ABSTRACT

VAN VICKLE, PATRICK STEPHEN. Photonic Band Gap Fibers for Transverse Strain
Sensing. (Under the direction of Dr. Kara J. Peters.)

This research examines the change in bandgap characteristics of Photonic Bandgap (PBG)
fibers under transverse loading for applications such as fabrication and service life
monitoring of composite structures. Photonic Bandgap (PBG) fibers rely on Bragg
reflection conditions in the plane of optical fiber cross-section and therefore offer great
potential as transverse strain sensors which are insensitive to axial loading and temperature

variations.

A numerical study of the effect on the bandgap in PBG fibers under transverse loads is thus
performed in this dissertation. First the fundamental equations for lightwave propagation in
classical step-index fibers, microstrucured holey-fibers and PBG fibers are reviewed. The
behavior of each for sensing purposes is also discussed. The structural deformation and
electromagnetics modeling of a PBG fiber is then performed using the Finite Element
Method (FEM) because this method offers the ability to examine arbitrary fiber
configurations, specifically through deformation where the fiber is no longer circularly

symmetric.

The FEM models were run for both uniaxial crush loads and uniform pressure loads for both
silica and a doped PMMA material targeting strains up to approximately 6% at the boundary
of the fiber. The results showed that degradation of the bandgap occurs with loading and that
axis specific loading information may be obtained in fibers whose material normal and shear
Pockel’s constants differ by approximately 50% or more, although the exact difference
required is not known. In the case of the PMMA uniform pressure load it was determined
that the combination of loading and fiber characteristics may cause the bandgap to switch
modes which may interfere with actual sensor implementation and should be avoided. The
cross-section of the fiber studied was not rotationally symmetric which resulted in non-

symmetric optical output from the uniform pressure case. While fibers of this construction



are likely to not be rotationally symmetric by design, the actual manufacture of the fibers

results in a cross section that more closely approximates this condition.
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CHAPTERI

Introduction

1.1 Motivation

Laminated, fiber-reinforced composites are typically constructed from pre-impregnated
layers of reinforcement and resin. For most resin choices the layers are subjected to high
temperatures and pressures to cure the laminate. For large structural components this
temperature and pressure can vary significantly throughout the laminate during cure.
Therefore, it is important to inspect the quality of fabrication. As the materials of
construction are typically not transparent for visual inspection, embedded sensors must be
placed in the component during cure. The best location for sensor placement is between the
layers of laminate. Also, these sensors can give not only give information about the
fabrication process, but also detect delamination and damage throughout the service life of

the structure.

Typical parameters to be measured include the temperature and pressure distribution in the
laminate during the cure cycle, followed by any residual stresses in individual lamina once
the component has cured and cooled. The residual transverse strain between layers may be
significant and affect the sensor readings (Tao, et. al., 2000, Okabe, et al., 2000). The change
or sudden absence of this transverse strain can also be a good indicator of delamination
leading to premature failure of the component. To detect these parameters a number of strain

sensors have been recently developed.

One type of sensor system, the Smart Layer™, consist of optical and electrical gauges
mounted on a thin polyimide film which can be embedded easily between laminae (Lin and
Chang, 2002). However, this sensor network can only measure the components of strain in
the plane of the film. Photoelastic films can measure pressure applied between layers, but
the laminates would need to be transparent, which typically is not the case (Liggins, et al.,

2002). Fiber optic Bragg grating (FBG) sensors provide a solution that can measure both in



plane and out of plane components of strain and can measure temperature as well. The
multiple strain components are typically separated through birefringence in the optical fiber,
which is created by the out of plane loading on the fiber (Tao, et al., 2000; Okabe, et al.,
2000; Chehura, et al., 2005; Legge, et al., 2006). The axial Bragg grating has also been
specifically adapted to separate the transverse strain component from the in-plane
components (Lawrence et. al, 1999). Figure 1-1 shows one example from the literature in
which FBG sensors were embedded between layers of a cross-ply laminate to detect the

presence of transverse cracking in the layer weakest in the direction of the applied loading.

Figure 1-1: Optical Fiber Embedded in Composite Structure (Okabe, et al., 2000)

A fiber optic Bragg grating consists of a traditional step index single mode fiber which has a
periodic modulation in index of refraction over a short length of the core (see Figure 1-2).
The period of this modulation is written such that the phase matching condition matches a
desired optical wavelength. Lightwaves at this wavelength are reflected back while
lightwaves at other wavelengths are transmitted forward. When the fiber is strained in the
axial direction, the period of the modulation changes, changing the reflected wavelength. By
monitoring this change in reflected wavelength an accurate measurement of the axial strain

can be obtained.
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Figure 1-2: Conceptual Sketch of Axial Strain Bragg Grating Sensor (Brigham Young
University, 2004)

Transverse strain sensing using axial Bragg gratings have been demonstrated experimentally
and show promise for sensing (Lawrence, et al., 1999). However, these fibers have a number
of drawbacks as the Bragg grating must be manufactured in a special class of optical fiber.
Also, since the Bragg grating is written in the axial direction, it is most well suited for
measurement of strain in this direction, and therefore is not optimal for transverse strain

sensing.

Traditional optical fiber and hole assisted fiber guides light by total internal reflection. A
new class of fiber that has recently become commercially available guides light by a Bragg
reflection in the transverse direction. As in axial Bragg gratings these fibers reflect back a
limited spectrum of wavelengths that match the period of index of refraction perturbations.
In the case of the Photonic Bandgap (PBG) fiber the graduations are not along the core of the
fiber, but instead are in the cladding of the fiber surrounding a lower index of refraction core.
The light is reflected back into the core by the Bragg reflection and is confined and guided
along the core of the fiber. PBG fibers rely on precise geometric alignment of the holes
around the core and the index of refraction of the cladding material. The sensitivity of these
fibers to transverse strain due to the change in geometry and the strain-optic effect has not
been studied, but offers a new possible transverse sensing technology which will be explored

in this direction.



1.2 Objectives

The goal of this study is to analyze the bandgap changes in PBG fiber under transverse load.
Analytical methods used to investigate the guiding properties of these fibers will be
discussed and an optimal technique will be chosen. The method will be compared to

benchmark examples of conventional step index single mode fiber and PBG fiber.

The bandgap will be calculated for a benchmark fiber design under strain up to
approximately 6%. The models will be run using both a planar load and a uniform pressure
load. To examine the impact of mechanical and optical properties on the results the models
will be run for both silica and polymethyl methacrylate (PMMA). The relationship between
the geometric change and strain-optic effect for each principal optical axis will be studied.

The mechanical and optical properties critical to sensor performance will be detailed.

1.3 Structure of the Thesis

The first chapter gives the motivation for the research and describes the basic state of the art
for strain sensing using existing techniques. The objectives and scope of the research are
also discussed. The second chapter discusses the fundamental equations, guided mode
solution techniques and a literature review covering sensing applications for three classes of
fibers. First traditional total internal reflection (TIR) fibers are covered, followed by hole
assisted (HA) fibers and finally, Photonic Bandgap (PBG) fibers. Also presented are two
effects, material dispersion and the strain-optic effect, which apply to all three fiber types.

Chapter three presents the finite element method (FEM) solution technique for
electromagnetic models. Verification for a TIR FEM solution will be presented for guided
mode solutions and core confinement against an analytical solution. Also presented will be
verification of the FEM method for guided mode solutions for an undeformed PBG fiber
against published analytical results. A method to define guided modes for PBG fibers will

presented and verified.



Chapter four presents the results of applying the FEM for a published fiber design for silica
and PMMA. Two loading conditions will be applied, first a planar load and second, a
uniform pressure load. For each material and loading case the effect on the bandgap due to

material, optical, and loading will be discussed.

Chapter five discusses the conclusions drawn from the research and presents opportunities

for future research.



CHAPTERIII

Fundamental Equations

2.1 Introduction

Traditional optical fibers rely on total internal reflection (TIR) to propagate lightwaves
without loss over large distances. The mathematical equations describing lightwave
propagation through these fibers are well known and can be simplified to allow for analytical
or semi-analytical solutions of the equations. On the other hand, the complex geometry of
the three-dimensional wave propagation that governs lightwave confinement in and
propagation through Photonic Bandgap (PBG) fibers means that we may not take advantage
of these same assumptions. Therefore, while the fundamental electromagnetic equations are
still valid the simplifying assumptions do not hold. This requires the calculation of the

lightwave propagation properties through numerical solution techniques.

In this chapter the basic TIR fiber is first introduced to familiarize the reader with the concept
of lightwave propagation in an optical fiber waveguide and the properties of guided modes.
The hole assisted (HA) fiber is then discussed as a intermediate fiber type to introduce the
concept of complex valued propagation constants while still maintaining lightwave guiding
through TIR. Finally, propagation through a PBG is introduced which requires the concepts

of both complex valued propagation constants and full three-dimensional wave propagation.

2.2 Index Guided Fibers

A traditional step index optical fiber consists of a core of material with one index of
refraction (n) and a cladding of a second index of refraction (n,) lower than that of the core.
Common fibers used in telecommunications use a core consisting of silica doped with
germanium to increase the index and a cladding of pure silica. The geometry and coordinate
system of the step-index fiber to be analyzed in this section are shown in Figure 2-1. The

region surrounding the fiber can range from air to a non-transparent coating, however the



details of this region do not affect the properties of the guided modes. We can assume an
infinite cladding radius for modes that are well confined in the cross-section. As will be seen

later, the condition that n; > n; must exist for propagation using total internal reflection.

Core

_ Radius: a
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/ .
y \ Cladding
/ \ /_ Radius: b
/ \ Index of Refraction: 7,
.*/ \\
| |
| |
\\ ’/
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\\ } /
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Figure 2-1: Conventional Step Index Fiber

2.2.1 TIR Guided Mode Solutions

The propagation of electromagnetic waves through a transparent medium can be described by
Maxwell’s equations assuming no electromagnetic source or sink. The medium can be
homogenous or heterogenous, for which the index of refraction varies between the
constituents. We write the equations in terms of cylindrical coordinates: », ¢, and z where z

is the direction of propagation,

_oB__, oH

VxE = =— 2.1

ot Hy o (2.1)

VxH :8_D:80n28_E (2.2)
ot ot

V-D=0 (2.3)



V-B=0

(2.4)

where E represents the electric field, B is the magnetic induction, H is the magnetic field

intensity, D is the electric displacement, 1 is the free space magnetic permeability

(47 x107 N/A?), and & is the free space dielectric permittivity (8.8541878176x10™" F/m ).

n is the refractive index distribution within the material which may be a function of the

spatial variables  and 6.

Furthermore, we have the constitutive relationships for the electric displacement B, and

magnetic induction, D,

B=uH

D=c¢E=¢n’E.

(2.5)

(2.6)

The electric and magnetic fields remain orthogonal to one another during propagation. To

simply Maxwell’s equations, we take the curl of equation (2.1),
V(Y E) =ty = (VxH).
t

Now substituting equation (2.2) into (2.7),
, 0’E

0 OE
Vx(VXE)=—pu,— (g0’ — 7

o o ) ==&k

and using the vector identity,
Vx(VxE)=V(V-E)-V’E
gives,
2
E
V(V-E)-V’E =—¢g,un’ aa_zz .

Combining equations (2.3) and (2.5)

V-D=¢gV-(WE)=¢,|Vn’-E+n’V-E|=0,

we can solve for V- E,

V-E=—-—Vn’-E.
n

Substituting this result into (2.10), yields

2.7)

(2.8)

(2.9)

(2.10)

2.11)

(2.12)



1 ’E
V2E+V(?Vn2-Ej—goy0nzaa—2t=0. (2.13)

Similar steps can be applied to the magnetic equations to obtain

1 o’H
V2H+?Vn2 ><(V><1L1)—goyorﬂE =

(2.14)

Within either the core or cladding region of the step-index fiber, the medium is homogenous

and there is no spatial variation in the refraction,

Vn=0. (2.15)
This eliminates the Vn term from equations (2.13) and (2.14) yielding,
2

E
V’E —g,uyn’ 8—2 =0 (2.16)

ot

2 , 0°H
\Y H—EOIUOI’Z EZO (217)

Equations (2.16) and (2.17) are now uncoupled and thus the electric and magnetic equations

can be solved separately.

The solutions to equations (2.16) and (2.17) can be assumed planar waves of the form

E = E(r,§)e " (2.18)

H=H(r,p)e'" ") (2.19)
where @ is the angular frequency and £ is the phase shift per unit distance.
Substituting (2.18) into (2.16) and rearranging yields the scalar wave equation for the electric
field,

OE 10E 1 OF°
L ST
or~ ror r o¢

+| ko’ (r) - B |E=0. (2.20)

where the free space wave number is defined as



)
k=2
C

(2.21)
A similar equation can be derived for the H field, but since these can be solved independently

with the same mode solution we need only consider £. To continue, a separation of variables

is performed since 7 is only a function of , not ¢, for the step-index fiber,

E(r,§)=E.(r)E,(9) . (2.22)
Equation (2.20) then becomes,
P (d*E. VdE.\ 2t 2 2 1 d°E,
ek, Lak ), K- B )= — =41 2.23
E{d rdrj P (ks = B T (2.23)

where in equation (2.23) the RHS is a function of » and the LHS is a function of ¢. Both

sides must thus be equal to a constant, here defined as /. Solving the RHS yields,

E,(¢)=sin(I[¢+,]) (2.24)

Where ¢, is an arbitrary constant. We therefore take ¢ = 0 for simplicity. Similarly, we
can write H ;(¢) = cos(/$) for the magnetic field solution to guarantee orthogonality between
the fields. Rewriting the LHS yields,

, d’E.
295

— +r%+(r2 [nz(r)koz—,é’z]—lz)Er:O 1=0,1,2,. (2.25)
r A

Now we solve equation (2.25) in core of the fiber,

2 2
rzd—lzr+r£+ Uzr—z—l2 E =0 O<r<a (2.26)
dr dr a
with,
U =a(kn’ - ). (2.27)

The solution to equation (2.27) is in terms of the Bessel functions of the first kind J/j,

E.(r)= A4,J,(Ur/ a) (2.28)

where A4 is an arbitrary constant.

Similarly we solve (2.25) in the cladding of the fiber:

10



2
+rdE“—(W2r—+lszr:O r>a (2.29)

with,

W=a(B’ —kin))"”. (2.30)
The solution to equation (2.30) is in terms of the modified Bessel functions of the second
kind K,

E (r)=B,K,(Wr/a) (2.31)

where B is an arbitrary constant.

To apply the conditions at the core-cladding boundary (r=a) we apply the “weakly guided
assumption” (Gloge, 1971). This simplification assumes that the electric field is continuous
at the boundary and is valid if there is not a significant change in index of refraction on either
side, 1.e.

(l’ll _nz)

n

<<l = n=n, (2.32)

First we apply the continuity condition,

r(core) = Er(clad) (233)
to equations (2.28) and (2.31) which yields
B, = 4, 2Y) (2.34)
K,(W)

Second we apply the continuity condition,

d(Er(core) ) _ d(Er(Clﬂd) )
dr dr

and recurrence relations for the Bessel functions to obtain the following relationship for the

(2.35)

propagation constants

U J1+1(U) — W KI+I(W)

, (2.36)
J,(U) K,W)

From this relationship distinct guided modes may be calculated for each value /. These

modes are linearly polarized and are denoted LP;,,. The # values are calculated giving the

11



propagation constants for each guided mode using equation (2.36). An effective index of
refraction for each propagating mode LP;,, may then be calculated using the following

relationship,

ny = kﬁ (2.37)
0

where n,, is the index of refraction of a homogeneous material through which the lightwave
would propagate with the same constant #. For TIR propagation #,, is known to be

between the index of the core and the cladding.

ny <Nz <n. (2.38)

Combining equations (2.28) , (2.31) and (2.18), we find the amplitude of the electric field
throughout the cross-section. The power distribution of this mode is proportional to the

square of the amplitude and can be written as

PJX(Ur/a)cos*(Ip) r<a
P, = o ) / (2.39)
PO[J,(Ur/a)/K,(wr/a)] K} (Wr/a)cos’(lg) r=>a

where Py is the maximum power in the cross-section.

The fundamental mode is the LPy; mode and is the one whose power is the most confined
within the core. This definition will apply to other fiber types later, even though the guiding
mechanisms are different. To generalize these relationships between different step-index

optical fibers they may be expressed in terms of a normalized propagation constant,

2
b= ']foz o (2.40)
ny —n; '
where,
0<b<l (2.41)

for guided modes and a normalized frequency given by,

V = kyax/n® —n? (2.42)
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Using the generalized propagation and frequency values the following plot may be generated
for any step-index fiber. For any value of £, one or more modes may be found in the range
of0<b <1 . The most confined, the fundamental mode, is the LPy; mode and is present for

all values of V.

Figure 2-2: Normalized Wave Number by Normalized Propagation Constant for

Guided Modes for TIR Fibers (Gloge, 1971)

The concepts of multiple propagating modes, unique propagation constants £, and different
power distributions for each mode apply to fibers that rely on other means for lightwave
propagation as well. For another class of fibers, Hole Assisted (HA) fibers, propagation
constants can take on complex values, whereas the cladding is heterogeneous and will be
defined by an effective cladding index. Photonic Band Gap fibers also have complex
propagation constants but the analysis techniques are more involved since the concept of

effective indices may not be applied for solutions.
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2.2.2 Sensing Literature Review — TIR Fiber

Fiber optic strain sensors operating by measuring the change in properties of propagating
lightwaves were primarily designed to measure the component of stain along the axis of the
fiber. The sensitivity of these sensors to this strain component is an order of magnitude
greater than any other component. With the advent of fiber optic Bragg gratings the ability to
make local, stable axial strain measurements was greatly enhanced (Kersey et al., 1992).
Bragg fiber based sensors also offer the advantage of absolute position information,
previously not possible with conventional interferometric techniques. Applied transverse
strains were originally considered to be a source of noise for axial sensors since it creates an
“apparent” axial strain. Fibers designed to be polarization maintaining (PM) were used to
minimize this effect for axial strain measurements. PM fibers (see Figure 2-3 for typical
example) have two preferential, orthogonal axes in the cross-section which divide the
fundamental mode into two orthogonal modes with slightly different propagation constants

B, and B, . The fundamental idea is that both modes have the same sensitivity to axial

strain, but slightly different sensitivity to transverse strain components.

Due to this slight difference in sensitivities, the measurement of transverse strain is more
difficult than axial measurement and an early approach to measure transverse strains used a
Bragg grating sensor in combination with traditional electrical strain gauges at prescribed
angles (Kim et al., 1993). Using the data from these sensors the transverse strain could be
calculated. Later efforts concentrated on characterizing the transverse strain effects on
polarization maintaining fibers containing Bragg gratings (Lawrence et al., 1999). This
approach had the advantage of using only one fiber sensor. The birefringence of the fiber
splits the Bragg spectral response into two spectral peaks. The system response is measured
by monitoring the spectrum around these spectral peaks. This approach can be used to
measure transverse strain for many applications where such measurements were previously

not available, but with significant drawbacks.

As with many other sensors, Bragg PM fibers are temperature sensitive as the thermal

expansion and contraction of the sensor may change the Bragg grating period and the index

14



of refraction is temperature dependant as well. To overcome this limitation a reference fiber
may be used to measure the temperature effect, but this introduces a second sensor into the

system.

Another issue with the PM Bragg fiber approach is due to the nature of the design of PM
fiber. The PM fiber is created by prestressing the fiber cladding to guarantee a
predetermined amount of birefringence. To overcome the PM fiber geometry effect a
calibration of the fiber must be performed and the fiber orientation must be known during

loading for best results are concerns.

g ‘::}_{LI::II[L‘!' cladding
! Y\ slress-; o 18
g SIPESS applying region

—Linner cladding

Figure 2-3: PM Fiber Typical Cross-Section (Lawrence, et al., 1999)

Furthermore, to retrieve axis specific strain information the sensor must be monitored at two
wavelengths, and for best results a spectral scan around both spectral peaks should be done.
This increases the complexity of the test equipment and slows the speed of the measurement.
Finally, as mentioned earlier, the fact than an optical fiber which is not very sensitive to
transverse strain is being used to measure this component adds considerable noise to the
measurements. Each of these concerns can be reduced or eliminated through the use o

microstructured fibers, as will be discussed in the following sections.

2.3 Hole Assisted Fibers

Another class of fibers that rely on TIR are Hole Assisted (HA) fibers. Fibers of this type
still rely on the fundamental relationship of the core index being higher than the cladding
index. However, HA fibers have a series of periodic holes in the cladding that run parallel to

the core.
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A typical fiber of this type from Blaze Photonics is shown in Figure 2-4. The holes introduce
air or another media into the cladding that has the effect of changing the index of refraction
relationship between the core and cladding. For telecommunication applications, air is
typically proposed as the cladding effective index is below that of silica and the mode

confinement is stronger.

The relative index of the core and the effective cladding index is thus outside the limits
defined for use of the weakly guided assumption. While HA fibers are more difficult to
manufacture than conventional TIR optical fibers the hole arrangement around the core need
not be perfectly symmetric since the guiding mechanism is still through total internal

reflection. Therefore the manufacturing difficulty may not be as high as expected.

Figure 2-4: Thor Labs NL-1.5-670-02

2.3.1 Properties of Guided Modes

Similar modeling and solution techniques used for conventional TIR fibers may be used for
HA fibers. The analytical solutions obtained for TIR fibers may be used after the cladding is

homogenized based on an effective index that includes the holes and cladding material index.
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Methods to perform this homogenization and therefore solve for guided modes will be

discussed later in section 2.5.

The propagation constant f for HA fibers have both real and imaginary components

meaning that the modes are “leaky.” The real part of S represents the phase shift per unit

displacement for the guided mode as in the TIR analysis. |Im( ,6’)| is a measure of the power

radiated due to confinement loss as the mode propagates.

The Imaginary part of 3 is relatively small, and in popular analysis it is accepted to ignore
Im(p) and search for the Re(f) in a method similar to TIR fibers using an effective index of

refraction from the composite of the holes and cladding, n_,,, (Koshiba and Saitoh, 2004).

This real part of the index is still governed by the bounds that exist for TIR fibers

n,, <Re(n,)<n,. and similar parameters of dispersion, and mode field diameter transfer

eff

core

from the TIR fibers.

Finally the concept of a guided mode is no longer mathematically rigorous for HA fibers as
all modes are inherently lossy. We still apply the same principals for TIR fibers since these

have been demonstrated to match experimentally measured results (Zolla, et al., 2005).

A key paper by Kuhlmey et al. demonstrated that the numerically calculated values of Re(f)
and Im(f) correspond to their expected physical values (Kuhlmey, et al., 2002a). Previous
authors had claimed that HA fibers were “endlessly singlemode.” However, the Kuhlmey
paper demonstrated that a cutoff wavelength exists for the LP0/ mode above which the mode
is not sufficiently confined to propagate. As the wavelength is decreased the mode becomes
more and more confined (/£ increases). In particular, the magnitude of Im(/) corresponds
inversely to the mode confinement. An important conclusion to draw is that the existence
and labeling of a mode should be based on confinement rather than strictly the values of £.

This distinction will become even more important later on for photonic bandgap fibers.
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2.3.2 Sensing Literature Review — HA Fibers

The application to transverse strain sensing is similar to that for the previous TIR fibers. The
primary benefit is a result of lowering the modulus of the cladding material, allowing larger
deformations and changes to the index of the cladding material at a given load, therefore
increasing the sensitivity to transverse strain. The fundamental challenges associated with
characterizing intensity changes of guided modes due to strain are similar to conventional

TIR fibers.

HA fibers are also more strongly guided and therefore more robust for insertion into
structures for sensing with low intensity losses. Most intriguing are the open cavities in the
structure of the fiber. By flooding the holes in the cladding with fluids a range of new
sensing applications are possible. Fluids may be used that change index of refraction within
the holes. For HA fibers a fraction of the fundamental modal power propagates in the
cladding holes and through whatever fluid resides in them (Monroe et al., 1999). For
example, the fluid may be a gas with unknown pollutants. By analyzing the spectral output

of the fiber the pollutants may thus be characterized.

HA fibers have additional advantages over conventional fibers in that they demonstrate a
greatly reduced temperature sensitivity and can be made highly birefringant through a
number of methods. (Nasilowski, et al. 2003). Fibers of this design with core asymmetry
have been shown to have sensitivity to strain without the temperature sensitivity of
conventional TIR fibers making them good candidates for multiparameter sensors.

(Nasilowski, et al., 2005, Monroe et al., 2001).

2.4 Photonic Band Gap Fibers

PBG fibers propagate light using an entirely different mechanism than TIR. PBG fibers
confine light to the core using a transverse Bragg reflection. Their structure is uniquely
different that the previous two fiber in that the core has a lower index of refraction than the
cladding and the core may be open with light propagating in air (Birks, et al., 1995, Cregan,
et al., 1999). Similar to a longitudinal Bragg grating where the periodic changes to index of
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refraction change axially and when the wavelength matches this pitch it is reflected as seen in

Figure 2-5. A PBG fiber relies on this phenomenon in the transverse direction as seen in

Figure 2-6.
Figure 2-5: Axial Bragg Grating
A \Jf\
TN ey

Figure 2-6: Transverse Bragg PBG Fiber

The concept of the “Bragg Fiber” was first introduced in 1978 (Yeh and Yariv, 1978). Until
relatively recently the challenges of manufacturing a fiber of this design were too difficult to
overcome. Two decades later, with improvement in fabrication techniques, fibers have
started to be manufactured and their properties began to be studied (Knight et al., 1996).
Since this time the properties of PBG fibers have been optimized primarily for
telecommunications applications and only a few designs are commercially available. One of
these fibers from Blaze Photonics is shown in Figure 2-7. In 2005 a polymer PBG fiber was
introduced demonstrating that photonic bandgap transmission can be obtained in other

materials (Argyros et al., 2005).
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Figure 2-7: Crystal Fibre A/S - HC-1550-02

2.4.1 Analytical Solution

The “weakly guided” assumption allowing the previous solution of Maxwell’s equations
presented in section 2.2.1 does not hold and thus scalar solutions to propagation do not exist
for PBG fibers. Full vectorial solutions must be thus obtained. Equation (2.13) may be
written in the following form,

@

vxvxé—( "j5E=0 (2.43)
C

and a simlar equation for the magnetic field may be written,

?x(lmﬁj—(a’"j H=0 (2.44)
& C

Analytical solutions are not readily obtained to these equations. One simplifying assumption

where the fiber is assumed to be a perfectly 3D periodic media may be used. For this case

equation (2.44) reduces to a eigenvalue problem where @, (k) are the eigenvalues,

E= e”;'FEn . » T 1s the position vector, and E'n . must satisfy,
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V+ik |x|(V+ik |xE |—| 2| €¢E=0 2.45
(9i)(9 )< 2] ) 249
These solutions are called Bloch modes. k are called the Bloch wave vectors and represent

the directions and propagation constants at which lightwaves may propagate. In general k
includes both real and imaginary components. The real portion corresponds to the guided
energy and the imaginary portion corresponds to the evanescent energy which exponentially

decays from the boundaries of the fiber. For the previous step-index fiber solution,

|l€| reduces to £, .

w, (IE ) is a continuous function of k indicating that there are a range of wavelengths that
propagate at a given k . PBG fibers transmit light over a range of @, which do not yield

solutions for k in the plane of the cross-section. These @, values are thus confined to

propagate in the axial direction. This results in a core that no longer has a higher index then

the cladding. In fact, the core may be only air. For air core fibers the following bounds

apply,

Re(fB) <1<k, (2.46)

Finally, unlike for the case of HA fibers the magnitude of |Im( ,6’)| may be significant.

Since even solving for Bloch modes is computationally intensive a number of numerical,
alternative modeling techniques have been used to solve for the modes of propagation. The
most popular are the Multipole Method and the Finite Element Method. These methods will

be discussed in more detail later in the chapter.

2.4.2 Sensing Literature Review — PBG Fiber

Manufacturing techniques for PBG fibers are only now being perfected to the point to make
fibers of this design practical. The sensing applications studied to date are all focused on

“evanescent” sensing which involves flooding the holes with a fluid under study and
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measuring the change in index of refraction of the fluid (Monroe et al., 1999). In the PBG
case if the center hole is flooded it technically isn’t necessarily evanescent since the light is

primarily propagating in the medium under study, but the same principles apply.

PBG fibers offer all the advantages of the previous HA fibers including low temperature
sensitivity, inherently stronger guidance allowing more robust deployment and strong PM
properties. Under study in this dissertation is a potential advantage that PBG fibers have
over HA fibers in that they may exhibit birefringence without the necessary multiple core
design. PBG fibers also offer the advantage of guidance through air, dramatically lowering
material losses that have restricted materials such as PMMA from being used in fiber designs

for long length deployments.

2.5 Modeling Techniques

Many techniques have been proposed to solve for the guidance properties of TIR, HA and
PBG fibers (Bjarklev, et al., 2003). The two primary well proven techniques are outlined in
this section, the Multipole Method and the Finite Element Method. The Multipole method is
more analytical in nature and attractive due to its ability to heavily use symmetry and solve
for the complex propagation constants that exist within HA and PBG fibers. Recently the
FEM method has also become very popular with the decreased cost of computing power and
various modifications that allow for solutions to the complex propagation constants as well.
Given proper implementation the methods have been shown to be in very good agreement

(Uranus and Hoekstra, 2004).

2.5.1 Multipole Method

The Multipole method is widely used and well suited to symmetric cross-sections for the
prediction of propagation constants and leakage loss prediction and has been verified against
experimental results (Kuhlmey, et al., 2002b). This method cannot be expanded to non-

symmetric cross sections or arbitrary cladding configurations however. The fundamental
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formulation of the Multipole method assumes that all inclusions are cylindrical. Fourier
expansions of Bessel functions are then formed around each inclusion and the center defect.
In other words, the propagation problem is divided into a series of smaller propagation
problems of each inclusion and boundary conditions imposed between them. The cylindrical
nature of the inclusions are fundamental to both the formation of the basis functions and the
boundary conditions (Zolla, et al., 2005). Manufacturing techniques of these fibers yield
cross-sections that have inclusions that are more hexagonal in nature, but the cylindrical
inclusion model assumption has been shown to give acceptable results as compared to
experimentally measured values. However, when the deformation of the fiber results in
deformations of the inclusions, the method’s reliability would depend on the formation of
new basis function expansions and boundary conditions around each deformed inclusion’s
geometry. While in theory it would be possible to reformulate the functions with enough
information about the deformation, the level of complication would make the method’s use
unrealistic for a study of this kind. Additionally, the computational efficiency of the
Multipole method comes from the fact that the inclusions are periodically arranged, therefore
one does not need to solve all the inclusion problems, but rather just look for periodic
solutions to the general problem. If the applied loading created deformations that were
different between the inclusions, the computational requirements would increase by orders of

magnitude.

2.5.2 Finite Element Method (FEM)

Similar to Bloch’s theorem, the Finite Element Method (FEM) also solves equation (2.43)
by solving an eigenvalue problem, however, it does not rely on the periodicity conditions of
Bloch’s theorem. The FEM has been well tested for electromagnetic wave problems and
may compute a complex propagation constant with the proper boundary conditions, but the
formulation of those boundary conditions may be complex. The major advantage of the
FEM in this research is its ability to work with complex, deformed geometries in solving for

propagation constants.

The goal of this research is to study the changes in confinement versus wavelength for PBG

fibers under various strains. The FEM method is the optimal solution method as it can solve
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for guided modes with few limitations on the fiber geometry. Additionally, the mechanical

deformations of the optical fiber due to the applied loading can be calculated using the same

method. However, the implementation of the FEM for the prediction of propagating modes

in PBG fibers does require some interpretation of the results and new definitions of a

“guided” mode, that are not present in standard electromagnetic wave FEM problems. These

issues will be discussed in the following chapters as the formulation and results are

presented. The details of the FEM method are given in the following chapter and therefore

not presented here. The advantages and disadvantages of each method are summarized in

Table 2-1.

Table 2-1: Summary of methods of PBG fiber characterization

Method

Finite Element

Accurate modal

descriptions

Method Advantages Disadvantages
Suited for symmetric Cannot analyze
geometries arbitrary cladding

Multipole Leakage loss prediction configurations due to

Method Less computational basis function
effort required for a complexity
given model
Reliable (well tested) Complicated
method definition of

boundary conditions
to predict complex
propagation constant
More computational
effort for a given

model
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CHAPTER I

Electromagnetic FEM Modeling

3.1 FEM Fundamentals

The FEM method begins by taking the electric or magnetic wave equation (Jin, 2002),

w(inj—kggrE:o inQ G.1)
H,
A functional is formed,
F(H)= %”{L(VxE)-(VxE)* ~kle,E-E" Q) (3.2)
o L4,

where the asterisk denotes complex conjugate. This equation can be discretized as follows,

EX Ex
[4]y E, =k [B]{ E, (3.3)
—JE. —JE.

This form of the wave equation can then be used to solve Maxwell’s equations for the

propagation constant which is related to the eigenvalue.

The FEM method has little restriction on the geometry, symmetry, defects, or index of
refraction. Boundary conditions available are scattering, impedance and an absorbing
boundary condition, which involves placing a ring of material that absorbs around the outer
boundary of the fiber, called perfectly matched layers (PML). The choice of boundary
conditions used in this study is discussed later in 3.3.1. The Imaginary portion of £ is not
computed without additional anisotropic PML boundary conditions (Saitoh and Koshiba,

2003). pis required to compute the confinement loss in the formulation presented by Saitoh
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and Koshiba, but a different approach to relative confinement loss is developed for this
research. Also, the modes of propagation calculated by this method are mathematically
correct, but may not be valid modes for core propagation. A method of mode selection must

be devised to sort the confined modes from the radiating modes.

3.2 FEM Verification - Index Guided Fibers

The first step in applying the FEM model in this study was to verify its predictions against a
well understood benchmark case. The conventional silica step index fiber was chosen. Most
fibers of this type manufactured support only the fundamental mode, but for analysis one
supporting multiple modes was used. Modes of propagation were calculated using the scalar

wave equations described in Chapter III and compared to solutions from the FEM model.

The test fiber was a benchmark case supplied with the software used for the FEM
implementation in this work, Comsol Multiphysics 3.3a. The fiber has a core index of
n;=1.4457, a cladding index of n,=1.4378. The core diameter of the fiber is 16pm and the

fiber was studied at a wavelength of 1550nm.
Using mode search routines to solve the LHS and RHS of equation (2.36) a plot searching for

the LPyx modes was generated. A typical output is shown in Figure 2-1; obtained values for

first four modes are listed in Table 3-1.
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Figure 3-1: TIR Fiber Mode Searching using Scalar Wave Equations.

A similar search was done for the LP;y and LP,y modes.

The same fiber was then modeled using the FEM method. The modes were searched

starting at n.;=n; and ordered according to the n.yvalues as explained in chapter 2. Multiple

modes of propagation were found. Figure 3-2 illustrates the electric and magnetic

components of the solution to the LPj; mode.
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Figure 3-2: TIR Fiber Electric (Contour Lines) and Magnetic Fields (Surface Color) —

When comparing the solutions to the scalar wave equation and the FEM method excellent

agreement was found for the four supported modes, as listed in Table 3-1.

Table 3-1: TIR Mode Solutions, Scalar Wave and FEM for 4 Supported Modes

LP01 Mode.

Effective Mode Index (n.f)
Mode ; :
oy | P
LPO1 1.4444 1.4444
LPI1 1.4425 1.4425
LP02 1.4393 1.4393
LP21 1.4400 1.4400

It is important to mention that the FEM method found other, non-propagating modes. It was

important to define a technique to classify valid propagating modes from “leaky” modes.
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To quantify the confinement in the core the integral of the Poynting vector is evaluated over
the core region. The Poynting vector § is the cross product of the Electric and Magnetic
fields and represents the energy flux in the propagating direction (Ghatak and Thyagarajan,
1998),

S=ExH. (3.4)

By integrating the flux within the core region and dividing by the overall energy flux a

measure of confinement may be calculated,

[ ]5.]a4
P
C=——tre = S . (3.5)
Pcore +[)clad I Sz dA
Q ore Ltaa

Modes above a set level of C are considered guided while all others are considered “leaky”

and radiated. Visual representation of

SZ

over the mode represented in Figure 3-2 is shown

in Figure 3-3.

Figure 3-3: TIR Fiber Confined Mode Poynting Power - Z Direction
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To confirm that the power produced for each mode matched existing solutions for the step
index fiber a parametric study was performed. The power for each mode as function of

wavelength (and therefore V number) were analyzed and the results plotted in Figure 3-4.
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Figure 3-4: TIR Fiber Mode Power (Ghatak and Thyagarajan, 1998)

For each LP;,, mode the confinement was analytically calculated using the following relations

(Ghatak 8.60),

P - Cm{l I @), (U)} (3.6)
Jr )
})Clad — Cﬂ'az |:Kll (VV2)KI+I (W) _1:| ) (37)
K (")

To facilitate the solution a empirical formula for calculating the normalized propagation

constant was used (Ghatak, 8.42),
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b(V):(A—gj 1.5<V <25 (3.8)

where 4=1.142 and B=0.996.

The confinement of the fundamental mode, the LP,;, was then calculated using FEM and

compared. The results matched well as shown in the following figure.
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Figure 3-5: TIR Fiber Poynting Power Verification — LPy; Mode

Using the approximation for b over the narrow range of /" matched well. The overall trend of

power also matched the published results, as V increases the overall confinement increases.

The FEM model was verified to both find the modes and also to measure their confinement

against known solutions for fibers using traditional TIR propagation. It was now important
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to study these same conditions for PBG fibers where the propagation mechanism is a Bragg

reflection.

3.3 FEM Verification — Photonic Band Gap Fibers

For PBG fibers no analytical solution exists similar to that for the TIR step index fiber. For

verification the comparison must be to other accepted methods of solution. The Multipole

method has been widely established to be accurate against experimental results (Kuhlmey, et

al., 2002b). Using the published results of a given fiber geometry the same FEM

verification was undertaken.

The fiber studied was a two ring, triangular lattice with a pitch (A) of 5.7816um, a center
hole diameter (D, ) of 13.1um, and cladding hole diameter (d) of 4.026um (White, et al.,
2001). The FEM model consisted of 16080 Lagrange quadratic triangular elements. An
impedance boundary condition was used for the reasons discussed earlier in this chapter.
The refractive index of the cladding material as published is 1.39 at A=3428nm; these

parameters were also used for this comparison.
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Figure 3-6: White PBG Fiber Cross-Section.

The published solution for this fiber showed a solution at an effective mode index (n.p) at
0.9808734 +10.4724251x107 at 3428nm. The FEM model implementedin Comsol
Multiphysics 3.3a was thus run using seed mode values at 0.98 based on published solutions

and found a confined mode at n,4=0.98094.

The Poynting power, |S_|, calculated using the Multipole method from the White fiber is

shown in Figure 3-7.

33



0.6
0.5
A (04
/s 0.3
0.2
0.1

-

-20 0 20
Figure 3-7: PBG Fiber Poynting Power (White et al., 2001).

The same computation was done using the FEM method. Its Poynting power is shown in
Figure 3-8. Visually comparing the two plots it is clear that the fundamental mode is present

and well confined to the core of the fiber.

Figure 3-8: FEM modeled BPG fiber from White et al (2001).
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In the case of the FEM solution other modes were calculated as were in the step index TIR
study. Again it was important to classify if the mode was confined. A graphical
representation of the 6 modes found for this example are shown in Figure 3-9 in the range of

ne= 0.975 to 0.985.
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Figure 3-9: Calculated modes for fiber from White et al (2001), Fundamental and
cladding modes.

Calculating C from equation (3.5) the fundamental mode showed greater than 60%
confinement while all others are nearly zero. This can be clearly seen from Figure 3-9,
confined modes looks very similar to the LP;; mode of a step index fiber. Since mode
ordering is not available as in TIR mode finding methods, the core confinement will be used
to classify guided mode solutions from the FEM output. The other modes, either
mathematically spurious modes which do not exist in reality or valid cladding modes that do

not propagate over any appreciable fiber length, were disregarded.
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3.3.1 FEM Electromagnetic Boundary Conditions

The particular boundary conditions used for the Electro-Magnetic FEM are a critical step in
the solution. Studies using the extremes of Perfectly Matched Layers inducing a
electromagnetic absorbing layer physically on the model to the other end of the spectrum,
using transparent boundary conditions have all been successfully implemented. (Berenger,

1994)

For the formulation used for this study with Comsol Multiphysics 3.3a, an “Impedance”
boundary condition was found to be optimal. It is recognized that this is very specific to this
implementation of the FEM code. Using the PML boundary condition a bandgap was
calculated that did not show agreement with the published results of the published fiber,
specifically at the wavelength immediate around 1550nm (Hansen et al., 2004). The
comparison of the bandgap for an undeformed fiber calculated with the PML and Impedance

boundary condition are shown in Figure 3-10.
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Figure 3-10: Comparison in bandgap calculated for PML and Impedance Boundary
Conditions.
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3.4 Response of Optical Fibers to Mechanical Loading

There are further phenomena applicable to materials used for optical guidance that are apply

to all three classes of fibers. These properties are detailed in the following sections.

3.4.1 Strain-optic Effect

As loading is applied to an optical fiber, the propagation constant changes due to two effects:
(1) the geometry of the cross section deforms and (2) the refractive index of optical material
changes due to the strain-optic effect. In particular the study of transverse loads applied to
the fiber must incorporate the resulting material optical orthotropy. In this section we
describe how the strain-optic effect changes material indices of refraction locally within the
waveguide materials. In the following chapter we will describe how this change is

incorporated into the propagation of lightwave modes through the waveguide.

The materials constructing the optical fiber under study in this dissertation are all assumed to
be initially optically isotropic. Consider an infinitesimal element of an initially isotropic
material with an index of refraction ny. The planar wave of equation (2.18) can be divided

into two linearly polarized components for the material.

[ 'z—ﬁn z
E, = E(r.g)Re[ "7 |= E(r.p)Re| e o )} (3.9)

[ 'z—ﬁn z
E,=E(rh)Re[ """ |=E(r.g)Re| " * ”} (3.10)

where n, and n, are the indices of refraction for the planar waves polarized about the
principle optical axes in the p-g plane. These are aligned with the principle strain directions
in the x-y plane (Nye, 1985). These indices of refraction can be calculated from the material

dielectric tensor, B.

1 _ (Bz +B3)i\/(Bz _B3)+4Bj
n 2 '

pP.q

(3.11)
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For the initially isotropic material,

2
B, =B, :(ij (3.12)
ny
and B,=0. Therefore, as expected,
n,=n,=n,. (3.13)

Once strain is applied to the material the dielectric tensor is modified according to,

AB, = p,é, (3.14)

where the summation convention is applied with ¢, =¢,, ¢, =¢, &;=¢., ¢, =¢

xy 2 85:8

yz
and &, =¢&_. Equation (3.14) is known as the linear strain-optic effect. For a material that is

mechanically and optically isotropic the strain-optic tensor may be written in terms of

Pockel’s constants in the following form.

_Pn P P 0 |
P Pu Po 0
P P Pn 0
P~ P
p=| 0 0 0 T 0 0 (3.15)
O O O O pll pl2 O
2
O O O O O pll_pl2
L 2 i

The mechanical, optical, and Pockel’s constant for silica and the polymethylmethacrylate
(PMMA) have been measured and are summarized in Table 3-2. These values will be used

in all later simulations.
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Table 3-2: Summary of Mechanical and Optical Material Properties of fused silica and

PMMA
Silica PMMA
Property
(Crystran LTD, 2007) (Silva-Lopez et al., 2005)
Young’s Modulus (GPa) 7.31 3.3
Density (g/cm’) 2.203 1.2
Poisson’s Ratio (V) 0.16 0.34
P11 0.17 0.3
pi2 0.36 0.297

Substituting equation (3.15) into (3.14) into (3.11) we find the principle index of refraction

solutions for the strained, optically orthotropic material.

n = ! (3.16)

p 1 + —
St pae + PP g PumPe) T
(nsilica) 2 2

(3.17)

1
q 1 (p, +Dp1) (P = Piy) —
O A T Ca e TR

For each element, the updated indices of refraction are calculated from the principal strains
as give in equation (3.16) and (3.17). These indices are then rotated to the global x and y
coordinate system through
n,n
n = = (3.18)
(1, c0s(0))* + (n, sin(6))’

l’lpl’lq

T (1, sin(8))* +(n, cos(6))’

(3.19)
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Where @ is the angle required to rotate the p axis to the x axis (Prabhugoud & Peters,20006).
Individual elements may be rotated off the principal optical axis which will introduce error
into a solution. In the case of the PBG solutions to follow, this effect would present as a
lower overall confinement. In the cases studied for this dissertation the error was not of a
magnitude that affected the search for the fundamental mode, but if a relationship between

optical transmission loss and confinement loss was desired this would require further study.

3.4.2 Material Dispersion

In addition to changes in £ due to wavelength for a particular mode, the index of refraction of
the local optical material itself varies with wavelength, called material dispersion. As this
variation is not the same order as the change in £, we normally neglect this material
dispersion. However, we need to include this effect for PBG fibers since the bandgap covers
a large wavelength range and therefore the material dispersion can be important. Work by
W. Sellmeier in 1871 resulted in an equation for the wavelength dependant dispersion that

bears his name. The three term equation is commonly used is given in equation (3.20)

(Flemming, 1984).

3, BA?
n—1= : (3.20)
Zl A*-C?

The Sellmeier coefficients B and C are experimentally determined for each material. For
silica the following coefficients listed in Table 3-3 were used for this research. The
coefficients for PMMA and PMMA doped with benzyl benzoate (PMMA-BEN) listed in
Table 3-3 were used as the basis to formulate a theoretically doped PMMA based material.
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Table 3-3: Sellmeier Coefficients, Silica, PMMA and PMMA-BEN

Sellmeier Silica PMMA PMMA-BEN
Coefficient (CVI Melles Griot, 2007) (Ishigure, 1996) (Ishigure, 1996)
B 0.6961663 0.4963 0.4855
B 0.4079426 0.6965 0.7555
B; 0.8974794 0.3223 0.4425
C 0.00467914826 0.00515524 0.0010878
G 0.0135120631 0.01378276 0.0013156

Cs 97.9340025 85.322169 2434 .4

For the geometry of the PBG fiber studied in this dissertation the PMMA index of refraction
for the fiber geometry under study was not ideal and produced low confinement. To
optimize the waveguide for PMMA the fiber geometry could be redesigned or the index of

refraction could be shifted using dopants as is commonly performed.

An index of refraction at 1550nm of 1.492 was found to give results suitable for study and
this index may be achieved with dopants such as benzyl benzoate (Ishigure, 1996). The
amount of dopant would vary the change in index over the wavelength range. Figure 3-11
plots the index of refraction for the pure PMMA and the PMMA-BEN using the coefficients
of Table 3-3 for the UV to near infrared spectrum. As can be seen in Figure 3-11, the index
can be approximated as a linear function in the wavelength range of 1530nm to 1570nm. For
the PMMA fiber considered in this dissertation, the PMMA and PMMA-BEN curves were
thus approximated as linear functions in this wavelength range and then extrapolated to
produce at value of 1.492 at 1550nm. The new linear function given in equation (3.21) with
A=-0.0029 and B= 1.496495 was used therefore to account for material dispersion for the
PMMA cases.

n=Al+B (3.21)
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Figure 3-11: Material Dispersion for PMMA and doped PMMA.
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CHAPTER IV

Fiber Analysis

To study the change in bandgap characteristics as a function of applied transverse strain, one
option would be to design a fiber from first principals and optimize its response to transverse
strain. The parameters that dictate PBG fiber performance are the center hole diameter (D),
cladding hole diameter (d), distance between the cladding holes, commonly called pitch (A)
and the number of rings of cladding holes (N,). The relationships between D, d, and A have
been determined for PBG guidance in air (Cregan, et al., 1999; Broeng, et al., 2000). More
than for the other fiber types, the design space for D, d and A to develop a strong
confinement (i.e. > 75%) over a significant bandwidth is extremely limited. Through initial
parameter studies, it was found that varying any of these parameters erased the strong
bandgap before a significant change in the sensitivity to transverse strain occurred.
Additionally, designing an entirely new PBG fiber would not allow for an independent
verification of the FEM results. As few such PBG fibers are available that have been
experimentally characterized, the application of the FEM method to this new PBG fiber
would require validation. Therefore, as the goal of this dissertation is to provide a proof of
concept of the PBG fiber for transverse strain sensing capabilities, it was decided to use an
established fiber design. For this fiber design the mechanical and opto-mechanical properties
were varied to match existing fiber materials. The trends learned from this proof of concept

could then be extended to future or other FBG fibers.

This fiber design of Hansen et al. (2004) for optimal transmission at 1550nm has been
previously analyzed experimentally. Other fiber designs considered, including the White et
al. (2001) fiber analyzed to verify the FEM model in chapter 3, and commercially available
fibers from Crystal Fibre A/S. Of these fibers, the Hansen fiber had the most detailed index
values for verification and relatively easy geometry to implement into a FEM model.
Therefore this fiber was used for both the study of a silica and PMMA based fiber. In the
case of the PMMA fiber the design was not optimal because of the index of refraction

difference between silica and PMMA. The fiber could have been redesigned using the
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guidelines of Cregen et al. (1999) and Broeng et al. (2000) for optimal transmission, however
more information could be gained from the analysis if the fiber geometry is consistent with
that of the silica case. While still not optimal, a shift in index of refraction allowed the same

fiber geometry to be used for analysis (see section 3.4.2.).

The Hansen fiber studied was a four ring (N, =4), triangular lattice with a pitch (A) of 2.5um,
a center hole diameter (D) of 10um, and cladding hole diameter (d) of 1.4pum. This
particular fiber matches the model of Hansen et al. (2004). For computational efficiency the
number of rings of cladding holes was limited to four and a quadrant of the fiber was
modeled as seen in Figure 4-1. The solution was accomplished with 6856 triangular
Lagrange quadratic elements. Reducing the number of cladding holes underestimates the
confinement slightly. As the sensing parameters will be based on minimum confinement

criteria later on, this will be a conservative estimate.
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Figure 4-1: Hansen Fiber using 1/4 Symmetry.
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To facilitate the solution Comsol Multiphysics version 3.3a was uses as a basis for the
mechanical deformation and electromagnetic solution. While the software is capable of
analyzing each loading and particular wavelength individually, it was necessary to examine
solutions over a lightwave spectrum at each loading condition. To accomplish this Comsol
was interfaced with Matlab. This allowed custom code to be written to loop through a range
of loads and calculate the bandgap for each loading condition. A flowchart of the solution

algorithm is shown in Figure 4-2.
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Case Definition
e  Material Properties
e Loading Range, Step
e  Wavelength Range, Step

'

Create Geometry

Loading Loop <

Solve FEM - Structural Mechanics
e Update geometry

e Calculate g, &, &, for each element

Wavelength Loop

Sellmeier Equation

element equation (3.20)

e Update n,,(4), n,(A) for each

+

Strain Optic Condition
update n,, n,, for each element equations (3.18), (3.19)

Solve FEM — Electromagnetic Solve FEM — Electromagnetic
e Use n, distribution, e Use n, distribution,
equations (3.1) — (3.3) equations (3.1) — (3.3)
v A
Poynting Vector Subdomain Poynting Vector Subdomain
Integration — Calculate Confinement Integration — Calculate Confinement
Identify Fundamental Mode Identify Fundamental Mode

Calculate Total Confinement

Figure 4-2: Flowchart of FEM Solution — Structural Mechanics and Electromagnetic.

41.

The first fiber studied was constructed of silica with material properties given in Table 3-2

Silica PBG Fiber

and Table 3-3. The fiber was initially studied to locate the fundamental mode effective index
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for the undeformed fiber. This was thus calculated to be 7.;=0.993294. The mode energy
distribution was well confined with C=0.78. The energy distribution can be seen in Figure
4-3. The propagating wavelength was then varied over a spectral range to evaluate the
bandwidth and center wavelength for the fundamental mode. This was accomplished by a
Matlab script interfaced with Comsol Multiphysics to cycle through the solutions while
varying the free space wavelength and searching for confined modes. For each simulation,
the fundamental mode was identified by the confinement condition outlined in chapter 3.
The fiber shown in Figure 3-2 is not birefringent, therefore only one value of . was found
for each wavelength. The calculated core power confinement at each wavelength is plotted
in Figure 4-4. One can observe that the mode bandwidth is 21nm (based on the two circled
data points) centered around A =1547.5. The obtained confinement was high, ranging from

approximately 68% to 79% in the bandwidth.
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Figure 4-4: Spectral Scan of Silica Hansen Fiber, 1530nm-1570nm.

4.1.1. Mechanical Deformation

The fiber was studied for two loading cases. The first will be referred to as a crush load and
was applied in the y direction. The second loading condition was an uniform pressure load
applied perpendicular to the outer boundary of the optical fiber. In both cases load was
applied until a maximum of approximately a 6% strain was obtained on the outer boundary
of the fiber cross-section. This deformation is approximately the failure limit for pure silica,

however in reality, the processed fiber would fail before this limit.
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For the crush loading case the fiber cross-section was loaded as shown in Figure 4-5. The
applied load was increased in increments of 1e8 Pa. Maximum deformation obtained for
each load value is listed in Table 4-1. The maximum deformations occurred at the top center
of the optical fiber, as denoted in Figure 4-5 by the dashed circle. This strain value
calculated at this same point is also listed in Table 4-1. The deformation of the optical fiber
for each loading case is shown in Figure 4-6. These figures are drawn to scale, therefore one
can see that the holes have been extremely distorted by the final loading case. The effect of

this distribution will appear in the confinement calculations later on.

]
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Figure 4-5: Fiber Crush Mechanical Loading Diagram.
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Table 4-1: Loads, Deformations and Strains for Silica Crush Loading Cases

Load (Pa) Deformation (m) (x,) Strain (g,)
1.00E+08 4.25E-07 1.7%
2.00E+08 8.50E-07 3.4%
3.00E+08 1.28E-06 5.1%
4.00E+08 1.70E-06 6.8%
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1e8Pa Load (1.7% Strain) 2e8Pa Load (3.4% Strain)

Figure 4-6: Deformations of Silica Fiber Crush Loading, Fiber Boundary Strains 0%,
1.7%, 3.4%, 5.1%, and 6.8%.

The strain was monitored at the outer boundary of the fiber since this would be where the
optical fiber sensor is bonded to the external host material. However the internal hole
boundaries in the geometry may have higher strain values than the outer boundary of the
fiber. Therefore, the deformation may surpass the elastic limit of silica for the higher loading
cases. As will be seen in later sections a material with an higher elastic and ultimate strain

limits may be used. Guided mode solutions of geometries with these higher deformation
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cases are useful as a separate study to look for confinement trends, independent of specific

mechanical limits of a material.

Next the fiber was loaded with a uniform pressure load as shown in Figure 4-7. For this
loading case, the load was increased in increments of 5e8 Pa. The deformation and strain
values obtained at the top center of the model, denoted in Figure 4-7 by the dashed circle, are
listed in Table 4-2. The deformation of the optical fiber for the various load cases is shown in

Figure 4-8 once again to scale.
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Figure 4-7: Fiber Uniform Pressure Mechanical Loading Diagram.

Table 4-2: Silica Fiber Pressure Loads, Deformations and Strains

Load (Pa) Deformation (m) (u,) Strain (g,)
5.00E+08 4.00E-07 1.6%
1.00E+09 8.00E-07 3.2%
1.50E+09 1.20E-06 4.8%
2.00E+09 1.60E-06 6.4%
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5e8Pa Load (1.6% Strain) 10e8Pa Load (3.2% Strain)

Figure 4-8: Pressure Loading Silica Fiber Deformations, , Fiber Boundary Strains 0%,
1.6%, 3.2%, 4.8%, and 6.4%.

As with the previous loading case, the holes are extremely distorted for the final loading
case. Similar to the crush loading case the strain at a specific hole within the geometry may
be higher than the elastic limit of silica, however general trends can still be observed. For this
reason the analysis of guided mode solutions is valuable at these higher strain values.

Finally, it is important to observe that although the pressure loading does not vary around the
optical fiber, the fiber geometry itself is not rotationally symmetric, therefore the resulting

deformation is also not rotationally symmetric.
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4.1.2. Results — Crush Loading

Using the crush loading condition detailed in section 4.1.1 each deformed geometry and
modified index of refraction distribution was analyzed for guided modes using a wavelength
step of 1 nm, from 1530nm to 1570nm. A total of twelve solutions were found at each
wavelength step. Using the guidelines detailed in section 3.3 for confinement based selection
of valid guided modes, the fundamental mode was identified from the solution set for each

wavelength and tracked across the spectrum around the bandgap.

At each load level, the bandgap was calculated in four separate manners. To begin, the
change in bandgap at each deformation stage is fundamentally formed by the geometric
pattern of the holes that form the cladding structure. Therefore, to isolate the effects on the
bandgap due to geometry a solution was computed without the strain-optic effect (still
including material dispersion) (Figure 4-9). For standard step-index fibers, the role of
change in geometry is negligible as compared to the strain-optic effect for transverse loading
and is therefore typically not included in fiber optic sensor modeling. Therefore, the purpose
of calculating the geometrical effect separately is to demonstrate that the same assumption
cannot be applied for PBG fibers. The second two cases looked at the index of refraction in
the x and y axes independently incorporating the strain-optic effect in addition to material
dispersion (Figure 4-10 and Figure 4-11). These were obtained using the calculated n, and n,
indices of refraction, since these are the resulting principle axes for the fiber after
deformation. Experimentally these confinements may be obtained by monitoring the two

polarization states independently if desired.

Finally, a fourth case where the bandgap is computed from the combined effect of the x and y
polarization states (Figure 4-12). This output would represent what a single intensity
measurement of the optical fiber output would record over the spectrum. This solution is
computed from the previous n, and n, solutions by adding the power distributions where it is

assumed that the optical input power was split evenly between the optical axes.

Considering only the geometric deformations, one observes that the increasing load results in

a slight increase in bandgap bandwidth for the optical fiber. The more noticeable change is
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that the maximum confinement shifts from the upper wavelength edge of the bandgap to the
lower edge. This demonstrates the importance of looking at the entire bandgap spectrum to
make generalizations, rather than at a single wavelength value. The average confinement
does not decrease significantly until an applied load of 4e8 Pa at which point the upper
wavelengths begin to lose confinement. This was also the load value for which large
deformations had occurred to the holes as seen in Figure 4-6. Similar trends are seen for the
cases including the strain-optic effect seen in Figure 4-10 and Figure 4-12, except where the
bandgap shape begins to reverse for the highest load of Figure 4-11 These plots are not
identical due to the birefringence in the optical fiber after loading. As a final note, the
geometrical changes contribute to the majority of the change in confinement and therefore

are not negligible for PBG fibers.
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Figure 4-9: Silica Crush Load Spectral Confinement due to Geometric Deformation,
Fiber Boundary Strains 0%, 1.7%, 3.4%, 5.1%, and 6.8%.
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Figure 4-10: Silica Crush Load Spectral Confinement n, Strain-optic Effect, Fiber
Boundary Strains 0%, 1.7%, 3.4%, 5.1%, and 6.8%.
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Figure 4-11: Silica Crush Load Spectral Confinement n, Strain-optic Effect, Fiber
Boundary Strains 0%, 1.7%, 3.4%, 5.1%, and 6.8%.
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Figure 4-12: Silica Crush Load Spectral Confinement Combined Strain-optic Effect,
Fiber Boundary Strains 0%, 1.7%, 3.4%, 5.1%, and 6.8%.

Figure 4-13 examines the highest loading case and plots the bandgap change for the x and y
directions to highlight the birefringence. This property is particularly avoided in most
applications for optical fiber, but in sensing this may give information about the state of
loading. By monitoring the intensity of each polarization state at a particular wavelength the

information about the strain on each axis may be obtained.
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Figure 4-13: 4e8Pa Crush Load, 6.8% Strain, Silica Fiber with n, and n, Indices of
Refraction.
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Figure 4-14: Silica Fiber 1540nm Index of Refraction Change with Crush Load,
Boundary Strains 0%, 1.7%, 3.4%, 5.1%, and 6.8%.
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4.1.3. Results — Pressure Loading

Using the uniform pressure loading condition detailed in section 4.1.1 and modified index of
refraction distribution the fiber was analyzed for guided modes. The steps, as in the crush
case, were Inm from 1530nm to 1570nm. A total of twelve modes were found at each
wavelength in each of four cases. The bandgap was determined solely due to geometry (still
including material dispersion), on each principal axis using the index of refraction, n, and n,,
and finally the bandgap was calculated for the combined confinement from both axes. The

details of mode selection and confinement calculations are detailed in section 4.1.2.
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Figure 4-15: Silica Pressure Load Spectral Confinement due to Geometric Deformation,
Fiber Boundary Strains 0%, 1.6%, 3.2%, 4.8%, and 6.4%.
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Figure 4-16: Silica Pressure Load Spectral Confinement n, Strain-optic Effect, Fiber
Boundary Strains 0%, 1.6%, 3.2%, 4.8%, and 6.4%.
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Figure 4-17: Silica Pressure Load Spectral Confinement n, Strain-optic Effect, Fiber
Boundary Strains 0%, 1.6%, 3.2%, 4.8%, and 6.4%.
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Figure 4-18: Silica Pressure Load Spectral Confinement Combined Strain-optic Effect,
Fiber Boundary Strains 0%, 1.6%, 3.2%, 4.8%, and 6.4%.

Figure 4-15 suggests that only using the geometric deformation for modeling the effects of
loading is not accurate. The trends in this plot do not correspond with the following plots
taking into account the strain-optic effect. This differs from the output from the silica cases
where the geometric effect was similar to the cases with the strain-optic effect. Intuition
predicts that the results from the x and y axis polarization studies represented in Figure 4-16
and Figure 4-17 would be identical for this loading condition. For this particular fiber
design however the fiber geometry is not rotationally symmetric. This causes the results to

differ on each axis.

The index of refraction on each axis is generated from the x, y, and shear strains as given by

equations (3.16) and (3.17). Figure 4-19 illustrates the difference between the strain on the x

and y axis.
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Figure 4-19: Silica Fiber 20e8 Pa Pressure Loading - &- &,

The results for the highest loading case 20e8 Pa is shown in Figure 4-20. It is clear that the

results from examining the x and y polarizations are not identical.

62



0.9-

0.8-

Confinement (%)

No Load
No Strain Optic

O [ [ [ [ [ [ [ |
1530 1535 1540 1545 1550 1555 1560 1565 1570
Wavwelength (nm)

Figure 4-20: 20e8Pa Pressure Load Silica — No Strain Optic, n, and n, Indices of
Refraction.

Figure 4-21 examines the change in confinement with loading at 1552nm. This wavelength
was chosen due to the best resolution across loading ranges for both polarizations. This
information combined with the results from the silica crush loading case demonstrates that

with proper calibration a sensor may be used to determine load axis information.
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Figure 4-21: Silica Fiber 1540nm Index of Refraction Change with Pressure Load,
Fiber Boundary Strains 0%, 1.6%, 3.2%, 4.8%, and 6.4%.

4.2. Polymer PBG Fiber

The loads required to generate measurable strain in the silica fiber may be higher than
desired for some applications. With this in mind the Hansen fiber design was also studied for
the polymer PMMA with a lower modulus of elasticity an index of refraction of 1.492. The
spectral response for the undeformed fiber was computed and as seen from this plot this fiber
design may not be optimal for this index of refraction, but for this study the band gap is

sufficient to study the trends discovered studying the silica fiber.
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Figure 4-22: No Load Spectral Response of PMMA-Theoretical Hansen Fiber, 1530nm
—1570nm.

4.2.1. Mechanical Deformation

Strains up to 5.8% were studied for the PMMA fibers under crush load. The loads were
adjusted to account for the lower material modulus to achieve these results. The overall
maximum strains in the crush and the pressure cases for PMMA is slightly lower than for the
silica cases, but this was purely an artifact of the loading steps used. As mentioned earlier
the ultimate strain of PMMA is much higher than that of silica and may be deformed much
further. For comparison all strain values were kept approximately 6%. The details of the
mechanical loading were described in section 4.1.1. Table 4-3 lists the deformations and
strains for the crush loading starting with a loading 1e07 Pa in steps of 2e8 Pa. For the
uniform pressure loading of the PMMA fibers a strain up to 5.9% was studied. The loading
ranged from 2e7 Pa in steps of 2e7 Pa. Table 4-4 lists the deformations and strains for the

uniform pressure loading condition.
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Table 4-3: PMMA-Theoretical Crush Loads, Deformations and Strains

Load (Pa) Deformation (m) (u,) Strain (g,)
1.00E+07 9.09E-07 3.6%
1.20E+07 1.09E-06 4.4%
1.40E+07 1.27E-06 5.1%
1.60E+07 1.45E-06 5.8%

Table 4-4: PMMA-Theoretical Pressure Loads, Deformations and Strains

Load (Pa) Deformation (m) (u,) Strain (g,)
2.00E+07 2.97E-07 1.2%
4.00E+07 5.94E-07 2.4%
6.00E+07 8.90E-07 3.6%
8.00E+07 1.19E-06 4.7%
1.00E+08 1.48E-06 5.9%

4.2.2. Results — Crush Loading

Using the crush loading condition detailed in section 4.2.1 each deformed geometry and
modified index of refraction distribution was analyzed using the parameters and techniques
detailed in section 4.1.2 for geometric deformation alone, using n, and #,, and finally the

combined index of refraction.
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Figure 4-23: PMMA-Theoretical Crush Load Spectral Confinement due to Geometric
Deformation, Fiber Boundary Strains 0%, 3.6%, 4.4%, 5.1%, and 5.8%.
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Figure 4-24: PMMA-Theoretical Crush Load Spectral Confinement », Strain-optic
Effect, Fiber Boundary Strains 0%, 3.6%, 4.4%, 5.1%, and 5.8%.
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Figure 4-25: PMMA-Theoretical Crush Load Spectral Confinement n, Strain-optic
Effect, Fiber Boundary Strains 0%, 3.6%, 4.4%, 5.1%, and 5.8%.
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Figure 4-26: PMMA-Theoretical Crush Load Spectral Confinement Combined Strain-
optic Effect, Fiber Boundary Strains 0%, 3.6%, 4.4%, 5.1%, and 5.8%.
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The output of this case demonstrates the effect of the Pockel’s constants on the analysis.
Displayed in Figure 4-24 and Figure 4-25 are indistinguishable bandgap characteristics. This
was due to the p;; and p;> of PMMA being very similar, 0.3 and 0.297 respectively. In
looking at the highest level of loading, 1.6e7 Pa for the difference between n, and n,, it can be
seen from Figure 4-27 that the birefringence is very small even at the larges load level as
expected from equations (3.16) and (3.17). The PMMA-Theoretical material under the 5.8%
strain loading condition resulted in a maximum birefringence of 8.2e-4. By comparison the
silica crush case under a 6.8% strain loading condition resulted in a birefringence two order
of magnitudes higher at 6.6e-2. The very low birefringence in the case of PMMA-
Theoretical makes birefringence information difficult to obtain.
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Figure 4-27: Birefringence at 1.6e7 Pa Loading, 1550nm.
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A pure intensity measurement which would result from the combined strain-optic effect may
give meaningful results. Figure 4-28 illustrates the change in confinement over the load
range studied at 1550nm and shows promising results. If the Pockel’s constants were
adjusted through doping of the material then individual loading information from n, and n,

may be obtained as well.
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Figure 4-28: PMMA-Theoretical Crush Confinement Versus Loading, 1550nm, Fiber
Boundary Strains 0%, 3.6%, 4.4%, 5.1%, and 5.8%

4.2.3. Results — Pressure Loading

Using the crush loading condition detailed in section 4.2.1 each deformed geometry and
modified index of refraction distribution was analyzed using the parameters and techniques
detailed in section 4.1.3 for geometric deformation alone, using n, and #,, and finally the

combined confinement resulting from both axes.
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Figure 4-30: PMMA-Theoretical Pressure Load Spectral Confinement n, Strain-optic

Effect, Fiber Boundary Strains 0%, 1.2%, 2.4%, 3.6%, 4.7%, and 5.9%.
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Figure 4-31: PMMA-Theoretical Pressure Load Spectral Confinement n, Strain-optic

Effect, Fiber Boundary Strains 0%, 1.2%, 2.4%, 3.6%, 4.7%, and 5.9%.
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Figure 4-32: PMMA-Theoretical Pressure Load Spectral Confinement Combined

Strain-optic Effect, Fiber Boundary Strains 0%, 1.2%, 2.4%, 3.6%, 4.7%, and 5.9%.
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The earlier cases each demonstrated the importance of the strain-optic effect, but this case
presents in greater detail the importance of this effect relative to the geometry change. The
difference in response given in Figure 4-29 is in stark contrast to that in Figure 4-30, Figure
4-31, and Figure 4-32. Similar to the result from the PMMA crush case taking into account
geometric deformation only (Figure 4-15) this demonstrates the importance of the Pockel’s
constants. Figure 4-29 and Figure 4-31 also reinforce the need for differing Pockel’s

constants to attain axis specific information.

A new finding came from the behavior of the bandgap through the load range after the 4e7
Pa loading condition. The confinement lowered as expected to this point, but for higher
loadings the bandgap regained confinement and appeared to have shifted. To investigate,
the individual Poynting power was examined at all modes for 1550nm at the 6e7 Pa loading

condition.

What was discovered was that the combination of the geometry change and index of
refraction change caused the power to shift to two guided modes. Shown in Figure 4-33 and
Figure 4-34 is the Poynting power for two modes. With lower loads than 6e7 Pa there had
only been one mode present. The confinement of what was the originally the fundamental
mode had dropped to 10% and is represented in Figure 4-33, while the new mode formed

represented in Figure 4-34 had a confinement of 68%.

This presents a new challenge in that the method of mode selection had relied on the fact that
only one guided mode was present. If however two or more guided modes were present then
the measured intensity would be the sum of all guided modes in an actual fiber from source
to detector. It is the case in traditional TIR optical fiber that modes with a large portion of
their power in the cladding tend to disperse after a short length of fiber, sometimes only a
few meters, leaving only the fundamental mode. The guidance mechanism is the Bragg
reflection for PBG fibers and not TIR and it is unknown if modes such as represented in

Figure 4-33 would disperse or stay confined.
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In either case, both modes arriving and summing or a single fundamental mode arriving
would each present new challenges both in modeling and in actual detector construction. It is

recommended that the design parameters and loading range set such to avoid this condition.
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Figure 4-33: Poynting Power of PMMA-Theoretical at 6e7Pa Pressure Loading (7.
mode 0.993225 at 1550nm).
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Figure 4-34: Poynting Power of PMMA-Theoretical at 6e7Pa Pressure Loading (n.
mode 0.991934 at 1550nm).

4.3. Summary

The study of both crush loads and uniform pressure loads on materials with different
mechanical and optical characteristics were studied using loads that approached 6%. Each
case yielded new insight into important guidelines that should be considered in the design of

a sensor for transverse load sensing.

The study of the silica fiber in crush loading showed that useful information may be obtained
from the confinement of each polarization state of light in the fiber. At higher strain values
however the bandgap degraded and would require complex calibration to determine loading.

This will require the optimization of optical properties of the fiber for the strain range sensed.

The silica uniform pressure case showed the impact of the absence of rotational symmetry of

the fiber. Under uniform pressure load the response of the sensor was not equal through each
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axis This may be used to an advantage if the proper calibrations were performed, but this

must be taken into account.

The PMMA-Theoretical crush loading case demonstrated the importance of the Pockel’s
constants and the strain-optic effect in determining a guided mode solution. The extent of the
importance of the strain-optic effect relative to geometric deformation was not known at the
onset of this research. It was discovered that the strain-optic effect plays a large role in
determining the sensor response and it is recommended that the normal and shear Pockel’s
constants should differ by approximately 50% or more as was the case with silica to obtain
axis specific loading information. This appeared to be of a higher order effect than the

cladding hole geometry deformation alone.

Finally the PMMA-Theoretical uniform pressure load case confirmed the importance of the
strain-optic effect and Pockel’s constants, but introduced a possible hindrance to sensor
response. If the loading conditions and optical properties of the sensor are not carefully
chosen then multiple guided modes may be present. This causes difficulty in modeling and

in implementation of the sensor.
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CHAPTER YV

Conclusions and Recommendations for Future Work

In summary, sensing technologies exist to measure transverse strain, but each has drawbacks
that may be avoided with a new class of optical fiber. The focus of this research was to
determine if the new class of optical fiber with guidance through the Bragg reflection
resulting in a photonic bandgap effect exhibited desirable properties for transverse strain
sensing. For the study of deformation and its impact on guidance the FEM method was

chosen since established analytic methods were not suited to arbitrary geometry changes.

The FEM method was verified for a published fiber design against known solutions using
established methods. The FEM method was then applied to both silica and a theoretically
doped PMMA fiber in both a crush and uniform pressure loading conditions using loads that

would approach 6% deformation on the boundary of the fiber.

The result of the each modeling case yielded insight into the design of PBG fibers both from
a geometry and material standpoint. The silica fibers exhibited advantages from optical
properties while the PMMA material’s lower modulus and yield strains would allow for

measuring lower loads through a larger strain regime.

Common to both designs was the realization that the geometry of the holes constructing the
cladding play a role in the sensor response. This effect was shown through the strains that
ultimately affected the index of refraction through the strain-optic effect than the effect from

cladding hole geometry deformation.

Finally it was determined that in a circumstance where the optical, mechanical and loading
conditions are in certain proportion a undesired effect of mode shifting can occur. While this
phenomena caused difficulty in modeling it is unknown to what extent it would effect actual

sensor implementation.

77



The current study was performed on a theoretical fiber that was suited for study with the
FEM. The currently manufactured PBG fibers often have more rings, indicating higher
confinement, and a cross section that more closely approaches rotationally symmetric. While
these fibers have been designed specifically for telecommunications applications they may
hold promise for transverse sensors. It would be of value to experimentally determine if the

currently available fibers are candidates for current sensing applications.

In addition to investigating silica base PBG fibers, while not currently commercially
available, a PBG PMMA air-core based fiber would also have value in that the transmission
loss should be much lower than a solid core design. This would allow these fibers to be used
in longer lengths in addition to their lower modulus and higher yield strains than those of
silica based fiber. If birefringence information is desired it would require investigation into
manufacturing the fibers with a relative Pockel’s constant difference of 50% or greater.
Designs with non-circular core structures have been shown to show birefringence and this
may compensate for the lack of difference in the strain-optic characteristics as well (Saitoh
and Koshiba, 2002). Modeling this type of fiber would be of value in that it may succeed in
achieving a design of a sensor that has the very desirable characteristics of low optical loss,
high strain tolerance, multi-axis sensitivity and may be interrogated with single wavelength
measurements. In addition PMMA fibers may be manufactured using an extrusion process
rather than a preform-drawing process as in silica fiber. This gives both more flexibility in

fiber construction and may allow for lower cost, longer length sensing fiber.
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Appendix A

TIR Fiber Guided Mode Solution (Matlab Code)

Patrick Van Vickle

Program to solve for modes in step index fiber - Design parameters
used are from Comsol reference fiber for verification.

Code also calculates the theoretical confinement of the fundamental
mode using equation 8.60 from Ghatak reference.

o° o° o oe

o\

clear;

clc;

nl=1.4457; % Index of Core
n2=1.4378; % Index of Cladding

lambda=1550e-9;
k= (2*pi)/lambda;
a=8E-6;

1=0;

o\

Free space wavelength

Wave number

Core radius

Mode number (set my looking at V number and p)

o oe

o\

V=((2*pi*a)/lambda)* (n1"2-n2"2)"(1/2); % Normalized Frequency

sols count=1; % Initialize counter
beta=n2*k: (nl-n2) *k/1000:nl*k; % Set beta scan range and resolution

for g=l:size(beta,?2)
p=a* (nl"2*k"2-(beta(q))~2)"(1/2);
gamma=a* ( (beta(q)) "2-n2"2*k"2)"~(1/2);
lhs (g) =p*besselj (1+1,p) /besselj (1,p):;
rhs (q) =gamma*besselk (1+1,gamma) /besselk (1, gamma) ;
sols (g)=1lhs (q) -rhs(q) ;

if (g>1)
if((sign(real (sols(g-1))) ~=
sign(real (sols(qg)))) & (abs(sols(g)<.1l)))
sols found(sols count)=(beta(q));
beta number (sols count)=g;
sols count=sols count+1l;
end
end

end

% Convert to Neff from Beta
for x=l:size(sols found, 2)

neff (x)=lambda*sols found(x)/ (2*pi);
end

% Start all the plotting
format long;
hold on;

$Plot it all



for h=l:size(a,?2)

%$If plotting V is desired
%plot (beta, lhs(h,:),'-"',beta,rhs(h,:),"'-=-");

%$If plotting neff is desired
plot (beta/k,lhs (h,:)/k, '-"'",beta/k,rhs(h,:)/k,'-=");
axis ([n2 nl -1E-5 1E-5]1);

$If plotting by neff, change if plotting by V
xlabel ('Effective Index (neff)');

legend ('LHS', 'RHS');

title(['Core Radius: ',num2str(a(l,h)),..

'um Searching for LP',num2str(l),'X mode(s)']);

$Plot the found solutions
for h=l:size(neff, 2)

plot (neff (h),rhs(1l,beta number(h))/k,'o");

text (neff (h),rhs(1,beta number (h))/k+0.2E-5,num2str (neff (h)));
end

%$Display data on plot

text
end

text (n2+0.0005,0.9E-5, ["'nl= ',num2str(nl)]);

text (n2+0.0005,0.8E-5, ['n2= ',num2str (n2)]);

text (n2+0.0005,0.7E-5, ['lambda= ', num2str (lambda)]) ;
( [

n2+0.0005,0.6E-5, ['V= ', num2str(V)]);

sols found' %Output betas to Matlab
neff' $Output neffs to Matlab
hold off;

%Calculate Power in Core (Ghatak Eqg. 8.60)
for h=l:size(neff, 2)

U=a* (k"2*nl"2-sols found(h)"2)"(1/2);
W=a* (sols found(h)"2-k"2*n2"2)"(1/2);

Pcore=pi*a”2* (1-((besselj (1-1,U) *bessel]j (1+1,U))/ (besselj (1,U))"2));
Pclad=pi*a”2* (( (besselk (1-1,W) *besselk (1+1,W))/ (besselk (1l,W))"2)-1);
v (h)=Pclad/ (Pcore+Pclad) ;

end



Appendix B

PBG Fiber Guided Mode Solution (Matlab/Comsol Code)

% COMSOL Multiphysics Model M-file
% Generated by COMSOL 3.3a
$)

flclear fem

fid = fopen ('output power file.csv','wt');
fid2 = fopen('output mode file.csv','wt');
loading=0;

%load span=[0e8:1e8:5e8]; %Silica
load span=[0e7:2e7:10e7]; SPMMA
%load span=[0];

for kk=l:size(load span,2)

%Loading
loading=load span (kk);
%Optical Scan Properties
eigs=12;

start wave=1530e-9;

step wave=le-9;

stop wave=1570e-9;

%$Material Properties - Silica
mat mod set=73.1e9;

mat nu set=0.17;

mat den set=2203;

mat index=1.44462;

mat pll set=0.17;

mat pl2 set=0.36;

$Material Properties - PMMA
smat mod set=3.1e9;

smat nu set=0.34;

smat den set=1200;

$mat index=1.492;

smat pll set=0.3;

smat pl2 set=0.297;

% COMSOL version
clear vrsn

vrsn.name = 'COMSOL 3.3';

vrsn.ext = 'a';

vrsn.major = 0;

vrsn.build = 511;

vrsn.rcs = 'SName: $';

vrsn.date = '$Date: 2007/02/02 19:05:58 $';
fem.version = vrsn;

(COMSOL 3.3.0.511,

S$Dhate:

2007/02/02 19:05:58
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% Geometry Information Located Here
% Loaded from separate file, not included in looping code presented here

% Constants

fem.const = {'load', loading,
'pll',mat pll set,
'pl2',mat pl2 set,
'BB1','0.4963",
'BB2','0.6965",
'BB3','0.3223",
'ccl','5.1552E-03",
'ccz2','1.3783E-02",
'CC3','8.5322E+01"};

% Initialize mesh
fem.mesh=meshinit (fem,
'hauto',5);

Q

% (Default values are not included)
% Application mode 1

clear appl

appl.mode.class = 'FlPlaneStrain';
appl.sdim = {'X','Y','Z"};
appl.gporder = 4;

appl.cporder = 2;
appl.assignsuffix = ' pn';

clear prop

prop.frame='ref';

clear weakconstr

weakconstr.value = 'off';
weakconstr.dim = {'1Im2', 'Im3'};
prop.weakconstr = weakconstr;
appl.prop = prop;

clear bnd

bnd.Hy = {0,0,1,0};

bnd.Hx = {0,1,0,0};

% Pressure Loading Equations
bnd.Fx = {0,0,0,'-load*cos (atan2(Y,X))"'};
bnd.Fy = {0,0,0,'-load*sin(atan2(Y,X))"};

bnd.ind = [1,1,2,1,2,2,1,2,3,1,3,1,3,1,3,1,3,1,1,1,14,1,1,1,1,1,1,1,1,
i,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

11,111,1,%,1,1,1,%,1,1,1,3,1,1,1,1,1,1,1,1,1%,1,1,1,1%,1,1,1,1%,1,1,1,



1,1,1,1,1,1,1,1,1,1,13,1,1,1,13,1,1,1,1,1,1,1,1,1,1,1,1];
appl.bnd = bnd;
clear equ
equ.nu = {0.33,0.34};
equ.E = {2.0ell,'3.1e9[Pa]'};
equ.rho = {7850,'1200[kg/m"3]"'};
equ.usage = {0,1};
equ.ind = [1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,21,2,2,2,2,2,1,1,1,1,

1,11;
appl.equ = equ;
fem.appl{1l} = appl;

% Application mode 2

clear appl

appl.mode.class = 'MovingMesh';
appl.sdim = {'Xm', 'Ym', 'Zm'};
appl.gporder = 4;

appl.cporder = 2;
appl.assignsuffix = ' ale';

clear prop

prop.allowremesh="'on';

prop.origrefframe="'ref';

clear weakconstr

weakconstr.value = 'off';

weakconstr.dim = {'1Im4', 'Im5'};

prop.weakconstr = weakconstr;

appl.prop = prop;

clear bnd

bnd.defflag = {{0;0},{1;1},{1;0},{0;1}};
bnd.deform = {{0;0},{'u';"'v"'},{0;'v"},{'u';0}};
bnd.ind = [3,4,1,3,3,1,3,1,1,4,1,4,1,4,1,4,1,2,2,2,2,1,2,2,2,2,2,2,2,2,

2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,

2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2];
appl.bnd = bnd;
clear equ
equ.physexpr = {{0;0},{'u';'v'}};
equ.type = {'free', 'phys'};
equ.ind = [1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,11;
appl.equ = equ;
fem.appl{2} = appl;

% Application mode 3

clear appl

appl.mode.class = 'PerpendicularWaves';
appl.module = 'RF';

appl.gporder = 4;

appl.cporder = 2;

appl.assignsuffix = ' rfwv';

clear prop
prop.inputvar="'lambda';

&9



appl.prop = prop;

clear bnd

bnd.type = {'EO','HO', 'cont"', "IM'};

bnd.ind = [1,2,1,1,3,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,4,3,3,3,3,3,3,3,3,

3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,

3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,31;
appl.bnd = bnd;
clear equ
equ.ntensor = {1,{'n x';'n y';1}};
equ.sigma = {0, 'le-14[S/m]"'};
equ.epsilonr = {1,2.09};
equ.n = {1,'n stressed'};
equ.ind = [1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,11
appl.equ = equ;
appl.var = {'lambda0O',6 '1550e-9",
'nu', '1e9'};
fem.appl{3} = appl;
fem.sdim = {{'Xm','¥Ym'}, {'X"',"'Y"},{'x","y"}};

fem.frame = {'mesh',6 'ref','ale'};
fem.border = 1;

clear units;

units.basesystem = 'SI';
fem.units = units;

Q

% Subdomain settings
clear equ
equ.ind = [1,2,1,1,1,1,1,13,1,1,1,1,1,1,1,1,1,1,1,1,1%,1,1,1,1,1,1,1,1,1,

% Subdomain expressions

% Calculate nx, ny, and the nsilica (geometric effect alone)
9000000000000000000000000000000000000000000000000000000
OODO0OOO0OOOOOOOOOOOOOOOOOOOOOOOOOOOODOOOOODOOODOOOOOODOOOOODOOO™O

equ.expr = {'n stressed',{'','n x'}, ...
'n x', {"","(1/((1/n_silica)”"2+0.5* (pll+pl2) * (eX pn+eY pn)-0.5* (pll-
pl2) * ((eX pn+eY pn)"2+eXY pn”2)~0.5))"0.5"},
'n y', {"","(1/((1/n_silica)”"2+0.5* (pll+pl2) * (eX pn+eY pn)+0.5*% (pll-
pl2) * ((eX pn+eY pn)"2+eXY pn”2)~0.5))"0.5"},
T

'n silica',{"'',"'(-0.0029*1000000*1ambda0 rfwv)+1.496495"}};

fem.equ = equ;
% Library materials

clear 1lib

lib.mat{1l}.name="'Silica Glass';
lib.mat{1l}.varname="matl"';
lib.mat{1l}.variables.nu='0.17";
lib.mat{1l}.variables.E="'73.1e9[Pa]"';
lib.mat{1l}.variables.mur="1";
lib.mat{l}.variables.sigma="'le-14[S/m]"';
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lib.mat{l}.variables.epsilonr="2.09"';
lib.mat{1l}.variables.alpha='0.55e-6[1/K]";
lib.mat{l}.variables.C="703[J/ (kg*K)]"';
lib.mat{1l}.variables.n='1.45";
lib.mat{1l}.variables.rho='2203[kg/m"3]"';
lib.mat{l}.variables.k='1.38[W/ (m*K)]"';
lib.mat{2}.name="Air, 1 atm';

lib.mat{2}.varname="mat2"';
lib.mat{2}.variables.nu0="nul0(T[1/K]) [m"2/s]"';
lib.mat{2}.variables.eta="'eta (T[1/K]) [Pa*s]';
lib.mat{2}.variables.C="Cp(T[1/K]) [J/ (kg*K)]'
lib.mat{2}.variables.rho="'rho (p[1l/Pal,T[1/K]) [kg/m"3]";
lib.mat{2}.variables.k="'k(T[1/K]) [W/ (m*K)]"';
lib.mat{2}.variables.cs='cs (T[1/K]) [m/s]"';

clear fcns

fcns{l}.type="'inline';

fcns{1l}.name="nul0(T) ';
fcns{l}.expr="'(-7.887E-12*T"2+4.427E-08*T+5.204E-06)/(1.013e5*28.8e-
3/8.314/T)"';

fcns{l}.dexpr={"'diff ((-7.887E-12*T"2+4.427E-08*T+5.204E~-
06)/(1.013e5*28.8e-3/8.314/T),T)"};
fcns{2}.type="'inline';

fcns{2}.name="cs (T) ';

fcns{2}.expr="sqrt(1.4*287*T)"';
fcns{2}.dexpr={"'diff (sqrt (1.4*287*T),T)"'};
fcns{3}.type="'inline';

fcns{3}.name="Cp(T) ';

fcns{3}.expr="0.0769*T+1076.9"';
fcns{3}.dexpr={'diff(0.0769*T+1076.9,T) '};
fcns{4}.type="'inline';

fcns{4}.name="rho(p,T)"';
fens{4}.expr="p*28.8e-3/8.314/T";

fcns{4}.dexpr={'diff (p*28.8e-3/8.314/T,p) "', 'diff (p*28.8e-3/8.314/T,T)"'};
fcns{5}.type="'inline';

fcns{5}.name="eta (T) ';
fcns{5}.expr="-7.887E-12*T"2+4.427E-08*T+5.204E-06";
fcns{5}.dexpr={"'diff (-7.887E-12*T"2+4.427E-08*T+5.204E-06,T) '};
fcns{6}.type="'inline';

fcns{6}.name="k (T)"';

fcns{6}.expr="10"(0.8616*10gl0 (abs(T))-3.7142)";
fcns{6}.dexpr={'diff (107 (0.8616*1ogl0 (abs(T))-3.7142),T)"'};
lib.mat{2}.functions = fcns;

fem.lib = lib;

% Multiphysics
fem=multiphysics (fem) ;

% Extend mesh
fem.xmesh=meshextend (fem) ;

Solve problem
em.sol=femstatic (fem,
lsolcompl’{|v|, |u|, |y|, ‘X‘},

H oo



'outcomp', {'v','u','Y"','X",'y','x"});

% Save current fem structure for restart purposes
femO=fem;

% (Default values are not included)

lambda freespace span=[start wave:step wave:stop wave];
for iii=l:size(lambda freespace span, 2)

lambda freespace span(iii)

loading

% Application mode 1

clear appl

appl.mode.class = 'FlPlaneStrain';
appl.sdim = {'X','Y','Z"};
appl.gporder = 4;

appl.cporder = 2;
appl.assignsuffix = ' pn';
clear prop

prop.frame='ref';

clear weakconstr
weakconstr.value = 'off';
weakconstr.dim = {'Im2', 'Im3'};
prop.weakconstr = weakconstr;
appl.prop = prop;

clear bnd

bnd.Hy = {0,0,1,0};

bnd.Hx = {0,1,0,0};

bnd.Fx = {0,0,0,'-load*cos (atan2(Y,X))"'};
bnd.Fy = {0,0,0,'-load*sin(atan2(Y,X)) "},
bnd.ind = [1,1,2,1,2,2,1,2,3,1,3,1,3,1,3,1,3,1,1,1,1,4,1,1,1,1,1,1,1,1,

i,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
i,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,11,1,1,13,1,1,1,13,1,1,1,1,1,1,1,1,1,1,1,11;
appl.bnd = bnd;
clear equ
equ.nu = {0.33,0.16};
equ.E = {2.0ell,'73.1e9[Pa]'};
equ.rho = {7850, '2203[kg/m"3]"'};
equ.usage = {0,1};
equ.ind = [1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,21,2,2,2,1,1,1,1,1,1,

1,11;
appl.equ = equ;
fem.appl{1l} = appl;

% Application mode 2

clear appl

appl.mode.class = 'MovingMesh';
appl.sdim = {'Xm', 'Ym', 'Zm'};
appl.gporder = 4;

appl.cporder = 2;
appl.assignsuffix = ' ale';
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clear prop

prop.allowremesh="'on';

prop.origrefframe="'ref';

clear weakconstr

weakconstr.value = 'off';

weakconstr.dim = {'1Im4', 'Im5'};

prop.weakconstr = weakconstr;

appl.prop = prop;

clear bnd

bnd.defflag = {{0;0},{1;1},{1;0},{0;1}};
bnd.deform = {{0;0},{'u';'v"'},{0;'v"'},{'u';0}};
bnd.ind = [3,4,1,3,3,1,3,1,1,4,1,4,1,4,1,4,1,2,2,2,2,1,2,2,2,2,2,2,2,2,

2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,

2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2];
appl.bnd = bnd;
clear equ
equ.physexpr = {{0;0},{'u';'v'}};
equ.type = {'free', 'phys'};
equ.ind = [1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,11;
appl.equ = equ;
fem.appl{2} = appl;
% Application mode 3
clear appl
appl.mode.class = 'PerpendicularWaves';
appl.module = 'RF';
appl.gporder = 4;
appl.cporder = 2;
appl.assignsuffix = ' rfwv';
clear prop
prop.inputvar="'lambda';
appl.prop = prop;
clear bnd
bnd.type = {'EO','HO', 'cont"', "IM'};
bnd.ind = [1,2,1,1,3,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,4,3,3,3,3,3,3,3,3,

3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,

3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,31;
appl.bnd = bnd;
clear equ
equ.ntensor = {1,{'n x';'n y';1}};
equ.sigma = {0, 'le-14[S/m]"'};
equ.epsilonr = {1,2.09};
equ.n = {1,'n stressed'};
equ.ind = [1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,11
appl.equ = equ;
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appl.var = {'lambdaO', lambda freespace span(iii),
'nu', '1le9'};

fem.appl{3} = appl;

fem.sdim = {{'Xm','Ym'}, {'X','Y"},{'x","y'}};

fem.frame = {'mesh', 'ref',6 'ale'};

fem.border = 1;

clear units;

units.basesystem = 'SI';

fem.units = units;

Q

% Subdomain settings
clear equ

equ.ind = [1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,21,2,2,2,1,1,1,1,1,1,
1,17;
equ.dim: {'u','V','X','y','HX','Hy','hZ'},’

Q

% Subdomain expressions

equ expr = {'n stressed',{'','n x'},
'n x', {""," (1/((1/n silica)~2+0. 5*(p11+p12) (eX_pn+eY pn)-0.5% (pll-
p12) ((eX pn+eY_pn)A2+eXY_pnA2) 0.5))70.5"'},
'n y', {"","(1/((1/n_silica)”"2+0.5* (pll+pl2) * (eX pn+eY pn)+0.5*% (pll-
2) *|(

(eX pn+eY pn) *2+eXY pn~2)"0.5))"0.5"},

'n silica',{"'',"'(-0.0029*1000000*1ambda0 rfwv)+1.496495"}};

fem.equ = equ;
% Library materials
clear lib
lib.mat{1}
lib.mat{1}
lib.mat{1}
lib.mat{1}
lib.mat{1}
lib.mat{1}
lib.mat{1}
lib.mat{1}
lib.mat {1}
lib.mat {1}
lib.mat{1}
lib.mat{1}
lib.mat{2}
lib.mat{2}
lib.mat{2}
lib.mat{2}
lib.mat{2}
lib.mat{2}
lib.mat{2}
lib.mat{2}
clear fcns
fcns{1l}.type=
fcns{1l}
fcns{1l}
fcns{1l}
fcns{2}

.variables
.variables

.variables
.variables

.variables

.name="'Air,

.variables
.variables
.variables

'inline'
.expr="sqgrt (1

.type='inline'
fcns{2}.name="nul0 (T)"'
fcns{2}.expr=" (
3/8.314/T)"

.variables.
.mur="'1";
.variables.
.epsilonr="'2.09";

.alpha='0.55e-6[1/K]"'
.variables.
.n='1.45";
.variables.
.variables.

.name="cs (T) ';
LA4*287*T) !
.dexpr={"'diff (sqrt (1.4*287*T),

.name='Silica Glass'
.varname="matl"';
.nu='0.17";

='73.1e9[Pal’';

sigma='le-14[S/m]"';

C='703[J/(kg*K)]"';

rho="'2203[kg/m"3]"
k='1.38[W/ (m*K)]"';
1 atm';

.varname="mat2"';
.nul=
.eta=
.C="Cp (T
.variables.
.variables.
.variables.

'nu0 (T[1/K]) [m"2/s]"';

'eta (T[1/K]) [Pa*s]';
[1/K]) [J/ (kg*K) 1"
rho='rho(p[1/Pa],T[1/K]) [kg/m"3]";
k="k(T[1/K]) [W/ (m*K) 1"
cs="cs(T[1/K]) [m/s]"';

T)"}s

Iz

-7.887E-12*T"2+4.427E-08*T+5.204E-06) / (1.013e5%28.8e~-
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fcns{2}.dexpr={"'diff ((-7.887E-12*T"2+4.427E-08*T+5.204E~-
06)/(1.013e5*28.8e-3/8.314/T),T) "};

fcns{3}.type="'inline';

fcns{3}.name="Cp(T) ';

fcns{3}.expr="0.0769*T+1076.9"';
fcns{3}.dexpr={'diff(0.0769*T+1076.9,T) '},
fcns{4}.type="'inline';

fcns{4}.name="rho(p,T)"';

fens{4}.expr="p*28.8e-3/8.314/T";

fcns{4}.dexpr={'diff (p*28.8e-3/8.314/T,p) "', 'diff (p*28.8e-3/8.314/T,T)"'};
fcns{5}.type="'inline';

fcns{5}.name="eta (T)"';
fcns{5}.expr="-7.887E-12*T"2+4.427E-08*T+5.204E-06";
fcns{5}.dexpr={"'diff (-7.887E-12*T"2+4.427E-08*T+5.204E-06,T) '};
fcns{6}.type="'inline';

fcns{6}.name="k(T) ';

fcns{6}.expr="10"(0.8616*10gl0 (abs(T))-3.7142)";
fcns{6}.dexpr={'diff (107 (0.8616*1ogl0 (abs(T))-3.7142),T)"'};
lib.mat{2}.functions = fcns;

fem.lib = lib;

% Multiphysics
fem=multiphysics (fem) ;

% Extend mesh
fem.xmesh=meshextend (fem) ;

% Solve problem
fem.sol=femeig(fem,
'init', fem0.sol,
'solcomp', { 'tHxHy20', 'tHxHyl0"', "tHxHy21', 'hz'},

'outcomp', {'tHxHy20', 'v', "tHxHy1l0', 'u', 'tHxHy21"', 'hz','Y','X"', 'y', 'x"'},
'neigs’', 12,

'shift',0-4.025292e6*1);

fprintf (fid, '%e, ', lambda freespace span(iii));
fprintf (£id2, '%e, ', lambda freespace span(iii));
for jj=l:eigs

%Calculate Confinement - Subdomain Integration of
% Poynting Vector
000000000000000000000000000000000000000000000000000

% Integrate - Core
I1(iii,jj)=postint (fem, 'Pozav_rfwv',
'unit', 'w’',
'dl', [11,
'solnum', j7);

Q

% Integrate — Entire Geom



I2(iii,jj)=postint (fem, 'Pozav_rfwv',
'unit', 'w’',

‘di', [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26

,27,28,29,30,31,32]1,
'solnum', j7);

I3(iii,jj)=I1(iii,33)/I2(iii,33);

$neff (iii, jj)=fem.sol.lambda(jj);

fprintf (fid, '$e ,',I3(1iii,33)):

$%%%%%0utput Eigenvalues %$%%%%%%%
Q

$imchar = 'i';
)

fprintf (£id2, 'Sf + %f%c

, ',real (fem.sol.lambda (33j)),imag(fem.sol.lambda(jj)),

end %$integration loop
fprintf (fid, '\n");
fprintf (£id2, '\n'");

end %wavelength loop
end %load loop

fclose (fid) ;
fclose (£id2) ;

i)
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