
ABSTRACT 

LEE, SUNYOUNG.  Early Prediction of Student Goals and Affect in Narrative-Centered 
Learning Environments.  (Under the direction of James C. Lester and Carla D. Savage.) 
 

Recent years have seen a growing recognition of the role of goal and affect recognition in 

intelligent tutoring systems.  Goal recognition is the task of inferring users’ goals from a 

sequence of observations of their actions.  Because of the uncertainty inherent in every facet 

of human computer interaction, goal recognition is challenging, particularly in contexts in 

which users can perform many actions in any order, as is the case with intelligent tutoring 

systems.  Affect recognition is the task of identifying the emotional state of a user from a 

variety of physical cues, which are produced in response to affective changes in the 

individual.  Accurately recognizing student goals and affect states could contribute to more 

effective and motivating interactions in intelligent tutoring systems.  By exploiting 

knowledge of student goals and affect states, intelligent tutoring systems can dynamically 

modify their behavior to better support individual students.   

To create effective interactions in intelligent tutoring systems, goal and affect recognition 

models should satisfy two key requirements.  First, because incorrectly predicted goals and 

affect states could significantly diminish the effectiveness of interactive systems, goal and 

affect recognition models should provide accurate predictions of user goals and affect states.  

When observations of users’ activities become available, recognizers should make accurate 

“early” predictions.  Second, goal and affect recognition models should be highly efficient so 

they can operate in real time. 

To address key issues, we present an inductive approach to recognizing student goals and 

affect states in intelligent tutoring systems by learning goals and affect recognition models.  

Our work focuses on goal and affect recognition in an important new class of intelligent 

tutoring systems, narrative-centered learning environments.  We report the results of 

empirical studies of induced recognition models from observations of students' interactions in 

narrative-centered learning environments.  Experimental results suggest that induced models 

can make accurate early predictions of student goals and affect states, and they are 



sufficiently efficient to meet the real-time performance requirements of interactive learning 

environments. 
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Chapter 1 
 
Introduction 

It is widely believed that customizing users’ interactions can significantly improve their 

effectiveness in performing tasks.  User-adaptability can serve a broad range of functions in 

intelligent systems.  For example, interactive applications can adapt their user interfaces to 

better suit individual users.  They can help users focus their information-seeking tasks, 

provide information that takes into account users’ interests in specific topics, and present 

information in a manner that is appropriate for users’ visualization preferences (Jameson 

2003).  To create effective customized interactions, interactive systems need to reason about 

users’ goals and plans.  Goal recognition is the task of inferring a user’s goals from a 

sequence of observations.  By providing knowledge about users’ goals, interactive systems 

can dynamically modify their behavior to better support individual users.  Goal recognition 

has been widely used in a broad range of applications.  Applications include natural language 

understanding (Carberry 1990a; Carberry 1990b), story understanding (Charniak and 

Goldman 1993), intelligent tutoring systems (Conati and VanLehn 1996; Conati et al. 2002; 

Mott et al. 2006a), adventure games (Albrecht et al., 1998), intrusion detections (Geib and 

Goldman, 2005), and multi-agent coordination (Huber et al. 1994).  

Many goal recognition approaches have been proposed over the past thirty years.  All of 

these approaches hypothesize goals that are consistent with a sequence of observations and 
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then narrow down the hypotheses by using either logical methods or probabilistic inference.  

The source of information used by these approaches is a sequence of observations such as 

user actions and the states of the system with which the users are interacting. 

Affective computing has emerged as a promising line of investigation in its own right.  

Affective computing is an active area of research that explores techniques for developing 

computational models of affect recognition and affect generation.  Affect recognition is the 

task of identifying a user’s affective state, and affect generation is the task of determining the 

most appropriate affective state that an interactive system should exhibit.  Affect recognition 

can be cast as a pattern recognition problem and affect generation as a pattern synthesis 

problem (Picard 1997).  Affect recognition can be used to customize interactions based on 

users’ affective states, and affect generation can play an important role in creating synthetic 

agents for interactive environments.  

In this thesis, we present inductive approaches to recognizing student goals and affect in 

an important new class of intelligent tutoring systems, narrative-centered learning 

environments.  We propose a probabilistic framework for goals and affect recognition in 

which recognition models are induced from training corpora acquired from user interaction 

histories that include heart rate and galvanic skin response data streams. 

1.1 Motivation 
Recognizing users’ goals and plans plays a central role in a variety of applications.  Such 

applications range from software assistants and robotics to security and collaborative filtering.  

Four important categories of applications related to software assistants are adaptive systems, 

multi-agent systems, natural language processing, and intelligent tutoring systems.  We 

briefly discuss each of these in turn. 

• User-adaptive systems:  User-adaptive systems depend on the information about users’ 

goals, plans, beliefs, and preferences (Jameson 2003).  For example, LUMIÈRE (Horvitz 

et al., 1998) and READY (Bohnenberger et al. 2002; Jameson et al. 1999) provide 

automated assistance by drawing inferences about users’ current goals and plans.  

LUMIÈRE reasons about the user’s task history, actions, and the set of documents she is 
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accessing to determine whether she needs assistance.  READY considers resource 

limitations such as time pressure and cognitive load to infer users’ preferences.  If the 

user requires information immediately, the system can infer her degree of time pressure.  

If time pressure is higher, information is “bundled” and presented concisely; if time 

pressure is lower, information is presented sequentially over time.  PRIORITIES (Horvitz 

et al. 1999) is a user-adaptive system that transmits alerts when email arrives by 

considering the criticality of email and the user’s focus of attention.  LOOKOUT (Horvitz 

1999) is a system for scheduling and meeting management on Microsoft Outlook.  When 

the user opens a new email message, the system infers the user’s goal (i.e., the user’s 

goal for working with the scheduling system) and the system invokes the scheduling 

system based on the inference.  More recently, adaptive systems have begun to explore 

how to take user affective states into account to create more effective interactive 

experiences.  For example, SPECTER (Kleinbauer et al. 2003) is a personal assistant that 

senses the user’s action and affective states based on data from a ubiquitous computing 

environment to provide personalized recommendations that are the most appropriate for 

the current context. 

• Multi-agent systems: Plan recognition is also an important issue for the multi-agent 

systems community because agents can sometimes perform more effectively if they can 

take into account the plans of another agent or group of agents.  To correctly predict 

other agents’ behaviors, inferring other agents’ goals and plans is an important task.  The 

task is challenging in a cooperative setting in which agents are collaborating, and is even 

more difficult in a competitive setting, such as the RoboCup soccer competitions 

(Kaminka et al., 2002). 

• Natural language processing:  Natural language processing is one of the most active 

areas of plan recognition research.  Many natural language applications have utilized 

plan recognition in the area of story understanding (Charniak and Goldman 1991; 

Charniak and Goldman 1993), natural language dialogue (Carberry 1988; Carberry 

1990a; Carberry 1990b), and machine translation (Alexandersson 1995).  More recently, 
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there have been efforts to exploit affect to disambiguate dialogue acts (Bosma and André 

2004).  Bosma and André consider emotional inputs such as arousal and valence to 

estimate the probabilities of dialogue acts.  The estimated probabilities are used to 

determine which interpretation is more likely to be correct. 

• Intelligent tutoring systems:  Intelligent tutoring systems (ITSs) comprise an important 

category of user-adaptive systems.  ITSs employ student models, which are used to 

provide customized hints, generate explanations tailored to individual users, and select 

problems.  Student modeling research has investigated a broad spectrum of issues in 

supporting customized pedagogical decisions.  A central problem of student modeling is 

plan recognition, in which a system attempts to recognize students’ intentions, their 

focus of attention, their current plan, and their current goal as they solve problems. 

An important form of learning supported by intelligent tutoring systems is exploratory 

learning, in which students have great freedom to explore the physical environment and the 

problem-solving space (de Jong and van Joolingen 1998).  However, this freedom poses a 

significant challenge to student modeling in general and plan recognition in particular.  Goal 

and plan tracking are especially difficult when students have access to multiple techniques 

for solving a problem and when solution steps can have multiple (correct) orderings.  When 

multiple goals and plans come into play, the student model must determine which is most 

likely given the current context. 

Assessing the affective state of students is also an important aspect of student modeling.  

With information about the student’s affective state, ITSs can interact more effectively with 

the student.  Detecting frustration can enable ITSs to make intervention decisions.  

Knowledge of affective states may lead to more accurate and earlier detection of student 

difficulties.  Pedagogical planners can take advantage of recognized goals, plans, and 

affective states to formulate appropriate tutorial strategy selection. 

1.2 Problem Description 
Plan recognition can be informally described as follows: Given a sequence of observations, 

plan recognition seeks to infer the plans that an agent is attempting to execute.  Goal 
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recognition is a special case of plan recognition.  Goal recognition focuses on inferring a 

user’s goals (Blaylock and Allen 2003), i.e., the specific objectives that the user is attempting 

to achieve.  The solution to the goal recognition problem is a set of candidate goals that the 

user is attempting to achieve.  The candidate goals should be consistent with the set of 

observed evidence.  Thus, the inputs for plan and goal recognition are typically user actions, 

user locations, and the states of the application or interactive world.  The solution to a plan 

recognition problem is a set of candidate plans that best explain the observed evidence.  The 

candidate plans can be used to predict the user’s future actions or goals. 

Picard defines affect recognition as follows: “Affect recognition is inferring a user’s 

emotional states from observations of emotional expressions and behavior, and through 

reasoning about an emotion-generation situation” (Picard 1997).  In other words, because 

emotions are internal to the observed users, the recognizer has to infer the underlying 

affective states based on observable indicators of the affective states.  For example, we can 

infer someone’s emotional states from her gestures or the way she speaks.  We can “wire” a 

person to measure her heart rates and skin conductivity, which can be indicators of her 

affective states. 

1.3 Challenges 
Plan recognition and affect recognition are difficult tasks.  For example, drawing inferences 

about users’ goals and plans inherently involves reasoning under uncertainty because users 

can follow multiple correct and incorrect paths to achieve their goals.  Much useful 

information about the user is not directly observable, as users frequently do not or cannot 

explicitly express their goals and knowledge.  In general, plan recognizers and affect 

recognizers should address the following requirements: 

• Scalability and Speed: Plan recognition and goal recognition involve narrowing down 

possible hypotheses that best explain observed action sequences.  Classic approaches to 

plan recognition employ plan libraries that represent goals, plans, and actions and use 

logic-based methods to exclude plans that are inconsistent with the observed actions.  

However, runtime performance is exponential in the number of goals and plans in the 
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plan hierarchy.  Probabilistic approaches to plan recognition also suffer from scalability 

issues.  For example, Dempster-Shafer Theory (Bauer 1996a; Wilson 2000) is known to 

be exponential in general and exact inference in Bayesian networks is an NP-hard 

problem.  Because most interactive applications require plan recognition results before 

the user completes all actions to accomplish a task or affect recognition results while a 

user is engaged in a task, ideally recognition should be performed quickly (on the order 

of a few milliseconds) to appropriately serve the user. 

• Early Prediction: For interactive environments, goal recognizers and plan recognizers 

should make early accurate predictions and they should converge as quickly as possible 

on the most likely explanation (Albrecht et al. 1998; Blaylock and Allen 2003; Lee et al. 

2007; McQuiggan et al. 2007; Mott et al. 2006a; Yin et al. 2004).  Even if their 

computation is fast enough to address scalability issues, if they are not able to predict 

plans until they observe the final action of the user, they would be impractical for many 

interactive environments. 

• Partial Observability and Noisy Environments: Users are not required (nor expected) to 

express their intentions or emotions, so goal and affect recognizers must infer users’ 

intentions and affective states from observed activity.  Furthermore, in some domains, 

users hide their intentions or emotions.  For example, in intrusion detection, a malicious 

user could perform irrelevant actions to deceive the observing system, which could result 

in incorrect prediction of goals.  Recently, there have been efforts to model partially 

observable domain.  For example, Geib & Goldman propose a probabilistic approach to 

plan recognition in a partially observable domain (Geib and Goldman 2005), but the 

inference time for all examples with more than 12 observations exceeds 100 seconds.  

Handling partial observable domains can significantly increase the run-time cost of plan 

recognition. 

Thus, an effective solution to the plan recognition problem must cope with the 

uncertainty, real-time requirements, scalability issues, and absence of direct access to the 

user’s cognitive state. 
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1.4 Contributions 
This dissertation reports on the following contributions: 

• Recognizing goals and affects for narrative-centered learning environments: We 

propose a probabilistic goal recognition and affect recognition framework and introduce 

probabilistic recognition models such as n-grams, Bayesian networks, naïve Bayes and 

decision trees.  The models exploit knowledge of students’ actions, locations, temporal 

information, task structure, and physiological changes in physiological signals such as 

heart rate, skin conductivity.  The models are used to predict students’ goals and 

affective states early and accurately from a sequence of observations. 

•  Inductive approach for creating goals and affect recognition models: We devise an 

inductive approach to goal and affect recognition that learns models from training data. 

The framework learns goal and affect recognition models from action observation 

corpora augmented with physiological data.  We adopt machine learning techniques to 

devise fast and efficient goals and affect recognizer.  Machine learning techniques 

require a corpus, but in many domains, labeled training data are difficult to obtain.  To 

gather corpora for goal recognition, we introduce a corpus tool which has a goal 

generator that generates goals that are expected to be achieved by training subjects.  The 

corpus tool also asks training subjects to select the emotion, from a set of six emotions 

(excitement, fear, frustration, happiness, relaxation, and sadness), that is most closely 

related to their own feelings to gather labeled corpus for affect recognition. 

• Empirical studies: We conduct empirical evaluations of probabilistic goal and affect 

recognition models in an implemented narrative-centered learning environment.  

Empirical results suggest that the induced models can make accurate early predictions of 

student goals and affective states as observations of students’ activities become available 

over time.  The models incrementally converge on correct interpretations.  The induced 

goal and affect recognition models are efficient and meet the real-time requirements of 

interactive systems. 
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1.5 Dissertation Organization 
This dissertation is organized as follows.  Chapter 2 provides background on the problems 

studied by reviewing related work on plan recognition and affective reasoning.  Chapter 3 

introduces an inductive approach to automatically learning goals and affect recognition 

models from training data acquired from traces of users’ activities in a narrative-centered 

learning environment.  Chapter 4 reports the results of an empirical study in which n-gram 

models and Bayesian network goal recognition models were induced from observations of 

users’ interactions in a narrative-centered learning environment.  In Chapter 5 the empirical 

evaluation results of probabilistic affect recognition models are presented.  In Chapter 6, we 

conclude by presenting a summary of the main contributions of the work.  We also discuss 

limitations of the proposed approach to goal and affect recognition and explore promising 

directions for future work.  
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Chapter 2 
 
Background 

Plan recognition and affective computing have been the subject of increasing attention in 

recent years.  Section 2.1 introduces user modeling, which is an important application area of 

both plan recognition and affect recognition.  Section 2.2 provides background on goal and 

plan recognition.  Finally, Section 2.3 discusses affective computing with an emphasis on 

affect recognition. 

2.1 User Modeling 
User modeling has emerged as an active area of research to provide the knowledge about 

individual users necessary for creating effective customized interactions.  The task of user 

modeling is to dynamically model the goals, plans, beliefs, and preferences of users.  

Systems that employ user models can therefore provide customized assistance that is tailored 

to the specific needs of individual users in specific contexts.  User models are employed by a 

broad range of applications such as proactively offering advice in mixed-initiative interfaces 

for problem solving and learning, facilitating natural language understanding, retrieving 

information, and making recommendations (Jameson 2003). 

User modeling can be decomposed into three problems: representation, inference, and 

learning.  First, user modeling requires a formalism for representing the goals, plans, beliefs, 

and preferences of users.  A number of approaches have been taken to this problem: some are 



 10

based on overlays of declarative representations, while others are plan-based.  Second, the 

primary goal of user modeling is to dynamically update a user model for a user by drawing 

inferences about her behaviors at runtime.  For example, when a student performs a series of 

(possibly incorrect) problem-solving actions, the student model should be updated to reflect 

the new knowledge about the student’s understanding of the domain.  The dynamically 

updated information in the user model can be used to predict the goals the user is attempting 

to achieve and the plans the user is attempting to execute to achieve the goals. 

Goal and plan recognition are particularly challenging when there are different 

techniques for solving a problem and when solution steps can have different orderings.  In 

complex situations where multiple goals and plans come into play, the user model must 

determine which is most likely given the current context.  Third, to address scalability issues, 

it is desirable to adopt a formalism that can be learned.  If user model acquisition can be 

partially automated, it will open the way towards a much broader range of user-adaptive 

applications. 

User modeling occurs in two phases: (1) initialization, which uses static information 

about the user to “seed” the user model (initialization occurs prior to an interactive session), 

and (2) dynamic updating, which uses dynamic information to modify the user model so that 

it accurately reflects the changing state of the user’s goals, plans, beliefs, and preferences.  

 
Figure 2.1: Tasks of User Modeling 
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Dynamic updating occurs on an ongoing basis throughout an interactive session (Figure 2.1).  

The resulting user model is used by a user-adaptive system to customize its interactions. 

When a user first begins interacting with a system, the system has no knowledge about 

that particular user.  Because users differ along many dimensions, a user model should be 

initialized for the user model, an operation which should be performed as efficiently as 

possible.  Several approaches have been taken to user model initialization (Tsiriga and 

Virvou 2004).  One approach is merely to assume that users have no domain knowledge or 

that all users have the same (pre-specified) level of competence at the beginning.  Although 

this approach is straightforward and easy to implement, it may not be appropriate to ignore 

the differences of prior knowledge across users.  Another simple way to initialize user 

models is to make the blanket assumption that the user model has no initial knowledge about 

users.  In other words, the system does not assume anything about users.  A third way to 

initialize a user model is to evaluate a user’s prior knowledge by conducting a pre-test or to 

administer a questionnaire.  Similarly, when a user begins interacting with the system, she 

can be asked to respond to a questionnaire where the system can assess her knowledge level 

or she can specify her preferences.  However, this approach may not be applicable for 

broader domains because it may require excessive time for users to complete long 

questionnaires. 

Once a user model is initialized, it must be updated dynamically since the user’s plans, 

goals, and beliefs change over time.  Dynamic updating to the user model may consider a 

variety of information about the user and her activities.  For example, dynamic updates may 

consider information about the user’s problem-solving actions, how many correct or incorrect 

problem-solving steps the student has performed, the physical environment (e.g., a user in a 

noisy environment may prefer text to audio), and her current focus of attention as indicated 

by the clickstream, mouse movement, or in more sophisticated multimodal environments, eye 

gaze direction.  Temporal information may be especially useful.  For example, extended time 

intervals between problem-solving actions may suggest that the user would benefit from a 

hint. 
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The dynamically updated information in the user model can be used to predict several 

properties about the user.  First, they can be used to predict the goals the user is attempting to 

achieve and the plans the user is attempting to execute to achieve the goals.  Second, user 

models can represent users’ knowledge of the domain and of their current task.  Conceptually, 

it can represent whether the user believes particular propositions are true, possible, 

impossible, or false.  For example, it can represent what options or choices the user believes 

are possible for completing her current task.  Third, user models can also represent users’ 

preferences, e.g., presentation modality preferences for text or speech. 

2.1.1 Classic User Modeling 
Since the inception of the field, work on user modeling has explored a number of approaches 

to representing a system’s beliefs about the user.  Before turning to probabilistic approaches, 

we first introduce “classic” (non-probabilistic) frameworks for user modeling, which will be 

used for points of comparison in our discussion.  There are four classic user modeling 

frameworks: overlays, stereotypes, bug libraries, and model tracing.  Each of these 

frameworks provides the key functionality of user models: they enable systems to adapt to 

individual users.  Each user has different characteristics, seeks to achieve different goals, and 

acts differently.  If a user modeling system has insufficient information about the general 

behavior of users or an inadequate representation of users, it will not be able to support user 

adaptation.  Therefore, the user model needs to be modified to characterize the user in order 

to provide personalized information about the user to user-adaptive systems.  As we have 

noted, this is often referred to as dynamic updating of the user model.  In addition to dynamic 

updating, it would also be beneficial to automatically induce “extensions” to the user model.  

Although there is no clear distinction between dynamic updating and learning, the emphasis 

in learning is on enabling the user model to generalize its representation (and its inference 

abilities) to apply to either the as-of-yet unseen behaviors of the current user or to unseen 

users.  For each classical user modeling framework, we discuss its approach to representation, 

inference, and learning. 
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2.1.1.1 Overlay User Modeling 
Overlay modeling is the simplest user modeling technique.  It has been used in ITSs such as 

SCHOLAR (Carbonell 1970) and ELM-ART (Brusilovsky et al. 1996).  A student’s 

knowledge state is modeled implicitly by assuming it is a subset of (i.e., an “overlay” on) the 

expert’s knowledge.  When the student’s actions indicate she has learned a concept, the 

student model is updated to represent the fact that she understands that concept.  Overlay 

modeling makes the assumption that the knowledge that is in the expert model but not in the 

student model includes the concepts that the student has not explored, and the unexplored 

concepts are used to determine which topics to present next.  To illustrate, the first intelligent 

tutoring system, SCHOLAR (Carbonell 1970; Wenger 1987), used a semantic network to 

represent the student model.  SCHOLAR constructed the complete semantic network to model 

the perfect student, and it represented the student’s knowledge by deleting and modifying 

nodes and links.   To automatically extend overlay models, new concepts could be added.  

For example, the automatic construction of concept hierarchies in overlay models has been 

proposed for adaptive hypermedia (Njike et al. 2005).  In the model, relationships of 

concepts are automatically discovered from corpora of hypermedia documents.  Although 

overlays offer the advantage of simplicity, it is not possible to represent a student’s 

misconceptions with overlay models, and they cannot represent the degree of confidence of 

its knowledge about the student. 

2.1.1.2 Stereotype User Modeling 
A frequently employed user modeling approach is that of stereotypes (Rich 1979).  

Stereotypes represent a set of common characteristics for a particular group of users in the 

application domain.  In the stereotype approach, a system activates a stereotype which best 

fits a user when it observes certain events that serve as “triggers.”  For example, if the system 

observes the user employing an advanced functionality, then the “expert” stereotype can be 

activated.  If the preconditions of the stereotype are satisfied, the stereotype can be applied to 

that user, and all of the assumptions associated with the stereotype are assigned to the user.  

In the stereotype approach, if a new user does not satisfy any precondition of existing 

stereotypes, the user modeling system would not be able to classify the user.  Learning in the 
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stereotype approach could involve adding new stereotypes automatically based on data.  For 

example, Paliouras et al. use supervised machine learning techniques (C4.5) to induce 

stereotypes on data from questionnaires for a news filtering system (Paliouras et al. 1999).  

The stereotype approach is simple to implement and useful in domains in which users can be 

classified into groups.  However, stereotypes are prone to inaccuracy because they assume 

that users within a group are likely to possess homogeneous characteristics.  In contrast, we 

will see that the Bayesian framework can easily discriminate each user’s differences because 

the probabilities in the Bayesian network are updated based on the user’s actions or available 

evidence. 

2.1.1.3 Bug Libraries 
A significant disadvantage of overlay modeling is that overlay models cannot capture a 

student’s misconceptions because they model users’ knowledge only in terms of correct 

knowledge.  An alternative to overlay models is the bug library.  Bug libraries represent 

common misconceptions in a domain, i.e., they represent the faulty student knowledge in 

terms of a set of “bugs” or “misconceptions.”  By mapping a student’s incorrect answer to 

bugs in the library, the system can determine the student’s misunderstanding of a given 

concept.  The initial work on bug libraries enumerated many observable bugs in the domain 

of algebra (Brown et al. 1975), which was later extended to include a diagnostic model 

(Burton 1982).  In this work, studies were conducted on students solving algebra problems 

and representing their problem-solving activities with procedural networks.  Another project 

investigating bug libraries is PROUST (Johnson and Soloway 1985), which analyzes novice’s 

“buggy” Pascal programs and corrects them.  The inference process of PROUST primarily 

consists of goal decomposition and plan analysis.   To detect students’ bugs, PROUST uses 

buggy plans.  Because it is very difficult and labor-intensive task to enumerate all possible 

bugs, there have been several projects that investigate the automatic construction of bugs.  

For example, Sleeman et al. propose techniques for extending bug libraries (Sleeman et al. 

1990).  These techniques generate new faulty rules (mal-rules) when there are no available 

rules and mal-rules to reconstruct the student’s solution process given a problem.  Bug 

libraries can detect misconceptions of students.  However, if there is more than one possible 
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misconception that can explain students’ errors, bug libraries have difficulty determining 

which misconception is most likely.  In contrast, the Bayesian approach can determine the 

most probable misconception based on probabilities. 

2.1.1.4 Model Tracing 
The model tracing (or knowledge tracing) approach to user modeling, which has been used 

extensively in ITSs, was introduced in cognitive tutors (Anderson et al. 1995).  Cognitive 

tutors are ITSs that are based on the ACT-R theory of cognition (Anderson 1983).  

According to ACT-R, a student can learn cognitive skills by employing declarative 

knowledge in the context of a problem-solving process to acquire procedural knowledge, and 

with increasing practice, the student is less likely to produce errors.  Therefore, cognitive 

tutors present an initial brief declarative introduction to concepts and then provide guided 

practice.  Typically, a cognitive tutor has a set of several hundreds production rules, which 

collectively represent correct solutions to problems.  Cognitive tutors always attempt to guide 

students on the correct solution path during the problem-solving process.  If a student’s 

actions do not follow the ideal model, the tutor recognizes those actions as errors.  In model 

tracing, plan recognition problems are circumvented by insisting that each action of the 

student be on an interpretable path so that the tutor can understand the student’s plan within a 

reasonable amount of time.  If there is an ambiguity in interpreting the student’s action, the 

student herself is asked to identify the proper interpretation by selecting an item from a 

disambiguation menu presented by the system.  Although cognitive tutors using model 

tracing have proven effective, this approach is only applicable to procedural learning and is 

not suitable for modeling conceptual knowledge (Shute 1995).  Moreover, model tracing 

assumes that the system can always understand the student’s intentions because it forces the 

student to follow the ideal student model.  Therefore, it tends to restrict the student’s actions 

and does not give the student freedom to explore the problem-solving space.  Because 

cognitive tutors can also have buggy production rules that represent students’ common 

misconceptions, some approaches for automatic construction of buggy rules could be applied 

to cognitive tutors.  Although production rules of cognitive tutors are usually manually 
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constructed, there has been a recent effort to learn production rules from examples of student 

problem solving (Matsuda et al. 2005). 

2.1.2 Probabilistic User Modeling 
Recent years have seen the successful introduction of probabilistic and statistical inference 

frameworks into a broad array of computational tasks.  Bayesian Belief Networks, Dynamic 

Decision Networks, Hidden Markov Models, and Support Vectors Machines have gained 

widespread acceptance in almost every area of AI.  Probabilistic approaches to user modeling 

offer much promise because of their ability to deal with the uncertainty inherent in human-

computer interaction.  There appears to be great potential for probabilistic inference 

frameworks to deal with challenging ITS problems such as plan recognition and 

misconception detection. 

In this section we explore probabilistic approaches to user modeling.  Our discussion 

emphasizes the role that Bayesian Belief Networks can play in user modeling.  Bayesian user 

modeling has been employed to infer the user’s focus of attention and whether or not the user 

desires assistance since she may not wish to be interrupted if she is working on a critical task.  

Example systems inferring the user’s focus of attention include LUMIÈRE (Horvitz et al. 

1998) and PRIORITIES (Horvitz et al. 1999).  The LUMIÈRE (Horvitz et al. 1998) project at 

Microsoft Research investigated techniques for reasoning about the goals (target tasks) of a 

software user and the user’s needs (information or automated actions to achieve the goal) to 

provide automated assistance.  LUMIÈRE was deployed in Microsoft Office suite.  In this 

project, the Bayesian network represents causal relationships among variables.  Variables 

represent the user’s background, her competency with using software, her task history, her 

actions (e.g., the user interacts with a mouse and keyboard, and her actions might include 

menu exploration), her goals (target tasks or subtasks at the focus of the user’s attention), her 

acute needs (e.g., requiring immediate assistance), the set of documents on which she is 

currently working, and her explicit query.  Since the purpose of the user model is to enable 

the system to provide automated assistance, the user modeling system weighs the benefit of 
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providing assistance against the costs of such an action.  LUMIÈRE uses utility nodes to 

represent, reason about, and optimize the expected utility of providing advice to the user. 

PRIORITIES (Horvitz et al. 1999) is an alert-transmitting system that provides advice on 

the arrival of email messages based on their estimated criticality, the user’s focus of attention, 

the informational benefits of alerts, and the costs of deferring alerts.  Because alerts interrupt 

and distract users while they are working on tasks, the user modeling system needs to infer 

detailed information about these items.  PRIORITIES employs a Bayesian network to infer the 

user’s focus of attention.  Variables that could influence the user’s focus of attention are 

represented in its network.  These include online calendar, user location, date, time, deadline 

status, application in focus, ambient acoustical signal, desktop activity, inspection interval 

(how often the user checks the email), and application usage pattern.  Because the user’s 

focus of attention changes over time, the user modeling system models two time slices, and a 

Bayesian network is built for each time slice with links between nodes at different time slices 

to model dependencies which are related to time. 

A pioneering effort in Bayesian networks for student modeling is HYDRIVE (Mislevy and 

Gitomer 1995), an intelligent tutoring system for learning troubleshooting skills for a 

hydraulics system of the F-15 aircraft.  HYDRIVE simulates important features of 

troubleshooting F-15 hydraulics systems.  In HYDRIVE, a student can perform 

troubleshooting procedures by accessing video images of aircraft components and acting on 

those components.  The student can also refer to on-line technical support material and make 

instructional selections at any time during troubleshooting.  HYDRIVE’s Bayesian student 

model is constructed in terms of the student’s level of domain expertise such as system 

knowledge, strategic knowledge, and procedural knowledge such as a student’s 

troubleshooting action sequences.  The network has nodes for representing a student’s 

general proficiency in the domain at the top level and nodes for actual troubleshooting 

actions at the bottom level.   

While HYDRIVE represents students’ declarative and procedural knowledge, ANDES 

(Conati et al. 2002) provides a more granular representation of these elements and supports 

explicit reasoning about students’ performance over time.  ANDES is a physics tutor for the 
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domain of university level Newtonian physics that uses Bayesian networks for student 

modeling in open learning environments.  In contrast to model tracing learning environments, 

in open learning environments, students are not constrained to follow a fixed order of 

problem-solving actions: they can pursue any strategy they wish.  The Bayesian student 

model in ANDES is used to infer a student’s goals and plans and to assess the student’s 

knowledge in order to provide customized advice.  ANDES’ Bayesian network represents two 

kinds of knowledge: domain-specific knowledge and task-specific knowledge.  Domain-

specific knowledge includes student long-term knowledge which is represented as rule nodes 

and context-rule nodes in the Bayesian network.  Every node has two values, mastered or 

unmastered.  If a rule node has the value mastered, it indicates that the student can correctly 

apply the knowledge that the rule node represents in all possible contexts.  A context-rule 

node represents whether a student has mastered a rule in a specific problem solving context.  

The Bayesian network represents task-specific knowledge via context-rule, fact, goal, rule-

application, and strategy nodes.  Goal and fact nodes represent information that is derived by 

applying rules during problem solving process.  Rule-application nodes connect Context-rule 

nodes, proposition nodes (Goal or Fact nodes), and Strategy nodes to proposition nodes 

which are derived by applying the Context-rule.  Strategy nodes address the case where a 

solution has more than one possible solution path.  Moreover, to reason over time, ANDES 

uses a “rolleup” mechanism to summarize past evidence which is reflected in the Bayesian 

network for the current problem as prior probabilities.  

Another approach to Bayesian student modeling is constraint-based modeling, which 

focuses on evaluation of the constraints that correct solutions should satisfy.  Constraint-

based modeling is based on Ohlsson’s theory of learning from performance errors (Ohlsson 

1996).  Ohlsson’s theory claims that humans make mistakes when they perform a task even if 

they have been taught the correct way to do it because the declarative knowledge has not 

been “compiled” into procedural knowledge.  Constraint-based modeling assumes that all 

correct solutions satisfy all of the general principles of the domain and that incorrect 

solutions violate the principles of the domain (Mitrovic et al. 2003).  In constraint-based 

modeling, constraints represent the conditions that all correct problem solutions have to 
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satisfy.  Therefore, if the student’s action violates constraints, it indicates that the student has 

incomplete or incorrect knowledge (Mitrovic et al. 2001). An example of constraint-based 

student modeling is employed in the CAPIT project (Mayo and Mitrovic 2001).  CAPIT 

(Capitalization And Punctuation Intelligent Tutor) teaches capitalization and punctuation for 

children.  CAPIT represents constraints with a Bayesian network.  One of the advantages of 

CAPIT is that it learns the structure of its Bayesian network from data so that it can be 

authored without an expert. CAPIT’s Bayesian network represents only two variables, which 

are the outcome of the previous attempt to satisfy a solution constraint and the predicted 

outcome of the next attempt to satisfy that constraint.  Therefore, it is much easier for CAPIT 

to learn the structure because the variables and the possible links are fixed. 

Recently, there has been work on Bayesian networks for student modeling of affective 

factors such as enjoyment and morale.  Conati et al. present a model of user affect for 

educational games (Conati 2002; Conati and Maclaren 2005).  The techniques are illustrated 

with PRIME CLIMB, an educational game.  Node’s in PRIME CLIMB’s network represent goals 

(e.g., have fun, learn math, avoid failing, succeed by myself, beat partner), goal satisfaction 

(e.g., have fun, learn math, avoid failing, succeed by myself, beat partner), and emotions (e.g., 

emotion for game-joy/distress, emotion for self-pride/shame, emotion for agent-

admiration/reproach).  During the interaction with users, PRIME CLIMB’s pedagogical agent 

uses the assessment of user affect to direct its intervention, although it is not fully 

implemented in the current version.  More recent work on this project is trying to refine the 

previous user affect model based on user studies (Conati and Maclaren 2005). 

Some probabilistic user models employ a decision-theoretic approach with utility 

functions.  While LOOKOUT (Horvitz 1999) is not based on a Bayesian network, it takes a 

decision-theoretic approach to user modeling for scheduling and meeting management with 

Microsoft Outlook.  When a user opens a new email message, LOOKOUT parses the text of the 

email body and subject of the message and tries to identify the date and time of the 

appointment related to the email message.  From this information, the system tries to infer 

whether the user will wish to schedule the appointment or not.  To assist users with 

scheduling, LOOKOUT considers two expected utilities: the expected utility of taking 
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autonomous actions to assist the user with an action, and the expected utility of not taking 

autonomous action to assist the user.  Both of them are defined in terms of the weighted sum 

p(G|E) (the probability that the user’s goal is to obtain the service given the observed 

evidence) and the utility for each case.  If the expected utility of action is greater than the 

threshold (the point where two expected utility values are the same), the system then takes an 

autonomous action; otherwise, it does not.  The system also considers the utilities for 

initiating dialogue about a goal when the user actually desires the goal and when the user 

does not desire the goal.  Instead of taking action, the system engages the user in a dialogue 

about action, depending on whether the inferred probability that the user desires service is 

above the threshold for dialogue or action.  LOOKOUT employs a probabilistic classification 

approach (a support vector machine for text classification) to identify the user's goal (e.g., 

whether the user wants to use the scheduling system).  LOOKOUT constructs a linear support 

vector machine classifier by training on approximately 1000 messages to induce two classes 

(whether the user wishes to use the calendar for a message or not).  However, LOOKOUT’s 

inferences are based solely on the content of email and do not consider other factors such as 

the user’s focus of attention or other characteristics of the work environment. 

2.1.2.1 Inference in User Modeling 
One of primary advantages of Bayesian networks is that data can be explicitly represented in 

Bayesian network variables and dependencies between variables can explicitly be 

represented in network structure.  Together, these properties enable Bayesian networks to 

explicitly reason about how variables affect each other based on the available evidence.  

Reasoning (or inference) in Bayesian networks is the process of computing the posterior 

probability of the variable of interest given evidence based on Bayes’ theorem and 

conditional independence. Because exact inference in Bayesian network is NP-hard, 

approximation algorithms such as likelihood sampling or Monte Carlo simulation are often 

used.   

A Bayesian user model is used for evaluating the student’s level of knowledge of the 

domain based on the observable student actions.  Nodes at the bottom level of network 

represent observable student actions, the parents of the observable actions represent the 
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knowledge of subsystem and strategic knowledge that the student should know to perform 

those actions, and the top level node represents overall proficiency.  The Bayesian user 

model is used to evaluate the student’s level of expertise by updating beliefs about the 

student’s knowledge (strategic, procedural, or system knowledge) from observable actions 

using Bayesian inference and it was used for providing direct instruction to students. 

A Bayesian user model can be used to create adaptive instruction, including providing 

customized hints, generating explanations tailored to individual users, and selecting problems.  

For example, the Bayesian network in ANDES is used to determine the topic of hints when a 

student requests help.  To determine the topic of a hint, the user modeling system needs to 

know which goal the student is attempting to achieve and where the student will probably 

encounter difficulty.  Since nodes of Bayesian network of ANDES represent goals, sub-goals, 

and rule nodes, the search procedure for finding hint topic starts from the most recently 

observed node and proceeds upward to find a goal node that the student is most likely to 

achieve (i.e., a goal node with  highest probability).  Then, it searches downward from that 

goal node to find a Rule-application node with a low probability and this Rule-application 

node becomes a hint topic.  In ANDES, the Bayesian network for each problem is authored by 

an expert and the conditional probabilities of ANDES are defined on the basis of the 

knowledge of the domain expert.  ANDES’ top-down search-based mechanism enables it to 

find the most appropriate hint topic, although it cannot detect students’ misconceptions. 

In READY (Bohnenberger et al. 2002; Jameson et al. 1999), a dynamic Bayesian network 

is used to infer a user’s resource limitations such as time pressure and cognitive load because 

time pressure and cognitive load may vary over time.  Based on inference about resource 

limitations, the system can determine the most efficient interaction policy.  The initial prior 

and conditional probabilities are learned from data acquired by off-line experiments with 

users.  Then, during on-line interaction with users, the conditional probabilities are tuned for 

the particular user. READY utilized a Bayesian user model for making decisions about the 

type of assistance (e.g., step-wise or bundled instruction) to provide based on the inference 

about resource limitations.  Because learning in READY uses data gathered from experiments 
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conducted in a controlled environment, it can cope with inaccuracies that could otherwise be 

caused by sparse data. 

Two variations on traditional Bayes networks have been used in user modeling: dynamic 

Bayesian networks, and dynamic decision networks. If variables in a Bayesian network 

change over time, the network should capture the dynamic properties of the variables.  

Dynamic Bayesian networks represent this time-varying property by maintaining multiple 

copies of the variables, one for each time slice.  If a Bayesian network is extended with 

decision and utility nodes, the model is called a decision network and if the decision network 

represents temporal properties, then it is called a dynamic decision network (DDN).  Some 

user models adopt static Bayesian networks and others adopt decision networks or DDN. 

Dynamic Bayesian networks can be used for inferring the user’s focus of attention. For 

example, PRIORITIES (Horvitz et al. 1999) uses a dynamic network to infer a probability 

distribution over the tasks competing for a user’s focus of attention.  To determine whether 

the system should transmit an alert immediately or defer it, PRIORITIES employs a decision-

theoretic approach that considers a user’s focus of attention and the estimated criticality of a 

message.  Instead of including a utility node in the network, PRIORITIES defines utility 

functions in terms of the expected cost of transmitting an alert and the expected benefits of an 

alert.  It assumes that the expected utility of transmitting an alert is the difference between 

the expected cost and benefits of the information provided by the alert.  It computes the 

expected cost of immediate alerting and the expected cost of deferring an alert for some time 

t.  The expected cost of deferring an alert is the difference between the expected utility of 

taking immediate ideal action at time t0 and the expected utility of delaying the ideal action 

until some future time t.  Although PRIORITIES infers the user’s focus of attention base on 

high-level features such as the application in focus or user location, its accuracy might be 

improved if it considered lower-level features such as eye gaze. 

2.1.2.2 Learning in User Modeling 
Learning in Bayesian networks refers to learning conditional probabilities or the network 

structure from raw data.  Very few user modeling projects have addressed learning network 

structure and conditional probabilities from data.  In DT TUTOR (Murray et al. 2004), the 



 23

structure is authored, most conditional probabilities are authored, but conditional 

probabilities for unobserved variables are learned from data.  In DT TUTOR, data were 

collected from pretests, student interaction logs, and posttests.  Pretest data was used to 

compute prior probabilities and many of DT TUTOR’s conditional probability tables were 

constructed using so-called predefined rule-based techniques as in ANDES (Conati et al. 

2002).  However, DT TUTOR learned conditional probabilities for unobserved variables from 

data, but only basic techniques were used for learning.  The probability for each outcome of 

the unobserved variable was calculated as the ratio of events with the outcome of the variable 

to the total number of similar events.  Like DT TUTOR, READY (Bohnenberger et al. 2002) 

learns conditional probabilities from data, but the network structure is fixed. 

CAPIT (Mayo and Mitrovic 2001) and WAYANG OUTPOST (Arroyo et al. 2004) and also 

learns the structure and conditional probabilities from data.  Because CAPIT is a constraint-

based tutor, it represents constraints for each problem solving attempt instead of representing 

skills and hints, an approach that is different from that used in WAYANG OUTPOST.  However, 

CAPIT limits the possible links between variables so that structure learning can be 

accomplished efficiently because there is only limited number of possible links to be 

considered in structure learning. WAYANG OUTPOST, a web-based ITS for the mathematics 

section of the SAT (Arroyo et al. 2004), learns network structure and conditional 

probabilities from data.  Because WAYANG OUTPOST focuses on the relationship between 

received hints and problem solving skills (e.g., “how seeing a hint is related to knowing a 

skill”), the learned network represents skills and hints and the network is used for predicting 

students’ actions after seeing hints.  Like CAPIT, structure learning can be accomplished 

efficiently because part of the structure (e.g., the number of layers or variables) is fixed.  

However, CAPIT only represents observable variables.  In contrast, WAYANG OUTPOST has 

multiple layers which include hidden variables. 

Zukerman’s plan recognition system (Albrecht et al. 1998) has a fixed Bayesian network 

structure, but it learns conditional probabilities from data.  The training data consists of a 

time stamp, the name of the player, the number of log-in sessions, the location where the 

action was performed by the player, and the name of the action.  The learning process is 
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based on a straightforward frequency counting approach, and if the system has not observed 

an action A given the location B and the current quest C during training, then the probability 

of an action A given B and C is simply set to zero even if the action A could  occur in the 

same situation. 

For parameter learning, missing values and sparse data should be handled properly 

because conditional probabilities learned from data with missing values could be inaccurate 

(probabilities of missing values could be zero even if one might observe those value).  

Moreover, if the network has hidden variables, learning could be even worse because hidden 

variables are not observable.  Most projects dealing with structure learning make 

assumptions to make learning tractable.  For example, they significantly reduce the scope of 

the problem by dealing only with constraints (CAPIT) or only with skills and hints (WAYANG 

OUTPOST).  Furthermore, the initial structures are primarily constructed by a domain expert. 

2.2 Intention Recognition 
Plan recognition is typically divided into two types: keyhole plan recognition and intended 

plan recognition (Cohen et al. 1981).  In keyhole plan recognition, the observed user is not 

aware of the observation.  Most plan recognition applications perform keyhole plan 

recognition.  In intended recognition, the observed user knows she is observed and 

consciously takes actions to make her intentions clear to the observer.  For example, in 

natural language dialogue, speakers often form utterances in such a way that hearer can 

easily recognize the communicative goals she is attempting to achieve.  Thus, understanding 

dialogue utterances is one form of intended recognition.  The problem of goal recognition 

(Lesh 1997; Blaylock and Allen 2003) is a restricted form of the plan recognition problem.  It 

should be noted that some use the term “intention recognition” to refer to a combination of 

goal and plan recognition (Mao and Gratch 2004b).  We adopt this inclusive usage of the 

term. 

2.2.1 Goal Recognition 
Goal recognition is a special case of plan recognition.  Goal recognition only seeks to predict 

a user’s goals from a series of observations.  Goal recognition is not as informative as plan 
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recognition, but it can be useful because performing goal recognition may be sufficiently 

efficient to meet the real-time requirements of interactive systems.  Blaylock and Allen 

divide goal recognition into two types based on the target goal structure: flat goal recognition 

and hierarchical goal recognition (Blaylock and Allen 2005).  While flat goal recognition 

focuses on predicting goals at a single level, typically the top-level, hierarchical goal 

recognition attempts to recognize active sub-goals as well as top-level goals. 

Two fundamental approaches have been taken to goal recognition: logic-based goal 

recognition and probabilistic goal recognition.  We first discuss logic-based goal recognition 

and then turn to probabilistic goal recognition. 

An early logic-based goal recognition approach used graph analysis (Hong 2001; Lesh 

and Etzioni 1995).  It employed a graph representation of the domain called a consistency 

graph.  Nodes in a consistency graph represent actions and goals.  Initially, nodes in a 

consistency graph are fully connected to each other.  Inconsistent actions and goals are then 

pruned from the graph (Lesh and Etzioni 1995).  The experiment was conducted in the Unix 

domain.  Subjects were given goal descriptions and they were asked to achieve each goal by 

executing Unix commands.  The results showed that their recognizer successfully detected 

every inconsistency between goals and observations.  Their algorithm runs in time that is 

polynomial in the size of inputs. 

Hong (2001) extended Lesh & Etzioni’s work.  His approach to goal recognitions 

consists of two stages.  First, a graph structure called a goal graph is constructed to represent 

actions, goals, and the states of the world.  In a goal graph, action nodes represent observed 

actions at each time steps, proposition nodes represent the states of the world at each time 

steps, and goal nodes represents the partially or fully achieved goals at each time steps.  

Edges in a goal graph represent the relationships between action nodes and proposition nodes 

and relationships between proposition nodes and goal nodes.  For example, the action nodes 

at level i are connected to proposition nodes at level i which are preconditions of the actions, 

and the action nodes are also connected to proposition nodes at level i+1, which are effects of 

the action.  After a goal graph is constructed, the algorithm uses the constructed graph to 

recognize consistent goals and valid plans.  The goal recognizer was also tested in the Unix 



 26

domain with a corpus collected at the University of Washington.  Subjects were given goal 

descriptions and then were asked to achieve the goals by executing Unix commands.  The 

algorithm successfully recognized 13 goals out of 14 given goals, and it is computationally 

efficient (polynomial-time and polynomial-space). 

However, these logic-based approaches suffer from several problems.  First, they are not 

able to distinguish between logically consistent goals and are not able to deal with 

uncertainty.  Second, noisy observations make the recognizers predict erroneous goals 

because they prune away logically inconsistent goals every time they observe an action 

which may in fact be noise.  We have recently begun to see attempts to solve these problems 

with probabilistic approaches such as Dempster-Shafer theory, n-gram models, Bayesian 

networks, and probabilistic grammars. 

A landmark project in Bayesian goal recognition is Zukerman’s Bayesian keyhole goal 

recognition model (Albrecht et al. 1998).  Here, a Bayesian goal recognition model infers a 

user’s long term goals in the context of a text-based adventure game where users compete for 

limited resources to achieve various goals.  The experiments were conducted in game with 

more than 4,700 locations and 20 different quests (goals); players could perform more than 

7,000 actions.  The Bayesian model is used to predict a user’s current quest (goals), next 

action, and next location on the basis of the previous quest and the series of previous actions 

and locations. 

The conditional probabilities of the model are learned from data gathered from actual 

user interactions with the system.  However, the system does not learn the structure of 

Bayesian networks; rather, Albrecht et al. propose three different types of dynamic Bayesian 

network structures that represent different conditional dependencies of the variables.  

Efficiency is important for runtime operation of the model because the user’s plans must be 

predicted in real-time.  The inference time for Bayesian networks depend on the possible 

values of each node and the size of data for computing conditional probabilities.  To increase 

the runtime performance of the model, the approach used here reduces the size of 

representation of locations and actions by screening non-significant actions using 

classification techniques and abstracting locations (e.g., represent a specific location as a 
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larger location which includes the specific location).  Together, these speed up the runtime 

inference.  One drawback is that their recognizer only recognizes atomic goals, and cannot 

recognize goal schemas. 

Blaylock and Allen devised probabilistic approaches (Unigram, Bigram, and Hidden 

Markov Models) for flat goal recognition and hierarchical goal recognition (Blaylock and 

Allen 2003; Blaylock and Allen 2004; Blaylock and Allen 2005; Blaylock and Allen 2006a; 

Blaylock and Allen 2006b).  For empirical evaluations of “flat goal recognition”, they use 

Lesh’s Unix plan corpus (Lesh 1997).  The results show 55.4 % accuracy and 78% of cases 

are converging.  The hierarchical goal recognition approach was evaluated with the Monroe 

corpus (an artificially generated corpus for the emergency response domain).  For top-level 

goal recognition, precision was 94.3% for the 1-best case.  For other-level goal recognition, 

precision was high 90’s for the 1-best case.  Recognition for both flat and hierarchical goal 

recognition are fast: polynomial time for flat goal recognition and quadratic in the number of 

possible goals and the number of observations for hierarchical goal recognition.  Machine 

learning techniques are used to train the goal recognizer on a domain given a corpus.  

Because their recognizer learns users’ behaviors from a corpus, it does not require a 

manually constructed plan library.  In addition, because it supports goal schema recognition 

and action schema recognition, it can make partial predictions if not all parameter values are 

available. 

Yin et al. (Yin et al. 2004) propose two-level goal recognition architecture which uses a 

Dynamic Bayesian Network (DBN) to infer a user’s actions from raw sensory inputs 

provided by wireless networks and n-gram models to infer a user’s goal from a predicted 

user’s action.  In the domain, there are 11 actions (e.g., Walk-in-HW4) that a user can 

perform and 19 goals (e.g., Seminar-in-Room1, Print-at-Room1, Return-to-Office) that a user 

can achieve.  Low-level DBN models start from raw sensory inputs to infer a user’s action 

and then high-level n-gram models were used to infer a user’s goal from a user’s actions.  

Given a sequence of observations, the DBN infers the most probable action sequences.  Then, 

given the estimated sequence of actions, the n-gram model infers the most likely goal.  They 

compared the DBN-only model (which uses a DBN for both layers) and a DBN+n-gram 
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model on accuracy and convergence rate.  The DBN+N-gram showed a similar performance 

as the DBN-only model.  For the experiment, they collected about 570 traces for 19 goals of 

a professor’s behavior in an office area.  They report 90.5 % of accuracy for DBN+N-gram 

model and 89.5% accuracy for the DBN-only model.  Like Zukerman’s model, their 

recognizer can only predict a single goal and it is unable to recognize multiple goals and goal 

schema. 

2.2.2 Plan Recognition 
Plan recognition approaches can be divided into two types: logic-based approaches and 

probabilistic approaches.  In the logic-based approach, a plan library is used.  Each plan 

operator in the library specifies an action’s preconditions, which are true in the current world 

state or can be achieved by sub-goaling, and the effects of executing the actions.  For 

example, plan recognition for user modeling begins with a set of goals that a user might be 

attempting to achieve and an observed action by the user.  To infer the user’s goal from the 

observed actions, the plan inference system connects the observed action to one of possible 

goals which could be achieved by the action.  From these goals, the system finds actions for 

which the goal is a precondition or sub-goals, and performs the same process from these 

actions to the goals, and so on.  The resulting inference path is an alternating path of actions 

and goals which start with an action and ends with a goal (Carberry 2001).  Since there could 

be many possible plans or goals that are achieved by one observed action, the plan inference 

system often produces multiple hypotheses about the user’s plan.  Therefore, plan recognition 

research has focused on the techniques for narrowing the space of possible hypotheses.  

Logic-base approaches use logical methods to choose more plausible hypothesis. 

One of the first plan recognition systems is BELIEVER (Schmidt et al. 1978).  BELIEVER 

was based on psychological studies that show how humans do plan recognition.  The 

experiments showed that humans make the best guess based on observations instead of 

having the list of possible plans that explain the observations.  BELIEVER endeavored to 

imitate these human plan recognition processes.  BELIEVER was given observations and 

knowledge about the world and attempted to match observations with the expected plan 
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structure, which is a graph of actions.  If the expected plan structure is not matched with 

observations, the expected plan structure is revised. 

Kautz presents a formal theory of plan recognition (Kautz and Allen 1986; Kautz 1987).  

In this plan recognition framework, the possible plans are represented by a set of first-order 

statements called an event hierarchy, which includes the abstraction and decomposition 

relationships between events.  This framework assumes that an event hierarchy is complete, 

i.e., it is an exhaustive description of the ways in which actions can be performed.  It also 

assumes that users perform the minimum number of consistent actions to achieve goals and 

have correct plans and complete knowledge about the domain.  Thus, plan recognition 

becomes the problem of finding the minimal set of events covering the observed actions 

given an event hierarchy.  The runtime performance of the recognizer is exponential in the 

size of the event hierarchy so that it is not scalable to large domain, and the assumptions are 

too strong for any realistic domain although it can handle partial-order and interleaved plans. 

Carberry (Carberry 1988; Carberry 1990a) presents a plan recognition approach for a 

natural language dialogue system.  Her system first analyzes an utterance without 

considering the preceding dialogue to hypothesize a set of domain-dependent goals 

(candidate focused goals) and associated plans (candidate focused plans) by using plan-

identification heuristics.  Secondly, the system relates an utterance to the context by 

considering the preceding dialogue.  The system uses a tree structure called a context model 

to represent users’ goals and plans inferred from preceding dialogue.  As each new utterance 

occurs, the context model is expanded to include the most likely relationship between one of 

the hypothesized candidate plans and the context model.  Because the plan recognition 

process is based on the communication between users and systems and users directly 

communicate their intended actions and goals, the approach cannot be directly applied to 

keyhole plan recognition. 

Logic-based approaches to plan recognition suffer from two problems.  First, they do not 

perform well with noisy data.  Noisy data can cause classic plan recognition to infer incorrect 

plans.  Second, to work effectively, plan libraries must have a complete plan library.  

However, it is unrealistic for a plan library to represent all possible way for a user to achieve 
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a goal.  Together, these concerns prevent a classic approach to plan recognition from being 

robust.  A probabilistic approach to plan recognition addresses these issues.  Probabilistic 

approaches do not require a complete plan library.  For example, complete plan libraries do 

not need to be built in probabilistic approaches because probabilistic models can derive plans 

by interpreting probability values. 

Probabilistic approaches are based on probabilistic models of planning and employ 

abductive reasoning techniques such as Bayesian inference or Dempster-Shafer theory (DST) 

to infer the underlying plans from a sequence of observations.  For example, Bauer uses 

Dempster-Shafer theory to initialize and update the probability of goals and plans given 

observations (Bauer 1996a).  He explains the technique in the domain of email (read/delete 

email).  Bauer’s recognizer employs a hierarchical plan representation to represent abstract 

plans, decomposed plans, and actions.  The recognizer uses the relative frequencies of 

performed plans to obtain a numerical estimation of the user’s future behavior, which is used 

for a DST basic probability assignment.  Bauer also attempts to integrate machine learning 

techniques (decision-tree classification) into Dempster-Shafer theory in order to handle the 

situation where a user’s action is deviated from her typical behavior (Bauer 1996b).  To 

assess the hypotheses, he uses results from decision-tree classification and then combines this 

result with the existing hypotheses assessment using Dempster-Shafer rule. 

Charniak and Goldman propose a formal plan recognition model which consists of the 

knowledge-base of facts about the world expressed in a first-order notation and rules to 

construct a Bayesian network by using the knowledge-base (Charniak and Goldman 1991; 

Charniak and Goldman 1993).  Based on the formal model, they built a system (Wimp3) that 

creates a Bayesian network directly from English narratives.  Wimp3 consists of three 

components: a parser, a network constructor, and a network evaluator.  Words from a 

narrative are given to the parser and the parser produce a syntactic parse which is given to the 

network constructor to produce the Bayesian network.  The Bayesian network evaluates the 

conditional probability of the competing hypotheses given the evidence.  Although their 

model can predict the most probable hypothesis, it cannot handle situations in which the 

recognizer fails to observe some actions that were in fact performed by the agent; it also 
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cannot handle dynamic plan recognition problems in which the observed propositions change 

over time. 

More recently, Geib et al. propose a probabilistic plan recognition framework to handle 

partially-ordered plans and multiple, interleaved plans (Goldman et al. 1999; Geib and 

Goldman 2005).  They built PHATT (Probabilistic Hostile Agent Task Tracker), a system 

based on their framework that uses Bayes rule to compute the conditional probability of an 

explanation given observations.  To handle partial observability, they quantified the 

probability that the observed agent actually performed some action, but it was not observed 

(probability of not observing given an action).  For each possible observed action, they learn 

the long-term false negative rate of the observed stream and use this as a prior probability 

that action might not observed when it actually happens.  This prior probability was also 

combined into the computation of the conditional probability of the explanation given a 

sequence of observation.  They explored the run time cost of their algorithm.  Without 

considering unobserved cases, the running time was under a second.  Considering 

unobserved cases, all of the examples with more than 12 observations exceed 100 seconds.  

Accuracy was 75% (correctly identifying the plans) for all of the test cases, but their test 

cases did not exhibit a high degree of ambiguity. 

None of the work discussed above takes into account the expected utility of user actions.  

In real-world environments, when a user performs actions, it is natural for users to adopt 

plans that maximize the expected utility of their actions.  Mao and Gratch propose a decision-

theoretic approach to plan recognition that takes into account outcome utilities (Mao and 

Gratch 2004a; Mao and Gratch 2004b).  In their approach, they adopt a probabilistic 

approach to plan representation in which each action has a set of precondition and effects.  

Probability values are associated with preconditions and effects to represent their likelihood.  

Utility is also associated with action effects to represent the desirability of action outcomes.  

To disambiguate the competing plans, they compute the expected utility of the observed 

user’s plans and predict that the observed user is pursing the plan which has the maximum 

expected utility. 



 32

2.3 Affective Computing 
Because affect plays a central role in human cognition, it is widely believed that affect 

modeling can contribute to a broad range of computational tasks (Picard 1997).  Affective 

computing investigates techniques for giving computers the ability to effectively recognize, 

understand, and express emotion.  Incorporating affective computing into interactive 

applications holds much appeal.  For example, affect-informed educational, training, and 

entertainment systems may create more effective, interesting, customized experiences for 

users. 

Recognizing and expressing affect have been studied extensively in the context of 

synthetic agents.  The task of affect generation (affect synthesis) is to give computers the 

ability to synthesize or generate emotions.  Work on affect synthesis has focused on virtual 

humans.  For example, the Oz project explored techniques for creating computational models 

of believable agents (Bates 1994).  Based on the OCC model of emotions (Ortony et al., 

1988), the Oz group presented self-animating creatures called “Woggles”.  They used a goal-

directed and behavior-based architecture to direct the actions of the Woggles and connect the 

architecture of the action to a component for representing, generating, and expressing 

emotions based on OCC model.  For example, a Woggle exhibits the behavior of anger when 

it experiences an important goal failure and judges that it was caused by another woggle. 

Gratch and Marsella proposed an alternative general computational model of affect 

(Gratch and Marsella 2004).  The model was implemented in Mission Research Exercise 

(MRE), a training system for teaching decision-making skills in social interactions.  The 

conceptual basis of their model is Smith and Lazarus’ appraisal theory of emotion.  Appraisal 

theory explains the human behavior as two basic cognitive processes: appraisal and coping 

(Smith and Lazarus 1990).  Appraisal refers to a person’s interpreted relationship of their 

physical and social environment.  Coping determines strategies for repairing, altering, and 

maintaining the relationship.  The model constructs and maintains a causal interpretation of 

an agent’s current mental state which includes past, present, and future states and actions, 

their likelihood and desirability and casual relationships between them.  The features of 

causal interpretation are represented as multiple appraisal frames and each appraisal frame 
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are mapped into individual instances of emotion.  The model adopts a coping strategy to 

respond the current emotional state. 

Affect recognition is the task of identifying the emotional state of a user from a variety of 

signals which are produced in response to affective changes in the individual.  These include 

facial expressions, posture, vocal intonation and changes in physiological signals such as 

muscle tension, blood pressure, galvanic skin response, and respiration (Picard 1997).  Affect 

recognition work has investigated emotion classification from student self reports of 

motivation and mood (Beal and Lee 2005), video recording of tutorial interactions (de 

Vicente and Pain 2002), physiological signals (Conati 2002; Prendinger et al. 2003; 

McQuiggan et al. 2006), and from combinations of visual cues (e.g., facial expression, eye 

movement, and posture) and physiological signals (Burleson and Picard 2004). 

Beal and Lee present an approach to assessing student’s motivation and mood from 

students’ self reports for an ITS for learning secondary school mathematics.  Before students 

use the system, they complete a brief mood report by answering questions such as, “I am 

having a <great day, OK day, bad day>.  From students’ self-reports of mood, the ITS makes 

pedagogical decisions about the difficulty of the problems, types of the problems, and types 

of multimedia help.  For example, if a student reports that she is having a bad day, the system 

might suggest a tutorial of the material that the student has already mastered.  Instead of 

recognizing motivational states, their work focused on determining pedagogical actions 

based on the student’s motivational state and mood which were self-reported by the students. 

An interesting approach to recognizing students’ motivational states from their observed 

actions has been proposed (de Vicente and Pain 2002).  The work is based on an empirical 

study for diagnosing students’ motivational states in the tutoring system for learning 

Japanese numbers.  In the study, a tutor is asked to infer a student’s motivational state from 

actions recorded from students’ interacting with a tutoring system.  The tutor can only watch 

prerecorded interactions of a student with the ITS.  When the tutor inferred the student’s 

perceived motivational state, she was asked to comment on the student’s motivational states 

and verbalize the reasoning behind her inference.  Based on the inference made by the 

participants, they elicit 85 motivation diagnosis rules. 
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Some groups have explored the use of physiological response to detect users’ emotional 

states (Prendinger et al. 2003).  Prendinger and his team utilized bio-signals to investigate the 

effects of a like-like synthetic agent with affective behavior on users’ emotional states which 

were derived from user physiological data.  They reported the result of an empirical study 

showing that affective feedback of a synthetic agent may reduce user stress.  Conati et al. 

present a model of user affect for educational games (Conati 2002; Conati and Maclaren 

2005).  The techniques are illustrated with PRIME CLIMB, an educational game in which a 

pedagogical agent uses the assessment of student affect to direct its intervention.  More 

recent work on this project is exploring techniques for refining the previous user affect model 

based by utilizing user physiological data such as galvanic skin response (Conati and 

Maclaren 2005).  In a similar vein, the Affective Learning Companion project at MIT senses 

students’ affective states through various channels (e.g., facial expression analysis, pressure 

mouse, and skin conductivity) to assess students’ progress, which could be used to determine 

appropriate interactions and interventions of the affective learning companion (Burleson and 

Picard 2004). 
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Chapter 3 
 
Goal and Affect Recognition 

In this chapter, we first define the tasks of goal recognition and affect recognition.  We 

present an affect-goal recognition architecture that consists of two components: a Goal 

Recognizer and an Affect Recognizer.  Manually constructing goal and affect recognition 

models is labor intensive and for many domains impractical.  We therefore present the 

adoption of an inductive approach to model acquisition.  After describing the task of model 

induction, we discuss issues of training corpus acquisition and then turn to learning issues. 

3.1 Task Definition 
The tasks of goal recognition and affect recognition can be defined as follows. 

• Goal Recognition: The task of plan recognition is to identify the plan P* from a set of 

candidate plan trees p1, p2, …, pm given an action sequence A1, A2, …, An.  The plan 

recognition result P* is a plan tree that explains the observation sequence A1, A2, …, An.  

The task of goal recognition (a special case of plan recognition) is to identify the goal 

G* from a set of candidate goals g1, g2, …, gm given an action sequence A1, A2, …, An.  

Note that while we use the terms “plan recognition” and “goal recognition,” what will be 

studied in practice is a combination of goal recognition and plan recognition, termed by 

some “intention recognition” (Mao and Gratch 2004b). 
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• Affect Recognition: The task of affect recognition is to identify the affective state S* 

from a set of candidate affective states s1, s2, …, sm given an observation sequence D1, 

D2, …, Dn.  Each Di represents observable attribute vector that the underlying affective 

states may be inferred by observing the attributes.  This input attribute vector includes 

various sensor data such as physiological response, eye movement, voice intonation, and 

bodily movement 

The task of goal and affect recognition is to identify both the goal G* and affective state 

S* given an observation sequence O1, O2, …, On.  Oi represents the attribute vector.  The 

choice of input attributes depends on the application.  We consider the following input 

attribute vector: 

• User Actions A1, A2, …, An: An action sequence that a user has performed so far.  An 

affect-plan recognizer can observe users’ actions in the world; recognizers also have 

access to auxiliary information about the interactions, e.g., any artifacts manipulated 

such as which objects have been picked up or which doors have been opened, as well as 

the characters with which users have interacted. 

 
Figure 3.1: Goal Recognition and Affect Recognition 

 



 37

• User Locations L1, L2, …, Ln: A sequence of locations in which a user has performed 

actions in virtual environments.  Goal and affect recognizers can bring to bear a broad 

range of knowledge about the location in which users’ actions are performed in virtual 

environments.  In contrast to activity recognition in physical environments where 

recognizers must cope with noise and errors in sensors and perception (e.g., vision and 

speech), goal and affect recognition has access to precise locational information.  

• Sensor Data D1, D2, …, Dn: A sequence of sensor data (e.g., galvanic skin conductivity 

or heart rate) from which user affective states can be inferred.  Goal and affect 

recognizers have access to sensor data.  In contrast to user location information, there 
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Figure 3.2: Goal and Affect Recognition Architecture 
 



 38

can be noise in sensor data, so goal and affect recognizers must cope with noisy sensor 

data streams. 

• The State of the World W1, W2, …, Wn: Other miscellaneous information such as 

information about virtual agents or objects in the environments.  Goal and affect 

recognizers track all information in the world such as other character’s actions and goals 

and narrative states. 

Figure 3.2 depicts the goal and affect recognition architecture.  In runtime operation, the 

user interacts with a virtual environment via a user interface.  The user navigates the virtual 

3D world to accomplish problem-solving tasks.  Throughout the interaction, the interactive 

environment tracks all activities in the world and monitors the observational data such as user 

actions, user locations, states of the world, and sensor data.  User actions include navigation 

actions (e.g., move to the location), manipulation actions (e.g., pick up objects, stack objects, 

open a door, test an object), communication actions (e.g., talk to a person), and information-

seeking actions (e.g., read a book).  User locations represent the location in which user 

actions are performed.  World states represent the current state of the world (the state of other 

character, narrative states, the focus of user attention).  Various sensor data can be used to 

detect user emotions such as users’ physiological state changes, user body posture, eye 

movements, and voice signal changes.  Note that the task we propose to explore includes 

both the “tethered” and “untethered” versions of the problem, i.e., at runtime, sensor data 

may or may not be available.  These observational data are given to the Goal and Affect 

Recognizers. 

Predicted user goals and affective states are given to the interactive environment to create 

customize interactions for users.  For example, based on the predicted affective states, an 

Intelligent Tutoring System could determine when to present a hint or how to present a hint, 

including modality choices.  Interactive environments can also take advantage of the 

predicted goals to assess the knowledge state of a user. 
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3.2 Learning Goal and Affect Recognition Models 
The task of model learning is to induce a model from observations of training data such as 

the interaction traces between a user and an environment.  The central goal of model 

induction is to generate a model that makes accurate predictions for new (unseen) data.  

Ideally, the gathered training data should be representative of all possible situations in which 

users will be encountered at runtime.  However, this assumption rarely holds in practice, so 

the induction process must generalize over the training data to unseen data.  The induced 

model should therefore represent the underlying systematic characteristics of the data rather 

capturing specific details of the particular training data. 

Two fundamental approaches to learning can be adopted: supervised learning and 

unsupervised learning.  In supervised learning, for each data item, the value of the target 

output is specified.  Thus, supervised learning is the task of learning an input-output mapping 

(the target function).  In unsupervised learning, for each input data, the value of target output 

is not specified.  Instead of learning a target function, unsupervised learning may model the 

probability distribution of the input data or discover clusters or other structure in the input 

data.  We adopt a supervised learning approach in which labeled classifications in the form of 

goals, plans, or affective states are provided by a trainer.  The task of model learning will 

therefore occur in two phases: a training phase, which is followed by a learning phase.  In the 

training phase, training data will be collected by recording detailed logs of the interactions.  

In the learning phase, the model will be induced from the training data. 

Probabilistic frameworks are well suited to learning.  Learning in Bayesian networks 

often refers to learning conditional probabilities or the structure from raw data.  Usually, the 

network structure is manually constructed because structure learning is much more difficult 

than parameter learning.  Moreover, if data is missing or some of the nodes are hidden (not 

observable), then learning is much more difficult.  Structure learning is useful when prior 

knowledge is unavailable and we want to discover underlying causal or informational 

relationships to infer knowledge about the domain.  Most Bayesian network structures of user 

models are manually constructed by experts because the experts know what kinds of 

variables are needed and the relationships between them.  However, it is much more difficult 



 40

to capture the relationships between variables beforehand for unrestricted environments (e.g., 

those that are common in interactive learning environments to support exploratory learning) 

in which users can adopt many approaches to accomplish tasks.  Structure learning is the 

model selection process of choosing among possible models or hypotheses based on an 

objective function.  An objective function measures how well the model can fit the data.  

Because structure learning is inducing a directed acyclic graph that best explains the given 

data, the number of possible acyclic graphs given N variables is super-exponential in N 

(Murphy 2002).  Thus, designers of Bayesian networks often use heuristics to avoid 

examining all possible structures or they begin with an initial proposed structure. 

Determining prior and conditional probabilities are crucial steps in constructing Bayesian 

networks.  If one can observe all possible configurations of variables and there are no hidden 

variables in the network, then computing probability tables is merely counting the number of 

occurrences of each configuration.  However, because all possible configurations of variables 

typically cannot be observed, conditional probabilities of some variables cannot be easily 

computed from data.  For example, if a network has N nodes (variables) and even if each 

node can have discrete binary values, then, at worst, the total number of possible 

configuration is 2N.  Therefore, it is often the case that sufficient data is not available to 

learning the conditional probabilities.  Techniques for learning parameters for incomplete 

data in a Bayesian network include Gibbs sampling (a Monte-Carlo method), Gaussian 

approximation, and the EM algorithm.  Monte-Carlo methods give accurate results, but when 

the sample size is large, they are often intractable (Heckerman 1999).  The Gaussian 

approximation approach is more efficient than Monte-Carlo methods and is accurate for 

relatively large samples (Heckerman 1999). 

N-gram models constitute a special case of dynamic Bayesian networks, and the same 

learning techniques for Bayesian networks can be used to estimate conditional probabilities.  

N-gram models are Markov models of order n-1 (Murphy 2002).  If n = 2 then, we have 

bigram models.  Note that n-gram models do not have hidden states.  Thus, learning n-gram 

models is the task of computing conditional probabilities from observational data by counting 

the number of occurrences of each possible configuration in the observational data. 
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3.2.1 Corpus Acquisition 
To induce goal and affect recognition models, training data can be collected from training 

subjects interacting with a test bed environment.  Figure 3.3 depicts data flow during training 

data acquisition.  An affect-goal recognition corpus tool is responsible for collecting training 

data.  The corpus tool has a goal generator that generates goals that are expected to be 

achieved by training subjects.  In the training phase, training subjects are first situated in an 

interactive learning environment and given an overview of the kinds of activities they could 

perform.  In order to collect sensor data, training subjects are “wired” to biofeedback 

equipment, eye-tracking equipment, or other types of sensors.  Next, subjects are told how 

their character could be controlled when they interact with the virtual environment.  Then, 

the goal generator successively gives training subjects goals they are expected to achieve.  

During the training phase, training subjects are asked to select the emotion from a set of 
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Figure 3.3: Training Corpus Acquisition Data Flow 
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emotions that is most closely related to their own feelings at that particular juncture.  Each 

training instance is labeled with goals and affective states.  Training subjects complete each 

goal, and detailed quest traces are recorded of all sequences of actions, goals, locations, 

sensor data, physiological changes, and world states.  In the following phase, the recognition 

model learner induces goal and affect recognition models from the collected training data. 

As noted above, training data should be as representative as possible of that which will be 

encountered by users at runtime.  Thus, training sessions should satisfy the following 

requirements. 

1. The representation of training data must be sufficiently expressive to support 

assessment of affective state changes and observations of complex plans that users 

might follow, and it must be encoded with features that are easily observable at 

runtime. 

2. The training subjects should be faced with goals of various levels of difficulty so that 

Affect-Goal Recognition Corpus tool can monitor the changes of user affective states 

and can gather a rich training plan corpus.  For example, some goals should be very 

easy to achieve and others should be very challenging so that training users could 

exhibit affective states during the interactions.  By posing goals of various levels of 

difficulty, we can collect the training data as representative as possible. 

3. The training session should be long enough to produce a large number of records.  

This allows training subjects to exhibit affective states because users sometime 

require extended periods of time to become emotionally engaged.  The large number 

of records also enables the model to learn statistically significant probability values 

for inducing model of prediction user plans. 

4. Training data should be recorded at least as often as significant events occur.  The 

events are likely to be significant if they potentially affect user emotions and actions 

which are critical to executing plans. 
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3.2.2 Model Induction 
The data in the training phase yields a set of the observations of user actions, user locations, 

sensor data, and world states.  During model induction, the observational data are passed to 

the recognition model learner (Figure 3.4).  Many types of models can be learned.  Possible 

probabilistic models include n-grams, Bayesian networks, and Decision trees.  As noted 

above, if all variables are observable (i.e., there are no hidden variables in the world), then 

learning conditional probabilities for both models (n-gram and Bayesian network) is 

 
Figure 3.4: Goal and Affect Recognition Model Induction 
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basically counting the number of occurrences of each configuration.  However, because 

training data are necessarily sparse, i.e., we are unlikely to observe all actions, locations, and 

goals, n-gram and Bayesian models will employ smoothing techniques to reevaluate zero-

probability and low-probability. 

To avoid zero-probabilities, adding a small number into each cell of sparse conditional 

probability tables is often employed (Hu 1999).  Often called a flattening constant (denoted 

by a), the flattening constant can be added to only empty cells or all cells in the table.  After 

adding a to cells (either only empty cells or all cells), conditional probabilities are 

recomputed.  Different choices of a have been proposed (e.g., adding 1/2 to all cells or 

adding 1/D to empty cells where D is the total number of cells). 

To summarize, student goal and affect recognizers play a central role in user modeling in 

narrative-centered learning environments.  Providing student models with the ability to make 

accurate early predictions is particularly important for techniques that are to provide 

feedback to pedagogical planners in real-time.  In this chapter, we introduced an inductive 

approach to automatically learning goal and affect recognition models rather than manually 

creating the models.  In the following chapters, we present implemented goal and affect 

recognition models that can make early, accurate predictions.  The models have been 

empirically evaluated in CRYSTAL ISLAND, a narrative-centered learning environment. 
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Chapter 4 
 
Narrative-Centered Goal 
Recognition 

As with most tasks to be performed in the context of interactive systems, an empirical 

approach to evaluation holds much appeal.  We adopt the following 3-phase evaluation 

methodology to study the probabilistic goal recognizers introduced above. 

1. Corpus Acquisition: In a narrative-centered learning environment, collect traces of 

users’ performing narrative quests.  Quest traces encode extensive sequences of 

narrative states and user goals, locations, and actions. 

2. Goal Recognizer Induction: Learn narrative goal recognizers from the quest traces by 

using the narrative state sequences, user goals, user location sequences, and user 

action sequences to induce goal classifiers. 

3. Predictive Recognition Evaluation:  With a cross validation approach, determine the 

accuracy and the incremental recognition abilities of each goal recognizer. 

This methodology has been used to study the unigram, bigram, and Bayesian network 

narrative goal recognition models.  We briefly describe the narrative-centered learning 

environment testbed in which the experiments were carried out.  After discussing the 

challenges of empirically evaluating affect and goal recognition models, we describe the 

evaluation methodology we propose to adopt for our work and report the experimental results. 
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4.1 Testbed: Crystal Island 
To serve as an effective “laboratory” for studying user goals and affect recognition in a 

narrative-centered learning environment, a testbed should pose the same kinds of challenges 

that goal and affect recognition modelers are likely to encounter in future runtime 

environments.  It should offer users a broad range of actions to perform and provide a rich set 

of tasks and goals in a nontrivial narrative-centered learning environment.  The goals should 

exhibit some complexity, and the environment should be populated by manipulable artifacts 

and be inhabited by multiple characters.  To this end, we have devised CYRSTAL ISLAND 

(Mott et al. 2006b), a narrative-centered learning environment testbed featuring a science 

mystery (Figure 4.1).  The mystery is set on a recently discovered volcanic island where a 

research station has been established to study the unique flora and fauna.  The user finds 

 
Figure 4.1: The CRYSTAL ISLAND Testbed 
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herself as the daughter of a visiting scientist who is attempting to discover the origins of an 

unidentified illness at the research station.  The environment begins by introducing her to the 

island and the members of the research team for which her father serves as the lead scientist.  

As members of the research team fall ill, it is her task to discover the cause of the outbreak.  

She is free to explore the world to collect physical evidence and interact with other characters.  

Through the course of her adventure she must gather enough evidence to correctly choose 

among candidate diagnoses including botulism, cholera, salmonellosis, and tick paralysis as 

well as identify the source of the disease. 

The narrative learning environment of CYRSTAL ISLAND, the semiautonomous characters 

that inhabit it, and the user interface were implemented with Valve Software’s Source™ 

engine, the 3D game platform for Half-Life 2.  The Source engine also provides much of the 

low-level (reactive) character behavior control.  In CYRSTAL ISLAND, the user can perform a 

broad range of actions including performing experiments in the laboratory, interacting with 

other characters, reading “virtual books” to obtain background information on diseases, and 

collecting data about the food recently eaten by the members of the research team. 

Throughout the mystery, users can walk around the island and visit the infirmary, the lab, the 

dining hall, and the living quarters of each member of the team.  In the current testbed, there 

are twenty goals the users can achieve, three hundred unique actions the user can carry out, 

and over fifty unique locations in which the actions can be performed.   

4.2 Challenges of Empirical Evaluation 
Effectively evaluating the goal and affect recognition framework requires dealing with 

several challenging issues.  First, we need to determine the granularity of the evaluation.  

Every time a student performs an action, she might or might not change her current goal.  

Students’ goals or affective states could be influenced by other events (e.g., other character’s 

actions) in the environments.  We might evaluate the predictive power of the model every 

time a student performs an action or an important event occurs, or it could be done at larger 

time intervals.  Second, we are presented with the problem of when a student interacts with a 

system multiple times.  When the student first interacts with the system, it is likely that the 



 48

sequence of student actions is not optimal.  However, when the student interacts with the 

system on subsequent occasions, the actions are more likely to be optimal.  Thus, the test 

data collected from the former case may not be representative of the interactions that repeat 

users have, nor will test data collected from the latter case be representative of the 

interactions that first-time users will have.  When we evaluate the model, we need to treat 

two cases differently.  Third, an important issue to investigate is how well the recognition 

system generalizes to different tasks, domains, or populations of students.  Because most goal 

recognition systems have been concerned with domain specific actions and goals and test 

data are also collected from the interactions with a specific system, it is difficult to judge the 

generalizability of the model. 

For goal and affect recognition, there are no standard data sets that are used.  Unlike the 

machine learning community which has its own repository of data sets, with the possible 

exception of the Unix domain, there are no similar data sets for evaluating goal recognition, 

nor are there for affect recognition.  Moreover, there is currently no standard, commonly 

accepted approach to evaluating goal recognition frameworks.  As researchers in the goal 

recognition community have noted, there are no standard evaluation metrics for goal 

recognition (Blaylock and Allen 2003).  This is also true for evaluating affect recognition.  

Although there is a lack of the agreement on evaluation metrics, some metrics have emerged 

for evaluating goal recognition in interactive environments (Blaylock and Allen 2003; 

Blaylock and Allen 2005).  Model performance has been evaluated in terms of two criteria: 

accuracy and convergence.  Accuracy measures are concerned with how correctly the model 

can predict users’ goals.  Convergence measures are concerned with “early prediction.” 

 

Accuracy measures 

• Accuracy: The number of correct predictions divided by the total number of actions 

observed. 

• Precision: the number of correct predictions divided by the total number of predictions 

made. 
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Convergence measures 

• Converged: The percentage of observation sequences in which the plan recognizer’s 

final prediction is correct. 

• Convergence Point: For observation sequences which converged, the point within the 

sequence when the plan recognizer started making the correct prediction and continued 

to make the correct prediction for the remainder of the sequence. 

• Average Actions of Converged: The average number of actions within observation 

sequences which converged. 

4.3 Narrative-Centered Goal Recognition Study 
In this section, we discuss the problem of narrative goal recognition, introduce a solution to 

the narrative goal recognition problem that utilizes n-gram models and Bayesian network 

models, and present the results of an empirical evaluation.  The models were induced from 

training data acquired from interactive sessions. 

4.3.1 The Narrative-Centered Goal Recognition Model 
Narrative-centered learning environments dynamically craft engaging story-based 

experiences for users, who are themselves active participants in unfolding stories.  A key 

challenge posed by interactive narrative is recognizing users’ goals so that narrative planners 

can dynamically orchestrate plot elements and character actions to create rich, customized 

stories.  In this section, we discuss an inductive approach to predicting users’ goals by 

learning probabilistic goal recognition models. 

Goal recognition for interactive narrative should satisfy three requirements.  First, 

because incorrectly predicting goals could significantly diminish the effectiveness of 

narrative planners, narrative goal recognizers should accurately infer users’ goals.  Moreover, 

as observations of users’ activities become available, recognizers should make accurate 

“early” predictions (Blaylock and Allen 2003) ideally these would be k-best predictions 

rather than a single predicted goal and they should converge as quickly as possible on the 

most likely interpretation.  Second, the real-time requirements of interactive narrative call for 

extraordinarily efficient recognizers.  Any approach that depends on computations spanning 
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more than a few milliseconds could be infeasible.  Third, users in most narrative 

environments should not be interrogated about their current goal; their actions must speak for 

themselves.  Because interrupting users to pose questions about their goals could interfere 

with the flow of the narrative and cause users to forgo their suspension of disbelief, a 

narrative goal recognizer should perform “keyhole goal recognition,” i.e., it should 

unobtrusively observe a user as she interacts with the environment as discussed in Chapter 3. 

To address the requirements for narrative goal recognition set forth above (accuracy, 

incremental recognition, and efficiency), and to cope with the uncertainty inherent in 

recognizing users’ goals in interactive narrative environments, we investigate two families of 

probabilistic approaches to user goal recognition: n-gram models and Bayesian networks. 

Narrative goal recognizers can exploit three sources of information to infer users’ goals: 

narrative states, user actions, user locations.  Narrative states represent the plot (typically 

represented in a plot graph (a partially ordered graph of plot elements) (Weyhrauch 1997)) or 

narrative plan (Riedl et al. 2003), the current focus of the story arc and its episodic structure, 

and the plans and goals of the synthetic agents who serve as (the other) characters in the story.  

User actions represent the actions that a user can perform (e.g., open the door, talk to a 

person, examine a book, and etc.), and user locations represent the locations in which actions 

have been performed. 

We define narrative goal recognition as follows:  Given a sequence of n observed user 

actions a1, a2, …, an in a narrative environment, their associated narrative states n1, n2, …, nn 

and user locations l1, l2, …, ln, identify the most likely goal G* from a set of candidate goals 

g1, g2, …, gm that accounts for the action sequence in the given context. 

For n-gram, narrative goal recognition can be formally defined as follows.  Given an 

observation sequence O1, O2, …, On, the objective of narrative goal recognition is to identify 

the most likely goal G* such that: 
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where each Oi is an observation encoding the current narrative state, the user’s action, and 

the location at which her action was performed.  The observation sequence O1, O2, …, On is 

denoted by O1:n.  Applying Bayes’ rule yields: 

 

 

 

 

which can be simplified by eliminating the constant term P(O1:n) to obtain: 

 

 

Applying the Chain Rule, the equation becomes: 

 

 

 

However, estimating these conditional probabilities is impractical and it would require 

exponentially large training data sets, so we make a Markov assumption that an observation 

Oi depends only on the goal G and a limited window of preceding observations.  Following 

an approach initially proposed for goal recognition in natural language dialogue (Blaylock 

and Allen 2003), we explore two n-gram narrative goal recognition models, a unigram model 

and a bigram model.  The unigram model is based on the assumption that, given the goal G, 

Oi is conditionally independent of all other observations.  Thus, the goal recognition formula 

for the unigram model can be simplified to: 

 

 

 

The bigram model is based on the assumption that, given the goal G and the preceding 

observation Oi-1, Oi is conditionally independent of all other observations.  Thus, the goal 

recognition formula for the bigram model can be simplified to: 
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For the bigram model, O0 is taken to be the null observation when a narrative begins and the 

previous narrative state, user action, and user location are all null.  The resulting formulae for 

the unigram and bigram models are very efficient because updating the goal prediction for 

each new observation only requires computing the product of the probability returned by the 

previous prediction and the current conditional probability. 

Narrative goal recognition can alternatively be modeled with Bayesian networks.  

Following an approach initially proposed for keyhole plan recognition in a text-based 

adventure game (Albrecht et al. 1998), we explore a Bayesian network model for narrative 

goal recognition (Figure 4.2).  In contrast to the aggregate observation variables Oi of the n-

gram models, the Bayesian network goal recognizer explicitly models dependencies between 

the constituent variables, i.e., between narrative state, user action, and user location.  Thus, it 

represents the influences of the following variables on the user’s goal G: the user’s previous 

goal G’, the sequence of narrative states n1, n2, …, nn, the sequence of user actions a1, a2, …, 

 
 

Figure 4.2: Bayesian Network Goal Recognition Model 
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an, and the sequence of user locations l1, l2, …, ln.  While the narrative states influence G 

because the plot elements and story arc affect the goals of the user in the story, G itself 

influences the locations where the user performs her actions, as well as the actions that she 

performs there.  The locations also influence the user actions directly.  Locations are modeled 

as influencing actions because particular locations afford particular types of actions.  

However, the converse model in which actions influence locations is also plausible because a 

user might journey to a location in the storyworld to perform an intended action there.  Since 

Bayes nets are by definition acyclic, one of these directions of causality must be selected.  

While the former is chosen here, the latter offers an interesting direction for future work.  As 

with the bigram model, N0, A0, and L0 are taken be null when a narrative begins. 

From the Bayesian network, we have the following 

 

 

Given a sequence of actions A0, A1, A2, …, An, a sequence of locations L0, L1, L2, …, Ln, and a 

sequence of narrative states N0, N1, N2, …, Nn, the current action An depends only on the 

previous action An-1, the current location Ln, and the current goal G; the current location Ln 

depends only on the previous location Ln-1 and the current goal G; the current narrative state 

Nn depends only on the previous narrative state Nn-1; and the current goal G only depends on 

the previous goal G’ and the current narrative state Nn.  Therefore: 

 

 

 

 

 

where n ≥ 1.  By applying the Chain Rule and the above equations, the goal recognition 

formula for the Bayesian network becomes: 
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As with the n-gram models, the resulting formula is very efficient because updating the 

goal prediction for each new observation requires only noting the previous prediction, 

looking up a few CPT entries, and computing their product.  During training, we estimate 

P(Ai|G, Ai-1, Li), P(Li|G, Li-1), P(Ni|Ni-1), P(G|G’, Ni), and P(G) using training data acquired 

with a narrative environment as described in the below. 

4.3.2 Narrative Goal Recognition Model Induction 
In a model induction, more than fifteen hours of narrative trace data were collected from 

forty subjects interacting with the testbed environment.  Subjects were first situated in the 

narrative world and given an overview of the kinds of activities they could perform.  Next, 

they were told how their character could be controlled, and once they entered the virtual 

environment, they were successively given goals they were expected to achieve via an 

onscreen message.  Based on the narrative structure, the order of the goals differed from 

session to session.  Users completed each goal, and upon completing the final goal, they were 

complimented on their successful performance. 

In the current testbed, there are 20 goals that user can achieve, three hundreds unique 

actions the user can perform, over fifty unique locations in which actions can be performed.  

Detailed quest traces were recorded of all sequences of actions, goals, locations, and 

narrative states.  Narrative states were represented with the episodic structure of the 

unfolding story and the narrative arc in which it was situated.  There were eighty training 

sessions collected (two sessions per subject), which generated just over twenty thousand 

training records.  The number of training records was high because of the frequency of 

sampling and the length of action sequences per goal.  Unigram, bigram, and Bayesian 

network goal recognition models were learned from the collected quest traces.  For the 

Bayesian network model, the structure was fixed (as shown in Figure 4.2), but the 
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conditional probabilities were learned. Because of the high dimensionality of collected data, 

we add a flattening constant into all cells to avoid zero probabilities. 

4.3.3 Empirical Evaluation Results 
In evaluation of narrative goal recognition models, we studied several properties of accuracy 

and convergence.  Unigram, bigram, and Bayesian goal recognition models were evaluated 

using the following criteria (Blaylock and Allen 2003): accuracy, converged, convergence 

point, and average actions of converged.  The induced models were tested using a 10-fold 

cross validation.  (In each fold, nine segments are used for training and one, which was not 

used for training, is used for testing.)  The results are shown in Table 4-1.  Each of the 

models performed at a reasonable level.  Although the 51% to 54% accuracy may at first 

appear low, the recognizers performed significantly better than chance, which would be 5%.  
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Figure 4.3: Bayesian Network Convergence Graph 
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(There were 20 candidate goals.)  The resulting accuracies are promising and are consistent 

with the results seen in other statistical approaches, e.g., (Blaylock and Allen 2003).  In 

addition to accuracy, the models also exhibited the ability to make early predictions, i.e., 

predictions based on a few observations, and to converge reasonably quickly to the correct 

goal.  Figure 4.3 shows the top seven predictions of the Bayesian goal recognition model as it 

converges to g3 after five actions.  Because all of the models are probabilistic, they can 

provide the k-best predictions. 

 
Table 4-1: Goal Recognition Evaluation Results 

 Unigram Bigram Bayesian 

Accuracy 54.8 % 51.5 % 53.7% 

Converged 83.7 % 79.3 % 67.2% 

Convergence Point 50.5 % 48.5 % 43.9% 

Average Actions 
of Converged 

16.3 16.9 17.1 

 

 

All three models show approximately similar performance. For accuracy, unigram is 

significantly different from bigram and unigram is different from Bayesian with a small 

significance.  For converged, all three models are significantly different from one another.  

However, there is no significant difference between all three models for convergence point. 

In this chapter, we have presented a probabilistic goal recognizer that uses machine 

learning techniques to induce a goal recognition model from an activity corpus gathered from 

users’ interactions with the CRYSTAL ISLAND learning environment.  Both the prior and 

conditional probabilities are learned from the corpus.  The recognizer is fast and efficient, 

and it supports “early” prediction.  The evaluated recognizer represents a first step towards 

goal recognition for interactive narrative environments.  In the next chapter, we describe an 

implemented probabilistic affect recognizer and report its performance on training data 

gathered in the CRYSTAL ISLAND learning environment. 

 



 57

Chapter 5 
 
Narrative-Centered Affect 
Recognition 

Recent years have seen a growing recognition of the importance of affective reasoning in 

human-computer interaction.  Foundational work on affect in intelligent tutoring systems has 

yielded advances in affective student modeling (Conati and Mclaren 2005), detecting 

frustration and stress (Burleson and Picard 2004; McQuiggan et al. 2007; Prendinger and 

Ishizuka 2005), gauging student motivation (de Vicente and Pain 2002), and modeling 

students’ levels of self-efficacy (Beal and Lee 2005; McQuiggan and Lester 2006a).  

Complementing these results are efforts to devise affect-based models of social interaction 

for virtual agents focusing on politeness (Johnson and Rizzo 2004; Porayska-Pomsta and 

Pain 2004) and empathy (McQuiggan and Lester 2006b; Paiva et al. 2005), as well as 

techniques for modeling their emotional states (André and Muller 2003; Gratch and Marsella 

2004).  Collectively, this work seeks to increase the effectiveness of user experiences by 

recognizing user affect and supporting more productive and enjoyable affect-informed 

interactions.   

Affect recognition is the task of identifying the emotional state of a user from a variety of 

physical cues, which are produced in response to affective changes in the individual.  These 

include visually observable cues such as body and head posture, facial expressions, and 
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posture, and changes in physiological signals such as heart rate, skin conductivity, 

temperature, and respiration (Frijda 1986).  However, because affect is fundamentally a 

cognitive process in which the user appraises the relationship between herself and her 

environment (Gratch and Marsella 2004; Smith and Lazarus 1990), affect recognition models 

should take into account both physiological and environmental information.  For narrative-

centered learning environments, affect recognition models can leverage knowledge of task 

structure and user goals to effectively reason about users’ affective states.  In particular, for 

narrative-centered learning environments, affect recognition models can use appraisal theory 

(Lazarus 1991) to recognize users’ emotions generated in response to their assessment of 

how their actions and events in the environment relate to their goals.   

To effectively recognize affect states in narrative-centered learning environments, affect 

recognition models should satisfy two key requirements.  First, they should provide accurate 

predictions of users’ affective states.  Incorrectly predicting affective states could jeopardize 

the performance of affect-informed systems, so affect recognition models should correctly 

classify users’ most probable affective states.  As observations of users’ activities become 

available, recognizers should make accurate “early” predictions.  Second, they should be 

highly efficient.  Because users’ affective states can quickly change, particularly when 

interacting in highly dynamic environments, affect recognition models should be realized in 

computational frameworks that address the real-time demands of interactive systems.   

In this chapter, we present an inductive approach to recognizing users’ affective states in 

narrative-centered learning environments by learning affect recognition models.  The models, 

which exploit task structure as well as physiological and environmental information, are 

induced from training data acquired from traces of users performing tasks in rich virtual 

environments.  We report on an empirical evaluation of induced affect recognition models in 

a narrative-centered learning environment in which users solve a science mystery in the 

domain of microbiology.  Experimental results suggest that induced models can accurately 

predict users’ affect states, and they are sufficiently efficient to meet the real-time 

performance requirements of narrative-centered learning environments. 
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The chapter is structured as follows.  First, it provides the inductive approach to affect 

recognition models in Section 1.  Section 2 reports on an evaluation of prediction of six 

affective states.  In section 3, we report the results of prediction of student frustration. 

5.1 Inducing Affect Recognition Models 
Affect recognition work has explored emotion classification from self reports (Beal and Lee 

2005), post-hoc reports (de Vicente and Pain 2002), physiological signals (Conati and 

Mclaren 2005; Picard et al. 2001; Prendinger and Ishizuka 2005), combinations of visual 

cues and physiological signals (Burleson and Picard 2004; Kliensmith et al. 2005), and from 

world state feature representations of temporal, locational and intentional information 

(McQuiggan et al. 2006).  This body of research serves as the springboard for the work 

described in this chapter, which reports on techniques for recognizing users’ affective states 

from both physiological and task structure information.  This work focuses on learning 

models of affect recognition that are grounded in appraisal theory for rich, narrative-centered 

learning environments. 

The family of affect recognition models we explore are founded on appraisal theory 

(Lazarus 1991), which offers a motivational-emotive account of human cognition.  Of 

particular interest here are the notions of appraisal and coping.  Appraisal refers to the 

assessment of one’s relationship with the surrounding environment, taking into account 

constructs such as goals and plans.  Coping refers to one’s manipulation of the environment 

to promote change in this relationship or to maintain it.  Coping outcomes may take the form 

of external actions and behaviors that change the physical environment or internal cognitive 

transformations (e.g., modification of goals or plans) that result in changes in the next 

appraisal.  This continuous cycle of appraisal-coping is clearly evident in narrative-centered 

learning environments where users constantly assess the relationship between their previous, 

current, and planned actions and their goals.  Thus, being able to represent knowledge related 

to actions and goals in the virtual environment should allow computational mechanisms to 

accurately model user appraisal and coping in narrative-centered learning environments.  
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Further, since appraisals often result in internalized affective states, such computational 

mechanisms should contribute directly to affect recognition. 

5.1.1 Training 
Users interacting in narrative-centered learning environments naturally form goals.  In the 

case of some environments such as the test bed environment presented in Section 4.1, goals 

are explicitly given by the environment.  Users perform actions to achieve these goals while 

continually appraising the relationship between their action sequences (past, present and 

future actions) and the goal.  Often these appraisals result in emotional states.  Thus, affect 

recognition models can exploit several sources of information to infer users’ affective states.  

The affect recognition model learner employs an expressive representation of the events 

occurring in the task-oriented environment by monitoring observable attributes pertaining to 

the following, interrelated categories: 

• User Actions:  Affect recognition models can observe users’ actions in the world and 

their relationship to achieving particular goals; affect recognition models also have 

access to auxiliary information about the interactions, e.g., any artifacts manipulated 

such as which objects have been picked up or which doors have been opened, as well as 

the characters with which users have interacted. 

• User Locations:  Affect recognition models have access to a variety of information 

pertaining to the users’ precise location in the environment and the location’s 

relationship to achieving particular goals.  For example, some goals may only be 

achievable in exact locations, while other actions and goal achievements may occur 

anywhere in the environment. 

• Temporal Information:  Affect recognition models can observe the time users’ spend on 

task, the time spent in particular abstract locations (e.g., particular rooms of the 

environment), and the time carrying out particular actions. 

• Task Structure:  Affect recognition models can observe the users’ task progression, i.e., 

whether the user is completing actions that will or will not help achieve certain goals.  

The affect recognition model also has access to knowledge of the explicitly stated goal 
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in the training environment.  At runtime, this knowledge would be acquired through goal 

recognition mechanisms, e.g., (Blaylock and Allen 2003; Mott et al. 2006a).  In the case 

of the CRYSTAL ISLAND narrative-centered learning environment, goals are explicitly 

communicated to users. 

• Physiological Response:  Affect recognition models can observe users’ physiological 

changes in response to events in the environment, such as carrying out an action, goal 

achievement, or interacting with a particular agent in the environment.  Because 

physiological responses are directly triggered by changes in affect, biofeedback data 

streams such as heart rate and galvanic skin response can be useful for inferring user 

affect. 

To address the requirements for affect recognition set forth above (accuracy and efficiency), 

we investigate an inductive approach to generating user affect recognition models. 

5.1.2 Learning 
Many types of affect recognition models can be learned.  Work to date has investigated two 

families: rule-based models (decision trees) and probabilistic models (naïve Bayes).  Naïve 

Bayes and decision tree classifiers are effective machine learning techniques for generating 

preliminary predictive models.  They are efficient mechanisms for embedding into runtime 

environments.  Naïve Bayes classification approaches produce probability tables that can be 

incorporated into runtime systems and used to continually update probabilities for predicting 

user affective states.  Decision trees provide interpretable rules that support runtime decision 

control components.  With both naïve Bayes and decision tree classifiers, runtime control 

components can efficiently monitor the state of observable attributes in the probability tables 

(for naïve Bayes) or rules (for decision trees) to determine when conditions are met for 

predicting particular affective states (e.g., happiness or frustration).  Both naïve Bayes and 

decision tree classification techniques are useful for preliminary predictive model induction 

for large multidimensional data, such as the observational attribute vector used here to induce 

affect recognition models.  Two approaches can be distinguished in learning techniques: 

those that are completely automated, and those that require the knowledge provided by a 
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domain expert.  The experiment reported below focuses on fully automated learning 

approaches.  Model induction proceeds in four phases: 

• Data Construction: Each training log is first translated into a full observational attribute 

vector.  For example, blood volume pulse (BVP) and galvanic skin response (GSR) 

readings were taken nearly 30 times every second reflecting changes in both heart rate 

and skin conductivity.  Attributes observed directly from the environment were 

combined with physiological response attributes and self-reported affective states.  

While self-reporting mechanisms can often be intrusive and obtaining information 

regarding user affect is often difficult and can be unreliable inducing models of self-

reported affect removes the requirement of the self-reporting mechanism in the runtime 

environment. 

• Data Cleansing: First, data are converted into an attribute vector format.  Second, a 

dataset is generated that contains only instances in which the biofeedback equipment 

was able to successfully monitor BVP and GSR throughout the entire learning session.  

For example, data from two sessions had to be removed for this reason: BVP (used for 

monitoring heart rate) readings were difficult to obtain from these participants. 

• Naïve Bayes Classifier and Decision Tree Learning: Once the dataset is prepared, it is 

passed to the learning systems.  The affect data were loaded into the WEKA machine 

learning tool (Witten and Frank 2005), a naïve Bayes classifier and decision tree were 

learned, and tenfold cross-validation analyses were run on the resulting models.  The 

entire dataset was used to generate several types of affect recognition models.  These 

included models that considered different sets of observed attributes (e.g., datasets with 

and without goal knowledge). 
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5.2 Evaluation 
In a formal evaluation, data was gathered from thirty-six subjects.  There were 5 female and 

31 male participants varying in age, race, and marriage status.  Approximately 44% of the 

participants were Asian, 50% were Caucasian, and 6% were of other ethnicities.  

Participants’ average age was 26.0 (SD=5.4). 

After filling out a consent form and demographic survey, participants began training 

sessions by first completing a practice task.  The practice task allowed them to become 

familiar with the keyboard and mouse controls as well as interacting in a 3D virtual 

environment.  Following the practice task, participants were presented a controlled backstory 

for CRYSTAL ISLAND situating them on the island and providing details about their task.  For 

 
Figure 5.1: Self Report Emotion Dialog 
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reference, participants had access to a cast of agents found in the CRYSTAL ISLAND 

environment as well as an overview map.  Participants then interacted with the environment 

to solve the science mystery.  The training testbed provided them with specific goals to focus 

on, guiding them through the solution to the mystery.  Periodically a “self-report emotion 

dialog” box would appear after significant events (talking to characters, testing objects) and 

every 75 seconds in between.  Participants were asked to select the emotion, from a set of six 

emotions (excitement, fear, frustration, happiness, relaxation, and sadness), that was most 

closely related to their own feelings at that particular juncture (Figure 5.1).  This set of 

emotions was chosen to effectively cover the affect space so that most subjects would easily 

be able to relate their feelings during interaction to one of the six affective states.  In addition 

to periodic reports, participants had the ability to trigger the self-report emotion dialog if they 

felt compelled to report a change in their affective state.  This functionality proved to be used 

sparingly.  After solving the science mystery participants completed a post-experiment 

survey before exiting the training session. 

5.2.1 Results 
Both naïve Bayes and decision tree models were induced from data collected in the training 

sessions described above.  Models were evaluated using tenfold cross-validation (Witten and 

Frank 2005).  Table 5-1 below reports the accuracy of naïve Bayes and decision tree affect 

recognition models.  The percentages refer to correctly classified instances.  The highest 

performing model is a decision tree affect recognition model induced from representations of 

user actions, locations, task structure, temporal information and physiological response.  The 

model accuracy is significantly better than a decision tree model induced from 

representations of user actions, locations, task structure and temporal information (likelihood 

ratio, χ2 = 379.247, p < 0.0001*, and Pearson, χ2 = 374.311, p < 0.0001*).   
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Table 5-1: Affect Recognition Classification Results 

 Physiological 
Data Only 

Goals, Actions, 
Locations, 
Temporal 

Information & 
Task Structure 

All Attributes 

Decision Tree 56.39 % 95.39 % 97.42% 

Naïve Bayes 38.48 % 52.18 % 55.79% 

 

Tables 5-2 and 5-3 report the early prediction results of naïve Bayes and decision tree 

affect recognition models.  The decision tree model induced from all attributes converged 

after 12.63% of observations contained in a defined window.  The decision tree model 

induced from representation of user actions, locations, temporal information and task 

structure has 90.18% of the convergence rate and it is not significantly better than the 

decision tree model induced from all attribute (89.20 % of the convergence rate).  Since 

participants choose from a selection of six affective states chance is 16.7%.  An additional 

baseline to consider is selecting the most common affective state, frustration, which appeared 

in 34.4% of self-reported affective states. 

 
Table 5-2: Early Prediction Results for Naïve Bayes 

Naïve Bayes Physiological 
Data Only 

Goals, Actions, 
Locations, 
Temporal 

Information & 
Task Structure 

All Attributes 

Converged 34.66% 50.41% 52.92% 

Convergence Point 59.13% 34.33% 42.45% 

Average 
Observations of 
Converged 

56.04 52.40 53.27 
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Table 5-3: Early Prediction Results for Decision Tree 

Decision Tree Physiological 
Data Only 

Goals, Actions, 
Locations, 
Temporal 

Information & 
Task Structure 

All Attributes 

Converged 46.51% 90.18% 89.20% 

Convergence Point 78.31% 11.92% 12.63% 

Average 
Observations of 
Converged 

52.36 51.84 51.91 

 

Table 5-4 drills down to further analyze the performance of the best affect recognition 

model reporting precision and recall analysis of individual affective states.  Precision refers 

to the percentage of instances correctly classified as particular value of all instances 

classified as the same value.  For instance, more than 97% of the instances recognized as 

“happiness” were actually instances in which the model predicted an affective state of 

“happiness.”  Recall refers to the percentage of instances correctly classified as a particular 

value of all instances recorded to be the same value (e.g., the percentage of instances 

correctly classified as “frustration” that were actually reported as “frustration” in self-reports 

during training sessions.) 

 
Table 5-4: Precision and Recall Analysis for the Decision Tree Affect Recognition Model  

(Induced from Non-physiological Data). 

 Precision Recall 

Excitement 0.963 0.968 

Fear 0.966 0.957 

Frustration 0.977 0.982 

Happiness 0.976 0.963 

Relaxation 0.977 0.977 

Sadness 0.978 0.95 
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The results suggest that an approach affect recognition based on appraisal theory can be 

effective in narrative-centered learning environments, and that representations of user action, 

location, task structure and temporal information can be used to realize it in a computational 

model.  The performance of decision tree models likely stems from an apparently broad and 

deep relationship between self-reported affective states and appraisal factors that were 

explicitly represented in the model.  The affect recognition models reported on here seem to 

be able to capture the relationship between user actions and goals that are assessed during 

users’ appraisal periods. 

The CRYSTAL ISLAND narrative-centered learning environment was specifically designed 

to feature goals with many possible action sequences to achieve the goal.  Particular goals 

were designed to be challenging, i.e., certain artifacts were difficult to find in the 

environment and even when found required problem-solving skills to access the object (e.g., 

having to climb on boxes to reach a book on the top of a high shelf).  A variety of tasks and 

goals ranging from easy to difficult to complete were presented to each participant.  The 

varying degree of difficulty seemed to elicit a wider range of emotions.  Many participants 

began difficult tasks in positive states (e.g., happy, relaxed) and found themselves feeling 

frustrated or sad after spending a significant amount of time on particular goal without 

making progress. 

5.3 Early Prediction of Student Frustration 
Frustration occurs when something or someone impedes a student’s progress towards a 

particular goal.  As an emotional response, frustration is not fundamentally different from 

another negative affective response common to a variety of situations, anxiety.  Anxiety is 

often more than merely an emotional response; it also consists of behavioral, cognitive, and 

physiological responses (Seligman et al. 2001).  However, since our work focuses on 

interactive narrative-centered learning environments (Mott et al. 2006b), where the 

construction and achievement of goals is critical to student learning episodes, we also 

consider frustration.  Both anxiety and frustration can lead students to fixate on the impeding 

source of frustration, diverting attention from, and in some cases causing students to ignore, 
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the task at hand (Goleman 2001).  Anxiety particularly arises when students affectively 

respond to their focus on planning contingencies for potential future events.  Detecting 

situations that will likely lead to student anxiety or frustration that in turn may eventually 

lead to student impasses would allow learning environments to intervene early, i.e., before 

the emotion is fully realized as the student approaches her threshold for the particular 

emotion. 

Several strategies can be employed to identify levels of anxiety and frustration that are 

not detrimental to learning.  Setting realistic expectations based on a student’s abilities and 

observed past performance can contribute to student successes.  Encouragement, and specific 

feedback directed at particular behaviors, not merely global performance assessments, may 

help motivate students and provide them with guidance so that they can improve their self-

assessment and help them cope with frustration and anxiety (Ormrod 2002).  The central 

questions that must be answered are, “How can we detect and monitor anxiety and frustration 

levels so that our learning environments have sufficient time to plan and execute appropriate 

scaffolding?” and, “With what computational mechanisms can we draw inferences about the 

student, the task, and the environment to accurately predict student frustration?” 

5.3.1 Modeling Frustration 
To create models that make accurate predictions of student frustration as early as possible, 

we first collect training data by observing students interacting with an intelligent tutoring 

system.  From this training data, we then induce n-gram models to make early predictions of 

student frustration.  N-gram models are useful for early prediction because they are induced 

from sequences of observations, making predictions with each new observation until they 

arrive at the final observation of the sequence.  In the final observation, concrete evidence of 

student affect (used as the class label) is obtained.  Each prediction from an n-gram model is 

attempting to determine the affective state of the student recorded in this final observation of 

the sequence.  In many cases, n-gram model predictions will converge on the correct 

affective state early in a sequence of observations.  The point at which an n-gram model first 
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begins making the correct prediction and then continues to make a correct prediction for the 

remainder of the sequence is known as the convergence point. 

While sequential models such as n-grams allow us to make early predictions, they are not 

computationally well suited to large multidimensional data.  To address this issue, we 

investigate three non-sequential modeling techniques: naïve Bayes and decision trees. 

5.3.1.1 N-gram models for Early Prediction of Frustration 
Given an observation sequence O1, O2, …, On, the objective of affect recognition is to 

identify the student’s most likely affective state E* (i.e., frustrated or not frustrated) such 

that: 

 

 

where each Oi is an observation encoding the user’s goals, user’s action, the location at 

which action was performed, and physiological responses such as heart rate and galvanic skin 

responses.  The observation sequence O1, O2, …, On, is denoted by O1:n.  Applying Bayes 

rule and the Chain Rule, the equation becomes: 

 

 

 

However, estimating these conditional probabilities is impractical – it would require 

exponentially large training data sets – so we make a Markov assumption that an observation 

Oi depends only on the affective state E and a limited window of the preceding observations. 

We explore two n-gram affect recognition models for detecting student frustration, a 

unigram model and a bigram model.  The unigram model is based on the assumption that, 

given the affective state E, Oi is conditionally independent of all other observations.  Thus, 

the affect recognition formula for the unigram model can be simplified to: 
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The bigram model is based on the assumption that, given the affective state E and the 

preceding observation Oi-1, Oi is conditionally independent of all other observations.  Thus, 

the affect recognition formula for the bigram model can be simplified to: 

 

 

 

The resulting formulae for the unigram and bigram models are very efficient because 

updating the affect prediction for each new observation only requires computing the product 

of the probability returned by the previous prediction and the current conditional probability. 

During training, we estimate P(E), P(Oi|E), and P(Oi,| Oi-1, E) using training data acquired 

with an interactive learning environment as described below.  Because training data is 

necessarily sparse, i.e., we are unlikely to observe all possible combinations of actions, 

locations, goals, and physiological response levels, the unigram and bigram models employ a 

standard smoothing technique (a flattening constant and simple Good-Turing frequency 

estimation (Gale and Sampson 1995) to re-evaluate zero-probability and low-probability n-

grams. 

5.3.1.2 Naïve Bayes and Decision Tree for Modeling Frustration 
Naïve Bayes and decision trees are effective machine learning techniques for generating 

preliminary predictive models.  Bayes classification approaches produce probability tables 

that can be implemented in runtime systems and used to continually update probabilities for 

predicting student affective states, and, in the approach proposed here, for predicting whether 

students are frustrated or not.  Decision trees provide interpretable rules that support runtime 

decision making.  The runtime system monitors the condition of the attributes in the rules to 

determine when conditions are met for diagnosing particular student emotions.   

These classification techniques are particularly useful for inducing models with large 

multidimensional data, such as the data gathered in the user study described below.  Because 

it is unclear precisely which runtime variables are likely to be the most predictive, naïve 

Bayes and decision tree modeling provide useful analyses that can inform more expressive 

machine learning techniques (e.g., Bayesian networks) that also leverage domain experts’ 

 

∏
=

−=
n

i
ii EOOPEPE

1
1 ),|()(maxarg*  



 71

knowledge.  We have used the WEKA machine learning toolkit (Witten and Frank 2005) to 

analyze naive Bayes and decision tree approaches for generating models of student affect to 

predict student frustration as early as possible. 

5.3.2 Results 
Unigram, bigram, naïve Bayes and decision tree affect recognition models for detecting 

student frustration were learned from the datasets collected in the study.  The induced n-gram 

models were tested using a tenfold cross validation.  (As noted above, in each fold, nine 

segments are used for training and one, which is held out of training, is used for testing.)  The 

results of n-gram, the naïve Bayes, and decision tree affect recognition models are presented 

in Table 5-5.  Figure 5.2 shows a bigram convergence graph depicting the amount of data 

(actions) required by the model to converge on the correct affective state and the associated 

probability of that emotion classification.  Note that the bigram model utilizing a flattening 

Number of Observations
 

Figure 5.2: Bigram Convergence Graph 
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constant converged after consuming 6.5% of the records leading up to the student self-

reported affective state (the class label).  In instances where n-gram models converged, the 

models were able to correctly classify whether the student was frustrated, on average, 35 

seconds prior to the self-report.  All induced models are able to predict student affective 

states (i.e., whether students are frustrated or not) early, i.e., long before we receive 

confirmation of the student’s affective state from self-reports. 

 
Table 5-5: Frustration Recognition Evaluation Results 

 Accuracy Converged Convergence 
Point 

Average 
Observations 
of Converged 

Unigram 
(flattening Constant) 

68.5% 39.7% 22.6% 54.3 

Unigram 
(Good Turing) 

73.4% 67.1% 7.1% 51.7 

Bigram 
(flattening Constant) 

73.6% 67.8% 6.5% 51.8 

Bigram 
(Good Turing) 

73.5% 67.2% 6.9% 51.8 

Naïve Bayes 75.7% 75.7% 25.2% 51.3 

Decision Tree 98.5% 93.6% 9.0% 51.2 

  

Below ANOVA statistics are presented for results that are statistically significant.  

Because the tests reported here were performed on discrete data, we report Chi-square test 

statistics (χ2), including both likelihood ratio Chi-square and the Pearson Chi-square values.  

To analyze the performance of induced models we first establish a baseline level.  Because 

six affective states were reduced to a two-class predictive classifier (frustrated vs. not 

frustrated), we consider chance as a baseline measure of performance.  If our baseline model 

were to predict the most frequent classifier (not frustrated, n=3859), then the baseline model 

would correctly predict a student’s frustration state 65% of the time.  Using this model as a 

baseline, we observe that all induced models outperform the baseline model.  The lowest 

performing induced model, a unigram model using a flattening constant accurately predicted 

68.5% of instances correctly in testing.  This performance is statistically significantly better 
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than the baseline (likelihood ratio, χ2 = 16.075, p = 6.089 × 10-5, and Pearson, χ2= 16.067, p 

= 6.1 × 10-5, df = 1).  Thus, the performance of all induced models is a statistically 

significant improvement over the baseline.  

The experiment has two important implications for the design of runtime student 

frustration modeling.  First, by monitoring student physiological response, the student’s 

learning task, and events unfolding in the learning environment, induced models can make 

early, accurate predictions of forthcoming student frustration.  Second, using models that can 

make early predictions of student frustration creates a significant window of opportunity for 

the learning environment to take corrective action; early-prediction models offer an 

improvement over traditional approaches that predict affective states and self-reports on a 

moment-by-moment basis. 
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Chapter 6 
 
Conclusion 

Goal recognition and affect recognition are critical problems in interactive learning 

environments.  Providing intelligent learning environments with the ability to infer students’ 

intent and affect states on a moment-by-moment basis could contribute to their ability to craft 

personalized experiences that are all the more engaging.  With effective goal recognition, 

interactive learning environments might be able to more accurately assess students’ domain 

and task knowledge.  Being able to detect negative affective states early, i.e., before they lead 

students to abandon learning tasks, could permit interactive learning environments sufficient 

time to adequately prepare for, plan, and enact affective tutorial support strategies.  To 

support effective, enjoyable interactions, affect-informed systems must be able to accurately 

and efficiently recognize user affect from available resources.  Following appraisal theory, 

representations of users’ actions and goals enable affect recognition models to consider the 

same relationship that users continually assess in order to predict their affective states. 

This dissertation has introduced an inductive approach to generating goal and affect 

recognition models, which are foundational components of student models in narrative-

centered learning environments.  The induced models can cope with the uncertainty inherent 

in the task and offer the advantage of being automatically acquired rather than being 

manually constructed.  In this approach, goal and affect recognition model-learners observe 
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“training users” in a narrative-centered learning environment in which user actions, locations, 

goals, temporal information, and changes in physiological signals are monitored.  After 

problem-solving traces have been recorded, goal and affect recognition models are induced. 

We have employed several probabilistic frameworks such as n-grams, naïve Bayes, 

Bayesian networks, and decision trees to devise efficient goal and affect recognizers.  In 

order to gather corpora for goal and affect recognition models, we introduced a corpus tool 

that generates goals that are expected to be achieved by training subjects.  To obtain labeled 

corpora for affect recognition, the corpus tool also asks training subjects to select their 

current emotional states.  Conditional probability tables were learned from the corpora.  The 

models were used to predict students’ goals and affective states early and accurately from a 

sequence of observations.   

We conducted empirical studies of the models in the CRYSTAL ISLAND learning 

environment.  Empirical studies of probabilistic goal and affect recognizers suggest that 

probabilistic approaches can accurately perform keyhole user goal recognition and affect 

recognition in a manner that is incrementally converging.  The goal and affect recognizers 

are efficient and address the real-time requirements of interactive systems. 

6.1 Limitations 
Although the induced goal and affect recognition models make accurate early predictions, 

there are several limitations of the models.  First, the presented goal and affect recognizers 

were tested only on corpora from the CRYSTAL ISLAND.  Thus, the recognizers need to be 

evaluated on different corpora or different domains such as dialog systems.  Due to the 

computational and space complexities of Bayesian networks, the Bayesian goal recognizer 

might not be applicable to certain domains.  Second, the current goal recognizers only predict 

top-level goals.  The recognizers might require a long sequence of observations to make an 

accurate prediction, especially when goals are difficult to achieve.  It could be useful to 

predict chains of sub-goals for achieving the hard goal.  Recognizing such sub-goals also 

could provide valuable information about how users are achieving goals.  This can also allow 

the recognizers to predict goals much earlier than they can predict top-level goals.  Third, to 
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avoid zero probabilities, we adopt two smoothing methods (adding a flattening constant and 

simple Good-Turing estimation).  Simple smoothing methods may not be appropriate for 

applications where optimal performance is critical.  Finally, our models assume that all 

variables are observable.  Learning probabilities with hidden variables should be addressed. 

6.2 Future Work 
Several directions for future research appear promising.  First, the goal recognition models 

investigated here are based on the simplifying assumption that the user is pursuing a single 

goal.  Users often pursue more than one goal at the same time, so models accommodating 

multiple simultaneous goals need to be studied.  Second, it will be interesting to develop 

techniques for dynamically relaxing the keyhole requirement.  In some narrative situations, it 

is appropriate for a character to approach the user and ask her what she is doing.  It will be 

important to create techniques for identifying such situations and integrating the resulting 

information into the goal monitoring system.  Third, while goal recognition provides an 

important source of information about the user to narrative-centered learning environments, 

plan recognition would also be beneficial, particularly in domains with large plan spaces. 

Affect recognition offers much promise for narrative-centered learning environments.  

Early detection of negative emotions could play an important role in tutoring.  In the future, it 

will be important to investigate affect recognition models that will enable affect-informed 

systems to inform runtime components of possible undesired user emotions.  Determining 

frustration thresholds may allow learning environments to monitor students’ persistence, 

intervening only when necessary, so that students exhibit affective states that best support 

effective learning.  Evaluating the resulting models as runtime control components in 

narrative-centered learning environments is a critical next step in the investigation of affect-

informed interactivity.  It will also be useful to investigate other probabilistic affect 

recognition models.  For example, there has been limited work in employing Bayesian user 

models for affective reasoning, although a few exploratory projects are underway (Conati 

2002; Conati and Maclaren 2005).  Because of the uncertainty involved, Bayesian affect 

modeling frameworks appear promising. 
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6.3 Concluding Remarks 
We have seen inductive approaches to recognizing student goals and affect for narrative-

centered learning environments.  Accurately recognizing users’ goals and affective states 

could contribute to more productive and enjoyable interactions, particularly for narrative-

centered learning environments.  We believe that it is important to investigate goal and affect 

recognition models that will enable goal and affect informed systems to make “early” 

predictions of user goals and affect, perhaps informing runtime components of possible 

undesired user emotions or sub-optimal paths to the goals.  Early detection would allow 

systems adequate time to prepare for particular goals and affective states or to take action in 

an effort to ward off states such as high levels of frustration. 

This dissertation represents a first step toward goal and affect recognition in narrative-

centered learning environments.  Systematically exploring the space of goal and affect 

recognition modeling techniques will contribute to the design of systems that can create 

increasingly effective and motivating interactive learning experiences. 
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