
 

ABSTRACT 
 
JINES, MICHAEL PHILLIP. Enhancing Genetic Gain in Maize with Tropical Germplasm, 
QTL Mapping, and Spatial Methodologies. (Under the direction of Major M. Goodman.) 
 

Advance-cycle breeding is restricting the germplasm base for U.S. maize (Zea Mays 

L.). Many breeding programs devote efforts to adapt diverse germplasm to U.S. growing 

conditions, but few are participating in continual enhancement. Incorporating tropical 

germplasm into U.S. breeding pools could broaden the maize germplasm base, while 

concomitantly providing favorable alleles for yield and disease resistance. Knowing the 

genomic regions, or quantitative trait loci (QTL), for disease resistance can enhance gain by 

permitting selection on marker genotypes in the absence of disease expression. In addition, 

accounting for spatial variability can improve the precision of experiments and aid breeders 

in line advancement decisions and QTL mapping.  

Recombinant inbred (RI) lines were derived from a cross between NC300, a 

temperate-adapted, all-tropical line, and B104, a Stiff-Stalk-synthetic line. The RI lines were 

topcrossed to the tester FR615.FR697 (a C103 sister line cross). Resistance QTL for 

Southern Rust (rust) (Puccinia polysora) were mapped in the topcrosses, while Gray Leaf 

Spot (GLS) (Cercospora zeae-maydis) resistance QTL were mapped in both the RI lines and 

topcross populations. A major resistance gene for rust was identified on the short-arm of 

chromosome 10, while ten GLS QTL mapped to chromosomes 1, 2, 3, 4, 8, and 10. Similar 

markers on chromosomes 1 and 8 flanked three GLS and flowering time QTL pairs, and the 

resistance alleles were associated with increased flowering time. No flowering time regions 

co-localized with rust-resistance loci. The major rust-resistance gene and three GLS QTL 

corresponded to regions mapped in prior populations. The tropical parental allele, NC300, 

increased resistance at three of these four loci. Extensively haplotyping germplasm at these 

four consensus regions could aid in forward breeding strategies to efficiently integrate 

resistance gene combinations into U.S. maize breeding populations.  

Spatial analyses of field variability, such as trend analysis and correlated errors 

models, can improve precision of genotype means estimates. These analyses often reduce the 

phenotypic variance among family means, and in doing so, increase the response to selection. 

A dynamic SAS program, entitled SPATIALPRO, was developed to implement spatial 



 

analytical techniques. The program constructs and optimizes several spatial models for each 

trait and single-environment-trial combination, and chooses a preferred model based on a 

specified criterion. Results from the preferred model are outputted into SAS data sets.  

A long term breeding effort was initiated in 1975 to adapt and subsequently enhance 

tropical germplasm. Founder germplasm included seven double-cross-tropical hybrids. Based 

on the poor per se performance of the first and second-cycle lines, at least five cycles of S1 

recurrent selection (RS) for grain yield has been practiced on two populations derived from 

these lines. Cycles per se and cycle-topcrosses to LH132.LH51 were grown in separate yield 

trials to estimate responses to selection. In both instances, grain yield increased linearly 

across the cycles of selection for each population, but the yield responses across the cycle-

topcrosses are approximately half the average annual gains of commercial breeding activities 

in the U.S. Corn Belt. To determine the current range in combining ability, ninety-six S1 

families were sampled from the latest cycles of each population and topcrossed to 

LH132.LH51. Three topcross families did not differ significantly in yield from the 

commercial check hybrid average. Variance components estimated from the topcross 

families suggest that S1 topcross RS is more promising in maintaining relevancy, and appears 

to be a more favorable method of enhancement, as resources are devoted to families with 

superior combining ability. 
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–CHAPTER I– 

Literature Review 

 

Gain Estimation 

Predicting genetic gain enables plant breeders to determine desirable breeding 

methods, which solidifies plant breeding as a science. Consequentially, developing desirable 

selection strategies to enhance gains has facilitated significant increases in crop yields (i.e. 

maize, Duvick et al., 2004). Annual genetic gain, or the response to selection, is the change 

in the population mean due to selection, and can be generally predicted as: 

ΔY = [βXY(ΔX)]/t     (equation 1), 

where ΔY is the response to selection, βXY is the regression coefficient between selection 

units, X, and response units, Y, ΔX is the change in X, or the selection differential, and t is the 

number of years for cycle completion (Holland et al., 2003).  

Selection units, X, are the operational unit of selection and can be individuals or 

families. Response units are individuals in the improved population following selection, 

which are related to X either directly or indirectly through some recombination unit (Figure 

1). The selection differential is the deviation of the average performance of selection units 

chosen for recombination from the population mean.  

Clearly defining selection and response units and their genetic relationships is critical 

in accurately predicting gain (Holland et al., 2003; Nyquist, 1991). The genetic relationships 

are naturally parameterized through βXY, which was originally defined by Lush (1948) in the 

context of mass selection, as “the proportion of the phenotypic variance among individuals in 

a population that is due to heritable genetic effects.” Lush’s definition is referred to as narrow 

sense heritability, or h2, and was based on his experience as an animal breeder, where 

individuals are typically the operational unit of selection. Another variation is broad sense 

heritability, or the proportion of the phentoypic variance due to all genetic effects, and can be 

an estimator of βXY for clonally propagated species (Holland et al., 2003; Nyquist, 1991).  

In plant species, there is a vast diversity of modes of reproduction to derive selection 

and response units, and selection units are often families that are replicated within and across 

environments (Holland et al., 2003; Nyquist, 1991). This diversity leads to confusion when 
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predicting gain, and for this reason Hanson (1963) suggested that plant breeders define 

heritability as “the fraction of the selection differential expected to be gained when selection 

is practiced on a defined reference unit.” This definition interprets heritability in context to 

estimating gain for an appropriate selection procedure, which enables accurate comparisons 

of different selection strategies. 

 Parameters of interest to plant breeders include plot and entry mean based 

heritabilities, and they are defined as the proportion of the phenotypic variance among plots 

and family means, respectively, due to family genetic effects (Holland et al., 2003). Both can 

be estimators of βXY in predicting gain, but the two differ by the operational unit of selection. 

The plot-basis estimator is appropriate when practicing selection among plot values (i.e. in 

the nursery), while entry mean heritability is appropriate when selecting among family 

averages (i.e. in replicated yield trials). Animal breeders also perform familial selection, but 

instead of redefining heritability, they typically view βXY as a function of narrow sense 

heritability (Falconer, 1960). [The reason that works is because the familial relationships are 

assumed to be functions of additive genetic variance.]  

 The entry-mean heritability estimator often employed in plant breeding is   

                                                                           σF
2  (equation 2), 

                hf
2    =       σF

2+σFE
2+ σ2         

                                                                                                 e           re  

where σF
2 is the among family variance component, σFE

2 is the family-by-environment 

variance component, σ2 is the error variance, r is the number of replications, and e is the 

number of environments. This estimator of βXY is appropriate for gain prediction in the 

context of predicting the mean performance of untested members of selected families in a 

new set of environments (Holland et al., 2003), with the square root of hf
2 being the accuracy 

of among family selection (Bernardo, 2002). While this clearly defines the context of the 

estimator of βXY for a specified selection strategy, this particular one is of little use to 

breeders in some cases, as it may represent a generational dead end (Holland et al., 2003). 

 Instead, breeders are often interested in predicting selection responses from 

recombining various selection units in numerous ways to determine the most desirable 

strategy when given a limited amount of resources. Predicting gains for a broad context of 
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genetic relationships requires a general estimator to readily estimate βXY, which can be 

defined as  

 βXY = COV(XY)  (equation 3), 

     σ2
Px 

where COV(XY) is the genetic covariance between selection and response units, and σ2
Px 

 is the phenotypic variance among selection units. Considering gain, the annual response to 

selection then becomes 

            ΔY =   COV(XY)   ΔX       (equation 4), 

                                                                       t σ2
Px  

and if truncation selection is practiced, this expression reduces to                                                    

                                                         ΔY = i COV(XY) (equation 5), 

            t σPx  

as ΔX = iσX ,where i is the standardized selection differential. If recombination involves 

selection of male and female gametes from unrelated selection units, then the  

response may be redefined as 

                    ΔY =  im COV(XY) +  if COV(XY)  =  2 COV(XY) .( im + if)  (equation 6),    
                                               σPx                               σPx                                            σPx                                 2 
where im  and if  are the standardized selection differentials of the male and female  

parents, respectively. Assuming equal selection intensities, equation 6 further reduces to 

                                                        2 i COV(XY), when im = if  (equation 7). 

                                                                 σPx  

 Genetic covariances have been defined for many different selection strategies that  

plant breeders commonly encounter (Burton and Carver, 1993; Cockerham, 1983;  

Holland et al., 2003; Nyquist, 1991). The recombination strategy pertaining to equation  

7 is referred to as parental control, and is widely deployed in recurrent selection  

methodology, as the response to selection doubles when selection is practiced on both  

parental gametes.  In plants, this often requires practicing selection and recombination  

before flowering if the selection units are individuals, unless they are self pollinated or  

clonally propagated. Fortunately, this strategy is always feasible when the selection units  

are families, as untested individuals of selected families can be produced from remnant  

seed.  

 ________ 
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The genetic covariance pertaining to equation 7 for non-inbred selection units  

can be defined generally as,  

COV(XY) =2θXYσ2
A + (2θXY)2 σ2

AA (equation 8), 

and for St:g lines  

                          COV(XY) =1/2(1+Ft) σ2
A + (Ft + Fg)D1 + 1/4(1+Ft)2 σ2

AA (equation 9), 

when recombination involves untested individuals from selected, unrelated families, and Y is 

an immediate response unit, where θXY is the coancestry coefficient between selection and 

response units, Ft and Fg are the inbreeding coefficients in the tth and gth generations, 

respectively, σA
2 is the additive genetic variance, D1 is the covariance between homozygous 

dominance deviations and additive effects, and σ2
AA is the additive-by-additive epistatic 

variance (Cockerham and Matzinger, 1985; Holland et al., 2003; Nyquist, 1991). The latter 

three terms are defined in the reference population, or the idealized selection population in 

gametic phase equilibrium, and the coancestry coefficient (θXY) is the probability that alleles 

between X and Y are identical by descent.  

When the selection units are families replicated within and across environments, the 

annual response to selection in equation 7 can be written as  
                       (equation 10), 

                                                         t     σF
2 +σFE

2 + σ2       ½ 

                                                                         e               re 

to account for the phenotypic variance among family means. 

 

General Methods to Enhance Gain 

Equations 5 through 10 can be used to estimate gains for several commonly deployed 

recurrent selection procedures, illustrated in figures 2 through 4. In general, there are four 

strategies to enhance gain: increasing selection intensities, adjusting the coefficient of the 

additive genetic variance, increasing genetic variability, and controlling environmental 

effects (Bernardo, 2002; Hallauer and Miranda, 1988). Permutations of these variables in 

context of time can assist breeders in enhancing gains. 

 The selection intensity, p, is the proportion of selection units chosen for 

recombination, and is related to the standardized selection differential by 

2 i COV(XY) 

        i = (z/p)                                         (equation 11), 
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where z is the standard normal probability density function evaluated typically at the  

(1- p) percentile. It is apparent in equation 11 that the selection differential increases  

when p decreases (Figure 5), which increases genetic gain without elongating cycle time.  

While this strategy is tempting, the selection intensity must be carefully chosen to avoid  

reducing genetic variability, especially if the program is long term (Hallauer and  

Miranda, 1988). Further, high selection intensities, or low values of p, administered  

during recurrent selection in small populations can drastically change population  

structure through genetic drift (Sprague and Eberhart, 1977).  

Adjusting the additive genetic variance coefficient can be accomplished by  

parental control and increasing the coancestry coefficient. The former method increases  

gain without usually elongating cycle time, as previously illustrated (equation 5 versus  

equation 6).  

Increasing the coancestry coefficient by choosing an optimal selection strategy  

can enhance gain, but this approach is often confounded with cycle time and assumptions  

about the phenotypic variance among the various selection units and non-additive genetic 

effects. Nonetheless, S1:2 recurrent selection has the largest additive genetic variance  

coefficient amongst the common methods, but with respect to time, mass selection with  

parental control and with S1 recombination are the most favorable (Table 1). Mass  

selection without parental control is half as efficient as practicing parental control.  

Recurrent selection among later selfing stages does increase the additive genetic variance  

coefficient (Figure 6), however, selfing beyond S1:2 lines is of little practical value, as the 

change in the coefficient diminishes with each additional selfing generation. The increase in 

additive variation in later selfing generations is offset by longer cycle times. 

Coefficient comparisons often assume that the phenotypic variance among selection 

units is identical for each method, but it likely varies for different units, and the assumption is 

certainly violated as more precision is gained when families are replicated within and across 

environments. In reality, recurrent selection methods are often chosen on the basis of the 

trait(s) to improve and the willingness of the breeder to invest resources. Mass selection is 

not appropriate for traits with low heritabilities on an individual basis, such as yield, but can 

be effective for traits such as flowering time, certain diseases, and grain moisture. Traits like 
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yield require replicating families within and across environments to improve the accuracy of 

selection, to ensure that only superior selection units are being recombined. 

The parameters for predicting gains are population specific, and population choice is 

the most critical decision for long term endeavors (Hallauer et al., 1988). Increasing genetic 

variability, mainly the additive genetic variance, is accomplished through population choice. 

This should be done in a way to avoid adverse effects on the population mean (Bernardo, 

2002), unless the goal is to adapt germplasm to a new set of target environments. 

Within each selection method, genetic gain increases as the non-genetic variance 

among selection units decreases, and this can be aided by various experimental techniques. 

For individual plant selection, cultural practices that make field conditions more homogenous 

can reduce experimental error. These methods are also performed with families, but in 

general, determining the number of environments and replications needed to optimize the 

variance among family means, given a limited amount of resources, is widely deployed 

(Bernardo, 2002). Furthermore, with families, various blocking structures, or experimental 

designs, in addition to newer spatial analytical approaches can improve precision (Brownie et 

al., 1993; Brownie and Gumpertz, 1997; Federer, 1956; Federer et al., 2001; Frensham et al., 

1997; Gilmour et al., 1997; Papadakis, 1937;).  

Most maize breeders utilize advanced-cycle breeding to develop cultivars rather than 

recurrent selection strategies, but some of the more important maize inbred lines have been 

developed from the latter (Mikel and Dudley, 2006; Troyer, 1999).  Recurrent selection 

procedures were developed to mitigate the limitations of cultivar development via continuous 

selfing, mainly the rapid fixation of alleles (Allard, 1960; Eberhart et al, 1967). The methods 

of gain enhancement are readily extendable to cultivar development, as all breeders practice 

selection within segregating populations. Furthermore, advance cycle breeding is often 

viewed as a form of recurrent selection, in which the selection, recombination, and response 

units are typically inbred lines, and the reference population is all accessible elite germplasm.  
 

Thesis Background 

 Enhancing Genetic Gain in Maize with Tropical Germplasm, QTL Mapping, and 

Spatial Methodologies evaluates empirical research pertaining to several topics that can serve 

to enhance genetic gain in maize. This dissertation is composed of four chapters which 
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include mapping resistance loci to two foliar disease pathogens of maize, developing a spatial 

analytical tool to aide breeders in line advancement decisions, and finally, evaluating a long 

term recurrent selection program practiced on two all-tropical populations of maize. A brief 

introduction of these topics is presented in the context of gain enhancement.  

 

QTL Mapping  

Knowing the genomic regions that are responsible for trait variation can sometimes 

enhance gain via marker assisted selection. Identifying these regions, or quantitative trait loci 

(QTL), can be accomplished by several marker-trait association approaches (Brummer et al., 

1997; Haley and Knott, 1992; Hyne and Kearsey, 1995; Kao et al. 1999; Jansen et al., 2003; 

Kearsey and Hyne 1994; Lander and Botstein 1989; Martínez and Curnow, 1992; Rebaї and 

Goffinet 1993, 2000; Soller, 1976; Thornsberry et al., 2001; Wu and Li, 1994, 1996; Yu et 

al., 2006; Zeng 1993, 1994). Marker assisted selection (MAS), or the selection of marker 

genotypes at loci that explain trait variation either directly or through linkage disequilibrium, 

can include marker-assisted backcrossing and forward-breeding strategies with marker 

information. The former is a method of line conversion while the latter advances members 

within breeding populations on the basis of marker genotypes and conventional phenotypic 

selection.  

 Incorporating MAS into a breeding program is attractive, as it can reduce time and 

increase accuracy in backrossing programs (Frisch et al. 1998), aid in selection for traits that 

are difficult or costly to phenotype, and enhance trait means of populations (Holland, 2004). 

MAS has been successfully deployed in plant breeding for selecting alleles with large effects 

on traits with relatively simple inheritance (Chen et al., 2000; Cregan et al., 1999; Young, 

1999), but is less promising for polygenic traits, in part because QTL effect and position 

estimates are often imprecise (Beavis, 1998; Bernardo 2001). 

 Routinely performing MAS requires a substantial initial investment in technical 

infrastructure followed by continual financing (Holland, 2004; Morris et al., 2003). 

Therefore, the relative efficiency of MAS to phenotypic selection should offset costs, unless 

certain objectives are time-sensitive. Often, QTL mapping is performed on replicated 

families to increase the entry mean heritability to accurately map QTL. In doing so, the 

relative efficiency is lowered, implying that when the phenotypic data is good, there is little 
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room to improve gains of selection by using marker information (Eathington et al. 1997; 

Lande and Thompson, 1990).  

 Marker-assisted backcrossing is certainly a favorable method of reducing time for 

line conversion when introgressing transgenes, with their market introduction being highly 

time-sensitive. Mapping QTL and subsequently backrossing them into elite lines is a 

conservative breeding procedure that generally does not produce enough new allelic 

combinations to improve multiple traits at a time (Lee, 1995). Instead, forward breeding with 

marker information in early segregating populations could be used to enhance the mean for 

certain key traits.  

Several forward-breeding programs using markers have been implemented (Cregan et 

al., 1999; Eagles et al., 2001; Zhou et al., 2003). In all instances, markers were tightly linked 

to a resistance gene with a major effect, and the resistance allele was introduced from outside 

the traditional breeding pool. The rationales for using MAS in these forward-breeding 

programs include phenotyping difficulties, variable disease expression, and simple 

inheritance of the target traits. The exotic donor alleles allow for introgressed haplotypes to 

initially occur at low frequencies in elite germplasm. This can ensure high linkage 

disequilibrium between the marker and resistance alleles, which is fundamental in 

maintaining consistent linkage phases across multiple breeding crosses (Luby and Shaw, 

2001). Linkage disequilibrium can be maintained also through phenotypic reinforcement, or 

the issue of linkage disequilibrium can be made inconsequential if the marker directly 

explains trait variation (Holland, 2004). 

 Forward breeding will require QTL mapping to become more applicable to multiple 

populations, as QTL identification and subsequent utilization needs to be conducted in the 

framework of an entire breeding program, rather than the framework of a single F2 

population (Brummer et al., 1997; Flint-Garcia et al., 2003; Holland, 2004; Jansen et al., 

2003; Rebaї and Goffinet, 2000; Yu et al., 2006). Mapping QTL in individual populations 

will still remain beneficial, when unique alleles from otherwise phenotypically poor parents 

are desired. 

 Resistance QTL for Southern Corn Rust (caused by Puccinia polysora) and Gray 

Leaf Spot (caused by Cercospora zeae-maydis) were mapped in a temperate by tropical 

recombinant inbred line population and a corresponding topcross population.  A major 
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resistance gene for Southern Rust was identified on the short-arm of chromosome 10 (Jines et 

al., 2007), while ten Gray Leaf Spot QTL mapped to chromosomes 1, 2, 3, 4, 8, and 10.  The 

major rust resistance gene and three Gray Leaf Spot QTL corresponded to regions mapped in 

prior populations. Extensively haplotyping germplasm at these four consensus regions could 

aid in forward-breeding strategies to efficiently integrate resistance gene combinations into 

U.S. maize breeding populations. Furthermore, the tropical parental allele, from NC300, 

increased resistance at three of these four loci, and linkage disequilibrium between marker 

and target alleles for future crosses would be expected to be maintained across most crosses 

with elite temperate maize (Cregan et al. 1999; Holland, 2004). 

 

Spatial Analyses 

Single-environment trials are used regularly in plant breeding to estimate entry 

means, which are used in further analyses across multiple environments. Multiple-

environment trials allow for estimating breeding values of experimental lines (Comstock 

1977).  Such trials are quite expensive, and accurate estimation of entry means within an 

environment for a multiple-environment trial can be critical for increasing the response to 

selection, given a limited amount of resources.   

Various forms of spatial analyses have been suggested to improve the precision of an 

experiment when the heterogeneity within blocks becomes consequential, as often occurs 

with evaluations of large numbers of early-generation breeding lines in plant breeding 

programs (Cressie and Hartfield, 1996; Cullis and Gleeson, 1991; Gilmour et al., 1997; Kirk 

et al., 1980; Papadakis, 1937; Tamura et al., 1988; Zimmerman and Harville, 1991). Spatial 

analyses, such as trend analysis and trend analysis with correlated errors models, can 

improve precision of genotype mean estimates when such problems arise.  These spatial 

analyses often lead to a reduction in the phenotypic variance among family means, and in 

doing so, increase the response to selection (Qiao et al., 2004). Additionally, these analyses 

can improve QTL mapping by increasing the genetic signal relative to experimental error 

(Moreau et al., 1999). 

A dynamic SAS program (for SAS versions 8.2 through 9.1, SAS Institute, 1999) 

entitled SPATIALPRO was developed to allow researchers to efficiently and flexibly 

implement spatial analysis techniques into their research programs. Using methodology 
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founded on suggestions for model construction and selection from the literature, the program 

constructs and optimizes several spatial models for each response variable and single-

environment-trial combination. The spatial and conventional models are compared on the 

basis of a defined criterion selected by the user. Based on the specified criterion, a preferred 

model is chosen for each response variable and single-environment-trial combination. 

Results from the preferred model are organized into SAS data sets, which include (for each 

variable) Spearman rank correlation coefficients between entry means from the alternative 

and conventional analyses, entry least square means, F-values for testing the entry main 

effect, and the error variance estimated from the preferred model.  

SPATIALPRO should improve entry mean estimation across environments for 

situations involving limited sampling of environments.  Such circumstances could include 

choosing entries that merit further evaluation studies (i.e. first year yield trial results), 

recurrent selection procedures, and QTL mapping studies. The former circumstances will 

better ensure that precious resources are allocated to superior selection units, while the latter 

should improve further analyses that assess the consistency of QTL effects across 

environments (Moreau et al., 1999).  

 

Recurrent Selection 

Advance-cycle breeding is restricting the germplasm base for U.S. maize, which is 

largely founded upon the recycling of eight inbred lines and their derivatives (Goodman, 

2000).  Incorporating tropical germplasm into U.S. breeding pools could broaden the U.S. 

maize germplasm base by increasing genetic variability, but in 1996, U.S. hybrids contained 

only 0.3% tropical germplasm (Goodman, 1998).  

In 1975, breeding populations were developed at NC State by intercrossing seven 

double cross tropical hybrids following a partial-diallel mating design (Holley and Goodman, 

1988). Forty-two first-cycle lines were developed from six generations of ear-to-row sib-

mating followed by two selfing generations. Based on yield trial results of the forty-two first-

cycle-line topcrosses, inbred line NC296 was released. Second-cycle lines were subsequently 

developed by recycling the first-cycle lines by either selfing (Goodman, 2000) or sib-mating 

methods of line development (Uhr and Goodman, 1995). Yield trial results of the topcrosses 

for the 135 lines developed by selfing resulted in releasing inbred lines NC298 and NC300. 
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 The results from the first and second-cycles of line development suggest it is 

relatively easy to develop adapted lines from double-cross tropical hybrids that perform well 

in topcrosses, but it is fairly difficult to develop such lines that also have favorable per se 

performance (Goodman, 2000). Industry would be more apt to develop (50% tropical /50% 

elite) inbred lines by breeding with all-tropical lines that perform well both in topcrosses and 

as lines per se. Until such temperate-adapted-all-tropical lines are developed, industrial-

breeding efforts with tropical germplasm will probably not be expended beyond single-gene 

backcrossing programs. Developing semi-tropical inbred lines, though, offers greater long-

term promise for widening the U.S. germplasm base (Lewis and Goodman, 2003). 

S1 recurrent selection for grain yield was initiated in two populations derived from the 

initial TROPHY lines, as an alternative approach to further adapt this germplasm, while 

concomitantly developing lines with improved per se and topcross performance. These two 

populations, a composite (TROPHYCOMP) and a synthetic (TROPHYELITE), were derived 

from the first and the better yielding second-cycle lines. Currently, the TROPHY composite 

and elite populations have undergone eight and five cycles, respectively, of S1 per se 

recurrent selection.  

The TROPHY derivatives (including lines developed through pedigree line recycling 

and those by recurrent selection) represent novel germplasm. This germplasm, is the only one 

founded on a diverse set of tropical races which, after initial adaptation, has been enhanced 

by both pedigree line recycling and S1 per se recurrent selection for over 20 years. Successes 

from these two different breeding strategies applied to the same material serve as a unique 

model for deriving inbred lines from tropical germplasm for use in U.S. commercial breeding 

activities. 

Currently, the subsequent recycling of the initial lines has led to the release of 22 

additional all-tropical lines. In comparison, no lines developed from any cycle of S1 recurrent 

selection have been released or heavily recycled into our program. This study was conducted 

to quantify the progress of S1 recurrent selection for each population and determine if this is a 

reasonable approach, or if it needs modification.  

Cycles per se and cycle-topcrosses to LH132.LH51 were grown in separate yield 

trials to estimate responses to selection. In both instances, grain yield increased linearly 

across the cycles of selection for each population, but the yield responses across the cycle-
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topcrosses are approximately half those reported for commercial breeding activities in the 

U.S. Corn Belt (Duvick et al., 2004). This is worrisome, as lines derived from future cycles 

from these populations will unlikely be competitive in hybrids. Naturally, choosing a more 

modern tester would improve topcross yield, but not necessarily relative yield responses.  

To determine the current range in combining ability, ninety-six S1 families were 

sampled from the latest cycles of each population and topcrossed to LH132.LH51. Three 

topcross families did not differ significantly in yield from the commercial check hybrid 

average. Variance components were estimated based on these topcross families, to explore 

recurrent selection strategies. The predicted grain yield responses to S1 topcross recurrent 

selection to LH132.LH51 for the two populations are substantially more promising then S1 

per se selection in terms of deriving higher yielding S1 topcross families. Specifically, the 

response for TROPHYELITE population was 73% greater than the historical rates of gain for 

commercial breeding activities in the U.S. Corn Belt, while the response for the 

TROPHYCOMP population was equivalent (Duvick et al., 2004).  

Topcross recurrent selection places emphasis on the combining ability of families, 

and perhaps should be universally chosen in favor of per se recurrent selection when 

improving all-tropical populations. In part this is because resources, in terms of subsequent 

line development, are devoted only to families with favorable combining ability, but more 

importantly, it is because the topcross response of a population to a particular tester is 

maximized. The latter insures that derived lines maintain relevancy, and in some instances, as 

with the TROPHYELITE population, the response can surpass average industrial gains.  

S1 topcross recurrent selection may be difficult to execute in two years for our 

program, as recombination is required during the winter nursery, and superior topcross 

families are not identified until after harvesting yield trials in the previous summer season 

(Table 2).  Full-sib topcross recurrent is a practical alternative, but the additive topcross 

genetic coefficient is 1/4, or half the S1 topcross recurrent selection (Table 3, Figure 7). S1 

topcross recurrent selection would require recombining S1 families in a winter nursery such 

as Puerto Rico or Hawaii instead of Homestead, Florida to allow more time to analyze yield 

trial data. However, if successfully deployed, the gains per year would be approximately 

double that of the practical alternative. 
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Table 1. Common recurrent selection (RS) methods and their corresponding additive genetic 
variance coefficients (coeff) and cycle time in seasons and years (y).  
 
   Method                           coeff               Seasonsa   Yearsb  coeff/Years 
 Mass Selection(No PCc) 1/2 1 1 1/2 
 Mass Selection (PC) 1 1 1 1 
 Mass Selection/recombine 1 2 1 1 
 S1 seed 
 Half Sib RS 1/4 3 2 1/8 
 Half Sib/S1 RS 1/2 3 2 1/4 
 Full Sib RS 1/2 3 2 1/4 
 S0:1 RS 1 3 2 1/2 
 S1:2 RS 3/2 4 2 3/4 
 St

d
:g

e
 RS (1+Ft

f) g+2 y (1+Ft)/y 
 
a Assuming selection units are tested in one season 
b Assuming two seasons per year  
c Parental control 
d The tth generation, the base population is t=0. 
e The gth generation. 
f The inbreeding coefficient in the tth generation. 
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Table 2. The Phases of one cycle of  S1 topcross (TC) recurrent selection. 
 
Nursery       Phase  Generation (Seed Harvested)  Purpose 
 
Summer1 1 CiS1 Generate S1 families from Ci cycle                          
Winter1 2 CiS1TC TC S1 families to tester    
Summer2 3 n/a Test S1 family TC in replicated trials  
Winter2 4 Ci+1 Recombine selected S1 families  
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Table 3. The Phases of one cycle of full-sib (FS) topcross (TC) recurrent selection. 
 
Nursery         Phase   Generation (Seed Harvested)   Purpose 
 
Summer1 1 FS FAMILIES Recombine selected FS families              
Winter1 2 TC FS FAMILIES Topcross families 
Summer2 3 not/applicable Test TC families in replicated trials  
Winter2  not/applicable not/applicable  
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Figure 1. Illustration of selection units (Xi), recombination units (Zi), and response units (Yi) 
for a generalized selection methodology.  Units appear in squares and arrows signify patterns 
of descent.
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 A) Mass Selection without Parental Control 
 
 
 
 
 
 
 
 
 
 
 
 
B) Mass Selection with Parental Control 
 
 
 
 
 
 
 
 
 
 
 
 
C) Mass Selection, Recombine Selfed seed 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Illustrations of selection units (Xi), recombination units (Zi), and response units (Yi) 
for A) mass selection without parental control, B) mass selection with parental control, and 
C) mass selection and recombine selfed seed.  Units appear in squares, arrows signify 
crosses, and parentheses represent selfing. Figures families are encircled individuals are in 
squares. 
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 A) Half Sib (HS) Recurrent Selection 
 
  
                                               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B) Half Sib (HS)/S1 Recurrent Selection 
 
 
                                         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Illustrations of selection units (Xi), recombination units (Zi), and response units (Yi) 
for A) half sib recurrent selection and B) half sib recurrent selection recombine selfed seed. 
Units appear in squares, arrows signify crosses, and parentheses represent selfing. Half sib 
families are encircled.  
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 A) Full Sib Recurrent Selection 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B) S0:1 Recurrent Selection 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Illustrations of selection units (Xi), recombination units (Zi), and response units (Yi) 
for A) full sib recurrent selection and B) S0:1 recurrent selection. Units appear in squares, 
arrows signify crosses, and parentheses represent selfing. Families are encircled. 
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Figure 5. Standardized selection differential plotted against selection intensity.
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Figure 6. Additive genetic variance coefficient, (1+Ft), for St:g recurrent selection methods 
plotted against the generation derived, t.  Ft is the inbreeding coefficient of the tth generation. 
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Cov(TCX1,TCY1) =  
 
Cov[(μ* + 1/4(αi

*
 + αj

*
 + αk

*
 + αl

*)), (μ* + 1/8(αi
*

 + αj
*

 + αk
*

 + αl
*) + 1/2 αm

*)]  
 
= 1/32[E(αi

*2) + E(αj
*2) + E(αk

*2) + E(αl
*2)] = 4/32σ2

A(T) = 1/8σ2
A(T), 

 
and if parental control is practiced, 
 
Cov(TCX1,TCY1) = 1/4σ2

A(T), 
 
where μ* is the average of all topcross individuals, αi-m

* are the additive topcross effects of 
alleles from individuals of the TROPHY population, and σ2

A(T) is the additive topcross 
genetic variance in reference to all topcross individuals from the TROPHY population. 
 
 
 
Figure 7. Illustration of selection units (TCXi), recombination units (Zi), and response units 
(TCYi) for full-sib topcross (TC) recurrent selection and derivation of the genetic covariance 
(Cov). Individuals from the TROPHY population, tester, selection, recombination, and 
response units appear in squares. Arrows signify crosses, and letters within parentheses 
represent alleles.  
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Abstract 

Southern rust, caused by Puccinia polysora Underw, is a foliar disease that can severely 

reduce grain yield in maize (Zea mays L.). Major resistance genes exist, but their 

effectiveness can be limited in areas where P. polysora is multi-racial. General resistance 

could be achieved by combining quantitative and race-specific resistances. This would be 

desirable if the resistance alleles maintained resistance across environments while not 

increasing plant maturity. Recombinant inbred (RI) lines were derived from a cross between 

NC300, a temperate-adapted all-tropical line, and B104, a stiff-stalk line. The RI lines were 

topcrossed to the tester FR615xFR697. The 143 topcrosses were scored for Southern rust in 

four environments. Time to flowering was measured in two environments. The RI lines were 

genotyped at 113 simple sequence repeat markers and quantitative trait loci (QTL) were 
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mapped for both traits.  The entry mean heritability estimate for Southern rust resistance was 

0.93. A multiple interval mapping (MIM) model, including four QTL, accounted for 88% of 

the variation among average disease ratings. A major QTL located on the short arm of 

chromosome 10, explained 83% of the phenotypic variation, with the NC300 allele carrying 

the resistance. Significant (P<0.001), but relatively minor, topcross-by-environment 

interaction occurred for Southern rust, and resulted from the interaction of the major QTL 

with the environment. Maturity and Southern rust rating were slightly correlated, but QTL 

for the two traits did not co-localize. Resistance was simply inherited in this population and 

the major QTL is likely a dominant resistant gene that is independent of plant maturity. 

 

Introduction 

 Southern rust, caused by Puccinia polysora Underw., has been a major problem for 

corn production in Africa (Agarwal et al. 2001) and Asia  (Chen et al. 2004). In the southern 

United States, significant Southern rust infections have occurred approximately one year in 

five. When epiphytotics have occurred they were often serious, causing yield losses of up to 

45% (Raid et al.1988; Rodriguez-Ardon 1980). The periodic nature of Southern rust 

epiphytotics has made breeding for resistance challenging, and the severity of the disease 

when it does occur can be attributed, in part, to the limited resistance of the U.S. maize crop ( 

Futrell 1975; Futrell et al.1975).  

 Several races of P. polysora, distinguished by the reactions they incite on different 

maize lines, have been reported. Three races, EA1, EA2 and EA3 were found in East Africa 

(Ryland and Storey 1955; Storey and Ryland 1954; Storey and Howland 1961). Six further 

races ( PP. 3, PP. 4, PP. 5, PP. 6, PP. 7 and PP.8) were identified from North and Central 

American isolates and were shown to be distinct from the East African races (Robert 1962). 

A tenth P. Polysora race (PP. 9) was discovered by Ullstrup (1965).  

 At least three unique, major, race-specific Southern rust resistance genes have been 

discovered. Major genes, Rpp1 and Rpp2 were identified by Storey and Howland (1957) and 

confer resistance to P. polysora races EA1 and EA2, respectively.  These genes were shown 

to be loosely linked to each other (Storey and Howland 1959), but their genomic locations 

have not been determined.  A major resistance gene, Rpp9, conferring resistance to P. 
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polysora race PP. 9 was identified from Boesman Yellow Flint (Ullstrup 1965). It was shown 

to be closely linked to the Rp1 gene for resistance to common maize rust (causal agent 

Puccinia sorghi Schw.) on the short arm of chromosome 10. Another major gene that also 

confers resistance to race PP. 9 was identified (Futrell 1975; Hooker et al. 1975), but its 

linkage and allelic relationships with Rpp9 were not established.   

Major genes for resistance to Southern rust on the short arm of chromosome 10 have 

been reported in at least 4 different subsequent studies, using different sets of maize 

germplasm (Scott et al. 1984; Holland et al. 1998; Liu et al. 2003; Chen et al. 2004).  The 

major genes reported in these studies were closely linked to Rpp9 in each case, but linkage or 

allelic relationships and racial specificity of these genes were not determined. This 

knowledge is of importance as major resistance (race-specific) genes commonly fail in the 

tropics, where multiple races of P. polysora exist (Carlos and Ferreira 2002). The loss of 

valuable maize and fungal stocks from the closing of both Hooker and Ullstrup programs in 

combination with the tight linkages of dominant resistance genes on chromosome 10 has 

made obtaining such information very difficult. 

General resistance could be achieved by combining quantitative and race-specific 

resistances. This would be desirable if the resistance alleles maintained resistance across 

environments while not increasing plant maturity. Quantitative trait loci (QTL) for Southern 

rust resistance have been mapped on chromosomes 3 and 4 ( Holland et al., 1998), 3, 4 and 9 

(Jiang et al. 1999) and  9 ( Brunelli et al. 2002), but none co-localized across studies (Wisser 

et al. 2006). Most of these experiments, unfortunately, did not use complete genome 

coverage in mapping resistance QTL, and some QTL may have not been detected. In 

addition, the effectiveness of the resistance provided by these QTL to hybrids was not 

addressed.  

In these Southern-rust-resistance mapping studies, the interaction between  

resistance genes and the environment was not extensively investigated because the 

phenotypic distributions of populations were often assumed to result from simple modes of 

inheritance. Only Holland et al. (1998) evaluated Southern rust resistance in multiple 

environments, and they reported significant, but relatively minor, genotype-by-environment 

interaction. However, they did not investigate QTL-by-environment interaction. 

Understanding the interaction between QTL and the environment is important in determining 
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the consistency of QTL effects over environments (Bubeck et al.1993).  Such knowledge can 

further assist in choosing candidate QTL for marker assisted selection by preventing 

erroneous decisions resulting from often overestimating the percent of phenotypic variation 

explained by QTL (Bubeck et al, 1993; Beavis et al. 1998).  

Southern rust, and other foliar diseases of maize, such as gray leaf spot and 

anthracnose (caused by Cercospora zeae-maydis Tehon and E. Y. Daniels and 

Colletotrichum graminicola (Ces.) G. W. Wils, respectively), are generally late season 

diseases in North Carolina, with most disease development occurring post-anthesis (White 

1999). Although significant correlation between Southern rust and maturity has not been 

reported, there is concern that disease ratings could be correlated with maturity, as 

demonstrated in studies that mapped resistance to other diseases and maturity QTL in the 

same populations (Bubeck et al.1993; Carson et al. 2004; Clements et al. 2000; Jiang et al. 

1999; Jung et al. 1994). These studies collectively demonstrated that disease resistance and 

flowering time were slightly correlated, that QTL for each trait would sometimes map to 

similar genomic regions, and that such regions usually increased both disease resistance and 

maturity.  

The infrequent occurrence of Southern rust in the United States has resulted in 

inconsistent selection environments, which has led to difficulties in selecting and maintaining 

Southern rust resistance in U.S. maize breeding lines.  In the absence of selection pressure, 

stochastic processes govern gene frequencies in breeding populations (Wright 1952). Such 

processes can often result in losing alleles, especially those with minor effects on resistance, 

from populations, as has occurred with common rust resistance genes (Davis et al. 1990). In 

this case, it might be more effective to use marker-assisted selection for loci linked to major 

and partial-restistance QTL, despite the questionable durability of major race-specific 

resistance alleles. 

The first objective of this study was to localize and estimate the effects of minor and 

major sources of Southern rust resistance loci using DNA markers with thorough genome 

coverage in a tropical by temperate RI topcross population for potential use in developing 

resistant hybrid varieties via marker assisted selection.  The second objective was to 

determine the impact of genotype-by-environment interaction on the expression of Southern 

rust resistance genes.  The final objective was to determine the relationship between Southern 
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rust resistance and time to flowering. This knowledge is important as differences in maturity 

can be confounded with foliar disease resistance measurements and later maturity can lead to 

increased production costs (Hawbaker et al.1997). 

 

Materials and Methods  

One hundred and forty-three S4:5 recombinant inbred (RI ) lines were developed from 

single seed descent from a cross between NC300, an all-tropical, temperate-adapted line, and 

B104, an Iowa Stiff-Stalk Synthetic line. The inbreeding coefficient of the RI lines was 

expected to be F=0.97 (Cockerham 1983).  Each RI line was topcrossed to the C103 

(Lancaster) type tester FR615xFR697.  Topcrosses of the RI lines had much more uniform 

maturity than the RI lines themselves and made scoring of Southern rust resistance possible. 

The 143 topcrosses were randomly subdivided into two sets and the experimental design 

deployed was a replication-within-sets design.   

Topcrosses and commercial checks are referred to as entries. Set 1 consisted of 

eighty-one entries including sixty-seven topcrosses and twelve commercial hybrid checks.  

Set 2 consisted of ninety entries including seventy-six topcrosses and twelve commercial 

hybrid checks.  Both sets shared the same commercial checks (DK689, DK697, DK743, 

G8288, LH132xLH51, LH195xLH256, LH200xLH262, NK91-R9, P31G98, P32K61, 

P3394, TR7322xHC33), as well as parental topcrosses between NC300 and B104 to the 

tester, FR615xFR697. Sets were grown at four North Carolina locations in 2003. Locations 

included Clayton, Jackson Springs, Salisbury, and Plymouth, N.C. Lattice designs for each 

set (9x9 and 10x9, respectively) were used to assign entries to experimental units at the 

Clayton, Jackson Springs, and Plymouth locations. A randomized complete block design 

(RCBD) was used for each set at Salisbury. 

Three replicates were grown at the Clayton, Jackson Springs, and Plymouth locations, 

whereas, two replicates were grown at Salisbury.  Experimental units consisted of two 4.86 

m length-rows containing a total of 44 plants at all locations except Salisbury. An 

experimental unit at the Salisbury location was a single 4.86- m row with 20 plants. A 1-m 

alley was allocated at the end of each plot at all locations.  Inter-row spacing was 0.91 m at 

the Salisbury location and 0.97 m elsewhere.  Plots were over-planted to obtain a target plant 
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density of 43,000 plants ha-1 (44 plants per plot) at all locations except Salisbury, where 

plant density was 54,147 plants ha-1 (20 plants per plot). 

 Response variables measured on plots included Southern rust rating and anthesis date. 

Natural inoculum was relied upon, and a late season visual Southern rust rating was taken at 

all locations approximately two weeks prior to harvest. Puccinia polysora has several 

tropical alternative hosts, but comes into North Carolina as urediospores, probably in many 

cases from a very restricted origin that then leads to secondary inoculation (Ullstrup 1977; 

Shurtleff 1986). Southern rust is apparently not multi-racial in North Carolina and rarely 

impacts grain yield, as the disease tends to occur late in the growing season.  

Ratings were recorded on a plot basis (i.e. the visual average of all plants in a plot) 

using a nine point scale, with one designated as fully susceptible and nine as fully resistant 

(Holland et al. 1998). Ratings were based upon the percent leaf area of a plot affected by 

pustules and impact of the disease on late season plant health. Anthesis date, measured as 

days from planting until fifty-percent of the pollen in a plot shed, was recorded at the Clayton 

location in 2002 and 2003. (The same sets using corresponding experimental designs as the 

Clayton 2003 location were also grown at Clayton in 2002, but Southern rust was not 

present).                                                                              

Genotyping and Linkage Map Construction  

Genotypic information for 113 simple sequence repeat markers has been reported 

previously for the RI lines (Robertson-Hoyt et al. 2006). Briefly, a linkage map was 

constructed with a length of 1993 cM and an average distance between markers of 17.64 cM. 

Eight percent of the genotypic data was missing, half of which involved heterozygous loci. 

Twelve percent of the markers displayed significant (P ≤ 0.01) segregation distortion, which 

is typical in maize mapping populations (Lu et al. 2002). Marker-locus ordering was in 

agreement with the consensus genetic maps of maize (www.maizegdb.org). 

Statistical Analysis for Phenotypic Data  

Within environment analyses were performed for each response variable and set-by-

environment combination. Analyses included fitting spatial and conventional mixed models.  

The conventional model corresponded to the appropriate analysis associated with the 

experimental design used (i.e. a lattice or RCBD). Spatial models included trend, trend-plus-

correlated-errors, and correlated-errors analyses. Entry was treated as a fixed effect in all 
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analyses.  Trend effects were modeled as first through fourth degree polynomial terms for 

rows and columns in the trend and trend-plus-correlated-errors analyses (Brownie et al. 

1993). A spatial power function was specified to model local effects for the trend-plus-

correlated errors and correlated-errors analyses.   

Only significant (P ≤ 0.01) global effects were retained in the spatial models (Tamura 

et al. 1988), and the analysis with the largest F-value for entry main effects was considered 

the preferred model for each set-by-environment combination (Brownie and Gumpertz 

1997). Within-environment spatial analyses were performed because accounting for spatial 

variation can often improve entry mean estimation (Brownie et al.1993; Brownie and 

Gumpertz 1997; and Gilmour et al. 1997) and QTL mapping (Moreau et al. 1999; Smith et 

al. 2002).  

A combined analysis across environments was then performed for each set. Entry 

least square means from the preferred model for each set-by-environment combination 

served as the response variable in the combined analyses. Combined analyses were 

performed using PROC MIXED in SAS version 8.2 (Littell et al. 1996; SAS Institute 1999), 

considering environment to be a random factor and entry to be a fixed factor.  

A limitation of spatial analytical approaches is the difficulty in testing for the 

presence of genotype-by-environment interaction, because different models are fit for each 

environment (Qiao et al. 2004) and genotype-by-environment interaction is the residual term 

in the combined analysis. To test the significance of the entry-by-environment interaction 

term, a data set lacking the commercial checks was constructed. Using this subset of data, a 

model was fitted in PROC GLM that included set, environment, set-by-environment 

interaction, replication-nested-within-set-by-environment interaction, entry-by-environment-

nested-within set as random factors while entry-nested-within set was considered fixed. An 

appropriate F-test was performed to test the significance of the entry-by-environment-nested-

within set factor. 

Entry mean heritabilities were estimated for each response variable following Holland 

et al. (2003). The model included random sources of variation due to environment, set, set-

by-environment interaction, replication-nested-within-set-by-environment interaction, entry-

nested-within set, and entry-by-environment-nested-within-set interaction. Approximate 

standard errors were estimated by the delta method.  



 36

Entry means from the combined analyses were adjusted for set effects, using set 

means as the adjustment (Schutz and Cockerham 1962).  Set-adjusted entry mean 

comparisons were performed which involved constructing pooled error terms to calculate 

least significant differences. The set-adjusted entry means from the across environment 

analyses served as response variables in subsequent analyses involving QTL mapping.   

Spearman rank correlation coefficients for Southern rust ratings were estimated with 

PROC CORR in SAS version 8.2 (SAS Institute 1999) for all pair-wise combinations of set-

adjusted entry means from the preferred within-environment analyses.  In addition, a 

Spearman rank correlation coefficient was estimated between set-adjusted entry means from 

the combined analyses for both Southern rust and flowering date. 

  Composite and multiple interval mapping were performed in Windows QTL-

Cartographer version 2.5 (Wang et al. 2004) for each response variable following Robertson-

Hoyt et al. (2006).  Composite interval mapping (CIM) was used initially to map QTL for all 

phenotypic data sets (PDS). Both backward and forward selection procedures were specified 

to perform the permutation testing and cofactor selection. The threshold for factors to enter 

and remain in the model was 0.01 and a window size of 10 cM was selected for the genome 

scans. 

QTL positions from CIM pertaining to the across-environment analyses were 

designated in an initial model for multiple interval mapping (MIM). The MIM models were 

created and tested in an iterative fashion and the Bayesian information criterion (BIC) was 

used for model selection (Piepho and Gauch 2001). After identifying QTL additive-topcross-

main effects, additive-by-additive topcross epistactic interaction effects were tested among 

all pair-wise combinations of QTL. Epistatic interactions were retained in the model if the 

BIC was reduced.  After identifying the best model, QTL effects were simultaneously 

estimated using the “summary” option. Genetic variability explained by QTL for each 

response variable was calculated as the total phenotypic variation explained by QTL divided 

by the entry mean heritability estimate. 

Marker-by-environment interactions on Southern rust scores were tested by ANOVA 

in PROC GLM in SAS version 8.2 (SAS Institute 1999). Markers closest to QTL positions 

identified by MIM were included in the multiple factor ANOVA. The model included 

marker-nested-within-set and environment-by-marker-nested-within-set as fixed and random 
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factors, respectively, for each marker.  Additional random factors were set, environment, set-

by-environment, and replication-nested-within-set-by- environment. The error variance of the 

model included pooled variation due to higher order interactions among markers and 

environment as well as residual variation.  

 

Results 

 Set-adjusted RI topcross ratings from the combined analysis displayed a bimodal 

distribution (Figure 1). This suggested a single major gene might be responsible for most of 

the variation. The entry mean heritability estimate for Southern rust in this population was 

0.93 (standard error 0.01).  The severity of the Southern rust epiphytotic in 2003 is evident 

by the low average rating of the commercial checks (Table 1). The NC300 topcross was rated 

7.8 whereas the B104 topcross was rated 3.5. The range of the RI topcross ratings was 

greater than the range of the parental topcrosses, although no significant transgressive 

segregates (P = 0.05) were observed (Table 1). The mean rating of the RI topcrosses did not 

differ significantly (P = 0.05) from the parental topcross average. One-hundred RI topcrosses 

were rated significantly higher (P=0.05) than the mean of the commercial checks (data not 

shown).  

 Significant (P<0.001) entry-by-environment interaction was observed for Southern 

rust (Table 2). Despite the significant interaction, Spearman rank correlation coefficients 

among set-adjusted-entry means obtained from the within environment analyses were high, 

with the lowest pair-wise correlation being 0.8 (Table 3). Further, the entry main effect was 

highly significant (P<0.0001), as the entry mean square was nearly seventeen times larger 

than the entry-by-environment mean square (Table 2). For this reason, multiple interval 

mapping (MIM) was only performed on entry means from the combined analyses. 

 A major Southern rust QTL was mapped by composite interval mapping (CIM) on 

the short arm of chromosome 10. Map position was 6.01 cM for the major QTL and was 

positioned between markers UMC1380 and BNLG1451 (bins 10.0 and 10.1, respectively). 

The NC300 allele increased resistance with an additive effect of 1.3 and explained 82% of 

the phenotypic variation.  It was the major cause of the bimodal distribution in Figure 1. The 

NC300 allele increased resistance and explained at least half of the phenotypic variation 

within each test environment (data not shown).  
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 Four Southern rust QTL were identified from multiple interval mapping (MIM) for 

the combined analysis (Table 4). The MIM model explained 88% and 94% of the phenotypic 

and genotypic variation, respectively. The NC300 allele increased resistance for three of the 

four QTL. The QTL located on the short arm of chromosome 10, also identified by CIM, had 

the largest effect and accounted for 83% and 89% of the phenotypic and genotypic variation, 

respectively, for the MIM model. Estimates of effect, position, and explained phenotypic 

variation for this QTL were similar to the results of CIM. The remaining QTL individually 

explained less than 2%, and collectively accounted for 5%, of the phenotypic variation. 

Additive-by-additive-topcross epistatic interactions were not identified among these QTL, 

and segregation distortion did not occur at any flanking markers. 

 A significant (P< 0.001) marker-by-environment interaction occurred for marker 

UMC1380, which is linked to the major resistance QTL (Table 5). Changes of magnitude of 

the marker effects, rather than changes in sign, led to the significant interaction (data not 

shown). Significant marker-by-environment interactions did not occur for the other markers 

included in the multiple-marker-by-environment model.  

The Spearman rank correlation coefficient between set-adjusted entry means from the 

combined analyses for anthesis date and Southern rust rating was 0.26 (P = 0.002).  Although 

anthesis date and Southern rust rating were slightly correlated, significant genomic regions 

for the two traits did not over-lap (data not shown). 

 

Discussion 

 The Southern rust entry mean heritability estimate, although potentially biased 

upwardly by additive-topcross-by-year and additive-by-additive-topcross epistatic interaction 

variance components, was high and comparable in magnitude to Holland et al. (1998). The 

high upper bound for heritability for this population suggests that inheritance for resistance 

was simple in nature.  The identification of a major QTL explaining most of the phenotypic 

variation and the nearly 1:1 segregation ratio demonstrated by the bimodal distribution 

(Figure 1) of the RI topcross ratings support this statement. Further, no additive-by-additive 

topcross epistatic interactions were identified, which is concurrent with the phenotypic data, 

as the average rating of the RI topcrosses was equivalent to the parental topcross average.   
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Significant, but relatively minor, genotype-by-environment interaction was observed, 

as in Holland et al. (1998). Despite the significant genotype-by-environment interaction, very 

similar groupings of susceptible and resistant RI topcrossess were observed within each 

environment. The significant genotype-by-environment interaction in this study resulted from 

changes in the magnitude of the effect of the major gene on chromosome 10, as interactions 

between partial resistant QTL and the environment were not significant. Although the major 

gene interacted significantly with the environment, the segregation of the gene was clearly 

responsible for explaining at least half of the phenotypic variation within each test 

environment. The interaction likely resulted from leaves being more senesced when ratings 

were taken for plots at the two earlier-planted locations (Jackson Springs and Clayton). The 

overall ranking of marker genotypes for all marker loci linked to QTL did not change across 

environments, which agrees with the consistent ranking of entries across the environments. 

The absence of crossover-interactions implies that the same race(s) was present at all 

environments.  

The major gene identified in this study maps directly to a cluster of rust resistance 

genes previously identified on the short arm of chromosome 10 (Ullstrup 1965; Scott et al. 

1984; Holland et al. 1998; Liu et al. 2003; Chen et al. 2004). Hulbert and Bennetzen (1991) 

also established the existence of common rust resistance genes, Rp1 and Rp5 in this region. 

Three QTL that confer partial resistance were also mapped. Their usefulness may be limited 

as these QTL each explained very small proportions of the phenotypic variation, and none 

co-localized to previously mapped partial resistance QTL (Bailey et al. 1987; Zummo 1988; 

Holland et al. 1998; Jiang et al. 1999; Brunelli et al. 2002).  

The effectiveness of these major resistance (probably race-specific) genes can be 

limited in the tropics where multiple races of P. polysora exist (Carlos and Ferreira 2002).  In 

these areas, general resistance is required, but the qualitative or quantitative nature of this 

resistance remains unclear. For example, inbred line Ki14 from Suwan-1 is one of the more 

generally resistant lines in the tropics (Kim et al. 1988), but its general resistance appears to 

result from a major resistant gene (Moon et al. 1999).  In this study, the resistant ratings were 

taken in Hawaii, where Southern rust is multi-racial, on Ki14/B73 RI lines, which were 

bimodal-normally distributed. Therefore, Ki14 must either have multiple resistant alleles at 

several tightly linked loci and/or alleles that confer resistance to multiple races. Since partial 
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resistance QTL appear to be of minor importance and non-repeatable across populations, it 

seems that emphasis should be placed on developing improved haplotypes for the 

chromsome10 region. 

 As with previous studies, the allelic relationships and pathogen specificity between 

the previously described genes and the major gene herein remains unknown. Resistant 

inbreds 1416-1 and 1497-2 from Holland et al. (1998) could share resistance alleles with 

NC300 as all have double-cross tropical hybrids PX105A and PX306B in their pedigrees 

(Goodman 1992). Holland et al. (1998) was unable to establish allelism between the QTL 

from inbred 1416-1 and Rpp9, as both sources of resistance were susceptible in a Mexican 

test environment. NC300 has maintained its resistance throughout several epiphytotics in 

North Carolina and certainly does provide resistance to at least one race. 

 The identified partial-resistant QTL and the major resistant gene were independent 

of plant maturity, which differs from results of similar studies conducted on different 

diseases (Bubeck et al.1993; Carson et al. 2004; Clements et al. 2000; Jiang et al. 1999; Jung 

et al. 1994). This is surprising since Southern rust tends to be a late-season disease in North 

Carolina and earlier materials tend to escape. The major resistance gene from NC300 should 

not increase maturity if introgressed into U.S. materials.  

Marker assisted selection (MAS) has been successfully deployed for traits that are 

simply inherited, and is justified for such traits that are either too difficult or expensive to 

phenotype (Holland 2004). The infrequent occurrence of the Southern rust pathogen in the 

U.S. has resulted in inconsistent selection environments, which has contributed to the poor 

Southern rust resistance of U.S. commercial hybrids (Futrell 1975; Futrell et al. 1975; and 

Table 1). Progress in delineating pathogen specificities and allelic relationships among the 

several resistance genes that have been identified on the short arm of chromosome 10 is first 

needed before applying MAS, and that seems unlikely until pertinent race-specific fungal and 

maize inbred stocks are replenished.  Once obtaining such stocks, studies need to be 

conducted to identify racial specificities of the different resistance genes, which in some 

cases would require breaking tight linkages of mostly dominant resistant loci which 

collectively appear to account for general resistance, such as in Ki14. Upon obtaining such 

information, improved haplotypes could be constructed by combining favorable resistant 

alleles at the various loci from the different donor lines. The donor lines of the component 
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alleles would be almost certainly unrelated to U.S. materials and breeding with markers 

could be used to introgress such regions into U.S. materials as linkage disequilibrium 

between marker and target alleles for future crosses would be expected to be maintained 

(Cregan et al. 1999; Holland 2004). 
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Table 1. The five most resistant and five most susceptible NC300/B104 RI topcrosses to 
FR615xFR697, and the average resistance ratings of the commercial checks (Check mean), 
parental topcrosses (Parental Topcross mean), and RI topcrosses (RI Topcross mean) to 
Southern Rust (Rust) combined across four environments in 2003.  
 RI Topcrosses                           Rusta  
 2054 x (FR615xFR697)   7.84 
 1976 x (FR615xFR697)   7.76  
 2070 x (FR615xFR697)   7.70  
 1972 x (FR615xFR697)   7.68  
 2012 x (FR615xFR697)   7.62 
 1968 x (FR615xFR697)   3.51 
 2044 x (FR615xFR697)   3.30 
 2004 x (FR615xFR697)   3.29 
 2021 x (FR615xFR697)   3.29 
 2039 x (FR615xFR697)   3.26  
 Parental Topcrosses 
 NC300 x (FR615xFR697)   7.76 
 B104 x (FR615xFR697)   3.46 
 Check mean 3.99 
 RI Topcross mean 5.73 
 Parental Topcross mean 5.61 
 LSD1b

α=0.05   0.95 
 LSD2c

α=0.05    0.82 
 LSD3d

α=0.05    0.69 
 LSD4e

α=0.05    0.34 
 

a Rust = Ratings are on a 1 through 9 scale, with a one denoting susceptibility and a 9      
  designating full resistance 

b LSD1 = Appropriate for comparing RI topcrosses 
c LSD2 = Appropriate for comparing RI topcrosses to a  parental topcross 
d LSD3 = Appropriate for comparing RI topcrosses to the check mean 
e LSD4 = Appropriate for comparing the mean RI topcross rating to the parental topcross   
  mean 
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Table 2. The combined ANOVA across four environments (Env) for Southern Rust rating in 
2003 of a population of 143 NC300/B104 maize recombinant inbred lines topcrossed with 
FR615xFR697, using a replication nested-within-sets design.  
 

Source a                       DF                 MS                   F-value        Pvalue 
Entry(Set) 141      21.72     16.61 <.0001 
Env*Entry(Set) 423 1.31    2.16 <.0001 
Error 984 0.61       
 
R-square = 0.90                        CV = 13.71 
a

 Sources of variation due to environment, set, environment-by-set, and replication nested 
within environment-by-set are not presented in the ANOVA 
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Table 3. Spearman rank correlation coefficients among all pair-wise combinations of within-
environment, set-adjusted, least square Southern Rust resistance entry means from a 
population of 143 NC300/B104 maize recombinant inbred lines topcrossed with 
FR615xFR697 and scored in four environments in 2003.  
       Clayton    Plymouth     Salisbury   Jackson Springs 
Clayton -        0.85*        0.81*        0.82* 
Plymouth - - 0.83* 0.80* 
Salisbury - - - 0.81* 
Jackson Springs  - - - -  
 
* Significantly differ from zero at the 0.001 level 
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Table 4. Estimates of chromosome (Chrom) positions, left and right flanking markers and  
their corresponding positions, additive effects of the NC300 allele, percent of explained 
phenotypic variation (R2), and the percent of explained genotypic variation (G%) for 
Southern Rust quantitative trait loci detected by multiple interval mapping using combined 
mean disease scores over four environments in 2003. 
 
Chrom    Pos (cM)    Left             (cM) Right             (cM)                Effect   R2       G% 
4 205.05 Bnlg589 203.1 Umc1503 206.4 0.16 1.6 2.0  
8 51.72 Umc1360 51.7 Umc1034 70.3 0.16 2.0 2.0 
9 31.42 Bnlg1401 31.3 Phi022 43.1 -0.14 1.5 2.0 
10 6.01 Umc1380 0.0 Bnlg1451 16.2 1.27 82.7 89.0 
Total R2 = 87.8                            Likelihood = -128.23                                BIC = 286.20 
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Table 5. Summary of the multiple-marker-by-environment (env) ANOVA for Southern Rust 
resistance measured on topcrosses of 143 NC300/B104 maize recombinant inbred lines with 
FR615xFR697.  
A) 
Sourcea                        DF    Type III SS           MS         F-value       P-value 
Umc1380/set 2 1086.31 543.16 32.94 0.001 
Bnlg589/set 2 125.96 62.98 58.52 <0.001 
Umc1360/set 2 43.80 21.90 16.08 0.004 
Bnlg1401/set 2 31.62 15.81 8.10 0.020 
Umc1380 x env/set 6 98.94 16.49 12.22 <0.001 
Bnlg589 x env /set 6 6.46 1.08 0.80 0.572 
Umc1360 x env /set 6 8.17 1.36 1.01 0.418              
Bnlg1401 x env /set 6 11.71 1.95 1.45 0.193 
Errorb 1057 1426.26 1.35 
Rsquare = 0.68            CV = 20.53  
 
a Sources of variation due to set, environment, environment-by-set, and replication nested 
within environment-by-set are not presented in the ANOVA 
bThe error variance of the model includes pooled variation due to higher order interactions 
among markers and environment in addition to residual variation 
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Figure 1. A histogram of set-adjusted Southern rust rating entry means combined over four 
environments in 2003 for a population of 143 NC300/B104 maize recombinant inbred lines 
topcrossed with FR615xFR697. Ratings were made on a 1 to 9 scale with one being 
susceptible and 9 fully resistant. 
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Abstract 

Gray Leaf Spot (GLS), caused by Cercospora zeae-maydis [Tehon and Daniels, 

1925], is a foliar disease of maize (Zea mays L.) that can threaten maize production and will 

likely increase in prevalence as production increases to fuel the ethanol industry. Resistant 

hybrids offer the best solution to combat proliferation. Mapping novel resistance alleles 

could aid breeders in incorporating resistance into parental lines. This would be desirable if 

resistance alleles maintained resistance across environments while not increasing plant 

maturity. Recombinant inbred (RI) lines were derived from a cross between NC300, a 

temperate-adapted all-tropical line, and B104, a stiff-stalk-synthetic line. The lines were 

topcrossed to the tester FR615.FR697, and both RI lines and topcrosses were evaluated for 
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GLS and flowering time in at least five and three environments, respectively. The RI lines 

were genotyped at 113 simple sequence repeat markers and quantitative trait loci (QTL) were 

mapped for both traits. Entry mean heritabilities for GLS were 0.71 and 0.85 for the lines and 

topcrosses, respectively. Line resistance was significantly (P<0.0001) linearly related to 

topcross resistance. The GLS MIM models from the combined analyses explained 83.1% and 

86.0% of the genotypic variation among RI line and topcross family means, respectively. Ten 

GLS QTL were identified in these models and three explained significant variation among 

both lines and topcrosses. The genetic correlations between flowering time and GLS were 

0.57 and 0.46 for the lines and topcrosses, respectively. Three GLS and flowering time QTL 

pairs were flanked by similar markers on chromosomes 1 and 8, and the resistance alleles 

were associated with flowering time. Forward breeding with GLS QTL haplotypes would 

require considerable resources as the effects of resistance alleles are small and are often 

associated with flowering time increases. 

 

Abbreviations: GLS, Gray leaf spot; DTP, days to fifty-percent-pollen shed; RI, 

recombinant inbred.  

 

Introduction 

 Gray Leaf Spot (GLS) is a foliar disease of maize (Zea mays L.) caused by the fungus 

Cercospora zeae-maydis [Tehon and Daniels, 1925] and is recognized as one of the most 

significant yield-limiting diseases of maize worldwide (Lipps et al., 1998; Ward et al., 1999). 

Yield losses result from the reduction of photosynthetic area due to lesion coalescence 

associated with extensive leaf blighting. Losses are estimated to range between 10 to 25% 

annually in areas where GLS is endemic, but can be much higher if disease development 

occurs early enough to impact grain fill and cause severe lodging (Donahue et al., 1986; 

Donahue et al., 1991; Jenco, 1995).  

Maize acreage affected by GLS has increased from 7.2 to 14.9 million ha during the 

1980s and 1990s (Sparks, 1997). Conservation tillage and monoculture practices have been 

associated with the proliferation of GLS found throughout U.S. maize growing regions, 

resulting from an increase in inoculum present in debris left from the previous growing 

season (Ayers et al. 1984; Beckman and Payne, 1983; Donahue et al. 1991; Latterell and 
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Rossi 1983; Payne et al., 1987; Payne and Waldron, 1983; Roane et al., 1974). Currently, 

GLS is distributed throughout the U.S. as far west as Nebraska, Missouri and Iowa, and east 

to the Atlantic coast, and has the potential to threaten maize production (Ayers et al., 1984; 

Hawk et al., 1985; Latterell and Rossi, 1983; Roane et al., 1974; Smith, 1988). GLS will 

likely become more prevalent as growers increasingly adopt corn on corn management 

practices to boost production to fuel the ethanol industry. 

Control can be achieved through several approaches, including residue management, 

crop rotation, fungicide applications, and resistant hybrids (Ward et al., 1997). The 

integration of these management practices can be effective, but resistant hybrids usually offer 

the best solution, as managing residue negates the benefits of conservation tillage, and 

applying fungicide is usually not economical. Some commercial hybrids currently have 

adequate resistance, but few early hybrids have much resistance. Resistance usually comes 

from the Lancaster side of the pedigree (Carson, 2002; Ulrich et al., 1990), but newer sources 

have been developed from material largely tropical in origin (Bubeck et al., 1993; Clements 

et al., 2000; Gordon et al., 2004; Holland and Goodman, 1995; Lehmensiek et al., 2001; 

Kraja and Dudley, 2000).  

The inheritance of GLS resistance has been studied through biometrical procedures 

(Ayers et al., 1984; Huff et al., 1988; Manh, 1977; Roane and Genter, 1976; Thompson et al., 

1987; and Ulrich et al., 1990), with all studies indicating that resistance is quantitatively 

inherited and primarily additive (Elwinger, et al., 1990; Gevers et al., 1994). Mapping 

quantitative trait loci (QTL) for resistance in tropical-by-temperate populations could aid 

breeders to efficiently incorporate and maintain novel resistance alleles in their elite lines by 

marker- assisted backcrossing and forward-breeding strategies. 

Numerous resistance QTL have been mapped in several derived-line populations, but 

few co-localize across populations (Bubeck et al., 1993; Clements et al., 2000; Gordon et al., 

2004; Lehmensiek et al., 2001; Saghai-Maroof et al., 1996). Additionally, the effects of these 

QTL generally did not exceed 0.5 on a nine-point rating scale, with most being considerably 

smaller. Further, the effectiveness of the resistance provided by these QTL to hybrids was not 

addressed. 

A consensus QTL located on chromosome 1 (bins 5-6), explaining between 10 to 

56% of the phenotypic variation among family means, co-localized across four of the five 
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studies. In addition, Bubeck et al. (1993) detected QTL on all chromosomes of maize from 

three different populations, but only the chromosome 2 QTL was detected in all three 

populations. Saghai-Maroof et al. (1996) identified QTL on chromosomes 1, 4, and 8 that 

had large effects on resistance, with each explaining between 7.7 to 56.0% of the phenotypic 

variation. These estimates were likely biased upward, however, as QTL were mapped by 

selective genotyping and the study was conducted in one environment. Clements et al. (2000) 

mapped five QTL on chromosomes 1, 2, 5, and 7, and all were consistent across 

environments. Lehmensiek et al. (2001) found five QTL on chromosomes 1, 3, and 5, 

whereas Gordon et al. (2004) identified two on chromosomes 2 and 4.  

Unfortunately, the nine mapping populations pertaining to these studies were each 

evaluated in a limited number of environments.  Specifically, four, three, and two 

populations were evaluated in one, two, and three environments, respectively. Only Clements 

et al. (2000) extensively investigated QTL-by-environment interactions. Understanding these 

interactions in combination with the consistency of QTL effects can further assist in choosing 

candidate QTL for marker assisted selection (Beavis et al., 1998; Bubeck et al, 1993).  

GLS and other foliar diseases of maize are generally late-season diseases with most 

disease development occurring post-anthesis (Hilty et al., 1979; Rupe et al., 1982; White, 

1999). Significant correlations between maturity and GLS have been reported, ranging from 

0.12 to 0.30 (Bubeck et al., 1993; Gordon et al., 2003). Bubeck et al. (1993) mapped similar 

genomic regions governing both traits on chromosomes 2, 3, 4, and 8, while Clements et al. 

(2000) identified a region on chromosome 1 affecting both resistance and ear height-plant 

height ratio. Analogous studies for other diseases mapped resistance and flowering time QTL 

to similar genomic regions, with such regions usually increasing the values of both traits 

(Carson et al., 2004; Jiang et al., 1999; Jung et al. 1994; Wisser et al., 2006). 

Recombinant inbred (RI) lines were developed from a cross between NC300 

(temperate-adapted-all-tropical line, resistant, later flowering) and B104 (Iowa Stiff Stalk 

Synthetic line, susceptible, earlier flowering). The lines were subsequently topcrossed to a 

moderately resistant tester, and both were extensively evaluated for GLS and flowering time 

at three locations for two years. One location, Andrews N.C., is considered the best location 

in the U.S.A. for GLS screening, and both Pioneer and Monsanto annually screen their 

germplasm at this site.  
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This study is part of an ongoing effort to better characterize the genetic basis for GLS 

resistance in NC300, a line that possesses superior resistance to multiple diseases (Balint-

Kurti et al., 2006; Jines et al., 2007; Robertson-Hoyt et al., 2006). The first objective was to 

localize and estimate the effects of GLS QTL in the RI line and topcross populations. The 

second objective was to determine the relationship, in terms of phenotypic and overall 

genetic correlations and in terms of QTL parameters, between line and topcross resistance. 

Comparing QTL parameters between the two can identify ineffective tester alleles that could 

aid in streamlining resistance in hybrid development. By using a moderately resistant tester, 

minor QTL not detected in the lines may be detected in the topcrosses, as dominant tester 

alleles at other major loci would reduce segregation at such loci among the topcross families. 

The third objective was to determine the relationship between GLS resistance and flowering 

time. This knowledge is important as differences in maturity can be confounded with foliar 

disease resistance measurements, and later maturity can lead to increased production costs 

(Hawbaker et al., 1997). The final objective was to determine the impact of genotype-by-

environment interaction on the expression of resistance QTL.  

 

Materials and Methods  

One hundred and forty-three S4:5 recombinant inbred (RI ) lines were developed by 

single seed descent from a cross between NC300, an all-tropical, temperate-adapted line, and 

B104, an Iowa Stiff-Stalk Synthetic line. The inbreeding coefficient of the RI lines was 

expected to be F=0.97 (Cockerham, 1983).  Each line was topcrossed to the C103 (Lancaster) 

type tester FR615.FR697. The RI lines and topcrosses were evaluated separately in inbred 

and hybrid GLS screening trials.  

The experimental design for each trial was a replication-within-sets design, with two 

sets per trial. For the majority of the year and location combinations, sets were replicated 

twice following a randomized complete block design, but were replicated once at a few year 

and location combinations. Each trial was conducted for two years at two-to-three locations 

per year. Locations for both trials included Andrews, Laurel Springs, and Salisbury, NC. The 

inbred trials were grown at all locations in 2004, but only Andrews and Laurel Springs in 

2005. The hybrid trials were grown at all locations in 2003 and 2004.  
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For the inbred trials, set one consisted of seventy entries, sixty-five RI lines, the 

parental lines, and three standard inbred checks. Set 2 consisted of eighty entries, seventy-

five RI lines, the parental lines, and three standard inbred checks. The same checks (B73, 

B73P, and NC258), as well as parental lines B104 and NC300 were included in both sets. For 

the hybrid trials, set one consisted of eighty-one entries, including sixty-seven RI topcrosses, 

the two parental topcrosses, and twelve commercial hybrid checks. Set two consisted of 

ninety entries including seventy-six RI topcrosses, the two parental topcrosses, and twelve 

commercial hybrid checks.  The sets shared the same commercial checks (DK689, DK697, 

DK743, G8288, LH132.LH51, LH195.LH256, LH200.LH262, NK91-R9, P31G98, P32K61, 

P3394, HC33.TR7322), in addition to parental topcrosses of NC300 and B104 to the tester, 

FR615.FR697.  

Plots, or experimental units, at Laurel Springs and Salisbury were single 4.86 m 

length rows each containing a total of 20 plants. Eighteen plants per entry were assigned to a 

plot 3.05 m in length at Andrews. A 1.0 m alley was located at the end of each plot at Laurel 

Springs and Salisbury, while the alley at Andrews was 0.8 m in length. Row spacing was 

0.76 m at all locations, except Laurel Springs, which was 0.91 m. Targeted planting densities 

for each year at Andrews, Laurel Springs, and Salisbury were 73,770, 45,222, and 54,147, 

and plants ha-1, respectively. Plots were subjected to standard North Carolina cultural 

practices at each environment.  

All locations are conducive for GLS development, but corn debris from the previous 

year was present only at the Andrews and Salisbury environments. The source of inoculum at 

Laurel Springs for each year was infested oat grains. The inoculum, provided by Syngenta, 

was applied in the whorl of plants during the V6 stage of growth.  

Response variables measured were GLS ratings and days to fifty-percent pollen shed 

(DTP). Visual GLS ratings were taken on a plot basis (i.e. the visual average of all plants in a 

plot) using a one to nine scale, with one designated as susceptible and nine as fully resistant. 

Allocations of ratings to plots followed Bubeck et al. (1993), emphasizing the amount of 

overall lesions, the spread of lesions to the upper canopy, and lesion coalescence and 

necrosis. Plots were rated three to five times at each environment for both trials.  Ratings 

began at an environment when the majority of the plots reached anthesis. Subsequent ratings 

were taken at approximately ten-day intervals. DTP, defined as the number of days after 
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planting when fifty percent of the pollen in a plot shed, was recorded at five and three 

environments, respectively, for the inbred and hybrid trials.  

Genotyping and Linkage Map Construction  

Genotypic information for 113 simple sequence repeat markers has been reported 

previously for the RI lines (Robertson-Hoyt et al., 2006). Briefly, a linkage map was 

constructed with a length of 1993 cM and an average distance between markers of 18 cM. 

Eight percent of the genotypic data was missing, half of which involved heterozygous loci. 

Twelve percent of the markers displayed significant (P ≤ 0.01) segregation distortion, which 

is typical in maize mapping populations (Lu et al. 2002). Marker-locus ordering was in 

agreement with the consensus genetic maps of maize (www.maizegdb.org). 

Statistical Analysis for Phenotypic Data  

 GLS values at a given environment were estimated by taking the arithmetic average 

of all included ratings for each plot, following Saghai-Maroof  (1993).  Ratings included the 

first rating that displayed distinct differences in GLS reactions between known susceptible 

and resistant entries, and all subsequent ratings.  

Each year-by-location combination was considered an environment in all analyses. 

Within environment analyses were performed in SAS PROC MIXED version 8.2 (Littell et 

al., 1996; SAS Institute, 1999) for each response variable, set, and trial combination 

following Jines et al. (2007). Analyses included fitting spatial and conventional mixed 

models.  The conventional model corresponded to the appropriate analysis associated with 

the experimental design (i.e. RCBD). Spatial models included trend, trend-plus-correlated-

errors, and correlated-errors analyses. Entry was treated as a fixed effect in the analyses.  

Trend effects were modeled as first through fourth degree polynomial terms for rows and 

columns in the trend and trend-plus-correlated-errors analyses (Brownie et al., 1993). An 

anisotropic spatial power function was specified to model local effects for the trend-plus-

correlated errors and correlated-errors analyses.   

Only significant (P ≤ 0.01) global effects were retained in the spatial models (Tamura 

et al. 1988), and the analysis with the largest F-value for entry main effects was considered 

the preferred model for each trial-by-environment combination (Brownie and Gumpertz, 

1997). Within-environment spatial analyses were performed because accounting for spatial 

variation can often improve entry mean estimation (Brownie et al., 1993; Brownie and 
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Gumpertz. 1997; and Gilmour et al., 1997) and QTL mapping (Moreau et al., 1999; Smith et 

al., 2002). 

 Combined analyses were performed for each set using PROC MIXED. Within-

environment entry least square means from the preferred models served as the response 

variable in the analyses.  The combined analyses included a random source of variation due 

to environment while entry was considered fixed. The entry means across environments were 

then adjusted for set effects by using set means (including checks) as the adjustment (Schutz 

and Cockerham, 1962). Set-adjusted entry mean comparisons were performed which 

involved constructing pooled error terms to calculate least significant differences. The entry 

means from the across environment analyses served as response variables in subsequent 

analyses involving QTL mapping. 

A limitation of spatial analytical approaches is the difficulty in testing for the 

presence of genotype-by-environment interaction, because different models are fit for each 

environment (Qiao et al., 2004) and genotype-by-environment interaction is the residual term 

in the combined analysis. To test the significance of the entry-by-environment term, a data 

set lacking the commercial checks was constructed. Using this subset of data, a model was 

fitted in PROC GLM that included set, environment, set-by-environment, replication-within-

set-by-environment, entry-by-environment-within set as random factors while entry-within 

set was considered fixed. An appropriate F-test was performed to test the significance of the 

entry-by-environment-within-set factor. 

Entry mean heritabilities were estimated for each response variable following Holland 

et al. (2003). The model, fitted in PROC MIXED, included random sources of variation due 

to environment, set, set-by-environment, replication-within-set-by-environment, entry-within 

set, and entry-by-environment-within-set. Genetic correlations between GLS and DTP were 

estimated for each trial following Holland (2006). Standard errors for each genetic parameter 

were approximated by the delta method (Holland, 2006; Holland et al. 2003). 

Spearman rank correlation coefficients for GLS ratings were estimated with PROC 

CORR for all pair-wise combinations of set-adjusted entry means from the preferred within-

environment analyses.  In addition, a Pearson-product-moment correlation coefficient was 

estimated between set-adjusted GLS rating entry means from the combined analyses of the 

RI lines and topcrosses. 
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  Composite and multiple interval mapping were performed in Windows QTL-

Cartographer version 2.5 (Wang et al., 2004) for each response variable following 

Robertson-Hoyt et al. (2006).  Composite interval mapping (CIM) was used initially to map 

QTL for all phenotypic data sets (PDS). Both backward and forward selection procedures 

were specified to perform the permutation testing and cofactor selection. The threshold for 

factors to enter and remain in the model was 0.01 and a window size of 10 cM was selected 

for the genome scans. 

QTL positions from CIM pertaining to the across-environment analyses were 

designated in an initial model for multiple interval mapping (MIM). The MIM models were 

created and tested in an iterative fashion using the Bayesian information criterion (BIC) for 

model selection (Piepho and Gauch, 2001). After identifying QTL additive- main effects, 

additive-by-additive epistatic interaction effects were tested among all pair-wise 

combinations of QTL. Epistatic interactions were retained in the model if the BIC was 

reduced. After identifying the best model, QTL effects were simultaneously estimated using 

the “summary” option. Genetic variability explained by QTL for each response variable was 

calculated as the total phenotypic variation explained by QTL divided by the entry mean 

heritability estimate. 

Marker-by-environment interactions of GLS ratings were tested by ANOVA in 

PROC GLM. Markers closest to QTL positions identified by MIM were included in the 

multiple factor ANOVA. The models included marker-within-set and environment-by-

marker-within-set as fixed and random factors, respectively, for each marker.  Additional 

random factors were set, environment, set-by-environment, and replication-within-set-by-

environment. The error variance of the models included pooled variation due to higher order 

interactions among markers and environment as well as residual variation. To assess the 

consistency of marker effects, additive effects of markers were estimated across 

environments and within each environment using the ESTIMATE statement. 

 

Results 

 GLS was prevalent as is evident by the low average ratings of the susceptible checks 

included in the RI line and topcross experiments (Table 1, Appendix A I.). The parental lines, 

NC300 and B104, were rated 7.18 and 4.98, respectively, as lines per se, and both were more 
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resistant in topcrosses. The tester, FR615.FR697, generally increased resistance by 0.46 on 

the nine point rating scale on average, with the resistance of the lines per se being 

significantly (P<0.0001) linearly related to the resistance of the topcrosses (Figure 1). The 

most resistant or susceptible RI lines are generally the most resistant or susceptible in 

topcrosses (Table 1, Figure 1). The ranges of the RI lines and their topcrosses were greater 

than the corresponding ranges of the parental lines and their topcrosses. Two transgressive 

segregates that were significantly (P=0.05) more susceptible than B104 were observed in the 

RI line trial, but none were significant in the topcrosses. The average GLS ratings of the lines 

and topcrosses did not differ significantly (P = 0.05) from the parental line and topcross 

averages, respectively.  

Significant (P<0.01) entry-by-environment interaction for GLS rating was observed 

for both lines and topcrosses (Table 2). The Spearman rank correlation coefficients among 

the pair-wise combinations of entry means across environments were moderate in magnitude, 

with the topcross correlations being consistently stronger (Tables 3a and 3b). In both 

analyses, the entry main effect was significant (P<0.01), and the entry mean squares were at 

least six times larger than the corresponding entry-by-environment error term (Table 2). For 

this reason, MIM was performed on entry means from the combined analyses. 

 Gray leaf spot entry mean heritabilities for the lines and their topcrosses were 0.71 

and 0.85, respectively (Table 4). In both instances, heritabilities were larger for GLS than 

DTP. The genetic correlation between these two traits was greater for the lines per se, and 

both estimates were moderate in magnitude, ranging from 0.46 to 0.57. The variability 

among line resistance ratings explained 52.0% of the variation among the topcross rating 

averages, and the Pearson product correlation between the two was 0.72 (Figure 1). 

The GLS MIM models from the combined analyses each explained large proportions 

of the genotypic variation (Table 5). The RI line model explained 83.1% of the genotypic 

variation among RI line means, and the model for the topcrosses accounted for 86.0%. Ten 

GLS QTL were identified in these models, with three explaining significant variation among 

both RI line and topcross means. QTL positions co-localizing between the two models were 

considered a single QTL. Two of these three QTL on chromosomes 4 (bins 5-6) and 8 (bin 5) 

explained the second and third largest proportions of variation, respectively, within each 

model. Additive-by-additive-epistatic interactions were not identified among QTL. 
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Seven GLS QTL, collectively accounting for 59.0% of the phenotypic variation, were 

mapped by MIM for the combined analysis of the RI lines per se.  The NC300 allele 

increased resistance for six of the seven QTL, with the effects of the resistance alleles 

ranging from 0.14 to 0.24 on a nine point scale. The QTL located on the long arm of 

chromosome 1 (bin 5) explained the most genotypic variation (15.8%), and was unique in 

that the NC300 allele decreased resistance. Four other QTL, mapping to chromosomes 1 

(bins 2-3), 3 (6-7), 4 (bins 5-6), and 8 (bin 5) each explained between 10.8 to 15.6% of the 

genotypic variation, and two, both on chromosome 10 (bins 3-4 and 7), collectively 

explained less than 14.7%. The four QTL located on chromosomes 1 (bin 5) and 3 (bins 6-7) 

and the two on chromosome 10 (bins 3-4 and 7) did not explain significant variation among 

the RI topcross rating averages.   

Six GLS QTL, collectively accounting for 73.1% of the phenotypic variation, were 

mapped for the combined analysis of the RI topcrosses. The NC300 allele increased 

resistance at all six QTL, with the effects ranging from 0.15 to 0.29. The QTL located on the 

short arm of chromosome 10 (bins 0-1) explained the most genotypic variation (25.9 %) and 

had the largest effect. Three others located on chromosomes 4 (bins 3-4 and 5-6) and 8 (bin 

5) each accounted for 11.5 to 18.5% of the genotypic variation. The two remaining QTL on 

chromosomes 1 (bins 2-3) and 2 (bins 3-4) individually explained less than 8.6 % of the 

variation, while the three QTL located on chromosomes 2 (bins 3-4), 4 (3-4), and 10 (bins 0-

1) did not explain significant variation among the RI line means. 

Three DTP QTL each mapped to a GLS QTL region, with the flanking markers being 

identical for each QTL pair. (Tables 4 and 5, Appendix A II.). The DTP QTL on 

chromosome 8 (bin 5) explained 17.5 and 16.1% of the genotypic variation among the RI 

line and topcross flowering time averages, respectively. The NC300 allele at this QTL pair 

increased flowering time by 0.66 days for the lines per se, and by 0.31 days for the 

topcrosses. The NC300 allele within this interval also increased resistance by 0.19 and 0.16 

points for the RI lines and topcrosses, respectively. The two other DTP QTL, both on 

chromosome 1 (bins 2-3 and 5), only explained significant variation among the RI line 

means. The NC300 alleles at the chromosome 1 (bin 5) QTL pair decreased DTP by 0.69 

days, and likewise, decreased resistance by 0.23 points. The NC300 alleles at the other 
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chromosome 1 QTL pair (bins 2-3) increased flowering time by 0.38 days and resistance by 

0.19 and 0.16 for the RI lines and topcrosses, respectively. 

  Significant marker-by-environment interactions for GLS occurred for markers 

Bnlg1160 (Chromosome 3, bins 6-7) and Umc1562 (Chromosome 8, bin 5), while no 

interactions were significant for the topcrosses (Table 7, Appendix III.).  Magnitude changes 

of the within-environment marker effects, rather than changes in sign, led to the significant 

interaction for marker Umc1562, but both change in QTL effect sign and magnitude across 

environments were responsible for the Bnlg1160 interaction (Appendix A IV.). The effect for 

Bnlg1160 was negative at Salisbury, but positive elsewhere. The effects of the remaining 

QTL pertaining to the two models did not change in sign across environments, with the 

majority remaining significant at each environment (Appendix A IV.). 

 

Discussion 

Gray leaf spot entry mean heritabilities for the lines and their topcrosses, although 

both potentially biased upwardly by additive-by-additive epistatic interaction variance 

components, were both high, with the topcross heritability estimate being greater. Line per se 

resistance was linearly related to the resistance of the topcrosses. Both were highly 

correlated. The high upper bounds for heritability in both instances suggest that QTL could 

be readily mapped, while the linear relationship between the line per se and topcross ratings 

would indicate that resistance QTL should tend to be in common between the two.  

The GLS MIM models from the combined analyses each explained large proportions 

of the genotypic variation, with the RI line and topcross models accounting for 83.1% and 

86.0%, respectively, of the genotypic variation among corresponding family means. Ten 

GLS QTL were identified in these models, with the absolute value of the effects relative to 

NC300, considering both models, ranging from 0.14 to 0.29. No additive-by-additive 

epistatic interactions were identified in the models, which is congruent with the phenotypic 

data, as the RI line and RI topcross rating averages were equivalent to the parental line per se 

and parental line topcross averages, respectively. Three QTL explained significant variation 

among both RI line and topcross means, and each are assumed to be single QTL at each 

region. Their effects in lines and topcrosses were relatively similar, with two QTL on 
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chromosomes 4 (bins 5-6) and 8 (bin 5) explaining the second and third largest proportions 

of variation, respectively, within each model.  

Seven GLS QTL, collectively accounting for 59.0 and 83.1 % of the phenotypic and 

genotypic variation, respectively, were mapped for the combined analysis of the lines. The 

NC300 allele increased resistance for six of the seven QTL. Four QTL on chromosomes 1 

(bin 5), 3 (bins 6-7) and 10 (bins 3-4 and 7) were detected in the RI lines, but were not 

detected in topcrosses, presumably because the moderately resistant tester, FR615.FR697, 

possesses resistance alleles at these loci. One such QTL on the long arm of chromosome 1 

(bin 5) explained the most genotypic variation (15.8%). The NC300 allele decreased 

resistance at this locus, which is congruent with the phenotypic data, as significant 

transgressive segregates were observed only in the lines, but not in the topcrosses. The 

NC300 allele increased resistance at all topcross QTL. 

Six GLS QTL were mapped that collectively accounted for 73.1 and 86.0 % of the 

phenotypic and genotypic variation, respectively, among the topcross means; implying that 

the tester alleles are ineffective relative to the resistant RI line alleles at these six regions. 

The topcross QTL on the short arm of chromosome 10 (bins 0-1) explained the most 

genotypic variation of 25.9 %. This QTL, in addition to two positioned on chromosomes 2 

(bins 3-4) and 4 (bins 3-4), did not explain significant variation among the lines per se. One 

objective for using a moderately resistant tester was to identify such QTL with weak effects 

for line per se resistance, but detectable effects in topcrosses, as dominant tester alleles at 

other major QTL would reduce segregation at such loci among the topcross families.  

Certainly, the QTL with the greatest effect in RI lines per se for the lines, 

chromosome 1 (bin 5), was non-effective in topcrosses, as were three others. The 

chromosome 10 QTL (bins 0-1) explained the most genotypic variation in both MIM models. 

Interestingly, with this same topcross population, a major resistance gene for Southern rust 

(caused by Puccinia Polysora) mapped to this chromosome 10 region, with the positions 

between the two differing by 5 cM. (Jines et al., 2007).  Southern rust lesions are similar to 

GLS flecking lesions, with the latter generally associated with high resistance levels. 

Resistance QTL for different diseases often localize to similar regions (Wisser et al., 2006), 

but perhaps this major rust resistance gene contributes to quantitative variation for this mode 

of resistance.  
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Alternatively, QTL mapped uniquely in topcrosses could result from tighter maturity 

ranges, overdominant gene action, rating lines differently, or a higher heritability. 

A higher heritability for topcross resistance would indicate that the data for the topcrosses 

would be better than for the lines per se in terms of mapping resistance QTL.  However, 

rating lines different from topcrosses is also likely because topcross disease reactions varied 

from subtle variations in lesion flecking to minor coalescence, with the ratings generally 

based on the yellowing lesion surface, as topcrosses are considerably taller than inbred lines. 

The disease reactions of the lines included more levels of lesion coalescence and necrosis, 

but ratings were typically based upon the sporulating lesion surface. More work is needed to 

resolve these issues that could solidify sources for flecking response components of 

resistance.  

Several QTL co-localized to previously mapped GLS resistance QTL on the basis of 

the IBM2 2005 neighbors map. The QTL on chromosome 1 (bin 5) explaining the largest 

variation among the line averages co-localized with QTL from four of the previous five 

studies (Bubeck et al., 1993; Clements et al., 2000; Lehmensiek et al. 2001; Saghai- Maroof 

et al., 1996). Only Gordon et al. (2004) did not map a QTL to this region. Similarly, the 

chromosome 8 QTL (bin 5) corresponded to QTL positions mapped in Bubeck et al. (1993), 

Clements et al. (2000), and Saghai-Maroof et al. (1996). Finally, the two chromosome 4 QTL 

(bins 3-4 and 5-6) and two of the three chromosome 10 QTL (bins 3-4 and 7) concurred with 

the QTL positions of Bubeck et al. (1993).  

 QTL for flowering time and for resistance to various diseases have been mapped to 

similar positions, with the resistance alleles usually associated with increasing flowering time 

(Carson et al., 2004; Jiang et al., 1999; Jung et al. ,1994; Wisser et al., 2006). This 

knowledge is important as differences in maturity can be confounded with foliar disease 

resistance measurements, and later maturity can lead to increased production costs 

(Hawbaker et al.,1997). The genetic correlation between these two traits was greater for the 

lines per se, and both estimates, ranging from 0.46 to 0.57, were moderate in magnitude and 

greater than those previously reported (Bubeck et al., 1993; Gordon et al., 2003). Three 

flowering time QTL coincided with three GLS QTL positions. In each case, the alleles that 

increase resistance also increase flowering time, either from linkage or pleiotropy. Two 

additional flowering time/resistance regions were identified in the RI lines per se, which 
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could explain why the correlation between traits was higher in lines. This result is 

confounded with the fact that inbred lines flowered considerably longer than the topcrosses, 

however. The chromosome 8 (bin 5) region increased flowering time and resistance in both 

the lines per se and the topcrosses, whereas, two chromosome 1 regions (bins 2-3 and 5) 

increased flowering time only in the lines.   

Maturity has been measured in two prior GLS mapping studies, but only Bubeck et al. 

(1993) mapped QTL for both. They found similar regions affecting maturity and resistance 

on chromosomes 2, 3, 4, and 8, but unfortunately, their analyses were based on evaluations in 

only one environment. Nonetheless, the chromosome 8 (bin 5) region corresponds to 

flowering time and GLS QTL mapped by Bubeck et al. (1993) and to GLS QTL mapped by 

Clements et al. (2000) and Saghai-Maroof et al. (1996). The chromosome 1 (bin 1.05) GLS 

QTL, which is a consensus QTL important in four of the five prior mapping studies, 

corresponded to a flowering time QTL in this study and in Bubeck et al. (1993). Clements et 

al. (2000) also identified this same region as affecting both resistance and ear-height-plant-

height ratio, which was assumed to be highly correlated with flowering time.  

This study is part of an ongoing effort to better characterize the genetic basis for GLS 

resistance in NC300, a line that possesses superior resistance to multiple diseases such as 

Fusarium ear rot (Fusarium verticilliodes), Southern corn leaf blight (Cochliobolus 

heterostrophus), and Southern rust (Balint-Kurti et al., 2006; Jines et al., 2007; Robertson-

Hoyt et al., 2006). Four GLS QTL on chromosomes 1 (bin 5), 4 (bins 5-6), 8 (bin 5), and 10 

(bins 0-1) had the largest effects and explained the most variation when considering both line 

and topcross QTL models. The effects of these QTL did not change in sign across 

environments, with the majority remaining significant at each environment, which also 

occurred in Clements et al. (2000). Three of these four QTL (chromosomes 1, 4, and 8) 

corresponded to QTL map positions from several prior studies. Additionally, the resistance 

alleles at QTL on chromosomes 4, 8, and 10 could be used to improve resistance in C103 

backgrounds, as the tester alleles were ineffective at these loci.  

Extensively haplotyping of germplasm at these four regions could aid in forward 

breeding strategies to efficiently integrate resistance packages into breeding populations. 

Perhaps the biggest hindrance to forward breeding approaches is that the effects of resistance 

alleles typically do not exceed 0.5 on a nine-point scale, with most being considerably 
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smaller. Therefore, forward breeding with haplotype information would require considerable 

resources, because selecting alleles at several loci would be necessary to increase resistance 

in a population to an effective level, and unfortunately, two of these four resistance alleles 

will likely increase flowering time. 
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Table 1. Gray Leaf Spot (GLS) ratings and days to fifty-percent-pollen shed (DTP) entry 
means combined across environments for the five most resistant and five most susceptible 
NC300/B104 recombinant inbred (RI ) lines and topcrosses (TC) to FR615xFR697 evaluated 
in separate experiments.  RI are sorted by GLS inbred ratings, and included for each trial are 
the averages of the commercial checks (Check mean), susceptible checks, and parental lines 
and topcrosses (Parental mean), and RI means, minimums, and maximums.  
 RI line experiment  RI TC experiment   
RI                        GLS†         DTP           GLS         DTP 
2039/01  4.20 78.15 5.18 79.41 
2021/01  4.34 79.91 5.41 81.29 
2060/01  4.89 78.19 5.43 79.25 
1978/01  4.93 79.49 6.16 80.25 
2058/01  5.03 78.62 5.53 79.55 
2024/01  5.07 81.04 5.16 79.87 
1998/01  6.04 79.13 5.33 80.27 
2070/01  6.60 82.60 7.79 81.75 
2022/01  6.93 80.94 7.13 79.50 
2078/01  7.31 82.91 7.82 82.17 
2077/01  7.48 86.16 7.69 81.43 
1986/01  7.49 84.60 7.67 82.22 
1965/01  7.49 88.23 7.59 81.56 
2096/01  7.50 83.33 7.99 81.80 
2095/01  7.61 82.72 7.51 79.14 
2014/01  7.70 83.08 7.60 82.71 
Parents 
B104  4.98 78.40 5.38 78.97 
NC300  7.18 82.83 7.69 81.65 
Susceptible Checks 
B73P  4.32 77.24 - - 
P3394  - - 3.64 80.30 
RI min  4.20 77.46 5.16 78.49 
RI max  7.70 88.23 7.99 83.11 
RI mean  6.30 81.36 6.77 80.57 
Parental mean  6.08 80.61 6.54 80.31 
Check mean  5.63 79.57 5.80 80.62 
LSD1‡  0.73 2.39 0.62 1.20 
LSD2§  0.63 2.07 0.54 1.04 
LSD3¶  0.54 1.77 0.45 0.87 
LSD4#  0.26 0.86 0.24 0.43 
†  GLS = Ratings are on a 1 through 9 scale, with a one denoting susceptibility and a 9      
 designating full resistance. 

‡  LSD1α=0.05 Appropriate for comparing two RI.  
§ LSD2α=0.05  Appropriate for comparing RI to a  parental topcross. 
¶ LSD3α=0.05 Appropriate for comparing RI topcrosses to the check mean. 
#  LSD4α=0.05  Appropriate for comparing the RI average to the parental average. 

_______________________________________________________________ 

_______________________________________________________________ 
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Table 2. The combined ANOVAs across environments (Env) for Gray Leaf Spot ratings of 
A) 143 NC300/B104 maize recombinant inbred (RI) lines and B) their topcrosses with 
FR615.FR697, using a replication nested-within-sets design. 
 
A) RI line experiment 
Source †                        DF                    MS                   F-value         
Entry/Set 138‡ 3.44 6.14*  
Entry*Env/Set 541 0.56 2.65*  
Error 497 0.21
_________________________________________________ 
R2 = 0.96              CV = 7.32   
 
B) RI Topcross experiment 
Source †                       DF                    MS                   F-value         
Entry/set 141 3.62 10.03*  
Entry*Env/Set 705 0.36 1.30*  
Error 564 0.28   
_________________________________________________ 
R2 = 0.89             CV = 7.77   
* Significant at the 0.01 level 
† Sources of variation due to environment, set, environment-by-set, and replication nested 

within environment-by-set are not presented in the ANOVAs 
‡ Three RI lines were not in the RI line experiment  
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Table 3. Spearman rank correlation coefficients among all pair-wise combinations of within-
environment, least square Gray Leaf Spot rating entry means from A) a population of 143 
NC300/B104 maize recombinant inbred (RI) lines and B) their topcrosses with 
FR615.FR697. 
 
A) RI Lines 
      AND2004 AND2005    LAS2004   LAS2005   SAL2004 
AND2004 - 0.80*** 0.54*** 0.39*** 0.41*** 
AND2005 - - 0.56*** 0.46*** 0.44*** 
LAS2004 - - - 0.63*** 0.40*** 
LAS2005 - - - - 0.31*** 
SAL2004 - - - - -  
______________________________________________________ 
B) RI Topcrosses 
            AND2003   AND2004   LAS2003  LAS2004   SAL2003  SAL2004 
AND2003  - 0.74*** 0.55*** 0.70*** 0.72*** 0.69*** 
AND2004  - - 0.56*** 0.67*** 0.63*** 0.52*** 
LAS2003 - - - 0.62*** 0.56*** 0.35*** 
LAS2004 - - - - 0.66*** 0.54*** 
SAL2003 - - - - - 0.48*** 
SAL2004 - - - - - - 
______________________________________________________________ 
*** Significantly differ from zero at the 0.001 level 
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Table 4. Gray Leaf Spot (GLS) and days to fifty-percent pollen shed (DTP) entry-mean 
heritabilities (h2) and genetic correlations between the two, estimated from the recombinant 
inbred (RI) lines and topcrosses.  
Experiment                GLS h2    S.E. †   DTP h2   S.E.      Genetic correlation       S.E. 
RI Lines 0.71 0.04 0.65 0.05 0.57 0.08 
RI Topcrosses 0.85 0.02 0.65 0.05 0.46 0.09 
† Standard error, approximated by the delta method 



 78

Table 5. Estimates of chromosome positions (Pos), left and right flanking markers, their corresponding positions and bin numbers, 
additive effects of the NC300 allele, percent of explained phenotypic variation (R2), and the percent of explained genotypic variation 
(G%) for Gray leaf spot quantitative trait loci (QTL) detected by multiple interval mapping using recombinant inbred (RI) line and 
topcross mean disease ratings over environments. 
 
    
                                 RI lines            RI topcrosses  
Chromosome   Bin(s)    Left           Pos(cM)      Right(cM)   Pos(cM) QTL(Pos) Effect†    R2      G%      QTL(pos) Effect      R2       G% 
 1 2-3 Bnlg1803 36.5 Bnlg147  56.2 52.6 0.19 8.0 11.3 42.6 0.16 7.3 8.6 
 4 5-6 Bnlg1265 62.5 Bnlg1621 75.9 68.5 0.22 11.1 15.6 69.5 0.20 15.7 18.5 
 8 5 Umc1562 117.7 Bnlg2181 129.5 117.9 0.24 10.6 14.9 119.7 0.21 11.1 13.1 
 1 5 Bnlg1884 105.2 Umc1335 135.6 135.6 -0.23 11.2 15.8 - - - - 
 3 6-7 Bnlg1160 96.9 Umc1489 108.8 100.9 0.18 7.7 10.8 - - - - 
 10 3-4 Umc2016 51.8 Umc2163 63.1 58.8 0.14 4.4 6.2 - - - - 
 10 7 Bnlg1677 131.6 Umc1038 156.2 141.0 0.17 6.0 8.5 - - - - 
 2 3-4 Umc1555 75.2 Bnlg1175 90.3 - - - - 85.2 0.17 7.2 8.5 
 4 3-4 Umc2082 21.4 Umc1117 51.4 - - - - 35.4 0.15 9.8 11.5 
 10 0-1 Umc1380 0.0 Bnlg1451 16.2 - - - - 1.0 0.29 22.0 25.9 
Totals 59.0 83.1 73.1 86.0  
†  Effects are relative to NC300 and are based on a 1 through 9 rating scale, with one denoting susceptibility and 9      
 designating full resistance 
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Table 6. Estimates of chromosome positions, left and right flanking markers, their corresponding positions and bin numbers, additive 
effects of the NC300 allele, percent of explained phenotypic variation (R2), and the percent of explained genotypic variation (G%) for 
for Days to fifty-percent-pollen shed quantitative trait loci (QTL) that co-localized with Gray leaf spot QTL and that were detected by 
multiple interval mapping using recombinant inbred (RI) line and topcross mean flowering dates over environments. 
 
                                          RI lines            RI topcrosses    
Chromosome      Bin(s)     Left           Pos(cM)   Right(cM)   Pos(cM) QTL(Pos) Effect†  R2      G%      QTL(pos) Effect      R2      G% 
8 5 Umc1562 117.7 Bnlg2181 129.5 120.3 0.66 11.4 17.5 122.7 0.31 10.5 16.1 
1 2-3 Bnlg1803 36.5 Bnlg147 56.2 55.5 0.38 3.2 4.9 - - - - 
1 5 Bnlg1884 105.2 Umc1335 135.6 133.2 -0.69 9.3 14.3 - - - - 
Totals‡ 47.6 73.2 63.2 96.8  
 
† Effects are relative to NC300 and are expressed in days 

‡ Includes all flowering time QTL 
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Table 7. Summary of chromosome positions for markers fitted in a multiple-marker-by-
environment (env) ANOVA of Gray Leaf Spot measured on 143 NC300/B104 maize 
recombinant inbred (RI) lines per se. 
 
Chromosome   Position(cM) Source†                  DF     Type III SS     MS      F-value 
 1 36.5 Bnlg1803/set 2 17.32 8.66 28.39*** 
 1 135.6 Umc1335/set 2 22.00 11.00 22.65*** 
 3 96.9 Bnlg1160/set 2 20.23 10.11 6.84* 
 4 62.5 Bnlg1265/set 2 16.54 8.27 9.62** 
 8 117.7 Umc1562/set 2 35.53 17.76 17.38** 
10 63.1 Umc2163/set 2 4.13 2.07 2.43 
10 131.6 Bnlg1677/set 2 2.43 1.21 6.86* 
 1 36.5 Bnlg1803*env/set 8 2.44 0.31 0.61 
 1 135.6 Umc1335*env/set 8 3.89 0.49 0.97 
 3 96.9 Bnlg1160*env/set 8 11.83 1.48 2.96** 
 4 62.5 Bnlg1265*env/set 8 6.88 0.86 1.72 
 8 117.7 Umc1562*env/set 8 8.18 1.02 2.05* 
10 63.1 Umc2163*env/set 8 6.80 0.85 1.71 
10 131.6 Bnlg1677*env/set 8 1.42 0.18 0.36 
   Error‡ 471 234.94 0.50    
R2 = 0.79 CV = 11.25 
*,**,*** Significant at the 0.05,0.01, and 0.001 levels, respectively. 
† Sources of variation due to set, environment, environment-by-set, and replication nested 

within environment-by-set are not presented in the ANOVA. 
‡ The error variance of the model includes pooled variation due to higher order interactions 

among markers and environment in addition to residual variation. 



 81

Figure 1. Average Gray Leaf Spot ratings of 143 NC300/B104 maize recombinant inbred 
(RI) topcrosses plotted against the average Gray Leaf Spot ratings of the RI lines per se (a 
minimum of five environments). 
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Abstract  

Various forms of spatial analyses have been suggested to improve the precision of 

experiments when the heterogeneity within blocks is consequential, as often occurs with 

evaluations of large numbers of early-generation breeding lines in plant breeding programs.  

Spatial analyses, such as trend and trend analysis with correlated errors models, can improve 

precision of genotype means estimates when such problems arise.  Unfortunately, 

implementing such analyses and simultaneously selecting optimal models for multiple 

response variables and many experiments can be a daunting task.  We present a dynamic 

SAS program to conduct trend and trend plus correlated errors analyses for each response 

variable-by-experiment combination. Two macros, trendy and trendyvs, select a preferred 

model from both spatial analyses and a specified conventional model such as an incomplete 

block, randomized complete block, or completely randomized design analyses on the basis of 

a specified criterion. Further, several SAS output data sets are generated that include 

Spearman rank correlation coefficients, entry least square means, F-values for testing the 

entry main effect, and the error variance estimated from the preferred model for each 

experiment and each response variable. An example for a multi-environment trial is provided 

for three response variables. 

 

Abbreviations: independently and identically distributed (iid), quantitative trait loci (QTL) 
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Introduction 

Accurate estimation of an entry mean corresponding to a given response variable is 

the foundation of any experimental approach. Heterogeneity within blocks can often occur in 

screening trials, especially those with a large number of treatments. Consequently, in the 

absence of uniform experimental conditions, spatial trends can arise within the experimental 

layout.  

Multitudes of experimental designs exist for experimental trials that attempt to 

account for positional variation within a single environment by removing such variation from 

the experimental error term. “Traditional” or “conventional” designs can include randomized 

complete block and incomplete block designs. Although conventional analyses are valid, 

serious inefficiencies can arise when heterogeneity within blocks becomes consequential, 

resulting in reduced power for means separation (Zimmerman and Harville, 1991).   

Single-environment trials are used regularly in plant breeding to estimate entry 

means, which are then used in further analyses across environments. Multiple- environment 

trials allow for estimating breeding values of experimental lines (Comstock 1977).  Such 

trials are quite expensive and accurate estimation of entry means within an environment for a 

multiple-environment trial can be critical for increasing the response to selection, given a 

limited amount of resources (Qiao et al., 2004).   

To address the issue of heterogeneity within blocks for a single environment trial, 

Papadakis (1937) was amongst the first to propose nearest neighbor analysis.  Since then, 

several alternative analyses have been developed (Kirk et al., 1980; Tamura et al., 1988; 

Cullis and Gleeson, 1991; Zimmerman and Harville, 1991; Cressie and Hartfield, 1996; and 

Gilmour et al., 1997) that can improve experimental precision by either a) reducing 

experimental error by accounting for systematic variation via polynomial regression (global 

or trend effects), b) modeling a correlation structure of the residuals (local effects), or c) 

both.  Such analyses can include correlated errors, trend, or trend-and-correlated-errors 

analyses. Gilmour et al. (1997) employed the approach of further subdividing experimental 

error into an additional source due to “extraneous variation” and also proposed a non- 

parametric approach to model global effects.    

The process of identifying the preferred model for a single-environment trial is not 

trivial and may have restricted the application of alternative models to a limited number of 
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response variables.  Gilmour et al. (1997) attributed much of the reluctance of adopting 

alternative models as being a result of confusion about methods and models and a lack of 

confidence in routinely employing spatial-analytical methods.  Such problems are further 

magnified when one wishes to analyze many multiple-environment experiments for a number 

of response variables, which is typical in plant breeding.  In addition, changes in rank among 

entry means often occur among analyses (Brownie et al., 1993). Choosing a preferred model 

for a single-environment trial out of all considered models, including a conventional model, 

has oftentimes proven to be cumbersome.  

Our objective was to develop a dynamic SAS program (for SAS versions 8.2 through 

9.1, SAS Institute, 1999) that allows the researcher to efficiently and flexibly implement 

spatial analysis techniques into their research programs. Using methodology founded on 

suggestions for model construction and selection from the literature, the program constructs 

and optimizes several spatial models for each response variable and single-environment-trial 

combination. The spatial and conventional models are compared on the basis of a defined 

criterion selected by the user. Based on the specified criterion, a preferred model is chosen 

for each response variable and single-environment-trial combination, and results from the 

preferred model are organized into SAS data sets.  

 

General Features of SPATIALPRO 

Model Selection 

SPATIALPRO is comprised of two macros, trendy and trendyvs, that perform spatial 

analyses for each response variable-by-single-environment-trial combination for experiments 

with at least two replicates. Optimal spatial models are constructed for each combination, and 

a preferred model is chosen from all considered models. Macro trendy is a control macro that 

determines the number of environments in which a response variable was measured; this 

macro then calls macro trendyvs, which summarizes the results for each analysis into single 

SAS data sets, and then deletes temporary data sets generated by macro trendyvs.  Macro 

trendyvs performs the spatial and conventional analyses for each specified response variable 

and single-environment-trial combination.  By default, macros trendy and trendyvs can 

handle up to ninety-nine traits and ninety-nine single-environment-trial combinations, 

respectively, although the program has only been tested using 14 and 7 as the maximum 
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number of single-environment trials and response variables, respectively. A copy of the 

program can be downloaded from the web at <an established web site> (verified March, 

2007). 

The program allows the user to specify a conventional model, such as a lattice, 

completely randomized design, or randomized complete block design, with or without 

additional fixed or random effects, such as covariates, through %LET statements that specify 

model and random statements in PROC MIXED (Littell et al., 1996; SAS Institute, 1999) 

(Table 1).  Entry is included within the program code and is designated as a fixed effect. The 

specified conventional model remains the same for all response variables by single-

environment-trial combinations analyzed during an invocation of macros trendy and 

trendyvs. Thus, data sets should be constructed according to the conventional model 

associated with a particular experimental design.  An example data set is listed in Figure 1.  

Screening single-environment trials for outliers is recommended prior to invocation of the 

program. 

Macro trendyvs will define up to three spatial models for each response variable 

within each environment. Spatial models can include modeling global effects through 

polynomials (trend models), modeling local effects in the absence of significant global 

effects by allowing a correlation structure among the residuals associated with the 

experimental units (correlated errors), and/or modeling both global and local effects (trend-

plus-correlated errors).  All spatial models are fitted using restricted maximum likelihood in 

PROC MIXED (Littell et al., 1996; SAS Institute, 1999). The use of a cubic smoothing 

spline to model global effects as proposed by Gilmour et al. (1997) was not implemented. 

Plots, or experimental units, within an individual environment associated with a 

particular experiment need to be assigned row and column designations based upon the 

position of a plot in the grid defined by the rows and columns of the experimental layout 

(Figure 2).  The levels of row and column designations are 1, …, r  and 1, …, c , where r and 

c refer to the number of rows and columns, respectively, within an experiment.  

The program allows users to specify the degree of polynomial to model row and 

column effects in the initial models, with the restriction of the maximum number of 

polynomial terms for row and column to be r-1 and c-1, respectively. The polynomial terms 

specified for the initial spatial models will remain the same for each response variable-by-
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single-environment-trial combination analyzed during a single invocation of the two macros. 

Spatial models for each response variable-by-environment-trial combination are then 

optimized by including in the model only significant polynomial terms chosen via backward 

selection. 

The user may choose to print residual versus row and column graphs for each 

analysis. Viewing residuals versus row and column graphs permits one to assess if it is 

appropriate for the response surface to be modeled as a polynomial function, as non-linear 

surfaces would be apparent (Rawlings, 1998).  Fitting an incorrect model can arise either by 

fitting too few polynomial terms or if the true response surface cannot be modeled as a 

polynomial function (Brownie et al., 1993). To avoid fitting an incorrect model, which can 

lead to biased estimates of entry means, Warren and Mendez (1982) suggested using a 

polynomial of high degree, however, their approach did not account for over-fitting models.  

Inclusion of first through fourth-ordered polynomial terms for both rows and columns is 

recommended for initially modeling global effects and should avoid the problem of fitting 

too few polynomial terms.   

The kth and lth degree polynomial coefficients corresponding to a plot associated with 

row and column, respectively, are termed global effects and are treated as fixed effects. The 

output of the p-values corresponding to the polynomial terms from type III fixed effects of 

PROC MIXED (SAS Institute, 1999) provides a readily obtainable criterion to judge the 

relative merit of model terms. Determining the significance of these terms can assist in 

optimizing the trend and trend-plus-correlated errors models. In the interest of mean 

estimation, entry, or treatment, is also considered a fixed effect.  

We use the approach of classical covariate analysis. Initial trend and trend plus 

correlated errors spatial models are constructed by first converting row and column 

designations corresponding to each single environment trial into orthogonal polynomials by 

the ORPOL function in PROC IML (SAS Institute, 1999). A full trend model is constructed 

that includes the entry main effect and the k + l global effects as represented in the following 

linear model:   

Yij kl(j x 1) = μ(j x 1) + τi (j x 1) + Xijk ( j x k) βRk (k x 1) + Pijl ( j x l) βCl (l  x 1) + εij (j x 1)     (eq. 1), 
where Yijkl  is the response for the jth plot assigned to entry i with k and l levels of rows and 

columns, μ is the overall experiment mean,  Xijk is the kth degree polynomial coefficient 
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corresponding to the row assigned to the jth plot for entry i, Pijl is the lth degree  polynomial 

coefficient corresponding to the column assigned to the jth plot for entry i, βRk is the 

regression coefficient for row corresponding to the kth degree polynomial coefficient,  βCl is 

the regression coefficient for column corresponding to the lth degree polynomial coefficient, 

and the εij’s are random errors associated with plot j assigned to entry i with  E(εij)=0 and are 

assumed to be independently and identically distributed (iid).  The levels of k and l can be no 

larger than r-1 and c-1, respectively, and entries must be replicated. 

The initial trend plus correlated errors model differs from equation 1 in that the εij’s 

are not assumed to be iid.  Local effects are accounted for by allowing a correlation structure 

among the residuals through a linear transformation of equation 1 by using a generalized 

least squares approach (Rawlings et al., 1998).  In particular, let Z and L represent a matrix 

of eigenvectors and a diagonal matrix of corresponding eigenvalues, respectively, such that a 

positive definite matrix, V, possessing a particular correlation structure corresponding to the 

residuals may be written as ZTLZ. A linear transformation of equation 1 is accomplished by 

multiplying all terms by T-1, where T = ZL1/2ZT (Rawlings et al., 1998).   

Zimmerman and Harville (1991) emphasize the lack of methodology and resulting 

difficulty in selecting an appropriate correlation function for a particular data set when 

modeling the correlation structure for the residuals.  Despite the lack of robust procedures, 

various correlation structures have been proposed to model local effects for field trials 

(Zimmerman and Harville, 1991; Cullis and Gleeson, 1991; Brownie et al., 1993; and 

Gilmour et al.1997).  Some of the more common correlation structures used for the analysis 

of single-environment trials encountered in plant breeding include the first order 

autoregressive model, autoregressive integrated moving average process, and various spatial 

power and exponential functions. The REPEATED statement of PROC MIXED with 

corresponding TYPE and SUBJECT syntaxes allows one to model many different correlation 

structures, which can be specified in SPATIALPRO with %LET statements (Littell et al., 

1996; SAS Institute, 1999) (Tables 2,3).   

The program is flexible in specifying a range of spatial models pertaining to a variety 

of experimental designs including sets nested within replications designs, or the inclusion of 

covariates to further reduce experimental error.  Flexibility is accomplished by allowing for 

additional fixed and/or random effects that can be incorporated in the spatial models through 
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the use of  %LET statements corresponding to PROC MIXED’s model and random 

statements (Tables 2,3).  For the trend-plus-correlated-errors analysis, plots must be 

numbered sequentially beginning at one, and follow a serpentine pattern corresponding to the 

experimental layout (Figure 2).   

For each response variable-by-single-environment-trial combination, macro trendyvs 

proceeds by eliminating non-significant global effects from the initial spatial models by using 

PROC MIXED in SAS (Littell et al., 1996; SAS Institute, 1999) and the following algorithm 

suggested by Kirk et al. (1980) and Tamura et al. (1988).  First, all terms are fitted in the full 

models for both the trend and trend-plus-correlated-errors models. Interaction effects 

between factors within a model are not included in any of the model building steps due to the 

geometrically increasing number of parameters required. By default in SPATIALPRO, only 

significant (P≤ 0.01) global effects from the full model are included, along with the entry 

main effects, in a “reduced” model to avoid over-fitting a model (Tamura et al., 1988). This 

is in contrast to Gilmore et al. (1997) who used likelihood ratio tests to determine the 

significance of row and column factors when such terms were treated as random effects. 

Users can specify an alternative significance threshold for the retention of global effects in 

the model through a %LET statement.  An iterative ‘do- until’ loop is used to perform 

backward selection for both initial models until a reduced model is established in which all 

remaining polynomial terms are significant at the specified significance level.  

A correlated-errors model is also specified using %LET statements, and an example 

is listed in Table 3. The correlated-errors model is only performed in the absence of 

significant global effects, in which case the trend-plus-correlated-errors model reduces to a 

correlated-errors model. Users may wish to include a term for replications for the correlated-

errors model as demonstrated in Brownie et al. (1993), since global effects are not being 

considered. In our experience, as well as from the results of others (Brownie et al., 1993; 

Zimmerman and Harville, 1991), a correlated-errors model has never been as efficient when 

significant global effects exist as judged by several criteria.  Likewise, in the absence of 

significant global effects, the trend model becomes inefficient, as the reduced model is 

similar to a model appropriate for analyzing a completely randomized design.  

Once reduced models are defined for each particular spatial design, the preferred 

model is determined by comparing the spatial and conventional models on the basis of a 
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specified criterion. The Akaike information criterion and Bayesian information criterion are 

not useful in automating the process of selecting a preferred model, as the restricted 

maximum likelihood estimate of the error variance will vary between models if the number 

of fixed effects between any two models differs (Rawlings, 1998). Useful criteria include the 

F-value corresponding to the entry main effects (Brownie and Gumpertz, 1997), or selecting 

a model with the smallest average standard error among all pair-wise differences between 

entry means (Brownie et al., 1993). If a criterion is equal across models, the conventional or 

simpler model is chosen by default in order to select a parsimonious preferred model. 

Similarly, the trend model is selected over a trend-plus-correlated-errors model as the 

preferred model in the case of equal selection criteria. 

Output      

For each response variable and preferred model for a single environment trial, macro 

trendy outputs, by default, Spearman rank correlation coefficients between least square entry 

means from the preferred model and from performing the corresponding conventional 

analysis. If the conventional analysis is the preferred model, then Spearman rank correlation 

coefficients will not be printed and will be labeled “not_applicable” for the given analysis. 

Users may also specify to view plots of residuals against rows or columns plots for each 

analysis. If this option is chosen, residual plots will be presented in for each analysis, 

otherwise graphs are not printed in the output.  The model involved in the residual graphs 

includes the entry main effect and is fitted by PROC GLM (SAS Institute, 1999).  Users also 

have access to residual data sets for each response variable and environment combination, 

which can be used with PROC INSIGHT to view three-dimensional residual versus row and 

column rotating plots. 

Three SAS data sets are generated by default and are stored in the temporary SAS 

work library.  A SAS data set named “meansfile” is generated that contains least square entry 

means estimated from the preferred model on the basis of the defined criterion for all 

response variables associated with each single-environment analysis.  A second series of 

SAS data sets named “reducedfixtest<name of response-variable>”, are constructed for each 

response variable summarizing F-values from type III fixed tests from PROC MIXED (Littell 

et al., 1996; SAS Institute, 1999) for testing the entry main effect with the error variance 

estimated from the preferred model.  If a trend or trend plus correlated errors model is chosen 
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as the preferred model, the results from the type III tests for fixed global effects are added to 

the SAS data set “reducedfixtest<name of response-variable>”, where “r” stands for row and 

“c” stands for column.  The number following these letters indicates the degree of the 

polynomial parameter retained in the model chosen for the particular spatial design. The F-

value corresponding to the entry main effect is only printed if the preferred model for a given 

analysis is either the correlated errors or conventional design. The third series of SAS data 

sets is named “spearmanranks<name of response-variable>” and corresponds to the 

Spearman rank correlation coefficients that are printed for each response variable.  The 

preferred model for each response variable by single environment trial combination is 

designated in all three types of default SAS data sets as well as the environment designation.  

For instructions on program execution, please consult the within-program documentation of 

SPATIALPRO.  

 

Example  

 A maize (Zea mays L.) multi-environment screening trial, involving eighty-one 

entries, was grown at three locations. Entries included seventy-five NC300xB104 

recombinant inbred line topcrosses and six commercial hybrid checks (DK697, G8288, 

LH200.LH262, P31G98, P32K61, HC33.TR7322). The environments were Clayton, 

Lewiston, and Plymouth, NC. The experimental design at each environment was a 9x9x2 

lattice design with two replicates, and the response variables were yield (Mg ha-1), percent 

moisture (%), and percent erect plants (%). SPATIALPRO was used to optimize polynomial 

models and choose a preferred model for each response variable and environment 

combination. Possible models included lattice, trend, trend-plus-correlated errors, and 

correlated-errors models.  

In this example, the following %LET statements are used to specify these parameters. 

The preferred models were chosen on the basis of the smallest average standard error among 

all pair-wise differences between entry means:  

 %LET criterion = ase; 

Additionally, the maximum polynomial degrees for rows and columns were set at four:  

 %LET row=4; 

 %LET col=4; 
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The p-value threshold for polynomial optimization was 0.01 (Tamura et al., 1988): 

 %LET pvalue = 0.01; 

The conventional model at each environment is a lattice design, with entry being a 

fixed effect, and replication and incomplete blocks-within-replication being random factors 

(Table 1). The initial trend and trend-plus-correlated-errors models included entry and row 

and column polynomial trends (r1 r2 r3 r4, c1 c2 c3 c4) as fixed effects (Tables 2 and 3). 

Replication and incomplete blocks were not included in these two models, as global effects 

are assumed to be continuous across the experimental layout (Brownie et al., 1993).  

 An anisotropic spatial power function was used to model local effects in two 

dimensions (i.e. row and column) for the correlated-errors and trend-plus-correlated errors 

analyses, which is specified with the following %LET statements: 

(correlated errors) %LET correrrtype = TYPE = SP(POWA) (ROW COL); 

(trend plus correlated errors) %LET trecorrerrtype = TYPE = SP(POWA) (ROW COL); 

(Tables 2 and 3). In this example, the covariance function for plots i and j is σ2 ρ1
Dij1 ρ2

Dij2, 

where σ2 is the error variance, Dij1 and Dij2 are the absolute row and column distances 

between plots i and j, respectively, ρ1  is the correlation between plots in the row dimension, 

and ρ2 is in the column dimension. Other covariance functions can be specified with these 

two %LET statements. In this example, plots in different replications were assumed to be 

independent for both models, which is accomplished by specifying the additional %LET 

statements: 

(correlated errors) %LET correrrsubject = SUBJECT = replication; 

(trend-plus-correlated errors) %LET trecorrerrsubject = SUBJECT = replication; 

Furthermore, replications were included as random factors in the correlated-errors model, 

since global effects are not (Table 3). 

 Alternative models were chosen as the preferred model for all nine-response variable 

and environment combinations (Table 4).  Five were correlated-errors models and four were 

trend-plus-correlated errors models. These models ranked entries similarly when compared to 

the corresponding lattice analysis, as the Spearman rank correlation coefficients ranged from 

0.82 to 0.99.  The F-values for the entry main effect for these preferred models, in addition to 

the retained polynomial effects, are listed in Table 5. The F-values for the row and column 
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polynomial effects ranged from 10.25 to 48.39. Combined analyses across environments 

using within-environment-entry means from SPATIALPRO (Table 6) were compared to 

similar analyses using the lattice design. The combined analyses were performed in PROC 

MIXED with entry as a fixed effect and environment as random. The F-value in these 

combined analyses was greater for each trait when performed on entry means from 

SPATIALPRO.  Likewise, the associated probabilities were smaller. The residual variance 

and average standard error among all pair-wise differences between entry means for the 

SPATIALPRO analyses were smaller for yield and moisture. The residual variance in these 

analyses is entry-by-environment interaction. The Spearman rank correlation coefficients 

between entry means from these two combined analyses were greater than 0.97 for all traits. 

The seven highest yielding entries were the same in both analyses (data not shown). 

 

Conclusions   

 We present a SAS program designed to facilitate the incorporation of spatial analysis 

techniques into the selection of appropriate analytical models for single-environment trials 

without requiring the researcher to drastically alter the way data are managed. The program 

provides a dynamic platform for implementing statistically sound principles for the selection 

of spatial models.  A preferred model is identified by comparing all considered models.  

Straightforward modification by the user is allowed to accommodate individual analytical 

needs.  Following execution, the user is presented with well-organized data sets including the 

preferred model selected, estimated entry means, an estimated error variance, and an entry 

mean rank correlation between the conventional and an alternative model, if applicable.  The 

error variance from each analysis can be used to construct an average least significant 

difference for entry mean comparisons .  

The motivation for the creation of this software was to improve the estimation of 

entry means from single-environment trials to further improve the analysis of multiple- 

environment experiments.  Its application should improve the analysis of trials typified by the 

heterogeneous field conditions commonly experienced in large field experiments and in areas 

typically represented by variable soils.   

Users should be aware that as the number of environments increases for a particular 

multiple environment experiment, the model used to estimate entry means within 
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environments becomes less consequential for estimation of entry means across environments, 

as further replication of entries naturally allows for a more accurate estimation of an entry 

mean (Qiao et al., 2004). SPATIALPRO should improve entry mean estimation across 

environments for situations involving limited sampling of environments.  Such circumstances 

could include choosing entries that merit further evaluation studies (i.e. 1st year yield trial 

results) and quantitative trait loci (QTL) mapping studies. Quantitative trait loci effects 

estimated within environments utilizing spatial techniques should improve further analyses 

that assess the consistency of such effects across environments (Moreau et al., 1999). Entry 

means from SPATIALPRO can be readily used in software packages such as QTL 

cartographer (Wang et al., 2004). 

The relevance of the software is not limited to field trials, breeding programs, or grain 

yield, as its flexibility in execution allows for use in an array of experimental conditions 

where concern for spatial trends exists.  The incorporation of spatial approaches as an 

alternative to conventional statistical analyses may also be considered in a variety of 

experimental arenas typically employing completely randomized designs with experimental 

units arranged in a defined positional format including greenhouses, growth chambers, and 

laboratory experiments such as expression arrays. 
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Table 1.  Example specifications for various conventional models via global macro variables defined by %LET statements and 
their corresponding resolution in PROC MIXED in SPATIALPRO. Upon execution, macro variables in the program code 
preceded by an ampersand are replaced by the portion of the %LET statements defined by the user.  Conventional model 
specifications (A) and their corresponding code resolution in PROC MIXED are provided for completely randomized (B), 
randomized complete block (C), lattice (D), and lattice with a fixed covariate (E) designs. 
 

 
     A)  Conventional model program code of PROC MIXED 
      PROC MIXED DATA = DATASET; 
      CLASS  &classconv entry;  
      MODEL responsevariable = entry &fixedconv ; 
      &randomconv; 
  
Global macro variable specifications Macro variable resolution in PROC MIXED 
  
B) Completely Randomized Design:   
 PROC MIXED DATA = DATASET; 
 %LET classconv = ; CLASS entry; 
 %LET fixedconv = ; MODEL responsevariable = entry; 
 %LET randomconv = ;  
  
C) Randomized Complete Block Design:  
 PROC MIXED DATA = DATASET; 
 %LET classconv = replication; CLASS  replication entry; 
 %LET fixedconv = ; MODEL responsevariable = entry; 
 %LET randomconv = RANDOM replication ; RANDOM replication; 
  
D) Lattice Design:  
 PROC MIXED DATA = DATASET; 
 %LET classconv = replication block; CLASS replication block entry; 
 %LET fixedconv = ; MODEL responsevariable = entry; 
              %LET randomconv = RANDOM replication block(replication); RANDOM replication block(replication); 
  
E) Lattice Design with a fixed covariate:  

 PROC MIXED DATA = DATASET; 
 %LET classconv = replication block; CLASS replication block entry; 
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Table 1 (continued) 
 
 %LET fixedconv = covariate; 

 
 
MODEL responsevariable = entry covariate; 

 
 %LET randomconv = RANDOM replication block(replication); 

 
RANDOM replication block(replication); 
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Table 2.  User-defined global macro variables in SPATIALPRO and their definitions. 

 
Global macro variables within 
SPATIALPRO 

Definition of global macro variable 

and the models in which they 
are used.  
Conventional  

&classconv Parameters for CLASS statement for conventional analysis are represented by the global macro variable 
classconv. Entry should not be included as a parameter within classconv, as it is already present in the program 
code. 

&fixedconv Parameters to be included as fixed effects in the conventional model are represented by the global macro variable 
fixedconv. Entry is specified as a fixed effect in the program code and should not be included in fixedconv. 
 

&randomconv Parameters to be included as random effects in the conventional analysis are represented by the global macro 
variable randomconv. The RANDOM statement should be included as part of randomconv when used. 
 

Trend  
&spatialclass Parameters to be included in the CLASS statement for trend analysis are represented by the global macro variable 

spatialclass.  The variable for entry should not be included as a parameter within spatialclass, as it is already 
present in the program code. 
 

&spatialfix Parameters to be included as fixed effects in the trend model are designated by the global macro variable 
spatialfix.  Entry is specified as a fixed effect in the program code. 
 

&globaleffects Orthogonal polynomial coefficients corresponding to row and column effects are included within globaleffects, 
and need not be defined by the user.  Global effects are treated as fixed.  
 

&spatialran Parameters to be included as random effects in trend analyses are represented by the global macro variable 
spatialran.  The RANDOM statement should be included as part of the designation of spatialran when used. 

Trend Plus Correlated  Errors  
&trecorrerrclass Parameters for the CLASS statement for trend plus correlated errors (CE) analyses are represented by the global 

macro variable trecorrerrclass.  Entry should not be included as a parameter within trecorrerrclass.  It is already 
present in the program code. 
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Table 2 (continued) 
 

&trecorrerrfix 

 
 
Parameters to be included as fixed effects within the trend plus CE model are included in the global macro 
variable trecorrerrfix. Entry and global effects are specified as fixed effects in the program code. 

 
&trecorrerrran 

 
Parameters to be included as random effects in trend plus CE analyses are designated within the global macro 
variable trecorrerrran.  The RANDOM statement should be included as part of the designation of trecorrerrran 
when used. 

&trecorrerrtype The correlation function to model the correlation structure of the residuals associated with each plot is specified 
within trecorrerrtype.  For other correlation functions, consult the online documentation for PROC MIXED. 

&trecorrerrsubject The global macro variable variable trecorrerrsubject defines independent blocks of correlation within an 
experiment. The SUBJECT statement should be included within trecorrerrsubject, when used.  In the example 
provided in Table 2, the specification of rep implies that plots within different replications are not correlated.  If 
left blank, correlations among all plots are assumed.  The variable associated with the SUBJECT statement 
defines subunits of the experiment(s) in which correlation structures are independent. 

Correlated Errors  
&correrrclass Parameters for the CLASS statement of correlated errors analyses are included in the global macro variable 

correrrclass. Entry should not be included as a parameter within correrrclass.  It is already present in the program 
code. 

&correrrfix Parameters to be included as fixed effects within the CE model are included in the global macro variable 
correrrfix. Entry is specified as a fixed effect in the program code. 

&correrrran Parameters to be included as random effects in trend plus CE analyses are designated within the global macro 
variable correrrran.  The RANDOM statement should be included as part of the designation of correrrran when 
used.  In the absence of global effects, a random variable for replications is defined. 

&correrrtype The correlation function to model the correlation structure of the residuals associated with each plot is specified 
within correrrtype.  For other correlation functions, consult the online documentation for PROC MIXED. 

&correrrsubject The global macro variable variable correrrsubject defines independent blocks of correlation within an experiment. 
The SUBJECT statement should be included within correrrsubject, when used.  In the example in Table 2, the 
specification of rep implies that plots within different replications are not correlated.  If left blank, correlations  
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among all plots are assumed.  The variable associated with the SUBJECT statement defines subunits of the 
experiment(s) in which correlation structures are independent. 

 

Table 2 (continued) 
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Table 3.  Examples of program code for PROC MIXED and the specification of parameters with global macro variables 
corresponding to PROC MIXED statements for conventional and spatial models.  In both examples, the conventional model is a 
lattice design, and the correlation structure for the trend plus correlated errors and correlated errors models is a spatial power 
(SP(POW))function.  The correlated errors model also includes a random term for replications in both examples.  
  

Analysis and Program Code for PROC MIXED %LET statements %LET statements including a 
fixed and a  

  random covariate  
Conventional   
     PROC MIXED DATA = <dataset>;   
     CLASS = &classconv† entry; %LET classconv = rep‡ bk§; %LET classconv = rep bk; 
     MODEL <response_variable> = entry &fixedconv; %LET fixedconv = ; %LET fixedconv = cov1#; 

     &randomconv; %LET randomconv = RANDOM rep bk(rep); 
%LET randomconv = 
RANDOM rep bk(rep) cov2; 

Trend   
     PROC MIXED DATA = <dataset>;   
     CLASS = &spatialclass entry; %LET spatialclass = ; %LET spatialclass = ; 
     MODEL <response_variable> = entry globaleffects 
&spatialfix; %LET spatialfix = ; %LET spatialfix = cov1; 

     &spatialran; %LET spatialran = ; 
%LET spatialran = RANDOM 
cov2 ; 

Trend Plus Correlated  Errors   
     PROC MIXED DATA = <dataset>;   

     CLASS = &trecorrerrclass entry plt¶; %LET trecorrerrclass = rep row col; 
%LET trecorrerrclass = rep 
row col; 

     MODEL <response_variable> = entry globaleffects 
&trecorrerrfix; %LET trecorrerrfix = ; %LET trecorrerrfix = cov1; 

     &trecorrerrran; %LET trecorrerrran = ; 
%LET trecorrerrran = 
RANDOM cov2; 

     REPEATED plt/&trecorrerrtype &trecorrerrsubject; %LET trecorrerrtype = SP(POW) (ROW COL); 
%LET trecorrerrtype = 
SP(POW) (ROW COL); 

 %LET trecorrerrsubject = SUBJECT = rep; 
%LET trecorrerrsubject = 
SUBJECT = rep; 

Correlated Errors   
     PROC MIXED DATA = <dataset>;   

     CLASS = &correrrclass entry plt; %LET correrrclass = rep row col; 
%LET correrrclass = 
replication row col; 

     MODEL <response_variable> = entry &correrrfix; %LET correrrfix = ; %LET correrrfix = cov1; 
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 Table 3 (continued) 
 
     &correrrran; %LET correrrran = RANDOM rep; 

%LET correrrran = 
RANDOM rep cov2; 

     REPEATED plt/&correrrtype &correrrsubject; %LET correrrtype = SP(POW) (ROW COL); 
%LET correrrtype = 
SP(POW) (ROW COL); 

 %LET correrrsubject = SUBJECT = rep; 
%LET correrrsubject = 
SUBJECT = rep; 

 

† Please consult Table 1 for the definitions of global macro variables used throughout SPATIALPRO.  
‡ Replication is represented as rep. 
§ Block is represented as bk. 
# Covariates are represented as cov. 
¶ Plot order, beginning with plot one and increasing sequentially in a serpentine fashion within an experiment is designated by the 
variable plt. Values for plt should be included in the user’s data set(s) if correlated errors analysis is desired. 
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Table 4. Spearman Rank Correlation (Corr) coefficients (Coeff) between entry means 
from the alternative and conventional analyses for yield (YLD), moisture (MOI), and 
erecet plant (EPL) SAS data sets at the Clayton, Lewiston, and Plymouth environments 
(env). 
 
env ANALYSIS SpearmanCorrCoeff TRAIT 
Clayton trecorr 0.94 YLD 
Lewiston correrr 0.82 YLD 
Plymouth correrr 0.96 YLD 
    
Clayton trecorr 0.80 MOI 
Lewiston trecorr 0.99 MOI 
Plymouth trecorr 0.95 MOI 
    
Clayton correrr 0.96 EPL 
Lewiston correrr 0.83 EPL 
Plymouth correrr 0.97 EPL 
† trectrend-plus-correlated errors 
‡ correlated errors
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Table 5. Type 3 fixed effects for the entry main effect and polynomial terms (if 
appropriate) for SAS data sets from the preferred models for yield (YLD), moisture 
(MOI), and percent erect plants (EPL) at the Clayton, Lewiston, and Plymouth  
environments (env). 
 

 Effect NDF† DDF‡ FValue P-value env Analysis residual_variance
YLD         

 entry 80 78 4.44 1.38E-10 Clayton trecorr§ 91.91 
 r1 1 78 12.34 7.41E-04 Clayton trecorr 91.91 
 c2 1 78 10.86 1.48E-03 Clayton trecorr 91.91 
 entry 80 78 4.71 2.99E-11 Lewiston correrr# 108.37 
 entry 80 80 6.68 1.06E-15 Plymouth correrr 56.74 
         

MOI         
 entry 80 77 2.62 1.54E-05 Clayton trecorr 0.08 
 r1 1 77 10.25 1.99E-03 Clayton trecorr 0.08 
 c2 1 77 48.39 1.01E-09 Clayton trecorr 0.08 
 c4 1 77 15.81 1.57E-04 Clayton trecorr 0.08 
 entry 80 79 5.52 3.45E-13 Lewiston trecorr 0.63 
 r3 1 79 9.07 3.48E-03 Lewiston trecorr 0.63 
 entry 80 79 5.86 6.34E-14 Plymouth trecorr 0.11 
 c2 1 79 37.35 3.52E-08 Plymouth trecorr 0.11 
         

EPL         
 entry 80 80 2.94 1.28E-06 Clayton correrr 16.75 
 entry 80 80 0.85 7.70E-01 Lewiston correrr 1.90 
 entry 80 80 2.73 5.74E-06 Plymouth correrr 26.86 

† Numerator degrees of freedom. 
‡ Denominator degrees of freedom. 
§ trend-plus correlated errors. 
# correlated errors.
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Table 6. Entry means file SAS data set from the preferred models (Analysis<trait>) for 
yield (YLD), moisture (MOI), and percent erect plants (EPL) at Clayton, Lewiston, and 
Plymouth. 
 
entry env YLD AnalysisYLD MOI AnalysisMOI EPL AnalysisEPL
2019 Clayton 131.31 trcor† 14.55 trcor 99.26 corer 
2020 Clayton 121.15 trcor 13.68 trcor 97.96 corer 
2021 Clayton 123.41 trcor 13.95 trcor 89.86 corer 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 
2019 Lewiston 102.36 corer‡ 18.57 trcor 100.0

0 
corer 

2020 Lewiston 100.32 corer 21.02 trcor 98.50 corer 
2021 Lewiston 107.31 corer 19.09 trcor 98.45 corer 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 
2019 Plymouth 99.10 corer 17.05 trcor 98.92 corer 
2020 Plymouth 85.20 corer 16.93 trcor 99.28 corer 
2021 Plymouth 88.62 corer 16.59 trcor 89.38 corer 
† trend-plus-correlated errors. 
‡ correlated-errors.  
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Table 7. Combined analyses performed on within environment entry means from 
SPATIALPRO and from the lattice analyses for yield, moisture, and erect plants. 
 
 NDF† DNF‡ F-value§ P-value Residual 

Variance
ASE 

YIELD       
Lattice 80 160 3.24 <0.0001 68.49 6.76 
SPATIALPRO 80 160 3.60 <0.0001 61.39 6.40 
       
MOISTURE       
Lattice 80 160 2.60 <0.0001 0.44 0.55 
SPATIALPRO 80 160 2.87 <0.0001 0.40 0.52 
       
ERECT PLANTS      
Lattice 80 160 1.72 0.0020 13.64 3.02 
SPATIALPRO 80 160 1.79 0.0010 13.97 3.05 
† Numerator degrees of freedom. 
† Denominator degrees of freedom. 
§ F-value for the entry main effects 
#Average standard error among all pair-wise differences between entry means. 
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Figure 1.  Example of a randomized complete block data set format used by SPATIALPRO.  
Environments/experiments must be stacked on one another in the data file.  Plot values 
corresponding to environments/experiments where a response variable (RV) was not 
measured should be assigned a decimal point, as is the case for RV2 for environment 1, 
experiment 1.  Note that variables for environment, row, column, and entry must be specified 
as “env,” “row,” “col,” and “entry,” and are required in the data set.  If correlated errors 
analysis is desired, the variable “plt” is required to represent plot order within an experiment.  
Specification of other variables is at the user’s discretion.   
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env plt row col rep entry RV1 RV2
env1exp1 1 1 1 1 1992-00 130 .
env1exp1 2 1 2 1 1984-00 125 .
env1exp1 3 1 3 1 2007-00 115 .
env1exp1 4 1 4 1 1993-00 125 .
env1exp1 5 1 5 1 1958-00 105 .

. 

. 

. 

. 

. 

. 

env15exp9 134 5 6 3 1979-00 140 12
env15exp9 135 5 7 3 1959-00 120 14
env15exp9 136 5 8 3 1982-00 134 10
env15exp9 137 5 9 3 2016-00 122 9
env15exp9 138 5 10 3 2014-00 120 15

 . 
 . 
 . 
 . 
 . 
 .  

. 

. 

. 

. 

. 

. 

 . 
 . 
 . 
 . 
 . 
 . 

 . 
 . 
 . 
 . 
 . 
 . 

 . 
 . 
 . 
 . 
 . 
 . 

 . 
 . 
 . 
 . 
 . 
 . 

  . 
  . 
  . 
  . 
  . 
  . 

Many more environments 
and/or experiments 
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Figure 2.  The relationship between experimental layout and data set construction for a 
randomized complete block with twenty entries and two replications.  An example of a data 
file is indicated, A, corresponding to an experimental layout of a single location, two 
replication experiment, B.  The relationship between row and column designations and plot 
position within the experiment is also demonstrated.  Note that in this example, row 
designations for spatial analyses correspond to ranges in a field design, and column 
designations represent rows running the entire length of the experiment.    
Correlated errors analyses requires plots (plt) to be numbered sequentially beginning at one, 
and following a serpentine pattern corresponding to the experimental layout.  Environment 
and/or experiment designation (env) must be specified, regardless of the number of 
environment
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(A)           (B) 
 

env plt row col rep entry
clya05 1 1 1 1 8
clya05 2 1 2 1 20
clya05 3 1 3 1 7
clya05 4 1 4 1 3
clya05 5 1 5 1 19
clya05 6 2 5 1 4
clya05 7 2 4 1 12
clya05 8 2 3 1 10
clya05 9 2 2 1 14
clya05 10 2 1 1 1
clya05 11 3 1 1 5
clya05 12 3 2 1 18
clya05 13 3 3 1 2
clya05 14 3 4 1 15
clya05 15 3 5 1 13
clya05 16 4 5 1 16
clya05 17 4 4 1 6
clya05 18 4 3 1 17
clya05 19 4 2 1 11
clya05 20 4 1 1 9
clya05 21 5 1 2 3
clya05 22 5 2 2 19
clya05 23 5 3 2 1
clya05 24 5 4 2 9
clya05 25 5 5 2 16
clya05 26 6 5 2 5
clya05 27 6 4 2 17
clya05 28 6 3 2 10
clya05 29 6 2 2 2
clya05 30 6 1 2 11
clya05 31 7 1 2 7
clya05 32 7 2 2 15
clya05 33 7 3 2 20
clya05 34 7 4 2 6
clya05 35 7 5 2 4
clya05 36 8 5 2 12
clya05 37 8 4 2 13
clya05 38 8 3 2 8
clya05 39 8 2 2 14
clya05 40 8 1 2 18

 

plt=33 

entry=20 
rep=2 
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entry=7 
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entry=18 
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entry=15 
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Abstract 

Advance-cycle breeding is restricting the germplasm base for U.S. maize (Zea Mays L.). 

Many breeding programs devote efforts to adapt diverse germplasm to U.S. growing 

conditions, but few are participating in continual enhancement. The biggest impediment to 

success is deciding which materials merit to adapt and what breeding methods to deploy. A 

long term breeding effort was initiated in 1975 to adapt and subsequently enhance tropical 

germplasm. Founder germplasm included seven double-cross-tropical hybrids. Pedigree line 

recycling was chosen to initially adapt this germplasm, and has been an ongoing effort. 

Based on the poor per se performance of the first and second cycle lines, at least five cycles 

of S1 recurrent selection (RS) for grain yield has been practiced on two populations derived 

from these lines. Currently, 22 additional lines have been released from pedigree line 

recycling, while none have yet been released from RS. Cycles per se and cycle-topcrosses to 

LH132.LH51 were grown in separate yield trials to estimate responses to selection. In both 

instances, grain yield increased linearly across the cycles of selection for each population, but 

the yield responses across the cycle-topcrosses are approximately half those of commercial 

breeding activities in the U.S. Corn Belt. To determine the current range in combining 
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ability, an additional ninety-six S1 families were sampled from the latest cycles of each 

population and topcrossed to LH132.LH51. Three topcross families did not differ 

significantly in yield from the commercial check hybrid average. The yield response 

predictions to S1 topcross RS are more promising in maintaining relevancy, and appear to be 

a more favorable method of enhancement, as resources for line development are allocated to 

families with superior combining ability. 

 

Introduction 

The germplasm base for maize (Zea Mays L.) grown in the U.S. is largely founded 

upon the recycling of eight inbred lines and their derivatives (Goodman et al., 2000).  These 

inbred lines include A632, B14A, B37, B73, B84, C103, Mo17, and Oh43, and all are 

derived from one race of maize, Corn Belt Dent. Corn Belt Dent is only one of about 250 

American races of maize (Goodman and Brown, 1988) and was developed from the 

intercrossing of two other racial complexes (Anderson and Brown, 1952), the Southern Dents 

and the Northern Flints.   

Concerns of a narrowing genetic base, resulting from advanced-cycle breeding led 

Wellhausen (1956) to suggest incorporating exotic germplasm into U.S. maize breeding 

pools. In particular, although advanced-cycle breeding has allowed for the continued yield 

improvement in hybrid maize at a rate of 0.08 Mg ha-1 yr-1 (Duvick, 2004), the sustainability 

of this rate is of concern. For example, Lu and Bernardo (2001) found that the reduction in 

genetic distances among elite lines within the Iowa Stiff Stalk Synthetic and non-Stiff Stalk 

heterotic groups could limit future gains from selection. Further, genetic uniformity, resulting 

from the recycling of related, elite material, can lead to genetic vulnerability (Committee on 

Genetic Vulnerability, 1972).  

Efforts have been devoted to breeding with exotic germplasm in order to broaden the 

U.S. maize germplasm base (Hallauer, 1978; Geadelmann, 1984; Goodman, 1985; Bridges 

and Gardner, 1987; Holland and Goodman, 1995; and Pollak, 2003), but the incorporation of 

exotic germplasm into U.S. hybrids has been minimal (Mikel and Dudley, 2006). Goodman 

(1998) estimated the percentage of exotic germplasm in U.S. hybrids in 1996 to be 3%.  The 

majority of this percentage consisted of temperate material, mostly through inbred lines B68, 
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F2, and F7, but U.S. hybrids in 1996 contained only 0.3% tropical germplasm (Goodman, 

1998).  

Explanations for the minimal incorporation of exotic germplasm into temperate U.S. 

commercial maize breeding programs are numerous. Specifically, tropical materials are often 

sensitive to long day photoperiods, susceptible to common smut (Ustillago maydis), have 

weak stalks, poor silk and tassel synchronization, and inbred lines derived from them often 

have poor per se performance (Goodman, 1985). Successful adaptation requires time to 

overcome these barriers, and progress is further offset, as yield levels and breeding 

advancements in the tropics are at least thirty years behind such efforts in the U.S. 

Particularly, while genetic variation is usually larger in adapted-by-tropical populations, 

average yields are generally lower. 

Initial breeding strategies for adaptation were mass selection or other forms of 

recurrent selection (RS), (Bridges and Gardner, 1987; Genter, 1976; Hallauer and Sears, 

1972; Hallauer, 1978). With interests of developing diverse lines to be immediately suitable 

for industrial breeding, theoretical studies suggested backcrossing exotic materials to an 

improved source before initiating selection (Bailey and Comstock, 1976; Bernardo, 1990; 

Cox, 1984; Dudley, 1982, 1984; Ho and Comstock, 1980). Backcrossing objectives are often 

conservative and usually entail improving a line or population by a few factors (Lee, 1995); 

yield is often compromised when too much emphasis is placed on earliness. Successes have 

been reported with these methods, but few lines have been developed and deployed in 

commercial breeding programs. 

Holley and Goodman (1988) were the first to focus on developing temperate-adapted-

all tropical lines by pedigree line selection as an alternative strategy to adapt tropical 

germplasm to the U.S. The procedure differs from previous approaches, as inbred lines are 

the operational unit of selection, and recombination is accomplished through line recycling; 

but primarily because the initial germplasm sources were seven double-cross-tropical hybrids 

(TROPHY). These hybrids, representing nine races, were the better yielding tropical hybrids 

at the time, and were chosen over other sources to limit inbreeding depression when deriving 

lines (Table 1).  

In 1975, breeding populations were developed at NC State by intercrossing these 

hybrids following a partial-diallel mating design (Holley and Goodman, 1988). Selection for 
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earliness, low plant and ear height, decreased anthesis-silking interval, and standability was 

practiced throughout line development (Goodman et al., 2000). After six generations of ear-

to-row sib-mating and selection, surviving lines were then self-pollinated twice. Based on 

yield trial results of the forty-two first-cycle-line topcrosses, inbred line NC296 was released.  

The first-cycle lines were subsequently intercrossed to form new breeding 

populations. An extensive number of second-cycle lines were developed from these 

populations by either selfing (Goodman et al., 2000) or sib-mating methods of line 

development (Uhr and Goodman, 1995). Yield trial results of the topcrosses for the 135 lines 

developed by selfing resulted in releasing second-cycle inbred lines NC298 and NC300. 

 The results from the first and second-cycles of line development suggest that it is 

relatively easy to develop adapted lines from double-cross tropical hybrids that perform well 

in topcrosses, but it is fairly difficult to develop such lines that also have favorable per se 

performance (Goodman et al., 2000). Industry would be more apt to develop (50% tropical, 

50% elite) inbred lines by breeding with all-tropical lines that perform well both in 

topcrosses and as lines per se. Until such temperate-adapted-all-tropical lines are developed, 

industrial-breeding efforts with tropical germplasm will probably not be expended beyond 

single-gene backcrossing programs. Developing semi-tropical inbred lines, though, offers 

greater long-term promise for widening the U.S. germplasm base (Lewis and Goodman, 

2003). 

S1 RS for grain yield was initiated on two populations derived from the initial 

TROPHY lines, as an alternative approach to further adapt this germplasm, while 

concomitantly developing lines with improved per se and topcross performance.  These two 

populations, the TROPHYCOMP and TROPHYELITE populations, were derived from the 

first and the better yielding second-cycle lines. Currently, the TROPHY composite and elite 

populations have undergone eight and five cycles, respectively, of S1 RS.  

The TROPHY derivatives (including lines developed through pedigree line recycling 

and those by RS) represent novel germplasm, which could assist in widening the germplasm 

base for U.S. maize, as these materials have unique favorable alleles for yield (Goodman, 

1999) and disease resistance (Balint-Kurti et al., 2006; Jines et al., 2007; Robertson-Hoyt et 

al., 2006). This germplasm, representing a diverse set of tropical races, is the only one in 

which, after initial adaptation, has been enhanced by both pedigree line recycling and S1 RS 
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for over 20 years. Successes from these two different breeding strategies applied to the same 

material serve as a unique model for deriving inbred lines from tropical germplasm for use in 

U.S. commercial breeding activities. 

Currently, the subsequent recycling of the initial lines has led to releasing 22 

additional lines. In comparison, no lines developed from any cycle of S1 RS have been 

released or heavily recycled into our program. Studies were conducted to quantify the 

progress of S1 RS for each population, and determine, if this is a reasonable approach, or if it 

needs modification. The major objective of this study was to estimate empirical responses to 

S1 RS for each population per se and in crosses to LH132.LH51. The latter is important, as 

genetic gain needs to be at least equal to gains in industry for lines derived from future cycles 

to maintain relevancy. In addition, topcrosses of the S1 families from the last cycle of each 

population were grown in replicated yield trials to estimate variance components. Based on 

these topcross families results, we predicted gains for alternative breeding strategies. 

 

Materials and Methods 

Plant Material  

The TROPHYCOMP population was developed by intercrossing all first-cycle lines 

while minimizing the relationships by pedigree. These intercrosses were planted ear-to-row 

and sib-mated to produce F2 individuals. The corresponding F2 plants were grown as a 

mixture (with several delay plantings to avoid assortative mating) in isolation at Plymouth, 

NC in 1984. Open pollinated seed was harvested in bulk and planted in the summer of 1985. 

The plants in each row were sib-mated, which was practiced for two additional generations 

(winter 1985, and summer 1986). Bulk seed harvested from the 1986 summer nursery was 

cycle 0 (C0).  

 The TROPHYELITE population was developed by intercrossing NC296 and the best 

eleven of the 135 second-cycle lines derived by selfing (Table 2). Progeny from these 

intercrosses were planted ear-to-row and sib-mated to produce F2 individuals. One set of F2 

populations was grown at Plymouth in isolation, whereas, a second set of F2 populations was 

placed in the nursery. The individuals generated from the F2 isolation and F3 selections 

(nursery) sets were then intercrossed in the Raleigh nursery in 1993. The C0 seed harvested 

from these intercrosses was bulked.  
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 The TROPHYCOMP and TROPHYELITE populations then underwent eight and six 

cycles of S1 RS, respectively. Each cycle consisted of three phases spanning a period of two 

years (Table 3). The first phase involved developing S1 families from the current cycle (Ci). 

Evaluation of these families (Ci S1) in replicated trials was accomplished during the second 

phase, and, in the third phase, the best S1 families were recombined to form the next cycle 

(Ci+1). Traits measured on the S1 families included grain yield, percent grain moisture, 

percent erect plants, and plant and ear height, but selection of the S1 families to recombine 

was based primarily on yield with truncation practiced for extreme lodging or excessive 

moisture. Selected S1 families from each cycle were also placed into the nursery for line 

development.  

 Recombination involved producing multiple bulks (usually 10) by allowing remnant 

seed from any two S1 families to occur together in a bulk no more than once to avoid 

multiple crosses between any two families. Based on this restriction, one remnant kernel 

from each selected S1 family was placed in each designated bulk. Each bulk was planted in 

one row and pairs of plants within each row were crossed. The seed harvested from the 

crosses is Ci+1 seed, but for S1 familial development, crosses were divided into several groups 

(usually five). Bulks were generated for each group by including one seed per cross. 

Replicate bulks (usually four) for each group were constructed to ensure deriving an S1 

family from each cross. The bulks were planted separately in one row in the winter nursery, 

and plants within each row were self-pollinated to generate Ci+1 S1 families.  

The number of S1 families developed and tested in replicated trials for the various 

cycles ranged from 85 to 198 and from 96 to 150 for the TROPHYCOMP and 

TROPHYELITE populations, respectively (Appendix AV.).  For most cycles, S1 

performance trials were replicated across locations (usually two) and conducted during one 

growing season. The average percentages of selected families across cycles for the 

TROPHYCOMP and TROPHYELITE populations were 16 and  

21 %, respectively.     

Cycle and Cycle-Topcross Studies   

 To ensure viable seed, cycles from each population were regenerated in 2003 at 

Clayton, NC by intercrossing the corresponding S1 family intercrosses. Intercross seed from 

each cycle were bulked separately and also topcrossed to LH132.LH51. The hybrid tester, 



 119

LH132.LH51, was chosen, as this tester appears to be efficient for initially screening the 

combining ability of 100% tropical lines (Nelson et al., 2006). Cycles and cycle-topcrosses 

were arranged into separate experiments. The number of entries in the cycle per se 

experiment was sixteen, including six cycles from the TROPHYCOMP population (cycles 

C3,C4,C5,C6,C7, and C8), five cycles from the TROPHYELITE population (cycles 

C1,C2,C3,C4, and C5), and five commercial hybrid checks (G8288, HC33.TR7322, 

LH132.LH51, LH200.LH262, and P31G98). Forty-nine entries were in the cycle-topcross 

experiment, including four samples for each corresponding cycle-topcross and five 

commercial hybrid checks (DK697, G8288, LH132.LH51, LH200.LH262, and P31G98).  

The experimental design for the cycle per se experiment was a randomized complete 

block design and was grown at five North Carolina locations in 2006.  Locations included 

Clayton, Sandhills, Lewiston, Kinston, and Plymouth, NC. The number of replicates was 

three at all locations, except at Clayton, which had two replicates. The cycle-topcross 

experiment was conducted for two years (2005, 2006) with 2-3 replicates occurring at each 

of four-to-five locations (Clayton, Jackson Springs, Lewiston, Kinston, and Plymouth, NC) 

per year. A 7x7-lattice design was used to assign entries to experimental units at these 

locations. 

In addition, The S1 families corresponding to the latest cycles available 

(TROPHYCOMP C8 S1’s / and TROPHYELITE C5 S1’s) were each topcrossed to 

LH132.LH51.  Ninety-six S1 topcross families were sampled from each population and 

arranged in separate experiments, by population. The experimental design for both 

experiments was a replications nested within sets design, with four sets each including thirty 

entries (twenty-four S1 family topcrosses and six commercial hybrid checks).  The six 

commercial checks (DK697, G8288, LH132.LH51, LH200.LH262, NK91-R9, and P31G98) 

were placed in each set, and a 6 x 5 x 3 rectangular lattice design for all sets was used to 

randomly assign entries to plots at each location.  Both experiments were conducted for three 

years (2004, 2005, 2006) at four-to-five locations (Clayton, Jackson Springs, Kinston, 

Lewiston, and Plymouth, NC) per year. 

For all experiments, experimental units, or plots, at each location consisted of two 

4.86 m length-rows containing a total of 44 plants. A 1-m alley was allocated at the end of 

each plot and inter-row spacing was 0.97 m at all locations, except at Lewiston, which was 
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0.91 m. Plots were over-planted to obtain a target plant density of 45,000 plants ha-1 at 

Lewiston and 43,000 plants ha-1 elsewhere. Response variables measured on all plots 

were grain yield, moisture, percent erect plants, and ear and plant height. Days to fifty-

percent pollen shed and silk were measured at the Clayton locations only. 

Entry mean separation 

Each year-by-location combination was considered an environment in all analyses. 

Within-environment analyses were performed in SAS PROC MIXED version 8.2 (Littell et 

al., 1996; SAS Institute, 1999) for each response variable and experiment combination, 

following Jines et al. (2007). These analyses were performed for each set for the S1 family 

topcross experiments. Analyses included fitting spatial and conventional mixed models.  The 

conventional model corresponded to the appropriate analysis associated with the 

experimental design (i.e. a lattice or RCBD). Spatial models included trend, trend-plus-

correlated-errors, and correlated-errors analyses. Entry was treated as a fixed effect in all 

analyses.  Trend effects were modeled as first through fourth degree polynomial terms for 

rows and columns in the trend and trend-plus-correlated-errors analyses (Brownie et al., 

1993). An anisotropic spatial power function was specified to model local effects for the 

trend-plus-correlated errors and correlated-errors analyses.   

Only significant (P ≤ 0.01) global effects were retained in the spatial models (Tamura 

et al. 1988), and the analysis with the largest F-value for entry main effects was considered 

the preferred model for each experiment-by-environment combination (Brownie and 

Gumpertz, 1997). Within-environment spatial analyses were performed because accounting 

for spatial variation can often improve entry mean estimation (Brownie et al., 1993; Brownie 

and Gumpertz, 1997; and Gilmour et al., 1997).  

 Combined analyses were performed for each experiment with PROC MIXED. 

Within-environment entry least square means from the preferred models served as the 

response variable in the combined analyses.  The combined analyses included a random 

source of variation due to environments while entry was considered a fixed factor.  

Sets were analyzed separately across environments for the S1 topcross family 

experiments. The entry means across environments were then adjusted for set effects by 

using set means (including checks) as the adjustment (Schutz and Cockerham, 1962). Least 
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significant differences were calculated for each experiment, which for the S1 topcross family 

experiments involved constructing pooled error terms.  

Regression Analyses (Cycle per se and Cycle-topcross experiments) 

Empirical responses were determined for the cycle per se and cycle-topcross 

experiments by performing combined ANOVAs across environments in PROC MIXED,  

on data sets lacking the commercial checks. Within-environment cycle least square means 

served as the response variable in the analyses. For the cycle-topcross experiment, cycles 

were averaged across samples at each environment. The models fitted for both experiments 

included population and cycle-within-population as fixed factors, while environment and 

population-by-environment were random factors.  To test for significant response to 

selection, cycle-within-population was partitioned into linear, quadratic, and lack of fit terms. 

Regression coefficients corresponding to significant (P≤0.05) cycle effects were estimated 

for each population with the estimate statement of PROC MIXED. For regression purposes, 

cycles were renumbered sequentially as integers from 0 to c, where c is the last cycle of the 

population for each population. This was done because the initial cycles for each population 

in addition to Cycles 1 and 2 from the TROPHYCOMP population could not be regenerated 

and included in the experiments. The model fitted to estimate these coefficients included 

environment and population-by-cycle as random and fixed factors, respectively.  

Variance Component Estimation (S1 topcross family experiments) 

 Variance component estimation was performed for each S1 topcross family 

experiment by using restricted maximum likelihood (REML) estimation.  To estimate 

variance components, a subset of the data lacking commercial check entries was analyzed 

with PROC MIXED, considering environment, set, environment-by-set, replication-within-

environment-by-set, S1-topcross-family-within-set, and S1-topcross-family-by-environment-

within-set as random factors in the model. Testing the significance of the latter two factors 

was performed by using likelihood ratio tests (Little et al., 1996). Approximate p-values were 

obtained by dividing the p-value of the one degree of freedom chi-square statistic by two 

(Little et al., 1996; Self and Liang, 1987).  

The same subset of data lacking commercial check entries was used to estimate entry 

mean heritabilities and genotypic correlations. Entry mean heritabilities were estimated for 

each trait following Holland et al. (2003) as:                                     
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hf 2   =         σ2 + σTE
2 + σT

2        , 
 

where σT
2 is the among S1-topcross-family-within-set variance component, σTE

2 is the S1-

topcross-family-by-environment-within-set variance component, σ2 is the error variance, r is 

the number of replications, and e is the number of environments. Due to missing data, the 

harmonic mean for the total number of experimental units assigned to a given S1 topcross 

family was used as a coefficient in the entry mean heritability equation. Approximate 

standard errors were derived by the delta method (Holland et al., 2003).  

 Genotypic correlations between grain yield and the other traits were estimated by 

performing multivariate analyses of variance (MANOVAs). The genotypic covariance 

between traits and corresponding variance components were estimated using REML in 

PROC MIXED.  The multivariate REML estimates were obtained by treating each pair of 

variables as repeated measurements of a single variable (Wright, 1998). MANOVAs were 

performed with a SAS macro adapted from Holland (2006), including environment, set, 

environment-by-set, replication-within-environment-by-set, S1-topcross-family-within-set, 

and S1-topcross-family-by-environment-within-set as random factors in the model. The 

genotypic correlation estimator was:                                                                        
rg   =     σG1,2           , 

  σG1 σG2 

where σG1,2  is the estimated genotypic covariance between traits 1 and 2 and σGi is the 

estimated genotypic standard deviation for trait i (i =1,2). Approximate standard errors were 

derived by the delta method.  

 Direct responses to S1 topcross RS to LH132.LH51 for both populations were 

predicted following Holland et al. (2003) for each trait as:  

Ri    =   kp . h2 . σp , 

where Ri is the response to selection for trait i, kp is the standardized selection differential, hi
2 

is the entry mean heritability estimate for trait i, and σpi is the phenotypic standard deviation 

of S1 topcross family means for trait i.  Indirect responses to S1 topcross RS when directly 

selecting on grain yield were estimated following Bernardo (2002) for the other traits as: 

re        e 

______________ 
___ ___ 

σT
2 



 123

RC
i = kp . hyld

 . rg(y,i) . σT(i)   , 

where RC
i is the indirect response to selection for trait i when selecting on grain yield, kp is as 

defined previously, hyld is the square root of the entry mean heritability estimate for yield, 

rg(y,i) is the genotypic correlation between yield and trait i, and σT(i) is the square root of the 

among S1-topcross-family-within-set variance component for trait i.   

In estimating direct and indirect responses to S1 topcross RS, the proportion of individuals 

selected to recombine was assumed to be 0.2, and kp was 1.44 in all cases. This intensity was 

chosen as it is similar to the intensities practiced in S1 RS. 

Results 

Cycle-within-population main effects were significant (P ≤ 0.05) for yield and 

moisture for the cycle per se experiment (Table 4a). Sums of squares due to the linear 

regressions of yield and percent erect plants on cycle-within-population were both 

significant. Quadratic regression sums of squares were significant for moisture and percent 

erect plants, and for all traits, deviations from linear and quadratic regression were non-

significant.   

Grain yield significantly (P ≤ 0.05) increased linearly by 0.21 and 0.13 Mg ha-1  cycle-

1 for the TROPHYELITE and TROPHYCOMP populations, respectively (Figure 1), but 

these responses did not differ significantly. Percent erect plants significantly increased 

linearly by 2.24 % cycle-1 for the TROPHYCOMP population, while for the TROPHYELITE 

population, the response was quadratic, with percent erect plants decreasing in later cycles 

(Figure 2). A significant quadratic response was also observed for moisture in the 

TROPHYELITE population, with moisture increasing in later cycles (Figure 3). Genetic gain 

did not occur for the other traits in either population. 

 On a mean basis, the increases in grain yield for the last cycle for each population 

were 0.5 and 1.3 Mg ha-1 greater than compared to the earliest cycles for the TROPHYCOMP 

and TROPHYELITE populations, respectively (Table 5). Cycles of the TROPHYCOMP 

population consistently yielded more than cycles from the TROPHYELITE population 

(Figure 1), although the difference in the last cycles was non-significant (Table 5). The 

TROPHYELITE cycles also had significantly (P = 0.05) higher moisture, more days to tassel 

and silking, but lower ear height (Table 6, Figures 2-3). The yield for the last cycles of these 

populations was 68% of the average commercial check yield, and all cycles had significantly 
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(P ≤ 0.05) higher moisture, more lodging, and later flowering time than the commercial 

check averages.  

Significant cycle-within-population main effects for the cycle-topcrosses occurred for 

yield, moisture, and percent erect plants (Table 4b). Sums of squares due to the linear 

regressions of yield and moisture on cycle-within-population were both significant (P ≤ 

0.01). Quadratic regression sums of squares were non-significant for all traits, but deviations 

from linear and quadratic regression were significant for moisture and percent erect plants.   

Yield significantly (P = 0.05) increased linearly by 0.07 and 0.06 Mg ha-1cycle-1 for 

the TROPHYELITE and TROPHYCOMP population topcrosses to LH132.LH51, 

respectively (Figure 4). These responses did not differ significantly. Moisture significantly 

decreased linearly by –0.14 % cycle-1 for the TROPHYELITE topcross population, but did 

not change for the TROPHYCOMP population (Figure 5). Despite their significance, 

polynomials with higher orders than two were not included in modeling responses for either 

moisture or percent erect plants, as their inclusion did not seem meaningful. Genetic gain did 

not occur for the other traits in either population. 

On a mean basis, topcross yield for the last cycle for both populations was 0.3 Mg ha-

1 greater than compared to the earliest cycle-topcross averages (Table 6). Cycle-topcrosses 

for the TROPHYELITE population consistently yielded more than cycle-topcrosses from the 

TROPHYCOMP population (Table 6, Figure 4). The TROPHYELITE cycle-topcrosses 

initially had higher moisture, but moisture levels for both populations were similar in later 

cycles (Figure 5). As was the case with the cycles per se, the TROPHYCOMP cycle-

topcrosses consistently had greater ear height and fewer days to tassel and silking (Table 6). 

The yield for the last cycle-topcrosses of these populations was comparable to LH132.LH51, 

and the cycle-topcrosses were within the range of the commercial checks for the other traits, 

except moisture.  

One and two S1 topcross families from the TROPHYCOMP C8 and TROPHYELITE 

C5 populations, respectively, did not differ significantly for grain yield when compared to the 

commercial check averages (Tables 7A and 7B). Eleven other S1 topcross families from these 

populations were close to this threshold, and collectively, these fourteen families yielded 1.0 

Mg ha-1 less on average than the most productive commercial checks, DK697 and P31G98. 

The highest yielding family from the TROPHYELITE C5 population, 8010-44xLH132.LH51, 
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yielded similarly to LH200.LH262, but had significantly (P = 0.05) more moisture and 

lodging than the commercial check averages. The fourteen families were within the range of 

the commercial checks for the other traits, except for a few with more moisture or lodging.

 The topcross average yield of the TROPHYELITE C5 population to LH132.LH51 

was 0.1 Mg ha-1 significantly (P = 0.05) greater than the TROPHYCOMP C8 topcross 

average. The TROPHYELITE C5 S1 topcrosses, however, significantly (P = 0.05) increased 

moisture by 1.0%, flowered later by one day, and produced 3 cm taller plants on average than 

the TROPHYCOMP C8 S1 topcrosses. Both sets of S1 topcrosses yielded significantly (P = 

0.05) more on average than LH132.LH51 per se. 

 The among-S1-topcross-family-variance components were significant (P ≤ 0.01) for 

all traits in both populations (Table 8). Significant S1 topcross-family-by-environment-

interaction also occurred for every trait, except ear height, in both populations. The among-

S1-topcross-family variance components were greater for each trait in the TROPHYELITE 

C5 population. Likewise, genotypic coefficients of variation were larger in this population.

 Entry mean heritabilities for each trait were greater in the TROPHYELITE C5 

population (Table 9).  The grain yield heritability estimate for the TROPHYELITE C5 

population was approximately 1.4 times larger than the corresponding estimate for the 

TROPHYCOMP C8 population.  The heritabilities were similar for the other traits, except for 

days to fifty-percent silking.  

 In agreement with the heritability estimates, predicted direct responses to S1 topcross 

RS for each trait were greater in the TROPHYELITE C5 population (Table 10).Genotypic 

correlations between grain yield with the other traits were unfavorable in both populations. 

The absolute value of each estimate was greater than two standard errors, indicating that 

these unfavorable correlations need consideration. The adverse effects of these correlations 

are apparent in the indirect responses to S1 topcross RS for these traits, when directly 

selecting for yield (Table 11). Specifically, moisture, ear height, plant height, days to fifty-

percent tassel shed, and days to fifty-percent silking would increase by 0.23 and 0.28 % 

cycle-1, 2.73 and 2.26 cm cycle-1, 3.63 and 3.92 cm cycle-1, 0.40 and 0.31 days cycle-1, and 

0.40 and 0.29 days cycle-1 for the TROPHY elite and composite populations, respectively. 

Percent erect plants would decrease by 2.13 % cycle-1 for the TROPHYELITE population and 

by 1.08 % cycle-1 for the TROPHYCOMP population. 
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Discussion 

S1 RS increased grain yield across the cycles per se for both populations, and by 

improving these populations, genetic gain, in terms of their topcross performance to 

LH132.LH51, also occurred. The latter resulted indirectly via increasing the frequency of 

alleles with favorable additive effects for yield within each population. In both instances, 

grain yield increased linearly for each population, as expected (Duvick et al., 2004), and 

greater genetic gain occurred for the TROPHYELITE population. Initially, cycles per se 

yields were greater for the TROPHYCOMP population, but toward the later cycles, yield 

levels from both populations were similar. In contrast, the TROPHYELITE cycle-topcrosses 

consistently yielded more throughout the cycles of selection, resulting from the population 

being derived from second-cycle lines selected initially for good topcross performance.  

The yield responses to S1 RS for the populations per se are similar to improvement 

rates reported previously, and seem adequate for deriving more productive inbred lines. 

However, the yield responses across the cycle-topcrosses to LH132.LH51, are approximately 

half that of the commercial breeding activities in the U.S. Corn Belt (Duvick et al., 2004). 

This is worrisome, as lines derived from future cycles from these populations will likely not 

produce competitive hybrids. Naturally, choosing a better tester would improve topcross 

yield, but not necessarily relative responses.  

Currently, the average grain yield for the better yielding S1 topcross families are 

already at a 1.0 Mg ha-1 disadvantage when compared to the newer commercial hybrids, 

DK697 and P31G98. This did not result from inadequate additive-topcross-genetic variation, 

but from the low mean grain yield of the two topcross populations. The TROPHYELITE C5 

and TROPHYCOMP C8 topcross families did yield 0.2 Mg ha-1 more on average than 

LH132.LH51 per se, a hybrid widely used in the 1980’s. The highest yielding S1  topcross 

family, 8010-44xLH132.LH51, yielded 1.9 Mg ha-1 more than LH132.LH51 per se, while 

increasing moisture and lodging, respectively, by 2.5 and 19 %. Clearly, there are favorable 

yield alleles within these populations that are absent in LH132.LH51 (and probably in most 

then elite breeding sources), but the average topcross performance of the latest cycles of each 

population are at least 20 years behind current U.S. efforts. 

Throughout S1 RS, selection focused primarily on yield, but minor improvements did 

occur for moisture and percent erect plants. The moisture response was quadratic for the 



 127

TROPHYELITE population per se, but excluding the last cycle, moisture levels generally 

decreased. The response is likely linear, as moisture levels decreased linearly for the cycle-

topcrosses, but a unique cycle-by-year interaction for the last cycle probably led to a 

quadratic response. Percent erect plants increased linearly by 2.24 % cycle-1 for the 

TROPHYCOMP population, but no response occurred for the cycle-topcrosses.  

Predicted grain yield responses to S1 topcross RS to LH132.LH51 for the two 

populations are substantially more promising in terms of deriving higher yielding S1 topcross 

families. Specifically, the response for the TROPHYELITE and the TROPHYCOMP 

populations are, respectively, 0.05 Mg ha-1yr-1greater and equivalent to historical rates of 

gain for commercial breeding activities in the U.S. Corn Belt (Duvick et al., 2004). This is 

not surprising, as topcross RS, operating almost exclusively on additive-topcross genetic 

variation, capitalizes on the interaction between alleles from the reference population and 

those from the tester (Holland et al., 2003). These rates will probably not be realized 

completely, as they are predictions, and also because the among-S1-topcross-family-variance 

component is likely biased upwardly by additive-by-additive-topcross-epistatic interactions. 

Nonetheless, they are substantially greater than those estimated from the cycle-topcross 

experiments. 

Comparing resource allocation requirements to operate these breeding strategies is 

necessary before changing approaches. Both RS practices require two years for cycle 

completion, but topcrossing adds more cost (Appendix A VI.). Topcrossing is attractive 

because it can allow for more replication, as topcros family seed can be generated more 

easily. Replication leads to the higher costs, but usually, better data. Considering cost, S1 

topcross RS could feasibly be practiced on one population, with the TROPHYELITE C5 

population being a natural choice, as both its topcross yield average and yield response is 

notably greater. Topcrossing would be approximately twice as expensive, but genetic gain 

would also double. Specific to our program, recombining S1 families will need to occur in a 

winter nursery, such as Puerto Rico or Hawaii, since superior families are not identified until 

after harvesting yield trials. 

Ultimately, with any RS procedure, families are placed into a selection nursery for 

line development, but currently, no inbred lines have been developed from any cycle that are 

competitive enough, in topcrosses, to merit release or subsequent recycling. Most lines fail to 
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meet minimum culling levels administered in the nursery, and never enter yield trials. The 

lines that are topcrossed, are unlikely to be competitive, as the responses across the cycle-

topcrosses are inadequate for achieving competitive yield levels. This is partially due to the 

restrictive seed supply obtainable from S1 families that limit replication when testing, but 

more so, because sampling a few S1 families on the basis of per se performance drastically 

reduces the search space for combining ability.  

S1 topcross RS for grain yield will lead to undesirable responses in the other 

agronomic traits, so a selection index would be beneficial. This approach will further likely 

reduce the yield gain for the TROPHYELITE population per se, thereby, possibly 

compromising the per se performance of lines derived from superior families. Performing S1 

topcross RS in conjunction with S1 per se observation trials could offset this, but more 

logically, lines with superior topcross performance should be recycled into an established 

breeding program.  

Perhaps most prohibiting to success is deciding which materials merit adapting and 

subsequent enhancement, and what breeding methods need deployment to effectively capture 

the full potential of such efforts.  Often, these decisions have been almost exclusively 

diversity driven, that is, exploiting too much germplasm [the Latin American Maize Project 

(LAMP), Holland and Goodman, 1995; and to a lesser extent, the Germplasm Enhancement 

of Maize (GEM) project] and utilizing breeding efforts that maintain diversity, i.e. recurrent 

selection. These approaches often ignore a simple, yet obvious, solution that modern plant 

breeding has revealed over the past century, mainly that recycling the most currently 

available elite materials often leads to the most success.  

While sampling diversity is useful and responsible, it seems that once promising 

materials are identified, resources need reallocating to at least place some emphasis on 

working these materials more extensively. The germplasm enhancement of Maize (GEM) 

project is one such example that focuses breeding efforts on the better accessions identified 

by LAMP (Taba et al., 2004).  But within the GEM protocol, newer tropical hybrids and 

publicly available temperate-adapted-all-tropical lines and populations are not even 

considered.  Prudence suggests that breeding with these materials would offer more success 

than their non-adapted counterparts. The families that are released by GEM are not being 

recycled with each other, and sometimes, temperate parental lines of GEM crosses are not the 
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most current (Pollack, 2003). Together, these factors minimize the chances of obtaining 

commercially competitive inbred lines. 

Establishing a long term breeding program that adapts and enhances tropical 

germplasm has been successful at NCSU by using, as source germplasm, the most superior 

double cross tropical hybrids available at the time. Applying pedigree line recyling and S1 RS 

to the same sets of lines derived from these hybrids at nearly the same time led to releasing 

22 lines from the former method, while none from the latter. Clearly, pedigree line recycling 

is more favorable, as the most current materials are constantly being worked, while also 

being able to efficiently improve line weaknesses.  As with any breeding program, these 22 

temperate-adapted lines are not superior for all traits, but some lines, such as NC346, have 

shown to have excellent yielding ability (Goodman, 1999) while others possess superior 

resistance to multiple diseases (Balint-Kurti et al., 2006; Jines et al., 2007; Robertson-Hoyt et 

al., 2006).   

Topcross RS places emphasis on the combining ability of families, and perhaps 

should be universally chosen in favor of RS for yield per se when improving all-tropical 

populations. The primary reason is because resources are devoted only to families with 

favorable combining ability, and more importantly, the topcross response of a population to a 

particular tester is maximized.  The latter ensures that derived lines maintain relevancy, and 

in some instances, as with the TROPHYELITE population, the response can surpass 

industrial gains. Additionally, yield variants are more likely to be identified on a consistent 

basis via topcrossing, and favorable genomic regions from such variants could be 

introgressed into elite germplasm pools. S1 topcross RS will be initiated on the 

TROPHYELITE population, as its yield response is greater than the industry average. This 

approach will be married with pedigree line recycling, as both are complementary, with line 

recycling correcting agronomic deficiencies, and RS searching for new yield genes. 

Ultimately, public work in germplasm enhancement needs unification through GEM, as 

private access to public materials is increasingly becoming restrictive, and vice-versa. 
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Table 1†. Parental tropical hybrids and their racial/varietal backgrounds. 
 
Hybrid Code Country Racial/Varietal Background 
Agroceres 155 155 Brazil Azteca, Tuxpan Yellow Dent 
Agroceres 504 504 Brazil Azteca, Cateto 
H5 5 El Salvador Cuban Flint, Tuxpeno 
H101 101 El Salvador  Cuban Flint, Tuson 
Pioneer X105A 105 Jamaica  Tuxpeno, ETO, Cuban Flint  
Pioneer X304A 304 Jamaica Coastal Tropical Flint, Cuban  
   Flint, Tuson 
Pioneer X306B 306 Jamaica Chandelle, Tuson, Coastal  
   Tropical  Flint, Cuban Flint 
† Adapted from Goodman (1992) 
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Table 2. Inbred lines that were intercrossed to form the TROPHYELITE synthetic. 
 
Inbred code NC LINE CYCLE 
7846 NC298 2 
7848 NC348 2 
7876  2 
7905  2 
7948 NC396 2 
7950 NC304 2 
7963  2 
7967 NC350 2 
7969  2 
7995 NC300 2 
8020-1  2 
NC296 NC296 1 
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Table 3. The phases of one cycle of  S1 recurrent selection. 
 
Nursery         Phase      Generation (Seed Harvested)                 Purpose 
 
Winter1 1 CiS1 generate S1 families from Ci cycle               
Summer1 2 not/applicable Test S1 families in replicated trials 
Winter2  not/applicable not/applicable                   
Summer2 3 Ci+1 intercross selected S1 families  
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Table 4. Sums of Squares for yield (YLD), percent moisture (MOI), percent erect plants (EPL), ear height (EHT), and plant height 
(PHT) and days to fifty-percent silk (SD) and pollen-shed (TD) averaged across environments for A) cycles per se and B) cycle-
topcrossess. 
 
A)Cycles per se 
                                 5  environments in 2006                                                                                 Clayton 2006 only 
Sourcea                     DF YLD           MOI        EPL  EHT          PHT          DF            SD         TD 
cycle/pop 9 7.61* 6.21* 1136.76 214.79 539.07 9 11.36 8.02
 linear/popb 2 3.73** 1.57 438.26* 21.93 4.02 2 2.78 1.66  
 Quad/popc 2 1.77 3.57** 517.53* 78.92 194.11 2 0.80 1.43 
  LOF/popd 5 2.12 1.06 180.97 113.94 340.94 5 7.78 4.93 
Error 36 11.55 10.87 2346.46 1835.47 3126.39 9 8.82 10.42 
 

 
B) Cycle-topcrosses 
           9 environments (4 locations in 2005, 5 in 2006)                                         Clayton (2005,2006) only 
Sourcea                     DF YLD           MOI        EPL  EHT          PHT          DF            SD         TD 
cycle/pop 9 1.34** 3.95** 66.83* 51.43 41.15 9 1.02 1.11
 linear/popb 2 1.04** 2.00** 15.67 13.01 11.91 2 0.16 0.36 
 Quad/popc 2 0.08 0.40 6.37 16.85 12.62 2 0.13 0.06  
  LOF/popd 5 0.22 1.55** 44.79* 21.57 16.62 5 0.73 0.69 
Error 72 2.91 4.81 234.79 337.80 468.59 9 0.60 0.58 
 

a sources of variation due to either location, population (pop), and population x location interaction or replication, population, and  
 replication x population interaction are not shown. 
b linear/pop: source of variation pooled across populations due to the linear regression of a trait on cycle number. 
c LOF/pop: source of variation pooled across populations  due to the lack of fit of linear regression of a trait on cycle number. 
*,** significant at the 0.05 and 0.01 probability levels. 
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Table 5. Cycle per se means across five environments (Clayton, Jackson Springs, Lewiston, 
Kinston, and Plymouth, NC) for yield (YLD), percent moisture (MOI), percent erect plants (EP), 
ear height (EHT), plant height (PHT), and days to fifty-percent pollen shed (TD) and silking 
(SD) for the TROPHY composite (TCOMP) and elite (TELITE) populations and commercial 
checks. 
 
Cycle           YLD(bu/a)YLD(t/ha)  MOI       EP        EHT         PHT         TD†       SD†      
TCOMPC3 77.7 4.9 19.1 72.9 102.6 216.7 78.0 78.0  
TCOMPC4 75.5 4.7 19.0 69.6 101.3 221.5 78.0 78.0  
TCOMPC5 87.1 5.5 18.9 79.0 106.0 219.0 78.5 78.5  
TCOMPC6 91.9 5.8 19.0 76.2 104.3 220.3 78.5 78.5  
TCOMPC7 85.0 5.3 19.3 83.4 106.0 224.8 77.5 76.5  
TCOMPC8 85.5 5.4 18.6 80.9 103.6 214.3 77.0 77.0 
TELITEC1 67.3 4.2 20.9 72.6 94.8 217.3 81.0 81.0  
TELITEC2 74.2 4.7 20.2 80.5 96.1 215.8 81.0 81.5  
TELITEC3 76.2 4.8 19.7 84.4 89.7 210.3 80.5 80.5  
TELITEC4 70.8 4.4 19.6 79.0 94.4 216.3 82.5 82.5  
TELITEC5 86.0 5.4 20.3 73.8 95.3 218.5 81.0 81.0 
G8288         138.6 8.7 17.9 97.5 95.7 240.2 74.5 74.5  
HC33.TR7322 114.6 7.2 16.2 93.9 90.5 225.8 74.0 74.0  
LH132.LH51 114.8 7.2 16.6 96.5 95.6 226.8 73.0 74.0 
LH200.LH26 123.2 7.7 17.4 90.1 104.6 231.2 75.0 74.0  
P31G98 141.4 8.9 16.9 97.8 104.5 241.2 76.0 76.0  
Check Mean 126.5 7.9 17.0 95.2 98.2 233.0 74.5 74.5  
CV 10.9 10.9 4.7 10.6 7.3 4.6 1.2 1.1 
LSD1α=0.05

a 13.0 0.8 1.1 11.1 9.2 12.9 2.0 1.8 
LSD2 α=0.05

b 10.1 0.6 0.9 8.6 7.1 10.0 1.6 1.4  
 

† Means based off of Clayton only 
a LSD1α=0.05: appropriate for comparing cycles 
b LSD2 α=0.05: appropriate for comparing a cycle-topcross to a commercial check  
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Table 6.  Cycle-topcross means across nine environments in 2005 and 2006 for yield (YLD), 
percent moisture (MOI), percent erect plants (EP), ear height (EHT), plant height (PHT), and 
days to fifty-percent pollen shed (TD) and silking (SD) for the TROPHY composite (TCOMP) 
and elite (TELITE) populations and commercial checks. 
 
Cycle           YLD(bu/a)YLD(t/ha)  MOI       EP        EHT         PHT         TD†       SD†      
TCOMPC3xT7 113.7 7.1 18.3 89.0 113.5 266.6 76.0 76.2  
TCOMPC4xT7 117.4 7.4 18.1 90.7 112.6 267.1 76.2 76.2  
TCOMPC5xT7 116.7 7.3 18.1 89.9 112.9 266.5 75.8 75.9 
TCOMPC6xT7 117.5 7.4 18.5 90.9 114.2 266.3 75.9 75.9 
TCOMPC7xT7 119.8 7.5 18.6 91.2 114.4 266.9 76.1 76.2 
TCOMPC8xT7 118.7 7.4 18.3 90.4 113.5 265.2 75.7 75.9 
TELITEC1xT7 117.0 7.3 19.2 92.0 112.8 271.2 77.1 77.4  
TELITEC2xT7 119.4 7.5 18.7 91.2 111.2 269.7 76.7 77.0  
TELITEC3xT7 121.2 7.6 18.8 91.9 111.7 270.0 77.0 77.4  
TELITEC4xT7 121.5 7.6 18.7 89.4 113.2 271.2 76.3 76.7  
TELITEC5xT7 121.8 7.6 18.5 91.7 113.1 271.4 76.6 77.2 
DK697      153.0 9.6 18.7 90.0 114.0 265.4 77.3 77.1  
G8288    134.8 8.5 18.2 92.6 100.9 267.1 73.8 74.0  
LH132.LH51 119.4 7.5 16.9 96.7 105.1 256.3 74.6 74.7 
LH200.LH26 128.5 8.1 17.7 90.0 112.8 265.4 76.2 76.1  
P31G98 153.6 9.6 16.8 92.2 111.9 271.5 76.4 76.1  
Check Mean 137.9 8.6 17.7 92.3 108.9 265.2 75.6 75.6  
CV 5.0 5.0 2.7 4.0 2.7 1.6 0.7 0.5 
LSD1α=0.05

a 5.9 0.4 0.5 3.5 2.8 4.0 1.2 0.8  
LSD2 α=0.05

b 4.5 0.3 0.4 2.7 2.2 3.1 0.9 0.6  
 

† Means based off of Clayton only 
a LSD1α=0.05: appropriate for comparing cycles 
b LSD2 α=0.05: appropriate for comparing a cycle-topcross to a commercial check  
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Table 7. Set-adjusted entry means across eight environments for the better yielding S1 topcross 
families to LH132.LH51 from the A) TROPHYCOMP C8 and B) TROPHYELITE C5 
populations.  
 
A) 
ENTRY         YLD(bu/a)YLD(t/ha)   MOI       EPL  EHT         PHT TD†     SD† 

9363-20xT7 121.0 7.6 19.7 83.1 115.4 288.3 72.2 72.7 
9363-30xT7 121.4 7.6 19.7 81.0 114.7 282.8 71.7 71.2 
9363-35xT7 121.6 7.6 18.1 79.5 120.3 286.0 71.2 70.7 
9363-66xT7 125.0 7.8 19.2 79.2 114.6 273.9 71.2 71.0 
C8 S1xT7meana113.5 7.1 18.0 83.0 112.2 277.7 70.7 70.6 
DK697 135.1 8.5 18.6 85.4 111.3 278.5 72.8 73.0 
G8288 128.4 8.1 18.2 90.2 101.5 283.0 69.8 70.1 
LH132.51 110.3 6.9 16.7 90.0 104.4 270.3 70.4 70.4 
LH200.62 125.4 7.9 17.6 80.2 114.0 281.8 72.1 71.4 
NK91-R9 128.5 8.1 19.8 80.7 119.3 311.3 74.9 74.8 
P31G98 136.6 8.6 17.0 86.7 111.4 284.5 72.5 72.3 
check mean 127.4 8.0 18.0 85.5 110.3 284.9 72.1 72.0 
LSD1α=0.05

b 6.9 0.4 0.5 5.0 4.0 5.3 0.5 0.5 
LSD2α=0.05

c 5.5 0.3 0.4 3.9 3.2 4.2 0.4 0.4 
LSD3α=0.05

d 5.0 0.3 0.4 3.6 2.9 3.8 0.3 0.4 
 
B) 
ENTRY         YLD(bu/a)YLD(t/ha)   MOI       EPL  EHT         PHT TD     SD 
8010-6xT7 124.8 7.8 19.7 76.2 119.4 294.7 73.9 73.7 
8010-9xT7 120.3 7.5 18.8 84.0 109.1 279.0 73.3 73.2 
8010-16xT7 120.1 7.5 18.4 83.6 112.0 280.0 72.0 72.4 
8010-25xT7 121.4 7.6 19.6 72.4 113.6 295.8 72.4 72.5  
8010-28xT7 121.8 7.6 18.3 82.8 109.6 278.9 71.5 71.7  
8010-44xT7 125.1 7.8 20.6 73.9 107.0 277.6 72.3 72.5 
8010-54xT7 121.7 7.6 19.0 84.1 112.2 283.1 72.6 72.9 
8010-57xT7 121.7 7.6 18.9 85.2 111.8 286.4 72.6 72.6 
8010-75xT7 121.7 7.6 18.3 76.8 110.1 283.6 71.2 71.5 
8010-79xT7 121.1 7.6 20.1 81.9 112.7 288.1 72.2 72.7 
C5 S1xT7mean 114.5 7.2 18.9 82.9 108.8 280.6 71.7 72.0  
DK697 136.5 8.6 19.2 86.4 107.3 273.5 72.5 72.7 
G8288 130.4 8.2 18.7 92.8 98.2 279.0 69.7 69.9 
LH132.51 110.7 6.9 17.1 93.4 100.9 266.3 70.2 70.3 
LH200.62 125.6 7.9 18.1 80.1 111.3 278.6 71.5 71.1 
NK91-R9 129.5 8.1 20.3 78.5 117.6 311.1 74.7 74.6 
P31G98 138.8 8.7 17.8 89.5 108.3 282.4 72.0 72.0 
Check Mean 128.6 8.1 18.5 86.8 107.3 281.8 71.8 71.8 
LSD1α=0.05

b 7.0 0.4 0.5 6.2 4.2 5.3 0.5 0.5 
LSD2α=0.05

c 5.5 0.3 0.4 4.9 3.3 4.2 0.4 0.4 
LSD3α=0.05

d  5.0 0.3 0.4 4.5 3.0 3.8 0.4 0.4 
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Table 7 (continued) 
 

† Means based on the two Clayton environments only 
‡ T7: LH132.LH51 
a C8 S1xT7mean: Topcross average of C8 to LH132.LH51 
b LSD1α=0.05: appropriate for comparing S1 topcross families 
c LSD2 α=0.05: appropriate for comparing a S1 topcross family to a commercial check  
d LSD3 α=0.05: appropriate for comparing a S1 topcross family to the check mean 
e  C5 S1xT7mean: Topcross average of C5 to LH132.LH51  
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Table 8. REML estimates, based on 13 environments, of the S1-topcross-family- within-set (σT
2) 

and the S1-topcross-family-by-environment- within-set (σTE
2) variance components for yield 

(YLD), percent moisture (MOI), percent erect plants (EPL), ear height (EHT), plant height 
(PHT), and days to fifty-percent pollen-shed (TD) and silking (SD) for the TROPHYELITE C5 
(ELITE) and TROPHYCOMP C8 (COMP) populations. 
 
Pop        Trait              σT

2          STDERRa    σTE
2         STDERRb   CVc       GVd        

ELITE YLD(bu/a)  16.14** 3.32 15.45** 3.96 0.12 0.04  
ELITE YLD(t/ha)  0.06** 0.01 0.06** 0.02 0.12 0.04  
ELITE MOI  0.47** 0.07 0.17** 0.02 0.04 0.04  
ELITE EPL  14.32** 2.78 28.22** 2.67 0.11 0.05  
ELITE EHT  18.15** 3.00 2.28 1.44 0.08 0.04  
ELITE PHT  59.02** 9.17 3.93* 2.36 0.04 0.03  
ELITE TD†  0.59** 0.11 0.12* 0.05 0.01 0.01  
ELITE SD†  0.65** 0.12 0.08* 0.05 0.01 0.01 
COMP YLD(bu/a)  7.79** 2.00 18.41** 3.49 0.11 0.02  
COMP YLD(t/ha)  0.03** 0.01 0.07** 0.01 0.11 0.02  
COMP MOI  0.40** 0.06 0.17** 0.01 0.04 0.03  
COMP EPL  8.05** 1.63 14.31** 1.80 0.10 0.03  
COMP EHT  12.58** 2.15 1.47 1.34 0.08 0.03  
COMP PHT  38.97** 6.30 4.93* 2.41 0.04 0.02  
COMP TD†  0.39** 0.08 0.07* 0.04 0.01 0.01  
COMP SD†  0.33** 0.07 0.14** 0.05 0.01 0.01  
*,** significant at the 0.05 and 0.01 probability levels. 
a STDERR: Standard error for σT

2 
b  STDERR: Standard error for σTE

2 
c CV: coefficient of variation x 100 
a GV: genotypic coefficient of variation = [σT/(trait mean)] x 100 
† based on Clayton environments only 
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Table 9. Entry-mean heritabilities estimated from the S1 topcross families from the 
TROPHYELITE C5 and TROPHYCOMP C8 populations for yield (YLD), percent moisture 
(MOI), percent erect plants (EPL), ear (EHT) and plant (PHT) height, and days to fifty-percent 
pollen-shed (TD) and silking (SD). 
    
 TROPHYELITE C5 TROPHYCOMP C8  
 
Trait      h2 estimate       stderra            h2 estimate         stderr  
YLD 0.60 0.06 0.42 0.07 
MOI 0.86 0.02 0.85 0.02 
EPL 0.54 0.05 0.54 0.06 
EHT 0.86 0.03 0.84 0.03 
PHT 0.93 0.02 0.88 0.02 
TD† 0.80 0.04 0.76 0.04 
SD† 0.82 0.03 0.68 0.06 
a  stderr: standard error 
† based on Clayton environments only 
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Table 10.  Estimates of direct responses to S1 topcross RS for yield (YLD), percent moisture 
(MOI), percent erect plants (EPL), ear (EHT) and plant (PHT) height, and days to fifty-percent 
pollen-shed (TD) and silking (SD) ; and indirect responses to S1 topcross RS when directly 
selecting on grain yield for the TROPHYELITE C5 (Elite) and TROPHYCOMP C8  (Comp) 
populations. 
 
                                                          Direct Response†            Indirect Response† 

 
Trait,  (units)  Elite %a  Comp %a Elite Comp  
YLD, (bu/a) 4.11 3.59 2.23 1.96 - - 
YLD, (t/ha) 0.26 3.58 0.14 1.97 - - 
MOI, (percent of grain) 0.88 4.66 0.79 4.41 0.23 0.28 
EPL, (percent erect plants) 3.37 4.07 2.59 3.12 -2.13 -1.08 
EHT, (cm) 5.62 5.16 4.61 4.11 2.73 2.26 
PHT, (cm) 10.56 3.76 8.33 3.00 3.63 3.92 
SDb, (days) 1.05 1.45 0.67 0.96 0.40 0.29 
TDb, (days)  0.99 1.38 0.78 1.10 0.40 0.31†   

† in determining responses, kp was 1.44 in all cases 
a %: (response/population mean) x 100 
b based on Clayton environments only 
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Table 11. Genotypic correlations between grain yield (YLD) and percent moisture (MOI), 
percent erect plants (EPL), ear (EHT) and plant (PHT) height, and days to fifty-percent pollen-
shed (TD) and silking (SD) for the TROPHYELITE C5 and TROPHYCOMP C8 topcross 
populations. 
 
 TROPHYELITE C5 TROPHYCOMP C8 
 
Trait1   Trait2            ra                        stderr             ra                              stderr  
YLD MOI 0.30* 0.12 0.47** 0.12   
YLD EPL -0.50** 0.12 -0.41* 0.15   
YLD EHT 0.57** 0.09 0.68** 0.10   
YLD PHT 0.42** 0.11 0.67** 0.10   
YLD TD† 0.47** 0.14 0.52* 0.22   
YLD SD† 0.45** 0.14 0.54* 0.26  
*,** |ra| is greater than two and three stand errors (stderr), respectively 
† based on Clayton environments only 
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Figure 1. Cycle per se yield averages across five environments in 2006 regressed on 
cycle number for the TROPHYCOMP and TROPHYELITE populations. 
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Figure 2. Cycle per se percent erect plant averages across five environments in 2006 
regressed on cycle number for the TROPHYCOMP and TROPHYELITE populations. 
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Figure 3. Cycle per se moisture averages across five environments in 2006 regressed on 
cycle number for the TROPHYCOMP and TROPHYELITE populations. 
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Figure 4. Cycle-topcross (Tester = LH132.LH51) yield averages across nine 
environments in 2005 and 2006 regressed on cycle number for the TROPHYCOMP and 
TROPHYELITE populations. 
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Figure 5. Cycle-topcross (Tester = LH132.LH51) moisture averages across nine 
environments in 2005 and 2006 regressed on cycle number for the TROPHYCOMP and 
TROPHYELITE populations. 
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A I. Gray Leaf Spot (GLS) ratings and days to fifty-percent-pollen shed (DTP) entry 
means for 143 NC300/B104 recombinant inbred (RI ) lines and topcrosses (TC) to 
FR615xFR697, which were evaluated in separate experiments. Averages of the 
commercial checks (Check mean) and parental lines and topcrosses (Parental mean), and 
RI means, minimums, and maximums are also included. 
 
 RI lines  RI TC    
Entry                        GLS†         DTP           GLS         DTP 
1952/01  5.15 82.61 6.56 82.34 
1953/01  5.34 81.31 5.83 81.07 
1954/01  6.93 82.36 7.18 79.91 
1955/01  5.31 81.81 6.58 79.94 
1956/01  6.46 82.46 6.91 80.08 
1957/01  6.39 79.85 7.01 81.09 
1958/01  6.82 81.63 6.57 80.62 
1959/01  6.46 80.92 6.97 80.27 
1960/01  6.88 82.58 6.97 82.28 
1961/01  6.85 82.69 6.54 81.92 
1962/01  6.52 79.47 6.83 80.69 
1963/01  6.99 80.73 7.26 80.67 
1964/01  6.62 83.39 6.41 81.33 
1965/01  7.49 88.23 7.59 81.56 
1966/01  6.30 80.31 7.17 81.23 
1967/01  5.45 79.40 6.51 79.38 
1968/01  6.56 80.39 6.40 80.55 
1969/01  6.55 83.26 6.85 80.90 
1970/01  6.64 83.30 7.31 81.00 
1971/01  6.46 78.69 6.94 79.66 
1972/01  6.71 82.69 7.40 81.43 
1973/01  6.48 79.94 7.15 80.37 
1974/01  6.12 84.39 5.77 81.83 
1975/01  6.37 82.62 6.80 81.75 
1976/01  6.86 84.12 7.65 80.71 
1977/01  6.55 84.24 7.06 80.42 
1978/01  4.93 79.49 6.16 80.25 
1979/01  6.60 80.52 5.91 80.08 
1980/01  7.31 84.68 7.52 80.35 
1981/01  4.77 80.20 5.72 79.86 
1982/01  5.65 79.93 6.36 79.30 
1983/01  5.85 81.32 5.76 80.28 
1984/01  5.87 81.88 5.81 79.43 
1985/01  6.52 82.64 6.79 80.25 
1986/01  7.49 84.60 7.67 82.22 
1987/01  6.12 79.37 5.97 79.60 
1988/01  6.56 81.38 7.52 80.56 
1989/01  5.46 77.46 6.22 78.72 
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A I. (continued) 
 RI lines  RI TC    
Entry                        GLS         DTP           GLS         DTP 
1990/01  7.06 81.88 7.13 79.49 
1991/01  6.66 79.03 7.64 80.12 
1992/01  6.20 81.05 6.55 79.86 
1993/01  6.23 86.64 7.25 82.30 
1994/01  6.03 79.34 6.08 79.05 
1995/01  6.01 78.91 6.79 78.75 
1996/01  6.87 82.99 7.59 82.46 
1997/01  6.36 78.89 6.94 80.35 
1998/01  6.04 79.13 5.33 80.27 
1999/01  6.08 81.69 6.89 81.32 
2000/01  6.75 80.74 6.65 80.02 
2001/01  5.83 78.74 6.95 80.07 
2002/01  5.92 80.91 6.28 80.55 
2003/01  5.64 80.77 6.55 80.41 
2004/01  6.66 82.14 6.30 79.89 
2005/01  6.47 82.91 7.55 81.34 
2006/01  6.95 83.12 7.64 81.98 
2007/01  6.34 82.12 7.46 82.89 
2008/01  5.61 80.88 6.89 80.40 
2009/01  5.13 78.85 6.45 79.24 
2010/01  6.83 80.27 7.34 79.81 
2011/01  6.61 82.11 7.09 80.62 
2012/01  - - 7.19 80.56 
2013/01  7.23 82.96 7.18 80.89 
2014/01  7.70 83.08 7.60 82.71 
2015/01  5.84 81.79 6.76 82.12 
2016/01  5.32 78.94 6.04 78.49 
2017/01  - - 7.04 80.63 
2018/01  5.68 80.16 6.25 80.53 
2019/01  6.62 81.53 6.85 79.59 
2020/01  6.55 83.45 6.37 80.88 
2021/01  4.34 79.91 5.41 81.29 
2022/01  6.93 80.94 7.13 79.50 
2023/01  6.82 81.26 7.41 81.21 
2024/01  5.07 81.04 5.16 79.87 
2025/01  5.64 80.57 7.30 80.52 
2026/01  5.87 78.63 6.89 79.16 
2027/01  5.32 80.84 6.69 80.23 
2028/01  6.27 81.39 7.06 80.55 
2029/01  6.35 82.60 7.06 81.79 
2030/01  6.54 79.91 7.08 79.48 
2031/01  6.75 83.26 7.38 80.89 
2032/01  6.91 81.82 7.35 81.99 
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A I. (continued) 
 RI lines  RI TC    
Entry                        GLS         DTP           GLS         DTP 
2033/01  6.03 82.44 6.80 79.93 
2034/01  5.50 83.28 5.77 80.20 
2035/01  6.72 78.34 6.46 79.59 
2036/01  6.79 80.88 7.27 80.34 
2037/01  5.84 79.33 5.78 80.18 
2038/01  5.23 82.49 5.47 79.26 
2039/01  4.20 78.15 5.18 79.41 
2040/01  6.99 79.70 6.53 79.70 
2041/01  5.82 81.69 5.69 80.34 
2042/01  - - 7.55 81.56 
2043/01  6.41 80.15 7.51 81.29 
2044/01  6.36 83.08 6.71 80.49 
2045/01  6.89 82.62 6.51 79.05 
2046/01  7.10 82.22 7.14 81.39 
2047/01  6.69 81.43 7.45 80.22 
2048/01  5.65 80.41 5.68 79.97 
2049/01  5.52 80.75 5.75 79.82 
2050/01  6.36 82.72 7.00 81.39 
2051/01  6.81 82.83 6.71 83.11 
2052/01  6.78 80.70 7.15 80.35 
2053/01  6.11 80.93 7.13 80.67 
2054/01  6.61 79.45 7.31 79.78 
2055/01  5.97 83.65 7.23 81.92 
2056/01  7.44 84.22 7.15 80.48 
2057/01  6.56 82.75 6.59 81.56 
2058/01  5.03 78.62 5.53 79.55 
2059/01  6.93 79.64 7.58 79.49 
2060/01  4.89 78.19 5.43 79.25 
2061/01  5.63 80.55 5.84 80.83 
2062/01  6.65 80.28 6.57 82.00 
2063/01  7.21 85.93 7.02 82.59 
2064/01  6.52 83.29 6.83 81.23 
2070/01  6.60 82.60 7.79 81.75 
2071/01  5.68 80.30 6.72 80.17 
2072/01  5.87 82.17 6.01 81.18 
2073/01  6.12 77.87 7.16 78.94 
2074/01  6.00 82.12 6.02 80.90 
2075/01  6.15 78.83 6.06 80.30 
2076/01  5.84 80.24 6.79 80.42 
2077/01  7.48 86.16 7.69 81.43 
2078/01  7.31 82.91 7.82 82.17 
2079/01  6.47 80.45 5.88 79.76 
2080/01  6.88 81.68 7.23 81.35 
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A I. (continued) 
 RI lines  RI TC    
Entry                        GLS         DTP           GLS         DTP 
2081/01  5.90 83.03 6.11 80.52 
2082/01  5.96 82.44 6.25 82.67 
2083/01  6.07 81.84 6.72 79.88 
2084/01  6.03 79.40 6.87 79.94 
2085/01  6.20 79.77 6.68 79.17 
2086/01  6.14 81.03 6.73 79.29 
2087/01  6.15 78.84 6.73 79.26 
2088/01  6.91 82.34 6.64 79.85 
2089/01  6.97 83.51 7.26 81.29 
2090/01  6.02 81.80 7.25 80.68 
2091/01  6.84 81.67 7.23 80.79 
2092/01  5.42 78.48 6.75 78.89 
2093/01  6.38 79.68 6.76 80.97 
2094/01  6.52 80.89 7.32 81.31 
2095/01  7.61 82.72 7.51 79.14 
2096/01  7.50 83.33 7.99 81.80 
2097/01  6.20 78.63 7.13 80.78 
2098/01  6.83 81.49 7.36 80.91 
2099/01  6.47 79.84 6.97 81.25 
Parents 
B104  4.98 78.40 5.38 78.97 
NC300  7.18 82.83 7.69 81.65 
Inbred checks 
B73  4.61 77.87 - - 
B73P  4.32 77.24 - - 
NC258  7.06 81.53 - - 
Hybrid checks 
DK689  - - 6.19 81.16 
DK697  - - 6.05 82.85 
DK743  - - 5.52 81.21 
G8288  - - 5.04 78.94 
LH132.LH51  - - 5.12 78.07 
LH195.LH256  - - 6.10 80.96 
LH200.LH200  - - 6.11 81.35 
NK91-R9  - - 5.64 83.22 
P31G98  - - 6.25 81.12 
P32K61  - - 6.78 80.75 
P3394  - - 3.64 80.30 
TR7322.HC33  - - 5.74 78.10 
RI mean  6.30 81.36 6.77 80.57 
Parental mean  6.08 80.61 6.54 80.31 
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A I. (continued) 
Check mean  5.63 79.57 5.80 80.62 
LSD1‡  0.73 2.39 0.62 1.20 
LSD2§  0.63 2.07 0.54 1.04 
LSD3¶  0.54 1.77 0.45 0.87 
LSD4#  0.26 0.86 0.24 0.43 
†  GLS = Ratings are on a 1 through 9 scale, with a one denoting susceptibility and a 9      
 designating full resistance. 

‡  LSD1α=0.05 Appropriate for comparing RI.  
§ LSD2α=0.05  Appropriate for comparing RI to a  parental topcross. 
¶ LSD3α=0.05 Appropriate for comparing RI topcrosses to the check mean. 
#  LSD4α=0.05  Appropriate for comparing the RI average to the parental average.
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A II. Estimates of chromosome (Chrom) positions (Pos), left and right flanking markers and their corresponding positions, additive 
effects of the NC300 allele, percent of explained phenotypic variation (R2), and the percent of explained genotypic variation (G%) for 
Days to fifty-percent-pollen shed quantitative trait loci (QTL) detected by multiple interval mapping using recombinant inbred (RI) 
line and topcross mean flowering dates over environments. 
 
                   RI lines    RI topcrosses    
QTL                Chrom       Left           Pos(cM)   Right(cM)   Pos(cM) QTL(Pos) Effect     R2      G%      QTL(pos) Effect      R2       G% 
DTPQTL1 4 Umc1051 137.2 Umc1808 160.8 139.2 0.75 16.7 25.7 148.2 0.39 17.4 26.7 
DTPQTL2 8 Umc1562 117.7 Bnlg2181 129.5 120.3 0.66 11.4 17.5 122.7 0.31 10.5 16.1 
RILDTPQTL1 1 Bnlg1803 36.5 Bnlg147 56.2 55.5 0.38 3.2 4.9 - - - - 
RILDTPQTL2 1 Bnlg1884 105.2 Umc1335 135.6 133.2 -0.69 9.3 14.3 - - - - 
RILDTPQTL3 1 Bnlg615 163.5 Bnlg2228 196.5 192.5 0.56 7.0 10.8 - - - - 
TCDTPQTL1 1 Bnlg2228 196.5 Umc2047 221.7 - - - - 201.5 0.37 14.7 22.5 
TCDTPQTL2 2 Umc2403 27.4 Bnlg2277 44.6 - - - - 35.4 -0.16 2.9 4.4 
TCDTPQTL3 2 Umc1551 228.2 Bnlg469 249.9 - - - - 228.2 -0.20 5.0 7.7 
TCDTPQTL4 5 Umc1221 104.3 Bnlg278 139.7 - - - - 122.3 -0.33 12.7 19.5 
Totals 47.6  73.2 63.2 96.9
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A III. Summary of chromosome numbers and corresponding positions for markers fitted 
in a multiple-marker-by-environment (env) ANOVA of Gray leaf spot measured on A) 
143 NC300/B104 maize recombinant inbred (RI) lines and B) their topcrosses with 
FR615xFR697.  
 
A) RI Lines 
Chromosome   Position(cM) Source†                  DF     Type III SS     MS      F-value 
 1 36.5 B1803/set 2 17.32 8.66 28.39*** 
 1 135.6 U1335/set 2 22.00 11.00 22.65*** 
 3 96.9 B1160/set 2 20.23 10.11 6.84* 
 4 62.5 B1265/set 2 16.54 8.27 9.62** 
 8 117.7 U1562/set 2 35.53 17.76 17.38** 
10 63.1 U2163/set 2 4.13 2.07 2.43 
10 131.6 B1677/set 2 2.43 1.21 6.86* 
 1 36.5 B1803 x env/set 8 2.44 0.31 0.61 
 1 135.6 U1335 x env/set 8 3.89 0.49 0.97 
 3 96.9 B1160 x env/set 8 11.83 1.48 2.96** 
 4 62.5 B1265 x env/set 8 6.88 0.86 1.72 
 8 117.7 U1562 x env/set 8 8.18 1.02 2.05* 
10 63.1 U2163 x env/set 8 6.80 0.85 1.71 
10 131.6 B1677 x env/set 8 1.42 0.18 0.36 
   Error‡ 471 234.94 0.50    
R2 = 0.79 CV = 11.25 
 
B) RI Topcrosses 
Chromosome   Position(cM) Source†                 DF     Type III SS     MS      F-value 
1 36.5 B1803/set 2 9.58 4.79 24.81*** 
2 85.2 U1555/set 2 16.29 8.15 25.22*** 
4 21.4 U2082/set 2 12.96 6.48 9.72* 
4 62.5 B1265/set 2 16.78 8.39 18.19*** 
8 117.7 U1562/set  2 20.48 10.24 22.58*** 
10 0.0 U1380/set 2 49.97 24.98 56.98*** 
1 36.5 env x B1803/set 10 1.93 0.19 0.42 
2 85.2 env x U1555/set 10 3.23 0.32 0.70 
4 21.4 env x U2082/set 10 6.66 0.67 1.45 
4 62.5 env x B1265/set 10 4.61 0.46 1.00 
8 117.7 env x U1562/set 10 4.53 0.45 0.99 
10 0.0 env x U1380/set 10 4.38 0.44 0.95 
  Error‡ 588 270.27 0.46  
R2 = 0.56 CV = 9.93 
 
*,**,*** Significant at the 0.05,0.01, and 0.001 levels, respectively. 
† Sources of variation due to set, environment, environment-by-set, and replication 

nested within environment-by-set are not presented in the ANOVA. 
‡ The error variance of the model includes pooled variation due to higher order 

interactions among markers and environment in addition to residual variation. 
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A IV. Summary of chromosome numbers, positions, and markers effects estimated from 
the across (Main effect) and within environmental analyses for markers fitted in a 
multiple-marker-by-environment ANOVA of Gray Leaf Spot pertaining to the 
recombinant inbred (RI) line and topcross experiments. 
 
Experiment       Chromosome  Position Marker             Analysis        Effect  T-Value 
RI Lines 1 36.5 Bnlg1803 Main Effect 0.18 5.28** 
RI Lines 1 36.5 Bnlg1803 AND2004 0.22 3.07** 
RI Lines 1 36.5 Bnlg1803 AND2005 0.12 1.70 
RI Lines 1 36.5 Bnlg1803 LAS2004 0.21 2.11* 
RI Lines 1 36.5 Bnlg1803 LAS2005 0.18 2.41* 
RI Lines 1 36.5 Bnlg1803 SAL2004 0.19 2.73** 
RI Lines 1 135.6 Umc1335 Main Effect -0.23 -6.43** 
RI Lines 1 135.6 Umc1335 AND2004 -0.33 -4.52** 
RI Lines 1 135.6 Umc1335 AND2005 -0.21 -2.98** 
RI Lines 1 135.6 Umc1335 LAS2004 -0.22 -2.23* 
RI Lines 1 135.6 Umc1335 LAS2005 -0.08 -1.02 
RI Lines 1 135.6 Umc1335 SAL2004 -0.29 -4.13** 
RI Lines 3 96.9 Bnlg1160 Main Effect 0.18 5.00** 
RI Lines 3 96.9 Bnlg1160 AND2004 0.32 4.29** 
RI Lines 3 96.9 Bnlg1160 AND2005 0.34 4.77** 
RI Lines 3 96.9 Bnlg1160 LAS2004 0.15 1.50 
RI Lines 3 96.9 Bnlg1160 LAS2005 0.15 1.97* 
RI Lines 3 96.9 Bnlg1160 SAL2004 -0.07 -0.98 
RI Lines 4 62.5 Bnlg1265 Main Effect 0.19 5.61** 
RI Lines 4 62.5 Bnlg1265 AND2004 0.16 2.29* 
RI Lines 4 62.5 Bnlg1265 AND2005 0.25 3.76** 
RI Lines 4 62.5 Bnlg1265 LAS2004 0.11 1.14 
RI Lines 4 62.5 Bnlg1265 LAS2005 0.11 1.51 
RI Lines 4 62.5 Bnlg1265 SAL2004 0.31 4.64** 
RI Lines 8 117.7 Umc1562 Main Effect 0.22 5.84** 
RI Lines 8 117.7 Umc1562 AND2004 0.29 3.73** 
RI Lines 8 117.7 Umc1562 AND2005 0.37 4.99** 
RI Lines 8 117.7 Umc1562 LAS2004 0.15 1.45 
RI Lines 8 117.7 Umc1562 LAS2005 0.01 0.10 
RI Lines 8 117.7 Umc1562 SAL2004 0.26 3.52** 
RI Lines 10 63.1 Umc2163 Main Effect 0.09 2.70** 
RI Lines 10 63.1 Umc2163 AND2004 0.24 3.25** 
RI Lines 10 63.1 Umc2163 AND2005 0.13 1.92 
RI Lines 10 63.1 Umc2163 LAS2004 0.00 0.02 
RI Lines 10 63.1 Umc2163 LAS2005 0.03 0.43 
RI Lines 10 63.1 Umc2163 SAL2004 0.06 0.93 
RI Lines 10 131.6 Bnlg1677 Main Effect 0.08 2.21* 
RI Lines 10 131.6 Bnlg1677 AND2004 0.06 0.84 
RI Lines 10 131.6 Bnlg1677 AND2005 0.08 1.14 
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A IV. (continued) 
Experiment       Chromosome  Position Marker             Analysis        Effect  T-Value 
RI Lines 10 131.6 Bnlg1677 LAS2004 0.13 1.29 
RI Lines 10 131.6 Bnlg1677 LAS2005 0.05 0.71 
RI Lines 10 131.6 Bnlg1677 SAL2004 0.07 0.90 
RI Topcrosses 1 36.5 Bnlg1803 Main Effect 0.13 4.26** 
RI Topcrosses 1 36.5 Bnlg1803 AND2003 0.09 1.45 
RI Topcrosses 1 36.5 Bnlg1803 AND2004 0.24 2.66** 
RI Topcrosses 1 36.5 Bnlg1803 LAS2003 0.14 2.18* 
RI Topcrosses 1 36.5 Bnlg1803 LAS2004 0.16 2.52* 
RI Topcrosses 1 36.5 Bnlg1803 SAL2003 0.09 1.43 
RI Topcrosses 1 36.5 Bnlg1803 SAL2004 0.04 0.50 
RI Topcrosses 2 75.2 Umc1555 Main Effect 0.18 5.76** 
RI Topcrosses 2 75.2 Umc1555 AND2003 0.23 3.40** 
RI Topcrosses 2 75.2 Umc1555 AND2004 0.21 2.26* 
RI Topcrosses 2 75.2 Umc1555 LAS2003 0.08 1.25 
RI Topcrosses 2 75.2 Umc1555 LAS2004 0.15 2.27* 
RI Topcrosses 2 75.2 Umc1555 SAL2003 0.16 2.34* 
RI Topcrosses 2 75.2 Umc1555 SAL2004 0.25 2.71** 
RI Topcrosses 4 21.4 Umc2082 Main Effect 0.16 5.20** 
RI Topcrosses 4 21.4 Umc2082 AND2003 0.19 2.90** 
RI Topcrosses 4 21.4 Umc2082 AND2004 0.16 1.68 
RI Topcrosses 4 21.4 Umc2082 LAS2003 0.17 2.63** 
RI Topcrosses 4 21.4 Umc2082 LAS2004 0.10 1.46 
RI Topcrosses 4 21.4 Umc2082 SAL2003 0.01 0.09 
RI Topcrosses 4 21.4 Umc2082 SAL2004 0.35 3.70** 
RI Topcrosses 4 62.5 Bnlg1265 Main Effect 0.17 5.61** 
RI Topcrosses 4 62.5 Bnlg1265 AND2003 0.28 4.29** 
RI Topcrosses 4 62.5 Bnlg1265 AND2004 0.18 2.02* 
RI Topcrosses 4 62.5 Bnlg1265 LAS2003 0.09 1.34 
RI Topcrosses 4 62.5 Bnlg1265 LAS2004 0.11 1.64 
RI Topcrosses 4 62.5 Bnlg1265 SAL2003 0.17 2.59** 
RI Topcrosses 4 62.5 Bnlg1265 SAL2004 0.20 2.23* 
RI Topcrosses 8 117.7 Umc1562 Main Effect 0.20 6.48** 
RI Topcrosses 8 117.7 Umc1562 AND2003 0.19 2.97** 
RI Topcrosses 8 117.7 Umc1562 AND2004 0.21 2.32* 
RI Topcrosses 8 117.7 Umc1562 LAS2003 0.09 1.39 
RI Topcrosses 8 117.7 Umc1562 LAS2004 0.15 2.25* 
RI Topcrosses 8 117.7 Umc1562 SAL2003 0.20 3.06** 
RI Topcrosses 8 117.7 Umc1562 SAL2004 0.35 3.8** 
RI Topcrosses 10 0.0 Umc1380 Main Effect 0.29 9.87** 
RI Topcrosses 10 0.0 Umc1380 AND2003 0.33 5.41** 
RI Topcrosses 10 0.0 Umc1380 AND2004 0.22 2.48* 
RI Topcrosses 10 0.0 Umc1380 LAS2003 0.23 3.65** 
RI Topcrosses 10 0.0 Umc1380 LAS2004 0.23 3.68** 
RI Topcrosses 10 0.0 Umc1380 SAL2003 0.35 5.71** 
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A IV. (continued) 
RI Topcrosses 10 0.0 Umc1380 SAL2004 0.37 4.22** 
*,** Significant at 0.05 and 0.01 levels, respectively 
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A V.  Information pertaining to S1 recombination, development, and evaluation for cycles from the TROPHYCOMP (TCOMP) and 
TROPHYELITE (TELITE) populations that were available upon designing experiments. 
 
Population  Cycle    S1 recombination   S1 development                      S1 evaluation 
 
           Year    Nur row  #row #of cross   Year     Gen  Nur row  #of rows   Expa       Year    Locb     # tested   #sel c %sel d  
         1990 C2S1 7041 40 23,24 1991 L,P,C 194 29   0.15 
TCOMP 3  1992 1432 10 57 1992 C3S1 8501 40 44,45 1993 L 120 25   0.21 
TCOMP 4  1994 262 10 76 1994 C4S1 5169 57 56 1995 L,P 85 12   0.14 
TCOMP 5  1996 439 15 73 1996 C5S1 6141 30 56,57 1997 L,P 198 24   0.12 
TCOMP 6  1998 3232 15 83 1998 C6S1 7081 21 51,52 1999 L,P 172 30   0.17 
TCOMP 7  2000 2958 15 95 2000 C7S1 8002 20 70,71 2001 L,J,P 158      Ave = 0.16e 
TCOMP 8  2002 1702 15 124           
 
TELITE 1  1995 925  120 1995 C1S1 6341 20 59 1996 C,L,P 150 30 0.20 
TELITE 2  1997 537 10 46  1997  C2S1 8001 20 56,57 1998 L,P 134  26     0.19 
TELITE 3  1999 3022 14 76  1999  C3S1 8041 20 40,41 2000 C,L,P 139  25 0.18 
TELITE 4  2001 2144 12 82  2001  C4S1 8010 20 52 2002 L,P 96  25 0.26 
TELITE 5  2003 3152 15 83                     Ave = 0.21f 

 
a  EXP: experiment number(s)  for S1 replicated trials 
b  Loc: location(s) experiments grown at (L= Lewiston, P = Plymouth, J = Jackson Springs) 

c  #sel: number of S1 families selected to recombine 
d  %sel: percentage of S1 families selected to recombine  
e   average percentage of S1 families selected across cycles of selection for the TCOMP population 
f  average percentage of S1 families selected across cycles of selection for the TELITE population 
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A VI. Resource differences between A) S1 RS and B) S1 topcross RS  
 
A) 
Nursery         Phase  GENa            Purpose       # of plots     Costb 

 
Winter1 1 CiS1 generate S1 families from Ci cycle        20 $200                     
Summer1 2 n/a Test S1 families in replicated trials 300c $1500  
Winter2  n/a n/a   n/a n/a                 
Summer2 3 Ci+1 intercross selected S1 families 10 $60 
  
          Total = $1760  

 
B) 
Nursery         Phase  GEN            Purpose       # of plots     Cost 
 
Summer1 1 CiS1 generate S1 families from Ci cycle        20 $100                     
Winter1 2 CiS1TC TCd S1 families to LH132.LH51 200 $2000  
Summer2 3 n/a Test S1 family TC’s in replicated trials 800e     $4000 
Winter2 4 Ci+1 intercross selected S1 families 100 $1000 
  
          Total = $7100         
a  Generation (Seed harvested) 
b  Cost: assuming Summer nursery plots cost $6 per plot, Winter nursery plots cost $10 a 
 plot, and $5 a plot for replicated yield trials 
c  Assuming that 100 S1 families are tested across 3 locations with one rep at each 
 location 
d TC: topcros 
e Assuming that 100 S1 topcross families are tested across 4 locations with two reps at 
 each location 
 


