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Nonlinear multicommodity flow problem with integer constraints is an important

subject with a wide variety of application contexts. Given the inherent difficulty of

solving nonlinear integer programming problems and the lack of efficient systematic

approaches, research has primarily been focused on heuristics, which may be inade-

quate in many cases.

In this dissertation, we present a novel Lagrangian Relaxation based approach to

attack the nonlinear multicommodity flow problem with integer constraints. Unlike

other methods based on the relaxation of integer constraints or nonlinear constraints,

our approach relaxes the flow aggregation equation, or the relationship between in-

dividual flows and the variable representing the total amount of traffic in each link.

The relaxation of the flow aggregation equation makes the resulting Lagrangian dual

problem separable to simpler subproblems, which is not possible if the problem is



relaxed otherwise. The subgradient method is used to find the optimal Lagrangian

multipliers.

The aforementioned method is subsequently applied to three closely related ca-

pacity planning problems to verify its effectiveness. We address the problems of link

dimensioning and routing optimization for IP networks supporting DiffServ Expe-

dited Forwarding (EF) and best effort (BE) traffic classes. We first study capacity

planning in the context of legacy IP networks, where only non-bifurcated routing is

allowed for traffic with the same source and destination. In the second problem, we

assume the use of Multiprotocal Label Switching (MPLS), and therefore allow bifur-

cated routing. The third problem deals with the design of survivable MPLS networks,

where spare capacity is required.

We investigated experimentally the solution quality and running time of this ap-

proach. The results from our experiments indicate that our method produces solu-

tions that are within a few percent of the optimal solution, while the running time

remains reasonable on practical-sized networks. This represents the first work for

capacity planning of multi-class IP networks with non-linear performance constraints

and discrete link capacity constraints. We also expect the solution method to be a

promising approach for other non-linear multicommodity flow problems with integer



constraints.
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Chapter 1

Introduction

1.1 Multicommodity flow problem and its applications

The classic multicommodity flow (MCF) problems play a central role in the area

of combinatorial optimization. The MCF problems generalize the well-known single-

commodity flow (SCF) problems in that flows with different nature, each governed

by its own flow constraints, coexist in the same network. Different flows compete for

the network resource, such as the link capacity. Multiple flows couple though link

capacity, cost function, or any other constraints that relate more than multiple flows.

MCF problems share many characteristics of the SCF variants, but the coupling of

multiple flows often invalidates the theoretical basis of the SCF problems, and there-

fore reduces the usefulness of some well-developed algorithms for the SCF problems.

For example, the max-flow min-cut theorem of Ford and Fulkerson [33] in SCF prob-
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lems guarantees that the maximum flow is equal to the minimum cut. Furthermore,

in SCF problems with integral arc capacities and node demands, the maximum flow

is guaranteed to be integral [2]. None of these properties can be extended to MCF

problems, except for several special planar graphs [72] [60], or two-commodity flows

with even integral demands and capacities [47] [77]. Many SCF algorithms exploit the

single commodity flow property in which flows in the opposition direction on an arc

can be cancelled out [2]. In MCF problems, flows do not cancel if they are different

commodities.

Hence, most of the techniques developed over the years for continuous MCF prob-

lems are essentially based on the solution methods for the large scale linear or non-

linear problems, while the integer MCF problems, which are considered among the

most difficult NP-hard problems, call for approximations or heuristic approaches[14].

Since 1960s, MCF has motivated many research topics. For example, column gen-

eration by Ford and Fulkerson [34] was originally designed to solve MCF problems,

and is still a common technique for solving large-scale linear programming problems.

Seymour [80] proposed the max-flow min-cut matroid and several important matroid

theorems by studying multicommodity flow. The nonintegrality property of MCF has

spurred much research in integer linear programming related to matroids, algorithmic
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complexity, and polyhedral combinatorics [43]. The block-angular constraint struc-

ture of the MCF constraints serves as a “best practice” for decomposition techniques

such as Dantzig-Wolfe decomposition [25] and basis partitioning methods, such as

generalized upper bounding [58].

From an application viewpoint, the min-cost MCF problem and its variants are

models of a wide variety of telecommunication, transportation, and scheduling prob-

lems. Most of them are network routing and network design problems. Listed below

are a few applications of the MCF problem.

• Network routing

– Message or packet routing in telecommunication and computer networks:

Consider each requested OD pair to be a commodity. The problem is to

find a min-cost flow routing for all demands of requested OD pairs while

satisfying the arc capacities. This appears often in telecommunication and

computer networks. For example, message routing for multiple OD pairs

[11], packet routing on virtual circuit data network [66], or routing on a

ring network [81] are all min-cost MCF problems.

– Scheduling and routing in logistics and transportation:
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In logistics or transportation problems, commodities may be objects such

as products, cargo, or even personnel. The commodity scheduling and

routing problem is often modeled as a MCF problem on a time-space net-

work where a commodity may be a tanker [12], aircraft [45], crew [16], or

rail freight [8]. Golden [42] gives a MCF model for port planning that seeks

optimal simultaneous routing where commodities are export/import cargo,

nodes are foreign ports (as origins), domestic hinterlands (as destinations)

and US ports (as transshipment nodes), and arcs are possible routes for

cargo traffic. Similar problems appear in grain shipment network [5]. A

disaster relief management problem is formulated as a multicommodity

multimodal network flow problem with time windows by Haghani and Oh

[44] where commodities (food, medical supplies, machinery, and personnel)

from different areas are to be shipped via many modes of transportation

(car, ship, helicopter,...,etc.) in the most efficient manner to minimize the

loss of life and maximize the efficiency of the rescue operations.

– Production scheduling and planning:

Jewell [50] solves a warehousing and distribution problem for seasonal



5

products by formulating it as a MCF model where each time period is

a transshipment node, one dummy source and one dummy sink node ex-

ist for each product, and arcs connect from source nodes to transship-

ment nodes, earlier transshipment nodes to later transshipment nodes,

and transshipment nodes to sink nodes. Commodities are products to be

shipped from sources to sinks with minimum cost. D’Amours et al. [24]

solve a planning and scheduling problem in a Symbiotic Manufacturing

Network (SMN) for a multiproduct order. A broker receives an order of

products in which different parts of the products may be manufactured by

different manufacturing firms, stored by some storage firms, and shipped

by a few transportation firms between manufacturing firms, storage firms

and customers. The problem is to design a planning and scheduling bid-

ding scheme for the broker to make decisions on when the bids should be

assigned and who they should be assigned to, such that the total cost is

minimized. They propose a MCF model where each firm (manufacturing

or storage) at each period represents a node, an arc is either a possible

transportation link or possible manufacturing (storage) decision, and a

commodity represents an order for different product.
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– VLSI design:

Global routing in VLSI design can be modeled as an origin-destination

MCF problem where nodes represent collections of terminals to be wired,

arcs correspond to the channels through which the wires run, and com-

modities are OD pairs to be routed [17][75].

• Network design

– Capacitated telecommunication network design

Given a graph G, a set of commodities K to be routed according to known

demands, and a set of facilities L that can be installed on each arc, the

capacitated network design problem is to route flows and install facilities at

minimum cost. This is a MCF problem, which involves flow conservation

and bundle constraints plus some side constraints related to the installation

of the new facilities. The objective function may be nonlinear or general

discontinuous step-increasing.

Problems such as the design of a network where the service quality and

survivability constraints are met with minimum cost in telecommunication

networks appear often in the literatures [37]. We investigated the issues of
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capacity planning of multi-class IP networks in [89][90][88]. Both routing

variables and link capacities are subject to optimization.

– Transportation network design

Similar problems also appear in transportation networks, such as locating

vehicle depots in a freight transportation system so that the client demands

for empty vehicles are satisfied while the depot opening operating costs and

other transportation costs are minimized [3][23]. Crainic also has a survey

paper [22] about service network design in freight transportation.

1.2 Capacity planning of multiclass IP networks

In this dissertation, we are interested in the problem of capacity planning of mul-

ticlass IP networks. Capacity planning is the process of designing and dimensioning

networks to meet the expected demands of users. If networks need to stay ahead of

the growth of user demand while still being able to provide a satisfactory service, ca-

pacity planning is indispensable. Recent years have witnessed the spectacular growth

of the Internet traffic. The nature of offering only best effort (BE) service in the

Internet has made capacity planning a straightforward matter [52].
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Quality of service (QoS) is the ability of a network element to have some level

of assurance that its traffic and service requirements can be satisfied. With the

popularizing of e-commerce and new value-added services over IP, like Voice over IP,

QoS has become a must. Capacity planning will be an imperative part of IP network

management to support various qualities of service.

MPLS and Differentiated Service [78][71] are regarded as two key components of

QoS.

MPLS uses a short, fixed-length, locally significant label in the packet header to

switch the packets. The initial label is chosen and inserted by the ingress node of a

MPLS domain, based on the information in the IP header, associated QoS, or any

other policies in effect. The intermediate nodes use the label as an index to find

the next hop and the corresponding new label. A label distribution protocol (LDP)

propagates label bindings among the nodes in order to establish and tear down the

label switched path (LSP). The power of MPLS lies in the fact that the mappings

between the packet flows and the LDPs are flexible, which enables an IP network

to be traffic engineered. Packets with the same source and destination addresses,

which will inevitably follow the same path in the traditional IP network, can be

assigned different labels and subsequently be sent to separate LSPs. LSPs can be
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setup explicitly to optimize the resource utilization. The use of MPLS labels may

also provide faster switching than the normal IP forwarding algorithm.

The essence of DiffServ is prioritization. In traditional IP networks, the Diff-

Serv Code Point (DSCP) field in the headers of IP packets is marked at the edge of

the network. Routers within the core of the network forward packets using differ-

ent predefined per-hop behaviors (PHBs), according to their DSCP field. In MPLS

networks, the DSCP field is not visible to the core LSRs. The label value and EXP

field (3 bits experimental field) are used instead to determine the PHB scheduling

class (PSC) associated with packets [91]. Note that even with MPLS, the signaling

and traffic control are still at the level of flow aggregation. Since there is no per-flow

signaling or control, accurate dimensioning of the network is particularly important

for achieving performance guarantees. To prepare for the deployment of DiffServ in

MPLS network, it is necessary to study the capacity planning problem in the context

of multiple class-of-service networks.

The IETF DiffServ working group has standardized two PHBs: Expedited For-

warding (EF) and Assured Forwarding (AF). The EF PHB [26] is defined as being

such that the EF packets are guaranteed to receive service at or above a configured

rate. The EF PHB can be used to build a low loss, low latency, low jitter, assured
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bandwidth, end-to-end service, through a DiffServ Domain. As has been discussed

in [18], three expected major initial applications of QoS in the IP network are: 1)

to distinguish ”mission critical” or preferred customers; 2) to provide voice over IP

service; 3) to enable services competitive with leased lines. It can be easily seen that

the services based on the EF PHB are ideal for all three of these applications. Be-

cause of its great value, the EF PHB is very likely to be the first PHB to be put into

action. The priority queue is widely considered to be the canonical way to implement

the EF PHB, due to its ability to offer a tighter delay bound and smoother service

over relatively short time scales [26]. AF PHBs are designed to realize different for-

warding assurances, or dropping preferences, for IP packets. AF PHBs are considered

useful to differentiate TCP traffic, where the performance is sensitive to the packet

loss rate. However, simulations showed that the standard traffic control methods of

routers, such as RED(Random Early Detection), do not satisfactorily differentiate

between AF PHBs and best effort traffic [7]. Since our approach requires a precise

performance model for optimization, we do not include the AF traffic classes in this

paper, due to the lack of a consensus on the implementation of the AF PHB.

The problem of link dimensioning and path optimization of networks providing

DiffServ EF and BE traffic classes, with or without the present of MPLS capability, is
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a capacitated network design problem. We formulate the problem as a MCF problem.

The novel aspect of our problem, unlike most of other capacity planning problems, is

the fact that two traffic classes, EF and BE, with independent performance and sur-

vivability requirements, share the same capacity resource, which results in a complex

non-linear performance constraint. In addition to the nonlinear performance con-

straints, non-bifurcated routing and discrete link capacity constraints dramatically

increase the degree of difficulty, and significantly limit the viable solution approaches.

1.3 Contributions of the dissertation

In the practical environment, a realistic modeling of the MCN problem often turns

out to be nonlinear integer programming problem. As evidenced in the capacity

planning of multiclass IP network, the interaction of BE and EF traffic results in

nonlinear performance constraints, while non-bifurcated routing and discrete link

capacity yield integer constraints. Due to the inherent difficulty of solving nonlinear

integer programming problems, one may prefer to settle for an approximate solution,

obtained through some heuristics. There are a broad variety of heuristic procedures

that are based on integer or side constraint relaxation. Some of these heuristics

can be very sophisticated, and depending on the target problem, they may provide
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satisfactory solutions. But in most of the cases, a heuristic may be inadequate and

there may be need for a more systematic procedure.

Lagrangian relaxation is a general method. It has been successfully applied to

linear MCF problems and integer MCF problems by relaxing bundle constraints or

the integer constraints. But those two relaxation approaches do not work well for

nonlinear integer MCF problem, primarily because the resulting Lagrangian dual

problem is not separable unless the nonlinear function is separable, which does not

hold in most instances.

In this dissertation, we propose a new Lagrangian relaxation based approach. Our

approach relaxes the flow aggregation equation, or the relationship between individ-

ual flows and the variable representing the total amount of traffic in each link. The

relaxation of flow aggregation equation makes the resulting Lagrangian dual problem

separable to simpler subproblems, which will not be possible if the problem is re-

laxed otherwise. The subgradient method is used to find out the optimal Lagrangian

multipliers.

We then apply our method to the problems of link dimensioning and routing

optimization for IP networks supporting DiffServ Expedited Forwarding (EF) and

BE traffic classes. We first study the capacity planning in the context of legacy IP
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networks, where only non-bifurcated routing is allowed for the traffic with the same

source and destination. In the second problem, we assume the presence of MPLS,

and therefore allow bifurcated routing. The third problem deals with the design of

survivable MPLS networks, where spare capacity is required. We investigated experi-

mentally the solution quality and running time of our proposed approach. The results

from our experiments indicate that our method produces solutions that are within a

few percent of the optimal solution, and that the running time remains reasonable

on practical-sized networks. This srepresents the first work for capacity planning of

multi-class IP networks with non-linear performance constraints and discrete link ca-

pacity constraints. We also expect the solution method to be a promising approach

for other non-linear multicommodity flow problem with integer constraints.

1.4 Outline of the Dissertation

Chapter 2 surveys MCF solution techniques from the literature. Chapter 3 de-

scribes the flow aggregation based Lagrangian relaxation method in detail. Chapter

4 overviews the problem formulation of capacity planning of multiclass IP networks

and how the proposed method can be applied. Chapter 5 shows the solution method

and experimental results of the capacity planning problem in the context of legacy IP
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networks. Chapter 6 studies the problem in MPLS networks. Chapter 7 looks into

the problem of survivable MPLS network design. This dissertation is concluded in

Chapter 8.
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Chapter 2

Previous Work on Multicommodity Flow

Problems

In this chapter, we will summarize the formulations and most of the solution tech-

niques that have appeared in the literature for solving the MCF problems. We briefly

touched on the differences of the multicommodity flow problems and single com-

modity flow problems in Section 1.1. As to the MCF problems themselves, different

solution techniques may be advantageous for different MCF problems depending on

the problem characteristics, such as the linearity of the cost function and constraints,

whether there are discrete variables or constraints, the number of flows with respect

to the number of nodes, etc. This dissertation focuses on solving the class of nonlin-

ear MCF problems with integer constraints. But the method we proposed is actually

an extension of the price-directive method developed for the linear continuous MCF
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problems.

2.1 Comparison of formulations

• Arc-based formulation

Let N denote the set of all nodes in the network G, L the set of all arcs, and

K the set of all commodity OD pairs. Each individual link is defined as (i, j),

where i is the starting node of the link while j is the terminating node. For

commodity k with origin sk and destination tk, let αk be the total demand. bik

is the supply/demand at node i. bik = 1 if i = sk, −1 if i = tk, and 0 otherwise.

xijk is defined as the decision variable, a value between 0 and 1 representing the

portion of demand k that is assigned to link (i,j). Let ψ̃ij be the total capacity

on link (i,j), cij represents the unit cost of arc (i,j).

The arc-based formulation of MCF problem is a direct extension of the conven-

tional SCF formulation. A simple linear MCF problem can be formulated as

follows:

min
∑

(i,j)∈L

cijψ̃ij (2.1)
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subject to:

∑

(i,j)∈L

xijk −
∑

(j,i)∈L

xjik = bik,∀i ∈ N,∀k ∈ K (2.2)

∑

k∈K

αkx
ij
k ≤ ψ̃ij,∀(i, j) ∈ L (2.3)

(2.2) represents flow balance constraint. (2.3) is the bundle constraint. It has

|K||L| variables and |N ||K|+ |L| nontrivial constraints.

• Path-based formulation

First suggested by Tomlin [84], the path-based form of the MCF problem is

based on the fact that any network flow solution can be decomposed into path

flows and cycle flows. Under the assumption that no cycle has negative cost,

any arc flow vector can be expressed optimally by simple path flows.

For commodity k, let Jk denote the set of all possible paths from sk to tk. Each

individual link is defined by l, l ∈ L. xjk is defined as the decision variable, a

value between 0 and 1 representing the portion of demand k that is assigned to

candidate path j, j ∈ Jk. δlj is a binary indicator which equals to 1 if path j

passes through link l, and 0 otherwise. Let ψ̃l be the total capacity on link l, cl
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represents the unit cost of link l,

min
∑

l∈L

clψ̃l (2.4)

subject to:

∑

j∈Jk

xjk = 1,∀k ∈ K (2.5)

∑

k∈K

xjkδ
l
jαk ≤ ψ̃l,∀l ∈ L (2.6)

(2.5) represents flow balance constraint, while (2.6) is the bundle constraint.

The above formulation has
∑

k∈K |Jk| variables and |K| + |L| nontrivial con-

straints.

When commodities are OD pairs, |K| may be O(|N |2) in the worst case. In such

case, the arc-based form may have O(|N |3) constraints which make its computations

more difficult and memory management less efficient.

The path-based formulation, on the other hand, has at most O(|N |2) constraints

but exponentially many variables in the worst case. The problem caused by a huge

number of variables can be resolved by column-generation techniques or by limiting

the number of candidate paths for each OD. The path-based formulation is particu-

larly advantageous when the number of OD is vary large with respect to the number

of nodes.
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Knowing this fact, our solution method will use path-based techniques in this

dissertation.

2.2 Linear continuous multicommodity flow problems

Due to the special structure of linear MCF problems, many special solution meth-

ods have been suggested in the literature. Basis partitioning methods partition the

basis in a way such that computing the inverse of the basis is faster. Resource-directive

methods seek optimal capacity allocations for commodities. Price-directive methods

try to find the optimal penalty prices (dual variables) for violations of the bundle

constraints. Primal-dual methods raise the dual objective while maintaining comple-

mentary slackness conditions. In the last two decades, many new methods such as

approximation methods, interior-point methods and their parallelization have been

proposed. For a complete treatment of the issue, please refer to [2].

2.2.1 Basic partition methods

The underlying idea of basis partitioning methods is to partition the basis so that

the special network structure can be maintained and exploited as much as possible

to make the inversion of the basis more efficient. Hartman and Lasdon [46] propose a
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Generalized Upper Bounding (GUB) technique which is a specialized simplex method

whose only non-graphic operations involve the inversion of a working basis with di-

mension equal to the number of currently saturated arcs. Other basis partitioning

methods have also been suggested by McCallum [65] and Maier [62].

2.2.2 Resource-directive methods

Suppose on each arc (i,j) we have assigned capacity rkij for each commodity k

so that
∑
k∈K

αkx
ij
k ≤ ψ̃ij is satisfied. Then the original problem is equivalent to the

following resource allocation problem (RAP) that has a simple constraint structure

but complex objective function:

min
∑

k∈K

zk(rk) (2.7)

s.t.
∑

k∈K

rkij ≤ ψ̃ij,∀(i, j) ∈ L (2.8)

0 ≤ rijk ≤ ψ̃ij,∀(i, j) ∈ L,∀k ∈ K (2.9)

For each commodity k, zk(rk) can be obtained by solving the following single

commodity min-cost network flow subproblem.
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min
∑

(i,j)∈L

cijx
ij
k = zk(rk) (2.10)

s.t.
∑

(i,j)∈L

xijk −
∑

(ji)∈L

xjik = bik,∀i ∈ N,∀k ∈ K (2.11)

0 ≤ xijk αk ≤ rijk ,∀(i, j) ∈ L (2.12)

It can be shown that the objective function z(r) is piecewise linear on the feasible

set of the capacity allocation vector r. There are several methods in the literature to

solve the RAP such as tangential approximation [38], feasible directions [51], and the

subgradient method [38]. Shetty and Muthukrishnan [82] give a parallel projection

algorithm which parallelizes the procedure of projecting new resource allocations in

the resource-directive methods.

2.2.3 Price-directive method

Price-directive methods are based on the idea that by associating the bundle

constraints with ”correct” penalty functions (dual prices, or Lagrange multipliers), a

hard MCF problem can be decomposed into k easy SCF problems.

Price-directive methods includes Lagrangian relaxation, Dantzig-Wolfe decompo-

sition, key variable decomposition, etc. We only introduce the Lagrangian relaxation
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method, which is related to our method. Please refer to [2] for more information

about other methods.

Lagrange relaxation dualizes the bundle constraints using a Lagrangian multiplier

λl so that the remaining problem can be decomposed into smaller min-cost network

flow problems [2]. In particular,

h(λl) = min[
∑

l∈L

clψ̃l +
∑

l∈L

λl(
∑

k∈K

xjkδ
l
jαk − ψ̃l)] (2.13)

=
∑

l∈L

min (clψ̃l − λlψ̃l) +
∑

k∈K

min(
∑

l∈L

λlx
j
kδ
l
jαk) (2.14)

Note that since the bundle constraint is relaxed and the variable xjk becomes

independent of each other, therefore (3.8) is separable in K.

The Lagrangian dual problem seeks the optimal Lagrangian multiplier λl for

L∗ = maxh(λl). This is a non-differentiable optimization problem. Subgradient

methods [38][2] are common techniques for determining the Lagrange multipliers.

They are easy to implement but have slow convergence rates. They usually do not

have a good stopping criterion, and in practice usually terminate when a predeter-

mined number of iterations or nonimproving steps is reached.

More recently, the bundle method [35] has been proposed to solved the Lagrangian

dual problem.
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2.3 Nonlinear multicommodity flow problems

Nonlinear multicommodity flow problems refer to the type of MCF problems with

nonlinear cost function or nonlinear constraint.

2.3.1 Proximal point methods

Ibaraki and Fukushima [48] apply a primal-dual proximal point method to solve

the convex MCF problems. The method identifies an approximate saddle point of

the augmented Lagrangian at each iteration and guarantees the convergence of these

points. Similar methods are also developed by Chi2et et al. [21] and Mahey et al.

[61].

2.3.2 Alternating direction methods

DeLeone et al. [27] propose three variants of alternating direction methods [57],

which may be viewed as block Gauss-Seidel variants of augmented Lagrangian ap-

proaches that take advantage of block-angular structure and parallelization. These

methods take alternating steps in both the primal and the dual space to achieve

optimality.
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2.3.3 Other nonlinear programming methods

Ouorou and Mahey [73] use a minimum mean cycle canceling based algorithm to

solve a MCF problem with a nonlinear separable convex cost function. Nagamochi et

al. [69] use the relaxation method of Bertsekas’ algorithm [13] to solve strictly convex

MCNF problems. Bertsekas [14] (section 8.2) surveys techniques for the nonlinear

MCF problem.

2.4 Multicommodity flow problems with integer constraints

All the algorithms introduced before this section are fractional solution methods.

Adding the integer constraints makes the MCNF problems much harder. Much re-

search has been done regarding the characterization of integral MCF problems. For

example, Evans et al. [32] have given a necessary and sufficient condition for uni-

modularity in some classes of MCF problems. Evans makes the transformation from

some MCF problems to their equivalent uncapacitated SCNF problems, and proposes

a specialized simplex algorithm and heuristics for certain MCF problems. Truemper

and Soun [85] further investigate the topic and obtain additional results about uni-

modularity and total unimodularity for general MCF problems. Other research about
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the characteristics of quarter-integral, half-integral and integral solutions of MCNF

problems can be found in [79][60].

The general integral MCF algorithms can also be based on LP-based branch-and-

bound schemes such as branch-and-cut or branch-and-price [14]. In branch-and-cut,

cuts are dynamically generated throughout the branch-and-bound search tree to cut

off fractional solutions. On the other hand, branch-and-price generates variables that

are used in conjunction with column generation to strengthen the LP relaxation and

resolve the symmetry effect due to formulations with few variables. Barnhart et al.

[11] apply branch-and-price-and-cut which generates both variables and cuts during

the branch-and-bound procedures to solve binary MCF problems in which integral

flow must be shipped along one path for each OD pair. The branch-and-bound

schemes are capable of obtaining the optimal solution at the expense of large running

time. It is only applicable to problems with small number of integer valuables or

constraints.
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2.5 Nonlinear multicommodity flow problems with integer

constraints

Given the inherent difficulties of the nonlinear integer MCF problems, one may

prefer to settle for an approximate solution, obtained through some heuristics. Even

though some heuristics may provide satisfactory solutions, it is generally difficult

to evaluate the solution quality with respect to the real optimal solution from the

heuristics alone.

2.5.1 Simple heuristics

Two of the simplest and most often used general approaches are the following:

• Discard the integer constraints, solve the resulting problem as a nonlinear MCF

problem, and use an ad hoc method to round the solution to an integer.

• Approximate the nonlinear function to a piece-wise linear function, discard the

complicating side constraints, and solve the problem as a integer programming

problem, then use some heuristic to correct this solution and verify its feasibil-

ity. This is a less desirable approach since the resulting integer programming

problem may very well be quite difficult.
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2.5.2 Local search methods

Local search methods are a broad and important class of heuristics for discrete

optimization. They apply to the general problem of minimizing a function over a

finite set of solutions. In principal, the integer programming problem can be solved

by enumerating of the entire set of solutions, which is what branch-and-bound does.

A local search method tries to save computation time by iteratively searching through

the neighbors of the current solution for a better solution.

More recently, local search methods which can be loosely classified as intelligent,

like genetic algorithms, tabu search, and simulated annealing, are gaining more and

more attention. Genetic algorithms locate the optimal solution using processes similar

to those in natural selection and genetics. Tabu search is a heuristic procedure that

employs dynamically generated constraints (or tabus) to avoid getting trapped at a

poor local minimum. Simulated annealing finds optima in a way analogous to reaching

of minimum energy configurations in metal annealing. See [14] by Bertsekas for more

information on those methods.
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Chapter 3

Lagrangian Relaxation of Flow

Aggregation Equation

In this chapter, we show how we can effectively apply the Lagrangian relaxation

method to a class of nonlinear integer MCF problems.

3.1 Basics of Lagrangian relaxation

Lagrangian relaxation is a flexible solution strategy. The basics of Lagrangian

relaxation is to relax the complicated constraints, placing them in the objective func-

tion with associated multipliers. For a given optimization problem, there are usually

multiple ways to relax the problem. Usually, we choose the constraints to relax so

that the Lagrangian dual problem is much easier to solve than the original problem.

Ideally, we choose the constraints that couple otherwise independent subproblems.
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In these instances, Lagrangian relaxation permits us to decompose a problem into

smaller, more tractable subproblems. For this reason, Lagrangian relaxation is also

referred to as a decomposition technique.

Since the Lagrangian dual problem is a relaxation of the original problem, key

principal of Lagrangian relaxation is that the optimal solution of the dual problem

is always a lower bound on the optimal objective value of the primary problem. It

provides means to evaluate the solution quality. To obtain the best lower bound,

we want to find the Lagrangian multiplier that maximizes the optimal value of the

Lagrangian dual problem, which is called the Lagrangian multiplier problem. As

mentioned in section 2.2.3, the subgradient method is the most common technique

for determining the Lagrange multipliers.

3.2 Bundle constraint based Lagrangian relaxation and lin-

ear MCF problems

We will first review how the Lagrangian relaxation works for linear MCF problems.

Recall that the path-based formulation of the linear MCF problems is defined as
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follows:

min
∑

l∈L

clψ̃l (3.1)

s.t.
∑

j∈Jk

xjk = 1,∀k ∈ K (3.2)

∑

k∈K

xjkδ
l
jαk ≤ ψ̃l,∀l ∈ L (3.3)

Note that the bundle constraint represented by (3.3) is the only thing that couples

the variable xjk of different commodities. If we choose (3.3) as the target constraint

to relax, we have the Lagrangian dual problem as follows:

h(λl) = min[
∑

l∈L

clψ̃l +
∑

l∈L

λl(
∑

k∈K

xjkδ
l
jαk − ψ̃l)] (3.4)

=
∑

l∈L

min (clψ̃l − λlψ̃l) +
∑

k∈K

min(
∑

l∈L

λlx
j
kδ
l
jαk) (3.5)

s.t. (3.2)

The major benefit of the relaxation is the the problem becomes separable in k,

which significantly lower the computation cost.

3.3 Lagrangian relaxation of the flow aggregation equation

Now we will consider at a simple nonlinear MCF problem.
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Let

βl =
∑

k∈K

xjkδ
l
jαk (3.6)

which is the total amount of flow in link l. We call (3.6) the flow aggregation equation.

If we replace the constraint (3.3) with a nonlinear constraint:

f(βl) ≤ ψ̃l, ∀l ∈ L (3.7)

where f(βl) is a nonlinear function of βl, the original problem becomes a nonlinear

MCF problem.

Now, in addition to the bundle constraint, xjk is also coupled through the nonlinear

function f(). It is clear that if we still relax the problem as we did in the previous

section, we will have the dual problem:

min[
∑

l∈L

clψ̃l +
∑

l∈L

λl(f(βl)− ψ̃l)] (3.8)

which is neither separable in k, nor in l.

But if we treat the flow aggregation equation (3.6) as a constraint, and choose it

as the target of Lagrangian relaxation, we have a Lagrangian dual problem:

min[
∑

l∈L

clψ̃l +
∑

l∈L

λl(βl −
∑

k∈K

xjkδ
l
jαk)] (3.9)

s.t. (3.2)(3.3)
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Note that βl and xjk become independent variables, and it is clear that (3.9) is

separable.

A welcome outcome is that the dual problem is separable regardless of the form of

the cost function and the additional integer constraint on xjk. As long as the problem

is separable, the dual problem is relatively easy to solve.

So far we assume that the bundle constraint is a function of the total flow aggre-

gation, βl. We can further generalize the formulation to support multiple classes of

traffic. Assume there are I different types of traffic. βil represents the total amount

of traffic type i in link l. Replace the bundle constraint 3.7 with the following:

f(β1
l , ..., β

I
l ) ≤ ψ̃l, ∀l ∈ L (3.10)

We can treat the problem as same before and relax all the flow aggregation equa-

tions.

From what we described above, the flow aggregation based relaxation is able to

effectively decompose the complex nonlinear integer MCF problem. But an impor-

tant question remains: will it yield high quality solutions? Since it is not possible to

theoretically analyse the solution quality, we apply the method to capacity planning

of multiclass IP network, and evaluate it with large number of test cases. Our exper-
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iments will show consistently that the proposed method is able to produce solutions

within a satisfying few percent of the optimal solution.
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Chapter 4

Capacity Planning of MultiClass IP

Networks

In this chapter, we will overview three closely related problem that will be in-

vestigated, and show how the flow aggregation based Lagrangian relaxation can be

applied.

4.1 Overview

As mentioned in section 1.2, the nature of offering only best effort (BE) service

has made capacity planning a straightforward matter[52] in the current Internet.

Multiprotocol label switching (MPLS) [31] [76] and Differentiated services (DiffServ)

[78] [71] are regarded as two key components for providing QoS in the Internet.

We will study three closely related capacity planning problems for IP networks
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providing DiffServ BE and EF traffic classes. We do not include the AF traffic classes

in this thesis, due to the lack of a consensus on the implementation of the AF PHB.

In the first problem, we study capacity planning of legacy IP networks, where

only non-bifurcated routing is allowed for the traffic with the same destination. In

the second problem, we assume the presence of MPLS, therefore the allowance of

bifurcated routing. The third problem deals with the design of survivable MPLS

networks, where spare capacity is required. Each problem also differs slightly in one

or more of the following aspects: the choice of the cost function (linear or discrete),

the definition of BE and EF traffic demand (OD based or link based, ), how EF traffic

is multiplexed, and how BE traffic is routed. Please see Chapters 5-7 for details. We

will only depict the common assumptions and models used by those three problem in

this chapter.

4.2 Previous work

Although there is no previous work specifically targeting the dimensioning and

routing problems for IP networks supporting Diffserv other than our own works

[89][90][88], there are many papers addressing the issues of QoS routing in general. An

extensive survey can be found in [20]. But because the routing and link dimensioning
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problems are closely related to each other, it is inappropriate to separate them.

There is extensive research dealing with traffic engineering issues in MPLS net-

works, such as [29] [56], or the LSP setup and dimensioning problem [4]. However, in

those works the link capacity is fixed and not something to be optimized.

Papers where the routing and capacity assignment problems are treated simulta-

neously include [39] [37] [40][70] [66] [67] [6] [63]. Gerla and Kleinrock [39] presented

heuristic methods based on the flow deviation algorithm [36]. Gavish and Neuman

[37] proposed a Lagrangian relaxation based approach. [63] studied the network with

elastic traffic and approximated the non-linear cost function by a piece-wise linear

function. The networks studied in [39] [37] [63] only include one traffic class, though.

Medhi and Tipper [67] proposed four approaches for reconfigurable ATM networks

based on the Virtual Path concept. Even though ATM networks include multiple

traffic classes, Medhi proposed a model that assumes the deterministic multiplexing

of different virtual paths, which results in linear performance constraints.

Compared with previous work in the area of IP network dimensioning, the novel

aspect of our problem is the fact that two traffic classes, EF and BE, with indepen-

dent performance and survivability requirements, sharing the same capacity resource,

which results in a complex non-linear performance constraint.
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4.3 Models and assumptions

DiffServ is still under active research. Performance issues related to traffic aggre-

gation and the interaction between multiple classes are not fully understood. Those

factors impose challenges on the formulation of capacity planning problems. Given

the urgency for the need of capacity planning in DiffServ network on the one hand,

and the difficulty and complexity of the problem on the other hand, we have to resort

to simplifications and approximations.

In the capacity planning problem, we are given a network, which is defined by a set

of links L, candidate paths J , and link-path indicators {δlj}. We are also given the EF

and BE user demands. Since the purpose of EF PHB is to build a leased line type of

service, the projected EF user demands are defined in the form of origin-destination

(O-D) pairs (i.e., the origin and destination of each traffic source is given). Note that

what we are studying in this paper is the core network. Therefore, when we speak of

O-D pairs, we are referring to the traffic between pairs of edge routers, not between

individual hosts.

For each OD pair, we allow multiple EF demands to be coexist. For an EF

demand pair k, we differentiate between the average arrival rate, αk, and the requested
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bandwidth, ρk. ρk is usually a value between the average arrival rate and the peak

rate. EF and BE demand on link l is characterized by βlef and βlbe, the average arrival

rate. User demand estimation is out of the scope of this paper. We would like to point

out, however, that even if demand estimation is inaccurate, a high-quality solution

method for the capacity planning problem, given the estimated demands, is still very

desirable.

The goal of the capacity planning problem is to find the minimum cost network

that satisfies the projected user demands of both EF and BE user classes. In the case

of survivable network design, the network has to have spare capacity to accommodate

the traffic that is rerouted due the failure. The variables here are the path routing

variable of EF traffic, and depending on the problem, the routing variable of BE

traffic, xclasskj , which shows whether OD pair k will use the candidate path j., and the

discrete link capacity, {ul}. The non-bifurcated routing model is used for EF class,

where the traffic from a single EF demand pair will follow the same path between the

origin and the destination. According to [26], the non-bifurcated routing assumption

is necessary to ensure no packets are delivered out of order.

For each OD pair, we allow multiple EF demands to be coexist. But for

It is assumed that the requested bandwidth of a EF user demand is defined in a
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way such that the performance of an EF demand will be guaranteed if it is given the

requested bandwidth.

ηl 6 ψ̃l, ∀l ∈ L (4.1)

where ηl is the total amount of EF demand, ψ̃l is the link capacity.

There are many discussions regarding the limits on the link utilization of EF user

demands. EF PHB was initially defined in RFC2598 [87]. Unfortunately, [19] shows

that the worst case delay jitter can be made arbitrarily large using a FIFO queue un-

less the amount of EF traffic was limited to a very small fraction of the total capacity.

Subsequently, an alternative EF definition, RFC3246 [26], was proposed. The revised

EF PHB introduces an error term Ea for the treatment of the EF aggregate, which

represents the allowed worst case deviation between the actual EF packet departure

time and the ideal departure time of the same packet. This revision makes it possible

for the EF utilization to go up as high as 100% [94]. We assume that there is no

additional constraints on the EF utilization.

How to define the performance requirement of BE traffic in the service level agree-

ment (SLA) remains an active research topic. [64] suggests using the latency averaged

over a large time scale as the primary criteria for the performance of BE traffic in
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IP network service level agreements (SLAs). We pick the average delay as the sole

performance measurement for BE traffic in this paper. We evaluate the performance

of BE traffic on a per-link basis (i.e., not end-to-end). The value ỹ

ψ̃l
stands for the

average transmission delay of packets. We use ỹ

ψ̃l
as the basis for the delay bound.

Let dlmax = gl
ỹ

ψ̃l
, where gl is a parameter defined by the network designer. The larger

the value of gl, the more bandwidth is required for link l, therefore the lower the link

utilization. We assume that the performance of BE traffic is satisfactory if dl 6 dlmax.

Note that the delay bound dlmax remains the same under the normal condition and

the failure scenarios.

Every router is modeled as a M/G/1 system with Poisson packet arrivals and an

arbitrary packet length distribution. While it has been suggested that the Internet

traffic is long-range dependent [74] and thus bursty, a recent work [68] shows that

the network traffic can be smooth and “Poisson-like”. [83] concludes, through both

simulation and analytic study, that even though the traffic exhibits bursty behavior

at certain time scales, the relationship between the variance and the mean is ap-

proximately linear if they are measured over larger time scales, where the traffic can

be treated as if it were smooth. Our choice of the Poisson arrival model is justified

because we are more concerned about the average BE performance over a large time
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scale for capacity planning purposes.

From the average queueing delay formula of the priority queue [53], we obtain the

performance constraint for BE traffic:

dl =
ỹ

ψ̃l
+
ỹ2

2ỹ

βefl + βbel
(ψ̃l − βefl )(ψ̃l − βefl − βbel )

6 gl
ỹ

ψ̃l
(4.2)

With some rearrangement, (4.2) yields

ψ̃l > f(βefl , β
be
l ) (4.3)

where

f(βefl , βbel ) = βefl +
βbel
2

+
ỹ2(βefl + βbel )
4(ỹ)2(gl − 1)

+
1
2

√

(2βefl + βbel +
ỹ2(βefl + βbel )
2(ỹ)2(gl − 1)

)2 − 4βbel (βbel + βefl ).

In order to have a meaningful solution for constraint (4.3), ψ̃l > βefl + βbel is

required.

4.4 Solution methods

The basic solution approaches is to apply flow aggregation based Lagrangian relax-

ation as shown in section 3.3. Due to the different in the structure of three problem,

please refer to their corresponding chapter for details in the way the problem is re-

laxed,
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We pick the most commonly used subgradient method to solve the Lagrangian

multiplier problem. For the detailed description of the subgradient method and choice

of parameters, please refer to the book [2] by Ahuja, Magnanti ,and Orlin.

At each iteration, the solution of path routing variables for the primal problem

can be generated from the solution of dual problem. Subsequently he value of link

capacity can be computed, the primary objective function can be obtained. As the

iteration proceeds, we store the best solution found so far for the primal problem (P).

In this way, we are always able to obtain a feasible solution. We set the maximum

iterations to 400 in the implementation.

As mentioned earlier, the benefit of Lagrangian optimization procedures is that

the solution of the dual problem provides a lower bound for the primal problem.

Therefore, the solution quality can be assessed by the duality gap, which is the dif-

ference between the solutions of problem (P) and problem (D). Note that because

the duality gap is always no smaller than the actual difference between the obtained

feasible solution and the optimal solution, it is a conservative estimate of the solution

quality.
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Chapter 5

Legacy IP Networks Supporting DiffServ

EF and BE Classes

5.1 Models and formulation

In this chapter, we address the problem of capacity planning for DiffServ networks

with only EF and best effort traffic classes. The problem is formulated as an opti-

mization problem, where we jointly select the route for each EF user demand pair,

and assign a discrete capacity value for each link to minimize the total link cost, sub-

ject to the performance constraints of both EF and BE classes. The non-bifurcated

routing model is used for EF class, where the traffic from a single EF demand pair

will follow the same path between the origin and the destination. While the perfor-

mance constraint of EF traffic is only represented by a bandwidth requirement, the
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performance constraint of the BE class is characterized by the average delay in each

link. Queueing is modeled as M/G/1 strict priority queues.

In this problem we take the approach of defining BE user demands for each link

instead of OD based.

We assume the cost function to be linear in this problem. Also assume that the

link capacity if much larger than the EF demand, so that there is no concern about

the EF performance.

The formal problem definition is presented below.

min(
∑

l∈L

clulγ) (5.1)

where ul is the number of units of capacity needed on link l ∈ L. ul is integer. γ is

the size of a unit capacity.

Subject to:

ulγ > f(βlef ), ∀l ∈ L (5.2)

where βlef =
∑

k∈K

αk
∑

j∈J

δljxkj (5.3)

ul > 0 and integer, ∀l ∈ L (5.4)

∑

j∈J

xkj = 1, ∀k ∈ K (5.5)

xkj = 0/1, ∀j ∈ J, k ∈ K (5.6)
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Constraint (5.2) ensures the performance of EF and BE traffic. (5.4) imposes a

discrete constraint on the link capacities. (5.5) and (5.6) ensure that all traffic from

one EF O-D pair will follow one single path.

The fact that the function f(βlef ) is increasing in βlef enables us to rewrite the

constraint (5.3). The resulting problem is:

min(
∑

l∈L

clulγ) (5.7)

Subject to:

βlef >
∑

k∈K

αk
∑

j∈J

δljxkj (5.8)

(5.2), (5.4), (5.5), and (5.6)

We refer to the problem defined by (5.7,5.8,5.2,5.4,5.5,5.6) as problem (P).

5.2 Solution method

Let λ = (λl) be the dual multiplier associated with the flow aggregation constraint

(5.8). Then the Lagrangian can be expressed as

L(x, u, λ) =
∑

l∈L

clulγ +
∑

l∈L

λl(β
l
ef −

∑

k∈K

αk
∑

j∈J

δljxkj)

=
∑

l∈L

(clulγ + λlβ
l
ef ) +

∑

k∈K

∑

l∈L

−αkλl
∑

j∈J

δljxkj (5.9)
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The Lagrangian dual problem (D) is then:

max
λ60

h(λ) (5.10)

where h(λ) = min
x,u

L(x, u, λ) (5.11)

Subject to the constraint:

ulγ > f(βlef ), ∀l ∈ L (5.12)

ul > 0 and integer, ∀l ∈ L (5.13)

∑

j∈J

xkj = 1, ∀k ∈ K (5.14)

xkj = 0/1, ∀j ∈ J, k ∈ K (5.15)

For a given λ, the Lagrangian is separable in x and u. (5.11) is reduced to solving

two independent subproblems,

min
x,u

L(x, u, λ) = min
u
L1(u, λ) + min

x
L2(x, λ) (5.16)

Subproblem (D1):

min
u
L1(u, λ) = min

u
{
∑

l∈L

(clulγ + λlβ
l
ef )} (5.17)

Subject to the constraint:

ulγ > f(βlef ), ∀l ∈ L (5.18)

ul > 0 and integer, ∀l ∈ L (5.19)
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Subproblem (D2):

min
x
L1(x, λ) = min

x
(
∑

k∈K

∑

l∈L

−αkλl
∑

j∈J

δljxkj) (5.20)

Subject to the constraint:

∑

j∈J

xkj = 1, ∀k ∈ K (5.21)

xkj = 0/1, ∀j ∈ J, k ∈ K (5.22)

Subproblem (D1) can be separated into L problems, one for each link. The prob-

lem for each link l can be expressed as:

min
u

(clulγ + λlβ
l
ef ) (5.23)

Subject to the constraint:

ulγ > f(βlef ) (5.24)

ul > 0 and integer, (5.25)

Because f(βlef ) is increasing in βlef and λl 6 0, the problem (5.23) can be simply

rewritten as:

min
u

(clulγ + λlf
−1(ulγ)), ul > 0 and integer (5.26)
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The value of u∗l , which satisfies the equation (5.27) below, can be obtained numer-

ically through any one-dimensional optimization method, such as Newton’s method

[10].

dz(ul)

dul
= 0, ul > 0 (5.27)

where z(ul) = clulγ + λlf
−1(ulγ)

Let u∗l1 and u∗l2 be the two non-negative integers closest to u∗l . We know that the

solution of ul to the problem (5.26) is either u∗l1 or u∗l2. Among them, the one that

minimizes (5.26) is picked as the final solution.

Subproblem (D2) can be separated into K subproblems, one for each O-D pair.

The problem for each k is:

min
x

(
∑

l∈L

−αkλl
∑

j∈J

δljxkj) (5.28)

Subject to the constraint:

∑

j∈J

xkj = 1 (5.29)

xkj = 0/1, ∀j ∈ J (5.30)

The solution of subproblem (D2) is then easily obtained by setting xkj∗ = 1 for j∗
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satisfying:

P (j∗) = min
j

(P (j)) (5.31)

where P (j) =
∑

l∈L

−αkλlδljxkj

For a given initial λ, once we solve the problem (D), a dual subgradient is computed

as follows:

ωl = βlef −
∑

k∈K

αk
∑

j∈J

δljxkj,∀l ∈ L (5.32)

The subsequent values of the Lagrangian multipliers are updated:

λl ← min(0, λl + tωl),∀l ∈ L (5.33)

where the step size, t, is defined by:

t = φ
h∗(u)− h(u)
||ω||2

(5.34)

where h∗(u) is the value of the best feasible solution found so far, and φ is a scalar

between 0 and 2. φ is set to 2 initially in our study and is halved if the solution does

not improve in 10 iterations.

5.3 Experimental results

In this section, we present numerical results based on experimentation. The ob-

jective of our experiment is to evaluate the solution quality and running time of
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the algorithm. The program is implemented in C and the computational work is

performed on a Pentium IV 2.4GHz PC with 512M memory, running Redhat Linux

7.2.

The network topologies are generated using the Georgia Tech Internetwork Topol-

ogy Models(GT-IMT) [95]. Link cost is set to be proportional to its length.

The locations of originations and destinations are randomly selected. For each O-

D pair, 10 candidate paths are calculated using Yen’s K-shortest path algorithm [93].

According to our experimental results, more than 99% of the time, the final solution

is chosen among the 5 shortest candidate paths. Therefore, 10 candidate paths are

considered adequate. Having more than 10 candidate paths will have minimal impact

on the solution quality, while significantly increases the running time.

If not specified, EF demands are randomly generated with a uniform distribution

from 0 Mbps to 10 Mbps, while the average BE traffic load of each link is also

uniformly distributed from 30 Mbps to 100 Mbps. The link unit γ is set to be 45

Mbps. We use ỹ = 4396 (bits) and ỹ2 = 22790170 (bits2) for all the test cases. They

are calculated based on a traffic trace (AIX-1014985286-1) from the NLANR Passive

Measurement and Analysis project [1].

The BE delay bound factor, gl, is set to 2 for all links in our experiments. In prac-
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tice, gl should be carefully chosen to reflect the desired BE performance and the link

utilization. Figure (5.1) shows the value of f(βlef ) with respect to βlef , when gl=1.5,

2, 4, and 8. As can be seen from the figure, the link utilization varies significantly as

gl changes.
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Figure 5.1: f(βlef ) vs. βlef , (βlbe = 5× 107 bps)

The algorithm was tested on 8 different sizes of networks, ranging from 10 nodes

to 1000 nodes. Some details of the network topologies are listed in Table 6.1. To

obtain confidence intervals, we generate 30 different topologies for each network size,

with the same number of nodes, links, and O-D pairs.

The solution quality is represented by the percentage difference between the solu-
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tion of the primal problem and the dual problem.

Solution Quality =

∣∣∣∣
sp − sd
sd

∣∣∣∣ (5.35)

where sp and sd are the solutions of primal problem and dual problem respectively.

Table 5.1: Network topology information and experimental results

Node Link O-D Solution(%) Running
Number Number Number Quality (%) Time (sec)

10 25 30 (0.25, 5.24) (0.99, 1.16)
20 50 90 (0, 5.04) (4.79, 5.60)
50 125 350 (0.13, 4.13) (23.88, 27.59)
100 250 1000 (0.16, 5.49) (57.08, 68.14)
200 500 3000 (0, 4.51) (491.90, 562.88)
500 1250 12000 (0, 4.12) (5000.45, 6360.11)
700 1750 20000 (0, 3.28) (10367.61, 13217.79)
1000 2500 40000 (0, 3.91) (27905.69, 35644.40)

Table 6.1 shows the running time and solution quality of various network sizes

with 95% confidence intervals. In all 240 test cases, the algorithm converges without

difficulty. It is easy to see from the table that the Lagrangian Relaxation together with

the subgradient method produces reasonable results as the duality gap is bounded by

no more than 6%. Given the large number of networks being tested, we are confident

that the solution should have good quality for other sizes of networks.

Because capacity planning is usually performed on the time scale of weeks to

months, the running time of the algorithm is not the most critical factor. But it is
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Figure 5.2: Running Time

still desirable to know how the running time scales up with respect to the network

size. As can be seen from the Figure (5.2), while the running time goes up more

quickly than the number of nodes, it increases linearly with respect to the number of

O-D pairs in our test cases. This is understandable; since K >> L, when the network

size increases, the dominant portion of the running time is spent on the subproblem

(D2), which in turn has K subproblems. The running time of each one of those K

subproblems is insensitive to the size of the network, due to the fixed number of

candidate paths and the reuse of the link cost throughout all iterations. The size of

the largest network evaluated in this paper is representative of a large network, and
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is much larger than the test cases used in most work on capacity planning. It is fair

to predict that the running time of the algorithm will stay reasonable for practical

sized networks.
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Chapter 6

MPLS Networks supporting Diffserv EF

and BE classes

6.1 Models and formulation

In this chapter, we address the problem of link dimensioning and path optimization

for MPLS networks providing DiffServ EF and BE traffic classes. The problem is

formulated as an optimization problem, where we jointly select the routes for edge to

edge EF and BE user demand pairs, and assign a discrete capacity value for each link.

The goal is to minimize the total link cost, subject to the performance constraints of

both EF and BE classes. The non-bifurcated routing model is used for the EF class

as required by [26], so that the traffic from a single EF demand pair will follow the

same LSP between the origin and the destination. Traffic in the BE class is allowed to
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be split across multiple LSPs. While the performance constraint of EF traffic is only

represented by a bandwidth requirement, the performance constraint of the BE class

is characterized by the average delay in each link. Queueing is modeled as M/G/1

strict priority queues.

We assume the cost function to be discrete. let Tl be the index of link type for

link l ∈ L, ult be the link type decision variable, ult = 1 if link type t is used for link

l ∈ L, 0 other wise. Only one link type can be chosen. ψlt is defined as the size of

the capacity of link type t, ψ̃l as the total capacity of link l.

Let Mk be the set of EF demands for the same O-D pair k. For an EF demand

m,m ∈Mk. The EF path routing variable is defined by xefkmj.

We have the flow aggregation equation:

βefl =
∑

k∈K

∑

m∈Mk

αefkm
∑

j∈Jk

xefkmjδ
l
j (6.1)

For each O-D pair k , we define one BE demand pair. Like before, we allow an

arbitrary portion of the BE demand to route through any candidate LSP. Because

of the connectionless nature of IP traffic, it is unlikely that all the BE demand can

be clearly mapped to specific O-D pairs. We introduce another variable γl, which is

the average arrival rate of extra BE traffic in link l besides that from the BE demand
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pairs {k : k ∈ K}. Thus the total BE load (average arrival rate) on link l is:

βbel = γl +
∑

k∈K

αbek
∑

j∈Jk

xbekjδ
l
j (6.2)

The capacity and the cost of link l, ψ̃l and C̃l respectively, are:

ψ̃l =
∑

t∈T

ultψlt, C̃l =
∑

t∈T

ultClt (6.3)

There is no linear relationship assumed between Clt and ψlt, therefore C̃l is not

necessarily a linear function of ψ̃l.

The formal problem definition is presented below.

Given: K,Mk, L, Jk, α
ef
km, ρ

ef
km, α

be
k , γl, δ

l
j, T, ψt, Clt

Variable: xefkmj, x
be
kj, ult

Goal:

min
∑

l∈L

C̃l (6.4)

Subject to:

ψ̃l > f(βlef ) (6.5)

xefkmj = 0/1,
∑

j∈Jk

xefkmj = 1 (6.6)

∑

j∈Jk

xbekj = 1 (6.7)

ult = 0/1,
∑

t∈Tl

ult = 1 (6.8)
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Constraint (6.5) ensures the performance of BE traffic. (6.8) imposes a discrete

constraint on the link capacities. (6.6) ensures that all traffic from one EF O-D pair

will follow one single path.

Because Cl is a non-decreasing function of βefl and βbel , this problem can be refor-

mulated as:

min
∑

l∈L

C̃l (6.9)

Subject to (6.5) (6.6) (6.7) (6.8) and:

βefl >
∑

k∈K
∑

m∈Mk
αefkm

∑
j∈Jk

xefkmjδ
l
j (6.10)

βbel > γl +
∑

k∈K α
be
k

∑
j∈Jk

xbekjδ
l
j (6.11)

We refer to the problem defined by (7.8, 6.5, 6.6, 6.7, 6.8, 6.10, 6.11) as problem

(P) in the rest of this chapter.

6.2 Solution method

Like what we did in the previous chapter, we relax the flow aggregation constraint,

(6.10) and (6.11), and we have the Lagrangian as:

L(xefkmj, x
be
kj, ult, λ

ef
l , λ

be
l ) =

∑

l

C̃l −
∑

l

λefl (βefl −
∑

k∈K

∑

m∈Mk

αefkm
∑

j∈Jk

xefkmjδ
l
j)
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−
∑

l

λbel (βbel − γl −
∑

k∈K

αbek
∑

j∈Jk

xbekjδ
l
j) (6.12)

The Lagrangian dual problem (D) is then:

max
λef

l ,λbe
l >0

h(λefl , λ
be
l ) (6.13)

where:

h(λefl , λ
be
l ) = min

xef
kmj ,x

be
kj ,ult

L(xefkmj, x
be
kj, ult, λ

ef
l , λ

be
l ) (6.14)

Since βefl , β
be
l and xefkmj, x

be
kj are independent variables,

minL = min
∑

l

[C̃l − λefl β
ef
l − λ

be
l (βbel − γl)] + min

∑

k∈K

∑

m∈Mk

αefkm
∑

j∈Jk

∑

l

λefl x
ef
kmjδ

l
j

+ min
∑

k∈K

αbek
∑

j∈Jk

∑

l

λbel x
be
kjδ

l
j (6.15)

=
∑

l

min[C̃l − λefl β
ef
l − λ

be
l (βbel − γl)] +

∑

k∈K

∑

m∈Mk

min(αefkm
∑

j∈Jk

∑

l

λefl x
ef
kmjδ

l
j)

+
∑

k∈K

min(αbek
∑

j∈Jk

∑

l

λbel x
be
kjδ

l
j) (6.16)

Equation (6.16) shows that the problem (6.12) can be separated into the following

three subproblems:

Subproblem (i):

min[C̃l − λefl β
ef
l − λ

be
l (βbel − γl)] (6.17)

Subject to: f(βefl , β
be
l , ψ̃l) 6 dmaxl (6.18)
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Subproblem (i) can be solved by the gradient projection method [15].

Subproblem (ii):

min(αefkm
∑

j∈Jk

∑

l

λefl x
ef
kmjδ

l
j) (6.19)

This is simply a shortest path problem where the cost of link l is set to λefl . The

solution is to let xefkmj∗ = 1 for j∗ satisfying:

P (j∗) = min
j

(P (j)) (6.20)

where P (j) =
∑

l

λefl x
ef
kmjδ

l
j

Subproblem (iii):

min(αbek
∑

j∈Jk

∑

l

λbel x
be
kjδ

l
j) (6.21)

Similar to Subproblem (ii), the solution is to set xbekj∗ to 1 for j∗ satisfying:

Q(j∗) = min
j

(Q(j)) (6.22)

where Q(j) =
∑

l

λbel x
be
kjδ

l
j

The subgradient method is used to update λefl and λbel . Please referred to the

section 5.2 for a detailed description of the procedure and the choices of parameters.

At each iteration, the solution of xefkmj∗ and xbekj∗ for the primal problem (P) can

be obtained from the solution of subproblem (ii) and(iii). The link capacity ψ̃l can
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be computed according to (6.5). Consequently, the primary objective function can

be derived. As the iteration proceeds, we store the best solution found so far for the

primal problem (P). In this way, we are always able to obtain a feasible solution. The

maximum number of iterations is set to 400 in the implementation.

6.3 Experimental results

In this section, we present numerical results based on experimentation. Just like

previous chapter, the program is implemented in C and the computation is performed

on a Pentium IV 2.4GHz PC with 512M memory, running Redhat Linux 7.2.

The network topologies are generated using the Georgia Tech Internetwork Topol-

ogy Models (GT-ITM) [95]. The locations of origins and destinations are randomly

selected. For each O-D pair, 10 candidate paths are calculated using Yen’s K-shortest

path algorithm [93].

If not specified, EF and BE demand pairs are randomly generated with a uniform

distribution from 0 Mbps to 10 Mbps, while the average BE traffic load of each link is

also uniformly distributed from 30 Mbps to 100 Mbps. The number of EF demands

for the same O-D pair is uniformly distributed from 1 to 10. The number of candidate

link types for link l is uniformly distributed from 5 to 10. The capacities of link types
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are set to be multiples of 45Mbps, while the costs of the link types for link l are

randomly generated in such a way that the cost goes higher and the unit cost per

Mbps goes down as the link capacity increases. We use average packet size ỹ = 4396

bits and second moment of packet size ỹ2 = 22790170 bits2 for all the test cases.

gl is set to 2 for all links in our experiments. The average link utilization is about

60% when gl equals 2.

The algorithm was tested on 8 different sizes of networks, ranging from 10 nodes

to 1000 nodes. Some details of the network topologies are listed in Table 6.1. Note

that the O-D demand number shown in Table 6.1 includes both EF and BE demands.

To obtain confidence intervals, we generate 30 different topologies for each network

size, with the same number of nodes, links, and O-D pairs.

Table 6.1: Network topology information and experimental results

Node Link O-D Solution(%) Running
Number Number Number Quality (%) Time (sec)

10 25 30 (0.15, 2.24) (3.79, 5.20)
20 50 90 (0.01, 3.96) (15.84, 22.68)
50 125 350 (0, 2.78) (75.40, 98.38)
100 250 1000 (0.16, 3.51) (207.55, 241.49)
200 500 3000 (0, 2.15) (1430.79, 1935.30)
500 1250 12000 (0, 3.02) (8895.36, 12237.93)
700 1750 20000 (0, 2.41) (18470.24, 23918.52)
1000 2500 40000 (0, 2.93) (34807.64, 44630.93)
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Table 6.1 shows the running time and Duality Gap (where a value of 0 means

optimal quality) of various network sizes, expressed in terms of the 95% confidence

intervals. In all 240 test cases, the algorithm converges without difficulty. It is easy

to see from the table that the Lagrangian Relaxation together with the subgradient

method produces reasonable results as the duality gap is bounded by no more than 4%.

Note the primal problem itself is approximated when reducing the size of candidate

path set for all possible path set. But according to our experimental results, more

than 99% of the time, the final solution is chosen among the 5 shortest candidate

paths. Therefore, 10 candidate paths are considered adequate. Having more than 10

candidate paths will have minimal impact on the solution quality, while significantly

increasing the running time. Given the large number of networks being tested, we

are confident that the solution should have good quality for other sizes of networks.
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Chapter 7

Survivable MPLS Networks Supporting

DiffServ EF and BE Classes

7.1 Overview of survivable network design

The last few years witnessed the explosive growth of mission-critical data traffic

carried by the Internet, and the emergence of general societal dependencies on the

Internet. We are now almost as dependent on the availability of the communication

networks as on other basic infrastructures, such as roads, water, and power. With

up to 100 terabits per second of data traffic carried in a single fiber with DWDM,

failure of a single fiber could be catastrophic. Despite efforts to physically protect the

fiber optic cables, cable cuts are surprisingly frequent according to FCC. Survivable

network design, which refers to the incorporation of survivability strategies to mitigate
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the impact of the given failure scenarios, has become a vital part of network design,

not an afterthought.

Current network architecture is moving toward a two layers structure where IP/MPLS

[31] [76] is on top of optical WDM networks. Traditional, network resilience primarily

relies upon the functionalities provided by SONET and ATM [92][86]. Both of those

are gradually being phasing out of the network. As mentioned in [41], most ISPs rely

on the IP layer when failure occurred.

MPLS-based recovery has become a viable solution because of the faster restora-

tion time than IP rerouting. There are many works that investigated the recovery

schemes in MPLS networks [30]. In the MPLS layer protection, the failure is detected

either by the MPLS layer detection mechanism such as “exchange of Hello message”,

or the signaling message propagated from the lower layer [30]. Once a failure is de-

tected, protection switching based recovery mechanisms are used. A LSP is protected

by a pre-established recovery path or path segment. The resource allocated to the

recovery path, or so called spare capacity, may be fully available to preemptible low

priority traffic. The spare capacity can be shared by multiple recovery paths corre-

sponding to different failure scenarios, to further reduce the resource [49]redundancy.

With MPLS-based recovery,it is possible to differentiate the level of protection for dif-
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ferent classes of service [9]. For example, Expedited Forwarding (EF) based service,

such as virtual lease line service, can be supported by link protection with reserve

path that offers 100% restorability. Best effort (BE) traffic, on the other hand, may

not be fully restorable or simply rely on IP rerouting without assigning any spare

capacity to the network.

The cost of redundancy for survivability can be very high, compared to a corre-

sponding network designed only to serve the working demands under nominal con-

ditions. One of the major interests in survivable network design has been providing

the cost-efficient resource allocation.

Unfortunately, majority works of the survivable network design have been concen-

trated on the classic spare capacity allocation problem (SCA) [28][59][54][55]. The

SCA problem assumes that the information of an operational network is given, the

attention is given only to the calculation of backup paths and spare capacities, not the

primary path and total capacity. But it has been shown in [49] that even though op-

timizing working path and backup path together is computationally more expensive,

it has significant advantage on the total capacity savings. Since capacity planning is

usually performed on the time scale of weeks to months, we can afford extra running

time in exchange of the lower network cost.
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With the popularization of e-commerce and new value-added service over IP, it

is imperative for the next generation Internet to offer Quality of Service (QoS), the

ability to support multiple traffic classes with different levels of performance assur-

ance. MPLS and Differentiated Service [78][71] are regarded as two key components

of QoS. There are works of survivable network design touched on the issues of multi-

classes traffic, such as the architecture aspect of differentiated survivability [9]. But

no quantitative treatment of the subject has been done so far.

7.2 Models and formulation

In this chapter, we study the issued of capacity planning of survivable MPLS

networks. The targeted MPLS networks will be providing DiffServ EF and BE traffic

classes.

We focus on the problem of resource dimensioning and traffic routing and assume

that the network topology is given. The problem is formulated as an optimization

problem, where we jointly select the primary and backup LSPs for edge to edge EF

and BE user demand pairs, and assign a discrete capacity value for each link. The

goal is to minimize the total link cost, subject to the performance and survivability

constraints of both EF and BE classes. The non-bifurcated (i.e., single-path) routing
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model is used for the EF class as required by [26], so that the traffic from a single

EF demand pair will follow the same LSP between the origin and the destination.

Traffic in the BE class is allowed to be split across multiple LSPs. The performance

constraint of EF traffic is only represented by a bandwidth requirement as specified

in [26]. Only single link failure case is studied in this chapter. We assume that each

EF user demand is assigned a primary LSP as well as a backup LSP with enough

preempliable bandwidth, therefore it will not be effected by any single failure. The

performance as well as survivability constraints of the BE class is characterized by

the upper limit on the average delay in each link under any single failure. Queueing

is modeled as M/G/1 strict priority queues. Rest of the assumptions are the same as

Chapter 6.

Compared with the problem presented in Chapter 6, several new notations are

introduced to represent the variables relates to the backup paths. Bkj is the set of

candidate backup path, which are link disjoint from j. δlb represents the link-path

indicator. δlb = 1 if backup path b uses link l, 0 otherwise. x̂jkb is the backup path

routing variable, 1 if backup path b ∈ Bkj is used by path j ∈ Jk. r is defined as the

BE traffic restoration level.

The formal problem definition is presented below.
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Given: L,K, Tl, ψlt, Clt, Jk, δ
l
j, Bkj, δ

l
b,Mk, α

ef
km, ρ

ef
km, α

be
k , dlmax, r, gl, ỹ, ỹ

2

Variable: ult, x
ef
kmj, x

be
kj, x̂

ef
jbk, x̂

be
jbk

Goal:

min
∑

l∈L

C̃lt

Subject to:

ult = 0/1,
∑

t∈Tl

ult = 1 (7.1)

xefkmj = 0/1,
∑

j∈Jk

xefkmj = 1 (7.2)

∑

j∈Jk

xbekj = 1 (7.3)

x̂efjkb = 0/1,
∑

b∈Bkj

x̂efjkb = 1 (7.4)

x̂bejkb = 0/1,
∑

b∈Bkj

x̂bejkb = 1 (7.5)

ψ̃l > ηl (7.6)

ψ̃l > f(βefl , β
be
l ) (7.7)

(7.1) imposes a discrete constraint on the link capacities. Constraint (7.2) ensures

that all traffic from one EF O-D pair will follow one single path. (7.4)(7.5) denotes

that only one backup path will be used for each working path. Constraint (7.6)(7.7)

ensures the performance of EF and BE traffic perspectively.

Because C̃l is non-decreasing with respect to βefl , ηl, and βbel , this problem can be
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reformulated as:

min
∑

l∈L

C̃l (7.8)

Subject to (7.1)(7.2)(7.3)(7.4)(7.5) (7.6)(7.7) and:

ηl >
∑

k∈K

∑

m∈Mk

ρefkm
∑

j∈Jk

(xefkmjδ
l
j +

∑

b∈Bkj

xefkmjδ
F
j x̂

ef
jkbδ

l
b) (7.9)

βefl >
∑

k∈K

∑

m∈Mk

αefkm
∑

j∈Jk

(xefkmjδ
l
j +

∑

b∈Bkj

xefkmjδ
F
j x̂

ef
jkbδ

l
b) (7.10)

βbel >
∑

k∈K

αbek
∑

j∈Jk

(xbekjδ
l
j + r

∑

b∈Bkj

xbekjδ
F
j x̂

be
jkbδ

l
b) (7.11)

We refer to the problem defined by (7.8,7.1,7.2,7.3,7.4,7.5,7.6,7.7,7.9, 7.10, 7.11)

as problem (P) in the rest of this chapter.

7.3 Solution method

Apply the flow aggregation based relaxation, relax (7.9)(7.10) and (7.11), then we

have the Lagrangian as:

L(xefkmj, x
be
kj, x̂

ef
jbk, x̂

be
jbk, ult, λ

ef
l , λ

η
l , λ

be
l )

=
∑

l

C̃l −
∑

l

ληl [ηl −
∑

k∈K

∑

m∈Mk

ρefkm
∑

j∈Jk

(xefkmjδ
l
j +

∑

b∈Bkj

xefkmjδ
F
j x̂

ef
jkbδ

l
b)]

−
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l
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αefkm
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αbek
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(xbekjδ
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b∈Bkj

xbekjδ
F
j x̂
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jkbδ

l
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=
∑

l

(C̃l − ληl ηl − λ
ef
l β

ef
l − λ

be
l β

be
l )

+
∑

k∈K

∑

m∈Mk

∑
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xefkmj
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l∈L

(ληl ρ
ef
kj + λefl α
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k∈K
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δFj x̂
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jkbδ

l
b) (7.12)

The Lagrangian dual problem (D) is then:

max
λη

l ,λ
ef
l ,λbe

l >0

h(ληl , λ
ef
l , λ

be
l ) (7.13)

where:

h(ληl , λ
ef
l , λ

be
l ) = min

xef
kmj ,x

be
kj ,x̂

ef
jbk,x̂

be
jbk,ult

L(xefkmj, x
be
kj, x̂

ef
jbk, x̂

be
jbk, ult, λ

ef
l , λ

η
l , λ

be
l ) (7.14)

Since ηl, β
ef
l , β

be
l and xefkmj, x

be
kj, x̂

ef
jkb, x̂

be
jkb are independent variables,
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∑

l
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l β
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be
l β
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b)
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+
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δFj x̂
be
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l
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Equation (7.15) shows that the problem (7.14) can be separated into the following

three set of subproblems:
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Subproblem (i):

min(C̃l − ληl ηl − λ
ef
l β

ef
l − λbel βbel ) (7.16)

Subject to: (7.1)(7.6)(7.7) (7.17)

Subproblem (i) can be solved by the gradient projection method [15].

Subproblem (ii):

min[
∑

j∈Jk

xefkmj
∑

l∈L

(ληl ρ
ef
kj + λefl α

ef
km)(δlj +

∑

b∈Bkj

δFj x̂
ef
jkbδ

l
b)] (7.18)

Since we have a small set of candidate path for each O-D, we can simply set the link

cost to (ληl ρ
ef
kj +λ

ef
l α

ef
km), and then enumerate the choice of working paths and backup

paths, pick the combination of working and backup paths with the lest total cost.

The resulting choice of working path and backup path is cached. In the subsequent

iteration, only paths whose cost is changed will be compared to the previous solution,

and hence save the running time.

Subproblem (iii):

min[
∑

j∈Jk

xbekj
∑

l∈L

λbel α
ef
k (δlj + r

∑

b∈Bkj

δFj x̂
be
jkbδ

l
b)] (7.19)

Similar to Subproblem (ii), the solution is to enumerate the choice of working

path and backup path, then choose the one with the lest combined cost. The results

are similarly cached to speedup the program.
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Given the initial values of ληl , λ
ef
l and λbel , once we solve the problem (D), sub-

gradients for the three set of Lagrangeans are computed as follows:

ωηl = ηl −
∑

k∈K

∑

m∈Mk

ρefkm
∑

j∈Jk

(xefkmjδ
l
j +

∑

b∈Bkj

xefkmjδ
F
j x̂

ef
jkbδ

l
b) (7.20)

ωefl = βefl −
∑

k∈K

∑

m∈Mk

αefkm
∑

j∈Jk

(xefkmjδ
l
j +

∑

b∈Bkj

xefkmjδ
F
j x̂

ef
jkbδ

l
b) (7.21)

ωbel = βbel −
∑

k∈K

αbek
∑

j∈Jk

(xbekjδ
l
j + r

∑

b∈Bkj

xbekjδ
F
j x̂

be
jkbδ

l
b) (7.22)

To improve the convergence speed, surrogate subgradient method is used, where

only one of the three subproblems is solved at a time. The subsequent Lagrangian

multipliers are updated using the latest value.

ληl ← min(0, ληl + tωηl ),∀l ∈ L (7.23)

λefl ← min(0, λefl + tωefl ),∀l ∈ L (7.24)

λbel ← min(0, λbel + tωbel ),∀l ∈ L (7.25)

where the step size, t, is defined by:

t = φ
h∗ − h

||ωetal ||2 + ||ωefl ||2 + ||ωbel ||2
(7.26)

where h∗ is the value of the best feasible solution found so far, and φ is a scalar

between 0 and 2. φ is set to 2 initially in our study and is halved if the solution does

not improve in 10 iterations. For the detailed description of the subgradient method
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and its variants, please refer to the book [13].

At each iteration, the solution of xefkmj∗ , x
be
kj∗ , x̂

ef
jkb, and x̂efjkb for the primal problem

(P) can be obtained from the solution of subproblem (ii) and(iii). The link capacity

ψ̃l is computed according to (7.6). Consequently, the primary objective function can

be derived. As the iteration proceeds, we store the best solution found so far for the

primal problem (P). In this way, we are always able to obtain a feasible solution. The

maximum number of iterations is set to 400 in the implementation.

7.4 Experimental results

The network topologies, link cost, and OD pairs are generated the same way as

section 6.

If not specified, EF demand pairs are randomly generated with the average rate

uniformly distributed from 0 Mbps to 10 Mbps. The requested bandwidth of a EF

demand pair is a value between the average rate and the peak rate. It is randomly

specified to be 150%-300% of the average rate in our experiments. The average rate

of BE demand is uniformly distributed from 10Mbps to 50Mbps. The number of EF

demands for the same O-D pair is uniformly distributed from 1 to 10. The number of

candidate link types for link l is uniformly distributed from 5 to 10. The capacities of
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link types are set to be multiples of 45Mbps, while the costs of the link types for link l

are randomly generated in such a way that the cost goes higher and the unit cost per

Mbps goes down as the link capacity increases. We use average packet size ỹ = 4396

bits and second moment of packet size ỹ2 = 22790170 bits2 for all the test cases. The

restoration level of BE traffic is determined by the network designer depending on

the budget and desired BE class resilience. It is set to 0.5 in all of the experiments.

The BE delay bound factor, gl, is set to 2 for all links in our experiments.

Two additional greedy type heuristics were implemented for the purpose of com-

parison. The first heuristic method starts with one O-D pair k, finds out both the best

working path j and backup path b for both EF and BE demand among all candidate

working and backup paths that would result in the least total cost, and then repeats

the process for all k ∈ K. The second heuristic is an iterative method inspired by

the heuristic used in [59]. The primary difference here is that [59] deals only with the

spare capacity planning problem, while we have to find out the working path first. In

the first iteration, for each O-D pair k, the algorithm finds out only the best working

paths j for both EF and BE demands among candidate working paths that would

result in the least total cost. After all the working paths have been determined, the

algorithm looks for the best backup paths b for both EF and BE demands among
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Node Link O-D Duality Gap (%)
Number Number Number LR H S

10 25 30 0.12-3.24 3.82-21.89 0-3.40
20 50 90 0.01-2.96 0.2-15.21 0-2.3
50 125 350 0.17-1.78 1.7-13.70 0-1.87

100 250 1000 0.16-1.90 0-8.36 0-1.4
200 500 3000 0-1.64 0-10.21 0-1.55
500 1250 12000 0-2.59 0-11.47
700 1750 20000 0.2.82 0-9.35

1000 2500 40000 0-1.97 0-15.09

Table 7.1: Network topology information and experimental results

candidate backup paths. In the subsequent iteration, the algorithm goes through

each O-D pairs to see whether there is any change of working path or backup path

that will lower the total cost. The iteration will continue as long as there is at least

one adjustment of path in the current iteration. We will call these two methods (H)

and (S) respectively.

The algorithms were tested on 8 different sizes of networks, ranging from 10 nodes

to 1000 nodes. Some details of the network topologies are listed in Table 6.1. Note

that the O-D demand number shown in Table 6.1 includes both EF and BE demands.

To obtain confidence intervals, we generated 30 different topologies for each network

size, with the same number of nodes, links, and O-D pairs.

Table 7.1 shows the Duality Gaps of the three solution methods, expressed in

terms of the 95% confidence intervals. It is easy to see from the table that the
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Figure 7.1: Running Time vs. Network Size

Lagrangian Relaxation together with the subgradient method produces reasonable

results as the duality gap is bounded by no more than 3.3%. Note the primal problem

itself is approximated when reducing the size of candidate path set for all possible

path set. But according to our experimental results, more than 97% of the time,

the final solution is chosen among the 5 shortest candidate paths. Therefore, 10

candidate paths are considered adequate. Having more than 10 candidate paths

will have minimal impact on the solution quality, while significantly increasing the

running time. Given the large number of networks being tested, we are confident

that the solution should have good quality for other sizes of networks. Heuristic (S)

achieves comparable solution quality in networks sized up to 200 nodes, while method
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(H) yields solutions with a duality gap of more than 20%, which is not very desirable.

Figure 7.1 shows the running time with respect to the network size. In all 240

test cases of Lagrangian Relaxation based method, the algorithm converges without

difficulty. As can be seen from the figure, heuristic (S) takes much longer time than

the other two methods.

From the experiments shown above, Lagrangian Relaxation based approach demon-

strates a good trade-off between the solution quality and the running time. The size

of the largest network evaluated in this paper is representative of a large network,

and is much larger than the test cases used in most work on network design. It is fair

to predict that the running time of the algorithm will stay reasonable for practical

sized networks.
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Chapter 8

Conclusions and Future Work

In this dissertation, we presented a flow aggregation based Lagrangian method to

attack the nonlinear MCF problem with integer constraints. The nonlinear multi-

commodity flow problem with integer constraints is an important subject with a wide

variety of application contexts. But because of the inherent difficulty of solving non-

linear integer programming problems and the lack of efficient systematic approaches,

heuristics have been the prevalent solution choice, which may be inadequate in many

cases.

We propose a Lagrangian relaxation based method to extend the often used bun-

dle constraint based relaxation. The method relaxes the relationship between indi-

vidual flows and the variable representing the total amount of traffic in each link.

The relaxation of the flow aggregation equation makes the resulting Lagrangian dual

problem separable to simpler subproblems, which is not possible if the problem is re-

laxed otherwise. The subgradient method is used to find out the optimal Lagrangian

multipliers.

We study the effectiveness of the proposed method by applying it to three closely
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related capacity planning problems to verify its effectiveness. We address the prob-

lems of link dimensioning and routing optimization for IP networks supporting Diff-

Serv EF and BE traffic classes. We first study the capacity planning in the context

of legacy IP networks, where only non-bifurcated routing is allowed for the traffic

with the same destination. In the second problem, we assume the presence of MPLS,

therefore the allowance of bifurcated routing. The third problem deals with the de-

sign of survivable MPLS networks, where spare capacity is required. A large number

of test cases for the three problems shows that the flow aggregation based method is

capable of producing solutions that are within a few percent of the optimal solution,

and that the running time remains reasonable on practical-sized networks. This rep-

resents the first work for capacity planning of multi-class IP networks with non-linear

performance constraints and discrete link capacity constraints.

There are several directions for the future research.

• Although the flow aggregation based Lagrangian relaxation has been shown

to be effective, other research has shown that intelligent local search methods,

such as genetic algorithms, could be very effective, especially when used together

with other relaxation methods [67]. It would be interesting to implement those

methods and compare their performance.

• There are some better alternatives to the popular subgradient method, such

as the bundle method [35] which converges faster and is more robust than the

subgradient method. It would be desirable to replace the subgradient method
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with those methods.

• The flow aggregation based relaxation can only be applied to those MCN prob-

lem where the bundle constraint is the function of the variable(s) representing

the flow aggregations. We would like to study how and to what extend the

method can be applied to more general MCN problems.

• We studied the multiclass IP network supporting DiffServ BE and EF traffic,

but did not include the AF traffic classes in this paper, due to the lack of a

consensus on the implementation of the AF PHB. We should pay close attention

to the development of the AF PHB, and include the AF traffic class when it

permits.

• We applied our methods to IP networks. It is natural to seek opportunities

to try out the method on other types of networking design problems, such as

design of optical networks and overlay networks.

• Better and more realistic analytical or experimental performance model could

be used to formulate the capacity planning problem to improve the usefulness

of the problem.
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