
ABSTRACT

XU, DINGBANG. Correlation Analysis of Intrusion Alerts. (Under the direction of Dr. Peng Ning).

Security systems such as intrusion detection systems (IDSs) are widely deployed into

networks to better protect digital assets. However, there are several problems related to current

IDSs. (1) IDSs may flag a large number of alerts everyday, thusoverwhelming the security officers.

(2) Among the alerts flagged by IDSs, false alerts (i.e., false positives) are mixed with true ones,

and usually it is difficult to differentiate between them. (3) Existing IDSs may not detect all attacks

launched by adversaries. These problems make it very challenging for human users or intrusion

response systems to understand the alerts and take appropriate actions. Thus, it is necessary to

perform alert correlation. My dissertation focuses on correlation analysis of intrusion alerts. In

particular, I have worked on the following issues.

The first issue is the efficiency of alert correlation. This work is extended from our previ-

ous correlation method [83]. The initial implementation of[83] is a Database Management System

based toolkit. To improve its performance, we propose to adapt main memory index structures

and database query optimization techniques to facilitate timely correlation of intensive alerts. We

present three techniques namedhyper-alert container, two-level index,and sort correlation, and

study the performance of these techniques.

The second issue is to learn attack strategies. We notice that understanding the strategies

of attacks is crucial for security applications such as network forensics and intrusion response.

We propose techniques to automatically learn attack strategies from intrusion alerts, where attack

strategies are modeled as directed graphs with nodes representing attacks and edges representing

constraints between corresponding nodes. We further present techniques to measure the similarity

between attack strategies using the techniques in error tolerant graph/subgraph isomorphism.

The third issue is how to hypothesize and reason about attacks missed by IDSs. We

notice that current alert correlation methods depend heavily on the underlying IDSs for providing

alerts, and cannot deal with attacks missed by IDSs. We present techniques to hypothesize attacks

possibly missed by the IDSs, to infer attribute values for hypothesized attacks, to validate and prune

hypothesized attacks through examining raw audit data, andto consolidate hypothesized attacks to

get concise attack scenarios.

The fourth issue is to correlate alerts from different security systems. We notice that

complementary security systems such as IDSs and firewalls are widely deployed in networks. We



propose a correlation approach based on triggering events and common resources. Our approach

first performs alert clustering such that the alerts in each cluster share “similar” triggering events.

We further propose techniques to build attack scenarios through identifying “common” resources

between different attacks.

The fifth issue is privacy-privacy alert correlation. We notice that there are privacy con-

cerns when intrusion alerts are shared and correlated amongdifferent organizations. We propose

one generalization based scheme and three perturbation based schemes to anonymize alerts to pro-

tect data privacy. To evaluate privacy protection, we useentropy to guide alert anonymization.

In addition, to learn the utility of anonymized alerts, we further perform correlation analysis for

anonymized data sets. We focus on estimating similarity values between anonymized attributes and

building attack scenarios from anonymized data sets.

Finally, the conclusion of my dissertation is provided and future work is pointed out.



Correlation Analysis of Intrusion Alerts

by

Dingbang Xu

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Computer Science

Raleigh

2006

Approved By:

Dr. Douglas S. Reeves Dr. Ting Yu

Dr. Peng Ning Dr. S. Purushothaman Iyer
Chair of Advisory Committee



ii

To my parents Yuxin Xu and Juying Xue.



iii

Biography

Dingbang Xu received a Bachelor’s degree from Huazhong University of Science and Technology,

and a Master’s degree from Tsinghua University. He is a Ph.D.student in Computer Science Depart-

ment at North Carolina State University from 2001 to 2006. His research interests are information

and network security. In particular, he is interested in intrusion detection techniques, security data

management, and privacy-preserving techniques.



iv

Acknowledgements

This dissertation would not be possible without the supportand help from many professors, friends

and my parents over many years.

I would like to thank my Ph.D. advisor Dr. Peng Ning. His guidance, encouragement, and

support is so valuable to my Ph.D. research. I feel very fortunate to work with him. Sincere thanks

are also extended to my committee members Dr. S. Purushothaman Iyer, Dr. Douglas S. Reeves

and Dr. Ting Yu for their valuable comments, suggestions, and help. I also would like to thank Dr.

Annie I. Ant́on for her valuable feedback and comments on my research.

The work in this dissertation is supported by the National Science Foundation (NSF)

under grants ITR-0219315 and CCR-0207297, and by the U.S. Army Research Office (ARO) under

grant DAAD19-02-1-0219.

I would like to thank Director of Graduate Program (DGP) Dr. David J. Thuente for his

help during my Ph.D. study. I am also grateful to Ms. Margery Page for her help.

I would like to thank many friends in Cyber Defense Laboratory Srinath Anantharaju, Yun

Cui, Yiquan Hu, Qinglin Jiang, Hua Li, An Liu, Donggang Liu, Jaideep Mahalati, Pai Peng, Alfredo

Serrano, Pratik Shah, Kun Sun, Pan Wang, Yan Zhai, Qing Zhang, Qinghua Zhang, Yi Zhang, and

Yuzheng Zhou for their help.

Finally, I am deeply grateful to my parents Yuxin Xu and Juying Xue for their continued

support and encouragement.



v

Contents

List of Figures viii

List of Tables x

1 Introduction 1
1.1 Intrusion Detection and Intrusion Alert Correlation . .. . . . . . . . . . . . . . . 1
1.2 Efficiency of Intrusion Alert Correlation . . . . . . . . . . . .. . . . . . . . . . . 3
1.3 Learning Attack Strategies . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 4
1.4 Hypothesizing and Reasoning about Attacks Missed by Intrusion Detection Systems 5
1.5 Alert Correlation through Triggering Events and CommonResources . . . . . . . . 5
1.6 Privacy-Preserving Alert Correlation: A Generalization Based Approach . . . . . . 6
1.7 Privacy-Preserving Alert Correlation: A PerturbationBased Approach . . . . . . . 7
1.8 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 8

2 Related Work 9
2.1 Intrusion Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 10

2.1.1 Misuse Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
2.1.2 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

2.2 Alert Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 13
2.3 Privacy-Preserving Techniques . . . . . . . . . . . . . . . . . . . .. . . . . . . . 15
2.4 Previous Work: Alert Correlation Using Prerequisites and Consequences of Attacks 17

2.4.1 An Overview of Correlation Method [83] . . . . . . . . . . . . .. . . . . 17
2.4.2 Implementation of [83] . . . . . . . . . . . . . . . . . . . . . . . . . .. . 20

3 Adapting Query Optimization Techniques for Efficient Correlation 22
3.1 Adapting Query Optimization Techniques . . . . . . . . . . . . .. . . . . . . . . 23

3.1.1 Main Memory Index Structures . . . . . . . . . . . . . . . . . . . . .. . 24
3.1.2 Correlating Streamed Intrusion Alerts . . . . . . . . . . . .. . . . . . . . 25
3.1.3 Correlating Intrusion Alerts in Batch . . . . . . . . . . . . .. . . . . . . . 28
3.1.4 Correlating Intrusion Alerts with Limited Memory . . .. . . . . . . . . . 30

3.2 Implementation and Experiments . . . . . . . . . . . . . . . . . . . .. . . . . . . 31
3.2.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 32



vi

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Learning Attack Strategies from Intrusion Alerts 40
4.1 Modeling Attack Strategies . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 41

4.1.1 Attack Strategy Graph . . . . . . . . . . . . . . . . . . . . . . . . . . .. 42
4.1.2 Dealing with Variations of Attacks . . . . . . . . . . . . . . . .. . . . . . 47

4.2 Measuring the Similarity between Attack Strategies . . .. . . . . . . . . . . . . . 50
4.2.1 Error Tolerant Graph/Subgraph Isomorphism . . . . . . . .. . . . . . . . 51
4.2.2 Working with Attack Strategy Graphs . . . . . . . . . . . . . . .. . . . . 52

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 55
4.3.1 Learning Attack Strategies from Correlated Intrusion Alerts . . . . . . . . 56
4.3.2 Measuring the Similarity between Alert Sequences . . .. . . . . . . . . . 58
4.3.3 Identification of Missing Detections . . . . . . . . . . . . . .. . . . . . . 61

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Hypothesizing and Reasoning about Attacks Missed by Intrusion Detection Systems 64
5.1 Hypothesizing and Reasoning about Attacks Missed by IDSs . . . . . . . . . . . . 66

5.1.1 Integrating Possibly Related Correlation Graphs . . .. . . . . . . . . . . 67
5.1.2 Hypothesizing about Missed Attacks . . . . . . . . . . . . . . .. . . . . . 70
5.1.3 Reasoning about Missed Attacks . . . . . . . . . . . . . . . . . . .. . . . 73
5.1.4 Inferring Attribute Values for Hypothesized Attacks. . . . . . . . . . . . 82
5.1.5 Pruning Hypothesized Attacks with Raw Audit Data . . . .. . . . . . . . 85
5.1.6 Consolidating Hypothesized Attacks . . . . . . . . . . . . . .. . . . . . . 88

5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 91
5.3 Discussion and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 99

6 Alert Correlation through Triggering Events and Common Resources 100
6.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1.1 Alerts, Events, Configurations and Resources . . . . . . .. . . . . . . . . 103
6.1.2 Triggering Events for Alerts . . . . . . . . . . . . . . . . . . . . .. . . . 105
6.1.3 Inference between Events . . . . . . . . . . . . . . . . . . . . . . . .. . 106
6.1.4 Clustering Alerts Using Triggering Events . . . . . . . . .. . . . . . . . . 108
6.1.5 Consistency and Inconsistency between Alerts and Relevant Configurations 109
6.1.6 Attack Scenario Construction based on Input and Output Resources . . . . 111

6.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 115
6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7 Privacy-Preserving Alert Correlation: A Generalization Based Approach 121
7.1 Entropy Guided Alert Sanitization . . . . . . . . . . . . . . . . . .. . . . . . . . 123

7.1.1 Entropy Guided Sanitization of Categorical Attributes . . . . . . . . . . . 124
7.1.2 Differential Entropy Guided Sanitization of Continuous Attributes . . . . . 126

7.2 Correlation Analysis of Sanitized Alerts . . . . . . . . . . . .. . . . . . . . . . . 128
7.2.1 Calculating the Similarity between Sanitized Attributes . . . . . . . . . . . 128
7.2.2 Building Attack Scenarios . . . . . . . . . . . . . . . . . . . . . . .. . . 132

7.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 138



vii

7.3.1 Evaluating Similarity Functions . . . . . . . . . . . . . . . . .. . . . . . 138
7.3.2 Building Attack Scenarios . . . . . . . . . . . . . . . . . . . . . . .. . . 139

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8 Privacy-Preserving Alert Correlation: A Perturbation Ba sed Approach 145
8.1 Three Schemes for Alert Anonymization . . . . . . . . . . . . . . .. . . . . . . . 147

8.1.1 Scheme I: Artificial Alert Injection Based on Concept Hierarchies . . . . . 148
8.1.2 Scheme II: Attribute Randomization Based on Concept Hierarchies . . . . 154
8.1.3 Scheme III: Alert Set Partitioning and Attribute Randomization . . . . . . 156

8.2 Anonymized Alert Correlation . . . . . . . . . . . . . . . . . . . . . .. . . . . . 157
8.2.1 Similarity Estimation between Anonymized Attributes . . . . . . . . . . . 157
8.2.2 Building Attack Scenarios . . . . . . . . . . . . . . . . . . . . . . .. . . 160

8.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 164
8.3.1 Experiments on Scheme I . . . . . . . . . . . . . . . . . . . . . . . . . .164
8.3.2 Experiments on Scheme II . . . . . . . . . . . . . . . . . . . . . . . . .. 166
8.3.3 Experiments on Scheme III . . . . . . . . . . . . . . . . . . . . . . . .. . 167
8.3.4 Experiments on Similarity Estimation . . . . . . . . . . . . .. . . . . . . 168
8.3.5 Experiments on Building Attack Scenarios . . . . . . . . . .. . . . . . . 169

8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

9 Conclusion and Future Work 174
9.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174
9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177

Bibliography 179

Appendix 189

A Additional Experimental Results Using TIAA 190



viii

List of Figures

2.1 An example of alert correlation graphs . . . . . . . . . . . . . . .. . . . . . . . . 20

3.1 Outline of the nested loop alert correlation methods . . .. . . . . . . . . . . . . . 26
3.2 The sort correlation method . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 28
3.3 Experimental results (1) . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 33
3.4 Experimental results (2) . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 34
3.5 Experimental results of correlations with memory constraint . . . . . . . . . . . . 38

4.1 An example of attack strategy graph . . . . . . . . . . . . . . . . . .. . . . . . . 44
4.2 An algorithm to extract attack strategy graph from a hyper-alert correlation graph . 46
4.3 Attack Strategy Graphs Extracted from Our Experiments .. . . . . . . . . . . . . 57
4.4 Generalization hierarchies for hyper-alert types in DARPA 2000 datasets. Threshold

t = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5 Additional generalization hierarchies of hyper-alerttypes in our experiments . . . . 59

5.1 Two correlation graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 67
5.2 A straightforward combination ofCG1 andCG2 . . . . . . . . . . . . . . . . . . 70
5.3 Integration ofCG1 andCG2 with hypotheses of missed attacks . . . . . . . . . . 71
5.4 An example type graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 73
5.5 Algorithm to compute indirect equality constraints fortwo hyper-alert types . . . . 75
5.6 Algorithm to compute indirect equality constraints forall pairs of hyper-alert types 78
5.7 Algorithm to infer attribute values for hypothesized attacks . . . . . . . . . . . . . 84
5.8 Integration ofCG1 andCG2 after refinement with raw audit data . . . . . . . . . . 88
5.9 Hypothesized attacks when integratingCG1 andCG2 . . . . . . . . . . . . . . . 89
5.10 Algorithm to consolidate hypothesized attacks . . . . . .. . . . . . . . . . . . . . 91
5.11 The type graph used in our experiments . . . . . . . . . . . . . . .. . . . . . . . 94
5.12 Four correlation graphs constructed from LLDOS 1.0 inside traffic . . . . . . . . . 96
5.13 The integrated correlation graph constructed from LLDOS 1.0 inside traffic . . . . 97
5.14 Experimental results using the DMZ dataset in LLDOS 1.0. . . . . . . . . . . . . 98

6.1 A network deployed with multiple heterogeneous security systems . . . . . . . . . 101
6.2 An algorithm to discover implication relationship between events. . . . . . . . . . 108
6.3 An algorithm to perform alert clustering based on triggering events. . . . . . . . . 110



ix

6.4 An example scenario graph . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 114
6.5 One Scenario Graph in HQ Enclave . . . . . . . . . . . . . . . . . . . . .. . . . 118

7.1 Two Examples of Concept Hierarchies . . . . . . . . . . . . . . . . .. . . . . . . 125
7.2 An algorithm to aggregate an alert correlation graph . . .. . . . . . . . . . . . . . 136
7.3 An alert correlation graph in LLDOS 1.0 inside dataset . .. . . . . . . . . . . . . 141
7.4 Aggregation to the alert correlation graph in Figure 7.3. . . . . . . . . . . . . . . 143

8.1 An example concept hierarchy for IP addresses . . . . . . . . .. . . . . . . . . . 150
8.2 An algorithm to generate artificial alerts . . . . . . . . . . . .. . . . . . . . . . . 152
8.3 An algorithm to randomize sensitive attributes . . . . . . .. . . . . . . . . . . . . 155
8.4 PMFs in original alert set and after applying Scheme I . . .. . . . . . . . . . . . . 166
8.5 PMFs after applying Schemes II and III . . . . . . . . . . . . . . . .. . . . . . . 168
8.6 A correlation graph in LLDOS 1.0 Inside data set . . . . . . . .. . . . . . . . . . 170

A.1 An MS SQL server related attack scenario in campus collected data set . . . . . . . 191
A.2 Some attack scenarios in campus collected data set . . . . .. . . . . . . . . . . . 192
A.3 One attack scenario in DEF CON 9 data set . . . . . . . . . . . . . . .. . . . . . 193
A.4 Another attack scenario in DEF CON 9 data set . . . . . . . . . . .. . . . . . . . 194



x

List of Tables

4.1 The similarity w.r.t. attack strategy between attack strategy graphs in Figure 4.3 . . 60
4.2 The similarity w.r.t. attack sub-strategy between attack strategy graphs in Figure 4.3 60

5.1 Hyper-alert types used in Example 4 (The set offact attributes for each hyper-alert
type is{SrcIP, SrcPort, DestIP, DestPort}) . . . . . . . . . . . . . . . . . . . . . 73

5.2 Equality constraints for hyper-alert types in Figure 5.4 where onemay (indirectly)
prepare forthe other. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Hyper-alert types used in our experiments (The set offactattributes for each hyper-
alert type is{SrcIP,SrcPort,DestIP,DestPort}). . . . . . . . . . . . . . . . . . . . . 93

5.4 Implication relationships between the predicates . . . .. . . . . . . . . . . . . . . 95

6.1 Triggering event types for each alert type. . . . . . . . . . . .. . . . . . . . . . . 116
6.2 All 2-alert clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 117
6.3 Resource types in the experiments. . . . . . . . . . . . . . . . . . .. . . . . . . . 118
6.4 Input and output resource types for alert types. . . . . . . .. . . . . . . . . . . . . 119

7.1 The results of evaluating similarity functions . . . . . . .. . . . . . . . . . . . . . 139
7.2 Soundness and completeness measures in our experiments. . . . . . . . . . . . . 142
7.3 Detection rates and false alert rates in our experiments. . . . . . . . . . . . . . . 142

8.1 Alert type frequency distribution in LLDOS 1.0 inside part . . . . . . . . . . . . . 165
8.2 Local and global privacy (So: original set,Sm: mixed set, attribute:DestIP). . . . . 167
8.3 Correct classification rate and misclassification rate .. . . . . . . . . . . . . . . . 169
8.4 Recall and precision measures in our experiments . . . . . .. . . . . . . . . . . . 171



1

Chapter 1

Introduction

The focus of my dissertation is correlation analysis of intrusion alerts. To defend against

various attacks, various security systems such as intrusion detection systems (IDSs) are widely de-

ployed into hosts and networks. These systems may flag alertswhen suspicious events are observed.

Correlating the alerts from these security systems can helpus understand the security threats and

take appropriate response. This chapter gives an introduction and also motivates my research.

1.1 Intrusion Detection and Intrusion Alert Correlation

With the development of the Internet, more and more organizations manage their data in

networked information systems. Due to the open nature of theInternet, network intrusions have be-

come an increasingly serious problem in recent years. For example, Code Red worm infected more

than 250,000 machines in about 9 hours on July 19, 2001, andComputer Economicsestimated the

financial loss of Code Red was $2.6 billion [20]. Intrusion detection, which is aimed at detecting

activities violating the security policies of the networked information systems, has been consid-

ered a necessary component to protect these systems along with other prevention-based security

mechanisms such as access control.

Generally speaking, intrusion detection techniques can beclassified into two categories:

misuse detection and anomaly detection [10, 85]. Misuse detection builds signatures (patterns)

for known attacks or vulnerabilities, and raises alerts when it monitors the activities that match



2

the signatures. Anomaly detection builds models (e.g., statistical profiles) for normal activities,

and raises alerts when the monitored activities (significantly) deviate from the normal operations.

Intrusion detection systems (IDSs) are widely deployed into hosts and networks to protect digital

assets.

Despite more than 20 years’ efforts on intrusion detection,current intrusion detection

systems still have several well-known problems. First, existing IDSs cannot detect all intrusions.

While a misuse detection system cannot detect an unknown attack (or an unknown variation of

a known attack), an anomaly detection system may fail to recognize stealthy malicious activities,

too. Second, current IDSs cannot ensure that all alerts reflect actual attacks;true positives(attacks

detected as intrusive) are usually mixed withfalse positives(benign activities detected as intrusive).

Third, an IDS usually produces a large number of alerts [11, 59, 60, 61]. As indicated in [59], five

IDS sensors reported40MB of alert data within ten days, and a large fraction of thesealerts are false

positives. In our experience with IDSs in campus networks, we observed more than 320,000 alerts

on a small subnet in less than five days. The high volumes and low quality (i.e., missed attacks

and false positives) of the intrusion alerts make it very challenging for human users or intrusion

response systems to understand the alerts and take appropriate actions. Thus, it is necessary to

develop techniques to deal with the large volumes and low quality of intrusion alerts.

Besides the aforementioned problems, current IDSs are not sufficiently prepared for sev-

eral trends in attacks. According to a 2002 CERT report [20],there are increasingly more automated

attack tools, which typically consist of several (evolving) phases such as scanning for potential vic-

tims, compromising vulnerable systems, propagating the attacks, and coordinated management of

attack tools. Moreover, attack tools are increasingly moresophisticated. In particular, “today’s au-

tomated attack tools can vary their patterns and behaviors based on random selection, predefined

decision paths, or through direct intruder management” [20]. These attack trends require more ca-

pable systems than the current IDSs to handle large volumes of alerts that potentially belong to

different complex attack scenarios.

Intrusion alert correlation, focusing on discovering the relationships between the alerts

raised by security systems, is necessary and crucial to understand the security threats from inside

and outside sources and take appropriate actions. In recentyears, several alert correlation techniques

have been proposed to facilitate the analysis of intrusion alerts. These techniques can be roughly

divided into four categories: (1) the methods based on similarity between alerts (e.g, [109, 98, 60,

61, 33, 91, 28]), which essentially perform alert clustering through computing similarity between

alert attributes, (2) methods based on predefined attack scenarios (e.g., [36, 34, 78]), which build



3

attack scenarios through matching alerts to predefined scenario templates, (3) techniques based on

prerequisites (pre-conditions) and consequences (post-conditions) of attacks (e.g., [102, 29, 83]),

which build attack scenarios through (partially) matchingconsequences of earlier attacks to the

prerequisites of earlier attacks, and (4) approaches usingmultiple information sources (e.g., [90, 79,

115, 116], which correlate alerts from multiple security systems such as firewalls and IDSs.

We are interested in the prerequisites and consequences based correlation method such

as [83] (We give an overview of [83] in Chapter 2). These methods model each attack through

specifying its prerequisite and consequence. Intuitively, the prerequisite of an attack is the necessary

condition to launch an attack successfully (e.g., a vulnerable FTP service running on a victim host

is the prerequisite to launch anFTP buffer overflow attack), and the consequence of an attack is

the possible outcome if the attack succeeds (e.g., the consequence of anFTPbuffer overflow attack

may be gaining the root privilege on the victim host). Through matching the consequences of earlier

attacks with the prerequisites of later ones (e.g., an port scanning attack may discover vulnerable

FTPports, which is the prerequisite for laterFTPbuffer overflow attacks), causal relations between

attacks are identified, and we can build attack scenarios by connecting different attacks through a

sequence of causal relations.

In my dissertation, I have addressed some important issues in intrusion alert correlation

(especially for prerequisites and consequences based methods). We motivate these problems in the

following subsections.

1.2 Efficiency of Intrusion Alert Correlation

Our previous correlation method [83] has been implemented as an offline intrusion alert

correlator (the details of [83] are given in Chapter 2). Our initial experiments with 2000 DARPA

intrusion detection scenario specific data sets [77] indicate that our approach is promising in con-

structing attack scenarios and differentiating true and false alerts [83]. However, our solution

still faces some challenges. In particular, we implementedthe previous intrusion alert correlator

as a DBMS-based application [83]. Involving a DBMS in the alert correlation process provided

enormous convenience and support in our initial implementation; however, relying entirely on the

DBMS also introduced performance penalty. For example, to correlate about 65,000 alerts gen-

erated from the DEF CON 8 CTF dataset [37], it took the DBMS-based intrusion alert correla-

tor around 45 minutes with the JDBC-ODBC driver included in Java 2 SDK, Standard Edition



4

(http://java.sun.com/j2se/), and more than 4 minutes withthe Microsoft SQL Server 2000 Driver

for JDBC (http://www.microsoft.com/sql/). Such performance is clearly not sufficient to make alert

correlation a practical tool, especially for interactive analysis of intensive alerts. Our timing analysis

indicates that the performance bottleneck lies in the interaction between the intrusion alert correlator

and the DBMS. In particular, the processing of each single alert entails interaction with the DBMS,

which introduces significant performance overhead.

Our solution to this problem is to adapt main memory index structures and query opti-

mization techniques to perform alert correlation efficiently, which is discussed in Chapter 3.

1.3 Learning Attack Strategies

It is often desirable, and sometimes necessary, to understand attack strategies in security

applications such as computer and network forensics and intrusion responses. For example, attack

strategies may be used to profile hackers or hacking tools in computer and network forensics. As

another example, it is easier to predict attacker’s next move, and reduce the damage caused by

intrusions, if the attack strategy is known during intrusion response. However, in practice, it usually

requires that human users manually analyze the data collected during intrusions to understand the

corresponding attack strategies. This process is not only time-consuming, but also error-prone.

An alternative to manual analysis is to enumerate and reasonabout attack strategies through static

vulnerability analysis (e.g., [97, 6]). However, these techniques usually require predefined security

properties so that they can identify possible attack sequences that lead to the violation of these

properties. Although it is easy to specify certain securityproperties such as the compromise of

root privileges, it is non-trivial to enumerate all possible ones. Moreover, analyzing intrusion alerts

allows inspecting actual execution of attack strategies with different levels of details. Thus it is

desirable to have complementary techniques that can profileattack strategies from intrusion alerts.

In Chapter 4, we present techniques to automatically learn attack strategies from intrusion

alerts reported by IDSs.



5

1.4 Hypothesizing and Reasoning about Attacks Missed by Intrusion

Detection Systems

As we mentioned earlier, several alert correlation techniques have been proposed in re-

cent years to facilitate the analysis of intrusion alerts. These techniques include similarity based

approaches, predefined attack scenarios based methods, prerequisites and consequences based ap-

proaches, and multiple information sources based techniques. We observe that a common require-

ment of these approaches is that they all heavily depend on the underlying IDSs for providing alerts.

As a result, the performance of alert correlation is strictly limited by the performance of IDSs. In

particular, if the IDSs miss critical attacks, the correlated alerts cannot reflect the actual attack sce-

narios due to the lack of the corresponding alerts, and thus may provide misleading information.

In Chapter 5, we develop a series of techniques to hypothesize and reason about attacks

possibly missed by IDSs, aiming at constructing high-levelattack scenarios even if the underlying

IDSs miss critical attacks.

1.5 Alert Correlation through Triggering Events and Common Re-

sources

Current approaches on intrusion alert correlation are effective at addressing some chal-

lenges, however, it is also clear that none of them dominatesthe others. Similarity based approaches

group alerts based on the similarity between alert attributes; however, they are not good at discov-

ering steps in a sequence of attacks. Predefined attack scenario based approaches work well for

known scenarios; however, they cannot discover novel attack scenarios. Prerequisites and conse-

quences based approaches can discover novel attack scenarios; however, the procedure of specifying

prerequisites and consequences are time-consuming and error-prone. Multiple information sources

based approaches correlate alerts from multiple information sources such as firewalls and IDSs;

however, they are not good at discovering novel attack scenarios.

To address some limitations of the current correlation techniques, we propose an alert

correlation approach based on triggering events and commonresources. In particular, we propose a

novel similarity measure based on triggering events, whichhelps us group alerts into clusters such

that the alerts in the same cluster share “similar” triggering events. We enhance the prerequisites and



6

consequences based approaches through using input and output resources to facilitate the specifica-

tion of prerequisites and consequences. Intuitively, theinput resourcesof an attack are the necessary

resources for the attack to succeed, and theoutput resourcesof the attack are the resources that the

attack can supply if successful.

Compared with the approaches in [29, 83] which use predicates to describe prerequisites

and consequences, our input/output resources based approach has several advantages. (1) When

using predicates to specify prerequisites and consequences for each type of attacks, it may introduce

too many predicates. Whereas input and output resource types are rather limited compared with the

types of predicates and are easy to specify. (2) Since different experts may use different predicates

to represent the same condition, or use the same predicate torepresent different conditions, it is

usually not easy to discover implication relationships between predicates and match consequences

with prerequisites. Whereas input and output resource types are rather stable, straightforward to

match and easy to accommodate new attacks. This correlationmethod is presented in Chapter 6.

1.6 Privacy-Preserving Alert Correlation: A Generalization Based Ap-

proach

In recent years, the security threats from infrastructure attacks such as worms and dis-

tributed denial of service attacks are increasing [19]. They affect large numbers of hosts and services

on the Internet, and may bring serious financial loss. To defend against these attacks, the coopera-

tion among different organizations is necessary. Several organizations such as CERT Coordination

Center [17] and DShield [106] collect data (including security incident data) over the Internet, per-

form correlation analysis, and disseminate information tousers and vendors. The security incident

data are usually collected from different companies, organizations or individuals, and their privacy

concerns have to be considered. To prevent the misuse of incident data, appropriate data sanitization

through which the sensitive information is obfuscated is highly preferable. For example, DShield

[106] lets audit log submitters perform partial or completeobfuscation to destination IP addresses

in the datasets, where partial obfuscation changes the firstoctet of an IP address to decimal10, and

complete obfuscation changes any IP address to a fixed value10.0.0.1.

As we mentioned earlier, to protect networks and hosts on theInternet, many security

systems such as IDSs and firewalls are widely deployed. To better understand the security threats,



7

it is necessary to perform alert correlation. Current alertcorrelation approaches generally assume

all alert data (e.g., the source and destination IP addresses) are available for analysis, which is

true when there are no privacy concerns. However, when multiple organizations provide sanitized

alert and incident data (because of privacy concerns) for intrusion analysis, alert correlation will

be affected due to the lack of precise data. It is desirable tohave techniques to perform privacy-

preserving alert correlation such that the privacy of participating organizations is preserved, and

at the same time, alert correlation can provide useful results. To our best knowledge, [69] is the

only paper addressing privacy issues in alert correlation,which uses hash functions (e.g., MD5)

and keyed hash functions (e.g., HMAC-MD5) to sanitize sensitive data. This approach is effective

in detecting some high-volume events (e.g., worms). However, since hash functions destroy the

semantics of alert attributes (e.g., the loss of topological information due to hashed IP addresses),

the interpretation of correlation results is non-trivial.In addition, hash functions may be vulnerable

to brute-force attacks due to limited possible values of alert attributes, and keyed hash functions may

introduce difficulties in correlation analysis due to the different keys used by different organizations.

In Chapter 7, we propose a privacy-preserving alert correlation approach through gener-

alization based on concept hierarchies.

1.7 Privacy-Preserving Alert Correlation: A Perturbation Based Ap-

proach

As we mentioned in Section 1.6, to defend against large-scale distributed attacks such as

worms and distributed denial of service (DDoS) attacks, it is usually desirable to deploy security

systems such as intrusion detection systems (IDSs) over theInternet, monitor different networks,

collect security related data, and perform analysis to the collected data to extract useful informa-

tion. In addition, different organizations, institutionsand users may also have the willingness to

share their data for security research as long as their privacy concerns about the data can be fully

satisfied. For example, Department of Homeland Security sponsors PREDICT [51] project to create

a repository collecting network operational data for cybersecurity research.

Data generated by security systems may include sensitive information (e.g., IP addresses

of compromised servers) that data owners do not want to disclose or share with other parties. It is

always desirable and sometimes mandatory to anonymize sensitive data before they are shared and



8

correlated. To address this problem, In Chapter 8, we propose three perturbation based schemes

to flexibly perform alert anonymization. These schemes are closely related but can also be applied

independently. In Scheme I, we generate artificial alerts and mix them with original alerts. Attribute

values related to any alert in the mixed set may or may not be real, which helps hide original attribute

values. In Scheme II, we map sensitive attributes to random values based on concept hierarchies. In

Scheme III, we propose to partition an alert set into multiple subsets and apply Scheme II in each

subset independently. To evaluate privacy protection and guide alert anonymization, we definelocal

privacy andglobal privacy, and useentropyto compute their values. Though we emphasize alert

anonymization techniques in Chapter 8, to examine data usability, we further perform correlation

analysis for data sets anonymized by our three schemes. We focus on computing similarity values

between anonymized attributes and building attack scenarios from anonymized data sets.

1.8 Dissertation Organization

The remainder of this dissertation is organized as follows.Chapter 2 gives an overview

of approaches in intrusion detection and intrusion alert correlation. Chapter 3 discusses the tech-

niques that efficiently correlate intrusion alerts throughadapting main memory index structures and

query optimization techniques. Chapter 4 provides the methods that learn attack strategies from in-

trusion alerts. Chapter 5 presents approaches to hypothesizing and reasoning about attacks missed

by IDSs. Chapter 6 presents an alert correlation method based on triggering events and common

resources. Chapter 7 provides an approach for privacy-preserving alert correlation through general-

ization based on concept hierarchies. Chapter 8 discusses privacy-preserving alert correlation based

on perturbation based techniques. Chapter 9 concludes thisdissertation and points out some future

research directions.



9

Chapter 2

Related Work

In 1980, James Anderson published his seminal workComputer Security Threat Monitor-

ing and Surveillance[8], which introduced the concept ofintrusion detection. Intrusion detection

focuses on detecting activities that violate the system’s security policy [10, 85]. Amoroso [7] de-

finesintrusion detectionas “the process of identifying and responding to malicious activity targeted

at computing and networking resources.” With the development of the Internet and the wide usage

of networked systems, network intrusions have become a serious problem. Intrusion detection is

necessary to detect the intrusions and take appropriate actions.

As we mentioned in Introduction, intrusion detection techniques can be roughly classified

into two categories: misuse detection and anomaly detection [10, 85]. Misuse detection builds

signatures (patterns) for known attacks, and raises alertswhen it monitors the activities that match

the signatures. Anomaly detection builds models (e.g., statistical profiles) for normal activities, and

raises alerts when the monitored activities (significantly) deviate from the models. These misuse

and anomaly detection systems are widely deployed to protect the security of hosts and networks.

Correlation analysis of the alerts from these intrusion detection systems and other security systems,

is crucial for security officers to understand the security threats from inside and outside sources and

take appropriate actions.

In this chapter, we first discuss intrusion detection techniques, then review the methods

for intrusion alert correlation and privacy-preserving techniques, and finally give an overview of

our previous correlation method [83] (it is an approach based on prerequisites and consequences of

attacks).



10

2.1 Intrusion Detection

In this subsection, we first review misuse detection systemssuch asNetSTAT[112, 111],

USTAT [50], IDIOT [66] and ASAX [80]. For anomaly detection techniques, we further classify

them into two classes: user activity based approaches and program behavior based approaches. We

first discuss user activity based anomaly detection systemssuch asSRI IDES[56], ADAM [12] and

W&S [108], and then we review program behavior based anomalydetection techniques such as

[43].

2.1.1 Misuse Detection

Misuse detection systems detect intrusions through matching observed events with pre-

defined attack signatures. Specifying attack signatures iscrucial for misuse detection systems. For

each known attack, NetSTAT [112, 111] creates the attack signature through state transition dia-

grams. State transition diagrams are directed graphs. In a state transition diagram, each state is

represented by a set of assertions, which describes the state of the systems (e.g., the service name

in a host), and the transitions between states are triggeredby signature actions, which represent the

events that are necessary for the attack to be successful (e.g., a message delivery between a source

and a destination host). NetSTAT has four components: (1) a network fact base, (2) a state transition

scenario database, (3) a set of probes, and (4) an analyzer. Through the interaction between these

four components, NetSTAT monitors the events occurring in the network and raises alerts when

suspicious events are observed. Likewise, USTAT [50] also uses state transition diagrams to specify

attack signatures. IDIOT [66] applies Colored Petri Nets tospecify attack signatures. ASAX [80]

uses a rule-based language (RUSSEL) to describe attack signatures. The IDSs NetSTAT, USTAT,

IDIOT and ASAX can detect the attacks with the correspondingattack signatures defined in the sys-

tems. Their limitation is that if novel attacks are created with no corresponding signatures available

in the systems, these IDSs are not able to detect them.

2.1.2 Anomaly Detection

Based on the subjects being monitored, we divide anomaly detection techniques into two

classes: user activity based techniques and program behavior based techniques. User activity based

approaches create statistical models based on the user’s historical data, and raise alerts when the



11

user’s activity is significantly deviate from the statistical model. Program behavior based approaches

create system call models for the normal execution of the programs, and raise alerts when monitored

system call sequences do not satisfy the model.

SRI IDES [56], ADAM [12] and W&S [108] are anomaly detection systems based on user

activities, which flag alerts based on audit record data. Security auditing systems can generate audit

records for each user’s activities. SRI IDES examines theseaudit records and tries to determine

whether the corresponding user’s activities are abnormal or not. Notice that each audit record may

include several aspects about the activities, for example,the files being accessed, and the CPU

processing time. Based on the statistics such as the users’ access frequencies, means and covariances

(these are called the users’ profiles), for each audit record, SRI IDES can calculate the test statistic

value to measure the abnormality of the corresponding user’s activities. If this value is large, the

corresponding activities would be considered as abnormal.And a value close to zero would suggest

the activities are normal. ADAM [12] detects intrusions through applying association analysis and

clustering analysis [49] to network connections, where association analysis is used to identify the

suspicious connections, and clustering analysis is used toclassify the suspicious connections into

known attacks, unknow attacks, or false alerts. W&S [108] automatically creates detection rules

based on the statistics of historical audit records, and flags anomalies when a user’s activities are

“unusual.” The advantage of SRI IDES, ADAM and W&S is that they may detect the attacks that

are significantly deviate from the normal activities. Theirlimitation is that they may not detect

stealthy attacks.

Program behavior based techniques target on monitoring thebehaviors of programs. Once

a program’s behavior does not satisfy a predefined model, an alert is flagged. A critical question

to these techniques is how to build normal behavior models for programs. To our knowledge, all

proposed techniques monitor program behaviors through monitoring system calls that the program

invokes. Current approaches to building system call modelscan be roughly classified into two

categories: program training based approaches, and staticanalysis based approaches.

The seminal work [43] proposed by Forrest et al. is one of the approaches based on pro-

gram training. During the (attack-free) training phase, different sequences of system calls have been

observed. These long system call sequences are chopped up into short sequences (the lengths of se-

quences are 5, 6, and 11) and are put into a database representing the program’s normal behaviors.

In the detection phase, the system calls that a program invokes are monitored and matched with the

system call sequences in the database. Once there exists a mis-match, an alert is triggered. Given

system call sequences, Warrander et al. [114] further studied different data modeling methods to



12

specify the program’s normal behaviors. They tested four methods: simple enumeration of observed

sequences, comparison of relative frequencies of different sequences, a rule induction technique,

and Hidden Markov Models (HMMs). Based on the experimental results, HMMs produce the most

accurate models. Warrander et al. also pointed out that evensimple modeling methods can perform

well given enough system call sequences. [96] proposes to use a compact finite state automaton

(FSA) to learn the program’s normal behaviors. This automaton based modeling is able to capture

both long and short term behaviors (in term of system calls),and may reduce false positives. Feng

et al. [42] further incorporated call stack information into the model. Their approach is to retrieve

return addresses from call stacks, and construct virtual paths between system calls. Their approach

can detect some intrusions that may be missed by other approaches.

Static analysis based approaches such as [113, 41, 47] analyze the program source code

or executable to formalize the program’s normal behaviors.[113] proposes to specify the program’s

normal behaviors through analyzing program source code. Through source code analysis, [113]

proposes four models to capture the normal behaviors of programs: (1) the trivial model, (2) the

callgraph model, (3) the abstract stack model, and (4) the digraph model. As an example, the call-

graph model describes the program behaviors through a non-deterministic finite automaton. In this

automaton, each node is a state, and each edge (labeled with asystem call) between nodes repre-

sents a transition triggered by the corresponding system call. The benefit of this approach is that

it is free of false positives. [41] formally analyzes the abstract stack model (it is also referred as

pushdown automaton (PDA) model). Due to the non-determinism of stack activities, the operation

of PDA model is inefficient. [41] proposes two techniques to determinize PDA model: the obser-

vational technique and the instrumentation technique. Thefirst technique implemented by VPStatic

model extracts the stack activity information. The second technique implemented by Dyck’s model

transforms the program to add more code to expose the programstates. Giffin, Jha, and Miller [47]

propose to statically analyze the program binary to create the model of normal behaviors. During

detection, the system monitors the system calls that the program invokes, and the system calls are

allowed to make only if they satisfy the model. [47] further introduces two techniques for program

transforms: renaming and null call insertion, which may affect the model’s precision and efficiency.



13

2.2 Alert Correlation

Current intrusion detection systems suffer from several limitations. First, an intrusion

detection system may generate thousands of alerts a day [61], thus overwhelming security officers.

Second, among the alerts reported by intrusion detection systems, false alerts may be combined

with true alerts, and it is challenging to differentiate between them. Third, intrusion detection

systems cannot detect all attacks (i.e., they may miss some attacks). Alert correlation, focusing on

discovering the relationships between individual alerts raised by intrusion detection systems and

other security systems, is necessary to address these challenges.

Several alert correlation techniques have been proposed over the past a few years. These

techniques can be roughly classified into four categories: (1) the approaches based on the similarity

between alerts [33, 91, 109, 98, 60, 61], (2) the approaches based on the predefined attack scenarios

[78, 36, 34], (3) the approaches based on prerequisites and consequences [29, 83, 82, 84, 102], and

(4) the approaches based on multiple information sources [90, 79, 115].

Similarity based approaches [33, 91, 109, 98, 60, 61] perform alert correlation through

measuring the similarity between alerts. Each alert usually has several attributes associated with

them, for example, source and destination IP addresses. A natural way to discover the relationships

between alerts is to measure the similarity between alert attributes. For example, if two alerts have

the same source and destination IP addresses, it may be possible that the corresponding attacks are

launched by the same attacker. If the alerts are similar through calculating the similarity between

their attributes, they can be put into the same group to facilitate the future analysis. One critical

issue in these approaches is how to define similarity measure. Traditional similarity measures used

in data mining [49, 63] may not be appropriate for alert correlation, because many alert attributes

are categorical (e.g., TCP/UDP Port numbers) rather than numerical. Several techniques have been

proposed to solve this problem. In particular, Julisch et al. [62, 60] use conceptual clustering and

generalization hierarchy to aggregate alerts into clusters.

The predefined attack scenarios based approaches correlatealerts based on known sce-

nario templates, which are patterns of known sequences of attacks consisting of individual attack

steps. Such methods then match IDS alerts to attack steps in the scenario templates (in a similar

way to misuse detection). Examples in this category include[36, 34, 78]. Some approaches in this

category specify attack scenarios through attack languages such as STATL [40] and Chronicles [78].

For example, [78] models attack scenarios through chronicle language (a chronicle is a set of events

that are connected by temporal constraints). [36] proposesto correlate alerts based on the explicit or



14

derived rules. [34] builds attack scenarios through comparing probabilities that an alert may be in a

set of scenarios, and always choosing the most possible scenario to add a new alert. The probability

measure is derived based on training data. Though effectiveat recognizing known attack scenarios,

a limitation of these techniques is that they cannot discover novel attack scenarios.

The prerequisites and consequences based approaches [29, 83, 82, 84, 102] model each

attack through describing its prerequisite (the necessarycondition to launch an attack successfully)

and its consequence (the outcome if an attack succeeds). Through matching the consequences of

earlier attacks with the prerequisites of later ones, theseapproaches link different attacks together

to build attack scenarios. These techniques have the potential to discover novel attack scenarios.

However, specifying prerequisites and consequences of attacks requires knowledge of individual

attacks, and is time-consuming and error-prone.

The multiple information sources based approaches [90, 79,115] process alerts from sev-

eral security systems such as IDS sensors, firewalls, vulnerability scanners and anti-virus tools.

• [90] uses M-Correlator to process alerts, where alert processing can be divided into four

stages. In the first stage, M-Correlator applies dynamically controllable filters to remove low-

interest alerts for various subscribers. In the second stage, the alerts are examined based on

the known network topology, and a relevance score is assigned through comparing the alert’s

related network topology with the know vulnerabilities. Inthe third stage, M-Correlator cal-

culates the priority for each alert, which denoting the severity of the alert. In the last stage,

each alert is assigned an incident rank, which denotes the overall degree that the alert’s cor-

responding incident affects the network’s mission. The purpose of M-Correlator is to reduce

the number of alerts and to evaluate the severity of alerts for different analysts. Thus it usually

does not provide high-level attack scenarios.

• [79] proposes a formal model M2D2 for alert correlation. M2D2 performs alert correla-

tion using four types of information: (1) the characteristics of the information system (e.g.,

network topologies), (2) vulnerability information (e.g., an SNMP vulnerability CAN-2002-

0012), (3) security tool information (e.g., an IDS sensor ora vulnerability scanning tool), and

(4) monitored events (e.g., an IDS sensor flags anFTP Glob Expansionalert). These four

types of information are formally defined. Based on these formally defined concepts, M2D2

examines the relationship between them and performs alert correlation. In [79], M2D2 fo-

cuses on alert aggregation, and how to use M2D2 for other purposes such as building attack

scenarios is still to be explored.



15

• [115] proposes an architecture DOMINO (Distributed Overlay for Monitoring InterNet Out-

breaks) for distributed intrusion detection. Multiple IDSsensors in DOMINO are deployed

in various locations. Each IDS is responsible for monitoring the corresponding local network

and hosts, and different IDSs also share their intrusion data and collaborate with each other to

detect global coordinated attacks (e.g., Internet worms).There are several challenges involved

in DOMINO such as how to effectively sharing intrusion data.

Notice different security systems may put different emphases on protecting the network components

and applications. Combining them can potentially obtain more comprehensive understanding about

the security of the protected systems. However, we notice that the information provided by different

sources may be syntactically or semantically different, oreven conflict with each other. How to

reconcile them remains challenging.

2.3 Privacy-Preserving Techniques

Privacy-preserving techniques need to balance the requirements of data privacy as well as

data usability. There are several privacy-preserving techniques have been proposed in the field of

statistical databases and data mining. However, to our bestknowledge, the approach proposed by

Lincoln et al. [69] is the only paper to address privacy issues in the field of alert correlation. Here

we give an overview of these privacy-preserving techniques.

To protect the privacy of alert data, privacy-preserving techniques need to hide or obfus-

cate sensitive attribute values for individual alerts. There are several techniques that can possibly

achieve this goal, for example, cryptographic techniques such as data encryption and hash functions

[72], data perturbation techniques [92, 68] used in statistical databases [1], or privacy-preserving

data mining techniques [3, 2, 110].

Cryptographic techniques usually do not maintain the semantics of original values. They

transform sensitive attribute values to an unintelligibleform, and based on transformed values, it is

difficult to know original values. Possible candidate techniques in this category are (secret-key) data

encryption techniques such as DES and Triple DES [107], cryptographic hash functions such MD5

[93] and SHA-1 [39]1, or keyed hash functions such HMAC-MD5 and HMAC-SHA1 [14, 65].

Comparing these different cryptographic techniques, we argue that hash functions (and keyed hash

1In Crypto 2004, researches announced that collisions have been found in MD4, MD5, HAVAL-128 and RIPEMD,
however, no collisions have been found for SHA-1 [81].



16

functions) are more appropriate than data encryption techniques: (1) from performance perspective,

hash functions generally are faster than encryption algorithms. For example, on a Pentium 4 CPU

(2.1 GHz) with Windows XP Service Pack 1, MD5 performs216.674MB/second, SHA-1 performs

67.977MB/second, while DES performs21.340MB/second [32], and (2) from storage perspective,

the length of ciphertext usually is longer than the corresponding hash output especially when the

length of plaintext is long. Hash functions usually have fixed length of output. For example, the

output of MD5 is16 bytes, and the output of SHA-1 is20 bytes, while the output of encryption

could be arbitrarily large depending on plaintext (original values). We also argue that keyed hash

functions may be more appropriate than hash functions, especially when an attribute only has a

small number of possible values. For example, the possible port numbers are from20 to 216 − 1,

and the possible IP (IPv4) addresses are within000/8 to 255/8. Hence hash functions may be

vulnerable to brute-force (exhaustion) attacks. To defendfrom possible brute-force attacks, keyed-

hash functions can be applied to attribute values. Since a secret key is introduced in keyed hash

operations, original attribute values cannot be disclosedwithout the knowledge of the secret key.

However, this technique may have difficulty in correlation analysis due to different keys introduced

by different organizations. In addition, correlation result interpretation is non-trivial. The privacy-

preserving alert correlation technique proposed by Lincoln et al. [69] uses both hash functions and

keyed hash functions to sanitize sensitive alert attributes. Their approach is effective on detecting

high-volume events such as worms, but may have the limitations we mentioned above.

The techniques proposed in statistical databases and privacy-preserving data mining may

potentially be adapted to privacy-preserving alert correlation. These techniques may (asymptoti-

cally) preserve statistical properties (e.g., frequency count and mean) about original attribute val-

ues, while individual alert’s attribute values are perturbed through randomness or other techniques.

Attackers cannot estimate original attribute values with arbitrary precision.

Data distortion technique proposed by Liew et al. [68] is applicable to both categorical

and continuous data. It first estimates the distribution of original dataset, then generates a new

dataset with the estimated distribution, and finally replaces the original data with the new data.

Data swapping technique proposed by Reiss [92] is applicable to categorical attributes.

This technique is based on a key concept:t-order frequency counts. Givenq sensitive attributes, a

t-order frequency count (t = 0, 1, 2, · · · , q) is the number of alerts satisfyingam1 = v1 ∧ am2 =

v2 ∧ · · · ∧ amt = vt, wheream1, am2, · · · , amt are attribute names, andv1, v2, · · · , vt are attribute

values. The basic idea of data swapping is to generate a new dataset that preserves thet-order

frequency counts of the original dataset.



17

Data perturbation techniques such as [103, 3] are applicable to continuous attributes. The

basic idea is to transform attribute valueX to a new valueX ′, whereX ′ = X + δ andδ is an

independent random variable. To control the perturbation,it is necessary to give the mean and the

variance ofδ, for example,E(δ) = 0 andV ar(δ) = 202.

DShield [106] lets audit log submitters perform partial or complete obfuscation to desti-

nation IP addresses in data sets, where partial obfuscationchanges the first octet of an IP address to

decimal10, and complete obfuscation changes any IP address to a fixed value10.0.0.1.

Our work in this thesis is also closely related to thek-Anonymityapproaches [95, 100, 99],

where an entity’s information may be released only if there exist at leastk − 1 other entities in the

released data that are indistinguishable from this entity.These approaches also apply generalization

hierarchies to help obfuscate attributes, wherek is the pre-defined parameter to control the gener-

alization process. Our approach in Chapter 7 differs in thatwe use entropy to control the attribute

sanitization as well as to help design satisfactory concepthierarchies. Our approach in Chapter 8

uses concept hierarchies to facilitate artificial alert generation and attribute randomization. More-

over, we also study methods to correlate sanitized alerts inthis thesis. Our work in this thesis is

also related to packet trace anonymization techniques [88,89]. For example, Pang and Paxson [88]

propose a high-level language based approach to anonymize packet headers and payloads. These

approaches are complementary to our work.

2.4 Previous Work: Alert Correlation Using Prerequisites and Conse-

quences of Attacks

My thesis work is related to the alert correlation method proposed in [83]. In this section,

we briefly describe this method with a slight modification, which simplify our discussion without

losing the essence of the method.

2.4.1 An Overview of Correlation Method [83]

[83] proposes to correlate intrusion alerts based on the prerequisites and consequences

of attacks. Intuitively, theprerequisiteof an attack is the necessary condition to launch the attack

successfully, and the consequence of an attack is the possible outcome if the attack does succeed.



18

For example, consider an attackFTP Glob Expansion. The prerequisite of this attack is a vulnerable

FTPservice running on the victim machine, and the consequence of this attack is the root privilege

the attacker may possibly gain. Attackers usually launch a sequence of attacks to achieve their goals,

where the earlier attacks usually prepare for the later ones. The connections between different

attacks may be discovered through investigating the consequences of the earlier attacks and the

prerequisites of the later ones. Based on these observations, given a set of attacks, we first identify

the prerequisites and consequences for each attack, then wecorrelate the attacks through (partially)

matching the consequences of earlier attacks with the prerequisites of later ones.

The correlation method [83] uses logical formulas (logicalcombinations of predicates)

to represent the prerequisites and consequences of attacks. For example, aforementioned attack

FTP Glob Expansionmay gain root privilege on the victim host if it succeeds, thus we can use

predicateGainRootAccess(VictimIP)to represent its consequence. For simplicity, [83] limits logical

operations to AND (“∧”) and OR (“∨”) in logical formulas.

Prerequisites, consequences and attributes of attacks areformalized as hyper-alert types

(or alert types). Ahyper-alert type(or alert type) is a triple (fact, prerequisite, consequence), where

(1) fact is a set of alert attribute names associated with the corresponding domains, (2)prerequisite

is a logical formula, and (3)consequenceis a set of logical formulas. Note all the variables in

prerequisiteandconsequenceare infact.

We give an example for hyper-alert types here. (For simplicity, we do not list the cor-

responding domain for each attribute.) AFTP Glob Expansionhyper-alert type can be defined

asFTP Glob Expansion= ({SrcIP, SrcPort, DestIP, DestPort}, ExistService(DestIP, DestPort) ∧

VulnerableFTPRequest(DestIP)), {GainRootAccess(DestIP)}), where four attributesSrcIP, SrcPort,

DestIP, DestPortare used to describe the attack, the prerequisite of the attack is that aFTP service

runs on hostDestIPat portDestPortand this service is vulnerable to certain request, and the conse-

quence is attackers may gain root privilege on hostDestIP.

We notice that manually specifying hyper-alert types is time-consuming and error-prone.

To facilitate the hyper-alert type specification, a practical way is to predefine a set of predicates

(which can be extended if necessary), classify attacks intodifferent categories based on certain

criteria (e.g., the resources related to attacks), and thenlook for desirable predicates in prerequisites

and consequences for each category of attacks.

Given a hyper-alert typeT = (fact, prerequisite, consequence), a type T alert tis a tuple

on fact, and this tuple is associated with an interval-based timestamp [begin time, endtime]. A type

T hyper-alert his a finite set of typeT alerts. The notion of hyper-alerts provide us the flexibility of



19

treating multiple alerts with the same type collectively.

The correlation method in [83] is aimed at discovering attack scenarios among intrusion

alerts, where an attack scenario is a sequence of attacks that the adversaries launch to achieve their

goal. [83] discovers attack scenarios through identifyingtheprepare-forrelations between hyper-

alerts (alerts).

Intuitively, aprepare-forrelation exists if an earlier alertcontributesto the prerequisite of

a later one. In the formal model, alert correlations are performed via prerequisite and consequence

sets. Given a hyper-alert typeT = (fact, prerequisite, consequence), theprerequisite set(or conse-

quence set, resp.) ofT , denotedPrereq(T ) (or Conseq(T ), resp.), is the set of all predicates that ap-

pear inprerequisite(or consequence). Theexpanded consequence setof T , denotedExpConseq(T ),

is the set of all predicates implied byConseq(T ) (e.g.,OSSolaris(DestIP)impliesOSUnix(DestIP)).

Thus we haveConseq(T ) ⊆ ExpConseq(T ). Given a typeT alert t, the prerequisite set, conse-

quence set, andexpanded consequence setof t, denotedPrereq(t), Conseq(t), andExpConseq(t),

respectively, are the instantiated predicates inPrereq(T ), Conseq(T ), and ExpConseq(T ) with

arguments replaced by the corresponding attribute values of t. Alert t1 prepares foralert t2 if

t1.end time < t2.begin time and there exist instantiated predicatesc ∈ ExpConseq(t1) andp ∈

Prereq(t2) such thatc = p. Similarly, consider two hyper-alertsh1 andh2. h1 prepares forh2 if

there exist alertst1 ∈ h1 andt2 ∈ h2 such thatt1 prepares fort2. For convenience, we may also

refer to prepare-for relations ascausal relationsin this thesis.

An alert (or hyper-alert) correlation graph is used to represent a sequence of correlated

alerts (or hyper-alerts). Formally, analert (or hyper-alert) correlation graphCG = (N , E) is a

connected directed acyclic graph, where anyn ∈ N is an alert (or a hyper-alert), and each directed

edge(n1, n2) ∈ E denotes thatn1 prepares forn2. Note that a hyper-alert correlation graph is

acyclic, since if one attackprepares forthe other, then the former must occurs before the latter. As

an example, Figure 2.1 shows an alert correlation graph adapted from [83]. The numbers inside the

nodes represent the alert IDs, and the types of alerts are marked below the corresponding nodes. For

brevity, we refer to an alert correlation graph (or a hyper-alert correlation graph) as acorrelation

graph in this report. For brevity, we also refer to this correlation method as thecausal correlation

method, since its goal is to discover the causal relations between alerts.



20

Stream_DoS

002

003

004

005

012001

006

007

008

009

010

011
Sadmind_Ping

Sadmind_Amslverify_Overflow Rsh

Mstream_Zombie

Figure 2.1: An example of alert correlation graphs

2.4.2 Implementation of [83]

We have implemented the correlation method based on prerequisites and consequences in

[83]. To save our development efforts, our initial implementation takes advantage of the database

systems. We store all hyper-alert types and alert data into aMicrosoft SQL Server 2000 database.

We use Java as a programming language, and use JDBC (JDBC is a component in Java to ac-

cess databases) to interact with the database to perform correlation. For each alert, the predicates

in the prerequisite and expanded consequence sets are instantiated as strings (e.g.,GainRootAc-

cess(DestIP)may be instantiated asGainRootAccess(10.10.1.1)) using alert attributes and saved

into the tablesPrereqSetand ExpandedConseqSet, respectively. To facilitate the correlation, we

also store the corresponding alert (or hyper-alert) IDs andtimestamps in the aforementioned tables.

Thus each table has four columnsAlertID (or HyperAlertID), InstantiatedPredicate, begin time, and

end time. As a result, the matching of the consequences of the earlieralerts with the prerequisites

of the later alerts can be performed through the following SQL statement [83].

SELECT DISTINCT c.AlertID, p.AlertID

FROM PrereqSet p, ExpandedConseqSet c

WHERE p.InstantiatedPredicate = c.InstantiatedPredicate

AND c.endtime< p.begintime

Based on the output of the above SQL statement, we can identify all prepare-forrelations



21

among the given alerts. Connecting theseprepare-forrelations can provide us the attack scenarios

hidden in the alert datasets.

This correlation method is effective according to the experiments with 2000 DARPA in-

trusion detection scenario specific data sets [77] and DEF CON 8 Capture The Flag (CTF) event

datasets [37]. For details of these experimental results, please refer to [82, 83].



22

Chapter 3

Adapting Query Optimization

Techniques for Efficient Correlation

As we mentioned in Chapter 2, to assist the analysis of intrusion alerts, several alert

correlation methods (e.g., [34, 36, 109]) have been proposed recently to process the alerts reported

by IDS. As one of these methods, we have been developing intrusion alert correlation and analysis

techniques based on prerequisites and consequences of attacks [82, 83]. Intuitively, the prerequisite

of an intrusion is the necessary condition for the intrusionto be successful, while the consequence of

an intrusion is the possible outcome of the intrusion. Basedon the prerequisites and consequences

of different types of attacks, our method correlates alertsby (partially) matching the consequence

of some previous alerts and the prerequisite of some later ones.

We have implemented an offline intrusion alert correlator using our previous correlation

method [83]. Notice that to save our development efforts, our initial implementation is a DBMS-

based application [83]. Involving a DBMS in the alert correlation process provided enormous con-

venience and support in our initial implementation; however, relying entirely on the DBMS also

introduced performance penalty. For example, to correlateabout 65,000 alerts generated from the

DEF CON 8 CTF dataset, it took the DBMS-based intrusion alertcorrelator around 45 minutes

with the JDBC-ODBC driver included in Java 2 SDK, Standard Edition, and more than 4 minutes

with the Microsoft SQL Server 2000 Driver for JDBC. Such performance is clearly not sufficient



23

to make alert correlation a practical tool, especially for interactive analysis of intensive alerts. Our

timing analysis indicates that the performance bottlenecklies in the interaction between the intru-

sion alert correlator and the DBMS. Since our current intrusion alert correlator completely relies

on the DBMS, processing of each single alert entails interaction with the DBMS, which introduces

significant performance overhead.

To address this problem, we propose to perform alert correlation entirely in main memory,

while only using the DBMS as the storage of intrusion alerts.We study several main memory

index structures, including Array Binary Search [5], AVL Trees [4], B Trees [21], Chained Bucket

Hashing [64], Linear Hashing [70], and T Trees [67], as well as some database query optimization

techniques such as nested loop join and sort join [105] to facilitate timely correlation of intrusion

alerts. By taking advantage of the characteristics of the alert correlation process, we develop three

techniques namedhyper-alert container, two-level index,andsort correlation, which further reduce

the execution time required by alert correlation.

We performed a series of experiments to evaluate these techniques with the DEF CON

8 CTF data set [37]. The experimental results demonstrate that (1) hyper-alert containers improve

the efficiency of index structures with which an insertion operation involves search (e.g., B Trees,

T Trees), (2) two-level index improves the efficiency of all index structures, (3) a two-level index

structure combining Chained Bucket Hashing and Linear Hashing is most efficient for correlating

streamed alerts, and (4) sort correlation with heap sort algorithm is most efficient for alert correlation

in batch. With the most efficient method, the execution time for correlating the alerts generated from

the DEF CON 8 CTF data set is reduced from over four minutes to less than one second.

3.1 Adapting Query Optimization Techniques

The essential problem in our approach is how to perform the SQL query (see “Implemen-

tation of [83]” in Chapter 2 for the query) efficiently. One option is to use database query optimiza-

tion techniques, which have been studied extensively for both disk based and main memory based

databases. However, alert correlation has a different access pattern than typical database applica-

tions; this may lead to different performance than traditional database applications. In addition,

the unique characteristics in alert correlation may give usthe opportunity for further improvement.

Thus, in this and the next sections, we seek the possibilities to improve alert correlation by adapt-

ing existing query optimization techniques, evaluate various techniques and their adaptations, and



24

identify the most suitable ones for intrusion alert correlation.

In the following, we first go over some main memory index structures, and then present

our adaptations for correlating streamed as well as batch alerts. In Section 3.2, we report our exper-

imental results.

3.1.1 Main Memory Index Structures

Main memory index structures have been studied extensivelyin the context of search al-

gorithms and main memory databases. Many different kinds ofindex structures have been proposed

in the literature. In our study, we focus on the following ones: Array Binary Search [5], AVL Trees

[4], B Trees [21], Chained Bucket Hashing [64], Linear Hashing [70], and T Trees [67].

In the following, we briefly describe these index structures. Detailed information can

be found in the corresponding references. For comparison purpose, we also implement a naive,

sequential scan method, which simply scans in an (unordered) array for the desired data item. We

only care about insertion and search operations due to the need for alert correlation.

Sequential Scanis only implemented for reference purposes. In our study, Sequential Scan stores

data items in an array. Search is performed by sequentially scanning the data items in the array, and

insertion is simply to append to the end of the array.

Array Binary Search [64, 5] stores sorted data items in an array and locates the desired item via

binary search. Array Binary Search is pretty efficient when searching in a static array. However,

it has certain drawbacks in a dynamic environment. First, the array has to have enough space to

accommodate new data items; otherwise, memory reallocation and copy of the entire array will

have to be performed. In addition, even if there is enough space, insertion into the array involves

O(N) data movements.

AVL Trees [4] are balanced binary search trees. Each node in an AVL Treecontains a data item,

control information, a left pointer which points to the subtree that contains the smaller data items

(than the current data item), and a right pointer which points to the subtree that contains the bigger

items (than the current data item). Search in an AVL Tree is very fast, since the binary search is

intrinsic to the tree structure [67]. Insertion into an AVL Tree always involves a leaf node, and may

lead to a rotation operation if it results in an unbalanced tree.

B Trees [21] are also balanced search trees. Unlike an AVL Tree, a node in a B Tree may have

multiple data items and pointers. Data items in a B Tree node are ordered, and each pointer points

to a subtree that consists of the data items that fall into therange identified by the adjacent data



25

items. B trees are shallower than AVL Trees, and thus involveless node accesses for a search

operation. Insertion into a B Tree is fast, which usually involves only one node.

T Trees [67] are binary trees with many elements in a node, which evolved from AVL Trees and B

Trees. The T Tree retains the intrinsic binary search natureof the AVL Tree, but it also has the good

update and storage characteristics of the B Tree, since a T Tree node contains many elements. Search

in a T Tree consists of a search in the binary tree followed by asearch within a node. Insertion into

a T Tree involves data movements within a single node, and possible rotations to rebalance the tree

structure.

Chained Bucket Hashing[64] uses a static hash table and a chain of buckets for each hash entry. It

is efficient in a static environment where the number of data items can be predetermined. However,

in a dynamic environment in which the number of data items is not known (e.g., alert correlation),

Chained Bucket Hashing may have poor performance. If the size of the hash table is too small, too

many buckets may be chained for each hash entry; if the size ofthe hash table is too large, space

may be wasted due to the empty entries.

Linear Hashing [70] uses a dynamic hash table, which splits hash buckets in predefined linear

oder. Each time when the candidate bucket (i.e., the next bucket to split according to the linear

order) overflows, Linear Hashing splits the candidate bucket into two, and the size of the hash table

grows by one. The overflowed data items in the non-candidate buckets are placed in the overflow

buckets for the same hash entries. The buckets are ordered sequentially, allowing the bucket address

to be computed from a base address.

3.1.2 Correlating Streamed Intrusion Alerts

We first study alert correlation methods that deal with intrusion alert streams continuously

generated by IDS. With such methods, an alert correlation system can be pipelined with IDS and

produce correlation result in a timely manner.

Figure 3.1 presents a nested loop method that can accommodate streamed alerts. (As

the name suggests, nested loop correlation is adapted from nested loop join [45].) It assumes that

the input hyper-alerts are ordered ascendingly in terms of their beginning time. The nested loop

method takes advantage of main memory index structures suchas Linear Hashing and T Trees.

While processing the hyper-alerts, the nested loop method maintains an index structureI for the

instantiated predicates in the expanded consequence sets along with the corresponding hyper-alerts.

Each time when a hyper-alerth is processed, the algorithm searches inI for each instantiated



26

Outline of Nested Loop Correlation
Input: A list H of hyper-alerts ordered ascendingly in their beginning times.
Output: All pairs of (h′, h) such that bothh andh′ are inH andh′ prepares forh.
Method:

Maintain an index structureI for instantiated predicates in the expanded
consequence sets of hyper-alerts. Each instantiated predicate is associated
with the corresponding hyper-alert. Initially,I is empty.
1. for each hyper-alerth in H (accessed in the given order)
2. for each instantiated predicatep in the prerequisite set ofh
3. Search the set of hyper-alerts with index keyp in I. Let H ′ be the result.
4. for eachh′ in H ′

5. if (h′.EndTime< h.BeginTime)then output (h′, h).
6. for eachp in the expanded consequence set ofh
7. Insertp along withh into I.
end

Figure 3.1: Outline of the nested loop alert correlation methods

predicatep that appears inh’s prerequisite set. A match of a hyper-alerth′ implies thath′ has the

same instantiated predicatep in its expanded consequent set. Ifh′.EndTime is beforeh.BeginTime,

thenh′ prepares forh according to the definition ofprepare-forrelation. If the method processes

all the hyper-alerts in the ascending order of their beginning time, it is not difficult to see that the

nested loop method can find all and only the prepare-for relations between the input hyper-alerts.

The nested loop correlation method has different performance if different index structures

are used. Thus, one of our tasks is to identify the index structure most suitable for this method. In

addition, we further develop two adaptations to improve theperformance of these index structures.

Our first adaptation is based on the following observation.

Observation 1 Multiple hyper-alerts may share the same instantiated predicate in their expanded

consequence sets. Almost all of them prepare for a later hyper-alert that has the same instantiated

predicate in its prerequisite set.

Observation 1 implies that we can associate hyper-alerts with an instantiated predicatep

if p appears in the expanded consequence sets of all these hyper-alerts. As a result, locating an

instantiated predicate directly leads to the locations of all the hyper-alerts that share the instantiated



27

predicate in their expanded consequence sets. We call the set of hyper-alerts associated with an

instantiated predicate ahyper-alert container.

However, using hyper-alert containers does not always result in better performance. There

are two types of accesses to the index structure in the nestedloop correlation method (Figure 3.1):

insertion and search. For the index structures that preserve the order of data items in them, insertion

implies search, since each time when an element is inserted into the index structure, we have to place

it in the “right” place. Using hyper-alert container does not increase the insertion cost significantly

in this case, while at the same time reduces the search cost. However, for the non-order preserving

index structures such as Linear Hashing, insertion does notinvolve search. Using hyper-alert con-

tainers would force to perform a search, since the hyper-alerts have to be put into the right container.

In this case, hyper-alert container decreases the search cost but increases the insertion cost, and it is

not straightforward to determine whether the overall cost is decreased or not. We study this through

experiments in Section 3.2.

Our second adaptation is based on the following observation.

Observation 2 There is a small, static, and finite set of predicates. Two instantiated predicates are

the same only if they are instantiated from the same predicate.

Observation 2 leads to atwo-level index structure. Each instantiated predicate can be split

into two parts, the predicate name and the arguments. The top-level index is built on the predicate

names. Since we usually have a static and small set of predicate names, we use Chained Bucket

Hashing for this purpose. Each element in the top-level index further points to a second-level index

structure. The second-level index is built on the argumentsof the instantiated predicates. When

an instantiated predicate is inserted into a two-level index structure, we first locate the right hash

bucket based on the predicate name, then locate the second-level index structure within the hash

bucket (by scanning the bucket elements), and finally insertit into the second-level index structure

using the arguments.

We expect the two-level index structure to improve the performance due to the following

reasons. First, since the number of predicates is small and static, using Chained Bucket Hashing on

predicate names is very efficient. In our experiments, the size of the hash table is set to the number

of predicates, and it usually takes one or two accesses to locate the second-level index structure for

a given predicate name. Second, the two-level index structure decomposes the entire index structure



28

Outline of Sort Correlation
Input: A setH of hyper-alerts.
Output: All pairs of (h′, h) such that bothh andh′ are inH andh′ prepares forh.
Method:

Prepare two arraysApre andAcon, each entry of which is a hyper-alert associated
with akey field. Each array is initialized with a reasonable size, and reallocated
with doubled sizes if out of space. Existing content is copied to the new buffer
if reallocation happens.
1. for eachh in H
2. for eachp in the prerequisite set ofh
3. Appendh to Apre with key = p.
4. for eachp in the expanded consequence set ofh
5. Appendh to Acon with key = p.
6. SortApre andAcon ascendingly in terms of thekey field (with, e.g., heap sort).
7. Partition the entries inApre andAcon into maximal blocks that share the same instantiated

predicate. AssumeApre andAcon haveBpre andBcon blocks, respectively.
8. i = 0, j = 0.
9. while (i < Bpre andj < Bcon) do
10. if (Apre.Block(i).InstantiatedPredicate< Acon.Block(j).InstantiatedPredicate)then
11. i = i + 1.
12. else if(Apre.Block(i).InstantiatedPredicate> Acon.Block(j).InstantiatedPredicate)then
13. j = j + 1.
14. else foreachh in Apre.Block(i) and eachh′ in Acon.Block(j)
15. if h′.EndT ime < h.BeginT ime then output (h′, h).
16. i = i + 1, j = j + 1.
end

Figure 3.2: The sort correlation method

into smaller ones, and thus reduces the search time in the second-level index. We verify our analysis

through extensive experiments in Section 3.2.

3.1.3 Correlating Intrusion Alerts in Batch

Some applications allow alerts to be processed in batch (e.g., forensic analysis with an

alert database). Though the nested loop method discussed earlier is still applicable, there are more

efficient ways for alert correlation in batch.

Figure 3.2 presents a sort correlation method, which is adapted from sort join [105]. The

sort correlation method achieves good performance by taking advantage of efficient main memory



29

sorting algorithms. Specifically, it uses two arrays,Apre andAcon. Apre stores the instantiated

predicates in the prerequisite sets of the hyper-alerts (along with the corresponding hyper-alerts),

andAcon stores the instantiated predicates in the expanded consequence sets (along with the cor-

responding hyper-alerts). This method then sorts both arrays in terms of the instantiated predicate

with an efficient sorting algorithm (e.g., heap sort).

Assume both arrays are sorted ascendingly in terms of instantiated predicate. The sort

correlation method partitions both arrays into blocks thatshare the same instantiated predicate,

and scans both arrays simultaneously. The sort correlationmethod maintains two indices,i and

j, that references to the current blocks inApre andAcon, respectively. The method compares the

instantiated predicates in the two current blocks. If the instantiated predicate in the current block

of Apre is smaller, it advances the indexi; if the instantiated predicate in the current blockAcon

is smaller, it advances the indexj; otherwise, the current blocks ofApre andAcon share the same

instantiated predicate. The method then examines each pairof hyper-alertsh′ andh, whereh′ andh

are in the current block ofAcon andApre, respectively. If the end time ofh′ is before the beginning

time ofh, thenh′ prepares forh according to the definition ofprepare-forrelation.

It is easy to see that the sort correlation method can find all pairs of hyper-alerts such

that the first prepares for the second. Consider two hyper-alertsh andh′ whereh′ prepares forh.

There must exist an instantiated predicatep in both the expanded consequence set ofh′ and the

prerequisite set ofh. Thus,p along withh′ must be placed in the arrayAcon, andp along withh

must be placed in the arrayApre. The scanning method in Figure 3.2 (lines 9 - 16) will eventually

point i to p’s block inApre andj to p’s block inAcon at the same time, and thus outputh′ prepares

for h. Therefore, the sort correlation can discover all and only pairs of hyper-alerts such that the

first prepares for the second.

We also study the possibility of adapting two-index join andhash join methods [105]

to improve the performance of batch alert correlation. However, our analysis indicates they cannot

outperform nested loop correlation due to the fact that alert correlation is performed entirely in main

memory.

A naive adaptation of two-index join leads to the following two-index correlation method:

Build two index structures for the instantiated predicatesin the prerequisite sets and the expanded

consequence sets, respectively. For each instantiated predicatep, locate the hyper-alerts related top

in both index structures, and compare the corresponding timestamps. However, this method cannot

perform better than the nested loop method. The nested loop method only involves insertion of

instantiated predicates in the expanded consequence sets and search of those in the prerequisite sets.



30

In contrast, the above adaptation requires insertion of instantiated predicates in both prerequisite

and expanded consequence sets, and search of instantiated predicates in at least one of the index

structures.

A possible improvement over the naive adaptation is to mergethe two index structures.

We can associate two sets of hyper-alerts with each instantiated predicatep, denotedHpre(p) and

Hcon(p), and build one index structure for the instantiated predicates.Hpre(p) andHcon(p) consist

of the hyper-alerts that havep in their prerequisite sets and expanded consequence sets, respectively.

After all the instantiated predicates in the prerequisite or the consequence set of the hyper-alerts are

inserted into the index structure, we can simply scan all theinstantiated predicates, and compare the

corresponding timestamps of the hyper-alerts inHpre(p) andHcon(p) for each instantiated pred-

icatep. However, each insertion of an instantiated predicate entails a search operation, since the

corresponding hyper-alert has to be inserted into eitherHpre(p) or Hcon(p). Thus, this method can-

not outperform the nested loop method, which involves one insertion for each instantiated predicate

in the expanded consequence sets, and one search for each instantiated predicate in the prerequisite

sets. A similar conclusion can be drawn for hash join.

Another possibility to have a faster batch correlation is touse Chained Bucket Hashing.

Since the number of alerts is known beforehand, we may be ableto decide a relatively accurate hash

table size, and thus have a better performance than its counter part for streamed alerts. We study

this through experiments in Section 3.2.

3.1.4 Correlating Intrusion Alerts with Limited Memory

The previous approachs to in-memory alert correlation haveassumed that all index struc-

tures fit in memory during the alert correlation process. This may be true for analyzing intrusion

alerts collected during several days or weeks; however, in typical operational scenarios, the IDSs

produce intrusion alerts continuously and the memory of thealert correlation system will eventually

be exhausted. A typical solution is to use a “sliding window”to focus on alerts that are close to

each other; at any given point in time, only alerts after a previous time point are considered for

correlation. Such a method has been adopted by many IDSs suchas ADAM [13].

We adopt a sliding window which can accommodate up tot intrusion alerts. The param-

eter t is determined by the amount of memory available to the intrusion alert correlation system.

Each time when a new intrusion alert is coming, we check if inserting this new alert will result in

more thant alerts in the index structure. If yes, we remove the oldest alert from the index structure.



31

In either case, we will perform the same correlation processas in Section 3.1.2. It is also possible

to add multiple intrusion alerts in batch. In this case, multiple old alerts may be removed from the

index structure. Note that though choosing a slidingtimewindow is another option, it doesn’t reflect

the memory constraint we have to face in this application.

Using a sliding window in our application essentially implies deleting old intrusion alerts

when there are more thant alerts in the memory. This problem appeared to be trivial at the first

glance, since all the data structures have known deletion algorithms. However, we soon realized

that we had to go through a little trouble to make the deletionefficient. The challenge is that the

index structures we build in all the previous approaches arein terms of instantiated predicates to

facilitate correlation. However, to remove the oldest intrusion alerts, we need to locate and remove

alerts in terms of their timestamps. Thus, the previous index structures cannot be used to perform

the deletion operation efficiently. Indeed, each deletion implies a scan of all the alerts in the index

structures.

To address this problem, we add asecondary data structureto facilitate locating the oldest

intrusion alerts. Since the intrusion alerts are inserted as well as removed in terms of their time order,

we use a queue (simulated with a circular buffer) for this purpose. Each newly inserted intrusion

alert also has an entry added into this queue, which points toits location in theprimary index

structurein terms of the instantiated predicates. Thus, when we need to remove the oldest intrusion

alert, we can simply dequeue an alert, find its location in theprimary index structure, and delete

it directly. Indeed, this is more efficient than the generic deletion method of the order preserving

index structures (e.g., AVL Trees), since deletion usuallyimplies search in those index structures.

3.2 Implementation and Experiments

We have implemented all the techniques discussed in Section3.1. All the programs are

written in Java, with JDBC to connect to the DBMS. However, unlike our previous prototype system,

the current implementation only uses the DBMS as the storageof hyper-alert types and hyper-alerts.

All the processing of alerts is handled in main memory by the program. To make the execution time

comparable, we reuse the code as much as possible, and make sure we use the most efficient way in

coding.

Some index structures need array to store the data, which mayneed memory reallocation

in dynamic environments. We implemented a simple memory reallocation strategy to handle all



32

the array reallocation. Each array is initialized with a certain size. When the array is not enough,

the program reallocates another array with a doubled size and copy over all the data items in the

previous array.

Several index structures require some other parameters. For B Trees, we need to specify

node size (i.e., how many data items to store in one B Tree node); for T Trees, we need minimum

and maximum node sizes; for Chained Bucket Hashing and Linear Hashing, we need the bucket size

(i.e., how many elements in each bucket). Different parameters may result in different performance.

A common feature of these parameters is that both too large and too small values will result in poor

performance. We found the experimentally optimal values for these parameters in the corresponding

references, performed a series of experiments to compare the execution time, and picked the best

values. As a result, the node size of B Trees is 7, the minimum and the maximum node sizes of a T

Tree node are 8 and 10, respectively, the bucket size of Linear Hashing is 20, and the bucket size of

Chained Bucket Hashing is 5.

3.2.1 Experimental Results

We performed a series of experiments to compare the techniques discussed in Section

3.1. All the experiments were run on a DELL Precision Workstation with 1.8GHz Pentium 4 CPU

and 512M memory. The alerts used in our experiments were generated by a RealSecure Network

Sensor 6.0 [52], which monitors an isolated network in whichwe replayed the network traffic col-

lected at the DEF CON 8 CTF event [37]. The Network Sensor was configured to use theMaxi-

mumCoveragepolicy with a slight change, which forced the Network Sensorto save all the reported

alerts.

In these experiments, we mapped each alert type reported by the RealSecure Network Sen-

sor to a hyper-alert type (with the same name), and generatedone hyper-alert from each alert. The

prerequisite and consequence of each hyper-alert type werespecified according to the descriptions

of the attack signatures provided by RealSecure. There are totally 65,058 hyper-alerts generated

by the RealSecure Network Sensor, among which 52,318 hyper-alerts have prerequisite or conse-

quence. The remaining hyper-alerts are mainlyWindowsAccessError andIPDuplicate, which we

decided to ignore due to their overly general semantics. These hyper-alerts cannot be correlated

with any other ones, and do not contribute to the time required by alert correlation. In order to

precisely evaluate the relationship between the executiontime and the number of hyper-alerts, we

did not include them in our experiments.



33

0

50000

100000

150000

200000

250000

0 10000 20000 30000 40000 50000 60000

Number of Hyper-alerts

T
im

e 
(m

s)

BinarySearch ContainerBinarySearch
SequentialScan ContainerSeqScan

(a) Hyper-alert containers (1)

0

200

400

600

800

1000

1200

0 10000 20000 30000 40000 50000 60000

Number of Hyper-alerts

T
im

e 
(m

s)

LinearHash ContainerLinearHash

(b) Hyper-alert containers (2)

0

5000

10000

15000

20000

25000

30000

0 10000 20000 30000 40000 50000 60000

Number of Hyper-alerts

T
im

e 
(m

s)

SequentialScan SequentialScan2L
ContainerBinarySearch ContainerBinarySearch2L

(c) Two-level index structures (1)

0

200

400

600

800

1000

1200

1400

0 10000 20000 30000 40000 50000 60000
Number of Hyper-alerts

T
im

e 
(m

s)

TTree TTree2L AVLTree AVLTree2L

(d) Two-level index structures (2)

0

200

400

600

800

1000

1200

0 10000 20000 30000 40000 50000 60000
Number of Hyper-alerts

T
im

e 
(m

s)

BTree BTree2L
LinearHash LinearHash2L

(e) Two-level index structures (3)

Figure 3.3: Experimental results (1)

Nested-Loop Correlation without Memory Constraint

Our first set of experiments was intended to evaluate the effectiveness of hyper-alert con-

tainer in the nested loop correlation method. According to our analysis, hyper-alert container may



34

0

500

1000

1500

2000

2500

0 10000 20000 30000 40000 50000 60000

Number of Hyper-alerts

T
im

e 
(m

s)

AVLTree2L LinearHash2L
ContainerBinary2L

(a) Efficient methods for streamed alerts

0

200

400

600

800

1000

1200

1400

0 10000 20000 30000 40000 50000 60000

Number of Hyper-alerts

T
im

e 
(m

s)

HeapSortCorrelation LinearHash2L (U)
LinearHash2L (O) ChainedBacketHash (U)
ChainedBucketHash(O)

(b) Efficient methods for batch alerts

0

200

400

600

800

1000

1200

1400

1600

1800

0 10000 20000 30000 40000 50000 60000

Number of Hyper-alerts

T
im

e 
(m

s)

HeapSortCorrelation QuickSortCorrelation

(c) Impact of sorting algorithms

0

0.5

1

1.5

2

2.5

0 10000 20000 30000 40000 50000 60000

Number of Hyper-alerts

S
p

ac
e 

R
at

io
 (

C
o

m
p

ar
ed

 w
it

h
 

S
eq

u
en

ti
al

 S
ca

n
)

LinearHash2L Sort Correlation

(d) Space overhead

Figure 3.4: Experimental results (2)

reduce the execution time if we use the order-preserving index structures. We compared the execu-

tion time for Sequential Scan, Array Binary Search, and Linear Hashing, with or without hyper-alert

container. We did not perform a similar comparison for the tree index structures (i.e., T Tree, B Tree,

and AVL Tree), since not having hyper-alert container not only increases both insertion and search

cost, but also the complexity of the programs. As shown in Figures 3.3(a) and 3.3(b), hyper-alert

container reduces the execution time for Array Binary Search, but increases the execution time for

Sequential Scan significantly, and Linear Hashing slightly.

Our second set of experiments was intended to evaluate the effectiveness of two-level

index structure in the nested loop correlation method. According to our analysis and the earlier

experimental results, we used hyper-alert container in Array Binary Search and tree index structures,

but not in Sequential Scan and Linear Hashing. As indicated by Figures 3.3(c) to 3.3(e), two-level



35

index reduces execution time for all index structures.

In Figure 3.3(c), the lines for Sequential Scan and two-level Sequential Scan have an

interesting flat area when the number of input hyper-alerts is between 8,000 and 40,000. Our in-

vestigation revealed that the majority of hyper-alerts in this range do not have any prerequisite.

Thus, processing of these hyper-alerts does not involve search (i.e., sequential scan) in a large array,

and there is no big increase in execution time. In other words, the difference between insertion

and search cost and the fact that there is not many searches for the hyper-alerts between 8,000 and

40,000 resulted in the flat area in Figure 3.3(c). In the otherindex structures, there is no significant

difference between insertion and search costs. Thus, thereis no dramatic change in execution time

for the hyper-alerts between 8,000 and 40,000, though we canobserve the slow down in the increase

of execution time.

Our next goal is to find out which index structure (with or without the two adaptations) has

the best performance for nested loop correlation. We take the fastest methods from Figure 3.3(c),

3.3(d), and 3.3(e), which are two-level Array Binary Searchwith hyper-alert container, two-level

AVL Tree, and two-level Linear Hashing, and put them in Figure 3.4(a). The resulting figure shows

both two-level AVL Tree and two-level Linear Hashing are significantly faster than two-level Array

Binary Search with hyper-alert container, and two-level Linear Hashing outperforms two-level AVL

Tree by up to 20%. Thus, nested loop correlation achieves thebest performance with two-level

Linear Hashing.

Batch Correlation (without Memory Constraint)

Our next set of experiments is focused on methods for correlating alerts in batch. Cer-

tainly, all the previously evaluated methods can be used forbatch processing of intrusion alerts. Our

evaluation here is to determine whether any method can achieve better performance than nested loop

correlation with two-level Linear Hashing, the best methodfor correlating streamed alerts. For the

index structures other than Chained Bucket Hashing, knowing the hyper-alerts before alert correla-

tion will not change anything in the index structures. Thus,we believe their relative performance

will not change for batch alert correlation. However, knowing how many hyper-alerts gives more

information for Chained Bucket Hashing, since we can estimate the number of elements to be in-

serted into the hash table and thus have a good guess about thedesired size of the hash table. In our

experiments, we chose to set the hash table size the same as the number of input hyper-alerts. More-

over, the sort correlation method can potentially outperform nested loop correlation with two-level



36

Linear Hashing, since it adopts a different way to correlatethe hyper-alerts. Thus, we decided to

compare the execution time of nested loop correlation with two-level Linear Hashing, nested loop

with Chained Bucket Hashing, and sort correlation. To further examine the impact of the time order

of input hyper-alerts, we examined the timing results with ordered and unordered input. With input

hyper-alerts not ordered in their beginning time, the algorithm must insert all of the instantiated

predicates in the expanded consequence sets before it processes any instantiated predicate in the

prerequisite sets. The time order of input does not have any impact on sort correlation.

Figure 3.4(b) shows the timing results of these methods. Surprisingly, Chained Bucket

Hashing has the worst performance. Our further investigation explains this result: The average

number of data items per hash entry is between 1.0 and 1.52; however, the maximum number of data

items per hash entry is between 162 and 518. That is, the distribution of the instantiated predicates

resulted in uneven distribution of hyper-alerts in the buckets. Having input hyper-alerts ordered by

beginning time only reduced the execution time slightly differences for nested loop correlation with

both two-level Linear Hashing and Chained Bucket Hashing. Finally, sort correlation with heap sort

achieves the best performance among these four methods.

We also studied the impact of different sorting algorithms on the execution time of sort

correlation. We compared two sorting algorithms, heap sortand quick sort. Heap sort has the

least complexity in the worst case scenarios, while quick sort is considered the best practical choice

among all the sorting algorithms [22]. Figure 3.4(c) shows the timing results of both algorithms:

Sort correlation with quick sort performs significantly worse than the heap sort case. In addition,

the execution time is not very stable in terms of the number ofinput hyper-alerts. This is because

quick sort is sensitive to the input. In contrast, heap sort has stably increasing execution time as the

number of hyper-alerts increases. Thus, we believe heap sort is a good choice for sort correlation.

Space Utilization

We examined the space overhead of these methods by comparingtheir space requirements

with the sequential scan method. We use a quantitative measurespace ratio= #bytes to use the method
#bytes to use sequential scan

for this purpose. As shown in Figure 3.4(d), the highest space ratios of sort correlation and nested

loop correlation with two-level Linear Hashing are 2.34 and1.52, respectively. Sort correlation

requires about twice space as nested loop with two-level Linear Hashing, since it has to store in-

stantiated predicates in both prerequisite and expanded consequence sets. In addition, nested loop

correlation with two-level Linear Hashing requires more space than sequential scan when the input



37

size is small, but less space when the input size is large. This is because two-level Linear Hashing

usually has wasted cells in the hash table when the input sizeis small. When the input size is large,

not only the hash table is better utilized, but storing predicate names in the top level index can also

reduce the storage requirement. The spike in the line of sortcorrelation is due to the irregular dis-

tribution of instantiated predicates in the prerequisite sets, which are only saved in sort correlation,

but not in the nested loop correlation method. (There is a sudden increase of hyper-alerts that only

have prerequisites between 3,000 and 6,000 input hyper-alerts.)

Nested-Loop Correlation with Memory Constraint

Our last set of experiments is focused on evaluating the efficiency of different index-

ing structures when there is memory constraint. Based on ourprior experimental results, we only

compare the execution time of AVL Tree, T Tree, B Tree, and Linear Hashing. We do not con-

sider Sequential Scan and Array Binary Search because of their poor performance (in insertion and

search). It’s quite clear that their performance will not becomparable with the other methods.

In this set of experiments, we first use a sliding window of size 30,000 to compare the

execution time for different number of input hyper-alerts.As shown in Figure 3.5(a), when the

two-level index structure is not used, Linear Hashing has the best performance compared with the

three tree based indexing structures. Figure 3.5(b) shows asimilar performance order, when the two

level index structure is used. We also notice that B Trees perform the best among the tree based

index structures, whereas AVL Tree is the best when there is no memory constraint. Our further

investigation indicates that the deletion algorithm of AVLTree is not only more complex than that

of B Tree, but also more complex than the insertion algorithmof AVL Tree. In an AVL Tree, one

deletion may trigger several subtree rotations. As a result, more operations are need to rebalance

the tree. Figure 3.5(c) further shows the comparison of Linear Hashing and B Tree with and without

the two-level index structure. The result shows that the two-level index does improve the efficiency

of the index structures, and two-level Linear Hashing is themost efficient one among all the index

structures.

To reconfirm the performance results, we perform another setof experiments with varying

sliding window sizes, using all of the hyper-alerts as input. Figures 3.5(d), 3.5(e), and 3.5(f) show

the results. These results indicate that two-level Linear Hashing is the most efficient and the two

level index structure improves the performance for all fourmethods.

An interesting observation is that there is a bump in the linefor T Tree in both Figure



38

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 10000 20000 30000 40000 50000 60000

Number of Hyper-alerts

T
im

e 
(m

s)

LinearHash TTree AVLTree BTree

(a) Single-level index structures with fixed

window size

0

200

400

600

800

1000

1200

1400

1600

0 10000 20000 30000 40000 50000 60000

Number of Hyper-alerts

T
im

e 
(m

s)

LinearHash2L TTree2L AVLTree2L BTree2L

(b) Two-level index structures with fixed win-

dow size

0

200

400

600

800

1000

1200

1400

1600

0 10000 20000 30000 40000 50000 60000

Number of Hyper-alerts

T
im

e 
(m

s)

LinearHash LinearHash2L BTree BTree2L

(c) Selected efficient index structures with

fixed window size

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 10000 20000 30000 40000 50000

Window Size

T
im

e 
(m

s)

LinearHash BTree AVLTree TTree

(d) Single-level index structures with varying

window size

0

200

400

600

800

1000

1200

1400

1600

1800

0 10000 20000 30000 40000 50000

Window Size

T
im

e 
(m

s)

LinearHash2L BTree2L
AVLTree2L TTree2L

(e) Two-level index structures with varying

window size

0

200

400

600

800

1000

1200

1400

1600

0 10000 20000 30000 40000 50000

Window Size

T
im

e 
(m

s)

LinearHash LinearHash2L BTree BTree2L

(f) Selected efficient index structures with

varying window size

Figure 3.5: Experimental results of correlations with memory constraint

3.5(d) and Figure 3.5(e) when the window size is between 15,000 and 25,000. Our investigation

reveals that the numbers of node balancing operations for these window sizes are more than the other



39

window sizes. (There are 16,611, 16,684, and 16,232 node balancing operations for the window

sizes 15,000, 20,000, and 25,000, respectively.)

3.3 Summary

This chapter studies main memory index structures and database query optimization tech-

niques to facilitate timely correlation of intensive alerts. In addition to experimental study of the

performance of various main memory index structures, this chapter presents three techniques named

hyper-alert container, two-level index,andsort correlationby taking advantage of the characteristics

of the alert correlation process. The experimental study demonstrates that (1) hyper-alert contain-

ers improve the efficiency of order-preserving index structures, with which an insertion operation

involves search, (2) two-level index improves the efficiency of all index structures, (3) a two-level in-

dex structure combining Chained Bucket Hashing and Linear Hashing is most efficient for streamed

alerts, (4) sort correlation with heap sort algorithm is themost efficient for alert correlation in batch,

and (5) two-level Linear Hashing is the most efficient for alert correlation when sliding window is

used to cope with memory constraint. Though these observations are based on the experiments for

DEF CON 8 CTF event data sets, we expect some observations (e.g., (1) and (2)) are also applicable

to other data sets especially when data sets are large.



40

Chapter 4

Learning Attack Strategies from

Intrusion Alerts

It has become a well-known problem that current intrusion detection systems (IDSs) pro-

duce large volumes of alerts, including both actual and false alerts. As the network performance

improves and more network-based applications are being introduced, the IDSs are generating in-

creasingly overwhelming alerts. This problem makes it extremely challenging to understand and

manage the intrusion alerts, let alone respond to intrusions timely.

It is often desirable, and sometimes necessary, to understand attack strategies in security

applications such as computer and network forensics and intrusion responses. For example, attack

strategies may be used to profile hackers or hacking tools in computer and network forensics. As

another example, it is easier to predict attacker’s next move, and reduce the damage caused by

intrusions, if the attack strategy is known during intrusion response. However, in practice, it usually

requires that human users analyze the data collected duringintrusions manually to understand the

attack strategy. This process is not only time-consuming, but also error-prone. An alternative to

manual analysis is to list all possible attack strategies using vulnerability analysis tools such as

attack graphs [97, 6]. However, these tools require a predefined security property so that they can

use model checking techniques to identify possible attack sequences that may lead to the violation

of the security property.



41

In this chapter, we present techniques to automatically learn attack strategies from in-

trusion alerts reported by IDSs. Our approach is based on thealert correlation methods [83, 29].

By examining correlated intrusion alerts, our method extracts the constraints intrinsic to the attack

strategy automatically. Specifically, an attack strategy is represented as a directed acyclic graph

(DAG), which we call anattack strategy graph, with nodes representing attacks, edges representing

the (partial) temporal order of attacks, and constraints onthe nodes and edges. These constraints

represent the conditions that any attack instance must satisfy in order to use the strategy. To cope

with variations in attacks, we use generalization techniques to hide the differences not intrinsic to

the attack strategy.

To facilitate intrusion analysis in applications such as computer and network forensics,

we further develop techniques to measure the similarity between sequences of intrusion alerts based

on their attack strategies. Similarity measurement of alert sequences is a fundamental problem in

many security applications such as profiling hackers or hacking tools, identification of undetected

attacks, attack prediction, and so on. To achieve this goal,we harness the results on error tolerant

graph/subgraph isomorphism in the pattern recognition field. By analyzing the semantics and con-

straints in similarity measurement of alert sequences, we transform this problem into error tolerant

graph/subgraph isomorphism problem.

Our contribution in this chapter is three-fold. First, we develop a model to represent

attack strategies as well as algorithms to extract attack strategies from correlated alerts. Second, we

develop techniques to measure the similarity between sequences of alerts on the basis of the attack

strategy model. Third, we perform a number of experiments tovalidate the proposed techniques.

Our experimental results show that our techniques can successfully extract invariant attack strategies

from sequences of alerts, measure the similarity between alert sequences conforming to human

intuition, and identify attacks possibly missed by IDSs. The details of our approach are given in the

following sections.

4.1 Modeling Attack Strategies

In this section, we present a method to represent and automatically learn attack strate-

gies from a sequence of related intrusion alerts. Our methodis developed by extending the alert

correlation model [83].



42

4.1.1 Attack Strategy Graph

The goal of attack strategy modeling is to capture the invariants in attack strategies that do

not change across multiple instances of attacks. The strategy behind a sequence of attacks is indeed

about how to arrange earlier attacks to prepare for the laterones so that the attacker can reach

his/her final goal. Thus, theprepare-forrelations between the intrusion alerts (i.e., detected attacks)

is intrinsic to attack strategies. However, in method [83],the prepare-for relations are between

specific intrusion alerts; they do not directly capture the conditions that have to be met by related

attacks. To facilitate the representation of the invariantattack strategy, we transform theprepare-for

relation into some common conditions that have to be satisfied byall possible instances of the same

strategy. In the following, we formally represent such a condition as anequality constraint.

Definition 1 Given a pair of hyper-alert types(T1, T2), an equality constraint for(T1, T2) is a

conjunction of equalities in the form ofu1 = v1 ∧ · · · ∧ un = vn, whereu1, · · · , un are attribute

names inT1 and v1, · · · , vn are attribute names inT2, such that there existp(u1, · · · , un) and

p(v1, · · · , vn), which are the same predicate with possibly different arguments, inExpConseq(T1)

andPrereq(T2), respectively. Given a typeT1 hyper-alerth1 and a typeT2 hyper-alerth2, h1 and

h2 satisfy the equality constraintif there existt1 ∈ h1 and t2 ∈ h2 such thatt1.u1 = t2.v1 ∧ · · · ∧

t1.un = t2.vn evaluates to True.

There may be several equality constraints for a pair of hyper-alert types. However, if a

typeT1 hyper-alerth1 prepares for a typeT2 hyper-alerth2, thenh1 andh2 must satisfy at least one

of the equality constraints. Indeed,h1 preparing forh2 is equivalent to the conjunction ofh1 and

h2 satisfying at least one equivalent constraint andh1 occurring beforeh2. Assume thath1 occurs

beforeh2. If h1 andh2 satisfy an equality constraint for(T1, T2), then by Definition 1, there must

be a predicatep(u1, · · · , un) in ExpConseq(T1) such that the same predicate with possibly dif-

ferent arguments,p(v1, · · · , vn), is in Prereq(T2). Sinceh1 andh2 satisfy the equality constraint,

p(u1, · · · , un) andp(v1, · · · , vn) will be instantiated to the same predicate inExpConseq(h1) and

Prereq(h2). This implies thath1 prepares forh2. Similarly, if h1 prepares forh2, there must be

an instantiated predicate that appears inExpConseq(h1) andPrereq(h2). This implies that there

must be a predicate with possibly different arguments inExpConseq(T1) andPrereq(T2) and that



43

this predicate leads to an equality constraint for(T1, T2) satisfied byh1 andh2.

Let us use an example from [83] to illustrate the notion of equality constraint. Consider

the following hyper-alert types:SadmindPing= ({VictimIP, VictimPort}, ExistsHost(VictimIP),

{VulnerableSadmind(VictimIP)}), andSadmindBufferOverflow= ({VictimIP, VictimPort}, ExistHost

(VictimIP) ∧ VulnerableSadmind(VictimIP), {GainRootAccess(VictimIP)}). The first hyper-alert

type indicates thatSadmindPingis a type of attacks that requires the existence of a host at the Vic-

timIP to succeed, and as a result, the attacker may find out that thishost has a vulnerableSadmind

service. The second hyper-alert type indicates that this type of attacks requires a vulnerableSadmind

service at theVictimIP, and as a result, the attack may gain root access. It is easy tosee that there is

a common predicateVulnerableSadmindin both Prereq(SadmindBufferOverflow)andExpConseq

(SadmindPing). Thus, we have an equality constraintVictimIP = VictimIP for (SadmindPing, Sad-

mindBufferOverflow), where the firstVictimIP comes fromSadmindPing, and the secondVictimIP

comes fromSadmindBufferOverflow.

We observe in many occasions that one step in a sequence of attacks may trigger mul-

tiple intrusion alerts, and the number of alerts may vary in different situations. This is partially

due to the existing vulnerabilities and the hacking tools. For example,unicode shell [87],

which is a hacking tool against Microsoft IIS web server, checks about 20 vulnerabilities at the

scanning stage and usually triggers the same number of alerts. As another example, in the attack

scenario reported in [83], the attacker tried 3 different stack pointers and 2 commands inSad-

mind AmslverifyOverflowattacks for each victim host until one attempt succeeded. Even if not

necessary, an attacker may still deliberately repeat the same step multiple times to confuse IDSs

and/or system administrators. However, such variations donot change the corresponding attack

strategy. Indeed, these variations make the attack scenarios unnecessarily complex, and may hinder

manual or automatic analysis of the attack strategy. Thus, we decide to disallow such situations in

our representation of attack strategies.

In the following, an attack strategy is formally represented as an attack strategy graph.

Definition 2 Given a setS of hyper-alert types, anattack strategy graphoverS is a quadruple

(N,E, T,C), where (1)(N,E) is a connected DAG (directed acyclic graph); (2)T is a mapping

that maps eachn ∈ N to a hyper-alert type inS; (3) C is a mapping that maps each edge(n1, n2) ∈

E to a set of equality constraints for(T (n1), T (n2)); (4) For any n1, n2 ∈ N , T (n1) = T (n2)



44

n1
 n2


Sadmind_Ping


{n1.DestIP=n2.DestIP}


Sadmind_Amslverify_Overflow


n3

{n2.DestIP=n3.SrcIP}


Rsh


n4

{n3.SrcIP=n4.SrcIP}


Mstream_Zombie


n5


Stream_Dos


{ }


Figure 4.1: An example of attack strategy graph

implies that there existsn3 ∈ N such thatT (n3) 6= T (n1) andn3 is in a path betweenn1 andn2.

In an attack strategy graph, each node represents a step in a sequence of related attacks.

Each edge(n1, n2) represents that a typeT (n1) attack is needed to prepare for a successful type

T (n2) attack. Each edge may also be associated with a set of equality constraints satisfied by the

intrusion alerts. These equality constraints indicate howone attack prepares for another. Finally,

as represented by condition 4 in Definition 2, the same type ofattacks should be considered as one

step, unless they are in different stages of the attacks.

Note that attack strategies may also be specified manually inlanguages such as LAMBDA

[30] and STATL [40]. However, manual specification of attackstrategies requires prior knowledge

of the strategies, and is also time-consuming and error-prone. Tools based on modeling check-

ing techniques (e.g., attack graphs [97, 58]) can certainly be used to build attack strategies from

knowledge of individual types of attacks. However, these methods require clearly identified secu-

rity properties to run the model checking tools, which may not always be available in reality. In

contrast, our notion of attack strategy graph is intended torepresent the strategies extracted from

correlated intrusion alerts. Based on the knowledge about individual attack types, a program can

automatically extract attack strategies from correlated intrusion alerts.

Now let us see an example of an attack strategy graph. Figure 4.1 is the attack strat-

egy graph extracted from the hyper-alert correlation graphin Figure 2.1. The hyper-alert types are

marked above the corresponding nodes, and the equality constraints are labeled near the correspond-

ing edges. This attack strategy graph clearly shows the component attacks and the constraints that

the component attacks must satisfy.

Learning Attack Strategies from Correlated Intrusion Aler ts

As discussed earlier, our goal is to learn attack strategiesautomatically from correlated

intrusion alerts. This requires that we extract the constraints intrinsic to attack strategy from alerts



45

so that the same constraints apply to all the other instancesof the same strategy.

Our strategy to achieve this goal is to process the correlated intrusion alerts in two steps.

First, we aggregate intrusion alerts that belong to the samestep of a sequence of attacks into one

hyper-alert. For example, in Figure 2.1, alerts 002 through005 are indeed attempts of the same

attack with different parameters, and thus they should be aggregated as one step in the attack se-

quence. Second, we extract the constraints between the attack steps and represent them as an attack

strategy graph. For example, after we aggregate the hyper-alerts in the first step, we may extract the

attack strategy graph shown in Figure 4.1.

The challenge lies in the first step. Because of the variations of attacks as well as the

signatures that IDSs use to recognize attacks, there is no clear way to identify intrusion alerts that

belong to the same step in a sequence of attacks. In the following, we first attempt to use the attack

type information to do so. The notion ofaggregatablehyper-alerts is introduced formally to clarify

when the same type of hyper-alerts can be aggregated.

Definition 3 Given a hyper-alert correlation graphCG = (N,E), a subsetN ′ ⊆ N is aggregat-

able, if (1) all nodes inN ′ are the same type of hyper-alerts, and (2)∀n1, n2 ∈ N ′, if there is a path

fromn1 to n2, then all nodes in this path must be inN ′.

Intuitively, in a hyper-alert correlation graph, where intrusion alerts have been correlated

together, the same type of hyper-alerts can be aggregated aslong as they are not used in different

stages in the attack sequence. Condition 1 in Definition 3 is quite straightforward, but condition 2

deserves more explanation. Consider the same type of hyper-alertsh1 andh2. If h1 prepares for

a different type of hyper-alerth′ (directly or indirectly), andh′ further prepares forh2 (directly or

indirectly),h1 andh2 obviously belong to different steps in the same sequence of attacks. Thus, we

should not allow them to be aggregated together. Although wehave never observed such situations,

we cannot rule out such possibilities.

Based on the notion of aggregatable hyper-alerts, the first step in learning attack strategy

from a hyper-alert correlation graph is quite straightforward. We only need to identify and merge

all aggregatable hyper-alerts. To proceed to the second step in strategy learning, we need a hyper-

alert correlation graph in which each hyper-alert represents a separate step in the attack sequence.

Formally, we call such a hyper-alert correlation graph an irreducible hyper-alert correlation graph.

Definition 4 A hyper-alert correlation graphCG = (N,E) is irreducibleif for all N ′ ⊆ N , where



46

Algorithm 1. ExtractStrategy
Input: A hyper-alert correlation graphCG.
Output: An attack strategy graphASG.
Method:

1. LetCG′ = GraphReduction (CG).
2. LetASG = (N,E, T,C) be an empty attack strategy graph.
3. for each hyper-alerth in CG′

4. Add a new node, denotednh, into N and setT (nh) be the type ofh.
5. for each edge(h, h′) in CG′

6. Add(nh, nh′) into E.
7. for eachpc ∈ ExpConseq(h) andpp ∈ Prereq(h′)
8. ifpc = pp then
9. Add intoC(nh, nh′) the equality constraint(u1 = v1) ∧ · · · ∧ (un = vn).

Noteui andvi are theith variable ofpc andpp before instantiation, respectively.
10. return ASG(N,E, T,C).

Subroutine GraphReduction
Input: A hyper-alert correlation graphCG = (N,E).
Output: An irreducible hyper-alert correlation graphCG′ = (N ′, E′).
Method:

1. Partition the hyper-alerts inN into groups such that the same type of hyper-alerts
are all in the same group.

2. for each groupG
3. if there is a pathg, n1, · · · , nk, g

′ in CG such that onlyg andg′ are inG then
4. DivideG into G1, G2, andG3 such that all hyper-alerts inG1 occur beforen1,

all hyper-alerts inG3 occur aftern2, and all the other hyper-alerts are inG2.
5. Repeat steps 2 to 4 until no group can be divided.
6. Aggregate the hyper-alerts in each group into one hyper-alert.
7. LetN ′ be the set of aggregated hyper-alerts.
8. for all n1, n2 ∈ N ′

9. if there exists(h1, h2) ∈ E andh1 andh2 are aggregated inton1 andn2, respectively
10. add(n1, n2) into E′.
11. return CG′ = (N ′, E′).

Figure 4.2: An algorithm to extract attack strategy graph from a hyper-alert correlation graph

|N ′| > 1, N ′ is not aggregatable.

Figure 4.2 shows the algorithm to extract attack strategy graphs from hyper-alert correla-

tion graphs. The subroutineGraphReductionis used to generate an irreducible hyper-alert correla-

tion graph, and the rest of the algorithm extracts the components of the output attack strategy graph.

The steps in this algorithm are self-explanatory; we do not repeat them in the text. Lemma 4.1.1

ensures that the output of algorithm 1 indeed satisfies the constraints of an attack strategy graph.



47

Lemma 4.1.1 The output of Algorithm 1 is an attack strategy graph.

Proof: We first prove the output of the subroutineGraphReductionis an irreducible hyper-alert cor-

relation graph by contradiction. Consider the outputCG′ = (N ′, E′) of GraphReduction. Suppose

there existsNs ⊆ N ′, where|Ns| > 1, such thatNs is aggregatable. Thus, all nodes inNs are

the same type of hyper-alerts, and for any two different nodes n1, n2 ∈ Ns, if there is a path from

n1 to n2, then all nodes in the path are inNs. SinceCG′ is aggregated from the input hyper-alert

correlation graph, for all pairs of nodesn′
1 andn′

2, wheren′
1 andn′

2 are aggregated inton1 andn2,

respectively, if there exists a path fromn′
1 to n′

2 in the input graph, all the nodes in the path must be

in the group of nodes aggregated into the nodes inNs. According to steps 3 and 4 inGraphReduc-

tion, they should have been kept in the same group and aggregated into one node inCG′. This leads

to a contradiction to the assumption thatn′
1 andn′

2 are aggregated inton1 andn2, respectively.

Now we prove the output of Algorithm 1 is an attack strategy graph. Consider the output

of Algorithm 1 ASG = (N,E, T,C). It is easy to see thatT is a mapping that maps eachn ∈ N

to a hyper-alert type, andC is a mapping that maps each edgee ∈ E to a set of equality constraints.

In addition, because the input hyper-alert correlation graph is a DAG,(N,E) must be a directed

graph. Suppose there is a cyclen1, n2, · · · , n1 in (N,E). There must exist two nodesn11, n12,

andn21 in the input hyper-alert correlation graph such thatn11 andn12 are aggregated inton1,

n21 is aggregated inton2, and there exists a pathn11, · · · , n21, · · · , n12. However, according to

the subroutineGraphReduction, n11 andn12 should have been put into two separate groups. Thus,

(N,E) cannot have any cycle. Finally, for anyn1, n2 ∈ N , since the output ofGraphReductionis

irreducible, ifT (n1) = T (n2), then there must existn3 ∈ N in a path betweenn1 andn2 such that

T (n3) 6= T (n1).

4.1.2 Dealing with Variations of Attacks

Algorithm 1 in Figure 4.2 has ignored equivalent but different attacks in sequences of

attacks. For example, an attacker may use eitherpmapdumpor SadmindPing to find a vulnera-

ble Sadmind service. As another example, an attacker may useeitherSadmindBufferOverflowor

TooltalkBufferOverflowattack to gain remote access to a host. Obviously, at the samestage of two

sequences of attacks, if an attacker uses equivalent but different attacks, Algorithm 1 will return two

different attack strategy graphs, though the strategies behind them are the same.

We propose to generalize hyper-alert types so that the syntactic difference between equiv-



48

alent hyper-alert types is hidden. For example, we may generalize bothSadmindBufferOverflowand

TooltalkBufferOverflowattacks intoRPCBufferOverflow.

A generalized hyper-alert type is created to hide the unnecessary difference between spe-

cific hyper-alert types. Thus, an occurrence of any of the specific hyper-alerts should imply an

occurrence of the generalized one. This is to say that satisfaction of the prerequisite of a specific

hyper-alert implies the satisfaction of the prerequisite of the generalized hyper-alert. Moreover, to

cover all possible impact of all the specific hyper-alerts, the consequences of all the specific hyper-

alert types should be included in the consequence of the generalized hyper-alert type. It is easy to

see that this generalization may cause loss of information.Thus, generalization of hyper-alert types

must be carefully handled so that information essential to attack strategy is not lost.

In the following, we formally clarify the relationship between specific and generalized

hyper-alert types.

Definition 5 Given two hyper-alert typesTg and Ts, whereTg = (factg, prereqg, conseqg) and

Ts = (facts, prereqs, conseqs), we sayTg is more general thanTs (or, equivalently,Ts is more

specific thanTg) if there exists an injective mappingf from factg to facts such that the following

conditions are satisfied:

• If we replace all variablesx in prereqg with f(x), prereqs impliesprereqg, and

• If we replace all variablesx in conseqg with f(x), then all formulas inconseqs are implied

by conseqg.

The mappingf is called thegeneralization mappingfromTs to Tg.

Let us look at an example. Suppose the hyper-alert typesSadmindBufferOverflowand

TooltalkBufferOverfloware specified as follows:SadmindBufferOverflow= ({VictimIP, VictimPort},

ExistHost(VictimIP) ∧VulnerableSadmind(VictimIP), {GainRootAccess(VictimIP)}), andTooltalk-

BufferOverflow= ({VictimIP, VictimPort}, ExistHost(VictimIP) ∧ VulnerableTooltalk(VictimIP),

{GainRootAccess(VictimIP)}). Assume thatVulnerableSadmind(VictimIP) imply VulnerableRPC

(VictimIP). Intuitively, this represents that if there is a vulnerable Sadmind service atVictimIP, then

there must be a vulnerable RPC service (i.e., the Sadmind service) atVictimIP. Similarly, we assume



49

VulnerableTooltalk(VictimIP) also impliesVulnerableRPC(VictimIP). Then we can generalize both

SadmindBufferOverflowand TooltalkBufferOverflowinto RPCBufferOverflow= ({VictimIP}, Ex-

istHost(VictimIP) ∧ VulnerableRPC(VictimIP), {GainRootAccess(VictimIP)}), where the gener-

alization mapping isf(V ictimIP ) = V ictimIP .

By identifying a generalization mapping, we can specify howa specific hyper-alert can be

generalized into a more general hyper-alert. Following thegeneralization mapping, we can find out

what attribute values of a specific hyper-alert should be assigned to the attributes of the generalized

hyper-alert. The attack strategy learning algorithm can beeasily modified: We first generalize the

hyper-alerts in the input hyper-alert correlation graph into generalized hyper-alerts following the

generalization mapping, and then apply Algorithm 1 to extract the attack strategy graph.

Although a hyper-alert can be generalized in different granularities, it is not an arbitrary

process. In particular, if one hyper-alert prepares for another hyper-alert before generalization, the

generalized hyper-alerts should maintain the same relationship. Otherwise, the dependency between

different attack stages, which is intrinsic in an attack strategy, will be lost.

The remaining challenge is how to get the “right” generalized hyper-alert types and gen-

eralization mappings. The simplest way is to manually specify them. For example,Apache2, Back,

andCrashiisare all Denial of Service attacks. We may simply generalize all of them into oneWeb-

ServiceDOS. However, there are often different ways to perform generalization. To continue the

above example,Apache2andBackattacks are against the apache web servers, whileCrashiis is

against the Microsoft IIS web server. To keep more information about the attacks, we may want to

generalizeApacheandBack into ApacheDOS, while generalizeCrashiisand possibly other DOS

attacks against the IIS web server intoIISDOS. Nevertheless, this does not affect the attack strategy

graphs extracted from correlated intrusion alerts as long as the constraints on the related alerts are

satisfied.

Automatic Generalization of Hyper-Alert Types. It is time-consuming and error-prone to man-

ually generalize hyper-alert types. One way to partially automate this process is to use clustering

techniques to identify the hyper-alert types that should begeneralized into a common one. In our

experiments, we use the bottom-up hierarchical clustering[55] to group hyper-alert types hierarchi-

cally on the basis of the similarity between them, which is derived from the similarity between the

prerequisites and consequences of hyper-alert types. The method used to compute the similarity is

described below.

To facilitate the computation of similarity between prerequisites of hyper-alert types, we

convert each prerequisite into anexpanded prerequisite set, which includes all the predicates that



50

appear or are implied by the prerequisite. Similarly, we canget the expanded consequence set.

Consider two sets of predicates, denotedS1 andS2, respectively. We adopt the Jaccard similar-

ity coefficient [54] to compute the similarity betweenS1 andS2, denotedSim(S1, S2). That is,

Sim(S1, S2) = a
a+b+c

, wherea is the number of predicates in bothS1 andS2, b is the number of

predicates only inS1, andc is the number of predicates only inS2.

Consider hyper-alert typesT1 andT2. The similarity betweenT1 andT2, denotedSim(T1, T2),

is then computed asSim(T1, T2) = Sim(XP1,XP2)×wp +Sim(XC1,XC2)×wc, whereXP1

andXP2 are the expanded prerequisite sets ofT1 andT2, XC1 andXC2 are the expanded conse-

quence sets ofT1 andT2, andwp andwc = 1−wp are the weights for prerequisite and consequence,

respectively. (In our experiments, we usewp = wc = 0.5 to give equal weight to both prerequisite

and consequence of hyper-alert types.) We may then set a thresholdt so that two hyper-alert types

are grouped into the same cluster only if their similarity measure is greater than or equal tot.

4.2 Measuring the Similarity between Attack Strategies

In this section, we present techniques to measure the similarity between attack strategy

graphs based on error tolerant graph/subgraph isomorphism, which has been studied extensively

in pattern recognition [15, 75, 74, 76, 73]. Since the attackstrategy graphs are extracted from se-

quences of correlated alerts, the similarity between two attack strategy graphs are indeed the simi-

larity between the original alert sequences in terms of their strategies. Such similarity measurement

is a fundamental problem in intrusion analysis; it has potential applications in incident handling,

computer and network forensics, and other security management areas.

We are particularly interested in two problems. First, how similar are two attack strate-

gies? Second, how likely is one attack strategy a part of another attack strategy? These two problems

can be mapped naturally to error tolerant graph isomorphismand error tolerant subgraph isomor-

phism problems, respectively.

To facilitate the later discussion, we give a brief overviewof error tolerant graph/subgraph

isomorphism. Further details can be found in the rich literature on graph/subgraph isomorphism

[15, 75, 74, 76, 73].



51

4.2.1 Error Tolerant Graph/Subgraph Isomorphism

In graph/subgraph isomorphism, a graph is a quadrupleG = (N,E, T,C), whereN

is the set of nodes,E is the set of edges,T is a mapping that assigns labels to the nodes, and

C is a mapping that assigns labels to the edges. Given two graphs G1 = (N1, E1, T1, C1) and

G2 = (N2, E2, T2, C2), a bijective functionf is agraph isomorphismfrom G1 to G2 if

• for all n1 ∈ N1, T1(n1) = T2(f(n1));

• for all e1 = (n1, n
′
1) ∈ E1, there existse2 = (f(n1), f(n′

1)) ∈ E2 such thatC(e1) = C(e2),

and for all e2 = (n2, n
′
2) ∈ E2, there existse1 = (f−1(n2), f

−1(n′
2)) ∈ E1 such that

C(e2) = C(e1).

Given a graphG = (N,E, T,C), asubgraphof G is a graphGs = (Ns, Es, Ts, Cs) such

that (1)Ns ⊆ N , (2) Es = E ∩ (Ns × Ns), (3) for all ns ∈ Ns, Ts(ns) = T (ns), and (4) for all

es ∈ Es, Cs(es) = C(es). Given two graphsG1 = (N1, E1, T1, C1) andG2 = (N2, E2, T2, C2),

an injective functionf is asubgraph isomorphismfrom G1 to G2, if there exists a subgraphG2s of

G2 such thatf is a graph isomorphism fromG1 to G2s.

As a further step beyond graph/subgraph isomorphism, errortolerant graph/subgraph iso-

morphism (which is also known as error correcting graph/subgraph isomorphism) is introduced to

cope with noises or distortion in the input graphs. There aretwo approaches for error tolerant

graph/subgraph isomorphism: graph edit distance and maximal common graph. In this chapter, we

focus on graph edit distance to study the application of error tolerant graph/subgraph isomorphism

in intrusion detection.

The edit distance method assumes a set of edit operations (e.g., deletion, insertion and

substitution of nodes and edges) as well as the costs of theseoperations, and defines the similarity

of two graphs in terms of the least cost sequence of edit operations that transforms one graph into

the other. We denote the edited graph after a sequence of editoperations∆ as∆(G). Consider two

graphsG1 andG2. ThedistanceD(G1, G2) fromG1 toG2 w.r.t. graph isomorphismis theminimum

sum of edit costs associated with a sequence of edit operations ∆ on G1 that leads to a graph

isomorphism from∆(G1) to G2. Similarly, thedistanceDs(G1, G2) fromG1 to G2 w.r.t. subgraph

isomorphismis theminimumsum of edit costs associated with a sequence of edit operations∆ on

G1 that leads to asubgraphisomorphism from∆(G1) to G2. An error tolerant graph/subgraph

isomorphismfrom G1 to G2 is a pair (∆, f ), where∆ is a sequence of edit operations onG1, andf

is a graph/subgraph isomorphism from∆(G1) to G2.



52

It is well known that subgraph isomorphism detection is an NP-complete problem [46].

Error tolerant subgraph isomorphism detection, which involves subgraph isomorphism detection, is

also in NP and generally harder than exact subgraph isomorphism detection [74]. Nevertheless, error

tolerant subgraph isomorphism has been widely applied in image processing and pattern recognition

[15, 75, 74, 76, 73]. In our application, all the attack strategy graphs we have encountered are small

graphs with less than 10 nodes. We argue that it is very unlikely to have very large attack strategy

graphs in practice. Thus, we believe error tolerant graph/subgraph isomorphism can be applied to

measure the similarity between attack strategy graphs withreasonable response time. Indeed, we

did not observe any noticeable delay in our experiments.

4.2.2 Working with Attack Strategy Graphs

To successfully use error tolerant graph/subgraph isomorphism detection techniques, we

need to answer at least the following three questions. What are the edit operations on an attack

strategy graph? What are reasonable edit costs of these editoperations? What is the right similarity

measurement between attack strategy graphs?

All the edit operations on a labeled graph are applicable to attack strategy graphs. Specif-

ically, anedit operationon an attack strategy graphASG = (N,E, T,C) is one of the following:

1. Inserting a noden: $ → n. This represents adding a stage into an attack strategy. This edit

operation is only needed for error-tolerant graph isomorphism.

2. Deleting a noden: n → $. This represents removing a stage from an attack strategy. Note

that this implies deleting all edges adjacent withn.

3. Substituting the hyper-alert type of a noden: T (n) → t, wheret is a hyper-alert type. This

represents changing the attack at one stage of the attack strategy.

4. Inserting an edgee = (n1, n2): $ → e, wheren1, n2 ∈ N . This represents adding depen-

dency (i.e., prepare-for relation) between two attack stages.

5. Deleting an edgee = (n1, n2): e → $. This represents removing dependency (i.e., prepare-

for relation) between two attack stages.

6. Substituting the label of an edgee = (n1, n2): C(e) → c, wherec is a set of equality

constraints. This represents changing the way in which two attack stages are related to each

other. (Note thatc is not necessarily a set of equality constraints for(T (n1), T (n2)).)



53

These edit operations do not necessarily transform one attack strategy graph into another

attack strategy graph. Indeed, a labeled graph must satisfysome constraints to be an attack strategy

graph. For example, all the equality constraints in the label associated with(n1, n2) must be valid

equality constraints for(T (n1), T (n2)). It is easy to see that the edit operations may violate some

of these constraints.

One may suggest these constraints be enforced throughout the transformation of attack

strategy graphs. As an additional benefit, this can be used toreduce the search space required for

graph/subgraph isomorphism. However, this approach may not find the least expensive sequence

of edit operations, and may even fail to find a transformationfrom one attack strategy graph to

(the subgraph of) another. Indeed, editing distance is one way to measure the difference between

attack strategy graphs; it is not necessary to require that all the intermediate edited graphs are attack

strategy graph. As long as the final edited graph is isomorphic to an attack strategy graph, it is

guaranteed to be an attack strategy graph. Thus, we do not require the intermediate graphs during

graph transformation be attack strategy graphs.

Assignment of edit costs to edit operations is a critical step in error tolerant graph/subgraph

isomorphism. The actual costs are highly dependent on the domain in which these techniques are

applied. In our application, there are multiple reasonableways to assign the edit costs. In the

following, we attempt to give some constraints that the costassignment must satisfy.

In an attack strategy graph, a node represents a stage in an attack strategy, while an edge

represents the causal relationship between two steps in thestrategy. Obviously, changing the stages

in an attack strategy affects the attack strategy significantly more than modifying the causal relation-

ships between stages. Thus, the edit costs of node related operations should be significantly more

expensive than those of the edge related operations.

Inserting or deleting a node implies having one more or fewerstep in the strategy, while

substituting a node type implies to replace the attack in onestep in the strategy. Thus, inserting or

deleting a node has at least the same impact on the strategy assubstituting the node type. Moreover,

deleting a node and inserting a node are both manipulations of a stage; there is no reason to say one

operation has more impact than the other. Therefore, they should have the same cost. Both inserting

and deleting an edge changes the causal relationship between two attack stages, and they should

have the same impact on the attack strategy. However, substituting the label of an edge is just to

change the way in which two attack stages are related. Thus, it should have less cost than edge

insertion and deletion. In summary, we can derive the following constraint in edit cost assignments.



54

Constraint 4.2.1 Costn→$ = Cost$→n ≥ CostT (n)→t >> Cost$→e = Coste→$ ≥ CostC(e)→c.

The labels in an attack strategy graph is indeed a set of equality constraints. As a result,

labels are not entirely independent of each other. This further implies that edit costs for edge label

substitution should not be uniformly assigned. For example, substituting an edge label{A,B} for

{A,C} should have less cost than substituting{A,B} for {C,D}. This observation leads to another

constraint.

Constraint 4.2.2 Assume that the edit operationC(e) → c replacesC(e) = cold with cnew. The

edit costCostC(e)→c should be smaller whencold andcnew have more equality constraints in com-

mon.

Here we give a simple way to accommodate Constraint 4.2.2. Weassume there is a

maximum edit cost for label substitution operation, denoted asMaxCostC(e)→c. The edit cost of

a label substitution is thenCostC(e)→c = MaxCostC(e)→c ×
|cold∩cnew|
|cold∪cnew| , wherecold andcnew are

the labels (i.e., sets of equality constraints) before and after the operation.

Error tolerant graph/subgraph isomorphism detection techniques can conveniently give a

distance between two labeled graphs, which is measured in terms of edit cost. As we discussed

earlier, we use these techniques to help answer two questions: (1) How similar are two sequences

of attacks in terms of their attack strategy? (2) How likely does one sequence of attacks use a part

of attack strategy in another sequence of attacks? In the following, we transform the edit distance

measures into more direct similarity measures.

Consider an attack strategy graphASG. We refer to the distance fromASG to an empty

graph as thereductive weight ofASG, denoted asWr(ASG). Similarly, we refer to the distance

from an empty graph toASG as theconstructive weight ofASG, denotedWc(ASG).

Definition 6 Consider two attack strategy graphsASG1 andASG2. Thesimilarity betweenASG1

andASG2 w.r.t. (attack) strategyis Sim(ASG1, ASG2) = Sim(ASG1→ASG2)+Sim(ASG2→ASG1)
2 ,

whereSim(ASGx → ASGy) = 1 − D(ASGx,ASGy)
Wr(ASGx)+Wc(ASGy) .



55

Definition 7 Consider two attack strategy graphsASG1 andASG2. Thesimilarity betweenASG1

andASG2 w.r.t. (attack) sub-strategyis SimSub(ASG1, ASG2) = 1 − Ds(ASG1,ASG2)
Wr(ASG1)+Wc(ASG2) .

Simple analysis of the impact of edit costs on the similaritymeasurement.Suppose

we have two graphGa andGb, which havena andnb nodes, andea andeb edges, respectively.

Assume we perform an error tolerant graph isomorphism fromGa to Gb, the node operations have

the same costCN , and edge operations have the same costCE , whereCN ≫ CE. In the sequence of

edit operations, suppose there areNN node operations, andNE edge operations. Then the similarity

measure can be simplified as follows.

Sim(Ga, Gb) = 1 −
D(Ga, Gb)

Wr(Ga) + Wc(Gb)
= 1 −

CN × NN + CE × NE

CN × (na + nb) + CE × (ea + eb)

Further letea + eb = k × (na + nb), andNE = s × NN . Then we have

Sim(Ga, Gb) = 1−
CN × NN + CE × s × NN

CN × (na + nb) + CE × k × (na + nb)
= 1−

NN × (CN + CE × s)

(na + nb) × (CN + CE × k)

Whenk ands are not large, sinceCN ≫ CE , the formula can be further simplified.

Sim(Ga, Gb) = 1 −
NN

na + nb

Thus, under the above assumptions, the similarity is approximately determined by the

proportion of the number of edited nodes to the total number of nodes. In summary, when the

number of edges are not substantially more than the number ofnodes, and the number of edge

operations are not substantially more than the number of node operations, the similarity measure is

mainly determined by the number of nodes and node operationsrather than the edit costs.

4.3 Experiments

We have performed a series of experiments to study the proposed techniques. In our

experiments, for alert correlation method, we used the implementation of [83]. We used GraphViz

[9] to visualize graphs. In addition, we usedGUB [73], A Toolkit for Graph Matching, to perform

error tolerant graph/subgraph isomorphism detection and compute distances between attack strategy

graphs. We used RealSecure Network Sensor [52] and Snort [94] as our IDS sensors (Accordingly,

we labeled the alerts generated by different sensors withRealSecureor Snort, respectively).



56

Our test data sets include the 2000 DARPA intrusion detection scenario specific data sets

[77]. The data sets contain two scenarios: LLDOS 1.0 and LLDOS 2.0.2. In LLDOS1.0, the se-

quence of attacks includes IPsweep, probes of sadmind services, breakins through sadmind exploits,

installations of DDoS programs, and finally the DDoS attack.LLDOS 2.0.2 is similar to LLDOS

1.0; however, the attacks in LLDOS 2.0.2 are more stealthy than those in LLDOS 1.0. In addition

to the DARPA data sets, we also performed three sequences of attacks in an isolated network. In all

these three attack sequences, the attacker started with nmap [44] scans of the victim. Then, in the

first sequence, the attacker sent malformed urls [24] to the victim’s Internet Information Services

(IIS) to get a cmd.exe shell. In the second sequence, the attacker took advantage of the flaws of

IP fragment reassembly on Windows 2000 [23] to launch a DoS attack. In the third sequence, the

attacker launched a buffer overflow attack against the Internet Printing Protocol accessed via IIS 5.0

[25, 18].

4.3.1 Learning Attack Strategies from Correlated Intrusion Alerts

Our first goal is to evaluate the effectiveness of our approach on extracting the attack

strategies. Figure 4.3 shows all of the attack strategy graphs extracted from the test data sets. The

label of each node is the node ID followed by the hyper-alert type of the node. The label of each

edge describes the set of equality constraints for the hyper-alert types associated with the two end

nodes.

The attack strategy graphs we extracted from LLDOS 1.0 (inside part) are shown in Figure

4.3(a) and 4.3(b). Comparing them with the description of the data set [77], we know that both

Figures 4.3(a) and 4.3(b) have captured most of the attack strategy. The missing parts are due

to the attacks missed by the IDSs. Since we did not generalizevariations of hyper-alert types,

these graphs still have syntactic differences despite of their common strategy. (Note that the “RPC

sadmind UDP PING” alert reported by Snort is indeed the “Sadmind Amslverify Overflow” alert

by RealSecure, and the “RPC portmap sadmind request UDP” alert by Snort is the “SadmindPing”

alert by RealSecure.) Moreover, false alerts are also reflected in the attack strategy graphs. For

example, the hyper-alert types “EmailAlmail Overflow” and “FTPSyst” in Figure 4.3(a) do not

belong to the attack strategy, but they are included becauseof the false detection.

The attack strategies extracted from LLDOS 2.0.2 are shown in Figures 4.3(c) and 4.3(d).

Compared with the five phases of attack scenarios [77], it is easy to see that Figure 4.3(c) reveals

most of the adversary’s strategy. However, Figure 4.3(d) reveals two steps fewer than Figure 4.3(c).



57

n1: FTP_Syst

n2: Sadmind_Ping

{n1.DestIP=n2.DestIP}

n3: Sadmind_Amslverify_Overflow

{n1.DestIP=n3.DestIP}

{n2.DestIP=n3.DestIP}

n5: Rsh

{n3.DestIP=n5.SrcIP}

n6: Mstream_Zombie

{n3.DestIP=n6.SrcIP}

{n5.SrcIP=n6.SrcIP}

n7: Stream_DoS

{ }

n4: Email_Almail_Overflow

{n4.DestIP=n5.SrcIP}

{n4.DestIP=n6.SrcIP}

(a) LLDOS1.0 inside dataset (RealSecure)

n1: RPC portmap request sadmind

n2: RPC sadmind UDP PING

{n1.DestIP=n2.DestIP}

n3: TELNET access

{n2.DestIP=n3.SrcIP}

n4: RSERVICES rsh root

{n2.DestIP=n4.SrcIP}

{n3.SrcIP=n4.SrcIP}

n5: DDOS shaft client to handler

{n3.SrcIP=n5.SrcIP}

{n4.SrcIP=n5.SrcIP}

(b) LLDOS1.0 inside dataset (Snort)

n1: Sadmind_Amslverify_Overflow

n3: FTP_Put

{n1.DestIP=n2.DestIP}

n4: Mstream_Zombie

{n1.DestIP=n2.SrcIP}

{n3.DestIP=n2.SrcIP}

n5: Stream_DoS

{ }

n2: Email_Almail_Overflow

{n2.DestIP=n3.DestIP}

{n2.DestIP=n4.SrcIP}

(c) LLDOS2.0.2 inside dataset (RealSecure)

n1: TELNET access

n2: DDOS shaft client to handler

{n1.SrcIP=n2.SrcIP}

(d) LLDOS2.0.2 inside dataset (Snort)

n1: ICMP PING NMAP

n2: SCAN namp fingerprint attempt

{n1.DestIP=n2.DestIP}

n3: SCAN namp TCP

{n1.DestIP=n3.DestIP}

n4: SCAN namp XMAS

{n1.DestIP=n4.DestIP}

n5: WEB-IIS unicode directory traversal attempt

{n2.DestIP=n5.DestIP}

n6: WEB-IIS cmd.exe access

{n2.DestIP=n6.DestIP} {n3.DestIP=n5.DestIP}{n3.DestIP=n6.DestIP}{n4.DestIP=n5.DestIP}{n4.DestIP=n6.DestIP}

n7: ATTACK RESPONSES http dir listing

{n5.DestIP=n7.SrcIP}{n6.DestIP=n7.SrcIP}

(e) WEB-IIS unicode exploits (Snort)

n1: ICMP PING NMAP

n2: SCAN namp fingerprint attempt

{n1.DestIP=n2.DestIP}

n3: (spp_frag2) Oversized fragment, probable Dos

{n2.DestIP=n3.DestIP}

(f) jolt2 DoS attack (Snort)

n1: ICMP PING NMAP

n2: SCAN namp fingerprint attempt

{n1.DestIP=n2.DestIP}

n3: SCAN namp TCP

{n1.DestIP=n3.DestIP}

n4: SCAN namp XMAS

{n1.DestIP=n4.DestIP}

n5: WEB-IIS ISAPI .printer access

{n2.DestIP=n5.DestIP} {n3.DestIP=n5.DestIP} {n4.DestIP=n5.DestIP}

(g) WEB-IIS ISAPI .printer access (Snort)

Figure 4.3: Attack Strategy Graphs Extracted from Our Experiments



58

Our further investigation indicates that this is because one critical attack step, the buffer overflow

attacks against sadmind service, was completely missed by Snort. Figures 4.3(e), 4.3(f), and 4.3(g)

show the attack strategies extracted from the three sequences of attacks we performed. By compar-

ing with the attacks, we can see that the stages as well as the constraints intrinsic to these attack

strategies are mostly captured by these graphs.

Though showing some potential, these experimental resultsalso reveal a limitation of the

attack strategy learning method. That is, our method depends on the underlying IDSs as well as the

alert correlation method. If the hyper-alert correlation graphs do not reveal the entire attack strategy,

or include false alerts, the attack strategy graphs generated by our method will not be perfect. Nev-

ertheless, our technique is intended to automate the analysis process typically performed by human

analysts, who may make the same mistake if no other information is used. More research is clearly

needed to mitigate the impact of imperfect IDS and correlation.

Another observation is that alerts from heterogeneous IDSscan help complete the attack

strategies. For example, combining Figures 4.3(c) and 4.3(d), we know that an attacker may launch

buffer overflow attacks against sadmind service and then usetelnet to access the victim machine.

Note that we do not give a quantitative performance evaluation of attack strategy extrac-

tion (i.e., the false positive and false negative of the extracted attack strategies). This is because

such measures are indeed determined by the underlying intrusion alert correlation algorithm. As

long as correlation is performed correctly, our method can always extract the strategy reflected by

the correlated alerts.

4.3.2 Measuring the Similarity between Alert Sequences

We performed experiments to measure the similarity betweenthe previously extracted

seven attack strategy graphs. To hide the unnecessary differences between alert types, we performed

generalized to alert types.

The generalization of hyper-alert types. We first performed automatic generalization

of hyper-alert types. Figure 4.4 shows the results we obtained for the hyper-alert types in the 2000

DARPA data sets. Here the string inside the non-leaf node means Generalization Typefollowed

by an ID. From Figure 4.4(b), we know thatFTP PutandRshcan be generalized to the same type.

These results were used in our later experiments when we computed the similarity measures between

attack strategy graphs. Besides Figure 4.4, additional generalization hierarchies of hyper-alert types

in our experiments are shown in Figure 4.5.



59

GT7

GT8 HTTP_Shells

Sadmind_Amslverify
_Overflow

HTTP_Cisco
_Catalyst_Exec

(a) Hierarchy 1

GT15

GT16 GT20

HTTP_Java HTTP_ActiveX FTP_Put Rsh

(b) Hierarchy 2

GT10

GT12 GT11

GT19 FTP_User GT13 FTP_Pass

Email_Debug Email_Almail
_Overflow

DNS_HInfo FTP_Syst

(c) Hierarchy 3

Figure 4.4: Generalization hierarchies for hyper-alert types in DARPA 2000 datasets. Threshold
t = 0.5.

Sadmind Buffer Overflow

Sadmind_Amslverify_Overflow RPC sadmind UDP PING

(a) Hierarchy 4

Rsh access

Rsh RSERVICES rsh root

(b) Hierarchy 5

DDoS Master_Zombie_Comm

Mstream_Zombie DDOS shaft client to handler

(c) Hierarchy 6

Figure 4.5: Additional generalization hierarchies of hyper-alert types in our experiments

Similarity Measurement. We assume the edit costs for node operations are all 10, and

the edit costs for the edge operations are all 1. Tables 4.1 and 4.2 show the similarity measurements

between each pair of attack strategy graphs w.r.t. attack strategy and attack sub-strategy, respec-



60

Table 4.1: The similarity w.r.t. attack strategy between attack strategy graphs in Figure 4.3

G4.3(a) G4.3(b) G4.3(c) G4.3(d) G4.3(e) G4.3(f) G4.3(g)

G4.3(a) / 0.72 0.73 0.21 0.29 0.31 0.25
G4.3(b) 0.72 / 0.66 0.55 0.25 0.25 0.29
G4.3(c) 0.73 0.66 / 0.40 0.34 0.38 0.30
G4.3(d) 0.21 0.55 0.40 / 0.21 0.40 0.38
G4.3(e) 0.29 0.25 0.34 0.21 / 0.48 0.74
G4.3(f) 0.31 0.25 0.38 0.40 0.48 / 0.61
G4.3(g) 0.25 0.29 0.30 0.38 0.74 0.61 /

Table 4.2: The similarity w.r.t. attack sub-strategy between attack strategy graphs in Figure 4.3

G4.3(a) G4.3(b) G4.3(c) G4.3(d) G4.3(e) G4.3(f) G4.3(g)

G4.3(a) / 0.72 0.66 0.31 0.53 0.31 0.43
G4.3(b) 0.89 / 0.67 0.55 0.61 0.38 0.51
G4.3(c) 0.90 0.68 / 0.40 0.61 0.38 0.52
G4.3(d) 0.89 1.00 0.86 / 0.79 0.60 0.73
G4.3(e) 0.51 0.58 0.58 0.21 / 0.48 0.26
G4.3(f) 0.72 0.65 0.65 0.40 0.91 / 0.89
G4.3(g) 0.59 0.51 0.48 0.27 0.93 0.61 /

tively. Each subscript in the tables denotes the graph it represents. We notice thatSimSub(Gi, Gj)

may not necessarily be equal toSimSub(Gj , Gi).

Table 4.1 indicates that Figure 4.3(a) is more similar to Figures 4.3(b) and 4.3(c). In

addition, Figure 4.3(g) is more similar to Figures 4.3(e) and 4.3(f) than the other graphs. Based on

the description of these attack sequences, we can see these similarity measures conform to human

perceptions.

Table 4.2 shows the similarity between attack strategy graphs w.r.t. attack sub-strategy.

We can see that Figures 4.3(b), 4.3(c), and 4.3(d) are very similar to a sub-strategy of Figure 4.3(a).

In addition, Figure 4.3(d) is exactly a sub-strategies of Figure 4.3(b). Similarly, Figures 4.3(g) and

4.3(f) are both similar to sub-strategies of Figure 4.3(e),and Figure 4.3(f) is also similar to a sub-

strategy of Figure 4.3(g). Comparing these measure values with these attack sequences, we can see

these measures also conform to human perceptions.

The experiments also reveal some remaining problems that have not been addressed by our

techniques. First, the similarity measures make sense in terms of their relative values. However, we

still do not understand what a specific similarity measure represents. Second, false alerts generated

by IDSs have a negative impact on the measurement. It certainly requires further research to address



61

these issues.

4.3.3 Identification of Missing Detections

Our last set of experiments is intended to study the possibility to apply the similarity

measurement method to identify attacks missed by IDSs. For the sake of presentation, we first

introduce two terms: precedent set and successive set. Intuitively, the precedent setof a noden in

an attack strategy graph is the set of nodes from which there are paths ton, while thesuccessive

setof n is the set of nodes to whichn has a path. In the following, we show two examples we

encountered in our experiments.

Example 1 The attack strategy graph in Figure 4.3(c) has no network probe phase, but Figure

4.3(a) does. The similarity measurementSimSub(G4.3(c), G4.3(a)) = 0.90 andSim(G4.3(c), G4.3(a)) =

0.73 indicate that these two strategies are very similar and it’svery likely that Figure 4.3(c) is a

sub-strategy of Figure 4.3(a). Thus, it is possible that some probe attacks are missed by the IDS

when the IDS detected the attacks corresponding to Figure 4.3(c). Indeed, this is exactly what hap-

pened in LLDOS 2.0.2. The adversary used some stealthy attacks (i.e., HINFO query to the DNS

server) to get the information about the victim host.

Example 2 Consider Figures 4.3(d) and 4.3(b). We haveSimSub(G4.3(d), G4.3(b)) = 1.0. Thus,

G4.3(d) is exactly a sub-strategy ofG4.3(b). By checking the LLDOS2.0.2 alerts reported by Snort,

we know that there are also “RPC portmap sadmind request UDP”alerts as in Figure 4.3(b).

However, since Snort did not detect the later buffer overflowattack, these “RPC portmap sadmind

request UDP” alerts are not correlated with the later alerts.

We then perform the following steps, trying to identify attacks possibly missed in LLDOS

2.0.2. We pick noden1 in Figure 4.3(d), and find its corresponding noden3 in Figure 4.3(b),

which is mapped ton1 by the subgraph isomorphism. It is easy to see that in Figure 4.3(b), the



62

precedent set ofn3 is {n1, n2}, andn1 has the type “RPC portmap sadmind request UDP”. We

then go back to LLDOS 2.0.2 alerts, and find “RPC portmap sadmind request UDP” alerts before

“TELNET ACCESS”. By comparing the precedent set ofn1 in Figure 4.3(d) and the precedent set

of n3 in Figure 4.3(b), we suspect that “RPC sadmind UDP PING” (which corresponds to node

n2 in Figure 4.3(b)) has been missed in LLDOS 2.0.2. If we add such an alert, we may correlate it

with “RPC portmap sadmind request UDP” and further with “TELNET access” in Figure 4.3(d).

Indeed, “RPC sadmind UDP PING” is the buffer overflow attack missed by Snort in LLDOS 2.0.2.

The later part of Example 2 is very similar to the abductive correlation proposed in [29].

The additional feature provided by the similarity measurement is the guidelines about what attacks

may be missed. In this sense, the similarity measurement is complementary to the abductive cor-

relation. Moreover, these examples are provided to demonstrate the potential of identifying missed

attacks through measuring similarity of attack sequences.It is also possible that the attacker did not

launch those attacks. Additional research is necessary to improve the performance and reduce false

identification rate.

4.4 Summary

In this chapter, we develop techniques to extract attack strategies from correlated intru-

sion alerts based on the alert correlation methods [83, 29].We propose a model to represent and

algorithms to extract attack strategies from intrusion alerts. Moreover, to accommodate variations in

attacks that are not intrinsic to attack strategies, we propose to generalize different types of intrusion

alerts to hide the unnecessary difference between them. Finally, we develop techniques to measure

the similarity between sequences of attacks based on their strategies. Our experimental results have

shown that our techniques can successfully extract invariant attack strategies from sequences of

alerts, measure the similarity between alert sequences in away conforming to human intuition, and

has a potential to identify attacks missed by IDSs.

Notice that our techniques on attack strategy extraction depend on the underlying alert

correlation approaches. If alert correlation methods suchas [83] discover attack scenarios from

alert data sets, then our approach can extract attack strategy graphs from them. In the worst case, if



63

no attack scenarios can be identified, our techniques cannotwork well. Fortunately, our preliminary

experimental results demonstrate the potential of our techniques.



64

Chapter 5

Hypothesizing and Reasoning about

Attacks Missed by Intrusion Detection

Systems

With the development of the Internet, more and more organizations manage their data in

networked information systems. Due to the open nature of theInternet, network intrusions have

become an increasingly serious problem in recent years. Intrusion detection, which is aimed at

detecting activities violating the security policies of the networked information systems, has been

considered a necessary component to protect these systems along with other prevention-based se-

curity mechanisms such as access control.

As we mentioned in Chapter 2, intrusion detection techniques are generally classified into

two categories:anomaly detectionandmisuse detection. Anomaly detection builds profiles (e.g.,

statistical models) for normal activities, and raises alerts when the monitored behaviors significantly

deviate from the normal operations. Misuse detection constructs signatures (patterns) based on

known attacks or vulnerabilities, and reports alerts if themonitored activities match the signatures.

Despite over 20 years’ efforts on intrusion detection, current intrusion detection systems

(IDSs) still have several well-known problems. First, existing IDSs cannot detect all intrusions.



65

While a misuse detection system cannot detect an unknown attack (or an unknown variation of

a known attack), an anomaly detection system may fail to recognize stealthy malicious activities,

too. Second, current IDSs cannot ensure that all alerts reflect actual attacks;true positives(attacks

detected as intrusive) are usually mixed withfalse positives(benign activities detected as intrusive).

Third, an IDS usually produces a large number of alerts [11, 59, 60, 61]. As indicated in [59],

five IDS sensors reported40MB of alert data within ten days, and a large fraction of thesealerts

are false positives. The high volumes and low quality (i.e.,missed attacks and false positives)

of the intrusion alerts make it very challenging for human users or intrusion response systems to

understand the alerts and take appropriate actions. Thus, it is necessary to develop techniques to

deal with the large volumes and low quality of intrusion alerts.

Besides the aforementioned problems, current IDSs are not sufficiently prepared for sev-

eral trends in attacks. According to a 2002 CERT report [20],there are increasingly more automated

attack tools, which typically consist of several (evolving) phases such as scanning for potential vic-

tims, compromising vulnerable systems, propagating the attacks, and coordinated management of

attack tools. Moreover, attack tools are increasingly moresophisticated. In particular, “today’s au-

tomated attack tools can vary their patterns and behaviors based on random selection, predefined

decision paths, or through direct intruder management” [20]. These attack trends require more ca-

pable systems than the current IDSs to handle large volumes of alerts that potentially belong to

different complex attack scenarios.

As we discussed in Chapter 2, several alert correlation techniques have been proposed

in recent years to facilitate the analysis of intrusion alerts. These methods attempt to correlate

IDS alerts based on the similarity between alert attributes[98, 109, 33, 28], previously known (or

partially known) attack scenarios [36, 34], or prerequisites and consequences of known attacks

[29, 83, 82]. A common requirement of these approaches is that they all heavily depend on the

underlying IDSs for alerts. As a result, the performance of alert correlation is strictly limited by

the performance of IDSs. In particular, if the IDSs miss critical attacks, the correlated alerts cannot

reflect the actual attack scenarios due to the lack of the corresponding alerts, and thus may provide

misleading information.

In this chapter, we develop a series of techniques to hypothesize and reason about attacks

possibly missed by IDSs, aiming at constructing high-levelattack scenarios even if the underlying

IDSs miss critical attacks. Our approach is to integrate thepotentially relevant attack scenarios gen-

erated by the alert correlation technique in [83], and use the intrinsic relationships between related

attacks to hypothesize and reason about attacks missed by the IDSs. We observe that if two attacks



66

are causally related, they usually satisfy certain constraints (e.g., sharing the same destination IP ad-

dress), even if they are not directly adjacent to each other in a sequence of attacks. If the IDSs miss

some critical attacks, alerts from the same attack scenariocould be split into multiple attack scenar-

ios. Thus, combining different attack scenarios and verifying the above constraints over possibly

related alerts can potentially overcome the problem introduced by missed attacks.

Our approach works as follows. We first obtain (multiple) attack scenarios through a

correlation method based on prerequisites and consequences of attacks such as those in [29, 83],

and identify what attack scenarios (and possibly individual, uncorrelated alerts) may be combined by

examining the attributes of the alerts in different attack scenarios. If those attribute values satisfy the

aforementioned constraints, we consider integrating the corresponding attack scenarios. We assume

the missed attacks are most likely unknown variations of known attacks, or attacks equivalent to

some known attacks. We then hypothesize and reason about attacks missed by IDSs based on

possible causal relationships between known attacks, aiming at constructing more complete attack

scenarios. The hypothesized attacks can be further validated through raw audit data. For example,

we might hypothesize that variations ofIMAP AuthenOverflowand/orRPCCmsdOverflowwere

missed by the IDSs. However, if during the target time frame,there is only IMAP traffic but no RPC

traffic related to the target host, we can conclude that the latter hypothesis is incorrect. Finally, to

improve the usability of the constructed attack scenarios,we consolidate the hypothesized attacks

and generate concise representations of the combined attack scenarios.

Our main contribution in this chapter is a series of techniques to combine multiple at-

tack scenarios and to hypothesize and reason about attacks possibly missed by the IDSs. These

techniques are critical to constructing high-level attackscenarios from low-level intrusion alerts in

situations where the IDSs cannot detect all attacks. These techniques complement the underlying

IDSs by hypothesizing and reasoning about missed attacks, and thus provide valuable additional

evidence to support further intrusion investigation and response.

5.1 Hypothesizing and Reasoning about Attacks Missed by IDSs

If IDSs miss some critical attacks, an attack scenario (represented as a correlation graph)

may be split into multiple smaller ones, each of which only reflects a part of the original attack

scenario. To better understand the whole attack scenario, it is desirable to integrate related attack

scenarios, and hypothesize and reason about the attacks possibly missed by the IDSs. In this section,



67

ICMP_PING_NMAP1

SCAN_NMAP_TCP2

(a) CG1

Rsh3

Mstream_Zombie4

(b) CG2

Figure 5.1: Two correlation graphs

we develop a sequence of techniques for these purposes. We assume we have applied the causal

correlation method to the alerts before using the newly proposed techniques.

In the following, we start with a straightforward approach to integrating possibly related

attack scenarios, and gradually develop more sophisticated techniques to enhance this approach.

5.1.1 Integrating Possibly Related Correlation Graphs

We observe that the causal correlation method can be potentially enhanced by a similarity-

based correlation method (e.g., [109, 98, 60, 61]), which clusters alerts based on the similarity be-

tween alert attribute values. Intuitively, when the IDSs miss certain attacks, though the causal cor-

relation method may split the alerts from the same attack scenario into several correlation graphs,

a similarity-based correlation method still has the potential to identify the common features shared

by these alerts, and thus help re-integrate the related correlation graphs together. To take advan-

tage of this observation, we integrate correlation graphs based on the alert clusters generated by a

similarity-based correlation method.

The integration process may be conceptually divided into two steps: (1) identify the cor-

relation graphs to be integrated, and (2) determine possible causal relationships between alerts in

different correlation graphs. In this chapter, we choose a simple technique for the first step: we

integrate two correlation graphs when they both contain alerts from a common cluster generated

by a similarity-based correlation method. For example, given the two correlation graphs shown in

Figures 5.1(a) and 5.1(b)1, if the clustering method groupsSCAN NMAP TCP2 andRsh3 in the

same cluster based on their common source and destination IPaddresses, we consider integrating

these two graphs together.

The first step is pretty straightforward once we select a similarity-based correlation method.

1The string inside each node is a hyper-alert type name followed by an alert ID.



68

However, the second step remains challenging, since we mustdeal with missed attacks that cause

an attack scenario to split into multiple correlation graphs. Thus, we focus on the second step in the

following discussion. As we will see later, the first step becomes unnecessary as we develop our

approach. Without loss of generality, we assume that we integrate two correlation graphs.

We propose to harness the prior knowledge of attacks and the alert timestamp information

to hypothesize about possible causal relationships between alerts in different correlation graphs.

For example, suppose an attacker usesnmap[44] to find out a vulnerable service, then uses a buffer

overflow attack to compromise that service, and finally installs and starts a DDoS daemon program.

When we observe an earlierSCANNMAP TCPand a laterMstreamZombiealert in two correla-

tion graphs that are identified for integration, we may hypothesize that theSCANNMAP TCPalert

indirectly prepares for theMstreamZombiealert through an unknown attack (or an unknown vari-

ation of the above buffer overflow attack). As a result, we would hypothesize an indirect causal

relationship between these two alerts.

To further characterize this intuition and facilitate later discussion, we introduce two defi-

nitions. (Note that Definition 8 is based on the model in [83].) For convenience, we denote the type

of an alertt (or an hyper-alerth) asType(t) (or Type(h)).

Definition 8 Given two hyper-alert typesT andT ′, we sayT may prepare forT ′ if ExpConseq(T )

andPrereq(T ′) share at least one predicate (with possibly different arguments).

Example 3 Consider two hyper-alert typesSadmindPing= (fact, prereq, conseq) and Sadmind-

BufferOverflow= (fact’, prereq’, conseq’), wherefact = {VictimIP, VictimPort}, prereq= Ex-

istHost(VictimIP), conseq= {VulnerableSadmind (VictimIP)}, fact’ ={VictimIP, VictimPort}, pre-

req’ = ExistHost(VictimIP)∧ VulnerableSadmind(VictimIP), and conseq’= {GainRootAccess

(VictimIP)}. We observe bothExpConseq(SadmindPing) andPrereq(SadmindBufferOverflow) in-

clude the predicateVulnerableSadmind(VictimIP). Then we know thatSadmindPingmay prepare

for SadmindBufferOverflow.

Definition 9 Given a setT of hyper-alert types, we sayT may indirectly prepare forT ′ w.r.t. T if

there exists a sequence of hyper-alert typesT, T1, ..., Tk, T ′ such that (1) all these hyper-alert types



69

are inT , and (2)T may prepare forT1, Ti may prepare forTi+1, wherei = 1, 2, ..., k − 1, andTk

may prepare forT ′.

Let us look at an example. Suppose we have a setT of hyper-alert types, whereT

={ICMP PING NMAP, SCANNMAP TCP, FTPGlob Expansion, Rsh, MstreamZombie}. Fur-

ther assume the followingmay-prepare-forrelations exist:ICMP PING NMAP may prepare for

SCANNMAP TCP, SCANNMAP TCPmay prepare forFTP Glob Expansion, FTP Glob Expansion

may prepare forRsh, andRshmay prepare forMstreamZombie. Thus it is clearICMP PING NMAP

may indirectly prepare forMstreamZombiew.r.t. T .

Intuitively, given two hyper-alert typesT andT ′, T may prepare forT ′ if there exist a type

T alertt and a typeT ′ alertt′ such thatt prepares fort′. May-indirectly-prepare-forrelation, which

is a natural extension ofmay-prepare-forrelation, is defined through a sequence ofmay-prepare-for

relations.

Definition 10 Given a setT of hyper-alert types and two alertst and t′, whereType(t) and

Type(t′) ∈ T and t.end time < t′.begin time, t may indirectly prepare fort′ if Type(t) may

indirectly prepare forType(t′) w.r.t. T . Given a sequence of alertst, t1, ..., tk, t′ wherek > 0, t

indirectly prepares fort′ if t prepares fort1, ti prepares forti+1 for i = 1, ..., k − 1, andtk prepares

for t′.

Intuitively, t may indirectly prepare fort′ if theremayexist a path fromt to t′ in an alert

correlation graph (with additional alerts), whilet indirectly prepares fort′ if such alerts do exist.

We are particularly interested in the case wheret may indirectly prepare fort′ but there do not

exist additional alerts showing thatt indirectly prepares fort′. Indeed, a possible reason for such

a situation is that the IDSs miss some critical attacks, which, if detected, would lead to additional

alerts showing thatt indirectly prepares fort′.

A simple way to take advantage of the above observation is to assume a possible causal

relationship between alertst andt′ if they belong to different correlation graphs andt may indirectly

prepare fort′. Let us continue the example in Figure 5.1. If the hyper-alert typeSCANNMAP TCP

may prepare forFTP Glob Expansion, whichmay prepare forRsh, then we haveSCANNMAP TCP

may indirectly prepare forRsh. Thus, we may hypothesize thatSCANNMAP TCP2indirectly pre-



70

ICMP_PING_NMAP1

SCAN_NMAP_TCP2

Rsh3

Mstream_Zombie4

Figure 5.2: A straightforward combination ofCG1 andCG2

pares forRsh3. We add avirtual edge, displayed in a dashed line, fromSCANNMAP TCP2to Rsh3

in Figure 5.2, indicating that there may be some attacks between them that are missed by the IDSs.

Though this simple approach can identify and integrate related correlation graphs and

hypothesize about possible causal relationships between alerts, it is limited in several ways. First,

the virtual edges generated with this approach provide no information about attacks possibly missed

by the IDSs. Second, the virtual edges are determined solelyon the basis of prior knowledge about

attacks. There is no “reality check.” It is possible that thehypothesized virtual edges are not true

due to the limitations of the expert knowledge and the lack ofinformation about the missed attacks.

5.1.2 Hypothesizing about Missed Attacks

Themay-prepare-forandmay-indirectly-prepare-forrelations identified in Definitions 8,

9 and 10 provide additional opportunities to hypothesize and reason about missed attacks, especially

unknown variations of known attacks.

Consider two alertst andt′ that belong to different correlation graphs prior to integration.

If t may indirectly prepare fort′, we can then identify possible sequences of hyper-alert types

in the form ofT1, T2, ..., Tk such thatType(t) may prepare forT1, Ti may prepare forTi+1, i =

1, 2, ..., k−1, andTk may prepare forType(t′). These sequences of hyper-alert types are candidates

of attacks possibly missed by the IDSs. (More precisely, variations of these attacks, which could be

used by an attacker and then missed by the IDSs, are the actualcandidates of missed attacks.) We can

then search in the alerts and/or the raw audit data betweent andt′ to check for signs of these attacks

(or their variations). For example, to continue the examplein Figure 5.2, we may hypothesize

that variations of eitherIMAP AuthenOverflow, or FTP Glob Expansion, or both may have been

missed by the IDSs based on our prior knowledge about attacks. To better present these hypotheses,



71

ICMP_PING_NMAP1

SCAN_NMAP_TCP2

IMAP_Authen_Overflow5 FTP_Glob_Expansion6

Rsh3

Mstream_Zombie4

Figure 5.3: Integration ofCG1 andCG2 with hypotheses of missed attacks

we may add the hypothesized attacks into the correlation graph as virtual nodes (displayed in gray).

Figure 5.3 shows the resulting correlation graph.

To facilitate hypothesizing about missed attacks, we encode our knowledge of the rela-

tionships between hyper-alert types in ahyper-alert type graph, or simply atype graph. Let us first

introduce the concept ofequality constraint, which was adapted from our techniques on learning

attack strategies (Chapter 4), to help formally describe the notion of type graph.

Definition 11 Given a pair of hyper-alert typesT1 andT2, an equality constraint for(T1, T2) is a

conjunction of equalities in the form ofu1 = v1 ∧ · · · ∧ un = vn, whereu1, · · · , un are attribute

names inT1 and v1, · · · , vn are attribute names inT2, such that there existp(u1, · · · , un) and

p(v1, · · · , vn), which are the same predicate with possibly different arguments, inExpConseq(T1)

andPrereq(T2), respectively. Given a typeT1 alert t1 and a typeT2 alert t2, t1 and t2 satisfy the

equality constraintif t1.u1 = t2.v1 ∧ · · · ∧ t1.un = t2.vn evaluates to True.

Here we give an example. Consider the hyper-alert typesSadmindPingand Sadmind-

BufferOverflowin Example 3.ExpConseq(SadmindPing) andPrereq(SadmindBufferOverflow) both

contain the predicateVulnerableSadmind(VictimIP). Thus, it is easy to see thatSadmindPing.VictimIP

= SadmindBufferOverflow.VictimIPis an equality constraint for (SadmindPing, SadmindBuffer-

Overflow). Further consider a typeSadmindPingalert t1 and a typeSadmindBufferOverflowalert

t2. If t1 andt2 both haveVictimIP= 152.1.19.5, we can conclude thatt1 andt2 satisfy the equality

constraint.



72

An equality constraint characterizes the equality relations between attribute values of two

alerts when oneprepares forthe other. There may exist several equality constraints fora pair of

hyper-alert types. However, if a typeT1 alert t1 prepares fora typeT2 alert t2, thent1 andt2 must

satisfy at least one equality constraint. Indeed,t1 preparing fort2 is equivalent to the conjunction

of t1 andt2 satisfying at least one equivalent constraint andt1 occurring beforet2.

Given a set of hyper-alert types (representing the known attacks), by matching all possible

predicates in the expanded consequence set and the prerequisite set, we can derive all possible

may-prepare-forrelations between them together with the corresponding equality constraints. This

information can help us understand how these known attacks may be combined to launch sequences

of attacks, and thus hypothesize about which attacks (more precisely, their variations) may be missed

when we observe alerts thatmay indirectly prepare foreach other. The following definition formally

captures this intuition.

Definition 12 Given a setT of hyper-alert types, a(hyper-alert) type graphTG overT is a quadru-

ple (N,E, T,C), where (1)(N,E) is a DAG (directed acyclic graph), (2)T is a bijective mapping

fromN to T , which maps each node inN to a hyper-alert type inT , (3) there is an edge(n1, n2) in

E if and only ifT (n1) may prepare forT (n2), and (4)C is a mapping that maps each edge(n1, n2)

in E to a set of equality constraints associated with(T (n1), T (n2)).

Example 4 Consider a set of hyper-alert types:T ={ICMP PING NMAP, SCAN NMAP TCP,

IMAP Authen Overflow, FTPGlob Expansion, Rsh, MstreamZombie}. (The specification of these

hyper-alert types are given in Table 5.1.) We can compute thetype graph overT as shown in Figure

5.4. The string inside each node is the node name followed by the hyper-alert type name. The label

of each edge is the corresponding set of equality constraints.

Obviously, given multiple correlation graphs that may be integrated together, we can hy-

pothesize about possibly missed attacks that break the attack scenario according to the type graph.

Let us revisit the example in Figure 5.1. Given the type graphin Figure 5.4, we cansystem-

atically hypothesize that the IDSs may have missed variations ofIMAP AuthenOverflowand/or



73

n1:ICMP_PING_NMAP

n2:SCAN_NMAP_TCP

{n1.DestIP=n2.DestIP}

n3:IMAP_Authen_Overflow

{n2.DestIP=n3.DestIP
^n2.DestPort=n3.DestPort}

n4:FTP_Glob_Expansion

{n2.DestIP=n4.DestIP
^n2.DestPort=n4.DestPort}

n5:Rsh

{n3.DestIP=n5.SrcIP,
n3.DestIP=n5.DestIP}

n6:Mstream_Zombie

{n3.DestIP=n6.SrcIP,
n3.DestIP=n6.DestIP}

{n4.DestIP=n5.SrcIP,
n4.DestIP=n5.DestIP}

{n4.DestIP=n6.SrcIP,
n4.DestIP=n6.DestIP}

{n5.SrcIP=n6.SrcIP,
n5.DestIP=n6.DestIP,
n5.SrcIP=n6.DestIP,
n5.DestIP=n6.SrcIP}

Figure 5.4: An example type graph

Table 5.1: Hyper-alert types used in Example 4 (The set offact attributes for each hyper-alert type
is {SrcIP, SrcPort, DestIP, DestPort})

Hyper-alert Type Prerequisite Consequence
ICMP PING NMAP ExistHost(DestIP)
SCAN NMAP TCP ExistHost(DestIP) {ExistService(DestIP,DestPort)}
IMAP Authen Overflow ExistService(DestIP,DestPort)

∧VulnerableAuthenticate(DestIP)
{GainAccess(DestIP)}

FTP Glob Expansion ExistService(DestIP,DestPort)
∧VulnerableFTPRequest(DestIP)

{GainAccess(DestIP)}

Rsh GainAccess(DestIP)
∧GainAccess(SrcIP)

{SystemCompromised(DestIP),
SystemCompromised(SrcIP)}

MstreamZombie SystemCompromised(DestIP)
∧SystemCompromised(SrcIP)

{ReadyForDDOSAttack(DestIP),
ReadyForDDOSAttack(SrcIP)}

FTP Glob Expansionattacks. As a result, we obtain the integrated correlation graph shown in

Figure 5.3.

5.1.3 Reasoning about Missed Attacks

In a type graph, the label of an edge encodes all possible equality constraints for the cor-

responding pair of hyper-alert types. Moreover, even if twohyper-alert types are not adjacent to



74

each other, they may still satisfy some constraints if they are connected through some intermedi-

ate nodes (hyper-alert types) in the type graph (due to the equality constraints those intermediate

nodes must satisfy). For example, consider nodesn2, n3, andn5 in Figure 5.4. There is an equal-

ity constraintn2.DestIP = n3.DestIP ∧ n2.DestPort = n3.DestPort for (n2, n3), and

two equality constraintsn3.DestIP = n5.SrcIP andn3.DestIP = n5.DestIP for (n3, n5).

Take together, these implyn2.DestIP = n5.SrcIP or n2.DestIP = n5.DestIP . In other

words, if a typeSCANNMAP TCP alert indirectly prepares fora typeRshalert (through a type

IMAP AuthenOverflowalert), together they must satisfy one of these two constraints. We obtain

the same constraints if we consider nodesn2, n4, andn5 in Figure 5.4. In general, we can derive

constraints for two hyper-alert types when onemay indirectly prepare forthe other. Informally, we

call such a constraint anindirect equality constraint. These constraints can be used to study whether

two alerts in two different correlation graphs could be indirectly related. This in turn allows us to

filter out incorrectly hypothesized attacks.

Indirect equality constraints can be considered a generalization of the equality constraints

specified in Definition 11. In this chapter, we combine the terminology and simply refer to an

indirect equality constraint as an equality constraint when it is not necessary to distinguish between

them.

To take advantage of the above observation, we must derive indirect equality constraints.

In the following, we will first present an algorithm to compute indirect equality constraints fortwo

hyper-alert types where onemay indirectly prepare forthe other, and then extend it to compute

indirect equality constraints forall pairs of hyper-alert types at the same time. We will also discuss

how to use such indirect equality constraints to reason about missed attacks.

Computing Indirect Equality Constraints between Two Hyper-Alert Types

Before we discuss the algorithm on how to compute indirect equality constraints, let

〈T1, T2, · · · , Tk〉 denotes a directed pathT1 → T2 → · · · → Tk in a type graph. For conve-

nience, we useLabel(ec) to denote the corresponding path in a type graph that producethe equality

constraintec. Algorithm 2 shown in Figure 5.5 outlines an approach for generating the set of indi-

rect equality constraints between two hyper-alert typesT andT ′ whereT may indirectly prepare

for T ′. We assume a type graphTG is already constructed from a set of hyper-alert types, which

are specified based on all the attacks known to the IDSs (or equivalently, the set of signatures). For

each pair of hyper-alert typesT andT ′, this algorithm identifies all paths fromT to T ′ in the type



75

Algorithm 2: Computation of Indirect Equality Constraints for Two Hyper-Alert Types.
Input: A type graphTG, and two hyper-alert typesT andT ′ in TG,

whereT may indirectly prepare forT ′.
Output: A set of equality constraints forT andT ′.
Method:

1. LetResult = ∅.
2. For each path〈T , T1, · · · , Tk, T ′〉 in TG
3. DenoteT asT0, andT ′ asTk+1.
4. For each combination of constraintsec1, ec2, · · · , eck+1,

whereeci is an equality constraint for (Ti−1, Ti)
5. LetS(T0.ai) = {T0.ai},

whereT0.ai, i = 1, 2, · · · , l, are all the attributes ofT0 that appear inec1.
6. For j = 1 to k + 1
7. For each conjunctTj−1.a = Tj.b in ecj

8. For eachS(T0.ai) that containsTj−1.a
9. LetS(T0.ai) = S(T0.ai) ∪ {Tj .b}.
10. Remove variables ofTj−1 from eachS(T0.ai), i = 1, 2, · · · , l.
11. Lettemp = ∅.
12. For each non-emptyS(T0.ai) and eachTk+1.b in S(T0.ai)
13. Lettemp = temp ∪ {T0.ai = Tk+1.b}.
14. Letec be the conjunction of all elements intemp.
15. If ec is in Result Then
16. LetLabel(ec) = Label(ec) ∪ {〈T, T1, · · · , Tk, T

′〉}
17. ElseLet Label(ec) = {〈T, T1, · · · , Tk, T

′〉}, andResult = Result ∪ {ec}.
18. Return Result.
End

Figure 5.5: Algorithm to compute indirect equality constraints for two hyper-alert types

graph, and computes an indirect equality constraint for each combination of equality constraints

between consecutive hyper-alert types along the path. The basic idea is to propagate the equality

relations between attributes of hyper-alert types (in the algorithm, we useS(T0.ai) to propagate

equality relations and get attribute names along the path〈T0, T1, · · · , Tk+1〉). We also label each

indirect equality constraint with the corresponding path that produces the constraint. This provides

guidelines for hypothesizing about missed attacks. The usefulness of this algorithm is demonstrated

by Lemma 5.1.1.

Lemma 5.1.1 Consider a type graphTG and two alertst andt′, whereType(t) andType(t′) are

in TG. Assume Algorithm 2 (Figure 5.5) outputs a setC of equality constraints forType(t) and



76

Type(t′). If C is non-empty andt indirectly prepares fort′, thent and t′ must satisfy at least one

equality constraint inC.

Proof: According to Definition 10, ift indirectly prepares fort′, there must exist a sequence of

alertst1, ..., tk, wherek > 0, such thatt prepares fort1, ti prepares forti+1 for i = 1, ..., k − 1,

andtk prepares fort′. Thus, we haveType(t) may prepare forType(t1), Type(ti) may prepare for

Type(ti+1) for i = 1, ..., k − 1, andType(tk) may prepare forType(t′). Following the convention

of Algorithm 2, we denoteType(t) asT0, Type(ti) asTi, wherei = 1, ..., k, andType(t′) asTk+1.

It is easy to see there must be a pathT0, T1, ..., Tk+1 in the corresponding type graphTG. For

convenience, we also denotet ast0, andt′ astk+1.

If ti prepares forti+1, we can concludeti and ti+1 must satisfy at least one equality

constraint for(Ti, Ti+1). This is because ifti andti+1 does not satisfy any equality constraints for

(Ti, Ti+1), then none of the instantiated predicates inExpConseq(ti) can match any inPrereq(ti+1),

which violates the given condition thatti prepares forti+1. For i = 0, 1, ..., k, we denote the

constraintti andti+1 satisfy aseci+1. According to Figure 5.5, Algorithm 2 will process the path

T0, T1, ...,Tk+1 (in step 2) and the combination of equality constraintsec1, ec2, ..., eck+1 that t0,

t1, ...,tk+1 satisfy (in step 4).

Now consider the process of the above sequence of equality constraints in steps 5 to 10.

For eachS(T0.ai), we can prove by induction that all attributesTj .b added intoS(T0.ai) are equal

to T0.ai, since each addition is based on a conjunctTj−1.a = Tj.b, whereTj−1.a is already in

S(T0.a). Further because step 10 removes the attributes ofTj−1, only attributes ofTk+1 remain in

S(T0.ai), i = 1, 2, ..., l. Thus, after step 10, eachS(T0.ai) includes all the attributes ofTk+1 that

are equal toT0.ai, wherei = 1, 2, ..., l. Steps 11 to 14 then transform these equality relations into

a conjunctive formulaec. Since the sequence of constraintseci, i = 1, 2, ..., k + 1, where eacheci

is satisfied byti−1 andti, is used in the above process, we can easily conclude thatt0 (t) andtk+1

(t′) satisfyec. Thus, ift indirectly prepares fort′, they must satisfy at least one equality constraint

in C.

Example 5 Consider the type graph in Figure 5.4 and two hyper-alert typesSCAN NMAP TCP

(noden2) and Rsh (noden5). Using Algorithm 2 in Figure 5.5, we can easily compute the in-

direct equality constraints for them:{n2.DestIP = n5.DestIP , n2.DestIP = n5.SrcIP}.



77

Both indirect equality constraints are labeled with two paths: one path is〈SCAN NMAP TCP,

IMAP Authen Overflow, Rsh〉, and the other is〈SCAN NMAP TCP, FTP Glob Expansion, Rsh〉.

Given two hyper-alert typesT andT ′ in a type graph, Algorithm 2 in Figure 5.5 derives

the indirect equality constraints between them by considering all combinations of (direct) equality

constraints between two adjacent hyper-alert types in eachpath fromT to T ′. Theoretically, there is

a potential problem of combinatorial explosion. However, in practice, because of the limited number

of predicates and hyper-alert types, this problem should betractable. Moreover, this algorithm only

needs to be executed once for two given hyper-alert types in atype graph. Thus, the cost of this

algorithm does not have significant impact on alert correlation.

Computing Indirect Equality Constraints for All Pairs of Hy per-Alert Types

Algorithm 2 in Figure 5.5 focuses on the problem of computingindirect equality con-

straints for two hyper-alert types. An extension to this problem is: given a setT of n hyper-alert

types, how to calculate indirect equality constraints for all pairs of hyper-alert types where the first

one in the pairmay indirectly prepare forthe second one? This is a realistic problem, since we do

need to get the equality constraints between all pairs of hyper-alert types to reason about missed

attacks.

We can apply Algorithm 2 for up ton2 times, once for each pair of hyper-alert types (Ti,

Tj) whereTi may indirectly prepare forTj (1 ≤ i, j ≤ n). Unfortunately, this is not an efficient

solution. To see the inefficiency more clearly, consider a path from Ti to Tj whereTj is further

connected toTk by an edge. If we compute the indirect equality constraints between all pairs of

hyper-alert types with Algorithm 2, the computation forTi andTk with the path involvingTi, Tj,

andTk will repeat the computation forTi andTj with the same path fromTi andTj . A better

approach is to reuse the equality constraints already computed forTi andTj to derive those forTi

andTk.

To take advantage of the above observation, Algorithm 3 (shown in Figure 5.6) outlines

a method to compute equality constraints for all pairs of hyper-alert types at the same time. The

output of Algorithm 3 is a constraint matrix. Givenn hyper-alert typesT1, T2, · · · , Tn, aconstraint

matrix M is an × n table, where the cellM(i, j) (1 ≤ i, j ≤ n) consists of all and only equality

constraints for (Ti, Tj) if Ti may (indirectly) prepare forTj .

In Algorithm 3, for convenience, we useLabel(ec) to denote the corresponding path in a



78

Algorithm 3. Computation of Equality Constraints for All Pa irs of Hyper-alert Types
Input: A type graphTG over a set of hyper-alert types{T1, T2, · · · , Tn}.
Output: A n × n constraint matrixM with each cellM(i, j) containing a set of equality

constraints for(Ti, Tj).
Method:

1. Create an × (n − 1) matrixL, and initialize each cell ofL to empty.
// Each cellL(i, j) is intended to contain the equality constraints (marked with path
// labels) for the lengthj paths inTG starting from typeTi.

2. k = 1. // The variablek represents the possible lengths of the paths inTG
3. For each edge(Ti, Tj) in the type graphTG
4. For each equality constraintec for (Ti, Tj)
5. Label(ec) = 〈Ti, Tj〉; L(i, 1) = L(i, 1) ∪ {ec}.
6. For k = 2 to n − 1
7. For i = 1 to n
8. For each equality constraintec in L(i, k − 1)
9. Get the last hyper-alert typeT in Label(ec).
10. Get the setT of hyper-alert types whereT has edges to each type inT .
11. For each hyper-alert typeT ′ in T
12. For each equality constraintec′ whereLabel(ec′) = 〈T, T ′〉
13. Get a constraintec′′ via InferredConstraint (ec, ec′).
14. LetLabel(ec′′) = 〈Label(ec), T ′〉.
15. LetL(i, k) = L(i, k) ∪ {ec′′}.
16. For i = 1 to n
17. For j = 1 to n
18. In rowi of L, find all equality constraints where the last type in their labels

is Tj , and put these constraints into the cellM(i, j).
19. Output the matrixM .
End.

Subroutine InferredConstraint
Input: An equality constraintsec for (Tx, Ty) and an equality constraintec′ for (Ty, Tz).
Output: An equality constraintec′′ for (Tx, Tz) derived fromec andec′.
Method:

1. Letec′′ = {}.
2. For each conjunctTx.u = Ty.v in ec
3. If there exists a conjunctTy.v = Tz.w in ec′, then
4. LetTx.u = Tz.w be a conjunct inec′′.
5. Output ec′′.
End.

Figure 5.6: Algorithm to compute indirect equality constraints for all pairs of hyper-alert types



79

type graph that produces the equality constraintec, and we useLabel(ec2) = 〈Label(ec1), T 〉 to

denote thatec2’s label isec1’s label appended by a typeT . As we discussed in Algorithm 2, a path

between hyper-alert typesTi andTj in a type graph represents thatTi may indirectly prepare for

Tj , and we can derive equality constraints for (Ti, Tj) by reasoning about the equality constraints

along the path. The basic idea behind Algorithm 3 is to reuse the equality constraints derived from

short paths to compute those for long paths. In a type graph with n hyper-alert types (n nodes), the

possible lengths of paths range from1 to n − 1. To compute the indirect equality constraints for a

path with lengthk (1 < k ≤ n − 1), it is always possible to first carry out the computation of the

(indirect) equality constraints for lengthk − 1 paths, and then combine the results for such paths

with the equality constraints for individual edges to get the constraints for lengthk paths. Lemma

5.1.2 ensures that Algorithm 3 can derive all and only equality constraints forTi andTj .

Lemma 5.1.2 Given a type graphTG over a set of hyper-alert types{T1, T2, · · · , Tn}, Algorithm

3 outputs all and only equality constraints for(Ti, Tj) in the cellM(i, j) (1 ≤ i, j ≤ n).

Proof: According to the definition of (indirect) equality constraint, there may be one or more equal-

ity constraints for(Ti, Tj) if Ti may (indirectly) prepare forTj . In other words, there may be one

or more equality constraints for(Ti, Tj) if there is a path betweenTi andTj in TG. In the follow-

ing, we first prove by induction that each equality constraint that can be derived for(Ti, Tj) from a

lengthk pathp (k = 1, 2, · · · , n − 1) is labeled withp and stored inL(i, k).

1. Whenk = 1, for each length 1 pathp = 〈Ti, Tj〉 (which is an edge inTG), lines 3 through

5 put all equality constraints for(Ti, Tj) into cell L(i, 1), each of which is labeled with the

corresponding edge.

2. Assume for anyTi, Tj in TG, all the equality constraints that can be derived for(Ti, Tj) from

a lengthm path are inL(i,m) with the corresponding path labels. Now we show that for any

Ti, Tj in TG, all the equality constraints that can be derived for(Ti, Tj) from a lengthm + 1

path are inL(i,m + 1) with the corresponding path labels.

Consider lines 7 through 10. For eachTi, these lines find all the edges that can follow each

lengthm path starting withTi. Thus, they can enumerate all lengthm + 1 paths. For con-

venience, we denote each lengthk = m + 1 pathp = 〈Ti, · · · , Ts, Tj〉 as composed of two

connected paths:p′ = 〈Ti, · · · , Ts〉 andp′′ = 〈Ts, Tj〉, where the length ofp′ is m andp′′ is



80

an edge inTG. According to the induction assumption, the equality constraints that can be

derived for(Ti, Ts) from p′ are inL(i,m) with the labelp′.

Consider lines 11 through 15. For each equality constraintec in L(i,m) with label〈Ti, · · · , Ts〉

and each equality constraintec′ for (Ts, Tj), the subroutineInferredConstraint (ec, ec′) (line

13) derives the equalityec′′ inferred byec andec′, which is an equality constraint for(Ti, Tj).

This equality constraint is then labeled with the pathp = 〈Ti, · · · , Ts, Tj〉 and then added into

L(i,m + 1). Since lines 11 through 15 consider all combinations of the equality constraints

in L(i,m) and the (direct) equality constraints for each edge that follow a lengthm path, they

can find the equality constraints that can be derived for all lengthm+1 paths starting fromTi.

Therefore, for anyTi, Tj in TG, all the equality constraints that can be derived for(Ti, Tj)

from a lengthm + 1 path are inL(i,m + 1) with the corresponding path labels.

Further considering lines 16 through 18, which copy all equality constraints derived from

paths betweenTi andTj into M(i, j), and that the possible path length inTG is from1 to n−1, we

can conclude that all equality constraints for(Ti, Tj) are inM(i, j). Moreover, during Algorithm

3, since we only add the inferred (indirect) equality constraints intoL with path labels (lines 14 and

15), and we only move equality constraints derived from paths fromTi to Tj into M(i, j) (lines 16

through 18),M(i, j) only contains equality constraints for(Ti, Tj).

Example 6 To continue Example 5, we may use Algorithm 3 to derive the sets of equality con-

straints for all pairs of hyper-alert types in Figure 5.4 where one of the pairmay (indirectly) prepare

for the other. The results are given in Table 5.2, in which each cell contains the equality constraints

for the hyper-alert types in the given row and the column. (Tosave space, we use node names to

represent the corresponding hyper-alert types and omit thelabels for each equality constraint.)

Similar to Algorithm 2, Algorithm 3 is also executed only once before alert correlation,

and thus does not introduce significant overhead during alert correlation.

Using (Indirect) Equality Constraints

The equality constraints derived for indirectly related hyper-alert types can be used to

determine if two correlation graphs can be integrated. Given two correlation graphsCG1 andCG2,



81

Table 5.2: Equality constraints for hyper-alert types in Figure 5.4 where onemay (indirectly) prepare
for the other.

n1 n2 n3 n4 n5 n6
n1 / {n1.DestIP =

n2.DestIP}
{n1.DestIP =
n3.DestIP}

{n1.DestIP =
n4.DestIP}

{n1.DestIP
= n5.DestIP,
n1.DestIP =
n5.SrcIP}

{n1.DestIP
= n6.DestIP,
n1.DestIP =
n6.SrcIP}

n2 / / {n2.DestIP =
n3.DestIP ∧
n2.DestPort =
n3.DestPort}

{n2.DestIP =
n4.DestIP ∧
n2.DestPort =
n4.DestPort}

{n2.DestIP
= n5.DestIP,
n2.DestIP =
n5.SrcIP}

{n2.DestIP
= n6.DestIP,
n2.DestIP =
n6.SrcIP}

n3 / / / / {n3.DestIP
= n5.DestIP,
n3.DestIP =
n5.SrcIP}

{n3.DestIP
= n6.DestIP,
n3.DestIP =
n6.SrcIP}

n4 / / / / {n4.DestIP
= n5.DestIP,
n4.DestIP =
n5.SrcIP}

{n4.DestIP
= n6.DestIP,
n4.DestIP =
n6.SrcIP}

n5 / / / / / {n5.SrcIP
= n6.SrcIP,
n5.DestIP =
n6.DestIP,
n5.SrcIP =
n6.DestIP,
n5.DestIP =
n6.SrcIP}

n6 / / / / / /

we can integrateCG1 andCG2 if there exist an alertt1 in CG1 and an alertt2 in CG2 such that (1)

t1 andt2 satisfy at least one equality constraint for(Type(t1), Type(t2)) and (2)t1’s timestamp is

beforet2’s timestamp.

Moreover, such equality constraints can also facilitate the hypotheses of missed attacks.

When integrating two correlation graphsCG andCG′, we can hypothesize missed attacks only for

such pairs of alertst andt′ that (1)t andt′ belong toCG andCG′, respectively, and (2)t indirectly

prepare fort′. Specifically, for each equality constraintec thatt andt′ satisfy, we can add the paths

in Label(ec) into the integrated correlation graph. Since each path inLabel(ec) is in the form of

〈Type(t), T1, ..., Tk, T ype(t′)〉, Type(t) andType(t′) are merged witht andt′, respectively, and

the rest of the path is added as a virtual path consisting of virtual nodes and edges fromt to t′.



82

Note that this may add incorrect hypotheses into the integrated correlation graph. We will present

techniques to validate these hypotheses with raw audit datain Section 5.1.5.

Let us illustrate how to take advantage of indirect equalityconstraints to hypothesize

missed attacks. Consider two correlation graphs in Figure 5.1, if an earlier alertSCANNMAP TCP2

and a later alertRsh3have the same destination IP address, they then satisfy an equality con-

straint ec: SCANNMAP TCP.DestIP= Rsh.DestIP, which is an indirect equality constraint for

(SCANNMAP TCP, Rsh) shown in Table 5.2. Thus, we can integrateCG1 and CG2 and hy-

pothesize missed attacks based on the label associated withthe above equality constraint. For

instance, the label associated with the above equality constraint (Label(ec)) consists of two paths:

〈SCANNMAP TCP, IMAP AuthenOverflow, Rsh〉 and〈SCANNMAP TCP, FTP Glob Expansion,

Rsh〉. Thus, we can hypothesize two missed attacks: one isIMAP AuthenOverflow5, and the other

is FTP Glob Expansion6. The hypothesis process may continue until all such pairs ofalerts are

examined.

5.1.4 Inferring Attribute Values for Hypothesized Attacks

The (direct or indirect) equality constraints not only helphypothesize about missed at-

tacks, but also provide an opportunity to make inferences about the attribute values of hypothesized

attacks. In other words, we may further hypothesize about the missed attackinstances. For exam-

ple, suppose we hypothesize anIMAP AuthenOverflowattack after aSCANNMAP TCPalert and

before aRshalert such thatSCANNMAP TCP prepares forIMAP AuthenOverflow, which then

prepares forRsh. From Table 5.2, we know thatSCANNMAP TCP and IMAP AuthenOverflow

have the same destination IP address and destination port, and the destination IP address of alert

IMAP AuthenOverflowis the same as either the source or the destination IP addressof Rsh.

In general, we can use the equality constraints between the intrusion alerts and the hy-

pothesized attacks to infer the possible attribute values of these attacks. As a special attribute, we

estimate the timestamp of a hypothesized attack as a possible range. That is, if an attackth is hy-

pothesized as an intermediate step between two intrusion alertst andt′, wheret occurs beforet′,

then the possible range ofth’s timestamp is[t.end time, t′.begin time]. Let us first look at an

example.

Example 7 Consider the integrated correlation graph shown in Figure 5.3. Let us infer attribute

values for the hypothesized attack (instance)FTP Glob Expansion6. Suppose the IDS reported that



83

the destination IP addresses of alertsSCAN NMAP TCP2andRsh3were both152.1.19.5, and the

destination port ofSCAN NMAP TCP2was21. Following the earlier convention in Figure 5.4, we

use nodesn2, n4, andn5 to denote hyper-alert typesSCAN NMAP TCP, FTP Glob Expansion,

and Rsh, respectively. It is easy to see thatSCAN NMAP TCP2and Rsh3satisfy the equality

constraintn2.DestIP= n5.DestIP. Based on the constraint matrix in Table 5.2, we can see this

equality constraint is derived from the following two equality constraints:

1. n2.DestIP=n4.DestIP∧ n2.DestPort= n4.DestPortfor (SCAN NMAP TCP,

FTP Glob Expansion), and

2. n4.DestIP=n5.DestIPfor (FTP Glob Expansion, Rsh).

Thus, the hypothesized attackFTP Glob Expansion6should satisfy both of these equality con-

straints. As a result, we can infer that the destination IP address and the destination port of

FTP Glob Expansion6are152.1.19.5 and21, respectively.

We generalize Example 7 into Algorithm 4, which is shown in Figure 5.7, to infer at-

tribute values of hypothesized attack instances. Intuitively, given two alertst andt′, for each hy-

pothesized attackTi along a path of hypothesized attacks, we get the setCi of equality constraints

for (Type(t), Ti)) and the setC ′
i of equality constraints for(Ti, T ype(t′)), respectively. Any com-

bination of equality constraintseci in Ci andec′i in C ′
i that result in an equality constraint thatt and

t′ satisfy can be used to infer the attribute values of the hypothesized instance of attackTi. In other

words, we infer the attributes of the hypothesized attack instance to be the same as those oft andt′

as indicated by the equality constraints.

In Algorithm 4, line 1 gets the setC of equality constraints that alertst and t′ satisfy

and that are associated with the given path in the type graph.Lines 2 through 7 are a loop to infer

attribute values for each hypothesized attack in given pathin TG, which is a possible sequence

of attacks that have happened. Line 3 obtains the set of equality constraintsCi for (Type(h), Ti)

andC ′
i for (Ti, T ype(h′)) that are associated with the two halves of the given path (through the

constraint matrix). In the following steps, the algorithm tries all combinations of equality constraints



84

Algorithm 4. Inferring Attribute Values for Hypothesized A ttacks
Input: A type graphTG for a setT of hyper-alert types, a pathP = 〈T, T1, T2, · · · , Tk, T

′〉
in TG, a typeT alertt, and a typeT ′ alertt′, wheret may indirectly prepare fort′.

Output: A setHi of hypothesized attack instances for each typeTi, wherei = 1, 2, · · · , k.
Method:

// We assume the constraint matrixM for T has been computed, in which each equality
// constraintec in M is labeled with the corresponding pathLabel(ec) in TG.
1. Get a setC of equality constraints such that for eachec ∈ C, t andt′ satisfyec and

Label(ec) = P .
2. For each hypothesized attackTi

3. Get the set of equality constraintsCi for (T, Ti) whose label is〈T, T1, ..., Ti〉;
get the set of equality constraintsC ′

i for (Ti, T
′) whose label is〈Ti, ..., Tk , T ′〉;

let Hi = {}.
4. For each combination ofeci ∈ Ci andec′i ∈ C ′

i

5. If eci andec′i imply anyec ∈ C Then
6. Generate a typeTi alertti; set all the attributes ofti that are equal to some

attributes ofT in eci to the corresponding attribute values oft; similarly,
set all the attributes ofti that are equal to some attributes ofT ′ in ec′i to
the corresponding attribute values oft′; set the remaining attributes (if any)
to Unknown; let the timestamp ofti be [t.end time, t′.begin time].

7. LetHi = Hi ∪ {ti}.
8. Output Hi.
End.

Figure 5.7: Algorithm to infer attribute values for hypothesized attacks

in Ci andC ′
i, and infers the attribute values of hypothesized typeTi attacks . Each hypothesized

attack instance of TypeTi is derived through two equality constraints (eci ∈ Ci andec′i ∈ C ′
i). The

condition checking in line 5 guarantees that the inferred attribute values do not conflict (otherwise,

the corresponding combination of equality constraints could not lead to an equality constraint thatt

andt′ satisfy). Finally, line 8 outputs the hypothesized attack instances for each attack type (hyper-

alert type)Ti, wherei = 1, 2, ..., k.

We make several observations about Algorithm 4. First, given two alertst and t′, the

hypotheses of missed attack instances betweent andt′ arespecificto the paths betweent andt′. In

other words, the hypothesis of each missed attack is supported by the possibility that an attacker has

launched a sequence of attacks (or, more precisely, attack instances), including the hypothesized

one, that leads fromt to t′. This also implies that Algorithm 4 should be performed multiple times

when hypothesizing about missed attack instances based on agiven pair of alerts. Second, the two



85

alertst and t′ and a given path in the type graph may lead to multiple instances of each attack

type, since there may be multiple (direct or indirect) equality constraints for each pair of hyper-alert

types. Third, the hypothesized attack instances are usually not as specific as regular alerts. That is,

a hypothesized attack may have unknown values on some attributes, which cannot be inferred from

the available alerts.

Algorithm 4 is essentially a best-effort “guess” of what could have been missed by IDSs.

The hypothesized attack instances can certainly be wrong. In the next subsection, we investi-

gate how to prune those incorrectly “guessed” attack instances using a complementary information

source, the raw audit data.

5.1.5 Pruning Hypothesized Attacks with Raw Audit Data

The hypothesized attack instances can be further validatedusing raw audit data. For

example, we may hypothesize that there is a variation ofFTP Glob Expansionattack between a

SCANNMAP TCPalert and aRshalert. However, if there is no ftp activity related to the victim

host between these two alerts, we can easily conclude that our hypothesis is incorrect. By doing so

we further narrow the hypothesized attacks down to the meaningful ones.

To take advantage of this observation, we extend our model toassociate a “filtering con-

dition” with each hyper-alert type. Assuming that the raw audit data set consists of a sequence of

audit records, we can extract attribute values from each audit record directly, or through inference.

For example, we may extract the source IP address from a tcpdump record directly, or infer the

type of service using the port and payload information. For the sake of presentation, we call such

attributes obtained from the raw audit dataaudit attributes.

Definition 13 Given a hyper-alert typeT and a setA of audit attributes, afiltering condition forT

w.r.t. A is a logical formula involving audit attribute names inA, which evaluates toTrueor False

if the audit attribute names are replaced with specific values.

Example 8 Consider the following set of audit attributes:A = {SrcIP, SrcPort, DestIP, DestPort,

Protocol, FrameArrivalTime}. Given a hyper-alert typeFTP Glob Expansion, we may have a sim-

ple logical formula “Protocol = ftp” as a filtering condition for typeFTP Glob Expansionw.r.t.



86

A.

Intuitively, a filtering condition for a hyper-alert type isa necessary condition for the cor-

responding attack or its variations. We can simply evaluatethe condition to prune some incorrect

hypotheses. If a filtering condition is evaluated to True, the corresponding attack may have hap-

pened; if it is evaluated to False, the corresponding hypothesized attack could not have happened,

and should be ruled out.

The above filtering condition is essentially prior knowledge of known attacks. There is

an additional opportunity to prune incorrect hypotheses ifwe further consider the inferred attribute

values of the hypothesized attacks. For example, if we can infer that the destination IP address of a

hypothesizedFTP Glob Expansionattack is152.1.19.5, we may further check whether there is ftp

activities destined to152.1.19.5 in Example 8. In other words, we can revise the filtering condition

in Example 8 to “Protocol = ftp∧ DestIP =152.1.19.5” for the hypothesized attack instance.

To formalize this idea, we introduce the notion offiltering template.

Definition 14 Given a hyper-alert typeT = (fact, prerequisite, consequence) and a setA of

audit attributes, afiltering template forT w.r.t. A is a logical formula involving variables infact

andA, which evaluates toTrueor Falseif these variables are replaced with specific values. Given

a hypothesized attackt of typeT with a setfs of inferred attributes, wherefs ⊆ fact, a filtering

templateTempf is instantiatable byt if all the variables inTempf are either infs or in A. If a

filtering templateTempf is instantiatable byt, we can then get aninstantiated filtering condition

for t by replacing the variables inTempf with the inferred attribute values oft.

Example 9 Consider the set of audit attributes:A = {SrcIP, SrcPort, DestIP, DestPort, Proto-

col, FrameArrivalTime}. Given a hyper-alert typeFTP Glob Expansion(See Table 5.1), we may

have a filtering template “A.DestIP = FTPGlob Expansion.DestIP” as a filtering template for type

FTP Glob Expansionw.r.t. A. Assume there is a hypothesized attackFTP Glob Expansion6with

an inferred attributeDestIP= 152.1.19.5. The above filtering template is then instantiatable by

FTP Glob Expansion6, and can be instantiated to “A.DestIP= 152.1.19.5”.



87

Intuitively, a filtering template is a template of filtering condition for a type of attack.

Given a hypothesized attack with a set of inferred attributes, we may convert a filtering template

into a filtering condition if all the attack attributes that appear in the filtering template have specific

inferred values. To distinguish from the filtering condition defined in Definition 13, we call those

defined for hyper-alert types thepredefined filtering conditions, and those instantiated from hypoth-

esized attacks theinstantiated filtering conditions. We can then use such an instantiated filtering

condition in the same way as the predefined filtering conditions.

Pruning incorrectly hypothesized attacks with predefined and/or instantiated filtering con-

ditions is pretty straightforward. Before correlating alerts, we specify filtering conditions and filter-

ing templates for each hyper-alert type. When hypothesizing and reasoning about missed attacks,

for each hypothesized attack with a possible range of its timestamp and a set of inferred attributes,

we first determine whether each filtering template corresponding to the hypothesized attack is in-

stantiatable by this hypothesis w.r.t. the raw audit attributes. If the answer is positive, we derive

an instantiated filtering condition for this filtering template. We then compute the actual filtering

condition as the conjunction of the predefined filtering condition and all the instantiated filtering

conditions.

To validate a hypothesized attack, we can search through theraw audit records during the

time period when the hypothesized attack may have happened,and evaluate the filtering condition

using the values of the attributes of each raw audit record. To continue Examples 8 and 9, we can

generate the final filtering condition as “Protocol = ftp∧ DestIP =152.1.19.5” to validate (or deny)

FTP Glob Expansion6. If there is no ftp traffic associated with the destination IPaddress152.1.19.5

between alertsSCANNMAP TCP2andRsh3, i.e., the above filtering condition evaluates to False

for all audit records, we can conclude that theFTP Glob Expansion6attack is falsely hypothesized.

As a result, the integrated correlation graph in Figure 5.3 can be refined to the one in Figure 5.8.

A limitation of using filtering conditions is that human users must specify the conditions

associated with each hyper-alert type. It has at least two implications. First, it could be time con-

suming to specify such conditions for every known attack. Second, human users may make mistakes

during the specification of filtering conditions. In particular, a filtering condition could be too spe-

cific to capture the invariant among the variations of a knownattack, or too general to filter out

enough incorrect hypotheses. Nevertheless, we observe that any filtering condition may help re-

duce incorrectly hypothesized attacks, even if it is very general. In our experiments, we simply

use the protocols over which the attacks are carried out and the inferred attribute values as filtering

conditions. It is interesting to study how to get the “right”way to specify filtering conditions.



88

ICMP_PING_NMAP1

SCAN_NMAP_TCP2

IMAP_Authen_Overflow5

Rsh3

Mstream_Zombie4

Figure 5.8: Integration ofCG1 andCG2 after refinement with raw audit data

Another issue is the execution cost. To filter out a hypothesized attack with a filtering

condition, we have to examine every audit record during the period of time when the attack could

happen. Though there are many ways to optimize the filtering process (e.g., indexing, concurrent

examination), the cost is not negligible, especially when the time period is large. Thus, filtering

conditions are more suitable for off-line analysis.

5.1.6 Consolidating Hypothesized Attacks

In the earlier subsections, we investigated various techniques to hypothesize and reason

about missed attacks. However, our method has not considered the possibility that the same attack

may be hypothesized multiple times in different contexts. As a result, an integrated correlation

graph may include too many hypothesized attacks. Though it is possible that the same attack are

repeated multiple times (as hypothesized), having too manyuncertain details reduces the usability

of the integrated correlation graph.

Let us look at an example to see this problem more clearly. Consider Figure 5.9, which

shows some hypothesized attacks resulting from the integration of CG1 andCG2 in Figure 5.1.

AssumeICMP PING NMAP1, SCANNMAP TCP2andRsh3all have the same destination IP ad-

dress152.1.19.5. Since two alertsSCANNMAP TCP2and Rsh3satisfy the equality constraint

SCANNMAP TCP.DestIP= Rsh.DestIP, based on the type graph in Figure 5.4, we hypothesize two

attacks: IMAP AuthenOverflow5andFTP Glob Expansion6, which both have the same destina-

tion IP address152.1.19.5 derived through attribute value inference. Similarly,ICMP PING NMAP1

andRsh3satisfy the equality constraintICMP PING NMAP.DestIP= Rsh.DestIP. Thus, we may

hypothesize four attacks:SCANNMAP TCP7, IMAP AuthenOverflow8, SCANNMAP TCP9and



89

ICMP_PING_NMAP1

SCAN_NMAP_TCP2 SCAN_NMAP_TCP7 SCAN_NMAP_TCP9

IMAP_Authen_Overflow5 FTP_Glob_Expansion6

Rsh3

Mstream_Zombie4

IMAP_Authen_Overflow8 FTP_Glob_Expansion10

Figure 5.9: Hypothesized attacks when integratingCG1 andCG2

FTP Glob Expansion10, all with the same destination IP address152.1.19.5.

This example leads to two observations. First, it is possible that the hypothesized attack

instanceSCANNMAP TCP7is the same attack as reflected by the existing alertSCANNMAP TCP2,

but it is also possible that the attacker launched two separate attacks. Similarly, it is equally possi-

ble for IMAP AuthenOverflow5andIMAP AuthenOverflow8to be the same attack or two separate

attacks. Second, having all these hypothesized attacks makes the integrated correlation graph com-

plex and difficult to understand. Since the hypothesized attacks are all uncertain, having multiple

hypotheses for one attack does not give more information. Indeed, if we consider the typical goal

of attack hypothesis during intrusion analysis, it is not critical to know how many times an attack

has been used in one step of attacks; instead, it is usually more important to know whether an attack

has been used or not.

Based on the above observations, we propose to consolidate the hypothesized attacks.

Specifically, we remove a hypothesized attack if it may have been detected (as an existing alert), or

aggregate a set of hypothesized attacks if they may be the same attack. Our approach is based on the

“consistency” between a hypothesized attack and an alert, or the “consistency” among hypothesized

attacks. Informally, a set of hypothesized attacks areconsistentif they could be the same attack, and

a hypothesized attack isconsistentwith an alert if this hypothesized attack could have been detected

and reflected as the alert.

We first look at the consistency between a hypothesized attack and an alert by examining

their attack types, attribute values, and timestamp information. Once a hypothesized attackth is

identified as consistent with an alertt, we subsumeth into t by mergingth and t (as well as the

duplicated edges resulting from this merge).



90

In the following, we first clarify the consistency relations.

Definition 15 A hypothesized attackth is consistentwith an alertt if (1) th and t are of the same

type, (2) ifth and t both have specific values on the same attribute, these two values are the same,

and (3) the timestamp ofth includes the timestamp oft (i.e., th.begin time ≤ t.begin time ∧

th.end time ≥ t.end time).

The consistency among a set of hypothesized attacks can be defined in a similar way.

Definition 16 A setHh = {t1, t2, · · · , tn} of hypothesized attacks isconsistentif (1) all hypothe-

sized attacks inHh are of the same type, (2) if more than one hypothesized attacks inHh have spe-

cific values on an attribute, then all these values must be thesame, and (3)min{ti.end time|i =

1, 2, ..., n} > max{ti.begin time|i = 1, 2, ..., n} (i.e., the intersection of all the interval-based

timestamps is not empty).

The intuition behind Definition 16 is that a set of hypothesized attacks are consistent

if they have the same type, their attribute values do not conflict, and the possible ranges of their

interval-based timestamps overlap.

Figure 5.10 outlines an algorithm to consolidate hypothesized attacks. Step 1 groups all

hypothesized attacks based on their types. Step 2 starts to process each group. This processing

can be divided into two stages. The first stage (steps 3 through 5) reduces the hypothesized attacks

based on the consistency relations between hypothesized attacks and alerts. The second stage (steps

6 to 13) partitions each group of hypothesized attacks into subgroups so that all attacks in each

subgroup are consistent, consolidates each subgroup into one hypothesized attack, and instantiates

the attributes of the hypothesized attack if they are inferable. Step 14 finally outputs the consolidated

version of hypothesized attacks.

Consolidating hypothesized attacks helps reduce the number of virtual nodes in an inte-

grated correlation graph. To get a concise attack scenario,the following job is to merge the virtual

edges associated with those hypothesized attacks being consolidated. This is trivial: If a hypoth-

esized attackth is consolidated based on an alertt, then all virtual edges related toth should be



91

Algorithm 5. Consolidating Hypothesized Attacks
Input: A setS of alerts and a setSh of hypothesized attacks.
Output: A setS′

h of hypothesized attacks after consolidation.
Method:

1. PartitionSh into groups such that the hypothesized attacks in each grouphave the
same type.

2. For each groupGh in Sh

3. For each hypothesized attackth in Gh

4. If th is consistent with an alertt in S then
5. Removeth from Gh, and mergeth with t.
6. If Gh is not emptythen
7. PartitionGh into maximal subgroups such that the hypothesized attacks in

each subgroup are consistent.
8. Replace each subgroupGs with a hypothesized attackth with the same type.
9. For each attributeai of th
10. If there exists a hypothesized attackt′h ∈ Gs that has a specific value onai

11. letth.ai = t′h.ai,
12. elselet th.ai = Unknown.
13. Addth into S′

h.
14.Output S′

h.
End.

Figure 5.10: Algorithm to consolidate hypothesized attacks

re-directed tot. Likewise, given a setSh of hypothesized attacks, if all attacks inSh can be consol-

idated into a hypothesized attackth, then all virtual edges related to the hypothesized attacksin Sh

should be re-directed toth.

Our consolidation technique is effective in reducing the size of integrated correlation

graphs. For example, in one of our experiments, we have consolidated 137 hypothesized attacks

into 5 ones. However, we shall point out that, after consolidation, each hypothesized attack may

correspond to multiple instances of missed attacks. In other words, each hypothesized attack in an

integrated correlation graph is indeed a place-holder for one or several possible attacks.

5.2 Experimental Results

We have implemented all the techniques we discussed in this paper. In our implementa-

tion, we used Java as the programming language, and Microsoft SQL Server 2000 as the database



92

to store the hyper-alert types, the alert data sets, and the analysis results. We assume the NCSU

Intrusion Alert Correlator version 0.2 [27] is used to correlate IDS alerts into correlation graphs. To

validate the hypothesized attacks using raw audit data, ourimplementation uses Ethereal (version

0.9.14) to extract audit attribute values from the raw tcpdump file (i.e., the network audit data).

Finally, we use GraphViz [9] to visualize the integrated correlation graphs.

To examine the effectiveness of the proposed techniques, weperformed a series of ex-

periments using one of the 2000 DARPA intrusion detection scenario specific data sets, LLDOS

1.0 [77]. LLDOS 1.0 contains a series of attacks in which an attacker probed, broke-in, installed

the components necessary to launch a Distributed Denial of Service (DDOS) attack, and actually

launched a DDOS attack against an off-site server. The network audit data were collected in both

the DMZ and the inside parts of the evaluation network. We used RealSecure Network Sensor 6.0

[52] as the IDS sensor to generate alerts, which are then correlated by the NCSU Intrusion Alert

Correlator into correlation graphs.

On constructing the type graph for the experiments, we consider all attacks (represented

as hyper-alert types) in the data sets that can be detected byRealSecure Network Sensor 6.0. The

specification of these hyper-alert types is given in Table 5.3, the implication relationships between

predicates are shown in Table 5.4, and the type graph is givenin Figure 5.11. For space reasons, we

did not put the isolated nodes (the nodes which do not have edges connecting to them) into the type

graph.



93

Table 5.3: Hyper-alert types used in our experiments (The set of fact attributes for each hyper-alert
type is{SrcIP,SrcPort,DestIP,DestPort}).

Hyper-alert Type Prerequisite Consequence
Admind
DNS HInfo ExistService(DestIP,DestPort) {GainOSInfo(DestIP)}
Email Almail Overflow ExistService(DestIP,DestPort)∧

VulnerableAlMailPOP3Server
(DestIP)

{GainAccess(DestIP)}

Email Debug ExistService(DestIP,DestPort)
∧SendMailInDebugMode(DestIP)

{GainAccess(DestIP)}

Email Ehlo ExistService(DestIP,DestPort)
∧SMTPSupportEhlo(DestIP)

{GainSMTPInfo(SrcIP,DestIP)}

Email Turn ExistService(DestIP,DestPort)
∧SMTPSupportTurn(SrcIP,
DestIP)

{MailLeakage(DestIP)}

FTP Pass ExistService(DestIP,DestPort)
FTP Put ExistService(DestIP,DestPort)

∧GainAccess(DestIP)
{SystemCompromised(DestIP)}

FTP Syst ExistService(DestIP,DestPort) {GainOSInfo(DestIP)}
FTP User ExistService(DestIP,DestPort)
HTTP ActiveX ActiveXEnabledBrowser(SrcIP) {SystemCompromised(SrcIP)}

HTTP Cisco CatalystExec CiscoCatalyst3500XL(DestIP) {GainAccess(DestIP)}
HTTP Java JavaEnabledBrowser(SrcIP) {SystemCompromised(SrcIP)}
HTTP Shells VulnerableCGIBin(DestIP)

∧OSUNIX(DestIP)
{GainAccess(DestIP)}

MstreamZombie SystemCompromised(DestIP)
∧SystemCompromised(SrcIP)

{ReadyForDDOSAttack(SrcIP),
ReadyForDDOSAt-
tack(DestIP)}

Port Scan {ExistService(DestIP,DestPort)}
RIPAdd
RIPExpire
Rsh GainAccess(DestIP)

∧GainAccess(SrcIP)
{SystemCompromised(DestIP),
SystemCompromised(SrcIP)}

SadmindAmslverify
Overflow

VulnerableSadmind(DestIP)
∧OSSolaris(DestIP)

{GainAccess(DestIP)}

SadmindPing OSSolaris(DestIP) {VulnerableSadmind(DestIP)}
SSHDetected
StreamDoS ReadyForDDOSAttack {DDOSAgainst(DestIP)}
TCP Urgent Data {SystemAttacked(DestIP)}
TelnetEnvAll {SystemAttacked(DestIP)}
TelnetTerminaltype {GainTerminalType(DestIP)}
TelnetXdisplay {SystemAttacked(DestIP)}
UDP Port Scan {ExistService(DestIP,DestPort)}



94

{n1.DestIP=n2.DestIP}

{n20.DestIP=n11.DestIP
^n20.DestPort=n11.DestPort}

{n1.DestIP=n3.DestIP}

{n20.DestIP=n18.DestIP
^n20.DestPort=n18.DestPort}

{n1.DestIP=n4.DestIP}

{n20.DestIP=n6.DestIP
^n20.DestPort=n6.DestPort}

{n5.DestIP=n6.DestIP}

{n20.DestIP=n12.DestIP
^n20.DestPort=n12.DestPort}

{n5.DestIP=n7.SrcIP,
n5.DestIP=n7.DestIP}

{n20.DestIP=n19.DestIP
^n20.DestPort=n19.DestPort}

{n5.DestIP=n8.SrcIP,
n5.DestIP=n8.DestIP}

{n9.DestIP=n6.DestIP}

{n9.DestIP=n7.SrcIP,
n9.DestIP=n7.DestIP}

{n9.DestIP=n8.SrcIP,
n9.DestIP=n8.DestIP}

{n10.SrcIP=n11.SrcIP
^n10.DestIP=n11.DestIP}

{n6.DestIP=n7.SrcIP,
n6.DestIP=n7.DestIP}

{n12.DestIP=n2.DestIP}

{n12.DestIP=n3.DestIP}

{n12.DestIP=n4.DestIP}

{n13.SrcIP=n7.SrcIP,
n13.SrcIP=n7.DestIP}

{n14.DestIP=n6.DestIP}

{n14.DestIP=n7.SrcIP,
n14.DestIP=n7.DestIP}

{n14.DestIP=n8.SrcIP,
n14.DestIP=n8.DestIP}

{n15.SrcIP=n7.SrcIP,
n15.SrcIP=n7.DestIP}

{n2.DestIP=n6.DestIP}

{n2.DestIP=n7.SrcIP,
n2.DestIP=n7.DestIP}

{n2.DestIP=n8.SrcIP,
n2.DestIP=n8.DestIP}

{ }

{n17.DestIP=n1.DestIP
^n17.DestPort=n1.DestPort}

{n17.DestIP=n5.DestIP
^n17.DestPort=n5.DestPort}

{n17.DestIP=n9.DestIP
^n17.DestPort=n9.DestPort}

{n17.DestIP=n10.DestIP
^n17.DestPort=n10.DestPort}

{n17.DestIP=n11.DestIP
^n17.DestPort=n11.DestPort}

{n17.DestIP=n18.DestIP
^n17.DestPort=n18.DestPort}

{n17.DestIP=n6.DestIP
^n17.DestPort=n6.DestPort}

{n17.DestIP=n12.DestIP
^n17.DestPort=n12.DestPort}

{n17.DestIP=n19.DestIP
^n17.DestPort=n19.DestPort}

{n8.SrcIP=n7.SrcIP
n8.SrcIP=n7.DestIP
n8.DestIP=n7.SrcIP

n8.DestIP=n7.DestIP}

{n3.DestIP=n6.DestIP}

{n3.DestIP=n7.SrcIP,
n3.DestIP=n7.DestIP}

{n3.DestIP=n8.SrcIP,
n3.DestIP=n8.DestIP}

{n4.DestIP=n3.DestIP}

{n20.DestIP=n1.DestIP
^n20.DestPort=n1.DestPort}

{n20.DestIP=n5.DestIP
^n20.DestPort=n5.DestPort}

{n20.DestIP=n9.DestIP
^n20.DestPort=n9.DestPort}

{n20.DestIP=n10.DestIP
^n20.DestPort=n10.DestPort}

n1:DNS_HInfo

n11:Email_Turn

n2:HTTP_Shells

n12:FTP_Syst

n3:Sadmind_Amslverify_Overflow

n13:HTTP_ActiveX

n4:Sadmind_Ping

n14:HTTP_Cisco_Catalyst_Exec

n5:Email_Almail_Overflow

n15:HTTP_Java

n6:FTP_Put

n16:Stream_DoS

n7:Mstream_Zombie

n17:Port_Scan

n8:Rsh

n18:FTP_Pass

n9:Email_Debug

n19:FTP_User

n10:Email_Ehlo

n20:UDP_Port_Scan

Figure 5.11: The type graph used in our experiments



95

Table 5.4: Implication relationships between the predicates

Predicate Implied Predicate
ExistService(IP,Port) GainInformation(IP)
GainOSInfo(IP) GainInformation(IP)
GainOSInfo(IP) OSSolaris(IP)
OSSolaris(IP) OSUNIX(IP)
GainSMTPInfo(SrcIP,DestIP) SMTPSupportTurn(SrcIP,DestIP)
GainAccess(IP) SystemCompromised(IP)
SystemCompromised(IP) SystemAttack(IP)
ReadyForDDOSAttack(IP) ReadyForDDOSAttack

To test the ability of our techniques to hypothesize and reason about missed attacks, we

dropped allSadmindAmslverifyOverflowalerts that RealSecure Network Sensor detected in LL-

DOS1.0 data set. As a result, the attack scenarios that the Intrusion Alert Correlator output before

dropping these alerts are all split into multiple parts, some of which become individual, uncorre-

lated alerts. In our experiment with inside traffic of LLDOS 1.0 data set, before droppingSad-

mind AmslverifyOverflowalerts, we only got one correlation graph. After dropping, however, this

correlation graph was divided into four parts. Figure 5.12 shows all these four correlation graphs.

Now let us focus on the correlation graphs in Figure 5.12. What we should do first is to

determine if two correlation graphs can be integrated. The second step is to perform hypotheses,

inference, validation and consolidation. For the sake of presentation, we first consider integrating

two correlation graphsCGc (Figure 5.12(c)) andCGd (Figure 5.12(d)).

As mentioned earlier, if two alerts in two different correlation graphs satisfy at least one

equality constraint associated with their types, we can combine these correlation graphs together.

Since the destination IP addresses of bothSadmindPing67343(in CGc) andRsh67553(in CGd)

are172.16.112.50, they satisfy the constraintSadmindPing.DestIP= Rsh.DestIP. Thus, it is easy

to seeCGc andCGd can be integrated together.

Based on the type graph, we can easily hypothesize that variations ofHTTP Shells, FTP Put

andSadmindAmslverifyOverflowcould have been missed by the IDS sensor. For example, there

could be variations ofSadmindAmslverifyOverflow betweenSadmindPing and any laterRsh

alert. By reasoning about the hypothesized attacks using equality constraints, we can reduce the

hypotheses of missed attacks. For example, the destinationIP address ofSadmindPing67343is

172.16.112.50, which is different from either the source or the destination IP address ofRsh67543.



96

Sadmind_Ping67341

(a) CGa

Sadmind_Ping67286

(b) CGb

FTP_Syst67243 Sadmind_Ping67343

(c) CGc

Email_Almail_Overflow67304

Rsh67553

Mstream_Zombie67554

Rsh67558

Rsh67559

Rsh67560

Mstream_Zombie67776

Stream_DoS67773

Email_Almail_Overflow67529

Rsh67535

Mstream_Zombie67563

Mstream_Zombie67777

Rsh67536

Mstream_Zombie67537

Rsh67538

Rsh67539

Rsh67540 Mstream_Zombie67767

Rsh67542

Rsh67543

Rsh67545

Rsh67546

Rsh67547

Rsh67549

Rsh67550

Rsh67562

(d) CGd

Figure 5.12: Four correlation graphs constructed from LLDOS 1.0 inside traffic

Thus it is easy to seeSadmindPing67343cannotindirectly prepare forRsh67543through a vari-

ation of attackSadmindAmslverifyOverflow. After missed attack hypotheses and reasoning, we

perform attribute value inference. For example, a hypothesized SadmindAmslverifyOverflowat-

tack betweenSadmindPing67343andRsh67553has the destination IP address172.16.112.50.

The hypothesized attacks are further validated using the raw audit data. For example, in

our experiments, the filtering condition for (variations of) FTP Put isprotocol = ftp plus all the in-

ferable attributes. All the hypothesized attacks are then checked using the extracted values of audit

attributes from audit records between the alerts that result in the corresponding hypothesized at-

tacks. For example, we search all the pre-fetched packet information betweenSadmindPing67343

andRsh67553for Sadmindpackets (related to the host172.16.112.50) in order to validate a hypoth-

esized (variation of)SadmindAmslverifyOverflowattack. Finally we can get the integration result



97

FTP_Syst67243

Sadmind_Ping67343

HTTP_Shells4

Sadmind_Amslverify_Overflow1

FTP_Put5

Rsh67558

Rsh67559

Rsh67560

Rsh67553

Mstream_Zombie67554

Mstream_Zombie67776

Stream_DoS67773Sadmind_Amslverify_Overflow2

Rsh67543

Rsh67545

Rsh67546

Rsh67547

Rsh67549

Rsh67550

Rsh67540

Rsh67542

Mstream_Zombie67537

Mstream_Zombie67767

Mstream_Zombie67777

Sadmind_Ping67286

Sadmind_Amslverify_Overflow3

Rsh67535

Rsh67536

Rsh67538

Rsh67539

Rsh67562

Mstream_Zombie67563

Sadmind_Ping67341

Email_Almail_Overflow67304

Email_Almail_Overflow67529

Figure 5.13: The integrated correlation graph constructedfrom LLDOS 1.0 inside traffic

(without consolidation) on correlation graphsCGc andCGd.

We continue the above process to integrate the resulting correlation graph with additional

ones (CGa in Figure 5.12(a) andCGb in Figure 5.12(b)). The alerts in these two graphs areSad-

mind Ping67341andSadmindPing67286, respectively, which are both uncorrelated alerts. As a

slight difference, several instances ofFTP Put are hypothesized during both integration processes,

but all of them are invalidated later using the extracted audit information. In other words, we find no

ftp activities involving the corresponding host during the time frame when the hypothesized attacks

might happen. Figure 5.13 shows the integrated correlationgraph after the hypothesized attacks

are consolidated. The consolidation reduced the number of hypothesized attacks from about137 to

5. In the integrated correlation graph shown in Figure 5.13, the hypothesized attacks are shown in

gray, and are labeled by the corresponding hyper-alert typefollowed by an ID to distinguish between

different instances of the same type of attacks.



98

Sadmind_Amslverify_Overflow4

Rsh66331

Rsh66332

Rsh66333

Rsh66335

Rsh66336

Rsh66338

Rsh66341

Rsh66351

Sadmind_Ping66048

(a) Integrated Correlation GraphICGa

Sadmind_Amslverify_Overflow5

Rsh66348

Rsh66350

Rsh66352

Rsh66353

Sadmind_Ping66115

(b) Integrated Correlation GraphICGb

HTTP_Shells2

Rsh66345

Rsh66346

Rsh66347

Rsh66355

Sadmind_Amslverify_Overflow6
FTP_Syst66006

Sadmind_Ping66111

Email_Almail_Overflow66050

Email_Almail_Overflow66320

(c) Integrated Correlation GraphICGc

Figure 5.14: Experimental results using the DMZ dataset in LLDOS 1.0

Now let us examine the integrated correlation graph in Figure 5.13. According to the

description of the data sets [77], the threeSadmindAmslverifyOverflowattacks and theprepare-

for relations between these attacks and the other alerts are hypothesized correctly. However, the

FTP PutandHTTP Shellsattacks are hypothesized incorrectly.

We also performed the experiments using the DMZ data set in LLDOS 1.0. Similar to

the inside data set, we deliberately dropped allSadmindAmslverifyOverflowalerts from those

generated by RealSecure Network Sensor 6.0. Using the type graph in Figure 5.11, we gener-

ated three integrated correlation graphs in Figure 5.14, inwhich hypothesized attacks are shown

in gray. Based on the attribute value inference, we know the destination IP addresses ofSad-

mind AmslverifyOverflow4, SadmindAmslverifyOverflow5andSadmindAmslverifyOverflow6are

172.16.115.20, 172.16.112.10 and172.16.112.50, respectively. Similarly, the destination IP ad-

dress ofHTTP Shells2is 172.16.112.50. According to the description of data sets [77], theSad-

mind AmslverifyOverflowattacks are all hypothesized correctly, while theHTTP Shellsattack is

hypothesized incorrectly. These experiment results (including LLDOS 1.0 inside and DMZ data

sets) indicate that though the proposed techniques can identify missed attacks, they are still not per-

fect. Nevertheless, the proposed techniques have already exceeded the limitation of the underlying

IDSs.



99

5.3 Discussion and Summary

In this chapter, we present a series of techniques to construct high-level attack scenarios

to facilitate the analysis of intrusion alerts. Our approach is based on a key concept: equality

constraint, which captures the intrinsic relationships between possibly related attacks. Moreover,

to reason about hypothesized attacks, we develop techniques to compute equality constraints that

indirectly related attacks must satisfy. We propose to further infer attribute values for hypothesized

attacks and validate hypothesized attacks through raw audit data. Finally, we present a technique

to consolidate hypothesized attacks to generate concise representations of attack scenarios. Our

experimental results demonstrate the potential of these techniques.

Though the proposed techniques are aimed at improving IDSs’detection results, the actual

performance is still limited by the performance of IDSs. In the worst case, if the IDSs miss all

attacks, or all alerts are false ones, the proposed techniques will not perform well. Fortunately, our

preliminary experiment has shown some promising results for the current generation of IDSs. We

expect the proposed techniques will generate better results as the performance of IDSs is improved.

Our technique is a starting point for improving intrusion detection through alert correla-

tion. There are still a number of problems that are worth additional investigation. One such problem

is the granularity in which the attacks are modeled. If the representation of attacks is too specific,

the type graph may not be general enough to allow the hypotheses about variations of missed at-

tacks. If the representation is too general, some causal relationships may not be captured in the type

graph at all. More research is necessary to understand the best way to model attacks in the proposed

framework. Our approach currently is limited because it canonly hypothesize intermediate attacks

inside an attack scenario. We further notice that our techniques usually require a comprehensive

knowledge base about different attacks, which is achievable through studying various attack sig-

natures. Adversaries, aware of our techniques being deployed, may intentionally create scattered

attacks. This may bring additional processing overhead, and sometimes may even let us hypothesize

“false” attack scenarios (it can be mitigated by our hypothesized attack pruning techniques). These

problems worth further investigation.



100

Chapter 6

Alert Correlation through Triggering

Events and Common Resources

As more and more organizations and companies build networked systems to manage their

information, network intrusion becomes a serious problem over recent years. At present, these is

no single system capable of solving all security concerns. Different types of security systems are

deployed into the networks to better protect the digital assets. Figure 6.1 shows an example network

deployed with multiple heterogeneous security systems. These systems may comprise firewalls

(e.g., ZoneAlarm [117]), intrusion detection systems (IDSs) (e.g., RealSecure Network 10/100 [52],

Snort [16] and NIDES [57]), antivirus tools (e.g., Norton AntiVirus [101]), file integrity checkers

(e.g., Tripwire [104]), and so forth. They usually serve fordifferent security purposes, or serve for

the same purpose through different methods. For example, firewalls focus on accepting, logging,

or dropping network traffic, intrusion detection systems (IDSs) focus on detecting known attack

patterns (signature based IDSs) or abnormal behaviors (anomaly based IDSs), antivirus tools focus

on scanning viruses based on pre-defined virus signatures, and file integrity checkers monitor the

activities on file systems such as file addition, deletion andmodification.

Although these security systems are complementary to each other, and combining the

reports (i.e., alerts) from them can potentially get more comprehensive result about the threats from

outside and inside sources, it is still challenging for analysts or analysis tools to analyze these alerts



101

Web Server

Firewall

Internet

DB

Mail Server

Hub

RealSecure

Snort
Workstation

Laptop

Hub

RealSecure
Network Anomaly

Detector

Tripwire

Host IDS

Antivirus

Tripwire

Host IDS

Antivirus

Tripwire

Host IDS

Antivirus

Figure 6.1: A network deployed with multiple heterogeneoussecurity systems

due to the following reasons.

First, a single security system such as a network based IDS may flag thousands of alerts

per day [59, 61], and multiple security systems make the situation even worse. Large numbers of

alerts may overwhelm the analysts. Second, among a large volume of alerts, a high proportion of

them are false positives [61], some of them are low-severityalerts (e.g., an attack to an inactive

port), and some of them correspond to real, severe attacks. It is challenging to differentiate these

alerts and take appropriate actions. The low level and high volume of the alerts also make extracting

the global view of the adversary’s attack strategy very challenging. Third, different security systems

usually run independently and may flag different alerts for asingle attack. Realizing these alerts are

actually from the same attack can be time-consuming, thoughthis is critical in assessing the severity

of the alerts and the adversary’s attack strategy.

To address these challenges, several alert correlation techniques have been proposed in

recent years, including approaches based on similarity between alert attributes (e.g, [109, 98, 60,

61, 33, 91, 28]), methods based on pre-defined attack scenarios (e.g., [36, 34, 78]), techniques

based on pre-conditions/post-conditions of attacks (e.g., [102, 29, 83, 86]), and approaches using

multiple information sources [90, 79]. Though effective ataddressing some challenges, none of

them dominates the others. Similarity based approaches group alerts based on the similarity between



102

alert attributes; however, they are not good at discoveringsteps in a sequence of attacks. Pre-

defined attack scenario based approaches work well for knownscenarios; however, they cannot

discover novel attack scenarios. Pre-condition/post-condition based approaches can discover novel

attack scenarios; however, the procedure of specifying pre-conditions and post-conditions are time-

consuming and error-prone. Multiple information sources based approaches correlate alerts from

multiple information sources such as firewalls and IDSs; however, they are not good at discovering

novel attack scenarios.

Our alert correlation techniques proposed in this chapter address some limitations of the

current correlation techniques. We propose a novel similarity measure based on triggering events,

which helps us to group alerts into clusters such that one cluster may correspond to one attack.

We enhance the pre-condition/post-condition based approaches through using input and output re-

sources to facilitate the specification of pre-conditions and post-conditions. Intuitively, the pre-

condition of an attack is the necessary condition for the attack to succeed, and the post-condition is

the consequence of the attack if the attack does succeed. According, theinput resourcesof an attack

are the necessary resources for the attack to succeed, and the output resourcesof the attack are the

resources that the attack can supply if successful.

Compared with the approaches in [29, 83] which use predicates to describe pre-conditions

/post-conditions, our input/output resource based approach has several advantages. (1) When using

predicates to specify pre-conditions and post-conditionsfor each type of attacks, it may introduce

too many predicates. Whereas input and output resource types are rather limited compared with the

types of predicates and are easy to specify. (2) Since different experts may use different predicates

to represent the same condition, or use the same predicate torepresent different conditions, it is

usually not easy to discover implication relationships between predicates and match post-conditions

with pre-conditions especially when the number of predicates is large. Whereas input and output

resource types are rather stable, straightforward to matchand easy to accommodate new attacks.

Our approach also enhances the multiple information sources based approaches in that we provide

an input and output resource based method to build attack scenarios.

In this chapter, we propose an alert correlation approach based on triggering events and

common resources. Our approach proposes to correlate alerts in three stages. The key concept in

the first stage istriggering events, which are the (low-level) events observed by security systems

that trigger an alert. We observe that although different security systems may flag different alerts

for the same attack, the events that trigger these alerts must be the same. For example, for aRPC

sadmind UDP NETMGTPROCSERVICE CLIENTDOMAIN overflow attemptalert reported by



103

Snort and anSadmindAmslverifyOverflowalert reported by RealSecure network sensor, the event

that both systems observe is themalicious sadmind NETMGTPROCSERVICE requestbetween the

source and the target hosts. For triggering events, we more focus on low-level events (e.g., a TCP

connection). Based on this observation, we find triggering events for each alert, and cluster alerts

that share the “similar” triggering events. The alerts in one cluster may correspond to one attack.

In the second stage, we further identify the severity of somealerts and clusters. This

is done through examining whether the alerts areconsistentwith their relevant network and host

configurations.

In the third stage, we build attack scenarios through input and output resources. We ob-

serve that the causal relationships between individual attacks can be discovered through identifying

the “common” resources between the output resources of an earlier attack with the input resources of

a later one. For example,SadmindPingattack can output the status information of sadmind daemon

(service resources), wheresadmindservice is necessary to launchSadmindAmslverifyOverflowat-

tack. Then we can correlate these two attacks. These causal relationships can help us connect alert

clusters and build attack scenarios.

6.1 The Model

We present our major techniques in this section. We start by introducing definitions such

as alerts, events, configurations and resources in Subsection 6.1.1. Given a set of alerts, we are

interested in what events trigger each alert, from which we can put the alerts that share the “similar”

triggering events into a cluster. These techniques are presented in Subsection 6.1.2, 6.1.3 and 6.1.4.

After alert clustering, we use the information about network and host configurations to examine

the alerts in each cluster, which provides us opportunitiesto identify the severity of some alerts

and clusters. This technique is presented in Subsection 6.1.5. The technique on constructing attack

scenarios is presented in Subsection 6.1.6, which focuses on discovering causal relationships based

on the input and output resources.

6.1.1 Alerts, Events, Configurations and Resources

Different security systems may output alerts in various formats (e.g., in a flat text file,

in a relational database, or in a stream of IDMEF [31] messages). We can always extract a set of



104

attributes (i.e., attribute names and values) associated with the alerts. Events are security related

occurrences observed by security systems, configurations encode the information about software

and hardware about a host or a network, resources encode the sources an attack may require to use

or can possibly supply if it succeeds, and they all can be defined as a set of attributes (attribute

names and values). Formally, analert type(or event type, or configuration type, or resource type)

is a setS of attribute names, where each attribute nameai ∈ S has a domainDi. A type T alert

t (or evente, or configurationc, or resourcer) is a tuple on attribute name set inT , where each

element in the tuple is a value in the domain of the corresponding attribute name. In this paper,

for the sake of presentation, we assume each alert and event respectively has at least two attributes:

StartTimeand EndTime(if an alert or event only has one timestamp, we assume StartTime and

EndTime have the same value). For convenience, we denote thetype of alertt, evente and resource

r asType(t), Type(e) andType(r), respectively. In the following, we may use attributes to denote

either attribute names or attribute values or both if it is not necessary to differentiate them.

Here we give a series of examples and discussion related to alert types, alerts, event types,

events, configuration types, configurations, resource types, and resources (we may omit the domain

of each attribute). As the first example, we define an alert type SadmindAmslverifyOverflow=

{SrcIP, SrcPort, TargetIP, TargetPort, StartTime, EndTime}. A type SadmindAmslverifyOverflow

alertt = {SrcIP =10.10.1.10, SrcPort =683, TargetIP =10.10.1.1, TargetPort =32773, StartTime =

03-07-2004 18:10:21, EndTime = 03-07-2004 18:10:21} describes anSadmindAmslverifyOverflow

alert from IP address10.10.1.10 to IP address10.10.1.1.

Secondly, we define an event typemalicious sadmind NETMGTPROCSERVICE Re-

quest= {SrcIP, SrcPort, TargetIP, TargetPort, StartTime, EndTime} and a typemalicious sad-

mind NETMGTPROCSERVICE Requestevent e = {SrcIP = 10.10.1.10, SrcPort =683, Tar-

getIP =10.10.1.1, TargetPort =32773, StartTime = 03-07-2004 18:10:21, EndTime = 03-07-2004

18:10:21}. Though high-level events are possible, in this paper we aremore interested in low-level

events. For example, a TCP connection exploiting the vulnerability in a ftp server, a read operation

on a protected file, and so forth. These low-level events may trigger the security systems to flag

alerts. For example, a ftp connection including some special data such as “˜ˆ$.—*+()[]{}” [53] in

its payload may trigger aFTP Glob Expansionalert by a network based IDS, and may trigger a

NEWCLIENT alert by an anomaly detector. Themalicious sadmind NETMGTPROCSERVICE

Requestevent may triggerSadmindAmslverifyOverflowalert if it is captured by a RealSecure net-

work sensor.

As the third example, we define a configuration typeHostFTPConfig= {HostIP, Host-



105

Name, OS, FTPSoftware, FTPOpenPort}, and a typeHostFTPConfigconfigurationc = {HostIP

= 10.10.1.7, HostName = foo, OS = Solaris 8, FTPSoftware = FTP Server, FTPOpenPort = 21}.

We are particularly interested in the critical software which may have vulnerabilities, for example,

a ftp server program and its open port in a host. We further classify the configurations into two

categories: host configuration and network configuration. The aforementionedHostFTPConfigis a

host configuration listing the ftp software and open port. Network configurations specify the setting

about the whole network. For example, the access control list (ACL) in a firewall, which controls

the inbound and outbound traffic for the whole network. A typeNetTrafficControlConfigconfigura-

tion c′ = {Source = any, Destination =10.10.1.8, DestPort = 80, Protocol = tcp, Action = accept} is

an example of network configuration controlling the inboundtraffic to10.10.1.8 at TCP port 80.

As the last example, we define a resource typefile = {HostIP, Path}, a resource type

networkservice= {HostIP, HostPort, ServiceName}, and a resource typeprivilege= {HostIP, Ac-

cess}. A type file resourcer1 = {HostIP =10.10.1.9, Path = /home/Bob/doc/info.txt}, a typenet-

work serviceresourcer2 = {HostIP =10.10.1.9, HostPort = 21, ServiceName = ftp}, and a type

privilege resourcer3 = {HostIP =10.10.1.9, Access = AdminAccess}.

6.1.2 Triggering Events for Alerts

As we mentioned, a single event may trigger different alertsfor different security systems.

Since security systems may not necessarily tell the analysts what events trigger an alert, it is usually

necessary to discover thetriggering eventsfor alerts.Triggering eventsare the events that trigger the

alert. Given an alert, we are interested in its triggering events. More specifically, we are interested

in the set of event types whichmay triggeran alert type, and the attribute values for each triggering

event. Domain knowledge is essential for the discovery of triggering events.

Definition 17 Given an alert typeTt, the set of triggering event typesfor Tt is a setT of event

types, where for each event typeTe ∈ T , there is an attribute mapping functionf that maps attribute

names inTt to attribute names inTe. Given a typeTt alert t, thetriggering event setfor t is a setE

of events, where for eachTe ∈ T , there is a typeTe evente ∈ E, and the attribute values ofe are

instantiated by the attribute values int through the corresponding attribute mapping function.



106

Let us look at an example. Given an alert typeTt = SadmindAmslverifyOverflow, the set

of triggering event types is{Te}, whereTe = Malicious sadmind NETMGTPROCSERVICE Re-

quest, and the attribute mapping functionf hasf(Tt.SrcIP)= Te.SrcIP,f(Tt.SrcPort)= Te.SrcPort,

f(Tt.TargetIP)= Te.TargetIP,f(Tt.TargetPort)= Te.TargetPort,f(Tt.StartTime)= Te.StartTime

andf(Tt.EndTime)= Te.EndTime. Given a typeSadmindAmslverifyOverflowalert t = {SrcIP

= 10.10.1.10, SrcPort =683, TargetIP =10.10.1.1, TargetPort =32773, StartTime = 03-07-2004

18:10:21, EndTime = 03-07-2004 18:10:21}, we know the triggering event set has one typeMa-

licious NETMGTPROCSERVICE Requestevente = {SrcIP =10.10.1.10, SrcPort =683, Tar-

getIP =10.10.1.1, TargetPort =32773, StartTime = 03-07-2004 18:10:21, EndTime = 03-07-2004

18:10:21}.

Triggering events provide us an opportunity to find different alerts that may correspond

to the same attack. Given a set of alerts, first we can discoverthe triggering event set for each alert,

then we can put individual alerts into clusters if the alertsin the same cluster share the “similar”

triggering events. The alerts in the same cluster may correspond to the same attack. In the following,

we may simply use the term events instead of triggering events if it is clear from the context. We first

discuss the event inference, then define “similarity” between events through which our clustering

algorithm is further introduced.

6.1.3 Inference between Events

Intuitively, two events are “similar” if they have the same event type, and their attribute

names and values are also the same. However, considering theexistence of implication relationships

between events (the occurrence of one event implies the occurrence of another event), we realize that

the concept of “similarity” can be extended beyond this intuition to accommodate event implication.

We first give examples to illustrate the implication relationships. Consider two events: the

recursive deletion of directory “/home/Bob/doc” and the deletion of file “/home/Bob/doc/info.txt”.

The first event can imply the second one because “info.txt” isone of the files in that directory.

As another example, we know an event typerestrictedfile write may implyan event typefilesys-

tem integrity violation. On the other hand, a recursive directory deletion does not necessary imply

a file deletion if the file is not in the same directory. For example, the recursive deletion of directory

“/home/Bob/doc” cannot imply the deletion of file “/home/Alice/doc/info.txt”. This observation

tells us when we introduce the implication relationships between events, we not only need to ex-

amine the semantics of event types, but also the relationships between attribute names and values.



107

We usemay-implyto refer to the implication between event types, and useimply to refer to the

implication between events (including types and their related attributes names and values). For

convenience, we denote evente1 implies evente2 ase1 → e2.

We introduce a binaryspecific-generalrelation to help us identify implication relation-

ships. Formally, given two concepts (e.g., two event types,two attribute names, etc)a1 anda2, a

specific-generalrelation betweena1 anda2 maps low-level (specific) concepta1 to high-level (gen-

eral) concepta2, and is denoted asa1 � a2 (for convenience, we may also refer to specific-general

relation as “�” relation in this chapter). Specific-general relation is reflexive (we havea � a for any

concepta), antisymmetric and transitive, and it essentially is a partial order over a set of concepts

(which is modeled asconcept hierarchyin data mining [49, 71]).

Specific-general relations can be applied to event types. For example, we can define

file deletion� recursivedirectory deletionandrestrictedfile write� filesystemintegrity violation.

Here domain knowledge is necessary to determine whetherEventType1may implyEventType2or

EventType2may implyEventType1even ifEventType1� EventType2or EventType2� EventType1

is decided. For example, it is straightforward for an expertto deciderecursivedirectory deletion

may implyfile deletionandrestrictedfile write may implyfilesystemintegrity violation. Our fol-

lowing job is to decide the relationships between attributenames and values.

Again, the relationships between attributes are determined through specific-general re-

lations. As an example, for specific-general relations between attribute names, we can define

file � directory andhost � network. In addition, we are interested in whether “�” relation is

satisfied once the attribute names are replaced by their values. For example, underfile � directory

relation, we have “/home/Bob/doc/info.txt”� “/home/Bob/doc”, and underhost � network rela-

tion, we have10.10.1.10 � 10.10.1.0/24. In the following, when referring to “�” relations, we

may not distinguish between attribute names and values if itis not necessary.

It is worth mentioning that as a special case, timestamp attributes (StartTime and End-

Time) have different characteristics compared with other attributes in that even if two triggering

events actually refer to a same event, they may not have the exactly same timestamps due to the

clock discrepancy in different systems or event propagation over the network. Thus we propose to

usetemporal constraintto evaluate whether a set of events are “similar” w.r.t. timestamps.

Definition 18 Consider a setE of events and a time intervalλ. E satisfies thetemporal constraint

λ if and only if for anye, e′ ∈ E (e 6= e′), |e.StartT ime−e′.StartT ime| ≤ λ and|e.EndT ime−



108

Algorithm: Determining if event e1 implies evente2

Input: Two eventse1 ande2 and a temporal constraintλ.
Output: True if e1 → e2; otherwisefalse.
Method:

Assume the attribute name sets fore1 ande2 areA1

andA2, respectively. Initializeresult=false.
1. If Type(e1) may implyType(e2)
2. If Type(e1) � Type(e2)
3. Find a mapping such that∀a1 ∈ A′

1(A
′
1 ⊆ A1)

and∀a2 ∈ A′
2(A

′
2 ⊆ A2), we havea1 � a2

4. ElseFind a mapping such that∀a2 ∈ A′
2(A

′
2 ⊆ A2)

and∀a1 ∈ A′
1(A

′
1 ⊆ A1), we havea2 � a1

5. Replace names with values for all “�” relations.
6. If all “�” relations are satisfied in step 5
7. If e1 ande2 satisfy constraintλ, Let result=true
8. Output result.
End

Figure 6.2: An algorithm to discover implication relationship between events.

e′.EndT ime| ≤ λ.

Based on “�” relations and a temporal constraintλ, we outline an algorithm (shown in

Figure 6.2) to determine whether evente1 implies evente2. The basic idea is that we first identify

whetherType(e1) may implyType(e2). If this is the case, we further check “�” relations between

attribute names and values, and examine the temporal constraint to see whethere1 impliese2.

6.1.4 Clustering Alerts Using Triggering Events

Intuitively, we intend to group individual alerts into clusters such that all alerts in the

same cluster either share the same triggering events, or their triggering events have implication

relationships. To formalize this intuition, we first definesimilarity between alerts.

Definition 19 Consider a setS of alerts{t1, t2, · · · , tn} and a temporal constraintλ. Assume the

triggering event sets fort1, t2, · · · , tn are E1, E2, · · · , En, respectively. All alerts inS are similar

if and only if there existe1 ∈ E1, e2 ∈ E2, · · · , en ∈ En such that for any two eventsei andej in



109

{e1, e2, · · · , en}, we haveei → ej or ej → ei.

The idea behind Definition 19 can be demonstrated through an example with two alerts.

Two alerts are similar if their triggering events either have the same event type, attribute names and

values, and their timestamps satisfy the given temporal constraint, or their triggering events have

implication relationship from one to the other. Since two eventse1 ande2 of the same type have all

attributes the same is a special case ofe1 → e2 or e2 → e1, we can combine these two cases and

only use implication relationships to define similarity.

Given a setSu of alerts, we can perform clustering based on the similaritydefined in Def-

inition 19. Intuitively, we can iteratively pick a subset ofalerts fromSu such that all the alerts in this

subset are similar. However, we have to solve a problem before we can apply this operation. This

problem can be demonstrated by an example. Suppose we have three alertst1, t2 andt3, they are of

the same type and have the same attribute names and values except for timestamp values, and their

triggering event sets are{e1}, {e2}, and{e3}, respectively. Assume the temporal constraintλ = 1

second,e1.StartT ime = e1.EndT ime = 03-07-2004 18:20:21,e2.StartT ime = e2.EndT ime =

03-07-2004 18:20:22, ande3.StartT ime = e3.EndT ime = 03-07-2004 18:20:23. Based on Defi-

nition 19,t1 andt2 are similar, andt2 andt3 are similar. Thust2 can be either put into a cluster with

t1, or be put into a cluster witht3. To solve this ambiguity, we apply a rule “earlier timestampfirst”,

where the cluster with the earlier (StartTime) alerts will get alerts as many as possible. Applying

this rule to the example, we will lett1 andt2 be in the same cluster. The algorithm shown in Figure

6.3 outlines the alert clustering through apply this rule. In this algorithm, line 1 prepares the alert

set and initializes some variables. Lines 2 through 6 are a loop, which always looks for the alerts

that are similar to the first alert in the alert set and puts them into a cluster. This loop will not stop

until there are no alerts in the alert set. Line 7 finally outputs all clusters.

An interesting observation about alert clustering is that after alerts are put into clusters,

we may mark some clusters with low severity through examining whether the alerts are consistent

with relevant configurations. This will be further discussed in Subsection 6.1.5.

6.1.5 Consistency and Inconsistency between Alerts and Relevant Configurations

Host and network configurations provide us an opportunity toverify the consistency or

discover the inconsistency between alerts and their relevant configurations. The consistency be-

tween an alert and its related configurations can be verified through examining the attributes of



110

Algorithm: Alert Clustering via Triggering Events
Input: A setSu of alerts and a temporal constraintλ.
Output: A setC of clusters.
Method:

1. Sort the setSu of alerts ascendingly on StartTime,
and name itSo. Initialize C = ∅, and leti = 1.

2. While So is not empty
3. Let the alert with the earliest StartTime inSo bet.
4. Find setS′ ⊆ So such that{t} ∪ S′ are similar.
5. Remove{t} ∪ S′ from So into a setCi.
6. PutCi into C. Let i = i + 1.
7. Output C.
End

Figure 6.3: An algorithm to perform alert clustering based on triggering events.

the alert and the configurations. For example, consider anFTP Glob Expansionalert t = {SrcIP

= 172.16.1.7, SrcPort =1042, TargetIP =10.10.1.7, TargetPort =21, StartTime = 03-07-2004

18:20:21, EndTime = 03-07-2004 18:20:21} and aHostFTPConfigconfigurationc = {HostIP =

10.10.1.7, HostName = foo, OS = Solaris 8, FTPSoftware = FTP Server, FTPOpenPort = 21}.

Alert t is consistent with configurationc because it exploits a host10.10.1.7 at port21 which is an

open port listed in this host’s configuration. We formalize this relationship in Definition 20.

Definition 20 Consider an alert typeTt and a configuration typeTc. A consistent conditionfor Tt

w.r.t. Tc is a logical formula including attribute names inTt andTc. Given a typeTt alert t and a

typeTc configurationc, t is consistent (or inconsistent, resp.) withc if the formula is evaluated to

True (or False, resp.)where attribute names in the formula are replaced with the values int andc.

Let us look at an example. Given an alert typeFTP Glob Expansion(Tt) and a config-

uration typeHostFTPConfig(Tc), we defineTt.TargetIP = Tc.HostIP ∧ Tt.TargetPort =

Tc.FTPOpenPort as a consistent condition forTt w.r.t. Tc. Given anFTP Glob Expansionalert

t = {SrcIP =172.16.1.7, SrcPort =1042, TargetIP =10.10.1.7, TargetPort =21, StartTime = 03-07-

2004 18:20:21, EndTime = 03-07-2004 18:20:21} and aHostFTPConfigconfigurationc = {HostIP

= 10.10.1.7, HostName = foo, OS = Solaris 8, FTPSoftware = FTP Server, FTPOpenPort = 21},



111

the consistent condition is evaluated toTrue using attribute values int andc. Then we knowt is

consistent withc.

Consistent and inconsistent relationships between alertsand configurations provide us a

way to classify the alerts. We can mark each alert as consistent or inconsistent with the related

configurations. A consistent alert tells us the corresponding attack could be possible due to the

potential vulnerabilities in the configuration. A special case worth mentioning is that sometimes a

consistent alert is a low-severity alert. For example, if a firewall reports aFWROUTEalert saying

that an inbound packet is blocked, which is consistent with the ACL configuration of the firewall,

this alert is less severe because the corresponding connection is blocked. On the other hand, an

inconsistent alert may be of low severity because the corresponding attack could not succeed (e.g.,

an adversary tries to connect to a port which is not open). A special case is that a configuration

could be compromised (e.g., an adversary installs malicious programs and opens new ports) without

the notice of the legitimate users, then the corresponding attack may succeed. In this case, the

“inconsistent” alert (which actually is not an inconsistent alert because the configuration is changed)

deserves more investigation.

We can apply consistency and inconsistency relationships to alert clusters to determine the

severity of some clusters. For example, assume aFWROUTEalert (reported by a firewall denoting

that a connection is blocked) and aNEWCLIENT alert (reported by a network anomaly detector

denoting that a new client requests a server) are in the same cluster, andFWROUTEis consistent

with its configuration. SinceFWROUTEdenies the requested connection, the related attack cannot

be successful and this cluster is less severe. Then we could put more efforts on investigating other

possibly severe clusters.

6.1.6 Attack Scenario Construction based on Input and Output Resources

Our approach further determines the causal relationships between alert clusters. We are

interested in how individual attacks (represented by alertclusters) are combined to achieve the ad-

versary’s goal. The observation tells us that in a sequence of attacks, some attacks have to be

performed earlier in order to launch later attacks. For example, an adversary always installs DDoS

software before actually launching DDoS attacks. If we are able to capture these causal relation-

ships, it may help us build stepwise attack scenarios and reveal the adversary’s attack strategy.

Our approach to modeling causal relationships between attacks is partially inspired by the

prerequisites and consequences based alert correlation techniques [102, 29, 83]. However, since



112

we use resources to specify prerequisites and consequences, compared with the predicates based

approach adopted by [29, 83], we have several advantages such as it is easy to specify and (partially)

match input and output resources, and easy to accommodate new attacks. Our approach is based

on our observation that the causal relationships between attacks can be captured through examining

output resources of one attack with input resources of another. Informally, input resources are the

necessary resources for an attack to succeed, and output resources are the resources an attack can

supply if successful.

We extend our model for alerts (or alert types, resp.) to accommodate input and out

resources (or input and output resource types, resp.). We call them extended alerts(or extended

alert types, resp.) after this extension. Considering the resource attribute names may not always

the same as the alert attribute names, we further use functions to map the alert attributes to resource

attributes. In the following, we formalize extended alert types and extended alerts.

Definition 21 Anextended alert typeT is a triple (Ti, attr names,To), where (1)attr namesis a set

of attribute names (including StartTime and EndTime) whereeach attribute nameaj has a domain

Dj , (2) Ti andTo are a set of resource types, respectively, and (3) for eachTi ∈ Ti andTo ∈ To,

there exist attribute mapping functionsfi andfo that map attribute names inattr namesto attribute

names inTi andTo, respectively.

A typeT (T = (Ti, attr names,To)) extended alertt is a triple (input, attributes, output),

where (1)attributesis a tuple on attrnames, (2)input and outputare a set of resources, respec-

tively, and (3) for eachTi ∈ Ti and To ∈ To, there exist resourcesri ∈ input and ro ∈ output,

respectively, where their attribute values are instantiated by the corresponding attribute values in

attributesthrough attribute mapping functions.

Actually, attr namesin an extend alert type is an alert type, andattributesin an extended

alert is an alert that we defined in Subsection 6.1.1. In the remaining part of this paper, we may

simply use alert types (or alerts, resp.) when it is not necessary to differentiate extend alert types

and alert types (or extended alerts and alerts, resp.).



113

Example 10 Define anSadmindAmslverify Overflow(T ) extend alert type as{ {networkservice}

, {SrcIP, SrcPort, TargetIP, TargetPort, StartTime, EndTime}, {privilege} }, where networkservice

(Ti) = {HostIP, HostPort, ServiceName} and privilege (To) = {HostIP, Access}. For attribute

mapping, we havefi(T.TargetIP ) = Ti.HostIP , fi(T.TargetPort) = Ti.HostPort, and

fo(T.TargetIP ) = To.HostIP .

Given a typeSadmindAmslverify Overflow alert {SrcIP = 10.10.1.10, SrcPort = 683,

TargetIP = 10.10.1.1, TargetPort =32773, StartTime = 03-07-2004 18:10:21, EndTime = 03-07-

2004 18:10:21}, we can get their input and output resources asinput = { {HostIP = 10.10.1.1,

HostPort = 32773, ServiceName = sadmind} }, and output = { {HostIP = 10.10.1.1, Access =

AdminAccess}}. These three parts combined together are an extended alert.

Please note in Definition 21, when performing attribute mapping fromattr namesto Ti ∈

Ti andTo ∈ To, based on domain knowledge, we can mark some attributes inTi andTo as special

attributes, where they have pre-determined values once theattribute values of resources ininputand

outputare instantiated. For example, as shown in Example 10,Accessattribute inprivilegeresource

has a pre-determinedAdminAccessvalue.

Similar to the implication relationship between events, one resourcer1 can imply another

resourcer2 (we user1 → r2 to representr1 impliesr2). For example, aprivilegeresource{HostIP =

10.10.1.9, Access = AdminAccess} implies anotherprivilegeresource{HostIP =10.10.1.9, Access

= UserAccess}. Please note two resourcesr1 andr2 have their types, attribute names and values all

the same is a special case ofr1 → r2 or r2 → r1. The implication relationships between resources

can be determined through specific-general relations and a similar procedure we described in Sub-

section 6.1.3 (The difference is that in this chapter we do not associate resources with timestamps).

We do not repeat it here.

We can identify causal relationships between attacks through discovering “common” re-

sources between input and output resources. Intuitively, if one attack’s output resources include

one resource in another attack’s input resources, we can correlate these two attacks together. We

formalize this intuition as follows.



114

FTP_Glob_Expansion2NEW_CLIENT3

SCAN_NMAP_TCP1

Figure 6.4: An example scenario graph

Definition 22 Given two extended alertst =(input, attributes, output) andt′ = (input’, attributes’,

output’), t causally correlatest′ if there existro ∈ outputandr′i ∈ input’ such thatro impliesr′i and

t.EndT ime < t′.StartT ime.

Let us consider two alertst (typeSCANNMAP TCP) andt′ (typeFTP Glob Expansion).

Suppose the output resource oft is anetworkserviceresource{HostIP =10.10.1.7, HostPort = 21,

ServiceName = ftp}, the input resource oft′ is a networkserviceresource{HostIP =10.10.1.7,

HostPort = 21, ServiceName = ftp}, andt.EndT ime < t′.StartT ime. Since the output resource

of t and the input resource oft′ are exactly the same, we can conclude thatt causally correlatest′.

We also refer to “causally-correlate” relations introduced in Definition 22 as causal re-

lations, which provide us opportunities to build attack scenarios. Consider a set of alerts reported

by different security systems. We can group alerts into clusters using triggering events. Each clus-

ter may correspond to one attack. Through discovering causal relations between alerts in different

clusters, we can naturally connect different clusters and construct the attack scenarios. Definition

23 further formalizes this intuition.

Definition 23 Consider a setC of clusters where each cluster is a setCi of alerts. Ascenario graph

SG = (V,A) is a directed acyclic graph, where (1)V is the vertex set, andA is the edge set, (2)

each vertexv ∈ V is a cluster inC, and (3) there is an edge(v1, v2) ∈ A if and only if there exist

t1 ∈ v1 andt2 ∈ v2 such thatt1 causally correlatest2.

Here we show an example of scenario graph in Figure 6.4. The string inside each node is

the alert type followed by an ID (we will follow this convention in our experiments). This scenario

has two clusters:C1 ={SCANNMAP TCP1} andC2 ={NEWCLIENT3, FTP Glob Expansion2},



115

whereSCANNMAP TCP1 is reported by Snort,FTP Glob Expansion2is reported by a RealSe-

cure network sensor, andNEWCLIENT3 is reported by a network anomaly detector. Assume

SCANNMAP TCP1 in C1 causally correlatesFTP Glob Expansion2in C2, then we can corre-

lateC1 andC2 together as shown in Figure 6.4. Such graph clearly discloses an adversary’s attack

strategy.

6.2 Experimental Results

To evaluate the effectiveness of our techniques, we performed experiments through DARPA

Cyber Panel Program Grand Challenge Problem Release 3.2 (GCP) [35, 48], which is an attack sce-

nario simulator. GCP simulator can simulate the behavior ofsensors and generate alert streams.

There are totally 10 types of sensors in the networks. All thesensors generate the alerts in IDMEF

[31] messages.

The current implementation is a proof-of-concept system. In our implementation, we

use Java as programming language, and Microsoft SQL Server 2000 as the DBMS to save the

alert data set and domain knowledge. Database access is through JDBC. The alert process in our

system can be divided into four stages. In the first stage, we concentrate on data preparation. Since

all alert data generated by GCP simulator are IDMEF messages, we extract the attributes from

these messages and put them into the database. All the necessary domain knowledge related to

triggering event types, event inference, input and output resource types, and so forth are all put

into the database. The second stage is the alert clustering stage. We group alerts into different

clusters based on the algorithm shown in Figure 6.3. The third stage is to examine the consistency

or inconsistency between alerts and the configurations. In the last stage, we use input and output

resource based correlation techniques to discover causal relationships and build attack scenarios. To

save our development effort, we use GraphViz [9] to draw scenario graphs.

The experiments were performed using Attack 1 scenario in GCP attack simulator. We

chose 4 network enclaves, namely HQ enclave, APC enclave, Ship enclave and ATH enclave, to

play this scenario. Attack 1 is a (agent-based) worm relatedattack. After the agent being activated,

it performs a series of malicious actions such as communicating with an external host, getting mali-

cious code and instructions, spreading from one network enclave to another, compromising hosts in

the network enclaves, sniffing the network traffic, reading and modifying the sensitive files, sending

the sensitive data to the external host, getting new malicious instructions, and so forth. For this



116

Table 6.1: Triggering event types for each alert type.

Alert Type Triggering Event
Types

Attributes (besides StartTime and EndTime)

FTP Globbing Attack {ConnectionAttempt,
MaliciousFTPRe-
quest}

SrcIP, SrcPort, TargetIP, TargetPort, Protocol

FWROUTE {ConnectionAttempt,
ACLViolation}

SrcIP, SrcPort, TargetIP, TargetPort, Protocol

Loki {ConnectionAttempt,
DataSecretTransmis-
sion}

SrcIP, SrcPort, TargetIP, TargetPort, Protocol

NEW CLIENT {ConnectionAttempt} SrcIP, SrcPort, TargetIP, TargetPort, Protocol
Network Interface In
Promiscuous Mode

{Network Interface In
Promiscuous Mode}

SensorIP, SrcUserID, SrcProcessName, Tar-
getProcessPath

ASSET-DEAD {ASSET-DEAD} TargetIP
ASSET-SICK {ASSET-SICK} TargetIP
ASSET-WELL {ASSET-WELL} TargetIP
dbschema-
downloaded

{dbschema-
downloaded}

SensorIP

filesystem-integrity {filesystem-integrity} SensorIP, TargetFilePath
registry-integrity {registry-integrity} SensorIP, TargetFilePath
restrictedread {restrictedread} SensorIP, SrcUserID, SrcProcessName, Tar-

getProcessPath
RestrictedSystem
File Scan

{RestrictedSystem
File Scan}

SensorIP, SrcUserID, SrcProcessName, Tar-
getProcessPath

restrictedwrite {restrictedwrite} SensorIP, SrcUserID, SrcProcessName, Tar-
getProcessPath

RootShareMounted {ConnectionAttempt,
AdminShareAccess}

SrcIP, SrcPort, TargetIP, TargetPort, Protocol

ServiceUnavailable {ConnectionAttempt} SrcIP, SrcPort, TargetIP, TargetPort, Protocol

scenario, we totally got 529 alerts with 16 different types.

Our first goal is to evaluate the effectiveness of alert clustering proposed in this chapter.

We list the set of triggering event types for each alert type in Table 6.1. In addition to triggering

event types for each alert type, we also define the implication relationships between event types. We

definerestrictedwrite may implyfilesystem-integrity, and the related specific-general relations are

restrictedwrite.SensorIP� filesystem-integrity.SensorIPandrestrictedwrite.TargetProcessPath�

filesystem-integrity.TargetFilePath. We set the temporal constraintλ = 1 second.

Totally we get 512 clusters from alert clustering. Among them there are 17 clusters, each



117

Table 6.2: All 2-alert clusters.

Cluster ID Alerts
2 NEW CLIENT10, FWROUTE7
4 NEW CLIENT25, FWROUTE27
54 NEW CLIENT132, FTPGlobbing Attack135
102 NEW CLIENT6, FWROUTE5
116 NEW CLIENT124, ServiceUnavailable125
132 NEW CLIENT33, FWROUTE21
136 NEW CLIENT122, ServiceUnavailable121
184 NEW CLIENT24, FWROUTE34
236 NEW CLIENT32, FWROUTE20
238 NEW CLIENT49, FWROUTE57
242 NEW CLIENT153, FTPGlobbing Attack154
281 NEW CLIENT29, FWROUTE26
333 NEW CLIENT8, FWROUTE12
335 NEW CLIENT30, FWROUTE39
340 NEW CLIENT54, FWROUTE53
342 NEW CLIENT50, FWROUTE56
385 NEW CLIENT134, FTPGlobbing Attack133

of them comprises 2 alerts, and all other clusters are single-alert clusters. Table 6.2 lists all 2-alert

clusters. From Table 6.2, we observe every cluster has aNEWCLIENTalert, which is reported by

network anomaly sensors denoting a new client requests a server (service). This is normal because

the connection requests trigger these alerts. Both alerts in each cluster in Table 6.2 actually refer to

the same network connection, which trigger different alerts for different systems.

Our next goal is to evaluate the effectiveness of consistentconditions in identifying the

severity of some alerts and clusters. Among all alerts, we find 4 alerts inconsistent with their con-

figurations. These 4 alerts areNEWCLIENT122, NEWCLIENT124, ServiceUnavailable121and

ServiceUnavailable125. NEWCLIENT122andServiceUnavailable121target at port 111 on host

10.1.2.2, andNEWCLIENT124andServiceUnavailable125target at port 21 on host10.1.2.2. They

are also in Table 6.2 (Cluster ID =136 and116), which means these 4 alerts actually represent two

attacks. Our investigation shows that both attacks are failed attempts (one is through sadmind ex-

ploit, and the other is through ftp globbing exploit) because the ports111 and21 are not open at

host10.1.2.2.

We also investigate the 2-alert clusters where one alert in the cluster isFWROUTE. In Ta-

ble 6.2, there are 12 clusters that includeFWROUTEalerts. TheseFWROUTEalerts are consistent



118

FTP_Globbing_Attack154

restricted_read232

Restricted_System_File_Scan184

restricted_write528

NEW_CLIENT153

filesystem-integrity253

filesystem-integrity476

Loki58

Loki129

Loki176

Loki92

registry-integrity527

restricted_write524

Loki500

Restricted_System_File_Scan91

Network_Interface_In_PromiscuousMode79

Figure 6.5: One Scenario Graph in HQ Enclave

Table 6.3: Resource types in the experiments.

Resource Type Attributes
Privilege HostIP, Access
ResourceUnavailable TargetIP
NetworkSensitiveInfo NetworkID
DBInfo HostIP
ConnectionUnavailable SrcIP, SrcPort, TargetIP, TargetPort, Protocol
Connection SrcIP, SrcPort, TargetIP, TargetPort, Protocol
NetworkService TargetIP, TargetPort, Protocol
HostSensitiveInfo HostIP
DirectAccess SrcIP, TargetIP
AbnormalOperation HostIP, TargetPath
Process HostIP, SrcUserID, ProcessName

with their configurations. SinceFWROUTErepresents connections being blocked, their impact to

the network may not be severe. Thus the corresponding 2-alert clusters are low-severity clusters.

Our last goal is to evaluate the effectiveness of our techniques in building attack scenar-

ios. We list different resource types in Table 6.3. In addition, for implication relationships, we have

DBInfo may implyHostSensitiveInfoandNetworkSensitiveInfomay implyHostSensitiveInfo. For

specific-general relations, we haveDBInfo.HostIP� HostSensitiveInfo.HostIPandHostSensitive-

Info.HostIP� NetworkSensitiveInfo.NetworkID. The input and output resource types for each alert



119

Table 6.4: Input and output resource types for alert types.

Alert Type Input Resource Types Output Resource Types
FTP Globbing Attack {NetworkService} {Privilege}
FWROUTE / {ConnectionUnavailable}
Loki {Privilege, HostSensi-

tiveInfo}
{HostSensitiveInfo}

NEW CLIENT / /
Network Interface In
Promiscuous Mode

{Privilege} {NetworkSensitiveInfo,
HostSensitiveInfo}

ASSET-DEAD / {ResourceUnavailable}
ASSET-SICK / {ResourceUnavailable}
ASSET-WELL / /
dbschema-downloaded {Privilege, HostSensi-

tiveInfo}
{DBInfo}

filesystem-integrity {Privilege, HostSensi-
tiveInfo}

{AbnormalOperation,
HostSensitiveInfo}

registry-integrity {Privilege, HostSensi-
tiveInfo}

{AbnormalOperation,
HostSensitiveInfo}

restrictedread {Privilege, Process,
HostSensitiveInfo}

{Process, HostSensitive-
Info}

RestrictedSystemFile Scan {Privilege, Process,
HostSensitiveInfo}

{Process, HostSensitive-
Info}

restrictedwrite {Privilege, Process,
HostSensitiveInfo}

{Process, HostSensitive-
Info}

RootShareMounted {Privilege, HostSensi-
tiveInfo}

{DirectAccess, Host-
SensitiveInfo}

type in the experiments are listed in Table 6.4. We performedthe experiments on the alerts data sets

and got 10 scenario graphs. Figure 6.5 shows one of them.

Figure 6.5 is a scenario graph in HQ enclave. The alerts in this figure can roughly be

divided into two parts: the right side part and the left side part. The right side part reveals that the

adversaries iteratively read (RestrictedSystemFile Scan), write (restrictedwrite) and sniff (Net-

work InterfaceIn PromiscuousMode) sensitive data in HQ enclave, and use tunneling techniques

such asLoki to secretly transmit data to the external host. The adversaries also modify critical files

and keys (filesystem-integrityandregistry-integrity) to disrupt the operation of the network. The left

side part reveals that the adversaries useFTP Globbing attackto compromise the victim hosts, and

also read and write sensitive data in the enclave. The attackers’ strategy disclosed in this scenario

graph is consistent with the description of GCP attack scenarios.



120

6.3 Summary

At present, these is no single system capable of solving all security concerns. A practical

way is to deploy complementary security systems into the networks. These systems usually are

heterogeneous and have different strengths and weaknesses. They usually run independently and

may flag different alerts for the same attack. They may trigger large numbers of alerts where false

positives are mixed with low-severity alerts and severe alerts. The low level and high volume of

the alerts may also overwhelm the analysts and make identifying severe attacks and extracting the

adversary’s attack strategy very challenging. Alert correlation is a necessary approach to address

these challenges.

We propose a correlation approach based on triggering events and common resources.

One key concept in our approach is triggering events, which captures the (low-level) events that

trigger alerts. We propose to group different alerts into clusters if they share “similar” triggering

events, through which we can identify the alerts that may correspond to the same attack. We further

introduce network and host configurations into our model, and identify consistent and inconsistent

alerts, which help us mark the severity of some alerts and clusters. The other key concept in our ap-

proach is input and output resources. We propose to model each attack through specifying input and

output resources, and discover causal relationships between attacks through identifying “common”

resources between output resources of one attack and the input resources of another. This approach

helps us identify logical connections between alert clusters and build attack scenarios. Our experi-

mental results demonstrate the effectiveness of our techniques, though our experiments only tested

data sets generated by GCP simulator.

There are several future research directions. In this chapter we mainly focus on low-level

events as the triggering events. An alternative way is to usehigh-level events, or combine low-

level and high-level events to facilitate the processing. We also notice that our approach requires

a knowledge base about input and output resources of different attacks, which can be obtained

through studying attack signatures. How to systematicallyspecifying input and output resources is

interesting and worth further investigation.



121

Chapter 7

Privacy-Preserving Alert Correlation: A

Generalization Based Approach

In recent years, the security threats from infrastructure attacks such as worms and dis-

tributed denial of service attacks are increasing [19]. They affect large numbers of hosts and services

on the Internet, and may bring serious financial loss. To defend against these attacks, the coopera-

tion among different organizations is necessary. Several organizations such as CERT Coordination

Center [17] and DShield [106] collect data (including security incident data) over the Internet (data

may come from different data owners), perform correlation analysis, and disseminate information

to users and vendors. In this chapter, we assume that there are a few data repositories which collect

security data from different companies, organizations, orindividuals. To facilitate the collaboration

among different parties on analyzing these security data, we further assume that security data in the

repositories are available or partially available to different users including attackers. In addition,

attackers may also compromise the repositories to gain access to the security data. To prevent the

misuse of security data, and also protect the privacy of different data owners, appropriate data saniti-

zation through which the sensitive information is obfuscated before they are shared and analyzed is

highly preferable. For example, DShield [106] lets audit log submitters perform partial or complete

obfuscation to destination IP addresses in the datasets, where partial obfuscation changes the first

octet of an IP address to decimal10, and complete obfuscation changes any IP address to a fixed



122

value10.0.0.1.

As we mentioned in Chapter 2, there are several alert correlation methods have been

proposed in recent years. Most of these alert correlation approaches generally assume all alert data

(e.g., the source and destination IP addresses) are available for analysis, which is true when there are

no privacy concerns. However, when multiple data owners provide sanitized alerts and incident data

(because of privacy concerns) for intrusion analysis, alert correlation will be affected due to the lack

of precise data. It is desirable to have techniques to perform privacy-preserving alert correlation

such that the privacy of data owners is preserved, and at the same time, alert correlation can provide

useful results. To our best knowledge, [69] is the only paperaddressing privacy issues in alert

correlation, which uses hash functions (e.g., MD5) and keyed hash functions (e.g., HMAC-MD5) to

sanitize sensitive attributes in data sets. This approach is effective in detecting some high-volume

events (e.g., worms). However, since hash functions destroy the semantics of alert attributes (e.g.,

the loss of topological information due to hashed IP addresses), the interpretation of correlation

results is non-trivial. In addition, hash functions may be vulnerable to brute-force attacks due to

limited possible values of alert attributes, and keyed hashfunctions may introduce difficulties in

correlation analysis due to the different keys used by different organizations. Nevertheless, we also

notice that combining hash based methods with other methods(e.g., the methods in this and next

chapters) may bring potentially better results.

In this chapter, we propose a privacy-preserving alert correlation approach based on gen-

eralization. This approach works in two phases:entropy guided alert sanitizationand sanitized

alert correlation. The first phase focuses on maintaining the privacy of sensitive alert data. We

classify alert attributes into categorical (e.g., IP addresses) and continuous ones (e.g., the total time

a process runs), and sanitize them through concept hierarchies. In a concept hierarchy, original at-

tribute values are generalized to high-level concepts. Forexample, IP addresses are generalized to

network addresses, and continuous attributes are generalized to intervals. We then replace original

attribute values with corresponding high-level concepts,thus introducing uncertainty while partially

maintaining attribute semantics. To balance the privacy and utility requirements, we guide alert san-

itization withentropyor differential entropy[26] of sanitized attributes, where the desirable entropy

or differential entropy values are determined by privacy policy.

To examine the utility of sanitized data sets, the second phase of our approach is to cor-

relate sanitized alerts. As we mentioned in Chapter 2, examining similarity between alert attributes

and building attack scenarios are two focuses in current correlation approaches, where similarity

computation usually is the first step to study the relationship between alerts, and attack scenarios



123

can help understand the detailed attack steps adversaries performed. We investigate both problems

under the situation where alerts are sanitized. We first examine similarity functions based on orig-

inal attribute values, and then show how to revise them to calculate similarity between sanitized

attributes. To build attack scenarios from sanitized alerts, we propose anoptimistic approach. As

long as it is possible that two sanitized alerts have acausal relation(i.e., a prepare-for relation

defined in Chapter 2), we link them together. Hence multiple alerts are connected through causal

relations to form attack scenarios. To measure the utility of sanitized data sets, we use measures

such ascorrect classification rate, misclassification rate, detection rateandfalse alert rateto see the

effectiveness of our techniques on correlation analysis ofsanitized alerts. Our experimental results

demonstrate the effectiveness of our approach.

7.1 Entropy Guided Alert Sanitization

The first phase of our privacy-preserving alert correlationis entropy guided alert sanitiza-

tion. We use a sanitization technique based on concept hierarchies for categorical and continuous

attributes. To balance the privacy and usability of alert data, alert sanitization is guided by entropy

(an uncertainty measure for categorical attributes) or differential entropy (an uncertainty measure

for continuous attributes). Before we go into the details ofour approach, we give some definitions

first.

Alert Types, Original Alerts and Sanitized Alerts. Intuitively, an alert type defines the

possible attributes to describe a type of alerts. Formally,analert typeT is a setS of attribute names,

where each attribute nameai ∈ S has an associated domainDom(ai). Original alerts are flagged

directly by security systems. Formally, anoriginal alert to of type T is a tuple onT ’s attribute

namesS, where for each attribute nameai ∈ S, the corresponding elementvi in the tuple is a value

in ai’s domainDom(ai).

Example 11 AnFTP Glob Expansionalert type is a set of attribute names{SrcIP, SrcPort, DestIP,

DestPort, StartTime, EndTime} , where the domain ofSrcIPandDestIPis all possible IP addresses,

the domain ofSrcPortandDestPortconsists of all possible port numbers, andStartTimeandEnd-

Timeare possible time an alert begins and ends.



124

An original alert with typeFTP Glob Expansionis given as a tuple{SrcIP=10.20.1.1,

SrcPort=1042, DestIP=10.10.1.1, DestPort=21, StartTime=11-10-2004 15:45:10, EndTime =11-

10-2004 15:45:10}, which indicates that there may be anftp based attack targeting at host 10.10.1.1

on port 21.

To protect the privacy of individual alerts, we need to perform alert sanitization to sen-

sitive attribute values (e.g., transforming sensitive data into an unintelligible form). We propose

two methods to identify sensitive attribute data. (1) Identify sensitive attribute names. For each

alert type, we mark some attribute names (decided by privacypolicy) as sensitive attributes. Their

original values are not allowed to be disclosed. (2) Identify sensitive attribute values. Sensitive

attribute values are prohibited to be revealed by an organization’s privacy policy. For example, an

organization may decide not to disclose any IP addresses inside their network no matter they are

source or destination IP addresses. The alerts after sanitization are called sanitized alerts.

A sanitized alertts with type T is a tuple onT ’s attribute name setS, where for some

attribute nameai ∈ S, the corresponding elementvi in the tuple is a transformed value in domain

Doms(ai) (Doms(ai) is Dom(ai) or a different domain). To continue Example 11, assumeDestIP

of FTP Glob Expansionis sensitive. To sanitize the original alert, we letDestIP=10.10.1.0/24 (it

is sanitized to its corresponding/24 network address). All the other attributes remain unchanged.

In the remainder of this chapter, we may use attributes to represent either attribute names,

attribute values or both when it is clear from the context. Likewise, we may use alerts to denote

either original alerts, sanitized alerts, or both. In the following, we present concept hierarchy based

sanitization for categorical and continuous attributes, respectively.

7.1.1 Entropy Guided Sanitization of Categorical Attributes

Categorical attributes have discrete values. Examples of categorical attributes are IP ad-

dresses and port numbers. Concept hierarchies abstract specific (low-level) concepts into general

(high-level) ones, which are widely used in data mining [49].

A concept hierarchy is based onspecific-generalrelations. Given two conceptsc1 andc2

(e.g., two attribute values), wherec1 is more specific thanc2 (or c2 is more general thanc1), we

denote the specific-general relation betweenc1 andc2 asc1 � c2. As a special case, we havec � c

for any conceptc. Given an attribute name with the corresponding domain, we can define specific-



125

10.10.0.0/16

10.10.1.0/24 10.10.2.0/24

10.10.1.0 ...... 10.10.1.255 10.10.2.0 ...... 10.10.2.255

(a) A Concept Hierarchy for IP Addresses

(0, 256]

(0, 128] (128, 256]

(0, 64] (64, 128] (128, 192] (192, 256]

(b) A Concept Hierarchy forCPUProcessingTime

Figure 7.1: Two Examples of Concept Hierarchies

general relations through grouping a subset of attribute values and abstracting them into a more

general concept. For example, a block of IP addresses can be organized as a subnet. Thus given

an IP address10.10.1.5 and a subnet10.10.1.0/24, we have a specific-general relation10.10.1.5 �

10.10.1.0/24.

A concept hierarchy is a set of specific-general relations, and usually is organized as a

tree, where leaf nodes denote the most specific concepts (original attribute values), and the root

node represents the most general concept in this hierarchy.As an example, Figure 7.1(a) shows a

concept hierarchy for IP addresses. In Figure 7.1(a), IP addresses from10.10.1.0 to 10.10.1.255

and from10.10.2.0 to 10.10.2.255 are organized into two subnets10.10.1.0/24 and10.10.2.0/24,

respectively. For each attribute (e.g., destination IP address), or a set of attributes having the same

domain (e.g., both source and destination IP addresses), wecan build a concept hierarchy based

on the attribute domain. Then we can perform alert sanitization by replacing the original attribute

values with the more general values in the hierarchy.

Example 12 To continue Example 11, assumeDestIPof FTP Glob Expansionis sensitive. We use

the concept hierarchy in Figure 7.1(a) to perform sanitization. We replaceDestIP=10.10.1.1 with

DestIP=10.10.1.0/24. The other attributes remain unchanged.

To balance the privacy and usability of alert data, we need todesign a satisfactory concept

hierarchy to perform sanitization, or choose appropriate general values to replace original attribute

values in a given concept hierarchy. We propose to guide these processes withentropy [26], an

uncertainty measurefor categorical attributes.



126

We start with calculating the entropy of a sanitized attribute. In a concept hierarchy for a

categorical attribute, given an attribute valuev, which is either an original or a generalized value,

we useNode(v) to denote the node having valuev. Given a general valuevg, we useSubTree(vg)

to denote the subtree rooted atNode(vg), andLeafCount(vg ) to denote the number of leaf nodes in

SubTree(vg). When sanitizing a categorical attributea, an original valuevo is replaced with a general

valuevg in a concept hierarchy. NoticeNode(vo) should be a leaf node inSubTree(vg). We denote

the entropy of attributea associated withvg asHa(vg), whereHa(vg) = −
∑LeafCount(vg)

i=1 p(a =

vi) log2 p(a = vi). Assuming all leaf nodes inSubTree(vg) have equal probabilities to be gener-

alized tovg, for any leaf node valuevi, the probabilityp(a = vi) = 1/LeafCount(vg). Then

Ha(vg) = log2 LeafCount(vg). To continue Example 12, the entropy ofDestIPassociated with

10.10.1.0/24 is log2LeafCount(10.10.1.0/24) = log2 256 = 8.

Attribute entropy can help us design a satisfactory concepthierarchy. For example, if

we want to achieve an entropy value8 when sanitizingDestIPfrom 10.90.1.0 to 10.90.1.255 with

equal probabilities, we can design a concept hierarchy withtwo levels, where the root node is a

/24 network (10.90.1.0/24), and the leaf nodes are those individual IP addresses. Entropy can also

help us choose an appropriate general value in a given concept hierarchy. For example, consider an

original attributeDestIP=10.10.10.1 and a concept hierarchy in Figure 7.1(a), whereleaf nodes in

the hierarchy have equal probabilities. If we require an entropy value8, we can choose the general

value10.10.1.0/24 to sanitize the original attribute.

7.1.2 Differential Entropy Guided Sanitization of Continuous Attributes

Some attributes in an alert take continuous values, for example, the CPU time a process

uses (this attribute may be sensitive, when, for example, a user makes payment based on the CPU

time that his/her process consumes). To sanitize a continuous attribute, we divide the domain of the

attribute into mutually exclusive intervals, and replace the original values with the corresponding

intervals. Formally, if the domain of an attributea is Dom(a), we partitionDom(a) into n intervals

r1, r2, · · · , rn such that (1)∪n
k=1rk = Dom(a), and (2) for anyi, j, where1 ≤ i, j ≤ n andi 6= j,

ri ∩ rj = ∅.

The partitions of an attribute domain can be organized into aconcept hierarchy. For

example, Figure 7.1(b) shows a concept hierarchy for attribute CPUProcessingTime(assuming its

domain is interval(0, 256]), where the attribute domain is organized into three levels. There are sev-

eral approaches that can generate concept hierarchies for continuous attributes [49]. For example, a



127

straightforward approach organizes a hierarchy into multiple levels, where each level has different

number of equal-length intervals.

Example 13 Consider aJVM Malfunction alert with a sensitive attributeCPUProcessingTime=

82.6 milliseconds. Using the concept hierarchy in Figure 7.1(b), we letCPUProcessingTime=

(64, 128].

To design a satisfactory concept hierarchy for sanitization, or choose an appropriate inter-

val to replace an original value in a concept hierarchy, we use differential entropy[26], anuncer-

tainty measurefor continuous attributes.

We first discuss how to compute the differential entropy of a sanitized continuous at-

tribute. When sanitizing a continuous attributea, an original valuevo is replaced with an interval

vg that includes valuevo. The length of intervalvg is critical to the calculation of the attribute un-

certainty. We letLength(vg) denote the difference between the upper and lower bounds of interval

vg. We denote the differential entropy ofa associated withvg asHa(vg).

Ha(vg) = −

∫

vg

f(a) log2 f(a)da, (7.1)

wheref(a) is the probability density function for attributea over intervalvg.

Equation 7.1 is derived and simplified from the standard formof differential entropy [26].

In the standard form,Ha(Dom(a)) = −
∫

Dom(a) fo(a) log2 fo(a)da, wherefo(a) is the probability

density function over attribute domainDom(a). Under our sanitization technique, although we

cannot know the exact value of attributea, we are certain that it is in intervalvg, wherevg may be a

part ofDom(a). Then we know the probability density functionf(a) is 0 outside intervalvg. Thus

the integration in Equation 7.1 only needs to be performed over vg
1.

To demonstrate the uncertainty computation for sanitized continuous attributes, we derive

a formula for uniformly distributed attributes. Assume an attributea is in uniform distribution and is

sanitized to interval[α, β]. Thus its probability density functionf(a) is 1/(β−α) whenα ≤ a ≤ β;

otherwisef(a) = 0. Based on Equation 7.1, we haveHa(vg) = −
∫ β

α
f(a) log2 f(a)da = log2(β−

α) = log2 Length(vg).

1To let the probability density functionf(a) satisfy
R

vg

f(a)da = 1, f(a) can be derived fromfo(a). AssumeR
vg

fo(a)da = q ≤ 1. We can letf(a) = fo(a)/q in intervalvg ; otherwisef(a) = 0. Another method to getf(a) is to

compute the distribution parameters, which is straightforward for uniformly distributed attributes.



128

This equation tells us that differential entropy can be greater than, equal to, or less than

0. Consider a random variableX uniformly distributed over an interval with length1. For a sani-

tized continuous attribute, if its differential entropy isgreater than0, then its uncertainty is greater

than variableX; if its differential entropy is equal to0, its uncertainty is equal toX; otherwise

its uncertainty is less thanX. To continue Example 13, further assume attributeCPUProcessing-

Timeis uniformly distributed in interval(64, 128]. The differential entropy ofCPUProcessingTime

associated with(64, 128] is log2(128 − 64) = 6.

The differential entropy can help design a satisfactory concept hierarchy. For example,

assume the domain of an attribute is[0, 64] with uniform distribution. If we require a differential

entropy value5, we can build a concept hierarchy with two levels, where the root node is[0, 64],

and there are two leaf nodes[0, 32] and(32, 64]. The differential entropy can also help us choose

an appropriate interval to replace an original value. For example, consider an original attribute

CPUProcessingTime=82.6 milliseconds and a concept hierarchy in Figure 7.1(b), where attributes

are in uniform distribution. If we require a differential entropy value6 for sanitization, we can

choose(64, 128] to replace the original value.

7.2 Correlation Analysis of Sanitized Alerts

The second phase of our approach is sanitized alert correlation. As we stated in Chapter

2, examining the similarity between alert attributes and building attack scenarios are two focuses in

current correlation approaches. Similarity based correlation methods (e.g., [109, 98, 61, 28]) cluster

alerts through calculating the similarity between their attributes, and methods based on predefined

attack scenarios (e.g., [36, 78]) and methods based on prerequisites and consequences of attacks

(e.g., [102, 29, 83]) build attack scenarios through discovering causal relations between individual

alerts. To our best knowledge, these methods all assume original attribute values are available. In

Subsections 7.2.1 and 7.2.2, we discuss how to compute the similarity between sanitized attributes

and building attack scenarios for sanitized alerts, respectively.

7.2.1 Calculating the Similarity between Sanitized Attributes

Calculating the Similarity between Sanitized CategoricalAttributes. Several func-

tions or heuristics (e.g., techniques in [109, 98]) have been proposed to calculate the similarity



129

between (original) attribute values. Here we first give a simple heuristic, and then discuss how to

revise this heuristic to calculate the similarity between sanitized categorical attributes. Other simple

heuristics can be revised using a similar approach.

If two original attributesxo andyo are known, we give a similarity function between them

as follows.

Sim(xo, yo) =







1, if xo = yo,

0, otherwise.
(7.2)

After sanitization,xo andyo become generalized valuesxg andyg, respectively. There

are several ways to compute the similarity betweenxg and yg. For example, we can treat the

sanitized attributes as the original ones, and use Equation7.2 to compute their similarity. This is

a coarse-grained similarity measurement because even if the sanitized values are the same, their

corresponding original values may be different. In addition, even if two sanitized values are not

the same, their corresponding original values are possibleto be the same (e.g., two sanitized IP

addresses10.10.1.0/24 and10.10.0.0/16). We propose to compute their similarity by estimating

the probability thatxg andyg have the same original value. Intuitively, in a concept hierarchy, two

nodesNode(xg) andNode(yg) are possible to have the same original value only if they arein the

same path from the root to a leaf node (Node(xg) andNode(yg) may be the same). In other words,

there is a specific-general relation betweenxg andyg. If this is the case, the possible original values

are those leaf nodes. If the probability thatxg andyg have the same original value is large, we

interpret it as a high similarity between them; otherwise their similarity is low.

Now we show how to compute the probability thatxg and yg have the same original

value hence to derive a revised similarity function. We assume xg andyg are generalized using

the same concept hierarchy. Suppose leaf nodes in a concept hierarchy have equal probabilities.

We divide the probability computation into three cases. (1)When yg � xg, SubTree(yg) and

SubTree(xg) may be the same, orSubTree(yg) is a subtree ofSubTree(xg). Node(xg) and

Node(yg) haveLeafCount(xg) andLeafCount(yg) possible original values, respectively. For

these two subtrees, the ratio of the number of common leaf nodes to the number of the leaf nodes in

SubTree(xg) is LeafCount(yg)
LeafCount(xg) . Thus the probability thatxg andyg have the same original value is

LeafCount(yg)
LeafCount(xg)

1
LeafCount(yg) = 1

LeafCount(xg) . (2) Whenxg � yg, we can apply a similar computa-

tion to case (1). Hence the probability thatxg andyg have the same original value is 1
LeafCount(yg) .

(3) Whenxg andyg do not have a specific-general relation,SubTree(xg) andSubTree(yg) do not

have a common part in a concept hierarchy. Soxg andyg cannot have the same original value. Their



130

similarity is 0. To conclude, the revised similarity function based on Equation 7.2 is as follows.

Sim(xg, yg) =















1
LeafCount(xg) , if yg � xg,

1
LeafCount(yg) , if xg � yg,

0, otherwise,

(7.3)

where “�” denotes specific-general relations.

Calculating the Similarity between Sanitized Continuous Attributes. The similarity

function between continuous attributes is different from that of categorical attributes due to various

reasons. For example, due to the clock drift, twoCPUProcessingTimemay not be reported the

same even if their actual time is the same. Considering thesesituations, here we first give a simple

similarity function as follows. (Other similarity functions are possible and may be revised in a

similar way to our approach.)

Sim(xo, yo) =







1, if |xo − yo| ≤ λ,

0, otherwise,
(7.4)

wherexo andyo are original attribute values, andλ is a predefined threshold. For example, if the

CPUProcessingTimedifference between two processes is within5 milliseconds, we may say their

similarity is 1.

Whenxo andyo are generalized to intervalsxg andyg, respectively, there are several ways

to compute the similarity betweenxg andyg. For example, assumingLength(xg) = Length(yg) >

λ, their similarity is1 if xg = yg, and0 otherwise. This certainly is a rough, imprecise estimation,

because even ifxg andyg are not the same interval, it is possible that the differencebetween their

original values is less thanλ. Similar to the categorical case, we propose to compute their similarity

by estimating the probability that the difference between their original values is within thresholdλ.

Suppose that original values ofxg andyg are independent and uniformly distributed over

intervalsxg andyg, respectively. To simplify our discussion, we assumeLength(xg) = Length(yg)

> λ. More sophisticated cases such asLength(xg) 6= Length(yg) can be covered by an approach

similar to the following calculation. We notice the difference between two original values may be

within λ only if xg andyg fall into any of the following cases. (1)xg andyg are the same interval,

(2) xg andyg are adjacent intervals, where adjacent intervals mean the upper bound of the lower

interval and the lower bound of the higher interval are the same (e.g.,[0, 5] and(5, 10]), or (3)xg and

yg are two intervals with a small “gap” between them, where a “gap” means the difference between

the lower bound of a higher interval and the upper bound of a lower interval is greater than0. Note



131

this bound difference should be withinλ (e.g., [0, 5] and [6, 11]). Now we show how to compute

the probability that the difference between the original values ofxg andyg are withinλ. Suppose

attribute variables for the original values ofxg andyg areX andY , respectively. We divide our

computation into the four cases.

(1) Whenxg = yg, we assumexg andyg are interval[α, β]. Based on our assumption,X

andY are independently and uniformly distributed over[α, β]. We usex andy to denote attribute

values ofX andY , respectively. The probability density functions ofX andY are the same. That is,

1/(β−α) in [α, β], and0 otherwise. Our goal is to get the probabilityP (|x−y| ≤ λ). Considering

X andY are independent, we first get the cumulative distribution functionFX−Y (z) for X − Y .

FX−Y (z) =

∫∫

x−y≤z

fX(x)fY (y)dxdy

=

∫ ∞

−∞

∫ y+z

−∞
fX(y + z)fY (y)dxdy

=

∫ ∞

−∞
FX(y + z)fY (y)dy.

By differentiatingFX−Y (z), we get the probability density functionfX−Y (z).

fX−Y (z) =

∫ ∞

−∞
fX(y + z)fY (y)dy =

∫ β

α

fX(y + z)
1

β − α
dy.

Then we get

fX−Y (z) =















z+β−α
(β−α)2

, if α − β ≤ z < 0,
β−α−z
(β−α)2

, if 0 ≤ z ≤ β − α,

0, otherwise.

Therefore,P (|x−y| ≤ λ) =
∫ 0
−λ

fX−Y (z)dz+
∫ λ

0 fX−Y (z)dz = 2λ(β−α)−λ2

(β−α)2 . SinceLength(xg)=

β − α, we haveP (|x − y| ≤ λ) =
2λ[Length(xg)]−λ2

[Length(xg)]2
.

(2) Whenxg andyg are adjacent, we assumeX andY are independently and uniformly

distributed over intervals[α, β] and(β, γ], respectively. We also haveβ − α = γ − β based on our

assumptionLength(xg) = Length(yg). Similar to case (1), we get the probability density function

for X − Y as follows.

fX−Y (z) =















z+γ−α
(β−α)2

, if α − γ ≤ z ≤ α − β,
−z

(β−α)2
, if α − β < z < 0,

0, otherwise.

ThusP (|x − y| ≤ λ) =
∫ 0
−λ

fX−Y (z)dz = λ2

2(β−α)2 . SinceLength(xg) = β − α, P (|x − y| ≤

λ) = λ2

2[Length(xg)]2
.



132

(3) Whenxg andyg have a “gap” between them, note we require the difference between

the lower bound of the higher interval and the upper bound of the lower interval is withinλ. Assume

X andY are independently and uniformly distributed over[α, β] and [γ, η], respectively, where

0 < γ − β ≤ λ. Based on our assumption, we knowβ − α = η − γ. Similar to case (1), the

probability density function forX − Y is as follows.

fX−Y (z) =















z+η−α
(β−α)2

, if α − η ≤ z < α − γ,
β−γ−z
(β−α)2 , if α − γ ≤ z ≤ β − γ,

0, otherwise.

Therefore,P (|x − y| ≤ λ) =
∫ β−γ

−λ
fX−Y (z)dz = (λ+β−γ)2

2(β−α)2 . For convenience, we letd = γ − β.

SinceLength(xg)= β − α, P (|x − y| ≤ λ) = (λ−d)2

2[Length(xg)]2
.

(4) Whenxg andyg do not fall into any of the above three cases, based on our assumption

Length(xg)=Length(yg)> λ, it is impossible that the difference between the original values ofxg

andyg is within λ. Hence their similarity is0.

To conclude, the revised similarity function based on Equation 7.4 is as follows.

Sim(xg, yg) =



























2λ[Length(xg)]−λ2

[Length(xg)]2 , if xg = yg,
λ2

2[Length(xg)]2 , if xg andyg are adjacent,
(λ−d)2

2[Length(xg)]2 , if xg andyg have a “gap” and0 < d ≤ λ,

0, otherwise,

(7.5)

whered is the difference between the lower bound of the higher interval and the upper bound of the

lower interval. Note that similarity computation based on Equation 7.5 is symmetric (Sim(xg, yg) =

Sim(yg, xg)).

We notice that in the probability computation, we have takenseveral assumptions such

asLength(xg)=Length(yg)> λ to simplify our calculation. However, the essential steps involved in

the probability computation have already been demonstrated in our calculation. More sophisticated

cases can be covered by a similar computation.

7.2.2 Building Attack Scenarios

An attack scenario is a sequence of steps adversaries performed to attack victim machines,

which is helpful for security officers to learn attackers’ activities and take appropriate actions. The

essence of building attack scenarios from security alerts is to discover causal relations between



133

individual attacks. For example, there is a causal relationbetween an earlierSCANNMAP TCP

attack and a laterFTP Glob Expansionattack if the earlier one is used to probe a vulnerable ftp

port for the later one.

We extend our previous correlation method [83], which targets at building attack scenarios

from original alerts, to build attack scenarios from sanitized alerts. Please refer to Chapter 2 for

the formal model of the approach [83]. For convenience, before we discuss our newly proposed

technique, we first give examples of prerequisites, consequences, andprepare-forrelations, which

will be used in later examples.

Example 14 Consider alert typesT1=SCAN NMAP TCP and T2=FTP Glob Expansion. The

prerequisite ofT1 is ExistHost(DestIP), and its consequence is{ExistService(DestIP, DestPort)}.

The prerequisite ofT2 is ExistService(DestIP, DestPort)∧ VulnerableFtpRequest(DestIP), and its

consequence is{GainRootAccess(DestIP)}.

Example 15 To continue Example 14, consider a typeT1 alert t1 and a typeT2 alert t2. Assume

that t1 andt2 both haveDestIP=10.10.1.1 andDestPort=21, t1’s EndTimeis 11-15-2004 20:15:10,

and t2’s StartTimeis 11-15-2004 20:15:15. Through predicate instantiation,t1’s consequence is

{ExistService(10.10.1.1, 21)}, andExistService(10.10.1.1, 21) ∧VulnerableFtpRequest(10.10.1.1)

is t2’s prerequisite. Noticet1.EndTime< t2.StartTime. Then we knowt1 prepares fort2.

For convenience, we may use causal relations andprepare-forrelations interchangeably.

Given two alertst1 and t2, wheret1 prepares fort2, we call t1 the preparing alert, andt2 the

prepared alert.

An Optimistic Approach to Building Attack Scenarios from Sanitized Alerts. We

notice that identifyingprepare-forrelations between alerts is essential to building attack scenarios.

However, after alert sanitization, we may not be certain whetherprepare-forrelations are satisfied

if sanitized attributes are involved. Without loss of generality, we assume alert type data is not

sanitized. We propose anoptimisticapproach to identifyingprepare-forrelations between sanitized

alerts. This approach identifies aprepare-forrelation between two alertst1 andt2 as long as it is

possible that (1) one of the instantiated predicates int1’s consequencemay imply one of the in-

stantiated predicates int2’s prerequisite, and (2)t1 andt2’s timestampsmaysatisfyt1.EndTime<



134

t2.StartTime. In other words, based on sanitized attributes,we “guess” what possible original values

are, and if these original values have a chance to satisfy theimplication relationship between instan-

tiated predicates, and also satisfy the timestamp requirement, we identify aprepare-forrelation.

Example 16 illustrates this idea.

Example 16 To continue Examples 14 and 15, assumeDestIPof t1 andt2 are sanitized based on the

concept hierarchy in Figure 7.1(a), whereDestIP=10.10.1.1 is replaced withDestIP=10.10.1.0/24.

So t1’s consequence becomes{ExistService(10.10.1.0/24, 21)}, and ExistService(10.10.1.0/24,

21) ∧ VulnerableFtpRequest(10.10.1.0/24) is t2’s prerequisite. It is possible that the instantiated

predicateExistService(10.10.1.0/24, 21) in t1’s consequence implies the instantiated predicate

ExistService(10.10.1.0/24, 21) in t2’s prerequisite if both sanitizedDestIPattributes have the same

original IP address in network10.10.1.0/24. Further due tot1.EndTime< t2.StartTime, we identify

a prepare-forrelation betweent1 andt2.

Attack Scenario Refinement Based on Probabilities of Prepare-for Relations. Our

optimistic approach certainly may introduce falseprepare-forrelations between alerts. Without

knowledge of original values, we cannot guarantee that one instantiated predicate implies another if

sanitized attributes are involved. To improve this approach, it is desirable to estimate how possible

each pair of sanitized alerts has aprepare-forrelation. To do so, we can first compute the probability

that one instantiated predicate implies another, and then consider timestamp requirement.

Example 17 To continue Example 16, considerExistService(DestIP, DestPort)in T1’s consequence

and T2’s prerequisite. Assume that each IP address in the concept hierarchy (Figure 7.1(a)) has

equal probability in the data set. After predicate instantiation using sanitized alerts, we compute

probabilitiesP (t1.DestIP=t2.DestIP)= 1
256 , andP (t1.DestPort=t2.DestPort) =1. Hence the prob-

ability that the instantiated predicateExistService(10.10.1.0/24, 21) in t1’s consequence implies

the instantiated predicateExistService(10.10.1.0/24, 21) in t2’s prerequisite is 1
256 . Further note



135

P (t1.EndTime< t2.StartTime)=1. Then we know the probability of thisprepare-forrelation to be

true is 1
256 .

Note that sometimes computing precise probability values related to prepare-for relations

is difficult when we do not know the probability distributions of attributes in original data sets.

Fortunately, we can use uniform distributions to estimate lower-bound probability values. We will

further discuss this problem in the next chapter (Chapter 8). We also notice that between two alerts,

sometimes there may exist several pairs of instantiated predicates such that in each pair, one in-

stantiated predicate may imply the other. If the probabilities that these pairs having implication

relationships are different, it is difficult to estimate theprobability that at least one implication re-

lationship is true because we do not know the dependency among these pairs. To simplify our

probability estimation, assumingn pairs of instantiated predicates that may have implicationre-

lationships are independent with probabilitiesp1, p2, · · · , pn, respectively, we use this indepen-

dent case to estimate the probability that at least one implication relationship is satisfied, which

is 1 − (1 − p1)(1 − p2) · · · (1 − pn). We then consider timestamp requirement to further com-

pute the probability for thisprepare-forrelation. After the probabilities ofprepare-forrelations are

computed, it is desirable to use these probability values toprune some falseprepare-forrelations

in an alert correlation graph (e.g., remove someprepare-forrelations with lower probability val-

ues). However, we immediately observe that this ideal case may not help much. As demonstrated

by Example 17, after sanitizing the IP addresses to the corresponding/24 network addresses, the

probability that two alerts have aprepare-forrelation may be only 1
256 , which may imply that this

prepare-forrelation isfalse. However, considering that when the IP addresses in a/24 network are

sanitized, the probabilities of allprepare-forrelations involving these IP addresses would be small.

If we remove all the low-probabilityprepare-forrelations, it is very likely that sometrueprepare-for

relations are pruned.

We further observe that if we calculate the probability for aset ofprepare-forrelations

instead of only one, we can gain more interesting hints. Assume we haven pairs of alerts where

each pair has aprepare-forrelation with probabilityp. Further suppose theseprepare-forrelations

are independent. Then we can compute the probabilityPk that there arek pairs (0 ≤ k ≤ n)

havingtrue prepare-forrelations:Pk =
(

n
k

)

pk(1 − p)n−k. Based on this equation, we can compute

the probability that at least oneprepare-forrelation istrue, which is1 − P0 when eachprepare-for

relation has the same probabilityp. When theprepare-forrelations forn pairs of alerts have different

probabilities (e.g.,p1, p2, · · · , pn, respectively), the probability that at least oneprepare-forrelation



136

Algorithm: Aggregation to an alert correlation graph.
Input: An alert correlation graphCG, a temporal constraintδ, and a probability thresholdθ.
Output: An aggregated correlation graphACG.
Method:

1. AssumeCG = (N,E). Partition edge setE into subsetsE1, E2, · · · , El such that in any
Ei (1 ≤ i ≤ l), all edges have the same preparing alert type, and the same prepared alert type.
2. For each subsetEi in E
3. Further partitionEi into groupsEi1, Ei2, · · · , Eij such that the preparing alerts and

prepared alerts inEik (1 ≤ k ≤ j) satisfy temporal constraintδ, respectively.
4. For each groupEik in subsetEi

5. Compute the probabilityP that at least oneprepare-forrelation inEik is true.
6. If P ≥ θ Then
7. Aggregate edges inEik into one; merge preparing and prepared alerts, respectively.
8. ElseRemove all edges inEik.

Remove preparing and prepared alerts inEik if they are not linked by other edges.
9. LetCG after the above operations beACG. OutputACG.
End.

Figure 7.2: An algorithm to aggregate an alert correlation graph

is true is 1− (1− p1)(1− p2) · · · (1− pn). This result may help us refine an alert correlation graph.

To further refine an alert correlation graph constructed from the optimistic approach, we

propose to apply aggregation to alert correlation graphs, which is performed according totemporal

constraintsand probability thresholds.

Consider a setS of alerts and a time interval with lengthδ (e.g.,50 seconds), where alerts

in S are sorted in increasing order based onStartTime. We call two alertsconsecutive alertsif their

StartTimetimestamps are neighboring to each other inS. S satisfies temporal constraintδ if and

only if for any two consecutive alertsti andtj in S whereti.StartTime≤ tj .StartTime,tj .StartTime

−ti.EndTime≤ δ. Intuitively, a set of alerts satisfy a temporal constraintif the time intervals (in the

form of [StartTime, EndTime]) of any two consecutive alerts overlap, or the “gap” between them is

within δ.

Given an alert correlation graphCG = (N,E) constructed from the optimistic approach,

a temporal constraintδ, and a probability thresholdθ, we perform aggregation toCG through

the algorithm shown in Figure 7.2. The basic idea is that we aggregate the edges with the same

preparing and the same prepared alert types into one such that the probability that at least one

prepare-forrelation (represented by these edges) istrue is greater than or equal to thresholdθ. (The



137

related nodes are merged accordingly.)

In Figure 7.2, Line 1 prepares the edge set through partitioning so that each edge subset

has the same preparing alert type and the same prepared alerttype. Lines 2 to 3 further partition each

edge subset into groups such that the preparing and preparedalerts in each group satisfy constraint

δ, respectively. Lines 4 and 5 compute the probability that atleast oneprepare-forrelation istrue

in each group. If this probability is no less than thresholdθ, we aggregate the edges and the related

nodes in Line 7; otherwise we remove those edges and some related nodes in Line 8. Line 9 outputs

the results.

As we stated earlier, the alert correlation graphs constructed from our optimistic approach

may include bothfalseandtrue prepare-forrelations. They may also have large numbers of nodes

and edges such that understanding these scenarios can be difficult and time-consuming. The algo-

rithm in Figure 7.2 helps us improve the quality of alert correlation graphs in that it reduces the

numbers of nodes and edges, and may improve the certainty about prepare-forrelations (in the ag-

gregated sense). Note after aggregation, a node in the aggregated correlation graph is actually a

place holder which may represents multiple alerts. Our aggregation also has some limitations be-

cause we may remove someprepare-forrelations from alert correlation graphs when the probability

for them is less than the threshold. Our experiments in Subsection 7.3.2 indicate that the aggregation

should be applied with caution sincetrue prepare-forrelations have a chance to be removed. The

alert correlation graphs created from the optimistic approach and the aggregated correlation graphs

are complementary to each other, and they should be referredto each other to comprehensively learn

the security threats.

Though the above approach to building attack scenarios fromsanitized alerts is extended

from a specific correlation approach (i.e., [83]), other correlation methods such as approaches based

on predefined attack scenarios can be extended to accommodate sanitized alerts in a similar way.

The approaches based on predefined attack scenarios usuallydefine constraints among alert types

(e.g., a logical formula involving attribute names from several alert types). If any constraints are

satisfied by alert attributes, causal relations and hence attack scenarios are created. To apply our op-

timistic approach to these methods, we can examine the constraints to see whether they are possible

to be satisfied based on sanitized attributes. To use probabilities to refine attack scenarios, we can

calculate the probabilities for the constraints to be satisfied in a similar way to our approach.



138

7.3 Experimental Results

To learn the effectiveness of our techniques, we performed aset of experiments to evaluate

the similarity functions and the approach to building attack scenarios.

7.3.1 Evaluating Similarity Functions

In the first two experiments, we focus on the evaluation of revised similarity functions

(e.g., Equations 7.3 and 7.5). We are interested in how possible sanitized datasets can provide sim-

ilarity classification as that from original datasets. In our experiments, we randomly generated a

setSo of alerts with only one categorical attribute (or one continuous attribute, respectively), and

then sanitized it to get a new setSs. Next for each combination of two alerts inSo, we used

Equation 7.2 (or Equation 7.4, respectively) to calculate attribute similarity. While for each pair

of alerts inSs, we used Equation 7.3 (or Equation 7.5, respectively) to compute their similarity.

Then we applied an optimistic classification. If the similarity value is greater than0, we classify

this pair of alerts as “similar” pair; otherwise we classifythem as “distinct” pair. We compared

the results fromSs with those fromSo. We used two quantitative measures:correct classifica-

tion rate Rcc for Ss based onSo andmisclassification rateRmc for Ss based onSo. We define

Rcc andRmc for “similar” pairs as follows.Rcc =
#common “similar” pairs in bothSo andSs

#“similar” pairs inSo

, and

Rmc =
#“similar” pairs inSs−#common “similar” pairs inSo andSs

#total alert pairs−#“similar” pairs inSo

. Note thatRcc andRmc are only

for sanitized datasets, and both measures can be computed for “similar” or “distinct” pairs. Like-

wise, we define correct classification rate and misclassification rate for “distinct” pairs by replacing

“similar” with “distinct” in the above two equations.

Our first experiment is for categorical attributes. We generated a setSo of 2, 560 alerts

with DestIPattributes uniformly distributed over256 IP addresses in network10.60.1.0/24 (from

10.60.1.0 to 10.60.1.255). Next we partitioned this network into16 subnets. Each subnet (/28

subnet) has16 addresses. We sanitizedSo to Ss such thatDestIPof each alert is generalized to the

corresponding/28 subnet ID. We applied Equation 7.2 toSo and Equation 7.3 toSs. The results

are shown in the left part of Table 7.1.

Our second experiment is for continuous attributes. We generated a setSo of 1, 000

alerts withCPUProcessingTimeattributes uniformly distributed over interval[0, 100]. Then we

divided[0, 100] into 20 small equal-length intervals (the length of each small interval is5). Next we

sanitizedSo to Ss by replacing original values with the corresponding small intervals (a boundary



139

Table 7.1: The results of evaluating similarity functions

Categorical attribute Continuous Attribute
So (original) Ss (sanitized) So (original) Ss (sanitized)

# alerts 2, 560 1, 000

# total alert pairs 3, 275, 520 499, 500

# “similar” pairs 12, 818 204, 585 24, 444 71, 705

# common “similar” pairs 12, 818 24, 444

# “distinct” pairs 3, 262, 702 3, 070, 935 475, 056 427, 795

# common “distinct” pairs 3, 070, 935 427, 795

Rcc for “similar” pairs N/A 100% N/A 100%

Rmc for “similar” pairs N/A 5.88% N/A 9.95%

Rcc for “distinct” pairs N/A 94.12% N/A 90.05%

Rmc for “distinct” pairs N/A 0% N/A 0%

value between two adjacent intervals is put into the lower interval). Letλ = 2.5. We applied

Equation 7.4 toSo and Equation 7.5 toSs. The results are shown in the right part of Table 7.1.

In these two experiments, the entropy and differential entropy for attributesDestIPand

CPUProcessingTimearelog216 = 4 and log25 = 2.3219, respectively. Our correct classification

rates for both “similar” and “distinct” pairs are high (greater than90%), while the misclassification

rates for both pairs are low (less than10%). This demonstrates that the privacy of alert attributes

can be protected with sacrificing the data functionality (similarity classification) slightly.

7.3.2 Building Attack Scenarios

To evaluate the techniques on building attack scenarios, weperformed a set of experiments

on 2000 DARPA intrusion detection scenario specific data sets [77]. The datasets include two

scenarios: LLDOS 1.0 and LLDOS 2.0.2, where each scenario includes two parts (inside and DMZ).

In LLDOS 1.0, adversaries probed vulnerable sadmind services in the networks, broke into the hosts

through sadmind buffer overflow attacks, installed mstreamDDoS softwares, and finally launched

DDoS attacks. The attack scenario of LLDOS 2.0.2 is similar to that of LLDOS 1.0 (but LLDOS

2.0.2 is more stealthier).

In the first set of experiments, our goal is to evaluate the effectiveness of our optimistic

approach to building attack scenarios. We first used RealSecure network sensor 6.0 to generate

alerts from four datasets: LLDOS 1.0 inside, LLDOS 1.0 DMZ, LLDOS 2.0.2 inside, and LLDOS

2.0.2 DMZ. Next we defined the prerequisites and consequences for all alert types reported by the



140

network sensor. Such information can be obtained in Tables 5.3 and 5.4. We first constructed

alert correlation graphs for the original alert datasets using our previous method [83]. Then we

sanitized the destination IP address of each alert (which isa sanitization policy applied by DShield

[106]) by replacing it with its corresponding/24 network ID (e.g.,172.16.112.50 is sanitized to

172.16.112.0/24). Then we applied our optimistic approach to building alertcorrelation graphs for

the four datasets. One alert correlation graph constructedfrom LLDOS 1.0 inside dataset is listed

in Figure 7.3.

In Figure 7.3, the string inside each node is an alert type followed by an alert ID. Notice

that to show the difference between the alert correlation graphs created from the original dataset

and the sanitized one, we marked the additional nodes obtained only from the sanitized dataset

in gray. From Figure 7.3, it is clear that the alert correlation graph constructed from the san-

itized dataset is a supergraph of the one created from the original dataset. This observation is

consistent with our intuition because our optimistic approach identifiesprepare-forrelations even

if their related probabilities are low. The alert correlation graph in Figure 7.3 can be divided

into multiple stages: the adversaries usedSadmindPing to probe vulnerable sadmind services,

next usedSadmindAmslverifyOverflowto get root privileges, then installed mstream DDoS soft-

wares and started them viaRsh, and finally the mstream components communicated with each other

(MstreamZombie) and launched DDoS attacks (StreamDoS). They are consistent with the major

steps adversaries performed.

We notice that false alerts may be involved in an alert correlation graph (e.g., the alert

Email Debug67705in Figure 7.3). To further evaluate the effectiveness of ourapproach, simi-

lar to [83], we used two quantitative measures:soundnessMs andcompletenessMc, whereMs =
#correctly correlated alerts

#correlated alerts , andMc = #correctly correlated alerts
#related alerts . We computed both measures for the correla-

tion approach based on original datasets and the correlation approach (i.e., our optimistic approach)

based on sanitized datasets. The results are in Table 7.2. Comparing both measures in Table 7.2,

the correlation approach based on original datasets is slightly better than our optimistic approach,

which is reasonable because original datasets are more precise than sanitized datasets. Nevertheless,

our optimistic approach is relative good: the majority of soundness measures are greater than70%,

and all completeness measures are greater than60%.

In the second set of experiments, our goal is to verify whether correlation methods can

help us differentiate between true and false alerts. We conjecture that correlated alerts are more

likely to be true alerts, and false alerts are more random andhave less chance to be correlated.

This conjecture has been experimentally verified in [83] when original alerts are available. Now



141

FTP_Syst67211

Sadmind_Ping67341

Sadmind_Ping67343

Sadmind_Amslverify_Overflow67428

Sadmind_Amslverify_Overflow67430

Sadmind_Amslverify_Overflow67432

Sadmind_Amslverify_Overflow67434

Sadmind_Amslverify_Overflow67436

Sadmind_Amslverify_Overflow67438

Sadmind_Amslverify_Overflow67440

Sadmind_Amslverify_Overflow67442

FTP_Syst67214

FTP_Syst67114

FTP_Syst67170
FTP_Syst67399

Email_Almail_Overflow67525

Rsh67535

Rsh67536

Rsh67538

Rsh67539

Rsh67553

Mstream_Zombie67554

Rsh67558

Rsh67559

Rsh67560

Rsh67562

Mstream_Zombie67563

Mstream_Zombie67776

Mstream_Zombie67777

Email_Almail_Overflow67292

Email_Almail_Overflow67302

Email_Almail_Overflow67533

Email_Almail_Overflow67672

Email_Almail_Overflow67676

Email_Almail_Overflow67628

Email_Almail_Overflow67635

Email_Debug67705

FTP_Syst67243

Sadmind_Ping67286

Sadmind_Amslverify_Overflow67416

Sadmind_Amslverify_Overflow67417

Sadmind_Amslverify_Overflow67420

Sadmind_Amslverify_Overflow67422

Sadmind_Amslverify_Overflow67424

Sadmind_Amslverify_Overflow67426

Mstream_Zombie67537

Rsh67540

Rsh67542

Rsh67543

Rsh67545

Rsh67546

Rsh67547

Rsh67549

Rsh67550

Mstream_Zombie67767

Stream_DoS67773

Email_Almail_Overflow67304

Email_Almail_Overflow67529

Figure 7.3: An alert correlation graph in LLDOS 1.0 inside dataset

we try to see the results when alerts are sanitized. Similar to [83], we compute detection rate as
#detected attacks

#observable attacks, and false alert rate as1 − #true alerts
#alerts . In our experiments, we calculated detection

rates and false alert rates for RealSecure network sensor, the correlation approach based on original

datasets, and the correlation approach (i.e., our optimistic approach) based on sanitized datasets.

The results are shown in Table 7.3. In Table 7.3, the numbers of alerts for correlation approaches



142

Table 7.2: Soundness and completeness measures in our experiments

LLDOS 1.0 LLDOS 2.0.2
Inside DMZ Inside DMZ

# correlated alerts for original datasets 44 57 13 5

# correctly correlated alerts for original datasets 41 54 12 5

# correlated alerts for sanitized datasets 58 63 25 6

# correctly correlated alerts for sanitized datasets 41 54 12 5

# related alerts 44 57 18 8

SoundnessMs for original datasets 93.18% 94.74% 92.31% 100%

CompletenessMc for original datasets 93.18% 94.74% 66.67% 62.50%

SoundnessMs for sanitized datasets 70.69% 85.71% 48.00% 83.33%

CompletenessMc for sanitized datasets 93.18% 94.74% 66.67% 62.50%

Table 7.3: Detection rates and false alert rates in our experiments

Detection approach LLDOS 1.0 LLDOS 2.0.2
Inside DMZ Inside DMZ

RealSecure 922 886 489 425
# alerts Correlation for original datasets 44 57 13 5

Correlation for sanitized datasets 58 63 25 6

RealSecure 61.67% 57.30% 80.00% 57.14%
Detection rate Correlation for original datasets 60.00% 56.18% 66.67% 42.86%

Correlation for sanitized datasets60.00% 56.18% 66.67% 42.86%

RealSecure 95.23% 93.57% 96.73% 98.59%
False alert rate Correlation for original datasets 6.82% 5.26% 23.08% 40.00%

Correlation for sanitized datasets29.31% 14.29% 60.00% 50.00%

are the numbers of correlated alerts. We observe that our optimistic approach for sanitized datasets

still has the ability to greatly reduce false alert rates, while slightly sacrificing detection rates. In

addition, comparing the detection rates and false alert rates, the approach based on original datasets

is slightly better than our optimistic approach since original datasets have more precise information

than sanitized ones.

In the third set of experiments, our goal is to evaluate the effectiveness of the aggregation

to alert correlation graphs. Here we show one case for LLDOS 1.0 inside dataset. We aggregated

the alert correlation graph in Figure 7.3 based on the algorithm in Figure 7.2, where we set tem-

poral constraintδ = ∞ and probability thresholdθ = 0.1. The result is shown in Figure 7.4. In

Figure 7.4, we notice that some false alerts are ruled out (e.g.,Email Debug67705), which is highly



143

FTP_Syst1 Sadmind_Amslverify_Overflow2

Rsh4 Mstream_Zombie5

Email_Almail_Overflow3

Stream_DoS6

Figure 7.4: Aggregation to the alert correlation graph in Figure 7.3

preferable. However, we also observe that some true alerts are pruned (e.g., threeSadmindPing

alerts), which is undesirable. Though it is possible to mitigate this undesirable case through setting

a lower probability threshold, we can never guarantee that only false alerts will be ruled out. We

conclude that aggregation should be applied with caution. The alert correlation graphs created from

our optimistic approach and the aggregated correlation graphs should be referred to each other to

comprehensively learn the security threats.

7.4 Summary

In this chapter, we propose a generalization based approachto perform privacy-preserving

alert correlation. We divide our approach into two phases. The first phase is entropy guided alert

sanitization, which focuses on protecting the privacy of data sets. We replace sensitive original

attribute values with high-level concepts in concept hierarchies, which introduces uncertainty into

data sets, and also partially maintains attribute semantics. We further propose to use entropy and

differential entropy to measure the uncertainty of sanitized attributes, and also guide the general-

ization of original attributes. To examine the utility of sanitized alerts, the second phase of our

approach is sanitized alert correlation. We concentrate ondefining similarity functions between

sanitized attributes, and building attack scenarios from sanitized alerts. We use various measures

such as correct classification rate and false alert rate to measure the utility of sanitized data sets.

Though our experiments mainly focus on 2000 DARPA intrusiondetection scenario specific data

sets, and we used a simple attribute sanitization policy, wewould expect some observations from

our experiments are also useful to other data sets. For example, attack scenarios constructed from

sanitized data sets (without probability based refinement)are supergraphs of the ones constructed

from original data sets, and probability based pruning may filter out both false and true prepare-for

relations. We also notice that to apply our approach, some expect knowledge is necessary, for ex-

ample, deciding desirable entropy values for sensitive attributes when performing sanitization, and



144

designing concept hierarchies with the requirement of desirable entropy values.

There are several problems worth further investigation. Our techniques in this chapter

replace original attributes with general values in concepthierarchies. Generalized attributes usu-

ally have different domains compared with original attributes. Observing this may let malicious

users immediately realize that attributes are sanitized, which may further let them infer privacy

policy. We will propose other sanitizaiton techniques in the next chapter to address this problem.

Another problem in our approach is that the probability based pruning may filter out both false

and true prepare-for relations. Thus additional techniques that can better refine alert correlation

graphs are worth further investigation. In addition, we arealso interested in the performance of

privacy-preserving alert correlation techniques.



145

Chapter 8

Privacy-Preserving Alert Correlation: A

Perturbation Based Approach

As we mentioned in Chapter 7, to defend against large-scale distributed attacks such as

worms and distributed denial of service (DDoS) attacks, it is usually desirable to deploy security

systems such as intrusion detection systems (IDSs) over theInternet, monitor different networks,

collect security related data, and perform analysis to the collected data to extract useful information.

In addition, different organizations, institutions, and users may also have the willingness to share

their data for security research as long as their privacy concerns about the data can be fully satisfied.

For example, DShield [106] collects firewall logs from different users to learn global cyber threats,

and Department of Homeland Security sponsors PREDICT [51] project to create a repository col-

lecting network operational data for cyber security research. In this chapter, similar as in Chapter

7, we assume that there are a few data repositories collecting security data from different organi-

zations, companies, and individuals. To facilitate the collaboration on security research, we further

assume that these security data sets are available or partially available to different users including

attackers.

Data generated by security systems may include sensitive information (e.g., IP addresses

of compromised servers) that data owners do not want to disclose or share with other parties, where

sensitive data are decided by data owners’ privacy policy. To protect the privacy of data owners,



146

and prevent the misuse of these security data, it is always desirable and sometimes mandatory to

anonymize sensitive data before they are shared and correlated. To address this problem, existing

approaches usually perform transformation to sensitive data. Fox example, Lincoln et al. [69]

propose to use hash functions and keyed hash functions to anonymize sensitive attributes such as IP

addresses. Their approach is effective on detecting high-volume events, but may have limitations

on alert correlation if different keys are introduced in keyed-hashing. We also notice that combining

their hash based methods with other techniques (e.g., the techniques proposed in Chapter 7) may

bring potentially better results. In Chapter 7, we propose to abstract original values to more general

values (e.g., IP addresses are replaced by network addresses). Since general values may usually

take different formats compared with original values (i.e., they have different attribute domains),

observing this may let malicious users immediately realizethat attributes are sanitized, which may

infer organizations’ privacy policy.

In this chapter, we address this problem in another complementary direction. We start to

hide original sensitive values through injecting more datainto data sets. We also perform transfor-

mation to sensitive attributes, but this is carried over thesame attribute domains. In this chapter,

we propose three perturbation based schemes (Schemes I, II and III) to flexibly anonymize sensitive

attributes of intrusion alerts. These schemes are closely related and can also be applied indepen-

dently. In Scheme I, we intentionally generate artificial alerts and mix them with original alerts,

thus given any alert in the mixed set, it is not clear that thisalert is original (i.e., IDS-reported) or

artificial, which means its attributes may or may not be real.To protect data privacy, artificial alerts

should not be obviously distinguishable from original alerts. On the other hand, we also need to

maintain the utility of the data. With both requirements in mind, during artificial alert generation,

we preserve frequency distributions of attack types and non-sensitive attributes, while use concept

hierarchies to facilitate the generation of sensitive attributes. Notice that concept hierarchies can

help us abstract attribute values, for example, IP addresses can be generalized to the corresponding

network addresses. In Scheme II, we propose to map original sensitive attributes to random values

based on concept hierarchies. And in Scheme III, we propose to partition an alert set into multiple

subsets based on time constraints and perform Scheme II independently in each subset. To measure

data privacy hence to guide the procedure of alert anonymization, we propose two measures:local

privacy andglobal privacy, where local privacy is related to original values of sensitive attributes

for individual alerts, and global privacy is related to distributions of sensitive attributes in alert sets.

Both privacy values are computed based on entropy, and desirable entropy values are decided by

privacy policy.



147

Though we emphasize alert anonymization techniques in thischapter, we also perform

alert correlation to anonymized alerts to examine the utility of the data. Similar as in Chapter 7, we

focus on two problems: estimating similarity values between anonymized attributes and building

attack scenarios from anonymized alert set. Our method on similarity measurement is a probability

based approach, which estimates how possible two anonymized attributes may have the same origi-

nal values. Our approach on building attack scenarios extends from our existing method [83], where

the probabilities related to the matching of prerequisitesand consequences among different attacks

are estimated. Though it is closely related to the optimistic approach in Chapter 7, the probability

estimation is based on the anonymization schemes proposed in this chapter. Based on these prob-

ability values, we can construct and further “polish” attack scenarios. Similar as in Chapter 7, we

also use various measures such ascorrect classification rateto measure the utility of anonymized

data sets. Our experimental results demonstrated the effectiveness of our techniques in terms of

various measures.

8.1 Three Schemes for Alert Anonymization

In this chapter, we emphasize our alert anonymization techniques, which can flexibly

protect data privacy. Before we go into the details of our techniques, we clarify some notions and

definitions first.

An alert typeis a type nameT and a setS of attribute names, where each attribute

name inS has a related domain denoting possible attribute values. Asan example, an alert type

FTP AIX Overflowhas a set of six attribute names{SrcIP, SrcPort, DestIP, DestPort, StartTime,

EndTime}, where the type nameFTP AIX Overflowdenotes that it is a buffer overflow attack tar-

getingAIX ftp services, and all six attributes are used to describe this type of attacks. The domains

of SrcIPandDestIPare all possible IP addresses, the domains ofSrcPortandDestPortare possible

port numbers (from port0 to port65535), andStartTimeandEndTimedenote the timestamps that

the attack begins and finishes.

An original alert is an instance of alert types and is reported by security systems. Formally,

a typeT original alertto is a tuple onT ’s attribute setS, where each attribute value in this tuple is

a value in the related domain.

Example 18 Assume we have a typeFTP AIX Overflowalert{SrcIP=172.16.10.28, SrcPort=1081,



148

DestIP=172.16.30.6, DestPort=21, StartTime=01-16-2006 18:01:05, EndTime=01-16-2006 18:01:05}.

This alert describes anFTP AIX Overflowattack from IP address172.16.10.28 to target172.16.30.6.

A type T artificial alert has the same format as that of an original alert. The only dif-

ference between artificial alerts and original alerts is that original alerts are reported by security

systems, while artificial alerts are synthetic, and may be generated by a human user, or some pro-

grams. The purpose of generating artificial alerts is to helpprotect the privacy of sensitive attribute

values in original alerts. We will discuss how to generate artificial alerts in Subsection 8.1.1. Sim-

ilarly, a typeT anonymized alerthas the same format as that of an original alert. However, the

sensitive attribute values in anonymized alerts are transformed, for example, through randomiza-

tion, to protect data privacy. To continue Example 18, ifDestIPof the alert is sensitive, we can

transformDestIP=172.16.30.6 to DestIP=172.16.30.35 to hide the original value. We will discuss

how to transform sensitive values in Subsection 8.1.2. In the rest of this chapter, we call the set

of alerts all flagged by security systems the original alert set, and the set of alerts including both

original and artificial alerts the mixed alert set. In addition, we may use attributes to represent either

attribute names, attribute values, or both if it is clear from the context.

8.1.1 Scheme I: Artificial Alert Injection Based on Concept Hierarchies

Intuitively, artificial alert injection generates synthetic alerts and mixes them with original

alerts. Given any alert in a mixed alert set, identifying whether it is artificial or original is difficult,

and the information disclosed by any individual alert may not necessarily be true. The critical

issue in artificial alert injection is how to generate attribute values for each artificial alert, with both

privacy and usability requirements in mind. Here we divide alert attributes into three classes: alert

types, sensitive attributes, and nonsensitive attributes, and discuss them separately.

Alert types encode valuable information about the corresponding attacks. For example,

RealSecure network sensor 6.5 [52] may report anFTP AIX Overflowattack. Based on the signa-

ture of this attack, we know that it is a buffer overflow attacktargeting AIX FTP services. Alert

types are crucial for security officers to learning securitythreats. To maintain the utility of alert data

sets, it is usually desirable to disclose alert type information. So when we create artificial alerts, we

propose to preserve the frequency of the original data set interms of alert types, where the frequency

of an alert typeT is the ratio of the number of alerts with typeT to the total number of alerts. In

other words, if an original alert data set hasn types of alerts with frequenciesp1, p2, · · · , pn where



149

p1 + p2 + · · · + pn = 1, then in our artificial alert set, we will maintain this frequency distribution.

Sensitive attributes are decided by privacy policy, and their values are what we try to

protect. Considering both privacy and utility concerns, wepropose to use concept hierarchies to

help us artificially generate sensitive attribute values. Creating attribute values based on concept

hierarchies may preserve some useful information (e.g., prefixes of IP addresses), but also change

attribute distributions to certain degree to protect alertprivacy. Before we discuss our algorithm on

artificial alert generation, we first introduce concept hierarchies.

Concept hierarchies have been used in areas such as data mining [49] and also in privacy-

preserving techniques (e.g.,k−Anonymity approach [95]). A concept hierarchy is based onspecific-

generalrelations. Given two conceptsc1 andc2 (e.g., attribute values), ifc1 is more specific than

c2 (or equivalently,c2 is more general thanc1), we say there is aspecific-generalrelation between

c1 andc2, and denote it asc1 � c2. As an example, given an IP address172.16.10.3 and a network

address172.16.10.0/24, we have172.16.10.3 � 172.16.10.0/24. Note that specific-general rela-

tion is reflexive, antisymmetric and transitive. Specific-general relations can be obtained through

abstracting a set of low-level concepts to a high-level concept. For example, a set of individual IP

addresses can be organized into a subnet. Based on specific- general relations, aconcept hierarchy

is a set of specific-general relations and is usually organized into a tree. Figure 8.1 shows a concept

hierarchy for IP addresses172.16.11.0, · · · , 172.16.11.255 and172.16.12.0, · · · , 172.16.12.255,

where each IP address is generalized first to its corresponding /24 network address, and then to its

/16 network address.

For continuous attributes, we can group data into bins thus continuous values can be trans-

formed into categorical. For example, given a set of timestamps within a one-hour time interval, we

may partition the whole time interval into60 equal-length bins where each bin is a one-minute time

interval, and put timestamps into the corresponding bins. Binning techniques have been extensively

studied in the fields such as data mining [49] and statistics,and we do not repeat them here. In

this chapter, our techniques focus on categorical data, though they can be extended to accommodate

continuous data.

Given a concept hierarchyH, and two nodesvs andvg in H wherevs � vg (this means

vs has a path tovg in H), the distancebetweenvs andvg is the number of edges over the path

from vs to vg, denoted asdistance(vs , vg). For example, in Figure 8.1,distance(172.16.11.3,

172.16.11.0/24)= 1. Given a concept hierarchyH and two nodesvs1 andvs2 in H, we call a node

vg in H the least common parentif (1) vs1 � vg, (2) vs2 � vg, and (3)dm =max(distance(vs1, vg),

distance(vs2, vg)) has a minimum value. In addition, ifvs1 andvs2 are both leaf nodes inH and



150

172.16.0.0/16

172.16.11.0/24 172.16.12.0/24

172.16.11.0 ...... 172.16.11.255 172.16.12.0 ...... 172.16.12.255

Figure 8.1: An example concept hierarchy for IP addresses

the least common parentvg has totalL leaf nodes includingvs1 andvs2, we call nodesvs1 andvs2

L-peer nodes, or simplyL-peers. As an example, in Figure 8.1, the least common parent of two

leaf nodes172.16.11.3 and172.16.11.5 is node172.16.11.0/24. Since node172.16.11.0/24 has

totally 256 leaf nodes, two nodes172.16.11.3 and172.16.11.5 are256-peers.

Now let us discuss how to generate sensitive attributes for artificial alerts. We assume each

sensitive attribute value has a desirable general value in concept hierarchies, where these desirable

general values can be derived through a given parameterL denoting the desirable number of peer

nodes. For example, ifL = 256 for attributeDestIP, then the desirable general values for these IP

addresses are the corresponding/24 network addresses. We first compute the frequency distribution

of these generalized attribute values based on the originaldata set. Next, following the computed

frequency distribution, we create generalized attribute values in the artificial alert set, finally we

replace these generalized values using leaf nodes in the corresponding hierarchies (each leaf node

value has equal probability to be chosen). Notice that during the above procedure, we preserve

attribute frequency in terms of general values. This is because these general values partially maintain

the utility of alert data (e.g., prefixes of IP address). We also replace these general values using their

corresponding leaf nodes with uniform distribution. This may help us change the distribution of

attributes in original sets. For example, if in an original set, the values for attributeDestIP is only

from 172.16.11.0 to 172.16.11.31. Further suppose we set parameterL = 256. Then we will

generate artificial attributes uniformly distributed from172.16.11.0 to 172.16.11.255 to change

attribute distribution and hence protect original values.Notice that desirable general values (or,

parameterL) for sensitive attributes are decided by privacy policy. For example, if we letDestIP’s

desirable general values be the corresponding/24 network addresses, this means that ideally, we

want eachDestIPin its /24 network to be equally likely in alert sets, so malicious users may not be

able to “guess” which values are more possible.

To generate nonsensitive attributes, we first compute the frequency distribution of their



151

original values, then we generate artificial attribute values with the same frequency distribution

in the artificial alert set. As a special case, for timestamp information, we first get the minimum

and maximum timestamps for each alert type in the original alert set, then we uniformly create

timestamps between the minimum and maximum values for artificial alerts.

Another important issue on artificial alert generation is todecide how many alerts to

generate. Notice that injecting artificial alert data usually may change the distribution of attribute

values. Intuitively, if a large number of artificial alerts are generated, we may better protect alert

privacy (attributes are more uniformly distributed), but the utility of alerts may decrease. On the

other hand, if only a small number of alerts are created, we may increase the utility, but alert privacy

may decrease. So the ideal case is to flexibly control the difference between attribute distributions

based on the requirement from privacy protection. This can help us decide the number of artificial

alerts to be generated.

We propose to use the distance between probability mass functions (PMFs) to measure

the difference between attribute distributions. Given oneattributeAs in both original alert setSo

and mixed alert setSm, assume the PMFs forAs in So andSm arefo(x) andfm(x), respectively,

wherex is possible values forAs. Further assume the domain of attributeAs is Dom(As). To

calculate the distance between two PMFs, we first need define distance functionD(fo, fm) between

fo(x) andfm(x). As an example, we can setD(fo, fm) =
∑

x∈Dom(As) |fm(x) − fo(x)|. (Other

distance functions are also possible.1) Through setting a desirable distance threshold, we may inject

the number of alerts satisfying the threshold. (In case sensitive attributes in original data sets are

in uniform distributions, we may further specify a maximum number of artificial alerts to prevent

infinite alert injection.)

In Figure 8.2, we summarize our algorithm on artificial alertgeneration. In Line 1, we

prepare the mix alert set. From Line 2 to 5, we compute variousdistributions in the original data

set for later usage. From Line 7 to 14, we generate one artificial alert. We use different strategies to

generate sensitive attributes, timestamps, and other non-sensitive attributes. In Line 15, we compute

distances between PMFs. These distances combined with the maximum number of artificial alerts

can help us control the actual number of alerts injected. In Line 17, we output the mixed alert set.

Notice that in the above algorithm, we do not consider the dependence between different

1For ordinal data, we may also use cumulative distribution functions (CDFs) to compute the distance between attribute
distributions. Assume the CDFs forAs in So andSm areFo(x) andFm(x), respectively. We may setD(Fo, Fm) =P

x∈Dom(As) |Fm(x) − Fo(x)|. As another example, we may also use some goodness-of-fit test statistics such as
Kolmogorov-Smirnov statistic ( which letsD(Fo, Fm) = maxx∈Dom(As)|Fm(x) − Fo(x)|) to compute the difference
between CDFs.



152

Algorithm. Generation of Artificial Alerts.
Input: An original alert setSo, concept hierarchies for sensitive attributes, a parameter L

denoting the desirable number of peers, a distance functionD between PMFs,
a threshold valued denoting the desirable distance between PMFs, and a threshold valuena

of the maximum number of artificial alerts.
Output: A mixed setSm of both original and artificial alerts.
Method:

1. Initialize setSm to empty. Copy all alerts inSo to Sm.
Initialize a distance valuedc = 0. Initialize the number of artificial alertsnc = 0.

2. Compute the frequency distributionFDT of alert types inSo.
3. Based onL, find desirable general values in concept hierarchies for sensitive attributes inSo.

Compute the frequency distribution in terms of these general values for each alert type.
4. As of timestamps, get minimum and maximum timestamps for each alert type.
5. Compute frequency distributions of other nonsensitive attributes for each alert type.
6. While dc < d andnc < na

7. Generate an alert typeT following the distributionFDT .
Initialize an empty artificial alertta with typeT .

8. Foreach attributeA in ta
9. If A is a sensitive attribute
10. Create a general valuevg following the frequency distribution computed in Step 3.

Replacevg uniformly with vg ’s leaf nodes that havingL-peers.
11. Else if A is a timestamp
12. Choose a timestamp uniformly from the minimum and maximum timestamps ofT .
13. Else if A is another nonsensitive attribute
14. Create an attribute value following the frequency distribution computed in Step 5.
15. For each sensitive attribute, compute distance based onD betweenSo andSm.
16. Let the minimum distance computed in Step 15 bedc. Let nc = nc + 1. Putta in Sm.
17. OutputSm.
End.

Figure 8.2: An algorithm to generate artificial alerts

attributes (e.g., the dependence between attributesDestIPandDestPort). When there are no such

dependence, we can use the algorithm in Figure 8.2 to generate all alerts. However, when there

does exist the dependence, we need to handle this situation with caution. As an example, if there are

only one web server172.16.10.5 with port 80 open in a network, then usually all those web based

attacks are targeting172.16.10.5 on port80. This means IP address172.16.10.5 and port number

80 are dependent in web based attacks. Artificial alert generation, on the one hand, does not require

to strictly satisfy this dependence, because the violationof this dependence may bring confusion



153

to and require further investigation from malicious users,which in some sense may protect data

privacy. However, on the other hand, if we try to make artificial alerts and original alerts very

difficult to distinguish, or the utility of data is our favorable concern, we can also maintain attribute

dependence during artificial alert generation. We propose two ways to get dependence relationships

between attribute values.

1. Manually collect all dependence relationships through various means. For example, based on

attack signatures, and host and network configurations, we can know the hosts and ports that

some attacks are targeting.

2. Compute conditional probabilities between attribute values based on original alert sets, and

follow these conditional probabilities to generate attribute values in artificial alert sets. This

approach is similar to the data-swapping technique proposed by Reiss [92].

To see how well our anonymization schemes can help protect alert data privacy, we clas-

sify alert data privacy into two levels:local privacyandglobal privacy. Local privacy is related

to original attribute values in each individual alert. Intuitively, if the original attribute value for a

sensitive attribute in an alert has been known, the local privacy for the sensitive attribute in this alert

is compromised. The second level of alert data privacy is global privacy, which is related to the dis-

tributions of sensitive attributes in alert set. Intuitively, if the distribution of a sensitive attribute in

an original alert set is known, we can derive useful information about the original set (e.g., the most

possible value in the data set). For both local and global privacy, we useentropy[26] to measure

them. Suppose that we have a valuevs for a sensitive attributeAs in an alertt. Based onvs, if

we can estimate the possible original values ofAs in t and the corresponding probability for each

possible value, then we can compute alertt’s local privacyHl(t) = −
∑

pi log2 pi, wherepi is the

probability for a possible value. Given all attribute values for a sensitive attributeAs in an alert

setS, we can estimate alert setS’ global privacyHg(S) = −
∑

P (vi) log2 P (vi), wherevi is a

possible value forAs in S, andP (vi) is the corresponding probability. To help us better understand

global privacy, we may explain it from a random variable (or event) point of view. Assume that a

sensitive attribute is a random variable, and attribute values for this sensitive attribute in an alert

set is a realization of this random variable. Then the globalprivacy for the attribute in the given

alert set is a randomness (or uncertainty) measure about therealization of this random variable. Re-

call that we generate uniformly distributed data (based on concept hierarchies) during artificial alert

injection. The reason is that injecting uniformly distributed data generally may increase the ran-

domness of data sets. Also notice that the distance between PMFs and the change in global privacy



154

are closely related because we change attribute distributions through injecting uniformly distributed

data. And it is also feasible to control the number of artificial alerts through adjusting the change in

global privacy.

Back to artificial alert injection, if original alert setSo hasm alerts, we injectn artifi-

cial alerts in it, thus we totally getm + n alerts in mixed setSm. In Sm, each individual alert

has probability m
m+n

to be original, and probability n
m+n

to be artificial. So its local privacy is

−
∑

pi log2 pi = m
m+n

log2
m+n

m
+ n

m+n
log2

m+n
n

. We can also calculate global privacy for both

So andSm, and compute their difference to see how well we can improve global privacy. One of

our later experiments shows that through injecting168 artificial alerts into an original set with922

alerts, we achieve local privacy with value0.62, and we improve global privacy from4.696 to 5.692

(the distance between two PMFs is0.3).

8.1.2 Scheme II: Attribute Randomization Based on Concept Hierarchies

In Scheme I, we inject artificial alerts into original data set. For any individual alert in

the mixed alert set, it may be difficult to identify whether this alert is original or artificial, hence

sensitive attribute values in any single alert have a chanceto be faked.

Let us look at Scheme I in detail. Assume that we havem original alerts, and injectn

artificial alerts into it. Hence in the mixed alert set, each alert has a probability m
m+n

to be original

(or, every alert has a probabilityn
m+n

to be artificial). Based on probability theory, randomly pick

up k alerts in the mixed set, the probability that at least one alert is original is1 − ( n
m+n

)k, and

the probability that at least one alert is artificial is1 − ( m
m+n

)k. As an example, letm = 1000,

n = 300, andk = 2, thus the probability that at least one alert is original is94.67%, while the

probability that both alerts are artificial is only5.33%. This tells us that when the ratio of the

number of artificial alerts to the total number of alerts is small, it is very likely that some alerts in

an alert subset are original even if this subset is small. Closely investigating these small subsets

may disclose the privacy of alert data. This problem may be mitigated by injecting more artificial

alerts. In the extreme case, if we inject a much larger numberof artificial alerts (i.e.,m ≪ n),

then in a randomly selectedk-alert subset, the probability that at least one alert is original may be

very small even ifk is big. For example, letm = 1, 000 andn = 1, 000, 000. Whenk = 100,

the probability that at least one alert is original is only9.51%, and even whenk = 1, 000, the

probability value only increases to63.19%. Notice that with the increase of the number of artificial

alerts, the utility of mixed data sets may be decreasing, andmore overhead is introduced to analyze



155

Algorithm. Randomization for Sensitive Attributes.
Input: An alert setS, a sensitive attribute nameAs, a concept hierarchyH for As,

and a parameterL denoting the desirable number of peers.
Output: A setSr of alerts where attributeAs are randomized.
Method:

1. InitializeSr to be empty.
2. While the setS has more alerts
3. Pick an alertt from S and putt into Sr.

Assume the value ofAs in t is vs.
Based onH, uniformly select a valuevr from H wherevr andvs areL-peers.
Replacevs with vr in t.

4. Foreach alertti in S whereti’s attribute value ofAs is vs

5. Removeti from S and put it intoSr. Replaceti’s value ofAs with vr.
6. OutputSr.
End.

Figure 8.3: An algorithm to randomize sensitive attributes

mixed alert sets. Considering privacy, utility, and performance, we propose to apply randomization

to sensitive attributes, which may allow us protect the privacy of original alerts without injecting a

huge amount of artificial alerts. Notice that our randomization algorithm takes advantage of concept

hierarchies, which can preserve some useful information insensitive attributes (e.g., prefixes of IP

addresses).

Though we motivate attribute randomization in term of mixedalert sets, it can be applied

to original alert sets. Given a parameterL denoting the desirable number of peers in concept hierar-

chies, the basic idea of our algorithm is to randomize each different attribute valuevi uniformly to

any ofvi’s L-peers (In other words, the mapping and mapped values has a common general value

vg wherevg hasL leaf nodes). For example, based on the concept hierarchy in Figure 8.1, we may

randomize a sensitive attributeDestIP=172.16.11.8 to DestIP=172.16.11.56 if L = 256. During

randomization, we keepconsistencyin attribute mapping, which means if two alerts has the same

attribute values for an attributeAs, then the mapped values forAs in both alerts are the same. For

convenience, we call the mapped value theimage value, or simply theimage. This consistency is

desirable for later correlation analysis of alert data sets, and help us maintain the utility of alert data.

In Figure 8.3, we sketch the algorithm for attribute randomization.

In Figure 8.3, we first initialize the result set in Line 1. In Line 3, we map an attribute

value in the alert set to one of itsL-peers (with uniform distribution). From Line 4 to 5, we keep



156

consistency among attribute mapping. And finally in Line 6, we output the result set.

To see how attribute anonymization may help protect alert privacy, let us take a look at

both local privacy and global privacy. Suppose that we randomize a sensitive attributeAs in an

original alert set. After performing randomization, givenany image valuevr, we know the original

value ofvr may be any ofvr ’s L-peers with equal probability (i.e.,1L ). Thus the local privacy

value is−
∑L

i=1
1
L log2

1
L = log2 L. If we randomize a mixed alert set, we can also derive the

corresponding local privacy after considering the probability that a given alert may be original. On

the other hand, based on concept hierarchies and requirements for local privacy values, we may

choose desirable parameters (e.g.,L) satisfying the requirements. To consider global privacy,let

us assume that there arek distinct values for sensitive attributeAs in an alert setS. Since we

keep consistency during randomization, there will be at most k distinct image values forAs in

randomized alert setSr. If k distinct image values do exist, thenSr have the same global privacy

as inS. When less thank distinct image values are generated (this is possible because two different

original values may happen to be randomized to the same value), the global privacy valueHg(Sr)

in Sr may change compared with the value inS, whereHg(Sr) may be slightly smaller. Our later

experimental results confirm this conjecture. For example,in one data set, we setL = 256, and the

global privacy slightly changes from5.692 (before randomization) to5.671 (after randomization).

To summarize, our attribute randomization may result in slight change (or no change) in global

privacy, and desirable change (through choosing appropriate parameters) in local privacy.

8.1.3 Scheme III: Alert Set Partitioning and Attribute Randomization

In Scheme II, we randomize sensitive attribute values to their L-peers and maintain con-

sistency during randomization. A limitation related to this scheme is that once attackers get to know

some(original value, image value)pairs, then for all the image values in the known pairs, with high

probability, attackers know their corresponding originalvalues in the whole alert set. Notice that

(original value, image value) pairs can be obtained throughvarious means, for example, deliberately

attacking some special hosts and examining published alertdata (e.g., counting frequencies of some

attacks). To mitigate this problem, we propose to partitionan alert set into multiple subsets and

perform randomization (Scheme II) in each subset independently. Thus one original value may be

mapped to different image values in different subsets.

Our algorithm on partitioning an alert set is based on atime constraint. Given a time inter-

val I (e.g.,2 hours) and a setS of alerts, we sayS satisfies time constraintI if |max(EndT ime)−



157

min(StartT ime)| ≤ I (i.e., the difference between the maximumEndTimeand the minimum

StartTimein S is less than or equal toI). Based on a time constraint, we partition an alert set into

multiple subsets such that each subset satisfies the time constraint, then we randomize each subset

through Scheme II independently.

Now let us look at local and global privacy under Scheme III. For local privacy, since im-

age values are chosen uniformly fromL-peers, we have a similar analysis as in Scheme II. However,

for global privacy, since it is possible that one original value in different subsets may be randomized

to different image values, global privacy usually may increase after applying Scheme III compared

with applying Scheme II. Our later experimental results confirm this conjecture. For example, in

one experiment, we partitioned one data set into four subsets, which increases global privacy from

5.692 to 6.955.

8.2 Anonymized Alert Correlation

Through our focus in this chapter is alert anonymization techniques, we are also interested

in the utility of anonymized alert sets. To understand the utility of alert data, it is usually neces-

sary to perform intrusion alert correlation. Notice that current alert correlation approaches usually

concentrate on computing similarity values between alert attributes, or building attack scenarios

to reflect attackers’ activities. So in this section, we willfocus on these two problems under the

situation that alerts are anonymized. Notice that our approaches are closed related to our previous

method proposed in Chapter 7, however, the alerts that we correlate are anonymized by the schemes

proposed in this chapter.

8.2.1 Similarity Estimation between Anonymized Attributes

Similarity measurement computes how similar two attributes are, usually with a value

between0 and1. Existing approaches [109, 98, 61] focus on measuring similarity between origi-

nal attributes. Our anonymization techniques (Schemes II and III) transform original attributes to

random values based on concept hierarchies. Thus it is crucial and helpful to estimate similarity be-

tween original attributes only using anonymized values. Inthe following, we first give an example

function on computing similarity between original values,then discuss how to estimate similarity

values based on anonymized attributes.



158

Assume that we have a sensitive attributeAs and two original attributes valuesx1 andx2

for As. As an example similarity function, we letSim(x1, x2) = 1 if x1 = x2, andSim(x1, x2) =

0 if x1 6= x2. We further assumex1 andx2’s images arey1 andy2, respectively, after performing

randomization. We consider two cases regarding whetherx1 andx2 are in the same subset (an set

is partitioned into multiple subsets in Scheme III).

(1) Whenx1 andx2 are in the same subset, we have the following observation.

Observation 3 For a sensitive attributeAs, given two original attribute valuesx1 and x2 where

they are in the same subset, and two image valuesy1 and y2 randomized fromx1 and x2 using

Scheme II (with same parameters such asL), we know that (i) ifx1 = x2, theny1 = y2; (ii) if

y1 = y2, x1 andx2 may or may not be the same.

We explain our observation through examples. Assumex1 andx2 are both destination IP

addresses wherex1 = 172.16.11.5. Using the concept hierarchy in Figure 8.1, suppose we random-

ize x values to one of its256-peer nodes, andx1 is mapped toy1 with value172.16.11.98. Since

we keep consistency in Scheme II, ifx2 = 172.16.11.5, then we knowy2 = y1 = 172.16.11.98.

On the other hand, ifx2 6= x1, for example, letx2 = 172.16.11.9, theny2 can be any IP address

from 172.16.11.0 to 172.16.11.255, which has a chance to be172.16.11.98. To better characterize

this observation, we compute the following probabilities.

For simplicity, assume the domain ofx is L specific values where each value has equal

probability to be chosen, and two original valuesx1 and x2 are randomized using theirL-peer

nodes. Based on conditional probability and total probability theorems, we can derive

P (x1 = x2|y1 = y2) =
P (x1 = x2 ∧ y1 = y2)

P (y1 = y2)

=
P (x1 = x2 ∧ y1 = y2)

P (y1 = y2|x1 = x2)P (x1 = x2) + P (y1 = y2|x1 6= x2)P (x1 6= x2)

=
1
L

1
L + L−1

L
1
L

=
L

2L − 1
.

Similarly, we can getP (x1 6= x2|y1 = y2) = L−1
2L−1 , P (x1 = x2|y1 6= y2) = 0, and

P (x1 6= x2|y1 6= y2) = 1.



159

Notice that though we use the assumption of uniform distribution about original values to

deriveP (x1 = x2|y1 = y2) = L
2L−1 , we can prove that for other distributions, we haveP (x1 =

x2|y1 = y2) ≥
L

2L−1 as long as the attribute domain is the same. We prove it through Lemma 8.2.1.

Lemma 8.2.1 Given a sensitive attributeAs with domain{v1, v2, · · · , vn} (vi is a possible attribute

value forAs), supposex1 andx2 are two original values forAs, andy1 andy2 are two image values

for x1 andx2, respectively, after applying Scheme II. Further assume the number of desirable peer

nodes in Scheme II isL. P (x1 = x2|y1 = y2) has a lower bound whenv1, v2, · · · , vn are in

uniform distribution.

Proof: First, let us assume that in the original alert set,P (x1 = x2) = α. Then we have

P (x1 = x2|y1 = y2)

= P (x1=x2∧y1=y2)
P (y1=y2)

= P (x1=x2∧y1=y2)
P (y1=y2|x1=x2)P (x1=x2)+P (y1=y2|x1 6=x2)P (x1 6=x2)

= α

α+ 1−α
L

= L
L−1+ 1

α

Now let us discuss how to computeα. Suppose the probabilities for possible attribute

valuesv1, v2, · · · , vn in As’s domain arep1, p2, · · · , pn, respective, wherep1 + p2 + · · · + pn = 1.

Thenα = p2
1 + p2

2 + · · · + p2
n.

Based on Cauchy’s inequality(
∑n

i=1 aibi)
2 ≤ (

∑n
i=1 a2

i )(
∑n

i=1 b2
i ), we can deriveα =

∑n
i=1 p2

i ≥ (
∑n

i=1 pi)
2/n = 1

n
. Then we know that the minimum value ofα is 1

n
, wherep1 =

p2 = · · · = pn = 1
n

(uniform distribution). Next we proveP (x1 = x2|y1 = y2) = L
L−1+ 1

α

is

monotonically increasing when0 < α < 1.

Assume0 < α1 < α2 < 1. Then 1
α1

> 1
α2

. Next we haveL − 1 + 1
α1

> L − 1 + 1
α2

.

Finally we get L
L−1+ 1

α1

< L
L−1+ 1

α2

.

To summarize, we know thatP (x1 = x2|y1 = y2) have a minimum value L
L−1+ 1

α

when

v1, v2, · · · , vn are in uniform distribution.

(2) Whenx1 and x2 are in different subset,x1 andx2 are randomized independently.

Assume their randomization has the same input parameters (e.g.,L). With the similar reasoning as

in (1), we know that as long asx1 andx2 areL-peers,y1 andy2 have a chance to be the same, or



160

to be different. Under the same assumption as in (1), we can derive thatP (x1 = x2|y1 = y2) = 1
L ,

P (x1 6= x2|y1 = y2) = L−1
L , P (x1 = x2|y1 6= y2) = 1

L , andP (x1 6= x2|y1 6= y2) = L−1
L .

As an example to estimate similarity betweeny1 andy2, we estimate how possible their

correspondingx1 andx2 are the same, and use this probability value as their similarity value. Based

on the above assumption and reasoning, we can get an example similarity function for anonymized

attributes as follows.

Sim(y1, y2) =















L
2L−1 , if (y1 andy2 areL-peers)∧ (y1 = y2) ∧ (y1 andy2 in the same subset),
1
L , if (y1 andy2 areL-peers)∧ (y1 andy2 in different subsets),

0, otherwise.
(8.1)

Notice that to derive the new similarity function above, we only consider a simple case

regarding how possible original attributes may be the same.For more complicated case, we may

apply a similar, probability-based approach to derive new functions for anonymized attributes.

8.2.2 Building Attack Scenarios

Attack scenarios help us understand what steps adversariestake to attack victim machines.

For example, an attacker may first run IP sweep to detect live IP addresses, followed by port scan-

ning attacks to look for open ports, and finally launch bufferoverflow attacks to gain root privileges

on some live hosts. To build attack scenarios, it is crucial to identify causal relations between indi-

vidual attacks. For example, there is a causal relation between an earlier IP sweep attack and a later

port scanning attack because the IP sweep attack may detect live IP addresses, which can be further

probed by the port scanning attack to determine what ports are open.

There are several approaches being proposed to build attackscenarios. They can be clas-

sified into two categories: (1) known attack scenario based approaches such as [36, 78], and (2)

prerequisite and consequence based methods such as [102, 29, 83]. These approaches can build at-

tack scenarios when original attributes are known. To buildattack scenarios from anonymized alerts,

we use a probability based approach, which is extended from our previous correlation method [83].

For the formal model of our approach [83], please refer to Chapter 2 for details. In the following,

to facilitate our discussion, we first give examples of prerequisites, consequences, andprepare-for

relations, which will be used in later examples.



161

Example 19 Given an alert typeFTP AIX Overflow, its prerequisite isExistService(DestIP,DestPort),

and its consequence is{GainAccess(DestIP)}, which means that the necessary condition of an

FTP AIX Overflowattack is thatFTPservice is running onDestIPat port DestPort, and the con-

sequence of this attack is that attackers may gain unauthorized access toDestIP.

Example 20 Assume that we have two alert typesPort Scanand FTP AIX Overflow where the

consequence of typePort Scanis EixistService(DestIP, DestPort). Further assume that we have

two alertst1 and t2 wheret1 is a typePort Scanalert {SrcIP=172.16.10.28, SrcPort=1073, Des-

tIP=172.16.30.6, DestPort=21, StartTime=01-16-2006 18:00:02, EndTime=01-16-2006 18:00:02},

andt2 is a typeFTP AIX Overflowalert{SrcIP=172.16.10.28, SrcPort=1081, DestIP=172.16.30.6,

DestPort=21, StartTime=01-16-2006 18:01:05, EndTime=01-16-2006 18:01:05}. Thus the instan-

tiated consequence oft1 is {ExistService(172.16.30.6, 21)}, and the instantiated prerequisite oft2

is ExistService(172.16.30.6, 21). Further due tot1.EndTime< t2.StartTime, we knowt1 prepares

for t2.

A Probability Based Approach to Building Attack Scenarios.

To build attack scenarios, it is critical to identify prepare-for relations. When all origi-

nal values are known, this identification is straightforward. However, when alerts are anonymized

through randomization, identifying prepare-for relations requires more efforts.

Example 21 Let us re-consider Example 20. Assume thatDestIPis sensitive, and we do not know

their original values in both alertst1 and t2. Based on the prerequisites, the consequences, and

the available nonsensitive values, we know thatt1 prepares fort2 only if t1 and t2 have the same

original destination IP addresses. For simplicity, assumethat the original values ofDestIPare

uniformly distributed from172.16.30.0 till 172.16.30.255, and attribute randomization uniformly



162

chooses IP addresses from172.16.30.0 to 172.16.30.255 to replace original values (the number of

peers used in Scheme II isL = 256). We consider two cases. (1) Suppose thatt1 and t2 are in the

same subset (in terms of alert set partitioning in Scheme III). If t1 andt2’s anonymized destination

IP addresses are the same (e.g., both are172.16.30.52), then based on our reasoning in similarity

estimation (Subsection 8.2.1), we know that with probability L
2L−1 = 256

511 = 0.501, t1 and t2 may

have the same original destination IP addresses. Equivalently, t1 andt2 may have different original

destination IP addresses with probability0.499. In addition, if after randomization,t1 andt2 have

different anonymized destination IP addresses, we know that their original destination IP addresses

are different. (2) Suppose thatt1 and t2 are in different subsets. we know thatt1 and t2 may be

possible (with probability1
L = 1

256 ) to have the same original destination IP addresses as long as

their anonymized values areL-peers.

Based on the above observation, we realize that we can only identify possible prepare-

for relations after attribute randomization. To characterize this observation, we propose to asso-

ciate a probability value to each possible prepare-for relations when building attack scenarios from

anonymized alerts. Notice that sometimes precisely computing the probability that one alert pre-

pares for another is difficult because analysts do not know probability distributions of original at-

tribute sets. However, as we mentioned in Subsection 8.2.1 and also proved in Lemma 8.2.1, we can

get lower bound probability values under the assumption of uniform distributions. We take advan-

tage of this observation and definepossibly-prepare-forrelation. Formally, given two anonymized

alertst1 andt2, t1 possibly prepares fort2 with at least probabilityp if (1) the probability thatt1

prepares fort2 is no less thanp, and (2)p > 0. Our probability based approach is closely related

to the optimistic approach in Chapter 7. However, here probabilities related to possibly-prepare-for

relations are lower bound values and are estimated based on the anonymization schemes in this

chapter. To continue Example 21, (1) whent1 andt2 are in the same subset, ift1 andt2 have the

same anonymizedDestIP, we knowt1 possibly prepares fort2 with at least probability0.501; (2)

whent1 andt2 are in different subsets, if their anonymized destination IP addresses areL-peers,t1

possibly prepares fort2 with at least probability 1
256 .



163

In the above example, there are only one implication relationship between instantiated

predicates for two alerts. It is also possible that there mayexist multiple implication relationships.

To deal with this situation, similar as in Chapter 7, we assume each implication relationship are

independent, and then estimate the probability that at least one implication relationship is true. In

particular, if there aren implication relationships, and the probability that each implication relation-

ship is true is at leastp1, p2, · · · , pn, respectively, then the probability that at least one implication

relationship is true has a lower-bound value1 − (1 − p1)(1 − p2) · · · (1 − pn).

To build attack scenarios from anonymized alerts, we identify all possibly-prepare-for

relations and connect them into a graph. For convenience, inthe remainder of this chapter, we may

use prepare-for relations to represent either prepare-forrelations, possibly-prepare-for relations, or

both, if it is clear from the context.

Lower-bound probabilities related to prepare-for relations may also be used to “polish”

alert correlation graphs. Actually if we take a close look athow we compute these probability

values, the basic problem involved is to decide how possiblethe related attributes have the same

original values. In some cases, we can estimate precise probability values. For example, suppose

the desirable number of peers isL when applying Scheme III. If two anonymized attributes are

in different subsets, and they areL peers, then the probability that they have the same original

value is 1
L . However, in some other cases, for example, two anonymized attributes are in the same

subset and have the same anonymized values, we usually may assume uniform distribution to get

lower-bound probability values. Considering that prepare-for relations are identified through this

probability based approach, it is natural that some prepare-for relations may not be true. A common

way to filter out false prepare-for relations is to examine their related (lower-bound) probabilities.

If the probability is greater than a given probability threshold, we keep it in the correlation graph,

otherwise we remove it. Notice that in Chapter 7, a probability based refinement to alert correlation

graphs also has been proposed. However, the approach in Chapter 7 is to calculate the probability

for a set of prepare-for relations2, and use this probability to perform aggregation to alert correla-

tion graphs. While the approach in this chapter is to examineand filter out individual prepare-for

relations. In addition, we agree that the approach in Chapter 7 is complementary to the approach in

this chapter, and may be applied here. Though our approach onpolishing alert correlation graphs

may help us remove false prepare-for relations, we also notice that it has a chance to prune true

prepare-for relations. It is necessary to examine both alert correlation graphs with and without

2If there aren prepare-for relations with probabilitiesp1, p2, · · · , pn, respectively, and these prepare-for relations are
independent, then the probability that at least one prepare-for relation is true is1 − (1 − p1)(1 − p2) · · · (1 − pn).



164

probability-polishing to understand attackers’ activities.

8.3 Experimental Results

To evaluate the effectiveness of our techniques, we did a setof experiments to evaluate

Scheme I (artificial alert injection), Scheme II (attributerandomization), Scheme III (alert set parti-

tioning and attribute randomization), similarity estimation and building attack scenarios. The data

sets we used are 2000 DARPA intrusion detection scenario specific data sets [77]. These data sets

were collected in simulation networks and include two scenarios: LLDOS 1.0 and LLDOS 2.0.2.

Both scenarios have two data sets collected over different parts of the networks: the inside part and

the DMZ part. In LLDOS 1.0, the attackers first probed the network, then launched buffer overflow

attacks against vulnerableSadmindservices, next installed DDoS software on victim hosts, andfi-

nally ran DDoS attacks against a server. LLDOS 2.0.2 has a similar scenario as in LLDOS 1.0. We

used RealSecure network sensor 6.0 [52] to generate alerts from the data sets. Similar as done by

DShield [106], we set attributeDestIP(destination IP addresses) in all alerts as sensitive attribute,

and anonymized them using the schemes in this chapter.

8.3.1 Experiments on Scheme I

In our first set of experiments, our goal is to evaluate the effectiveness of artificial alert

injection. We injected artificial alerts into all four data sets through the algorithm in Figure 8.2.

To apply this algorithm, for sensitive attributeDestIP, we set the desirable general value for each

address to its corresponding/24 network address, which means that we replace a general value

using one of256 IP addresses in the corresponding network. We used distancefunctionD between

PMFs to control artificial alert injection, whereD(fo, fm) =
∑

x∈Dom(As) |fm(x)−fo(x)|. We set

distance threshold (between PMFs)d = 0.3 and maximum artificial alert numberna = 300. The

experimental results are shown in Table 8.1, Figure 8.4, andTable 8.2.

Part of data utility is related to alert type frequencies (e.g., security officers may count

attack type frequencies to see what events are most possible). To learn whether our algorithm

can preserve type frequencies in mixed alert sets (comparedwith original sets), we computed type

frequencies for all data sets. For demonstration purpose, we show the results for one data set in

Table 8.1. Based on Table 8.1, we observed that each alert type has very close frequencies both in



165

Table 8.1: Alert type frequency distribution in LLDOS 1.0 inside part

Alert type Frequency in original set Frequency in mixed set
Admind .018438 .016513
Email Almail Overflow .041214 .040366
Email Debug .002169 .001834
Email Ehlo .566160 .570642
FTP Pass .053145 .056880
FTP Syst .047722 .046788
FTP User .053145 .052293
HTTP Cisco CatalystExec .002169 .001834
HTTP Java .008676 .011009
HTTP Shells .016268 .015596
MstreamZombie .006507 .005504
Port Scan .001084 .000917
RIPAdd .001084 .000917
RIPExpire .001084 .002752
Rsh .018438 .016513
SadmindAmslverify Overflow .015184 .019266
SadmindPing .003253 .002752
SSHDetected .004338 .003669
StreamDoS .001084 .000917
TelnetEnvAll .001084 .000917
TelnetTerminaltype .136659 .131192
TelnetXdisplay .001084 .000917

original sets and mixed sets.

To see how our algorithm may change the distributions of sensitive attributes to protect

data privacy, we further plotted the PMFs forDestIPin both original and mixed data sets in Figure

8.4(a), 8.4(b), 8.4(c), and 8.4(d). Note that in these figures, each destination IP address is trans-

formed into an integer. If the format of an IP address isA.B.C.D whereA, B, C andD are integers

between0 to 255, thenA.B.C.D is transformed to an integerx = A×224 +B×216 +C×28 +D.

Based on these figures, we observed that the distributions inmixed sets are changed compared with

original data sets.

To more precisely evaluate alert privacy, we computed localand global privacy for each

data set. The results are shown in Table 8.2. Based on this table, we noticed that through Scheme

I, we can better protect alert privacy because both local andglobal privacy values increase. For

example, in LLDOS 1.0 inside part, we injected around15% of artificial alerts among all alerts, and



166

2 2.5 3 3.5 4 4.5

x 10
9

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

 x

 f
(x

)

 Original data set
 Scheme I

(a) LLDOS1.0Inside (Original & Scheme I)

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

x 10
9

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

 x

 f
(x

)

 Original data set
 Scheme I

(b) LLDOS1.0DMZ (Original & Scheme I)

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

x 10
9

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

 x

 f
(x

)

 Original data set
 Scheme I

(c) LLDOS2.0.2Inside (Original & Scheme I)

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

x 10
9

0

0.02

0.04

0.06

0.08

0.1

0.12

 x

 f
(x

)

 Original data set
 Scheme I

(d) LLDOS2.0.2DMZ (Original & DMZ)

Figure 8.4: PMFs in original alert set and after applying Scheme I

local privacy increases from0 to 0.620, and global privacy increases from4.696 to 5.692.

8.3.2 Experiments on Scheme II

In this set of experiments, our goal is to see the effectiveness of attribute randomization

using Scheme II. We applied Scheme II to all four data sets. Particularly, we randomized destina-

tion IP addresses in mixed alert sets to their256-peers (any IP addresses in the corresponding/24

networks). Figures 8.5(a), 8.5(b), 8.5(c), and 8.5(d) showthe PMFs after applying Scheme II in

mixed data sets (solid blue lines).

Based on these figures, we observed that the distributions ofDestIPhave been greatly



167

Table 8.2: Local and global privacy (So: original set,Sm: mixed set, attribute:DestIP).

LLDOS1.0 LLDOS1.0 LLDOS2.0.2 LLDOS2.0.2
Inside DMZ Inside DMZ

# original alerts 922 886 489 425
# artificial alerts 168 164 89 78

# artificial alerts
# alerts in mixed set 15.41% 15.62% 15.40% 15.51%

Local privacy inSo 0 0 0 0
Local privacy inSm (Scheme I) 0.620 0.625 0.620 0.623

Local privacy inSm (Scheme II) 7.387 7.376 7.388 7.382

Local privacy inSm (Scheme III) 7.387 7.376 7.388 7.382

Global privacy forSo 4.696 4.845 4.461 4.519

Global privacy forSm (Scheme I) 5.692 5.806 5.372 5.383

Global privacy forSm (Scheme II) 5.672 5.792 5.360 5.363

Global privacy forSm (Scheme III) 6.955 7.041 6.097 6.033

changed after randomization. To further precisely evaluate alert privacy, we also calculated local

and global privacy for mixed alert sets. Table 8.2 shows the results. From this table, we observed

that local privacy has been significantly increased, which is highly desirable, and global privacy

stays almost the same, which results from consistency keeping during randomization.

8.3.3 Experiments on Scheme III

In this set of experiments, we applied Scheme III to all four mixed alert sets. We set time

intervalI = 1 hour to partition the alert sets, and we got 4 subsets in LLDOS1.0 Inside data set,

4 subsets in LLDOS 1.0 DMZ data set, 2 subsets in LLDOS 2.0.2 Inside data set, and 2 subsets in

LLDOS 2.0.2 DMZ data set. In each subset, we randomized destination IP addresses to their256-

peers. AttributeDestIPdistributions are shown in Figures 8.5(a), 8.5(b), 8.5(c),and 8.5(d) (dashed

green lines).

Compared with Scheme II, we noticed that attribute distributions after applying Scheme

III have been further changed. We also computed local and global privacy values, and listed them

in Table 8.2. We observed that local privacy stays the same, and global privacy further increases,

which results from independent randomization in each subset.



168

2 2.5 3 3.5 4 4.5

x 10
9

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

 x

 f
(x

)

 Scheme II
 Scheme III

(a) LLDOS1.0Inside (Schemes II & III)

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

x 10
9

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 x

 f
(x

)

 Scheme II
 Scheme III

(b) LLDOS1.0DMZ (Schemes II & III)

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

x 10
9

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 x

 f
(x

)

 Scheme II
 Scheme III

(c) LLDOS2.0.2Inside (Schemes II & III)

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

x 10
9

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

 x

 f
(x

)

 Scheme II
 Scheme III

(d) LLDOS2.0.2DMZ (Schemes II & III)

Figure 8.5: PMFs after applying Schemes II and III

8.3.4 Experiments on Similarity Estimation

To examine data utility after applying our anonymization techniques, we evaluate similar-

ity estimation for anonymized data sets in this subsection.

Similarity estimation is based on our discussion on Subsection 8.2.1. For original data

sets, if two attribute values are the same, we set their similarity to 1; otherwise their similarity is

0. Next we applied three anonymization schemes independently, where we chose similar settings as

in Subsections 8.3.1, 8.3.2, 8.3.3 (the only difference is that here we applied Schemes II and III to

original alert sets instead of mixed alert sets). For the data sets after applying Scheme I, we measure

attribute similarity using the function for original sets.And for the data sets after applying Schemes



169

Table 8.3: Correct classification rate and misclassification rate

LLDOS1.0 LLDOS1.0 LLDOS2.0.2 LLDOS2.0.2
Inside DMZ Inside DMZ

# all pairs 424, 581 392, 055 119, 316 90, 100

# similar pairs in original set 18, 540 14, 558 6, 785 4, 485

# similar pairs 18, 664 14, 803 6, 832 4, 548
Scheme I Rcc 100% 100% 100% 100%

Rmc 0.0305% 0.0649% 0.0418% 0.0736%

# similar pairs 18, 540 14, 558 6, 785 4, 485
Scheme II Rcc 100% 100% 100% 100%

Rmc 0% 0% 0% 0%

# similar pairs 59, 195 45, 764 13, 732 8, 183
Scheme III Rcc 100% 100% 100% 100%

Rmc 10.01% 8.27% 6.58% 4.32%

II and III, we used the function in Subsection 8.2.1 to estimate their (lower-bound) similarity values.

Next, similar as done in Chapter 7, we also usedcorrect classification rateRcc andmisclassification

rate Rmc to measure the effectiveness of similarity estimation. Given two attribute values, if their

similarity value is greater than0, we call them“similar” pair . Assume the alert sets before and

after anonymization areS andSr, respectively, thenRcc = # common similar pairs inS andSr

# similar pairs inS , andRmc =
# similar pairs inSr−# common similar pairs inS andSr

# total pairs−# similar pairs inS . The results are shown in Table 8.3.

From Table 8.3, we observed that correct classification rateis 100%, and misclassification

rate is low (the maximum is around10%). We also noticed that the results from Scheme II are very

desirable. These results tell us that the data utility is still significantly preserved after performing

our anonymization techniques.

8.3.5 Experiments on Building Attack Scenarios

In this subsection, we evaluate the effectiveness of building attack scenarios when alerts

are anonymized. We did experiments using all four data sets.

In the first set of experiments, we identified all possibly-prepare-for relations and built

correlation graphs. The information about prerequisites and consequences for alert types, as well

as implication relationships can be found in Tables 5.3 and 5.4. For demonstration purpose, Figure

8.6 shows a correlation graph from LLDOS 1.0 Inside data set (after performing Scheme I and then

Scheme II).



170

Sadmind_Amslverify_Overflow100105

Rsh100121

Rsh67535

Rsh67536

Rsh67538

Rsh67539

Mstream_Zombie67554

Rsh67558

Rsh67559

Rsh67560

Mstream_Zombie67563

Sadmind_Amslverify_Overflow100009

Sadmind_Amslverify_Overflow100047

Sadmind_Amslverify_Overflow100091

Sadmind_Amslverify_Overflow100116

Mstream_Zombie67776

Mstream_Zombie67537

Rsh67543

Rsh67545

Rsh67546

Rsh67547

Rsh67549

Rsh67550

Mstream_Zombie67767

Mstream_Zombie67777

Sadmind_Amslverify_Overflow100127

Sadmind_Amslverify_Overflow100149

Email_Almail_Overflow100025

Email_Almail_Overflow67533

Email_Almail_Overflow67525

Email_Almail_Overflow67292

Email_Almail_Overflow67302

FTP_Syst67243 Sadmind_Ping67343

Sadmind_Amslverify_Overflow67432

Sadmind_Amslverify_Overflow67434

Sadmind_Amslverify_Overflow67436

Sadmind_Amslverify_Overflow67440

Rsh67553

Sadmind_Ping67286

Sadmind_Amslverify_Overflow67416

Sadmind_Amslverify_Overflow67417

Sadmind_Amslverify_Overflow67420

Sadmind_Amslverify_Overflow67422

Sadmind_Amslverify_Overflow67424

Sadmind_Amslverify_Overflow67426

Rsh67540

Rsh67542

Stream_DoS67773

Email_Almail_Overflow67304

Sadmind_Ping67341

Sadmind_Amslverify_Overflow67428

Sadmind_Amslverify_Overflow67430

Sadmind_Amslverify_Overflow67438

Sadmind_Amslverify_Overflow67442

Rsh67562

Email_Almail_Overflow67529

Figure 8.6: A correlation graph in LLDOS 1.0 Inside data set

In Figure 8.6, the string inside each node is the alert type followed by an alert ID. For

comparison purpose, we also built the alert correlation graph from the corresponding original data

set, where the nodes in this scenario are those without gray-color marking in Figure 8.6. For all

those gray nodes, the ellipse nodes are in original data sets, while the rectangle nodes are artificial



171

Table 8.4: Recall and precision measures in our experiments

LLDOS 1.0 LLDOS 2.0.2
Inside DMZ Inside DMZ

RealSecure # alerts 922 886 489 425

Correlation for original datasets # alerts 44 57 13 5

Correlation for anonymized datasets# original alerts 48 61 20 5
# artificial alerts 9 3 2 0

RealSecure RecallMr 61.67% 57.30% 80.00% 57.14%

Correlation for original datasets RecallMr 60.00% 56.18% 66.67% 42.86%

Correlation for anonymized datasets RecallMr 60.00% 56.18% 66.67% 42.86%

RealSecure PrecisionMp 4.77% 6.43% 3.27% 1.41%

Correlation for original datasets PrecisionMp 93.18% 94.74% 76.92% 60.00%

Correlation for anonymized datasets PrecisionMp 77.19% 84.38% 45.45% 60.00%

alerts. The attack scenario in Figure 8.6 tells us that attackers probed the vulnerable service using

SadmindPing, compromisedSadmindservices usingSadmindAmslverifyOverflowattacks, used

Rshto startmstreammaster and zombies, letmstreammaster and zombies communicate with each

other (MstreamZombie), and finally launchedStreamDoSattacks, which is consistent with the real

attack scenario involved in this data set.

In Figure 8.6, we observed that artificial alerts (e.g.,SadmindAmslverifyOverflow100091)

and false alerts (e.g.,Email Almail Overflow67302) may be involved in alert correlation graphs. To

further measure the quality of alert correlation graphs, wecomputedrecall Mr andprecisionMp

measures3 for all four data sets, where we letMr = # detected attacks
# total attacks in the real scenario, andMp = # true alerts

# alerts .

The results are shown in Table 8.4.

In Table 8.4, the number of alerts related to correlation methods are the number of alerts

in alert correlation graphs. From Table 8.4, we observed that artificial alerts may or may not be

included into the alert correlation graphs. This tells us that attackers cannot use alert correlation

graphs to distinguish between original and artificial alerts, which is desirable for privacy protection.

We also noticed that the correlation methods have slightly lower recall measures compared with

RealSecure network sensor, but much higher precision measures. In addition, the measures related

to the correlation method for anonymized data sets are lowerthan those related to the correlation

method for original data sets. This is reasonable because original data sets are more precise than

3Recall and precision are basic measures in information-retrieval field.



172

anonymized data sets.

We also did experiments to polish the alert correlation graphs through examining the

(lower-bound) probability of each edge. In our experiments, we set probability threshold to1
256 .

For demonstration purpose, here we discuss the result on polishing the alert correlation graph in

Figure 8.6. After probability polishing, the number of nodes in the resulting graphs reduced from

57 to 45. We noticed that probability based polishing can help us remove false prepare-for relations,

which may further filter out false alerts (e.g.,Email Almail Overflow67292) and artificial alerts

(e.g.,SadmindAmslverifyOverflow100009). However, true prepare-for relations also have a chance

to be ruled out (e.g., the prepare-for relation betweenRsh67542andMstreamZombie67777), which

is not desirable. So it is always helpful to examine both alert correlation graphs with and without

probability based pruning to learn attackers’ activities.

8.4 Summary

To protect the privacy of intrusion alert data sets, in this chapter we propose three pertur-

bation based schemes to anonymize sensitive attributes of alerts. Our techniques include injecting

artificial alerts into original data sets, applying attribute randomization, and partitioning data sets

and then performing randomization. To examine the utility of anonymized alerts, we use proba-

bility based method to estimate attribute similarity and build attack scenarios. We also use various

measures such as correct classification rate to measure the utility of anonymized data sets. Our ex-

perimental results demonstrated the usefulness of our techniques. Though our experiments mainly

focused on 2000 DARPA intrusion detection scenario specificdata sets and we used a simple at-

tribute anonymization policy, we would expect some observations are also useful to other data sets,

for examples, the attack scenarios constructed from our probability based approach (without prun-

ing) are supergraphs of the ones constructed from original data sets, probability-based pruning may

filter out both false and true prepare-for relations, and forsimilarity estimation, we cannot always

expect0% misclassification rate. We also notice that to apply our techniques, some expert knowl-

edge is necessary, for example, deciding sensitive attributes, choosing the desirable number of peers

(L) or desirable entropy values, and designing concept hierarchies with the consideration of the

desirable number of peers or entropy values.

There are several directions worth further investigation.One is additional techniques to

perform alert anonymization. Our techniques on injecting artificial alerts may introduce additional



173

overhead on alert correlation analysis. Combining our techniques with other complementary tech-

niques such as hash function based methods [69] is worth additional research. Other directions

include, for example, additional alert correlation analysis techniques that can help us understand

security threats based on anonymized data sets, and the performance of privacy-preserving alert

correlation techniques.



174

Chapter 9

Conclusion and Future Work

9.1 Conclusion

To defend against various attacks, many security systems such as intrusion detection sys-

tems are deployed into hosts and networks to better protect digital assets. These systems flag alerts

when suspicious events are monitored. However, there are well-known problems related to the cur-

rent intrusion detection systems: (1) they may flag thousands of alerts per day, thus overwhelming

the security officers, (2) among all the alerts, true positives are mixed with false positives, and it is

usually difficult to differentiate between them, and (3) existing intrusion detection systems cannot

detect all attacks. These challenges make manually analyzing the alerts from multiple security sys-

tems time-consuming and error-prone. To better understandsecurity threats from various sources

and take appropriate response, it is necessary to perform alert correlation.

My dissertation focuses on correlation analysis of intrusion alerts. In particular, I have

studied the following problems.

Efficiency of Intrusion Alert Correlation. This is an extended work to our previous

correlation method [82, 83]. The initial implementation of[83] is a Database Management System

(DBMS) based toolkit, which have been shown to be effective through our experiments. However,

our experience also shows relying entirely on DBMS introduces unacceptable performance penalty,

especially for interactive analysis of intensive alerts.

To address the performance problem, we adapt main memory index structures (e.g., B



175

Trees, T Trees, Linear Hashing) and database query optimization techniques (e.g., nested loop join,

sort join) to facilitate timely correlation of intensive alerts. By taking advantage of the characteris-

tics of the alert correlation process, we present three techniques namedhyper-alert container, two-

level index,andsort correlation. The performance of these techniques is studied through a series

of experiments. The experimental results demonstrate that(1) hyper-alert containers improve the

efficiency of order-preserving index structures, with which an insertion operation involves search

(e.g., Array Binary Search, T Trees), (2) two-level index improves the efficiency of all index struc-

tures, (3) a two-level index structure combining Chained Bucket Hashing and Linear Hashing is the

most efficient for streamed alerts, (4) sort correlation with heap sort algorithm is the most efficient

for alert correlation in batch, (5) two-level Linear Hashing is the most efficient for alert correlation

when sliding window is used to cope with memory constraint.

Learning Attack Strategies. We notice that understanding the strategies of attacks is

crucial for security applications such as computer and network forensics, intrusion response, and

prevention of future attacks. We present techniques to automatically learn attack strategies from

intrusion alerts. The essence of this approach is a model that represents an attack strategy as a graph

of attacks with constraints on the attack attributes and thetemporal order among these attacks. To

learn the intrusion strategy is to extract such a graph from asequence of intrusion alerts. To further

facilitate the analysis of attack strategies, we present techniques to measure the similarity between

attack strategies. The basic idea is to reduce the similarity measurement of attack strategies into

error-tolerant graph isomorphism problem and measure the similarity between attack strategies in

terms of the cost to transform one strategy into another.

Hypothesizing and Reasoning about Attacks Missed by Intrusion Detection Systems.

Though many alert correlation methods have been proposed inrecent years, we observe that all of

these methods depend heavily on the underlying IDSs, and cannot deal with the attacks missed by

IDSs. In order to reduce the impact of missed attacks, we present a series of techniques to hypothe-

size and reason about attacks possibly missed by the IDSs. Inaddition, we also discuss techniques

to infer attribute values for hypothesized attacks, to validate hypothesized attacks through raw audit

data, and to consolidate hypothesized attacks to generate concise attack scenarios.

Intrusion Alert Correlation Based on Triggering Events and Common Resources.

We notice that complementary security systems are widely deployed in networks to better protect

digital assets. To analyze the alerts from different systems, we propose a correlation approach based

on triggering events and common resources. One of the key concepts in our approach is triggering

events, which are the (low-level) events that trigger alerts. By grouping the alerts sharing “similar”



176

triggering events, a set of alerts can be partitioned into different clusters such that the alerts in the

same cluster may correspond to the same attack. Our approachfurther examines whether the alerts

in each cluster areconsistentwith relevant network and host configurations, which help analysts

to partially identify the severity of alerts and clusters. The other key concept in our approach

is input and output resources, whereinput resourcesare the necessary resources for an attack to

succeed, andoutput resourcesare the resources that an attack supplies if successful. We propose

to model each attack through specifying input and output resources. By identifying the “common”

resources between output resources of one attack and input resources of another, it discovers causal

relationships between alert clusters and builds attack scenarios.

Privacy-Privacy Alert Correlation through Generalizatio n. With the increasing secu-

rity threats from infrastructure attacks such as worms and distributed denial of service attacks, it is

clear that the cooperation among different organizations is necessary to defend against these attacks.

However, organizations’ privacy concerns for the incidentand security alert data require that sen-

sitive data be sanitized before they are shared with other organizations. Such sanitization process

usually has negative impacts on intrusion analysis (such asalert correlation). To balance the privacy

requirements and the need for intrusion analysis, in Chapter 7 we propose a privacy-preserving alert

correlation approach through generalization based on concept hierarchies. Our approach consists of

two phases. The first phase isentropy guided alert sanitization, where sensitive alert attributes are

generalized to high-level concepts to introduce uncertainty into the dataset with partial semantics.

To balance the privacy and the usability of alert data, we propose to guide the alert sanitization

process with the entropy or differential entropy of sanitized attributes. The second phase issani-

tized alert correlation. We focus on defining similarity functions between sanitized attributes and

building attack scenarios from sanitized alerts.

Privacy-Preserving Alert Correlation through Perturbati on. Intrusion alert data sets

are critical for security research such as alert correlation. However, privacy concerns about the data

sets from different data owners may prevent data sharing andinvestigation. It is always desirable

and sometimes mandatory to anonymize sensitive data in alert sets before they are shared and ana-

lyzed. To address privacy concerns, in Chapter 8 we propose three perturbation based schemes to

flexibly perform alert anonymization. These schemes are closely related but can also be applied in-

dependently. In Scheme I, we generate artificial alerts and mix them with original alerts to help hide

original attribute values. In Scheme II, we further map sensitive attributes to random values based

on concept hierarchies. In Scheme III, we propose to partition an alert set into multiple subsets

and apply Scheme II in each subset independently. To evaluate privacy protection and guide alert



177

anonymization, we definelocal privacyandglobal privacy, and useentropyto compute their values.

Though we emphasize alert anonymization techniques in Chapter 8, to examine the utility of data

sets, we further perform correlation analysis for anonymized data sets. Similar as Chapter 7, We

focus on computing similarity values between anonymized attributes and building attack scenarios

from anonymized data sets.

9.2 Future Work

Though we have addressed a few problems in intrusion alert correlation and intrusion

detection, there are many problems that have not been fully addressed. In the following, we list two

directions worth further investigation.

• Distributed intrusion alert correlation. To protect the cyber security of an enterprise, an or-

ganization, or an institution with large numbers of computers and networks, security systems

such as intrusion detection systems are usually deployed into many different places. To ef-

fectively learn the security threats, security officers need to perform correlation analysis for

the alerts from those different places. Thus, how do we deploy multiple different security

systems? How do we perform alert correlation in order to learn the local as well as the global

security threats in a timely and effective fashion? These problems are challenging and have

not been fully addressed.

• Additional techniques for privacy-preserving alert correlation. To defend against the infras-

tructure attacks such as worms and distributed denial of service (DDoS) attacks, it is clear

that the cooperation between different organizations is necessary. However, different orga-

nizations, companies and individuals are not willing to share attack related data unless the

sensitive information in the data sets are anonymized. In Chapters 7 and 8, we propose

two complementary approaches to anonymize sensitive alertattributes (based on concept hi-

erarchies), where in Chapter 7, we propose to generalize sensitive attributes to high-level

concepts, and in Chapter 8, we propose to use concept hierarchies to facilitate artificial alert

generation and attribute randomization. These approachescan preserve the privacy of alert

data. However, since generalized attribute values usuallymay take different formats com-

pared with original values (they usually have different attribute domains), the approach in

Chapter 7 may let malicious users realize that attributes inalert sets are sanitized, which



178

may infer organizations’ privacy policy. Artificial alert injection in Chapter 8 may introduce

more overhead on correlation analysis of anonymized alerts. Moreover, both approaches in

Chapters 7 and 8 may introduce false causal relations. Thus,additional, complementary alert

anonymization techniques that can not only protect the privacy of data sets, but also generate

useful results after correlation analysis are worth futureresearch.



179

Bibliography

[1] N. Adam and J. Wortmann. Security-control methods for statistical databases: A comparison

study.ACM Computing Surveys, 21(4):515–556, 1989.

[2] D. Agrawal and C. Aggarwal. On the design and quantification of privacy-preserving data

mining algorithms. InProceedings of the 20th ACM SIGMOD-SIGACT-SIGART Symposium

on Principles of Database Systems, May 2001.

[3] R. Agrawal and R. Srikant. Privacy-preserving data mining. InProceedings of the 2000 ACM

SIGMOD International Conference on Management of Data, May 2000.

[4] A. Aho, J. Hopcroft, and J.D. Ullman.The Design and Analysis of Computer Algorithms.

Addison-Wesley, 1974.

[5] A. Ammann, M. Hanrahan, and R. Krishnamurthy. Design of amemory resident DBMS. In

Proceedings of IEEE COMPCON, San Francisco, February 1985.

[6] P. Ammann, D. Wijesekera, and S. Kaushik. Scalable, graph-based network vulnerability

analysis. InProceedings of the 9th ACM Conference on Computer and Communications

Security, pages 217–224, November 2002.

[7] E. Amoroso. Intrusion Detection: An Introduction to Internet Surveillance, Correlation,

Trace Back, Traps, and Response. Intrusion.Net Books, 1999.

[8] J. P. Anderson. Computer security threat monitoring andsurveillance. Technical report,

James P. Anderson Co., Fort Washington, PA, 1980.

[9] AT & T Research Labs. Graphviz - open source graph layout and drawing software.http:

//www.research.att.com/sw/tools/graphviz/.



180

[10] S. Axelsson. Research in intrusion-detection systems: A survey. Technical Report TR 98-

17, Department of Computer Engineering, Chalmers University of Technology, Goteborg,

Sweden, 1999.

[11] S. Axelsson. The base-rate fallacy and the difficulty ofintrusion detection.ACM Transactions

on Information and System Security, 3(3):186–205, August 2000.

[12] D. Barbará, Cuotuo J., S. Jajodia, and N. Wu. ADAM: A testbed for exploring the use of data

mining in intrusion detection.ACM SIGMOD Record, 30(4):15–24, December 2001.

[13] D. Barbará, N. Wu, and S. Jajodia. Detecting novel network intrusion using bayes estimators.

In Proceedings of the First SIAM Conference on Data Mining, April 2001.

[14] M. Bellare, R. Canetti, and H. Krawczyk. Message authentication using hash function - the

HMAC construction.RSA Laboratories’ CryptoBytes, 2(1):12–15, 1996.

[15] H. Bunke and K. Shearer. A graph distance metric based onthe maximal common subgraph.

Pattern Recognition Letters, 19(3-4):255–259, 1998.

[16] Brian Caswell and Marty Roesch. Snort: The open source network intrusion detection sys-

tem.http://www.snort.org.

[17] CERT Coordination Center. CERT Coordination Center.http://www.cert.org.

[18] CERT Coordination Center. Cert advisory CA-2001-10 buffer overflow vulnerability in mi-

crosoft IIS 5.0.http://www.cert.org/advisories/CA-2001-10.html, 2001.

[19] CERT Coordination Center. Overview of attack trends.http://www.cert.org/

archive/pdf/attack trends.pdf, 2002.

[20] CERT Coordinate Center. Overview of attack trends.http://www.cert.org/

archive/pdf/attack trends.pdf, 2002.

[21] D. Comer. The ubiquitous B-Tree.ACM Computeing Surveys, 11(2):121–137, 1979.

[22] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms. The MIT Press,

1989.



181

[23] Microsoft Corporation. Microsoft security bulletin (ms00-029). http://www.

microsoft.com/technet/treeview/default.asp?url=/technet/

security/bulletin/MS00-029.asp, 2000.

[24] Microsoft Corporation. Microsoft security bulletin (ms00-078). http://www.

microsoft.com/technet/treeview/default.asp?url=/technet/

security/bulletin/MS00-078.asp, 2000.

[25] Microsoft Corporation. Microsoft security bulletin (ms01-023). http://www.

microsoft.com/technet/treeview/default.asp?url=/technet/

security/bulletin/MS01-023.asp, 2001.

[26] T. Cover and J. Thomas.Elements of Information Theory. John Wiley & Sons, Inc., 1991.

[27] Y. Cui. A toolkit for intrusion alerts correlation based on prerequisites and con-

sequences of attacks. Master’s thesis, North Carolina State University, Decem-

ber 2002. Available athttp://www.lib.ncsu.edu/theses/available/

etd-12052002-193803/.

[28] F. Cuppens. Managing alerts in a multi-intrusion detection environment. InProceedings of

the 17th Annual Computer Security Applications Conference, December 2001.

[29] F. Cuppens and A. Miege. Alert correlation in a cooperative intrusion detection framework.

In Proceedings of the 2002 IEEE Symposium on Security and Privacy, May 2002.

[30] F. Cuppens and R. Ortalo. LAMBDA: A language to model a database for detection of

attacks. InProc. of Recent Advances in Intrusion Detection (RAID 2000), pages 197–216,

September 2000.

[31] D. Curry and H. Debar. Intrusion detection message exchange format data model and exten-

sible markup language (xml) document type definition. Internet Draft, draft-ietf-idwg-idmef-

xml-03.txt, February 2001.

[32] W. Dai. Speed comparison of popular crypto algorithms.http://www.eskimo.com/

∼weidai/benchmarks.html.

[33] O. Dain and R.K. Cunningham. Building scenarios from a heterogeneous alert stream. In

Proceedings of the 2001 IEEE Workshop on Information Assurance and Security, pages 231–

235, June 2001.



182

[34] O. Dain and R.K. Cunningham. Fusing a heterogeneous alert stream into scenarios. In

Proceedings of the 2001 ACM Workshop on Data Mining for Security Applications, pages

1–13, November 2001.

[35] DARPA Cyber Panel Program. DARPA cyber panel program grand challenge problem.

http://www.grandchallengeproblem.net/, 2003.

[36] H. Debar and A. Wespi. Aggregation and correlation of intrusion-detection alerts. InRecent

Advances in Intrusion Detection, LNCS 2212, pages 85 – 103, 2001.

[37] DEFCON. Def con capture the flag (CTF) contest. http://www.defcon.org/html/defcon-8-

post.html, July 2000. Archive accessible at http://wi2600.org/mediawhore/mirrors/shmoo/.

[38] DEFCON. Def con capture the flag (CTF) contest. http://www.defcon.org/html/defcon-

9/defcon-9-pre.html, July 2001.

[39] D. Eastlake and P. Jones. US secure hash algorithm 1 (sha1). Request for Comments: (RFC)

3174, September 2001.

[40] S.T. Eckmann, G. Vigna, and R.A. Kemmerer. STATL: An Attack Language for State-based

Intrusion Detection.Journal of Computer Security, 10(1/2):71–104, 2002.

[41] H. Feng, J. Giffin, Y. Huang, S. Jha, W. Lee, and B. Miller.Formalizingsensitivity in static

analysis for intrusion detection. InProceedings of the 2004 IEEE Symposium on Security

and Privacy (S&P’04), May 2004.

[42] H. Feng, O. Kolesnikov, P. Fogla, W. Lee, and W. Gong. Anomaly detection using call stack

information. InProceedings of the 2003 IEEE Symposium on Security and Privacy (S&P’03),

May 2003.

[43] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff. Asense of self for unix processes. In

Proceedings of the 1996 IEEE Symposium on Security and Privacy, May 1996.

[44] Fyodor. Nmap free security scanner.http://www.insecure.org/nmap, 2003.

[45] H. Garcia-Molina and J. Widom J. D. Ullman.Database System Implementation. Prentice

Hall, 2000.

[46] M. R. Gary and D. S. Johnson.Computers and Intractability: A Guide to the Theory of

NP-Completeness. Freeman and Company, 1979.



183

[47] J. Giffin, S. Jha, and B. Miller. Detecting manipulated remote call streams. InProceedings

of the 11th USENIX Security Symposium, August 2002.

[48] J. Haines, D. Ryder, L. Tinnel, and S. Taylor. Validation of sensor alert correlators.IEEE

Security & Privacy Magazine, 1(1):46–56, 2003.

[49] J. Han and M. Kamber.Data Mining: Concepts and Techniques. Morgan Kaufmann Pub-

lishers, 2001.

[50] K. Ilgun. USTAT: A real-time intrusion detection system for UNIX. In Proceedings of IEEE

Symposium on Security and Privacy, pages 16–28, Oakland, CA, May 1993.

[51] RTI International. PREDICT - Protected Repository forthe Defense of Infrastructure Against

Cyber Threats.http://www.predict.org.

[52] Internet Security Systems. RealSecure intrusion detection system.http://www.iss.

net.

[53] Internet Security Systems, Inc. REALSECURE signatures reference guide.http://www.

iss.net/.

[54] D. A. Jackson, K. M. Somers, and H. H. Harvey. Similaritycoefficients: Measures of co-

occurence and association or simply measures of occurrence? The American Naturalist,

133(3):436–453, March 1989.

[55] A.K. Jain and R.C. Dubes.Algorithms for Clustering Data. Prentice Hall, 1988.

[56] H. S. Javitz and A. Valdes. The SRI IDES statistical anomaly detector. InProceedings IEEE

Symposium on Security and Privacy, pages 316–326, Oakland, CA, May 1991.

[57] H. S. Javitz and A. Valdes. The NIDES statistical component: Description and justification.

Technical report, SRI International, March 1994.

[58] S. Jha, O. Sheyner, and J.M. Wing. Two formal analyses ofattack graphs. InProceedings of

the 15th Computer Security Foundation Workshop, June 2002.

[59] K. Julisch. Dealing with false positives in intrusion detection. InThe 3th Workshop on Recent

Advances in Intrusion Detection, October 2000.



184

[60] K. Julisch. Mining alarm clusters to improve alarm handling efficiency. InProceedings of the

17th Annual Computer Security Applications Conference (ACSAC), pages 12–21, December

2001.

[61] K. Julisch. Clustering intrusion detection alarms to support root cause analysis.ACM Trans-

actions on Information and System Security, 6(4):443–471, Nov 2003.

[62] K. Julisch and M. Dacier. Mining intrusion detection alarms for actionable knowledge. InThe

8th ACM International Conference on Knowledge Discovery and Data Mining, July 2002.

[63] L. Kaufman and P. J. Rousseeuw.Finding Groups in Data: An Introduction to Cluster

Analysis. John Wiley and Sons, 1990.

[64] D. Knuth. The Art of Computer Programming. Addison-Wesley, 1973.

[65] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for message authentica-

tion. Internet Engineering Task Force, Request for Comments (RFC) 2104, February 1997.

[66] S. Kummar and E.H. Spafford. A software architecture tosupport misuse intrusion detection.

In Proceedings of the 18th National Information Systems Security Conference, pages 194–

204, 1995.

[67] T. J. Lehman and M. J. Carey. A study of index structure for main memory database man-

agement systems. InProceedings of the Twelfth International Conference on Very Large

Databases, pages 294–303, Kyoto, Japan, August 1986.

[68] C. Liew, U. Choi, and C. Liew. A data distortion by probability distribution. ACM Transac-

tions on Database Systems, 10(3):395–411, September 1985.

[69] P. Lincoln, P. Porras, and V. Shmatikov. Privacy-preserving sharing and correlation of secu-

rity alerts. InProceedings of 13th USENIX Security Symposium, August 2004.

[70] W. Litwin. Linear hashing: A new tool for file and table addressing. InProceedings of the

6th Conference on Very Large Data Bases, pages 212–223, Montreal, Canada, October 1980.

[71] Y. Lu. Concept hierarchy in data mining: Specification,generation and implementation.

Master’s thesis, School of Computing Science, Simon FraserUniversity, Canada, December

1997.



185

[72] A. Menezes, P. Oorschot, and S. Vanstone.Handbook of Applied Cryptography. CRC Press,

October 1996.

[73] B. T. Messmer.Efficient Graph Matching Algorithms for Preprocessed ModelGraphs. PhD

thesis, University of Bern, Switzerland, November 1995.

[74] B. T. Messmer and H. Bunke. A new algorithm for error-tolerant subgraph isomorphism

detection.IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(5):493–504,

1998.

[75] B. T. Messmer and H. Bunke. Efficient subgraph isomorphism detection: A decomposition

approach.IEEE Transactions on Knowledge and Data Engineering, 12(2):307–323, 2000.

[76] B.T. Messmer and H. Bunke. A decision tree approach to graph and subgraph isomorphism

detection.Pattern Recognition, 32(12):1979–1998, 1999.

[77] MIT Lincoln Lab. 2000 DARPA intrusion detection scenario specific datasets.http://

www.ll.mit.edu/IST/ideval/data/2000/2000 data index.html, 2000.

[78] B. Morin and H. Debar. Correlation of intrusion symptoms: an application of chronicles. In

Proceedings of the 6th International Conference on Recent Advances in Intrusion Detection

(RAID’03), September 2003.

[79] B. Morin, L. Mé, H. Debar, and M. Ducassé. M2D2: A formal data model for IDS alert cor-

relation. InProceedings of the 5th International Symposium on Recent Advances in Intrusion

Detection (RAID 2002), pages 115–137, 2002.

[80] A. Mounji, B.L. Charlier, D. Zampuníeris, and N. Habra. Distributed audit trail analysis. In

Proceedings of the ISOC ’95 Symposium on Network and Distributed System Security, pages

102–112, 1995.

[81] National Institute of Standards and Technology (NIST). NIST brief comments on recent

cryptanalytic attacks on secure hashing functions and the continued security provided by

SHA-1. http://csrc.nist.gov/hash standards comments.pdf.

[82] P. Ning, Y. Cui, and D. S Reeves. Analyzing intensive intrusion alerts via correlation. In

Proceedings of the 5th International Symposium on Recent Advances in Intrusion Detection

(RAID 2002), pages 74–94, Zurich, Switzerland, October 2002.



186

[83] P. Ning, Y. Cui, and D. S Reeves. Constructing attack scenarios through correlation of intru-

sion alerts. InProceedings of the 9th ACM Conference on Computer and Communications

Security, pages 245–254, Washington, D.C., November 2002.

[84] P. Ning, Y. Cui, D. S. Reeves, and D. Xu. Tools and techniques for analyzing intrusion alerts.

ACM Transactions on Information and System Security, 7(2):273–318, May 2004.

[85] P. Ning and S. Jajodia. Intrusion detection techniques. In H. Bidgoli, editor,Internet Ency-

clopedia. John Wiley & Sons, 2003.

[86] P. Ning, D. Xu, C. Healey, and R. St. Amant. Building attack scenarios through integration

of complementary alert correlation methods. InProceedings of the 11th Annual Network and

Distributed System Security Symposium (NDSS ’04), pages 97–111, February 2004.

[87] Packet storm.http://packetstormsecurity.nl. Accessed on April 30, 2003.

[88] R. Pang and V. Paxson. A high-level programming environment for packet trace anonymiza-

tion and transformation. InProceedings of ACM SIGCOMM 2003, August 2003.

[89] M. Peuhkuri. A method to compress and anonymize packet traces. InProceedings of ACM

Internet Measurement Workshop 2001, November 2001.

[90] P.A. Porras, M.W. Fong, and A. Valdes. A mission-impact-based approach to INFOSEC

alarm correlation. InProceedings of the 5th International Symposium on Recent Advances in

Intrusion Detection (RAID 2002), pages 95–114, 2002.

[91] X. Qin and W. Lee. Statistical causality analysis of infosec alert data. InProceedings of

The 6th International Symposium on Recent Advances in Intrusion Detection (RAID 2003),

Pittsburgh, PA, September 2003.

[92] S. Reiss. Practical data-swapping: The first steps.ACM Transactions on Database Systems,

9(1):20–37, March 1984.

[93] R. Rivest. The MD5 Message-Digest algorithm. Request for Comments: (RFC) 1321, April

1992.

[94] M. Roesch. Snort - lightweight intrusion detection fornetworks. InProceedings of the 1999

USENIX LISA conference, 1999.



187

[95] P. Samarati and L. Sweeney. Protecting privacy when disclosing information: k-anonymity

and its enforcement through generalization and suppression. Technical Report SRI-CSL-98-

04, Computer Science Laboratory, SRI International, 1998.

[96] R. Sekar, M. Bendre, P. Bollineni, and D. Dhurjati. A fast automaton-based method for

detecting anomalous program behaviors. InProceedings of the 2001 IEEE Symposium on

Security and Privacy, May 2001.

[97] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J.M. Wing. Automated generation and

analysis of attack graphs. InProceedings of IEEE Symposium on Security and Privacy, May

2002.

[98] S. Staniford, J.A. Hoagland, and J.M. McAlerney. Practical automated detection of stealthy

portscans.Journal of Computer Security, 10(1/2):105–136, 2002.

[99] L. Sweeney. Achieving k-anonymity privacy protectionusing generalization and suppression.

International Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 10(5):571–

588, October 2002.

[100] L. Sweeney. k-anonymity: A model for protecting privacy. International Journal on Uncer-

tainty, Fuzziness and Knowledge-based Systems, 10(5):557–570, October 2002.

[101] Symantec Corporation. Symantec’s norton antivirus.http://www.symantec.com.

[102] S. Templeton and K. Levitt. A requires/provides modelfor computer attacks. InProceedings

of New Security Paradigms Workshop, pages 31 – 38. ACM Press, September 2000.

[103] F. Traub, Y. Yemini, and H. Wózniakowski. The statistical security of a statistical database.

ACM Transactions on Database Systems, 9(4):672–679, December 1984.

[104] Tripwire, Inc. Tripwire changing monitoring and reporting solutions. http://www.

tripwire.com.

[105] J. D. Ullman. Principles of database and knowledge-base systems, volume 2. Computer

Science Press, 1989.

[106] J. Ullrich. DShield - distributed intrusion detection system.http://www.dshield.org.



188

[107] U.S. DEPARTMENT OF COMMERCE/National Institute of Standards and Technology.

Data encryption standard (DES). Federal Information Processing Standards Publication 46-3,

October 1999.

[108] H. Vaccaro and G. Liepins. Detection of anomalous computer session activity. InProceedings

of 1989 IEEE Symposium on Security and Privacy, pages 280–289, Oakland, CA, May 1989.

[109] A. Valdes and K. Skinner. Probabilistic alert correlation. In Proceedings of the 4th Inter-

national Symposium on Recent Advances in Intrusion Detection (RAID 2001), pages 54–68,

2001.

[110] V. Verykios, E. Bertino, I Fovino, L. Provenza, Y. Saygin, and Y. Theodoridis. State-of-the-art

in privacy preserving data mining.ACM SIGMOD Record, 33(1):50–57, March 2004.

[111] G. Vigna and R. A. Kemmerer. NetSTAT: A network-based intrusion detection system.Jour-

nal of Computer Security, 7(1):37–71, 1999.

[112] G. Vigna and R. A. Kermmerer. NetSTAT: A network-basedintrusion detection approach. In

Proceedings of the 14th Annual Security Applications Conference, December 1998.

[113] D. Wagner and D. Dean. Intrusion detection via static analysis. InProceedings of the 2001

IEEE Symposium on Security and Privacy, May 2001.

[114] C. Warrander, S. Forrest, and B. Pearlmutter. Detecting intrusions using system calls: Alter-

native data models. InProceedings of the 1999 IEEE Symposium on Security and Privacy,

May 1999.

[115] V. Yegneswaran, P. Barford, and S. Jha. Global intrusion detection in the domino overlay sys-

tem. InProceedings of the 11th Annual Network and Distributed System Security Symposium

(NDSS’04), February 2004.

[116] Y. Zhai, P. Ning, P. Iyer, and D.S. Reeves. Reasoning about complementary intrusion evi-

dence. InProceedings of the 20th Annual Computer Security Applications Conference (AC-

SAC ’04), December 2004.

[117] Zone Labs. Zonealarm pro.http://www.zonelabs.com.



189

Appendix



190

Appendix A

Additional Experimental Results Using

TIAA

Our techniques on intrusion alert correlation result in a software package TIAA (A Toolkit

for Intrusion Alert Analysis), which is available at our website http://discovery.csc.

ncsu.edu/software/correlator/. To further evaluate the effectiveness of TIAA, we did

more experiments using a data set collected on our campus network and DEF CON 9 CTF event

data sets [38]. In this appendix, we show some correlation results.

The first data set was collected from a network in Computer Science Department. We used

Snortto parse the packets and generate intrusion alerts. The alert collection was carried from June

24, 2005 to June 29, 2005, and we totally got325, 968 alerts with29 alert types. In the following,

we list some interesting attack scenarios discovered in this data set. (Some correlation graphs are

too big, so we may only show part of them.)

Figure A.1 is an MS SQL server related attack. In this scenario, attackers compromised

the victim machine through MS SQL Server related vulnerability, and installed some rootkit to

maintain access to the victim. This scenario is consistent with our forensic analysis to the compro-

mised system.

We show some other attack scenarios in Figure A.2. Figures A.2(a) and A.2(b) are two

scanning based attack scenarios, where attackers may first detect live IP addresses, then further



191

Figure A.1: An MS SQL server related attack scenario in campus collected data set

probe services running on live hosts. Figure A.2(c) is an SNMP related attack, where attackers

may first detect the hosts that are running SNMP, then gain certain access to the hosts through the

mis-configuration of the authentication in SNMP.

We also did experiments using DEF CON 9 CTF event data set. In the following, we list

some attack scenarios discovered in the data set.

The first scenario we present is related to Figure A.3. Noticethat there are192 alerts

and12205 prepare-for relations involved in this scenario. To visualize it, we first performed ag-

gregation to this scenario. The result is shown in Figure A.3(a). In Figure A.3(a), we observed

that attackers may try different web based attacks to gain unauthorized access to victim hosts, and

then ran commands to further attack victims. To further learn this attack scenario, we performed

association analysis using TIAA. Specifically, we listed the attribute values that frequently occur in

this scenario. The result is in Figure A.3(b). From Figure A.3(b), we know, for example, all alerts

in this scenario have source IP address10.255.10.34 and destination IP address10.255.30.252, and

84.375% of the total alerts have destination port number80, which is useful for us to learn attackers’



192

ICMP PING NMAP14453

SNMP request udp18493

SNMP request udp18522

(a) A scanning based attack scenario

ICMP PING NMAP43484

SNMP request udp53785

SNMP request udp53786

SNMP request udp54089

SNMP request udp54091

SNMP request udp57034

SNMP request udp57035

SNMP request udp57318

SNMP request udp57319

ICMP webtrends scanner45863

(b) A scanning based attack scenario

SNMP request udp3146

SNMP missing community string attempt47456

SNMP missing community string attempt47458

SNMP request udp3147

SNMP request udp32688

SNMP request udp32689

SNMP request udp33483

SNMP request udp33484

SNMP request udp33539

SNMP request udp33540

(c) An SNMP related attack scenario

Figure A.2: Some attack scenarios in campus collected data set

activities.

The second scenario we present is related to Figure A.4. There are6317 alerts and185673

prepare-for relations in this scenario. Similar as done in Figure A.3, we also performed aggregation

to this scenario. The aggregated attack scenario is shown inFigure A.4(a). From this scenario, we

observed that attackers scanned live IP addresses, probed network services through various means

(e.g.,SCAN FIN), gained unauthorized access to victim hosts through various web based attacks,

and ran some commands on the victims. This scenario is consistent with our intuition about how

attackers may launch multi-phase attacks. Similar as in Figure A.3, we also performed association

analysis in this scenario. The result is shown in Figure A.4(b). It tells us, for example, the major

source IP addresses in this scenario is10.255.0.213 and 10.255.0.253, the major destination IP

address is10.255.10.34, etc.

6-ICMP PING NMAP-14453
6-SNMP request udp-18493
6-SNMP request udp-18522
32-ICMP PING NMAP-43484
32-SNMP request udp-53785
32-SNMP request udp-53786
32-SNMP request udp-54089
32-SNMP request udp-54091
32-SNMP request udp-57034
32-SNMP request udp-57035
32-SNMP request udp-57318
32-SNMP request udp-57319
32-ICMP webtrends scanner-45863
20-SNMP request udp-3146
20-SNMP missing community string attempt-47456
20-SNMP missing community string attempt-47458
20-SNMP request udp-3147
20-SNMP request udp-32688
20-SNMP request udp-32689
20-SNMP request udp-33483
20-SNMP request udp-33484
20-SNMP request udp-33539
20-SNMP request udp-33540


193

(a) An attack scenario (aggregated)

(b) Association analysis of this scenario

Figure A.3: One attack scenario in DEF CON 9 data set



194

(a) An attack scenario (aggregated)

(b) Association analysis of this scenario

Figure A.4: Another attack scenario in DEF CON 9 data set


