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ABSTRACT 

LI, SONG.  Development and Demonstration of a Methodology for Characterizing and 

Managing Uncertainty and Variability in Emission Inventories. (Under the direction of Dr. H. 

Christopher Frey.) 

 

Emission factors and emission inventories are subject to both variability and uncertainty.  

Variability refers to observed differences attributable to true heterogeneity or diversity in 

emissions.  Uncertainty refers to lack of knowledge regarding the true value of emissions.  

Variability in emissions can be attributed to variations over time, space or across different 

populations.  Uncertainty in emissions typically arises due to limited sample size, lack of 

accuracy, non-representativeness of data, measurement errors, use of surrogate data, and human 

errors.  This work successfully demonstrated new applications of quantitative methods for 

characterizing variability and uncertainty in emission estimates.  The methods were 

demonstrated with respect to cases studies on nitrogen oxides (NOx) and volatile organic 

compound (VOC) emissions from natural gas-fueled internal combustion engines, and VOC 

emissions from consumer/commercial product use, gasoline terminal loading, cutback asphalt 

paving, architectural coatings and wood furniture coatings.   

 

Emission data must be nonnegative, typically are positively skewed and have limited sample 

size.  The restrictive assumption of normality used in analytical methods can lead to biased 

uncertainty estimates.  Therefore, in this work, variability was characterized by fitting parametric 

distributions and uncertainty due to random sampling errors was quantified based upon 

numerical bootstrap simulation.  Uncertainty in mean emission factors was found as much as 
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minus 90 percent to plus 180 percent in a relative basis.  Key methodological issues, including 

separation of intra- and inter-facility/engine variability, and methods for fitting parametric 

distributions to unequally weighted data, were addressed.  Recommendations include extending 

these efforts to more emission source categories and for EPA and others to routinely report well-

documented emission data to facilitate uncertainty analysis.  
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1.0 INTRODUCTION 

Emission inventories are important supporting tools for air quality modeling, risk assessment, 

compliance analysis, new source permitting, emission trend analysis and other applications.  A 

major concern in emission inventory development is variability and uncertainty in emission 

factors.  A key question is whether the point estimates of emission factors that are widely used as 

inputs to develop emission inventories are sufficiently robust with respect to uncertainty.   

 

This research focuses on demonstrating new applications of quantitative methods for 

characterizing variability and uncertainty in emission factors.  The cases studies demonstrated 

here are for primary emission source categories of nitrogen oxides (NOx) and volatile organic 

compounds (VOCs), including natural gas-fueled internal combustion engines, 

consumer/commercial product use, gasoline terminal loading, cutback asphalt paving, 

architectural coating, and wood furniture coating.  The case studies of these source categories are 

presented in five chapters in a journal paper format and two of them have been presented at 

conferences.  Except for wood furniture coating, this study is the first known effort to quantify 

variability and uncertainty in these emission source categories.   

 

The purpose of this study is not to validate or dispute current methodologies to develop emission 

factors and inventories, but to provide a new perspective and a better understanding of the 

quality of the emission estimates.  Because regulatory or air quality management strategy involve 

high stakes, such as public health, money, and other impacts, it is important that these decisions 

are based upon the best information available and are robust to uncertainty.   
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The key questions addressed in this study include: 

• Why should variability and uncertainty be distinguished? 

• What methods should be used to quantify uncertainty in emission factors? 

• How should intra-engine/facility variability be handled in quantitative analysis for mean 

emission factors? 

• What method can be used for unequally weighted data? 

• What is the range of variability in product compositions and emission estimates? 

• What is the range of uncertainty in mean emission factors? 

 

1.1 Uncertainty and Variability  

Uncertainty refers to lack of knowledge regarding the true value of an unknown quantity (Bogen 

and Spear, 1987, Frey, 1992).  Uncertainty in the statistics of a population can be expressed by 

either empirical or parametric probability distributions (Morgan and Henrion,1990, Frey and 

Rhodes, 1996).  Another effective way to express uncertainty is a confidence interval.  Typically, 

a 95 percent confidence interval is reported. 

 

According to the causes, uncertainty can be further categorized as systematic errors and random 

errors (Morgan and Henrion, 1990).  Systematic errors, also referred as inaccuracy or bias, arise 

due to inaccurate measuring method or non-representativeness of data.  Random errors, also 

referred as imprecision, are introduced by random measurement errors and statistical random 

sampling errors due to the limited sample size.   
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Statistically, variability refers to observed differences attributable to true heterogeneity or 

diversity in a population (ISO, 1993).  For example, emissions from fossil combustion may vary 

from one specific source to another because of variations in design, feedstock compositions, 

ambient conditions, and other operating conditions.  Variability can also be expressed by a 

probability distribution.  Some have suggested the use of the term “frequency distribution” 

instead of “probability distribution” for variability in order to avoid concept confusion (Morgan 

and Henrion,1990, Frey and Rhodes, 1996).    

 

1.2 Practice of Quantitative Analysis in the Field of Environmental Protection 

Uncertainties in current emission factors and emission inventories are typically not reported.  As 

a surrogate for uncertainty estimates, some emission factors are accompanied by data quality 

ratings, such as those reported in AP-42 (EPA, 1995).  “A” to “E” qualitative ratings are 

assigned to emission factors as indicators of their quality.  A method for qualitatively rating 

emission inventories, known as the Data Attribute Rating System (DARS), has been developed 

by EPA (Beck, 1997).  Qualitative ratings of emission factors and emission inventories are 

important.  Some sources of uncertainty are difficult to be quantified, such as non-

representativeness of a data set.  Therefore, there will always be a role for qualitative statements 

regarding non-quantifiable sources of uncertainty.  However, an argument can be made that 

qualitative rating systems should be used in combination with quantitative approaches. 

 

There is growing recognition of the need for quantitative uncertainty analysis in emission 

estimations, environmental modeling and decision-making.  For example, the National Research 

Council (NRC) has recommended to EPA that quantitative analysis of uncertainty be included in 
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a variety of applications (NRC, 1994, 2000).  The National Council on Radiation Protection and 

Measurements (NCRP) has published guidance for uncertainty analysis in dose and risk 

assessments related to environment contaminations (NCRP, 1996).  EPA (1997) has developed 

guidelines for Monte Carlo simulation of uncertainty.  The Intergovernmental Panel on Climate 

Change (IPCC) has proposed “good practices guidance and uncertainty management” on the 

request from the United Nations Framework Conversion on Climate Change (UNFCCC) for 

national greenhouse gas inventories (IPCC, 2000).  The U.S. Department of Energy (DOE) also 

recommended using the Monte Carlo simulation of uncertainty in U.S. greenhouse gas emission 

estimates (U.S. DOE, 2001).  A recent NRC report has recommended that the EPA and others 

“should undertake the necessary measures to conduct quantitative uncertainty analyses of the 

mobile source emissions models” (NRC, 2000).   

 

As a response to the needs for quantitative uncertainty analysis, researches have been underway 

to develop and demonstrate methods for quantifying uncertainty in different applications, 

including emission estimation, climate change and risk assessment.   

 

1.2.1 Uncertainty Analysis in Estimation of Pollutant Emissions 

In the area of power plant emissions, Frey et al. have quantified uncertainty in emissions of 

hazardous air pollutants (HAPs) and NOx from coal-fired power plants (Frey and Rhodes, 1996, 

Rhodes and Frey, 1997, Frey et al., 1999, Frey and Bharvirkar, 2002, Abdel-Aziz and Frey, 

2002, Frey and Zheng, 2002a).  Maurice et al. (2000) presented a methodological framework to 

quantitatively evaluate uncertainty in life cycle inventories in coal power plants.     
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In the area of mobile source emissions, Kini and Frey (1997) developed quantitative estimates of 

uncertainty associated with the Mobile5b emission factor model estimates of light duty gasoline 

vehicle base emissions and speed-corrected emissions.  Pollack et al. (1999) performed a similar 

study on California's EMFAC7G highway vehicle emission factor model.  Frey and Zheng 

(2002b) revisited the earlier analysis of Mobile5b emission factor estimates to include 

uncertainties associated with temperature corrections.  Frey and Bammi (2002) estimated 

uncertainty in emission factors for non-road mobile sources.   

 

In the other areas, Frey and Li (2001) estimated uncertainty in NOx and total organic compounds 

emissions from stationary natural gas-fueled internal combustion engines.  Anex and Lund 

(1999) conducted a research on quantifying VOC emissions from wood furniture coatings.  They 

applied truncated Gaussian distributions to describe variability and student-t distributions to 

quantify uncertainty in coating VOC emissions.  Li and Frey (2002) estimated uncertainty in 

VOC emission factors of consumer/commercial product use.  Omlin and Reichert (1999) 

presented practical comparisons of Bayesian techniques and classical statistical techniques to 

quantify uncertainty in parameters and predictions of ecological models.  Bayesian analysis is 

similar to classical analysis except that a conditional probability density function is used instead 

of a probability density function.  Details of the Bayesian method can be found in Bernarod and 

Simth (1994).  Some researchers also tried to find common statistical properties for a particular 

emission source.  For example, according to the study of Hanssen and Asbjornsen (1996), the 

COD emission factor of pulp and paper industry tends to be best represented by a binomial 

distribution. 
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1.2.2 Uncertainty Analysis in Climate Change 

In the field of climate change, simulation models assist policy makers in predicting and 

understanding the causes and consequences of greenhouse gas emissions.  Criticisms have arisen 

regarding current prediction methods and estimated consequences, as illustrated by the debates 

on the IPCC Third Assessment Report (TAR) for lack of analysis of uncertainty (Reilly et al. 

2001, Allen et al. 2001).  Efforts to establish the magnitude of uncertainty associated with the 

greenhouse gas emissions and climate change models are encouraged by IPCC (IPCC, 1998).   

 

Carraro and Hourcade (1998) gave a brief review of current economic-environmental 

quantitative models and pointed out “uncertainty and environmental impacts and feedbacks are 

largely neglected.”  Zapert et al. (1998) introduced a quantitative method based upon stochastic 

differential equations (SDEs) and demonstrated its application to assess uncertainty and to rank 

the contributors of uncertainty on the Integrated Model to Assess the Greenhouse Effect 

(IMAGE 1.0).  Grieb et al. (1999) developed a tree-structured density estimation technique that 

extends the ability of Monte Carlo-based analyses to explore parameter interactions and 

uncertainty in a global carbon cycling model, GLOCO.  Other efforts to quantify uncertainty in 

climate change decision-making can be found in El-Fadel et al. (2001), Pizer (1999) and Guay 

(1999).   

 

1.2.3 Uncertainty Analysis in Risk Assessment 

Risk assessment is an important field associated with quantitative analysis.  Rai and Krewski 

(1998) provided a general stochastic framework for uncertainty analysis under a multiplicative 

risk model.  Hattis and Anderson (1999) gave a detailed introduction on the concepts and sources 



 7 

of uncertainty and variability in risk assessment, as well as benefits of uncertainty analysis for 

risk management decision-making.   

 

Hertwich et al. (1999) conducted a research on the potential dose of 236 chemicals and 

quantitatively analyzed the representative chemicals.  Sielken Jr. and Valdez-Flores (1999) 

suggested a “Distributional Characterization” approach, which assigns probability distributions 

to the component parameters in an exposure equation, instead of using current approach based 

upon “Default Characterization.”  Mowrer (2000) recommend that the Monte Carlo method as 

the most robust and easily applied to propagate uncertainty.  However, in the context of risk 

assessment, information is often sparse and imprecise, and therefore Guyonnet et al. (1999) 

questioned the effectiveness of the Monte Carlo method based upon distribution assumptions and 

proposed a probabilistic approach based upon fuzzy numbers.  Some other efforts of uncertainty 

analysis in risk analysis can be found in Frey and Rhodes (1996, 1998), Fayerweather et al. 

(1999), Frey and Burmaster (1999) and Wang et al. (2001).   

 

Besides air quality fields, uncertainty analyses are also applied to many other fields of 

environmental protection, such as water quality (Dilks et al., 1992) and solid waste disposal 

(Abbaspour et al., 1998). 

 

1.3  Selection of Source Categories 

The work associated with this dissertation is a part of a large program sponsored by the U.S. 

Environment Protection Agency (EPA) to quantify variability and uncertainty in emission factors 

and emission inventories for a variety of NOx and VOC source categories.  The case study  
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Table 1.1. Annual Emissions and Rankings for Selected Source Categories 
SIC ranking SCC ranking Categories Annual Emission

a
 

NOx VOC NOx
b
 VOC

c
 

Natural Gas Engine 11437   3rd  

Wood Furniture Coating 36651  1st  1st 
Cutback Asphalt Paving 14132    2nd 
Consumer Solvents 13347    4th 
Architectural Coating 13238    5th 
Gasoline Terminal Loading 6594  2nd   
a
 Unit: tons/year 

b
 1st and 2nd largest sources are power plant emissions, different types of boilers 

c
 3rd largest source is open burning, EPA emission factor based 2 data with same value 

 

domain for this program is the Charlotte airshed, in North Carolina.  Therefore, this dissertation 

targets on major emission source categories in the Charlotte airshed.   

 

The Emission Modeling System 95’ (EMS-95) emission inventories were used in this work for 

the identification of major VOC and NOx sources categories in the Charlotte airshed.  Emission 

source categories were ranked based upon two coding systems, the Standard Industrial 

Classification (SIC) code and the Source Classification Code (SCC).  The SIC is a four-digit 

code, which classifies a source category according to its economic activity.  The SCC is an eight- 

or ten-digit code, which provides detailed information about an emission point of a source 

category.  Thus, the SIC focuses more on industry classification and the SCC focuses more on 

emission classification.   

 

A summary of the selected emission source categories is given in Table 1.1.  The first and 

second largest NOx emission sources in the SCC ranking are power plant emissions, for different 

types of boilers.  NOx emissions from electric generation are studied in separate work and are not 
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addressed here (Abdel-Aziz and Frey, 2002).  The natural gas-fueled reciprocating engine is the 

third largest NOx emission source in the SCC ranking, and is included in this work.   

 

Unlike NOx emissions, there is no dominant source category in VOC emissions.  The five VOC 

emission source categories selected in this work, including consumer/commercial product use, 

gasoline terminal loading, cutback asphalt paving, architectural coatings and wood furniture 

coatings, represent approximately 27 percent of total emissions in the Charlotte airshed.  

 

1.4 Overview of This Dissertation 

Chapter 2 describes the general methodology used in this study.  Chapter 3 is the case study for 

NOx and VOC emissions from natural gas-fueled internal combustion engines.  Chapter 4 is the 

case study to develop a probabilistic VOC emission factor for consumer/commercial product use.  

Chapter 5 is the case study for VOC emissions from gasoline terminal loading.  Chapter 6 is the 

case study for VOC emissions from asphalt paving and architecture coatings.  Chapter 7 is the 

case study for VOC emissions from wood furniture coatings.  Conclusions and recommendations 

are discussed in Chapter 8. 
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2.0 METHODOLOGY 

Variability refers to observed differences attributable to heterogeneity or diversity in a 

population.  In general, only a finite number of samples are available to approximate the true 

value of an unknown quantity.  Thus, uncertainty arises due to limited sample size.  Statistical 

techniques presented in this chapter for quantitative analysis include (1) plotting position 

methods to visualize the data, (2) fitting parametric distributions, (3) estimating parameters of 

parametric distributions, (4) random sampling techniques and bootstrap simulation and (5) 

propagation of distributions through a model. 

 

2.1 Plotting Position Methods 

It is often useful to graphically visualize sample data in uncertainty analysis.  The typical 

approaches to visualize data are assigning certain fractiles to data and expressing them as an 

empirical cumulative distribution function (CDF).  There are several possible “plotting position” 

functions to estimate the fractiles from sample data.  The typical way is to sort the data in an 

ascending order.  Then, equal probability, 
n

1
, is assigned to each data in a sample data set of size 

n.  Therefore an empirical CDF can be expressed as a step function: 

n

i
xxPxF

ii
=≤= ][)(      (2.1) 

Where:  

 F(xi), empirical CDF of sample xi, x1<x2<…<xn 

n, total number of samples 
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This function will give xn 100% fractile, which might be biased for continuous variables because 

it is not possible to observe the true maximum value of a population.  In order to avoid giving 

100% to the largest observed value in sample data set, some alternative formulas are proposed: 

Mean plotting position: 
1

][)(
+

=≤=
n

i
xxPxF ii    (2.2) 

Hazen plotting position: 
n

i
xxPxF

ii

5.0
][)(

−
=≤=    (2.3) 

Where:  

 F(xi), empirical CDF of sample xi, x1<x2<…<xn 

n, total number of samples 

 

Some other plotting position functions are also available, but involve minor adjustments to the 

above functions (Morgan and Henrion, 1990).  In this study, the Hazen plotting position function 

was used. 

 

2.2 Fitting Parametric Distributions and Estimating Parameters 

One limitation of empirical CDF is that there is no extrapolation beyond the range of observed 

data.  Thus, for small data sets, the real range of variability may be underestimated because 

variation in a sample observed may be much narrower than that in the population.  Fitting 

parametric probability distributions has benefits in that they can provide a plausible means for 

extrapolating to the unobserved part of the unknown population distribution.  Parametric 

distributions also may have underlying theoretical basis.  For examples, quantities formed from 

adding many uncertain quantities tend to be normally distributed, and quantities formed from 

multiplying uncertain quantities tend to be lognormally distributed.  Physical quantities, such as 
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pollutant concentrations, can be represented by the lognormal distribution (Morgan and Henrion, 

1990).   

 

2.2.1 Samples and Statistics 

Statistics are functions defined on samples and to describe the characteristics of samples (Cullen 

and Frey, 1999).  The sample mean and sample variance used in this study are specified here.  

The sample mean for a sample data set (x1, x2, …, xn) is: 

n

x
x

n

i
i∑

= =1       (2.4) 

 

The sample variance is a measure of spread or dispersion.  For a sample data set (x1, x2, …, xn), 

sample variance can be calculated as: 

∑ −=
=

n

i
i xx

n
S

1

22
* )(

1
     (2.5) 

 

For small sample size, 2
*S  is called the biased estimate of the sample variance.  The unbiased 

estimate of the sample variance is: 

∑ −
−

=
=

n

i
i xx

n
S

1

22 )(
1

1
    (2.6) 

 

2.2.2 Normal Distribution 

The normal distribution, also referred as Gaussian distribution, plays a central role in classical 

statistics mainly because of the Central Limit Theorem, which shows that the normal distribution 
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can be used to approximate the mean of large samples, typically with sample sizes n>30 or 40 in 

practice (Morgan and Henrion, 1990).   

 

The normal distribution, usually denoted as n(µ, σ2), has two parameters, arithmetic mean µ and 

variance σ2.  The probability density function (PDF) of normal distribution is:  

2

2

2

)(

2

1
)( σ

µ

σπ

−−

=
x

exf   ∞<<∞− x    (2.7) 

 

There is no closed-form representation of CDF.  If x ∼ n(µ, σ2), then the random variable 

σ
µ−

=
x

z has a n(0, 1) distribution, which is known as standard normal distribution: 

2

2

2

1
)(

z

ezf
−

=
π

   ∞<<∞− x    (2.8) 

 

The parameters of normal distribution can be estimated from sample mean x  and unbiased 

sample variance 2S . 

  x=µ̂        (2.9) 

22ˆ S=σ      (2.10) 

 

The above parameter estimation method based upon central moments (mean and variance are the 

first and second central moments) is referred as the method of matching moments (MoMM).  

Another commonly used parameter estimation method is the maximum likelihood estimation 

(MLE).  MLE estimates the parameters θk of a distribution based upon maximizing the 

likelihood function given in Eq. 2.11.   
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=
    (2.11) 

 

The analytical solutions for maximizing the normal likelihood function are 

x=µ̂        (2.12) 

2
*

2ˆ S=σ      (2.13) 

 

2.2.3 Lognormal Distribution 

If the logarithm of a random variable is normally distributed, then the random variable has a 

lognormal distribution.  The PDF of the lognormal distribution given in Eq. 2.14 can be obtained 

by transforming the PDF of the normal distribution 

2

2

2

)(ln
1

2

1
)( φ

ξ

φπ

−−

=
x

e
x

xf  ∞<< x0    (2.14) 

 

The parameters of the lognormal distribution are ξ and φ, which can be estimated from sample 

data by the MoMM: 

)ln(ˆ
22

2

xS

x

+
=ξ      (2.15) 

)ln(ˆ
2

22
2

x

xS +
=φ      (2.16) 

 

The MLE estimates are: 

n

x
n

i
i∑

= =1
ln

ξ̂       (2.17) 
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It is worthy to mention that some investigators also use ξ̂e and φ̂e as the parameters of the 

lognormal distribution (Frey and Rhodes in BootSim program, 1999).  The lognormal 

distribution often provides good representation for no-negative and positively skewed physical 

quantities, such as pollutant concentrations.    

 

2.2.4 Gamma Distribution 

The gamma family of distributions is a flexible family of distributions on [0, ∞ ].  One 

parameter, r, of the gamma distribution is called the shape parameter since it most influences the 

peakedness of the distribution.  Another parameter of the gamma distribution is scale parameter, 

λ, which influences the spread of the distribution.  The PDF of the gamma distribution is: 

)(
)(

1

r

ex
xf

xrr

Γ
=

−− λλ
 ∫=Γ ∞ −−

0
1)( dxexr xr  ∞<≤ x0   (2.19) 

 

It is worthy to mention that some researchers use 
λ
1

 as the scale parameter (Casella and Berger, 

1990, Cullen and Frey, 1999).  There is no closed-form representation of the gamma CDF.  The 

parameters of the gamma distribution can be estimated from sample mean x  and sample 

variance 2S  by the MoMM: 

2

2

ˆ
S

x
r =      (2.20) 
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2
ˆ

S

x
=λ      (2.21) 

 

As discussed above, the MLE actually is an optimization process.  The likelihood function is 

defined in terms of a product of probabilities of random sample data.  The log-likelihood 

function is to take logarithmic transformation on the likelihood function so that it can be written 

in terms of a sum of logarithms of the probabilities of random sample data.  Since most PDFs 

have “ex” terms, taking logarithmic transformation will simplify the optimization process.  Thus 

the log-likelihood functions are more widely used in practice.  The log-likelihood function of the 

gamma distribution is given by: 

∑ −−+Γ+−=
=

n

i
ii xxrrrnrJgamma

1
]ln)1[()](ln

1
ln[),( λ

λ
λ   (2.22) 

 

No parameter estimation method is always ideal for all circumstance.  MLE is considered to be 

statistically efficient for large sample size.  However, for small sample size, MLE do not always 

yield unbiased estimates (Holland and Fitz-Simons, 1982).   

 

The gamma distribution is similar to the lognormal distribution, but is less positively skewed and 

less “tail-heavy” in that it prescribes a lower probability to extreme values than does the 

lognormal (Morgan and Henrion, 1990).  The gamma distribution is widely applicable to many 

physical quantities, such as precipitation quantity and pollutant concentration. 
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2.2.5 Weibull Distribution 

The Weibull distribution is another distribution related to the gamma family.  However, it is less 

skewed and “tail heavy” than the gamma distribution, and exhibits negative skewness when the 

shape parameter becomes large (greater than 3.6, Morgan and Henrion, 1990).  The parameters 

of the Weibull distribution are shape parameter k and scale parameter c.  The PDF and CDF of 

the Weibull distribution are given by: 

k

c

x
k

k
ex

c

k
xf

)(
1)(

−−=   ∞<≤ x0    (2.23) 

k

c

x

exF
)(

1)(
−

−=   ∞<≤ x0    (2.24) 

 

There is no simple equation to calculate the Weibull parameters and both MoMM and MLE 

require numerical iterations.  The MoMM estimates of the Weibull parameters can be obtained 

by iteratively solving Eq. 2.25 and 2.26 using the Newton’s method. 

)
ˆ
1

1(ˆ
k
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The log-likelihood function of the Weibull distribution is given by: 

∑ −−+=
=
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Morgan and Henrion (1990) provide an alternative way to calculate the Weibull parameters 

based upon regression techniques.  First, rearrange CDF as: 
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bmYZ +=       (2.28) 

where:  

)]}(1ln[ln{ xFZ −−=  and xY ln= . Then: 

mk =ˆ  and m

b

ec
−

=ˆ      (2.29) 

 

Plot and regress Z vs. Y.  The slope m and the intercept b are used to estimate k and c. 

 

2.2.6 Beta Distribution 

The beta distribution is defined on the fixed range (0, 1).  The PDF of the beta distribution is: 
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There is no closed-form representation of the beta CDF.  The MoMM is commonly used to 

estimate the beta parameters: 
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The log-likelihood function of the beta distribution is given by: 
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The beta distribution can take many shapes as the parameters α and β vary.  The PDF of the beta 

distribution can be strictly increasing (α > 1, β = 1), strictly decreasing (α = 1, β > 1), U-shaped 

(α < 1, β < 1) or unimodal (α > 1, β > 1).  The PDF becomes more concentrated as α increases 

(Casella and Berger, 1990).   

 

2.3 Kolmogorov-Smirnov Goodness of Fit Test 

Kolmogorov-Smirnov (K-S) test is a commonly used goodness-of-fit test for continuous 

distributions.  K-S test calculates the maximum discrepancy between the step-wise empirical 

CDF and the CDF of a fitted distribution.  If the discrepancy is larger than the K-S test critical 

value at certain significance level, the hypothesized distribution is rejected.  The step-wise 

empirical CDF is: 

n

k
xS kn =)(      (2.34) 

 

Maximum discrepancy therefore is 

|)()(|max xSxFD nn −=     (2.35) 

 

The K-S test critical values at different significance levels can be found in Ang and Tang (1975). 

 

There are debates on the validness of K-S test when parameters of an assumed distribution are 

unspecified and are estimated from sample data.  Chakavarti et al. (1967) remarked that the K-S 

test “cannot be used if parameters involved in the distribution function are unspecified.”  The 

Engineering Statistics Internet Handbook indicates “Perhaps the most serious limitation is that 
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the distribution must be fully specified. That is, if location, scale, and shape parameters are 

estimated from the data, the critical region of the K-S test is no longer valid.”  Stephens (1974) 

pointed out that a disadvantage of using empirical distribution function (EDF) statistics in 

goodness of fit test is that they are not adapted for “the case when parameters must be estimated 

from sample”.  However, a modified critical value at the 0.05 significance level for sample size, 

n, larger than 30 has been proposed to be 
n

886.0
 for unspecified distributions (Mage, 1988). 

 

Although it is often quoted that goodness of fit tests are “objective”, they are actually not.  At 

best, they are empirical based (Cullen and Frey, 1999).  As Cullen and Frey (1999) pointed out, 

fitting a distribution to sample data is something a little subjective.  Therefore, goodness-of-fit 

tests only provide means to help to select parametric distributions, but not necessarily to 

designate a distribution to sample data.   

 

2.4 Monte Carlo Sampling Method 

The Monte Carlo sampling method provides approximate solutions to a variety of mathematical 

models by conducting statistical sampling experiments on a computer.  The origin of the Monte 

Carlo method can date from Buffon’s needle experiment conducted by a French scientist, 

Georges Louis Leclerc Comte de Buffon in 1777 to estimate the value of Pi.  The modern Monte 

Carlo method was systematically developed by John von Newuann and Stanislaw Ulam in the 

simulation of random neutron diffusion during the Second World War.   

 

There are many ways of sampling from a space, of which the best known and simplest is the 

Monte Carlo sampling (Morgan and Henrion, 1990).  The Monte Carlo sampling basically is 
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drawing values at random from a distribution.  During the Monte Carlo sampling process, 

random numbers are inputted into an inverse CDF of the assumed population distribution, and 

then a group of random sample data is obtained for that population.  For distributions that have 

no closed-form CDF, numerical methods are typically available.  The following methods of 

generating random sample for different distributions are given by Morgan and Henrion (1990).  

Xi denotes the random sample and Ui denotes the random number. 

 

(a) Normal random variates:  

µσ += si XX  Where: ∑ −=
=

12

1
6)(

i
is UX   (2.36) 

 

(b) Lognormal random variates: 

)exp( ξφ += si XX  Where: ∑ −=
=

12

1
6)(

i
is UX   (2.37) 

 

(c) Gamma random variates: 

For integer r: 

∑−=
=

r

i
ii UX

1
ln

1

λ
     (2.38) 

 

For noninteger r<1, sampling process is shown in Figure 2.1: 
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Figure 2.1 Gamma Random Variates Generation Process When Shape Parameter r<1 
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(d) Weibull random variates: 
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(e) Beta random variates, sampling process is shown in Figure 2.2: 
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Figure 2.2. Beta Random Variates Generation Process  
 

 

 

 

 

 

 

 

2.5 Bootstrap Simulation 

Bootstrap simulation was introduced by Efron in 1979 for the purpose of simulating the sampling 

distribution for observed sample data by conducting statistical sampling experiments:   
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Figure 2.3. Bootstrap Simulation and Two-dimensional Visualization of Variability and 
Uncertainty  
 

 

 

 

 

 

 

 

 

 

 

 

 

It is possible to separate variability and uncertainty under the scheme of the bootstrap simulation.  

The probability distribution estimated from observed sample reflects variability in the 

population.  Then, uncertainty range of the fitted probability distribution of variability can be 

estimated from bootstrap samples.  Typically, 500 to 2,000 bootstrap samples are simulated.  The 

bootstrap simulation and the process of exporting simulation results into a two-dimensional 

graph are illustrated in Figure 2.3.  An important advantage of the bootstrap simulation is that no 

restrictive assumption is required regarding normality.  Thus, the bootstrap simulation can be 

used on a wide variety of problems.   
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2.6 Propagation of Uncertainty through Models 

Mathematical models are widely used in the abstractions and simulations of real-world systems.  

Uncertainty in the model output typically is attributed to two sources, the model uncertainty and 

input uncertainty (Cullen and Frey, 1999).  The model uncertainty is associated with the model 

structure and arises due to the fact that the projection from a real system to a model is simplified.  

The limited knowledge regarding the underlying mechanism of a real system also adds 

uncertainty to model estimations.  The input uncertainty refers to uncertainty existed in the 

model inputs.  Increasing the model complexity may reduce the model uncertainty, but often 

inevitably increase the input uncertainty in that the number of inputs may increase.  Hence, there 

always are tradeoffs.   

 

Analytical and numerical methods can be used for propagation of input uncertainties in a 

mathematical model.  Analytical methods are based upon error propagation equations, and often 

are not applicable if models are highly nonlinear (nonlinear equation may be expanded using 

Taylor expansion, but propagation may suffer from inaccuracies) or if probability distributions 

for model inputs are necessarily non-symmetric or there are significant covariance between 

inputs.  Error propagation equations can be found in Mandel (1984). 

 

Numerical methods, such as Monte Carlo simulation, have no restrictive assumption on the 

probability distributions assigned to model inputs and are typically applicable for complex 

models.  The Monte Carlo simulation process is shown in Figure 2.4.  The principle of Monte 

Carlo simulation is to draw random samples from specified probability distributions of model 

inputs and to calculate the corresponding model output.  This procedure is repeated many times 
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until the calculated the statistics, such as mean, for the model output are becoming stable and the 

probability distribution of the model output can be built up.   

 

Figure 2.4. Numerical Propagation of Input Distributions through Models 
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A common recommendation associated with the application of Monte Carlo simulation is that 

the model inputs are independent.  However, it is possible to simulate the dependence between 

model inputs using statistical techniques such as multivariate distributions or restricted pairing 

for sample generation.  Weak dependence between input variables may have little effect on the 

overall modeling results.  More discussions about input dependence can be found in Smith et al. 

(1992), and Cullen and Frey (1999). 

 

One benefit of Monte Carlo simulation method is that it is possible to identify the key sources of 

uncertainties in model inputs contributing most to uncertainty in the model output by comparing 

the correlation coefficients of the model output and model inputs.  A correlation coefficient, ρx,y, 

is a measure of the strength of the linear relationship between two variables x and y. 
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Where: 

ρx,y = correlation coefficient 

xk = model input  

yk = model output 

m = number of iterations 
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ρx,y = 1 implies positive linear dependence.  ρx,y = -1 implies negative linear dependence. And 

ρx,y = 0 implies no linear dependence.  For a typical probabilistic simulation, the large absolute 

value of the correlation coefficient between an input and an output indicates substantial 

dependence of the variation in the output on the variation of the input (Cullen and Frey, 1999).   

 

However, if variables have different types of probability distributions, they are unlikely to be 

related linearly.  In this circumstance, the correlation coefficient may have little meaning.  One 

way to handle this problem is to use a rank value instead of the sample value to calculate the 

correlation coefficient.  A rank value is determined by sorting sample data in an ascending order.  

Then the smallest sample data has a rank value of one, and the largest sample data has a rank 

value that equals to the total number of data points.  The correlation coefficient calculated based 

upon rank values is referred as a rank correlation coefficient.   
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UNCERTAINTY IN AP-42 EMISSION FACTORS: CASE STUDIES FOR 

NATURAL GAS-FUELED ENGINES 
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Abstract 

Quantitative methods for characterizing variability and uncertainty were applied to case studies 

of NOx and Total Organic Carbon emission factors for lean burn natural gas-fueled internal 

combustion engines.  Parametric probability distributions were fit to represent inter-engine 

variability in specific emission factors.  Bootstrap simulation was used to quantify uncertainty in 

the fitted cumulative distribution function and in the mean emission factor.  Some 

methodological challenges were encountered in analyzing the data.  For example, in one 

instance, five data points were available, with each data point representing a different market 

share.  Therefore, an approach was developed in which parametric distributions were fitted to 

population-weighted data.  Uncertainty in mean emission factors ranges from as little as 

approximately plus or minus 10 percent to as much as minus 90 percent to plus 180 percent.  The 

wide range of uncertainty in some emission factors emphasizes the importance of recognizing 

and accounting for uncertainty in emissions estimates.  The skewness in some uncertainty 

estimates illustrates the importance of using numerical simulation approaches that do not impose 
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restrictive symmetry assumptions on the confidence interval for the mean.  In this paper, the 

quantitative method, the analysis results, and key findings were presented.   

 

3.1 Introduction 

Uncertainty in emission factors, and in emission inventories, is typically not quantified.  

Therefore, it is not known, in many cases, how robust regulatory or management decisions are 

with respect to uncertainty.  If management decisions are based upon point estimates of 

emissions that are biased, or if the range of uncertainty in emissions is much larger than any 

predicted change in emissions resulting from an air quality management strategy, then the 

decision-making process for developing management strategies could be ineffective. This paper 

focuses on one of the fundamental starting points for characterizing uncertainty in emission 

inventories, which is the emission factor.  The case study application is stationary natural gas-

fueled reciprocating engines.  The key questions addressed in this paper are: 

• What is the range of variability in emissions from one unit to another within a source 

category, such as natural gas-fueled engines? 

• How well can a parametric probability distribution represent inter-engine variability? 

• How can inter-engine variability be quantified when each available data point represents 

a different market share? 

• What is the range of uncertainty in the average emission factor and is the range 

symmetric or skewed? 

• What combination of existing or new methods is required to address the previous 

questions? 
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3.1.1 Variability and Uncertainty 

Emissions vary from one specific source to another (e.g., one engine to another) within a source 

category because of variations in design, feedstock compositions, ambient conditions, and other 

operating conditions.  For a given specific source (e.g., a particular engine), emissions vary over 

time because of differences in feedstock composition, ambient conditions, other operating 

characteristics, and maintenance and repair.  Thus, there is typically some inherent variation in 

emissions that is revealed by measurements on multiple specific emission sources or by repeated 

measurements of the same emission source. 

 

Uncertainty refers to lack of knowledge regarding the true but unknown value of a quantity, such 

as the true but unknown population average emission factor for a particular source category.1  

The average emission factor is subject to uncertainty for several possible reasons:  (1) random 

sampling error; (2) measurement errors; (3) non-representativeness of available data; and/or (4) 

lack of information.2  There is also the possibility of data entry mistakes.  In this paper, the main 

focus is on quantification of random sampling error, which is the statistical random fluctuation in 

any statistic estimated from a finite random sample of data.  Any statistic estimated from a 

random sample of data, such as the mean, is itself a random variable. The probability distribution 

for a statistic is referred to as the sampling distribution.2  The sampling distribution can be used 

to develop confidence intervals for a statistic.  Uncertainty due to random sampling error may 

often be a large or even dominant source of uncertainty for small data sets that are highly 

skewed. 
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3.1.2 Estimation of Uncertainty in Emission Factors 

Some emission factors are accompanied by data quality ratings.3   A method for qualitatively 

rating emission inventories, the Data Attribute Rating System (DARS) has been developed by 

the U.S. Environmental Protection Agency (EPA).4  Some sources of uncertainty are difficult to 

quantify, such as non-representativeness of a data set.  Therefore, there will always be a role for 

qualitative statements regarding non-quantifiable sources of uncertainty.  However, qualitative 

rating systems should be used in combination with quantitative approaches, as suggested by the 

National Research Council (NRC).5  

 

There is growing recognition of the importance of quantitative uncertainty analysis in 

environmental modeling and assessment.  For example, the EPA has developed guidelines for 

Monte Carlo analysis of uncertainty.6  The NRC has recommended to EPA that quantitative 

analysis of uncertainty be included in a variety of applications.5,7 

 

In recent years, work has been underway to develop and demonstrate improved methods for 

quantifying uncertainty in emission inventories.  In the area of mobile source emissions, for 

example, Kini and Frey developed quantitative estimates of uncertainty associated with the 

Mobile5b emission factor model estimates of light duty gasoline vehicle base and speed-

corrected emissions.8  Pollack et al. performed a similar study on California's EMFAC7G 

highway vehicle emission factor model.9  Frey et al. revisited the earlier analysis of Mobile5b 

emission factor estimates to include uncertainties associated with temperature corrections.10  

Frey and Bammi estimated uncertainty in the emission factors for non-road mobile source 

categories.11,12   
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In the area of power plant emissions, various investigators have developed uncertainty estimates 

for emissions of hazardous air pollutants and NOx.
10,13-17  Maurice et al. presented a 

methodological framework to quantitatively evaluate Uncertainty in life cycle inventories in coal 

power plants.18  For other source categories, such as area sources, Li and Frey estimated 

uncertainty in VOC emission factors of consumer and commercial product use.19  Methods for 

quantification of variability and uncertainty have been developed, evaluated, and demonstrated, 

including the use of Monte Carlo simulation and bootstrap simulation.20-22       

 

In this paper, quantitative methods for characterizing variability and uncertainty are applied to 

the source category of stationary natural gas-fueled reciprocating engines.  These engines are 

commonly used, for example, to power natural gas pipeline compressors.  In some airsheds, such 

as for Charlotte, NC, this type of emission source is estimated to be a significant contributor to 

the total NOx emission inventory. 

 

3.2 Overview of Methods for Probabilistic Analysis of Emission Factors 

The basic approach in probabilistic analysis is to quantify uncertainty in the inputs to a model, 

propagate the uncertainties through the model to make predictions of uncertainties in model 

outputs, and analyze the results.  There are a variety of methods for quantification of uncertainty 

in environmental models, including analytical and numerical methods.23  Numerical methods, 

such as Monte Carlo and bootstrap simulation, are typically more robust than analytical methods 

in that they can be applied to a wide range of problems without restrictive assumptions regarding 

probability distributions assigned to model inputs and for a wide variety of model formulations.   
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This paper focuses on the characterization of variability and uncertainty in emission factors, 

which are inputs to emission inventories.  Methods for propagating both variability and 

uncertainty through models and for analyzing results are described elsewhere.13,23  The  key steps 

in characterizing variability and uncertainty for an emission factor data set are summarized here. 

 

3.2.1 Characterizing Variability in a Data Set 

A first step in characterizing variability in a data set is to obtain all relevant data and assess the 

quality of the data.  A judgment must be made that the data are a reasonably representative 

sample of the population of interest, and that the data are free of significant errors.  This step is 

the same regardless of whether one is developing a point estimate or a probabilistic estimate.  

This is perhaps the most critical step in the analysis. 

 

A second step is to visualize the data to obtain insight regarding the range, central tendency, and 

skewness of the data, and any other noteworthy characteristics.  A method often employed for 

this purpose is to plot the data as an empirical cumulative distribution function (CDF).10,23   

 

It is convenient to represent a data set with a parametric probability distribution.  Parametric 

distributions are described by a small number of parameters and therefore can concisely 

summarize variability in a data set.  Parametric distributions enable interpolation within the 

range of observed data and extrapolation beyond the range of observed data.  The latter is 

especially important for small data sets, in which the observed range of variability may not fully 

capture the actually range of the unknown population distribution.  The plausibility of the 
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extrapolation depends on selecting a theoretically-justified distribution model that is consistent 

with the observed data.23,24 

 

In this study, lognormal, gamma, and Weibull distributions were considered as candidates for 

representing variability in emission factor data sets.  There are several methods for estimating 

distribution parameters.23  No method is necessarily the best one to use in all situations.  Both 

Maximum Likelihood Estimation (MLE) and Method of Matching Moments (MoMM) are used 

and compared in this work. 

 

3.2.2 Characterizing Uncertainty 

Bootstrap simulation is used to quantify uncertainty based upon random sampling error.25  The 

main assumption in bootstrap simulation is that the probability distribution estimated from the 

observed sample of data is the best estimate of the true but unknown population distribution.  A 

synthetic data set, known as a bootstrap sample, is sampled at random from the assumed 

population distribution using Monte Carlo simulation.  The bootstrap sample has the same 

number of data points as the original sample.  The values of the samples in the bootstrap sample 

are one possible alternative random realization of the original data set.  A large number of 

bootstrap samples are simulated, typically 500.  For each bootstrap sample, one or more statistics 

of interest may be calculated, such as the mean.  A statistic calculated from a bootstrap sample is 

referred to as a bootstrap replication of the statistic, and there will be random variation in the 

bootstrap replications.  The 500 values of the bootstrap replicates of the statistic can be used to 

describe a sampling distribution of the statistic.  From the sampling distribution, a confidence 

interval for the statistic can be inferred.  
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A key advantage of bootstrap simulation for estimation of confidence intervals is that no 

restrictive assumptions are required regarding normality, as is required to develop confidence 

intervals using common analytical methods.  Thus, bootstrap simulation can be used on a wide 

variety of problems.  The confidence intervals represent lack of knowledge regarding the true 

values of the statistics being estimated.   

 

3.3 Natural Gas-Fueled Reciprocating Engines  

Natural gas-fueled reciprocating engines are commonly used to provide mechanical shaft power 

to drive compressors, such as those used in natural gas pipelines.26, 27  These engines are 

classified based upon three major designs:  (1) 2-cycle lean burn, also referred to as 2-stroke lean 

burn (2SLB); (2) 4-stroke lean burn (4SLB); and (3) 4-stroke rich burn (4SRB).  The capacity of 

these engines ranges from 50 brake horsepower (bhp) to 11,000 bhp.  The air-to-fuel mass ratios 

of lean burn engines are typically higher than 24:1.  Rich burn engines operate near a 

stoichiometric air-to-fuel mass ratio of 16:1.   

 

Significant emissions from natural gas-fueled engines include NOx and hydrocarbons (HC). 

Control technologies for natural gas-fueled engines are primarily aimed at reducing NOx 

emissions.  Emission factors for natural gas-fueled engines have been published by EPA.3  Until 

recently, emission factors for this source category were based upon an October 1996 update.26  

However, an update was published in July 2000 based upon a different data set than the October 

1996 version.27  The October 1996 data set involves market-share weighted data for NOx and 

Total Organic Carbon (TOC) uncontrolled emission factors, whereas the July 2000 data are 
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assumed to be equally-weighted. To demonstrate a range of analysis methods, both sources of 

data are included in this study.   

 

3.3.1 October 1996 Version of AP-42 Emission Factors 

The analysis of the October 1996 version is focused upon lean burn engines, because these 

engines have high emission rates and are present in an airshed (Charlotte, NC) that is the subject 

of a case study in related work.  The specific emission sources for which uncertainty in average 

emission factors were quantified include:  (1) 2SLB uncontrolled engines; (2) 2-stroke "clean 

burn" controlled lean burn engines (2SCB); (3) 2-stroke pre-combustion chamber (PCC) 

controlled lean burn engines (2SPCC); and (4) 4SLB uncontrolled engines.  For other control 

options, apparently only one data point was used by EPA to estimate emission factors.28  

Therefore, other control options were not analyzed statistically. 

 

For the 2SLB and 4SLB uncontrolled engines, only average emissions data for selected 

manufacturers were available.  In addition, the market share for each manufacturer, in terms of 

the percentage share of installed capacity, was reported.  As an example, the data set for 2SLB 

engines is given in Table 3.1.  No market share is available for the “Clean Burn” and PCC 

controlled engines. 

 

The uncontrolled engine emission factors were assigned a data quality rating of “A” by EPA 

because they judged that the quantity and quality of the original test data were good and 

generally well documented, and that the engine types and population profile were known.  The 

Clean Burn and Pre-Combustion Chamber controlled engine emission factors were rated as “C,” 
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based upon a judgment that the test data were of “A” quality, but that the amount of data was 

limited.28  

 

3.3.2 July 2000 Version of AP-42 Emission Factors 

After the October 1996 version was published, EPA initiated efforts to gather additional 

emissions data for combustion sources, including stationary reciprocating engines. EPA decided 

to base the emission factors for natural gas-fueled engines on original emission source test data.29  

The July 2000 emission factors are only for uncontrolled engines.  However, the uncontrolled 

NOx emission factors have been refined by estimating emissions separately for two different load 

ranges.  EPA has made publicly available the data used to develop the new emission factors in a 

Microsoft Access database at the EPA TTN web site.30  A summary of the average emission 

factor calculated from the database and of the emission factors reported in the July 2000 version 

of AP-42 is given in Table 3.2.27  In some cases, it was possible to exactly reproduce the EPA 

emission factor.   

 

Two alternative procedures were used to estimate emission factors from the database.  In one 

procedure, referred to in Table 3.2 as "ungrouped", each data point in the database was given 

equal weight, even if some of the data represent repeated measurements of the same engine.  In 

the other procedure, referred to as "grouped," all data for a single engine were averaged, and only 

the average value for each engine was used to calculate an average emission rate.  Of the six 

emission factors shown in Table 3.2, it appears that for two of them (2SLB NOx, both load 

ranges) it is possible to exactly recalculate the AP-42 emission factor from the available data 

using the “ungrouped” approach.  For both of the TOC emission factors it is possible get a very 
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close approximation to the AP-42 value using the “ungrouped” approach.  For the emission fator 

of 4SLB NOx, 90 to 105% load range, initially it was not possible to get a reasonable 

approximation to the AP-42 value using either approach.  After consultation with EPA, test data 

from Colorado State University (CSU) were removed from the data set for the 4SLB case.  The 

CSU test results were more than an order-of-magnitude less than that for the other tests and may 

have been from a controlled, rather than an uncontrolled, engine.  After removing the CSU test 

data, the grouped average then is very close to the AP-42 value. 

 

Although most ungrouped averages are within 15 percent or less of the reported AP-42 values, 

EPA and the supporting documentation for July 2000 version of  AP-42 claimed that the 

“grouped” method was used in emission factor development.29  The inconsistency could not be 

reconciled because of lack of complete documentation by EPA and its contractor regarding how 

the emission factors were actually calculated. 

 

The emission factors of  the uncontrolled 2SLB engines were assigned a quality rating “A” by 

EPA, and the emission factors of the uncontrolled 4SLB engines were assigned a quality rating 

of “B.”29  However, no explanations regarding the specific basis for these ratings were provided.   

 

3.4 Quantification of Variability and Uncertainty in Emission Factors 

Two sets of case studies are presented.  In the first case study, each data point is assumed to be 

an equally likely random sample from the total population of emission sources.  This type of case 

study applies to all of the emission factor data except for the October 1996 version uncontrolled 

2SLB and 4SLB engine data, which are weighted by market share and described separately.  
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3.4.1 Equally-Weighted Randomly Sampled Data 

In many cases, emission factor data are available for a sample of engines, representing different 

manufacturers, engine models, engine ages, and applications.  In developing an emission factor, 

a judgment is made to group data from various specific engine measurements together because of 

similarities in engine design and operation.  For example, expert judgment could be used as a 

basis for estimating the market share of each particular make and model of engine.  In the 

absence of information, a common default assumption is to assume equal weight among the 

available data.  Of course, this assumption could be wrong.  At the same time, there may not be 

an empirical basis to justify other assumptions.  Key assumptions in an analysis should be 

evaluated when interpreting the results of the analysis.  Therefore, although equal weight for 

each data point is assumed, later this assumption will be critiqued. 

 

Another factor that must be considered is how to handle replicate data.  The available data sets 

include, in some cases, repeated measurements on the same engine.  For example, in the case of 

the July 2000 data set for uncontrolled NOx emissions from 4SLB engines operated at 90 percent 

to 105 percent load, there are 25 data points available from measurements on only 5 engine 

models.  Repeated measurements on the same engine provide an indication of intra-engine 

variability in emissions.  However, in calculating an emission factor, the objective is to quantify 

inter-engine variability in emissions for purposes of estimating the population distribution for 

variability within the source category.  Therefore, it is necessary to prepare a data set 

representative of inter-engine variability.  The approach taken here is to use an average value for 

repeated measurements of an individual engine as the representative emission rate for that 
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engine, and to analyze the inter-engine variability in which each engine is represented by either 

one data point, if only one measurement is available, or the average of the available data, if 

repeated measurements are available. 

 

As an example to illustrate the development of an emission factor database, Table 3.3 

summarizes the NOx emission data for five uncontrolled 4SLB engines operated at 90 to 105 

percent load.  The data for the Ingersoll Rand “KVS-412” and “KVS-12” engines were treated 

separately because they are reported separately in the data base and there is no evidence in the 

AP-42 supporting documentation that EPA treated them as the same engine in developing the 

AP-42 emission factors.29  The CSU tests on Waukesha 3512GL engine may actually be based 

upon controlled emissions and, therefore, are removed from the data set as previously described.  

 

The inter-engine variability in emissions for the uncontrolled 4SLB engines is shown in Figure 

3.1.  Of the several types of parametric distributions evaluated, the gamma distribution estimated 

using MoMM offered the best fit to the four data points.  With only four data points, 

conventional statistical goodness-of-fit tests are not applicable.  Instead, to evaluated the 

goodness-of-fit, bootstrap simulation was used to estimate confidence intervals for the CDF of 

the fitted parametric distribution. With only four data points, the confidence intervals are 

relatively wide.  For example, the 95 percent confidence interval for the median, or 50th 

percentile of the distribution, is from 2.3 lb/106 BTU to 5.7 lb/106 BTU, which is nearly as wide 

as the range of the observed data.  The mean emission estimate obtained from the fitted 

distribution is 4.1 lb/106 BTU.  The 95 percent confidence interval for the mean is from 2.5 

lb/106 BTU to 6.1 lb/106 BTU, corresponding to a range of minus 39 percent to plus 49 percent.  
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An important characteristic of the confidence intervals of the mean, or of any other statistic, 

estimated based upon bootstrap simulation is that they need not be symmetric.  With a very small 

data set of only four data points, and with positive skewness in the data set, the confidence 

interval on the mean is expected to be positively skewed.  Therefore, the asymmetry of the 

confidence interval for the mean NOx emission factor from 4SLB engines is expected.  Because 

of the small number of data points and the wide range of variability of the data, the confidence 

interval is expected to be relatively wide, as it is in this case. 

 

The adequacy of the fitted distribution can be evaluated, at least in part, by identifying what 

proportions of the data are contained with the confidence intervals of the CDF.  On average, if 

the fit is a good one, half of the data should be enclosed within the 50 percent confidence 

interval, 90 percent of the data should be enclosed within the 90 percent confidence interval, and 

95 percent of the data should be enclosed within the 95 percent confidence interval.  In Figure 

3.1, three of the four data points are contained within the 50 percent confidence interval, and all 

of the data are enclosed by the 90 percent confidence interval.  This suggests that the gamma 

distribution is an adequate fit to the data. 

 

3.4.2 Unequally-Weighted Data 

In this section, an example case study is presented based upon emissions data that are not equally 

weighted.  These data are from Table 3.1 for uncontrolled 2SLB engines, based upon the October 
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1996 version of AP-42.  The five emissions values are shown in Figure 3.2 as an empirical CDF, 

along with three parametric distributions that have been fit to the data.   

 

Because each of the five emissions values has a different market share-based weight, the method 

for fitting distributions to the data had to be modified compared to when data have equal weight.  

The approach taken here was to use 100 synthetic data points as a basis. The use of 100 basis 

data points allows for emission values to occur repeatedly in proportion to their market share.   

A portion of these 100 data points were assigned the emission factor associated with an engine, 

in proportion to the market share of that engine.  For example, the Clark engines have 36 percent 

of the market share; therefore, 36 of the 100 basis data points were assigned the Clark engine 

emission value of 2.64 lb/106 BTU. Parametric distributions were fit to the 100 basis data points.  

 

The Weibull distribution provides the best fit in the central portion of the distribution, and 

appears not to have as "heavy" of a tail at the upper end of the distribution.  The lognormal and 

gamma distributions provide similar fits in this case.  For comparison purposes, both the Weibull 

and lognormal distributions are included in the bootstrap simulation analyses, the results of 

which are given in Figures 3.3 and 3.4. 

 

During bootstrap simulation, each simulated data point has equal weight.  However, because the 

parametric distributions were fit to market share-weighted data, the shape of the parametric 

distributions reflects the frequency with which data should be sampled in different emission 

ranges.  For example, the steepness of the fitted CDF in the range from approximately 2 lb/106 

BTU to 3 lb/106 BTU means that there is a high probability that random samples of emissions 
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will occur in this range, corresponding to the three engines that have the largest combined market 

share.  In contrast, there is comparatively little probability that emissions values will be sampled 

for the two engines that, together, comprise only five percent of the total market share.   

 

For comparison purposes, the results of the bootstrap simulation with the lognormal distribution 

are given in Figure 3.3.  The 95 percent confidence interval encloses more than 95 percent of the 

empirical distribution of the data.  However, the confidence intervals are very wide, and there 

appear to be biases in the fit.  For example, the range of the empirical distribution from the 5th to 

50th percentiles coincides with the high side of the confidence intervals, while the lower and 

upper tails of the empirical distribution coincide with the low side of the confidence interval.  

These assumptions suggest that the lognormal is not a particularly good distribution to use in this 

case. 

 

The results of the bootstrap simulation with the Weibull distribution are given in Figure 3.4.  

These results imply more consistency between the assumed parametric distribution and the 

empirical distribution of the original data.  In particular, only a small portion of the empirical 

distribution is not enclosed by the 95 percent confidence interval.  The width of the confidence 

interval based upon the Weibull distribution, especially at the upper percentiles, is much 

narrower compared to the lognormal case, without compromising the apparent goodness-of-fit.  

Therefore, the Weibull distribution is selected over the lognormal distribution as a more 

appropriate basis for estimating uncertainty in the mean.  The choice of parametric distribution 

influences the estimated confidence interval for the mean.  The 95 percent confidence interval 

for the mean is 2.14 to 3.38 lb/106 BTU based upon the lognormal distribution, 2.25 to 3.26 
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lb/106 BTU based upon the gamma distribution, and 2.39 to 2.99 lb/106 BTU based upon the 

Weibull distribution.  Of these three, the Weibull distribution leads to the narrowest estimate of 

the confidence interval. 

 

In order to evaluate the influence of the market-share assumptions, this data set was also 

analyzed as equally weighted data.  The result of bootstrap simulation based upon a Weibull 

distribution fitted to equally weighted data is given in Figure 3.5.  When data are given equal 

weight, the mean is 1.95 lb/106 BTU, and the 95 percent confidence interval is from 1.22 to 2.75 

lb/106 BTU.  The equally weighted mean is 28 percent less than the market share weighted mean, 

and the confidence interval range is 160 percent larger.  Moreever, the lower end of the 

confidence interval is 49 percent less than in the market share weighted case.  In the equally 

weighted case, two engines with the lowest emission rate are treated equally with the other three 

data points even though their combined market share is only five percentage.  The substantial 

difference between the two approaches suggests the importance, at least in this case, of 

appropriately weighting the data. 

 

3.5 Summary of Quantified Variability and Uncertainty  

The inter-engine variability in the emission factor data sets and the fitted parametric distributions 

are summarized in Table 3.4 for the October 1996 version AP-42 and in Table 3.5 for the July 

2000 version AP-42.  The range of variability in the October 1996 version emission factors is 

from as low as approximately a factor of 2.3 to as high as a factor of 11.  Variability in the July 

2000 version is from as low as approximately a factor of 2.7 to as high as a factor of 51.  
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Particularly, there is substantial variability in NOx emission factors for engines with load smaller 

than 90% in the July 2000 version AP-42.   

 

Parametric distributions were fitted to data sets to represent inter-engine variability in emission 

factors.  The best fit was selected based upon the combined evaluations of the Kolmogorov-

Smirnov GOF tests and graphical comparisons between the fitted distributions and bootstrap 

confidence intervals.  The Kolmogorov-Smirnov GOF test was conducted using commercial 

software “Crystal Ball”.  The Kolmogorov-Smirnov test statistics reported by “Crystal Ball” for 

all cases are smaller than the critical value at a significance level of 0.05.31  Therefore, all fitted 

distributions are acceptable at the significance level of 0.05 based upon the Kolmogorov-

Smirnov test results.  For the cases that parametric distributions were fitted to the market-share 

weighted data, the Kolmogorov-Smirnov test is not applicable.  The best fit was selected based 

upon graphically comparing the step-wise CDF of the synthetic data set and the bootstrap 

confidence intervals based upon the fitted distributions, as discussed for Figure 3.3 and 3.4. 

 

A summary of estimates of uncertainties in emission factors for uncontrolled natural gas pipeline 

compressor engines are presented in Table 3.6.  For the October 1996 version of AP-42, the 

analysis is based upon the complete dataset used by EPA to develop the AP-42 emission factors.  

For the July 2000 version, the methods and data actually used by EPA were not fully 

documented and therefore it was not possible to exactly reproduce the AP-42 emission factors 

except in a few cases as previously noted.  However, the relative range of uncertainty estimated 

for these emission factors may still be useful in characterizing uncertainty.  The AP-42 emission 

factors shown in Table 3.6 for the July 2000 version are believed to be close to the means 
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calculated based upon “ungrouped” approach, whereas the mean values of the bootstrap means 

are based upon distributions fitted to data developed via the “grouped” approach.  In general, 

these mean values are similar to the mean values calculated directly from the “grouped” data, as 

given in Table 3.3; however, means from the fitted distributions will differ from those estimated 

directly from data. 

 

The summary tables indicate that the 95 percent range of uncertainty in the mean emission factor 

ranges from as low as approximately plus or minus 10 percent to as high as minus 90 to plus 180 

percent.  The range of uncertainty is influenced by a combination of the sample size and the 

range of variability in the data.  Smaller sample sizes and/or larger inter-engine variability in the 

data will tend to contribute to wider ranges of uncertainty in the estimated mean emission factor.   

 

3.6 Discussion and Conclusions 

This paper demonstrates the successful application of quantitative probabilistic analysis to 

emission factor case studies, based upon the example of stationary natural gas-fueled 

reciprocating engines.  The characterization of uncertainty is based upon random sampling error.  

The method includes:  (1) development of a database; (2) visualization of the data using 

empirical CDFs; (3) evaluation of alternative parametric probability distributions fitted to the 

data; (4) bootstrap simulation to characterize confidence intervals in the fitted CDF; (5) selection 

of a judged best fit distribution based upon bootstrap simulation results; and (6) quantification of 

uncertainty in the mean based upon the bootstrap sampling distribution for the mean. 
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The probabilistic method was applied to several different types of analyses, including:  (1) 

quantification of inter-engine variability in emissions and uncertainty in the mean for unequally 

weighted data points; and (2) quantification of inter-engine variability in emissions and 

uncertainty in the mean for equally weighted data points.  The range of inter-engine variability, 

which often was a factor, in emissions suggests that the weights assigned to each engine 

emission estimate can significantly affect the estimate of the mean emission rate.  Thus, the 

assumption of equal weighting of emissions data, as is often made, is likely to be a strong 

assumption in many cases and, therefore, can be a significant factor biasing emission factor 

estimates. 

 

The range of inter-engine variability in emission factors was found as large as a factor of 51, and 

most were greater than 5.  In this work, parametric distributions were fitted to data set for 

representing inter-engine variability in emission factors.  The goodness of fits was evaluated 

based upon the combination of the Kolmogorov-Smirnov GOF tests and graphical comparisons 

between the fitted distributions and bootstrap confidence intervals.  The Kolmogorov-Smirnov 

test statistics suggest that all fitted distributions are acceptable at a significance level of 0.05.  

The estimates of uncertainty in the mean are often asymmetric, indicating that skewness 

regarding observed variability in inter-engine emissions can lead to skewness in the estimate of 

uncertainty in the mean.  Conventional analytical methods based upon normality assumptions 

can lead to errors in uncertainty estimates.  The mean values estimated from the probabilistic 

analysis differ in some cases from the mean values estimated directly from the data because 

parametric probability distributions allow for interpolation within the range of observed data and 

for extrapolations beyond the range of observed data. For small data sets, it is unlikely that the 
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observed sample of data truly includes the minimum and maximum possible values.  On this 

basis, extrapolation is warranted.   

 

Although three parametric distributions were typically evaluated, most often the Weibull 

distribution was found to provide a good fit to the data.  The Weibull may take on many shapes, 

including negatively skewed, symmetric, or positively skewed.  Furthermore, the Weibull 

distribution also tends to be less "tail-heavy" than the other two, and often provides a better 

empirical fit to the data for these reasons.  

 

The quantitative analysis demonstrated here focuses on one important source of uncertainty.  The 

range of uncertainty associated with random sampling error was found to be as large as minus 90 

percent to plus 180 percent, and in most examples was greater than plus or minus 20 percent. 

Some other sources of uncertainty, such as potential lack of representativeness of the test cycles 

used in the measurements, or potential lack of representativeness of the sample of engines, are 

difficult to evaluate quantitatively.  Therefore, it is recommended that qualitative methods for 

identifying sources of uncertainty also be used.  However, there is not a direct relationship 

between the qualitative data rating and the range of uncertainty in the emission factor.  

Therefore, we do not recommend that data quality ratings be used to make inferences regarding 

quantitative ranges of uncertainty. 

 

A significant difficulty encountered in this study was the lack of documentation of the data and 

calculation methods used for the July 2000 AP-42 emission factors. Complete documentation 

should include enough information so that others can reproduce the calculations and results.  
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Therefore, we recommend that EPA report the data actually used and the complete calculation 

method used for each emission factor.  With the growing recognition of the importance of 

quantitative uncertainty analysis, it will be important for EPA and others to routinely report data 

regarding variability and uncertainty in emission factors. 
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Table 3.1. Emissions data for Uncontrolled Natural-Gas Fueled 2-Stroke Lean Burn Engines 

(Source: Reference 28) 

MAKE NOx Emissions 
(lb/106 BTU) 

TOC Emissions 
(lb/106 BTU) 

Ratio of total installed 
capacity (%) 

Ajax 1.132 4.318 4 

Clark 2.636 1.703 36 

CB 3.009 1.164 47 

Fairbanks-Morse 0.556 1.220 1 

Worthington 2.466 1.618 12 

Weighted average 2.710 1.539  
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Table 3.2. Comparison Between EPA NOx Emissions Database and Documentation of AP-42 
Emission Factors for Uncontrolled 2SLB and 4SLB Natural Gas Engines Based Upon July 2000 
Version of AP-42.  

Engine 

Type 
Pollutant Engine Load 

Average Calculated from 
Databasea 

(lb/106 Btu) 

AP-42 
Emission 

Factor 
(lb/106 Btu) 

Sample Size of 
Dataset Used to 
Develop AP-42 

Emission Factorb 

90 to 105% 
3.17 (ungrouped), 

3.05 (grouped) 
3.17 34 

NOx 

< 90% 
1.94 (ungrouped), 

2.15 (grouped) 
1.94 57 2SLB 

TOCc Any load 
1.61(ungrouped), 

1.49 (grouped) 
1.64 24 

90 to 105% 
4.40 (ungrouped)d 

4.02 (grouped) d 
4.08 25 

NOx 

< 90% 
0.739 (ungrouped) 

1.44 (grouped) 
0.847 13 4SLB 

TOCc Any load 
1.42(ungrouped), 

1.13 (grouped) 
1.47 37 

a Two average values were calculated from the available data in the database from the EPA TTN 
Web Site.  The "Ungrouped" averages involve taking the average of all emissions tests for all 
engines.  The "Grouped" averages involve first calculating the average emissions for engines that 
were tested more than once, and then calculating the average among all engines.  For example, if 
we have 25 test data from 10 engines, the ungrouped average is based upon 25 equally weighted 
values.  In contrast, the grouped average would be based upon the 10 average values for each 
different engine. 
b The test identification numbers used in the on-line database are documented in Reference 29. 
c Emission factors are reported on a TOC basis in AP-42. But they are reported as Total 
Hydrocarbons (THC) in database.27,30   
d CSU test were removed. 
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Table 3.3. Summary of Emission Test Data Using in July 2000 Version of AP-42 for 
Uncontrolled 4SLB Natural Gas Engines Operated at 90 to 105 Percent of Load. 

Engine Make and 
Model 

Engine 
Size 
(hp) 

Engine 
Load 

Range 
(%) 

Number 

of 

Tests 

Range of 
Test 

Results 

(lb/106 
BTU) 

Average 
Emissions 

(lb/106 
BTU) 

Caterpillar G339T 850 100 1 2.11 2.11 

Cooper-Bessemer LSV-
16 

4,200 98-99 4 2.41 to 3.28 2.90 

Ingersoll Rand KVS-412 2,000 91 2 5.24 to 5.63 5.44 

Ingersoll Rand KVS-12 2,000 100 5 4.98 to 6.01 5.65 

Waukesha 3521 GL 
(CSU tests) 

736 100 13 0.11 to 0.38 0.21 
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Table 3.4. Fitted Parametric Distributions for Variability in NOx and TOC Emission Factors for 
Natural Gas-fueled Lean Burn Engines, October 1996 AP-42 Data 

Pollutant NOx
a TOCa 

Engine type 2SLB 4SLB 2SLB 4SLB 

Control tech. none CB PCC none none CB PCC none 

Min of data 0.56 0.67 0.26 0.35 1.16 0.17 0.50 0.63 

Max of data 3.01 1.53 2.90 4.00 4.32 1.03 3.47 2.31 

Ratio of Max to Min 5.41 2.29 11.2 11.43 3.71 5.91 6.99 3.66 

Mean / 0.83 0.85 / / 0.77 1.75 / 

Std. Dev. / 0.25 0.57 / / 0.38 0.75 / 

Skewness / 2.60 2.56 / / -1.12 0.34 / 

Kurtosis / 7.55 8.53 / / -0.84 -0.02 / 

Fitted distribution W L L W W W W W 

Parameter estimation 
methodb MLE MLE MLE MLE MLE MLE MLE MLE 

Shape parameter 9.9908 -0.2115 -0.3178 3.7167 2.4124 2.2006 2.5805 1.9748 

Scale parameter 2.8505 0.2296 0.5361 3.5047 1.7279 0.8587 1.9783 1.3377 

K-S test statisticc n/a 0.2292 0.1308 n/a n/a 0.3423 0.1121 n/a 

Critical value at 0.05 
significance level  n/a 0.40 0.29 n/a n/a 0.40 0.29 n/a 

Num. of Data 5 11 20 4 5 11 20 4 

Percent of data in 50% 
bootstrap CI 

/ 36 70 / / 18 75 / 

Percent of data in 90% 
bootstrap CI 

/ 91 95 / / 45 100 / 

Percent of data in 95% 
bootstrap CI 

/ 91 100 / / 55 100 / 

a For uncontrolled emission factors, parametric distributions were fitted synthetic data sets. 
b W = Weibull; L = Lognormal. 
c Kolmogorov-Smirnov test is not applied for fits to synthetic data sets. 
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Table 3.5. Fitted Parametric Distributions for Variability in NOx and TOC Emission Factors for 
Natural Gas-fueled Lean Burn Engines, July 2000 AP-42 Data 

Pollutant NOx TOC 

Engine type 2SLB 4SLB 2SLB 4SLB 

Load range 90-105% <90% 90-105% <90% all all 

Min of data set 1.31 0.16 2.11 0.11 0.19 0.22 

Max of data set 5.60 5.08 5.65 5.65 2.14 1.65 

Ratio of Max to Min 4.27 32.56 2.68 50.90 11.42 7.62 

Mean 3.06 2.15 4.02 1.44 1.49 1.13 

Std. Dev. 1.31 1.65 1.79 2.39 0.53 0.63 

Skewness 0.36 0.79 -0.15 2.09 -1.05 -1.62 

Kurtosis -0.19 -0.91 -4.99 4.41 1.57 3.02 

Fitted distributiona W W G G W G 

Parameter estimation method MLE MLE MoMM MoMM MLE MoMM 

Shape parameter 2.6640 1.3489 5.0730 0.3624 3.2514 3.2313 

Scale parameter 3.4461 2.3423 0.7928 3.9670 1.6397 0.3484 

K-S test statisticb 0.1553 0.2284 n/a 0.1668 0.1517 n/a 

Critical value at 0.05 significance 
level  

0.40 0.40 n/a 0.56 0.35 n/a 

Total Num. of Data 11 11 4 5 14 4 

Percent of data in 50% bootstrap CI 82 45 75 60 50 50 

Percent of data in 90% bootstrap CI 100 100 100 100 93 100 

Percent of data in 95% bootstrap CI 100 100 100 100 93 100 

a W = Weibull, G = Gamma 
b Kolmogorov-Smirnov test is not applicable for sample size smaller than 5. 
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Table 3.6.  95 Percent Confidence Interval for Mean NOx and TOC Emission Factors for Natural 
Gas-fueled Lean Burn Engines 

Engine and 
Emissions Control 

Technology 

AP-42 
Emission 
Factora 

Fitted 
Distrib.b 

Bootstrap 
sample size 

Mean of Bootstrap 
Sample Meansa 

Relative 95% CI 
on Meanc 

October 1996 AP-42 Data, NOx Emission Factor 

2SLB, Uncontrolled 2.710 Weibull 5 2.714 -11.8% to +9.36% 

2SLB, Clean Burn 0.834 Lognormal 11 0.835 -14.1% to +15.4% 

2SLB, PCCd 0.850 Lognormal 20 0.840 -23.7% to +28.5% 

4SLB, Uncontrolled 3.225 Weibull 4 3.170 -27.2% to +30.8% 

October 1996 AP-42 Data, TOC Emission Factor 

2SLB, Uncontrolled 1.539 Weibull 5 1.549 -36.0% to +42.7% 

2SLB, Clean Burn 0.767 Weibull 11 0.770 -56.1% to +67.5% 

2SLB, PCCd 1.756 Weibull 20 1.750 -17.1% to +18.3% 

4SLB, Uncontrolled 1.261 Weibull 4 1.278 -47.6% to +55.7% 

July 2000 AP-42 Data, NOx Emission Factor 

2SLB, 90 to 105% 3.17 Weibull 11 3.05 -24% to +24% 

2SLB, < 90% 1.94 Weibull 11 2.18 -41% to +46% 

4SLB, 90 to 105% 4.08 Gamma 4 4.06 -39% to +49% 

4SLB, < 90% 0.847 Gamma 5 1.45 -90% to +180% 

July 2000 AP-42 Data, TOC Emission Factor 

2SLB, Uncontrolled 1.64 Weibull 14 1.45 -16% to +18% 

4SLB, Uncontrolled 1.47 Gamma 4 1.12 -45% to +57% 

a Units are lb/106 BTU.  
b Parameter estimation: MLE for Weibull and lognormal distributions and MoMM for gamma 
distribution. 
c Calculated based upon bootstrap simulation results.  
d PCC=Pre-Combustion Chamber 
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Figure 3.1. Comparison of Empirical Cumulative Distribution of Average Uncontrolled 4-SLB 
Engine, 90-105% load, NOx Emissions, Fitted Gamma Distribution, and Bootstrap Simulation 
Confidence Intervals, Based Upon July 2000 AP-42 Data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2. Empirical Distribution and Fitted Parametric Distributions for Market-Share 
Weighted NOx Emissions Rates for Uncontrolled 2-Cycle Lean Burn Engines Based Upon 
October 1996 AP-42 Data 
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Figure 3.3. Comparison of the Empirical Distribution Bootstrap Simulation Results Based Upon 
a Lognormal Distribution for Market-Share Weighted NOx Emissions Rates for Uncontrolled 2-
Cycle Lean Burn Engines Based Upon October 1996 AP-42 Data 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.4. Comparison of the Empirical Distribution Bootstrap Simulation Results Based Upon 
a Weibull Distribution for Market-Share Weighted NOx Emissions Rates for Uncontrolled 2-
Cycle Lean Burn Engines Based Upon October 1996 AP-42 Data 
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Figure 3.5. Comparison of the Empirical Distribution Bootstrap Simulation Results Based Upon 
a Weibull Distribution, Market-Share Weighted NOx Emissions Rates, Treated as Unweighted 
data, Uncontrolled 2-Cycle Lean Burn Engines Based Upon October 1996 AP-42 
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4.0 METHODS AND EXAMPLE FOR DEVELOPMENT OF A 

PROBABILISTIC PER-CAPITA EMISSION FACTOR FOR VOLATILE 

ORGANIC COMPOUND EMISSIONS FROM 

CONSUMER/COMMERCIAL PRODUCT USE 

 

Song Li and H. Christopher Frey  

Department of Civil Engineering, North Carolina State University, Raleigh, NC 27695 

 

Abstract 

Quantitative methods for developing a probabilistic per-capita emission factor were applied for a 

case study of volatile organic compound (VOC) emissions from consumer/commercial product 

use.  VOC profiles of 20 product categories were investigated.  For each category, the beta 

distribution was fit to represent variability in the VOC contents of different formulations.  

Bootstrap simulation was used to quantify uncertainty in the mean VOC content for each 

category.  Uncertainty in the mean VOC content for individual category is as large as minus 79 

percent to plus 130 percent. Since no sample data was available, judgment was used to assign 

probability distributions for product use.  Monte Carlo simulation was used to estimate 

uncertainty in the mean emission factor and to identify the key uncertainty contributors.  

Uncertainty in the mean emission factor was quantified as minus 7.7 percent to plus 8.4 percent.  

The key contributors of uncertainty was found including product use data of “Paints, primers, 

varnishes” and VOC content data of “Room deodorants and disinfectants”, “Caulking and 
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sealing compounds” and “Insect sprays”.  To reduce uncertainty in mean emission factor, it is 

recommended to collect more data for the key contributors than the insignificant contributors. 

 

4.1 Introduction 

Emission factors are basic data to develop emission inventories, and emission inventories are 

widely used for air quality management purposes.1  However, current practice typically ignores 

uncertainty in emission inventories as well as emission factors.  Therefore, it is typically not 

known how robust air quality management decisions are with respect to uncertainty.  It is also 

under considerable debate that the lack of quantification of uncertainty in current emission 

inventory development practice results in unnecessarily tight air quality standards and impedes 

opportunities to find cost-effective solutions.2, 3   

 

The case study application is for a per-capita volatile organic compound (VOC) emission factor 

for consumer/commercial product use.  VOCs are recognized precursors of tropospheric ozone, 

which is a criteria pollutant of NAAQS and of increasing concern, especially in urban areas.  

Consumer/commercial product use is among the largest emission sources of VOC emissions, 

such as in the Charlotte airshed, North Carolina. 

 

4.1.1 Variability and Uncertainty in Emission Factors of Area Sources 

Area sources include emission categories such as consumer/commercial product use, architecture 

coating, and asphalt paving.  For a given area source category, emissions may vary from one 

specific area to another or/and from one particular time to another because of variations in user 

preference, economic situation and other geographic or temporal characteristics.  For the 
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purposes of developing emission factors, analysts are typically interested in the average emission 

rate for a particular area in a particular averaging time.  This paper presents a case study of 

developing a national annual average emission factor for consumer/commercial product use.  

Further, in the case of consumer/commercial product use, the emission factor may also vary from 

one specific product category to another because of differences in formulations or manufacturers.   

 

Typically, uncertainty arises due to lack of knowledge regarding the true value of an unknown 

quantity, such as the true but unknown emission factor for a particular source category.4, 5  Other 

definitions of uncertainty can be found in ISO, Pukkala and Kangas, Lemons, Cullen and Frey 

and Mowrer.6-10  The average emission factor is subject to uncertainty because of: (1) systematic 

errors, also referred as inaccuracy or bias, due to inaccurate measuring method or non-

representativeness of data; and (2) random errors, also referred as imprecision, introduced by 

random measurement error and statistical random sampling error due to limited sample size.11  

The main focus of this case study is on the quantification of uncertainty that arises due to random 

sampling error, which is the statistical random fluctuation in any statistic estimated from a finite 

random sample of data.  In this paper, sampling distributions were used as a method for 

quantifying uncertainty in the mean emission estimate associated with random sampling error.  

 

4.1.2 Practice of Quantification of Uncertainty in Emission Estimates 

There have been recent efforts to quantify uncertainty in emissions for some source categories, 

but to date there has not been an effort to quantify uncertainty in the mean emissions of 

consumer/commercial product use.  For example, a number of efforts have been aimed at 

quantifying uncertainty in the emissions of coal-fired power plants, including hazardous air 
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pollutants and nitrogen oxides (NOx).
12-18  For nonroad mobile sources, uncertainty has been 

quantified associated with data used for both the Mobile5 and EMFAC7G models.14, 19, 20  

Probabilistic emission factors have recently been developed for selected nonroad mobile 

sources.21, 22  Uncertainty in air pollutant emissions has been addressed for natural gas-fueled 

internal combustion engines.23  Recently, the Intergovernmental Panel on Climate Change 

(IPCC) issued "Good Practice" guidance regarding methods for quantifying uncertainty in 

emission inventories.1  The National Research Council, in a recent report on onroad mobile 

source emissions, has also recommended the application of quantitative uncertainty analysis for 

emissions factors and inventories.24  

 

A methodology developed for the U.S. Environmental Protection Agency (EPA) is the 

underlying basis of the approach used in this paper.14  The method is described in detail in the 

next section.  Because most of the recent efforts to quantify uncertainty in specific source 

category emissions have been focused on point and mobile sources, it was deemed important to 

demonstrate the application of probabilistic methods to an important area source.  

Consumer/commercial product use was selected because it is a significant VOC emission source 

category and because uncertainty in the VOC emission factor for this category has not previously 

been quantified.   

 

4.2 Overview of Probabilistic Analysis Methods 

The primary approach of probabilistic analysis is to quantify uncertainties in the inputs to a 

model and to propagate the uncertainties through the model to obtain a probabilistic estimate of 

the model output.  This paper focuses on the quantification of uncertainties in the inputs of a per-
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capita emission factor model and the propagation of the uncertainties through the model to 

develop a probabilistic emission factor.   

 

4.2.1 Quantification of Uncertainty in Unknown Quantities 

It is often useful to graphically visualize the sample data prior to performing uncertainty 

analysis.  The typical approach to visualize data is the use of plotting position methods, which 

assign fractiles to samples and express them as an empirical cumulative distribution function 

(CDF).  One limitation of an empirical CDF is that there is no probability assigned to any values 

other than the observed data.  Fitting parametric probability distributions has benefits over the 

use of empirical distributions in that they can provide interpolations among the observed data 

and extrapolations beyond the range of observed data.25  Parametric distributions also typically 

have an underlying theoretical basis and an appropriate distribution can be selected that is 

consistent with the procedure that generates the data.9, 11   

 

Bootstrap simulation is a numerical method used to quantify uncertainties in statistics of a 

probability distribution that represents variability.  The bootstrap method was introduced by 

Efron in 1979 for the purpose of numerically simulating the sampling distributions.26  The main 

assumption in bootstrap simulation is that the probability distribution estimated from the 

observed sample of data is the best estimate of the true but unknown population distribution.  

Typically, 500 to 2,000 synthetic data sets, known as bootstrap samples, are randomly sampled 

from the assumed population distribution. Each bootstrap sample has the same number of data 

points as the original sample.  Therefore, the bootstrap sample is one possible random realization 

of the original sample.  Statistics, such as the sample mean, can be calculated from each 
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bootstrap sample.  Thus, there will be 500 to 2,000 estimates of the population mean, 

representing a sampling distribution of mean values.  From the sampling distribution of mean, a 

confidence interval for the population mean can be inferred.  Similarly, sampling distributions 

and confidence intervals can be inferred for other statistics, such as the standard deviation, 

distribution parameters, or percentiles of the cumulative distribution for variability.   

  

4.2.2 Propagation of Distributions through Model 

Analytical or numerical methods can be used for propagation of uncertainties in the model inputs 

through the model.  Numerical methods, particularly the Monte Carlo simulation method, have 

no restrictive assumption on the probability distributions assigned to model inputs and are 

typically applicable for complex models.9   

 

Another advantage of the Monte Carlo simulation method is that it is possible to identify the key 

sources of uncertainty in model inputs contributing most to uncertainty in model outputs by 

calculating the correlation coefficients between the each of the model output and model inputs.  

A correlation coefficient, ρx,y, is a measure of the strength of the linear relationship between two 

variable x and y.9  Larger magnitude of the correlation coefficient is often a useful indication of 

the important influence of a model input with respect to the range of uncertainty in a model 

output.   
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Where: 

ρx,y = correlation coefficient 

xk = model input  

yk = model output 

m = number of iterations 

 

In some cases, two distributions may have a non-linear but monotonic dependence.  In such 

cases, one should use the rank value instead of the sample value to calculate the correlation 

coefficient.  A rank value is determined by ordering the sample value in an ascending order.  

Then the smallest sample has a rank value of one, and the largest sample has a rank value that 

equals to the total number of samples.  The correlation coefficient calculated based upon rank 

value is called the rank correlation coefficient (RCC). 

 

4.3 VOC Emissions from Consumer/Commercial Product Use 

VOC emission data and product use data used in this study were obtained from the EPA report.27  

In the EPA study, consumer/commercial products were organized in 47 categories, of which 20 

categories account for 90 percent of total photochemically reactive organic compound (PROC) 

emissions.28  Therefore, highest priority was given to these 20 categories.  VOC profiles and 

product use for the 20 high priority categories were investigated.  

 



 80

4.3.1 Structure of the Database 

Consumer/commercial product use is an emission process of evaporation loss associated with the 

use of organic solvents.  Four types of information were needed for this study, including (1) Chemical 

composition of the products of interest (to determine the VOC content), (2) Market share of competing 

formulations, (3) National use of the products of interest, and (4) National population.  The database 

structure is given in Figure 4.1.  The database is organized in a hierarchical structure.  

Consumer/commercial products are separated into different product categories.  For each product 

category, major formulations on the market were investigated. 

 

According to EPA, chemical compositions of the competing formulations for a product were 

obtained from the chemical descriptions accompanied with the formularies or by contacting 

manufacturers.28  To develop an emission factor, market share information for competing 

formulations would be needed.  However, market share data were not readily available.  

Therefore, equal market share was assumed.  This assumption will not substantially bias the 

results if chemical composition does not vary substantially from one formulation to another.  

Another assumption made by EPA is that all organic components in the consumer/commercial 

products are finally evaporated into the atmosphere.  Product use data are typically obtained 

from market census, and only point estimates are available in this study.27  

 

4.3.2 Method to Develop a Per-Capita Emission Factor  

The emission inventory of consumer/commercial product use has been developed by EPA and 

many local authorities, such as NC Department of Environment and Natural Resources, based 
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upon a per-capita emission factor.  Equation 4.2 summaries the reported method to calculate the 

per-capita emission factor.27 

 

P

UWF

EF

m

i
ii∑

=

×
= 1      (4.2) 

 

Where:  

EF = VOC per-capita emission factor, lb VOC/person-year 

WFi = VOC weight fraction for ith product, lb VOC/ lb product 

Ui = product annual use for ith product, lb product/year 

P = population, person 

m = number of products 

 

4.4 Development of Probabilistic Per-Capita Emission Factor 

According to eq 4.2, in order to develop a probabilistic emission factor, uncertainties must be 

quantified in the: (1) VOC content data of each product; (2) annual use data of each product; and 

(3) population data.  Then the Monte Carlo simulation can be used to propagate the uncertainties 

in the inputs through eq 4.2 to predict uncertainty in the emission factor.   
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4.4.1 Quantification of Uncertainty in VOC Content Data 

VOC content data are available for different formulations in a product category.  For example, 

there are eleven major formulations of engine degreaser on the market, and the average estimate 

of VOC weight percentage for each formulation is given in Table 4.1.   

 

When quantifying uncertainty in VOC content data, an important consideration is to decide the 

market share for each formulation.  In the absence of this information, a default assumption used 

by EPA is to assume equal market share for the available data.  This assumption of course could 

be wrong.  However, at the same time, there may not be an empirical basis to justify other 

assumptions.  The equal market share assumption can be further reevaluated in the future when 

new information is released.  In addition, possible biases if the assumption is wrong can be 

evaluated by comparing the formulations within the category.  In the case of engine degreasers, 

there are three formulations with 25 weight percent or less of VOC, three formulations with 40 to 

55 weight percent of VOC, and five formulations with approximately 80 to 95 weight percent 

VOC.  If the market share is more heavily weighted toward the lower VOC formulations, then an 

emission factor based upon equally-weighted formulations will overestimate.  If the market share 

is more heavily weighted toward high VOC formulations, then the true average VOC emissions 

will be underestimated. 

 

Inter-formulation variability in the VOC content for a given product was represented with 

parametric probability distributions.  Uncertainty in the average VOC content was then estimated 

using bootstrap simulation.  As an example, the empirical cumulative distribution of the engine 

degreaser data, the fitted distribution for variability among degreasers and the bootstrap 
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simulation confidence intervals for the fitted distribution are shown in Figure 4.2.  The beta 

distribution was chosen because it is defined on a fixed range and can take on a wide variety of 

shapes.  Therefore is suitable to describe distributions of with a lower bound of 0 and an upper 

bound of 1.   

 

Goodness-of-fit (GOF) tests were conducted for evaluating the quality of fitting beta 

distributions.  GOF tests typically have limitations on the minimum amount of data.  For 

example, at least 25 data points should be available for the Chi-squared test and at least 5 data 

points should be available for the Kolmogorov-Smirnov test.9  The Kolmogorov-Smirnov test 

was applied for engine degreaser data using a commercial software “Crystal Ball”.  The beta 

distribution was recommended by “Crystal Ball” as the best choice among all continuous 

parametric distributions.  The Kolmogorov-Smirnov test statistic reported by “Crystal Ball” is 

0.2113 for engine degreaser data.  The critical value at a significance level of 0.05 is 0.40.29  

Therefore, the fit of beta distribution for engine degreaser data is acceptable at the significance 

level of 0.05.  Bootstrap simulation also provides a plausible method to evaluate the adequacy of 

a fit by identifying the proportion of the data contained within the confidence intervals of the 

CDF.  In this study, 500 bootstrap samples were simulated during the simulation process.  In 

Figure 4.2, seven of the eleven data are enclosed by the 50 percent confidence interval, and all of 

the data are enclosed by the 90 percent confidence interval.  This suggests that the beta 

distribution is a good fit to the data.   

 

Confidence intervals for statistics of the fitted parametric distribution were estimated by the 

bootstrap simulation.  For example, the 95 percent confidence interval for the median, or 50th 
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percentile of the distribution, is from 0.22 VOC fraction to 0.87 VOC fraction.  Similarly, for 

each bootstrap sample, the mean was calculated.  Therefore, there are 500 estimates of the mean, 

representing a sampling distribution of mean values.  From the sampling distribution, an average 

estimate and confidence intervals for the mean can be inferred.  The average estimate of the 

mean fraction of VOC content for engine degreaser obtained from the sampling distribution is 

0.53, which is the same as the mean VOC content calculated from the original data set.  The 95 

percent confidence interval for the mean is from 0.31 to 0.73, corresponding to a range of minus 

42 percent to plus 38 percent compared to the mean.  A characteristic of the confidence intervals 

of the mean, or of any other statistic, estimated based upon bootstrap simulation is that they need 

not be symmetric.  The asymmetry in this case results from negative skewness of the data and the 

small sample size. 

 

Summaries of parameters for fitted distributions and the proportions of data points enclosed by 

the bootstrap confidence intervals were given in Table 4.2.  The bootstrap confidence intervals 

for “Hair sprays” and “Insect sprays” suggest that the fits might not be adequate.  Thus, GOF 

tests were conducted for these two categories to further evaluate the quality of fit.  The “Crystal 

Ball” reported that the Kolmogorov-Smirnov test statistic for “Hair sprays” is 0.2344, which is 

smaller than the critical value of 0.31 at a significance level of 0.05.29  Therefore, this fit of beta 

distribution is acceptable at the significance level of 0.05 for the case of “Hair sprays.”  For the 

category of “Insect spray”, the “Crystal Ball” reported a Kolmogorov-Smirnov test statistic of 

0.5848, which is greater than the critical value of 0.41 at a significance level of 0.05.29  The 

reason for the unsatisfied fit is that the sample data are highly negatively skewed, which has a 
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skewness of -0.7377.  Even then, the beta still provided a better fit than any other continuous 

distributions defined on a fix range.   

 

A summary of probabilistic estimations of uncertainties in VOC content data of all 20 high 

priority categories is presented in Table 4.3.  For the category of “Auto antifreeze” and “Engine 

starting fluids”, only one data point is available, therefore there is insufficient information to 

perform bootstrap simulation in these cases.  For the categories of “Paints, primers, varnishes” 

and “Brake cleaners”, all reported formulations have the same VOC fraction of 1.0.  Therefore, 

because of the lack of variability in the reported data, no distribution was fitted to these data and 

uncertainty could not be estimated based upon statistical analysis.  These categories may be 

reinvestigated in the future if other data become available.  Alternatively, expert judgment could 

be used to quantify uncertainty in those cases.  However, in this work, uncertainty in the VOC 

content was solely quantified based upon empirical data.   

 

For some product categories, such as “Caulking and sealing” and “Lubricants and silicones”, the 

data sets are very small, the confidence intervals therefore are very wide.  Table 4.3 indicates 

that the relative 95 percent confidence interval of uncertainty in the average estimation of mean 

VOC content ranges from as low as approximately minus 1 percent to plus 1 percent to as high 

as minus 79 to plus 130 percent.  The range of uncertainty is influenced by a combination of the 

sample size and the range of variability in the data.  Smaller sample sizes and/or larger inter-

formulation variability in the data will contribute to wider ranges of uncertainty.  The skewness 

in some confidence intervals is because of skewness in the data, which is typical for nonnegative 

quantities with large relative variability. 
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4.4.2 Quantification of Uncertainty in Product Use and Population Data 

The use of distributions based upon empirical evidence is certainly desirable; however, it is not 

always possible to obtain samples for all inputs under the conditions of interest. Where empirical 

information is scarce or unavailable, the use of judgment is necessary.1  

 

In this study, only one point estimate of product annual use in the year of 1986 is available for 

each category.  For example, the annual use of “Paints, primers, varnishes” was estimated to be 

651,000,000 lb/year.27  Subjective methods were used to quantify uncertainty in product use 

data.  A normal distribution was assumed to represent uncertainty in the mean estimate of annual 

product use.  The normal distribution is a typical parametric probability distribution 

recommended by the IPCC as the first choice to represent uncertainties unless the properties of 

the data suggest another distribution, such as highly non-symmetric population.1   

 

After choosing the normal distribution, the next step is to estimate the parameters of the normal 

distribution.  Based upon previous experience in the field of quantification of uncertainty in 

emission inventory data, a range of minus 10 percent to plus 10 percent of the point estimate was 

judged to represent the 95 percent confidence interval of uncertainty.  Thus, the mean, µ , of the 

normal distribution is taken to be the same as the point estimate value, and the standard 

deviation, σ , of the normal distribution was derived to be a multiple of 0.051 of the mean value.  

Uncertainty in product use was assumed to be statistically independent among the product 

categories.  The impact of these uncertainty assumptions with respect to the calculated 

probabilistic emission factor could be evaluated later when interpreting the results.  
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Expertise regarding uncertainty in the population data belongs in the field of demography.  After 

consulting a demographist in the U.S. Census Bureau, it was decide not to assign a confidence 

interval to the population because the count of the population reported in the U.S. census 

tabulation is simply the result of doing a group of operations on the population and no sampling 

was applied to generate that number.30 

 

4.4.3 Quantification of Uncertainty in Emission Factor and Emission Inventory 

Monte Carlo simulation was used to propagate uncertainty in each model input given in the eq 

4.2 to develop a probabilistic emission factor.  A summary of the specified distributions for the 

inputs is given in Table 4.4.  For the VOC content, an empirical CDF was defined based upon 

the bootstrap sampling distribution of the mean VOC content for each individual category.  For 

the product use, a normal distribution described above was defined for each individual category.  

Thus, random samples for the VOC content and product use were generated from the specified 

empirical CDFs and the specified normal distributions, respectively.  The random samples of 

inputs were propagated through the eq 4.2 using the Monte Carlo simulation.  The random 

outputs of the eq 4.2 then were used to build up a probability distribution for emission factor. 

 

A sample size of 10000 was used in the Monte Carlo simulation.  The probability distribution for 

the estimated per-capita emission factor is presented in Figure 4.3.  The mean per-capita 

emission factor was estimated to be 6.33 lb VOC/year-person.  The 95 percent confidence 

interval of the per-capita emission factor is from 5.84 lb VOC/year-person to 6.86 lb VOC/year-

person, corresponding to a relative range of minus 7.7 percent to plus 8.4 percent compared to 
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the mean value.  Although the relative uncertainty ranges in some product categories are large, 

the relative uncertainty range in the per-capita emission factor appears to be not substantial 

because the mean values of VOC content are small.   

 

The EPA emission factor for commercial/consumer product use is 6.3 lb VOC/year-person.27  

The mean emission factor developed in this study is almost the same as the EPA value.  

However, insufficient documentation of how the EPA value was derived prevents a more 

detailed comparisons. 

 

The U.S. population, for example, in the year of 1986 is 241 million.  Based upon the 

probabilistic emission factor, a probabilistic estimation of the national inventory for the year of 

1986 was calculated.  The probability distribution of the national inventory is given in Figure 

4.4.  The mean estimate of national inventory is 1.526 billion lb VOC/year.  The 95 percent 

confidence interval of the national inventory is from 1.408 billion lb VOC/year to 1.654 billion 

lb VOC/year.  Therefore, although the relative confidence interval of the mean emission factor is 

not large, there is a substantial absolute range of uncertainty in the national inventory, which is 

approximately from minus 118 million lb VOC/year to plus 128 million lb VOC/year.  Because 

this kind of effect of “zooming out”, it is important to account for uncertainty emission factors. 

 

4.5 Identification of Key Sources of Uncertainty in Mean Emission Factor 

Knowledge of the key contributors to uncertainty in the mean per-capita emission factor will 

help guide future endeavors to reduce uncertainty by targeting the data collection where such 

data are most needed.  Given that some assumptions were made in this analysis because of the 



 89

absence of data, it is important to determine whether those assumptions significantly influence 

the results.  The key sources of uncertainty were determined by calculating the RCC between the 

model output and each individual model input.  The results are given in Table 4.5. 

 

As shown in Table 4.5, four input variables have RCCs noticeable larger than other input 

variables.  The RCCs of these four inputs are highlighted in bold and they are the product use of 

“Paints, primers, varnishes”, and the VOC content of “Caulking and sealing compounds”, 

“Room deodorants and disinfectants”, and “Insect sprays”.  These quantities are considered the 

key contributors to total uncertainty in the per-capita VOC emission factor of 

consumer/commercial product use.  Among them, the most correlated variable is the product use 

of “Paints, primers, varnishes” because this category has the largest annual sales in the market 

and has the highest mean value of VOC content.  Another input variable with RCC greater than 

0.4 is the VOC content of “Caulking and sealing compounds”.  The annual sales of this category 

ranked third and its uncertainty range, which is from minus 80 percent to plus 130 percent, is the 

most substantial one among all product categories.  If there was a need to reduce uncertainty in 

the mean emission factor, it would be helpful to prioritize data and information collection on the 

above key contributors.  In contrast, many of the other RCCs are either practically or statistically 

insignificant, indicating no important contribution to overall uncertainty in the emission factor 

from many of the model inputs. 

 

4.6 Discussion and Conclusions 

This paper demonstrated the application of quantitative methods to develop a probabilistic 

emission factor for VOC emissions from consumer/commercial product use.  These methods 
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include:  (1) development of a database; (2) visualization of the data using plotting position 

method; (3) fitting and evaluation of beta distributions to the data; (4) bootstrap simulation to 

quantify uncertainty due to random sampling error; (5) quantification of uncertainty in point 

estimation data by judgment; (6) propagation of uncertainty through a model to develop a 

probabilistic emission factor; and (7) identification of key contributors of uncertainty in 

probabilistic emission factor. 

 

The beta distribution was fit to represent VOC content data because it can be defined on the 

fixed range with a lower bound of 0 and an upper bound of 1.  Uncertainty in the mean VOC 

content ranges from as much as minus 79 percent to plus 130 percent and in most examples was 

greater than minus 30 percent to plus 30 percent.  The quantified uncertainty in the per-capita 

emission factor is minus 7.7 percent to plus 8.4 percent.  For some product categories, relative 

uncertainty is large, but the mean values are small.  Therefore, the relative range of uncertainty 

in the per-capita emission factor is not large.  However, although the relative confidence interval 

of the mean emission factor is not large, there is a substantial absolute range of uncertainty in the 

national inventory, which is approximately from minus 118 million lb VOC/year to plus 128 

million lb VOC/year.  This “zooming out” effect emphasizes the importance of recognizing and 

accounting for uncertainty analysis.   

 

The estimates of uncertainty in the VOC per-capita emission factor and in most of mean VOC 

content are asymmetric, which indicates that skewness and small sample size in the observed 

data set can lead to skewness in the estimates of uncertainty in the mean.  Therefore, using 
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numerical methods instead of analytical methods has the advantage that no normality is 

presumed, and avoids the introduction of bias in uncertainty estimation.   

 

The key contributors of uncertainty in emission factor was found including product use data of 

“Paints, primers, varnishes” and VOC content data of “Room deodorants and disinfectants”, 

“Caulking and sealing compounds” and “Insect sprays”.  This finding is important in that it 

allows for prioritization of future data collection or other efforts to improve the emission factor. 

 

Besides random sampling error, some other sources of uncertainty, such as non-

representativeness of the observed data, are difficult to evaluate quantitatively.  Therefore, it is 

recommended that qualitative methods for identifying sources of uncertainty also be used.  For 

example, for model inputs for which only point estimates are available, subjective methods can 

be used.  A priori knowledge of the theoretical basis for different distributions, and of the 

processes leading to uncertainty in a quantity, can aid in identifying candidate distributions and 

proposing a certainty confidence interval for that quantity.   
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Table 4.1.  VOC Content Data for Different Formulas of Engine Degreasers 

Formulas 
Average Percentage VOC by Weight 

1 25.0 
2 0.0 
3 79.8 
4 80.0 
5 81.0 
6 40.0 
7 40.0 
8 54.2 
9 94.8 
10 80.0 
11 5.0 
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Table 4.2. Fitted Parametric Distributions for Variability in VOC Content of 
Consumer/Commercial Product 

Parameters of Beta 
Distributiona 

Product 
Category 

�  ββ 

Total Num. 
of Data 

Percent of 
Data 

Within 
50% CI 

Percent of 
Data 

Within 
90% CI 

Percent of 
Data 

Within 
95% CI 

Hair sprays 105.77 4.3052 18 44 78 89 
All purpose 
cleaners 

0.3640 5.7782 51 57 94 98 

Insect sprays 0.2377 0.0461 10 40 60 70 
Car polishes 
and waxes 

0.3262 -0.9820 24 54 92 96 

Room 
deodorants 
and 
disinfectants 

1.1665 0.5681 4 100 100 100 

Caulking and 
sealing 
compounds 

0.8980 7.5180 3 33 100 100 

Adhesives 0.1645 0.3165 7 71 100 100 
Moth control 
products 

67.790 0.5605 3 67 100 100 

Window and 
glass cleaners 

0.7358 5.9445 16 19 88 94 

Herbicides, 
fungicides 0.2181 0.4632 14 64 93 100 

Personal 
deodorants 

3.1805 1.6118 3 100 100 100 

Carburetor and 
choke cleaners 

5.8320 1.0781 5 60 100 100 

Engine 
degreasers 

0.6737 0.6044 11 64 100 100 

Rug and 
upholstery 
cleaners 

0.3478 17.765 12 50 92 100 

Lubricants and 
silicones 

-0.2500 -0.2500 2 100 100 100 

Metal cleaners 
and polishes 

0.3059 2.5010 24 50 92 96 

a � is shape parameter, β is scale parameter. 
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Table 4.3. 95 Percent Confidence Interval Based upon Bootstrap Simulation for VOC Content of 
Consumer/Commercial Product  
Product Category No. of data / 

Formulations  
Mean VOC 
fraction from 
Original Data  

Average 
Estimate of the 
Mean VOC 
fractiona  

Absolute 95% CI 
for the Mean 
VOC fractiona  

Relative 95% CI 
for the Mean 
VOC fractiona 
(%) 

Paints, primers, 
varnishes 

18 1.0 No Uncertainty CI is Assigned 

Hair sprays 18 0.96 0.96 0.95 to 0.97 -1.0 to +1.0 
All purpose 
cleaners 

51 0.059 0.059 0.038 to 0.086 -36 to +46 

Insect sprays 10 0.84 0.84 0.60 to 1.0 -29 to +19 
Car polishes and 
waxes 

24 0.25 0.25 0.14 to 0.36 -44 to +44 

Room deodorants 
and disinfectants 

4 0.67 0.68 0.38 to 0.91 -44 to +34 

Caulking and 
sealing 
compounds 

3 0.11 0.11 0.023 to 0.25 -79 to +130 

Adhesives 7 0.34 0.34 0.08 to 0.64 -76 to +88 
Moth control 
products 

3 0.99 0.99 0.98 to 1.0 -1.0 to +1.0 

Window and glass 
cleaners 

16 0.11 0.11 0.062 to 0.16 -44 to +45 

Herbicides, 
fungicides 

14 0.32 0.33 0.16 to 0.54 -52 to +64 

Personal 
deodorants 

3 0.66 0.66 0.41 to 0.86 -38 to +30 

Auto antifreeze 1 0.90 No Uncertainty CI is Assigned 
Carburetor and 
choke cleaners 

5 0.84 0.84 0.71 to 0.94 -15 to +12 

Brake cleaners 3 1.0 No Uncertainty CI is Assigned 
Engine degreasers 11 0.53 0.53 0.31 to 0.73 -42 to +38 
Engine starting 
fluids 

1 1.0 No Uncertainty CI is Assigned 

Rug and 
upholstery 
cleaners 

12 0.019 0.020 0.0060 to 0.040 -70 to +100 

Lubricants and 
silicones 

2 0.50 0.51 0.0 to 1.0 -100 to +96 

Metal cleaners and 
polishes 

24 0.11 0.11 0.053 to 0.18 -52 to +64 

a Based upon bootstrap sampling distribution for fitted beta distribution 
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Table 4.4. Probability Distributions Assigned to the Inputs of the Per-Capita VOC Emission 
Factor Model for Consumer/Commercial Product Use 

Specified Probability Distribution Product Category 
Mean VOC Content Product Use 

Paints, primers, varnishes Point estimation, no distribution assigned Normal 
Hair sprays Bootstrap sampling distribution Normal 
All purpose cleaners Bootstrap sampling distribution Normal 
Insect sprays Bootstrap sampling distribution Normal 
Car polishes and waxes Bootstrap sampling distribution Normal 
Room deodorants and disinfectants Bootstrap sampling distribution Normal 
Caulking and sealing compounds Bootstrap sampling distribution Normal 
Adhesives Bootstrap sampling distribution Normal 
Moth control products Bootstrap sampling distribution Normal 
Window and glass cleaners Bootstrap sampling distribution Normal 
Herbicides, fungicides Bootstrap sampling distribution Normal 
Personal deodorants Bootstrap sampling distribution Normal 
Auto antifreeze Point estimation, no distribution assigned Normal 
Carburetor and choke cleaners Bootstrap sampling distribution Normal 
Brake cleaners Point estimation, no distribution assigned Normal 
Engine degreasers Bootstrap sampling distribution Normal 
Engine starting fluids Point estimation, no distribution assigned Normal 
Rug and upholstery cleaners Bootstrap sampling distribution Normal 
Lubricants and silicones Bootstrap sampling distribution Normal 
Metal cleaners and polishes Bootstrap sampling distribution Normal 
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Table 4.5. Rank Correlation Coefficients of the Inputs of the Per-Capita VOC Emission Factor 
Model of Consumer/Commercial Product Use 

Rank correlation coefficient Product Category 
Product VOC content Product use 

Paints, primers, varnishes n/aa 0.52 
Hair sprays 0 0.15 
All purpose cleaners 0.13 0.03 
Insect sprays 0.36 0.16 
Car polishes and waxes 0.19 0.04 
Room deodorants and 
disinfectants 

0.39 0.10 

Caulking and sealing 
compounds 

0.43 0.03 

Adhesives 0.10 -0.01 
Moth control products 0.01 0.02 
Window and glass cleaners 0.08 0.01 
Herbicides, fungicides 0.12 0.02 
Personal deodorants 0.08 0.03 
Auto antifreeze n/aa 0.02 
Carburetor and choke cleaners 0.03 0.02 
Brake cleaners n/aa 0.02 
Engine degreasers 0.03 0.01 
Engine starting fluids n/aa 0.04 
Rug and upholstery cleaners 0.02 0.01 
Lubricants and silicones 0.17 0.01 
Metal cleaners and polishes 0 -0.01 
a RCCs are not available because no uncertainty distribution is assigned. 
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Figure 4.1. Database Structure for Consumer/Commercial Product Use 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2. Comparison of Empirical Cumulative Distribution of VOC Content Data for Engine 
Degreasers, fitted Bata distribution, and Bootstrap Simulation Confidence Intervals 
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Figure 4.3. Mean and 95 Percent Confidence Interval of Per-Capita VOC Emission Factor for 
Consumer/Commercial Product Use 
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Figure 4.4. Mean and 95 Percent Confidence Interval of National Annual VOC Emissions from 
Consumer/Commercial Product Use 
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5.0 QUANTIFICATION OF VARIABILITY AND UNCERTAINTY IN 

EMISSION FACTORS OF GASOLINE TERMINAL LOADING LOSS 

 

Song Li and H. Christopher Frey  

Department of Civil Engineering, North Carolina State University, Raleigh, NC 27695 

 

Abstract 

In this paper, we demonstrated the application of quantitative approaches based upon real 

measurement data to characterize variability and uncertainty in air pollutant emissions.  The 

approaches were illustrated for the case study of volatile organic compounds (VOCs) emissions 

from gasoline terminal loading process.  We first characterized variability in measurement data 

using parametric probability distributions.  Uncertainty due to statistical sampling error was 

quantified using a numerical method known as bootstrap simulation.  In the emission factor 

development, it is important to distinguish intra-facility and inter-facility variability.  Different 

analysis results based upon retaining and removing intra-facility variability were presented.  The 

approach based upon removing intra-facility variability was recommended in that it is consistent 

with the real-world practice.  Uncertainty in the mean VOC emission factors is approximately as 

high as minus 67 to plus 110 percent for a 95 percent probability range.   The quantified 

confidence intervals for mean VOC emission factors are typically positive skewed, which 

reflects the skewness in emission measurement data and small sample size. 
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5.1 Introduction 

Traditionally, investigators develop air pollutant emission inventory based upon point-estimates 

of emission rates, such as AP-42 emission factors developed by US Environmental Protection 

Agency (EPA).1  However, a number of limitations of this approach have attracted increasing 

concern.  In particular, emission factors and emission inventories are subjected to both variability 

and uncertainty.  Failure to quantify them can lead to over-confident use of point estimates.  This 

paper focuses on the demonstration of the quantitative methods based upon real measurements to 

characterize both variability and uncertainty in emission factors.    

 

The case study application focuses on volatile organic compound (VOC) emissions from 

gasoline terminal loading processes.  Gasoline terminal loading was selected for this case study 

because field test data are available and it is among the largest VOC emission sources in the 

Charlotte airshed, North Carolina, which is the subject of related case studies in other ongoing 

work.    

 

5.2 Variability and Uncertainty in Emission factors 

Statistically, variability refers to observed differences attributable to true heterogeneity or 

diversity in a population.2  Many quantities are variable over time and space.  For example, 

emission factors of gasoline loading processes may vary over time and space because of 

differences in gasoline composition, ambient temperature, and other system and operating 

characteristics.  Uncertainty refers to a lack of knowledge regarding the true value of a quantity.3  

Uncertainties in emissions typically arise for several reasons, including bias or imprecision 

measurements, limited sample size and human errors, such as random mistakes in entering or 



 105 

processing data.  The main focus in this paper is on quantifying uncertainty due to random 

sampling error. 

 

Although the quantification of uncertainty in emission inventories is not yet a common practice, 

as recognized by the National Research Council (NRC) in 1991, the quality of emission 

inventories is hampered by significant, and yet poorly characterized uncertainties.4  More 

recently, the NRC has made strong recommendations to EPA regarding quantification of 

uncertainty in mobile source emissions.5  The Intergovernmental Panel on Climate Change 

(IPCC) has issued good practice guidance regarding uncertainty estimation for inventories of 

greenhouse gases.6  The development and application of probabilistic methods has also been 

encouraged in the field of human health risk assessment, for which emissions estimation is an 

important component.  For example, NRC recommended increased attention to the distinction 

between variability and uncertainty.7  EPA issued a policy document regarding the use of Monte 

Carlo simulation that addressed at least some of the NRC recommendations.8  Although EPA has 

long relied upon the use of qualitative ratings for emission factors, and in recent years has 

developed and applied the Data Attribute Rating System (DARS) to develop quality ratings of 

entire inventories, the NRC  has pointed out that a qualitative approach is not sufficient.1, 5, 9  

Although not all sources of uncertainty are amenable to quantification, the NRC recommends 

that sources of uncertainty that can be quantified should be.5   

 

There have been numerous specific efforts to quantify uncertainty in the inputs to emission 

inventories and in overall emission inventories.  Examples of quantification of variability and 

uncertainty in emission factors include coal-fired power plants,10-14 highway vehicles,15-17 
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nonroad vehicles,18, 19 selected area sources,20 and a variety of specific AP-42 emission factors.21, 

22  Examples of quantification of uncertainty in emission inventories include inventories prepared 

for the National Acid Precipitation Assessment Program (NAPAP).23, 24    

 

One of the challenges in quantifying uncertainty in the average emission factors for gasoline bulk 

loading terminals is that in some cases, replicate data are available for specific facilities.  Thus, 

there is an explicit consideration of how to deal with the distinction between intra-facility 

variability and inter-facility variability when describing variability in emissions.  The explicit 

quantification of two alternatives for quantifying variability is a key area of distinction of this 

paper compared to earlier work.  In addition, this is the first known attempt to quantify 

uncertainty for this specific source category. 

 

5.3 Overview of Probabilistic Analysis Applied to Emission Factors 

Quantitative analysis of variability and uncertainty in emission factor data requires the 

development of a database, quantification of variability in the data, estimation of the mean 

emission factor, and estimation of uncertainty in the mean.   

 

The starting point of quantitative analysis is to prepare an emission factor database and assess the 

quality of the data.  This step is the same regardless of whether to develop a point estimate or a 

probabilistic estimate.  For example, judgment must be made regarding which data are 

representative of the population, whether the data are well documented, and regarding methods 

to use to analyze the data.  In this study, emission factor database was developed based upon real 

measurement data and any unclearly documented data were removed from our database.   
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Data sets from emissions measurements may typically be used to characterize variability based 

upon step-wise empirical distributions or fitted parametric distributions.  The use of empirical 

distributions help to graphically visualize the sample data, thus a clear, graphical insight 

regarding the central tendency, degree of spread, shape and other characteristics of the data can 

be obtained.  For small data sets, the real range of variability may be underestimated because 

variation in observed samples typically is much narrower than that in the population.  Parametric 

probability distributions can provide a plausible means of interpolating and extrapolating to the 

unobserved part of the unknown population distribution.25  

 

After choosing a candidate parametric distribution to characterize variability of a data set, the 

next step is to estimate its parameters based upon the observed data.  Two methods for 

estimating distribution parameters, the method of matching moments (MoMM) and maximum 

likelihood estimation (MLE), were used and compared in this study.  No parameter estimation 

method is always ideal for all circumstances.  MLE is considered to be statistically efficient for 

large sample sizes.  However, for small sample sizes, MLE does not always yield unbiased or 

robust estimates.26  

  

Uncertainty in the average emission factor, based upon random sampling error, is influenced by 

the sample size and variability in the data.  While it is commonplace to use an analytical 

approximation for estimating a 95 percent confidence interval for the mean, the typical analytical 

approximation is based upon an assumption of normality for the sampling distribution of the 

mean.  However, with small data sets that are substantially skewed, which is often the case for 
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emission factor data, the normality assumption is not valid.  Therefore, a numerical method that 

does not impose a normality assumption is used.   

 

The bootstrap simulation is a numerical method to estimate uncertainty due to random sampling 

error in a probability distribution.  Basically, there are three steps in a bootstrap simulation 

process.  The first step is to obtain statistical information from the sample data.  An important 

assumption of this step is that the probability distribution estimated from the observed sample is 

the best estimate of the unknown population distribution.   

 

The second step of the bootstrap simulation is to conduct random sampling experiments on a 

computer.  Typically, 500 to 2,000 random samples, known as bootstrap samples, are simulated 

from the assumed population distribution.  Each bootstrap sample has the same number of data 

points as the original sample, and therefore is a possible alternative realization of the original 

data set.   

 

The third step of the bootstrap simulation is to develop sampling distributions for the statistics of 

interest.  For example, one or more statistics, such as the sample mean, can be calculated from a 

bootstrap sample.  Thus, there will be 500 to 2,000 replications of the mean.  A sampling 

distribution of mean, which represents the random sampling error in the mean, then can be 

developed.  Typically, uncertainty due to random sampling error is conveyed using a confidence 

interval based upon the simulated sampling distribution.   

 



 109 

5.4 VOC Emission Data for Gasoline Terminal Loading Loss 

Bulk gasoline terminals receive gasoline from refineries by pipeline, ship, or barge and dispense 

it into tank trucks for delivery to smaller bulk facilities or retail accounts.  VOC emissions at a 

terminal occur during loading, unloading, and transfer processes.  Loading losses are the primary 

source of emissions.  The principal loading methods are the splash loading method and the 

submerged loading method.  The submerged loading method has a lower emission rate than the 

splash loading method.  There are two types of submerged loading methods, the submerged fill 

pipe method and the bottom loading method, which are reported to have the same emission 

factors.1  In this paper, uncontrolled VOC emissions from the top splash loading and the bottom 

loading are investigated.  There are some end-of-pipe control technologies available for the 

terminal loading process.  However, no emission factor for controlled terminals was reported in 

the current version of AP-42. 

 

The emission data are from a background information document published by EPA.27  The 

document contains a summary of 22 VOC emission tests for bulk gasoline terminals, which were 

conducted by EPA throughout the United States between 1973 and 1978.  EPA has not tested 

any uncontrolled emission on gasoline terminals since the late 1970’s.28  The 22 tests include 

measurement data for uncontrolled VOC emissions and controlled VOC emissions for six types 

of control technologies, including carbon adsorption, thermal oxidation, refrigeration, 

compression-refrigeration-absorption, compression-refrigeration-condensation, and lean oil 

absorption. 
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5.5 Quantification of Variability and Uncertainty in Emission Factors 

In this section, quantitative methods were demonstrated to characterize variability in 

measurement data and uncertainty in mean VOC emission factors for the gasoline terminal 

loading loss.  The quality of the sample data was first judged for the development of the emission 

database.  Variability in measurement data was characterized by parametric probability 

distributions and uncertainty in the mean emission factor was estimated by bootstrap simulation.   

 

The emission database includes not only measurements on different facilities but also repeated 

measurements on the same facility.  The repeated measurements on the same facility represent 

the intra-facility variability.  Measurements on different facilities represent the inter-facility 

variability from one facility to another.  The main objective in the emission factor development 

is to quantify inter-facility variability.  Therefore, it may necessary to separate the intra- and 

inter-facility variability.  Two approaches were developed and compared to evaluate the 

importance of distinguishing intra- and inter-facility variability.    

 

5.5.1 Preparation of Database for Analysis 

Of 22 tests, in 6 cases, the type of loading method either was not specified or more than one type 

of loading method were simultaneously in operation during the test process.27  Therefore, the 

data from these 6 tests were not included in the analysis database.  In the database, two of the 

tests are for the top splash loading method.  The remaining 14 tests are for the bottom loading 

method.  Two of the bottom loading tests were conducted on the same facility; therefore, the 

measurements from these two tests were treated as repeated measurements on the same facility.   
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5.5.2 Quantification of Uncertainty Based upon Retaining Intra-Facility Variability  

The first approach introduced in this study is based upon retaining intra-facility variability.   In 

this approach, all measurement data were equally treated regardless of whether they are repeated 

measurements on the same facility or from different facilities.  Lognormal, gamma and Weibull 

distributions were evaluated as possible candidates to characterize variability in the data.  

Bootstrap simulation with 500 replications was used to quantify uncertainty in the mean 

emission factor.  An example of simulation results for the uncontrolled bottom loading is given 

in Figure 5.1.  In this example, a fitted Weibull distribution is shown in comparison to an 

empirical cumulative distribution function (CDF) of 37 available measurements.  Also displayed 

in the Figure 5.1 are the bootstrap confidence intervals for the fitted probability distribution.   

 

Figure 5.1 illustrates that the Weibull distribution is a good fit to the data.  The data are closed to 

the fitted distribution, especially at both the lower and upper tails of the distribution.  A 

Kolmogorov-Smirnov goodness-of-fit (GOF) test was conducted for evaluating the quality of 

fitting the Weibull distribution.  The Kolmogorov-Smirnov test statistic reported by “Crystal 

Ball”, a commercial software for risk analysis, is 0.0783, which is smaller than the critical value 

of 0.15 at a significance level of 0.05.29  Therefore, the fit of Weibull distribution for the 

uncontrolled bottom loading data is acceptable at the significance level of 0.05.   

 

The confidence intervals of different percentiles of the fitted probability distribution were 

estimated from bootstrap simulation results.  For example, Figure 5.1 indicates the absolute 95 

percent confidence interval of the median or 50th percentile of the fitted Weibull distribution is 

from 550 mg VOC/L gasoline loaded to 760 mg VOC/L gasoline loaded.  The average estimate 
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of mean emission factor is approximately 674 mg VOC/L gasoline loaded.  The absolute 95 

percent confidence interval of the mean emission factor ranges from 583 mg VOC/L gasoline 

loaded to 767 mg VOC/L gasoline loaded, corresponding to a relative interval of minus 14 

percent to plus 14 percent compared to the mean. 

 

Although the Weibull distribution offers a good fit to the data, it is also the case that both the 

lognormal and gamma distributions offer a good fit to the same data, as shown in Figures 5.2 and 

5.3, respectively.  The reported Kolmogorov-Smirnov test statistics for gamma and lognormal 

are 0.0866 and 0.0982, respectively.  So in all three cases, a Kolmogorov-Smirnov GOF test 

indicates that none of these distributions can be rejected at the 0.05 significance level.  However, 

the Weibull has the smallest Kolmogorov-Smirnov test statistic.  Furthermore, the 95 percent 

confidence interval of the bootstrap results encloses all of the data in all three cases.  However, a 

larger proportion of the data are enclosed by the 50 percent confidence interval for the Weibull 

distribution than for the other two distributions, and the Weibull distribution has less probability 

of large values (e.g., above 1,500 mg VOC/L gasoline) than the other two.  Therefore, because 

the Weibull appears to be more consistent with the data and is less tail heavy, the Weibull 

distribution was selected as the basis for estimating uncertainty in the mean.   

 

5.5.3 Quantification of Uncertainty Based upon Removing Intra-Facility Variability  

An obvious drawback of the previous approach based upon non-distinguishing of intra- and 

inter-facility variability is that a facility with many repeated measurements was given more 

weight than a facility with few repeated measurements.  The solution taken here is to remove the 

intra-facility variability before getting into uncertainty analysis for mean emission factor.  The 
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separation of intra- and inter-facility variability was actually based upon the fact that quantifying 

inter-facility variability is typically of more interested in the real-world practice of emission 

factor development. 

 

To remove the intra-facility variability, repeated measurements from the same facility were first 

averaged and the average value was used as a representative emission level for that facility.  

Thus, in the emission level database, each facility was weighted equally regardless its 

measurement amount.  Parametric distributions then were fitted to the emission level data set to 

characterize the inter-facility variability.  Bootstrap simulation described above was used to 

quantify uncertainty in the fitted probability distribution and the mean emission factors.  In this 

case, the bootstrap sample size was the same as the number of facilities.  As an example, Figure 

5.4 gives the bootstrap simulation result for uncontrolled bottom loading loss based upon 

removing intra-facility variability.   

 

Summaries of fitted parametric distributions and proportions of data points enclosed by bootstrap 

confidence intervals for different loading methods are reported in Table 5.1.  It is not always 

possible to employ a GOF test.  The Kolmogorov-Smirnov GOF test has a relative looser 

requirement that minimally 5 data points should be available.31  In Table 5.1, the Kolmogorov-

Smirnov test results suggest that the fits of gamma distributions to uncontrolled and 

compression-refrigeration-absorption controlled bottom loading are acceptable at a significance 

level of 0.05.  For those cases that are not satisfied to employ a GOF test, the large proportions of 

data points enclosed by the bootstrap confidence intervals also suggest that the fits are good.  

Typically, the method of matching moments (MoMM) provided better fit than the maximum 
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likelihood estimation (MLE) for the small data set.  As the sample size increasing, the MLE 

becomes more robust and tends to get a better fit than the MoMM.  This finding is consistent 

with the literature reported.26 

 

The quantified uncertainties in controlled and uncontrolled loading loss are given in Table 5.2.  

All control technologies are for the bottom loading method.  For the thermal-oxidation controlled 

bottom loading, all measurements are from the same facility, thus only intra-facility variability 

could be characterized.  Most confidence intervals of the mean emission factors based upon 

bootstrap simulation are positive skewed.  For example, uncertainty in the mean VOC emission 

factor for carbon-adsorption controlled bottom loading is minus 67 percent to plus 110 percent.  

The skewness in the quantified uncertainties for mean emission factors reflects the skewness in 

the measurements and the small sample sizes.  The relative 95 percent confidence intervals of 

uncertainty in mean emission factors range from as low as approximately minus 25 percent to 

plus 25 percent to as high as minus 67 to plus 110 percent.  The range of uncertainty was 

dedicated to both sample size and the range of variability.  Small sample size and large 

variability typically contribute to a wide range of uncertainty in the mean.    

 

5.6 Discussion and Conclusions 

In this paper, we presented the application of quantitative approaches based upon real 

measurement data to characterize variability and uncertainty in VOC emission factors for 

gasoline terminal loading loss.  The quality of measurement data was first evaluated, and 

unclearly documented data were removed from database.  The qualitative assessment is 

important in that nonrepresentativeness of data is difficult to be evaluated quantitatively.     
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Variability in the measurement data was characterized by fitting parametric probability 

distributions.  Since emission values could not be negative, the commonly used nonnegative 

parametric distributions, including lognormal, gamma and Weibull distributions were fitted to 

emission data sets.  The preferred fit was selected based upon the combinations of goodness-of-

fit tests and graphical comparisons between the fitted distributions and the empirical CDFs of the 

data sets.   

 

A special concern in the quantitative analysis of emission factors is how to handle the intra-

facility and inter-facility variability.  Different analyses based upon retaining and removing intra-

facility variability were introduced and compared in detail.  The approach based upon removing 

of intra-facility variability was recommended in that it avoids giving more weight to a facility 

with many repeated measurements than a facility with few repeated measurements.   

 

Bootstrap simulation was applied to characterize uncertainty in the fitted probability distributions 

and mean emission factors.  The relative 95 percent confidence interval of uncertainty in the 

mean emission factor is approximately as high as minus 67 percent to plus 110 percent.  The 

absolute 95 percent confidence interval is approximately as large as minus 1000 to plus 1100 

mg-VOC/l-gasoline.  The wide range of uncertainty is attributed to small sample size and 

substantial inter-facility variability, and also supports the importance of quantifying uncertainty 

in this source category.  The confidence intervals of uncertainty in the mean emission factors are 

positive skewed, indicating positive-skewness regarding variability in the emission measurement 
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data.  In this study, gamma distributions with MoMM parameter estimation were found likely to 

provide better fit than do lognormal and Weibull distributions. 
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Figure 5.1. Comparison of Empirical Cumulative Distribution of Uncontrolled Bottom Loading, 
VOC Emissions, Fitted Weibull Distribution, and Bootstrap Simulation Confidence Intervals, 
Based Upon Retaining Intra-Facility Variability. 
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Figure 5.2. Comparison of Empirical Cumulative Distribution of Uncontrolled Bottom Loading, 
VOC Emissions, Fitted Lognormal Distribution, and Bootstrap Simulation Confidence Intervals, 
Based Upon Retaining Intra-Facility Variability. 
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Figure 5.3. Comparison of Empirical Cumulative Distribution of Uncontrolled Bottom Loading, 
VOC Emissions, Fitted Gamma Distribution, and Bootstrap Simulation Confidence Intervals, 
Based Upon Retaining Intra-Facility Variability. 
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Figure 5.4. Comparison of Empirical Cumulative Distribution of Uncontrolled Bottom Loading, 
VOC Emissions, Fitted Gamma Distribution, and Bootstrap Simulation Confidence Intervals, 
Based Upon Removing Intra-Facility Variability. 
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Table 5.1. Fitted Parametric Distributions for Variability in VOC Emission Factors of Gasoline Terminal Loading Loss 

Parametersd 
Loading 
methoda 

Fitted 
Dist.b 

Para. 
Esti. 
Method.c r λ 

Total 
Num. of 
Data 

Percent 
of Data 
Within 
50% CI 

Percent 
of Data 
Within 
90% CI 

Percent 
of Data 
Within 
95% CI 

K-S test 
statisticse 

Critical 
Value at 
0.05 
significance 
levelf 

Bottom,  
Uncontrolled 

G MLE 4.5840 147.87 13 92 100 100 0.1028 0.37 

Top,  
Uncontrolled 

G MoMM 3.8536 429.76 2 100 100 100 n/a n/a 

Bottom, CA G MoMM 2.0832 2.6661 2 100 100 100 n/a n/a 
Bottom, 
CRA 

G MoMM 11.414 6.0167 5 80 100 100 0.2592 0.56 

Bottom, Ref G MoMM 17.747 3.4658 4 100 100 100 n/a n/a 
Bottom, TO G MoMM 2.4803 22.376 4 100 100 100 n/a n/a 
a CA = Carbon Adsorption; CRA = Compression-Refrigeration-Absorption; Ref = Refrigeration; TO = Thermal Oxidation  
b G=Gamma unit: mg VOC/L gasoline loaded 
c MLE = Maximum Likelihood Estimation; MoMM = Method of Matching Moments 
d r: shape parameter; λ: scale parameter 
e Reported by “Crystal Ball” 
f Sources: reference 29, 30   
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Table 5.2. Quantified Uncertainties for VOC Emission Factors of Gasoline Terminal 
Loading Process 

Loading methoda 
Bootstrap 
sample size 

Mean of 
bootstrap 
sample meansb 

Absolute 95% 
CI of bootstrap 
sample Meansb 

Relative 95% 
CI of bootstrap 
sample means, 
% 

Bottom,  
Uncontrolled 

13 681 -158 to +161 -23 to +24 

Top,  
Uncontrolled 

2 1599 -996 to +1123 -62 to +70 

Bottom, CA 2 5.7 -3.8 to +6.3 -67 to +110 
Bottom, CRA 5 69 -16 to +19 -23 to +28 
Bottom, Ref 4 62 -14 to +15 -23 to +24 
Bottom, TO 4 56 -28 to +39 -50 to +70 

a CA = Carbon Adsorption; CRA = Compression-Refrigeration-Absorption; Ref = 
Refrigeration; TO = Thermal Oxidation  
b unit: mg VOC/L gasoline loaded 
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6.0 QUANTIFICATION OF UNCERTAINTY IN EMISSION 

FACTORS OF EVAPORATIVE LOSS SOURCES: CASE STUDIES 

FOR ASPHALT PAVING AND ARCHITECTURAL COATINGS 

 

Song Li and H. Christopher Frey  

Department of Civil Engineering, North Carolina State University, Raleigh, NC 27695 

 

Abstract 

Volume-based emission factors are widely used for the development of emission 

inventories for evaporative loss sources.  Two typical evaporative loss source categories, 

asphalt paving and architectural coating, were studied in this paper.  However, different 

quantitative methods were used to characterize uncertainty in volatile organic compound 

(VOC) emission factors of these two categories.  The quantitative analysis for asphalt 

paving was based upon the combination of limited known characteristics and judgment.  

The quantitative analysis for architectural coatings was based upon real sample data.  For 

the case study of architectural coatings, market share information is also available.  Thus, 

emission data should not be weighted equally.  A method referred as synthetic data set 

was introduced for enabling fitting parametric probability distribution to unequally 

weighted emission data.  In the quantitative analysis based upon sample data, bootstrap 

simulation was used to quantify uncertainty in mean emission factors.  The procedures 

and results of the above two different quantitative analyses were discussed in detail in 

this paper. 
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6.1 Introduction 

Emission inventories are used for a variety of purposes, from as wide as national 

emission trends estimation to as detailed as source compliance analysis.  Non-quantified 

uncertainties in emission inventories possibly lead to biased conclusions regarding 

emission estimations and in turn result in erroneous management decisions.  Therefore, it 

is important to account for uncertainties in the emission inventory development.   

 

Emission factors are a starting point of emission inventory development, especially for 

area sources.  An ideal emission factor would be derived from source-specific sample 

data.  However, it is not practical to sample every source category.  Hence, emission 

factors are often based upon the known characteristics of a typical source.1  

 

This paper focuses on the demonstration of quantitative methods to characterize 

variability and uncertainty in emission factors for area sources.  Two case studies for 

cutback asphalt paving and architectural coating were presented.  These two categories 

are typical area sources of evaporative loss, for which volume-based emission factors are 

commonly used to develop emission inventories.   

 

However, the first case study of cutback asphalt paving targeted on demonstrating an 

uncertainty analysis for an emission factor based upon the combination of limited known 

characteristics and judgment.  The second case study of architectural coating 

demonstrated an uncertainty analysis for an emission factor based upon sample data.  
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Some key issues were addressed in this paper, including: (1) How to characterize 

uncertainty based upon judgment in the situation that information is limited? (2) How to 

characterize uncertainty based upon sample data? (3) How market share information 

could be incorporated into uncertainty analysis? (4) What is the typical range of 

uncertainty in emission factors of asphalt paving and architectural coatings since 

uncertainties in these two source categories have never been analyzed quantitatively? 

 

6.2 Overview of Uncertainty Analysis 

Uncertainty refers to lack of knowledge regarding the true value of a quantity.2  

Typically, uncertainty arise due to lack of data, nonrepresentativeness of data, limited 

sample size, use of surrogate data, or human errors. There are a number of 

recommendations to U.S. Environmental Protection Agency (EPA) that addressed on the 

importance of uncertainty analysis.  The National Research Council (NRC) has 

recommended uncertainty analysis in the fields of modeling mobile emissions and risk 

assessment.3, 4  The Intergovernmental Panel on Climate Change (IPCC) has developed 

“good practices guidance and uncertainty management” on the request from the United 

Nations Framework Conversion on Climate Change (UNFCCC).1  The U.S. Department 

of Energy (DOE) also recommended using Monte Carlo simulations of uncertainty in 

U.S. greenhouse gas emission estimates.5  The National Council on Radiation Protection 

and Measurements (NCRP) has published guides for uncertainty analysis in dose and risk 

assessments related to environmental contaminations.6   
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Basically, there are two types of uncertainty analysis, sample-based method and 

judgment-based method.  The sample-based method, such as bootstrap simulation, is 

certainly desirable.  However, when sample information is scarce or unavailable, the use 

of judgment to define uncertainty range is necessary.1  In practice, these two methods are 

used in compensation to each other. 

 

6.3 Case Study 1: VOC Emissions from Cutback Asphalt Paving  

The major source of VOC emission from asphalt paving is cutback asphalt.  VOC 

emissions from cutback asphalts result from the evaporation of the petroleum distillate 

solvent that is used to liquefy the asphalt cement.7  This case study focuses on the 

medium cure cutback asphalt, which is the prevailing approach in the Charlotte airshed, 

North Carolina, which is the studing domain of a ongoing related work.  However, 

quantitative methods demonstrated here can also be applied to the emission factors of 

other types of cutback asphalts.  

 

No sample data is available for VOC emissions from cutback asphalt paving, thus a 

mass-balance model based upon known characteristics of the cutback asphalt was 

proposed by EPA for this source category.  The mass-balance model for VOC emissions 

from cutback asphalt paving is given by Eq. 6.1. 

 

EVDCEF ××= ρ      (6.1) 

 

Where:  



 129 

EF, volume-based VOC emission factor, kg VOC/liter asphalt 

 DC, diluent content, liter diluent/liter asphalt 

 ρ, diluent density, kg/liter diluent 

 EV, percent of diluent evaporated, %. 

 

Theoretically, both model uncertainties and input uncertainties contribute to uncertainty 

in the model prediction.  Model uncertainties arise due to the fact that the model is a 

simplified representation of the real system.  For example, VOC emissions from the 

asphalt paving are also influenced by temperature, thus a temperature adjustment factor 

may be added to Eq. 6.1.  Input uncertainties refer to uncertainties that exist in the model 

inputs.  As far as this case study, only input uncertainties were addressed. 

 

Some known characteristics for the model inputs were available in EPA publications.  

The diluent used for medium cure is kerosene.7  The reported diluent content typically 

varies between 0.25-0.45 liter-diluent/liter-asphalt according to the AP-42, or 0.20-0.50 

liter-diluent/liter-asphalt according to the EPA guideline series.7, 8  A typical value of 

0.35 liter-diluent/liter-asphalt for the diluent content may be assumed for the inventory 

purpose.7  The percentage of diluent evaporated is estimated to be 60-80%.8  And a 

typical value of 70% is assumed for the inventory purpose.7  The above reported 

characteristics help to identify the ranges of variability in diluent content and percentage 

of diluent evaporated.   
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Because no sample data is available for the model inputs, the judgment-based method 

was used to quantify uncertainty ranges in the mean diluent content and mean percentage 

of diluent evaporated.  First, normal distributions were assumed to represent uncertainties 

in the means.  The normal distribution was chosen because it is a typical parametric 

probability distribution recommended by IPCC as the first choice to represent 

uncertainties unless the characteristics of the data suggest a highly non-symmetric 

population.1   

 

After choosing the normal distribution, the next step is to define the range of uncertainty.  

For the diluent content, a range of minus 10 percent to plus 10 percent of the typical 

value was judged to represent the 95 percent confidence interval of uncertainty in the 

mean diluent content.  For the percentage of diluent evaporated, since variability is not 

large, a range of minus 5 percent to plus 5 percent of the typical value was judged to 

represent the 95 percent confidence interval of uncertainty in the mean estimate.  The 

density for kerosene is 0.8 kg/liter.  Kerosene has a standard Chemical Abstracts Service 

(CAS) code of 8008-20-6, and its compositions are well known in the chemical industry.9  

Therefore, we wouldn’t expect much uncertainty in the estimation of kerosene density.  

In this study, a range of minus 1 percent to plus 1 percent of the 0.8 kg/liter was judged to 

represent the 95 percent confidence interval of uncertainty in the kerosene density.  Based 

upon the assumed range of uncertainty, the mean of normal distribution is the same as the 

typical value of the model input, and the standard deviation of the normal distribution 

was derived as a multiple of 0.51 of the absolute uncertainty range.  Input uncertainty 

assumptions are summarized in Table 6.1.  
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Uncertainty in each model input was assumed to be statistically independent.  The Monte 

Carlo simulation was used to propagate the input uncertainty distributions through Eq. 

6.1.  A sample size of 10000 was used in the simulation process.  The probability 

distribution for the simulated volume-based emission factor is presented in Figure 6.1.  

The average estimate of mean emission factor is 1.64 lb-VOC/gallon-asphalt.  The 

absolute 95 percent confidence interval of the mean emission factor is from 1.46 to 1.83 

lb-VOC/gallon-asphalt, corresponding to a range of minus 11 percent to plus 12 percent 

compared to the mean value.  The relative confidence interval of the mean emission 

factor appears not large, however, it may convert to a substantial absolute range of 

uncertainty in the inventory estimation.  For example, the point estimate of VOC 

emissions from cubtack asphalt paving in Charlotte airshed, North Carolina, was 14132 

tons/year in 1995.  If uncertiany in the emission factor had been taken into consideration, 

it would lead to thousdands of tons uncertainty estimation in the emission inventory of 

Charlotte airshed. 

 

6.4 Case Study 2: VOC Emissions from Architectural Coatings 

VOC Emission factors for architectural coatings are based upon sample data.  Data used 

in this case study are from a 1992 industry survey and were reported by EPA in 1996.10  

Emission data and annual sales information for 73 types of coatings were collected in this 

survey.  Coatings fall into two technology groups, solvent-borne and water-borne, based 

upon their carrier mediums.  34 types of coatings are solvent-borne coatings and 30 types 
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of coatings are water-borne coatings.  The carrier mediums of remainning 9 types of 

coatings are unknown.  

 

It was expected that solvent-borne coatings and water-borne coatings would yield 

different average emission rates.  Therefore, they were analyzed seperatly and the 

coatings with unknown carrier mediums were not used.  The categorization of database 

into small groups has statistical benefits in that it increases the precision of estimates by 

avoiding to lump heterogeneous items together.   

 

In this case study, sample-based method was demonstrated for quantifying uncertainty in 

mean emission factors of arcihtectural coatings.  Because different coatings have 

different market shares, a method refered to the synthetic data set (SDS) was introduced 

for the analysis of market-share weighted emission data. 

 

6.4.1 Overview of General Methodology 

In the sample-based quantitative analysis, sample data are typically visualized as an 

empirical cumulative distribution function (CDF) and variability in population can be 

characterized by fitting a parametric probability distribution to the sample data.  The 

bootstrap simulation was used to characterize uncertainties in the probability distribution 

of variability and mean emission factors.  In the bootstrap simulation, random sampling 

process was repeated simulated for, typically, 500 to 2000 times.  Each time, a simulated 

data set, known as a bootstrap sample, is sampled at random from the fitted probability 

distribution.11  The bootstrap sample has the same number of data points as the original 



 133 

sample and therefore is a possible random realization of the original sample.  Statistics, 

such as the mean, can be calculated for each bootstrap sample.  The 500 to 2000 

bootstrap replications of the statistics can be used to build up a sampling distribution, and 

confidence intervals of those statistics can be inferred.  

 

6.4.2 Development of Synthetic Data Sets 

Synthetic data sets were developed in order to fit parametric probability distributions to 

market-share weighted sample data.  In the synthetic data set, a portion of the data points 

were assigned with the emission value associated with a type of coating, in proportion to 

the market share of that coating.  For example, shellacs has a VOC emission rate of  4.51 

lb-VOC/gallon-coating and 0.2071 percentage of total market share.  In a synthetic data 

set with 1000 data points, 2 of the 1000 data points were assigned with the shellacs’s 

emission value of of  4.51 lb-VOC/gallon-coating.  Thus, the use of synthetic data set 

allows emission values to occur repeatedly in proportion to their market shares.  Then 

parametric distributions were fit to the synthetic data sets. 

 

6.4.3 Quantifications of Variability in Data Sets 

A concern in the SDS method is that the emission values with market share less than 

n

5.0
, where n is the size of synthetic data set, will not occur in the synthetic data set.  

Judgements were first made that fitted parametric probability distributions based upon 

synthetic data sets represent the original database well. 
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In this case study, synthetic data sets of 1000 data points were used.  Summaries of the 

synthetic data sets and selected parametric probability distributions for variability are 

presented in Table 6.2.  Because parametric distributions were fitted to the synthetic data 

sets, conventional Goodness-of-Fit tests, such as Kolmogorov-Smirnov test, are not 

applicable.  Therefore, the goodness of fitted parametric distribution was evaluated based 

upon visualizing of the data set and comparing empirical CDF with the fitted parametric 

distribution. 

 

A comparison of a fitted gamma distribution, a stepwise empirical CDF of the synthetic 

data set, and the original coating data set for solvent-borne coatings is presented in Figure 

6.2.  The original coating data set was plotted as a discrete empirical CDF based upon 

cumulative market shares.  Variability in the emission factor of solvent-borne coatings is 

more than a factor of 3, from 2 to 6 lb/gal.  The gamma distribution was fitted to the 

synthetic data set.  The comparison suggests that the gamma distribution agrees with the 

discrete CDF of the original coating data set.   

 

The same comparison for the water-borne coatings is presented in Figure 6.3.  Figure 6.3 

shows that a fitted Weibull distribution can capture the overall trends of the discrete CDF 

of the original coating data set.  Variability in the emission factor of water-borne coatings 

is from 0.03 to 3 lb/gal, with a factor of 100, and major coatings on the market have 

emission rates less than 0.7 lb/gal.  The fitted Weibull distribution also supports that there 

is little probability that emission values larger than 1 lb/gal will be sampled for water-

borne coatings since they only comprise less than 1 percent of the total market share.   
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6.4.4 Quantification of Uncertainty in the Mean Emission Factors 

Bootstrap simulation was used to quantify uncertainties in the fitted distribution.  In 

Figure 6.4, quantitative analysis results based upon fiting gamma distribution are shown 

for solvent-borne coatings.  The confidence intervals for different percentiles are plotted 

over the fitted gamma distribution.  For example, the 95 percent confidence interval for 

median is from 3.25 to 3.9 lb/gal.  Similarly, the confidence interval of mean emission 

rate can be obtained.   

 

The quantified uncertainties in the mean emission factors for architectural coatings are 

summarized in Table 6.3.  For solvent-borne coatings, the mean emission rate is 3.65 

lb/gal, corresponding to approximately the 55th percentile of the fitted gamma 

distribution.  The cumulative probability of the mean is above the median, which 

suggests slightly positive skewness in the data set.  The absolute 95 percent confidence 

interval of the mean emission factor for solvent-borne coatings is from 3.35 to 3.99 

lb/gal, corresponding to a relative range of minus 8.2 percent to plus 9.3 percent of the 

mean value.  The absolute 95 percent confidence interval of mean emission factor for 

water-borne coatings is from 0.39 to 0.59 lb/gal, representing minus 20 percent to plus 20 

percent of the mean value.  The wide range of relative confidence interval for water-

borne coatings is due to the small sample size and the small mean value. 
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6.5 Discussion and Conclusions 

Evaporative loss sources are important contributors to the VOC emission inventories.  In 

this paper, we briefly presented two case studies on the quantification of uncertainties in 

the VOC emission factors of asphalt paving and architectural coatings.  Typically, a 

quantitative analysis based upon real sample data is desirable.  However, instead of 

sample data, often only limited known characteristics, such as upper and lower bound 

information, are available for an emission source category.  Therefore, judgment based 

upon those limited known characteristics was made for the quantitative analysis.  

 

In the case study of VOC emissions from asphalt paving, uncertainties in the mean 

estimates of diluent content, diluent density and evaporation percentage were 

characterized based upon judgment.  The Monte Carlo simulation method was used to 

propagate input uncertainties in diluent content, diluent density and evaporation 

percentage through the emission factor model for the development of a probabilistic 

volume-based emission factor.  The 95 percent confidence interval of the mean emission 

factor for asphalt paving was quantified with a absolute range of 1.46 to 1.83 lb-

VOC/gallon-asphalt, corresponding to a relative range of minus 11 percent to plus 12 

percent compared to the mean value.   

 

The case study of architectural coating represents an ideal scenerio of uncertainty 

analysis in that sample data are available.  However, because different sample data have 

different market shares, conventional statistical methods were modified in order to fit 

parametric distributions to unequally weighted data.  In this case study, a synthetic data 
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set, which allows emission values to occur repeatedly in proportion to their market 

shares, was first developped.  Parametric distributions thus were fitted to the synthetic 

data set.  Bootstrap simulation was used to quantify uncertainty in mean emission factors 

based upon the fitted parametric distribution.  The 95 percent confidence interval for the 

solvent-borne coatings was quantified to be approximately minus 8 percent to plus 9 

percent of the mean of 3.65 lb-VOC/gallon-coating.  The 95 percent confidence interval 

for the water-borne coatings was quantified to be minus 20 percent to plus 20 percent of 

the mean of 0.49 lb-VOC/gallon-coating.  

 

The classification of coatings as either waterborne or solvent-borne was based upon an a 

priori expectation that these two categories would produce different average emission 

rates.  The quantitative analysis results demonstrate that the average emission rates for 

these two categories are statistically significantly different from each other.  For example, 

the upper 95 percent confidence interval for waterborne coatings is 0.59 lb/gallon, versus 

a lower 95 percent confidence interval for solvent-borne coatings of 1.19 lb/gallon.  

Therefore, the priori expectation is confirmed and the stratification of data with respect to 

the type of carrier medium is justified.   
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Figure 6.1. Mean and 95 Percent Confidence Interval of Volume-based VOC Emission 
Factor for Cutback Asphalt Paving 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.2. Comparison of Fitted Gamma Distribution, Stepwise Empirical CDF of the 
Synthetic Data Set and Cumulative Market Share of the Original Coating Database, VOC 
Emission Factor of Solvent-Borne Architectural Coatings 
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Figure 6.3. Comparison of Fitted Weibull Distribution, Stepwise Empirical CDF of the 
Synthetic Data Set and Cumulative Market Share of the Original Coating Database, VOC 
Emission Factor of Water-Borne Architectural Coatings 
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Figure 6.4. Bootstrap Simulation Results Based Upon a Fitted Gamma Distribution for 
Market-Share Weighted VOC Emission Factor of Solvent-Borne Architectural Coatings 
 

0.00

0.20

0.40

0.60

0.80

1.00

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty

Solventbone architecture coating
1000 base, Gamma distribution 
Method of matching moments
Sample size n=32
Bootstrap samples B=500

0 2 4 6 8
VOC Content (lb VOC/gal  coating)

Confidence Interval

Data Range

95 percent
90 percent

Fitted Distribution

50 percent

 
 
 
 
 
 
 



 142 

Table 6.1. Input Assumptions for Cutback Asphalt Paving Emission Factor Model 
Parameters Model Inputs Uncertainty Dist. 

Mean Std. Deviation 
Diluent content Normal 0.35 0.018 
Percent of diluent 
evaporated 

Normal 70% 1.8% 

Diluent density Normal 0.8 0.0041 
 
 
Table 6.2. The Synthetic Data Sets and Variability Charaterized by Fitted Parametric 
Probability Distribuions for Architectural Coatings 

Parameter Coating 
category 

Total No. 
of coating 
in 
database 

No. of 
coating 
enclosed 
in SDS 

Total 
market 
share of the 
coatings 
enclosed in 
SDS (%) 

VOC 
emission 
percent of 
coatings 
enclosed in 
SDS (%) 

Fitted 
Dist.a shape scale 

Solvent-
borne 

34 32 99.97 99.97 G 16.697 0.2188 

Water-
borne 

30 16 99.84 99.56 W 2.8234 0.5493 

a G = gamma, MoMM parameter estimation; W = Weibull, MLE parameter estimation. 
 
 
Table 6.3. Quantified Uncertainty in Mean VOC Emissions Factors of Architectural 
Coatings 
Coating 
category 

Fitted 
Dist. 

Bootstrap 
sample size 

Mean of 
Bootstrap 
sample means 
(lb/gal) 

Absolute 95% 
CI of Bootstrap 
sample means 
(lb/gal) 

Relative 95% 
CI of Bootstrap 
sample means 
(%) 

Solvent-
borne 

Gamma 32 3.65 3.35 to 3.99 -8.2 to 9.3 

Water-
borne 

Weibull 16 0.49 0.39 to 0.59 -20% to 20 
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7.0 QUANTIFICATION OF VARIABILITY AND UNCERTAINTY 

IN EMISSION FACTORS AND COATING USAGE FACTOR FOR 

WOOD FURNITURE COATING PROCESS 
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Abstract 

Emission factors are important starting point of emission inventories.  Emission 

inventories in turn are widely used in air quality prediction and management purposes.  

Typically, uncertainties in emission factors and emission inventories are not quantified.  

Therefore, it is unknown how robust regulatory and management decisions are with 

respect to uncertainty.  Quantitative methods to characterize variability and uncertainty 

based upon parametric probability distributions and bootstrap simulation were 

demonstrated in this paper with respect to a case study for VOC emissions from wood 

furniture coatings.  The 95 percent confidence intervals of uncertainty for the mean 

volume-based emission factors and coating usage factor were calculated.  Uncertainty 

distributions in volume-based emission factors and usage factor were propagated trough 

equation to develop a probabilistic employee-based emission factor.  These quantitative 

measures of uncertainties convey information regarding the quality of the emission 

factors and serve as a guideline for future work to improve the quality of emission factors 

as well as emission inventories for wood furniture coatings.  
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7.1 Introduction 

This paper demonstrates quantitative approaches to characterize variability and 

uncertainty in Volatile Organic Compound (VOC) emissions from the coating process of 

wood furniture industry.  This work is a part of a large project sponsored by US EPA to 

develop and demonstrate methods for the quantification of variability and uncertainty in 

emission factors and to apply these methods for a variety of emission source categories.  

The quantified uncertainties in emission factors thereby serve as a basis to quantify 

uncertainties in emission inventories, which will finally be inputted into air quality 

models for the probabilistic prediction of ambient ozone level.  

  

The target pollutant in this study is VOC.  VOCs and nitrogen oxides (NOx) react in the 

presence of sunlight to form tropospheric ozone, a regulated pollutant in the federal and 

state ambient air quality standards.  Therefore, the estimations of VOC emissions are 

important to photochemical air quality models for the ozone prediction.  The target 

category is wood furniture coating, which is the largest VOC emission source in the 

research domain, Charlotte airshed, North Carolina.1  Some key questions addressed in 

this papers include: (1) How to characterize variability in the volume-based VOC 

emission factors? (2) How to characterize the inter-factory variability in coating usage 

factor? (3) Whether there are significant differences in emission factors between water 

based and solvent-based coatings? (4) What are the ranges of uncertainty in the mean 

estimates of the volume-based VOC emission factors? (5) What is the range of 
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uncertainty in mean coating usage factor? and (6) How to develop a probabilistic 

employee-based VOC emission factor for wood furniture coatings? 

 

7.2 Variability and Uncertainty 

Variability refers to observed differences attributable to true heterogeneity or diversity in 

a population.2  For example, emission factors and usage factor for wood furniture 

coatings may vary from one factory to another because of variations in coating type, 

specific formulation, ambient temperature, and other operating conditions.  Uncertainty 

refers to lack of knowledge regarding the true value of an unknown quantity.3  

Uncertainty can be further separated into systematic errors and random errors.  This study 

focuses on the quantification of uncertainty due to random sampling errors. 

 

Systematic errors, which are also referred as inaccuracy or bias, come from inaccurate 

measuring methods or non-representativeness of data.3  Statistic techniques generally do 

not have enough power to characterize the systematic errors.  Therefore, it’s important to 

carefully judge the quality of data before uncertainty analysis. 

 

Random errors are also referred as imprecision.  Sources of random errors typically 

include random measurement errors and random sampling errors due to the limited 

sample size.  In the case that methods used to measure emissions are of good quality and 

well calibrated, it is expected that random measurement errors are not large compared 

with the random sampling errors.  In particular, when the sample size is small, random 
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sampling error is typically a dominant source of uncertainty.  Therefore, this study 

focuses on the quantification of uncertainty associated with random sampling errors.   

 

7.3 Needs of Probabilistic Analysis 

Uncertainties in emission factors and emission inventories are typically not reported in 

current practice.  As a surrogate for uncertainty estimates, AP-42 emission factors are 

accompanied with data quality ratings.4  For example, “A” to E” qualitative ratings are 

assigned to emission factors as a indicator of their quality.  A method for qualitatively 

rating emission inventories, known as the Data Attribute Rating System (DARS) has also 

been developed by EPA.5  Qualitative ratings of emission factors and emission 

inventories are important.  Some sources of uncertainty are difficult to quantify, such as 

non-representativeness of a data set.  Therefore, there will always be a role for qualitative 

statements regarding non-quantifiable sources of uncertainty.  However, qualitative rating 

systems should be used in combination with quantitative approaches. 

 

The National Research Council (NRC) and the EPA have increasingly recognized the 

need for a quantitative uncertainty analysis in environmental modelings and decision-

makings.  For example, the NRC has recommended to EPA the quantitative analysis of 

uncertainty as early as the year of 1994.6  A recent NRC report again recommended the 

EPA  to "undertake the necessary measures to conduct quantitative uncertainty analyses 

of the mobile source emissions."7  The EPA also has developed guidelines for Monte 

Carlo analysis of uncertainty in the context of human exposure and risk analysis.8 

 



 147 

7.4 VOC Emission from Wood Furniture Coatings  

The major pollutant emitted from wood furniture coating process is VOC.  In the wood 

furniture industry, coatings are usually applied in either manual or automatic spray 

booths.  The booths generally do not have any temperature or humidity control, and are 

maintained at ambient conditions.9  This research focuses on uncontrolled VOC 

emissions.  An assumption made by EPA for the surface coating area sources is that all 

VOCs in coatings are eventually emitted into the atmosphere.10  

 

The Standard Industrial Classification (SIC) code of 25 is created by the Bureau of the 

Census to track the practices in the furniture and fixtures industry.  SIC 25 actually 

covers a diverse groups of products.  This research focuses on wood furniture 

manufacturing industry that belongs to the following SIC codes:  

• SIC 2511: Wood Household Furniture, Except Upholstered 

• SIC 2512: Wood Household Furniture, Upholstered 

• SIC 2521: Wood Office Furniture 

  

We originally intend to collect the emission data that was exactly used by the EPA in 

developing its emission factor for wood furniture coatings.  However, these data was not 

easily available.  Given the difficulty to obtain a complete EPA data set, we decided 

instead to search for emission data for wood furniture coatings from other sources.  The 

data used in this study are from a survey conducted by the University of California at 

Davis (UC Davis) in the middle of 1990's for California Air Resources Board (CARB).11   
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Volume-based VOC emission factor and annual sales data of more than two hundred 

coating products were collected in the CARB survey.11  In the survey database, coatings 

were organized in 8 categories according to functional taxonomy.  These categories 

include colored coatings, enamels, fillers, sealers, stains thinners, topcoats and washcoats.  

Similar functional taxonomy can be found in several EPA publications regarding wood 

furniture industry.9, 12  Three are 18 unclassified coatings in the survey database, and 

thereby were not used in this study. 

 

For each of coating category except for thinners, coatings can be further divided into two 

subgroups according to their carrier mediums: water-based coatings and solvent-based 

coatings that are commonly referred as conventional coatings.  It was expected that the 

solvent-based coatings and water-based coatings would produce different average 

emission rates.  Therefore, they were analyzed separately in this study.  Typically, 

uncertainty in the mean is influenced by variability in the data set.  Dividing sample data 

set into homogeneous subgroups will reduce variability due to lumping heterogeneous 

items together.   

 

This database has been used by UC Davis to quantify uncertainty in emission factors.  In 

their research, truncated normal distributions were used to represent variability in 

emissions, and based upon normality assumption, student-t distributions were used to 

analytically quantify uncertainty in mean emission factors.  The normality assumption 

and the use of analytical method resulted in absolute symmetric estimates of uncertainty 

in their emission factors.11 
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In our study, non-negative parametric distributions, including lognormal, gamma and 

Weibull distributions, were used to represented variability in emission data set, and 

numerical methods based upon bootstrap simulation was used to quantify uncertainty in 

the mean emission factors. 

 

7.5 Methods to Quantify Variability and Uncertainty 

The very first step in any uncertainty analysis is to prepare sample database and assess 

the quality of the sample.  A judgment must be made that the data are a reasonably 

representative sample of the population of interest.  It is often useful to graphically 

visualize the sample data to obtain a clear insight of the range, central tendency, 

skewness and other characteristics of the sample.  The typical approach to visualize data 

is assigning certain fractiles to sample data and expressing them as an empirical 

cumulative distribution functions (CDF).  There are several candidate plotting position 

functions can be used to estimate the fractiles for a sample.  The Hazen plotting position 

was used in this study.13  An empirical CDF is also a valid description of variability in a 

sample.  However, one limitation of the empirical CDF is that there is no extrapolation 

beyond the range of observed data.  Thus, for small data set, the range of variability of 

the population may be underestimated because the variation in sample data observed may 

be much narrower than the variation in the actual population.13   

 

In this study, parametric probability distributions were fitted to the sample data for a 

plausible means to interpolate within the range of observed sample data and to 
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extrapolate to the unobserved portion of the unknown population distribution.  The 

parametric probability distributions evaluated were lognormal, gamma and Weibull 

distributions.  The selections of parametric distributions were based upon both theoretical 

and empirical considerations.  For example, emissions data are nonnegative and typically 

skewed.  The symmetric distributions, such as normal, are often inappropriate when 

sample size is small and variability is large.  While, the lognormal distribution is non-

negative and positively skewed and is often useful for fitting to physical quantities, such 

as pollutant concentrations.  The gamma and Weibull distributions are similar to the 

lognormal, but are more flexible than the lognormal to assume different shapes for 

variability. 14 

 

Bootstrap simulation was used to estimate uncertainty in the population distribution and 

mean emission factors.  The objective of bootstrap simulation is to numerically simulate 

sampling distributions for statistics.  In the bootstrap simulation process, multiple random 

samples, known as bootstrap samples, were drawn from the assumed probability 

distribution using Monte Carlo sampling method.  In general, the bootstrap sample has 

the same number of data points as the observed sample.  Thus, the bootstrap sample is a 

computer-simulated alternative realization of the original sample.  Typically, 500 to 

2,000 bootstrap samples are simulated and statistics, such as the mean, are calculated 

from each bootstrap sample.  Therefore, 500 to 2,000 estimates of the statistics are 

obtained to build the sampling distributions for statistics.  From the sampling distribution, 

a confidence interval for uncertainty can be inferred.15  Results of bootstrap simulation 

are typically exported to a two-dimensional graph.   
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7.6 Quantification of Variability and Uncertainty in Volume-Based Emission 

Factors 

Because different coatings have different annual sales, emission rates of different 

coatings should be weighted unequally when estimating uncertainty in average emission 

factors.  In this case study, a method refered as synthetic data set (SDS) was introduced to 

enable fitting parametric distributions for unequally-weight sample data.  This method 

has been successfully applied on other source categories, such as natural gas engine 

emissions.16  

 

In the SDS method, the market shares of coatings were first calculated based upon their 

annual sales.  Then a synthetic data set, in which a portion of  data points were assigned 

the emission value of a coating in proportion to its market share, was developed.  For 

example, suppose a coating has a VOC emission rate of  2 lb-VOC/gal-coating and a 

market share of 5 percent.  In a synthetic data set with 100 data points, 5 of the 100 data 

points will be assigned with the emission value of of  2 lb-VOC/gal-coating.  Thus, the 

use of synthetic data set allows emission values to occur repeatedly in proportion to their 

market shares.   

 

Finally, parametric probability distributions were fitted to the synthetic data set of each 

coating category.  Commonly used non-negative parametric distributions, including 

lognormal, gamma and Weibull, were chosen as candidates of fitting in this study.  As an 

example, fitted parametric distributions are plotted with the empirical stepwise CDF of 
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the synthetic data set in Figure 7.1 for solvent-based stains.  According to Figure 7.1, 

variability in emission rates ranges from 3 to 7 lb/gal, with a factor of more than 2.  Most 

of the sample data have emission values between 5 and 6 lb/gallon, which represent 

approximately 80 percent of total sales.  Because distributions were fitted to synthetic 

data sets, conventional goodness-of-fit tests are not applicable.  The preferred fitting was 

selected based upon graphically comparison between the fitted distributions and the 

empirical CDF of the sample data.  For example, Figure 7.1 shows that the Weibull 

distribution agrees more with the data set than do the lognormal and gamma, especially in 

the central portion of the distribution.  Further, the lognormal and gamma distributions 

are noticeably more tail-heavy than the Weibull.  Thus, the Weibull was selected as the 

best fit in this case to represent variability in emission rates.   

 

Table 7.1 summarizes the fitted parametric distributions for variability in different 

coating categories.  Some water-based coating categories have large factors of variability, 

such as a factor of 1250 for water-based stains, because their minimum emission rates are 

small.  Solvent-based coating categories typically have factors of variability from 1.5 to 

3.  In most cases, the Weibull distribution is more likely to provide a better fit than do the 

other two distributions because it is typically less tail-heavy and much flexible to assume 

different shapes.   

 

Bootstrap simulation was used to quantify uncertainties in the CDF and mean of the fitted 

distribution for each coating category.  Quantified uncertainty for solvent-based stains is 

shown in Figure 7.2.  Confidence intervals of uncertainty from bootstrap simulation are 
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overlapped over the fitted Weibull distribution.  For example, the absolute 95 percent 

confidence interval of the median is from 5.4 lb/gallon to 5.9 lb/gallon.  In this case, the 

sample size is large, thus the confidence interval is relative small.  The average estimate 

of the mean is 5.53 lb/gallon, and the absolute 95 percent confidence interval of the mean 

is from 5.33 to 5.73 lb/gallon.  The average estimate of the mean approximates the 44 

percentile of the fitted distribution.  The percentile of mean is smaller than 50 percentile, 

which suggests negative skewness in the data set.  Figure 7.3 shows bootstrap simulation 

results based upon a fitted gamma distribution for solvent-based fillers.  In this case, 

variability in emission rates ranges from 3 to 6 lb/gal and the emission value of 3 lb/gal 

represents approximately 97 percent of total sales.  Because only 3 data points are 

available, the 95 percent confidence interval of the mean is relative wide, with an 

absolute range of 2.61 to 3.52 lb/gallon and a relative range of minus 15 percent to plus 

15 percent. 

 

The quantified uncertainty in the mean emission factors for different coating categories 

are summarized in Table 7.2.  As shown in Table 7.2, the minimum uncertainty range for 

water-based coatings is approximately from minus 18 percent to plus 21 percent and the 

maximum uncertainty range is approximately from minus 56 percent to plus 65 percent.  

Therefore, there are substantial quantified uncertainties in the mean emission factors of 

water-based coatings.  Quantified uncertainties in water-based coatings are all 

asymmetric.  5 of 7 coatings have positive-skewed confidence intervals for mean 

emission factors.  The confidence intervals for the water-based enamels and fillers are 
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slightly negative-skewed.  The asymmetric confidence intervals reflect skewness and 

small sample size in emission data set. 

 

Except for the colored coatings and fillers, the absolute ranges of uncertainty in the mean 

emission factors of solvent-based coatings are larger than those of water-based coatings.  

The relative ranges of uncertainty of solvent-based coatings are all much narrower than 

those of water-based coatings because the sample sizes and the mean values of solvent-

based coatings are typically larger than those of water-based coatings.  As shown in 

Tables 3, 6 of 8 solvent-based coatings have relative uncertainty ranges of smaller than 

minus 10 percent to plus 10 percent.  Further, as the sample size getting large, the 

uncertainties in mean emission factors of solvent-based coatings are approaching to 

normality based upon the Central Limit Theorem.   

 

Knowledge of the range of uncertainty also enables rigorous comparison among different 

coating technology groups.  For example, it is clear that water-based coatings have much 

different average VOC emission rates from the solvent-based coatings because their 

confidence intervals for the mean emissions never overlap. 

 

7.7 Quantification of Variability and Uncertainty in Coating Usage Factor 

The coating usage factor is for all wood furniture coatings combined and has a unit of 

gallon-coating/employee-year.  The coating usage factor is used to estimate the employee 

level coating consumptions.  44 sample data of usage factor from 44 factories are 
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available in the CARB survey database.11  These 44 factories all belong to SIC 2511, 

2512 and 2521. 

 

Parametric probability distributions were fitted to represent inter-factory variability in the 

coating usage factor.  Bootstrap simulation was used to quantify uncertainty in the mean 

coating usage factor.  However, in this case, sample data were weighted equally because 

it is not necessary to discriminate different wood furniture factories.  The quantitative 

result for usage factor is given in Figure 7.4.   

 

As shown in Figure 7.4, there is substantial inter-factory variability in the coating usage 

factor.  The sample data vary from approximately 0.25 to approximately 220 gallons per 

employee-year.  The substantial inter-factory variability possibly is attributed to the 

substantial variations in the size of these 44 factories.  Among them, the smallest factory 

has only 1 worker with a usage factor of 0.25 gal/employee-year, and the largest factory 

has 250 workers with a usage factor of 106 gal/employee-year.  The largest coating usage 

factor of 218 gal/employee-year occurred at a factory with 45 workers.  Therefore the 

substantial inter-factory variability represents the substantial variations in the employee 

numbers, work efficiency and other operation conditions among different wood furniture 

factories.  

 

A fitted Weibull distribution is shown in Figure 7.4 in comparison with the empirical 

CDF of the data.  The shape and scale parameters of the Weibull distribution are 0.7735 

and 57.6446, respectively.  There is scatter of the data either above or below the fitted 
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distribution, especially in the central part and the tail of the Weibull distribution.  

However, the deviations of the data are all within the 95 percent confidence interval of 

the CDF of the Weibull distribution.  The mean usage factor was estimated to be 67 

gallon/employee-year.  The 95 percent confidence interval of the mean usage factor is 

from 44 to 100 gallon/employee-year, corresponding to a range of minus 35 percent to 

plus 49 percent compared to the mean value.  The skewness in the quantified uncertainty 

suggestes the skewness in the data set.  Although the sample size is relative large, the 

range of uncertainty is still quite wide, which is attributed to the wide range of inter-

factory variability in the data set. 

 

7.8 Development of Probabilistic Employee-Based Emission Factor 

For the evaporative loss sources like wood furniture coatings, it is not always possible 

that sales data for different coatings are readily available for the emission inventory 

development.  Therefore, an employee-based emission factor is used when sales data are 

absent.  Typically, employee- or population-based emission factors for general surface 

coatings are developed based upon material balance. 3  However, no detailed equation to 

develop an employee-based emission factor is proposed by EPA in the AP-42.  In this 

study, a material-balance model to develop an employee-based emission factor for wood 

furniture coatings was proposed.  As shown in Eq. 7.1, this model is based upon volume-

based emission factors and coating usage factor. 
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Where:  

EEF = employee-based emission factor, lb-VOC/employee-year 

VEFi = volume-based emission factor for ith coating category, lb-VOC/gal-coating 

Si = coating annual sales for ith coating category, gal-coating/year 

CUF = coating usage factor, gal-coating/employee-year 

n = total number of coating cateogries 

 

In this case study, the Monte Carlo simulation method was used to propagate the 

probability distributions of uncertainty in model inputs through Eq. 7.1.  The simulation 

was conducted using a commercial software “Crystal Ball.”  For the volume-based 

emission factor of each coating category, the input probability distribution is exactly the 

bootstrap sampling distribution for the mean emission factor.  The input probability 

distribution for the coating usage factor also is the bootstrap sampling distribution.  

Because there is no sample data available for coating annual sales, judgment was made 

regarding uncertainty level in coating sales.  In this study, normal distribution was 

assumed to represent uncertainty in average coating sales and a range of minus 10 percent 

to plus 10 percent of the point estimate of coating sales was assumed to be the 95 percent 

confidence interval of uncertainty.  This assumption was based upon the recommendation 

of Intergovernmental Panel on Climate Change (IPCC) that the normal distribution is the 
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first choice to represent uncertainties unless the properties of the data suggest another 

distribution, such as highly non-symmetric data.17   

 

A sample size of 1000 was used in the Monte Carlo simulation process.  The probability 

distribution for the employee-based VOC emission factor is presented in Figure 7.5.  The 

mean emission factor was estimated to be 281 lb-VOC/employee-year.  The 95 percent 

confidence interval of the mean emission factor is from 178 to 413 lb-VOC/employee-

year, corresponding to a range of minus 37 percent to plus 47 percent compared to the 

mean value.   

 

The Monte Carlo simulation method also enables the identification of the key sources of 

uncertainty in model inputs contributing mostly to uncertainty in model output by 

comparing the rank correlation coefficients (RCCs) between the model inputs and the 

model output.  Typically, a larger RCC of indicates strong dependence of the variation in 

the model output on the variation of the model input.13  The reported RCCs by “Crystal 

Ball” are shown in Figure 7.6.  In this case study, the coating usage factor has a RCC 

close to 1, and all other inputs of the Eq. 7.1 have RCCs smaller than 0.1.  Therefore, 

uncertainty in the usage factor actually dominates the overall uncertainty in the 

employee-based emission factor.  In order to reduce uncertainty in the employee-based 

emission factor, we strongly recommended more data to be collected for coating usage 

factor in the future work.   
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7.9 Conclusions 

The procedures of quantification of variability in emission factors and uncertainty in 

mean emission factors were demonstrated with respect to a case study of wood furniture 

coatings.  First, the large coating database was divided into different categories based 

upon functional taxonomy.  For each coating category, it was initially expected that 

solvent-based coatings and water-based coatings would product different emission rates.  

Although it is not possible to conduct hypothesis tests on the population mean because 

the sample size is not large enough and we would not like to assume normality for the 

emission data, this priori expectation was demonstrated since the quantified confidence 

intervals for the mean emission factors of solvent-based and water-based coatings never 

overlap. 

 

Uncertainty associated with statistical random sampling error was quantified based upon 

bootstrap simulation.  Random measurement errors can potentially be another source of 

uncertainty.  However, in the judgment of the investigators, the methods used to measure 

VOC content in coatings were assumed relatively well-known and of high quality.  

Therefore, it is expected that the measurement errors are not large with respect to the 

random sampling errors.  Another argument can be made is that if the data contain 

measurement errors, so do the quantified uncertainties in mean emission factors.  As the 

National Research Council noted in its recent report on mobile source emissions, it is not 

possible to quantify all sources of uncertainty.  Nonetheless, the quantifiable portion of 

uncertainty should be taken into account when reporting and using emission factors.7 
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In this study, uncertainty ranges in mean volume-based emission factors for water-based 

coatings were found above minus 30 percent to plus 30 percent in most cases and are not 

necessary to be symmetric due to skewness in data sets and small sample sizes.  Thus, the 

normality assumption made in early study by UC Davis would be biased, especially for 

the water-based color coatings, sealers, stains and washcoats. 

 

The quantified uncertainties in mean volume-based emission factors for solvent-based 

coatings are typically less than minus 10 percent to plus 10 percent because of the large 

sample sizes.  The substantial inter-factory variability in coating usage factor leads to a 

wide uncertainty range of minus 35 to plus 49 percent in the mean coating usage factor.  

These observations suggest that uncertainty in the mean is affected by both sample size 

and variability in population.   

 

Furthermore, a probabilistic employee-based VOC emission factor was developed using 

Monte Carlo simulation method based upon volume-based emission factors and coating 

usage factor.  The analysis of rank correlation coefficient indicates that uncertainty in 

coating usage factor actually dominates the overall uncertainty in employee-based 

emission factor.  Keeping the understanding of the key contributor of uncertainty in 

mind, resources can be prioritized to reduce uncertainty in employee-based emission 

factor by collecting better and more data for the coating usage factor.  Thus, the 

quantitative methodology demonstrated in this paper is not only for the quality evaluation 

of the current emission inventories but also for the future emission inventory 

improvement planning. 
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Table 7.1. Fitted Parametric Distributions for Variability in Volume-Based VOC 
Emission Factors for Wood Furniture Coatings 

Coating 
Category 

Carrier 
Medium Min a 

Max a Ratio, 
Max 
to 
Min 

Fitted 
Dist.b 

Shape 
Parameter 

Scale 
Parameter 

Water 0.040 2.09 52 W 1.5799 0.2593 Colored 
coatings Solvent 2.50 7.10 2.8 W 8.7575 5.7055 

Water 1.05 2.09 2.0 W 4.4100 1.8991 
Enamels 

Solvent 2.92 5.38 1.8 W 7.9955 4.8126 
Water 0.310 2.20 7.1 W 4.1609 1.6832 

Fillers 
Solvent 3.00 6.00 2.0 G 50.882 0.0603 
Water 0.088 2.50 28 W 1.3875 1.7984 

Sealers 
Solvent 3.34 6.00 1.8 W 38.318 5.6474 
Water 0.002 2.50 1250 W 1.0619 0.7240 

Stains 
Solvent 2.92 6.70 2.3 W 10.144 5.8080 

Thinners Solvent 5.34 8.00 1.5 W 16.343 6.7196 
Water 0.83 2.50 3.0 W 2.5589 1.5684 

Topcoats 
Solvent 3.75 5.80 1.6 W 16.117 5.6182 
Water 0.26 2.29 8.8 W 1.9137 1.8269 

Washcoats 
Solvent 3.50 5.50 1.6 W 12.150 5.3412 

a Unit: lb-VOC/gallon-coating. 
b W = Weibull, MLE parameter estimation; G = gamma, MoMM parameter estimation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 165 

Table 7.2. Quantified Uncertainty in Mean Volume-Based VOC Emission Factors for 
Wood Furniture Coatings 

Coating 
Category 

Carrier 
Medium 

Bootstrap 
Sample Size 

Mean of 
Bootstrap 
Meansa,b 

Absolute 
95% CI of 
Meana,b 

Relative 95% 
CI of Mean 
(%)b 

Water 6 0.23 0.12 to 0.36 -46 to 55 Colored 
coatings Solvent 17 5.39 5.01 to 5.77 -7.1 to 7.0 

Water 3 1.72 1.19 to 2.23 -31 to 29 
Enamels 

Solvent 6 4.52 3.99 to 5.02 -12 to 11 
Water 4 1.54 1.10 to 1.90 -28 to 24 

Fillers 
Solvent 3 3.05 2.61 to3.52 -15 to 15 
Water 11 1.66 1.03 to 2.45 -38 to 48 

Sealers 
Solvent 28 5.57 5.49 to 5.63 -1.3 to 1.2 
Water 17 0.70 0.43 to 1.03 -39 to 48 

Stains 
Solvent 46 5.53 5.33 to 5.73 -3.6 to 3.5 

Thinners Solvent 37 6.51 6.35 to 6.68 -2.5 to 2.6 
Water 20 1.39 1.14 to 1.67 -18 to 21 

Topcoats 
Solvent 33 5.44 5.30 to 5.58 -2.5 to 2.6 
Water 3 1.64 0.73 to 2.71 -56 to 65 

Washcoats 
Solvent 6 5.13 4.69 to 5.50 -8.6 to 7.3 

a Unit: lb-VOC/gallon-coating. 
b Estimated from bootstrap simulation based upon fitted parametric distributions for 
variability.. 
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Table 7.3. Input Uncertainty Assumptions for Employee-Based Emission Factor Model 
for Wood Furniture Coatings 

Model inputs Input assumption of uncertainty 

Volume-based emission factor bootstrap sampling distribution for the mean Water-based colored 
coatings Annual sales Normal distribution 

Volume-based emission factor bootstrap sampling distribution for the mean Solvent-based 
colored coatings Annual sales Normal distribution 

Volume-based emission factor bootstrap sampling distribution for the mean Water-based 
enamels Annual sales Normal distribution 

Volume-based emission factor bootstrap sampling distribution for the mean Solvent-based 
enamels Annual sales Normal distribution 

Volume-based emission factor bootstrap sampling distribution for the mean 
Water-based fillers 

Annual sales Normal distribution 

Volume-based emission factor bootstrap sampling distribution for the mean 
Solvent-based fillers 

Annual sales Normal distribution 

Volume-based emission factor bootstrap sampling distribution for the mean 
Water-based sealers 

Annual sales Normal distribution 

Volume-based emission factor bootstrap sampling distribution for the mean Solvent-based 
sealers Annual sales Normal distribution 

Volume-based emission factor bootstrap sampling distribution for the mean 
Water-based stains 

Annual sales Normal distribution 

Volume-based emission factor bootstrap sampling distribution for the mean 
Solvent-based stains 

Annual sales Normal distribution 

Volume-based emission factor bootstrap sampling distribution for the mean Solvent-based 
thinners Annual sales Normal distribution 

Volume-based emission factor bootstrap sampling distribution for the mean Water-based 
topcoats Annual sales Normal distribution 

Volume-based emission factor bootstrap sampling distribution for the mean Solvent-based 
topcoats Annual sales Normal distribution 

Volume-based emission factor bootstrap sampling distribution for the mean Water-based 
washcoats Annual sales Normal distribution 

Volume-based emission factor bootstrap sampling distribution for the mean Solvent-based 
washcoats Annual sales Normal distribution 

Coating Usage Factor bootstrap sampling distribution for the mean 
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Figure 7.1. Fitted Parametric Probability Distributions and Market-share Weighted 
Empirical Cumulative Distribution Function for VOC Emission factor of Solvent-Based 
Stains 
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Figure 7.2. Bootstrap Simulation Results Based Upon Fitted Weibull Distribution for 
Market-Share Weighted VOC Emission factor of Solvent-Based Stains 
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Figure 7.3. Bootstrap Simulation Results Based Upon Fitted Gamma Distribution for 
Market-Share Weighted VOC Emission factor of Solvent-Based Fillers 
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Figure 7.4. Bootstrap Simulation Results Based Upon Fitted Weibull Distribution for 
Architecture Coating Usage Factor 
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Figure 7.5. Quantified Uncertainty in the Per-Employee VOC Emission Factor for Wood 
Furniture Coatings 
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Figure 7.6. Rank Correlation Coefficients Reported by “Crystal Ball” for Input 
Assumptions of Employee-Based Emission Factor Model for Wood Furniture Coatings 
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8.0 DISCUSSION AND RECOMMENDATIONS 

This work demonstrated new applications of quantitative methods for characterizing 

variability and uncertainty in emission estimates.  The methods were demonstrated with 

respect to cases studies on NOx and VOC emissions from natural gas-fueled internal 

combustion engines, VOC emissions from consumer/commercial product use, VOC 

emissions from gasoline terminal loading, VOC emissions from cutback asphalt paving, 

VOC emissions from architectural coatings and VOC emissions from wood furniture 

coatings.  Except for wood furniture coatings, this work is the first known effort to 

characterize variability and uncertainty in these source categories. 

 

The key questions addressed in this study include: 

• Why should variability and uncertainty be distinguished? 

• What methods should be used to quantify uncertainty in emission factors? 

• How should intra-engine/facility variability be handled in quantitative analysis for 

mean emission factors? 

• What method can be used for unequally weighted data? 

• What is the range of variability in product compositions and emission estimates? 

• What is the range of uncertainty in mean emission factors? 

 

8.1 Distinction of Variability and Uncertainty 

Emission factors are subject to both variability and uncertainty.  Variability refers to 

observed differences attributable to true heterogeneity or diversity in emissions.  
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Uncertainty refers to lack of knowledge regarding the true value of emissions.  Separation 

of variability and uncertainty provides different insights into emission estimations.  

Characterization of variability aids in understanding how emissions vary with respect to 

time, space and other factors.  Quantification of uncertainty aids in establishing the level 

of confidence with respect to emission estimates and benefits future efforts of data 

collection to reduce uncertainty. 

 

8.2 Methodology for Quantification of Uncertainty in Emission Factors 

Emission sample data must be nonnegative, typically are positively skewed and have 

limited sample size.  The restrictive assumption of normality used in analytical methods 

can lead to biased results in uncertainty estimates.  Therefore, in this work, numerical 

methods based upon fitting parametric distributions and bootstrap simulation were 

applied to quantify uncertainties in emission sample data.   

 

Typically, a quantitative analysis based upon sample data is desirable.  However, as the 

IPCC pointed out in its good practice guidance, when sample information is scarce or 

unavailable, the use of judgment to define uncertainty range is necessary.  Therefore, in 

practice, there will always be a role for judgment-based approaches to be used in 

compensation to sample-based approaches. 

 

Some sources of uncertainty are difficult to quantify, such as non-representativeness of a 

data set.  Therefore, qualitative assessment regarding non-quantifiable uncertainty is 

important.  It is critical to judge the quality of data and prepare the data with good 
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representativeness for quantitative analysis.  Thus, an argument can be made that 

qualitative assessment should be used in combination with quantitative approaches.  As 

the National Research Council noted in its recent report, it is not possible to quantify all 

sources of uncertainty.  Nonetheless, the quantifiable portion of uncertainty should be 

taken into account when reporting and using emission factors. 

 

8.3 Separation of Intra- and Inter-Facility/Engine Variability 

A special concern in the quantitative analysis of emission factors is to properly 

distinguish intra- and inter-facility/engine variability.  The main objective in the emission 

factor development is to quantify the inter-facility/engine variability because an emission 

factor represents the emission rate for entire population, and not for a specific 

engine/facility.  If the intra-facility/engine variability was not separated from the inter-

facility/engine variability, a facility/engine with many repeated measurements would be 

given more weight than a facility with few repeated measurements.  Therefore, it is 

important to remove the intra-facility/engine variability by averaging the repeated 

measurements before the quantification of uncertainty in emission factors. 

 

8.4 Methodology for Unequally Weighted Data 

Emission values sometime come with market share information.  Because different 

emission values have different market shares, they should not be weighted equally in the 

characterization of uncertainty in average emission factors.  In this case, the conventional 

method for fitting distributions to the data was modified compared to when data were  
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equally weighted.  The approach taken in this work was to use a synthetic data set as a 

basis, in which a portion of  the data points were assigned the emission value in 

proportion to its market share.  Thus, the use of the synthetic data set allows for emission 

values to occur repeatedly in proportion to their market share and distributions could be 

fitted to a synthetic data set that contains unequally weighting information. 

 

Table 8.1. Typical Parametric Distributions for Representing Variability and Highest 
Quantified Uncertainty in Selected Emission Source Categories 

Quantitya 
Typical Parametric 

Distribution for 
Variability 

Highest Relative 95 
Percent CI of Uncertainty 

(%) 
EF, Natural Gas Engine, 1996 
version 

Weibull -56 to +67 

EF, Natural Gas Engine, 2000 
version 

Gamma and Weibull -90 to +180 

VOC Content, Consumer 
Product 

Beta -79 to +130 

Per-Capita EF, Consumer 
Productb 

N/A -7.7 to +8.4 

EF, Gasoline Terminal Gamma -67 to +110 
Volume-Based EF, Cutback 
Asphalt Pavingb 

N/A -11 to +12 

Volume-Based EF, Solvent-
Borne Architectural Coating 

Gamma -8.2 to +9.3 

Volume-Based EF, Water-
Borne Architectural Coating 

Weibull -20 to +20 

Volume-Based EF, Solvent-
Borne Wood Furniture Coating 

Weibull -15 to +15 

Volume-Based EF, Water-
Borne Wood Furniture Coating 

Weibull -56 to +65 

Employee-Based EF, all Wood 
Furniture Coatingb 

N/A -37 to +47 

Usage Factor, all Wood 
Furniture Coating 

Weibull -35 to +49 
a EF = emission factor 
b Based upon Monte Carlo Simulation results for uncertainty, no sample data was 
available to quantify variability 
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8.5 Quantified Variability and Uncertainty in Selected Emission Source 

Categories 

A summary of results is given in Table 8.1, showing the typical parametric distributions 

selected to represent variability and the highest quantified uncertainty for the selected 

emission source categories.  The quantified uncertainty is approximately as much as 

minus 90 percent to plus 180 percent in a relative basis.  The wide range of uncertainty in 

some emission factors emphasizes the importance of quantitative uncertainty analysis.   

 

8.6 Recommendations 

It is worthy to mention that the quantified source categories merely account for 27 

percent of total VOC emissions in Charlotte airshed, and other important VOC source 

categories, such as printing industry, are recommended to be quantitatively analyzed in 

the future. 

 

A significant difficulty encountered in this study was to obtain complete and well-

documented emission database.  For example, it was difficult to get some supporting test 

reports and database from EPA and local environmental protection agencies.  In the case 

of natural gas-fueled engines, although the database is available, the lack of detailed 

documentation of the data and calculation methods prevents others from reproducing the 

calculations and results.  Therefore, we recommend that EPA report the data actually 

used and the complete calculation methods used for each emission factor.  Such 

information is ideally compiled in a straightforward format, subject to quality assurance 

and widely available to publics, such as online database.  Furthermore, with the growing 
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recognition of the importance of quantitative uncertainty analysis, it will be important for 

EPA and others to routinely report data regarding variability and uncertainty in emission 

factors.   
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APPENDIX A. DEVELOPMENT OF UNCERTAINTY FACTOR 

OF EMISSION INVENTORY FOR SELECTED SOURCE 

CATEGORIES 

Equation for point estimate of emission inventory: 

AFEFEI poin ×=t      (A.1) 

Where: 

 EIpoint, point estimate of emission inventory 

 EF, emission factor 

 AF, activity factor 

 

Equation for Probabilistic estimate of Emission Inventory: 

EIpoin

AFEF

AFEF

prob

UFEI

UFUFAFEF

UFAFUFEF

EI

×=
×××=
×××=

t

)()(

)()(
   (A.2) 

Where: 

 EIprob, probabilistic estimate of emission inventory 

 EF, emission factor 

 AF, activity factor 

 UFEF, uncertainty factor for emission factor 

 UFAF, uncertainty factor for activity factor 

 EIpoint, point estimate of emission inventory 

 UFEI, uncertainty factor for emission inventory 
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AFEFEI UFUFUF ×=      (A.3) 

 

Monte Carlo Simulation is used to propagate UFEF and UFAF, through Eq. A.3 to develop 

a UFAF.  Input assumptions are given in Table A.1.  Input empirical sampling 

distributions were normalized, which were obtained by dividing empirical sample data 

points by the mean of the sample.  Thus, a normalized sampling distribution has the mean 

of 1. 

 

Table A.1  Input Assumptions for Uncertainty Factor of Emission Inventory for Selected 
Source Categories 
Source Category Emission 

factor type 
UFEF, uncertainty 
factor for emission 
factora 

Activity 
factor type 

UFAF, uncertainty 
factor for activity 
factora,b 

2-stroke lean burn 
uncontrolled Natural Gas-
fueled Compressor Enginec 

lb NOx per 
BTU 

normalized 
bootstrap sampling 
distribution 

Annual BTU N(1, 0.0026) 

Wood Furniture Coating  Per-employee normalized Monte 
Carlo sampling 
distribution 

Num of 
employee 

point estimate, no 
distribution 
assigned 

Cutback Asphalt paving Volume-based normalized Monte 
Carlo sampling 
distribution 

Annual 
usage 
volume 

N(1, 0.0026) 

Consumer solvents Per-capita normalized Monte 
Carlo sampling 
distribution 

Population point estimate, no 
distribution 
assigned 

Architectural coating Volume-based normalized 
bootstrap sampling 
distribution 

Annual sales 
volume 

N(1, 0.0026) 

Gasoline terminal  mg VOC per 
liter gas 
loaded 

normalized 
bootstrap sampling 
distribution 

Annual gas 
loaded 

N(1, 0.0026) 

a no unit, normalized sampling distribution has mean equals to 1. 
b N(1, 0.0026) refers to normal distribution with mean = 1 and variance = 0.0026 
c only 2-stroke lean burn uncontrolled engines are installed in Charlotte airshed. 
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Table A.2 Fitted Parametric Distributions for Uncertainty Factors of Emission 
Inventories for Selected Source Categories 

Parametersb SCC  SCC description Dist.a 

1st para. 2nd para. 

VOC 
2401001000 Surface Coating - Architectural Coatings N 1 0.058 
2461021000 Cutback Asphalt Paving N 1 0.077 
2465900000 Consumer/Commercial Products N 1 0.040 

40600301 
Transportation and Marketing of Petroleum Products 
– Major Groups 44, 45, & 51, Gasoline Retail 
Operations – Stage I, Splash Filling 

G 12.7 0.0785 

40600302 

Transportation and Marketing of Petroleum Products 
– Major Groups 44, 45, & 51, Gasoline Retail 
Operations – Stage I, Submerged Filling w/o 
Controls 

N 1 0.14 

40201901 
Surface Coating Operations - Major Groups 22-37, 
Wood Furniture Surface Coating, Coating G 24.56 0.41 

20200202 
2SLB Internal Combustion Engines - Industrial, 
Natural Gas, Reciprocating 

G 98.48 0.0101 

NOx 

20200202 
2SLB, 90% to 105% load, Internal Combustion 
Engines - Industrial, Natural Gas, Reciprocating 

N 1 0.13 
a N=normal distribution; W=Weibull distribution; G=gamma distribution 
b Normal distribution: 1st parameter is mean; 2nd parameter is standard deviation; gamma distribution: 1st 
parameter is shape parameter r, 2nd parameter is scale parameter λ.  
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Uncertainty Factor for Consumer Solvent VOC Emission Inventory
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Uncertainty Factor for Submerged Filling VOC Emission Inventory
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APPENDIX B. BOOTSTRAP SIMULATION GRAPHS FOR 

NATURAL GAS-FUELED INTERNAL COMBUSTION ENIGNES 
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4SLB uncontrolled, 90-105% load
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APPENDIX C. BOOTSTRAP SIMULATION GRAPHS FOR 

CONSUMER/COMMERCIAL PRODUCT USE 
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Consumer Adhesives, Beta distribution 
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APPENDIX D. BOOTSTRAP SIMULATION GRAPHS FOR 

GASOLINE TERMINAL LOADING LOSS 
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Thermal Oxidation controlled bottom loading 
Gamma distribution fitted for 4 measurements
Method of matching moments
Bootstrap sample size n=4, bootstrap samples B=500
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APPENDIX E. BOOTSTRAP SIMULATION GRAPHS FOR 

ARCHITECTURAL COATINGS 
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Waterbone architecture coating
1000 base, Weibull distribution 
Maximum likelihood estimation
Sample size n=16
Bootstrap samples B=500
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APPENDIX F. BOOTSTRAP SIMULATION GRAPHS FOR 

WOOD FURNITURE COATINGS 
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Weibull Distribution, MLE
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Solvent-based, Filler
Gamma Distribution, MoMM
Sample Size n=3
Bootstrap Samples B=500
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Weibull Distribution, MLE
Sample Size n=46
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Solvent-based, Thinner
Weibull Distribution, MLE
Sample Size n=37
Bootstrap Samples B=500
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Weibull Distribution, MLE
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Water-based, Colored
Weibull Distribution, MLE
Sample Size n=6
Bootstrap Samples B=500
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Water-based, Enamel
Weibull Distribution, MLE
Sample Size n=3, 2 samples have the same value
Bootstrap Samples B=500
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Water-based, Sealer
Weibull Distribution, MLE
Sample Size n=11, Bootstrap Samples B=500
2 samples have the same value of 2.4199
2 samples have the same value of 2.5000
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Weibull Distribution, MLE
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