
ABSTRACT

Peng, Bin. Convergence, Rank Reduction and Bounds for the Stationary Analysis of

Markov Chains (Under the direction of William J. Stewart).

With existing numerical methods, the computation of stationary distributions for large

Markov chains is still time-consuming, a direct result of the state explosion problem. In

this thesis, we introduce a rank reduction method for computing stationary distributions of

Markov chains for which low-rank iteration matrices can be formed. We first prove that, for

an irreducible Markov chain, a necessary and sufficient condition for convergence in a single

iteration is that the iteration matrix have rank one. Since most iteration matrices have

rank larger than 1, we also consider the Wedderburn rank-1 reduction formula and develop

a rank reduction procedure that takes an initial iteration matrix with rank greater than

one and modifies it in successive steps, under the constraint that the exact solution be pre-

served at each step, until a rank-1 iteration matrix is obtained. When the iteration matrix

has rank r, the proposed algorithm has time complexity O(r2n). Secondly we investigate

the relationship among lumpability, weak lumpability, quasi-lumpability and near complete

decomposability. These concepts are important in aggregating and disaggregating Markov

chains. White’s algorithm for identifying all possible lumpable partitions for Markov chains

is improved by incorporating lumpability tests on special state orderings. Finally, instead

of computing exact stationary distributions, we design stochastic-ordering-based techniques

to bound them. Upper bounds can be obtained by using constructive algorithms developed

recently. We observe that the more lumpable partitionings, the more accurate the upper

bound for the state of interest both with matrix transformation and without matrix trans-

formation. Lastly we combine the approaches of state permutation, matrix transformation

and state partitioning to improve the quality of the upper bound for the state of interest.

Convergence, Rank Reduction and Bounds for the
Stationary Analysis of Markov Chains

by

Bin Peng

A dissertation submitted to the Graduate Faculty of
North Carolina State University
in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

OPERATIONS RESEARCH

Raleigh

2004

APPROVED BY:

Chair of Advisory Committee

Biography

Born in Hunan province, China, Bin Peng is one of two brothers and the elder son of

Yuanchong Peng and Shengying Mo, both of whom are traditional Chinese farmers. Bin’s

only younger brother Ru was injured and suffered severe nerve damage in a coal mining

accident in 1999 and disastrously lost forever his ability to walk and move. His parents are

patiently taking care of him day after day, month after month and year after year.

In July of 1997, Bin Peng graduated from the Department of Mathematics, Xiangtan

University in Hunan province, China with a B.S. degree in Economics. He pursued his

graduate study in the Department of Statistics & Operations Research at Fudan University

(Shanghai, China) and was awarded a Master of Science degree in Operations Research

in 2000. Thereafter, he came to North Carolina State University to continue his studies

toward his doctoral degree in Operations Research.

Bin Peng was married to Manhong Chai in 2000 and they have a son, Maxwell.

ii

Acknowledgments

First of all, I wish to express my sincere thanks to my advisor, Dr. William J. Stewart

for his insight guidance, endless patience and support. Without his expert insight, this

research could not have been completed. His support in terms of a NSF graduate research

assistant made it possible for me to complete my years of study at North Carolina State

University. I am indebted to him.

I am also grateful to my committee members, Drs.Carl Meyer, Harry Perros and Russel

King for their valuable times, professional suggestions and gracious services on my commit-

tee.

My most special thanks go to my wife Manhong and son Maxwell for their ever-lasting

encouragement, support and love.

iii

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 2

1.3 Organization . 3

2 Markov Chains 4

2.1 Introduction . 4

2.2 Discrete Time Markov Chains . 5

2.3 Continuous Time Markov Chains . 7

2.4 Stochastic Complement . 9

2.5 Applications of Markov chains . 12

3 Numerical Methods for Computing Stationary Distributions 15

3.1 Direct Method . 15

3.2 Iterative Methods . 16

3.3 Projection Methods . 22

3.4 Decompositional Methods . 24

iv

4 Convergence Behavior of Markov Iteration Matrices 30

4.1 Nonnegative Matrices . 30

4.1.1 Stochastic Matrices . 31

4.1.2 Matrix Splittings . 33

4.1.3 M-Matrices . 33

4.2 Motivating Examples . 35

4.3 Spectrum Condition . 40

4.4 Rank-1 Condition . 43

5 A Rank Reduction Method For Markov Chains 52

5.1 Rank Reduction Formula . 52

5.2 Rank Reduction for Computing Stationary Distributions of MCs 53

5.2.1 Algorithm . 59

5.2.2 Uniqueness, Irreducibility and Complexity Issues 59

5.2.3 A Small Example . 62

5.3 Markov Chains with Low Rank . 65

5.4 Testing Rank Reduction Method . 71

5.4.1 Markov Model for a Multiprocessor Failure/Repair System 71

6 Lumpability, Weak Lumpability, Quasi-lumpability and NCD 74

6.1 Definitions . 75

6.2 Examples of Lumpable Markov Chains . 81

6.3 Relationship Among Lumpability, Weak Lumpability, Quasi-lumpability and

NCD . 89

6.4 Identify All Lumpable Partitions . 92

6.4.1 White’s Algorithm . 93

6.4.2 Improvements . 93

6.5 Iterative Aggregation/Disaggregation . 97

v

7 Bounding Technique Based on Stochastic Comparison 101

7.1 Introduction . 101

7.2 Background Review . 103

7.2.1 Strong Stochastic Ordering And Constructive Algorithms 103

7.2.2 Permutation And Transformation . 107

7.3 Combine Permutation, Transformation and Partitioning 111

7.3.1 Upper Bounds For The First State 111

7.3.2 Bounding Accuracy For Lumpable Partitionings 112

7.3.3 Combining State Permutation And Matrix Transformation 115

7.3.4 Combining All Together . 118

7.4 Conclusions . 120

8 Summary and Future Research 121

References 123

vi

List of Tables

5.1 Testing On Rank Reduction . 73

7.1 Bounding Effects on a 4−state Discrete Time Markov Chain(1) 110

7.2 Bounding Accuracy For Lumpable Partitionings(1) 114

7.3 Bounding Accuracy For Lumpable Partitionings(2) 115

7.4 Bounding Effects on a 4−state Discrete Time Markov Chain(2) 116

7.5 Bounding Effects on a 8× 8 Courtois Matrix 118

7.6 Bounding Effects on Combining Permutation, Transformation And Lumpable

Partitioning . 119

vii

List of Figures

2.1 Web Page Links . 13

3.1 Gradient/Steepest Descent Method . 23

3.2 Conjugate Gradient Method . 24

3.3 Exact Aggregation/Disaggregation Method 25

3.4 Iterative Aggregation/Disaggregation Method 26

3.5 Single-input State Structure . 28

3.6 Feinberg & Chiu’s Method . 29

4.1 A 5-state Continuous Time Markov Chain 35

5.1 Rank Reduction Method for Calculating Stationary Distributions 60

5.2 Markov Chains With Point Rank-1 Gauss Seidel Iteration Matrices 66

5.3 Markov Chains With Rank-1 Block Gauss Seidel Iteration Matrices 68

5.4 Transition Diagrams For Markov Chains With Low-Rank Iterations Matrices:

Case I . 69

5.5 Transition Diagrams For Markov Chains With Low-rank Iterations Matrices:

Case II . 70

5.6 A Multiprocessor Failure/Repair Model . 71

6.1 Initial Probability Distributions For Weak Lumpability 78

6.2 A Queueing System With Breakdown And Repair 82

6.3 Re-routing Model For ATM Networks . 84

viii

6.4 Non-symmetric Re-routing Model For ATM Networks 86

6.5 Closed Queueing Model With Parallel Queues(1) 90

6.6 Procedure To Obtain Lumpable Partitionings 94

6.7 Open Queueing Network And Its Transition Diagram 95

6.8 Closed Queueing Network And Its Transition Diagram 98

6.9 State Transition Diagram For Model In Figure 6.11 99

6.10 Closed Queueing Network With Parallel Queues(2) 99

6.11 Closed Queueing Network With Parallel Queues(3) 100

6.12 IAD Algorithm For Lumpable Markov Chains 100

7.1 Algorithm to Construct st-monotone Upper Bounding Markov Chains . . . 105

7.2 Algorithm to Construct Lumpable st-monotone Upper Bounding Markov

Chains . 106

7.3 Algorithm to Construct st-monotone Lower Bounding Markov Chains . . . 112

ix

Chapter 1

Introduction

Since their introduction by the Russian mathematician A.A. Markov(1856-1922) in the

early 1900s, Markov chains (MCs) have proven to be a valualbe tool with which to model

the performance of complex stochastic systems. More and more applications of their use

have been discovered. For example, they play an important role in search engine such as

Google [59].

1.1 Motivation

In this thesis, we consider a finite, homogeneous, irreducible Markov chain with tran-

sition probability matrix P which possesses a unique stationary distribution vector π > 0.

Usually three steps are followed in conducting a Markovian analysis.

1. Represent the system to be modeled by a high-level formalism such as stochastic Petri

nets [16], queuing networks and stochastic automata networks [64] and generate the

underlying Markov chains.

2. Solve the stationary distribution vector π.

3. Convert π to meaningful measurements of system performance such as average re-

sponse time, mean number of customers in systems, mean times for systems failure.

1

Due to the state space explosion problem, the most challenging step in this process is

the computation of the unique vector π which satisfies

π = πP, πT e = 1, π > 0 (1.1)

where e is a column vector of all ones. Although there already exist many numerical

methods [64] for solving (1.1), more efficient methods are required. In this dissertation, we

design a rank reduction method to solve (1.1) so that the computation time can be lessened;

When the computation of the exact solution for (1.1) is unnecessary, we present stochastic-

ordering-based bounding techniques which generate an upper bound on the solution so that

computation time is reduced to an absolute minimium.

1.2 Contributions

The contributions of the thesis are three fold. Just as the thesis title says, the first is

a convergence behavior analysis for iterative numerical methods of computing stationary

distributions of MCs. We find a necessary and sufficient condition for convergence in a single

iteration for an irreducible M.C. That is, the iteration matrix has rank one. Furthermore

we show the condition that the iteration matrix have its spectrum with one eigenvalue equal

to 1 and all the others equal to zeros is not adquate.

The second part is the development and experiments of the rank reduction method.

Since most iterative matrices have rank larger than 1, we consider the Wedderburn rank-1

reduction formula and design a rank reduction procedure with an initial iteration matrix

having rank greater than one and modify it in successive steps, under the constraint that

the exact solution be preserved at each step, until a rank-1 iteration matrix is obtained.

The third part lies in developing bounding technique based on strong stochastic ordering.

We observe that more lumpable partitionings make the upper bound for the state of interest

more accurate no matter whether matrix transformation is used or not. We also combine the

approaches of state permutation, matrix transformation and state partitioning to improve

2

the quality of the upper bound for the state of interest.

Pertaining to parts two and three, we also provide some elementary results on how to

decompose lumpable MCs into a set of small-size matrices.

Along the way, our observations, definitions, properties and results are included as well.

1.3 Organization

This dissertation is organized as follows. Background on the theory of Markov chains

is reviewed in Chapter 2. It covers discrete time Markov chains, continuous time Markov

chains, stochastic complement and applications of Markov chains. Chapter 3 describes the

different numerical methods for computing stationary distributions of MCs. We present

the convergence analysis for the Markov iteration matrices in Chapter 4. This is the ba-

sis for designing a new rank reduction algorithm discussed in detail in Chapter 5. In

Chapter 6, we focus on the relationship among concepts of lumpability, weak lumpability,

quasi-lumpability and near complete decomposability. This chapter also includes our im-

provements on White’s algorithm for identifying all possible lumpable partitions. Instead

of computing exact stationary distributions of MCs, we provide bounding technique based

on strong stochastic ordering in Chapter 7. Finally, Chapter 8 outlines our conclusions and

gives directions for future work.

3

Chapter 2

Markov Chains

2.1 Introduction

The behavior of a physical system may frequently be represented by enumerating all

states that the system may occupy and by indicating how it transitions from one state to

another over time. Generally, such a system is represented by a stochastic process.

Definition 2.1.1 (Stochastic Process) A stochastic process is a family of random vari-

ables {X (t), t ∈ T} defined on a given probability space and indexed by the parameter t. If

the time index set T is discrete, then the process is a discrete-time process, otherwise the

process is a continuous-time process. The values assumed by the random variable X (t) are

called states, and the set of all possible states forms the state space of the process. If the

state space is discrete, the process is called a chain.

One of the simplest and most commonly employed stochastic processes is the Markov

process: its future evolution depends only on its current state and not on its past history.

This memoryless property is formally characterized by the Markov property.

Definition 2.1.2 (Markov Process) A stochastic process is a Markov process which has

the Markov property that, for all integers n and for any sequence t0, t1, · · · , tn, tn+1 such

4

that t0 ≤ t1 ≤ · · · ≤ tn−1 ≤ tn ≤ tn+1, we have

P{X (tn+1) ≤ x | X (tn) = xn, X (tn−1) = xn−1, · · · , X (t0) = x0}

= P{X (tn+1) ≤ x | X (tn) = xn}.

An Markov process {X (t), t ∈ T} is homogeneous if its transitions are independent of time

t, i.e.,

P{X (t) ≤ x | X (tn) = xn} = P{X (t− tn) ≤ x | X (0) = xn}.

Two kinds of Markov processes, discrete-time Markov chains (DTMCs) and continuous-

time Markov chains (CTMCs), are briefly reviewed in the following sections. We only

consider finite-state Markov chains in this dissertation.

2.2 Discrete Time Markov Chains

A discrete-time Markov chain (DTMC) is a Markov process with discrete state space

and which is observed at a discrete set of time instants. Without loss of generality, let the

time set be T = {0, 1 , · · · , } and let successive observations define the random variables

X0, X1, X2, · · · at time instants 0, 1, 2, · · · .

Definition 2.2.1 (Discrete-Time Markov Chain) The Markov process {Xn}, n = 0, 1,

2, 3 · · · is a discrete-time Markov chain if for all n and all states xn we have:

P{Xn+1 = xn+1 | Xn = xn, Xn−1 = xn−1, · · · , X0 = x0} = P{Xn+1 = xn+1 | Xn = xn}.

The conditional probabilities P{Xn+1 = xn+1 | Xn = xn} are called the single-step

transition probabilities. When it is homogeneous, these probabilities are independent of n

and are simply written as

pij = P{Xn+1 = j | Xn = i}

5

where xn+1 = j and xn = i. The matrix P , formed by placing pij in row i and column j,

for all i and j, is called the transition probability matrix. Note that the entries of P have

the property:
∑

j

pij = 1, 0 ≤ pij ≤ 1, i, j ∈ {0, , 1 , 2, · · · }.

When the Markov chain is non-homogeneous, the elements pij must be replaced with

pij(n) and hence, the matrix P with P (n). The generalization of a single-step transition

probability matrix P to an m-step transition probability matrix P (m) with elements p
(m)
ij =

P{X (n+m) = j | Xn = i} may be obtained from the Chapman-Kolmogorov equations as

follows.

Definition 2.2.2 (Chapman-Kolmogorov Equations) The m-step transition probabil-

ity matrix P (m) for a DTMC with transition probability matrix P satisfies:

p
(m)
ij =

∑

all k

p
(l)
ik p

(m−l)
kj , for 0 < l < m. (2.1)

In matrix notation, the Chapman-Kolmogorov equations can be written as

P (m) = P (l)P (m−l).

By summing over all possible intermediate states, we have

P (m) = PP (m−1) = · · · = Pm.

Definition 2.2.3 (Irreducibility) A DTMC is irreducible if every state can be reached

from every other state, i.e., there exists an integer m for which p
(m)
ij > 0 for every pair of

states i and j.

In studying DTMCs we are often interested in determining the probability that the chain is

in a given state at a particular time step. Assume that πj(m) denotes the probability that

6

an Markov chain is in state j at time step m, i.e.,

πj(m) = P{X (m) = j}. (2.2)

Let the row vector π(m) = (π1(m), π2(m), · · · , πj(m), · · ·). Then by use of Chapman-

Kolmogorov equations we have

π(m) = π(0)Pm. (2.3)

Definition 2.2.4 (Stationary Distribution) A vector z is said to be the stationary dis-

tribution for an Markov chain with transition probability matrix P if and only if

z = zP,
∑

j

zj = 1, 0 ≤ zj ≤ 1, j ∈ {0, , 1 , 2, · · · }.

This means that if z is chosen as the initial state distribution πj(0) = zj for all j, then for

all m, we have πj(m) = zj .

2.3 Continuous Time Markov Chains

A DTMC has discrete states and discrete times at which transitions occur. If the

transitions can occur at any time, the process is called a continuous-time Markov chain

(CTMC). Recall that a DTMC uses the matrix P to hold the transition probabilities which

define the DTMC. For continuous-time Markov chain however, a matrix Q, called the

infinitesimal generator matrix, is used to hold the transition rates which define the CTMC.

The element qij , i 6= j of Q is the rate at which the system moves from state i to state j.

The diagonal elements are given by qii = −
∑

j 6=i qij . With this construction, the matrix Q

satisfies:
∑

j

qij = 0, i = 0, 1, · · · .

We are concerned with the stationary behavior of the CTMC. Let π(t) be the transient

probability distribution at time t. Then from the Chapman-Kolmogorov equations, the

7

vector π(t) is written as

π(t) = π(0)eQt, (2.4)

where π(0) is the initial probability distribution. When the CTMC reaches statistical

equilibrium, its probability distribution vector π(t) does not change over time, i.e.,

dπ(t)

dt
= Qπ(0)eQt = 0. (2.5)

Thus the stationary distribution vector π can be found by solving the linear system of

equations

πQ = 0, πe = 1. (2.6)

The uniqueness of the stationary distribution vector π satisfying (2.6) is a result of the

irreducibility of the CTMC. Its infinitesimal generator Q has rank n−1, where n is the order

of the matrix Q. Note that if only the stationary distribution is required, transformations

are possible from P to Q or vice versa, by use of the following equations

Q = I − P (2.7)

and

P = I +∆tQ (2.8)

where

∆t ≤ 1

maxi|qii|
(2.9)

is a discretization factor. Equation (2.7) gives the procedure for producing a CTMC from a

DTMC P . Equation (2.8) discretizes a CTMC so that the DTMC P obtained has transitions

which occur at intervals ∆t. The value of ∆t ≤ 1
maxi|qii|

forces P to be stochastic. For the

stationary analysis therefore, we can represent the same Markov chain by either P or Q

and its stationary distribution vector is obtained from either π = πP or πQ = 0 together

with the normalization constraint πe = 1. Writing A = I−P T or A = QT so that AπT = 0

8

allows for the application of general numerical methods for the solution of linear systems

of the form Ax = b. We are concerned solely with the stationary distributions of Markov

chains in this dissertation.

2.4 Stochastic Complement

The term stochastic complement was coined by Meyer [43]. This concept provides insight

into the dynamic behavior of nearly completely decomposable systems. Also, it gives us an

approach to dividing large Markov chains into sub-chains of small sizes so that each small

chain can be solved relatively easily. In this section, we follow Meyer’s notations. Consider

an Markov chain P with state space S which is partitioned into M subsets

S = {S1, S2, · · · , SM}.

Definition 2.4.1 (Stochastic Complement[43]) Assume P is partitioned

P =



















P11 P12 · · · P1M

P21 P22 · · · P2M

...
...

. . .
...

PM1 PM2 · · · PMM



















(2.10)

and let Pi denote the principal block sub-matrix of P obtained by deleting the i
th row and

jth column of blocks from P and let P∗i and Pi∗ designate

Pi∗ = (Pi1, Pi2, · · · , Pi,i−1, Pi,i+1, · · · , PiM)

9

and

P∗i =

































P1i

...

Pi−1,i

Pi+1,i

...

PM,i

































.

That is, Pi∗ is the i
th row of blocks with Pii removed, and P∗i is the i

th column of blocks

with Pii removed. Then the stochastic complement of Pii is defined to be the matrix

Sii = Pii + Pi∗(I − Pi)
−1P∗i. (2.11)

Note that the matrix I − P is a singular M-matrix of rank n − 1 (see definition of

M-matrix in section 4.1.3). Every principal sub-matrix of I − P other than itself is a non-

singular M-matrix. So each matrix (I − Pi) is a non-singular M-matrix and its inverse is a

nonnegative matrix, i.e.,

(I − Pi)
−1 ≥ 0.

Therefore the stochastic complement is well defined. The matrix Sii has interesting prop-

erties as follows.

Theorem 2.4.1 (Meyer 1989[43], Thm.2.1, Thm.2.3) Let P be an irreducible stochas-

tic matrix partitioned as (2.10). Then each stochastic complement

Sii = Pii + Pi∗(I − Pi)
−1P∗i

is also an irreducible stochastic matrix.

The Markov chain Sii is called also reduced chain or censored chain. It is a Markov

process observed only when the original chain is in some state in subset Si and skipped

whenever the process is in states outside of Si.

10

Theorem 2.4.2 (Meyer 1989[43], Thm.2.2) Let P be an irreducible stochastic matrix

partitioned as (2.10), its stationary distribution vector π partitioned conformally as

π = (π1, π2, · · · , πM)

and define

φi =
πi
πie

.

Then

φi = φiSii. (2.12)

That is, φi is the stationary probability vector for the irreducible matrix Sii. The vector

φi is called censored distribution or the conditional stationary distribution of the i
th subset

of states.

How can we obtain the stationary distribution vector π of the original Markov chain

after we form the M censored chains of small size? This will be answered in the next

theorem.

Theorem 2.4.3 (Meyer 1989[43], Thm.4.1) Let P be an irreducible stochastic matrix

partitioned as (2.10) and φi the stationary distribution for stochastic complement Sii. Then

the stationary distribution vector π for Markov chain P is written as

π = (ξ1φ1, ξ2φ2, · · · , ξMφM)

where

ξ = (ξ1, ξ2, · · · , ξM)

is the unique stationary distribution vector for the M ×M irreducible stochastic matrix C

whose entries are defined by

11

cij = φiPije. (2.13)

The matrix C is referred to as the coupling matrix and the scalars ξj , j = 1, 2, · · · ,M

are called the coupling factors.

2.5 Applications of Markov chains

Markov chains have been widely and successfully employed in many areas. The following

list is just a few of the interesting and successful applications of Markov chains.

• Computer system performance evaluation[70][23][8][38]

• Telecommunication, TCP/IP networks[40][8][6][38]

• Genetics and biology[40]

• Web Search Engine[59][2]

• Manufacturing, production scheduling[37]

• Chemical Engineering[34]

• Social activities such as sports events, public transportations[76]

The applications of Markov chains usually focus on evaluating performance metrics such

as mean number of jobs/customers/packets in queue, the utilization of the servers/machines,

the throughtput of the communication link and so on, just name a few.

Recall the assumption of the Markov Property for Markovian analysis. When the prob-

lem in the real world does not naturally fit into a Markov model, then we have to make

unrealistic “exponentiality” assumptions but we can still get some insight and/or approx-

imate solution. Let us look at a simple but important example: the use of discrete time

Markov chain as web search engines.

12

Google’s Page Ranking: An Example of a DTMC

Most of us use the Google search engine everyday. When looking up a term such as

Markov Chain, there are thousands of web pages which include this phrase. A good search

engine ranks these pages so that the page we need will most-likely fall in the top 10 and

thus enables us to quickly find the information needed. Google’s solution is to define a

DTMC. It first determines all Web pages and links among these pages. Then it constructs

a Markov chain transition matrix in which there is one state for each Web page. A tran-

sition occurs from state i to state j if and only if page i has a link to page j. If page i

has m > 0 outgoing links, then the probability on each outgoing transition from state i is

1
m
. For example, assume there are only 10 pages altogether shown in Figure 2.1 which has

stationary distribution

1/5

1/5

1/5

1/3

1/3

1/3

1

1/2

1/2

1/4

1/4

1/41/4

1/3

1/3

1/3

1/5

 J

 I

 H

 G

 F

 E

 D

 C

 B

1

1/2

1/2

1/2

1/2

1

1/5

 A

Figure 2.1: Web Page Links

13

π = (0.0170, 0.0277, 0.0202, 0.0158, 0.1103, 0.1909, 0.0227, 0.1103, 0.1764, 0.3088).

Page A has 3 outgoing links each with probability 1
3 and has page ranking 0.0170 but page

J has 2 outgoing links each with probability 1
2 and with page ranking equal to 0.3088 which

is the largest. Therefore the link for page J lists in the first position. There are some

techniques concerning issues of dead ends (some page have no outgoing links and no self

loop, thus the MC has no solution) and spider traps (some page has only self-loop outgoing

links and thus the MC is not irreducible). For further information on this application,

please refer to [2].

14

Chapter 3

Numerical Methods for Computing

Stationary Distributions

In this section we review the most commonly employed numerical methods for solving

linear systems of the form Ax = b.

3.1 Direct Method

The direct methods, including Gauss elimination and LU decomposition, compute solu-

tions to the system Ax = b in a fixed number of operations. This class of methods works

well for Markov chain problems having small and medium-sized state spaces. Their chief

disadvantage is the fill-in phenomenon which results, during the reduction phase, from the

creation of nonzero elements in positions that previously contained zeros. This situation

makes the organization of a compact storage scheme more difficult. Also, it may exhaust the

available memory when the amount of fill-in is extensive. We review only the LU decompo-

sition below, since it is this version that we shall use. The basic idea of LU decomposition

is to rewrite a matrix A as the product of a nonsingular lower triangular matrix L and a

15

nonsingular triangular matrix U , i.e.,

A = LU.

The solution of the system Ax = b is then given by

x = U−1L−1b

and is obtained by using forward substitution to compute y as y = L−1b and then backward

substitution to compute x as x = U−1y. Finding an LU decomposition of A is equivalent

to solving the linear equations

i
∑

k=1

likukj = aij for i ≤ j,

and
j
∑

k=1

likukj = aij for i > j.

These specify n2 equations in the n2 + n unknowns lik, i = 1, 2, · · · , n; k = 1, 2, · · · , i and

ukj , j = 1, 2, · · · , n; k = 1, 2, · · · , j. Therefore we may set lii = 1, 1 ≤ i ≤ n (called the

Doolittle Decomposition) or uii = 1, 1 ≤ i ≤ n (called the Crout Decomposition). When

we apply this method to Markov chain problems, we have A = QT or A = I − P T and

x = πT . Although an LU decomposition does not exist for all matrices A, it does exist for

the transition matrices that correspond to irreducible Markov chains. The computational

complexity of an LU decomposition is O(2n3/3).

3.2 Iterative Methods

Suppose the matrix A is split as A = M − N in which M is nonsingular. Then the

system of equations,

Ax = (M −N)x = b,

16

may be written in iterative form as

x(k+1) =M−1Nx(k) +M−1b, k = 0, 1, · · · .

The matrix T = M−1N is called the iteration matrix. When the system of equations is

non-homogeneous, i.e., b 6= 0, then this iterative scheme will converge for any initial vector

x(0) if and only if the spectral radius of T , ρ(T), is strictly less than one. With continuous-

time Markov chains, the system of equations is homogeneous (i.e., b = 0) and many of the

commonly used iterative schemes have iteration matrices with ρ(T) = 1. We begin with a

brief discussion of the power method.

The Power Method

The Power method is the simplest iterative method. Given an initial guess π(0), the sta-

tionary distribution vector π, which is the left-hand eigenvector corresponding to the unit

eigenvalue of the stochastic matrix P in (1.1), is successively approximated by π(0), π(1), · · · ,

π(k), π(k+1), · · · , where

π(k+1) = P Tπ(k) for k = 0, 1, 2, · · · .

The sequence of approximations π(k), k = 0, 1, 2, · · · , is expected to approach the exact

solution π in the limit as k →∞. We shall let Tp = P T and refer to it as iteration matrix

for the power method. For irreducible Markov chains, the unit eigenvalue is simple. If the

Markov chain is also aperiodic, then no eigenvalue other than this unit eigenvalue exists

on the unit circle. Let us assume for the moment that the eigenvalues of P , the transition

probability matrix of an irreducible, aperiodic Markov chain, satisfy the relationship

1 = λ1 > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|.

17

Let the corresponding eigenvectors be given by x1, x2, · · · , xn, i.e.,

P Txi = λixi, i = 1, 2, · · · , n.

When the initial approximation, π(0), can be written as a linear combination of the eigen-

vectors of P T , i.e., when

π(0) =
n
∑

i=1

ηixi,

then it is easy to show that the rate of the convergence of the power method depends on

the ratios |λi|/|λ1|, i = 2, 3, . . . , n. This is due to the fact that

π(k+1) = (P T)kπ(0) =
n
∑

i=1

ηiλ
k
i xi = λk1

(

η1x1 +
n
∑

i=2

ηi(
λi
λ1
)kxi

)

and the iterative process converges to the stationary distribution vector π = x1, when the

summation inside the parentheses goes to zero. The rate at which this goes to zero depends

on the aforementioned ratios, and in particular, on the ratio |λ2|/|λ1| = |λ2|. It is easily

seen that the magnitude of the sub-dominant eigenvalue, λ2, determines the convergence

rate. The smaller the magnitude of the λ2, the faster the convergence. In particular, the

power method will converge very slowly when |λ2| ≈ 1.

The Method of Jacobi

In the method of Jacobi as well as in the next two iterative methods we consider, the

matrix A is split as

A =M −N = D − (L+ U)

where D, L and U are respectively the diagonal, negated strictly lower and negated strictly

upper triangular parts of the matrix A. The Jacobi method is then essentially identical to

the power method but applied to a different iteration matrix. The iteration matrix for this

method is defined as

Tjcb = D−1(L+ U)

18

and the iterative scheme is therefore defined as

π(k+1) = Tjcbπ
(k), k = 1, 2, · · · , n

or, in scalar form,

π
(k+1)
i =

1

dii

n
∑

j 6=i

(lij + uij)π
(k)
j , k = 1, 2, · · · , n.

The iteration matrix Tjcb has 1 as its dominant eigenvalue.

Gauss-Seidel

The point Gauss-Seidel method is identical to the Jacobi method except that the com-

putation of the components of π(k+1) makes use of the most recently available component

approximations. This is given in scalar form as

π
(k+1)
j =

1

djj





j−1
∑

i=1

ljiπ
(k+1)
i +

n
∑

i=j+1

ujiπ
(k)
i



 , j = 1, 2, · · · , n,

or in matrix form as

π(k+1) = Tgsπ
(k) (3.1)

with Tgs = M−1N = (D − L)−1U . This is the forward Gauss-Seidel method. Similarly, a

backward Gauss-Seidel method whose iteration matrix is Tgs = (D − U)−1L may also be

defined.

Successive-Over-Relaxation (SOR)

The SOR method introduces a relaxation parameter, ω, into the iterative formula. This

method is defined by the relation

π
(k+1)
j = (1− ω)π

(k)
j + ω{ 1

djj
(

j−1
∑

i=1

ljiπ
(k+1)
i +

n
∑

i=j+1

ujiπ
(k)
i)}, j = 1, 2, · · · , n,

19

or in matrix form as

π(k+1) = Tsorπ
(k) = (1− ω)π(k) + ω

{

D−1(Lπ(k+1) + Uπ(k))
}

.

For convergence, it is necessary, but not sufficient, that ω lie in between zero and 2. When

ω < 1, the method is sometimes referred to as under relaxation. The SOR method reduces

to the method of Gauss-Seidel when ω = 1.

Block Gauss-Seidel (BGS)

Block methods are often appropriate when the state space can be meaningfully parti-

tioned into groups of states in such a way that states within a group communicate frequently

with each other and only infrequently with the states of other groups. Markov chains hav-

ing this property are said to be nearly-completely-decomposable (NCD). Block methods may

also be appropriate in other cases. Given a partition of the state space, this may be used

to induce a partitioning of the transition matrix and the probability vector. We assume a

total of N groups and write

π = (π1, π2, . . . , πN)

and

Q =



















Q11 Q12 · · · Q1N

Q21 Q22 · · · Q2N

...
...

. . .
...

QN1 QN2 · · · QNN



















.

We now introduce the block splitting:

QT = DN − (LN + UN)

where DN , LN and UN are respectively the block diagonal, negated strictly lower block

and negated strictly upper block triangular matrices of QT . Their block structures are as

20

follows:

DN =



















D11 0 · · · 0

0 D22 · · · 0

...
...

. . .
...

0 0 · · · DNN



















,

LN =



















0 0 · · · 0

L21 0 · · · 0

...
...

. . .
...

LN1 LN2 · · · 0



















, UN =



















0 U12 · · · U1N

0 0 · · · U2N

...
...

. . .
...

0 0 · · · 0



















,

where Dii = Qii, i = 1, 2, . . . N , Lij = −Qij i > j and Uij = −Qij , i < j. Block iterative

methods may now be constructed. For example, the forward block Gauss-Seidel method,

given in matrix form, is

π(k+1) = Tbgsπ
(k) =

{

(DN − LN)
−1UN

}

π(k).

A backward block version is obtained with Tbgs = (DN − UN)
−1LN . Writing out the

individual equations, instead of in block matrix format, we have

Diiπ
(k+1)
i = (

i−1
∑

j=1

Lijπ
(k+1)
j +

N
∑

j=i+1

Uijπ
(k)
j), i = 1, 2, · · · , N.

The BGS method necessitates the solution ofN systems of linear equations at each iteration.

It was shown by Courtois [19] that BGS always converges for irreducible and aperiodic

Markov chains.

A final remark concerning all the iterative methods mentioned above is that they are all

essentially applications of the power method but with different iteration matrices. It follows

then that their convergence rates are also determined by the sub-dominant eigenvalues of

their iteration matrices.

21

3.3 Projection Methods

Projection methods consist of creating small-dimension subspaces from which the best

approximate solution is taken. These two main steps, i.e.,

• Construct subspaces

• Extract approximate solutions from subspaces

are repeated until convergence is reached.

Here we focus on Krylov projection methods for which the constructed subspaces are

Krylov subspaces. Specifically, Krylov projection methods start with an initial approximate

solution x(0) and find the best approximation

x(k) = x(0) + r

where r is selected from the Krylov subspace Kk,

Kk(A, v) = span{v,Av,A2v, · · · , Ak−1v},

for some vector v. The sequence of vectors {x(i)}, i = 0, 1, · · · , are expected to converge to

the solution in a finite number of iterations.

In order to introduce the conjugate gradient method, we first review the gradient or

steepest descent method. For a symmetric and positive definite (SPD) matrix A, the solu-

tion to the linear system Ax = b is equivalent to minimizing the quadratic function

F (z) =
1

2
zTAz − zT b. (3.2)

Its minimum can be found by use of a gradient/steepest descent method which, starting

with an initial approximation x(0), consists of two steps in each iteration: (1) choose a

direction d, and (2) choose how far to proceed in that direction, i.e., the step size α. For

a SPD matrix A, the residual vector defines the search direction. The steepest descent

22

method is shown in Figure 3.1.

Gradient/Steepest descent method:
1. Do until convergence
2. Compute step size α
3. Update solution x = x+ αr
4. Update direction r = b − Ax

Figure 3.1: Gradient/Steepest Descent Method

The value of α in each iteration is calculated as

αk =
r(k)T r(k)

r(k)TAr(k)

which minimizes function F (x+ αr) when evaluated at the point z = x+ αr.

In order to speed up convergence, widely employed scheme, the conjugate gradient

method, chooses search directions d(k) under the condition that successive search direction

vectors d(k) and d(k−1) are A-orthogonal or conjugate (i.e,. d(k)TAd(k−1) = 0). This guaran-

tees that successive residual vectors r(k−1), r(k) are mutually orthogonal (i.e., r(k)T r(k) = 0).

The corresponding step sizes αk are determined by

αk =
r(k)T r(k)

d(k)TAd(k)

and the scalars

βk =
r(k)T r(k)

r(k−1)T r(k−1)

are used to update the search direction vector. Take the initial search direction d(0) =

b−Ax(0), then the conjugate gradient method is illustrated in Figure 3.2.

The conjugate gradient method is indeed a Krylov subspace method because, at any

iteration k, it can be shown that

r(k) ∈ Kk(A, r(0)) = span{r(0), Ar(0)A2r(0), · · · , Akr(0)}

23

Conjugate Gradient Method:
1. Do until convergence
2. Compute step size α
3. Update solution x = x+ αd
4. Update residual r = r − αAd
5. Compute scalar β
6. Update direction d = d − βd

Figure 3.2: Conjugate Gradient Method

and

d(k) ∈ Kk(A, d(0)) = span{d(0), Ad(0)A2d(0), · · · , Akd(0)}.

Note that when the conjugate gradient method is applied to compute the stationary

distribution of a Markov chain, the matrix A corresponds to the matrix I−P T (for DTMCs)

or to QT (for CTMCs).

There are many other variants of Krylov subspace methods such as generalized minimum

residual (GMRES), bi-conjugate gradient stabilized (BiCGSTAB) and so on. We recom-

mend a study on Stewart’s book[64] for further details on how these projection methods

are applied to compute stationary distributions of Markov chains.

3.4 Decompositional Methods

In order to solve large scale Markov chains, it is appealing to apply divide and conquer

strategy. The system is divided into subsystems, each of which is analyzed separately and

then a global solution is constructed from the partial solutions. One such technique is called

Aggregation/Disaggregation Method and is stated below. Assume P is partitioned as

P =



















P11 P12 · · · P1M

P21 P22 · · · P2M

...
...

. . .
...

PM1 PM2 · · · PMM



















(3.3)

24

and let Pi denote the principal block submatrix of P obtained by deleting the i
th row and

jth column of blocks from P and let P∗i and Pi∗ designate

Pi∗ = (Pi1, Pi2, · · · , Pi,i−1, Pi,i+1, · · · , PiM)

and

P∗i =

































P1i

...

Pi−1,i

Pi+1,i

...

PM,i

































,

then the exact Aggregation/Disaggregation method is illustrated in Figure 3.3.

Input:

P =











P11 P12 · · · P1M

P21 P22 · · · P2M
...

...
. . .

...
PM1 PM2 · · · PMM











.

Output: The steady state distribution π = (π1, · · · , πM).

1. For I = 1, 2, · · · ,M ,
2. Compute stochastic complement: SII = PII + PI∗(I − PI)

−1P∗I

3. Calcuate the censored distribution: φI = φISII , φIe = 1, φI > 0.
4. End for
5. Form the coupling matrix: C[I, J] = φIPIJe, I, J = 1, 2, · · · ,M.
6. Solve the censored Markov chain: ξ = ξC, ξe = 1, ξ > 0.
7. Compute the distribution for the chain P : π = (ξ1φ1, ξ2φ2, · · · , ξMφM).
8. Stop.

Figure 3.3: Exact Aggregation/Disaggregation Method

The idea of this method is first of all, to uncouple (or divide) the original chain into several

smaller independent chains and to calculate the stationary distribution of each chain. Then

25

the coupling matrix is formed and its stationary distribution is determined. Finally the

overall solution to the original chain is formed. One of disadvantages for this method is the

computation of M matrix inverses. This method is called exact aggregation/disaggregation

because the exact solution to the original chain can be obtained after one aggregation and

one disaggregation. Later on we will see iterative aggregation/disaggregation method which

usually take many iterations of aggregations and disaggregations till convergence.

Input:

P =











P11 P12 · · · P1M

P21 P22 · · · P2M
...

...
. . .

...
PM1 PM2 · · · PMM











.

Output: The steady state distribution π = (π1, · · · , πM).

1. Initialization: π(0) = (π
(0)
1 , · · · , π(0)

M), set m = 1.
2. For each I = 1, 2, · · · ,M
3. Compute: φ

(m−1)
I = π

(m−1)
I /||π(m−1)

I ||1
4. End for

5. Form the coupling matrix: C[I, J](m−1) = φ
(m−1)
I PIJe, I, J = 1, 2, · · · ,M.

6. Solve the censored Markov chain: ξ(m−1) = ξ(m−1)C(m−1), ξ(m−1)e = 1, ξ(m−1) > 0.

7. Form the row vector: z(m) = (ξ
(m−1)
1 φ

(m−1)
1 , ξ

(m−1)
2 φ

(m−1)
2 , · · · , ξ(m−1)

M φ
(m−1)
M).

8. For each K = 1, 2, · · · ,M
9. Compute π

(m)
K : π

(m)
K = π

(m)
K PKK +

∑

J<K π
(m)
J PJK +

∑

J>K z
(m)
J PJK

10. End for
11. Test for convergence:
12. If not convergence, set m = m+ 1, go to step 2.
12. Else Stop.

Figure 3.4: Iterative Aggregation/Disaggregation Method

For NCD Markov chains, the KMS (Koury, McAllister and Stewart) method [63][65] has

been successfully used and is shown in Figure 3.4. The KMS method first forms the aggrega-

tion matrix with the current approximate solution and calculate its stationary distribution.

Then M subsystems of equations are solved by use of a block Gauss-Seidel step. This de-

fines disaggregation step. If the overall solution obtained is not sufficiently accurate, then

26

the whole process is repeated with the solution currently obtained being the next initial

approximate solution. The experimental results in [65] show rapid convergence for NCD

Markov chains.

Based on the ways in which the aggregation is performed and the ways in which the

disaggregation is executed, many variants for Iterative Aggregation/Disaggregation (IAD)

have been successfully designed and implemented, See [14][51][17] [72][12][32] [13][24]. Here

we would like to briefly introduce Feinberg & Chiu’s method since it carefully exploits the

structure of the transition diagram.

Feinberg & Chiu’s Method

This method takes advantages of the single-input state structure for each group of states.

That is, all forward and backward transitions between any two groups of states go through

a particular state, namely the single-input state. One simple example of the transition dia-

gram is illustrated in Figure 3.5 where the set of states containing state A have all incoming

transitions from other sets of states through state A and the set of states containing state

B have all incoming transitions from other sets of states through state B. There are no

restrictions on all internal transitions for each subset of states.

If we number all groups of states from 1 to M , then the transition matrix P or Q has

all its off-diagonal blocks with only 1 nonzero column shown below. Note that this matrix

does not correspond to the Markov chain shown in Figure 3.5. Otherwise the transition

diagram 3.5 will be much more complicated.

27

BA

Figure 3.5: Single-input State Structure

P =









































































X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X









































































Assume the Markov chain P is partitioned into the form of equation (3.3) following

the single-input state structure. Assume also that the single-input state in each subset Si

28

is the last state si, |Si| = si, based on some state ordering. Then pseudo code for Feinberg

& Chiu’s method is illustrated in Figure 3.6.

Input:

P =











P11 P12 · · · P1M

P21 P22 · · · P2M
...

...
. . .

...
PM1 PM2 · · · PMM











,

Output: The steady state distribution π = (π1, · · · , πM).

1. For I = 1, 2, · · · ,M ,
2. Compute aggregated matrix: P̃II = PII +

∑M
J=1,J 6=I PIJ

3. Calcuate the distribution: φI = φI P̃II , φIe = 1, φI > 0.
4. End for
5. Form the intertransition matrix:
6. K[I, J] = φIPIJe, I 6= J, I, J = 1, 2, · · · ,M.

6. K[I, I] = 1−∑M
j=1,j 6=I K[I, j].

7. Solve the Markov chain: ξ = ξK, ξe = 1, ξ > 0.
8. Compute the overall distribution for P : π = (ξ1φ1, ξ2φ2, · · · , ξMφM).
9. Stop.

Figure 3.6: Feinberg & Chiu’s Method

Note that when the subsets do not have the same number of states, the summation in step

2 of Figure 3.6 must be computed carefully. Since we assume that the single-input state

is numbered last in each subset, we can add all off-diagonal nonzero columns into the last

column of each diagonal block to form the aggregation matrix P̃II , I = 1, 2, · · · ,M . The

basic idea and the steps are the same as those of exact A/D method. It was proved that

the final solution is exact. Based on the single-input state structure however, this algorithm

does not involve the computation of matrix inverses when forming each aggregated matrix

P̃II , I = 1, 2, · · · ,M . It terminates in a finite number of steps and when the size of each

subset is equal to
√
n, its time complexity is O(n2).

29

Chapter 4

Convergence Behavior of Markov

Iteration Matrices

Our central theme in this chapter is an investigation into the condition under which

iterative methods would converge in one iteration. Our objective is to obtain both sufficient

and necessary conditions. Some backgrounds on nonnegative matrices, M-Matrices and

matrix splittings are reviewed first.

4.1 Nonnegative Matrices

In what follows, we shall use the following notations for any matrix A ∈ Rn×n of size

n× n.

• A ≥ 0 if aij ≥ 0 for all i and j .

• A > 0 if aij ≥ 0 for all i, j and A 6= 0.

• AÀ 0 if aij > 0 for all i and j .

A matrix A ∈ Rn×n is said to be nonnegative if A ≥ 0. When A À 0, then A is said

to be positive. Some of major results concerning nonnegative matrices are contained in the

theorem of Perron-Frobenius (See Berman and Plemmons [7]). Let us introduce the concept

30

of the spectral radius of a matrix A as the number ρ(A) = maxi|λi(A)| where λi(A) denotes

the ith eigenvalue of A. The spectrum σ(A) of A is the set of its distinct eigenvalues. For

any natural matrix norm ||A||, we have ρ(A) ≤ ||A||. Some parts of the results presented

in Perron-Frobenius theorem are illustrated below.

Theorem 4.1.1 (Perron-Frobenius) Let A ≥ 0 be an irreducible square matrix of order

n. Then,

• A has a positive real eigenvalue, λ1, equal to its spectral radius.

• There is a positive eigenvector x > 0 associated with ρ(A), i.e.,

Ax = λ1x and x > 0.

• ρ(A) increases when any entry of A increases.

• ρ(A) is a simple eigenvalue of A, i.e., λ1 is a simple root of

|λI −A| = 0.

4.1.1 Stochastic Matrices

The matrices P and Q for DTMC and CTMC have many helpful and interesting prop-

erties to which we now turn. A matrix P ∈ Rn×n is said to be a stochastic matrix if it

satisfies the following conditions

∑

all j

pij = 1 ∀i; Pij ≥ 0 ∀i, j.

Some properties of stochastic matrices are as follows.

Proposition 4.1.1 Every stochastic matrix P has an eigenvalue equal to unity.

31

Proof A stochastic matrix P has row sums equal to 1. So we have

Pe = e

where e = (1, 1, · · · , 1)T . It immediately follows that P has a unit eigenvalue. ¤

Proposition 4.1.2 The eigenvalues of a stochastic matrix P must have modulus less than

or equal to 1.

Proof A stochastic matrix P has row sums equal to 1. So we have

||P ||∞ = 1.

It is known also that

ρ(P) ≤ ||P ||∞

and immediately it follows that

ρ(P) ≤ 1.

¤

Proposition 4.1.3 The stochastic matrix P of an irreducible Markov chain possesses a

simple unit eigenvalue.

Proof This follows in a straightforward manner from Propositions 4.1.1, 4.1.2 and the

Perron-Frobenius theorem. ¤

Proposition 4.1.4 The right-hand eigenvector corresponding to a unit eigenvalue λ1 = 1

of a stochastic matrix P is given by e = (1, 1, · · · , 1)T .

Proof A stochastic matrix P has row sums equal to 1. So Pe = e = λ1e. ¤

Proposition 4.1.5 The vector π is the stationary probability vector of a stochastic matrix

P if and only if it is a left-hand eigenvector corresponding to a unit eigenvalue.

32

Proof From the definition of stationary distribution, we have

π = πP

and thus πP = λ1π with λ1 = 1. The converse is obvious as well. ¤

4.1.2 Matrix Splittings

Definition 4.1.1 (Regular and Weak Regular Splitting) A splitting A = M − N is

called a regular splitting if M−1 ≥ 0 and N ≥ 0. It is called a weak regular splitting if

M−1 ≥ 0 and M−1N ≥ 0.

It is obvious that a regular splitting is also a weak regular splitting, but the converse is not

true.

Definition 4.1.2 (Convergent and Semiconvergent Matrices) A matrix T is said to

be convergent whenever limk→∞ T k = 0. It is said to be semiconvergent whenever limk→∞ T k

exists. This limit need not be zero.

Definition 4.1.3 (Convergent and Semiconvergent Splittings) A splitting A =M−

N is said to be convergent if M−1N is convergent. It is said to be semiconvergent if M−1N

is semiconvergent.

4.1.3 M-Matrices

Now we review the definition and properties of an M-matrix. More detailed information

and proofs may be found in Nonnegative Matrices in the Mathematical Sciences by Berman

and Plemmons[7]. See also pages 169–173 [64].

Definition 4.1.4 (M-Matrix) If a finite matrix A with non-positive off-diagonal elements

and nonnegative diagonal elements can be expressed in the form

A = sI −G, s > 0, G ≤ 0 and s ≥ ρ(G),

33

then A is called an M-Matrix.

A Z-matrix is a matrix with all off-diagonal elements nonpositive. A Z-matrix can be

written as A = sI −G with G ≥ 0. For instance, we can take s = maxni=1 aii. If s ≥ ρ(G),

then matrix M is also an M-matrix. When s > ρ(G), the matrix M is non-singular and

when s = ρ(G), it is singular.

Theorem 4.1.2 Let A be a Z-matrix. Then the following are equivalent.

1. A is a nonsingular M-matrix.

2. A−1 ≥ 0.

3. Every real eigenvalue of A is positive.

4. All of the principal matrices of A are positive.

5. A+ αI is nonsingular for all α ≥ 0.

6. Av ≥ 0 for some nonnegative vector v ≥ 0.

It is straightforward that the negated infinitesimal generator −Q of a CTMC is an

M-Matrix. An important property of M-Matrix is stated as follows (See[64]).

Theorem 4.1.3 Any M-matrix A has the property that

1. A−1 ≥ 0.

2. If Ã is obtained from A by setting any off-diagonal element to zero, then Ã is also an

M-Matrix.

Lemma 4.1.1 A matrix T is semiconvergent if and only if

1. ρ(T) ≤ 1;

2. if ρ(T) = 1, then all the Jordan blocks associated with 1 for T are one-by-one;

3. if ρ(T) = 1, then λ ∈ σ(T) and |λ| = 1 implies λ = 1.

34

Proof The proof may be found in [7]. ¤

Theorem 4.1.4 For an irreducible singular M-matrix A, we have

1. index(A) = 1.

2. A has rank n− 1.

3. There is a positive vector x > 0 such that Ax ≥ 0.

4. A is almost monotone, i.e., if Ax ≥ 0, then Ax = 0.

5. Each principal sub-matrix of A other than A itself is a nonsingular M-matrix.

4.2 Motivating Examples

Based on the definitions and theorems reviewed above, we are now ready to investigate

conditions for convergence in a single iteration. Let us look at an example first.

Example 1:

Consider the 5-state CTMC shown graphically in Figure 4.1.

1.0 1.5
2.0

4.0 1.0

1.0

2.1

2.0

1.0

2.1

4.0

1.0

2.1

5 4

1

3

22.0

Figure 4.1: A 5-state Continuous Time Markov Chain

35

Its transition rate matrix Q is

Q =

























−6.50 2.00 1.00 1.50 2.00

0.00 −5.00 4.00 1.00 0.00

1.00 2.10 −5.10 0.00 2.00

1.00 2.10 0.00 −7.10 4.00

1.00 2.10 0.00 0.00 −3.10

























and its rank is rank(Q) = 4. It is also easy to verify that Q is irreducible and aperiodic.

Splitting QT as QT = D−L−U where D, L and U are respectively the diagonal, negated

lower triangular and upper triangular part of the matrix QT , gives

D =

























−6.50 0.00 0.00 0.00 0.00

0.00 −5.00 0.00 0.00 0.00

0.00 0.00 −5.00 0.00 0.00

0.00 0.00 0.00 −7.10 0.00

0.00 0.00 0.00 0.00 −3.10

























,

L =

























0.00 0.00 0.00 0.00 0.00

−2.00 0.00 0.00 0.00 0.00

−1.00 −4.00 0.00 0.00 0.00

−1.50 −1.00 0.00 0.00 0.00

−2.00 0.00 −2.00 −4.00 0.00

























and U =

























0.00 0.00 −1.00 −1.00 −1.00

0.00 0.00 −2.10 −2.10 −2.10

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

























.

36

It follows that the iteration matrix Tgs for the forward Gauss-Seidel method is

Tgs = (D − L)−1U =

























0.00 0.00 0.1538 0.1538 0.1538

0.00 0.00 0.4815 0.4815 0.4815

0.00 0.00 0.4078 0.4078 0.4078

0.00 0.00 0.1003 0.1003 0.1003

0.00 0.00 0.4918 0.4918 0.4918

























.

The spectrum of this iteration matrix is σ(Tgs) = {1.0, 0.0} with 1.0 being simple. The

eigenvalues (the diagonal elements of the matrix Λ below) and eigenvectors (the column

vectors in matrix V below) of Tgs are respectively

Λ =

























0.0

0.0

0.0

1.0

0.0

























and V =

























1.00 0.00 −0.2425 0.1874 −0.2051

0.00 1.00 −0.9701 0.5866 −0.8816

0.00 0.00 0.0000 0.4968 −0.2904

0.00 0.00 0.0000 0.1222 −0.0194

0.00 0.00 0.0000 0.5992 0.3099

























.

The reader may wish to verify that, given the three initial starting vectors

x(0) =

























0.20

0.20

0.20

0.20

0.20

























, y(0) =

























0.05

0.05

0.20

0.30

0.40

























and z(0) =

























0.40

0.60

0.00

0.00

0.00

























,

the iterative Gauss-Seidel scheme converges to the exact solution

π = (0.0941, 0.2944, 0.2494, 0.0613, 0.3007)

in a single iteration with starting vector either x(0) or y(0), but not z(0). In fact it never

37

converges with the initial vector z(0), since after the first iteration, the new approximation

becomes the zero vector (all components are zero) and remains like this in all successive

iterations. We notice as well that it takes 11 iterations for the backward Gauss-Seidel to

obtain the same solution π above when the initial vector is x(0) or y(0) and 10 iterations

when the initial vector is z(0).

Example 2: An M/G/1-Like Queue

The underlying Markov chain for a truncated M/G/1-like queueing model has its in-

finitesimal generator in upper Hessenberg form. In other words, it has the following nonzero

structure (where “X” indicates a nonzero element)

Q =









































































X X X · · · X X X X X X · · · X X X

X X X · · · X X X X X X · · · X X X

0 X X · · · X X X X X X · · · X X X

0 0 X · · · X X X X X X · · · X X X

...
...

...
. . .

...
...

...
...

...
...
. . .

...
...

...

0 0 0 · · · 0 X X X X X · · · X X X

0 0 0 · · · 0 0 X X X X · · · X X X

0 0 0 · · · 0 0 0 X X X · · · X X X

0 0 0 · · · 0 0 0 0 X X · · · X X X

0 0 0 · · · 0 0 0 0 0 X · · · X X X

...
...

...
. . .

...
...

...
...

...
...
. . .

...
...

...

0 0 0 · · · 0 0 0 0 0 0 · · · 0 X X









































































.

The block Gauss-Seidel method converges in a single iteration for Markov chains like this,

whose transition matrix is upper Hessenberg and which is partitioned into four blocks as

38

indicated above. For a particular example, given an Markov chain

QT = DN − (LN + UN) =







D11 −U12

−L21 D22






=















































−11.10 4.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 −14.90 5.50 0.00 0.00 0.00 0.00 0.00

1.20 1.60 −18.50 0.20 0.00 0.00 0.00 0.00

1.00 1.50 2.00 −8.70 3.00 0.00 0.00 0.00

1.00 1.20 2.10 1.10 −8.80 2.20 0.00 0.00

2.40 2.10 2.40 1.60 1.20 −5.70 3.00 0.00

2.10 1.40 2.50 3.10 2.80 2.20 −5.60 3.10

2.40 3.10 4.00 2.70 1.80 1.30 2.60 −3.10















































,

the iteration matrix for the forward block Gauss-Seidel is

Tbgs = (DN−LN)−1UN =















































0.00 0.00 0.00 0.00 0.00053206597368 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00147648307697 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00390318761329 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.34604059377192 0.00 0.00 0.00

0.00 0.00 0.00 0.00 1.00000000000000 0.00 0.00 0.00

0.00 0.00 0.00 0.00 3.82220673054407 0.00 0.00 0.00

0.00 0.00 0.00 0.00 6.67305606366524 0.00 0.00 0.00

0.00 0.00 0.00 0.00 8.08857771766120 0.00 0.00 0.00















































.

39

It converges in a single iteration with the initial approximation x(0) below.

x(0) =















































0.12500000

0.12500000

0.12500000

0.12500000

0.12500000

0.12500000

0.12500000

0.12500000















































; π =















































0.00002668897986

0.00007406191911

0.00019578792999

0.01735775429195

0.05016103487381

0.19172584510574

0.33472739792441

0.40573142897513















































The exact solution π is shown above. These examples lead us to investigate conditions under

which the Gauss-Seidel method for computing stationary distributions of finite irreducible

Markov chains converges in a single iteration. We would also like to investigate the role

played by the initial vector approximation in such convergence. And finally, we would like

to know if iterative methods other than Gauss-Seidel also have this property.

4.3 Spectrum Condition

Our convergence analysis of the power method might suggest that iteration matrices

having a single unit eigenvalue and all other eigenvalues equal to zero might be an appro-

priate place to begin our investigations.

Spectrum of Iteration Matrix: λ1 = 1, λ2 = 0, . . . , λn = 0.

Given an iteration matrix T , with eigensolution Tyi = λiyi, yi 6= 0, i = 1, 2 , . . . , n

and an initial approximation x(0) which we assume can be written as a linear combination

40

of the eigenvectors, we have

x(k) = Tx(k−1) = T 2x(k−2) = · · · = T kx(0)

=
n
∑

i=1

ηiλ
k
i yi

= λk1

(

η1y1 +
n
∑

i=2

ηi(
λi
λ1
)kyi

)

= η1y1.

Then the computed solution satisfies

x∗ =
x(1)

||x(1)||1
=

y1

||y1||1

which is exactly what we are looking for. After one iteration we have computed the solution,

y1, exactly. However it turns out that this condition is not sufficient for Gauss-Seidel method

to converge in a single iteration for any positive initial x(0) > 0.

Example 3: A Counter Example

Given a CTMC with infinitesimal generator [35]

Q =



















−1.00 0.50 0.50 0.00

0.50 −1.00 0.00 0.50

0.50 0.00 −1.00 0.50

0.00 0.50 0.50 −1.00



















and Gauss-Seidel iteration matrix

Tgs =



















0.00 0.50 0.50 0.00

0.00 0.25 0.25 0.50

0.00 0.25 0.25 0.50

0.00 0.25 0.25 0.50



















,

41

the spectrum of T is given by σ(Tgs) = {1.00, 0.00} and 1.00 is simple. The corresponding

eigenvectors are



















0.50

0.50

0.50

0.50



















,



















1.00

0.00

0.00

0.00



















,



















−1.00

0.00

0.00

0.00



















and



















−1.00

0.00

0.00

0.00



















.

With the initial approximation x(0) = (0.10 0.20 0.30 0.40)T , the Gauss-Seidel method

does not converge in one iteration. In the previous analysis of the convergence of the

power method, it was assumed that the initial approximation x(0) could be written as a

linear combination of the eigenvectors of the iteration matrix. In this example, the initial

approximation x(0) = (0.10 0.200 0.30 0.40)T can not be expressed as a linear combination

of the eigenvectors. Observe that only the first eigenvector, y1, has nonzero components

in positions 2, 3 and 4 and they are identical (= 0.50). In these positions in the other

eigenvectors, the components are all zero. However, the initial vector, x(0), has unequal

components in positions 2, 3 and 4 and hence cannot be written as a linear combination of

the eigenvectors yi, i = 1, 2, 3, 4. It is for this reason that the initial vector does not converge

in one iteration (In fact, 2 iterations are required). With a different initial approximation,

for instance, x(0) = (0.10 0.30 0.30 0.30)T with identical components in the last three

positions, the method does indeed converge in one iteration. In this case, the vector x(0)

can be written as the liner combination

x(0) = 0.60 y1 + 0.20 y4

where yi, i = 1, 2, 3, 4 are the eigenvectors of T . Therefore, we have to investigate other

conditions.

42

4.4 Rank-1 Condition

Before showing that an iteration matrix T having rank one is both a necessary and a

sufficient condition for convergence in a single iteration, we prove a number of lemmas that

we will need.

Lemma 4.4.1 Any rank-1 matrix A can be decomposed into the product of two nonzero

column vectors, A = uvT .

Proof The Rank Normal Form, see pages 136–137[44] for example, says that if A is an

n × n matrix such that rank(A) = 1, then there exist nonsingular matrices P and Q such

that

PAQ =







Ir,r 0r,n−r

0n−r,r 0n−r,n−r






.

When matrix A is rank 1, we have

PAQ =







11,1 01,n−1

0n−1,1 0n−1,n−1






= e1e

T
1

where e1 is a column vector whose first component is one and whose remaining components

are zero. Let (P−1)∗1 be the first column of P
−1 and (Q−1)1∗ the first row of Q

−1. Then

we have

A = P−1e1e
T
1 Q

−1 = (P−1e1)(e
T
1 Q

−1) = (P−1)∗1(Q
−1)1∗ = uvT .

The lemma follows by setting u = (P−1)∗1 and v
T = (Q−1)1∗. ¤

Lemma 4.4.2 Any rank-1 matrix A has at most one nonzero eigenvalue λ1 which is simple

if it is nonzero.

Proof To prove this lemma, we use the following property of the coefficients of character-

istic equations (Page 494[44]). Let

|A− λI| = p(λ) = λn + c1λ
n−1 + c2λ

n−2 + · · ·+ cn−1λ+ cn = 0

43

be the characteristic equation associated with the matrix A. Then

ck = (−1)k
∑

(all k × k principal minors).

Since all principal minors corresponding to blocks of size two or greater in a rank-1 matrix

are 0, we have

p(λ) = λn + c1λ
n−1 = λn−1(λ+ c1) = λn−1(λ−

n
∑

i=1

aii)

which, when set to zero, i.e., p(λ) = 0, has roots λ1 =
∑n

i=1 aii and λ2 = λ3 = · · · = λn = 0.

If λ1 6= 0, then λ1 must be simple since the remaining n− 1 eigenvalues of A are all equal

to zero. ¤

Lemma 4.4.3 For a Markov-Type system Ax = 0 with splitting A = D−L−U , where D, L

and U are respectively the diagonal, negated lower triangular and negated upper triangular

part of A, the iteration matrix Tgs for the forward (respectively backward) point Gauss-

Seidel method has spectrum σ(Tgs) = {1, 0} if the matrix U (respectively L) has rank one.

Furthermore,the dominant eigenvalue λ1 = 1 is simple if the Markov chain is irreducible.

Proof We prove the forward version only. The Gauss-Seidel iteration matrix, Tgs =

(D−L)−1U , has rank one when the matrix U has rank one. In this case, from the previous

lemma, matrix Tgs has at most one nonzero eigenvalue. Also, since π satisfies Aπ = 0, it also

satisfies π = Tgsπ. Thus λ1 = 1 is an eigenvalue of the iteration matrix Tgs corresponding

to the stationary distribution vector π. We therefore conclude that σ(Tgs) = {1, 0} i.e., all

the eigenvalues of Tgs are equal to 0 except the single nonzero eigenvalue 1. The fact that

the eigenvalue λ1 = 1 is simple can be inferred also from the previous lemma. ¤

We point out in the following corollary that matrix Tgs is idempotent.

Corollary 4.4.1 The Gauss-Seidel iterative matrix Tgs = (D − L)−1U for an irreducible

Markov chain A is idempotent, where A = D−L−U , (D−L) is nonsingular and rank(U) =

1.

44

Proof When rank(N) = 1, then rank(Tgs) = 1. So with lemma 4.4.1, matrix Tgs has

full rank factorization Tgs = uvT with nonzero column vectors u and v. With lemma 4.4.3,

its nonzero eigenvalue is 1. That means vTu = 1 since Tgsu = uvTu = (vTu)u (u 6= 0).

Therefore T 2
gs = (uv

T)(uvT) = u(vTu)vT = uvT = Tgs. ¤

Theorem 4.4.1 In an irreducible Markov-Type system Ax = 0 with the splitting A =

D − L− U , where D, L and U are respectively the diagonal, lower negated triangular and

upper negated triangular parts of A, if the rank of the matrix U (respectively L) is equal to

1, the forward (respectively backward) point Gauss-Seidel method with iteration matrix Tgs

converges in one iteration for any positive initial vector x(0) > 0.

Proof Notice first that matrix −(D − L) is an M-matrix (see page 171[64]) and any M-

matrix has the property that its inverse is nonnegative, so (D−L)−1 ≤ 0 and (D−L)−1U ≥

0. Note also that each row of matrix (D − L)−1U must have at least one positive element

otherwise the solution π does not satisfy the fix-point equation x = (D−L)−1Ux. Therefore

any initial positive vector x(0) > 0, multiplying by matrix Tgs = (D − L)−1U , results in a

positive vector x(1), i.e.

x(1) = Tgsx
(0) > 0.

Let x be the normalized x(1), i.e.,

x =
x(1)

||x(1)||1
=

Tgsx
(0)

||Tgsx(0)||1
> 0. (4.1)

This implies that vector x is a probability vector with all components being positive. Sec-

ondly we have T 2
gs = Tgs by corollary 4.4.1. Finally we prove that the positive probability

vector (4.1) satisfies the fix-point equation x = Tgsx. This can be seen from the fact

Tgsx = Tgs
Tgsx

(0)

||Tgsx(0)||1
=
(Tgs)

2x(0)

||Tgsx(0)||1
=

Tgsx
(0)

||Tgsx(0)||1
= x.

Thus we proved the theorem. ¤

45

This theorem explains why the first motivating example in Section 3 converges in just

one iteration for forward Gauss-Seidel with initial vector x(0) or y(0). It is due to the rank-1

property of the iteration matrix Tgs. We wish to stress that this rank-1 condition for single

iteration convergence also holds for a block Gauss-Seidel splitting. Indeed, it holds for all

regular splittings A = M −N where M−1 ≥ 0 and N ≥ 0, as long as the iteration matrix

T =M−1N has rank 1 because the lemmas, corollaries and theorems given above hold also

for rank-1 iteration matrix T . Before concluding this section, we prove that this rank-1

condition is also a necessary condition for single iteration convergence when the Markov

chain is irreducible.

Theorem 4.4.2 Consider an irreducible Markov chain A with regular splitting A =M−N .

If the iterative scheme x(k+1) = Tx(k) with T = M−1N converges in a single iteration for

any initial vector x(0) > 0, then rank(T) = rank(N) = 1.

Proof When the iterative scheme x(k+1) = Tx(k) converges in one iteration for any initial

positive vector x(0) > 0, we have x(1) = Tx(0) (assume x(0) and x(1) are normalized positive

vector) and x(1) = Tx(1). So

Tx(0) = x(1) = Tx(1) = T (Tx(0)) = T 2x(0),

or

(T − T 2)x(0) = 0

for any initial positive vector x(0). This indicates that the subspace of the general solution to

the homogeneous linear system (T −T 2)x = 0 has dimension n. The basis for the subspace,

46

for example, can be formed by the n linear independent columns in the Vandermonde matrix

V n×n =

























1 v1 v2
1 · · · vn−1

1

1 v2 v2
2 · · · vn−1

2

...
...

...
. . .

...

1 vn−1 v2
n−1 · · · vn−1

n−1

1 vn v2
n · · · vn−1

n

























where vi 6= vj , for ∀ i 6= j. It thus implies rank(Ker(T − T 2)) = n. So rank(T − T 2) =

n−n = 0. Or T−T 2 = 0, i.e, T = T 2. In other words, the iteration matrix T is idempotent.

Now we prove the rank of T is 1. Assume rank(T) = r. Let Rng(T) and Ker(T) be the

range and kernel of T respectively. Assume all columns x′is in matrix X = [x1, x2, · · · , xr]

form the basis for Rng(T) and columns y′js in matrix Y = [y1, y2, · · · , yn−r] be the basis

for ker(T). Then all columns in matrix Bn×n = [X|Y] are linearly independent[44]. That

is, Bn×n is nonsingular. And we know Txi = xi for i = 1, 2, · · · , r and Tyj = 0 for

j = 1, 2, · · · , n− r. Then

TB = T [X|Y] = [TX|TY] = [X|0]

and consequently

T = [X|0]B−1 = [X|Y]







Ir 0

0 0






B−1 = B







Ir 0

0 0






B−1

where Ir is an identity matrix of order r(see pages 385–386[44]). Now we prove r = 1.

Since T is similar to Ir, they have the same set of eigenvalues, i.e., σ(Ir) = {1, 0} with the

algebraic multiplicity of 1 being r. But we know from the Perron-Frobenius Theorem which

states that the spectral radius of an nonnegative matrix is one of its eigenvalues and has

algebraic multiplicity 1 (see page 27[64] and page 673[44]), that the nonnegative matrix T

has its unit eigenvalue simple, i.e, r = 1. It follows immediately that rank(T) = rank(Ir) =

47

rank(I1) = 1. ¤

Note that it is true that the rank-1 iteration matrix T =M−1N of a regular splitting of

an irreducible Markov chain is idempotent. But the converse is not necessarily true, i.e, not

every idempotent matrix can be an iteration matrix for an irreducible Markov chain. This is

because an idempotent matrix can have its eigenvalue 1 with algebraic multiplicity greater

than 1, an iteration matrix for an irreducible Markov chain, however, has its eigenvalue 1

being simple (see page 175[64]).

Recall that in example 3, the condition σ(Tgs) = {1, 0} with 1 being simple was not

sufficient for the iteration to converge in one iteration. Instead it converged in 2 iterations.

This was not just by chance. In that example, rank(Tgs) = 2 and the rank of its kernel is

rank(Ker(Tgs)) = 4 − 2 = 2. This means that the Jordan canonical form for T has one

1× 1 Jordan block for the eigenvalue 1, one 1× 1 Jordan block and one 2× 2 Jordan block

for eigenvalue 0, i.e.,

Tgs = B



















1 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0



















B−1.

Then

T 2
gs = B



















1 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0



















2

B−1 = B



















1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



















B−1

and

T 3
gs = TgsT

2
gs = B



















1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



















B−1 = T 2
gs.

48

Hence

T 2
gs = T 3

gs = T 4
gs = T 5

gs = · · ·

and the iterative process converges in 2 iterations. It is interesting to note that the above

fact can be generalized when the iteration matrix T has rank(T) = r > 1 and σ(T) = {1, 0}.

This is stated in the following theorem.

Theorem 4.4.3 For an irreducible Markov chain A with regular splitting A = M −N , if

the matrix T =M−1N has spectrum σ(T) = {1, 0} and rank(T) = r > 1, then the iterative

scheme x(k+1) = Tx(k) converges in no more than r iterations.

Proof Recall that for every matrixA ∈ Cn×n with distinct eigenvalues σ(A) = {λ1, λ2, · · · , λs},

there is a nonsingular matrix P such that (see page 590[44])

P−1AP = J =



















J(λ1) 0 · · · 0

0 J(λ2) · · · 0

...
...

. . .
...

0 0 · · · J(λs)



















where J(λj) is the Jordan segment for eigenvalue λj ∈ σ(A); each segment J(λj) is made

up of tj = dim(Ker(A− λjI
n×n)) Jordan blocks Ji(λj)

J(λj) =



















J1(λj) 0 · · · 0

0 J2(λj) · · · 0

...
...

. . .
...

0 0 · · · Jtj (λj)



















with Ji(λj) =



















λj 1

. . .
. . .

. . . 1

λj



















and the largest Jordan block in J(λj) is of size kj × kj where kj = index(λj) (see page

590[44]). So when matrix T = M−1N has spectrum σ(T) = {1, 0}, it has two Jordan

segments, J(1) of size 1 × 1 for eigenvalue 1 (1 is simple by Perron-Frobenius Theorem)

and the other J(0) of size (n− 1)× (n− 1) for eigenvalue 0. And when rank(T) = r > 1,

Jordan segment J(0) has tj = index(0) = dim(Ker(T − 0In×n)) = dim(Ker(T)) = n − r

49

Jordan blocks which are actually nilpotent matrices with 1′s on the super-diagonal and 0′s

elsewhere:

P−1TP = J =







J(1) 0

0 J(0)






with J(1) = I1×1

and

J(0) =



















J1(0) 0 · · · 0

0 J2(0) · · · 0

...
...

. . .
...

0 0 · · · Jn−r(0)



















with

Ji(0) =



















0 1

0
. . .

. . . 1

0



















.

Assume the matrix Jn−r(0) has the largest size k0 among these nilpotent matrices Ji(0) and

we prove that k0 is no larger than r, otherwise assume k0 > r, then we have the following

contradiction.

n−r
∑

i=1

|Ji(0)| > |J1(0)|+ |J2(0)|+ · · ·+ |Jn−r−1(0)|+ r

≥ 1 + 1 + · · ·+ 1 + r

= (n− r − 1) + r

= n− 1 = |J(0)|

50

where | · | stands for the number of rows or columns of a square matrix. We know, for any

nilpotent matrix Ji(0) of size k × k, Ji(0)
k = Ji(0)

k+1 = Ji(0)
k+2 = · · · = 0. Thus

T k0 =



















1 0 0 0

0 J1(0) 0 0

0
...

...
...

0 0 0 Jn−r(0)



















k0

=



















1 0 · · · 0

0 J1(0)
k0 · · · 0

0
...

. . .
...

0 0 · · · Jn−r(0)
k0



















=



















1 0 · · · 0

0 0 · · · 0

0
...
. . .

...

0 0 · · · 0



















which is equal to T k0+1. Thus the iterative scheme x(k+1) = Tx(k) converges in k0 ≤ r

iterations. It converges in no more than r iterations for an Markov chain where r is the

rank of the matrix T . ¤

Finally, observe that with an iteration matrix T having rank(T) > 1, an iterative scheme

may still converge in a single iteration for some selected initial vectors. However, it will

never converge in a single iteration for any initial positive vector.

51

Chapter 5

A Rank Reduction Method For

Markov Chains

We have just shown that all iteration matrices based on regular splitting A = M − N

such as point and block Gauss-Seidel, converge in a single step when the iteration matrix

M−1N has rank one. This leads us to ask whether it is possible to reduce the rank of

an iteration matrix with rank r > 1 to one and then take advantage of the single step

convergence property for the resulting iteration matrix? This is what we seek to achieve in

this section.

5.1 Rank Reduction Formula

We first introduce the Wedderburn rank reduction formula and some other formulas

needed.

Theorem 5.1.1 (Wedderburn Rank-one Reduction Formula) Let A ∈ Rn×n. If

x ∈ Rn and y ∈ Rn are vectors such that ω = yTAx 6= 0, then the matrix B = A −

ω−1AxyTA has rank exactly one less than the rank of A.

Successive use of this idea provides quite general factorizations of the matrix A. For

more detailed information, see HouseHolder [33], or Chu, Funderlic and Golub [15] and the

52

references therein.

Theorem 5.1.2 (Sherman-Morrison Formula[44]) If A ∈ Rn×n is nonsingular and

if u and v are n × 1 column vectors such that 1 + vTAu 6= 0, then the sum A + uvT is

nonsingular, and

(A+ uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

Note that when A is the identity matrix I, we have

(I + uvT)−1 = I − uvT

1 + vTu
when 1 + vTu 6= 0.

5.2 Rank Reduction for Computing Stationary Distributions

of MCs

We are now ready to derive a rank reduction method for computing stationary distri-

butions of Markov chains. Let A =M −N and T =M−1N and assume rank(T) = r > 1.

Let ei be the i
th column of the (n × n) identity matrix. Given two vectors ei1 , ej1 ∈ In×n

such that

ω = eTj1Tei1 = T [j1, i1] 6= 0

and

eTj1T
2ei1 = T [j1, ∗]T [∗, i1] 6= ω,

then, by the Wedderburn Rank-one Reduction Formula, the matrix

T (2) = T − ω−1Tei1e
T
j1
T (5.1)

has rank exactly one less than the rank of T . From the fixed-point equation

x = Tx, (5.2)

53

we have

x = (T (2) + ω−1Tei1e
T
j1
T)x, (5.3)

or

(I − ω−1Tei1e
T
j1
T)x = T (2)x. (5.4)

That is, if eTj1T
2ei1 6= ω, then

x = (I − ω−1Tei1e
T
j1
T)−1T (2)x = (I − ω−1Tei1e

T
j1
T)−1(T − ω−1Tei1e

T
j1
T)x = Hx (5.5)

where rank(H) = rank(T (2)) = rank(T) − 1 since pre-multiplying the matrix T (2) by a

nonsingular matrix does not change its rank. From the Sherman-Morrison Formula, we

calculate the matrix H as

H = (I +
ω−1Tei1e

T
j1
T

1− ω−1eTj1T
2ei1

)(T − ω−1Tei1e
T
j1
T)

= T − ω−1Tei1e
T
j1
T +

ω−1Tei1e
T
j1
T 2

1− ω−1eTj1T
2ei1
−
ω−1Tei1e

T
j1
Tω−1Tei1e

T
j1
T

1− ω−1eTj1T
2ei1

.

Multiplying both sides by the scalar ω(ω − eTj1T
2ei1) 6= 0, yields

ω(ω − eTj1T
2ei1)H

= ω(ω − eTj1T
2ei1)T − ω(ω − eTj1T

2ei1)ω
−1Tei1e

T
j1
T + ω(ω − eTj1T

2ei1)
ω−1Tei1e

T
j1
T 2

1− ω−1eTj1T
2ei1

− ω(ω − eTj1T
2ei1)

ω−1Tei1e
T
j1
Tω−1Tei1e

T
j1
T

1− ω−1eTj1T
2ei1

= ω(ω − eTj1T
2ei1)T − (ω − eTj1T

2ei1)Tei1e
T
j1
T + ωTei1e

T
j1
T 2 − Tei1(e

T
j1
TTei1)e

T
j1
T

= ω(ω − eTj1T
2ei1)T − (ω − eTj1T

2ei1)Tei1e
T
j1
T + ωTei1e

T
j1
T 2 − (eTj1T 2ei1)Tei1e

T
j1
T

= ω(ω − eTj1T
2ei1)T − ωTei1e

T
j1
T + ωTei1e

T
j1
T 2

= ω(ω − eTj1T
2ei1)T + ωTei1e

T
j1
T (T − I).

54

Dividing both sides by the scalar ω(ω − eTj1T
2ei1) 6= 0 thus yields

H = T +
Tei1e

T
j1
T (T − I)

ω − eTj1T
2ei1

. (5.6)

Notice that the matrix H in (5.6) has rank exactly one less than the matrix T in (5.2).

This rank reduction process may be repeated until finally, a rank-1 matrix H is obtained.

In order to simplify the calculation of the matrix H in formula (5.6) and to save memory,

assume that the indices of the nonzero columns in N form the set S = {k1, k2, · · · , kr}.

Assume further that rank(N) = r which means that all nonzero columns of N are linearly

independent. Let ej be the j
th column of the identity matrix In×n and

β = eTj1T
2ei1 = T [j1, ∗]T [∗, i1] 6= ω

βj = eTj1T
2ej = T [j1, ∗]T [∗, j]

ωj = eTj1Tej = T [j1, j].

Then for the matrix H in (5.6), we have

(ω − β)Hej = (ω − β)Tej + Tei1e
T
j1
T 2ej − Tei1e

T
j1
Tej

= (ω − β)Tej + βjTei1 − ωjTei1

= (ω − β)Tej + (βj − ωj)Tei1 .

It follows that

Hej = Tej +
βj − ωj
ω − β

Tei1 , for ∀j ∈ S,

or

H[∗, j] = T [∗, j] + βj − ωj
ω − β

T [∗, i1], for ∀j ∈ S. (5.7)

Thus the matrix H is generated column by column from the previous iteration matrix T .

55

Note that the matrix H formed by use of equation (5.7) is the same as that formed by

equation (5.6) and has the following properties.

Proposition 5.2.1 If matrix T (5.2) has zero column j, then the column j of matrix H

formed by (5.7) is also zero.

Proof Assume the jth column of matrix T is zero, i.e, T [∗, j] = 0. Then

H[∗, j] = T [∗, j] + βj − ωj
ω − β

T [∗, i1]

= T [∗, j] + T [j1, ∗]T [∗, j]− T [j1, j]

ω − β
T [∗, i1]

= T [∗, j] + 0− 0
ω − β

T [∗, i1]

= T [∗, j] + 0 = 0.

¤

This property indicates that no additional nonzero columns are generated in successive

rank reduction steps.

Proposition 5.2.2 The matrix H in (5.7) satisfies that H[∗, i1] = 0.

Proof It is straightforward that

H[∗, i1] = T [∗, i1] +
βi1 − ωi1
ω − β

T [∗, i1]

= T [∗, i1] +
T [j1, ∗]T [∗, i1]− T [j1, i1]

ω − β
T [∗, i1]

= T [∗, i1] +
β − ω

ω − β
T [∗, i1]

= T [∗, i1]− T [∗, i1] = 0.

¤

This property indicates that one zero column arises in successive iteration matrices

during the rank reduction process. Combining these two properties, it is apparent that

56

each successive iteration matrix H has one more zero column than the iteration matrix that

preceded it.

We note that in the rank reduction process, it is possible that the iteration matrix has

a subset of columns linear dependent. That is, the rank of the iteration matrix is less than

the number of nonzero columns. If this is the case, then any nonzero columns j which are

linear dependent with column i1 also satisfies H[∗, j] = 0. This can be seen in the following

proposition.

Proposition 5.2.3 If the jth column of matrix T in (5.2) is linear dependent with column

i1, then matrix H in (5.7) satisfies H[∗, j] = 0.

Proof From the condition stated above, assume that there is a constant c such that

T [∗, j] = c× T [∗, i1]. Then

H[∗, j] = T [∗, j] + βj − ωj
ω − β

T [∗, j]

= T [∗, j] + T [j1, ∗]T [∗, j]− T [j1, j]

ω − β
T [∗, j]

= cT [∗, i1] +
cT [j1, ∗]T [∗, i1]− cT [j1, i1]

ω − cβ
T [∗, i1]

= cT [∗, i1] + c
β − ω

ω − β
T [∗, i1]

= cT [∗, i1]− cT [∗, i1] = 0.

¤

Before introducing another property for matrix H, let us fist state a lemma.

Lemma 5.2.1 For a Markov-Type system Ax = 0 with splitting A = M − N , where M

is nonsingular and N 6= 0, the fixed-point equation x = Tx, T = M−1N , has a unique

normalized positive solution vector π if the Markov chain A is irreducible.

Proof Assume there are two different solution vectors π(1) and π(2) such that π
(i)
j > 0, j =

57

1, 2, · · · , n, i = 1, 2; ∑n
j=1 π

(i)
j = 1, i = 1, 2 and

π(1) = Tπ(1) and π(2) = Tπ(2),

or

π(1) =M−1Nπ(1) and π(2) =M−1Nπ(2).

Multiply both sides by the nonsingular matrix M ,

Mπ(1) = Nπ(1) and Mπ(2) = Nπ(2),

or

(M −N)π(1) = Aπ(1) = 0 and (M −N)π(2) = Aπ(2) = 0

which indicates that the original Markov system Ax = 0 has two different solution vectors.

This contradicts the irreducibility of the Markov chain A. ¤

Proposition 5.2.4 The equation x = Hx with matrix H formed by (5.7) preserves the

normalized positive solution to the original equation (5.2).

Proof Based on the above lemma, we assume that the unique positive solution to the

original equation x = Tx (5.2) is the vector π(1). We then prove first that π(1) is also a

solution to the equation x = Hx with matrix H formed by (5.7). This is obvious in the

rank reduction procedure. See equations (5.2)(5.3)(5.4) (5.5)(5.6)(5.7). Secondly we prove

that there is only one normalized positive solution vector to satisfy the equation x = Hx.

Assume there are two different normalized positive solution vectors π(1) and π(2) such that

π(1) = Hπ(1) and π(2) = Hπ(2)

where H is formed by (5.7). Note that matrix H in equation (5.5)(5.6) is the same as that

in equation (5.7), so equation (5.5) has two different normalized positive solution vectors

58

π(1) and π(2) as well. Multiplying both sides in equation (5.5) by a nonsingular matrix

(I − ω−1Tei1e
T
j1
T) does not change its solution space. This means equation (5.4) has two

different solutions π(1) and π(2) also. So does equation (5.3). Substituting the matrix T (2)

in equation (5.3) by that in the equation (5.1) results in the equation (5.2). Thus equation

(5.2) has two different normalized positive solution vectors π(1) and π(2). This contradicts

the above lemma. Therefore equation x = Hx with matrix H formed by (5.7) has a unique

normalized positive solution vector. ¤

When the matrix M is a banded matrix, its inverse can be efficiently computed by

means of an LU decomposition M = LU .

5.2.1 Algorithm

The overall pseudo code for the rank reduction algorithm is presented in Figure 5.1. It

is appropriate for Markov matrices having low rank iteration matrices.

5.2.2 Uniqueness, Irreducibility and Complexity Issues

We have already shown the rank reduction algorithm. Now we ask ourselves questions

concerning the uniqueness, irreducibility and other related issues.

Uniqueness of Solution

The rank reduction method starts with the fixed-point equation x = Tx with rank(T) =

r > 1. With r − 1 rank reduction steps resulting in a rank-1 iteration matrix H, it still

preserves the unique normalized positive solution to the original equation x = Tx. This is

because, by property 5.2.4, the equation x = Hx with rank(H) = r − 1 formed by rank

reduction procedure (5.7) preserves the unique normalized positive solution to the original

equation x = Tx. Similarly, all successive matrices H (1 < rank(H) < r) generated by the

rank reduction procedure (5.2)(5.5)(5.6)(5.7) preserve the unique solution also. Therefore,

when the matrix H is reduced to rank 1, it preserves the unique solution π to the original

equation x = Tx as well.

59

Input:

1. A =M −N : Markov-Type matrix A of size n× n with splitting M −N ;

2. r : The rank of the matrix N ;

3. S : The set of all nonzero column indices in matrix N .

Output: The stationary distribution π.

1.Initialization: Set H = 0r×r; Form T =M−1N // by LU decomposition
2.If (r == 1) go to step 14
3.Do
4. Choose vectors ei1 and ej1 such that
5. ω = T [j1, i1] 6= 0 and β = eTj1T

2ei1 6= ω

6. Calculate: ωj = T [j1, j] and βj = T [j1, ∗]T [∗, j], j ∈ S − {i1}
7. For ∀ j ∈ S − {i1}
8. H[∗, j] = T [∗, j] + (βj−ωj)

(ω−β) ∗ T [∗, i1] // rank-1 reduction

9. End
10. Set S := S − {i1}
11. Set r := r − 1
12. Set T := H
13.While (r > 1)

14.Normalization: Select any j ∈ S and form π = H[∗,j]
||H[∗,j]||1

15.End.

Figure 5.1: Rank Reduction Method for Calculating Stationary Distributions

Concerned with the normalization step (line 12) in the pseudo code of the rank reduction

algorithm, we only need to prove that any nonzero column in the final matrix H of rank-1

has all elements positive. Otherwise assume that nonzero column j has zero element in row

i, i.e, T [i, j] = 0, then all elements in row i of matrix H are zero because the matrix H

has rank one. Thus the solution π to the original equation x = Tx does not satisfy the

equation x = Hx since πi 6= 0 but the row i of the product Hπ is equal to zero. Therefore,

the normalization of any nonzero column results in the solution to the original equation.

This implies that no initial approximate solution vector in the rank reduction algorithm is

needed.

60

Irreducibility

One might wonder whether the iteration matrix H has to be irreducible? Our answer is

NO. The only requirements for the rank-1 reduction method to function correctly are as

follows.

1. The Markov chain must be irreducible: this guarantees that all the elements in the

solution vector are strictly positive, i.e.,

πi > 0, i = 1, 2, · · · , n.

and this positive solution vector is unique except for some constant multipliers.

2. The initial matrix splitting A =M −N must not result in an initial iteration matrix

T = 0 for otherwise rank(T) = 0 and we can go no further.

3. At each reduction step, we must have ω 6= 0 and β 6= ω.

Complexity

To determine the computational complexity of the algorithm, we proceed as follows.

• Assume the cost of initializing T =M−1N is C1. This is done once at the beginning.

• The reduction from rank r to rank r − 1 requires (r − 1)(r + 1 + n) multiplications

and (r− 1)(r+1+n) additions/subtractions to compute H. So r− 1 reduction steps

requires
r−1
∑

i=1

i(i+ 2 + n)

multiplications and
r−1
∑

i=1

i(i+ 2 + n)

61

additions/subtractions. Evaluating these summations gives

1

2
(r2 − r)n+ (

1

3
r3 +

1

2
r2 − 5

6
r)

multiplications and the same number for additions/subtractions. Let their sum be C2

• The cost of normalizing a vector in step 10 is n multiplications and n − 1 additions.

Let C3 = n+ n− 1.

Therefore the overall cost is C1 + C2 + C3. For the calculation of the inverse of a general

banded matrix (with upper band p and lower band q), an LU factorization takes about 2npq

flops. See Golub and Van Loan [29]. Since we assume r ¿ n, the overall computational

complexity is approximately O(r2n).

In order to make the algorithm as efficient as possible, it is wise to choose M so that

it contains the major part of Q and the remaining part N has comparatively low rank.

However, there is the obvious trade-off in that it is vital to ensure that the inverse of M is

easy to obtain.

5.2.3 A Small Example

The following example illustrates the detailed steps of the algorithm. Consider a CTMC

whose infinitesimal generator Q is given below.

Q =















































−5.00 2.00 0.00 0.00 0.00 0.00 0.00 3.00

2.30 −5.30 3.00 0.00 0.00 0.00 0.00 0.00

0.00 1.50 −3.30 1.80 0.00 0.00 0.00 0.00

0.00 0.00 2.40 −3.60 1.20 0.00 0.00 0.00

0.00 0.00 0.00 1.50 −3.50 2.00 0.00 0.00

1.10 1.30 0.00 0.00 3.50 −8.60 2.70 0.00

1.40 2.80 3.30 0.00 0.00 2.10 −13.00 3.40

2.10 1.60 1.50 1.10 0.00 0.00 1.90 −8.20















































62

The stationary distribution of this Markov chain is given by π where

π = [0.0989 0.1576 0.3363 0.2239 0.1037 0.0270 0.0116 0.0410].

Based on the splitting QT =M −N where M and N are respectively

M =















































−5.00 2.30 0.00 0.00 0.00 0.00 0.00 0.00

2.00 −5.30 1.50 0.00 0.00 0.00 0.00 0.00

0.00 3.00 −3.30 2.40 0.00 0.00 0.00 0.00

0.00 0.00 1.80 −3.60 1.50 0.00 0.00 0.00

0.00 0.00 0.00 1.20 −3.50 3.50 0.00 0.00

0.00 0.00 0.00 0.00 2.00 −8.60 2.10 0.00

0.00 0.00 0.00 0.00 0.00 2.70 −13.00 1.90

3.00 0.00 0.00 0.00 0.00 0.00 3.40 −8.20















































and

N =















































0.00 0.00 0.00 0.00 0.00 −1.10 −1.40 −2.10

0.00 0.00 0.00 0.00 0.00 −1.30 −2.80 −1.60

0.00 0.00 0.00 0.00 0.00 0.00 −3.30 −1.50

0.00 0.00 0.00 0.00 0.00 0.00 0.00 −1.10

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00















































,

63

the iteration matrix T is

T =M−1N =















































0.00 0.00 0.00 0.00 0.00 0.6428 1.7552 1.4939

0.00 0.00 0.00 0.00 0.00 0.9192 3.2069 2.3347

0.00 0.00 0.00 0.00 0.00 1.5239 7.1241 5.1906

0.00 0.00 0.00 0.00 0.00 0.9465 4.4120 3.5937

0.00 0.00 0.00 0.00 0.00 0.4428 2.0400 1.6629

0.00 0.00 0.00 0.00 0.00 0.1183 0.5273 0.4307

0.00 0.00 0.00 0.00 0.00 0.0627 0.2165 0.1803

0.00 0.00 0.00 0.00 0.00 0.2612 0.7319 0.6213















































and has rank equal to three. Now, using formula (5.7), we reduce the rank of T by one.

Setting

ei1 = e6 = [0 0 0 0 0 1 0 0]
T and ej1 = e1 = [1 0 0 0 0 0 0 0]

T

we obtain

ω = eT1 ∗ T ∗ e6 = 0.6428 6= 0 and β = eT1 T
2e6 = T [1, ∗]T [∗, 6] = 0.0664 6= ω.

The rank-2 matrix H is then

H =















































0.00 0.00 0.00 0.00 0.00 0.00 2.3081 1.7603

0.00 0.00 0.00 0.00 0.00 0.00 3.9975 2.7156

0.00 0.00 0.00 0.00 0.00 0.00 8.4349 5.8221

0.00 0.00 0.00 0.00 0.00 0.00 5.2261 3.9859

0.00 0.00 0.00 0.00 0.00 0.00 2.4208 1.8464

0.00 0.00 0.00 0.00 0.00 0.00 0.6290 0.4798

0.00 0.00 0.00 0.00 0.00 0.00 0.2704 0.2063

0.00 0.00 0.00 0.00 0.00 0.00 0.9565 0.7296















































.

64

Repeating the process with new vectors

ei1 = e7 = [0 0 0 0 0 0 1 0]
T and ej1 = e2 = [0 1 0 0 0 0 0 0]

T

we obtain

ω = eT2 ∗H ∗ e7 = 3.9975 6= 0 and β = eT2 H
2e7 = H[2, ∗]H[∗, 7] = 3.6787 6= ω.

The final rank-1 matrix H is then

H =















































0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.4129

0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.8458

0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.2069

0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.4635

0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.5308

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.6576

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.2827

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.0000















































.

After normalization, column 8 forms the exact solution π.

5.3 Markov Chains with Low Rank

It is interesting to examine some examples of Markov chains whose structure leads di-

rectly to rank-1 iteration matrices. Some examples with point rank-1 Gauss-Seidel iteration

matrices are illustrated in Figure 5.2. Extensions to these are easy to imagine.

In the first instance, A, all forward transitions are to the same destination state n. There

are no other forward transitions. Backward transitions are unrestricted and may be to

any state with a lower index. The transition matrix has one nonzero column in the upper

65

1 2 3 4

2 n3 4

321

3 4 n

A:

x
x

x

x
x
x

x x x x x x

x
x
x
x
x

x x x x x x x x x x

x

B:

C:

D:

n4

n

1

21

.........

.........

......

.........

x
x
x
x
x

x x x x x x x x x x

��

��

��

��

��

��

���

���

	�		�	
	�		�	

�

�

�

�

�����
�����
���
���

�

�

���
���

��������������������

������
������

�����
�����
�����
�����

��������������������

��������������������

Figure 5.2: Markov Chains With Point Rank-1 Gauss Seidel Iteration Matrices

triangular region.

In the second case, B, all forward transitions originate from the same source state 1.

Again, there are no restrictions on backward transitions. The transition matrix has one

66

nonzero row in the upper triangular region.

The situation in C is such that forward transitions from a given set of states (1 through

3) are to either state 4 or state n. There are no restrictions on the backward transitions.

Now the transition matrix has two nonzero columns in the upper triangular region. When

the forward transitions to state 4 are proportional to forward transitions to state n, the

point GS iteration matrix has rank-1.

The final situation, D, shows forward transitions originating from states 1 and 2 to the

same set of destination states. There are no restrictions on the backward transitions. The

transition matrix has two nonzero rows in the upper triangular region. When the forward

transitions originating from state 1 are proportional to those originating from state 2, the

point GS iteration matrix has rank-1.

Moving on to the block Gauss-Seidel case, Figure 5.3 illustrates two instances when the

corresponding iteration matrix has rank 1. They are the block versions of cases A and C

above.

67

A:

B:

..............

S1 S

x

x

x

x

x
x
x

x

x

x
x
x

x

x

x

2
 S3 SM

S1 S2 S3 SM

���
���
���
���

������
���
������
���

��

��

��

��

	�		�	
	�	

�

�

�

Figure 5.3: Markov Chains With Rank-1 Block Gauss Seidel Iteration Matrices

The first block case illustrates the situation in which forward intergroup transitions originat-

ing in any group are destined to end up in the last group, SM . No other forward intergroup

transitions are permitted. There are no restrictions on backward (intergroup) transitions

nor among the internal transitions in any group. In this case, the transition matrix has

one nonzero column in the upper stair-like region. The final situation generalizes the third

scenario of the point GS case, to the block case, in a manner analogous to the block case

just described.

It is not necessary for a Markov chain to have a structure that is suitable only for

Gauss-Seidel type methods. All required is that the splittingM−N is regular and in which

M is easily inverted and N has rank one. In the previous examples, M was chosen to be

68

triangular. However, another possibility is the case when M is a narrowly banded matrix.

Also, it is possible to extend this to the case in which most of the matrix M is contained

in a narrow band around the diagonal, but having some small number of states indexed

at the end, that may have many transitions to and from them. The LU decomposition

continues within the narrow band until these last few states, but since we only allow a

small number of them, a complete reduction of the last two or three rows should not be

considered excessive. In anticipation of later results, we show two examples of Markov

chains having such a structure for M , but with a matrix N that is not of rank one, but

instead is of low rank.

.
...... . .

....

..
..

...

.

.. .
.

.

.
.

....
...

..

.
..

..
...

.

.

.

.

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

...
...
.

.

Figure 5.4: Transition Diagrams For Markov Chains With Low-Rank Iterations Matrices:
Case I

Figure 5.4 illustrates the first case. Here the matrix M is banded and the elements that

69

constitute N , of rank two, are in two rows or two columns. The top transition diagram is

associated with the matrix structure drawn on the left, the bottom one with the matrix on

the right. Both are similar to quasi-birth-death process but with some annoying transitions

with block-stride larger than one.

Figure 5.5 illustrates the second case, where transition to and from the last two blocks

of states may be general.

.

.
.

.
...

.

.. .
.. ..

.
.

....

. ..
.
... . . .

...
...

..
. .

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

Figure 5.5: Transition Diagrams For Markov Chains With Low-rank Iterations Matrices:
Case II

70

5.4 Testing Rank Reduction Method

5.4.1 Markov Model for a Multiprocessor Failure/Repair System

Consider a dependability model of a multiprocessor system with n processors. Each

processor is subject to failures with rate λ. A processor failure is covered with probability

q, or not covered with probability p (p + q = 1). A covered failure is followed by a brief

reconfiguration period which results in a system with one fewer processor with average re-

configuration rate being δ. An uncovered failure is followed by a reboot which results in a

fully functioning system with reboot rate being γ. Processors failed are repaired one a time

with rate µ. A second failure during reconfiguration, or all processors having failed, results

in crash. A crash is repaired with rate β and results in a fully functioning system. Neither

reboot nor reconfiguration is performed when the last processor fails. Assume no other

event can take place during reboot. All times are assumed to be independently and expo-

nentially distributed. In practice, the reconfiguration time and reboot time are extremely

small compared to the time between failures and crash repairs. This model is therefore

modeled by a CTMC with the transition diagram shown in Figure 5.6.

δδδδδ

µµµµ
µµ

ppp

reboot

 crashRn−2 Rn−1

.

λ δ

µ

β

γ

np (n−1)

λ2

qn q(n−1)

q(n−2)

q(n−3)

3q

2q

λ

λ

λ

λ

λ

λ

λ

(n−2) 3p 2pλ λ λ λ λ

(n−1) (n−2) (n−3)λ λ λ

1n n−1 n−2 n−3

R3R2R1

3 2

Figure 5.6: A Multiprocessor Failure/Repair Model

71

Its infinitesimal generator is as follows.

Q =

n

r1

n− 1

r2

n− 2

r3

· · ·

3

rn−2

2

rn−1

1

crash

reboot













































































∗ npλ nqλ

∗ δ (n− 1)λ

µ ∗ (n− 1)pλ (n− 1)qλ

∗ δ (n− 2)λ

µ ∗ (n− 2)pλ (n− 2)qλ

∗ δ (n− 3)λ

µ ∗ 3pλ 3qλ

∗ δ 2λ

µ ∗ 2pλ 2qλ

∗ δ λ

µ ∗ λ

β ∗

γ ∗













































































.

Note that the matrix Q can be split into two parts, one with just the tridiagonal elements

and the other containing what it left (nonzeros are in the first column and the last two

columns). Thus the initial iteration matrix has rank equal to 3. This CTMC model is taken

from Sanders’s notes [58]. We can find the similar models from Trivedi’s publications [70]

as well. One particular set of values for all parameters are: λ = 1.0
6000.0 , µ = 1.0, δ =

1.0
0.01 ,

γ = 1
0.5 , β =

1.0
20.0 , p = 0.95, q = 0.05.

We set the accuracy requirement to be 1.0 × 10−16. In order to compare the rank

reduction method and the Gauss Seidel method, we change the values of n, p and q to see

what difference this makes.

From table 5.1, we observe that

• The rank reduction method is much faster than Gauss Seidel.

• The convergence of Gauss Seide depends on the eigenvalue distribution of the iter-

ation matrix and thus depends on the elements of the iteration matrix. It can be

observed that, with different values of p, q and λ, Gauss Seidel has different execution

72

processors # states λ p q time (GS) time (RR)

20 41 1
6000 0.01 0.99 0.052 0.048

20 41 1
100 0.01 0.99 0.046 0.050

20 41 1
6000 0.99 0.01 0.111 0.051

20 41 1
100 0.01 0.99 0.116 0.049

50 101 1
6000 0.01 0.99 1.810 0.425

50 101 1
6000 0.99 0.01 2.014 0.424

50 101 1
100 0.01 0.99 1.879 0.442

50 101 1
100 0.99 0.01 6.553 0.410

100 201 1
100 0.01 0.99 24.324 1.168

100 201 1
100 0.99 0.01 26.712 1.310

100 201 1
6000 0.01 0.99 — 1.437

100 201 1
6000 0.99 0.01 — 1.395

Table 5.1: Testing On Rank Reduction

times to converge. On the other hand, the rank reduction method is independent

of the elements of the iteration matrix. Once the number of states of the matrix is

determined, rank reduction takes almost the same amount of time to terminate no

matter what these parameters are.

• Gauss Seidel takes long time for convergence with the high accuracy requirement, i.e.,

with the tolerance being 1.0× 10−16. Due to the high reliability of the multiprocessor

system, several states have stationary probabilities less than 10−250 when there are

100 multiprocessors. That is why we would like to set such a small tolerance.

• The rank reduction method is independent of the tolerance. It always terminates in

a finite number of steps.

73

Chapter 6

Lumpability, Weak Lumpability,

Quasi-lumpability and NCD

We firstly introduce several concepts such as lumpability, weak lumpability, quasi-

lumpability and near-complete decomposability. Then we discuss the relationship among

them.

Assume that we are given a finite-state homogeneous discrete time Markov chain Xn, n =

0, 1, · · · , with transition probability matrix (t.p.m) P . Let S = {S1, S2, · · · , SM} be a

partition of the state space of this Markov chain and let matrix P be partitioned accordingly

P =



















P11 P12 · · · P1M

P21 P22 · · · P2M

...
...

. . .
...

PM1 PM2 · · · PMM



















. (6.1)

Each subset SI , I = 1, · · · ,M , can be considered a state of a new process. If we use Yt to

denote the state occupied at time t by the new process, then the probability of a transition

occurring at time t from state SI to state SJ is denoted by pSISJ
(t) and is given by

pSISJ
(t) = Pr{Yt = SJ |Yt−1 = SI ∧ Yt−2 = SK ∧ · · · ∧ Y0 = SL}. (6.2)

74

This new process is called a lumped process and SI a lumped (or macro [8]) state. Note

that, Yt is not necessarily Markovian nor even homogeneous. The lumped process is again

a first-order homogeneous Markov chain only if

pSISJ
(t) = pSISJ

= Pr{Yt = SJ |Yt−1 = SI}, ∀t ≥ 0. (6.3)

Let the lumped process have transition probability matrix K with element kij equal to

pSISJ
, i.e.,

K =



















k11 k12 · · · k1M

k21 k22 · · · k2M

...
...

. . .
...

kM1 kM2 · · · kMM



















. (6.4)

6.1 Definitions

Definition 6.1.1 (Lumpable) A discrete time homogeneous Markov chain Xn is said to

be lumpable with respect to a given state space partition S =
⋃I=M
I=1 SI with SI

⋂

SJ =

∅, ∀I 6= J if for every initial probability distribution vector π(0), the lumped process Yt defined

by (6.2) is a first-order homogeneous Markov chain and does not depend on the choice of

π(0).

In [36] , Kemeny and Snell prove that a homogeneous Markov chain Xn with transition

probability matrix P = (pij), is lumpable with respect to a partition S = {S1, S2, · · · , SM}

if and only if for all I, J, 1 ≤ I, J ≤ M , there exists real-valued kIJ , 0 ≤ kIJ ≤ 1 such that

equation (6.5) holds
∑

j∈SJ

pij = kIJ , ∀i ∈ SI . (6.5)

Note that in some papers [22] [8] this necessary and sufficient condition for a Markov chain

to be lumpable is used as an alternative definition for lumpability. The following example

demonstrates the concept of lumpability.

Example 1. Let

75

P =



















0.25 0.25 0.30 0.20

0.30 0.20 0.20 0.30

0.25 0.30 0.20 0.25

0.35 0.20 0.25 0.20



















with the partition S1 = {1, 2}, S2 = {3, 4} indicated in the matrix above, the condition

(6.5) is satisfied and the lumped chain is indeed a Markov chain with transition probability

matrix:

K =







0.50 0.50

0.55 0.45







Unfortunately, since many Markov chains are not necessarily lumpable, another impor-

tant concept, weak lumpability, is introduced. Let Ω be the set of all probability vectors

and Ωα be any proper subset of Ω.

Definition 6.1.2 (Weak Lumpable) A discrete time homogeneous Markov chain Xn is

said to be weakly lumpable with respect to a given state space partition S =
⋃I=M
I=1 SI with

SI
⋂

SJ = ∅, if there exists a proper subset Ωα of Ω such that ∀π(0) ∈ Ωα, the lumped process

Yt is Markov homogeneous while for any π(0) /∈ Ωα, the lumped process is not Markov.

Example 2. Given a transition probability matrix [56]

P =

































3
14

3
14

3
14

3
14

1
14

1
14

1
6

1
6

1
6

1
3

1
12

1
12

1
8

3
8

1
4

1
6

1
24

1
24

3
8

1
8

1
4

1
6

1
24

1
24

1
5

1
5

1
5

1
5

1
10

1
10

1
5

1
5

1
5

1
5

1
10

1
10

































and state space partition indicated in matrix P , this Markov chain is weakly lumpable with

76

any initial distribution belonging to the set Ωα below

Ωα = {λ1(0, 0, 0, 0, 0, 1) + λ2(0, 0, 0, 0, 1, 0)

+ λ3(
1

4
,
1

4
,
1

4
,
1

4
, 0, 0)|λ1 + λ2 + λ3 = 1, λi ∈ [0, 1], i = 1, 2, 3}.

Under what conditions is an Markov chain weakly lumpable with respect to a given state

space partition? If it is proved to be weakly lumpable, how do we find the set of all ini-

tial distributions for it to be weakly lumpable? There is an active research effort to try

to answer these questions. The first investigation of these problems was carried out by

Kemeny and Snell [36]. They provided a local necessary and sufficient condition and a

useful sufficient condition for weak lumpability. Moneim and Leysieffer [48] gave another

but incorrect necessary and sufficient condition as was shown with a counterexample by

Rubino and Sericola [55]. Rubino and Sericola also obtained in 1991 a finite characteriza-

tion of weak lumpability by means of an algorithm which computes the set Ωα. In 1996,

Peng [49] improved Rubino and Sericola’s method [55]. Under a mild condition on its

transition probability matrix, a necessary and sufficient condition for a Markov chain to

be weakly lumpable and the characterization of the set of initial starting probability vec-

tors which make it weakly lumpable were obtained. Interested readers can resort to their

publications [36][48][55] [56][49].

With respect to the requirement on the initial probability distribution for weak lumpa-

bility, we would like to ask ourselves the question: Why do we need initial distributions for

weak lumpability of Markov chains?

First we recall that the newly lumped process (6.2) from an Markov chain is not nec-

essarily Markovian. In order to make it Markovian, formula (6.3) must be satisfied. That

is, the probability of a transition to SJ on the next step from any state belonging to the

set SI is independent of the different histories of the process prior to the current step. So

when can we expect to ignore the past? There are two cases.

77

1. The information gained from the past would not help.

This happens, for example, when the probability of moving to the set SJ from a state

in set SI is the same for all states in SI . Therefore the probabilities of being in each

state of SI would not affect our prediction for the next outcome in the lumped process.

This is exactly the condition for lumpability (equation (6.5)). That is why we did not

see any requirement on the initial probability distribution when lumpability is defined

in the literature.

2. If the probabilities of ending up in each of the states in SI are the same no matter

what the past information, then again the past has no influence on the next-step

transition and can be ignored.

These two scenarios can be clearly illustrated in the following graph.

.

.

.
.
.

.

.

.

.

SI SJ

case 2 case 1

 time t time t −1 time 0

initial

Figure 6.1: Initial Probability Distributions For Weak Lumpability

In case 2, the initial probability distribution is required to be specified. No initial probabil-

ity distribution however, is required in case 1. In fact in the literature, many papers discuss

how to find all initial probability distributions for a Markov chain to be weakly lumpable.

78

Definition 6.1.3 (ε-Quasi-Lumpable) A discrete time homogeneous Markov chain Xn
is said to be ε-Quasi-Lumpable [22][27] with respect to a given state space partition S =

⋃i=M
i=1 Si with Si

⋂

Sj = ∅, ∀i 6= j if its transition probability matrix P can be written as

P = P− + P ε where the P− is a component-wise lower bound for P that satisfies the

lumpability condition (6.6)

∀SI , SJ ⊂ S, ∀s ∈ SI :
∑

s
′
∈SJ

p−
ss
′ = kIJ , ∀I 6= J (6.6)

and no element in P ε is greater than ε in value.

The intention is that P ε is a matrix with more zero elements than P− and with relatively

small non-zero elements. Consider the following example again. Assume that λ2 = λ3 =

λ, λ1 = λ+ ε and µ1 = 2µ+ ε, µ2 = µ.

Example 3. Let 1

P =







































∗ 0 λ1 λ2 0 0 0

0 ∗ 0 λ2 λ2 0 0

µ1 0 ∗ 0 0 λ1 0

µ2 µ2 0 ∗ 0 0 λ2

0 2µ2 0 0 ∗ λ3 0

0 0 µ1 µ2 0 ∗ 0

0 0 0 µ1 µ2 0 ∗







































,

1The diagonal elements of P are such that the matrix is stochastic.

79

P− =







































∗ 0 λ λ 0 0 0

0 ∗ 0 λ λ 0 0

2µ 0 ∗ 0 0 λ 0

µ µ 0 ∗ 0 0 λ

0 2µ 0 0 ∗ λ 0

0 0 2µ µ 0 ∗ 0

0 0 0 2µ µ 0 ∗







































and P ε =







































0 0 ε 0 0 0 0

0 0 0 0 0 0 0

ε 0 0 0 0 ε 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0







































.

With the partition indicated in the matrix, this Markov chain is not lumpable but is ε-

quasi-lumpable. Remark that all definitions can be applied to Continuous Time Markov

Chains (CTMC) as well. There could be several reasons why we want to investigate the

lumpability property of Markov chains.

• In many cases, performance measures of interest depend on the probability of being in

certain groups of states, i.e., the probability needs to be computed at a coarser level.

In such a case, solving a much smaller lumped chain will give us the information we

need.

• Systems in reality are becoming more and more complex. The usual way to solve

them is computationally inefficient. But analyzing smaller subsystems individually

and then combining them together could save much computation time.

Now we introduce another concept, nearly completely decomposable Markov chains

(NCD) that are irreducible chains with their states ordered such that their transition ma-

trices have block structure in which the nonzero elements on the off-diagonal blocks are

much small compared with those in diagonal blocks. These Markov chains arise frequently

in queueing networks, computer systems and economic models and they can be expressed

in the form (6.1) where blocks Pi,i are square, of order ni with n =
∑M

i=1 ni .

Definition 6.1.4 (Nearly Completely Decomposable) Given an Markov chain P with

80

partition shown in (6.1), then P is nearly completely decomposable when

||Pi,i|| = O(1), i = 1, 2, , · · · ,M

and

||Pi,j || = O(ε), i 6= j

where ε is a sufficiently small positive number.

Let P = diag(P1,1, P2,2, · · · , PM,M) + E. Partition the stationary distribution vector simi-

larly, π = (π1, π1, · · · , πM). The quantity ||E||∞ is referred to as the degree of coupling and

is a measure of the decomposability of the matrix. If it is zero, then the Markov chain is

reducible.

6.2 Examples of Lumpable Markov Chains

We remark that lumpable Markov chains are not uncommon in realistic models. Several

lumpable Markovian Models are introduced in this section.

Markov Model for Central Servers with Breakdown/Repair

In this Markov model a maximum ofm customers can be served by any one of n identical

servers in the central server station. Customers arrive at the station with arrival rate λ.

Service time is exponentially distributed with mean 1
µ
. Furthermore, all servers are subject

to failure and repair, both times to failure and repair being exponentially distributed with

parameters β and γ. Let (i, j) be the state of this queuing system where i denotes the

number of customers in the queue and j the number of operational servers. So we have the

state transition diagram depicted in Figure 6.2. Let us assume that m = 4, n = 2.

If we reorder and partition all states to be

81

. . .

. . .

. . .

.

.

.

.

.

. .

.....

0, n 1, n 2, n m, n

0, n−1 1, n−1 2, n−1 m, n−1

 0, 0 2, 01, 0 m, 0

.

..

.

.

.

.

λ

µ

β γ

λ λ λ

λ λ λ λ

λ
λ λ λ

β β β

β β β β

ββββ

γ γ γ

γ γ γ γ

γγγγ

µ µ

µµµ

λ λ λ λ

µµµ

2 3

2 3

2 3

n n n n

(n−1) (n−1) (n−1) (n−1)

Figure 6.2: A Queueing System With Breakdown And Repair

S = S1 ∪ S2 ∪ S3 with

S1 = {(0, 2), (1, 2), (2, 2), (3, 2), (4, 2)},

S2 = {(0, 1), (1, 1), (2, 1), (3, 1), (4, 1)}

and

S3 = {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0)},

then the transition rate matrix is as follows.

82

Q =





























































































∗ λ 0 0 0 2β 0 0 0 0 0 0 0 0 0

µ ∗ λ 0 0 0 2β 0 0 0 0 0 0 0 0

0 2µ ∗ λ 0 0 0 2β 0 0 0 0 0 0 0

0 0 2µ ∗ λ 0 0 0 2β 0 0 0 0 0 0

0 0 0 2µ ∗ 0 0 0 0 2β 0 0 0 0 0

γ 0 0 0 0 ∗ λ 0 0 0 β 0 0 0 0

0 γ 0 0 0 µ ∗ λ 0 0 0 β 0 0 0

0 0 γ 0 0 0 2µ ∗ λ 0 0 0 β 0 0

0 0 0 γ 0 0 0 2µ ∗ λ 0 0 0 β 0

0 0 0 0 γ 0 0 0 2µ ∗ 0 0 0 0 β

0 0 0 0 0 γ 0 0 0 0 ∗ λ 0 0 0

0 0 0 0 0 0 γ 0 0 0 0 ∗ λ 0 0

0 0 0 0 0 0 0 γ 0 0 0 0 ∗ λ 0

0 0 0 0 0 0 0 0 γ 0 0 0 0 ∗ λ

0 0 0 0 0 0 0 0 0 γ 0 0 0 0 ∗





























































































.

Obviously this is lumpable and its lumped Markov chain has the following infinitesimal

generator

K =













∗ 2β 0

γ ∗ β

0 γ ∗













.

Based on this smaller Markov chain K, we may calculate the distribution of the average

number of operational severs.

Markov Model For An ATM Network

Here we introduce another Markov model [47]. It is a re-routing model in ATM networks

graphically illustrated in Figure 6.3.

It is a network with 4 nodes. The arrival process in Queue 1 and Queue 2 consists of

a Poisson arrival stream with respective rates λ1 and λ2. The service rate is exponentially

83

cell arrivals
server

cell arrivals server

router

router

Queue 1

Queue 2

Queue 3

Queue 4

lost

lost

lost

lost

u1

u2

u3

u4

λ

λ

1

2

Figure 6.3: Re-routing Model For ATM Networks

distributed in each node with respective rates µ1, µ2, µ3 and µ4. If the arrivals in Queue

1 find the node buffer is not full, then they wait in the buffer queue for service. Otherwise

they are simply dropped by the node. After their service in node 1, they will be routed

into node 3 if the buffer in node 3 is not full. Otherwise if the node 4 is not yet filled, they

are routed to that node instead. Otherwise, they are lost. The same mechanism is applied

to arrival stream in Queue 2 except that they will be first routed to node 4 if it is not full

otherwise they are then routed to node 3. The performance measure of interest is the cell

loss probability. But our focus is on the steady state probabilities.

When all buffers have capacity of 1, the underlying Markov chain of the model has 16

states which is defined as (i1, i2, i3, i4) where ij , j = 1, 2, 3, 4, indicates the the number of

cells in the buffer j. Let us order and partition all states like

{(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1)}∪{(0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1)}

∪{(1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 1, 1)}∪{(1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1)},

84

then the transition rate matrix is as follows

Q =





































































































∗ 0 0 0 λ2 0 0 0 λ1 0 0 0 0 0 0 0

µ4 ∗ 0 0 0 λ2 0 0 0 λ1 0 0 0 0 0 0

µ3 0 ∗ 0 0 0 λ2 0 0 0 λ1 0 0 0 0 0

0 µ3 µ4 ∗ 0 0 0 λ2 0 0 0 λ1 0 0 0 0

0 µ2 0 0 ∗ 0 0 0 0 0 0 0 λ1 0 0 0

0 0 0 µ2 µ4 ∗ 0 0 0 0 0 0 0 λ1 0 0

0 0 0 µ2 µ3 0 ∗ 0 0 0 0 0 0 0 λ1 0

0 0 0 µ2 0 µ3 µ4 ∗ 0 0 0 0 0 0 0 λ1

0 0 µ1 0 0 0 0 0 ∗ 0 0 0 λ2 0 0 0

0 0 0 µ1 0 0 0 0 µ4 ∗ 0 0 0 λ2 0 0

0 0 0 µ1 0 0 0 0 µ3 0 ∗ 0 0 0 λ2 0

0 0 0 µ1 0 0 0 0 0 µ3 µ4 ∗ 0 0 0 λ2

0 0 0 0 0 0 µ1 0 0 µ2 0 0 ∗ 0 0 0

0 0 0 0 0 0 0 µ1 0 0 0 µ2 µ4 ∗ 0 0

0 0 0 0 0 0 0 µ1 0 0 0 µ2 µ3 0 ∗ 0

0 0 0 0 0 0 0 µ1 0 0 0 µ2 0 µ3 µ4 ∗





































































































.

Obviously it is lumpable with respect to the partition above and its lumped chain has the

following infinitesimal generator

K =



















∗ λ2 λ1 0

µ2 ∗ 0 λ1

µ1 0 ∗ λ2

0 µ1 µ2 ∗



















.

This is again lumpable with its lumped matrix

85

K
′

=







∗ λ1

µ1 ∗






.

When the source side and the destination side are not symmetric or buffers have different

capacity, for instance in the Figure 6.4, there are 3 nodes in source side but has only 2

nodes on the destination side, the underlying Markov chain still keeps lumpable. With the

lexicographic ordering of all states, its infinitesimal generator is

cell arrivals
server

cell arrivals server

router

router

Queue 1

Queue 2

lost

lost

lost

lost

u1

u2

u3

u4

λ

λ

1

2

Queue 4

Queue 5

cell arrivals

router

u
λ

lost

3
3

Queue 3

Figure 6.4: Non-symmetric Re-routing Model For ATM Networks

Q =







A B

C D







86

Where

A =



































































































∗ 0 0 0 λ3 0 0 0 λ2 0 0 0 0 0 0 0

µ5 ∗ 0 0 0 λ3 0 0 0 λ2 0 0 0 0 0 0

µ4 0 ∗ 0 0 0 λ3 0 0 0 λ2 0 0 0 0 0

0 µ4 µ5 ∗ 0 0 0 λ3 0 0 0 λ2 0 0 0 0

0 µ3 0 0 ∗ 0 0 0 0 0 0 0 λ2 0 0 0

0 0 0 µ3 µ5 ∗ 0 0 0 0 0 0 0 λ2 0 0

0 0 0 µ3 µ4 0 ∗ 0 0 0 0 0 0 0 λ2 0

0 0 0 µ3 0 µ4 µ5 ∗ 0 0 0 0 0 0 0 λ2

0 0 µ2 0 0 0 0 0 ∗ 0 0 0 λ3 0 0 0

0 0 0 µ2 0 0 0 0 µ5 ∗ 0 0 0 λ3 0 0

0 0 0 µ2 0 0 0 0 µ4 0 ∗ 0 0 0 λ3 0

0 0 0 µ2 0 0 0 0 0 µ4 µ5 ∗ 0 0 0 λ3

0 0 0 0 0 0 µ2 0 0 µ3 0 0 ∗ 0 0 0

0 0 0 0 0 0 0 µ2 0 0 0 µ3 µ5 ∗ 0 0

0 0 0 0 0 0 0 µ2 0 0 0 µ3 µ4 0 ∗ 0

0 0 0 0 0 0 0 µ2 0 0 0 µ3 0 µ4 µ5 ∗



































































































,

B =



































































































λ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 λ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 λ1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 λ1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 λ1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 λ1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 λ1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 λ1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 λ1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 λ1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 λ1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 λ1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 λ1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 λ1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ1



































































































,

87

C =



































































































0 0 µ1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 µ1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 µ1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 µ1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 µ1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 µ1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 µ1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 µ1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 µ1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 µ1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 µ1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 µ1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 µ1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 µ1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 µ1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 µ1



































































































and

D =



































































































∗ 0 0 0 λ3 0 0 0 λ2 0 0 0 0 0 0 0

µ5 ∗ 0 0 0 λ3 0 0 0 λ2 0 0 0 0 0 0

µ4 0 ∗ 0 0 0 λ3 0 0 0 λ2 0 0 0 0 0

0 µ4 µ5 ∗ 0 0 0 λ3 0 0 0 λ2 0 0 0 0

0 µ3 0 0 ∗ 0 0 0 0 0 0 0 λ2 0 0 0

0 0 0 µ3 µ5 ∗ 0 0 0 0 0 0 0 λ2 0 0

0 0 0 µ3 µ4 0 ∗ 0 0 0 0 0 0 0 λ2 0

0 0 0 µ3 0 µ4 µ5 ∗ 0 0 0 0 0 0 0 λ2

0 0 µ2 0 0 0 0 0 ∗ 0 0 0 λ3 0 0 0

0 0 0 µ2 0 0 0 0 µ5 ∗ 0 0 0 λ3 0 0

0 0 0 µ2 0 0 0 0 µ4 0 ∗ 0 0 0 λ3 0

0 0 0 µ2 0 0 0 0 0 µ4 µ5 ∗ 0 0 0 λ3

0 0 0 0 0 0 µ2 0 0 µ3 0 0 ∗ 0 0 0

0 0 0 0 0 0 0 µ2 0 0 0 µ3 µ5 ∗ 0 0

0 0 0 0 0 0 0 µ2 0 0 0 µ3 µ4 0 ∗ 0

0 0 0 0 0 0 0 µ2 0 0 0 µ3 0 µ4 µ5 ∗



































































































.

88

This Markov chain is lumpable with respect to partitions which divide the original

matrix into 8× 8 or 4× 4 or 2× 2 sub-matrices.

There are plenty of lumpable Markov chains from Queuing networks as well. Figure 6.5

is a more general closed queuing model with parallel queues. If the pi, i = 1, 2, 3, 4 are

equal and µi, i = 1, 2, 3, 4 are equal also, then the partitioning indicated in the Figure is

lumpable. This may be a hint on how to determine the lumpable partitioning by the use of

symmetric structure (parallel structure here, for instance).

6.3 Relationship Among Lumpability, Weak Lumpability, Quasi-

lumpability and NCD

The relationship between lumpability and NCD can be observed by several examples

below.

• There may be cases where the Markov chain with a given partition is neither lumpable

nor weakly lumpable for any initial distribution. The Markov chain with its transition

probability matrix [56], for example,

P =













1− p p 0

0 0 1

1 0 0













where 0 ≤ p ≤ 1, is neither lumpable nor weakly lumpable because for any initial

distribution, we have

Pr{Xi+1 ∈ S1|Xi ∈ S2,Xi−1 ∈ S1} = 0,

and

Pr{Xi+1 ∈ S1|Xi ∈ S2,Xi−1 ∈ S2} = 1.

89

p

3p

2
p

1p

0µ

0µ

0µ

0µ

µ

4

3
p

0µ2p

4
p

3p

2p

1p

1p

0

3,1,1,0,0

3,0,0,0,2

3,0,0,2,0

3,0,2,0,0

3,2,0,0,0

4,0,0,0,1

4,0,0,1,0

4,0,1,0,0

4,1,0,0,0

5,0,0,0,0

(M = 5, N = 5)

Queue 4

Queue 3

Queue 2

Queue 1

µ

3,1,0,1,0

0

0

0

0

µ

µ

µ

µ

µ

µ

µ

µ

3,0,0,1,1

3,0,1,0,1

3,0,1,1,0

3,1,0,0,1

µ

3µ

1µ

2µ

4µ

3µ

2µ

1µ

0µ

µ

4µ

3
µ

4µ

2µ

3µ

2µ

4µ

µ1

1

4

p

0µp

0µp

0
µ1p

0µ4
p

0

4

p

2

1

0µ3p

0µp

0µp

3

2

0µ

µ

µ

µ

λ

Figure 6.5: Closed Queueing Model With Parallel Queues(1)

90

• A Markov chain which is lumpable with respect to a given state space partition can

be completely decomposable. For example, let

P =



















0.75 0.25 0.00 0.00

0.50 0.50 0.00 0.00

0.00 0.00 0.60 0.40

0.00 0.00 0.45 0.55



















.

Obviously this Markov chain is lumpable with respect to the partition indicated in the

matrix and is completely decomposable. Actually this is a special case of lumpability.

• A Markov chain which is lumpable with respect to a given state space partition is not

completely decomposable. For example, let

P =



















0.35 0.25 0.20 0.20

0.30 0.50 0.10 0.10

0.05 0.25 0.30 0.40

0.10 0.05 0.45 0.40



















.

• A Markov chain which is lumpable with respect to a given state space partition is

nearly completely decomposable. For example, let

P =



















0.4500 0.5497 0.0001 0.0002

0.6498 0.3500 0.0001 0.0001

0.0005 0.0005 0.4550 0.5440

0.0020 0.0030 0.3750 0.6200



















.

This Markov chain is nearly completely decomposable with ε = 0.01.

• A Markov chain which is lumpable with respect to a given state space partition is

91

NOT nearly completely decomposable. For example, let

P =



















0.25 0.25 0.25 0.25

0.20 0.30 0.20 0.30

0.25 0.30 0.20 0.25

0.35 0.20 0.25 0.20



















.

Dayar and Stewart proved that NCD Markov chains are ε-quasi lumpable [22].

The relationship among lumpability, weak lumpability and ε quasi lumpability of Markov

chains is illustrated below .

• lumpability implies weak lumpability.

This is obviously the case by their definitions.

• weak lumpability implies lumpability when the Markov chain is reversible and regular.

This is proved by Snell.

• lumpability implies ε-quasi lumpability.

This is the case by specifying ε = 0.

• ε-quasi lumpability can not infer lumpability.

• weak lumpability implies ε-quasi lumpability when the Markov chain is reversible and

regular.

This is due to the statement 2 and 3 above.

• ε-quasi lumpability can not infer weak lumpability.

6.4 Identify All Lumpable Partitions

In the previous section, we introduced the concept of lumpability. But we have not

yet answered the question on how to identify or construct the lumpable partitions if the

Markov chain is indeed lumpable. In this section, we first introduce the procedure presented

92

by Langford B. White, etc [73] and then we suggest improvements and present several

empirical results.

6.4.1 White’s Algorithm

Let us start with a new defintion. A n-state Markov chain Xt is said to be M-lumpable

if chain Xt is lumpable with respect to the state partition S = ∪I=MI=1 SI with SI
⋂

SJ =

∅, ∀I 6= J . Note that it is trivial when M = n. Suppose 2 ≤ M ≤ n. We now need to test

whether an (M-1)-lumpable partitioning exists. This test is easily made determining if the

following equations hold:

kMJ = k(M−1)J , J = 1, 2, · · · ,M − 2. (6.7)

If this is the case, then SM and S(M−1) are combined together (without loss of generality,

by relabeling if necessary) to form a (M-1)-lumpable

T =

I=M−1
⋃

I=1

TI (6.8)

where TI = SI , I = 1, 2, · · · ,M − 2 and TM−1 = SM−1
⋃

SM . The procedure for obtaining

all lumpings is shown in Figure 6.6. It is obvious that this procedure in the worst case

is exponential. From the following queueing model examples, we observe that most tests

executed in the above procedure can be avoided.

6.4.2 Improvements

We first introduce another definition.

Definition 6.4.1 Let S = {S1, S2, · · · , SM} be a partition of the set of states of a Markov

chain, then S is called a block agreement if the state indices of subset I is less than those

of subset J , for any I < J .

93

Input:

1. L: the set of all partitionings ;

2. S, T : the working partitionings;

3. M : the # of subsets for any one partitioning;

4. n: the # of states for the Markov chains;

Output: All lumpable partitionings L.

1. Set M = n; Define SI = {I}, I = 1, 2, · · · ,M ; Set L = L
⋃

S
2. For each M-lumpable partitioning S ∈ L
3. Check (6.7) on each distinct pair SI , SJ , I 6= J
4. If failure
5. Stop with the process M-lumpable but not (M − 1)− lumpable
5. Else
6. Union SM−1 and SM ; Define (M-1)-lumpable partitioning T (6.8)
7. Set M:= M - 1 and go to line 2 if necessary;
8. End the procedure.

Figure 6.6: Procedure To Obtain Lumpable Partitionings

Several state orderings are considered.

1. lexicographical ordering(including inverse lexicographical ordering)

2. antilexicographical ordering

3. MARCA ordering

4. the ordering used in the Example 4

With the definition of block agreement and the orderings listed, considerable saving can

be made in determining all possible lumpings. The block agreement prohibits the union of

subsets like S1 = {1, 2} and S3 = {5, 6}. Any subset SI can only be combined by either

subset SI−1 or SI+1. For each state ordering above, partitioning is made according to block

agreement. Let us look at several cases.

Case 1: Our experience shows that very few open queueing models have underlying Markov

chains that are lumpable. The only one we found is the loss system. In Fig 6.7, if a customer

94

leaving queue 1 and finding queue 2 full is lost. In this case, the Markov chain is lumpable as

indicated in the figure, no matter what the service rates are. The lumped Markov chain can

be treated as the chain caused by the first queue/server in isolation. Note the transitions

indicated by dashed arrows which result from the loss situation. Without this situation, it

is not lumpable. Next, we consider the closed queueing networks.

µ µ

µ µ

µ µ

µ

µ

µ

µ

2µ

= 22C= 2 1C

2µ1µ

λ

2

2, 0

2, 1

2, 2

1, 0

1, 1

1, 2

0, 0

0, 1

0, 2

11

1µ

λ

λ

λλ

λ

λ

11

1

2

22

2

Figure 6.7: Open Queueing Network And Its Transition Diagram

Case 2: This model has 3 server nodes with rates µi, i = 1, 2, 3 and 4 customers circulate

among them in the clockwise direction. Its transition rate diagram is illustrated in the

middle of Figure 6.8 Obviously there does not exist any lumpable partitioning even if all µi

are equal. If however, the capacity of queue in sever i, i = 1, 2, 3 is 2, 2 and 4 respectively

and if any customer leaving queue i finds queue (i+1)mod 3 full, strides over it goes directly

to the next non-fill queue. In this situation, the underlying Markov chain is lumpable with

the partitioning shown in the Figure 6.8.

95

Case 3: This a closed queueing model with parallel queues (See figure 6.11). It may be

readily observed that the partition

{(3, 0, 0)}∪{(2, 1, 0), (2, 0, 1)}∪{(1, 2, 0), (1, 0, 2)}∪{(1, 1, 1)}∪{(0, 3, 0), (0, 0, 3)}∪{(0, 2, 1), (0, 1, 2)}

is a lumpable partitioning if

p12 = p13, and µ2 = µ3.

It is well known that two single server centers with their own queues have different perfor-

mance than a single server center with the same 2 servers but only one single queue. So it

is impossible to treat the two parallel queues as one bigger imaginary queue without loss of

accuracy. The lumpable partitioning above says however that it is possible to group states

according to the number of queues with the same length. That is, all states with queue 1

having 2 customers are grouped together; all states with queue 1 having 1 customers are

grouped together; and all states with queue 1 having 0 customers are grouped together. See

Figure 6.9.

Case 4: Figure 6.5 is a more general closed queueing model with parallel queues. If

pi, i = 1, 2, 3, 4 are equal and µi, i = 1, 2, 3, 4 are also equal, then the partitioning indicated

in the Figure is lumpable. This suggests how lumpable partitioning may be found from the

symmetric structure (parallel structure here, for instance).

Heuristics: For most queueing models that are not lumpable for any of the above state

ordering, then it is quite possible that the Markov chain is not lumpable. It would appear

that all queueing models follow this rule but a rigorous proof is still lacking. when this rule

is applicable, it will be more efficient to incorporate it with White’s algorithm.

The underlying Markov chains of most queueing models are not lumpable. The loss

systems for open queueing networks are the only ones we find to be lumpable. All closed

queueing models with parallel queues are however, lumpable. And for the serial (tandem)

closed queueing model, if the skip jump is allowed, then they are lumpable as well.

96

6.5 Iterative Aggregation/Disaggregation

When the Markov chain under investigation is lumpable with respect to the parti-

tion (6.1), then the aggegation step of the iterative aggregation and disaggregation method

is exact and needs only to be formed once. This can be seen in the following theorem.

Theorem 6.5.1 If the irreducible Markov chain P with partition as in (6.1) can be lumped

to form the Markov chain K as in (6.4), then the coupling matrix C = K where C is formed

by exact aggregation.

Proof Recall that the coupling matrix is formed by (see also equation (2.13))

cIJ = φiPIJe

where φi is the unique stationary distribution vector for stochastic complement Sii,

i.e.,

φi = φiSii.

So, when the Markov chain is lumpable, i.e.,

PIJe = kIJe, I, J = 1, 2, · · · ,M,

then cIJ = φikIJe = kIJ since φie = 1.

¤

Therefore, the iterative aggregation disaggregation method can be simplified for the ag-

gregation step. The IAD algorithm for lumpable Markov chains is illustrated as follows.

Note that when the first execution of disaggregation is finished and more iterations are

needed, the execution process goes to line 5 instead of line 2. That is, the aggregation step

is executed once and for all.

97

1, 1, 2

2, 2, 0

2, 1, 1

2, 0, 2

3, 1, 0

3, 0, 1

2

2

2

2

2

2

2

2

33

3

1 1

1

1

1

1

1

1

1

22

1, 2, 1

u

u

u

u

u

u

u

uu

u

u

u

u

u

u

1, 3, 0

0, 0, 4

0, 2, 2

0. 3. 1

u

u

u

u

u u

u

u

u

u

3

33

33 uu

1

1

11

1

1
2

2

3

4, 0, 01, 0 , 3

0, 1, 3

(3 Server Stations And 4 Customers)

2, 0, 2

2, 1, 1

2, 2, 0

1, 0, 3

1, 1, 2

1, 2, 1

0, 0, 4

0, 1, 3

0, 2, 2

3

2 u

u

u

u

u

u

1u

3333

u33

u

2

2

2

uu

u

u

u u

u

u
u

u

u

u

u

u

0, 4, 0

23u u

1u

Figure 6.8: Closed Queueing Network And Its Transition Diagram

98

3, 0, 0

p12u1

2, 1, 0

2, 0, 1

1, 2, 0

1, 1, 1

1, 0, 2

0, 3, 0

0, 2, 1

0, 1, 2

0, 0, 3

p12u1

p12u1

p13u1 p

13u1p
p

p13u1

p13u1

p13u1 p

12u1

12u1

12u1

p13u1

p21u2

21u2p

p21u2

21u2p

p21u2

p21u2

p31u3

p31u3

p31u3

p31u3

p31u3

p31u3

Figure 6.9: State Transition Diagram For Model In Figure 6.11

u1

u2

u3

p12

p13

Figure 6.10: Closed Queueing Network With Parallel Queues(2)

99

u1

u3

u2
p
12

p13

p

p

p

p

21

23

32

31

Figure 6.11: Closed Queueing Network With Parallel Queues(3)

Input:

P =











P11 P12 · · · P1M

P21 P22 · · · P2M
...

...
. . .

...
PM1 PM2 · · · PMM











,

Output: The steady state distribution π = (π1, · · · , πM).

1. Initialization: π(0) = (π
(0)
1 , · · · , π(0)

M), set m = 1.
2. Aggregation:
3. Form the coupling matrix: C[I, J] = K[I, J], I, J = 1, 2, · · · ,M.
4. Solve the censored M.C.: ξ = ξC ξe = 1, ξ > 0.
5. Disaggregation:

6. Form the row vector: z(m) = (ξ1
π

(m−1)
1

||π
(m−1)
1 ||1

, ξ2
π

(m−1)
2

||π
(m−1)
2 ||1

, · · · , ξM π
(m−1)
M

||π
(m−1)
M ||1

).

7. For each K = 1, 2, · · · ,M
8. Compute π

(m)
K : π

(m)
K = π

(m)
K PKK +

∑

J<K π
(m)
J PJK +

∑

J>K z
(m)
J PJK

9. End for
10. Test for convergence:
11. If not convergence, set m = m+ 1, go to step 5.
12. Else Stop.

Figure 6.12: IAD Algorithm For Lumpable Markov Chains

100

Chapter 7

Bounding Technique Based on

Stochastic Comparison

7.1 Introduction

In some application areas for Markov Chains, it is sufficient to bound the performance

measures of interest instead of having to calculate exact solutions. This can be seen in the

performance analysis of computer networks which requires only a guaranteed Quality of

Service (QoS): exact performance measures are not necessary. One bounding technique of

current interest uses stochastic comparisons [67, 71]. There are different stochastic orderings

on which a stochastic comparison method may be based. The best known and most widely

applied, is that of strong stochastic ordering. Intuitively, a random variable X is more likely

to assume larger values than another random variable Y if Y ≤st X when both random

variables take values on a totally ordered space [20, 67, 26]. Observe that we shall use the

notation ≤st to denote a strong stochastic ordering.

In order to obtain componentwise probability bounds of interest, the state space of the

Markov chain must be ordered in such a way in which the state of interest, i.e., the state

from which the actual measure of the quality of service is obtained, is the last state (details

to be discussed in the following sections). In this paper, we observe that the bounding

101

procedure works symmetrically when the state are ordered in such a way that the state of

interest is placed in the first position instead of the last. In this thesis, a lower bounding

stochastic matrix is constructed instead of an upper bounding matrix.

Several constructive algorithms based on strong stochastic comparison have been pre-

sented in the literature [1, 6, 25, 26]. These algorithms first construct a bounding matrix

which is then modified in order to to render the numerical computation of a bounding sta-

tionary distribution vector more facile. Since it is the size of the Markov chain transition

matrix that usually causes numerical difficulties, it is generally not beneficial if the com-

putation of the stationary distribution vector for the upper bounding stochastic matrix is

to be computed from a matrix that is the same order of magnitude as the original matrix.

So, in order to simplify the numerical computation once the upper bounding stochastic

matrix has been constructed, one possibility is to reduce the state space by lumping states

into different groups to form a new lumped Markov chain having much fewer states [36].

States in the lumped chains are called macro states and each macro state state contains one

or more (and generally, many) of the original states. The details will be discussed in the

following section. In this dissertation, we consider the effect of the number of partitions on

the tightness of the bounds obtained. We observe that the more partitions (lumped macro

states) there are, the tighter the upper bounds tend to be.

Dayar and his co-authors [20] observe that different state orderings (yet nevertheless

subject to the fact that the state of interest is the last state) result in different upper

bounds on the probability of the last state and they present several heuristics to try to

obtain the tightest possible upper bounds. One of these heuristics is to minimize the 1-

norm of the last column of the perturbation matrix. In [21], they introduce a second

approach to obtaining tight upper bounds by first transforming the transition probability

matrix and then constructing its upper bounding stochastic monotone matrix.

Based on the permutation of the states and the transformation of the transition prob-

ability matrix, we pose the following questions: Is it beneficial to combine both the state

permutation method and the probability matrix transformation method (i.e., permuting

102

states first and then transforming the probability matrix)? Is the optimal state ordering

still the best after the transformation of the transition probability matrix? If so, then why

is it still consistent? With regard to the lumping method, is it advantageous to go one

step further by partitioning the permuted and transformed probability matrix instead of

simply partitioning the original probability matrix? In summary, we wish to investigate

the effects of combining permutation, transformation and partition in order to obtain tight

upper bounds for the states of interest.

7.2 Background Review

We briefly review stochastic comparisons based on strong stochastic orderings. The

algorithmic approach to constructing upper bounding stochastic and monotone matrices is

also reviewed. For the sake of simplicity, our focus is restricted to discrete time Markov

chains (DTMC) on a finite state space, S = {1, 2, · · · , n} with transition probability

matrices P of order n× n. The approach is equally applicable to continuous time Markov

chains (CTMC) once the chains have been uniformized. The goal is to obtain an upper

bound for the stationary distribution vector π which satisfies the relation

πP = π and
n
∑

i=1

πi = 1.0.

We use the abbreviation “st” for strong stochastic ordering. We shall denote row i of the

matrix P by Pi,∗.

7.2.1 Strong Stochastic Ordering And Constructive Algorithms

Definition 7.2.1 Let X and Y be random variables taking values on a totally ordered

space. Then X is said to be less than Y in the strong stochastic sense, i.e., X <st Y iff

E[f(X)] ≤ E[f(Y)] for all nondecreasing functions f whenever the expectations exist.

Definition 7.2.2 Let X and Y be random variables taking values on a finite state space

103

{1, 2, · · · , n}. Let p and q be probability distribution vectors such that

pj = Prob(X = j) and qj = Prob(Y = j) for j = 1, 2, · · · , n.

Then X is said to be less than Y in the strong stochastic sense, i.e., X <st Y iff

n
∑

j=i

pj ≤
n
∑

j=i

qj for i = 1, 2, · · · , n.

Definition 7.2.3 Let P and Q be two stochastic matrices. Then P ≤st Q iff for all i =

1, 2, . . . , n, we have Pi,∗ <st Qi,∗.

Definition 7.2.4 Let P be a stochastic matrix. Then P is st-monotone iff for all i, j > i,

we have Pi,∗ <st Pj,∗.

Theorem 7.2.1 Let X(t) and Y (t) be two DTMC and let P and Q be their respective

stochastic matrices. Then X(t) <st Y (t) if

• X(0) <st Y (0),

• st-monotone of at least one of the matrices holds,

• st-comparability of the matrices holds, i.e., Pi,∗ <st Qi,∗ for all i.

Algorithm 1 below constructs an st-monotone upper bounding DTMC Q for a given DTMC

P . This algorithm is optimal in the sense that, if there is another st-monotone upper

bounding DTMC Q
′

for P , then Q <st Q
′

. Note that bounds on the stationary probability

distributions may still be improved. i.e., they may be not optimal.

Example 1 [20]: Consider the 4-state DTMC P below

P =



















0.3 0.2 0.3 0.2

0.3 0.1 0.4 0.2

0.4 0.1 0.2 0.3

0.3 0.2 0.1 0.4



















104

Algorithm 1 Constructs an optimal st-monotone upper bounding DTMC Q:
1. q1,n = p1,n

2. for i = 2, 3, · · · , n do
3. qi,n = max{qi−1,n, pi,n}
4. for j = n − 1, n − 2, · · · , 1 do
5. q1,j = p1,j

6. for i = 2, 3, · · · , n do
7. qi,j = max{∑n

k=j qi−1,k,
∑n

k=j pi,k} − ∑n

k=j+1 qi,k

Figure 7.1: Algorithm to Construct st-monotone Upper Bounding Markov Chains

whose stationary distribution vector is (with 4 decimal digits of accuracy)

πP = [0.3236 0.1603 0.2365 0.2796].

Applying algorithm 1, the st-monotone upper bounding DTMC Q is

Q =



















0.3 0.2 0.3 0.2

0.3 0.1 0.4 0.2

0.3 0.1 0.3 0.3

0.3 0.1 0.2 0.4



















whose stationary distribution vector is (with 4 decimal digits of accuracy)

πQ = [0.3000 0.1300 0.2844 0.2856].

Other than in the case of matrices having a very special structure, such as bandedness,

symmetry and so on, it serves little purpose if the new algorithm requires the computation

of the stationary distribution vector of an upper bounding st-monotone matrix Q that is

the same size as the original matrix P . In order to reduce the time needed to compute

the stationary distribution vector, Fourneau and Pekergin [25] developed algorithms to

construct upper-Hessenberg matrices, while Feinberg & Chiu employed a reduced matrix

based on a Single Input Macro State approach. However, the most widely used approach is

to reduce the size of the state space by lumping states into groups to form a new Markov

105

chain having much fewer number of macro states (by lumping states into groups). We now

present an algorithm to construct a lumpable st-monotone upper bounding matrix.

Theorem 7.2.2 Let Q be an st-monotone matrix which is lumpable with respect to the

partition S = {S1, S2, · · · , SM} and which is an upper bound for P . Let QIJ and PIJ be block

transitions from set SI to set SJ for Q and P respectively. Then for all I, J, 1 ≤ I, J ≤M ,

block QIJ is st-monotone.

The proof of this theorem may be found in [25]. The algorithm to construct a lumpable

upper bounding st-monotone matrix is illustrated in Figure 7.2 where b(I) and e(I), I =

1, 2, . . . ,M represent the first state and the last state respectively.

Algorithm 2 Constructs a lumpable st-monotone upper bounding DTMC Q:
1. q1,n = p1,n

2. for J = M,M − 1, · · · , 1 do
3. for l = e(J), e(J) − 1, · · · , b(J) do
4. q1l =

∑n

j=l p1j − ∑n

j=l+1 q1j

5. for i = 2, 3, · · · , n do
6. qil = max{∑n

j=l qi−1,j ,
∑n

j=l pi,j} − ∑n

j=l+1 qi,j

7. for I = 1, 2, · · · ,M do

8. c =
∑e(I)

j=b(I) qe(I),j

9. for i = b(I), b(I) + 1, · · · , e(I) − 1 do

10. qi,b(I) = c − ∑e(I)
j=b(I)+1 qi,j

Figure 7.2: Algorithm to Construct Lumpable st-monotone Upper Bounding Markov Chains

This algorithm constructs the matrix column by column in two steps. The first step

is based on Algorithm 1 while the second makes modifications on the first column of the

block to satisfy the lumpability constraint (6.2). This constraint requires that all blocks

have equal row sums. Due to st-monotonicity, the maximal row sum is reached on the last

row of the block. Therefore, after we construct the current block by use of Algorithm 1,

we modify the first column of the current block with the now available maximum block

row sum. That is, we simply increase each element in the first column of the block by the

difference between its original row sum and the maximal row sum of the block (which is the

last).

106

7.2.2 Permutation And Transformation

Let us consider the state permutation method and the transformation method proposed

by Dayar and examine how we might combine these approaches to obtain tight upper

bounds.

State Permutations

In [20], Dayar presented the approach of re-ordering the states of the Markov chain so as

to find a tight probability bound for the last state, state n, by using a st-monotone upper

bounding matrix Q on the original stochastic probability matrix P . A natural choice is to

consider orderings that minimize the 1-norm of the last column of the perturbation matrix

E, i.e., to minimize |Een|1 where E = Q − P and en is the n
th column of the identity

matrix. It is possible to view the 1-norm of the last column of E as the minimum total

perturbation necessary to ensure that the last state is st-monotone.

For illustrative purposes, consider the 4-state Markov chain of example 1 and the results

presented in the first five columns of Table 7.1. In this table, for each of the four possible

states placed in the last position, we permute the other three and obtain 3! = 6 different

state orderings for each group. The best upper bound for each group of orderings is in bold

fonts. Dayar noted that minimizing the 1-norm of the the last column of E may not always

give the best upper bound but that a large 1-norm always results in a poor upper bound.

Matrix Transformation

In [21], Dayar et al. considered a linear transformation for stochastic matrices of the type

P → T (P, δ) = (1− δ)P + δI, for δ ∈ (0, 1). (7.1)

This transformation does not affect the steady-state distribution [21, 64] but it does have a

large influence on the effect of Algorithm 1. It was shown that if the given stochastic matrix

is not row diagonally dominant (RDD), then the steady-state probability distribution of the

optimal st-monotone upper bounding matrix corresponding to the row diagonally dominant

transformed matrix is better in the strong stochastic sense than the one corresponding to the

107

original matrix. The transformation 1
2P+

1
2I provides the best bound for the family of linear

transformation considered. In what follows, we shall let ν(P) denote the st-monotone upper

bounding matrix for the original stochastic matrix P . Recall that the stochastic matrix P

is said to be row diagonally dominant (RDD) if all of its diagonal elements are greater than

or equal to 0.5. Furthermore, observe that it suffices to choose δ = 1/2 in (7.1) to transform

an arbitrary stochastic matrix into one that is RDD.

Theorem 7.2.3 Let P be a DTMC of order n that is not RDD and let δ1, δ2 ∈ (0, 1) be

two parameters such that δ1 < δ2. Then

πP <st πν(T (P,δ1)) <st πν(T (P,δ2)) <st πν(P).

Dayar et al. show that when the DTMC is already RDD, no benefit arises from choosing

values of δ that are less than one half. For a RDD DTMC, smaller values of δ do not result

in tighter upper bounds. Since δ = 1/2 is sufficient to transform an arbitrary stochastic

matrix into one that is RDD, the optimal linear transformation (of degree 1) is T (P, 1
2) =

1
2P +

1
2I. This approach may be generalized to transformations based on a set of higher-

degree polynomials which may give better upper bounds.

Definition 7.2.5 Let D be the set of polynomials φ(·) such that φ(1) = 1, different from

the identity and with non-negative coefficients.

Theorem 7.2.4 Let φ be an arbitrary polynomial in D. Then Algorithm 1 applied to φ(P)

provides a more accurate bound than that of Q, i.e.,

πP <st πν(φ(P)) <st πν(P).

The proof may be found in [21]. Furthermore, in [9] it is claimed that the larger the degree

of φ, the more accurate the bound ν(φ(P)). However, the optimal transformation when the

108

degree is greater than 1, is still an open problem. In other words, it is still not known how

to determine the best coefficients for the polynomials of degree greater than 1.

Example 2 Let us re-examine the matrix P of Example 1, this time applying the trans-

formations φ1(X) =
1
2X +

1
2 and φ2(X) =

1
2X

2 + 1
2 . We have

φ1(P) =



















0.6500 0.1000 0.1500 0.1000

0.1500 0.5500 0.2000 0.1000

0.1500 0.1000 0.6000 0.1500

0.1500 0.1000 0.0500 0.7000



















.

The corresponding st-monotone upper bounding matrix obtained by use of Algorithm 1 is

ν(φ1(P)) =



















0.6500 0.1000 0.1500 0.1000

0.1500 0.5500 0.2000 0.1000

0.1500 0.1000 0.6000 0.1500

0.1500 0.1000 0.0500 0.7000



















.

Also,

φ2(P) =



















0.6650 0.0750 0.1250 0.1350

0.1700 0.5750 0.1150 0.1400

0.1600 0.0850 0.6150 0.1400

0.1550 0.0850 0.1150 0.6450



















and the corresponding st-monotone upper bounding matrix obtained from Algorithm 1 is

ν(φ2(P)) =



















0.6650 0.0750 0.1250 0.1350

0.1700 0.5700 0.1200 0.1400

0.1600 0.0850 0.6150 0.1400

0.1550 0.0850 0.1150 0.6450



















.

Calculating all steady-state distributions and arranging them side-by-side for ready com-

109

parison, we have

πP = [0.3236 0.1603 0.2365 0.2796],

πν(P) = [0.3000 0.1300 0.2844 0.2856],

πν(φ1(P)) = [0.3000 0.1818 0.2384 0.2798],

πν(φ2(P)) = [0.3236 0.1588 0.2381 0.2796].

Index Ordering πP πν(P) ||Een||1 πν(φ1(P)) ||Een||1 πν(φ2(P)) ||Een||1
1 {1, 2, 3, 4} 0.2796 0.2856 0.0 0.2798 0.00 0.2796 0.000
2 {1, 3, 2, 4} 0.2796 0.3000 0.1 0.2974 0.05 0.22796 0.000
3 {2, 1, 3, 4} 0.2796 0.2889 0.0 0.2828 0.00 0.2828 0.005
4 {2, 3, 1, 4} 0.2796 0.3222 0.1 0.3222 0.05 0.2828 0.005
5 {3, 1, 2, 4} 0.2796 0.3333 0.2 0.3333 0.10 0.2828 0.005
6 {3, 2, 1, 4} 0.2796 0.3333 0.1 0.3333 0.10 0.2828 0.005

7 {1, 2, 4, 3} 0.2365 0.3700 0.5 0.3083 0.15 0.2451 0.020
8 {1, 4, 2, 3} 0.2365 0.3500 0.4 0.2917 0.10 0.2451 0.020
9 {2, 1, 4, 3} 0.2365 0.4000 0.6 0.3333 0.20 0.2422 0.010
10 {2, 4, 1, 3} 0.2365 0.4000 0.6 0.3333 0.20 0.2368 0.000
11 {4, 1, 2, 3} 0.2365 0.2950 0.2 0.2458 0.00 0.2397 0.010
12 {4, 2, 1, 3} 0.2365 0.3250 0.3 0.2708 0.05 0.2366 0.000

13 {1, 3, 4, 2} 0.1603 0.2000 0.2 0.1818 0.05 0.1604 0.000
14 {1, 4, 3, 2} 0.1603 0.2000 0.2 0.1818 0.05 0.1605 0.000
15 {3, 1, 4, 2} 0.1603 0.1850 0.1 0.1653 0.00 0.1667 0.010
16 {3, 4, 1, 2} 0.1603 0.1889 0.1 0.1717 0.00 0.1667 0.010
17 {4, 1, 3, 2} 0.1603 0.2000 0.2 0.1818 0.05 0.1667 0.010
18 {4, 3, 1, 2} 0.1603 0.2000 0.2 0.1818 0.05 0.1667 0.010

19 {2, 3, 4, 1} 0.3236 0.3900 0.2 0.3545 0.05 0.3366 0.025
20 {2, 4, 3, 1} 0.3236 0.3700 0.1 0.3306 0.00 0.3366 0.025
21 {3, 2, 4, 1} 0.3236 0.4000 0.3 0.3636 0.10 0.3321 0.015
22 {3, 4, 2, 1} 0.3236 0.4000 0.3 0.3636 0.10 0.3265 0.005
23 {4, 2, 3, 1} 0.3236 0.3625 0.1 0.3244 0.00 0.3283 0.010
24 {4, 3, 2, 1} 0.3236 0.3722 0.2 0.3382 0.05 0.3237 0.000

Table 7.1: Bounding Effects on a 4−state Discrete Time Markov Chain(1)

110

7.3 Combine Permutation, Transformation and Partitioning

In this section, we provide some new observations and results. First of all, we observe

that the lower bounding stochastic matrix can give us the same upper bounding for the

first state as the upper bounding stochastic matrix does for the last state. Secondly, we

observed that the more lumpable partitions we make, the more accurate the upper bound

will become. Thereafter, we investigated the effects on upper bounds by combining state

permutation and matrix transformations. Finally, we combine all together, i.e., put state

permutation, matrix transformation and lumpable partitionings together to improve the

quality of the upper bounds for the state of interest.

7.3.1 Upper Bounds For The First State

Based on definition 7.2.5 of the previous section, we have

p1 ≥ q1

since
n
∑

j=2

pj ≤
n
∑

j=2

qj

and

p1 +

n
∑

j=2

pj = q1 +

n
∑

j=2

qj = 1.0.

So, if we construct a st-monotone lower bounding matrix Q, then the first state of interest

is bounded from above by πQ(1). The algorithm to construct a st-monotone lower bounding

matrix Q for a given stochastic matrix P is as follows.

The motivation for constructing a st-monotone lower bounding matrix to obtain an upper

bound on the probability distribution for the first state is that the errors for state 2, 3, . . .,

n may cancel each other out. Perhaps this could lead to a tighter upper bound on state

1. We carried out some experiments by applying Algorithm 3 on the matrix P of Example

111

Algorithm 3 Construct an optimal st-monotone lower bounding DTMC Q:
1. for j = 1, 2, · · · , n do
2 qn,j = pn,j

3. for i = n − 1, n − 2, · · · , 1 do
4. qi,n = min{qi+1,n, pi,n}
5. for i = n − 1, n − 2, · · · , 1 do
6. for j = n − 1, n − 2, · · · , 1 do
7. qi,j = min{∑n

k=j qi+1,k,
∑n

k=j pi,k} − ∑n

k=j+1 qi,k

Figure 7.3: Algorithm to Construct st-monotone Lower Bounding Markov Chains

1. This matrix P and its lower bounding matrix Q, based on the ordering {4, 1, 2, 3}, are

shown below.

P =



















0.4000 0.3000 0.2000 0.1000

0.2000 0.3000 0.2000 0.3000

0.2000 0.3000 0.1000 0.4000

0.3000 0.4000 0.1000 0.2000



















and Q =



















0.4000 0.3000 0.2000 0.1000

0.3000 0.4000 0.1000 0.2000

0.3000 0.4000 0.1000 0.2000

0.3000 0.4000 0.1000 0.2000



















.

In order to examine the effects of the transformations when the first state is of interest, we

include the numerical results for them as well in Table 7.4.

Observe that the lower bounding matrix gives exactly the same upper bound for the

first state which means that the errors for state 2, 3 and 4 have not cancelled out. The

upper bounding matrix and lower bounding matrix have symmetric behavior. For example,

the ordering {1, 2, 3, 4} in Table 7.4 (lower bounding case) has all upper bounds and 1-norm

of the first column of the perturbation matrix the same as the ordering {4, 3, 2, 1} in the

Table 7.1 (upper bounding case).

7.3.2 Bounding Accuracy For Lumpable Partitionings

It is natural to assume that the greater the number of lumpable partitions, the more

accurate the bounds obtained. We observed this phenomena on a number of DTMCs

randomly generated by Matlab. We first considered the following suite of three 8 × 8

randomly generated DTMCs.

112

P1 =















































0.1974 0.1707 0.1944 0.0289 0.0925 0.1742 0.0633 0.0786

0.0609 0.1171 0.2415 0.0534 0.2454 0.0052 0.0500 0.2265

0.1507 0.1529 0.1019 0.0494 0.1158 0.1692 0.0480 0.2121

0.1002 0.1633 0.1843 0.1245 0.0863 0.0783 0.1407 0.1224

0.1929 0.1995 0.0125 0.0589 0.1831 0.1800 0.0655 0.1075

0.1686 0.1633 0.0780 0.0440 0.1161 0.1112 0.1198 0.1990

0.1364 0.0527 0.2430 0.0046 0.0606 0.2120 0.0451 0.2456

0.0051 0.1119 0.0027 0.2060 0.1854 0.1183 0.1925 0.1779















































,

P2 =















































0.0024 0.1788 0.0820 0.2048 0.1197 0.1626 0.0144 0.2353

0.1271 0.0587 0.1985 0.1125 0.0563 0.1106 0.1091 0.2272

0.1637 0.1965 0.0851 0.0923 0.1522 0.0304 0.1191 0.1607

0.1644 0.1179 0.1299 0.1232 0.2035 0.1174 0.0542 0.0894

0.1620 0.1113 0.1231 0.0996 0.1421 0.1450 0.1052 0.1117

0.1910 0.0530 0.0898 0.1620 0.1591 0.1524 0.0111 0.1816

0.0924 0.1379 0.1039 0.1284 0.1218 0.2511 0.1435 0.0211

0.1088 0.1632 0.1148 0.1361 0.0201 0.1685 0.1228 0.1657















































113

and

P3 =















































0.1458 0.1575 0.1763 0.0193 0.1326 0.2568 0.0407 0.0709

0.0822 0.2221 0.2953 0.0238 0.0250 0.1693 0.0411 0.1412

0.2612 0.0583 0.0041 0.0038 0.0614 0.3012 0.2424 0.0677

0.0774 0.1871 0.0912 0.0668 0.1116 0.2434 0.2121 0.0105

0.1818 0.0411 0.1879 0.1245 0.0667 0.2213 0.1572 0.0196

0.1481 0.1212 0.0690 0.1029 0.1731 0.0254 0.1693 0.1910

0.0466 0.1356 0.2016 0.1530 0.0683 0.1767 0.1443 0.0740

0.1106 0.1260 0.1246 0.1070 0.1172 0.1668 0.1622 0.0856















































.

The numerical results obtained are presented in Table 7.2. In these experiments, the

order of states used was the natural ordering, {1, 2, 3, 4, 5, 6, 7, 8}. The partitioning schemes

are as follows.

partition a : {{1, 2, 3, 4, 5, 6, 7}, {8}}

partition b : {{1, 2, 3, 4}, {5, 6, 7}, {8}}

partition c : {{1, 2}, {3, 4}, {5, 6}, {7}, {8}}

partition d : {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}}

Algorithm 2 was applied to the matrices Pi, i = 1, 2, 3 based on different lumpable

partitioning schemes defined above. It can be seen that the more partitionings, the tighter

the upper bound obtained for state 8.

Partitioning Schemes exact πν(P1)(8) exact πν(P2)(8) exact πν(P3)(8)

partition a 0.1714 0.2456 0.15555 0.2352 0.0941 0.1909
partition b 0.1714 0.2376 0.15555 0.2312 0.0941 0.1746
partition c 0.1714 0.2325 0.15555 0.2297 0.0941 0.1726
partition d 0.1714 0.2239 0.15555 0.2251 0.0941 0.1634

Table 7.2: Bounding Accuracy For Lumpable Partitionings(1)

114

A second suite of two matrices, P4 and P5 of sizes 16×16 and P6 of 24×24 respectively,

were also generated randomly by Matlab, but are omitted in order to save space. For these

matrices, the state partitionings chosen are as follows.

partition1 : {{1, 2, 3, 4, 5, 6, 7, 8}, {9, 10, 11, 12, 13, 14, 15}, {16}}

partition2 : {1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15}, {16}}

partition3 : {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}, {13, 14}, {15}, {16}}

partition4 : {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}, {14}, {15}, {16}}

Notice that the partitions for matrix P6 of size 24 × 24 are different yet similar to those

for matrix P4 and P5. The results of Table 7.3 again show that increasing the number of

partitionings results in tighter upper bounds for the last state.

Lumpable Partitionings exact πν(P4)(16) exact πν(P5)(16) exact πν(P6)(24)

partition 1 0.0588 0.1250 0.0751 0.1336 0.0388 0.0940
partition 2 0.0588 0.1219 0.0751 0.1335 0.0388 0.0940
partition 3 0.0588 0.1219 0.0751 0.1235 0.0388 0.0908
partition 4 0.0588 0.1201 0.0751 0.1182 0.0388 0.0900
partition 5 0.0388 0.0889

Table 7.3: Bounding Accuracy For Lumpable Partitionings(2)

7.3.3 Combining State Permutation And Matrix Transformation

Let us now consider the effects of first transforming the original matrix P before reorder-

ing the states. In Table 7.1, we present the results obtained with all possible orderings by

use of permutations.

In that table, the matrices E in columns 5, 7 and 9 are given by E = ν(P) − P ,

E = ν(φ1(P)) − φ1(P) and E = ν(φ2(P)) − φ2(P) respectively. Observe that both trans-

formed matrices give much better upper bounds. Also, the linear transformation is consis-

tent with the st-monotone upper bounds for the original matrix P , i.e., they reach their

best bound with the same ordering in each group of permutations. For example, the state

115

Index Ordering πP πν(P) ||Ee1||1 πν(φ1(P)) ||Ee1||1 πν(φ2(P)) ||Ee1||1
1 {4, 1, 2, 3} 0.2796 0.3333 0.2 0.3333 0.10 0.2828 0.005
2 {4, 1, 3, 2} 0.2796 0.3222 0.1 0.3222 0.05 0.2828 0.005
3 {4, 2, 1, 3} 0.2796 0.3333 0.2 0.3333 0.10 0.2828 0.005
4 {4, 2, 3, 1} 0.2796 0.3000 0.1 0.2974 0.05 0.2796 0.000
5 {4, 3, 1, 2} 0.2796 0.2889 0.0 0.2828 0.00 0.2828 0.005
6 {4, 3, 2, 1} 0.2796 0.2856 0.0 0.2798 0.00 0.2796 0.000

7 {3, 1, 2, 4} 0.2365 0.3250 0.3 0.2708 0.05 0.2366 0.000
8 {3, 1, 4, 2} 0.2365 0.4000 0.6 0.3333 0.20 0.2368 0.000
9 {3, 2, 1, 4} 0.2365 0.2950 0.2 0.2458 0.00 0.2397 0.010
10 {3, 2, 4, 1} 0.2365 0.3500 0.4 0.2917 0.10 0.2451 0.020
11 {3, 4, 1, 2} 0.2365 0.4000 0.6 0.3333 0.20 0.2422 0.010
12 {3, 4, 2, 1} 0.2365 0.3700 0.5 0.3083 0.15 0.2451 0.020

13 {2, 1, 3, 4} 0.1603 0.2000 0.2 0.1818 0.05 0.1667 0.010
14 {2, 1, 4, 3} 0.1603 0.1889 0.1 0.1717 0.00 0.1667 0.010
15 {2, 3, 1, 4} 0.1603 0.2000 0.2 0.1818 0.05 0.1667 0.010
16 {2, 3, 4, 1} 0.1603 0.2000 0.2 0.1818 0.05 0.1605 0.000
17 {2, 4, 1, 3} 0.1603 0.1850 0.1 0.1653 0.00 0.1667 0.010
18 {2, 4, 3, 1} 0.1603 0.2000 0.2 0.1818 0.05 0.1604 0.000

19 {1, 2, 3, 4} 0.3236 0.3722 0.2 0.3382 0.05 0.3237 0.000
20 {1, 2, 4, 3} 0.3236 0.4000 0.3 0.3382 0.05 0.3265 0.005
21 {1, 3, 2, 4} 0.3236 0.3625 0.1 0.3244 0.00 0.3283 0.010
22 {1, 3, 4, 2} 0.3236 0.3700 0.1 0.3306 0.00 0.3366 0.025
23 {1, 4, 2, 3} 0.3236 0.4000 0.3 0.3636 0.10 0.3321 0.015
24 {1, 4, 3, 2} 0.3236 0.3900 0.2 0.3545 0.05 0.3366 0.025

Table 7.4: Bounding Effects on a 4−state Discrete Time Markov Chain(2)

ordering {1, 2, 3, 4} gives the best bound for both the original matrix and the linearly trans-

formed matrix among those orderings which has state 4 as the last state. However, this is

not the case (at least for this example) for the transformation φ2(·). Observe also that both

transformations have their best bounds when the 1-norm of the last column of the pertur-

bation matrix is minimized. Finally, the order of applying permutation and transformation

makes no difference. This can be seen in the following property.

Proposition 7.3.1 Let P be a DTMC of order n. Let M and T be the operation of

permutation and transformation on P , i.e.,

M(P) = SPST and T (P) = δP + (1− δ)I

116

where S is a permutation matrix, δ is a scalar between 0 and 1 and I is an identity matrix.

Then

TM =MT .

for any DTMC, P .

Proof Since

MT (P) = S[δP + (1− δ)I]ST = δSPST + (1− δ)SIST = δSPST + (1− δ)I

and

TM(P) = T (SPST) = δ(SPST) + (1− δ)I

it follows thatMT (P) = TM(P) which completes the proof. ¤

Note that this proposition continues to hold when the transformation T is any polynomial

of degree greater than 1. Let us take another example.

Example 3 (Courtois) Consider a DTMC whose stochastic transition probability matrix

P is as follows.

P =















































0.8500 0.0000 0.1490 0.0009 0.0000 0.0001 0.0000 0.0001

0.1000 0.6500 0.2490 0.0000 0.0009 0.0001 0.0000 0.0001

0.1000 0.8000 0.0996 0.0003 0.0000 0.0000 0.0001 0.0000

0.0000 0.0004 0.0000 0.7000 0.2995 0.0000 0.0001 0.0000

0.0005 0.0000 0.0004 0.3990 0.6000 0.0001 0.0000 0.0000

0.0000 0.0001 0.0000 0.0000 0.0001 0.6000 0.2499 0.1500

0.0000 0.0000 0.0000 0.0000 0.0000 0.1000 0.8000 0.0999

0.0000 0.0001 0.0000 0.0000 0.0001 0.1999 0.2500 0.5500















































The steady-state distribution of this DTMC is

πP = [0.0893 0.0928 0.0405 0.1585 0.1189 0.1204 0.2778 0.1018]

117

Index Ordering πP πν(P) πν(φ1(P)) πν(φ2(P))

1 {6, 8, 7, 4, 5, 2, 3, 1} 0.0893 0.1076 0.1062 0.0966
2 {6, 8, 7, 4, 5, 1, 3, 2} 0.0928 0.1281 0.1114 0.0998
3 {6, 8, 7, 4, 5, 1, 2, 3} 0.0405 0.0471 0.0405 0.0405
4 {7, 8, 6, 3, 2, 1, 5, 4} 0.1585 0.1626 0.1586 0.1585
5 {7, 8, 6, 3, 1, 2, 4, 5} 0.1189 0.1415 0.1401 0.1323

Table 7.5: Bounding Effects on a 8× 8 Courtois Matrix

The experimental results for this example are presented in Table 7.5. Note that in Table 7.5,

we tested only those orderings which give the best upper bounds obtained through the

use of permutations only. Based on Tables 7.1 and 7.5, it appears that combinations of

transformation and permutation results in better bounds for the last state, the state of

interest.

7.3.4 Combining All Together

We now combine all three possibilities. That is, we first permute the states so that the

best state ordering is obtained. Then the linear transformation on the permuted matrix is

incorporated so that the upper bound becomes tighter. Finally, the matrix obtained after

these first two steps is partitioned and lumped and the stationary distribution of this lumped

matrix computed. We seek to answer questions as to whether this combined approach gives

more accurate upper bounds for the state of interest; does it maintain the optimal state

ordering? Are there still no differences when the order of permutation and transformation

are interchanged?

With these questions in mind, we experimented on the three 8×8 matrices P1, P2 and P3

by combining permutation, transformation and lumpable partitioning. The results obtained

are shown in Table 7.6. In order to save space for the table, we use the same re-named

partitioning schems as those in Table 7.2. Then for each particular partitioning scheme

of each matrix, we permute states 1, 2, 3, 4, 5, 6, 7 (a total of 7! = 5040 orderings) and find

the optimal state ordering which is shown in column 4. We then combine permutation and

transformation and find the optimal state ordering which is shown in the last column. We

118

included also the 1-norm of the last column of the perturbation matrix.

Partitioning No Transformation Permute and Transform

P1 π(8) ||Ee8||1 opt. ordering π(8) ||Ee8||1 opt. ordering

a 0.2456 0.5952 {65173428} 0.2300 0.2638 {23671548}
b 0.2282 0.4088 {15642378} 0.2137 0.1706 {16453728}
c 0.2017 0.2138 {15362478} 0.1888 0.0731 {51364278}
d 0.1917 0.0677 {15463278} 0.1786 0.0000 {15463278}
P2 π(8) ||Ee8||1 opt. ordering π(8) ||Ee8||1 opt. ordering

a 0.2253 0.6897 {31465728} 0.2199 0.3101 {76321458}
b 0.2033 0.3913 {73542618} 0.1901 0.1609 {47351268}
c 0.1883 0.2325 {74356218} 0.1753 0.0815 {47352618}
d 0.1745 0.0696 {74536218} 0.1607 0.0000 {74536218}
P3 π(8) ||Ee8||1 opt. ordering π(8) ||Ee8||1 opt. ordering

a 0.1909 0.8675 {25617438} 0.1727 0.3811 {71523648}
b 0.1381 0.3995 {31752468} 0.1249 0.1471 {73516248}
c 0.1280 0.2937 {13754268} 0.1124 0.0909 {35172468}
d 0.1195 0.1239 {54731268} 0.1058 0.0092 {54731268}

Table 7.6: Bounding Effects on Combining Permutation, Transformation And Lumpable
Partitioning

Among the many observations that might be made concerning the Table 7.6, we highlight

the following.

• Once again, these results illustrate that the more partitionings, the tighter the upper

bound for the state of interest, both with and without the linear transformation being

performed on the matrix.

• The 1-norm of the last column of the perturbation matrix decreases as the number of

partitions increases.

• The combination of permutation and transformation gives a tighter upper bound on

the state of interest than that obtained by the use of permutation only.

• Although we did not include it into this table, we found that, given a particular

partitioning scheme, the order in which permutation and transformation were carried

out, made no difference whatsoever, i.e., applying the permutation first and then

119

transforming a DTMC gives the exactly the same (tight) upper bound as that obtained

by first applying the transformation and secondly, the permutation.

• Given a particular partitioning scheme, the optimal state ordering obtained when no

transformation is applied, is different from that obtained when a transformation is

applied. This may be seen by comparing columns 4 and column 7 of the table..

7.4 Conclusions

In this chapter, we investigated several issues concerning stochastic comparison based

bounding methods for Markovian performance analysis. We observed that the lower bound-

ing st-monotone matrix for the first state can give the same upper bounds as that obtained

by upper bounding st-monotone matrix for the last state. We experimented with suites of

randomly generated DTMCs and saw that the more lumpable partitions, the tighter the

upper bounds for the state of interest. Finally we presented an approach to combining state

permutation, matrix transformation and state partitioning in order to obtain a high-quality

upper bounds in less computation time. These elementary experimental results indicate

that the approach is efficient in terms of the accuracy of the upper bound for the state of

interest.

120

Chapter 8

Summary and Future Research

We have presented a analysis of the convergence behavior of Markovian iteration matri-

ces. That is, for an irreducible and homogeneous Markov chain, a necessary and sufficient

condition for convergence in one iteration is that the iteration matrix have rank one. We

considered also spectrum condition which is shown to be insufficient for convergence in a

single iteration.

Most Markov iteration matrices, however, have rank greater than 1, so we use Wed-

derburn’s rank-1 reduction formula to design a rank reduction algorithm with an initial

iteration matrix having rank greater than one and modify it in successive steps, under the

constraint that the exact solution be preserved at each step, until a rank-1 iteration matrix

is obtained.

Then we investigate the relationship among lumpability, weak lumpability, quasi-lumpability

and near complete decomposability. These concepts are important in the analysis of aggre-

gating and disaggregating Markov chains. We improve White’s algorithm for identifying all

possible lumpable partitions of Markov chains. This is achieved by incorporating tests on

special state orderings so that not all state orderings must be examined.

It is common in real situations, that the exact stationary distributions of MCs are not

necessary. So instead of computing exact stationary distributions, we design stochastic-

ordering-based techniques to bound them. We obtain upper bounds by using newly de-

121

veloped constructive algorithms. We find that the more lumpable partitionings, the more

accurate the upper bound for the state of interest would be. This always holds whether

matrix transformation is applied or not. In order to improve the quality of the upper bound

for the state of interest, we combine the approaches of state permutation, matrix transfor-

mation and state partitioning and observe that the quality of the upper bounds is indeed

much improved.

We recognize however that much more extensive testing needs to be done to verify the

rank reduction’s success and bounding technique’s efficiency. A possible future work plan

is listed as follows.

• Apply the rank reduction method to more realistic MCs and compare it with other

numerical methods.

• Investigate the possibility of applying a block rank reduction method. That is, in each

step, k (greater than 1) ranks are reduced instead of a single one.

• Some better heuristics/thumb rules are needed to improve White’s algorithm. We find

it still time-consuming to identify all lumpable partitions and consequently the benefits

of doing aggregation once and for all is offset by the time needed in constructing the

lumpable partitions.

• Conduct more experiments on bounding techniques. Tests on a variety of large, sparse

MC matrices from different disciplines would make the bounding technique more re-

liable.

122

References

[1] O. Abu-Amsha, J.M. Vincent. An Algorithm to Bound Functionals of Markov Chains
with Large State Space. The 4th INFORMS Conference on Telecommunications, Boca
Raton, Florida, 1998.

[2] Mor Harchol-Balter. Lecture Notes: Performance Analysis and Design of Computer
Systems. School of Computer Science, CMU, 2000.

[3] G. P. Barker and R. J. Plemmons. Convergent Iterations for Computing Stationary
Distributions of Markov Chains. SIAM Journal, 1985.

[4] V. A. Barker. Numerical Solution of Sparse Singular Systems of Equations Arising
From Ergodic Markov Chains. Commun. Statist. – Stochastic Models, 5(3), 335-381
(1991).

[5] Richard Barrett, Michael Berry, James Demmel, · · · , Henk van der Vorst. Templates
for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM,
1994.

[6] M. Benmammoun, J.M. Fourneay, N. Pekergin, A. Troubnikoff. An Algorithmic and
Numerical Approach to Bound the Performance of High Speed Networks. Proceedings
of 10th IEEE Int’l Symp. on Modeling, Analysis and Simulation of Computer and
Telecommunications Systems.

[7] Abraham Berman, Robert J. Plemmons. Nonnegative Matrices in the Mathematical
Sciences. Academic press, 1979.

[8] Gunter Bolch, Stefan Greiner, Hermann de Meer and Kishor S. Trivedi. Queueing
Networks and Markov Chains. John Wiley & Sons, Inc, 1998.

[9] F. Boujdaine, T. Dayar, J.M. Fourneau, N. Pekergin, S. Saadi, J.M. Vincent. A New
Proof of st-comparison for Polynomials of a Stochastic Matrix, submitted

[10] Peter Buchholz. Hierarchical Markovian Models: Symmetries and Reduction. Perfor-
mance Evaluation, Vol.22, 93-110, (1995).

[11] Peter Buchholz. Exact and Ordinary Lumpability in Finite Markov Chains. Journal
of Applied Probability, 1994.

[12] Peter Buchholz. Lumpability and Nearly-Lumpability in Hierachical Queueing Net-
works. IEEE 82-91, 1995.

123

[13] Peter Buchholz. An Adaptive Aggregation/Disaggregation Algorithm for Hierachical
Markovian Models. European Journal of Operations Research 116 (1999), 545-564.

[14] Grace E. Cho, C.D. Meyer. Aggregation/Disaggregation Methods of Nearly Uncoupled
Markov Chains. http://meyer.math.ncsu.edu/Meyer/home.html.

[15] Moody T. Chu, Robert E. Funderlic, and Gene H. Golub. A Rank-One Redution
Formula and its Applications to Matrix Factorizations. In SIAM Review, Volume 37,
No. 4, 512-530, 1995.

[16] G.Ciardo, J. Muppala, and K.S. Trivedi. SPNP: Stochastic Petri Net Package. In
Proceedings of the 3rd international Workshop on Petri Nets and Performance models.
pages 142-151 IEEE Computer Society Press, 1989.

[17] Gianfranco Ciardo, Evgenia Smirni. ETAQA: An Efficient Technique for the Analysis
of QBD-processes by Aggregation. Preprint submitted to Elsevier Science, 2002.

[18] P. J. Courtois. Decomposability: Queueing and Computer System Applications.
Acacemic Press, New York, 1977.

[19] P. J. Courtois, P. Semal. Block Iterative Algorithms for Stochastic Matrices. In Linear
Algebra and its Application 59:70-70 (1986)

[20] Tugrul Dayar, Nihal Pekergin. Stochastic Comparison, Re-orderings, and Nearly
Completely Decomposable Markov Chains. Numerical Solution of Markov Chains
(NSMC’99), pp.228-246 (1999).

[21] Tugrul Dayar, J.M. Fourneay and Nihal Pekergin. Transforming Stochastic Matrices
for Stochastic Comparison with the st-order. RAIRO Operations Research, Volume 37,
pp.85-97 (2003).

[22] Tugrul Dayar and William J. Stewart. Quasi-Lumpability, Lower Bounding Coupling
Matrices and Nearly Completely Decomposable Markov Chains. In SIAM Journal on
Matrix Analysis and Applications, Volume 18, Number 2, 1997.

[23] A. Demir and P. Feldmann. Modeling and Simulation of Interference Noise in Electronic
Integrated Circuits with Markov chain Models. In B. Plateau, W.J. Stewart, and M.
Silva, eds. Numerical Solution of Markov Chains, pp. 149-168. Zaragoza: Prensas
Universitarias de Zaragoza, 1999.

[24] Brion N. Feinberg; Samuel S. Chiu. A Method to Calculate Steady-State Distributions
of Large Markov Chains by Aggregating States, Operations Research, vol 35, Issue 2,
282-290, 1987.

[25] J.M. Fourneau and N. Pekergin. An Algorithmic Approach to Stochastic Bounds.
Performance 2002, LNCS 2459, pp. 64-88 (2002).

[26] J.M. Fourneau, B. Plateau, I. Sbeity and W.J. Stewart. Stochastic Automata Networks
and Lumpable Stochastic Bounds: Bounding Availability. submitted for publication,
April, 2004.

124

[27] G. Franceschinis and Richard r. Muntz. Bounds for Quasi-lumpable Markov Chains.
In Performance Evaluation, 20 (1994), 223-243

[28] Robert E. Funderlic, R. J. Plemmons. Updating LU Factorizations for Computing
Stationary Distributions. SIAM Journal Alg. Disc. METH. Vol 7, No 1, 30-42, 1986.

[29] G.H. Golub, C.F. Van Loan. Matrix Computation. The Johns Hopkins University
Press, Baltimore, 1989.

[30] W.K. Grassmann, M.I. Taskar, and D.P. Heyman. Regenerative Analysis and Steady
State Distributions for Markov Chains. Operations Research, 33(5):1107-1116, 1985.

[31] M. Grinfeld and P. A. Knight. A Weak Lumpability in the k-SAT problem. Applied
Mathematics Letters, 13 (2000), 49-53.

[32] Daniel P. Heyman. Comparisons Between Aggregation/Disaggregation and a Direct
Algorithm for Computing the Stationary Probabilities of a Markov Chain. ORSA
Journal of Computing, Vol 7, No.1, pp. 101-108, 1995.

[33] Anston S. HouseHolder. The Theory of Matrices in Numerical Analysis. In Blaisdell
Publishing company, 1964.

[34] Octavian Iordache and Sergiu Corbu. A Stochastic Model of Lumping. Chemical
Engineering Science, Vol. 42, No. 1, pp. 125-132, 1987.

[35] Linda Kaufman. Matrix Methods for Queueing Problems. In SIAM Sci. Stat. Comput,
Volume 4, No. 3, 525-552, 1983.

[36] J. R. Kemeny and R. J. Snell. Finite Markov Chains. D. Van Nostrand, New York,
1960.

[37] G. N. Krieg and H. Kuhn. A Decomposition Method for Multi-product Kanban Systems
with Setup Times and Lost Sales. IIE Transactions 34(7), pp. 613-625, July, 2002

[38] Udo R. Krieger, Bruno Muller-Clostermann, and Michael Sczittnick. Modeling and
Analysis of Communication Systems Based on Computational Methods for Markov
Chains. IEEE journal on Selected Areas in Communications, Vol. 8, No. 9, 1990.

[39] Dogancay Kutluyil and Vikram Krishnamurthy. Quick Aggregation of Markov Chain
Functionals via Stochastic Complementatioin. IEEE, 1997.

[40] V.G. Kulkarni. Modeling and Analysis of Stochastic Systems. New York: Chapman
and Hall, 1995.

[41] Genyan Li and Herschel Rabitz. A General Analysis of Exact Lumping in Chemical
kinetics. Chemical Engineering Science, Vol. 44, No. 6, pp. 1413-1430, 1989.

[42] A. Mahmood, D.J. Lynch and L.d. Phillip. A Fast Banded Matrix Inversion Using
Connectivity of Schur’s Complements. IEEE 303-306 (1991).

125

[43] C.D. Meyer. Stochastic Complementation, Uncompling Markov Chains and the Theory
of Nearly Reducible Systems. SIAM Review, 31(2):240-272, 1989.

[44] Carl D. Meyer. Matrix Analysis and Applied Linear Algebra. In SIAM, 2000 .

[45] Carl D. Meyer, Jr.; R. J. Plemmons. Convergent Powers of a Matrix with Applica-
tions to Iterative Methods for Singular Linear Systems. SIAM Journal on Numerical
Analysis, Vol 14, Issue 4, 699-705 (1977).

[46] Henryk Minc. Nonnegative Matrices. John Wiley Sons, 1988.

[47] Lynda Modkad, Jalel Ben-Othman and Abdelhak Gueroui. Quality of Service of a
Rerouting Algorithm in Wireless Networks. Quality of Service over Next-Generation
Data Networks, Mohammed Atiquzzaman, Mahbub Hassan, Editors, Proceedings of
SPIE Vol.4524, 2001.

[48] Abdel-Moneim A. M and F.W. Leysieffer. Weak Lumpability in Finite Markov Chains
J. Appl. Prob, 19 (1982), 685-691.

[49] Nan-Fu Peng. On Weak Lumpability of a Finite Markov Chain. In Statistics & Prob-
ability Letters, 27 (1996), 313-318

[50] Alma Riska, Evgenia Smirni. M/G/1-Type Markov Processes: A Tutorial. Perfor-
mance 2002, LNCX 2459, pp.36-63, Springer-Verlag Berlin Heidelberg 2002.

[51] Alma Riska, Evgenia Smirni. Exact Aggregat Solution for M/G/1-type Markov Pro-
cesses. http://www.cs.wm.edu/ riska/publications.html.

[52] Thomas G. Robertazzi. Recursive Solution of Non-Product Form. IEEE, 38-46 (1989).

[53] Thomas G. Robertazzi. Recursive Comptation of Stead-State Probabilities of Non-
product Form Queueing Networks Associated with Computer Network Models. IEEE
Transactions on Commumunications, Vol. 38, No. 1. 115-117 (1990).

[54] Sheldon M. Ross. Introduction to Probability Models, Seventh Edition. Academic
Press, 2000.

[55] Gerardo Rubino and Bruno Sericola. On Weak Lumpability in Markov Chains. J.
Appl. Prob, 26 (1989), 233-237.

[56] Gerardo Rubino and Bruno Sericola. A Finite Characterization of Weak Lumpable
Markov Processes. Part I: The Discret Time Case. Stochastic Processes and their
Applications 38 (1991) 195-204.

[57] Gerardo Rubino and Bruno Sericola. A Finite Characterization of Weakly Lumpable
Markov Processes. Part II: The Continuous Time Case. Stochastic Processes and their
Applications 45 (1993) 115-125.

[58] William H. Sanders. Computer Systems Analysis. Course notes for ECE 541 (Fall
2003), University of Illinois at Urbana Champion.

126

[59] R.R. Sarukkai. Link Prediction and Path Analysis Using Markov Chains.
http://www9.org/w9cdrom/68/68.html.

[60] Arun K. Somani. Reliability Modeling of Structured Systems: Exploring Symmetry in
State-Space Generation. IEEE 78-84 ,1997.

[61] G.W. Stewart. Implementing an Algorithm for Solving Block Hessenberg Systems.
http://www.cs.umd.edu/ stewart/ .

[62] G.W. Stewart. On the Solution of Block Hessenberg Systems.
http://www.cs.umd.edu/ stewart/ .

[63] G.W. Stewart, W.J. Stewart and D.F. McAllister. A Two Stage Iteratin for Solving
Nearly Uncoupled Markov Chains. IMA Volumes in Mathematics and Its Applications,
Vol.60:1 Recent Advances in Iterative Methods, pp210-216. Springer-Verlag, 1993.

[64] William J. Stewart. Introduction to the Numerical Solution of Markov Chains. Prince-
ton University Press, 1994.

[65] William J. Stewart and Wei Wu. Numerical Experiments with Iteration and Aggrega-
tion for Markov Chains. http://www.csc.ncsu.edu/faculty/WStewart/index.html.

[66] William J. Stewart, A. Touzene. On Solving Stochastic Coupling Matrices Arising in
Iterative Aggregation/Disaggregation Methods. IEEE, 1994.

[67] D. Stoyan. Comparison Methods for Queues and Other Stochastic Models. Wiley,
1983.

[68] Marlin U. Thomas and Donald R. Barr. An Approximate Test of Markov Chain Lumpa-
bility. Journal of the American Statistical Association, Vol. 72, Issue 357, pp. 175-179,
1977.

[69] Michel Trehel, Chantal Balayer,and Abdelghani Alloui. Modeling Load Balancing in-
side Groups using Queueing Theory. The 10th int. conf. on Parall. and Distr. Comp.
(PDCS’97), New Orleans, USA, October 1997.

[70] K.S. Trivedi. Probability and Statistics with Reliability, Queueing and Computer Sci-
ence Applications. Englewood, NJ: Prentice-hall, 2002.

[71] L. Truffet. Reduction Technique For Discrete Time Markov Chains on Totally Ordered
State Space Using Stochastic Comparisons. Journal of Applied Probability, Volume 37,
pp. 795-806, 2000.

[72] Hendrik Vantilborgh, Exact Aggregation in Exponential Queueing Networks, Journal
of the Association for Computing machinery, Vol 25, No 4, 620-629 (1978).

[73] Langford B. White, Robert Mahony and Gary D. Brushe. Lumpable Hidden Markov
Models– Model Reduction and Reduced Complexity Filtering. IEEE Transactions on
Automatic Control, vol.45, No.12, 2297-2306, (2001).

127

[74] Aiguo Xie, Peter A. Beerel. Efficient State Classification of Finite State Markov Chains.
IEEE 605-610 ,1998.

[75] M. Young. Iterative Solution of Large Linear Systems. Academic Press (1971).

[76] Z. Zaman. Coach Markov Pulls Goalie Poisson. Chance, 14(2):31-35 (2001).

128

