
ABSTRACT

LIN, JIANG. Topics in Application of Nonparametric Smoothing Splines. (Under the

direction of Drs. Daowen Zhang and Marie Davidian)

There are two topics in this dissertation. The first topic is “Smoothing Param-

eter Selection in Nonparametric Generalized Linear Models via Sixth-order Laplace

Approximation” and the second topic is “Smoothing Spline-based Score Tests for

Proportional Hazards Models”.

We present a new approach for the automatic selection of the smoothing parame-

ter in nonparametric smoothing spline Generalized Linear Models (GLMs), using the

Restricted Maximum Likelihood (REML) method and the sixth-order Laplace ap-

proximation of Raudenbush et al. (2000). The proposed approach is compared with

Generalized Additive Mixed Model (GAMM, Lin and Zhang 1999) and Generalized

Approximate Cross-Validation (GACV, Gu and Xiang 2001) through simulations and

is shown to be effective.

We propose “score-type” tests for the proportional hazards assumption and for

covariate effects in the Cox model, using the natural smoothing spline representation

of the corresponding nonparametric functions of time or covariate. The tests are

based on the penalized partial likelihood. By treating the inverse of the smoothing

parameter as a variance component, we derive the score tests by testing an equivalent



null hypothesis that the corresponding variance component is zero. The tests are

shown to have size close to the nominal level and to provide good power against

general alternatives in simulations. We apply the proposed tests to data from a

cancer clinical trial.
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Chapter 1

Motivation and Introduction to

Smoothing Splines

In recent years, there has been much interest in the statistical literature in extend-

ing classical, parametric statistical models to nonparametric models. By “paramet-

ric”, we mean that the model is characterized by a finite number of parameters; while

in a “nonparametric” model, we do not have such restrictions; e.g., in a nonparametric

regression model, we may only require that the regression function is smooth.

Nonparametric smoothing is one of the most popular techniques for such purposes.

One of the main reasons for its popularity is: smoothing splines arise naturally as

solutions to optimization problems in a roughness penalty approach, which provides

a bridge towards classical, parametric statistical models. Also because of this reason,

nonparametric smoothing technique can be applied to extending a wide variety of
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parametric models.

In this dissertation, we consider the application of smoothing splines to Gener-

alized Linear Models and proportional hazards models, both of which have a “para-

metric regression model” flavor. We want to extend these models to nonparametric

ones using smoothing splines.

The properties of smoothing splines have been studied extensively. We first give

a brief introduction to smoothing splines as well as define some notation.

The univariate, natural polynomial spline, s(x) = sm
n (x), as defined in the Fore-

word of Wahba (1990), is a real-valued function on [a, b] defined with the aid of n

so-called knots −∞ ≤ a < x1 < x2 < · · · < xn < b ≤ ∞ with the following properties:

(i) s ∈ πm−1, x ∈ [a, xi], x ∈ [xn, b],

(ii) s ∈ π2m−1, x ∈ [xi, xi+1], i = 1, 2, · · · , n− 1,

(iii) s ∈ C2m−2, x ∈ (−∞,∞),

where πk is the polynomials of degree k or less, and Ck is the class of functions with

k continuous derivatives. The integer m (≥ 1) is called the order of the spline.

In words, s(·) is a piecewise polynomial in each interval [a, xi], [xi, xi+1] i =

1, 2, · · · , n − 1, [xn, b] with the pieces joined at the knots so that s(·) has 2m − 2

continuous derivatives.

It takes m coefficients to define s(·) to the left of x1, m coefficients to define

s(·) to the right of xn, and (n − 1) × 2m coefficients to define s(·) in the (n − 1)
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interior intervals for a total of 2mn coefficients. The continuity conditions (iii) provide

(2m − 1)n coefficients. It can then be shown that the values of s(·) at the n points

(x1, · · · , xn) provide the remaining n coefficients to define s(·) uniquely.

Therefore, suppose f(·) satisfies conditions (i)-(iii), with an additional condition

given by

(iv) f(xi) = fi, i = 1, 2, · · · , n,

we can uniquely determine a nature polynomial spline satifying(i)-(iv).

Natural polynomial splines are closely related to the roughness penalty functionals,

which are used to measure the roughness of a curve. One of the most popular such

functionals is the quadratic penalty functional given by

∫ b

a

{f (m)(x)}2dx, (1.1)

where f (m)(x) is the mth derivative of f(x) with respect to x.

First consider the following interpolating problem: find f(·) satisfying condition

(iv) that minimizes the penalty functional (1.1). Because f(·) is infinite-dimensional,

we restrict our attention to finding such a function in a reproducing kernel Hilbert

space (r.k.h.s) of smooth functions, given by

Wm =

{
f : f, f ′, · · · , f (m−1) are absolutely continuous,

∫ b

a

{fm(x)}2dx < ∞
}

.

It can be shown that, subject to condition (iv), the minimizer of (1.1) in Wm is an

mth order natural polynomial spline satisfying conditions (i)-(iv).
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Statisticians are generally interested in smoothing rather than interpolating data.

In this dissertation we are especially interested in the application of natural polyno-

mial splines in nonparametric regression and related fields.

In the nonparametric regression context, we have a data model given by

(y, x, f),

where y = (y1, y2, · · · , yn)T is the vector of observed responses, x = (x1, x2, · · · , xn)T

is the vector of covariates, f is a nonparametric function that relates known functions

of y or some other model parameters to x; in addition, distributional assumptions,

either parametric or semi-parametric, about the responses are often made to reflect

the fact that we have noisy instead of exact data. We end up with an objective

function l(f ; y, x) which we want to maximize. As a few examples, l(f ; y, x) is the

log-likelihood function in a linear or generalized linear regression context; it is the

negative residual sum of squares in a least squares problem; and it is the partial

log-likelihood function in a proportional hazards model fitting problem, etc.

Without any constraint on f , we would always find the perfect fit to the data. A

smoothing problem is hence to maximize the following penalized objective function

lp(f ; y, x) = l(f ; y, x)− λ

2

∫ b

a

{f (m)(x)}2dx, (1.2)

subject to that f ∈ Wm, where λ ≥ 0 is the smoothing parameter controlling the

goodness-of-fit to the data, measured by l(f ; y, x), and the smoothness of the curve

f , measured by
∫ b

a
{f (m)(x)}2dx. If λ = 0, then we have an interpolating problem; if
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λ = ∞, then f is forced to be an (m− 1)th order polynomial.

It is easy to show that the maximizer of (1.2) is a natural polynomial spline of order

m, with the knots at x1, x2, · · · , xn. In smoothing problems like this, this maximizer

is also called a natural smoothing spline. To show this result, the argument, as

detailed in Section 2.3.1 of Green and Silverman (1994), goes as follows: suppose f̃

is a function in Wm that maximizes (1.2), and f̃(xi) = f̃i; then we can always find

a unique natural smoothing spline, say, g(·), to interpolate the points (xi, f̃i) so that

g(xi) = f̃i. Therefore l(g; y, x) = l(f̃ ; y, x). But
∫ b

a
{g(m)(x)}2dx ≤ ∫ b

a
{f̃ (m)(x)}2dx by

the property of natural smoothing splines, thus lp(g; y, x) ≥ lp(f̃ ; y, x). But f̃ is the

maximizer of lp(f ; y, x), so it must be that f̃ = g.

There are many essentially equivalent ways of specifying the solution, a natural

smoothing spline, to the variational problem (1.2). We emphasize that a natural

smoothing spline can be uniquely determined by its values evaluated at the knots.

So what we want essentially is a representation of the vector of such values. One

such representation is based on the r.k.h.s theory and is discussed in detail in Kimel-

dorf and Wahba (1971) and Section 1.3 of Wahba (1990). We discuss and use this

representation in Chapter 3.

When m = 2, we have the so-called natural cubic splines. Natural cubic splines

are probably the most considered splines in the statistical literature. For natural

cubic splines, an alternative representation exits. Such a representation has proved

convenient in the context of nonparametric Generalized Linear Models. A good refer-
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ence for this representation is Chapter 2 of Green and Silverman (1994). We discuss

and use this representation in Chapter 2.

One consequence of the solution to (1.2) being a natural smoothing spline is that

the quadratic penalty functional can be represented as an equivalent quadratic form

in some vector, say, a. From a Bayesian perspective, such a quadratic form can

be treated as the kernel of a multivariate normal distribution. Consequently, a can

be treated as random effects in a mixed model framework, and the inverse of the

smoothing parameter can be treated and estimated as a variance component. We

will take advantage of this result in both Chapter 2 and Chapter 3.

In this dissertation we consider two problems of interest to us, both related to

smoothing splines in a roughness penalty approach. In the first problem we are con-

cerned with the automatic selection of the smoothing parameter when using smooth-

ing splines to fit a nonparametric Generalized Linear Model. This problem is discussed

in Chapter 2. In the second problem our concern is testing the proportional hazards

assumption and covariate effects in the Cox model, using smoothing splines to esti-

mate the nonparametric functions of time or covariate. This problem is discussed in

Chapter 3.
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Chapter 2

Smoothing Parameter Selection in

Nonparametric Generalized Linear

Models via Sixth-order Laplace

Approximation

2.1 Introduction

Suppose that we have data of the form

(yi, xi), i = 1, 2, · · · , n,

where yi are independent scalar response variables each from a one-parameter expo-

nential family depending on the covariates xi (possibly vector-valued). The density
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of yi has the form

p(yi; θi, φ) = exp [{yiθi − b(θi)}/ai(φ) + c(yi, φ)] ,

where ai(> 0), b and c are known functions, with b a strictly convex function of

θi on any bounded set. Often ai(φ) = φm−1
i with the prior weights, mi, known; φ

is a nuisance or scale parameter that is independent of θi; while θi are the natural

parameters related to the covariates xi.

By the exponential family theory, the mean (µi) and variance (Vi) of yi are given

by

E(yi) = b
′
(θi)

∆
= µi,

var(yi) = ai(φ)b
′′
(θi)

∆
= Vi.

Here ′ and ′′ denote the first and second order differentiation, respectively.

Generalized Linear Models (GLMs; see, for example, McCullagh and Nelder 1989)

provide a unified likelihood framework for modeling such data. In the usual paramet-

ric GLMs, the mean µi is related to the linear predictor xT
i β via the link function g(·)

such that g(µi) = xT
i β with the unknown parameter β to be estimated from the data.

Here g(·) is assumed to be monotone and differentiable. If g(·) is chosen such that

g(µi) = θi, then it is the so-called “canonical” link function. With such a parametric

assumption, maximum likelihood theory may be used for estimating parameters and

making inference.

However, a parametric model may not always be desirable in practice since the
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form of the dependence of the response variable on the covariates may not be well

known in advance. Nonparametric GLMs hence have been proposed to allow for

more flexible functional dependence. Instead of using a linear predictor, these models

assume that

g(µi) = f(xi) (2.1)

and try to estimate the unknown function f(·) nonparametrically.

To estimate f(·) which is infinite-dimensional, assumptions about the smoothness

of f(·) are often made. One popular way is to assume that f(·) is an element of some

reproducing kernel Hilbert space of smooth functions, and estimate f(·) by maxi-

mizing a penalized log-likelihood. Following O’Sullivan et al. (1986), the penalized

log-likelihood function is given by

lp{f(·); y} =
n∑

i=1

li{f(xi); yi} − λ

2
J(f), (2.2)

where li{f(xi); yi} = yif(xi)− b{f(xi)} is the log-likelihood of yi under model (2.1),

with g(·) being the canonical link and ai(φ) absorbed into λ. J(f) is a quadratic

penalty functional that qualifies the smoothness of f(·), and λ is the smoothing

parameter that controls the trade-off between the goodness of fit to the data and the

smoothness of f(·).

Consider the case where xi are one-dimensional. Without loss of generality, we

assume that 0 < x1 < x2 < · · · < xn < 1. xi, i = 1, · · · , n, are the so-called “knots”.

Let f ∈ W
(2)
2 = {f : f, f

′
are absolutely continuous,

∫ 1

0
{f ′′(x)}2dx < ∞} and J(f) =∫ 1

0
{f ′′(x)}2dx. Let f = (f1, f2, · · · , fn)T be the vector of values of f(·) evaluated at the
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distinct knots x1, x2, · · · , xn. One can show that the minimizer of the penalized log-

likelihood (2.2) is a natural cubic smoothing spline which can be uniquely determined

by its values evaluated at the distinct knots, and J(f) =
∫ 1

0
{f ′′(x)}2dx = fT Kf ,

where K is the corresponding non-negative definite smoothing matrix. K = QR−1QT ,

and Q, R are n× (n− 2) and (n− 2)× (n− 2) band matrices given in Section 2.1.2

of Green and Silverman (1994), as specified below.

Let hi = xi+1 − xi for i = 1, · · · , n − 1. Then Q is the n × (n − 2) matrix with

entries qij, for i = 1, · · · , n and j = 2, · · · , n− 1, given by

qj−1,j = h−1
j−1, qjj = −h−1

j−1 − h−1
j , and qj+1,j = h−1

j

for j = 2, · · · , n − 1, and qij = 0 for |i − j| ≥ 2. Note that the columns of Q are

numbered in a non-standard way, starting at j = 2, so that the top left element of Q

is q12.

The symmetric matrix R is (n−2)× (n−2) with elements rij, for i and j running

from 2 to (n− 1), given by

rii =
1

3
(hi−1 + hi) for i = 2, · · · , n− 1,

ri,i+1 = ri+1,i =
1

6
hi for i = 2, · · · , n− 2,

and rij = 0 for |i− j| ≥ 2.

The matrix R is strictly diagonal dominant, in the sense that |rii| >
∑

j 6=i |rij| for

each i. R can be shown to be strictly positive definite by using standard arguments in

numerical linear algebra. It is hence justified to take the inverse of R in the definition
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of the matrix K.

Thus (2.2) can be written as

lp{f(·); y} =
n∑

i=1

{yifi − b(fi)} − λ

2
fT Kf. (2.3)

If λ is given, maximizing (2.3) to get the Maximum Penalized Likelihood Estimator

(MPLE) of f is a trivial optimization problem. General methods such as Newton-

Raphson or Fisher-Scoring can be used in this context. However, λ is usually unknown

in advance and often an automatic procedure for determining an appropriate amount

of smoothing from the data is needed.

By far in the literature there are two main strategies for the automatic selection

of λ in the context of nonparametric smoothing spline regression.

The first strategy has evolved around the theme of Cross-Validation (CV), Gener-

alized Cross-Validation (GCV) and their variations. In such approaches, a score that

qualifies the distance between the true function f and the estimated function fλ given

λ is defined. Because the true curve is unknown, a certain type of cross-validated ap-

proximation is always involved by leaving out one subject’s data at a time. And the

λ that minimizes this score is chosen to be the optimal smoothing parameter.

The second strategy is based on the Bayesian formulation of smoothing spline es-

timators. Under such a formulation estimation of f and the smoothing parameter can

be unified under a likelihood framework via an equivalent mixed model representation

of the smoothing spline estimators. Under such a representation, the inverse of the

smoothing parameter can be treated as an extra variance component in the mixed
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model. Marginal likelihood method has been proposed to be used for estimating

the smoothing parameter, which is equivalent to the Restricted Maximum Likelihood

(REML) approach. However, under such a mixed model representation, intractable

numerical integration is often involved. Second-order Laplace approximation has been

used for approximate inference and proves to be effective in simulation studies (Zhang

et al. 1998; Lin and Zhang 1999). However, there are considerable interests for de-

veloping more accurate approximations. We propose a new approach in this chapter

based on the second strategy but using higher-order Laplace approximation to fulfill

such a requirement. We are also interested in comparing the effectiveness of the two

strategies for Non-Gaussian data, which has not yet been addressed in the literature.

The rest of this chapter is organized as follows. In Section 2.2 we review GCV,

GACV and their variations. GAMM is reviewed in Section 2.3. We derive the pro-

posed new method for the automatic selection of the smoothing parameter using

REML via high-order Laplace approximation in Section 2.4. Simulation results of

comparing the three approaches above are reported in Section 2.5. And finally, dis-

cussion and further work are presented in Section 2.6.

2.2 Generalized Approximate Cross-Validation

The use of CV and GCV to choose the smoothing parameter for Gaussian non-

parametric smoothing spline regression was proposed by Wahba and Wold (1975) and

Craven and Wahba (1979), respectively. They argued that GCV is often preferred



13

over CV. In the GLM context, O’Sullivan et al. (1986) were the first to adapt GCV

to non-Gaussian data. Gu and Xiang (2001) gave a detailed review of recent devel-

opments in this setting. They found that there are two basic approaches, which they

termed as the direct approach and the indirect approach. The former evaluates a

GCV-type score at the convergence of the iteration of finding the estimate of f , while

the later as the iteration proceeds.

Some important GCV-type scores include the indirect GCV score of Gu (1990),

the direct score of Cox and Chang (1990) and the indirect score of Gu (1992) which

is similar to the Unbiased Risk (UBR) estimate in Craven and Wahba (1979) for

Gaussian data.

Xiang and Wahba (1996) developed the direct Generalized Approximate Cross-

Validation (GACV) score through a series of first-order Taylor expansions. They

showed via simulations that GACV is the most effective one among all the direct and

indirect scores.

Gu and Xiang (2001) also provided an alternative derivation of the GACV score

of Xiang and Wahba (1996), resulting in a score which is essentially equivalent to

GACV but can be computationally more convenient. In view of GACV having the

best performance among GCV-type approaches, we choose it as a representative to be

compared with the two REML-type approaches introduced in the next two sections.
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In our setting of Section 2.1, the GACV score can be written as

GACV (λ) =
1

n

n∑
i=1

[−yifλ(xi) + b{fλ(xi)}] +
tr(V )

n

∑n
i=1 yi{yi − fλ(xi)}

n− tr(V W )
, (2.4)

where fλ is the smoothing spline estimator of f given λ, and V , W are to be given

in Section 2.4.2.

We calculate fλ on a grid of λ values and evaluate the GACV score for each λ.

The λ that minimizes the GACV is chosen as the smoothing parameter estimate.

2.3 Generalized Additive Mixed Models

Lin and Zhang (1999) proposed Generalized Additive Mixed Models (GAMMs)

for over-dispersed and correlated data. The nonparametric GLM in this chapter

is a special case of their models. They explored the Generalized Linear Mixed

Model (GLMM) representation of the smoothing spline estimators and estimated

the smoothing parameter using REML by treating τ = 1/λ as an extra variance

component. Specifically, starting with the penalized log-likelihood (2.3), they re-

parameterized f in terms of β (2× 1) and a ((n− 2)× 1) via a one-to-one transfor-

mation as

f = Xβ + Ba, (2.5)

where B = L(LT L)−1, L is an n× (n− 2) full rank matrix satisfying K = LLT , and

X is n× 2 such that LT X = 0.
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It is easy to show that fT Kf = aT a. Thus (2.3) can be written as

lp{f(·); y} =
n∑

i=1

li(fi; yi)− λ

2
aT a =

n∑
i=1

li(fi; yi)− 1

2τ
aT a, (2.6)

where li(fi; yi) = yifi − b(fi), i = 1, 2, · · · , n. Equation (2.6) suggests that we can

estimate (f, λ) by estimating (β, a, λ) in the following GLMM

g(µ) = Xβ + Ba, (2.7)

where µ = (µ1, µ2, · · · , µn)T , the random effects a ∼ N(0, τI) and τ can be treated as

a variance component.

Following Breslow and Clayton (1993), Lin and Zhang (1999) estimated (β, a)

by maximizing the Double Penalized Quasi-Likelihood (DPQL), and estimated τ by

REML. Note that in our case, the quasi-likelihood is the same as the likelihood, thus

the REML of τ is given by

exp{lM(τ ; y)} = τ−
n−2

2

∫
exp{

n∑
i=1

li(β, a; yi)− 1

2τ
aT a}dβda. (2.8)

A similar approach was used by Zhang et al. (1998) for Gaussian correlated data.

f is estimated by the BLUP estimator, i.e., f̂ = Xβ̂ + Bâ, where β̂ and â are the

BLUP estimators of model (2.7). The motivation behind this REML approach will

be explained in detail in the next section.

Note that in using DPQL, a second-order Laplace approximation is implicitly

adopted to tackle the often intractable numerical integration in equation (2.8). How

good this approximation is compared to GCV-type methods and the higher-order
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Laplace approximation proposed in the next section will be addressed through simu-

lations in Section 2.5.

2.4 REML via Sixth-order Laplace Approximation

2.4.1 Motivation Behind the REML Approach

For independent Gaussian data, we have the classical nonparametric regression

model

yi = f(xi) + εi, i = 1, 2, · · · , n. (2.9)

Here the εi are independent and follow N(0, σ2), where N(·) stands for normal distri-

bution hereafter, and f(·) is to be estimated nonparametrically by a smoothing spline

in the same spirit as stated in Section 2.1. Under this model, Wahba (1985) and Kohn

et al. (1991) proposed estimating the smoothing parameter using Generalized Maxi-

mum Likelihood (GML) by assuming f(x) has a partially improper integrated Wiener

prior

f(x) = δ0 + δ1x + λ−1/2

∫ x

0

W (s)ds, (2.10)

where δ0 and δ1 have improper uniform distributions on (−∞,∞) and W (s) is the

standard Wiener process. Note that the prior specification in (2.10) is equivalent to

assuming f takes the form in (2.5) with a ∼ N(0, τI) and a flat prior for β, and B =

Σ1/2, where Σ is the covariance matrix of the integrated Wiener process evaluated at

X. The smoothing parameter estimate was found by maximizing a marginal likelihood
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given model (2.9) and the prior (2.10). Speed (1991) and Thompson (1985) pointed

out that the GML estimator of τ is identical to the Restricted Maximum Likelihood

(REML) estimator of τ under the linear mixed model

y = Xβ + Ba + ε,

where a ∼ N(0, τI), ε ∼ N(0, σ2I), and (X,B) can take the form either in this section

or in Section 2.3.

Motivated by these results, Zhang et al. (1998) and Lin and Zhang (1999) ex-

tended the REML approach for estimating the smoothing parameter to correlated

Gaussian and non-Gaussian data, respectively. Following Harville (1977), the REML-

type estimator of the smoothing parameter can also be formulated from a Bayesian

perspective. Specifically, in the case of nonparametric GLM, the REML of τ is the

marginal likelihood obtained by assuming a flat prior for β and a Gaussian prior

N(0, τI) for a in l(β, a; y) =
∑n

i=1 li(β, a; yi) and then integrating out β and a com-

pletely from the joint likelihood, resulting in a marginal likelihood of τ as in expression

(2.8).

The new approach proposed in this chapter is based on the finite-dimensional

Bayesian formulation of smoothing splines given in Section 3.8.4 of Green and Silver-

man (1994); see also Section 4 of Green (1987). Specifically, f is assumed to have a

partially improper Gaussian prior whose log density has kernel −λfT Kf/2. That is,

the prior is a multivariate normal distribution for f with mean 0 and inverse variance

matrix λK. Here impropriety of the prior is equivalent to rank deficiency in the ma-
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trix K. One can easily see from equation (2.3) that the natural cubic smoothing spline

estimator of f in model (2.1) is the posterior mode of the integrated log-likelihood

function l(f ; y) =
∑n

i=1 li(fi; yi). Hence we consider estimating τ by maximizing the

following marginal likelihood

exp{lM(τ ; y)} = τ−
n−2

2

∫
exp{

n∑
i=1

li(fi; yi)− 1

2τ
fT Kf}df, (2.11)

where li(fi; yi) is defined in Section 2.3, and K is given in Section 2.1.

Recall from expression (2.5) that there is a one-to-one relationship between f and

(β, a). Thus this marginal likelihood, ignoring multiplicative constants, is identical

to the REML (2.8). Therefore the suggested approach is also a REML-type method.

2.4.2 Derivation of the New Approach

Consider the marginal likelihood of τ , ignoring multiplicative constants, given by

equation (2.11). Let h(f) =
∑n

i=1 li(fi; yi)−(1/2τ)fT Kf , then the integration we are

interested in is of the form
∫

exp{h(f)}df . Since this integration is often intractable

except when yi follow a normal distribution, we consider approximating it using the

sixth-order Laplace approximation approach of Raudenbush et al. (2000) as follows.

For given τ , denote by f̃ = f̃(τ) the mode of h(f). Using a Taylor series expansion

about f̃ , we get

h(f) = h(f̃) + h(1)(f̃)(f − f̃) +
1

2
(f − f̃)T h(2)(f̃)(f − f̃)

+
∞∑

k=3

1

k!
{k−1⊗ (f − f̃)T}h(k)(f̃)(f − f̃), (2.12)
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where h(k)(f̃) = (∂vec{h(k−1)(f)}/∂fT )|f=f̃ is the kth derivative of h(f) with respect

to f , evaluated at f̃ ; and
k⊗ u = u⊗ u⊗ · · · ⊗ u, there being k u’s in the Kronecker

product.

In Appendix 2.7.1, we show that the derivatives of h(f) with respect to f are

given by

h(1)(f) = (y − µ)T − 1

τ
fT K,

h(2)(f) = −W − 1

τ
K, and

h(k)(f) = −
n∑

i=1

(
k−1⊗ zi)m

(k)
i zT

i , for k ≥ 3.

Here y = (y1, y2, · · · , yn)T , µ = (µ1, µ2, · · · , µn)T , W = diag{w1, w2, · · · , wn} with

wi = ∂µi/∂fi, zi is a n× 1 column vector with all elements equal to 0 except that the

ith is 1, and m
(k)
i = ∂(k−1)µi/∂f

(k−1)
i , k = 1, 2, · · ·.

Let y∗ = W̃−1(y − µ̃) + f̃ be the working vector, where we use a tilde to denote

that the matrix, vector or scalar is evaluated at f̃ hereafter. Since f̃ is the mode of

h(f), setting h(1)(f̃) = (y∗ − f̃)T W̃ − (1/τ)f̃T K = 0, one obtains that

f̃ = (W̃ +
1

τ
K)−1W̃y∗. (2.13)

Note that this gives the Fisher-Scoring iterating formula for obtaining the maximum

penalized likelihood estimator of f when τ is known; see, p.100, Green and Silverman

(1994).

With h(1)(f̃) = 0, the second term on the right hand side of (2.12) disappears.

Define V = {−h(2)(f)}−1 = (W + 1
τ
K)−1, Ṽ = {−h(2)(f̃)}−1 = (W̃ + 1

τ
K)−1, and let
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R =
∑∞

k=3 Tk, where Tk = 1
k!
{k−1⊗ (f − f̃)T}h(k)(f̃)(f − f̃), k = 3, 4, · · ·. Substituting

the expression (2.12) into the marginal likelihood (2.11), we get

exp{lM(τ ; y)} = τ−
n−2

2 exp{h(f̃)}
∫

exp{−1

2
(f − f̃)T Ṽ −1(f − f̃)} · exp(R) df

Realizing that exp{−1
2
(f − f̃)T Ṽ −1(f − f̃)} is the kernel of a multivariate normal

distribution with covariance matrix Ṽ , we can further write the marginal likelihood

as, ignoring multiplicative constants,

exp{lM(τ ; y)} = τ−
n−2

2 exp{h(f̃)}|Ṽ |1/2E{exp(R)}, (2.14)

where the expectation is taken with respect to the multivariate normal distribution

stated above.

Since exp(R) = 1 + R + (1/2)R2 + · · ·, we have E{exp(R)} = 1 + E(
∑∞

k=3 Tk) +

(1/2)E(
∑∞

k=3 Tk)
2 + · · ·. Following Raudenbush et al. (2000), we first realize that

E(Tk) = 0 for odd k, k > 2 and E(TkTl) = 0 for odd (k+l), k and l both > 2. Therefore

the full expansion of the terms in E{exp(R)} involves T4, T6, T 2
3 /2, T8, T3T5/2, T 2

4 /2,

· · ·. As suggested by Raudenbush et al. (2000), we use the approximation with

E{exp(R)} ≈ 1 + E(T4) + E(T6) + (1/2)E(T 2
3 ), which proves to be highly accurate in

their simulation studies.

Consequently, the marginal likelihood (2.14) can be approximated as

exp{lM(τ ; y)} ≈ τ−
n−2

2 exp{h(f̃)}|Ṽ |1/2{1 + E(T4) + E(T6) + (1/2)E(T 2
3 )}.

Define B̃i = zT
i Ṽ zi = Ṽii, where Ṽii is the ith diagonal element of Ṽ , and c̃ =∑n

i=1 m̃
(3)
i ziB̃i =

∑n
i=1 m̃

(3)
i ziṼii. Using Theorem 2 in Raudenbush et al. (2000), one
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can show that the approximate log marginal likelihood is

lM(τ ; y) = −n− 2

2
log τ − 1

2
log |W̃ +

1

τ
K|

+
n∑

i=1

{yif̃i − b(f̃i)} − (1/2τ)f̃T Kf̃ + log(Ã), (2.15)

where Ã = 1− 1
8

∑n
i=1 m̃

(4)
i Ṽ 2

ii − 1
48

∑n
i=1 m̃

(6)
i Ṽ 3

ii + 15
72

c̃T Ṽ c̃.

Following Raudenbush et al. (2000), we use an algorithm similar to the approxi-

mate Fisher-Scoring of Green (1984) to maximize the approximate log marginal like-

lihood (2.15), which requires only the first derivative of (2.15) with respect to τ . In

getting the score of τ from (2.15), we shall take into consideration that h(f̃) is eval-

uated at f̃ = f̃(τ) = (W̃ + 1
τ
K)−1W̃y∗ = Ṽ W̃ y∗. After solving this interdependence

with implicit differentiation of f̃ with respect to τ , we have

∂f̃

∂τ
=

(
∂f̃1

∂τ
,
∂f̃2

∂τ
, · · · , ∂f̃n

∂τ

)T

= −(W̃ +
1

τ
K)−1

{
∂(W̃ + 1

τ
K)

∂τ

}
(W̃ +

1

τ
K)−1W̃y∗

=
1

τ 2
(W̃ +

1

τ
K)−1K(W̃ +

1

τ
K)−1W̃y∗

=
1

τ 2
Ṽ KṼ W̃y∗,

where we have used the following result

∂A−1(θ)

∂θk

= −A−1(θ)

(
∂A(θ)

∂θk

)
A−1(θ).

After tedious matrix algebra (see Appendix 2.7.2), we obtain the score of τ given

by

Sτ = −n− 2

2

1

τ
+

1

2τ 2
trace(Ṽ K)− 1

2

n∑
i=1

m̃
(3)
i (∂f̃i/∂τ)Ṽii +

1

2τ 2
f̃T Kf̃
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+
1

Ã

[
−1

8

n∑
i=1

{m̃(5)
i Ṽ 2

ii (∂f̃i/∂τ) + 2m̃
(4)
i Ṽiiãii}

− 1

48

n∑
i=1

{m̃(7)
i Ṽ 3

ii (∂f̃i/∂τ) + 3m̃
(6)
i Ṽ 2

ii ãii}

+
15

72
{c̃T ãc̃ + 2c̃T Ṽ (∂c̃/∂τ)}

]
, (2.16)

where ã = ∂Ṽ /∂τ = −Ṽ
[
diag{m̃(3)

1 ∂f̃1/∂τ, m̃
(3)
2 ∂f̃2/∂τ, · · · , m̃(3)

n ∂f̃n/∂τ} − 1
τ2 K

]
Ṽ ,

and ãii is the ith diagonal element of ã. ∂c̃/∂τ =
∑n

i=1(m̃
(4)
i Ṽii∂f̃i/∂τ + m̃

(3)
i ãii)zi.

Different from the situation in Raudenbush et al. (2000), since we do not have

repeated measurements here, the approximate Fisher-Scoring algorithm is not com-

pletely applicable. Using a superscript (k) to denote estimates from the kth iteration,

our algorithm is as follows. At the kth iteration , k ≥ 2, we first estimate the Hessian

using the scores as follows

H(k) =
s
(k−1)
τ − s

(k−2)
τ

τ (k−1) − τ (k−2)
,

while in the first iteration, we simply take H(1) = 1. We then update τ by

τ (k) = τ (k−1) − {H(k)}−1s(k−1)
τ . (2.17)

We alternate between the iterations of f using (2.13) and those of τ via (2.17)

until both of their values stabilize. In updating τ , we use a step-halving approach to

make sure that its values are always positive.

Since the sixth-order Laplace approximation is a key component of this new ap-

proach, we call it LAP6 as an abbreviation hereafter.
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2.5 A Simulation Study

As we stated in Section 2.1, there are two main strategies for the automatic

selection of the smoothing parameter. For Gaussian data under model (2.9), Kohn et

al. (1991) showed through an extensive simulation study that the marginal likelihood

or the REML-type estimate of the smoothing parameter has similar and often better

performance compared to the GCV-type estimate in estimating the nonparametric

function. No work has been done in the literature to compare the two strategies

for non-Gaussian data. We hence carried out a Monte Carlo simulation study to

compare the performance of the three approaches introduced in the previous three

sections. We considered the setting of cubic smoothing spline logistic regression.

Binary data B{1, p(x)} and binomial data B{8, p(x)}, where B(·) stands for the

binomial distribution, were generated according to the logistic model

log
p(x)

1− p(x)
= f(x),

where the true curve f(x) is one of the following

(a) f1(x) =
1

3
{2F8,8(x) + F5,5(x)} − 1,

(b) f2(x) =
1

10
{6F30,17(x) + 4F3,11(x)} − 1,

(c) f3(x) = 3{105x11(1− x)6 + 103x3(1− x)10} − 2,

(d) f4(x) = 2 sin(10x),

(e) f5(x) = (−1.6x + 0.9)I[x≤0.5] + (1.6x− 0.7)I[x>0.5],

(f) f6(x) = 2 sin(2πx), (2.18)
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where Fp,q(x) = Γ(p + q)xp−1(1− x)q−1/{Γ(p)Γ(q)} and Γ(·) is the gamma function.

The first two curves were used by Lin and Zhang (1999) in their simulation study,

and we used the same knots as theirs, namely xi = (i − 1)/100, i = 1, · · · , 100.

The rest curves were chosen from Gu and Xiang (2001) with the same knots xi =

(i− .5)/100, i = 1, · · · , 100. Plots of the curves are given in Figure 2.1. A total of 500

data sets were generated for each curve.

We chose the Kullback-Leibler loss function to measure the performance of fλ(x)

as an estimate of f(x). The same loss was used by Xiang and Wahba (1996) and Gu

and Xiang (2001) and is given by

L(f, fλ) =
1

n

n∑
i=1

{f(xi)− fλ(xi)}{µ(xi)− µλ(xi)}.

SAS macro was developed for our new approach and is available upon request. The

LAP6 estimates were found by using this macro. Note that for binomial distribution

with denominator ni, some important quantities needed for evaluating the score of τ

in LAP6 are given by

µi = ni exp(fi)/{1 + exp(fi)}, wi = m
(2)
i = µi(1− µi/ni),

m
(3)
i = wi(1− 2µi/ni), m

(4)
i = wi(1− 6wi/ni),

m
(5)
i = m

(3)
i (1− 12wi/ni), m

(6)
i = m

(4)
i (1− 12wi/ni)− 12m

(3)
i

2
/ni,

m
(7)
i = m

(5)
i (1− 12wi/ni)− 36m

(3)
i m

(4)
i /ni, i = 1, 2, · · · , n.

For a derivation of these equations, see Appendix 2.7.3.

The GAMM estimates of the smoothing parameters were found by using the
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GAMM SAS macro developed by Lin and Zhang (1999). For the GACV approach,

since the GACV score (2.4) can not be maximized directly, we first found the estimate

fλ for f on a grid of λ values. Following Xiang and Wahba (1996), we took log10 λ

to be equally spaced on the interval [−6, 0] with step 0.08. We then calculated the

GACV score for each fλ and the λ giving the smallest GACV score was identified

as the GACV estimate. Since the true f is known in simulation, we also evaluated

L(f, fλ) for each fλ on the same grid of λ and identified the one that gave the smallest

loss as the optimal estimate of the smoothing parameter. For the estimate of λ ob-

tained from each approach, we also recorded the corresponding L(f, fλ). To measure

the effectiveness of the three approaches, we calculated the ratio of the minimal loss

to the loss achieved by the respective approaches. Note that this ratio is always less

than one and the closer the ratio to one, the better the corresponding approach.

Figure 2.2 gives the boxplots of 500 loss ratios of GACV, GAMM, LAP6 for esti-

mating the six curves in (2.18) where data were generated from binomial distribution

with denominator 8. From these plots we see that GAMM and LAP6 generally out-

perform GACV for the binomial case in that they often have higher medians and

shorter tails.

Figure 2.3 gives the same boxplots of loss ratios as in Figure 2.2 except that

the data were generated from binary distribution. Since binary data are sparse, the

normal theory based Laplace approximations may not perform as well. And we see

in several cases GACV performs better than GAMM and LAP6.
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There generally was not much difference between GAMM and LAP6, suggesting

that the second-order Laplace approximation will suffice in most situations. The

advantage of higher-order Laplace approximation over the second-order GAMM is

more prominent for sparse data, as can be seen from Figure 2.3.

We note that unlike in Gaussian case, where the marginal likelihood of τ = 1/λ is

exact, approximations are unavoidable in Non-Gaussian case to obtain the marginal

likelihood. The performance of the REML-type approaches will in a large part depend

on how good the approximations are. One nice feature of the proposed approach is

that the Taylor expansion is allowed to go as far as we wish, although the computation

involved will increase accordingly. Nonetheless, the sixth-order expansion used in our

simulation generally performs very well, especially when the data are not too sparse.

2.6 Discussion and Further Work

In this chapter we have developed a new approach for the automatic selection of

the smoothing parameter in nonparametric smoothing spline GLMs, based on the

REML approach and the sixth-order Laplace approximation. Through simulations,

the proposed method is shown to be effective compared to GACV and GAMM. Fur-

thermore, the approach can be extended to the degree of accuracy required by using

even higher-order expansions in the Taylor series.

Compared to GACV, one advantage of REML-type approaches is that they do

not need a subjective choice of the grid of values for λ. An iteration process exists
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for obtaining the maximum marginal likelihood estimate of the smoothing parameter.

The computing time of both GAMM and LAP6 is comparable to that of GACV using

a moderately dense grid, like the one used in our simulation study.

Another advantage of REML-type approaches is that they can be naturally incor-

porated in modeling correlated data, for example, Lin and Zhang (1999) use marginal

quasi-likelihood method to choose the smoothing parameter in GAMM, and Zhang

et al. (1998) use REML to estimate the smoothing parameter in modeling Gaussian

longitudinal data. The GCV score has not yet been well defined for correlated data to

date. More work needs to be done on developing and comparing smoothing parameter

selection methods for correlated Gaussian and Non-Gaussian data.

For sparse data, REML-type approaches do not perform as well as GACV in some

situations, suggesting that caution must be taken regarding using GAMM and LAP6

in this scenario.

In this chapter we only consider the case where the covariates are one-dimensional,

more research is needed on developing REML-type approaches of choosing the smooth-

ing parameter for data with multi-dimensional covariates.
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2.7 Appendices

2.7.1 Derivation of the Partial Derivatives of h(f) with re-

spect to f

We have

h(f) = l(f ; y)− 1

2τ
fT Kf,

where

l(f ; y) =
n∑

i=1

li(fi; yi) =
n∑

i=1

{yifi − b(fi)}.

Note

∂li(fi; yi)

∂fi

= yi − b
′
(fi) = yi − µi,

thus

∂l(f ; y)

∂fT
= (y − µ)T .

It is easy to see that

∂(− 1
2τ

fT Kf)

∂fT
= −1

τ
fT K,

therefore

h(1)(f) =
∂h(f)

∂fT
= (y − µ)T − 1

τ
fT K. (2.19)

Note that by using the working vector y∗ = W̃−1(y− µ̃) + f̃ defined in Section 2.4.2,

we can write

h(1)(f̃) = (y∗ − f̃)T W̃ − 1

τ
f̃T K.
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Now since

∂vec{(y − µ)T}
∂fT

= −diag

{
∂µ1

∂f1

, · · · , ∂µn

∂fn

}
= −W,

and

∂vec(− 1
τ
fT K)

∂fT
= −1

τ
K,

we have

h(2)(f) =
∂vec{h(1)(f)}

∂fT
= −W − 1

τ
K. (2.20)

For k ≥ 3, because h(f) = l(f ; y) − (1/2τ)fT Kf , we have h(k)(f) = l(k)(f ; y). First

consider the situation where k = 3. Let zi be a n× 1 vector with all elements equal

to 0 except that the ith is 1, i = 1, 2 · · · , n. Then it is easy to see that

W = diag{w1, w2, · · · , wn} =
n∑

i=1

ziwiz
T
i .

Therefore

h(3)(f) =
∂vec{h(2)(f)}

∂fT

=
∂vec{−∑n

i=1 ziwiz
T
i − 1

τ
K}

∂fT

= −
n∑

i=1

∂vec{ziwiz
T
i }

∂fT

= −
n∑

i=1

vec(ziz
T
i )

∂wi

∂fT
,

where note that the last equation is because wi is a scalar.

Using the result vec(abT ) = b⊗ a for any two compatible column vectors a and b,

we get

vec(ziz
T
i ) = zi ⊗ zi =

2⊗ zi.
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Furthermore, because wi = ∂µi/∂fi depends only on fi, we have

∂wi

∂fT
=

∂wi

∂fi

zT
i =

∂2µi

∂f 2
i

zT
i = m

(3)
i zT

i ,

where m
(k)
i = ∂(k−1)µi/∂f

(k−1)
i , k ≥ 3. Therefore

h(3)(f) = −
n∑

i=1

(
2⊗ zi)m

(3)
i zT

i .

Similarly,

h(4)(f) =
∂vec{h(3)(f)}

∂fT

= −
n∑

i=1

vec(
2⊗ zi · zT

i )
∂m

(3)
i

∂fT

= −
n∑

i=1

(
3⊗ zi)m

(4)
i zT

i .

In general, for k ≥ 3, we have

h(k)(f) = −
n∑

i=1

(
k−1⊗ zi)m

(k)
i zT

i . (2.21)

Equations (2.19), (2.20) and (2.21) give all partial derivatives of h(f) with respect

to f .

2.7.2 Derivation of the Score of τ , Sτ

In this appendix, we derive the score of τ from the approximate log marginal

likelihood (2.15). First we have

∂

∂τ

(
−n− 2

2
log τ

)
= −n− 2

2

1

τ
. (2.22)
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Now

∂

∂τ

(
−1

2
log |W̃ +

1

τ
K|

)
= −1

2
trace

[
(W̃ +

1

τ
K)−1∂(W̃ + 1

τ
K)

∂τ

]
.

Note that Ṽ = (W̃ + 1
τ
K)−1 as defined in Section 2.4.2. Because w̃i = ∂µ̃i/∂f̃i, we

have

∂w̃i

∂τ
=

∂w̃i

∂f̃i

· ∂f̃i

∂τ
=

∂2µ̃i

∂f̃ 2
i

· ∂f̃i

∂τ
= m̃

(3)
i

∂f̃i

∂τ
.

Note W̃ = diag{w̃1, · · · , w̃n}, thus

∂W̃

∂τ
= diag{m̃(3)

1

∂f̃1

∂τ
, · · · , m̃(3)

n

∂f̃n

∂τ
}.

We also have

∂( 1
τ
K)

∂τ
= − 1

τ 2
K.

Therefore

∂

∂τ

(
−1

2
log |W̃ +

1

τ
K|

)
= −1

2
trace

[
Ṽ

{
diag{m̃(3)

1

∂f̃1

∂τ
, · · · , m̃(3)

n

∂f̃n

∂τ
} − 1

τ 2
K

}]

=
1

2τ 2
trace(Ṽ K)− 1

2

n∑
i=1

m̃
(3)
i (∂f̃i/∂τ)Ṽii, (2.23)

where Ṽii is the ith diagonal element of Ṽ .

Note that h(f̃) =
∑n

i=1{yif̃i − b(f̃i)} − (1/2τ)f̃T Kf̃ , therefore

∂
[∑n

i=1{yif̃i − b(f̃i)} − (1/2τ)f̃T Kf̃
]

∂τ

=
∂h(f̃)

∂f̃T

∂f̃

∂τ
+

∂{−(1/2τ)f̃T Kf̃}
∂τ

= 0 · ∂f̃

∂τ
+

1

2τ 2
f̃T Kf̃

=
1

2τ 2
f̃T Kf̃. (2.24)
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Because Ã is a scalar, it is easy to see that

∂ log(Ã)

∂τ
=

1

Ã

∂Ã

∂τ
.

We also have

∂m̃
(4)
i

∂τ
=

∂m̃
(4)
i

∂f̃i

∂f̃i

∂τ
= m̃

(5)
i

∂f̃i

∂τ
,

and

∂m̃
(6)
i

∂τ
=

∂m̃
(6)
i

∂f̃i

∂f̃i

∂τ
= m̃

(7)
i

∂f̃i

∂τ
.

Recall that zT
i Ṽ zi = Ṽii is the ith diagonal element of Ṽ , therefore ∂Ṽii/∂τ is the ith

diagonal element of ∂Ṽ /∂τ . And

∂Ṽ

∂τ
=

∂(W̃ + 1
τ
K)−1

∂τ

= −Ṽ

[
diag{m̃(3)

1 ∂f̃1/∂τ, · · · , m̃(3)
n ∂f̃n/∂τ} − 1

τ 2
K

]
Ṽ .

Define ã = ∂Ṽ /∂τ , then ∂Ṽii/∂τ = ãii.

For c̃T Ṽ c̃, we have

∂(c̃T Ṽ c̃)

∂τ
= c̃T ∂Ṽ

∂τ
c̃ + 2c̃T Ṽ

∂c̃

∂τ
,

where c̃ =
∑n

i=1 m̃
(3)
i ziṼii. Therefore,

∂c̃

∂τ
=

n∑
i=1

{
m̃

(4)
i

∂f̃i

∂τ
ziṼii + m̃

(3)
i zi

∂Ṽii

∂τ

}
.

We have showed earlier that ∂Ṽii/∂τ = ãii, therefore

∂c̃

∂τ
=

n∑
i=1

{
m̃

(4)
i Ṽii

∂f̃i

∂τ
+ m̃

(3)
i ãii

}
zi.
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Note ∂Ṽ /∂τ = ã, thus

∂(c̃T Ṽ c̃)

∂τ
= c̃T ãc̃ + 2c̃T Ṽ

∂c̃

∂τ
.

We thus have

∂ log(Ã)

∂τ
=

1

Ã

[
−1

8

n∑
i=1

{m̃(5)
i Ṽ 2

ii (∂f̃i/∂τ) + 2m̃
(4)
i Ṽiiãii}

− 1

48

n∑
i=1

{m̃(7)
i Ṽ 3

ii (∂f̃i/∂τ) + 3m̃
(6)
i Ṽ 2

ii ãii}

+
15

72
{c̃T ãc̃ + 2c̃T Ṽ (∂c̃/∂τ)}

]
. (2.25)

Combining equations (2.22), (2.23), (2.24) and (2.25), we have the formula for the

score of τ , Sτ , given in equation (2.16).

2.7.3 Derivation of m
(k)
i for the Binomial Distribution

For the binomial distribution under the nonparametric GLM (2.1) with the canon-

ical link, we have

µi = ni
exp(fi)

1 + exp(fi)
.

wi =
∂µi

∂fi

= ni
exp(fi)

[1 + exp(fi)]2

=
µi(ni − µi)

ni

.

m
(3)
i =

∂wi

∂fi

=
wi(ni − µi) + µi(−wi)

ni

=
wi(ni − 2µi)

ni

.
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m
(4)
i =

∂m
(3)
i

∂fi

=
m

(3)
i (ni − 2µi) + wi(−2wi)

ni

=
1

ni

wi

[
(ni − 2µi)

2

ni

− 2wi

]
=

1

ni

wi

[
ni − 4µi(ni − µi)

ni

− 2wi

]
=

1

ni

wi(ni − 4wi − 2wi)

=
wi(ni − 6wi)

ni

.

m
(5)
i =

∂m
(4)
i

∂fi

=
m

(3)
i (ni − 6wi) + wi(−6m

(3)
i )

ni

=
m

(3)
i (ni − 12wi)

ni

.

m
(6)
i =

∂m
(5)
i

∂fi

=
m

(4)
i (ni − 12wi) + m

(3)
i (−12m

(3)
i )

ni

=
m

(4)
i (ni − 12wi)− 12m

(3)
i

2

ni

.

m
(7)
i =

∂m
(6)
i

∂fi

=
m

(5)
i (ni − 12wi) + m

(4)
i (−12m

(3)
i )− 24m

(3)
i m

(4)
i

ni

=
m

(5)
i (ni − 12wi)− 36m

(3)
i m

(4)
i

ni

.

For the binary distribution, it is just a special case of the binomial distribution

with ni = 1.



35

2.8 Figures
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Figure 2.1: Plots of curves used in the simulation study: (a)f1(x) = 1
3
{2F8,8(x) +

F5,5(x)}− 1; (b)f2(x) = 1
10
{6F30,17(x) + 4F3,11(x)}− 1; (c)f3(x) = 3{105x11(1− x)6 +

103x3(1− x)10} − 2; (d)f4(x) = 2 sin(10x); (e)f5(x) = (−1.6x + 0.9)I[x≤0.5] + (1.6x−
0.7)I[x>0.5]; (f)f6(x) = 2 sin(2πx).
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Figure 2.2: Loss ratios of GACV, GAMM and LAP6 for estimating curves in (2.18)
with data generated from binomial 8 distribution.
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Figure 2.3: Loss ratios of GACV, GAMM and LAP6 for estimating curves in (2.18)
with data generated from binary distribution.
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Chapter 3

Smoothing Spline-based Score

Tests for Proportional Hazards

Models

3.1 Introduction

Censored survival data arise routinely in biomedical applications. For the regres-

sion analysis of such data, Cox’s proportional hazards model (Cox, 1972) is unques-

tionably the most popular platform. The assumption of proportional hazards may not

always be realistic, however; e.g., Gray (2000) notes that effects of prognostic factors

in cancer often do not exhibit proportional hazards, and we have found the assump-

tion questionable in a number of cancer and cardiovascular disease data analyses.
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Accordingly, good data-analytic practice dictates that the assumption be critically

evaluated and alternative models considered if necessary.

A situation in which the proportional hazards assumption may be suspect is in the

analysis of covariate effects on survival in Cancer and Leukemia Group B (CALGB)

Protocol 8541. CALGB 8541 was a randomized clinical trial comparing three doses

(high, moderate, and low) of chemotherapy (cyclophosphamide, doxorubicin, also

known as adriamycin, and 5 fluorouracil, abbreviated CAF) in women with early

stage, node-positive breast cancer. The primary analysis found no difference in sur-

vival between high and moderate doses, both of which were superior to the low dose.

Based on long-term follow-up, subsequent interest focused on whether certain patient

characteristics are prognostic for survival. Figure 3.1 shows estimated survival curves

and the log-negative-log of survival curves for the 1437 patients for whom Estrogen

Receptor (ER) status was available; the plot shows these for the 520 ER-negative and

917 ER-positive women, respectively. If the proportional hazards assumption were

valid, the two log-negative-log of survival curves should be parallel. This is obviously

not the case; in fact, the two curves cross on the interval (0, 1) year. Figure 3.2 shows

a plot of the Schoenfeld (1982) residuals. If proportional hazards were adequate, then,

on average, the residuals should be zero. The noticeable trend away from zero further

calls into question the relevance of the proportional hazards assumption. Formal evi-

dence in support of the visual impression in the figures would be valuable to the data

analyst assessing whether the Cox model is an appropriate framework for inference.
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Many approaches have been advocated for assessing the relevance of the assump-

tions; e.g., Fleming and Harrington (1991, sec. 4.5), Klein and Moeschberger (1997,

secs. 9.2 and 11.4), and Therneau and Grambsch (2000, Chap. 6) discuss procedures

such as including a function of time [e.g., log(t)] as a time-dependent covariate in the

linear predictor, plots of and smoothing of Schoenfeld (1982) residuals (e.g., based on

assumed time-dependent coefficient models), partitioning the time axis into disjoint

intervals in each of which the model is fitted and the results compared, and various

other techniques. There is furthermore a large literature on formal approaches to

testing (e.g., Pettitt and Bin Daud, 1990; Gray, 1994). O’Sullivan (1988), Hastie and

Tibshirani (1990), Zucker and Karr (1990) and authors referenced therein discuss

estimation in the proportional hazards model with nonparametric covariate or time-

varying coefficient effects using smoothing splines in a penalized partial likelihood

approach. Gray (1992, 1994) proposes spline-based tests for covariate and time ef-

fects using fixed knot splines. Numerical results suggest that the tests perform well in

moderate samples. However, the testing procedure requires the smoothing parameter

to be finely tuned according to the true alternative to achieve good power properties,

which may not be realistic in practice.

Recently, Zhang and Lin (2003) proposed a penalized likelihood approach to de-

riving a score test for nonparametric covariate effects in generalized additive mixed

effects models, based on regarding the inverse of the smoothing parameter as a vari-

ance component. This yields a test with low degrees of freedom that, moreover, does
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not require fitting of the model under the alternative, which can be computationally

intensive. Zhang and Lin (2003) show that the test enjoys valid size and high power

properties in practical settings. The success of this approach suggests that it may

be fruitful in other problems. We hence propose adapting this strategy to testing

departures from proportional hazards.

Another problem of interest is testing for covariate effects in Cox models; specifi-

cally, testing whether the appropriate functional form that represents the effect of a

covariate on survival time is a fixed degree polynomial. We show that this can also

be addressed by adapting the strategy in Zhang and Lin (2003).

In Section 3.2, we discuss the proposed score tests for proportional hazards in

detail. The proposed score tests for covariate effects are given in Section 3.3. We

report empirical results for the tests of proportional hazards and covariate effects in

Section 3.4. The methods are applied to the data from CALGB 8541 in Section 3.5.

3.2 Score Test for Proportional Hazards

For the ith of n subjects, let Ti and Ci be survival and censoring times; Xi a

p-dimensional vector of covariates; and Si a scalar covariate of interest, where Ti

and Ci are independent given (XT
i , Si)

T . The observed data are Vi = min(Ti, Ci),

∆i = I(Ti ≤ Ci). Cox’s proportional hazards model (Cox, 1972) is given by

λ(t|Xi, Si) = λ0(t) exp{XT
i β + Siθ}, (3.1)
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where β (p × 1) and θ (scalar) are regression coefficients, λ(t|Xi, Si) is the hazard

function given (XT
i , Si)

T , and λ0(t) is the unspecified baseline hazard. Note that

model (3.1) implies for any X that λ(t|X,Sk)/λ(t|X,Sl) = exp{(Sk − Sl)θ} inde-

pendent of time t, the so-called “proportional hazards” assumption. As suggested

by Cox (1972), evaluation of this assumption may be addressed by including in the

model a time-dependent covariate that is the product of the covariate of interest and

a function of time and then testing if the coefficient of this covariate is different from

0. Rather than considering a known such function, which limits the scope of possible

departures from model (3.1), we consider the alternative

λ(t|Xi, Si) = λ0(t) exp{XT
i β + Siγ(t)}, (3.2)

where now γ(·) is an arbitrary smooth function of time. Because γ(·) is infinite-

dimensional, we follow Gray (1994) and consider estimating it along with β by max-

imizing the penalized partial log-likelihood

lp{β, γ(·), η} = lc{β, γ(·)} − (η/2)

∫
{γ(m)(t)}2dt, (3.3)

where lc{β, γ(·)} is the usual Cox partial log-likelihood, m ≥ 1 is an integer, and η > 0

is a smoothing parameter controlling the roughness of γ(t) and the goodness-of-fit of

the model.

Following Zhang and Lin (2003), we consider the smoothing spline representation

of γ(t) of Kimeldorf and Wahba (1971). Denote by t0 = (t01, · · · , t0r)T an (r×1) vector

of ordered, distinct Vi’s with ∆i = 1 (i.e., all failure times) and by γ the corresponding
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vector of γ(t) evaluated at each element of t0. Without loss of generality, assume

0 < t01 < · · · < t0r < 1. As lc{β, γ(·)} depends on γ(·) only through γ, it is well-known

that maximizing lp{β, γ(·), η} leads to a natural smoothing spline of order m for the

estimator of γ(t), expressed as

γ(t) =
m∑

k=1

δkφk(t) +
r∑

l=1

alR(t, t0l ), (3.4)

where {δk} and {al} are constants; {φk(t)}m
k=1 is a basis for the space of (m − 1)th

order polynomials; and R(t, s) =
∫ 1

0
(t− u)m−1

+ (s− u)m−1
+ /{(m− 1)!}2, where x+ = x

if x > 0 and 0 otherwise. Writing δ = (δ1, · · · , δm)T and a = (a1, · · · , ar)
T , we have∫ {γ(m)(t)}2dt = aT Σa and γ = Hδ + Σa, where H (r ×m) has (k, l) element φl(t

0
k),

and Σ is positive definite with (k, l) element R(t0k, t
0
l ). This quadratic representation

of the penalty term in (3.3) suggests that a can be viewed as a random vector with a ∼

N(0, τΣ−1), where τ = 1/η is a variance component. Then (3.3) may be represented

as lp(β, δ, τ, a) = lc{β, γ(δ, a)} − aT Σa/(2τ), where the Cox partial log-likelihood is

now given by

lc{β, γ(δ, a)} =
n∑

i=1

∆i

[
XT

i β + Sic
T
i (Hδ + Σa)

− log

 ∑
j∈R(t0i )

exp{XT
j β + Sjc

T
i (Hδ + Σa)}


 . (3.5)

Here, R(t) is the risk set at time t; and ci is an (r × 1) vector of all 0’s except

when ∆i = 1, when it has a 1 in the position corresponding to the failure time t0i for

subject i. Thus, viewing (3.5) as a “conditional (on a) log-likelihood”, we may write
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a “marginal likelihood” for (βT , δT , τ)T as

L(β, δ, τ) =

∫
exp [lc{β, γ(δ, a)}] ϕr(a; 0, τΣ−1)da, (3.6)

where ϕr represents the density of an r-dimensional normal distribution.

The natural spline representation of γ(t) in (3.4) implies that γ(t) is an (m− 1)th

order polynomial if and only if a = 0, which in (3.6) is equivalent to H0 : τ = 0.

Thus, testing whether γ(t) is a constant as in (3.1) versus the broad alternative (3.2)

may be addressed by setting m = 1 and testing H0. Following Zhang and Lin (2003),

we propose a “score-type” test for H0 as follows. Writing l(β, δ, τ) = log{L(β, δ, τ)},

making the transformation u = τ−1/2Σ1/2a in (3.6), and using L’Hôpital’s rule, some

algebra shows that the “score” of τ based on (3.6) takes the form

∂l(β, δ, τ)

∂τ

∣∣∣∣
β̂,δ̂,τ=0

=
1

2

{
∂lc{β, γ(δ, 0)}

∂γT
Σ

∂lc{β, γ(δ, 0)}
∂γ

+tr

(
∂2lc{β, γ(δ, 0)}

∂γ∂γT
Σ

)}∣∣∣∣
β̂,δ̂

, (3.7)

where β̂, δ̂ are the usual maximum partial likelihood estimators for β, δ found by

maximizing (3.5) under H0 : a = 0. For a derivation of this equation, see Appendix

3.7.1.

The asymptotic distribution of the “score” of τ under the null hypothesis is of

interest in deriving the score test statistic. It is shown heuristically in Appendix

3.7.2 that, under H0, the second term on the right hand side of (3.7) converges in

probability to a constant. Denote by Uτ{β̂, γ(δ̂, 0)} the first term, and note that it is a

quadratic form in Sγ{β̂, γ(δ̂, 0)} = ∂lc{β̂, γ(δ̂, 0)}/∂γ. In Appendix 3.7.2 we provide a
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heuristic argument that, under H0, Sγ{β̂, γ(δ̂, 0)} is asymptotically normal with mean

0 and variance of the form of nWV W T , which can be consistently estimated from the

data. Because of the special structure of the matrix Σ, Zhang and Lin (2003) argue

that the standardized version of Uτ may not have a normal distribution. Instead,

asymptotically, Uτ follows a weighted chi-square distribution given by
∑r

i=1 ψiχ
2
1i,

where χ2
1i are independent random variables following a chi-square distribution with

one degree-of-freedom, and ψi are all distinct eigenvalues of the matrix nWV W T Σ/2.

Because calculation of the ψi is often computationally intensive and that of the exact

probability associated with a weighted chi-square distribution is difficult, following

Zhang and Lin (2003), we approximate the distribution of Uτ by a scaled chi-square

kχ2
v using the Satterthwaite method. The mean and variance of Uτ are given by

e = tr(nWV W T Σ)/2 and Iττ = tr{(nWV W T Σ)2}/2, respectively. Matching these

with the mean and variance of kχ2
v, we obtain k = Iττ/2e, v = 2e2/Iττ . The test

statistic is Sτ = Uτ/k, and we reject H0 at nominal level α if Sτ > χ2
v,1−α, where

χ2
v,1−α is the 100(1− α)% percentile of the χ2

v distribution.

3.3 Score Test for Covariate Effects

We use the same setup as in Section 3.2 but consider the different general alter-

native

λ(t|Xi, Si) = λ0(t) exp{XT
i β + γ(Si)}.
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Here the unknown function γ(·) represents the effect of covariate Si on the outcome.

We are interested in testing the functional form of γ(·); specifically, our null hypothesis

is H0 : γ(·) is an (m− 1)th order polynomial. Two cases of special interest are that

of m = 1, corresponding to a test for no effect, and m = 2, the situation of a linear

effect of Si.

Using the same smoothing spline technique employed in Section 3.2, we estimate

γ(·) along with β by maximizing the penalized partial log-likelihood

lp{β, γ(·), η} = lc{β, γ(·)} − (η/2)

∫
{γ(m)(s)}2ds. (3.8)

Denote by s0 = (s0
1, · · · , s0

r)
T an (r × 1) vector of ordered, distinct Si’s and by

γ the corresponding vector of γ(s) evaluated at each element of s0. Again assume

0 < s0
1 < · · · < s0

r < 1, then maximizing lp{β, γ(·), η} leads to a natural smoothing

spline of order m for the estimator of γ(s). We again have
∫ {γ(m)(s)}2ds = aT Σa and

γ = Hδ + Σa, where H (r ×m) has (k, l) element φl(s
0
k), and Σ is positive definite

with (k, l) element R(s0
k, s

0
l ). Equation (3.8) can be represented as lp{β, δ, τ, a} =

lc{β, γ(δ, a)} − aT Σa/(2τ), where the Cox partial log-likelihood now has a different

form given by

lc{β, γ(δ, a)} =
n∑

i=1

∆i

[
XT

i β + cT
i (Hδ + Σa)

− log

 ∑
j∈R(Vi)

exp{XT
j β + cT

j (Hδ + Σa)}


 .

Here ci is an (r × 1) vector of all 0’s with the exception of a 1 in the position corre-

sponding to the covariate value s0
i for subject i.
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We proceed by treating a as a normal random vector, obtaining the “marginal

likelihood,” deriving the score of τ , and defining the test statistic in the same fashion

as in Section 3.2. For reasons of identifiability, the first component of the vector δ

must be absorbed into the baseline hazard so that only the rest of the components

need be estimated under H0.

For m > 1, all results in Section 3.2 apply here, with the only difference being

that the form of lc is different. In addition, a more special case is testing for no effect

of Si. The null model is λ(t|Xi, Si) = λ0(t) exp(XT
i β). We take m = 1, and because

δ has only one component it is absorbed into λ0(t), which is equivalent to δ = 0. The

null hypothesis is H0 : a = 0 so that we only need to estimate β. The score of τ

under H0 takes the same form as in (3.7) except now the expression is evaluated at

(β̂, 0, 0). The second term can again be shown to converge in probability to a constant.

The first term is given by Uτ{β̂, γ(0, 0)} = ST
γ {β̂, γ(0, 0)}ΣSγ{β̂, γ(0, 0)}/2, where

Sγ{β̂, γ(0, 0)} = ∂lc{β̂, γ(0, 0)}/∂γ. Following the same procedure and using the

notation in Appendix 3.7.2, we can show that n−1/2Sγ{β̂, γ(0, 0)} d−→ N(0,WV W T ),

where now W = (−VγβV −1
ββ Ir). Some algebra yields that WV W T = Vγγ−VγβV −1

ββ Vβγ

so nŴ V̂ Ŵ T = Îγγ − Îγβ Î−1
ββ Îβγ, which is exactly the efficient (observed) information

matrix Îγγ|β. If Si is the only covariate in the Cox model, then W = (0r×p Ir), and

WV W T = Vγγ so nŴ V̂ Ŵ T = Îγγ, and the test statistic is again defined in the same

way.
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3.4 Simulation Evidence

3.4.1 Test for Proportional Hazards

We carried out a simulation to evaluate the performance of the proposed test for

the proportional hazards assumption. The cases we considered are similar to those

in Gray (1994).

To evaluate size of the test, failure times were generated under the null model

λ(t|Si) = λ0(t) exp{Siδ0}, i = 1, 2, · · · , n, with λ0(t) = 1 and δ0 = 0, 1 or 2. Values of

Si were equally spaced on the interval (0, 1) with an equal number of subjects having

each distinct Si value; e.g., if “number of distinct covariate values” is 2, then half

subjects had Si = 0, while the other half had Si = 1. We considered two different

censoring distributions: a unit exponential distribution and a uniform distribution on

(0, 2); the former gave a minimum censoring probability of 0.119 and a maximum of

0.500, while the latter gave a minimum of 0.068 and a maximum of 0.432. Sample

sizes were n = 100 and 200, and N = 2000 samples were generated for each scenario.

Empirical size was estimated in each case as the proportion of 2000 samples rejected

by the nominal 0.05-level score test.

Results are given in Table 3.1 and show that the empirical sizes of our test are very

close to the nominal level for all scenarios we considered. In most cases the empirical

sizes are within sampling error of the nominal level. Larger differences from the

nominal level are mostly seen when the censoring distribution was unit exponential,
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as censoring probability in that case is higher.

To evaluate power, failure times were generated under the alternative λ(t|Si) =

λ0(t) exp{Siγ(t)}, i = 1, 2, · · · , n. Here, Si was a single binary covariate defining two

groups of equal size, and the true log hazard ratios for the two groups, γ(t), were

given by

Curve 1 : γ(t) = log{.75t}

Curve 2 : γ(t) = log{2/(1 + 5t)}

Curve 3 : γ(t) = log{et} = t

Curve 4 : γ(t) = log{(t− .75)2}

Curve 5 : γ(t) = log{eI(t≥1)} = I(t ≥ 1),

where I(·) is the indicator function. Curves 1, 2 and 4 were considered by Gray

(1994) with the same setup of generating failure and censoring times. Plots of these

curves are given in Figure 3.3. Again λ0(t) = 1; thus, failure times in the baseline

group (Si = 0) were unit exponential. Failure times in the other group (Si = 1) were

generated by using the appropriate transformation to obtain the required hazard

ratio. Censoring was uniform on (0, 2), which gave a censoring probability in the

baseline group of 0.432. We took n = 200, and N = 1000 samples were generated

for each scenario. Empirical power was estimated as the proportion of 1000 samples

rejected by the nominal 0.05-level score test.

For comparison, we also computed powers for several 1-degree-of-freedom score
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tests as follows. Under the model λ(t|Si) = λ0(t) exp{β0Si + β1Sig(t)}, the “linear”,

“quadratic”, “log” and “optimal” tests are the score tests of H0 : β1 = 0 from this

model with g(t) = t, t2, log(t) and γ(t), respectively. Because the “optimal” test is

based on the true alternative γ(·), it provides an upper bound on the power of the

other tests.

Results from the power simulation are given in Table 3.2. For smooth monotone

alternatives (curves 1, 2 and 3), the power of our test is very close to that of the

“optimal” test. These alternatives are either linear or close to linear, hence the

“linear” test also provides good power for detecting them. For non-monotone (curve 4)

or non-smooth (curve 5) alternatives, the power of the proposed test is not as good as

that of the “optimal” test. However, for curve 4 our test out-performs all other tests,

while for curve 5 has power close to those of the “linear” and the “quadratic” and much

higher than that of the “log” test. The proposed test is based on the penalized partial

likelihood, thus considers broader alternatives than any specific parametric tests. The

penalty function penalizes non-smooth alternatives more than smooth ones, hence

the power of the proposed test is focused toward smoother alternatives. We see

the proposed test gives some power for non-monotone or non-smooth alternatives,

while providing good power for very smooth alternatives. So in a “robust” sense the

proposed test can provide good protection against a wide variety of alternatives.

Gray (1992, 1994) proposes spline-based tests in Cox models using fixed knots

splines. We now compare our results to those in Section 4 of Gray (1994) under the
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same simulation setup. Both tests have empirical sizes close to the nominal level.

However, in contrast to our test, Gray’s test yields several empirical sizes that are far

from nominal. For smooth monotone alternatives, the power of our test is comparable

to that of Gray. For non-monotone or non-smooth alternatives, Gray’s test can have

better power, provided that an optimal degree-of-freedom (df) is used. However, this

optimal df often needs to be tuned based on the unknown true alternative, which is

unrealistic in practice, while our test requires no such tuning.

3.4.2 Test for Covariate Effects

A simulation was also carried out to evaluate performance of the proposed score

test for covariate effects. We considered testing both for no covariate effect and for a

linear effect.

For size, failure times were generated under the null model λ(t|Si) = λ0(t) (no

covariate effect) and λ(t|Si) = λ0(t) exp{Si} (linear effect), i = 1, 2, · · · , n. In both

cases, the Si values were the same as those used in the size simulation in Section 3.4.1,

and λ0(t) = 1. Censoring was unit exponential and uniform on (0, 1.5); thus for the

former the censoring probability was 0.500 for testing no effect and between 0.269 and

0.500 for testing the linear effect, while for the latter the censoring probability was

0.518 for testing no effect and between 0.241 and 0.518 for testing the linear effect.

Sample sizes were n = 100 and 200, and N = 2000 samples were generated for each

scenario.
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Table 3.3 shows the size simulation results. The sizes of the proposed test are

again very close to the nominal 0.05-level for testing both no and linear effect. In

fact, with n = 200, all sizes are within the binomial standard error (0.49%) of the

nominal level.

For the power simulation, we used the same setup as in the simulation study of

Gray (1994). Failure times were generated under the alternative λ(t|Si) =

λ0(t) exp{γ(Si)}, i = 1, 2, · · · , n, where n = 200, and we were interested in testing

H0 : γ(·) = 0 and H0 : γ(·) is a linear function, respectively. The following six curves

for γ(·) were used for both cases:

Curve 1 – exponential (E) : γ(s) = .25 exp{.8s}

Curve 2 – logistic (L): γ(s) = .6 exp{3.5s}/(1 + exp{3.5s})

Curve 3 – step 1 (S1): γ(s) = .9I(s > 1.1)

Curve 4 – quadratic (Q): γ(s) = .3s2

Curve 5 – cosine (C): γ(s) = .5 cos(3.5s)

Curve 6 – step 2 (S2): γ(s) = .7I(|s| < .5)

Plots of these curves are given in Figure 3.4. The covariate Si values were equally

spaced on the interval [−1.719, 1.719] with step 0.0173 (hence standardized to have

mean 0 and variance 1). Censoring times were generated from a uniform distribution

on (0, 1.5). N = 1000 simulation runs were performed for each scenario.

For testing no effect, we also calculated empirical powers of the usual 1-, 2-, 3-
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degree-of-freedom score tests based on adding linear, quadratic, and cubic terms to

the null model. For example, the cubic test is the score test of H0 : β1 = β2 = β3 = 0

in the model λ(t|Si) = λ0(t) exp{β1Si + β2S
2
i + β3S

3
i }. Similarly, for testing a linear

effect, empirical powers of the usual 1-, 2-degree-of-freedom score tests based on

adding quadratic and cubic terms to the null model were provided. For example, the

cubic test is the score test of H0 : β2 = β3 = 0 in the model λ(t|Si) = λ0(t) exp{β1Si+

β2S
2
i + β3S

3
i }.

In both cases, the optimal test is the 1-degree-of-freedom score test for the true

alternative, thus providing an upper bound on the power of the other tests. For testing

no effect, this is the score test of H0 : β = 0 in the model λ(t|Si) = λ0(t) exp{βγ(Si)};

For testing a linear effect, this is the score test of H0 : β2 = 0 in the model λ(t|Si) =

λ0(t) exp{β1Si + β2γ(Si)}, where γ(·) is the true curve used to generate the data.

Power simulation results are given in Table 3.4. For testing no effect, under

smooth monotone alternatives (E, L) the proposed test provides good power that is

close to that of the optimal test. Results are similar for the linear test because these

alternatives are close to linear. For the 2-step alternative (S1), our test is better than

the linear and is close to the quadratic and the cubic. For the other three alternatives,

which are non-monotone (Q, C) and non-smooth (S2), our test provides some power

and is better than the linear but not as good as the other tests. Note no test except the

optimal has good power for alternative (C) because of the special shape of the curve.

For testing linear effect, alternatives (E, L) are close to linear so none of the tests have
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good power for detecting them. Our test has better power than the quadratic and the

cubic for the other four alternatives except for alternative (Q) for which the quadratic

is the optimal test. Even in that case the proposed test has power very close to the

that of the optimal. The spline test generally has better power for testing linear effect

than for testing no effect, because higher order (m = 2) smoothing splines are used

for testing linear effect, in contrast to that m = 1 for testing no effect. Therefore we

have better approximation to the nonparametric function when testing linear effect,

consequently increasing the power of the test. Again, because the proposed test

is based on the penalized partial likelihood, power of the proposed test is focused

toward smoother alternatives. Overall, for testing covariate effects, the proposed test

provides good protection against very general alternatives.

The comparison of our results to those in Section 3 of Gray (1994) shows a similar

pattern as discussed in the last paragraph of Section 3.4.1, so the comments there

apply here as well.

3.5 Application to CALGB 8541

We apply the proposed score tests to the data from CALGB 8541. Data on 1479

eligible patients were available to us after long-term follow-up.

As discussed in Section 3.1, the proportional hazards assumption for evaluation

of whether the binary covariate ER status is prognostic for survival time is suspect.

Among the 1437 patients who had known ER status, 917 were censored, resulting in
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a censoring percentage of 63.8%. A proportional hazards fit of time-to-death on ER

gives an estimated hazard ratio of 0.768 with a p-value of 0.003.

Results from application of the proposed formal testing procedures confirm the

observations in Figures 3.1 and 3.2. For testing the proportional hazards assump-

tion on ER, the score test yields a p-value < 0.001. The “linear”, “quadratic” and

“log” test also give p-values significant at nominal level 0.05. Based on these re-

sults, modification of the model is thus required to achieve a valid analysis. As the

hazard ratio appears to be fairly constant within the interval [1, 8), we may fit a

piecewise constant hazard ratio model with three pieces: [0, 1), [1, 8), and [8,∞).

Such a fit gives a significant (level 0.05) p-value for non-proportional hazards on ER

(p = 0.003). At nominal level 0.05, the effect of ER is significant on the interval

[0, 1) (hazard ratio = 0.263; p = 0.004) and [1, 8) (hazard ratio = 0.747; p = 0.003)

but not significant on the interval [8,∞) (hazard ratio = 1.589; p = 0.137), which is

another indication that the hazards are not proportional.

Another covariate of interest is menopausal status (pre- or post-menopausal),

abbreviated MENO. All 1479 patients had known MENO. Among them, 947 were

censored, resulting in a censoring percentage of 64.0%. A proportional hazards fit of

time-to-death on MENO gives an estimated hazard ratio of 0.921 with a p-value of

0.347, which is not significant at level 0.05. Figures 3.5 and 3.6 show the survival

and log-negative-log of survival curves by MENO and the Schoenfeld residuals of

MENO for 638 pre-menopausal and 841 post-menopausal patients, respectively. We
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see a similar pattern as that described in Section 3.1 on ER, hence the proportional

hazards assumption on MENO is also suspect. For testing the proportional hazards

assumption on MENO, the score test yields a p-value of 0.011; while the “linear”,

“quadratic” and “log” test have a p-value of 0.032, 0.023, and 0.175, respectively.

Had we used the “log” test, we would have not rejected the null hypothesis at level

0.05. To get a better understanding of the effect of MENO, we again consider a

piecewise constant hazard ratio model. The hazard ratio shows a dramatic change on

the interval [2, 3.5) but otherwise appears to be fairly constant, hence we consider such

a model with three pieces: [0, 2), [2, 3.5), and [3.5,∞). Such a fit gives a significant

(level 0.05) p-value for non-proportional hazards on MENO (p = 0.002). At level 0.05,

the effect of MENO is not significant on the interval [0, 2) (hazard ratio = 0.975; p =

0.905) and [3.5,∞) (hazard ratio = 1.148; p = 0.240) but significant on the interval

[2, 3.5) (hazard ratio = 0.549; p = 0.001). This model gives more insight into how

MENO influences the outcome than does an overall proportional hazards model.

Other covariates available to us include treatment, size of breast cancer tumor

(cm), number of histologically positive lymph nodes found. As noted in Section 3.1,

the difference in survival between the two groups treated with a moderate or high

dose was not significant at level 0.05 using the log-rank test (p = 0.814). We hence

grouped these two doses as one treatment, so along with the low dose, we have a binary

treatment covariate. After controlling for other covariates, a smoothing spline-based

score test of proportional hazards of ER gives a significant (level 0.05) p-value of
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0.012. Again we can fit a piecewise constant proportional hazards model on ER and

assuming proportional hazards on other covariates. The flexibility of our approach

allows other tests to be performed. For example, a score test of the null hypothesis

that the effect of “number of positive lymph nodes” is linear gives a p-value of 0.457,

which is not significant at level 0.05, suggesting a linear fit is adequate.

3.6 Discussion

We have developed score tests for the proportional hazards assumption and for

covariate effects in Cox models, based on the penalized partial likelihood and natural

smoothing spline representation. The tests achieve size close to nominal and provide

good power for very general alternatives. The tests perform especially well for smooth

monotone alternatives.

One advantage of the proposed tests is their simplicity. The test statistic is easy

to calculate as we only need to fit the null model, which may be accomplished by

maximizing the usual partial likelihood under the null hypothesis. Existing software

such as SAS PROC PHREG or S-PLUS/R function coxph() can be used directly for

this purpose.

We used the Satterthwaite method to approximate the null sampling distribu-

tion of the score statistic. If better precision is desired, methods are available for

calculating the quantiles from a weighted chi-square distribution; e.g., see, Davies

(1980).



59

If the proportional hazards assumption is rejected, we can include in the propor-

tional hazards predictor interactions between functions of time and covariates to get

a more suitable model. The difficulty with this approach is to identify the form of

the interaction. Plotting and smoothing the Schoenfeld residuals may provide some

insight. An alternative strategy is to use a stratified proportional hazards model. An

advantage of this approach is that we do not have to assume a particular form of the

interaction. A disadvantage is the resulting inability to examine the effects of the

stratifying covariates.

3.7 Appendices

3.7.1 Derivation of Equation (3.7)

From equation (3.6), We have

L(β, δ, τ) =

∫
exp [lc{β, γ(δ, a)}] ϕr(a; 0, τΣ−1)da

=

∫
exp [lc{β, γ(δ, a)}] (2π)−r/2|τΣ−1|−1/2 exp{−1

2
aT (τΣ−1)−1a}da

∝ τ−r/2

∫
exp [lc{β, γ(δ, a)}] exp{− 1

2τ
aT Σa}da. (3.9)

Let u = τ−1/2Σ1/2a, then a = τ 1/2Σ−1/2u, and

− 1

2τ
aT Σa = − 1

2τ
(τ 1/2uT Σ−1/2)Σ(Σ−1/2uτ 1/2) = −1

2
uT u.

Now

γ(δ, a) = Hδ + Σa
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= Hδ + Σ(τ 1/2Σ−1/2u)

= Hδ + τ 1/2Σ1/2u

∆
= γ(δ, τ, u),

thus

∂γ

∂τ
=

1

2
τ−1/2Σ1/2u.

Note that the Jacob is given by∣∣∣∣ ∂a

∂uT

∣∣∣∣ =
∣∣τ 1/2Σ−1/2

∣∣ = τ r/2|Σ|−1/2,

therefore

(3.9) = τ−r/2

∫
exp [lc{β, γ(δ, τ, u)}] exp{−1

2
uT u}τ r/2|Σ|−1/2du

∝
∫

exp [lc{β, γ(δ, τ, u)}] exp{−1

2
uT u}du.

Let l(β, δ, τ) = log{L(β, δ, τ)}, then

∂l(β, δ, τ)

∂τ
=

∂L(β, δ, τ)/∂τ

L(β, δ, τ)
.

Now

∂L(β, δ, τ)

∂τ
=

∫
exp [lc{β, γ(δ, τ, u)}] exp{−1

2
uT u}∂lc{β, γ(δ, τ, u)}

∂γT
(
1

2
τ−1/2Σ1/2u)du

=
1

2τ 1/2

∫
exp [lc{β, γ(δ, τ, u)}] exp{−1

2
uT u}∂lc{β, γ(δ, τ, u)}

∂γT
Σ1/2udu.

Therefore,

∂l(β, δ, τ)

∂τ
=

∫
exp [lc{β, γ(δ, τ, u)}] exp{−1

2
uT u}

×∂lc{β, γ(δ, τ, u)}
∂γT

Σ1/2udu/{2τ 1/2L(β, δ, τ)}.
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For simplicity, let us define

n(β, δ, τ) =

∫
exp [lc{β, γ(δ, τ, u)}] exp{−1

2
uT u}∂lc{β, γ(δ, τ, u)}

∂γT
Σ1/2udu,

d(β, δ, τ) = 2τ 1/2L(β, δ, τ),

then

∂l(β, δ, τ)

∂τ
=

n(β, δ, τ)

d(β, δ, τ)
,

∂L(β, δ, τ)

∂τ
=

1

2τ 1/2
· n(β, δ, τ).

We want to evaulate ∂l(β, δ, τ)/∂τ at (β̂, δ̂, τ = 0), it is easy to see that d(β, δ, τ)

equals to 0 when evaluated at (β̂, δ̂, τ = 0). For n(β, δ, τ), because u = τ−1/2Σ1/2a,

a ∼ N(0, τΣ−1), and

τ−1/2Σ1/2(τΣ−1)Σ1/2τ−1/2 = I,

where I is the identity matrix, we have

u ∼ N(0, I).

Hence the expectation of u is 0, which implies that n(β, δ, τ) also equals to 0 when

evaluated at (β̂, δ̂, τ = 0). Therefore we shall apply the L’Hôpital’s rule.

We now have

∂d(β, δ, τ)

∂τ
= τ−1/2L(β, δ, τ) + 2τ 1/2 ∂L(β, δ, τ)

∂τ

= τ−1/2L(β, δ, τ) + n(β, δ, τ),

and

∂n(β, δ, τ)

∂τ
=

∫
exp [lc{β, γ(δ, τ, u)}] exp{−1

2
uT u} × {A + B}du,
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where

A =
∂{∂lc{β,γ(δ,τ,u)}

∂γT Σ1/2u}
∂τ

= (Σ1/2u)T ∂2lc{β, γ(δ, τ, u)}
∂γ∂γT

∂γ

∂τ

=
1

2τ 1/2
uT Σ1/2 ∂2lc{β, γ(δ, τ, u)}

∂γ∂γT
Σ1/2u,

and

B =
∂lc{β, γ(δ, τ, u)}

∂γT
Σ1/2u

∂lc{β, γ(δ, τ, u)}
∂τ

=
1

2τ 1/2

∂lc{β, γ(δ, τ, u)}
∂γT

Σ1/2uuT Σ1/2 ∂lc{β, γ(δ, τ, u)}
∂γ

,

where we use the fact that for any two compatible vectors a and b, where a depends

on a scalar τ , while b is independent of τ ,

∂(aT b)

∂τ
= bT ∂a

∂τ
.

Therefore,

∂l(β, δ, τ)

∂τ

∣∣∣∣
β̂,δ̂,τ=0

=
n(β, δ, τ)

d(β, δ, τ)

∣∣∣∣
β̂,δ̂,τ=0

=
∂n(β, δ, τ)/∂τ

∂d(β, δ, τ)/∂τ

∣∣∣∣
β̂,δ̂,τ=0

=

∫
exp [lc{β, γ(δ, τ, u)}] exp{−1

2
uT u} × Cdu

2τ 1/2{τ−1/2L(β, δ, τ) + n(β, δ, τ)}
∣∣∣∣
β̂,δ̂,τ=0

=

∫
exp [lc{β, γ(δ, τ, u)}] exp{−1

2
uT u} × Cdu

2L(β, δ, τ) + 2τ 1/2n(β, δ, τ)

∣∣∣∣
β̂,δ̂,τ=0

,

where

C = uT Σ1/2 ∂2lc{β, γ(δ, τ, u)}
∂γ∂γT

Σ1/2u +
∂lc{β, γ(δ, τ, u)}

∂γT
Σ1/2uuT Σ1/2 ∂lc{β, γ(δ, τ, u)}

∂γ
.
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Note that when τ = 0,

γ(δ, τ, u) = Hδ = γ(δ, 0)

does not depend on u. Therefore,

∂l(β, δ, τ)

∂τ

∣∣∣∣
β̂,δ̂,τ=0

=
exp [lc{β, γ(δ, 0)}] ∫ exp{−1

2
uT u} × C|τ=0du

2L(β, δ, 0)

∣∣∣∣
β̂,δ̂

.

Note that

L(β, δ, 0)

=

∫
exp [lc{β, γ(δ, 0)}] ϕr(a; 0, 0)da

= exp [lc{β, γ(δ, 0)}] ,

and recall that

u ∼ N(0, I).

Using the following result: If E(X) = µ, Var(X) = V and A is symmetric, then

E(XT AX) = µT Aµ + tr(AV ), where E and Var represent expectation and variance,

respectively, and noting that E(uuT ) = I, we get∫
exp{−1

2
uT u} × C|τ=0du

=
∂lc{β, γ(δ, 0)}

∂γT
Σ

∂lc{β, γ(δ, 0)}
∂γ

+ tr

(
∂2lc{β, γ(δ, 0)}

∂γ∂γT
Σ

)
.

Therefore,

∂l(β, δ, τ)

∂τ

∣∣∣∣
β̂,δ̂,τ=0

=
1

2

{
∂lc{β, γ(δ, 0)}

∂γT
Σ

∂lc{β, γ(δ, 0)}
∂γ

+ tr

(
∂2lc{β, γ(δ, 0)}

∂γ∂γT
Σ

)}∣∣∣∣
β̂,δ̂

.

We have proved the result.
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3.7.2 Heuristic Derivation of the Distribution of the Score of

τ under H0

Throughout, we assume that the null hypothesis H0 : τ = 0 is true. Denote by β0

and δ0 the true values of the parameters β and δ. For simplicity, define

Sβ{β, γ(δ, 0)} =
∂lc{β, γ(δ, 0)}

∂β
, Sγ{β, γ(δ, 0)} =

∂lc{β, γ(δ, 0)}
∂γ

,

Iββ{β, γ(δ, 0)} = −∂2lc{β, γ(δ, 0)}
∂β∂βT

, Iβγ{β, γ(δ, 0)} = −∂2lc{β, γ(δ, 0)}
∂β∂γT

,

Iγβ{β, γ(δ, 0)} = −∂2lc{β, γ(δ, 0)}
∂γ∂βT

, Iγγ{β, γ(δ, 0)} = −∂2lc{β, γ(δ, 0)}
∂γ∂γT

.

By the mean value expansion, we have Sβ{β̂, γ(δ̂, 0)}

Sγ{β̂, γ(δ̂, 0)}

 =

 Sβ{β0, γ(δ0, 0)}

Sγ{β0, γ(δ0, 0)}



−

 I∗ββ I∗βγH

I∗γβ I∗γγH


 β̂ − β0

δ̂ − δ0

 , (3.10)

where I∗ββ = Iββ{β∗, γ(δ∗, 0)} and similarly for I∗βγ, I∗γβ and I∗γγ; β∗ is some value

between β0 and β̂; and δ∗ is some value between δ0 and δ̂. Because (β̂, δ̂) are the

maximum partial likelihood estimators under H0, we have

0 =

 ∂lc(β̂, δ̂)/∂β

∂lc(β̂, δ̂)/∂δ

 =

 Sβ{β̂, γ(δ̂, 0)}

HT Sγ{β̂, γ(δ̂, 0)}


(3.10)
=

 Sβ{β0, γ(δ0, 0)}

HT Sγ{β0, γ(δ0, 0)}

−

 I∗ββ I∗βγH

HT I∗γβ HT I∗γγH


 β̂ − β0

δ̂ − δ0

 .
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Therefore, β̂ − β0

δ̂ − δ0

 =

 I∗ββ I∗βγH

HT I∗γβ HT I∗γγH


−1  Sβ{β0, γ(δ0, 0)}

HT Sγ{β0, γ(δ0, 0)}

 . (3.11)

Note that β is p× 1 and γ is r × 1. From (3.11) we obtain β̂ − β0

δ̂ − δ0

 =

 I∗ββ I∗βγH

HT I∗γβ HT I∗γγH


−1  Ip 0p×r

01×p HT



×

 Sβ{β0, γ(δ0, 0)}

Sγ{β0, γ(δ0, 0)}

 , (3.12)

where Ik denotes the k × k identity matrix.

The lower part of (3.10) yields

Sγ{β̂, γ(δ̂, 0)} = Sγ{β0, γ(δ0, 0)} − (I∗γβ I∗γγH)

 β̂ − β0

δ̂ − δ0

 . (3.13)

Substituting (3.12) into (3.13), we get

Sγ{β̂, γ(δ̂, 0)} =

(0r×p Ir) − (I∗γβ I∗γγH)

 I∗ββ I∗βγH

HT I∗γβ HT I∗γγH


−1

×

 Ip 0p×r

01×p HT




 Sβ{β0, γ(δ0, 0)}

Sγ{β0, γ(δ0, 0)}

 . (3.14)

Denote by γ0 the true value of γ. Note that under H0, γ(δ0, 0) = γ0; β̂ and δ̂ are

consistent estimators for β0 and δ0. As γ(·, ·) is continuous, both γ(δ̂, 0) and γ(δ∗, 0)

are consistent estimators for γ0. By well-known results, e.g., Andersen and Gill (1982,
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Theorem 3.2), there exists a nonnegative definite matrix V such that

n−1/2

 Sβ{β0, γ(δ0, 0)}

Sγ{β0, γ(δ0, 0)}

 d−→ N(0, V ), and

n−1Î and n−1I∗
p−→ V =

 Vββ Vβγ

Vγβ Vγγ

 , (3.15)

where Î and I∗ are matrices with elements Iββ, Iβγ, Iγβ and Iγγ evaluated at (β̂, δ̂)

and (β∗, δ∗), respectively.

From the second result in (3.15), it is easy to see the second term on the right

hand side of (3.7) converges in probability to −1
2
tr(nVγγΣ). Now from the first result

and (3.14), we have

n−1/2Sγ{β̂, γ(δ̂, 0)}

=

(0r×p Ir) − (n−1I∗γβ n−1I∗γγH)

 n−1I∗ββ n−1I∗βγH

n−1HT I∗γβ n−1HT I∗γγH


−1

×

 Ip 0p×r

01×p HT


× n−1/2

 Sβ{β0, γ(δ0, 0)}

Sγ{β0, γ(δ0, 0)}

 d−→ N(0,WV W T ),

where

W = (0r×p Ir) − (Vγβ VγγH)

 Vββ VβγH

HT Vγβ HT VγγH


−1  Ip 0p×r

01×p HT

 .

After some algebra, one can show that

WV W T = Vγγ − (Vγβ VγγH)

 Vββ VβγH

HT Vγβ HT VγγH


−1  Vβγ

HT Vγγ

 .
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In practice we may consistently estimate the unknown matrix V by the matrix V̂

found by substituting Îββ/n, Îβγ/n, Îγβ/n, Îγγ/n for Vββ, Vβγ, Vγβ, Vγγ , respectively,

where Îββ = Iββ{β̂, γ(δ̂, 0)} and similarly for the others.

As a special case, note that if Si is the only covariate in the Cox model, then we

have the simplified form W = (0r×p Ir − VγγH(HT VγγH)−1HT ) and WV W T =

Vγγ − VγγH(HT VγγH)−1HT Vγγ.



68

3.8 Tables and Figures
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Table 3.1: Empirical sizes of nominal 0.05-level spline tests for proportional hazards
of Si in the model λ(t|Si) = λ0(t) exp{Siδ0}, i = 1, 2, · · · , n, expressed as percent.
λ0(t) = 1; values of Si are equally spaced on the interval (0, 1) with an equal number
of subjects having each distinct Si values. Results are based on 2000 simulations for
each scenario.

Number of True value of δ0

Censoring distinct n = 100 n = 200
distribution Si values 0 1 2 0 1 2

Unit 2 5.10 5.70 6.10 6.20 5.40 4.95
exponential 4 5.70 6.05 5.10 5.60 4.65 4.85

10 5.70 6.30 5.95 6.40 5.00 5.30
20 5.60 6.35 5.85 6.40 4.75 4.85
50 5.90 6.20 6.00 6.45 4.65 4.60
100 5.70 6.60 5.95 6.35 4.65 4.60
200 6.40 4.90 4.70

Uniform (0,2) 2 5.20 4.45 5.20 5.60 4.60 4.35
4 5.55 4.55 4.55 4.85 4.75 4.25
10 5.35 4.10 5.20 5.00 4.45 4.75
20 5.30 4.30 4.50 4.95 4.95 4.75
50 5.35 4.15 4.90 4.85 4.70 4.60
100 5.40 4.30 4.90 4.80 4.65 4.45
200 4.80 4.85 4.55
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Table 3.2: Estimated powers of nominal 0.05-level tests for proportional hazards of
Si in the model λ(t|Si) = λ0(t) exp{Siγ(t)}, i = 1, 2, · · · , n, expressed as percent.
λ0(t) = 1; Si is a single binary covariate defining two groups of equal size; γ(t) is
the true alternative; n = 200. Censoring distribution is uniform on (0, 2). Tests and
alternatives are as described in the text. Results are based on 1000 simulations for
each scenario.

Alternative
Test Curve 1 Curve 2 Curve 3 Curve 4 Curve 5
Spline 90.8 78.4 47.6 37.3 28.6
Linear 90.5 78.8 51.4 10.1 30.4
Quadratic 79.7 65.3 50.0 13.8 36.6
Log 93.3 75.8 37.4 32.1 15.5
Optimal 93.3 81.7 51.4 91.5 46.6
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Table 3.3: Empirical sizes of nominal 0.05-level spline tests for covariate effects of Si

in the model λ(t|Si) = λ0(t) (no effect) and λ(t|Si) = λ0(t) exp{Si} (linear effect),
i = 1, 2, · · · , n, expressed as percent. λ0(t) = 1; values of Si are as in Table 3.1.
Results are based on 2000 simulations for each scenario.

Number of Null hypothesis
Censoring distinct n = 100 n = 200

distribution Si values No effect Linear effect No effect Linear effect
Unit 4 5.25 4.65 5.10 4.90

exponential 10 5.20 4.35 5.00 4.60
20 5.15 4.60 5.05 4.50
50 5.05 4.45 4.95 4.60
100 5.15 4.25 5.00 4.80
200 4.95 4.70

Uniform (0,1.5) 4 4.90 4.80 4.50 4.65
10 5.30 5.15 5.10 5.05
20 5.00 5.50 4.60 4.90
50 5.05 5.60 4.50 4.95
100 5.00 5.70 4.70 4.95
200 4.70 4.85
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Table 3.4: Estimated powers of nominal 0.05-level tests for covariate effects of Si in
the model λ(t|Si) = λ0(t) exp{γ(Si)}, i = 1, 2, · · · , n, expressed as percent. λ0(t) = 1;
values of Si are equally spaced on the interval [−1.719, 1.719] with step 0.0173; γ(Si)
is the true alternative; n = 200. Censoring distribution is uniform on (0, 1.5). Tests
and alternatives are as described in the text. Results are based on 1000 simulations
for each scenario.

Null Alternative
hypothesis Test E L S1 Q C S2
No effect Spline 74.0 72.4 73.8 23.1 5.8 16.2

Linear 74.4 71.5 68.9 4.5 4.3 4.2
Quadratic 71.5 60.4 84.1 73.6 5.9 44.7
Cubic 67.2 55.5 84.1 67.7 6.2 38.5
Optimal 81.6 74.2 96.3 81.7 92.0 93.7

Linear effect Spline 12.8 4.9 56.0 80.7 7.7 65.4
Quadratic 13.7 4.9 54.0 81.7 6.9 58.5
Cubic 12.0 7.5 54.0 73.7 6.7 46.4
Optimal 14.2 10.5 78.3 81.7 91.9 93.8
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Figure 3.1: CALGB 8541: Survival and log-negative-log of survival distribution by
ER status. Survival distribution was estimated by using the Kaplan-Meier method.



74

2 4 6 8 10 12

−
0

.6
−

0
.4

−
0

.2
0

.0
0

.2
0

.4
0

.6

Time in years

S
c
h

o
e

n
fe

ld
 r

e
s
id

u
a

ls

Figure 3.2: CALGB 8541: Schoenfeld (1982) residuals of ER status, obtained by
using SAS PROC PHREG. Residuals above and below the horizontal line are for
patients with ER positive and those with ER negative, respectively.
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Figure 3.3: Plots of curves used in the simulation study evaluating powers of the tests
for proportional hazards. Curve 1: γ(t) = log{.75t}; curve 2: γ(t) = log{2/(1 + 5t)};
curve 3: γ(t) = log{et} = t; curve 4: γ(t) = log{(t − .75)2}; curve 5: γ(t) =
log{eI(t≥1)} = I(t ≥ 1).
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Figure 3.4: Plots of curves used in the simulation study evaluating powers of the
tests for covariate effects. Curve 1 (E): γ(s) = .25 exp{.8s}; curve 2 (L): γ(s) =
.6 exp{3.5s}/(1 + exp{3.5s}); curve 3 (S1): γ(s) = .9I(s > 1.1); curve 4 (Q): γ(s) =
.3s2; curve 5 (C): γ(s) = .5 cos(3.5s); curve 6 (S2): γ(s) = .7I(|s| < .5).
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Figure 3.5: CALGB 8541: Survival and log-negative-log of survival distribution by
menopausal status. Survival distribution was estimated by using the Kaplan-Meier
method.
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Figure 3.6: CALGB 8541: Schoenfeld (1982) residuals of menopausal status, obtained
by using SAS PROC PHREG. Residuals above and below the horizontal line are for
patients post-menopausal and those pre-menopausal, respectively.
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