemma
5.1.2 ensures that Algorithm 3 can derive all and only etqabnstraints fofl; and7}.

Lemma 5.1.2 Given a type grapli'G over a set of hyper-alert typedy, T, - - - , T,, }, Algorithm

3 outputs all and only equality constraints f@F;, 7;) in the cell M (z, 7) (1 <i,5 < n).

Proof: According to the definition of (indirect) equality constrgithere may be one or more equal-
ity constraints for(T;, T}) if T; may (indirectly) prepare fof;. In other words, there may be one
or more equality constraints f¢i;, 7;) if there is a path betwe€l; and7}; in T'G. In the follow-
ing, we first prove by induction that each equality constrthiat can be derived fdiT;, T;) from a
lengthk pathp (k = 1,2,--- ,n — 1) is labeled withp and stored in’.(i, k).

1. Whenk = 1, for each length 1 path = (73, T;) (which is an edge if’G), lines 3 through
5 put all equality constraints fdf7;, T;) into cell L(i, 1), each of which is labeled with the

corresponding edge.

2. Assume for an{;, T; in T'G, all the equality constraints that can be derived(ft 7)) from
a lengthm path are inL (i, m) with the corresponding path labels. Now we show that for any
T;,T; in TG, all the equality constraints that can be derived(if 7)) from a lengthm + 1
path are inL(i, m + 1) with the corresponding path labels.

Consider lines 7 through 10. For ea€h these lines find all the edges that can follow each
lengthm path starting withl;. Thus, they can enumerate all length+ 1 paths. For con-
venience, we denote each length= m + 1 pathp = (T}, --- , T,,T;) as composed of two
connected pathg' = (T;,--- ,Ts) andp” = (T}, T;), where the length of’ is m andp” is

80

an edge if'G. According to the induction assumption, the equality caasts that can be
derived for(7;, Ts) from p’ are inL(i, m) with the labelp’.

Consider lines 11 through 15. For each equality constraiimt L (i, m) with label(T;, - - - , T§)
and each equality constraiett’ for (T, T}), the subroutinénferredConstraint (ec, ec’) (line
13) derives the equalityc” inferred byec andec’, which is an equality constraint f¢t;, 7).
This equality constraint is then labeled with the pata (T}, - - - , T, 7)) and then added into
L(i,m + 1). Since lines 11 through 15 consider all combinations of theaéty constraints
in L(i,m) and the (direct) equality constraints for each edge thaioh lengthm path, they
can find the equality constraints that can be derived foealjihm + 1 paths starting frorn;.
Therefore, for anyl;, T; in T'G, all the equality constraints that can be derived (fby, T;)
from a lengthm + 1 path are inL (i, m + 1) with the corresponding path labels.

Further considering lines 16 through 18, which copy all éiguaonstraints derived from
paths betweeft; andTj into M (4, j), and that the possible path lengthliigr is from1ton — 1, we
can conclude that all equality constraints {@;,7;) are inM (4, j). Moreover, during Algorithm
3, since we only add the inferred (indirect) equality coausits intoZ with path labels (lines 14 and
15), and we only move equality constraints derived from pé&thm7; to 7} into M (4, j) (lines 16
through 18),M (4, j) only contains equality constraints f(f;, 75).

Example 6 To continue Example 5, we may use Algorithm 3 to derive the (feéquality con-
straints for all pairs of hyper-alert types in Figure 5.4 wh®ne of the paimay (indirectly) prepare
for the other. The results are given in Table 5.2, in which eadlrcoatains the equality constraints

for the hyper-alert types in the given row and the column. §8ee space, we use node names to

represent the corresponding hyper-alert types and omitahels for each equality constraint.)

Similar to Algorithm 2, Algorithm 3 is also executed only @nbefore alert correlation,

and thus does not introduce significant overhead during eberelation.

Using (Indirect) Equality Constraints

The equality constraints derived for indirectly relatedbésralert types can be used to

determine if two correlation graphs can be integrated. Giwe® correlation graph€'G; andC' G-,

81

Table 5.2: Equality constraints for hyper-alert types igufe 5.4 where onmay (indirectly) prepare
for the other.

nl n2 n3 n4 nS né
nl| / | {nl.DestIP =| {n1.DestIP =| {nl1.DestlP =| {nl.DestIP | {nl.DestIP
n2.DestIB n3.DestIB n4.DestIB = nb.DestIP,| = n6.DestIP,

nl.DestlIP =| nl.DestlP =
n5.SrclB n6.SrclB
n2| / |/ {n2.DestIP =| {n2.DestlIP =| {n2.DestIP | {n2.DestIP
n3.DestiP A | n4.DestlIP A | = n5.DestIP,| = n6.DestIP,
n2.DestPort = n2.DestPort =f n2.DestlIP =| n2.DestiP =
n3.DestPorit | n4.DestPort | n5.SrclB n6.SrclB
n3|/ |/ / / {n3.DestIP | {n3.DestIP
= nb.DestlP,| = n6.DestIP,
n3.DestlIP =| n3.DestlIP =
n5.SrclB n6.SrclB

na |/ |/ / / {n4.DestIP | {n4.DestIP
= n5.DestIP,| = n6.DestIP,
n4.DestlP =| n4.DestiIP =
n5.SrclB n6.SrclB
ns// |/ / / / {n5.SrcIP

= n6.SrclP,
n5.DestiP =
n6.DestIP,
n5.SrclP
n6.DestIP,
n5.DestIP
n6.SrclB
ne| / |/ / / / /

we can integrat€’G; andC'Gs if there exist an alert; in C'G; and an alerts in CG4 such that (1)
t1 andt, satisfy at least one equality constraint f@rype(t1), Type(t2)) and (2)t1’s timestamp is
beforet,’s timestamp.

Moreover, such equality constraints can also facilitaehipotheses of missed attacks.
When integrating two correlation graph&s andC'G’, we can hypothesize missed attacks only for
such pairs of alertsandt’ that (1)t and#’ belong toCG andC'G’, respectively, and (2)indirectly
prepare fot’. Specifically, for each equality constraintthatt andt’ satisfy, we can add the paths
in Label(ec) into the integrated correlation graph. Since each pathdaibe!(ec) is in the form of
(Type(t), T, ..., T, Type(t')), Type(t) and Type(t') are merged withi andt’, respectively, and
the rest of the path is added as a virtual path consistingrafalinodes and edges frotro ¢'.

82

Note that this may add incorrect hypotheses into the intedreorrelation graph. We will present
techniques to validate these hypotheses with raw auditid&action 5.1.5.

Let us illustrate how to take advantage of indirect equatitystraints to hypothesize
missed attacks. Consider two correlation graphs in Figurgfan earlier alerSCANNMAP.TCP2
and a later alerRsh3have the same destination IP address, they then satisfy wlitggcon-
straintec: SCANNMAP_TCP.DestIP= Rsh.DestIP which is an indirect equality constraint for
(SCANNMAP.TCP, Rslh) shown in Table 5.2. Thus, we can integrdté;; and C'G> and hy-
pothesize missed attacks based on the label associatedhsitabove equality constraint. For
instance, the label associated with the above equalityti@nt(Label(ec)) consists of two paths:
(SCANNMAP_TCP, IMAP_AuthenOverflow Rsh and(SCANNMAP_TCP, FTP_Glob_Expansion
Rsh. Thus, we can hypothesize two missed attacks: ofdAd>_AuthenOverflow5 and the other
is FTP_Glob Expansion6 The hypothesis process may continue until all such paidests are
examined.

5.1.4 Inferring Attribute Values for Hypothesized Attacks

The (direct or indirect) equality constraints not only helpothesize about missed at-
tacks, but also provide an opportunity to make inferencesitahe attribute values of hypothesized
attacks. In other words, we may further hypothesize abautittssed attackstances For exam-
ple, suppose we hypothesize IMAP_AuthenOverflowattack after SCANNMAP_TCPalert and
before aRshalert such thaBCANNMAP_TCP prepares fofMAP_AuthenOverflow which then
prepares foRsh From Table 5.2, we know th&CANNMAP_TCP and IMAP_AuthenOverflow
have the same destination IP address and destination pdrtha destination IP address of alert
IMAP_AuthenOverflowis the same as either the source or the destination IP adufrBsh

In general, we can use the equality constraints betweemthgsion alerts and the hy-
pothesized attacks to infer the possible attribute valdiebese attacks. As a special attribute, we
estimate the timestamp of a hypothesized attack as a pesaite. That is, if an attacl is hy-
pothesized as an intermediate step between two intrusests aland¢’, wheret occurs before’,
then the possible range of’s timestamp igt.end_time, t'.begin_time]. Let us first look at an

example.

Example 7 Consider the integrated correlation graph shown in Figur8.5Let us infer attribute

values for the hypothesized attack (instarf€€P_Glob_Expansion6 Suppose the IDS reported that

83

the destination IP addresses of aleBEAN.NMAP _TCP2andRsh3were both152.1.19.5, and the
destination port o6CAN_NMAP_TCP2was21. Following the earlier convention in Figure 5.4, we
use nodesi2, n4, andnb to denote hyper-alert typeSCAN.NMAP _TCP, FTP_Glob Expansion

and Rsh respectively. It is easy to see tHeRCAN NMAP_TCP2 and Rsh3satisfy the equality
constraintn2.DestIP= n5.DestIP Based on the constraint matrix in Table 5.2, we can see this

equality constraint is derived from the following two edtyatonstraints:

1. n2.DestIP=n4.DestIPA n2.DestPort= n4.DestPorfor (SCAN.NMAP_TCP,

FTP_Glob_Expansioi, and

2. n4.DestIP=n5.DestlPfor (FTP.Glob_ExpansionRsh.

Thus, the hypothesized attaBld P_Glob_Expansion6should satisfy both of these equality con-
straints. As a result, we can infer that the destination IRireds and the destination port of

FTP_Glob_Expansion@are 152.1.19.5 and 21, respectively.

We generalize Example 7 into Algorithm 4, which is shown igufe 5.7, to infer at-
tribute values of hypothesized attack instances. Intlitivgiven two alerts andt’, for each hy-
pothesized attack; along a path of hypothesized attacks, we get the&self equality constraints
for (T'ype(t), T;)) and the se€! of equality constraints fofZ;, T'ype(t')), respectively. Any com-
bination of equality constraints:; in C; andec, in C! that result in an equality constraint theand
t’ satisfy can be used to infer the attribute values of the thgsized instance of attadk. In other
words, we infer the attributes of the hypothesized attastaimce to be the same as those andt’
as indicated by the equality constraints.

In Algorithm 4, line 1 gets the sef' of equality constraints that alertsandt’ satisfy
and that are associated with the given path in the type griaiples 2 through 7 are a loop to infer
attribute values for each hypothesized attack in given pathG, which is a possible sequence
of attacks that have happened. Line 3 obtains the set ofigquahstraintsC; for (T'ype(h), T;)
and C/ for (T;, Type(h')) that are associated with the two halves of the given patlotir the
constraint matrix). In the following steps, the algorithmes all combinations of equality constraints

84

Algorithm 4. Inferring Attribute Values for Hypothesized A ttacks
Input: A type graphl'G for a set7 of hyper-alert types, a path = (T, Ty, Ts, - -+ , Ty, T")
in TG, atypeT alertt, and a typel” alertt’, wheret may indirectly prepare faf.
Output: A set H; of hypothesized attack instances for each typaevherei = 1,2,--- | k.
Method:
I We assume the constraint matfix for 7 has been computed, in which each equality
Il constraintec in M is labeled with the corresponding pathbel(ec) in TG.
1. Get a seC of equality constraints such that for eaghe C, t andt’ satisfyec and
Label(ec) = P.
2. For each hypothesized atta@k
3. Get the set of equality constraind$ for (7, 7;) whose label i7", 17, ..., T;);
get the set of equality constraintg for (7}, 7") whose label iIST;, ..., T, T');

let H; = {}
4. For each combination ofc; € C; andec, € C!
5. If ec; andec, imply anyec € C Then
6. Generate a typ€; alertt;; set all the attributes af that are equal to some

attributes off" in ec; to the corresponding attribute valuestpgimilarly,
set all the attributes of; that are equal to some attributesZdfin ec; to

the corresponding attribute valuestgfset the remaining attributes (if any
to Unknown let the timestamp of; be [t.end_time, t' .begin_time].

~

7. LetH, = H; U {tl}
8. Output H;.
End.

Figure 5.7: Algorithm to infer attribute values for hyposimed attacks

in C; andC}, and infers the attribute values of hypothesized typattacks . Each hypothesized
attack instance of Typ#; is derived through two equality constraintg{ € C; andec; € C!). The
condition checking in line 5 guarantees that the inferrédbate values do not conflict (otherwise,
the corresponding combination of equality constraintdataot lead to an equality constraint that
andt’ satisfy). Finally, line 8 outputs the hypothesized attarktances for each attack type (hyper-
alert type)T;, wherei = 1,2, ..., k.

We make several observations about Algorithm 4. First, rgiveo alertst and ¢/, the
hypotheses of missed attack instances betweenlt’ arespecificto the paths betweenandt’. In
other words, the hypothesis of each missed attack is siggpbytthe possibility that an attacker has
launched a sequence of attacks (or, more precisely, attast&nices), including the hypothesized
one, that leads fromto ¢’. This also implies that Algorithm 4 should be performed ripldttimes

when hypothesizing about missed attack instances basedjigarapair of alerts. Second, the two

85

alertst andt’ and a given path in the type graph may lead to multiple ingsraf each attack
type, since there may be multiple (direct or indirect) efjy&lonstraints for each pair of hyper-alert
types. Third, the hypothesized attack instances are ysuatlas specific as regular alerts. That is,
a hypothesized attack may have unknown values on someustibwhich cannot be inferred from
the available alerts.

Algorithm 4 is essentially a best-effort “guess” of what kbhave been missed by IDSs.
The hypothesized attack instances can certainly be wrongthd next subsection, we investi-
gate how to prune those incorrectly “guessed” attack imgmmsing a complementary information

source, the raw audit data.

5.1.5 Pruning Hypothesized Attacks with Raw Audit Data

The hypothesized attack instances can be further validadedy raw audit data. For
example, we may hypothesize that there is a variatioRTd?_Glob_Expansionattack between a
SCANNMAP.TCP alert and aRshalert. However, if there is no ftp activity related to thetinc
host between these two alerts, we can easily conclude thdtypothesis is incorrect. By doing so
we further narrow the hypothesized attacks down to the mgénliones.

To take advantage of this observation, we extend our modsdgociate a “filtering con-
dition” with each hyper-alert type. Assuming that the rawdiadata set consists of a sequence of
audit records, we can extract attribute values from eacht eambrd directly, or through inference.
For example, we may extract the source IP address from argpdacord directly, or infer the
type of service using the port and payload information. Rergake of presentation, we call such
attributes obtained from the raw audit datadit attributes

Definition 13 Given a hyper-alert typ&’ and a setd of audit attributes, diltering condition forT’
w.r.t. A is a logical formula involving audit attribute names iy which evaluates tdrueor False

if the audit attribute names are replaced with specific value

Example 8 Consider the following set of audit attributest = {SrclP, SrcPort, DestIP, DestPort,
Protocol, FrameArrivalTime Given a hyper-alert typETP_Glob_Expansionwe may have a sim-

ple logical formula ‘Protocol = ftg as a filtering condition for typeFTP.Glob_Expansionw.r.t.

86

Intuitively, a filtering condition for a hyper-alert type dsnecessary condition for the cor-
responding attack or its variations. We can simply evalttag¢econdition to prune some incorrect
hypotheses. If a filtering condition is evaluated to True, ¢torresponding attack may have hap-
pened; if it is evaluated to False, the corresponding hygsitled attack could not have happened,
and should be ruled out.

The above filtering condition is essentially prior knowledgf known attacks. There is
an additional opportunity to prune incorrect hypothesegsiffurther consider the inferred attribute
values of the hypothesized attacks. For example, if we dan ihat the destination IP address of a
hypothesizedTP_Glob_Expansiomattack is152.1.19.5, we may further check whether there is ftp
activities destined t@52.1.19.5 in Example 8. In other words, we can revise the filtering cthodi
in Example 8 to Protocol = ftp A DestIP =152.1.19.5” for the hypothesized attack instance.

To formalize this idea, we introduce the notionfittering template

Definition 14 Given a hyper-alert typ&" = (fact, prerequisite, consequence) and a setA of
audit attributes, diltering template forl” w.r.t. A is a logical formula involving variables ifact

and A, which evaluates tdrueor Falseif these variables are replaced with specific values. Given
a hypothesized attaakof typeT with a setf; of inferred attributes, wherg, C fact, a filtering
templateT'emp; is instantiatable by if all the variables inT'emp are either inf, orin A. If a
filtering templatel'emp; is instantiatable by, we can then get aimstantiated filtering condition

for ¢ by replacing the variables it'emp ; with the inferred attribute values of

Example 9 Consider the set of audit attributesdA = {SrcIP, SrcPort, DestIP, DestPort, Proto-
col, FrameArrivalTimé. Given a hyper-alert typ&TP_Glob_Expansion(See Table 5.1), we may
have a filtering templateA.DestIP = FTRGlob_Expansion.DestlPas a filtering template for type
FTP_Glob_Expansionw.r.t. A. Assume there is a hypothesized atted_Gloh.Expansion@with

an inferred attributeDestIP= 152.1.19.5. The above filtering template is then instantiatable by

FTP_Glob_Expansion6and can be instantiated to&.DestIP= 152.1.19.5".

87

Intuitively, a filtering template is a template of filteringrdition for a type of attack.
Given a hypothesized attack with a set of inferred attrutee may convert a filtering template
into a filtering condition if all the attack attributes thagpeear in the filtering template have specific
inferred values. To distinguish from the filtering conditidefined in Definition 13, we call those
defined for hyper-alert types tipeedefined filtering conditiongnd those instantiated from hypoth-
esized attacks thmstantiated filtering conditionsWe can then use such an instantiated filtering
condition in the same way as the predefined filtering conatio

Pruning incorrectly hypothesized attacks with predefineti@ instantiated filtering con-
ditions is pretty straightforward. Before correlatingrédewe specify filtering conditions and filter-
ing templates for each hyper-alert type. When hypothegiaimd reasoning about missed attacks,
for each hypothesized attack with a possible range of itestamp and a set of inferred attributes,
we first determine whether each filtering template corregpanto the hypothesized attack is in-
stantiatable by this hypothesis w.r.t. the raw audit aiteb. If the answer is positive, we derive
an instantiated filtering condition for this filtering teraf#. We then compute the actual filtering
condition as the conjunction of the predefined filtering d¢tod and all the instantiated filtering
conditions.

To validate a hypothesized attack, we can search througfathaudit records during the
time period when the hypothesized attack may have happaneédevaluate the filtering condition
using the values of the attributes of each raw audit recoodcohtinue Examples 8 and 9, we can
generate the final filtering condition aBrbtocol = ftp A DestIP =152.1.19.5" to validate (or deny)
FTP_Glob Expansion6If there is no ftp traffic associated with the destinatiomatires452.1.19.5
between alertSCANNMAP_TCP2andRsh3 i.e., the above filtering condition evaluates to False
for all audit records, we can conclude that FREP_Glob_Expansion@attack is falsely hypothesized.
As a result, the integrated correlation graph in Figure ar8lee refined to the one in Figure 5.8.

A limitation of using filtering conditions is that human usenust specify the conditions
associated with each hyper-alert type. It has at least tvpdigations. First, it could be time con-
suming to specify such conditions for every known attaclco®d, human users may make mistakes
during the specification of filtering conditions. In part&u a filtering condition could be too spe-
cific to capture the invariant among the variations of a knattack, or too general to filter out
enough incorrect hypotheses. Nevertheless, we observaridiltering condition may help re-
duce incorrectly hypothesized attacks, even if it is vergegal. In our experiments, we simply
use the protocols over which the attacks are carried outtamohferred attribute values as filtering

conditions. It is interesting to study how to get the “rightay to specify filtering conditions.

88

ICMP_PING_NMAP1
SCAN_NMAP_TCP2

)
IMAP_Authen_Overflow5
/\

\/

Figure 5.8: Integration of'G; andC G5, after refinement with raw audit data

Another issue is the execution cost. To filter out a hypo#fekiattack with a filtering
condition, we have to examine every audit record during #méod of time when the attack could
happen. Though there are many ways to optimize the filteringgss (e.g., indexing, concurrent
examination), the cost is not negligible, especially whes time period is large. Thus, filtering
conditions are more suitable for off-line analysis.

5.1.6 Consolidating Hypothesized Attacks

In the earlier subsections, we investigated various teglas to hypothesize and reason
about missed attacks. However, our method has not conditleegpossibility that the same attack
may be hypothesized multiple times in different contextss aAresult, an integrated correlation
graph may include too many hypothesized attacks. Thoughpbssible that the same attack are
repeated multiple times (as hypothesized), having too nuaicgrtain details reduces the usability
of the integrated correlation graph.

Let us look at an example to see this problem more clearly.sfden Figure 5.9, which
shows some hypothesized attacks resulting from the irtiegraf CG; and CGs in Figure 5.1.
AssumelCMP_PING_.NMAP1, SCANNMAP_TCP2andRsh3all have the same destination IP ad-
dress152.1.19.5. Since two alertsSCANNMAP.TCP2 and Rsh3satisfy the equality constraint
SCANNMAP_TCP.DestlIP= Rsh.DestIPbased on the type graph in Figure 5.4, we hypothesize two
attacks: IMAP_AuthenOverflow5and FTP_Glob_Expansion6 which both have the same destina-
tion IP addres$52.1.19.5 derived through attribute value inference. SimilalGiMP_PING_NMAP1
andRsh3satisfy the equality constrail€MP_PING_NMAP.DestIP= Rsh.DestIPThus, we may
hypothesize four attack SCANNMAP_TCP7, IMAP_AuthenOverflow8 SCANNMAP_TCP9and

89

ICMP_PING_NMAP1

' ~
RS
SCAN_NMAP_TCP7 SCAN_NMAP_TCP9
_ - | \
IMAP_Authen_Overflow5 FTP_Glob_Expansion6 IMAP_Authen_Overflow8 FTP_Glob_Expansion10
N T - NN s/ _ - s
~ -~ — ~

- ~N
~ =\

Mstream_Zombie4

Figure 5.9: Hypothesized attacks when integrating; andC'G»

FTP_Glob_Expansion1Qall with the same destination IP addré$2.1.19.5.

This example leads to two observations. First, it is posdibht the hypothesized attack
instanceSCANNMAP_TCP7is the same attack as reflected by the existing SI€ANNMAP_TCP2
but it is also possible that the attacker launched two sépattacks. Similarly, it is equally possi-
ble forIMAP_AuthenOverflow5andIMAP_AuthenOverflow8to be the same attack or two separate
attacks. Second, having all these hypothesized attackesthk integrated correlation graph com-
plex and difficult to understand. Since the hypothesizeacks#t are all uncertain, having multiple
hypotheses for one attack does not give more informatiodedd, if we consider the typical goal
of attack hypothesis during intrusion analysis, it is ndtical to know how many times an attack
has been used in one step of attacks; instead, it is usually important to know whether an attack
has been used or not.

Based on the above observations, we propose to consolidathypothesized attacks.
Specifically, we remove a hypothesized attack if it may haenldetected (as an existing alert), or
aggregate a set of hypothesized attacks if they may be the atiack. Our approach is based on the
“consistency” between a hypothesized attack and an alghiedconsistency” among hypothesized
attacks. Informally, a set of hypothesized attackscargssistentf they could be the same attack, and
a hypothesized attack é®nsistentvith an alert if this hypothesized attack could have beeadet
and reflected as the alert.

We first look at the consistency between a hypothesizedkadiiad an alert by examining
their attack types, attribute values, and timestamp in&tion. Once a hypothesized attagkis
identified as consistent with an alértwe subsume,, into ¢ by mergingt;, andt (as well as the

duplicated edges resulting from this merge).

90

In the following, we first clarify the consistency relations

Definition 15 A hypothesized attadl, is consistenwith an alertt if (1) ¢, and¢ are of the same
type, (2) ift;, andt both have specific values on the same attribute, these twewalre the same,
and (3) the timestamp df, includes the timestamp of(i.e., t;.begin_time < t.begin_time N

tp.end_time > t.end_time).

The consistency among a set of hypothesized attacks carfibedl& a similar way.

Definition 16 A setH;, = {t1,ts,--- ,t,} Of hypothesized attacks é®nsistenif (1) all hypothe-
sized attacks irH}, are of the same type, (2) if more than one hypothesized attadk; have spe-
cific values on an attribute, then all these values must beséinee, and (3)nin{¢;.end_time|i =
1,2,...,n} > max{t;.begin_timeli = 1,2,...,n} (i.e., the intersection of all the interval-based

timestamps is not empty).

The intuition behind Definition 16 is that a set of hypothedizattacks are consistent
if they have the same type, their attribute values do not imbnfind the possible ranges of their
interval-based timestamps overlap.

Figure 5.10 outlines an algorithm to consolidate hypottesbiattacks. Step 1 groups all
hypothesized attacks based on their types. Step 2 start®tegs each group. This processing
can be divided into two stages. The first stage (steps 3 thréugeduces the hypothesized attacks
based on the consistency relations between hypothesiteedksaind alerts. The second stage (steps
6 to 13) partitions each group of hypothesized attacks intggups so that all attacks in each
subgroup are consistent, consolidates each subgrouprietbypothesized attack, and instantiates
the attributes of the hypothesized attack if they are itfieraStep 14 finally outputs the consolidated
version of hypothesized attacks.

Consolidating hypothesized attacks helps reduce the nuafhértual nodes in an inte-
grated correlation graph. To get a concise attack scertagdpllowing job is to merge the virtual
edges associated with those hypothesized attacks beisgplmated. This is trivial: If a hypoth-
esized attack;, is consolidated based on an alerthen all virtual edges related tg should be

91

Algorithm 5. Consolidating Hypothesized Attacks
Input: A setS of alerts and a sef), of hypothesized attacks.
Output: A setS; of hypothesized attacks after consolidation.
Method:
1. PartitionS}, into groups such that the hypothesized attacks in each dravgpthe
same type.
2. For each groug=y, in Sy,
3 For each hypothesized atta¢kin Gy,
4 If ¢;, is consistent with an alettin S then
5. Remove;, from G, and merge;, with ¢.
6 If G}, is not emptythen
7 PartitionGy, into maximal subgroups such that the hypothesized attacks i
each subgroup are consistent.

8. Replace each subgrodp with a hypothesized attaal with the same type.
9. For each attributex; of ¢,

10. If there exists a hypothesized attagke G, that has a specific value an
11. letty,.a; = t;L.ai,

12. elselet t,.a; = Unknown

13. Addty, into ;.

14Output Sj.

End.

Figure 5.10: Algorithm to consolidate hypothesized atsack

re-directed ta. Likewise, given a se$}, of hypothesized attacks, if all attacks$f) can be consol-
idated into a hypothesized attatk then all virtual edges related to the hypothesized attaclss
should be re-directed tg,.

Our consolidation technique is effective in reducing thee sof integrated correlation
graphs. For example, in one of our experiments, we have tidassl 137 hypothesized attacks
into 5 ones. However, we shall point out that, after consolidatesch hypothesized attack may
correspond to multiple instances of missed attacks. Inratloeds, each hypothesized attack in an
integrated correlation graph is indeed a place-holder herar several possible attacks.

5.2 Experimental Results

We have implemented all the techniques we discussed in dpisrp In our implementa-
tion, we used Java as the programming language, and Mi¢r8&uf Server 2000 as the database

92

to store the hyper-alert types, the alert data sets, andnifilgsés results. We assume the NCSU
Intrusion Alert Correlator version 0.2 [27] is used to ctate IDS alerts into correlation graphs. To
validate the hypothesized attacks using raw audit dataingplementation uses Ethereal (version
0.9.14) to extract audit attribute values from the raw tcpdump file.(the network audit data).
Finally, we use GraphViz [9] to visualize the integratedretation graphs.

To examine the effectiveness of the proposed techniquepenfermed a series of ex-
periments using one of the 2000 DARPA intrusion detecticgnado specific data sets, LLDOS
1.0 [77]. LLDOS 1.0 contains a series of attacks in which aac#er probed, broke-in, installed
the components necessary to launch a Distributed Deniabonfic® (DDOS) attack, and actually
launched a DDOS attack against an off-site server. The mktawdit data were collected in both
the DMZ and the inside parts of the evaluation network. WeluealSecure Network Sensor 6.0
[52] as the IDS sensor to generate alerts, which are theelated by the NCSU Intrusion Alert
Correlator into correlation graphs.

On constructing the type graph for the experiments, we densill attacks (represented
as hyper-alert types) in the data sets that can be detectBeddpecure Network Sensor 6.0. The
specification of these hyper-alert types is given in TabBs the implication relationships between
predicates are shown in Table 5.4, and the type graph is giMeigure 5.11. For space reasons, we
did not put the isolated nodes (the nodes which do not havesaedlinnecting to them) into the type
graph.

93

Table 5.3: Hyper-alert types used in our experiments (Thefdact attributes for each hyper-alert
type is{SrclP,SrcPort,DestIP,DestPgit

Hyper-alert Type Prerequisite Consequence
Admind
DNS_HInfo ExistService(DestIP,DestPort) | {GainOSInfo(DestIP)

EmailAlmail_Overflow

ExistService(DestlP,DestPort)
VulnerableAIMailPOP3Server
(DestIP)

{GainAccess(DestIPR)

’)

Email.Debug ExistService(DestIP,DestPort) | {GainAccess(DestIR)
ASendMaillnDebugMode(DestIP)

EmailLEhlo ExistService(DestIP,DestPort) | {GainSMTPInfo(SrclP,DestIR
ASMTPSupportEhlo(DestIP)

EmailLTurn ExistService(DestIP,DestPort) | {MailLeakage(DestIP)
ASMTPSupportTurn(SrclP,
DestIP)

FTP_Pass ExistService(DestlP,DestPort)

FTP_Put ExistService(DestIP,DestPort) | {SystemCompromised(DestIH
AGainAccess(DestlIP)

FTP_Syst ExistService(DestIP,DestPort) | {GainOSInfo(DestIP)

FTP.User ExistService(DestlP,DestPort)

HTTP_ActiveX ActiveXEnabledBrowser(SrcIP) {SystemCompromised(SrclP

HTTP_Cisca CatalystExe¢ CiscoCatalyst3500XL(DestIP) | {GainAccess(DestIP)

HTTP Java JavaEnabledBrowser(SrclIP) {SystemCompromised(SrclpP

HTTP_Shells VulnerableCGIBin(DestIP) {GainAccess(DestIP)

AOSUNIX(DestIP)

MstreamZombie

SystemCompromised(DestIP)
ASystemCompromised(SrclP)

{ReadyForDDOSAttack(SrclH
ReadyForDDOSAt-
tack(DestIP)

~—

PortScan {ExistService(DestIP,DestPoy
RIPAdd

RIPExpire

Rsh GainAccess(DestIP) {SystemCompromised(DestIR

AGainAccess(SrclP)

SystemCompromised(SrclpP)

ok

SadmindAmslverify_
Overflow

VulnerableSadmind(DestIP)
NOSSolaris(DestIP)

{GainAccess(DestIPR)

SadmindPing OSSolaris(DestIP) {VulnerableSadmind(DestIP)
SSH Detected

StreamDoS ReadyForDDOSAttack {DDOSAgainst(DestIP)
TCP_UrgentData {SystemAttacked(DestIP)
TelnetEnvAll {SystemAttacked(DestIP)
TelnetTerminaltype {GainTerminalType(DestIR)
TelnetXdisplay {SystemAttacked(DestIP)

UDP_Port.Scan

{ExistService(DestIP,DestPoy

{n17.DestiP=n9.DestP o -
R - 117.DestiP=nG.DestP
n17.DestPort=n9.DestPort} n17.DestPort=n6.DestPort)

{n10.SrciP=n11.SrclP

{n9.DestiP=n.SrclP,
RO DestiP=n7.DestIP}

n9:Email_Debug

{n9.Desti

{n17.DestiP=n5.DestlP
n17 DestPort=n5.DestPort} / soR)
X n9.DestiP=n8.DestlP}

{n20.Destl

n20.DestPortz:
20

=n7.SrclP,
n7.DestlP}

{n20.DestiP=n19.DestiP
n20.DestPort=n19. DestPort

{n5.DestiP=n6.DestIP}

n5:Email_Almail_Overflow

{n20.DestiP=n5.DestiP

nzu'UDP,Pon {n17.DestiP=n12.DestiP
“nl7.DestPort=n12 DestPort} /n20.DestPort=n5. DestPort
{20 DestiP=n6 DestiP

{3.DestIP=n6.DestiP}

n20.DestPort=n6 DestPor)
{n6.DestiP
16.DestlP=n7 RestIP}

{n2.DestiP=n6 DestiP}

*

{n12.DestiP=n3.De

{n14.DestiP=n6.D&:

ol
n5.DestlP=n8.DestiP}

{n20.DestiP=n12.DestiP
n20.DestPort=n12.DestPort}

ni6:Stream DoS

{n3.DestP=nB:SrelE
3.DestiP=ng.DestIP}

{n8.SrclP=n7.SrclP

DestlP=n7.Des{lP
{n2.DestIP=n8.SrclP, _ﬂ% n7:Mstream_Zombie

n2.DestiP=n8.DestlP} (n2 BestiP>r17.SrclP,
SYP=n7.DestlP}

{n1.DestiP=nd.De

{n20.DestiP=n1.DestlP
n20.DestPort=n1.DestPort}

{n1.DestiP=n2.DesTiP}

{n14.DestP=n8.SrclP,
n14.DestP=n8.DestIP} {n}4.DestlP=n7.SrclP,
a

IP=n7.DestIP)

{n13.SrclP:
n14:HTTP_Cisco_Catalyst Exec - n13.SrclP=n7.DestiP}

{n15.SrclP=n7.SrclP,
n15.SrclP=n7.DestlP)

7.5rclP,

NISHTTP Java

Figure 5.11: The type graph used in our experiments

95

Table 5.4: Implication relationships between the predisat

Predicate Implied Predicate
ExistService(IP,Port) Gaininformation(IP)
GainOSiInfo(IP) Gaininformation(IP)
GainOSiInfo(IP) OSSolaris(IP)

OSSolaris(IP) OSUNIX(IP)
GainSMTPInfo(SrcIP,DestIP) SMTPSupportTurn(SrclP,DestIP)
GainAccess(IP) SystemCompromised(IP)
SystemCompromised(IP) SystemAttack(IP)
ReadyForDDOSAttack(IP) ReadyForDDOSAttack

To test the ability of our techniques to hypothesize andarabout missed attacks, we
dropped allSadmindAmslverifyOverflowalerts that RealSecure Network Sensor detected in LL-
DOS1.0 data set. As a result, the attack scenarios that thesion Alert Correlator output before
dropping these alerts are all split into multiple parts, sashwhich become individual, uncorre-
lated alerts. In our experiment with inside traffic of LLDO® Hata set, before droppirfgad-
mind AmslverifyOverflowalerts, we only got one correlation graph. After droppingwaver, this
correlation graph was divided into four parts. Figure 5.4@ves all these four correlation graphs.

Now let us focus on the correlation graphs in Figure 5.12. Weashould do first is to
determine if two correlation graphs can be integrated. Hoosd step is to perform hypotheses,
inference, validation and consolidation. For the sake eg@ntation, we first consider integrating
two correlation graph€’'G.. (Figure 5.12(c)) and’'G, (Figure 5.12(d)).

As mentioned earlier, if two alerts in two different coritgda graphs satisfy at least one
equality constraint associated with their types, we canlsoenthese correlation graphs together.
Since the destination IP addresses of 8tumindPing67343(in CG.) andRsh67553in C'Gy)
are172.16.112.50, they satisfy the constrai@admindPing.DestlIP= Rsh.DestIPThus, it is easy
to seeC'G. andC'G, can be integrated together.

Based on the type graph, we can easily hypothesize thatisagaofHTTP_Shells FTP_Put
and SadmindAmslverifyOverflowcould have been missed by the IDS sensor. For example, there
could be variations oSadmindAmslverifyOverflow betweenSadmindPing and any laterRsh
alert. By reasoning about the hypothesized attacks usiogligg constraints, we can reduce the
hypotheses of missed attacks. For example, the destindriacdress oSadmindPing67343is
172.16.112.50, which is different from either the source or the destirnati® address oRsh67543

96

Sadmind_Ping67341 Sadmind_Ping67286 FTP_Syst67243 Sadmind_Ping67343

@) CG, (b) CGy () CG.

Rsh67558
Email_Almail_Overflow67529 ’)(’_—\\ Nistream Zombie67550
D :

< " o
N TR
Cronorsa \
A aroee 7>

T
YD
o

Rsh67540)

X"

Stream_DoS67773

<> V'
).
o W
DY Pe
LY ez

—7

A oo >

(d) CGy

Figure 5.12: Four correlation graphs constructed from LISX00 inside traffic

Thus it is easy to seBadmindPing67343cannotindirectly prepare foRsh67543hrough a vari-
ation of attackSadmindAmslverifyOverflow After missed attack hypotheses and reasoning, we
perform attribute value inference. For example, a hypdatkedsSadmindAmslverifyOverflowat-
tack betweerSadmindPing67343andRsh67553as the destination IP addres®.16.112.50.

The hypothesized attacks are further validated using theatalit data. For example, in
our experiments, the filtering condition for (variation3 BT P_Putis protocol = ftp plus all the in-
ferable attributes. All the hypothesized attacks are th@tked using the extracted values of audit
attributes from audit records between the alerts that résuhe corresponding hypothesized at-
tacks. For example, we search all the pre-fetched paclaniration betweeBadmindPing67343
andRsh67553or Sadmindpackets (related to the hast2.16.112.50) in order to validate a hypoth-
esized (variation ofsadmindAmslverifyOverflowattack. Finally we can get the integration result

97

Sadmind_Ping67343
FTP_Syst67243 -

—

o
o
7y /

—
—
Sadmind_Ping67286 Sadmind_Amslverify_Overflow2

-
7

/
y

>
J‘ Mstream_Zombie67563
~
N ~ ’
N < Ve
~ ~
-~ —

~
////

Sadmind_Ping67341)#» Sadmind_Amsiverify_Overflow3 >

NS T~

Figure 5.13: The integrated correlation graph construfited LLDOS 1.0 inside traffic

(without consolidation) on correlation grapb%~. andCG,,.

We continue the above process to integrate the resultimglation graph with additional
ones C'G, in Figure 5.12(a) and’' G}, in Figure 5.12(b)). The alerts in these two graphs $ad-
mind.Ping67341and SadmindPing67286 respectively, which are both uncorrelated alerts. As a
slight difference, several instancesF¥P_Put are hypothesized during both integration processes,
but all of them are invalidated later using the extractedtanfibrmation. In other words, we find no
ftp activities involving the corresponding host during thediframe when the hypothesized attacks
might happen. Figure 5.13 shows the integrated correlagraph after the hypothesized attacks
are consolidated. The consolidation reduced the numbeypuithesized attacks from abol&7 to
5. In the integrated correlation graph shown in Figure 5.8, lypothesized attacks are shown in
gray, and are labeled by the corresponding hyper-alertfolfmeved by an ID to distinguish between
different instances of the same type of attacks.

98

S

Sadmind_Ping66048)— p=< Sadmind_Amsiverify_Overflowd

NN~

/

~
~N

(a) Integrated Correlation GraghU'G,, (b) Integrated Correlation GraplC G,

Sadmind_Pin gsem
FTP, Sy teeooa l ; >

(c) Integrated Correlation GraptC'G..

Figure 5.14: Experimental results using the DMZ datasetiBQS 1.0

Now let us examine the integrated correlation graph in EEdud3. According to the
description of the data sets [77], the thi@edmindAmslverifyOverflowattacks and th@repare-
for relations between these attacks and the other alerts amthiegized correctly. However, the
FTP_PutandHTTP_Shellsattacks are hypothesized incorrectly.

We also performed the experiments using the DMZ data set @& 1.0. Similar to
the inside data set, we deliberately droppedSatdmindAmslverifyOverflowalerts from those
generated by RealSecure Network Sensor 6.0. Using the tgmhgn Figure 5.11, we gener-
ated three integrated correlation graphs in Figure 5.14yhich hypothesized attacks are shown
in gray. Based on the attribute value inference, we know #simation IP addresses 8ad-
mind AmslverifyOverflow4 SadmindAmslverifyOverflow5andSadmindAmslverifyOverflow6Gare
172.16.115.20, 172.16.112.10 and 172.16.112.50, respectively. Similarly, the destination IP ad-
dress ofHTTP_Shells2is 172.16.112.50. According to the description of data sets [77], tad-
mind AmslverifyOverflowattacks are all hypothesized correctly, while th€TP_Shellsattack is
hypothesized incorrectly. These experiment results aing LLDOS 1.0 inside and DMZ data
sets) indicate that though the proposed techniques catfidemnssed attacks, they are still not per-
fect. Nevertheless, the proposed techniques have alreadgded the limitation of the underlying
IDSs.

99

5.3 Discussion and Summary

In this chapter, we present a series of techniques to cangtirgh-level attack scenarios
to facilitate the analysis of intrusion alerts. Our appfoa based on a key concept: equality
constraint, which captures the intrinsic relationshipsMeen possibly related attacks. Moreover,
to reason about hypothesized attacks, we develop tectsigueompute equality constraints that
indirectly related attacks must satisfy. We propose tderinfer attribute values for hypothesized
attacks and validate hypothesized attacks through rawt dati. Finally, we present a technique
to consolidate hypothesized attacks to generate congmsesentations of attack scenarios. Our
experimental results demonstrate the potential of thedmigues.

Though the proposed techniques are aimed atimproving I@sttion results, the actual
performance is still limited by the performance of IDSs. e tworst case, if the IDSs miss all
attacks, or all alerts are false ones, the proposed tectsyill not perform well. Fortunately, our
preliminary experiment has shown some promising resuttshi® current generation of IDSs. We
expect the proposed techniques will generate better segsilthe performance of IDSs is improved.

Our technique is a starting point for improving intrusioriedion through alert correla-
tion. There are still a number of problems that are worthtémthil investigation. One such problem
is the granularity in which the attacks are modeled. If theesentation of attacks is too specific,
the type graph may not be general enough to allow the hypeshalsout variations of missed at-
tacks. If the representation is too general, some causdioeships may not be captured in the type
graph at all. More research is necessary to understand she/bg to model attacks in the proposed
framework. Our approach currently is limited because it@aly hypothesize intermediate attacks
inside an attack scenario. We further notice that our teghes usually require a comprehensive
knowledge base about different attacks, which is achievétilough studying various attack sig-
natures. Adversaries, aware of our technigues being deglayay intentionally create scattered
attacks. This may bring additional processing overheadlsametimes may even let us hypothesize
“false” attack scenarios (it can be mitigated by our hypsited attack pruning techniques). These

problems worth further investigation.

100

Chapter 6

Alert Correlation through Triggering

Events and Common Resources

As more and more organizations and companies build netwakstems to manage their
information, network intrusion becomes a serious probleer oecent years. At present, these is
no single system capable of solving all security concerniffef@nt types of security systems are
deployed into the networks to better protect the digitapsg-igure 6.1 shows an example network
deployed with multiple heterogeneous security systemses@lsystems may comprise firewalls
(e.g., ZoneAlarm [117]), intrusion detection systems #P&.g., RealSecure Network 10/100 [52],
Snort [16] and NIDES [57]), antivirus tools (e.g., NortontAfirus [101]), file integrity checkers
(e.g., Tripwire [104]), and so forth. They usually serve different security purposes, or serve for
the same purpose through different methods. For exampbeydils focus on accepting, logging,
or dropping network traffic, intrusion detection systeni3S§) focus on detecting known attack
patterns (signature based IDSs) or abnormal behaviorsn@gdased IDSs), antivirus tools focus
on scanning viruses based on pre-defined virus signatundsfila integrity checkers monitor the
activities on file systems such as file addition, deletion rmdification.

Although these security systems are complementary to ether, and combining the
reports (i.e., alerts) from them can potentially get momaprehensive result about the threats from

outside and inside sources, it is still challenging for gst=l or analysis tools to analyze these alerts

101

Antivirus Antivirus Antivirus
Host IDS Host IDS Host IDS
Tripwire Tripwire Tripwire
I
S

00 ©

00 ©

o o
i i
o o
o o
o o
o o
o o
oi oi
ol ol
i i

o
o
o
o
o
1]
o
o
1]
o

oo
000 oo
000 0o
000 oo

o
o
o
o
o
1]
o
o
1]
o

oo
000 oo
000 0o
000 oo

Web Server Mail Server

oooooo RealSecure Network Anomaly
Detector
RealSecure s,
=]
- Hub =1 [—
Firewall Workstation Laptop
Snort

Figure 6.1: A network deployed with multiple heterogenesesurity systems

due to the following reasons.

First, a single security system such as a network based IB&lagthousands of alerts
per day [59, 61], and multiple security systems make thetiin even worse. Large numbers of
alerts may overwhelm the analysts. Second, among a largeneobf alerts, a high proportion of
them are false positives [61], some of them are low-sevailigyts (e.g., an attack to an inactive
port), and some of them correspond to real, severe attatks.challenging to differentiate these
alerts and take appropriate actions. The low level and hadimwe of the alerts also make extracting
the global view of the adversary’s attack strategy verylehging. Third, different security systems
usually run independently and may flag different alerts feingle attack. Realizing these alerts are
actually from the same attack can be time-consuming, ththiglis critical in assessing the severity
of the alerts and the adversary’s attack strategy.

To address these challenges, several alert correlatibmitpees have been proposed in
recent years, including approaches based on similaritydei alert attributes (e.g, [109, 98, 60,
61, 33, 91, 28]), methods based on pre-defined attack soeng@ig., [36, 34, 78]), techniques
based on pre-conditions/post-conditions of attacks,(EL§2, 29, 83, 86]), and approaches using
multiple information sources [90, 79]. Though effectiveagidressing some challenges, none of

them dominates the others. Similarity based approachep gierts based on the similarity between

102

alert attributes; however, they are not good at discovesiegps in a sequence of attacks. Pre-
defined attack scenario based approaches work well for krem&narios; however, they cannot
discover novel attack scenarios. Pre-condition/postitimm based approaches can discover novel
attack scenarios; however, the procedure of specifyingpnglitions and post-conditions are time-
consuming and error-prone. Multiple information sourcasdual approaches correlate alerts from
multiple information sources such as firewalls and IDSs;dw@w, they are not good at discovering
novel attack scenarios.

Our alert correlation techniques proposed in this chamtdress some limitations of the
current correlation techniques. We propose a novel siityilareasure based on triggering events,
which helps us to group alerts into clusters such that onstelumay correspond to one attack.
We enhance the pre-condition/post-condition based appesathrough using input and output re-
sources to facilitate the specification of pre-conditionsl @ost-conditions. Intuitively, the pre-
condition of an attack is the necessary condition for thacitto succeed, and the post-condition is
the consequence of the attack if the attack does succeedrdiog, theinput resource®f an attack
are the necessary resources for the attack to succeed,aoatplut resourcesf the attack are the
resources that the attack can supply if successful.

Compared with the approaches in [29, 83] which use predidatdescribe pre-conditions
/post-conditions, our input/output resource based agprbas several advantages. (1) When using
predicates to specify pre-conditions and post-condition®ach type of attacks, it may introduce
too many predicates. Whereas input and output resource greeaather limited compared with the
types of predicates and are easy to specify. (2) Since €iffeexperts may use different predicates
to represent the same condition, or use the same predicagpriesent different conditions, it is
usually not easy to discover implication relationshipsieetn predicates and match post-conditions
with pre-conditions especially when the number of predisas large. Whereas input and output
resource types are rather stable, straightforward to mecheasy to accommodate new attacks.
Our approach also enhances the multiple information seurased approaches in that we provide
an input and output resource based method to build attaclagos.

In this chapter, we propose an alert correlation approaskdan triggering events and
common resources. Our approach proposes to correlats eldhree stages. The key concept in
the first stage isriggering eventswhich are the (low-level) events observed by securityesyst
that trigger an alert. We observe that although differentisty systems may flag different alerts
for the same attack, the events that trigger these alerts beusie same. For example, foR#®C
sadmind UDP NETMGIPROCSERVICE CLIENIDOMAIN overflow attempalert reported by

103

Snort and arsadmindAmslverifyOverflowalert reported by RealSecure network sensor, the event
that both systems observe is thalicious sadmind NETMGPROC SERVICE requedtetween the
source and the target hosts. For triggering events, we nootesfon low-level events (e.g., a TCP
connection). Based on this observation, we find triggerivents for each alert, and cluster alerts
that share the “similar” triggering events. The alerts ie atuster may correspond to one attack.

In the second stage, we further identify the severity of safeets and clusters. This
is done through examining whether the alerts @yasistentwith their relevant network and host
configurations.

In the third stage, we build attack scenarios through inpdt@utput resources. We ob-
serve that the causal relationships between individuatlestcan be discovered through identifying
the “common” resources between the output resources ofrb@redtack with the input resources of
a later one. For exampl8admindPingattack can output the status information of sadmind daemon
(service resources), whesadmindservice is necessary to launSadmindAmslverify Overflowat-
tack. Then we can correlate these two attacks. These calatibnships can help us connect alert
clusters and build attack scenarios.

6.1 The Model

We present our major techniques in this section. We stamtogducing definitions such
as alerts, events, configurations and resources in Sutiseil.1. Given a set of alerts, we are
interested in what events trigger each alert, from which areput the alerts that share the “similar”
triggering events into a cluster. These techniques arepted in Subsection 6.1.2, 6.1.3 and 6.1.4.
After alert clustering, we use the information about netwand host configurations to examine
the alerts in each cluster, which provides us opportunttieglentify the severity of some alerts
and clusters. This technique is presented in Subsectioh. 6l he technique on constructing attack
scenarios is presented in Subsection 6.1.6, which focusdgsoovering causal relationships based

on the input and output resources.

6.1.1 Alerts, Events, Configurations and Resources

Different security systems may output alerts in variousnfats (e.g., in a flat text file,
in a relational database, or in a stream of IDMEF [31] messagé/e can always extract a set of

104

attributes (i.e., attribute names and values) associatttdtie alerts. Events are security related
occurrences observed by security systems, configuratiocade the information about software
and hardware about a host or a network, resources encodeufees an attack may require to use
or can possibly supply if it succeeds, and they all can be eeéfas a set of attributes (attribute
names and values). Formally, atert type(or event typeor configuration typgor resource typg

is a setS of attribute names, where each attribute name S has a domairD;. A type T alert

t (or evente, or configuratione, or resourcer) is a tuple on attribute name setfy where each
element in the tuple is a value in the domain of the corresipgndttribute name. In this paper,
for the sake of presentation, we assume each alert and esgd@dtively has at least two attributes:
StartTimeand EndTime(if an alert or event only has one timestamp, we assume $teténd
EndTime have the same value). For convenience, we denotgathef alertt, evente and resource

r asType(t), Type(e) andType(r), respectively. In the following, we may use attributes toate
either attribute names or attribute values or both if it ismecessary to differentiate them.

Here we give a series of examples and discussion relatedrtdygles, alerts, event types,
events, configuration types, configurations, resourcestygoed resources (we may omit the domain
of each attribute). As the first example, we define an ale® §admindAmslverifyOverflow=
{SrclIP, SrcPort, TargetIP, TargetPort, StartTime, EndFirfetype SadmindAmslverifyOverflow
alertt = {SrcIP =10.10.1.10, SrcPort =683, TargetlP =10.10.1.1, TargetPort =32773, StartTime =
03-07-2004 18:10:21, EndTime = 03-07-2004 18:1(:@éscribes aBadmindAmslverifyOverflow
alert from IP addres$0.10.1.10 to IP addres$0.10.1.1.

Secondly, we define an event typealicious sadmind NETMGIPROCSERVICE Re-
quest= {SrcIP, SrcPort, TargetlP, TargetPort, StartTime, EndFiraed a typemalicious sad-
mind NETMGTPROCSERVICE Requestvente = {SrcIP =10.10.1.10, SrcPort =683, Tar-
getlP =10.10.1.1, TargetPort =32773, StartTime = 03-07-2004 18:10:21, EndTime = 03-07-2004
18:10:2%. Though high-level events are possible, in this paper wereme interested in low-level
events. For example, a TCP connection exploiting the valnibty in a ftp server, a read operation
on a protected file, and so forth. These low-level events migger the security systems to flag
alerts. For example, a ftp connection including some spédai@ such as “"$.—*+()f]}" [53] in
its payload may trigger & TP_Glob_Expansionalert by a network based IDS, and may trigger a
NEW.CLIENT alert by an anomaly detector. Thealicious sadmind NETMGPROCSERVICE
Requesevent may triggeGadmindAmslverifyOverflowalert if it is captured by a RealSecure net-
work sensor.

As the third example, we define a configuration typestFTPConfig= {HostIP, Host-

105

Name, OS, FTPSoftware, FTPOpenPomnd a typeHostFTPConfigconfigurationc = {HostIP
=10.10.1.7, HostName = foo, OS = Solaris 8, FTPSoftware = FTP ServerGpdanPort = 2}.
We are patrticularly interested in the critical software ethinay have vulnerabilities, for example,
a ftp server program and its open port in a host. We furthessiia the configurations into two
categories: host configuration and network configuratidme aforementionetiostFTPConfigs a
host configuration listing the ftp software and open porttwdek configurations specify the setting
about the whole network. For example, the access conttqABL) in a firewall, which controls
the inbound and outbound traffic for the whole network. A tijeTrafficControlConfigonfigura-
tion ¢ = {Source = any, Destination H#).10.1.8, DestPort = 80, Protocol = tcp, Action = acck
an example of network configuration controlling the inbodradfic to 10.10.1.8 at TCP port 80.

As the last example, we define a resource tfie= {HostIP, Path, a resource type
network service= {HostIP, HostPort, ServiceNarheand a resource typarivilege = {HostIP, Ac-
cesg. A typefile resourcer; = {HostIP =10.10.1.9, Path = /home/Bob/doc/info.tkt a typenet-
work_serviceresourcery = {HostIP =10.10.1.9, HostPort = 21, ServiceName = {tpand a type
privilege resourcers = {HostIP =10.10.1.9, Access = AdminAccegs

6.1.2 Triggering Events for Alerts

As we mentioned, a single event may trigger different akfertslifferent security systems.
Since security systems may not necessarily tell the arsalyisat events trigger an alert, it is usually
necessary to discover thrdggering eventdor alerts. Triggering eventsre the events that trigger the
alert. Given an alert, we are interested in its triggeringnés. More specifically, we are interested
in the set of event types whiahay triggeran alert type, and the attribute values for each triggering
event. Domain knowledge is essential for the discoveryigfaring events.

Definition 17 Given an alert typel}, the set of triggering event typefar T; is a set7 of event
types, where for each event tyfiec 7, there is an attribute mapping functigithat maps attribute
names ifl; to attribute names ifd.. Given a typé€l; alert ¢, thetriggering event sefor ¢ is a setk
of events, where for eacdii € 7, there is a typd, evente € F, and the attribute values efare

instantiated by the attribute values drthrough the corresponding attribute mapping function.

106

Let us look at an example. Given an alert tyfje= SadmindAmslverifyOverflow the set
of triggering event types i$7. }, whereT, = Malicious sadmind NETMGPROCSERVICE Re-
quest and the attribute mapping functigrhasf (T;.SrclP)= T..SrclP,f (T;.SrcPort)= T..SrcPort,
f(T;.TargetlP)= T..TargetlP,f (1;.TargetPort}= T..TargetPort,f(7;.StartTime)= T..StartTime
and f (7;.EndTime)= T..EndTime. Given a typ&admindAmslverifyOverflowalertt = {SrcIP
=10.10.1.10, SrcPort =683, TargetlP =10.10.1.1, TargetPort =32773, StartTime = 03-07-2004
18:10:21, EndTime = 03-07-2004 18:10{21ve know the triggering event set has one tya-
licious NETMGTPROCSERVICE Requestvente = {SrclP =10.10.1.10, SrcPort =683, Tar-
getlP =10.10.1.1, TargetPort 32773, StartTime = 03-07-2004 18:10:21, EndTime = 03-07-2004
18:10:2%.

Triggering events provide us an opportunity to find différalerts that may correspond
to the same attack. Given a set of alerts, first we can dis¢bedriggering event set for each alert,
then we can put individual alerts into clusters if the alémtshe same cluster share the “similar”
triggering events. The alerts in the same cluster may qooresto the same attack. In the following,
we may simply use the term events instead of triggering evéitis clear from the context. We first
discuss the event inference, then define “similarity” bevevents through which our clustering

algorithm is further introduced.

6.1.3 Inference between Events

Intuitively, two events are “similar” if they have the samegt type, and their attribute
names and values are also the same. However, consideriagistence of implication relationships
between events (the occurrence of one event implies therecme of another event), we realize that
the concept of “similarity” can be extended beyond thisitiin to accommodate event implication.

We first give examples to illustrate the implication relasbips. Consider two events: the
recursive deletion of directory “/home/Bob/doc” and théetlen of file “/home/Bob/doc/info.txt”.
The first event can imply the second one because “info.txtine of the files in that directory.
As another example, we know an event typstrictedfile_write may implyan event typdilesys-
temiintegrity_violation. On the other hand, a recursive directory deletion does extssary imply
a file deletion if the file is not in the same directory. For epdanthe recursive deletion of directory
“/lhome/Bob/doc” cannot imply the deletion of file “/homeléd/doc/info.txt”. This observation
tells us when we introduce the implication relationshipsdeen events, we not only need to ex-

amine the semantics of event types, but also the relatipsdigtween attribute names and values.

107

We usemay-implyto refer to the implication between event types, and iogay to refer to the
implication between events (including types and theirteglaattributes names and values). For
convenience, we denote eventimplies evenk, ase; — es.

We introduce a binargpecific-generatelation to help us identify implication relation-
ships. Formally, given two concepts (e.g., two event typas, attribute names, ete); andao, a
specific-generatelation betweein; andas maps low-level (specific) concept to high-level (gen-
eral) concepti,, and is denoted as =< as (for convenience, we may also refer to specific-general
relation as <" relation in this chapter). Specific-general relation isaxdve (we haver < o for any
concepta), antisymmetric and transitive, and it essentially is dipborder over a set of concepts
(which is modeled asoncept hierarchyn data mining [49, 71]).

Specific-general relations can be applied to event types. ekample, we can define
file_deletion= recursivedirectory_deletionandrestricted file_write < filesystemintegrity_violation.
Here domain knowledge is necessary to determine whé&hentTypeinay imply EventTypedr
EventTypezZnay imply EventTypeZkven ifEventTypelx EventTypedr EventTypeZ EventTypel
is decided. For example, it is straightforward for an experieciderecursivedirectory_deletion
may imply file_deletionandrestricted file_write may imply filesystemintegrity_violation. Our fol-
lowing job is to decide the relationships between attrima#mes and values.

Again, the relationships between attributes are detemniheough specific-general re-
lations. As an example, for specific-general relations betwattribute names, we can define

file <X directory andhost < network. In addition, we are interested in whethet™relation is
satisfied once the attribute names are replaced by theigsakor example, undgiile < directory
relation, we have “/home/Bob/doc/info.tx “/home/Bob/doc”, and undétost < network rela-
tion, we havel(0.10.1.10 < 10.10.1.0/24. In the following, when referring toX” relations, we
may not distinguish between attribute names and valuessihibt necessary.

It is worth mentioning that as a special case, timestamjbatés (StartTime and End-
Time) have different characteristics compared with oth&ibates in that even if two triggering
events actually refer to a same event, they may not have thetlg)same timestamps due to the
clock discrepancy in different systems or event propagaticer the network. Thus we propose to

usetemporal constrainto evaluate whether a set of events are “similar” w.r.t. 8taenps.

Definition 18 Consider a sefr of events and a time interval F satisfies theemporal constraint

Aifand only if for anye, ¢’ € E (e # ¢€), |e.StartTime — e’ .StartTime| < X and|e.EndTime —

108

Algorithm: Determining if event e; implies evente,
Input: Two eventse; ande, and a temporal constraint
Output: Trueif e; — es; otherwisefalse
Method:
Assume the attribute name sets éprande, are A;
and As, respectively. Initializeesultfalse
1. If Type(ey) may imply Type(e2)
If Type(e1) = Type(e2)
3. Find a mapping such thet; € A} (A} C Ay)
andvay € A, (A, C Ay), we haver; < as
4. ElseFind a mapping such thatu, € AL (A, C Ajy)
andva; € Aj(A] C Ay), we haveas < a4
5. Replace names with values for alt™ relations.
6. If all “=<" relations are satisfied in step 5
7 If e; ande, satisfy constraini, Let result=true
8. Output result
End

N

Figure 6.2: An algorithm to discover implication relatihifs between events.

e .EndTime| < \.

Based on <" relations and a temporal constraiht we outline an algorithm (shown in
Figure 6.2) to determine whether eveatimplies evenie,. The basic idea is that we first identify
whetherT'ype(e1) may implyType(eq). If this is the case, we further check" relations between

attribute names and values, and examine the temporal aonidts see whethet; implieses.

6.1.4 Clustering Alerts Using Triggering Events

Intuitively, we intend to group individual alerts into ctess such that all alerts in the
same cluster either share the same triggering events, irttiggering events have implication

relationships. To formalize this intuition, we first defisienilarity between alerts.

Definition 19 Consider a sef of alerts{t¢y, ts,- - - ,t,} and a temporal constraink. Assume the
triggering event sets far, to, - - - ,t, are &1, Fo, - - - , E,,, respectively. All alerts irb are similar

if and only if there exist; € Eq, ex € E, ---, e, € E, such that for any two events ande; in

109

{61, €2,y ", en}, we have; — e; ore; — e;.

The idea behind Definition 19 can be demonstrated throughxam@e with two alerts.
Two alerts are similar if their triggering events either &édlve same event type, attribute names and
values, and their timestamps satisfy the given temporastcaint, or their triggering events have
implication relationship from one to the other. Since twerge; andes of the same type have all
attributes the same is a special case0f~ e; or es — €1, we can combine these two cases and
only use implication relationships to define similarity.

Given a sefS,, of alerts, we can perform clustering based on the similaiéfined in Def-
inition 19. Intuitively, we can iteratively pick a subsetaiérts fromsS,, such that all the alerts in this
subset are similar. However, we have to solve a problem beafercan apply this operation. This
problem can be demonstrated by an example. Suppose we hegeatbrts, to andts, they are of
the same type and have the same attribute names and valegt xxdimestamp values, and their
triggering event sets afe:; }, {e2}, and{es}, respectively. Assume the temporal constraint 1
secondg;.StartTime = e;.EndTime = 03-07-2004 18:20:2%,.StartTime = es. EndTime =
03-07-2004 18:20:22, ang.StartTime = es. EndTime = 03-07-2004 18:20:23. Based on Defi-
nition 19,¢; andt, are similar, and, andts are similar. Thus, can be either put into a cluster with
t1, or be put into a cluster witty. To solve this ambiguity, we apply a rule “earlier timestafingt”,
where the cluster with the earlier (StartTime) alerts wét glerts as many as possible. Applying
this rule to the example, we will l¢§ andt, be in the same cluster. The algorithm shown in Figure
6.3 outlines the alert clustering through apply this rulethis algorithm, line 1 prepares the alert
set and initializes some variables. Lines 2 through 6 are@p, lavhich always looks for the alerts
that are similar to the first alert in the alert set and putaitio a cluster. This loop will not stop
until there are no alerts in the alert set. Line 7 finally otspall clusters.

An interesting observation about alert clustering is tHtgralerts are put into clusters,
we may mark some clusters with low severity through examinitiether the alerts are consistent

with relevant configurations. This will be further discusse Subsection 6.1.5.

6.1.5 Consistency and Inconsistency between Alerts and Rghnt Configurations

Host and network configurations provide us an opportunityeidfy the consistency or
discover the inconsistency between alerts and their mretes@nfigurations. The consistency be-
tween an alert and its related configurations can be verifiesligh examining the attributes of

110

Algorithm: Alert Clustering via Triggering Events
Input: A setS, of alerts and a temporal constraiat
Output: A setC of clusters.
Method:

1. Sort the seb,, of alerts ascendingly on StartTime,

and name iS,. Initialize C' = (), and let; = 1.

2. While S, is not empty

3. Letthe alert with the earliest StartTimeSp bet.

4. Find setS’ C S, such thaf{t} U S’ are similar.

5. Remove{t} U S from S, into a setC;.

6. PutC;intoC. Leti =1+ 1.

7. Output C.

End

Figure 6.3: An algorithm to perform alert clustering basedraggering events.

the alert and the configurations. For example, considgf#.Glob_Expansionalertt = {SrclP
= 172.16.1.7, SrcPort =1042, TargetlP =10.10.1.7, TargetPort =21, StartTime = 03-07-2004
18:20:21, EndTime = 03-07-2004 18:20j2&nd aHostFTPConfigconfigurationc = {HostIP =
10.10.1.7, HostName = foo, OS = Solaris 8, FTPSoftware = FTP Server,GpdanPort = 2}.
Alert ¢ is consistent with configuratiombecause it exploits a ho$0.10.1.7 at port21 which is an

open port listed in this host’s configuration. We formalikis trelationship in Definition 20.

Definition 20 Consider an alert typ&; and a configuration typé&.. A consistent conditiofior T;
w.r.t. T, is a logical formula including attribute names ifi andT... Given a typ€Tl; alert¢ and a
typeT, configuratione, t is consistent (or inconsistent, resp.) witif the formula is evaluated to

True (or False, respwhere attribute names in the formula are replaced with tHeesint andc.

Let us look at an example. Given an alert typEP_Glob_Expansion(1;) and a config-
uration typeHostFTPConfig(T,), we defineT;.TargetIP = T..HostIP N Ty.TargetPort =
T..FT POpenPort as a consistent condition f@¢ w.r.t. T,.. Given anFTP_Glob_Expansioralert
t = {SrclP =172.16.1.7, SrcPort =1042, TargetIP =10.10.1.7, TargetPort 21, StartTime = 03-07-
2004 18:20:21, EndTime = 03-07-2004 18:20:2thd aHostFTPConfigconfigurationc = {HostIP
=10.10.1.7, HostName = foo, OS = Solaris 8, FTPSoftware = FTP ServerJpEnPort = 2},

111

the consistent condition is evaluatedTiwe using attribute values ihandc. Then we knowt is
consistent withe.

Consistent and inconsistent relationships between aedsconfigurations provide us a
way to classify the alerts. We can mark each alert as consisteinconsistent with the related
configurations. A consistent alert tells us the correspapdittack could be possible due to the
potential vulnerabilities in the configuration. A speciake worth mentioning is that sometimes a
consistent alert is a low-severity alert. For example, ifewiall reports &#WROUTEalert saying
that an inbound packet is blocked, which is consistent withACL configuration of the firewall,
this alert is less severe because the corresponding camméstblocked. On the other hand, an
inconsistent alert may be of low severity because the qooreding attack could not succeed (e.g.,
an adversary tries to connect to a port which is not open). eigp case is that a configuration
could be compromised (e.g., an adversary installs mabgiwagrams and opens new ports) without
the notice of the legitimate users, then the corresponditaglamay succeed. In this case, the
“inconsistent” alert (which actually is not an inconsigtalert because the configuration is changed)
deserves more investigation.

We can apply consistency and inconsistency relationshipkett clusters to determine the
severity of some clusters. For example, assurh@V&OUTEalert (reported by a firewall denoting
that a connection is blocked) and\NEEW.CLIENT alert (reported by a network anomaly detector
denoting that a new client requests a server) are in the shser; andFWROUTEs consistent
with its configuration. SincEWROUTEdenies the requested connection, the related attack cannot
be successful and this cluster is less severe. Then we catildgre efforts on investigating other

possibly severe clusters.

6.1.6 Attack Scenario Construction based on Input and OutptiResources

Our approach further determines the causal relationsheépgden alert clusters. We are
interested in how individual attacks (represented by aleidters) are combined to achieve the ad-
versary’s goal. The observation tells us that in a sequenedtacks, some attacks have to be
performed earlier in order to launch later attacks. For gayran adversary always installs DDoS
software before actually launching DDoS attacks. If we dole 0 capture these causal relation-
ships, it may help us build stepwise attack scenarios arehtdire adversary’s attack strategy.

Our approach to modeling causal relationships betweeckatia partially inspired by the

prerequisites and consequences based alert correlatibniqees [102, 29, 83]. However, since

112

we use resources to specify prerequisites and consequarmsepared with the predicates based
approach adopted by [29, 83], we have several advantagessiiids easy to specify and (partially)
match input and output resources, and easy to accommodatattaks. Our approach is based
on our observation that the causal relationships betwédackatcan be captured through examining
output resources of one attack with input resources of anothformally, input resources are the
necessary resources for an attack to succeed, and outputges are the resources an attack can
supply if successful.

We extend our model for alerts (or alert types, resp.) to mroodate input and out
resources (or input and output resource types, resp.). Wehea extended alertgor extended
alert types resp.) after this extension. Considering the resourcibati names may not always
the same as the alert attribute names, we further use fasditomap the alert attributes to resource
attributes. In the following, we formalize extended algpds and extended alerts.

Definition 21 Anextended alert typ&' is a triple (7;, attr_names,), where (1)attr_.namess a set
of attribute names (including StartTime and EndTime) wieaxeh attribute name; has a domain
D;, (2) 7; and 7, are a set of resource types, respectively, and (3) for dach 7; and T, € 7,
there exist attribute mapping functiorfsand f, that map attribute names gttr_namedo attribute
names irfl; andT,, respectively.

AtypeT (T = (7;, attrnames,)) extended alert is a triple (input, attributes, outpt
where (1)attributesis a tuple on attrnames, (2)Jnput and outputare a set of resources, respec-
tively, and (3) for eacll; € 7; andT, € 7,, there exist resources € inputandr, € output
respectively, where their attribute values are instamithby the corresponding attribute values in

attributesthrough attribute mapping functions.

Actually, attr_-namesdn an extend alert type is an alert type, aittibutesin an extended
alert is an alert that we defined in Subsection 6.1.1. In theameing part of this paper, we may
simply use alert types (or alerts, resp.) when it is not r&amgsto differentiate extend alert types

and alert types (or extended alerts and alerts, resp.).

113

Example 10 Define arSadmindAmslverify_Overflow(T") extend alert type a§{network servicg
, {SrclP, SrcPort, TargetlP, TargetPort, StartTime, EndTimgorivilege} }, where networkservice
(T;) = {HostIP, HostPort, ServiceNarheand privilege (,) = {HostIP, Access For attribute
mapping, we havef;(T.TargetIP) = T;.HostIP, f;(T.TargetPort) = T;.HostPort, and
fo(T'TargetI P) = T,.HostIP.

Given a typeSadmindAmslverify_Overflow alert {SrcIP = 10.10.1.10, SrcPort =683,
TargetlP =10.10.1.1, TargetPort =32773, StartTime = 03-07-2004 18:10:21, EndTime = 03-07-
2004 18:10:23, we can get their input and output resourcesiggut = { {HostIP = 10.10.1.1,
HostPort = 32773, ServiceName = sadmjngl, and output= { {HostIP = 10.10.1.1, Access =

AdminAccess}. These three parts combined together are an extended alert.

Please note in Definition 21, when performing attribute niagpfrom attr_namego 7T; €
7, andT, € 7,, based on domain knowledge, we can mark some attribut€sand’, as special
attributes, where they have pre-determined values oncatifilsute values of resourcesiimputand
outputare instantiated. For example, as shown in Examplé&0essttribute inprivilegeresource
has a pre-determinefidminAccessalue.

Similar to the implication relationship between events agsource; can imply another
resourcer, (we user; — 1o to represent; impliesrs). For example, arivilegeresource/HostIP =
10.10.1.9, Access = AdminAccegsmplies anotheprivilegeresource{HostIP =10.10.1.9, Access
= UserAccesk. Please note two resourcesandr, have their types, attribute names and values alll
the same is a special casergf— r, or ro — 1. The implication relationships between resources
can be determined through specific-general relations amdiksprocedure we described in Sub-
section 6.1.3 (The difference is that in this chapter we dmssociate resources with timestamps).
We do not repeat it here.

We can identify causal relationships between attacks giraliscovering “common” re-
sources between input and output resources. Intuitivelyné attack’s output resources include
one resource in another attack’s input resources, we caalat these two attacks together. We
formalize this intuition as follows.

114

SCAN_NMAP_TCP1

FTP_Glob_Expansion2

Figure 6.4: An example scenario graph

Definition 22 Given two extended alerts=(input, attributes, outpyitand#’ = (input’, attributes’,
output), ¢ causally correlates if there exist, € outputandr; € input’ such that-, impliesr; and

t.EndTime < t'.StartTime.

Let us consider two alerts(type SCANNMAP_TCP) andt’ (type FTP_Gloh_Expansioi.
Suppose the output resourceta$ anetworkserviceresource{HostIP =10.10.1.7, HostPort = 21,
ServiceName = ftp, the input resource of is a networkserviceresource{HostIP =10.10.1.7,
HostPort = 21, ServiceName = ftpandt. EndTime < t'.StartTime. Since the output resource
of ¢ and the input resource ¢fare exactly the same, we can conclude tratusally correlates.

We also refer to “causally-correlate” relations introddide Definition 22 as causal re-
lations, which provide us opportunities to build attackrergos. Consider a set of alerts reported
by different security systems. We can group alerts intotelgsusing triggering events. Each clus-
ter may correspond to one attack. Through discovering taelsgions between alerts in different
clusters, we can naturally connect different clusters amsituct the attack scenarios. Definition

23 further formalizes this intuition.

Definition 23 Consider a se€ of clusters where each cluster is a g&tof alerts. Ascenario graph
SG = (V, A) is a directed acyclic graph, where (1) is the vertex set, and is the edge set, (2)
each vertew € V is a cluster inC, and (3) there is an edg@,v2) € A if and only if there exist

t1 € v; andty € vy such thatt; causally correlates;.

Here we show an example of scenario graph in Figure 6.4. Timg $hside each node is
the alert type followed by an ID (we will follow this conveati in our experiments). This scenario
has two clusters€; ={SCANNMAP_TCP1} andCy ={NEW.CLIENT3 FTP_Glob_Expansion2,

115

where SCANNMAP_TCP1is reported by Snort-TP_Glob_Expansion2s reported by a RealSe-
cure network sensor, aldEW.CLIENT3is reported by a network anomaly detector. Assume
SCANNMAPTCP1in (' causally correlates TP_Glob_Expansion2in C5, then we can corre-
late C; andC, together as shown in Figure 6.4. Such graph clearly disslaseadversary’s attack
strategy.

6.2 Experimental Results

To evaluate the effectiveness of our techniques, we peddmmperiments through DARPA
Cyber Panel Program Grand Challenge Problem Release 3R)(GB&; 48], which is an attack sce-
nario simulator. GCP simulator can simulate the behavioserisors and generate alert streams.
There are totally 10 types of sensors in the networks. Allsgtresors generate the alerts in IDMEF
[31] messages.

The current implementation is a proof-of-concept system.odr implementation, we
use Java as programming language, and Microsoft SQL Sef@fr &s the DBMS to save the
alert data set and domain knowledge. Database access iglthd®BC. The alert process in our
system can be divided into four stages. In the first stage,oneantrate on data preparation. Since
all alert data generated by GCP simulator are IDMEF messagesxtract the attributes from
these messages and put them into the database. All the apgcéssnain knowledge related to
triggering event types, event inference, input and outpaburce types, and so forth are all put
into the database. The second stage is the alert clustadgg.sWe group alerts into different
clusters based on the algorithm shown in Figure 6.3. Thd 8tage is to examine the consistency
or inconsistency between alerts and the configurationshdrast stage, we use input and output
resource based correlation techniques to discover calatibnships and build attack scenarios. To
save our development effort, we use GraphViz [9] to draw aiergraphs.

The experiments were performed using Attack 1 scenario i Gttack simulator. We
chose 4 network enclaves, namely HQ enclave, APC enclaup,eBlalave and ATH enclave, to
play this scenario. Attack 1 is a (agent-based) worm relatiettk. After the agent being activated,
it performs a series of malicious actions such as commungatith an external host, getting mali-
cious code and instructions, spreading from one networlaeato another, compromising hosts in
the network enclaves, sniffing the network traffic, readind modifying the sensitive files, sending

the sensitive data to the external host, getting new mailéciastructions, and so forth. For this

116

Table 6.1: Triggering event types for each alert type.

col

col

col

col

Alert Type Triggering Event| Attributes (besides StartTime and EndTime)
Types

FTP_Globbing Attack {ConnectionAttempt, | SrclP, SrcPort, TargetIP, TargetPort, Proto
MaliciousFTPRe-
quest

FWROUTE {ConnectionAttempt, | SrcIP, SrcPort, TargetIP, TargetPort, Proto
ACLViolation}

Loki {ConnectionAttempt, | SrclP, SrcPort, TargetlP, TargetPort, Proto
DataSecretTransmis-
sion}

NEW_CLIENT {ConnectionAttemgt | SrclP, SrcPort, TargetlP, TargetPort, Proto

Network Interface In| {Network Interface In| SensorlP, SrcUserID, SrcProcessName, Tar-

Promiscuous Mode | Promiscuous Mode | getProcessPath

ASSET-DEAD {ASSET-DEAD} TargetlP

ASSET-SICK {ASSET-SICK} TargetlP

ASSET-WELL {ASSET-WELL} TargetlP

dbschema- {dbschema- SensorlP

downloaded downloaded

filesystem-integrity

{filesystem-integrity

SensorlP, TargetFilePath

registry-integrity

{registry-integrity

SensorlP, TargetFilePath

col

restrictedread {restrictedread SensorlP, SrcUserID, SrcProcessName, Tar-
getProcessPath

RestrictedSystem | {RestrictedSystem SensorlP, SrcUserID, SrcProcessName, Tar-

File_Scan File_Scar} getProcessPath

restrictedwrite {restrictedwrite} SensorlP, SrcUserID, SrcProcessName, Tar-
getProcessPath

RootShareMounted| {ConnectionAttempt, | SrclP, SrcPort, TargetlP, TargetPort, Proto

AdminShareAccegs
ServiceUnavailable | {ConnectionAttemgt | SrclP, SrcPort, TargetlP, TargetPort, Proto

col

scenario, we totally got 529 alerts with 16 different types.

Ouir first goal is to evaluate the effectiveness of alert eliisty proposed in this chapter.

We list the set of triggering event types for each alert typdable 6.1. In addition to triggering

event types for each alert type, we also define the implioatitationships between event types. We

definerestricted write may implyfilesystem-integrityand the related specific-general relations are

restricted write.SensorlP< filesystem-integrity. Sensorkhdrestricted write. TargetProcessPati

filesystem-integrity. TargetFilePathVe set the temporal constraiht= 1 second.

Totally we get 512 clusters from alert clustering. Amongnthibere are 17 clusters, each

117

Table 6.2: All 2-alert clusters.

Cluster ID Alerts

2 NEW_CLIENT10, FWROUTE7

4 NEW_CLIENT25, FWROUTE27

54 NEW_CLIENT132, FTRPGIlobbing Attack135
102 NEW_CLIENT6, FWROUTES

116 NEW_CLIENT124, ServiceUnavailable125
132 NEW_CLIENT33, FWROUTE21

136 NEW_CLIENT122, ServiceUnavailable121
184 NEW_CLIENT24, FWROUTE34

236 NEW_CLIENT32, FWROUTE20

238 NEW_CLIENT49, FWROUTES7

242 NEW_CLIENT153, FTRGIlobbing Attack154
281 NEW_CLIENT29, FWROUTE26

333 NEW_CLIENTS, FWROUTE12

335 NEW_CLIENT30, FWROUTE39

340 NEW_CLIENT54, FWROUTES3

342 NEW_CLIENT50, FWROUTES6

385 NEW_CLIENT134, FTRGlobbing Attack133

of them comprises 2 alerts, and all other clusters are saiglt clusters. Table 6.2 lists all 2-alert
clusters. From Table 6.2, we observe every cluster RdEW. CLIENT alert, which is reported by
network anomaly sensors denoting a new client requestvarggervice). This is normal because
the connection requests trigger these alerts. Both aledach cluster in Table 6.2 actually refer to
the same network connection, which trigger different alést different systems.

Our next goal is to evaluate the effectiveness of consistentlitions in identifying the
severity of some alerts and clusters. Among all alerts, wek4imlerts inconsistent with their con-
figurations. These 4 alerts aNEW. CLIENT122 NEW.CLIENT124 ServiceUnavailable12and
ServiceUnavailable125NEW.CLIENT122and ServiceUnavailable121arget at port 111 on host
10.1.2.2, andNEW CLIENT124andServiceUnavailable12&rget at port 21 on ho30.1.2.2. They
are also in Table 6.2 (Cluster IDE6 and116), which means these 4 alerts actually represent two
attacks. Our investigation shows that both attacks aredattempts (one is through sadmind ex-
ploit, and the other is through ftp globbing exploit) becatse portsl11 and21 are not open at
host10.1.2.2.

We also investigate the 2-alert clusters where one alehrchuster i=FWROUTE In Ta-
ble 6.2, there are 12 clusters that incld&&ROUTEalerts. Thes&WROUTEalerts are consistent

118

FTP_Globbing_Attack154

Restricted_System_File_Scan184

Network_Interface_In_PromiscuousMode79 @

—
filesystem-integrity253 Restricted_System_File_Scan91

Ao

e
s)
==

registry-integrity527

restricted_read232

restricted_write528

filesystem-integrity476

Figure 6.5: One Scenario Graph in HQ Enclave

Table 6.3: Resource types in the experiments.

Resource Type Attributes

Privilege HostIP, Access

ResourceUnavailable | TargetlP

NetworkSensitivelnfo NetworkID

DBInfo HostIP

ConnectionUnavailable | SrcIP, SrcPort, TargetlP, TargetPort, Protocol
Connection SrclP, SrcPort, TargetlP, TargetPort, Protocol
NetworkService TargetlP, TargetPort, Protocol
HostSensitivelnfo HostIP

DirectAccess SrclP, TargetIP

AbnormalOperation HostIP, TargetPath

Process HostIP, SrcUserID, ProcessName

with their configurations. SincEWROUTErepresents connections being blocked, their impact to
the network may not be severe. Thus the corresponding Redlisters are low-severity clusters.
Our last goal is to evaluate the effectiveness of our teatasdn building attack scenar-
ios. We list different resource types in Table 6.3. In additifor implication relationships, we have
DBInfo may imply HostSensitivelnfand NetworkSensitivelnfonay imply HostSensitivelnfoFor
specific-general relations, we hal@Info.HostIP< HostSensitivelnfo.HostIBnd HostSensitive-

Info.HostIP=< NetworkSensitivelnfo.Networklrhe input and output resource types for each alert

119

Table 6.4: Input and output resource types for alert types.

Alert Type Input Resource Types | Output Resource Types

FTP_Globbing Attack {NetworkServicé {Privilege}

FWROUTE / {ConnectionUnavailable

Loki {Privilege, HostSensi; {HostSensitivelnfd
tivelnfo}

NEW_CLIENT / /

Network Interface In| {Privilege} {NetworkSensitivelnfo,

Promiscuous Mode HostSensitivelnfd

ASSET-DEAD / {ResourceUnavailabje

ASSET-SICK / {ResourceUnavailabje

ASSET-WELL / /

dbschema-downloaded {Privilege, HostSensi; {DBInfo}
tivelnfo}

filesystem-integrity {Privilege, HostSensi; {AbnormalOperation,
tivelnfo} HostSensitivelnfd

registry-integrity {Privilege, HostSensi; {AbnormalOperation,
tivelnfo} HostSensitivelnfd

restrictedread {Privilege, Process, {Process, HostSensitive-
HostSensitivelnfd Info}

RestrictedSystemFile_Scan| {Privilege, Process|, {Process, HostSensitive-
HostSensitivelnfd Info}

restrictedwrite {Privilege, Process|, {Process, HostSensitive-
HostSensitivelnfd Info}

RootShareMounted {Privilege, HostSensi; {DirectAccess, Host
tivelnfo} Sensitivelnfg

type in the experiments are listed in Table 6.4. We perforthegexperiments on the alerts data sets
and got 10 scenario graphs. Figure 6.5 shows one of them.

Figure 6.5 is a scenario graph in HQ enclave. The alerts mfthure can roughly be
divided into two parts: the right side part and the left sidetpThe right side part reveals that the
adversaries iteratively readRéstrictedSystent-ile_Scar), write (restrictedwrite) and sniff (Net-
work_Interface In_PromiscuousModesensitive data in HQ enclave, and use tunneling techniques
such ad.oki to secretly transmit data to the external host. The advessalso modify critical files
and keys filesystem-integritandregistry-integrity to disrupt the operation of the network. The left
side part reveals that the adversariesEiEE_Globbing attackto compromise the victim hosts, and
also read and write sensitive data in the enclave. The &tsicktrategy disclosed in this scenario
graph is consistent with the description of GCP attack stesa

120

6.3 Summary

At present, these is no single system capable of solvingalirity concerns. A practical
way is to deploy complementary security systems into thevoidds. These systems usually are
heterogeneous and have different strengths and weakneBseg usually run independently and
may flag different alerts for the same attack. They may trigaigje numbers of alerts where false
positives are mixed with low-severity alerts and severet@leThe low level and high volume of
the alerts may also overwhelm the analysts and make idegi§evere attacks and extracting the
adversary’s attack strategy very challenging. Alert datren is a necessary approach to address
these challenges.

We propose a correlation approach based on triggering £@t common resources.
One key concept in our approach is triggering events, whagtures the (low-level) events that
trigger alerts. We propose to group different alerts intesters if they share “similar” triggering
events, through which we can identify the alerts that mayesmond to the same attack. We further
introduce network and host configurations into our moded, identify consistent and inconsistent
alerts, which help us mark the severity of some alerts argtens. The other key concept in our ap-
proach is input and output resources. We propose to modelattack through specifying input and
output resources, and discover causal relationships ketagtacks through identifying “common”
resources between output resources of one attack and tteré@gources of another. This approach
helps us identify logical connections between alert chgsémd build attack scenarios. Our experi-
mental results demonstrate the effectiveness of our tgukaj though our experiments only tested
data sets generated by GCP simulator.

There are several future research directions. In this enaye mainly focus on low-level
events as the triggering events. An alternative way is tohigle-level events, or combine low-
level and high-level events to facilitate the processinge 3o notice that our approach requires
a knowledge base about input and output resources of differtacks, which can be obtained
through studying attack signatures. How to systematicailcifying input and output resources is

interesting and worth further investigation.

121

Chapter 7

Privacy-Preserving Alert Correlation: A

Generalization Based Approach

In recent years, the security threats from infrastructutacks such as worms and dis-
tributed denial of service attacks are increasing [19].yHdféect large numbers of hosts and services
on the Internet, and may bring serious financial loss. Torak&gainst these attacks, the coopera-
tion among different organizations is necessary. Sevegalnizations such as CERT Coordination
Center [17] and DShield [106] collect data (including séguncident data) over the Internet (data
may come from different data owners), perform correlatinalgsis, and disseminate information
to users and vendors. In this chapter, we assume that treeeefew data repositories which collect
security data from different companies, organizationsndividuals. To facilitate the collaboration
among different parties on analyzing these security dagduvther assume that security data in the
repositories are available or partially available to ddfet users including attackers. In addition,
attackers may also compromise the repositories to gairsadoehe security data. To prevent the
misuse of security data, and also protect the privacy ofidfit data owners, appropriate data saniti-
zation through which the sensitive information is obfusddbefore they are shared and analyzed is
highly preferable. For example, DShield [106] lets audif $smbmitters perform partial or complete
obfuscation to destination IP addresses in the datasetxewdartial obfuscation changes the first
octet of an IP address to decimidl, and complete obfuscation changes any IP address to a fixed

122

value10.0.0.1.

As we mentioned in Chapter 2, there are several alert ctiorlanethods have been
proposed in recent years. Most of these alert correlatipno@ghes generally assume all alert data
(e.g., the source and destination IP addresses) are deditalanalysis, which is true when there are
no privacy concerns. However, when multiple data ownergigessanitized alerts and incident data
(because of privacy concerns) for intrusion analysist atarelation will be affected due to the lack
of precise data. It is desirable to have techniques to parfmivacy-preserving alert correlation
such that the privacy of data owners is preserved, and aathe ime, alert correlation can provide
useful results. To our best knowledge, [69] is the only pamiiressing privacy issues in alert
correlation, which uses hash functions (e.g., MD5) and &dyash functions (e.g., HMAC-MD5) to
sanitize sensitive attributes in data sets. This approaeiffective in detecting some high-volume
events (e.g., worms). However, since hash functions de#iteosemantics of alert attributes (e.g.,
the loss of topological information due to hashed IP adé&®sshe interpretation of correlation
results is non-trivial. In addition, hash functions may henerable to brute-force attacks due to
limited possible values of alert attributes, and keyed Haslotions may introduce difficulties in
correlation analysis due to the different keys used by iffeorganizations. Nevertheless, we also
notice that combining hash based methods with other metfgds the methods in this and next
chapters) may bring potentially better results.

In this chapter, we propose a privacy-preserving alertetation approach based on gen-
eralization. This approach works in two phasesitropy guided alert sanitizatioand sanitized
alert correlation The first phase focuses on maintaining the privacy of seasilert data. We
classify alert attributes into categorical (e.g., IP addes) and continuous ones (e.g., the total time
a process runs), and sanitize them through concept higearcim a concept hierarchy, original at-
tribute values are generalized to high-level concepts.elkample, IP addresses are generalized to
network addresses, and continuous attributes are gerestdb intervals. We then replace original
attribute values with corresponding high-level concetpigs introducing uncertainty while partially
maintaining attribute semantics. To balance the privaciitity requirements, we guide alert san-
itization with entropyor differential entropyf26] of sanitized attributes, where the desirable entropy
or differential entropy values are determined by privacligyo

To examine the utility of sanitized data sets, the secondelohour approach is to cor-
relate sanitized alerts. As we mentioned in Chapter 2, exiagisimilarity between alert attributes
and building attack scenarios are two focuses in currenelation approaches, where similarity
computation usually is the first step to study the relatign&etween alerts, and attack scenarios

123

can help understand the detailed attack steps adversariesmed. We investigate both problems
under the situation where alerts are sanitized. We first ame@similarity functions based on orig-
inal attribute values, and then show how to revise them toutatie similarity between sanitized
attributes. To build attack scenarios from sanitized slese propose aaptimistic approach As
long as it is possible that two sanitized alerts haveaasal relation(i.e., a prepare-for relation
defined in Chapter 2), we link them together. Hence multipget:are connected through causal
relations to form attack scenarios. To measure the utifityamitized data sets, we use measures
such a<orrect classification ratemisclassification ratedetection rateandfalse alert rateto see the
effectiveness of our techniques on correlation analyssaaitized alerts. Our experimental results

demonstrate the effectiveness of our approach.

7.1 Entropy Guided Alert Sanitization

The first phase of our privacy-preserving alert correlatsoantropy guided alert sanitiza-
tion. We use a sanitization technique based on conceptrtieea for categorical and continuous
attributes. To balance the privacy and usability of aletadalert sanitization is guided by entropy
(an uncertainty measure for categorical attributes) dedihtial entropy (an uncertainty measure
for continuous attributes). Before we go into the detailswf approach, we give some definitions
first.

Alert Types, Original Alerts and Sanitized Alerts. Intuitively, an alert type defines the
possible attributes to describe a type of alerts. Formatiglert typeT is a setS of attribute names,
where each attribute namg € S has an associated domddom(a;). Original alerts are flagged
directly by security systems. Formally, aniginal alert ¢, of type T is a tuple onI"s attribute
namesS, where for each attribute name € .S, the corresponding elementin the tuple is a value
in a;'s domainDom(a;).

Example 11 AnFTP_Glob_Expansiorelert type is a set of attribute nam¢SrclP, SrcPort, DestIP,
DestPort, StartTime, EndTime where the domain @rclPandDestIPis all possible IP addresses,

the domain ofSrcPortand DestPortconsists of all possible port numbers, agthrtTimeand End-

Time are possible time an alert begins and ends.

124

An original alert with typeFTP_Glob_Expansionis given as a tuplg SrclP=10.20.1.1,
SrcPort=1042, DestlP=10.10.1.1, DestPort=21, StartTiriEL-10-2004 15:45:10, EndTime =11-
10-2004 15:45:10, which indicates that there may be fip based attack targeting at host 10.10.1.1

on port 21.

To protect the privacy of individual alerts, we need to perfalert sanitization to sen-
sitive attribute values (e.g., transforming sensitiveadato an unintelligible form). We propose
two methods to identify sensitive attribute data. (1) Idgndensitive attribute names. For each
alert type, we mark some attribute names (decided by pripatigy) as sensitive attributes. Their
original values are not allowed to be disclosed. (2) Idgraiénsitive attribute values. Sensitive
attribute values are prohibited to be revealed by an org#iniZs privacy policy. For example, an
organization may decide not to disclose any IP addressateitiseir network no matter they are
source or destination IP addresses. The alerts afterzsioti are called sanitized alerts.

A sanitized alertt; with type 7' is a tuple onI™s attribute name sef¥, where for some
attribute names; € S, the corresponding element in the tuple is a transformed value in domain
Domg(a;) (Doms(a;) is Dom(a;) or a different domain). To continue Example 11, assiastIP
of FTP_Glob_Expansionis sensitive. To sanitize the original alert, we BEstIP=10.10.1.0/24 (it
is sanitized to its correspondin@4 network address). All the other attributes remain unchdnge

In the remainder of this chapter, we may use attributes tesgmt either attribute names,
attribute values or both when it is clear from the contextkelnise, we may use alerts to denote
either original alerts, sanitized alerts, or both. In théofeing, we present concept hierarchy based

sanitization for categorical and continuous attributespectively.

7.1.1 Entropy Guided Sanitization of Categorical Attributes

Categorical attributes have discrete values. Exampleatefjorical attributes are IP ad-
dresses and port numbers. Concept hierarchies abstraxficsew-level) concepts into general
(high-level) ones, which are widely used in data mining [49]

A concept hierarchy is based specific-generatelations. Given two conceptg andcs
(e.g., two attribute values), whetg is maore specific tham, (or ¢, is more general than,), we
denote the specific-general relation betwegandc, asc; < ¢o. As a special case, we have< ¢
for any concept. Given an attribute name with the corresponding domain, avedefine specific-

125

10.10.0.0/16

10.10.1.0/24 10.10.2.0/24

(a) A Concept Hierarchy for IP Addresses (b) A Concept Hierarchy foEPUProcessingTime

Figure 7.1: Two Examples of Concept Hierarchies

general relations through grouping a subset of attributeegaand abstracting them into a more
general concept. For example, a block of IP addresses cargbrized as a subnet. Thus given
an IP addres$0.10.1.5 and a subnet0.10.1.0/24, we have a specific-general relatibf10.1.5 <
10.10.1.0/24.

A concept hierarchy is a set of specific-general relations, @sually is organized as a
tree, where leaf nodes denote the most specific concepgin@riattribute values), and the root
node represents the most general concept in this hierafAdhgn example, Figure 7.1(a) shows a
concept hierarchy for IP addresses. In Figure 7.1(a), IPesdds from0.10.1.0 to 10.10.1.255
and from10.10.2.0 to 10.10.2.255 are organized into two subnets.10.1.0/24 and10.10.2.0/24,
respectively. For each attribute (e.g., destination IFegk), or a set of attributes having the same
domain (e.g., both source and destination IP addressesgawéuild a concept hierarchy based
on the attribute domain. Then we can perform alert sanitizaty replacing the original attribute

values with the more general values in the hierarchy.

Example 12 To continue Example 11, assumestiPof FTP_Glob Expansioris sensitive. We use
the concept hierarchy in Figure 7.1(a) to perform sanitiaat We replaceDestlP=10.10.1.1 with

DestlP=10.10.1.0/24. The other attributes remain unchanged.

To balance the privacy and usability of alert data, we ne@lbgign a satisfactory concept
hierarchy to perform sanitization, or choose approprigieegal values to replace original attribute
values in a given concept hierarchy. We propose to guidesthescesses witkentropy[26], an

uncertainty measurfor categorical attributes.

126

We start with calculating the entropy of a sanitized attigbun a concept hierarchy for a
categorical attribute, given an attribute valuewhich is either an original or a generalized value,
we useNodgv) to denote the node having value Given a general value,, we useSubTreév,)
to denote the subtree rootedNdev,), andLeafCountv,) to denote the number of leaf nodes in
SubTrev,). When sanitizing a categorical attributean original valuey, is replaced with a general
valuev, in a concept hierarchy. Notiddod€v,) should be a leaf node iBubTreév,). We denote
the entropy of attribute: associated with, as H,(v,), whereH, (v,) = — 3L/ Countlvo) —

v;) logy p(a = v;). Assuming all leaf nodes iBubTreév,) have equal probabilities to be gener-
alized tow,, for any leaf node value;, the probabilityp(a = v;) = 1/LeafCount(vg). Then
Hy(vg) = logy LeafCount(vy). To continue Example 12, the entropy DéstlP associated with
10.10.1.0/24 is log,LeafCount(0.10.1.0/24) = log, 256 = 8.

Attribute entropy can help us design a satisfactory conbeptairchy. For example, if
we want to achieve an entropy valgavhen sanitizingDestIPfrom 10.90.1.0 to 10.90.1.255 with
equal probabilities, we can design a concept hierarchy withlevels, where the root node is a
/24 network (10.90.1.0/24), and the leaf nodes are those individual IP addressesofsntan also
help us choose an appropriate general value in a given cohiggprchy. For example, consider an
original attributeDestIP=10.10.10.1 and a concept hierarchy in Figure 7.1(a), wleafenodes in
the hierarchy have equal probabilities. If we require amagyt value8, we can choose the general
value10.10.1.0/24 to sanitize the original attribute.

7.1.2 Differential Entropy Guided Sanitization of Continuous Attributes

Some attributes in an alert take continuous values, for pi@nthe CPU time a process
uses (this attribute may be sensitive, when, for examplesgea makes payment based on the CPU
time that his/her process consumes). To sanitize a contsattribute, we divide the domain of the
attribute into mutually exclusive intervals, and replace original values with the corresponding
intervals. Formally, if the domain of an attribuiés Dom(a), we partitionDom(a) into n intervals
1,72, -, p SUch that (1)U}, ry, = Dom(a), and (2) for anyi, j, wherel <4, j < n andi # j,
riNr; =0.

The partitions of an attribute domain can be organized intmrcept hierarchy. For
example, Figure 7.1(b) shows a concept hierarchy for atgi@PUProcessingTiméassuming its
domain is interval0, 256]), where the attribute domain is organized into three levEiere are sev-
eral approaches that can generate concept hierarchiesrftingous attributes [49]. For example, a

127

straightforward approach organizes a hierarchy into pleltievels, where each level has different

number of equal-length intervals.

Example 13 Consider aJVM_Malfunction alert with a sensitive attribut€PUProcessingTime
82.6 milliseconds. Using the concept hierarchy in Figurg(ld), we letCPUProcessingTime
(64, 128].

To design a satisfactory concept hierarchy for sanitinatis choose an appropriate inter-
val to replace an original value in a concept hierarchy, wediféerential entropy{26], anuncer-
tainty measurdor continuous attributes.

We first discuss how to compute the differential entropy ofmitized continuous at-
tribute. When sanitizing a continuous attributean original valuey, is replaced with an interval
vy that includes value,. The length of intervab, is critical to the calculation of the attribute un-
certainty. We letLength(v,) denote the difference between the upper and lower boundsestal

vg. We denote the differential entropy efassociated withy, as H,(vy).
Hafog) = - [f(a)log;, f(a)da 1)
Vg

wheref (a) is the probability density function for attributeover intervalv,.

Equation 7.1 is derived and simplified from the standard fofwlifferential entropy [26].
In the standard formé,(Dom(a)) = — fDom(a) fola)logy fo(a)da, wheref,(a) is the probability
density function over attribute domailom(a). Under our sanitization technique, although we
cannot know the exact value of attributewe are certain that it is in interval,, wherev, may be a
part of Dom(a). Then we know the probability density functigita) is 0 outside intervab,. Thus
the integration in Equation 7.1 only needs to be performext q)/l.

To demonstrate the uncertainty computation for sanitizedicuous attributes, we derive
a formula for uniformly distributed attributes. Assume #nilautea is in uniform distribution and is
sanitized to intervaly, 3]. Thus its probability density functiofi(a) is 1/(5—«) whena < a < ;
otherwisef (a) = 0. Based on Equation 7.1, we haifg (v,) = — ff f(a)log, f(a)da = logy(B—
a) = log, Length(vg).

'To let the probability density functiorf(a) satisfy [f(a)da = 1, f(a) can be derived frony,(a). Assume
g
[, fola)da = q < 1. We can letf(a) = fo(a)/q in intervalvy; otherwisef(a) = 0. Another method to gef(a) is to
s
compute the distribution parameters, which is straightéod for uniformly distributed attributes.

128

This equation tells us that differential entropy can be fgnethan, equal to, or less than
0. Consider a random variabl€ uniformly distributed over an interval with length For a sani-
tized continuous attribute, if its differential entropygeeater thard, then its uncertainty is greater
than variableX; if its differential entropy is equal t@, its uncertainty is equal tX; otherwise
its uncertainty is less thaX'. To continue Example 13, further assume attribDRUProcessing-
Timeis uniformly distributed in interva{64, 128]. The differential entropy o€EPUProcessingTime
associated witli64, 128] is log,(128 — 64) = 6.

The differential entropy can help design a satisfactoryceph hierarchy. For example,
assume the domain of an attribute[0s64] with uniform distribution. If we require a differential
entropy valueb, we can build a concept hierarchy with two levels, where tia node is[0, 64],
and there are two leaf nodé 32| and (32, 64]. The differential entropy can also help us choose
an appropriate interval to replace an original value. Fangxle, consider an original attribute
CPUProcessingTimes2.6 milliseconds and a concept hierarchy in Figure 7.1(b), wlatributes
are in uniform distribution. If we require a differential teopy value6 for sanitization, we can
choose(64, 128] to replace the original value.

7.2 Correlation Analysis of Sanitized Alerts

The second phase of our approach is sanitized alert conrelahs we stated in Chapter

2, examining the similarity between alert attributes anitbing attack scenarios are two focuses in
current correlation approaches. Similarity based caicglanethods (e.g., [109, 98, 61, 28]) cluster
alerts through calculating the similarity between theirilaites, and methods based on predefined
attack scenarios (e.g., [36, 78]) and methods based onquiisites and consequences of attacks
(e.g., [102, 29, 83]) build attack scenarios through discimg causal relations between individual
alerts. To our best knowledge, these methods all assumiaarijtribute values are available. In
Subsections 7.2.1 and 7.2.2, we discuss how to computertfiarsiy between sanitized attributes
and building attack scenarios for sanitized alerts, resmdg.

7.2.1 Calculating the Similarity between Sanitized Attritutes

Calculating the Similarity between Sanitized CategoricalAttributes. Several func-

tions or heuristics (e.g., techniques in [109, 98]) havenbe®posed to calculate the similarity

129

between (original) attribute values. Here we first give apérheuristic, and then discuss how to
revise this heuristic to calculate the similarity betweaniszed categorical attributes. Other simple
heuristics can be revised using a similar approach.

If two original attributesr,, andy,, are known, we give a similarity function between them

as follows.

. . 17 if Lo = Yo
Szm(mo,yo) - (72)
0, otherwise.

After sanitization,z, andy, become generalized valueg andy,, respectively. There
are several ways to compute the similarity betwegnandy,. For example, we can treat the
sanitized attributes as the original ones, and use Equdtito compute their similarity. This is
a coarse-grained similarity measurement because even gahitized values are the same, their
corresponding original values may be different. In additieven if two sanitized values are not
the same, their corresponding original values are possible the same (e.g., two sanitized IP
addressed0.10.1.0/24 and10.10.0.0/16). We propose to compute their similarity by estimating
the probability that:, andy, have the same original value. Intuitively, in a conceptadmiehny, two
nodesNodgx,) andNod€y,) are possible to have the same original value only if theyiratae
same path from the root to a leaf nodéof€z,) andNodgy,) may be the same). In other words,
there is a specific-general relation betwegrandy,. If this is the case, the possible original values
are those leaf nodes. If the probability that andy, have the same original value is large, we
interpret it as a high similarity between them; otherwisartkimilarity is low.

Now we show how to compute the probability that andy, have the same original
value hence to derive a revised similarity function. We assu, andy, are generalized using
the same concept hierarchy. Suppose leaf nodes in a conieegichy have equal probabilities.
We divide the probability computation into three cases. \jeny, < z,, SubTree(y,) and
SubT'ree(z,) may be the same, dfubT'ree(y,) is a subtree ofSubT'ree(z,). Node(xz,) and
Node(y,) have Lea fCount(xy) and Lea fCount(y,) possible original values, respectively. For
these two subtrees, the ratio of the number of common leadsitmdthe number of the leaf nodes in

SubTree(zy) is %ﬁi’;i Thus the probability that, andy, have the same original value is

LeafCount(yg) 1 — 1
LeafCount(zg) LeafCount(yg) ~ LeafCount(zg

tion to case (1). Hence the probability thatandy, have the same original valuefsem.

(3) Whenz, andy, do not have a specific-general relatichybTree(x,) andSubT'ree(y,) do not

7 (2) Whenz, =< y,, we can apply a similar computa-

have a common part in a concept hierarchyxzgandy, cannot have the same original value. Their

130

similarity is 0. To conclude, the revised similarity function based on Equna/.2 is as follows.

1 .
LeafCount(zg)’ if Yg = Lgs
Slm(xgayg) = Leafc(}unt(yg), |f Q:g j yg, (73)
0, otherwise,

where <" denotes specific-general relations.

Calculating the Similarity between Sanitized Continuous Atributes. The similarity
function between continuous attributes is different frévattof categorical attributes due to various
reasons. For example, due to the clock drift, t@BUProcessingTimenay not be reported the
same even if their actual time is the same. Considering thiasations, here we first give a simple
similarity function as follows. (Other similarity functis are possible and may be revised in a
similar way to our approach.)

Sim(x,,Yo) = L it o __ Yol < A (7.4)
0, otherwise,
wherez, andy, are original attribute values, andis a predefined threshold. For example, if the
CPUProcessingTimdifference between two processes is withimilliseconds, we may say their
similarity is 1.

Whenz, andy, are generalized to intervalg, andy,, respectively, there are several ways
to compute the similarity between, andy,. For example, assumingength(z,) = Length(y,) >
A, their similarity is1 if =, = y,, and0 otherwise. This certainly is a rough, imprecise estimation
because even if, andy, are not the same interval, it is possible that the differdreteveen their
original values is less thak Similar to the categorical case, we propose to compute $hailarity
by estimating the probability that the difference betwedwirtoriginal values is within thresholil

Suppose that original values of andy, are independent and uniformly distributed over
intervalsz, andy,, respectively. To simplify our discussion, we assunmeegti{z,) = Lengti{(y,)
> \. More sophisticated cases suchLangti{z,) # Lengtl{y,) can be covered by an approach
similar to the following calculation. We notice the diffeie between two original values may be
within A only if z, andy, fall into any of the following cases. (&), andy, are the same interval,
(2) 4, andy, are adjacent intervals, where adjacent intervals meangherwound of the lower
interval and the lower bound of the higher interval are theesée.g. 0, 5] and(5, 10]), or (3)z, and
Y4 are two intervals with a small “gap” between them, where @"gaeans the difference between
the lower bound of a higher interval and the upper bound oh@tdnterval is greater thah Note

131

this bound difference should be within(e.g.,[0,5] and[6, 11]). Now we show how to compute
the probability that the difference between the origindlga ofz, andy, are within\. Suppose
attribute variables for the original values of andy, are X andY’, respectively. We divide our
computation into the four cases.

(1) Whenz, = y,, we assume, andy, are interval«, 3]. Based on our assumptio,
andY are independently and uniformly distributed oyer/]. We user andy to denote attribute
values ofX andY’, respectively. The probability density functionsXfandY” are the same. That s,
1/(8 —«) in [a, 5], and0 otherwise. Our goal is to get the probabil®(|z —y| <). Considering
X andY are independent, we first get the cumulative distributiorcfion F'x_y(z) for X — Y.

Per) = [(y)dady

- /_Oo /_t Fx(y + 2) fy (y)dady

_ / T P+) i)y

By differentiating F'x_y (z), we get the probability density functiofx _y (z).

1
fx-v(z / fx(y+2)fr(y dy_/ fxy+z)5 —dy.

Then we get

2B« ifa—3<2<0

(B—a)2’ >)

fxv() =4 G55 if0<z<B-aq

0, otherwise.
Therefore,P(lz—y| < A) = [, fx_y (2)dz+ [fx_y(2)dz = % SinceLengti(z,)
3 — a, we haveP(|z — y| < \) = 2lLenathlza)|-X°

[Length(zg)]?
(2) Whenz, andy, are adjacent, we assumi&andY are independently and uniformly

distributed over intervalgy, 5] and (g3, v], respectively. We also have— o = v — 3 based on our
assumptiorLength{z,) = Lengti{y,). Similar to case (1), we get the probability density fuooti
for X — Y as follows.

e jfa—y<z<a-p,

(B—a)®>
Ix-v(z) = G fa—pB<z<0,
0, otherwise.

ThusP(|lz — y| < \) f fx—y(2)dz =

A2
)\) = 2[Length(zg)]? "

W SinceLength(zy) = f — a, P(|lz —y| <

132

(3) Whenz, andy, have a “gap” between them, note we require the differencosemst
the lower bound of the higher interval and the upper bount@fawer interval is within\. Assume
X andY are independently and uniformly distributed over 3] and [y, 7], respectively, where
0 < v — B < A. Based on our assumption, we kn@gv « = n — «. Similar to case (1), the

probability density function foX' — Y is as follows.

(Zgrj;)%‘, fa—-n<z<a-7,
fx-v(z) = ?ﬁ__—a_)é, fa-—y<z<pB—7,
0, otherwise.

Therefore,P(jz — y| < A) = %7 fx_y(2)dz = S2=2° For convenience, we let=y — 3.

2(8-a)? -
SinceLengti{zy)= 3 — a, P(|lz —y| < \) = 5 (A—d)?

[Length(zg)]?"
(4) Whenz, andy, do not fall into any of the above three cases, based on oumgdisun

Length{z,)=Length{y,)> A, it is impossible that the difference between the origiralligs ofz,,
andy, is within \. Hence their similarity ig).
To conclude, the revised similarity function based on Eigual.4 is as follows.

2\[Length(z4)]—\?
[Length(zq)]?

, i xg =y,

A2 : .
. STencthla 2 if x, andy, are adjacent,
Sim(zg,ye) = 4 g - (7.5)
MLength(zg)]? if z, andy, have a “gap” and < d < A,
0, otherwise,

whered is the difference between the lower bound of the highervaleand the upper bound of the
lower interval. Note that similarity computation based @pugtion 7.5 is symmetricim(z 4, y,) =
Sim(yg, xg))-

We notice that in the probability computation, we have takeweral assumptions such
asLength{z,)=Lengthy,)> X to simplify our calculation. However, the essential step®ived in
the probability computation have already been demonstiateur calculation. More sophisticated

cases can be covered by a similar computation.

7.2.2 Building Attack Scenarios

An attack scenario is a sequence of steps adversariesmpeddo attack victim machines,
which is helpful for security officers to learn attackerstigties and take appropriate actions. The

essence of building attack scenarios from security alerte idiscover causal relations between

133

individual attacks. For example, there is a causal reldbierwveen an earlieceCANNMAP_TCP
attack and a lateFTP_Glob_Expansionattack if the earlier one is used to probe a vulnerable ftp
port for the later one.

We extend our previous correlation method [83], which tergébuilding attack scenarios
from original alerts, to build attack scenarios from saeiti alerts. Please refer to Chapter 2 for
the formal model of the approach [83]. For convenience, figefee discuss our newly proposed
technique, we first give examples of prerequisites, coremseps, angrepare-forrelations, which

will be used in later examples.

Example 14 Consider alert types;=SCAN_NMAP_TCP and T5,=FTP_Glob_Expansion The
prerequisite ofl} is ExistHost(DestIP)and its consequence {ExistService(DestIP, DestPojt)
The prerequisite of, is ExistService(DestlP, DestPort) VulnerableFtpRequest(DestiRgnd its

consequence iEGainRootAccess(DestlP)

Example 15 To continue Example 14, consider a typealert t; and a typ€ls; alert t5. Assume
thatt; and¢y both haveDestIP=10.10.1.1 andDestPort21, ¢;'s EndTimeis 11-15-2004 20:15:10
andty’s StartTimeis 11-15-2004 20:15:15Through predicate instantiatiort;'s consequence is
{ExistServic¢10.10.1.1, 21)}, andExistServic€10.10.1.1, 21) A VulnerableFtpRequedin.10.1.1)

is to's prerequisite. Notice;.EndTime< ¢,.StartTime. Then we knotwy prepares fot,.

For convenience, we may use causal relations@epare-forelations interchangeably.
Given two alertst; andt,, wheret, prepares fort,, we call¢t; the preparing alert, ant}, the
prepared alert.

An Optimistic Approach to Building Attack Scenarios from Sanitized Alerts. We
notice that identifyingorepare-forelations between alerts is essential to building attaekaiGos.
However, after alert sanitization, we may not be certaintiwigorepare-forelations are satisfied
if sanitized attributes are involved. Without loss of gexidy, we assume alert type data is not
sanitized. We propose aptimisticapproach to identifyingrepare-forelations between sanitized
alerts. This approach identifiespaepare-forelation between two alerts and¢; as long as it is
possible that (1) one of the instantiated predicates 'B1consequencenayimply one of the in-

stantiated predicates ta’s prerequisite, and (2), andt,’s timestampsnaysatisfy¢;.EndTime<

134

to.StartTime. In other words, based on sanitized attributes'guess” what possible original values
are, and if these original values have a chance to satisfyrihlécation relationship between instan-
tiated predicates, and also satisfy the timestamp reqemgnwe identify aprepare-forrelation.

Example 16 illustrates this idea.

Example 16 To continue Examples 14 and 15, assupestIPof¢; andts are sanitized based on the
concept hierarchy in Figure 7.1(a), whelBestIP=10.10.1.1 is replaced wittDestIP=10.10.1.0/24.
Soty’s consequence becoméExistServicél0.10.1.0/24, 21)}, and ExistServic€10.10.1.0/24,

21) A VulnerableFtpRequegi0.10.1.0/24) is t5's prerequisite. It is possible that the instantiated
predicate ExistServicé10.10.1.0/24, 21) in ¢;’s consequence implies the instantiated predicate
ExistServicé10.10.1.0/24, 21) in to’s prerequisite if both sanitizeDestIPattributes have the same
original IP address in network0.10.1.0/24. Further due ta;.EndTime< t,.StartTime, we identify

a prepare-forelation betweert; andts.

Attack Scenario Refinement Based on Probabilities of Prepa-for Relations. Our
optimistic approach certainly may introduce falseepare-forrelations between alerts. Without
knowledge of original values, we cannot guarantee thatmstantiated predicate implies another if
sanitized attributes are involved. To improve this apphodtds desirable to estimate how possible
each pair of sanitized alerts hapi@pare-forelation. To do so, we can first compute the probability
that one instantiated predicate implies another, and thesider timestamp requirement.

Example 17 To continue Example 16, considexistService(DestIP, DestPoit)7}’s consequence
andT5’s prerequisite. Assume that each IP address in the condeparshy (Figure 7.1(a)) has
equal probability in the data set. After predicate instatibn using sanitized alerts, we compute
probabilitiesP(t1.DestIPztg.Desth):ﬁ, and P(t;.DestPort=.DestPort) =1. Hence the prob-

ability that the instantiated predicatExistServic€10.10.1.0/24, 21) in ¢;'s consequence implies

the instantiated predicatExistServic€10.10.1.0/24, 21) in to's prerequisite isﬁ. Further note

135

P(t1.EndTimec to.StartTime)=1. Then we know the probability of tipiepare-forelation to be

ic 1
true is 256 -

Note that sometimes computing precise probability valetsed to prepare-for relations
is difficult when we do not know the probability distribut®rof attributes in original data sets.
Fortunately, we can use uniform distributions to estimateer-bound probability values. We will
further discuss this problem in the next chapter (Chaptev\@) also notice that between two alerts,
sometimes there may exist several pairs of instantiatediqgates such that in each pair, one in-
stantiated predicate may imply the other. If the probabdgitthat these pairs having implication
relationships are different, it is difficult to estimate fwbability that at least one implication re-
lationship is true because we do not know the dependency @rth@se pairs. To simplify our
probability estimation, assuming pairs of instantiated predicates that may have implicaten
lationships are independent with probabilities po, - - -, pn, respectively, we use this indepen-
dent case to estimate the probability that at least one @aupdn relationship is satisfied, which
is1—(1—p)(1—p2)---(1 —pn). We then consider timestamp requirement to further com-
pute the probability for thiprepare-forelation. After the probabilities gfrepare-forelations are
computed, it is desirable to use these probability valugarioe some falsprepare-forrelations
in an alert correlation graph (e.g., remove sopmepare-forrelations with lower probability val-
ues). However, we immediately observe that this ideal casemot help much. As demonstrated
by Example 17, after sanitizing the IP addresses to the soraling/24 network addresses, the
probability that two alerts have @repare-forelation may be onlyzé—., which may imply that this
prepare-forelation isfalse However, considering that when the IP addresses/iManetwork are
sanitized, the probabilities of glirepare-forelations involving these IP addresses would be small.
If we remove all the low-probabilitprepare-forelations, it is very likely that somteue prepare-for
relations are pruned.

We further observe that if we calculate the probability fased of prepare-forrelations
instead of only one, we can gain more interesting hints. Agswe haven pairs of alerts where
each pair has prepare-forelation with probabilityp. Further suppose theggepare-forelations
are independent. Then we can compute the probalflitthat there aré: pairs 0 < £ < n)
havingtrue prepare-forelations: P, = (Z)pk(l — p)™~*. Based on this equation, we can compute
the probability that at least orrepare-forelation istrue, which is1 — Py when eactprepare-for
relation has the same probabiljty When theprepare-forelations fom pairs of alerts have different

probabilities (e.g.p1, po, - - -, P, respectively), the probability that at least gurepare-forelation

136

Algorithm: Aggregation to an alert correlation graph.
Input: An alert correlation grapf'GG, a temporal constrairdt, and a probability thresholél
Output: An aggregated correlation graptCG.
Method:
1. AssumeCG = (N, E). Partition edge sel into subsetd”;, Es, - - -, E; such that in any
E; (1 < i <), all edges have the same preparing alert type, and the sapared alert type
2. For each subseF; in £
3. Further partition; into groupsE;, Ejo, - - -, F;; such that the preparing alerts and
prepared alerts itf;;. (1 < k < j) satisfy temporal constraint respectively.
4. For each groupt;;, in subsetr;
5 Compute the probabilitp that at least onprepare-forelation inE;;, is true.
6. If P> 6Then
7 Aggregate edges if;; into one; merge preparing and prepared alerts, respactivel
8 ElseRemove all edges i#;;.
Remove preparing and prepared alert&jp if they are not linked by other edges
9. LetCG after the above operations B&'G. OutputACG.
End.

Figure 7.2: An algorithm to aggregate an alert correlaticaph

istrueis1 — (1 —p1)(1 —p2)--- (1 —py). This result may help us refine an alert correlation graph.

To further refine an alert correlation graph constructediftbe optimistic approach, we
propose to apply aggregation to alert correlation graphéciwis performed according temporal
constraintsand probability thresholds.

Consider a sef of alerts and a time interval with length(e.g.,50 seconds), where alerts
in .S are sorted in increasing order basedStartTime We call two alertsonsecutive alerts their
StartTimetimestamps are neighboring to each othefinS satisfies temporal constraifitif and
only if for any two consecutive alertgandt; in .S wheret;.StartTime< ¢;.StartTime;.StartTime
—t;.EndTime< §. Intuitively, a set of alerts satisfy a temporal constrditiie time intervals (in the
form of [StartTime EndTimé) of any two consecutive alerts overlap, or the “gap” betwdem is
within §.

Given an alert correlation graghiG = (N, E') constructed from the optimistic approach,
a temporal constraini, and a probability threshold, we perform aggregation t6'G through
the algorithm shown in Figure 7.2. The basic idea is that wgremgate the edges with the same
preparing and the same prepared alert types into one sutlhthg@robability that at least one

prepare-forelation (represented by these edgesiusis greater than or equal to threshéld(The

137

related nodes are merged accordingly.)

In Figure 7.2, Line 1 prepares the edge set through paiitigoso that each edge subset
has the same preparing alert type and the same preparetypéertines 2 to 3 further partition each
edge subset into groups such that the preparing and preglantsiin each group satisfy constraint
4, respectively. Lines 4 and 5 compute the probability thdéast ongorepare-forelation istrue
in each group. If this probability is no less than threshgldie aggregate the edges and the related
nodes in Line 7; otherwise we remove those edges and soned@l@des in Line 8. Line 9 outputs
the results.

As we stated earlier, the alert correlation graphs consduitom our optimistic approach
may include botHalseandtrue prepare-forelations. They may also have large numbers of nodes
and edges such that understanding these scenarios carfituidtdihd time-consuming. The algo-
rithm in Figure 7.2 helps us improve the quality of alert etation graphs in that it reduces the
numbers of nodes and edges, and may improve the certainty plepare-forelations (in the ag-
gregated sense). Note after aggregation, a node in thegaggdecorrelation graph is actually a
place holder which may represents multiple alerts. Ouregggion also has some limitations be-
cause we may remove someepare-forelations from alert correlation graphs when the probibili
for themis less than the threshold. Our experiments in Suilose7.3.2 indicate that the aggregation
should be applied with caution sinteie prepare-forelations have a chance to be removed. The
alert correlation graphs created from the optimistic apphoand the aggregated correlation graphs
are complementary to each other, and they should be refieresth other to comprehensively learn
the security threats.

Though the above approach to building attack scenarios $amitized alerts is extended
from a specific correlation approach (i.e., [83]), otherelation methods such as approaches based
on predefined attack scenarios can be extended to acconereatdtized alerts in a similar way.
The approaches based on predefined attack scenarios udefitlg constraints among alert types
(e.g., a logical formula involving attribute names from ex@t alert types). If any constraints are
satisfied by alert attributes, causal relations and henaekascenarios are created. To apply our op-
timistic approach to these methods, we can examine thereimstto see whether they are possible
to be satisfied based on sanitized attributes. To use pilaleebio refine attack scenarios, we can
calculate the probabilities for the constraints to be fatisn a similar way to our approach.

138

7.3 Experimental Results

To learn the effectiveness of our techniques, we perfornssd af experiments to evaluate

the similarity functions and the approach to building &tacenarios.

7.3.1 Evaluating Similarity Functions

In the first two experiments, we focus on the evaluation ofseV similarity functions
(e.g., Equations 7.3 and 7.5). We are interested in how lplessanitized datasets can provide sim-
ilarity classification as that from original datasets. It experiments, we randomly generated a
setS, of alerts with only one categorical attribute (or one combins attribute, respectively), and
then sanitized it to get a new s8t. Next for each combination of two alerts i), we used
Equation 7.2 (or Equation 7.4, respectively) to calculdatebaite similarity. While for each pair
of alerts inS, we used Equation 7.3 (or Equation 7.5, respectively) tomdmtheir similarity.
Then we applied an optimistic classification. If the similavalue is greater thaf, we classify
this pair of alerts as “similar” pair; otherwise we classihem as “distinct” pair. We compared
the results fromS, with those fromS,. We used two quantitative measurerrect classifica-
tion rate R.. for S, based onS, and misclassification rateR,,,. for S; based onS,. We define

Uity __ #common “similar” pairs in botty, and.S,
R.. andR,,. for “similar” pairs as follows. R.. = Zsimilar” pairs in S,

__ #“similar” pairs in.S,—#common “similar” pairs inS, and.S,
Rine = #total alert pairs #“similar” pairs in S, - Note thatR... and R2,,, are only

for sanitized datasets, and both measures can be comput&dnfidar” or “distinct” pairs. Like-

, and

wise, we define correct classification rate and misclassificaate for “distinct” pairs by replacing
“similar” with “distinct” in the above two equations.

Our first experiment is for categorical attributes. We gatest a sefS, of 2, 560 alerts
with DestlIPattributes uniformly distributed ove56 IP addresses in network.60.1.0/24 (from
10.60.1.0 to 10.60.1.255). Next we partitioned this network intd6 subnets. Each subnet2g
subnet) hag6 addresses. We sanitizé& to S, such thaDestIPof each alert is generalized to the
corresponding/28 subnet ID. We applied Equation 7.2 & and Equation 7.3 t&,. The results
are shown in the left part of Table 7.1.

Our second experiment is for continuous attributes. We rgeee a setS, of 1,000
alerts with CPUProcessingTimattributes uniformly distributed over intervéd, 100]. Then we
divided [0, 100] into 20 small equal-length intervals (the length of each smaliirkis 5). Next we
sanitizedS, to S, by replacing original values with the corresponding snrativals (a boundary

139

Table 7.1: The results of evaluating similarity functions

Categorical attribute Continuous Attribute
S, (original) | S; (sanitized)| S, (original) | S, (sanitized)
alerts 2,560 1,000
total alert pairs 3,275,520 499,500
“similar” pairs 12,818 | 204,585 24,444 | 71,705
common “similar” pairs 12,818 24,444
“distinct” pairs 3,262,702 \ 3,070,935 475,056 \ 427,795
common “distinct” pairs 3,070,935 427,795
R, for “similar” pairs N/A 100% N/A 100%
R, for “similar” pairs N/A 5.88% N/A 9.95%
R, for “distinct” pairs N/A 94.12% N/A 90.05%
R, for “distinct” pairs N/A 0% N/A 0%

value between two adjacent intervals is put into the loweeriral). LetA = 2.5. We applied
Equation 7.4 t&5, and Equation 7.5 t&;. The results are shown in the right part of Table 7.1.

In these two experiments, the entropy and differentialagytrfor attributesDestIP and
CPUProcessingTimarelog.16 = 4 andlogs5 = 2.3219, respectively. Our correct classification
rates for both “similar” and “distinct” pairs are high (gteathan90%), while the misclassification
rates for both pairs are low (less thad%). This demonstrates that the privacy of alert attributes

can be protected with sacrificing the data functionalityn{krity classification) slightly.

7.3.2 Building Attack Scenarios

To evaluate the techniques on building attack scenariopanfermed a set of experiments
on 2000 DARPA intrusion detection scenario specific data E&t]. The datasets include two
scenarios: LLDOS 1.0 and LLDOS 2.0.2, where each scenariodas two parts (inside and DMZ).
In LLDOS 1.0, adversaries probed vulnerable sadmind sesvitthe networks, broke into the hosts
through sadmind buffer overflow attacks, installed mstr&boS softwares, and finally launched
DDoS attacks. The attack scenario of LLDOS 2.0.2 is simdathat of LLDOS 1.0 (but LLDOS
2.0.2 is more stealthier).

In the first set of experiments, our goal is to evaluate thecéffeness of our optimistic
approach to building attack scenarios. We first used Reaf8atetwork sensor 6.0 to generate
alerts from four datasets: LLDOS 1.0 inside, LLDOS 1.0 DMZA0OS 2.0.2 inside, and LLDOS
2.0.2 DMZ. Next we defined the prerequisites and conseqsdiacall alert types reported by the

140

network sensor. Such information can be obtained in Tabl@sabd 5.4. We first constructed
alert correlation graphs for the original alert datasefagisur previous method [83]. Then we
sanitized the destination IP address of each alert (whiatsenitization policy applied by DShield
[106]) by replacing it with its corresponding24 network ID (e.g.,172.16.112.50 is sanitized to
172.16.112.0/24). Then we applied our optimistic approach to building atentrelation graphs for
the four datasets. One alert correlation graph construoted LLDOS 1.0 inside dataset is listed
in Figure 7.3.

In Figure 7.3, the string inside each node is an alert tydevi@d by an alert ID. Notice
that to show the difference between the alert correlati@plgs created from the original dataset
and the sanitized one, we marked the additional nodes @otainly from the sanitized dataset
in gray. From Figure 7.3, it is clear that the alert correlatgraph constructed from the san-
itized dataset is a supergraph of the one created from tiggnalidataset. This observation is
consistent with our intuition because our optimistic aggtoidentifiesorepare-forelations even
if their related probabilities are low. The alert corredatigraph in Figure 7.3 can be divided
into multiple stages: the adversaries usatimindPing to probe vulnerable sadmind services,
next usedsadmindAmsilverifyOverflowto get root privileges, then installed mstream DDoS soft-
wares and started them viRsh and finally the mstream components communicated with efher o
(MstreamZombig and launched DDoS attackStteamDoS. They are consistent with the major
steps adversaries performed.

We notice that false alerts may be involved in an alert cati@h graph (e.g., the alert
EmailLDebug67705n Figure 7.3). To further evaluate the effectiveness of apjproach, simi-
lar to [83], we used two quantitative measurssundnesg/, andcompletenesg/,., whereM; =

#£correctly correlated alertsan dM. — #£correctly correlated alerts
#correlated alerts c #related alerts :

We computed both measures for the correla-
tion approach based on original datasets and the cormelatiproach (i.e., our optimistic approach)
based on sanitized datasets. The results are in Table 71®p&img both measures in Table 7.2,
the correlation approach based on original datasets istlsligetter than our optimistic approach,
which is reasonable because original datasets are moiiggthan sanitized datasets. Nevertheless,
our optimistic approach is relative good: the majority afisdness measures are greater trn,
and all completeness measures are greaterabfdn

In the second set of experiments, our goal is to verify whetlogrelation methods can
help us differentiate between true and false alerts. Weectunje that correlated alerts are more
likely to be true alerts, and false alerts are more randombeve less chance to be correlated.

This conjecture has been experimentally verified in [83] nvbdginal alerts are available. Now

141

Email_Almail_Overflow67525

"
},‘
!_«

{fﬁ’
4
q

)

Sadmind_Amslverify_Overflow67434
T ——

—P sadmind_Amsiverify_Overflow67438

)l

Email_Almail_Overflow67292

4

./

‘
\
0o

1

{ Mstream_Zombie67563

\E
i
'.

Sadmind_Amsiverify_Overflow67436

7

" Sadmind_Amslverify_Overflow67442
—

\' W)/

|
vj‘
/)
A

{
é

)
' A\

()
B/
)

—<4

FTP_SYS"W \ FTP_Syst67399
| Sy

N

—

Sadmind_Amslverify_Overflow67432 Rsh67538 = B Vistream_Zombie67554

-
Sadmind_Amslverify_Overflow6744

)

/
)

@
i
Y K
u“!ﬁu
‘%‘!
VY

?/(7//

i

V3

”Y

W
o4

i
')

[RC sadmind_Amsiverify_Overflow67430

Rsh67558

|

—

=

Email_Almail_Overflow67304

¥ Rsh67560

|

I
Iy

;’/

N

i

S ———

—~ p
————— Mstream_Zombie67777

/(ﬁ
|
0
X

i

//,(
)
f\i

SO
N
N\ g/\\

W.IC

\
Stream_DoS67773

\-)
i
i&l"
Q.

l\$\
M

Sadmind_Amslverify_Overflow67424 "’
~d.

4/" !
Sadmind_Amslverify_Overflow67417

—3

Sadmind_Amslverify_Overflow67420) k

|

Rsh67549

r‘v‘\‘_
)
/AN

|
x

Vi
=
o“

Sadmind_Ping67286 [T
Sadmind_Amslverify_Overflow67422 1—. > & Mstream_Zombie67767
sSSP A !
— = 5
sadmind_Amsiverify_Overflow67416 2 i - - i
———> X

=< 7
Sadmind_Amslverify_Overflows7426 > T g - — ' i

ét
N

{

'1
4
e

o

A

!

Figure 7.3: An alert correlation graph in LLDOS 1.0 insid¢adat

we try to see the results when alerts are sanitized. Sinul§3], we compute detection rate as
#+detected attacks #ttrue alerts : :
mksand false alert rate ds— s - In our experiments, we calculated detection
rates and false alert rates for RealSecure network sehsarptrelation approach based on original
datasets, and the correlation approach (i.e., our optoragiproach) based on sanitized datasets.

The results are shown in Table 7.3. In Table 7.3, the numHesteds for correlation approaches

142

Table 7.2: Soundness and completeness measures in OUMEES"

LLDOS 1.0 LLDOS 2.0.2
Inside | DMZ Inside | DMZ
correlated alerts for original datasets 44 57 13 5
correctly correlated alerts for original datasets 41 54 12 5
correlated alerts for sanitized datasets 58 63 25 6
correctly correlated alerts for sanitized datagets 41 54 12 5
related alerts 44 57 18 8
Soundnesd/; for original datasets 93.18% | 94.74% | 92.31% | 100%
Completenesd/, for original datasets 93.18% | 94.74% | 66.67% | 62.50%
Soundnesd/, for sanitized datasets 70.69% | 85.71% | 48.00% | 83.33%
Completenesd/, for sanitized datasets 93.18% | 94.74% | 66.67% | 62.50%

Table 7.3: Detection rates and false alert rates in our @xgets

Detection approach LLDOS 1.0 LLDOS 2.0.2
Inside | DMZ Inside | DMZ
RealSecure 922 886 489 425
alerts Correlation for original datasets 44 Y4 13 5
Correlation for sanitized datasets 58 63 25 6
RealSecure 61.67% | 57.30% | 80.00% | 57.14%

Detection rate| Correlation for original datasets 60.00% | 56.18% | 66.67% | 42.86%
Correlation for sanitized datasets50.00% | 56.18% | 66.67% | 42.86%

RealSecure 95.23% | 93.57% | 96.73% | 98.59%
False alert rate Correlation for original datasets 6.82% | 5.26% | 23.08% | 40.00%
Correlation for sanitized dataset<29.31% | 14.29% | 60.00% | 50.00%

are the numbers of correlated alerts. We observe that oimigfit approach for sanitized datasets
still has the ability to greatly reduce false alert ratesijlevhlightly sacrificing detection rates. In
addition, comparing the detection rates and false aletsréihe approach based on original datasets
is slightly better than our optimistic approach since origidatasets have more precise information
than sanitized ones.

In the third set of experiments, our goal is to evaluate thecd¥eness of the aggregation
to alert correlation graphs. Here we show one case for LLD@Snkide dataset. We aggregated
the alert correlation graph in Figure 7.3 based on the dlguarin Figure 7.2, where we set tem-
poral constraind = oo and probability threshold = 0.1. The result is shown in Figure 7.4. In

Figure 7.4, we notice that some false alerts are ruled ogit, Email. Debug6770%) which is highly

143

Sadmind_Amslverify_Overflow2

Email_Almail_Overflow3

Figure 7.4: Aggregation to the alert correlation graph igure 7.3

preferable. However, we also observe that some true alextpraned (e.g., threBadmindPing
alerts), which is undesirable. Though it is possible toguaite this undesirable case through setting
a lower probability threshold, we can never guarantee thit false alerts will be ruled out. We
conclude that aggregation should be applied with cautidw alert correlation graphs created from
our optimistic approach and the aggregated correlatiophgrahould be referred to each other to

comprehensively learn the security threats.

7.4 Summary

In this chapter, we propose a generalization based apptogeanrform privacy-preserving
alert correlation. We divide our approach into two phasdse first phase is entropy guided alert
sanitization, which focuses on protecting the privacy ahdsets. We replace sensitive original
attribute values with high-level concepts in concept hhs, which introduces uncertainty into
data sets, and also partially maintains attribute senmntide further propose to use entropy and
differential entropy to measure the uncertainty of saedtiattributes, and also guide the general-
ization of original attributes. To examine the utility ofrsized alerts, the second phase of our
approach is sanitized alert correlation. We concentrateedming similarity functions between
sanitized attributes, and building attack scenarios franitged alerts. We use various measures
such as correct classification rate and false alert rate tsune the utility of sanitized data sets.
Though our experiments mainly focus on 2000 DARPA intrusietection scenario specific data
sets, and we used a simple attribute sanitization policyweeld expect some observations from
our experiments are also useful to other data sets. For dgaatfack scenarios constructed from
sanitized data sets (without probability based refinemamat)supergraphs of the ones constructed
from original data sets, and probability based pruning migsrfout both false and true prepare-for
relations. We also notice that to apply our approach, sorpeaknowledge is necessary, for ex-

ample, deciding desirable entropy values for sensitivibates when performing sanitization, and

144

designing concept hierarchies with the requirement ofrdbl entropy values.

There are several problems worth further investigation.r ®ahniques in this chapter
replace original attributes with general values in condeptarchies. Generalized attributes usu-
ally have different domains compared with original atttdsi Observing this may let malicious
users immediately realize that attributes are sanitizédclwmay further let them infer privacy
policy. We will propose other sanitizaiton techniques ia ttext chapter to address this problem.
Another problem in our approach is that the probability bagaining may filter out both false
and true prepare-for relations. Thus additional techrigiat can better refine alert correlation
graphs are worth further investigation. In addition, we also interested in the performance of

privacy-preserving alert correlation techniques.

145

Chapter 8

Privacy-Preserving Alert Correlation: A

Perturbation Based Approach

As we mentioned in Chapter 7, to defend against large-sasighbaited attacks such as
worms and distributed denial of service (DDoS) attackss iisually desirable to deploy security
systems such as intrusion detection systems (IDSs) ovdnthmet, monitor different networks,
collect security related data, and perform analysis to tlected data to extract useful information.
In addition, different organizations, institutions, argbts may also have the willingness to share
their data for security research as long as their privacgents about the data can be fully satisfied.
For example, DShield [106] collects firewall logs from dréfat users to learn global cyber threats,
and Department of Homeland Security sponsors PREDICT [Edjgpt to create a repository col-
lecting network operational data for cyber security regleain this chapter, similar as in Chapter
7, we assume that there are a few data repositories cotiestiaurity data from different organi-
zations, companies, and individuals. To facilitate thdadmration on security research, we further
assume that these security data sets are available orllgaatiailable to different users including
attackers.

Data generated by security systems may include sensifioamation (e.g., IP addresses
of compromised servers) that data owners do not want toadis@r share with other parties, where
sensitive data are decided by data owners’ privacy polieypibtect the privacy of data owners,

146

and prevent the misuse of these security data, it is alwagisadbde and sometimes mandatory to
anonymize sensitive data before they are shared and dedel@o address this problem, existing
approaches usually perform transformation to sensitita. d&ox example, Lincoln et al. [69]
propose to use hash functions and keyed hash functions hywime sensitive attributes such as IP
addresses. Their approach is effective on detecting hafjimne events, but may have limitations
on alert correlation if different keys are introduced in &dyhashing. We also notice that combining
their hash based methods with other techniques (e.g., thaitpies proposed in Chapter 7) may
bring potentially better results. In Chapter 7, we propasalistract original values to more general
values (e.g., IP addresses are replaced by network adslresS@ce general values may usually
take different formats compared with original values (iteey have different attribute domains),
observing this may let malicious users immediately reaties attributes are sanitized, which may
infer organizations’ privacy policy.

In this chapter, we address this problem in another compitang direction. We start to
hide original sensitive values through injecting more data data sets. We also perform transfor-
mation to sensitive attributes, but this is carried overdame attribute domains. In this chapter,
we propose three perturbation based schemes (Schemesd, lll)ao flexibly anonymize sensitive
attributes of intrusion alerts. These schemes are closédyed and can also be applied indepen-
dently. In Scheme I, we intentionally generate artificiadred and mix them with original alerts,
thus given any alert in the mixed set, it is not clear that &éhést is original (i.e., IDS-reported) or
artificial, which means its attributes may or may not be r&alprotect data privacy, artificial alerts
should not be obviously distinguishable from original terOn the other hand, we also need to
maintain the utility of the data. With both requirements imdj during artificial alert generation,
we preserve frequency distributions of attack types andsamsitive attributes, while use concept
hierarchies to facilitate the generation of sensitivellattes. Notice that concept hierarchies can
help us abstract attribute values, for example, IP addsesae be generalized to the corresponding
network addresses. In Scheme Il, we propose to map origemaits/e attributes to random values
based on concept hierarchies. And in Scheme Ill, we propopartition an alert set into multiple
subsets based on time constraints and perform Scheme fendently in each subset. To measure
data privacy hence to guide the procedure of alert anonyimizave propose two measurdscal
privacy andglobal privacy where local privacy is related to original values of sewsiattributes
for individual alerts, and global privacy is related to diattions of sensitive attributes in alert sets.
Both privacy values are computed based on entropy, andatksientropy values are decided by
privacy policy.

147

Though we emphasize alert anonymization techniques inctiagter, we also perform
alert correlation to anonymized alerts to examine thetytif the data. Similar as in Chapter 7, we
focus on two problems: estimating similarity values betwaaonymized attributes and building
attack scenarios from anonymized alert set. Our methodmoitesity measurement is a probability
based approach, which estimates how possible two anongirati#butes may have the same origi-
nal values. Our approach on building attack scenarios dgtnm our existing method [83], where
the probabilities related to the matching of prerequisitied consequences among different attacks
are estimated. Though it is closely related to the optimigfiproach in Chapter 7, the probability
estimation is based on the anonymization schemes propogbiichapter. Based on these prob-
ability values, we can construct and further “polish” attacenarios. Similar as in Chapter 7, we
also use various measures suclcasect classification ratéo measure the utility of anonymized
data sets. Our experimental results demonstrated thetliedieess of our techniques in terms of

various measures.

8.1 Three Schemes for Alert Anonymization

In this chapter, we emphasize our alert anonymization igdes, which can flexibly
protect data privacy. Before we go into the details of ouhtégues, we clarify some notions and
definitions first.

An alert typeis a type namél’ and a setS of attribute names, where each attribute
name inS has a related domain denoting possible attribute valuesanAaxample, an alert type
FTP_AIX_Overflowhas a set of six attribute nam¢SrclIP, SrcPort, DestIP, DestPort, StartTime,
EndTimé, where the type nameTP_AIX_Overflowdenotes that it is a buffer overflow attack tar-
getingAlX ftp services, and all six attributes are used to descritsetyipie of attacks. The domains
of SrcIPandDestlPare all possible IP addresses, the domairnSroPortandDestPortare possible
port numbers (from por to port65535), andStartTimeand EndTimedenote the timestamps that
the attack begins and finishes.

An original alert is an instance of alert types and is regbbigsecurity systems. Formally,
atypeT original alertt, is a tuple onl"'s attribute setS, where each attribute value in this tuple is

a value in the related domain.

Example 18 Assume we have a typa@P_AlX _Overflowalert {SrclP=172.16.10.28, SrcPort=1081,

148

DestlP=172.16.30.6, DestPort=21, StartTime=01-16-2006 18:01:05, EndTime=01-16-200601805}.
This alert describes aRTP_AIX _Overflowattack from IP addres$72.16.10.28 to target172.16.30.6.

A type T artificial alert has the same format as that of an original alert. The only dif-
ference between artificial alerts and original alerts ig tiraginal alerts are reported by security
systems, while artificial alerts are synthetic, and may begeed by a human user, or some pro-
grams. The purpose of generating artificial alerts is to petpect the privacy of sensitive attribute
values in original alerts. We will discuss how to generatéieial alerts in Subsection 8.1.1. Sim-
ilarly, a typeT anonymized alerhas the same format as that of an original alert. However, the
sensitive attribute values in anonymized alerts are tomnmsdd, for example, through randomiza-
tion, to protect data privacy. To continue Example 18DdstIP of the alert is sensitive, we can
transformDestIP=172.16.30.6 to DestIP=172.16.30.35 to hide the original value. We will discuss
how to transform sensitive values in Subsection 8.1.2. énr#st of this chapter, we call the set
of alerts all flagged by security systems the original alett and the set of alerts including both
original and artificial alerts the mixed alert set. In adfitiwe may use attributes to represent either
attribute names, attribute values, or both if it is cleanfrihe context.

8.1.1 Scheme I: Atrtificial Alert Injection Based on Concept Herarchies

Intuitively, artificial alert injection generates syntitedlerts and mixes them with original
alerts. Given any alert in a mixed alert set, identifying Wiee it is artificial or original is difficult,
and the information disclosed by any individual alert may necessarily be true. The critical
issue in artificial alert injection is how to generate atitdvalues for each artificial alert, with both
privacy and usability requirements in mind. Here we divitetaattributes into three classes: alert
types, sensitive attributes, and nonsensitive attribated discuss them separately.

Alert types encode valuable information about the corredpwy attacks. For example,
RealSecure network sensor 6.5 [52] may reporEaR_AlX_Overflowattack. Based on the signa-
ture of this attack, we know that it is a buffer overflow attdakgeting AIX FTP services. Alert
types are crucial for security officers to learning secuhtgats. To maintain the utility of alert data
sets, it is usually desirable to disclose alert type infdioma So when we create artificial alerts, we
propose to preserve the frequency of the original data setrims of alert types, where the frequency
of an alert typel is the ratio of the number of alerts with tyfiéto the total number of alerts. In

other words, if an original alert data set hatypes of alerts with frequencies, po, - - -, p, Where

149

p1+ pa + -+ pp, = 1, then in our artificial alert set, we will maintain this freency distribution.

Sensitive attributes are decided by privacy policy, andrth@lues are what we try to
protect. Considering both privacy and utility concerns, prepose to use concept hierarchies to
help us artificially generate sensitive attribute valueseafing attribute values based on concept
hierarchies may preserve some useful information (e.gfixas of IP addresses), but also change
attribute distributions to certain degree to protect glestacy. Before we discuss our algorithm on
artificial alert generation, we first introduce concept &iehies.

Concept hierarchies have been used in areas such as datg @] and also in privacy-
preserving techniques (e.g+~Anonymity approach [95]). A concept hierarchy is basedpecific-
generalrelations. Given two concepts andcs (e.g., attribute values), if; is more specific than
co (or equivalentlyco is more general thaa,), we say there is apecific-generatelation between
c1 andcg, and denote it ag; < co. As an example, given an IP addrd$2.16.10.3 and a network
addressl72.16.10.0/24, we havel72.16.10.3 < 172.16.10.0/24. Note that specific-general rela-
tion is reflexive, antisymmetric and transitive. Specifengral relations can be obtained through
abstracting a set of low-level concepts to a high-level ephcFor example, a set of individual 1P
addresses can be organized into a subnet. Based on spegiferagjrelations, aoncept hierarchy
is a set of specific-general relations and is usually orgahiato a tree. Figure 8.1 shows a concept
hierarchy for IP addressd$2.16.11.0, ---, 172.16.11.255 and172.16.12.0, - - -, 172.16.12.255,
where each IP address is generalized first to its correspgridit network address, and then to its
/16 network address.

For continuous attributes, we can group data into bins thoirmuous values can be trans-
formed into categorical. For example, given a set of timagawithin a one-hour time interval, we
may partition the whole time interval in&) equal-length bins where each bin is a one-minute time
interval, and put timestamps into the corresponding bimsniBg techniques have been extensively
studied in the fields such as data mining [49] and statisting, we do not repeat them here. In
this chapter, our techniques focus on categorical datagththey can be extended to accommodate
continuous data.

Given a concept hierarchyf, and two nodes, andv, in H wherev, =< v, (this means
vs has a path tay, in H), the distancebetweenv, andv, is the number of edges over the path
from v, to vy, denoted aslistancguv,,v,). For example, in Figure 8.1distancg172.16.11.3,
172.16.11.0/24)= 1. Given a concept hierarchi/ and two nodes,; andv,, in H, we call a node
vy in H theleast common pareritt (1) vs; < vy, (2) vs2 = vy, and (3)d,, =maxdistancév,;, vy),
distancév,2,v4)) has a minimum value. In addition, if,; andv,, are both leaf nodes i/ and

150

172.16.0.0/16

172.16.11.0/24 172.16.12.0/24

Figure 8.1: An example concept hierarchy for IP addresses

the least common paren has totalC leaf nodes including,; andv,, we call nodes);; andvg
L-peer nodesor simply £L-peers As an example, in Figure 8.1, the least common parent of two
leaf nodesl72.16.11.3 and172.16.11.5 is nodel72.16.11.0/24. Since nodel72.16.11.0/24 has
totally 256 leaf nodes, two nodekr2.16.11.3 and172.16.11.5 are256-peers.

Now let us discuss how to generate sensitive attributegfifical alerts. We assume each
sensitive attribute value has a desirable general valuerinapt hierarchies, where these desirable
general values can be derived through a given parandetanoting the desirable number of peer
nodes. For example, £ = 256 for attribute DestIP, then the desirable general values for these IP
addresses are the correspondig network addresses. We first compute the frequency disimitut
of these generalized attribute values based on the oridatal set. Next, following the computed
frequency distribution, we create generalized attribwtlies in the artificial alert set, finally we
replace these generalized values using leaf nodes in thesponding hierarchies (each leaf node
value has equal probability to be chosen). Notice that dutie above procedure, we preserve
attribute frequency in terms of general values. This is beeghese general values partially maintain
the utility of alert data (e.g., prefixes of IP address). Vée akplace these general values using their
corresponding leaf nodes with uniform distribution. Thiayrhelp us change the distribution of
attributes in original sets. For example, if in an originel, ghe values for attributBestIPis only
from 172.16.11.0 to 172.16.11.31. Further suppose we set paramefer= 256. Then we will
generate artificial attributes uniformly distributed frorfi2.16.11.0 to 172.16.11.255 to change
attribute distribution and hence protect original valudntice that desirable general values (or,
parameter’) for sensitive attributes are decided by privacy policyr &le, if we leDestIPs
desirable general values be the correspondidgnetwork addresses, this means that ideally, we
want eaclDestIPin its /24 network to be equally likely in alert sets, so malicious sseay not be
able to “guess” which values are more possible.

To generate nonsensitive attributes, we first compute #guéncy distribution of their

151

original values, then we generate artificial attribute galwith the same frequency distribution
in the artificial alert set. As a special case, for timestanfprmation, we first get the minimum
and maximum timestamps for each alert type in the originaft aet, then we uniformly create
timestamps between the minimum and maximum values forcaadifilerts.

Another important issue on artificial alert generation isdexide how many alerts to
generate. Notice that injecting artificial alert data uuaday change the distribution of attribute
values. Intuitively, if a large number of artificial alerteeagenerated, we may better protect alert
privacy (attributes are more uniformly distributed), blné tutility of alerts may decrease. On the
other hand, if only a small number of alerts are created, wein@ease the utility, but alert privacy
may decrease. So the ideal case is to flexibly control therdifice between attribute distributions
based on the requirement from privacy protection. This adp tis decide the number of artificial
alerts to be generated.

We propose to use the distance between probability mastidoaqPMFs) to measure
the difference between attribute distributions. Given atigbute A in both original alert sef,
and mixed alert se%,,,, assume the PMFs fot, in S, andS,, are f,(x) and f,,,(x), respectively,
wherex is possible values fod,. Further assume the domain of attributg is Dom(A;). To
calculate the distance between two PMFs, we first need daftende functiorD(f,, f,,) between
fo(z) and fy,(z). As an example, we can sBX(fo, fm) = >_.c pom(a,) [fm(z) — fo(z)|. (Other
distance functions are also possib)eThrough setting a desirable distance threshold, we magiinj
the number of alerts satisfying the threshold. (In caseitbensttributes in original data sets are
in uniform distributions, we may further specify a maximunmmber of artificial alerts to prevent
infinite alert injection.)

In Figure 8.2, we summarize our algorithm on artificial ageheration. In Line 1, we
prepare the mix alert set. From Line 2 to 5, we compute varidisisibutions in the original data
set for later usage. From Line 7 to 14, we generate one aatifitért. We use different strategies to
generate sensitive attributes, timestamps, and othesaositive attributes. In Line 15, we compute
distances between PMFs. These distances combined withakientmm number of artificial alerts
can help us control the actual number of alerts injected.itie L7, we output the mixed alert set.

Notice that in the above algorithm, we do not consider theeddpnce between different

'For ordinal data, we may also use cumulative distributiocfions (CDFs) to compute the distance between attribute
distributions. Assume the CDFs fet, in S, and S, are F,(z) and F,, (x), respectively. We may séd(F,, F,,) =
> vepom(ay) Fm(z) — Fo(z)|. As another example, we may also use some goodness-ofifisteistics such as
Kolmogorov-Smirnov statistic (which 1 (Fo, Fr) = mayc pom(ay)|Fm(x) — Fo(x)]) to compute the difference
between CDFs.

152

Algorithm. Generation of Artificial Alerts.
Input: An original alert setS,, concept hierarchies for sensitive attributes, a parantete
denoting the desirable number of peers, a distance funflibetween PMFs,
a threshold valud denoting the desirable distance between PMFs, and a thdegdaen,,
of the maximum number of artificial alerts.
Output: A mixed setS,,, of both original and artificial alerts.
Method:
1. Initialize setS,,, to empty. Copy all alerts i¥, to S,,,.
Initialize a distance valué. = 0. Initialize the number of artificial alerts, = 0.
2. Compute the frequency distributidnDr of alert types inS,.
3. Based orL, find desirable general values in concept hierarchies fwsitiee attributes irS,,.
Compute the frequency distribution in terms of these gewataes for each alert type.
4. As of timestamps, get minimum and maximum timestampsdohalert type.
5. Compute frequency distributions of other nonsensittigbates for each alert type.
6. While d. < d andn, < n,
7. Generate an alert typefollowing the distributionF Dp.
Initialize an empty artificial alert, with typeT'.
8. Foreach attributed in ¢,

9. If A is a sensitive attribute

10. Create a general valug following the frequency distribution computed in Step 3.
Replacev, uniformly with v,’s leaf nodes that having-peers.

11. Else if A is a timestamp

12. Choose a timestamp uniformly from the minimum and maxmtimmestamps of".

13. Else if A is another nonsensitive attribute

14, Create an attribute value following the frequency digtron computed in Step 5.

15. For each sensitive attribute, compute distance basédlmetweenS, andS,,,.

16. Letthe minimum distance computed in Step 15bd etn. = n. + 1. Putt, in S,,.
17. OutputS,,.

End.

Figure 8.2: An algorithm to generate artificial alerts

attributes (e.g., the dependence between attridDé=s$IP and DestPor). When there are no such
dependence, we can use the algorithm in Figure 8.2 to genellaélerts. However, when there
does exist the dependence, we need to handle this situativcaution. As an example, if there are
only one web server72.16.10.5 with port 80 open in a network, then usually all those web based
attacks are targetingj72.16.10.5 on port80. This means IP addre4$§2.16.10.5 and port number
80 are dependent in web based attacks. Artificial alert geioarain the one hand, does not require

to strictly satisfy this dependence, because the violatiothis dependence may bring confusion

153

to and require further investigation from malicious usevkjch in some sense may protect data
privacy. However, on the other hand, if we try to make artificlerts and original alerts very
difficult to distinguish, or the utility of data is our favdske concern, we can also maintain attribute
dependence during artificial alert generation. We propesanays to get dependence relationships
between attribute values.

1. Manually collect all dependence relationships througifiows means. For example, based on
attack signatures, and host and network configurations awdeow the hosts and ports that

some attacks are targeting.

2. Compute conditional probabilities between attributkies based on original alert sets, and
follow these conditional probabilities to generate atitédbvalues in artificial alert sets. This

approach is similar to the data-swapping technique prapbgdReiss [92].

To see how well our anonymization schemes can help protertddta privacy, we clas-
sify alert data privacy into two leveldocal privacy andglobal privacy Local privacy is related
to original attribute values in each individual alert. litixely, if the original attribute value for a
sensitive attribute in an alert has been known, the locahpyi for the sensitive attribute in this alert
is compromised. The second level of alert data privacy ibalprivacy, which is related to the dis-
tributions of sensitive attributes in alert set. Intuitivef the distribution of a sensitive attribute in
an original alert set is known, we can derive useful infoioragbout the original set (e.g., the most
possible value in the data set). For both local and globabpyi we useentropy[26] to measure
them. Suppose that we have a valyefor a sensitive attributed, in an alertt. Based onvy, if
we can estimate the possible original valuesigfin ¢t and the corresponding probability for each
possible value, then we can compute at&rtocal privacyH;(t) = — > p; log, pi, wherep; is the
probability for a possible value. Given all attribute vauer a sensitive attributel; in an alert
set.S, we can estimate alert sét global privacy H,(S) = — > P(v;)log, P(v;), wherev; is a
possible value for in S, and P(v;) is the corresponding probability. To help us better undext
global privacy, we may explain it from a random variable (eem) point of view. Assume that a
sensitive attribute is a random variable, and attributeeslifor this sensitive attribute in an alert
set is a realization of this random variable. Then the glgaiacy for the attribute in the given
alert set is a randomness (or uncertainty) measure aborgdhzation of this random variable. Re-
call that we generate uniformly distributed data (basedamtept hierarchies) during artificial alert
injection. The reason is that injecting uniformly distribd data generally may increase the ran-
domness of data sets. Also notice that the distance betwdé&is Bnd the change in global privacy

154

are closely related because we change attribute distitmithrough injecting uniformly distributed
data. And it is also feasible to control the number of arafialerts through adjusting the change in
global privacy.

Back to artificial alert injection, if original alert s, hasm alerts, we inject artifi-
cial alerts in it, thus we totally get: + n alerts in mixed sefS,,. In S,,, each individual alert
has probability; to be original, and probability.-- to be artificial. So its local privacy is

— Y pilogy pi = - logy TR 4 o log, ™R, We can also calculate global privacy for both
S, andS,,, and compute their difference to see how well we can imprdebag privacy. One of
our later experiments shows that through injectifg artificial alerts into an original set with22
alerts, we achieve local privacy with valQg2, and we improve global privacy from696 to 5.692

(the distance between two PMFHiS).

8.1.2 Scheme lI: Attribute Randomization Based on Concept kerarchies

In Scheme |, we inject artificial alerts into original datd. sEor any individual alert in
the mixed alert set, it may be difficult to identify whetherstlalert is original or artificial, hence
sensitive attribute values in any single alert have a chambe faked.

Let us look at Scheme | in detail. Assume that we haveriginal alerts, and inject
artificial alerts into it. Hence in the mixed alert set, ealdrtehas a probability7-- to be original
(or, every alert has a probability’— to be artificial). Based on probability theory, randomlykpic
up k alerts in the mixed set, the probability that at least onet &eoriginal is1 — (=2-)*, and

m+n

the probability that at least one alert is artificiallis- (mlw)’f. As an example, letn = 1000,

n = 300, andk = 2, thus the probability that at least one alert is origina94s57%, while the
probability that both alerts are artificial is onfy33%. This tells us that when the ratio of the
number of artificial alerts to the total number of alerts isalimt is very likely that some alerts in
an alert subset are original even if this subset is small.s€joinvestigating these small subsets
may disclose the privacy of alert data. This problem may bégated by injecting more artificial
alerts. In the extreme case, if we inject a much larger nurobartificial alerts (i.e.,n < n),
then in a randomly selectddalert subset, the probability that at least one alert igial may be
very small even ifk is big. For example, let» = 1,000 andn = 1,000,000. Whenk = 100,
the probability that at least one alert is original is o8l$1%, and even whert = 1,000, the
probability value only increases 63.19%. Notice that with the increase of the number of artificial

alerts, the utility of mixed data sets may be decreasingnam@ overhead is introduced to analyze

155

Algorithm. Randomization for Sensitive Attributes.
Input: An alert setS, a sensitive attribute namé;, a concept hierarch¥f for A,
and a parametef denoting the desirable number of peers.
Output: A setS, of alerts where attributel; are randomized.
Method:
1. Initialize S, to be empty.
2. While the setS has more alerts
3. Pick an alert from S and putt into S,
Assume the value ofl; in t is v,.
Based onH, uniformly select a value, from H wherev, andv, are L-peers.
Replacevs with v, in t.
4. Foreach alert; in S wheret;’s attribute value ofA; is v,

5. Remove; from S and put it intoS,.. Replace;’s value of A with v,.
6. OutputsS,..
End.

Figure 8.3: An algorithm to randomize sensitive attributes

mixed alert sets. Considering privacy, utility, and peniance, we propose to apply randomization
to sensitive attributes, which may allow us protect thegaywof original alerts without injecting a
huge amount of artificial alerts. Notice that our randomixatlgorithm takes advantage of concept
hierarchies, which can preserve some useful informatisensitive attributes (e.g., prefixes of IP
addresses).

Though we motivate attribute randomization in term of miaéett sets, it can be applied
to original alert sets. Given a parametedenoting the desirable number of peers in concept hierar-
chies, the basic idea of our algorithm is to randomize eafflrdnt attribute value; uniformly to
any ofv;’s L-peers (In other words, the mapping and mapped values hasmao general value
vy Wherev, has. leaf nodes). For example, based on the concept hierarchigime=8.1, we may
randomize a sensitive attribui@estiP=172.16.11.8 to DestlP=172.16.11.56 if £ = 256. During
randomization, we keeponsistencyn attribute mapping, which means if two alerts has the same
attribute values for an attributé,, then the mapped values fdr, in both alerts are the same. For
convenience, we call the mapped value ithage valugor simply theimage This consistency is
desirable for later correlation analysis of alert data,setd help us maintain the utility of alert data.
In Figure 8.3, we sketch the algorithm for attribute randaation.

In Figure 8.3, we first initialize the result set in Line 1. link 3, we map an attribute

value in the alert set to one of its-peers (with uniform distribution). From Line 4 to 5, we keep

156

consistency among attribute mapping. And finally in Line & autput the result set.

To see how attribute anonymization may help protect alévapy, let us take a look at
both local privacy and global privacy. Suppose that we ramide a sensitive attributel in an
original alert set. After performing randomization, givamy image value,., we know the original
value of v, may be any ofv,’s L-peers with equal probability (i.e%). Thus the local privacy
value is— Zle %logQ% = log, L. If we randomize a mixed alert set, we can also derive the
corresponding local privacy after considering the prolitgithat a given alert may be original. On
the other hand, based on concept hierarchies and requiterfueriocal privacy values, we may
choose desirable parameters (ef). satisfying the requirements. To consider global privaely,
us assume that there akedistinct values for sensitive attributé, in an alert setS. Since we
keep consistency during randomization, there will be attmiodistinct image values fod; in
randomized alert seéf,.. If k distinct image values do exist, thé have the same global privacy
as inS. When less thak distinct image values are generated (this is possible sedao different
original values may happen to be randomized to the same)yaheeglobal privacy valuéi, (.S,)
in S, may change compared with the valuednwhereH,(S,) may be slightly smaller. Our later
experimental results confirm this conjecture. For exaniplene data set, we sét = 256, and the
global privacy slightly changes from692 (before randomization) t6.671 (after randomization).
To summarize, our attribute randomization may result ighglichange (or no change) in global
privacy, and desirable change (through choosing apptepp@rameters) in local privacy.

8.1.3 Scheme llI: Alert Set Partitioning and Attribute Rand omization

In Scheme II, we randomize sensitive attribute values to theeers and maintain con-
sistency during randomization. A limitation related tasttheme is that once attackers get to know
some(original value, image valug)airs, then for all the image values in the known pairs, witfinh
probability, attackers know their corresponding origisalues in the whole alert set. Notice that
(original value, image value) pairs can be obtained thraaglous means, for example, deliberately
attacking some special hosts and examining publisheddsdéat(e.g., counting frequencies of some
attacks). To mitigate this problem, we propose to partitamnalert set into multiple subsets and
perform randomization (Scheme Il) in each subset indepghderhus one original value may be
mapped to different image values in different subsets.

Our algorithm on partitioning an alert set is based ¢im& constraint Given a time inter-

valZ (e.g.,2 hours) and a s& of alerts, we say satisfies time constraititif |max(EndTime) —

157

min(StartTime)| < Z (i.e., the difference between the maximiEndTimeand the minimum
StartTimein S is less than or equal t6). Based on a time constraint, we partition an alert set into
multiple subsets such that each subset satisfies the tinstrain, then we randomize each subset
through Scheme Il independently.

Now let us look at local and global privacy under Scheme I IBcal privacy, since im-
age values are chosen uniformly frafrpeers, we have a similar analysis as in Scheme II. However,
for global privacy, since it is possible that one originalssin different subsets may be randomized
to different image values, global privacy usually may i after applying Scheme 11l compared
with applying Scheme Il. Our later experimental resultsfconthis conjecture. For example, in
one experiment, we partitioned one data set into four sapgdtich increases global privacy from
5.692 10 6.955.

8.2 Anonymized Alert Correlation

Through our focus in this chapter is alert anonymizatiohmégues, we are also interested
in the utility of anonymized alert sets. To understand thkgybf alert data, it is usually neces-
sary to perform intrusion alert correlation. Notice thatreuat alert correlation approaches usually
concentrate on computing similarity values between algribates, or building attack scenarios
to reflect attackers’ activities. So in this section, we \dtus on these two problems under the
situation that alerts are anonymized. Notice that our eggres are closed related to our previous
method proposed in Chapter 7, however, the alerts that welate are anonymized by the schemes
proposed in this chapter.

8.2.1 Similarity Estimation between Anonymized Attributes

Similarity measurement computes how similar two attribuéee, usually with a value
betweern0 and1. Existing approaches [109, 98, 61] focus on measuring aiityil between origi-
nal attributes. Our anonymization techniques (Schemesdllg) transform original attributes to
random values based on concept hierarchies. Thus it isatiari helpful to estimate similarity be-
tween original attributes only using anonymized valueghinfollowing, we first give an example
function on computing similarity between original valuédsgn discuss how to estimate similarity

values based on anonymized attributes.

158

Assume that we have a sensitive attribdteand two original attributes values andax,
for A;. As an example similarity function, we I8%m (z1, z2) = 1 if 21 = x9, andSim(z1, z2) =
0if x1 # z2. We further assume; andz.’s images arey; andys, respectively, after performing
randomization. We consider two cases regarding whethe@ndx, are in the same subset (an set
is partitioned into multiple subsets in Scheme llI).

(1) Whenx; andx, are in the same subset, we have the following observation.

Observation 3 For a sensitive attributed,, given two original attribute values, and x5 where
they are in the same subset, and two image valgeand y> randomized fronx; and xz, using
Scheme Il (with same parameters suchfdswe know that (i) ifxr; = xo, theny; = yo; (ii) if
Y1 = Y2, T1 andxs may or may not be the same.

We explain our observation through examples. Assumandzs are both destination IP
addresses wheng = 172.16.11.5. Using the concept hierarchy in Figure 8.1, suppose we rando
ize z values to one of it56-peer nodes, ang, is mapped tay; with value172.16.11.98. Since
we keep consistency in Scheme Il = 172.16.11.5, then we knowys = y; = 172.16.11.98.

On the other hand, i, # =1, for example, letry = 172.16.11.9, theny, can be any IP address
from 172.16.11.0 to 172.16.11.255, which has a chance to H&€2.16.11.98. To better characterize
this observation, we compute the following probabilities.

For simplicity, assume the domain ofis £ specific values where each value has equal
probability to be chosen, and two original values and z» are randomized using thei-peer

nodes. Based on conditional probability and total prolitgttiheorems, we can derive

P(x1 =22 ANy1 = o2
Ploy =iy =12) = : P(y1 = y2) |

P(x1 =22 ANy1 = y2)
P(y1 = y2lv1 = 22) P(w1 = x2) + P(y1 = y2|v1 # 22) P(21 # 22)

|
=0=

—1

D=
X
D=

|
L
2L —1°

Similarly, we can getP(z1 # zaly1 = y2) = &, P(z1 = 22ly1 # y2) = 0, and
P(x1 # zalyy # y2) = 1.

159

Notice that though we use the assumption of uniform distidiuabout original values to
derive P(x1 = z2|y1 = y2) = ﬁ we can prove that for other distributions, we hdver; =

Talyr = y2) > ﬁ as long as the attribute domain is the same. We prove it thrbegima 8.2.1.

Lemma 8.2.1 Given a sensitive attributd ; with domain{vy, v, - - -, v, } (v; is @ possible attribute

value forA,), suppose:; andz- are two original values for;, andy; andy, are two image values
for z1 and o, respectively, after applying Scheme Il. Further assureentimber of desirable peer
nodes in Scheme Il i§. P(z; = z2|y1 = y2) has a lower bound whem, vy, -+, v, are in

uniform distribution.

Proof: First, let us assume that in the original alert $&tz; = x2) = a. Then we have

P(x1 = m2|y1 = y2)

P(z1=x2/\y1=y2)
P(y1=y2)

_ P(x1=x2Ay1=Yy2)

P(y1=yz|z1=22) P(z1=22)+P(y1=y2|z1#22) P(x1#72)
(0]

oz-i—lfTa

_ L

L£-14+1

Now let us discuss how to compute Suppose the probabilities for possible attribute
valuesvy, vg, - - -, v, IN Ay's domain arepy, po, - - -, pn, respective, wherg; + ps + - - - + p, = 1.
Thena = p? +p3 +--- + p2.

Based on Cauchy’s inequalitp ", a;b;)? < (30, a?)(D-1, b?), we can derivex =

=1

Srp? > (3 pi)?/n = L. Then we know that the minimum value ofis 1, wherep; =
p2 = -+ = p, = & (uniform distribution). Next we prové(z1 = waly1 = y) = 7= is

monotonically increasing wheh< o < 1.

Assumel < a; < a < 1. Then- > . Nextwe havel — 1+ = > L —1+

a9 ag az’
L L

Finally we getc—1+a—11 RS

<
To summarize, we know that(z; = z2|y; = y2) have a minimum Valu%ﬁ when
v1, U9, - - -, Up, @re in uniform distribution.
(2) Whenz; and zo are in different subsety; andzy are randomized independently.
Assume their randomization has the same input parametgrs4{g With the similar reasoning as

in (1), we know that as long as, andx, are £-peers,y; andy, have a chance to be the same, or

160

to be different. Under the same assumption as in (1), we cavedbat P(x1 = z2|y1 = y2) = %
P(z1 # wolyr = y2) = £52, Py = 2alyn # 1) = £, andP(z1 # xaly1 # y2) = 571

As an example to estimate similarity betwegnandy,, we estimate how possible their
corresponding:; andz-, are the same, and use this probability value as their siityilalue. Based
on the above assumption and reasoning, we can get an exampéeity function for anonymized
attributes as follows.

ﬁ, if (y1 andy, areL-peers)A (y1 = y2) A (y1 andy, in the same subset),
Sim(y1,y2) = ¢ £, if (y1 andy, areL-peers)A (y1 andys in different subsets),

0 otherwise.

(8.1)
Notice that to derive the new similarity function above, wdyoconsider a simple case
regarding how possible original attributes may be the saRme.more complicated case, we may

apply a similar, probability-based approach to derive ngmcfions for anonymized attributes.

8.2.2 Building Attack Scenarios

Attack scenarios help us understand what steps advertaieeto attack victim machines.
For example, an attacker may first run IP sweep to detect haddresses, followed by port scan-
ning attacks to look for open ports, and finally launch budfeerflow attacks to gain root privileges
on some live hosts. To build attack scenarios, it is crucatléntify causal relations between indi-
vidual attacks. For example, there is a causal relationdmtvan earlier IP sweep attack and a later
port scanning attack because the IP sweep attack may de&ell? hddresses, which can be further
probed by the port scanning attack to determine what pogts@en.

There are several approaches being proposed to build atadarios. They can be clas-
sified into two categories: (1) known attack scenario baggmicaches such as [36, 78], and (2)
prerequisite and consequence based methods such as [183].2Bhese approaches can build at-
tack scenarios when original attributes are known. To latiigick scenarios from anonymized alerts,
we use a probability based approach, which is extended frorprevious correlation method [83].
For the formal model of our approach [83], please refer togfdra2 for details. In the following,
to facilitate our discussion, we first give examples of pyeisites, consequences, goepare-for

relations, which will be used in later examples.

161

Example 19 Given an alert typ&TP_AIX _Overflow, its prerequisite i€xistService(DestIP,DestPart)
and its consequence igGainAccess(DestIP) which means that the necessary condition of an
FTPAIX _Overflowattack is thatFTP service is running oestlPat port DestPort and the con-

sequence of this attack is that attackers may gain unawtbdraccess tDestIP

Example 20 Assume that we have two alert typesrtScanand FTP_AIX _Overflow where the
consequence of tydeortScanis EixistService(DestIP, DestPortfFurther assume that we have
two alertst; and ¢, wheret; is a typePortScanalert {SrclP=172.16.10.28, SrcPort=1073, Des-
tIP=172.16.30.6, DestPort=21, StartTime=01-16-2000@:82, EndTime=01-16-2006 18:00:)2
andt, is a typeFTP_AIX _Overflowalert {SrcIP=172.16.10.28, SrcPort=1081, DestIP=172.16.30.6,
DestPort=21, StartTime=01-16-2006 18:01:05, EndTime+62006 18:01:03. Thus the instan-
tiated consequence of is {ExistService(172.16.30.6, 21)and the instantiated prerequisite ©f

is ExistService(172.16.30.6, 21rurther due tof;.EndTime< t,.StartTime, we know, prepares

for t9.

A Probability Based Approach to Building Attack Scenarios.

To build attack scenarios, it is critical to identify prepedor relations. When all origi-
nal values are known, this identification is straightfordvakowever, when alerts are anonymized

through randomization, identifying prepare-for relaioequires more efforts.

Example 21 Let us re-consider Example 20. Assume astIPis sensitive, and we do not know
their original values in both alert$; andt,. Based on the prerequisites, the consequences, and
the available nonsensitive values, we know thabrepares foris only if ¢; andt, have the same
original destination IP addresses. For simplicity, assutihat the original values oDestIPare

uniformly distributed froml72.16.30.0 till 172.16.30.255, and attribute randomization uniformly

162

chooses IP addresses frarfi2.16.30.0 to 172.16.30.255 to replace original values (the number of
peers used in Scheme Il&5= 256). We consider two cases. (1) Suppose thatndt, are in the
same subset (in terms of alert set partitioning in Schenelflt; andt,’s anonymized destination
IP addresses are the same (e.g., both Hf2.16.30.52), then based on our reasoning in similarity
estimation (Subsection 8.2.1), we know that with prowogﬁ = ?f’Tﬁ = 0.501, t; andt, may
have the same original destination IP addresses. Equitiglgn andt, may have different original
destination IP addresses with probabiliy499. In addition, if after randomizatiory,; andt, have
different anonymized destination IP addresses, we knowihba original destination IP addresses
are different. (2) Suppose that andt. are in different subsets. we know thatand ¢, may be
possible (with probability% = 2—51)6) to have the same original destination IP addresses as lang a

their anonymized values ag&-peers.

Based on the above observation, we realize that we can omhtifig possible prepare-
for relations after attribute randomization. To charaetethis observation, we propose to asso-
ciate a probability value to each possible prepare-fotticela when building attack scenarios from
anonymized alerts. Notice that sometimes precisely coimgulhe probability that one alert pre-
pares for another is difficult because analysts do not kn@laiility distributions of original at-
tribute sets. However, as we mentioned in Subsection 82l hkso proved in Lemma 8.2.1, we can
get lower bound probability values under the assumptiomdbrm distributions. We take advan-
tage of this observation and defipessibly-prepare-forelation. Formally, given two anonymized
alertst; andts, t; possibly prepares fot, with at least probability if (1) the probability thatt{
prepares fots is no less thamp, and (2)p > 0. Our probability based approach is closely related
to the optimistic approach in Chapter 7. However, here frtitias related to possibly-prepare-for
relations are lower bound values and are estimated baseldecanbnymization schemes in this
chapter. To continue Example 21, (1) whignrandt, are in the same subset,tif andt, have the
same anonymizeBestIP, we knowt, possibly prepares far with at least probabilityd.501; (2)
whent; andts are in different subsets, if their anonymized destinatPmaddresses argpeersg;

possibly prepares fap, with at least probability%LG.

163

In the above example, there are only one implication retatiip between instantiated
predicates for two alerts. It is also possible that there mdst multiple implication relationships.
To deal with this situation, similar as in Chapter 7, we asswach implication relationship are
independent, and then estimate the probability that at taasimplication relationship is true. In
particular, if there are implication relationships, and the probability that eadiplication relation-
ship is true is at leasty, po, - - -, pn, respectively, then the probability that at least one iogilon
relationship is true has a lower-bound value (1 —p1)(1 — p2)--- (1 — py).

To build attack scenarios from anonymized alerts, we iflerdl possibly-prepare-for
relations and connect them into a graph. For conveniendbgiremainder of this chapter, we may
use prepare-for relations to represent either prepareefations, possibly-prepare-for relations, or
both, if it is clear from the context.

Lower-bound probabilities related to prepare-for relagionay also be used to “polish”
alert correlation graphs. Actually if we take a close lookhatv we compute these probability
values, the basic problem involved is to decide how posdhmerelated attributes have the same
original values. In some cases, we can estimate precisalpiity values. For example, suppose
the desirable number of peersfswhen applying Scheme Ill. If two anonymized attributes are
in different subsets, and they arfepeers, then the probability that they have the same original
value is%. However, in some other cases, for example, two anonymittetiides are in the same
subset and have the same anonymized values, we usually saypasiniform distribution to get
lower-bound probability values. Considering that pregarerelations are identified through this
probability based approach, it is natural that some prefminelations may not be true. A common
way to filter out false prepare-for relations is to examingirtihelated (lower-bound) probabilities.
If the probability is greater than a given probability tHiekl, we keep it in the correlation graph,
otherwise we remove it. Notice that in Chapter 7, a probgtilased refinement to alert correlation
graphs also has been proposed. However, the approach ine€iap to calculate the probability
for a set of prepare-for relatiohisand use this probability to perform aggregation to alerteda-
tion graphs. While the approach in this chapter is to exaramfilter out individual prepare-for
relations. In addition, we agree that the approach in Chaptecomplementary to the approach in
this chapter, and may be applied here. Though our approagliing alert correlation graphs
may help us remove false prepare-for relations, we alse@dhiat it has a chance to prune true

prepare-for relations. It is necessary to examine both atarelation graphs with and without

2|f there aren prepare-for relations with probabilities, po, - - -, pn, respectively, and these prepare-for relations are
independent, then the probability that at least one prefoanelation is true isl — (1 — p1)(1 — p2) -+ (1 — pn).

164

probability-polishing to understand attackers’ actasti

8.3 Experimental Results

To evaluate the effectiveness of our techniques, we did afsetperiments to evaluate
Scheme | (artificial alert injection), Scheme Il (attribuémdomization), Scheme Il (alert set parti-
tioning and attribute randomization), similarity estimatand building attack scenarios. The data
sets we used are 2000 DARPA intrusion detection scenarwfgpdata sets [77]. These data sets
were collected in simulation networks and include two sdesa LLDOS 1.0 and LLDOS 2.0.2.
Both scenarios have two data sets collected over differams pf the networks: the inside part and
the DMZ part. In LLDOS 1.0, the attackers first probed the mekwthen launched buffer overflow
attacks against vulnerab&admindservices, next installed DDoS software on victim hosts, fand
nally ran DDoS attacks against a server. LLDOS 2.0.2 has #asiatenario as in LLDOS 1.0. We
used RealSecure network sensor 6.0 [52] to generate alentsthe data sets. Similar as done by
DShield [106], we set attributBestIP (destination IP addresses) in all alerts as sensitivebaté)

and anonymized them using the schemes in this chapter.

8.3.1 Experiments on Scheme |

In our first set of experiments, our goal is to evaluate theatiffeness of artificial alert
injection. We injected artificial alerts into all four datats through the algorithm in Figure 8.2.
To apply this algorithm, for sensitive attribuBestlP, we set the desirable general value for each
address to its correspondin@4 network address, which means that we replace a general value
using one o256 IP addresses in the corresponding network. We used distancéon D between
PMFs to control artificial alert injection, whet@(fo, fm) = >_,c pom(a,) [fm () — fo(z)|. We set
distance threshold (between PMs} 0.3 and maximum artificial alert number, = 300. The
experimental results are shown in Table 8.1, Figure 8.4 Tabtk 8.2.

Part of data utility is related to alert type frequencieg.(esecurity officers may count
attack type frequencies to see what events are most pgssilbtelearn whether our algorithm
can preserve type frequencies in mixed alert sets (compethdriginal sets), we computed type
frequencies for all data sets. For demonstration purposeshew the results for one data set in

Table 8.1. Based on Table 8.1, we observed that each alertigp very close frequencies both in

165

Table 8.1: Alert type frequency distribution in LLDOS 1.&ide part

Alert type Frequency in original set Frequency in mixed set
Admind .018438 .016513
Email Almail_Overflow .041214 .040366
EmailDebug .002169 .001834
EmailEhlo .566160 570642
FTP_Pass .053145 .056880
FTP_Syst 047722 .046788
FTP.User .053145 .052293
HTTP_Cisca CatalystExec .002169 .001834
HTTP Java .008676 .011009
HTTP_Shells .016268 .015596
MstreamZombie .006507 .005504
PortScan .001084 .000917
RIPAdd .001084 .000917
RIPExpire .001084 .002752
Rsh .018438 .016513
SadmindAmslverify_Overflow .015184 019266
SadmindPing .003253 .002752
SSHDetected .004338 .003669
StreamDoS .001084 .000917
TelnetEnvAll .001084 .000917
TelnetTerminaltype .136659 131192
TelnetXdisplay .001084 .000917

original sets and mixed sets.

To see how our algorithm may change the distributions ofiseasttributes to protect
data privacy, we further plotted the PMFs foestIPin both original and mixed data sets in Figure
8.4(a), 8.4(b), 8.4(c), and 8.4(d). Note that in these figueach destination IP address is trans-
formed into an integer. If the format of an IP addresdi8.C.D whereA, B, C'andD are integers
betweerD to 255, thenA.B.C.D is transformed to an integer= A x 224 + B x 216+ C x 28+ D.
Based on these figures, we observed that the distributiomixied sets are changed compared with
original data sets.

To more precisely evaluate alert privacy, we computed laaodl global privacy for each
data set. The results are shown in Table 8.2. Based on thés t&é noticed that through Scheme
I, we can better protect alert privacy because both localgoldal privacy values increase. For

example, in LLDOS 1.0 inside part, we injected arousnl of artificial alerts among all alerts, and

166

T T T T T T T T T T
— Original data set
- - Schemel r

2 25 3 35 4 45 22 24 26 28 3 32 3.4 36
x10° x x10°

>

(a) LLDOS1.0Inside (Original & Scheme) (b) LLDOS1.0DMZ (Original & Scheme I)

T T T T T T T T
— Original data set - Or\é;mal Idalaset
0.4 - - Schemel 4 Scheme

(c) LLDOS2.0.2Inside (Original & Scheme 1) (d) LLDOS2.0.2DMZ (Original & DMZ)

Figure 8.4: PMFs in original alert set and after applying&uh |

local privacy increases froito 0.620, and global privacy increases frofr696 to 5.692.

8.3.2 Experiments on Scheme I

In this set of experiments, our goal is to see the effectiseré attribute randomization
using Scheme Il. We applied Scheme Il to all four data setgticR&arly, we randomized destina-
tion IP addresses in mixed alert sets to t¥i6-peers (any IP addresses in the correspondiniy
networks). Figures 8.5(a), 8.5(b), 8.5(c), and 8.5(d) skwevPMFs after applying Scheme Il in
mixed data sets (solid blue lines).

Based on these figures, we observed that the distributiof¥esfiP have been greatly

167

Table 8.2: Local and global privacy: original set,S,,: mixed set, attributeDestIP).

LLDOS1.0| LLDOS1.0| LLDOS2.0.2| LLDOS2.0.2
Inside DMZ Inside DMZ
original alerts 922 886 489 425
artificial alerts 168 164 89 78
artificial alerts 15.41% 15.62% 15.40% 15.51%

alerts in mixed set

Local privacy inS, 0 0 0 0

Local privacy inS,, (Scheme I) 0.620 0.625 0.620 0.623
Local privacy inS,, (Scheme II) 7.387 7.376 7.388 7.382
Local privacy inS,, (Scheme IlI) 7.387 7.376 7.388 7.382
Global privacy forS, 4.696 4.845 4.461 4.519
Global privacy forS,, (Scheme I) 5.692 5.806 5.372 5.383
Global privacy forS,, (Scheme II) 5.672 5.792 5.360 5.363
Global privacy forS,, (Scheme III) 6.955 7.041 6.097 6.033

changed after randomization. To further precisely evaladért privacy, we also calculated local
and global privacy for mixed alert sets. Table 8.2 shows dselts. From this table, we observed
that local privacy has been significantly increased, whichighly desirable, and global privacy

stays almost the same, which results from consistency kgehiring randomization.

8.3.3 Experiments on Scheme llI

In this set of experiments, we applied Scheme Il to all fouxed alert sets. We set time
interval Z = 1 hour to partition the alert sets, and we got 4 subsets in LLD@M3nside data set,
4 subsets in LLDOS 1.0 DMZ data set, 2 subsets in LLDOS 2.GRléndata set, and 2 subsets in
LLDOS 2.0.2 DMZ data set. In each subset, we randomizedraddiin |IP addresses to th&is6-
peers. AttributeDestIPdistributions are shown in Figures 8.5(a), 8.5(b), 8.5{0y 8.5(d) (dashed
green lines).

Compared with Scheme II, we noticed that attribute distiiims after applying Scheme
Il have been further changed. We also computed local anoaglorivacy values, and listed them
in Table 8.2. We observed that local privacy stays the samegobal privacy further increases,

which results from independent randomization in each gubse

168

T T T T T T T T T
— Scheme Il
— Scheme Il = - Scheme lll
0.07- = - Scheme lll b 0.061-

oo - -
(a) LLDOS1.0Inside (Schemes II & IT) (b) LLDOS1.0DMZ (Schemes |1 & I1l)
) -]
(c) LLDOS2.0.2Inside (Schemes Il & III) (d) LLDOS2.0.2DMZ (Schemes Il & 111)

Figure 8.5: PMFs after applying Schemes Il and 11l

8.3.4 Experiments on Similarity Estimation

To examine data utility after applying our anonymizatiochigiques, we evaluate similar-
ity estimation for anonymized data sets in this subsection.

Similarity estimation is based on our discussion on Sulme@&.2.1. For original data
sets, if two attribute values are the same, we set their aiityilto 1; otherwise their similarity is
0. Next we applied three anonymization schemes indepeny@ritbre we chose similar settings as
in Subsections 8.3.1, 8.3.2, 8.3.3 (the only differencéas here we applied Schemes Il and Il to
original alert sets instead of mixed alert sets). For tha dats after applying Scheme I, we measure

attribute similarity using the function for original setsnd for the data sets after applying Schemes

169

Table 8.3: Correct classification rate and misclassificatade

LLDOS1.0| LLDOS1.0| LLDOS2.0.2| LLD0OS2.0.2
Inside DMz Inside DMZ
all pairs 424,581 392,055 119,316 90,100
similar pairs in original set 18, 540 14,558 6,785 4,485
similar pairs| 18,664 14,803 6,832 4,548
Scheme | R.. 100% 100% 100% 100%
Rine 0.0305% 0.0649% 0.0418% 0.0736%
similar pairs| 18,540 14,558 6,785 4,485
Scheme I Ree 100% 100% 100% 100%
Rine 0% 0% 0% 0%
similar pairs| 59,195 45,764 13,732 8,183
Scheme llI Ree 100% 100% 100% 100%
Rine 10.01% 8.27% 6.58% 4.32%

II'and Ill, we used the function in Subsection 8.2.1 to estaiheir (lower-bound) similarity values.
Next, similar as done in Chapter 7, we also usedect classification ratéz.. andmisclassification
rate R,,. to measure the effectiveness of similarity estimation.e@itwo attribute values, if their

similarity value is greater thaé, we call them®similar” pair . Assume the alert sets before and

common similar pairs it¥ and .S,
similar pairs inS

similar pairs inS, —# common similar pairs it¥ and.S» ;
#total pairs-# similar pairs inS . The results are shown in Table 8.3.

From Table 8.3, we observed that correct classificationisdt®0%, and misclassification

,andR,,. =

after anonymization ar& andS,., respectively, thek.. =

rate is low (the maximum is arourid%). We also noticed that the results from Scheme Il are very
desirable. These results tell us that the data utility Isstinificantly preserved after performing
our anonymization techniques.

8.3.5 Experiments on Building Attack Scenarios

In this subsection, we evaluate the effectiveness of mgldittack scenarios when alerts
are anonymized. We did experiments using all four data sets.

In the first set of experiments, we identified all possiblggare-for relations and built
correlation graphs. The information about prerequisites @onsequences for alert types, as well
as implication relationships can be found in Tables 5.3 addBor demonstration purpose, Figure
8.6 shows a correlation graph from LLDOS 1.0 Inside dataafeti(performing Scheme | and then
Scheme II).

Sadmind_Ping67341

Sadmind_Amslverify_Overflow67442

Sadmind_Amslverify_Overflow67430

Sadmind_Amsiverify_Overflow67438

Sadmind_Amsiverify_Overflow67428

Sadmind_Amslverify_Overflow100091

Email_Almail_Overflow67302

Email_Almail_Overflow100025

Email_Almail_Overflow67533

Sadmind_Amsiverify_Overflow100047

Email_Almail_Overflow67525

Sadmind_Amslverify_Overflow100105

FTP_Syst67243 Sadmind_Ping67343

Sadmind_Ping67286

Sadmind_Amslverify_Overflow100009

Email_Almail_Overflow67292

Email_Almail_Overflow67529

Sadmind_Amslverify_Overflow67440

sadmind_Amsiverify_Overflow67432

Sadmind_Amsiverify_Overflow67436

Email_Almail_Overflow67304

Sadmind_Amslverify_Overflow67434

Sadmind_Amslverify_Overflow67422

Sadmind_Amslverify_Overflow67417

sadmind_Amsiverify_Overflow67420

Sadmind_Amsiverify_Overflow67416

Sadmind_Amslverify_Overflow67426

sadmind_Amsiverify_Overflow67424

Sadmind_Amsiverify_Overflow100116

Sadmind_Amslverify_Overflow100127

Sadmind_Amslverify_Overflow100149

Rsh67562

Rsh67539

Rsh67535

Rsh67536

Rsh67538

Rsh67559

Rsh67560

Rsh100121

Rsh67558

Rsh67553

Rsh67542

Rsh67540

Rsh67547

Rsh67549

Rsh67550

Rsh67546

Rsh67545

Rsh67543

170

Mstream_Zombie67563

Mstream_Zombie67554

Mstream_Zombie67777
Stream_D0S67773
Mstream_Zombie67776

Mstream_Zombie67767

Mstream_Zombie67537

Figure 8.6: A correlation graph in LLDOS 1.0 Inside data set

In Figure 8.6, the string inside each node is the alert tyflevied by an alert ID. For

comparison purpose, we also built the alert correlatioplyfaom the corresponding original data

set, where the nodes in this scenario are those without apglay-marking in Figure 8.6. For all

those gray nodes, the ellipse nodes are in original datawskiie the rectangle nodes are artificial

171

Table 8.4: Recall and precision measures in our experiments

LLDOS 1.0 LLDOS 2.0.2
Inside | DMz Inside | DMZ
RealSecure # alerts 922 886 489 425
Correlation for original datasets # alerts 44 Y4 13 5
Correlation for anonymized datasets? original alerts 48 61 20 5
artificial alerts 9 3 2 0
RealSecure Recall M, 61.67% | 57.30% | 80.00% | 57.14%

Correlation for original datasets Recall M, 60.00% | 56.18% | 66.67% | 42.86%
Correlation for anonymized datasets RecallV/, 60.00% | 56.18% | 66.67% | 42.86%
RealSecure PrecisionM,, | 4.77% | 6.43% | 3.27% | 1.41%
Correlation for original datasets | PrecisionM,, | 93.18% | 94.74% | 76.92% | 60.00%
Correlation for anonymized datasets Precision)M,, | 77.19% | 84.38% | 45.45% | 60.00%

alerts. The attack scenario in Figure 8.6 tells us that ledtacprobed the vulnerable service using
SadmindPing, compromisedsadmindservices usinggadmindAmslverifyOverflowattacks, used
Rshto startmstreammaster and zombies, latstreanmaster and zombies communicate with each
other (MstreamZombig, and finally launche&treamDoSattacks, which is consistent with the real
attack scenario involved in this data set.

In Figure 8.6, we observed that artificial alerts (eSagdmindAmslverifyOverflow100091L
and false alerts (e.ggmailLAlmail_Overflow67302may be involved in alert correlation graphs. To
further measure the quality of alert correlation graphs,ca@putedrecall M, and precision M,

measuresfor all four data sets, where we 181, = - tdetectedattacks ___anqj) 7, — #1ue alens

The results are shown in Table 8.4.

In Table 8.4, the number of alerts related to correlationhmds are the number of alerts
in alert correlation graphs. From Table 8.4, we observet dhificial alerts may or may not be
included into the alert correlation graphs. This tells ust thitackers cannot use alert correlation
graphs to distinguish between original and artificial alenthich is desirable for privacy protection.
We also noticed that the correlation methods have sliglotlyel recall measures compared with
RealSecure network sensor, but much higher precision mesasin addition, the measures related
to the correlation method for anonymized data sets are |twear those related to the correlation

method for original data sets. This is reasonable becaugmardata sets are more precise than

3Recall and precision are basic measures in informatiorevet field.

172

anonymized data sets.

We also did experiments to polish the alert correlation ksaghrough examining the
(lower-bound) probability of each edge. In our experimemts set probability threshold tgé—()..
For demonstration purpose, here we discuss the result @gshg the alert correlation graph in
Figure 8.6. After probability polishing, the number of neda the resulting graphs reduced from
57 to 45. We noticed that probability based polishing can help usorentalse prepare-for relations,
which may further filter out false alerts (e.dEmailLAlmail_Overflow6729p and artificial alerts
(e.g.,SadmindAmslverifyOverflow10000Q However, true prepare-for relations also have a chance
to be ruled out (e.qg., the prepare-for relation betwieeh67542andMstreamZombie6777), which
is not desirable. So it is always helpful to examine bothtalerrelation graphs with and without

probability based pruning to learn attackers’ activities.

8.4 Summary

To protect the privacy of intrusion alert data sets, in thigpter we propose three pertur-
bation based schemes to anonymize sensitive attributderts.aOur techniques include injecting
artificial alerts into original data sets, applying atttdguandomization, and partitioning data sets
and then performing randomization. To examine the utiliftyaeonymized alerts, we use proba-
bility based method to estimate attribute similarity anddattack scenarios. We also use various
measures such as correct classification rate to measurélityeofianonymized data sets. Our ex-
perimental results demonstrated the usefulness of ounigpods. Though our experiments mainly
focused on 2000 DARPA intrusion detection scenario speddia sets and we used a simple at-
tribute anonymization policy, we would expect some obdema are also useful to other data sets,
for examples, the attack scenarios constructed from ourghitity based approach (without prun-
ing) are supergraphs of the ones constructed from origial sets, probability-based pruning may
filter out both false and true prepare-for relations, andsforilarity estimation, we cannot always
expect0% misclassification rate. We also notice that to apply ourneples, some expert knowl-
edge is necessary, for example, deciding sensitive atdbahoosing the desirable number of peers
(£) or desirable entropy values, and designing concept luieies with the consideration of the
desirable number of peers or entropy values.

There are several directions worth further investigatiOme is additional techniques to

perform alert anonymization. Our techniques on injectirigicial alerts may introduce additional

173

overhead on alert correlation analysis. Combining ournighes with other complementary tech-
niques such as hash function based methods [69] is worthi@uli research. Other directions
include, for example, additional alert correlation anayechniques that can help us understand
security threats based on anonymized data sets, and tha@rparfce of privacy-preserving alert

correlation techniques.

174

Chapter 9

Conclusion and Future Work

9.1 Conclusion

To defend against various attacks, many security systeofsagiintrusion detection sys-
tems are deployed into hosts and networks to better proigitalcassets. These systems flag alerts
when suspicious events are monitored. However, there dr&mavn problems related to the cur-
rent intrusion detection systems: (1) they may flag thousaficlerts per day, thus overwhelming
the security officers, (2) among all the alerts, true posgtigre mixed with false positives, and it is
usually difficult to differentiate between them, and (3)stixig intrusion detection systems cannot
detect all attacks. These challenges make manually anglylze alerts from multiple security sys-
tems time-consuming and error-prone. To better understandrity threats from various sources
and take appropriate response, it is necessary to perfemncakrelation.

My dissertation focuses on correlation analysis of intbashlerts. In particular, | have
studied the following problems.

Efficiency of Intrusion Alert Correlation. This is an extended work to our previous
correlation method [82, 83]. The initial implementation[88] is a Database Management System
(DBMS) based toolkit, which have been shown to be effectiveugh our experiments. However,
our experience also shows relying entirely on DBMS intrafugnacceptable performance penalty,
especially for interactive analysis of intensive alerts.

To address the performance problem, we adapt main memoex isttluctures (e.g., B

175

Trees, T Trees, Linear Hashing) and database query optiorizgchniques (e.g., nested loop join,
sort join) to facilitate timely correlation of intensiveeats. By taking advantage of the characteris-
tics of the alert correlation process, we present threeniquks namedhyper-alert container, two-
level index,andsort correlation The performance of these techniques is studied throughiesse
of experiments. The experimental results demonstrate(ihdtyper-alert containers improve the
efficiency of order-preserving index structures, with vihan insertion operation involves search
(e.g., Array Binary Search, T Trees), (2) two-level indexypioves the efficiency of all index struc-
tures, (3) a two-level index structure combining Chainedk&t Hashing and Linear Hashing is the
most efficient for streamed alerts, (4) sort correlatiomviséap sort algorithm is the most efficient
for alert correlation in batch, (5) two-level Linear Haghiis the most efficient for alert correlation
when sliding window is used to cope with memory constraint.

Learning Attack Strategies. We notice that understanding the strategies of attacks is
crucial for security applications such as computer and okvorensics, intrusion response, and
prevention of future attacks. We present techniques tongaiically learn attack strategies from
intrusion alerts. The essence of this approach is a modeldpegesents an attack strategy as a graph
of attacks with constraints on the attack attributes andehmporal order among these attacks. To
learn the intrusion strategy is to extract such a graph framgaence of intrusion alerts. To further
facilitate the analysis of attack strategies, we presafinigues to measure the similarity between
attack strategies. The basic idea is to reduce the siryilardasurement of attack strategies into
error-tolerant graph isomorphism problem and measureithéasty between attack strategies in
terms of the cost to transform one strategy into another.

Hypothesizing and Reasoning about Attacks Missed by Intru®n Detection Systems.
Though many alert correlation methods have been proposextémt years, we observe that all of
these methods depend heavily on the underlying IDSs, antbtaleal with the attacks missed by
IDSs. In order to reduce the impact of missed attacks, wesptesseries of techniques to hypothe-
size and reason about attacks possibly missed by the ID$sldition, we also discuss techniques
to infer attribute values for hypothesized attacks, todagk hypothesized attacks through raw audit
data, and to consolidate hypothesized attacks to genematése attack scenarios.

Intrusion Alert Correlation Based on Triggering Events and Common Resources.
We notice that complementary security systems are widghogled in networks to better protect
digital assets. To analyze the alerts from different systeme propose a correlation approach based
on triggering events and common resources. One of the kegeptsin our approach is triggering
events, which are the (low-level) events that trigger aldBy grouping the alerts sharing “similar”

176

triggering events, a set of alerts can be partitioned infferdint clusters such that the alerts in the
same cluster may correspond to the same attack. Our appiwdobr examines whether the alerts
in each cluster areonsistentwith relevant network and host configurations, which helplgsts

to partially identify the severity of alerts and clustersheTother key concept in our approach
is input and output resources, whenput resourcesare the necessary resources for an attack to
succeed, andutput resourcesire the resources that an attack supplies if successful. rogose

to model each attack through specifying input and outpudwe®s. By identifying the “common”
resources between output resources of one attack and ggmuirces of another, it discovers causal
relationships between alert clusters and builds attackest®s.

Privacy-Privacy Alert Correlation through Generalizatio n. With the increasing secu-
rity threats from infrastructure attacks such as worms asiglilolited denial of service attacks, it is
clear that the cooperation among different organizatiemecessary to defend against these attacks.
However, organizations’ privacy concerns for the incidemtl security alert data require that sen-
sitive data be sanitized before they are shared with ottganizations. Such sanitization process
usually has negative impacts on intrusion analysis (suetheaiscorrelation). To balance the privacy
requirements and the need for intrusion analysis, in Chdpte propose a privacy-preserving alert
correlation approach through generalization based oneitigerarchies. Our approach consists of
two phases. The first phaseastropy guided alert sanitizationvhere sensitive alert attributes are
generalized to high-level concepts to introduce uncdstdimo the dataset with partial semantics.
To balance the privacy and the usability of alert data, we@se to guide the alert sanitization
process with the entropy or differential entropy of saeitizattributes. The second phasesasi-
tized alert correlation We focus on defining similarity functions between sandizdtributes and
building attack scenarios from sanitized alerts.

Privacy-Preserving Alert Correlation through Perturbati on. Intrusion alert data sets
are critical for security research such as alert correfatidowever, privacy concerns about the data
sets from different data owners may prevent data sharingraegtigation. It is always desirable
and sometimes mandatory to anonymize sensitive data insatier before they are shared and ana-
lyzed. To address privacy concerns, in Chapter 8 we propoee perturbation based schemes to
flexibly perform alert anonymization. These schemes argetyarelated but can also be applied in-
dependently. In Scheme |, we generate artificial alerts ardham with original alerts to help hide
original attribute values. In Scheme II, we further map gmmesattributes to random values based
on concept hierarchies. In Scheme lll, we propose to pamtiéin alert set into multiple subsets
and apply Scheme Il in each subset independently. To eeahratacy protection and guide alert

177

anonymization, we definecal privacyandglobal privacy and usentropyto compute their values.
Though we emphasize alert anonymization techniques int€h8pto examine the utility of data
sets, we further perform correlation analysis for anonguidata sets. Similar as Chapter 7, We
focus on computing similarity values between anonymiz#étibates and building attack scenarios

from anonymized data sets.

9.2 Future Work

Though we have addressed a few problems in intrusion alerélation and intrusion
detection, there are many problems that have not been fidlseased. In the following, we list two

directions worth further investigation.

¢ Distributed intrusion alert correlation To protect the cyber security of an enterprise, an or-
ganization, or an institution with large numbers of compaitnd networks, security systems
such as intrusion detection systems are usually deployedmany different places. To ef-
fectively learn the security threats, security officerschaeperform correlation analysis for
the alerts from those different places. Thus, how do we gepialtiple different security
systems? How do we perform alert correlation in order tonélae local as well as the global
security threats in a timely and effective fashion? Thesblpms are challenging and have

not been fully addressed.

e Additional techniques for privacy-preserving alert cdat@on. To defend against the infras-
tructure attacks such as worms and distributed denial efcee(DDoS) attacks, it is clear
that the cooperation between different organizations ces®ary. However, different orga-
nizations, companies and individuals are not willing torshattack related data unless the
sensitive information in the data sets are anonymized. lap&hs 7 and 8, we propose
two complementary approaches to anonymize sensitive altetiutes (based on concept hi-
erarchies), where in Chapter 7, we propose to generalizgtisenattributes to high-level
concepts, and in Chapter 8, we propose to use concept Higrsuto facilitate artificial alert
generation and attribute randomization. These approadmepreserve the privacy of alert
data. However, since generalized attribute values usuadly take different formats com-
pared with original values (they usually have differentilatite domains), the approach in

Chapter 7 may let malicious users realize that attributeslent sets are sanitized, which

178

may infer organizations’ privacy policy. Artificial alemjection in Chapter 8 may introduce
more overhead on correlation analysis of anonymized aléftseover, both approaches in
Chapters 7 and 8 may introduce false causal relations. Hadgstjonal, complementary alert
anonymization technigues that can not only protect theapyivof data sets, but also generate

useful results after correlation analysis are worth futesearch.

179

Bibliography

[1] N. Adam and J. Wortmann. Security-control methods fatistical databases: A comparison
study. ACM Computing Survey21(4):515-556, 1989.

[2] D. Agrawal and C. Aggarwal. On the design and quantifaratf privacy-preserving data
mining algorithms. IrProceedings of the 20th ACM SIGMOD-SIGACT-SIGART Symposiu
on Principles of Database Systenvay 2001.

[3] R. Agrawal and R. Srikant. Privacy-preserving data mgniln Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Ditay 2000.

[4] A. Aho, J. Hopcroft, and J.D. UllmanThe Design and Analysis of Computer Algorithms
Addison-Wesley, 1974.

[5] A. Ammann, M. Hanrahan, and R. Krishnamurthy. Design afiemory resident DBMS. In
Proceedings of IEEE COMPCQI$an Francisco, February 1985.

[6] P. Ammann, D. Wijesekera, and S. Kaushik. Scalable, ltzgsed network vulnerability
analysis. InProceedings of the 9th ACM Conference on Computer and Coinatioms
Security pages 217-224, November 2002.

[7] E. Amoroso. Intrusion Detection: An Introduction to Internet Survaiilce, Correlation,
Trace Back, Traps, and Responsatrusion.Net Books, 1999.

[8] J. P. Anderson. Computer security threat monitoring aarveillance. Technical report,
James P. Anderson Co., Fort Washington, PA, 1980.

[9] AT & T Research Labs. Graphviz - open source graph layadtdrawing softwareht t p:

[ww. research. att. conf sw t ool s/ graphvi z/.

180

[10] S. Axelsson. Research in intrusion-detection systefnsurvey. Technical Report TR 98-
17, Department of Computer Engineering, Chalmers Uniterdi Technology, Goteborg,
Sweden, 1999.

[11] S. Axelsson. The base-rate fallacy and the difficultintfusion detectionACM Transactions
on Information and System Secuyi(3):186—205, August 2000.

[12] D. Barbara, Cuotuo J., S. Jajodia, and N. Wu. ADAM: Athesl for exploring the use of data
mining in intrusion detectionACM SIGMOD Record30(4):15-24, December 2001.

[13] D. Barbara, N. Wu, and S. Jajodia. Detecting novel mekvintrusion using bayes estimators.
In Proceedings of the First SIAM Conference on Data Minigril 2001.

[14] M. Bellare, R. Canetti, and H. Krawczyk. Message autisation using hash function - the
HMAC construction.RSA Laboratories’ CryptoByte&(1):12-15, 1996.

[15] H. Bunke and K. Shearer. A graph distance metric basatde@maximal common subgraph.
Pattern Recognition Letterd9(3-4):255-259, 1998.

[16] Brian Caswell and Marty Roesch. Snort: The open soueteark intrusion detection sys-
tem.http://ww. snort. org.

[17] CERT Coordination Center. CERT Coordination Centdrt p: / / www. cert. org.

[18] CERT Coordination Center. Cert advisory CA-2001-1ffdruoverflow vulnerability in mi-
crosoft IS5.0.ht t p: // www. cert. org/ advi sori es/ CA- 2001- 10. ht m , 2001.

[19] CERT Coordination Center. Overview of attack trend&tt p://ww. cert. org/
archi ve/ pdf/ attack_trends. pdf, 2002.

[20] CERT Coordinate Center. Overview of attack trendsittp://ww. cert. org/
ar chi ve/ pdf/ attack_trends. pdf, 2002.

[21] D. Comer. The ubiquitous B-Tre&CM Computeing Survey$1(2):121-137, 1979.

[22] T. H. Cormen, C. E. Leiserson, and R. L. Rivdstroduction to AlgorithmsThe MIT Press,
1989.

181

[23] Microsoft Corporation. Microsoft security bulletinmg00-029). htt p:// www.
m crosoft.comtechnet/treevi ew defaul t.asp?url =/technet/
security/ bull etin/M00-029. asp, 2000.

[24] Microsoft Corporation. Microsoft security bulletinmg00-078). htt p:// ww.
m crosoft.comtechnet/treevi ew defaul t.asp?url =/technet/
security/ bull etin/MS00-078. asp, 2000.

[25] Microsoft Corporation. Microsoft security bulletinmg01-023). htt p:// ww.
m crosoft.comtechnet/treevi ew defaul t.asp?url =/technet/
security/bull etin/M01-023. asp, 2001.

[26] T. Cover and J. Thomaglements of Information Thearyohn Wiley & Sons, Inc., 1991.

[27] Y. Cui. A toolkit for intrusion alerts correlation badeon prerequisites and con-
sequences of attacks. Master’'s thesis, North Carolinae Staiversity, Decem-
ber 2002. Available athttp://ww. | ib. ncsu. edu/theses/avail abl e/
et d- 12052002- 193803/ .

[28] F. Cuppens. Managing alerts in a multi-intrusion detecenvironment. IrProceedings of
the 17th Annual Computer Security Applications Conferebezember 2001.

[29] F. Cuppens and A. Miege. Alert correlation in a coopgeaintrusion detection framework.
In Proceedings of the 2002 IEEE Symposium on Security and &rikday 2002.

[30] F. Cuppens and R. Ortalo. LAMBDA: A language to model #abase for detection of
attacks. InProc. of Recent Advances in Intrusion Detection (RAID 20p@pyes 197—216,
September 2000.

[31] D. Curry and H. Debar. Intrusion detection message a&gh format data model and exten-
sible markup language (xml) document type definition. me¢Draft, draft-ietf-idwg-idmef-
xml-03.txt, February 2001.

[32] W. Dai. Speed comparison of popular crypto algorithrhst p: / / www. eski no. cont
~wei dai / benchmarks. ht m .

[33] O. Dain and R.K. Cunningham. Building scenarios fromesehogeneous alert stream. In
Proceedings of the 2001 IEEE Workshop on Information Assa@and Securifypages 231—
235, June 2001.

182

[34] O. Dain and R.K. Cunningham. Fusing a heterogeneous stleeam into scenarios. In
Proceedings of the 2001 ACM Workshop on Data Mining for Sgcépplications pages
1-13, November 2001.

[35] DARPA Cyber Panel Program. DARPA cyber panel programndrchallenge problem.
http://ww. grandchal | engepr obl em net/,2003.

[36] H. Debar and A. Wespi. Aggregation and correlation oftision-detection alerts. IRecent
Advances in Intrusion DetectiphNCS 2212, pages 85 — 103, 2001.

[37] DEFCON. Def con capture the flag (CTF) contest. httpmdwdefcon.org/html/defcon-8-
post.html, July 2000. Archive accessible at http://wi280§ mediawhore/mirrors/shmoo/.

[38] DEFCON. Def con capture the flag (CTF) contest. httpsdwdefcon.org/html/defcon-
9/defcon-9-pre.html, July 2001.

[39] D. Eastlake and P. Jones. US secure hash algorithm 1)(SRaquest for Comments: (RFC)
3174, September 2001.

[40] S.T. Eckmann, G. Vigna, and R.A. Kemmerer. STATL: Anattk Language for State-based
Intrusion DetectionJournal of Computer Securityt0(1/2):71-104, 2002.

[41] H. Feng, J. Giffin, Y. Huang, S. Jha, W. Lee, and B. MillEormalizingsensitivity in static
analysis for intrusion detection. IRroceedings of the 2004 IEEE Symposium on Security
and Privacy (S&P’04)May 2004.

[42] H. Feng, O. Kolesnikov, P. Fogla, W. Lee, and W. Gong. miaty detection using call stack
information. InProceedings of the 2003 IEEE Symposium on Security and@®r{i&&P’03)
May 2003.

[43] S. Forrest, S. Hofmeyr, A. Somayaiji, and T. Longstaffseéhise of self for unix processes. In
Proceedings of the 1996 IEEE Symposium on Security and @yiéay 1996.

[44] Fyodor. Nmap free security scannét.t p: / / www. i nsecur e. or g/ nmap, 2003.

[45] H. Garcia-Molina and J. Widom J. D. Ullmarbatabase System ImplementatidArentice
Hall, 2000.

[46] M. R. Gary and D. S. JohnsonComputers and Intractability: A Guide to the Theory of
NP-Completenesd-reeman and Company, 1979.

183
[47] J. Giffin, S. Jha, and B. Miller. Detecting manipulatexinote call streams. IRroceedings
of the 11th USENIX Security Symposjuhagust 2002.

[48] J. Haines, D. Ryder, L. Tinnel, and S. Taylor. Validatiof sensor alert correlatordEEE
Security & Privacy Magazinel(1):46-56, 2003.

[49] J. Han and M. KamberData Mining: Concepts and TechniqueMorgan Kaufmann Pub-
lishers, 2001.

[50] K. llgun. USTAT: A real-time intrusion detection systefor UNIX. In Proceedings of IEEE
Symposium on Security and Privapages 16—28, Oakland, CA, May 1993.

[51] RTIlInternational. PREDICT - Protected Repositorytioe Defense of Infrastructure Against
Cyber Threatsht t p: / / www. predi ct. org.

[52] Internet Security Systems. RealSecure intrusionatiei® system. htt p: / / www. i ss.
net .

[53] Internet Security Systems, Inc. REALSECURE signatusderence guidenht t p: / / wwww.
i Ss. net/.

[54] D. A. Jackson, K. M. Somers, and H. H. Harvey. Similakggefficients: Measures of co-
occurence and association or simply measures of occuffentbe American Naturalist
133(3):436—-453, March 1989.

[55] A.K. Jain and R.C. Dubeslgorithms for Clustering DataPrentice Hall, 1988.

[56] H. S. Javitz and A. Valdes. The SRI IDES statistical antyndetector. IiProceedings IEEE
Symposium on Security and Privapages 316—-326, Oakland, CA, May 1991.

[57] H. S. Javitz and A. Valdes. The NIDES statistical comgran Description and justification.
Technical report, SRI International, March 1994.

[58] S. Jha, O. Sheyner, and J.M. Wing. Two formal analysesdtatk graphs. IProceedings of
the 15th Computer Security Foundation Workshiyme 2002.

[59] K. Julisch. Dealing with false positives in intrusioatdction. InThe 3th Workshop on Recent
Advances in Intrusion Detectip@ctober 2000.

184

[60] K. Julisch. Mining alarm clusters to improve alarm hkmgl efficiency. InProceedings of the
17th Annual Computer Security Applications ConferenceSAC) pages 12—-21, December
2001.

[61] K. Julisch. Clustering intrusion detection alarmswpgort root cause analysi&CM Trans-
actions on Information and System Secuyr@{4):443—-471, Nov 2003.

[62] K. Julisch and M. Dacier. Mining intrusion detectiomahs for actionable knowledge. Tie
8th ACM International Conference on Knowledge Discovery Bata Mining July 2002.

[63] L. Kaufman and P. J. Rousseeuvikinding Groups in Data: An Introduction to Cluster
Analysis John Wiley and Sons, 1990.

[64] D. Knuth. The Art of Computer Programmind\ddison-Wesley, 1973.

[65] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-stang for message authentica-
tion. Internet Engineering Task Force, Request for Coms@RiEC) 2104, February 1997.

[66] S. Kummar and E.H. Spafford. A software architectursupport misuse intrusion detection.
In Proceedings of the 18th National Information Systems $&gclopnferencepages 194—
204, 1995.

[67] T. J. Lehman and M. J. Carey. A study of index structureni@in memory database man-
agement systems. IRroceedings of the Twelfth International Conference ory\learge
Databasespages 294—-303, Kyoto, Japan, August 1986.

[68] C. Liew, U. Choi, and C. Liew. A data distortion by prolilii distribution. ACM Transac-
tions on Database Systeni®(3):395-411, September 1985.

[69] P. Lincoln, P. Porras, and V. Shmatikov. Privacy-prese sharing and correlation of secu-
rity alerts. InProceedings of 13th USENIX Security Symposiiogust 2004.

[70] W. Litwin. Linear hashing: A new tool for file and table dmssing. InProceedings of the
6th Conference on Very Large Data Basgages 212-223, Montreal, Canada, October 1980.

[71] Y. Lu. Concept hierarchy in data mining: Specificatigeneration and implementation.
Master's thesis, School of Computing Science, Simon Frdserersity, Canada, December
1997.

185

[72] A. Menezes, P. Oorschot, and S. Vanstadandbook of Applied CryptographfRC Press,
October 1996.

[73] B. T. MessmerEfficient Graph Matching Algorithms for Preprocessed Mo@ehphs PhD

thesis, University of Bern, Switzerland, November 1995.

[74] B. T. Messmer and H. Bunke. A new algorithm for errotetaint subgraph isomorphism
detection.IEEE Transactions on Pattern Analysis and Machine Intelige 20(5):493-504,
1998.

[75] B. T. Messmer and H. Bunke. Efficient subgraph isomapwhdetection: A decomposition
approachlEEE Transactions on Knowledge and Data Engineeriti(2):307-323, 2000.

[76] B.T. Messmer and H. Bunke. A decision tree approach éplgtand subgraph isomorphism
detection.Pattern Recognition32(12):1979-1998, 1999.

[77] MIT Lincoln Lab. 2000 DARPA intrusion detection scermmaspecific datasetshtt p: //
wwv. || . mt.edu/lST/ideval / dat a/ 2000/ 2000_dat a_i ndex. ht m , 2000.

[78] B. Morin and H. Debar. Correlation of intrusion symptenan application of chronicles. In
Proceedings of the 6th International Conference on RecdutiAces in Intrusion Detection
(RAID’03), September 2003.

[79] B. Morin, L. Mé, H. Debar, and M. DucassM2D2: A formal data model for IDS alert cor-
relation. InProceedings of the 5th International Symposium on Recerda#@s in Intrusion
Detection (RAID 2002)pages 115-137, 2002.

[80] A. Mouniji, B.L. Charlier, D. Zampurris, and N. Habra. Distributed audit trail analysis. In
Proceedings of the ISOC '95 Symposium on Network and Dig&itbSystem Securjtgages
102-112, 1995.

[81] National Institute of Standards and Technology (NISTNIST brief comments on recent
cryptanalytic attacks on secure hashing functions and dmgéirmied security provided by
SHA-1. http://csrc.nist.gov/ hashstandards_comrents. pdf.

[82] P. Ning, Y. Cui, and D. S Reeves. Analyzing intensivausion alerts via correlation. In
Proceedings of the 5th International Symposium on Recevames in Intrusion Detection
(RAID 2002) pages 74-94, Zurich, Switzerland, October 2002.

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

186

P. Ning, Y. Cui, and D. S Reeves. Constructing attackates through correlation of intru-
sion alerts. InProceedings of the 9th ACM Conference on Computer and Coinatioms
Security pages 245-254, Washington, D.C., November 2002.

P. Ning, Y. Cui, D. S. Reeves, and D. Xu. Tools and techegjfor analyzing intrusion alerts.
ACM Transactions on Information and System Securig):273-318, May 2004.

P. Ning and S. Jajodia. Intrusion detection techniguadH. Bidgoli, editor,Internet Ency-
clopedia John Wiley & Sons, 2003.

P. Ning, D. Xu, C. Healey, and R. St. Amant. Building akacenarios through integration
of complementary alert correlation methodsPiioceedings of the 11th Annual Network and
Distributed System Security Symposium (NDSS [@jes 97—111, February 2004.

Packet stormht t p: / / packet st or msecuri ty. nl . Accessed on April 30, 2003.

R. Pang and V. Paxson. A high-level programming enviment for packet trace anonymiza-
tion and transformation. IRroceedings of ACM SIGCOMM 2008ugust 2003.

M. Peuhkuri. A method to compress and anonymize packees. InProceedings of ACM
Internet Measurement Workshop 200lbvember 2001.

P.A. Porras, M.W. Fong, and A. Valdes. A mission-impbased approach to INFOSEC
alarm correlation. IfProceedings of the 5th International Symposium on Recevdms in
Intrusion Detection (RAID 2002pages 95-114, 2002.

X. Qin and W. Lee. Statistical causality analysis ofosdc alert data. IRProceedings of
The 6th International Symposium on Recent Advances insinmDetection (RAID 2003)
Pittsburgh, PA, September 2003.

S. Reiss. Practical data-swapping: The first stéf8M Transactions on Database Systems
9(1):20-37, March 1984.

R. Rivest. The MD5 Message-Digest algorithm. RequesComments: (RFC) 1321, April
1992.

M. Roesch. Snort - lightweight intrusion detection fatworks. InProceedings of the 1999
USENIX LISA conferenc&999.

187

[95] P. Samarati and L. Sweeney. Protecting privacy whedasg information: k-anonymity
and its enforcement through generalization and suppmes$echnical Report SRI-CSL-98-

04, Computer Science Laboratory, SRI International, 1998.

[96] R. Sekar, M. Bendre, P. Bollineni, and D. Dhurjati. A tfagitomaton-based method for
detecting anomalous program behaviors.Phoceedings of the 2001 IEEE Symposium on
Security and PrivacyMay 2001.

[97] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J.M. WiAgtomated generation and
analysis of attack graphs. Rroceedings of IEEE Symposium on Security and Privisiay
2002.

[98] S. Staniford, J.A. Hoagland, and J.M. McAlerney. Piattautomated detection of stealthy
portscansJournal of Computer Security0(1/2):105-136, 2002.

[99] L.Sweeney. Achieving k-anonymity privacy protectiasing generalization and suppression.
International Journal on Uncertainty, Fuzziness and Krenlge-based Systeni®(5):571—
588, October 2002.

[100] L. Sweeney. k-anonymity: A model for protecting pgyalnternational Journal on Uncer-
tainty, Fuzziness and Knowledge-based Syst&6{5):557-570, October 2002.

[101] Symantec Corporation. Symantec’s norton antivifust p: / / www. synmant ec. com

[102] S. Templeton and K. Levitt. A requires/provides mdaelcomputer attacks. IRroceedings
of New Security Paradigms Workshqaages 31 — 38. ACM Press, September 2000.

[103] F. Traub, Y. Yemini, and H. Winiakowski. The statistical security of a statistical daisdn
ACM Transactions on Database Systef(9):672—679, December 1984.

[104] Tripwire, Inc. Tripwire changing monitoring and rafiag solutions. htt p: // wwv.
tripwire.com

[105] J. D. Ulliman. Principles of database and knowledge-base systewliame 2. Computer
Science Press, 1989.

[106] J. Ullrich. DShield - distributed intrusion detecatisystemht t p: / / www. dshi el d. or g.

188

[107] U.S. DEPARTMENT OF COMMERCE/National Institute ofgtdards and Technology.
Data encryption standard (DES). Federal Information Pasiog Standards Publication 46-3,
October 1999.

[108] H.Vaccaro and G. Liepins. Detection of anomalous cat@psession activity. IRroceedings
of 1989 IEEE Symposium on Security and Privgages 280-289, Oakland, CA, May 1989.

[109] A. Valdes and K. Skinner. Probabilistic alert cortela. In Proceedings of the 4th Inter-
national Symposium on Recent Advances in Intrusion Dete@RAID 2001) pages 54—68,
2001.

[110] V. Verykios, E. Bertino, | Fovino, L. Provenza, Y. Saygand Y. Theodoridis. State-of-the-art
in privacy preserving data minindACM SIGMOD Record33(1):50-57, March 2004.

[111] G.Vignaand R. A. Kemmerer. NetSTAT: A network-basetiusion detection systendour-
nal of Computer Securityr(1):37-71, 1999.

[112] G.Vigna and R. A. Kermmerer. NetSTAT: A network-basetusion detection approach. In
Proceedings of the 14th Annual Security Applications Cenfes December 1998.

[113] D. Wagner and D. Dean. Intrusion detection via statialgsis. InProceedings of the 2001
IEEE Symposium on Security and Privaijay 2001.

[114] C. Warrander, S. Forrest, and B. Pearlmutter. Detgdtitrusions using system calls: Alter-
native data models. IRroceedings of the 1999 IEEE Symposium on Security and &riva
May 1999.

[115] V. Yegneswaran, P. Barford, and S. Jha. Global inbrusletection in the domino overlay sys-
tem. InProceedings of the 11th Annual Network and Distributede®gs$ecurity Symposium
(NDSS’04) February 2004.

[116] Y. Zhai, P. Ning, P. lyer, and D.S. Reeves. Reasonirguabomplementary intrusion evi-
dence. InProceedings of the 20th Annual Computer Security AppboatiConference (AC-
SAC '04) December 2004.

[117] Zone Labs. Zonealarm prbtt p: / / www. zonel abs. com

189

Appendix

190

Appendix A

Additional Experimental Results Using

TIAA

Our techniques on intrusion alert correlation result infavgare package TIAA (A Toolkit
for Intrusion Alert Analysis), which is available at our wgite htt p: // di scovery. csc.
ncsu. edu/ sof t war e/ corr el at or/ . To further evaluate the effectiveness of TIAA, we did
more experiments using a data set collected on our campusmeand DEF CON 9 CTF event
data sets [38]. In this appendix, we show some correlatisalie

The first data set was collected from a network in Computesri®a Department. We used
Snortto parse the packets and generate intrusion alerts. Thecalksction was carried from June
24, 2005 to June 29, 2005, and we totally §25, 968 alerts with29 alert types. In the following,
we list some interesting attack scenarios discovered sdhta set. (Some correlation graphs are
too big, so we may only show part of them.)

Figure A.1 is an MS SQL server related attack. In this scenattackers compromised
the victim machine through MS SQL Server related vulneiighiand installed some rootkit to
maintain access to the victim. This scenario is consistétit @ur forensic analysis to the compro-
mised system.

We show some other attack scenarios in Figure A.2. Figur@&fand A.2(b) are two

scanning based attack scenarios, where attackers maydtesttdive IP addresses, then further

191

File FEalit Utildies !Eb
DRe@DoBE)» A«
¢ [B

r executiond5602

|| execution4S607
: —_— e

executiond56l 3 -—"""5.5@_ sp_parsword - pasrword change45629

’ executiond5628

Figure A.1: An MS SQL server related attack scenario in camuliected data set

probe services running on live hosts. Figure A.2(c) is an $N\ddlated attack, where attackers
may first detect the hosts that are running SNMP, then gatainesiccess to the hosts through the
mis-configuration of the authentication in SNMP.

We also did experiments using DEF CON 9 CTF event data sehelfollowing, we list
some attack scenarios discovered in the data set.

The first scenario we present is related to Figure A.3. Ndtieg there ard92 alerts
and 12205 prepare-for relations involved in this scenario. To vigelit, we first performed ag-
gregation to this scenario. The result is shown in Figurg&@.3In Figure A.3(a), we observed
that attackers may try different web based attacks to gaawitinorized access to victim hosts, and
then ran commands to further attack victims. To furtherridhis attack scenario, we performed
association analysis using TIAA. Specifically, we listed #itribute values that frequently occur in
this scenario. The result is in Figure A.3(b). From Figur8(R), we know, for example, all alerts
in this scenario have source IP addré8255.10.34 and destination IP addre$8.255.30.252, and

84.375% of the total alerts have destination port num&@rwhich is useful for us to learn attackers’

192

_ SNMP request udp54089
SNMP request udp54091
[
V
“ SNMP request udp57034
<
ICMP PING NMAP43484 ’ SNMP request udp57035
—

30
ICMP webtrends scanner45863 P SNMP request udp57318
AI»;

‘L SNMP request udp57319
‘ SNMP request udp53785

~ SNMP request udp53786

)
4,)

SNMP request udp18493
ICMP PING NMAP14453 > _ ————

SNMP request udp18522

(a) A scanning based attack scenario (b) A scanning based attack scenario

SNMP request udp32688
<<
SNMP request udp32689
<\
SNMP request udp33483 ’
SNMP request udp33484 . SNMP missing community string attempt47456
A-
—— &
SNMP request udp33539) SNMP missing community string attempt47458
4,L
SNMP request udp33540 A
SNMP request udp3146 '

<7
SNMP request udp3147

<]

A

|

\

(c) An SNMP related attack scenario

Figure A.2: Some attack scenarios in campus collected éata s

activities.

The second scenario we present is related to Figure A.4eTre6317 alerts and 85673
prepare-for relations in this scenario. Similar as donedgpuife A.3, we also performed aggregation
to this scenario. The aggregated attack scenario is showigure A.4(a). From this scenario, we
observed that attackers scanned live IP addresses, prebedrk services through various means
(e.g.,SCAN FIN, gained unauthorized access to victim hosts through wanieeb based attacks,
and ran some commands on the victims. This scenario is ¢tensiwith our intuition about how
attackers may launch multi-phase attacks. Similar as iorEig\.3, we also performed association
analysis in this scenario. The result is shown in Figure B.4{t tells us, for example, the major
source IP addresses in this scenarid 1255.0.213 and 10.255.0.253, the major destination IP
address i940.255.10.34, etc.

6-ICMP PING NMAP-14453
6-SNMP request udp-18493
6-SNMP request udp-18522
32-ICMP PING NMAP-43484
32-SNMP request udp-53785
32-SNMP request udp-53786
32-SNMP request udp-54089
32-SNMP request udp-54091
32-SNMP request udp-57034
32-SNMP request udp-57035
32-SNMP request udp-57318
32-SNMP request udp-57319
32-ICMP webtrends scanner-45863
20-SNMP request udp-3146
20-SNMP missing community string attempt-47456
20-SNMP missing community string attempt-47458
20-SNMP request udp-3147
20-SNMP request udp-32688
20-SNMP request udp-32689
20-SNMP request udp-33483
20-SNMP request udp-33484
20-SNMP request udp-33539
20-SNMP request udp-33540

File [de Uities Help

nao@sar» s

s
Rition_2
on_2
on_3
Eregation_anal
collaction_22

(a) An attack scenario (aggregated)

File. Edit htiifties Help

Frequent Attribute Sets

| Support

d Alerts Hyperalent Type=WEB-1IS cmd. exe access 57.291666666666664%

_partition_2
Dllection_2

DestPort=80 84.375%

L hoction, 3 DestIPAddress=010 255,030,252 100.0%

SrclPAddress=010.255.010.034 100.0%

HyperAlert Type=WEB-1IS cmd exe access * DestPort=80 57.291666666666664%

HyperAlert Type=WEB-1IS cmd exe access © DestIPAddress=010.255.030.252 57.291666666666664%

Hyperalert Type=WEB-11S crd exe access " SrclPAddress=010,255.010.034 37,291 666666666604%

bllection_4

hllection_5
Dllection_B&
Dllection_7
bllection_8
bllection_9

1 DestPort=E0 " DestIPAddress=010,255,030,252 24,375%

UV e e e P

(b) Association analysis of this scenario

Figure A.3: One attack scenario in DEF CON 9 data set

193

File ©i0 Uites Help

aEesE» .

S —
er:.i.nn attempt53727
e
i o
. SNMP request udp53660

i

e

(a) An attack scenario (aggregated)

Frequent Attribute Sets

Support

HyperAlertType=SCAN FIN

86.1484882064271%

DestIPAddress=010.255.010.034

88.03229381035301%

SrclPAddress=010.255000.213

42,94760170967231%

SrclPAddress=010.255.000.253

43.50166218141523%

Hyperalert Type=SCAN FIN * DestIPAddress=010.255.010.034

| 86.11682760804179%

HyperalentType=SCAN FIN * SrcIPAddress=010.255.000.213

42,77346841855311%

HyperAlert Type=SCAN FIN * SrcIPAddress=010.255.000.253

43.34335018048868%

(b) Association analysis of this scenario

Figure A.4: Another attack scenario in DEF CON 9 data set

194

