ABSTRACT

ZHOU, QUAN. Wireless Communications with MIMO Systems. Analysis and Practice.
(Under thedirection of Dr. Huaiyu Dai).

Multiple input multiple output (MIMO) systems using multiple transmit and receive
antennas are widely considered as the vital breakthrough that will allow future wireless
systems to achieve higher date rates and link reliability with limited bandwidth and power
resources. In this dissertation, we address four interesting topics in the wireless MIMO
systems, in both point-to-point and multiuser environments. First, in a point-to-point MIMO
gpatial diversity system, usually the probability distribution function (PDF) of the received
SNR is rather involved, which leads to the difficulty in analyzing the average symbol error
rate (SER). We provide a succinct result at the high SNR region. Second, in point-to-point
wireless MIMO communications, in order to protect the transmitted data against random
channel impairment, we consider the problem of link adaptation, including rate adaptation
and power control to improve the system performance and guarantee certain quality of
service. Third, in a multiuser MIMO wireless network, there is another form of diversity
called multiuser diversity which can be exploited to increase the system throughput. By
analyzing the scheduling gain (defined as the rate difference between the opportunistic
scheduling and round-robin scheduling scheme), we provide a complete analysis on the
interaction between the spatial diversity and multiuser diversity. Fourth, in a multiuser
MIMO wireless network, we propose a crosslayer-based scheduling scheme that exploits
Tomlinson-Harashima Precoding (THP) at the physical (PHY) layer to reduce the multiuser

scheduling burden at the medium access control (MAC) layer. Compared with some existing



scheduling schemes, the proposed scheme greatly reduces the scheduling complexity while

simultaneously improves overall system performance.



WIRELESSCOMMUNICATIONSWITH MIMO SYSTEMS:
ANALYSISAND PRACTICE

by

QUAN ZHOU

A dissertation submitted to the Graduate Faculty of
North Carolina State University
in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

ELECTRICAL ENGINEERING

Raleigh

2006

APPROVED BY:

Hualyu Dai Brian L. Hughes
Chair of Advisory Committee

Keith Townsend Alexandra Duel-Hallen

Jack W. Silverstein



To my family



BIOGRAPHY

Quan Zhou received his B.E. degree in Communication and Control from Northern
Jiaotong University, Beijing, China, in 1998. And he received his M.E. degree in Electronic
Engineering from Tsinghua University, Beijing, China in 2001. In August 2001, he started
his graduate studies at North Carolina State University in the Department of Electrical and
Computer Engineering. His research interests are in the areas of wireless MIMO
communications with emphasis on link adaptation and multiuser MIMO network. His current
research focuses on nonlinear optimization in wireless communication systems with
emphasis on crosslayer optimization.

The author intends to pursue a career in the area of Telecomunication and

Information Technology.



ACKNOWLEDGMENTS

My graduate study at North Carolina State University is one of the most memorable
periods of my life. | have benefited tremendoudly from my interactions with many
extraordinary individuals. First of all, | would like to thank my advisor Professor Huaiyu Dai
for his supervision, support and encouragement throughout my Ph.D. research. | sincerely
appreciate his help in suggesting research topics, revising papers and solving some critical
problems during my research. | am very glad to be one of his first students.

| would also like to thank my committee members Professor Keith Townsend,
Professor Brian Hughes and Professor Alexandar Duel-Hallen for their expertise and advice.
| learned the fundamentals of communication and signal processing theory through their
classes. Their way of teaching showed me an excellent example of a systematic and
straightforward fashion in presenting technical ideas. | would also like to thank Professor
Jack. W. Silverstein and Professor Zhidong Bai for their helps in providing some proofs in
chapter 4.

It was a great pleasure to have closely worked with my colleagues: Dr. Jia Liu,
Hongyuan Zhang, Wenjun Li, Xingying Yu and Li Ma. | thank them for the numerous
suggestions, guidance, comments, and enlightening discussions.

Last but not least, | would like to thank my family members for their support and
encouragement during my graduate studies. Mere words cannot express how much | love and

appreciate them. Thisthesis is a dedication for their love.



TABLE OF CONTENTS

LIST OF FIGURES ... ettt e e e e e e e e e annes viii
LIST OF TABLES ... ettt et e e et e e e e e e e e e e e nn e e e e e ennneeaeaennneeas IX
1 INTRODUGCTION ...ttt e e e e e e e e s e sne e e e e e ansse e e e e annnneeeeannnneas 1
1.1 Overview of wirelessMIM O COMMUNICALIONS ......c..ueiiieiiieiiieiiee e 1
1.2 0UtHNEOf tNE THESIS. ... 3
1.3 List of author’S PUBIICAtION .......ccoiiiiiiie e 4

2. Asymptotic Symbol Error Rate of MIM O Spatial Diversity System........cccccovceveiiieeninnnnns 6
P2 = 7= Vo (| 011 Vo FO PSRRI 6
2.2 SYSEEM IMOUEL ...ttt ettt e sbe e s st e e e s st e e e snse e e sneeeeenneeennneaens 7
2.3 Asymptotic Average Symbol Error Rae........ooceviiiiiiiiieiiie e 9
2.4 SUIMIMI@TY <.ttt ettt e e ettt e e e ettt e a2 e see e e e 22 me e e e e e e nse e e e e amnseeaeeannneeeeaannnneeeeannnnaaaans 14
3. Joint Antenna Selection and Link Adaptation for MIMO Systems..........cccceveeevieeennnen. 15
G0 = 1= Tox ([ o1 Vo O PSPPSR 15
3.2 Problem FOrmMUIBLION .........ooiiiiiicceee e 17
3.2.1 MIMO Systems with Transmit Antenna SeleCtion.............ccceevveeriirenieercee e 17
3.2.2 ZF-SIC with QR Decomposition INterpretation...........ccveeveeeiieeniiee e seee e 18
3.2.3 Joint Antenna Selection and Link Adaptation............cccuveiieeiiiienniee e 18

3.3 Joint Antenna Selection and Link Adaptation for uncorrelated MIM O Channels....22
3.3.1 Incremental Selection Rule with Link Adaptation .............ccccoeiieeiiiieiniieeniee e 22

3.3.2 Decremental Selection Rule with Link Adaptation............cceeviiiiiieinieeniee e 25



3.3.3 Simplified Link Adaptation for Uncorrelated Rayleigh MIMO Channels.................. 26
3.4 Joint Antenna Selection and Link Adaptation for Correlated MIMO Channels....... 28
3.4.1 Correlated MIMO Channels..........oiiiiiiiiiiie i 28

3.4.2 Antenna Selection and Link Adaptation Only Based on Channel Correlation

LN OTINBEION ... e et e e e e e e e e e e e e e e e e e e e e e e e e e e een e e eeeennaeeeeennaneeeenns 29
SO NUMEIICAI RESUIES. ..o et e e e e et e e e e e e e e e eaaaaans 33
3.0 SUIMIMIGTY ...ttt ettt e e e et e e e e ettt e e e e see e e e e e mss e e e e amnee e e e e annneeeeannsnneeeaannnnaeaans 45

. Asymptotic Analysison the Interaction between Spatial Diversity and Multiuser

Diversity in WireleSS NEIWOIKS .....couuiiiiieeie et 46
I = F=Tox (o [ U o o PR PR 46
4.2 Joint Spatial Diversity and Multiuser Diversity System .......cccooveeeiieeeneeeniee e 48

4.3 Asymptotic System Capacity and Scheduling Gain asK Goesto Infinity while M

(== RS D o RS 50
4.4 Asymptotic Scheduling Gain asM Goesto Infinity while K KeepsFixed .................. 56
4.5 Scheduling Gain when both M and K Goesto INfinity ........cccoviieeiiieiniee e 62
A6 SUIMMIAIY ....eeeeeeiteiee e ettt e e e e stee e e e aseee e e e asse e e e e assee e e e e aassee e e e aasseeaeeanneeeeeaansneeeesansnneeeeannnneeeans 67

. Joint Tomlinson-Harashima Precoding and Scheduling for Multiuser MIM O with

IMperfect FEEADACK ........oooeiiiee e 68
LI = 7= Tox ([ o1 Vo FO PSRRI 68
5.2 THP and Multiuser Scheduling for downlink MIMO.........cccoiiiiiiiiiniieecee e 69
5. 2.1 THPfOr MUItIUSEr MIMO ... 70
5.2.2 THP-Aided Scheduling for Multi-user MIMO DownlinK ............cocoeiiieriiierenieeenne. 73
5.3 Analysis of Imperfect FEedDacK ..........ooeii i 74



5.3.1 Channel PrediCtion VIALRP. ... .ot 75

5.3.2 Actual Achievable Rate under Imperfect CSl..........oooviiiiiiiiiiiieee e 75

5.4 NUMENICAl RESUITS.....coiiiiiiiee et 77
5.5 SUMIMIIY ..ttt ettt e e e ettt e e e e sse e e e e e mne e e e e e nnneeeeaansnneeeeannnnaeaans 80

6. ConclusioNS and FULUFE@WOIK ........oouiiiiieieeee e e 81
BIBLIOGRAPHY ettt ettt e e e e et e e e e e e mbe e e e e e annne e e e e annneeeeennnes 84
APPENDI X e e et e e e e e e e e e e e e e e reeaaens 90
APPENDIX A: Some proofSof Chapter 2..........ooo i 91
APPENDIX B: Some proofs Of ChapLer 3. 93
APPENDIX C: Some proofs of Chapter 4...........ooo e 97

Vii



L1ST OF FIGURES

Figure 2.1 Comparision between asymptotic and simulated results for BPSK under

different antenna configurationS..........ccoeceeeiiieeiriee s 10
Figure 2.2 The value of a varies with number of transmit antennas under the same
1Y PSRRI 11
Figure 2.3 Symbol error rate of the three spatial diversity schemesunder BPSK ......... 11
Figure 3.1 Antenna selection gain and link adaptation gain .........c.cccceeveeiiieeenieeesieenns 34
Figure 3.2 Performance comparisions of the proposed algorithms in 6x6 MIMO with
throughput 12DItS/SNZ ....cc.eeeeeee s 36
Figure 3.3 Perfor mance comparisons of the proposed algorithmsin 16x16 MIM O with
throughput 32DItSSNZ ..o 38

Figure 3.4-a Performance with different feedback delaysfor incremental methods......39
Figure 3.4-b Performance with different feedback delaysfor decremental methods.....40
Figure 3.5-a Joint antenna selection and link adaptation for fading correlation scenario

OSSPSR 41
Figure 3.5-b Histogram of the number of active antennasfor fading scenario 1 ........... 42
Figure 3.6-a Joint antenna selection and link adaptation for fading correlation scenario

et e ——ea——e e ——e e —eeaEee bt e e et e aReeateeareeeaneeaaeennreenreeannes 42
Figure 3.6-b Histogram of the number of active antennasfor fading scenario 2 ........... 43
Figure 3.7-a Joint antenna selection and link adaptation for fading correlation scenario

RSP RTR 43
Figure 3.7-b Histogram of the number of active antennasfor fading scenario 3 ........... 44
Figure 4.1 Average system capacity of opportunistic scheduling (g, =0dB, M =N =2)..55
Figure 4.2 Average throughput of round robin scheduling (SNR=0dB)............cccccecueu... 60
Figure 4.3 Scheduling gain asthe number of antennas grows (SNR=0dB, K=50).......... 61
Figure 4.4 Scheduling gain as both the number of antennas and users grow

(SNR=0UB,KZIM ) ..ttt e s e snne s s 66
Figure 4.5 Scheduling gain as the number of antennas and users grow (SNR=0dB,

KZ@XP(IM ) ettt ettt et et ae e 67
Figure 5.1 Block diagram of the proposed THP for multi-user MIM O downlink ......... 72
Figure 5.2 Performance comparison of different scheduling scheme.............ccccccoeee. 79
Figure 5.3 Performance under imperfect CSl feedback ...........ccooveiiiiiiiiiiiiiicece, 79

viii



LIST OF TABLES

Table 3.1 Incremental antenna selection rule with link adaptation for uncorrelated

MIM O tiiiiniieiieiierniiuieeseesntenseessssnsssssssessnsssssssssssssssnsssssssnssnsons. 24
Table 3.2 Decremental antenna selection rule with link adaptation for uncorrelated

1 25
Table 3.3 Incremental antenna selection rule with link adaptation for correlated

MIM O iiiiniieiieiieiniiuieereesntenseessssnssssssssssnsessassssssssssssssssssnssnsons 32
Table 3.4 Fading COrrelation SCENAriOS..ceieeeeeereretenreneeeesenresesasansesssansanscnnsnnse 40
Table 3.5 Activeantennaindex and constellation carried by each active

=101 ] = T 45



Chapter 1
INTRODUCTION

1.1 Overview of wirelessM 1M O communications

The use of multiple antennas at both the transmitter and receiver side, so asto form a
multiple-input multiple-output (MIMO) antenna system, is an emerging technology that
makes building both reliable and high data rate wireless networks a redity [17][56].
Compared with the conventional single-input single-output (SISO) system, MIMO system
creates multiple spatial dimensions that can be exploited to improve the performance’ of the
wireless link. More specifically, such performance improvement comes from the array gain,
diversity gain, multiplexing gain and interference cancellation introduced by MIMO systems,
which are illustrated below.

Array gain is achieved by using multiple antennas at the transmitter and receiver so
that the received signals can add coherently. To exploit the transmit/receive array gain,
transmitter/receiver needs to have the channel state information (CSl). The transmit/receive
array gain is proportional to the number of transmit/receive antennas.

Diversity can improve the reliability of the received signal strength and is achieved
by transmitting the signal over multiple independent fading subchannels. Before the
introduction of MIMO techniques, multiple subchannels are usually created by time division
and frequency division (correspondingly such diversities are usually called time diversity and
frequency diversity). MIMO systems provide a new form of diversity without additional cost

in time or frequency, i.e., spatial diversity by means of transmitting the signal over multiple

! The performance is often measured asthe average hit rate or average bit error rate of the wirdless link.



independently fading paths created by multiple antennas. A well-known example to exploit
the spatial diversity gain without CSI at the transmitter side is space-time coding, like the
Alamouti code for two transmit antennas [2]. For a MIMO system with M transmit antennas

and N receive antennas, a maximum spatial diversity order of M~ N can be achieved.
In a rich scattering environment, MIMO channels can offer a linear (min(M : N))

increase in capacity with the number of antennas without increasing the transmission power
or bandwidth. The spatial multiplexing gain can be realized by transmitting and receiving
parallel independent streams across the multiple antennas at both ends; afamous example is
the pioneer Bell Labs Layered Space-Time (BLAST) architecture proposed by Foschini in
[18].. An interesting tradeoff between the spatial diversity gain and multiplexing gain is
revealed in[74].

In cellular communications, cochannel interference arises due to frequency reuse.
Multiple antennas can be used in cellular communications to mitigate the cochannel
interference thus increasing the reuse factor and improving the system capacity. The basic
idea is to make use of the spatial channel response (usually avector) between the desired user
and interference users, and design the receive weighting vector to maximize the signal power
to interference power rétio.

Due to the promising advantages brought by MIMO system, MIMO technology is
being adopted by international standards organizations, such as high-speed packet data mode
of third-generation cellular systems, high-speed wireless local area networks (WLAN, |IEEE

802.11n) and high-speed wireless metropolitan area network (WMAN, |IEEE802.16).



1.2 Outline of the Thesis

Our thesis focuses on the four interesting topics on MIMO systems, which is
organized as follows.

In chapter 2, through the analysis of the probability distribution function (PDF) of the
received signal to noise ratio (SNR), we study the asymptotic symbol error rate of point-to-
point MIMO spatial diversity system. The results reveal a simple connection with system
parameters, providing good insights for the design of MIMO diversity systems.

In chapter 3, in order to protect the transmitted data against random channel
impairment in wireless MIMO communications, we consider link adaptation, such as rate
adaptation and power control to improve the system performance and guarantee certain
quality of service. We propose a joint antenna subset selection and link adaptation study for
MIMO systems, including both uncorrelated and correlated MIMO channels. Specifically,
we propose one simplified antenna selection and link adaptation rule based on the expected
optimal number of active antennas for uncorrelated MIMO with Rayleigh fading, and one for
correlated MIMO channels only based on the slowly varying channel correlation information.
Our proposed agorithms demonstrate significant gains over traditional MIMO signaling
while feasible for practical implementation through numerical results.

In chapter 4, through asymptotic analysis of the average system capacity and
scheduling gain, we investigate the cross-layer interaction between the spatial diversity and
multiuser diversity in wireless networks. Rigorous proofs and necessarily stronger results in
terms of convergence are provided for some intuitions in this area. Equally important,

explicit expressions of scheduling gain and average system capacity in various circumstances



that reveal inter-connections and fundamental tradeoffs among key system parameters are
given, which afford us some insights in real system design.

In chapter 5, we propose a crossayer approach that explores Tomlinson-Harashima
Precoding (THP) at the physical layer to reduce the multiuser scheduling burden at the MAC
layer, and improves the sum rate of the downlink multiuser MIMO systems. Our proposed
scheme is further evaluated with imperfect feedback, obtained by the long range prediction
(LRP) technique. Compared to some existing scheduling schemes, the proposed scheme
approaches the performance upper bound in certain scenarios, while incurring much less
computation complexity. Significant gains are still maintained with imperfect channel state
information (CSl), fed back at a rate much lower than the data rate.

Finally, in chapter 6, we propose some open problems and future work of our thesis.
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Chapter 2

Asymptotic Symbol Error Rate of MIMO Spatial Diversity System

2.1 Background

Multi-input multi-output (MIMO) systems can be exploited for spatial multiplexing
or diversity gains. For diversity usage, joint maximum ratio transmission (MRT) and
maximum ratio combining (MRC) provides the optimal performance reference [42]-[55].
With the assumption of identical transmit and receive beamforming vectors, the average
output signal-to-noise ratio (SNR) of a MRT/MRC system is upper and lower bounded in
[42], based on which the average symbol error rate (SER) and diversity order for a BPSK
system are approximately derived. With the restraining assumptions in [42] removed, it is
well known that (for white Gaussian noise) the optimal transmit and receive beamformer are
given by the principal right and left singular vector of the channel matrix H, respectively;
and the MIMO channel is transformed into a single-input single-output link with equivalent

channel gain s the largest singular value of H . For Rayleigh fading channels, the

max !

distribution of s 2

max ?

already derived in [37], is revisited in [13] and expressed in an
aternative form — a linear combination of Gamma functions. Based on this expression, the
exact system SER is derived for general modulation schemes in [13], which nonetheless still
involves complex numerical calculations. The distribution of s?_ for Ricean fading is
obtained in [36]. Unfortunately, results in [13] and [36] don’t easily lead one to an insightful
understanding of the impact of the system parameters, including the number of transmit and
receive antennas M and N, on performance. For example, in [13], the authors make two

observations on MIMO MRT/MRC systems through simulations. one is that when M + N

6



keeps fixed, the antennas distribution with [M - N| minimized will provide the lowest SER,

while the other is that when M “ N s fixed, a distribution with maximum M + N gives the
best performance. But the authors do not provide a rigorous justification for both
observations. Some similar observations are also made in [36].

This chapter is organized as follows. In Section 2.2, we will give our model for
MIMO MRT/MRC systems. Then we provide our asymptotic analysis for the average SER in
Section 2.3 and Section 2.4 respectively, together with some numerical results for illustration
purpose. Final conclusion is made in Section 2.5.

2.2 System Modedl

We assume a narrowband MIMO diversity system with M transmit antennas and N
receive antennas, modeled as:

y =Hx+n=Hw,u+n, (2.2)
where w, T £"* is the unit-norm transmit weight vector and u is the transmitted symbol
with power P, yT £"* isthereceived vector, HT £"" isthe channel matrix, and nT £"*

is a zero-mean circularly symmetric complex Gaussian noise vector with variance s /2 per

real dimension. We define g, = P, /s ? the average transmit SNR. For illustration purpose,

independent and identically distributed Rayleigh fading is considered for H , but our analysis
can be readily extended to other fading scenarios when appropriate distributions are available.

When multiple MIMO users are involved, their channels are assumed independent.

At the receiver side a weight vector w T £"* is applied on y to obtain a decision

statistic for u. For a MIMO MRT/MRC system, w, and w, are chosen to be the principal



right and left singular vector corresponding to the largest singular value s, of H to
maximize the output SNR.

The cumulative distribution function (CDF) of x=s?_ isgiven by [37]

FgMRT/MRC(X) _ |Tc(x)|

TP G(t- k+1)G(s- k+1)’x' (0,+¥), (2.2)

where s=min(M,N), t =max(M,N), and ¥_(x) isan s~ s Hankel matrix function with the

(i, )thentry given by {¥ (x)},, =g(t- s+i+j-1x), fori,j=12,..,s. Hereg(a,b)is the
incomplete Gamma function defined as g(a,b)zc‘gbe'tta'ldt , and G(a) is the Gamma

function defined as G(a) =g(a,+¥) . The probability distribution function (PDF) of x can be
derived as
ngRT’MRC(x) = F()tr (Y1 (X)® (X)), xT (0,+¥), (2.3

— t-sti+j-2_-x

where @ (x) isan s™ s matrix whose (i, j)thentry isgiven by {® ()}, =x e’.

It is seen that the distribution functions for MIMO MRT/MRC systems are quite
involved, which makes relevant math expressions (such as SER) quite complex. In what
follows, we will turn to asymptotic analysis to obtain some succinct and insightful results. At
the same time, we will compare the MIMO MRT/MRC system with two other popular
MIMO diversity schemes. One such scheme is employing space-time block coding at the
transmitter and MRC at the receiver (STBC/MRC). In this case, the transmitter doesn’t need
channel state information (CSI) and the transmit power is equally allocated among the
transmit antennas. Another interesting case is to conduct selection combing at both the

transmitter and receiver (SC/SC), i.e., one transmit antenna and one receive antenna are



selected so that the resultant channel gain is maximized. This scheme requires less feedback

than the MIMO MRT/MRC.

In the remainder part of this chapter, we write g(x) ~ f(x) if I|m E ; =1

or x®0
2.3 Asymptotic Average Symbol Error Rate
In this section, we will derive a succinct expression for average SER at high SNR.

The conditional SER for lattice-based modulations can be represented by the Gaussian tail Q-
function as P,(H) =M Q(kg,x) , where M is the number of the nearest neighboring

constellation points, and k is a positive fixed constant determined by the modulation and
coding schemes [55]. At high transmit SNR g,, the system performance will be dominated

by the low-probability event that x becomes small [63]. Therefore, only the behavior of

f MRT /MRC

(x) at x® 0" determines high transmit SNR performance. To find the asymptotic

expression for P, = E{P,(H)} at high g,, we need the following result for the behavior of

f MRT /MRC

(x) at the origin.

~ s 1
MNO k:Ok! -1

=7 , asX® 0".
O, (t+k)!

Lemma 1: f"/MFC(x) ~
Proof: See Appendix A.

With Lemma 1, we establish the following result for the asymptotic average SER for
MIMO MRT/MRC systems following Proposition | in[63].

Proposition 1: For MIMO MRT/MRC systems, the asymptotic average SER is given by



29M a(MRT/MRC)G(q(MRT/MRC) +§)
n

- _ (gq(MRT/MRC) . - (g(MRT/MRC) 4.
P= \/FT(q(MRT/MRC) +1) 2 (kg,) (@ 2 +0(0, ( l))- (2.9)
where
 s1
MN k!
a(MRT/MRC) = S_S)tk:ok I’q(MRT/MRC) =MN - 1. (2.5)
Ok:()( )

The validity of (2.4) is demonstrated in Figure 2.1 for uncoded BPSK systems. Based on
(2.4), one readily concludes that the optimal diversity order for MIMO diversity systems is

M~ N. Therefore, if wekeep M + N fixed (a measure of system cost), even distribution of

MET/MRC Asym. Result
MET/MRC Simulation
MET/MRC Asym. Result

MET/MRC Simulation
MET/MRC Asym. Result
MET/MRC Simulation
107
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Figure 2.1 Comparision between asymptotic and simulated results for BPSK under
different antenna configurations
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the number of transmit and receive antennas (more precisely a smallest [M - N|) maximizes

M " N, thus minimizing the system SER at high SNR. On the other hand, when comparing

two MIMO MRT/MRC systems with the same diversity orderM ~ N, the one with smaller

g (MRT/MRC)

yields larger coding gain and thus smaller SER (in this case, g™*'™F® is a

constant). We can conclude that in this scenario, the sum of transmit and receive antennas

should be made as large as possible, with the optimum achievedat s=1and t=M "~ N. This

conclusion is based on the following result regarding a """ as a function of M and N
(or equivalently of s and t).

Lemma 2: Given four positiveintegers s, t,, S,, t,,assume s " t, =s,” t,, s <t , s, <t,,
and Sl+tl>52+t2,then a(MRT/MRC)(Sl,tl)<a(MRT/MRC)(SZ,t2).

Proof: see Appendix A.

From the asymptotic SER expression in (2.4), we have verified the two observations
made in [13] rigoroudy at high SNR. In what follows, we will compute the corresponding
parameters for the coding gain and diversity order for MIMO STBC/MRC and SC/SC
systems (whose asymptotic average SERS assume the same forms as (2.4)).

STBC/MRC

Without loss of generality, we assume that the adopted space-time block coding

scheme achieves the full rate and the transmit power is equally allocated among the transmit

antennas. In this case, the normalized effective link SNR for a generic user is given by

148 8 2 .
g=-a a|h;|" whose PDF adnmits

i=1 j=1
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f STBC/MRC(X) - M MY XMN—le— MX’ X 3 O (26)
9 (MN - 2)!

Therefore the corresponding parameters for the coding gain and diversity order for MIMO
STBC/MRC systems can be obtained following a similar approach as above as
M MN
a(STBC/MRC) - ,q(STBC/MRC) =MN - 1. (2.7)
(MN - 1)!
SC/SC
In this spatial diversity scheme, both the user and the base station choose one optimal

antenna such that the resultant channel gain is maximized. Thus the normalized effective link

SNRat thereceiverisg = max (|h J.|2) , whose PDF can be easily obtained as
i AE] ’

f. X' (x) = MNe *(1- e )", x3 0. (2.8)

We can obtain the corresponding parameters for the coding gain and diversity order for

MIMO SC/SC systems as

as'%) = MN, &' = MN - 1. (2.9)

Comparing (2.5), (2.7) and (2.9) we can see that all these MIMO diversity schemes
achieve the same diversity order. Nonetheless, their error performances could still be
dramatically different owing to different coding gains, as exhibited in Figure 2.2. For

example, when M =6 and N =1, our formulas predict a SNR gap of 4.7 dB between
MRT/MRC (a™f'™* =1/120) and SC/SC (a‘*'* =6), and 7.8 dB between MRT/MRC

and STBC/MRC (a S™°/MR°) = 388.8) for uncoded BPSK systems at high SNR, which agree

13



well with simulation results (see Figure 2.3 at SER 10°°). It is also observed that for the same
diversity order, the performance of STBC worsens with the increase of transmit antennas.
2.4 Summary

In this chapter, through the analysis of the distribution of the squared largest singular
value of a complex Gaussian matrix at the origin, we obtain the asymptotic error
performance in the single-user scenario at high transmit SNR. Our results are rigorous and
succinct, which provide a performance reference for MIMO diversity systems and facilitate

various tradeoff studies in terms of system parameters and designs.
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Chapter 3

Joint Antenna Selection and Link Adaptation for MIM O Systems

3.1 Background

The use of multiple antennas at both the transmitter and receiver side, so asto form a
multiple-input multiple-output (MIMO) antenna system, is an emerging technology that
makes building high data rate wireless networks areality [19][58]. Transmitting independent
data streams simultaneously from different antennas through spatial multiplexing (see, e.g.,
[1]) effectively realizes the high spectral efficiency promised by MIMO systems, but leaves
the transmitted data unprotected from random channel impairment. Therefore, it is often
desirable to consider link adaptation, such as rate adaptation and power control to improve
the system performance and guarantee certain quality of service [8][76][14][49].

One of the drawbacks with an MIMO system is the increased complexity and
hardware cost due to the expensive RF chains required by each active antenna. It is of
increasing research interest recently to find a good antenna selection scheme that can
significantly reduce such cost while incurring little performance loss. Generally, there are
two goals for antenna subset selection in MIMO systems. one aims to maximize the channel
capacity [26][46], the other aims to minimize the bit error rate for spatial multiplexing
systems when some practical signaling schemes are used [24][25][32][47].

It is interesting to notice that link adaptation and antenna selection problems are
actually coupled for MIMO systems, when practical signal processing techniques such as
zero-forcing successive interference cancellation (ZF-SIC) (as used in V-BLAST) are

employed at the receiver for data decoupling and detection. This is because the decoupled
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subchannel gains (post-detection signal-to-noise ratio (SNR)) are determined by the active
antenna subset, while some weak subchannels are naturally dropped during link adaptation
process. Motivated by this fact, we propose a joint antenna subset selection and link
adaptation study for MIMO systems.

In areal propagation environment, the capacity of aMIMO system may be lower than
what is predicted with rich scattering assumption due to fading correlation [51][10].
Meanwhile, link adaptation and antenna selection are expected to achieve more gains in
correlated MIMO channels due to more prominent subchannel discrepancies. Furthermore,
fading correlation information varies much more slowly, hence it is feasible and
advantageous to implement antenna selection and link adaptation only based on the
correlation information rather than on the instantaneous channel information. The author in
[48] aso proposed some simplified rules for joint antenna selection and link adaptation based
on the channel correlation information, aiming to maximize some lower bounds of the
minimum post SNR. Therefore the performance of these rules depends on how tight the
lower bounds would be. Furthermore, the exhaustive search entailed there might make these
rules still complex in implementation.

In this chapter, we consider the problem of joint antenna selection and link adaptation
for an uncoded spatial multiplexing system with a ZF-SIC receiver, for both uncorrelated and
correlated MIMO channels. Our goal is to minimize the bit error rate given a throughput and
power constraint. We allow all the available resources, including the number of active
transmit antennas, symbol constellation size and transmit power dynamically adapted to the

channel conditions.
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This chapter is organized as follows. In Section 3.2, we introduce the MIMO system
model with transmit antenna selection, and formulate the problem of joint antenna subset
selection and link adaptation. In Section 3.3, we develop incremental and decremental
antenna selection rules with link adaptation for uncorrelated MIMO channels. We also
propose a simplified rule based on the expected optimal number of active antennas to further
reduce complexity. In Section 3.4, we develop an antenna selection rule with link adaptation
for correlated MIMO channels only based on the slowly varying channel correlation
information. Simulation results are given and analyzed in Section 3.5. Finally, in Section 3.6,
we make conclusions and propose some future work.

3.2 Problem Formulation
3.2.1 MIMO Systemswith Transmit Antenna Selection

Without loss of generality, we assume a narrowband MIMO system with total K,
transmit and N, receive antennas, with the channel between K, transmit and N, receive

antennas denoted by H . In our study, the antenna selection is only carried out at the

transmitter side, and it is easily shown that the best performance is achieved when all receive

antennas are active [50]. With N, out of K, transmit antennas to be chosen, we denote the
selected subset of transmit antennas by p and the channel matrix between the selected N,

transmit antennas and N, receive antennas by H(p), whose columns correspond to the

selected antennas. The received signals are then given by

y =H(p)x +n, (3.1
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where x = (X, X,,..., X )" is the transmitted signal vector, y = (Y;,¥,,... Yy )" iS the received
signal vector, and n =(n;,n ,...,nNt)T is assumed to be i.i.d Gaussian with zero mean and

variance of s 2. For ease of description, we will drop the index pin (3.1) in the following
discussion when no ambiguity incurs. All through this paper we assume N, 3 N, .

3.2.2 ZF-SIC with QR Decomposition Interpretation

The zero-forcing successive interference cancellation, widely used in MIMO
detection, can be simply interpreted by matrix QR decomposition. With H = QR , where Q
is a unitary matrix and R is an upper triangular matrix, we can apply Q" to the received

vector to obtain § = Q"y =Rx +H , detailed as

&y o ?11 o - Ty an><10 af o
9% N 90 rzy2 o, :é XZ; gi%z N 32

£y, & go o : g, 5

from which the transmitted symbols X, , Xy ;,-.., % €an be detected successively. Assume no
error propagation during interference cancellation process’, it is clear that QR decomposition
decomposes an N, ~ N, MIMO channel matrix H into N, subchannels with |r;| being the
gain for the ith subchannel.

3.2.3 Joint Antenna Selection and Link Adaptation

As mentioned in the introduction, the link adaptation problem and the antenna

selection problem are often coupled for a MIMO system. Furthermore, it is often beneficial

2 This assumption is reasonable at sufficiently high SNR regimes and commonly adopted in relevant study to
simplify analysis. Our smulation results validate its effectiveness.
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to use only a good subset of antennas in MIMO communications to reduce hardware
complexity and energy consumption. The induced performance loss is often negligible when
judicious antenna selection is made and link adaptation is employed. To this end, we propose
to jointly consider the antenna selection and link adaptation for wireless MIMO
communications. Antenna selection and link adaptation can be realized either at the
transmitter or at the receiver, depending on the availability of channel state information. In
the latter case, the receiver will only feed back the selected active antenna subset and
corresponding communication modes to the transmitter.

In this chapter we assume QAM modulation for illustration purpose. For square M-

ary QAM with average power g, the minimum Euclidean distance d is

d=,|——, (3.3)
which is also a good approximation for energy efficient “non-square” QAM in a large range
of interest [1].

Assume there are N, active antennas in use. For the ith subchannel with gain|r, |, the
sguare of the minimum Euclidean distance of the output constellation is given as

dz :6|r|| gi

i out M _ 1

|2

i=12,...N,, (3.4)

where g, and M, arethe power and constellation size allocated to the ith substream. As with

many other multi-channel communications, the performance of a spatial multiplexing system
is usually limited by the weakest link. Thus the optimization problem can be sensibly

formulated as;
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max min d? }, 35
on, M {iT{l,...Nt} '*°“t} (3.9
(Ne.ph.g)a ;b =br.A 6=9r

i=1

where b =log, M, is the number of bits allocated to the i - th subchannel, b, and g, are

the total throughput and power constraints imposed on the system.
In (3.5) we want to find an optimal antenna subset together with its optimal bit and
power alocation, subject to the total throughput and power constraints. The number of active

antennasN, can also be an optimization parameter, thus further complicating the problem.

To our best knowledge, the global optimal solution is open and often a thorough search has
to be resorted to, which is typically infeasible for practical implementations. Therefore we
take some effective steps to decouple the original problem into some suboptimal ones, which
will be shown to yield excellent performance nonetheless.

First, assuming the set of active antennas and associated bit allocation are given, as
the system performance is limited by the wors subchannel, to maximize the aggregate

performance we would like to alocate power so0 as to achieve the same output minimum

Euclidean distances for all subchannels, i.e., d,, =...=dg ., =d{, , givenas
@:w| T :9|{?T | (35
a(r,; -’ )hoaln (M-
i I Mj _ 1 ) 1, ]

Thus our optimization goal is simplified as

mind |r,,[*" (M, - D= min{g(N,),m(N)),LE N, £K,, 3.7)

j
=1

subject to b, =log,(M,) +10g,(M,) +...+l0g,(M ),
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m(N,) =(M;- LM, - 1..,M - 1)’ is named the bit allocation vector, and (g) denotes the
inner product between them. Our target is to find an optimal pair of (g(N,),m(N,)) for a

given N,, and further choose the best pair among 1£ N, £ K,, when the number of active
antennas is not given beforehand.

Given N, , the optimal pair of (g(N,),m(N,)) can be found through a thorough

search in principle, which is still not an easy task when N, and K, are large. We further

decouple the antenna selection and bit allocation problems by exploiting the discrete and

finite-alphabet nature of the bit alocation vector m(N,) .When the total throughput and the

modulation set are given, the possible choices of the bit allocation vector can be determined
in advance by a lookup table. Furthermore, by Lemma 3 given in the appendix B, in order to
minimize (3.7), only one permutation (decreasing order) of the elements in the bit allocation
vector needs to be considered for each possible combination. With this decoupling, the
optimization problem is finally approximated as an antenna selection problem to find a
suitable g(N,) followed by table lookup to find a matching m(N,) . Some simple recursive
algorithms are proposed in the next section to avoid exhaustive search while incurring little
performance degradation.

Finally, note that our proposed algorithms can be readily extended to other

modulation schemes. For example, when PSK is employed, the minimum Euclidean distance
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of M-ary PSK with powergis given byd =, /Zsinz(%)g . Correspondingly, (3.7) becomes

N, }
ming |r;,| i cscz(ML) subject to the same constraint.
=1 j

3.3 Joint Antenna Selection and Link Adaptation for uncorrelated MIM O Channels
We first consider the uncorrelated MIMO channels where the channel matrix H can
be modeled with i.i.d. complex Gaussian entries. Two basic recursive algorithms are

proposed to choose the desired antenna gain vector g(N,): incremental selection means the

“desired” antennas are recursively added to an initially empty active antenna set while
decremental selection means “undesired” antennas are recursively removed from an initially

full antenna set®. When N, << K,, we can use the incremental selection rule described in
Section 3.3.1, while we can use the decremental rule in Section 3.3.2, when N, is close to
K,. In a general link adaptation problem where N, is unknown in advance, we can search
over al possible 1£ N, £ K, to find the optimal one. To reduce complexity, we propose an
adaptive selection rule based on estimation of N, in Section 3.3.3.
3.3.1Incremental Selection Rulewith Link Adaptation

Intuitively, we want |r,,|, [r,,|, ..., |erNt| as large as possible. Our incremental

recursive rule works as follows: starting from a column of H (N, ~ K,) which results in

maximum |f1,1| (corresponding to the largest vector norm), we successively choose from the

remaining columns of H such that the next subchannel gain is maximized. The subchannel

3 Same notations are used in [26] and other literature with different problem settings.
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gain of the newly added antenna can be obtained in a closed-form solution, which is

described by the following lemma.
Lemmad.a Assume the QR decomposition of a matrix H® with k independent columns is

H® =Q(Kk)R(k) . Then for the enhanced matrix H*"? = gH" hp with QR decomposition

H®Y =Q(k +1)R(k +1), the first k diagonal elements of R(k +1) keep the same with those

of R(k), while the (k +1)th one is given by./h"h- h"Q(K)Q(k)"h ; similarly, the first k

column vectors of Q(k +1) keep the same with those of Q(k), while the (k +1)th one is

givenby Q(,k+1) =h- § QC,1)"hQ(,1).

1=1
Proof: see the appendix B.
Based on Lemma 4.3, assume in the kth step, H® stores the k selected columns of

H and the QR decomposition of H® is Q(k)R(K) , then in the (k +1)th step, we choose the

column vector h from H \ H® (which represents the remaining columns of H ) in such away

that r., .., =+/h"h-h"Q(k)Q" (k)h is maximized. Furthermore, it can also be shown as
k+1,k+1

follows that the successively generated antenna gains are already ordered.

Lemmad.b In the above incremental selection rule for uncorrelated MIMO,
I B || ® 3 [ ® -8 |rNtyNt|.

Proof: see the appendix B.

Lemma 4.b shows that the elements in the selected antenna gain vector
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arrange the elements of candidate bit allocation vectors m(N,) in a deceasing order in the

lookup table according to Lemma 1, which saves storage space and increases the matching

speed for (3.7). We further assume m(N,) isthe optimal bit allocation vector that minimizes
(g(N,),m(N,)) for agiven g(N,).

The incremental selection rule with link adaptation for uncorrelated MIMO is
summarized in the following table.

Table 3.1 Incremental antenna selection rule with link adaptation for uncorrelated
MIMO

Set |1 ={123,..,K,} and p =F (empty set),g =F (empty set), Q = F (empty set)
for i=1 to K,

a, =[HeD[

end
P() =argmaxa,, iy = maxa,, g(b) =1/, QD =H(.pM)/HC.pO);
I =1\p(D);

for k=2 to N,
update a, =a, - [H(.i)"Q(. k- D, for all il 1;
p(k) = argmaxa,

2, =maxa,;
! il

g(k) =1/ rkz,k;

QK =HEP(K) - & QED"HEPIQE:

Q. k) = Q. K /|QC.K)[;

| =1- p(k);
end
assume m(N,) =argmin(g(N,),m(N,));

return p(1: N,) and m(N,);
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Two points are noteworthy for the above algorithm. First, due to Lemma 4.a and 4.b,
the antenna selection and link adaptation process is significantly expedited. Secondly, due to

the recursive nature of the algorithm, searching an optimal N, for a general link adaptation
problem does not mean K, times of effort (as calculation for N, +1 is just one step further
based on calculation for N, ), but rather the worst-case effort where all K, transmit antennas
must be deployed. Nonetheless, in case nearly all the K, transmit antennas would be

deployed, we provide a decremental selection rule for link adaptation, which is described in
the following subsection.

3.3.2 Decremental Selection Rulewith Link Adaptation

Table 3.2 Decremental antenna selection rule with link adaptation for
uncorrelated MIMO

Set H™ =H;
Using [30] to find square root of ((H‘K‘))H H‘K‘))'l, assume P*) = ((H‘K*))H H‘K*))

-1/2

Assume [ =argmin|[P" (1,:)| (|P(1.:)|| means the length of the Ith row), discard the ith

IEIEK,
column of H™? | assume the deflated matrix to be H® 2 ;
for k=1 to K- (N,+1)
Using [30] to find square root of (H® 9" H®) hased on PK-k
assume P(Kr‘k) - (H(Krk)HH(Kt-k))—llz .

Discard the [th column of H® wherel =arg [QLQ”P(I() ()

assume the deflated matrix to be H"
end

Compute the sorted antenna gain vector g(N,) for H®
assume m(N,) =arg min(g(N,),m(N,));

k-1) .

return H™ and m(N,);
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The decremental selection rule with link adaptation for uncorrelated MIMO is
summarized in Table 3.2. Our proposed decremental selection rule is related to the V-
BLAST ordering rule first proposed in [61], which successively chooses the antenna (among
those not aready chosen) that maximizes post-detection SNR under the assumption of
perfect feedback. Accordingly, we can successively discard the antenna (among those not
already chosen) that minimizes the post-detection SNR under the assumption of perfect
feedback. Usually repeated matrix inversion will be involved during the process of
discarding, which may introduce much computation complexity and numerical instability.
Thanks to the work in [30], we can avoid computing the inversion of the deflated channel

matrix by means of arecursive square-root algorithm.

3.3.3 Simplified Link Adaptation for Uncorrelated Rayleigh MIM O Channels

In a general link adaptation problem where N, is not fixed in advance, we need to
test all possibilities 1£ N, £ K, to find the optimal one using either the incremental or
decremental selection rule. In this subsection, we propose a simplified selection rule based on
the estimation of the optimal number of active transmit antennas to further reduce the
complexity. With i.i.d. complex Gaussian channel matrix, |, |2 in (3.7) is a c2distributed
random variable with 2 (N, +1- i) degrees of freedom [8], where the probability density

function of the ¢ ? distribution with v degrees of freedom is given as:
(v- 2)/2e— x/2

f(XlV) = 2v/ZG(V/2) !

(3.8)
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where G(x) is the gamma function defined as G(x) = (‘5 t* e 'dt .

The expected value of 1/|r;, * can be obtained as

%1 il/(v- 2) for v>2
A~ f dx =7 . 3.9
?; (x]v)elx % +¥ for v=2 59
Replacing 1/|ri,i “in (3.7) with their expected values, we have
o 1
minE((g(N,),m(N,))) =ming —————" (M, - ),1£ N, £K, (3.10)
j=1 2(Nr - J)
subject to
by =10g,(M,) +10g,(M,) +...+l0g,(M, ) and M, 3 M,L.% M. (3.11)

Therefore, we can estimate the optimal number of active antennas in a pre-processing

stage as follows: for @l possible bit allocation vectors m(N,)'sthat satisfy (3.11), find the

one that minimizes (3.10), denoted asm(N,) ; then find N, =argminE(g(N,),(N,))

1EN,£K,
which is our estimate of the optimal number of active antennas in i.i.d Rayleigh fading
MIMO channels. Thus we can decide to use either the incremental or decremental selection

rule for joint antenna selection and link adaptation for different system settings based on the

value of I%t . Furthermore, we can redtrict ourselves to search optimal N, only in the range
around I%t to further reduce the computational complexity. Simulations results show that
searching N, in the range of gl\”@t -1 I\“@t +1E| and storing only three bit allocation vectors
m(N, - D, m(N,) and m(N, +1) in the bit allocation lookup table incur little performance

loss (See Section 3.5).
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3.4 Joint Antenna Selection and Link Adaptation for Correlated MIM O Channels
3.4.1 Correlated MIM O Channels

In this section, we extend the study of joint antenna selection and link adaptation to
correlated MIMO channels. We assume correlation only exists at the transmitter side, as
described by the “one-ring” model in [51]. This model is feasible, e.g., for the outdoor
macrocell situation where the transmitter at the base station is elevated high above the local

scattering environment, while there are sufficient local scatters around the mobile receivers.
For an N, K, MIMO system, the channel can be modeled as H=H A’
withA; *Af =R, , where H,, is an N, ~ K, matrix containing i.i.d. complex Gaussian
random variables and R, isa K, " K, Hermitian semi-positive definite matrix representing
the covariance matrix for each row of H.

Again, we assume N, out of K, antennas are to be selected. As before, the channel
matrix between the N, transmit antennas and N, receive antennas can be described

as H(p)=H,(p)Al(p), where p contains the indices of the selected antennas, and

A, (p)AY (p) =R, (p) isthe corresponding submatrix of R .

We assume uniform linear arrays at both the transmitter and receiver, with antenna
spacing D, (relative to the carrier wavelength). We also assume there are L clusters of
scatterersin the environment and the angle of departure for the | - th path cluster is Gaussian
distributed as g, ~N(qg,,s ) . Then the (i, j) - th entry of the transmit covariance matrix

contributed by the | - th scattering cluster can be shown to be approximated as [48][47]-[4]:
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1o i CT e (2
£ N _i2p(i- i g .~ 5(2P(i- )Drsin(q)s))
@RHH » @ 12 (- DProsla)g 2 SR (3.12)
I8

For a narrowband system, the net correlation matrix can be obtained by summing the
covariance matrices contributed by the L clusters weighted by the fraction of power in the
corresponding cluster. As a counterpart to (3.1), the received signal in correlated MIMO can
be written as:

y=H_(p)Al(p)x+n. (3.13)

Clearly, joint antenna selection and link adaptation algorithms described in the

previous section can be readily applied to correlated MIMO channels and are expected to

achieve more substantial gains. However it is noteworthy that for correlated MIMO, the
elements of A (p) vary much more slowly than those of H (p), which is mainly

determined by the local physical parameters, such as antenna spacing and angle spread. Since

these parameters are relatively static and can be measured more accurately than instantaneous
channel information, antenna selection and link adaptation based on Al (p) is more
attractive than that based on H (p)AL (p). Targeting on this goal, in the next subsection,

we will describe a joint antenna selection and link adaptation algorithm for correlated MIMO
only based on the channel correlation information.
3.4.2 Antenna Selection and Link Adaptation Only Based on Channel Correlation

Information

By applying QR decomposition successively to the correlation matrix A (p) = QR,
and H,,(p)Q, =Q,R,, (3.13) becomes

y=Q,R,Rx+n. (3.14)
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Apply Q}' tothe received vector, we have
¥=Qy =R,Rx+h. (3.15)

The optimization goal for correlated MIMO channelsis given as (cf. (3.2) and (3.7)):

mind Ry(j. DR,(j. ) I (M; - D =min(g'(N,),m(N,)) (3.16)

j=1

subject to b =log,(M,) +10g,(M,) +...+l0g,(M, ),
with
. _ oAl
g'(N) =R, LR, (L™ o o [RU(NGN)RL (N N[ Y (317)

and
m(N,) =(M;- LM, - 1..,M - )’

the corresponding antenna gain vector and bit allocation vector for correlated MIMO.
Since the distribution of H,Q, isthe sameas H ,, |R,(j, j) [ is till c?distributed
with degree of freedom 2° (N, +1- j). In order to derive an antenna selection and link

adaptation rule only based on R, , we replace |R,(j,j)[? in (3.17) with their expected

values (see (3.9)) to get
sy SR Ru(N N[ *U 019
HN-D T ANy Y .
Hence (3.16) isturned into:
min& R DI (M, - 1) = min(g'(N,),m(N,)) (3.19)

j=1 2(Nr - J)

subject to. by =log,(M,) +10g,(M,) +...+10g,(M ) .
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In recognition of R} *R, = A, (p)AY (p) =R, (p), for correlated MIMO, our goal isto find

a submatrix of R, whose Cholesky factor will provide a close-to-minimization result of
(3.19).

Similar to Section 3.3.1, we decouple the antenna selection and link adaptation
problems and present an incremental selection rule as follows. Starting from an empty set, in
each step we would like to choose from the remaining components of R, such that the next
subchannel gain is maximized. This process is expedited by the following lemmas.

Lemmab5.a Assume matrix R{ is Hermitian positive definite with size k , whose Cholesky

decomposition is given by R%® =R(k)"R(k) , then for the enhanced matrix

éQ(k) u . L .
RED =g T \1/0 with Cholesky decomposition R{* =R(k+1)" R(k +1) , the first k
év' 14

diagonal elements of R(k +1) {r. }*, keep the same with those of R(k) , while the (k +1)th
hiJi=1

oneisgivenby r,, ., = \/1- vh (R‘T") )’lv :
Proof: see the appendix B.

Based on Lemma 5.3, assume in step k, there are k selected transmit antennas, and
R{ is the k" k covariance matrix for those k selected transmit antennas, which is

guaranteed to be invertible according to our selection rule, then in step k +1, we will choose

the antenna whose covariance vector v will maximize r,,, ., = \/1- vh (R‘T") )'lv . Note that
the diagonal elements of the covariance matrix R, are all 1’s, thus r, is always 1 no matter

which antenna is selected first. However, we can determine the first and second active
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antennas jointly by means of maximizingr, , , i.e., choose the first two active antennas whose
corresponding Cholesky decomposition will result in maximization of r, , . Also note that the

condition number of R is high, hence we can set a positive threshold value C, in practice
to discard those essentially zero-gain subchannels.

Similar to Lemma 4.b, the following lemma facilitates the optimization of (3.19).
Lemmab5.b In the above incremental selection rule for correlated MIMO, 1, 3 .., 3 Ty

Proof: See the appendix B.

Table 3.3 Incremental antenna selection rule with link adaptation for correlated
MIMO

Set 1:={1,23,..,K,} and p:=F (empty set), T :=F (empty set)
p(:2) =argmex(L- vi'v,) T()=1,T(2) = max(- v}'v,). where v, = R (i, ) and
£ ]; | |
I:=1-p@- p(2);
for k=3 to N,
A, =R;(p@:k- 1)) (Submatrix of R, designated byp(1: k- 1) );
T(k) =mex(l- viILALY, L)

p(k) = argrqqx(l- Vi ALY, ), where v, , =R, (p(L:k - 1),p(j)) (The column
]

vector in p(j)columnand p(1:k- 1) rowsof R,
)i
l:=1-p(K);

T < 1 ,rﬁ(k)>> 1 < 1 ,m(k-1)>
N - kK\T(:K) N - (k- 1)\ T k- 1)

return p(l:k-1) and (k- 1)

elseif T(k)£C, (C, isathreshold value)
break;

eseif k=N,
return p(1: N,) and m(N,)

end
end
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Lemmab.b shows the elements in §'(N,) are already in an increasing order. Thus we
only need to arrange the elements of candidate bit allocation vectors m(N,) in a deceasing
order according to Lemma3. In summary, the incremental selection rule with link adaptation
for correlated MIMO is described in Table 3.3. For correlated MIMO, a decremental
selection rule is usually not necessary, since the ill-conditioning of the channel matrix
typically results in much fewer antennas being selected as opposed to the uncorrelated
MIMO of the same size. Furthermore, antenna selection and link adaptation modes need to
be updated only when the channel covariance matrix changes, which happens far less
frequently compared to that based on the instantaneous channel fading.

Similarly, in a general link adaptation problem where N, is unknown in advance, we
can search over al possible 1£ N, £ K, to find the optimal one.

3.5 Numerical Results

In this section, we evaluate the performance of our proposed joint antenna selection
and link adaptation algorithms for both uncorrelated and correlated MIMO channels through
several representative examples. Square QAM modulation is employed in all simulations
with 256-QAM the largest constellation to be used.

Example 1. In this example, we demonstrate that both antenna selection gain and link

adaptation gain are obtained through our algorithm. Consider a 3" 6 MIMO (N, =3,K, =6)
with i.i.d Rayleigh fading. The number of active transmit antennas to be chosen is N, =3

and the target throughput is 12 bitssHz. For performance evaluation, we consider the

following three systems: the first oneisV-BLAST (i.e., equal power and rate allocation) with
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random antenna selection; the second one is V-BLAST with a selected transmit antenna
subset obtained through the incremental selection rule; and the last one is our proposed
incremental antenna subset selection with link adaptation given in Table I. Link adaptation
based on singular value decomposition (SVD) of the channel matrix [75] is also included,
which can be viewed as a performance upper bound since the decomposed subchannels are
truly interference free. From Figure 3.1, we can see that antenna selection gain is dominant,
while link adaptation gain is also significant especially at high SNR (by observing the
difference of the slope of the third curve (diversity gain) from that of the second one, and its

similarity with that of the upper bound curve).

. 3xb MIMO throughput 12bits/s/hz

I —— 3x3 WBLAST with random antenna selection
=P Fx3 WBLAST with antenna selection

=&~ MNi=3 with link adaptation
------------- | —— link adaptation based on S%D

Bit error rate

SMR per bit Eb/MO

Figure 3.1 Antenna selection gain and link adaptation gain



In the next example, we compare the performances of the incremental and
decremental selection rules for a general link adaptation problem where the number of active
antennas is not given beforehand, based on both full-size lookup tables and reduced-size
lookup tables (see Section 3.3.3).

Example 2. Here we consider a 6 6 MIMO with uncorrelated Rayleigh fading, and
the target throughput is 12 bits/s/Hz.

The full-size lookup table is shown in (3.20) with each row representing the bit
alocation for a certain number of active antennas. By Lemma 1 and Lemma 2.b, only the

decreasing order of each possible combination is listed.

8 4 0 0 0 Oy
& a
%6 600 0 0y
8 22 0 0 00
% 4 20 0 0
Bits_table_full=& 4 4 0 0 oOu (3.20)
e u
$ 2220 0
& 4 2 2 0 ou
e u
@ 222 2 0y
@ 2222 24

From (3.10), the estimated optimal number of active antennas is I‘%!t =4, so weonly need to
store the optimal bit allocation vectors m(N,) for N, ={3,4,5 active antennas:

& 4 4 0 0 Oy
Bits_table_reduced:g4 4 220 03, (3.21)
@ 2 2 2 2 0f

which incurs almost no performance loss as shown in Figure 3.2. It is also shown that the

incremental and decremental selection rules achieve almost the same performance and
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approach the SVD upper bound quite closely. (Note that the four curves for joint antenna
selection and link adaptation are almost indistinguishable in Figure 3.2)
To verify the effectiveness of our approach in decoupling the antenna selection and

link adaptation problems, exhaustive search (among all the possible combinations of the

transmit antennas) is conducted to find the optimal pair of (g(N,),m(N,)) for (3.7). As
observed in Figure 3.2, our algorithms incur negligible performance degradation.

Bx6 uncorrelated MIMO, throughput 12bitsf/sihz

1=~ W BLAST
-{ =+ incremental(reduced-size lookup table)
=4 incremental(full-size lookup table)
! ! ' decremental{reduced-size lookup table)
STTITERRSLIoRtiiiiiniiii] —e- decremental (full-size lookup table)
i S —— -] =%~ exhaustive search

Bl Ehh bbb R —— link adaptation based on S%D

hit error rate

=MRE per bit Eb/NO

Figure 3.2 Performance comparisions of the proposed algorithmsin 6x6 MIM O with
throughput 12bits/s’/hz

Example 3. This example demonstrates the application of our proposed algorithms on
alarge MIMO system, emphasizing the demand of complexity reduction. The MIMO system

considered is of sizel6” 16, and the target throughput is 32 bitss/Hz.
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Clearly with this system, any exhaustive search will lead to tremendous
computational complexity. Our proposed algorithms exhibit their simplicity advantage while
closely approaching the SVD performance upper bound, as shown in Figure 3.3. By using the

reduced-size lookup table, the computation complexity is significantly reduced further. From

(3.10) the estimated optimal number of active antennas is I%t =12, hence in the lookup table,

we only need to store the optimal bits pattern for N, ={11,12,13} , which is shown below:

&4 4 4 4 42222220000 0y
Bits_tab|e_reduced:g4 4 4 4 22222222000 og. (3.22)
@ 4 4222222222200 0]

We do not provide the full size lookup table here because of its large size. From
Figure 3.3, we can see that little performance loss is incurred when using the reduced-size
lookup table. Note that even though matrix inversion is mostly eliminated in the decremental
antenna selection rule by means of square root algorithm, it is till inevitable in the initial
step, which incurs substantial computational complexity. Furthermore, while the antenna
gain vector g is readily obtained through Lemma 4.a in the incremental antenna selection,
explicit QR decomposition is required for the decremental selection. One can check the
computational complexity in antenna selection for incremental method isO (KN, N, ), while
for decremental method, the computation complexity is dominated by the initial matrix

inversion step, which is O(Kth + KfNr) . Therefore for MIMO systems of small to medium

size (such as in Example 2), the incremental rule is preferred, while decremental rule is

favored only for very large MIMO systems where the estimated optimal number I%t is very

closeto K, (dueto reduced complexity in link adaptation).

37



16x16 uncorrelated mimo throughput 32 bits/s/hz

31—~ VBLAST

-4 = incremental{reduced-size lookup table)

—4- incremental{full-size lookup table)
decremental{reduced-size lookup table)

21 & decrementalifull-size lookup table)

= —— link adaptation based on 5%D

hit error rate

SMR per bit EB/MO

Figure 3.3 Perfor mance comparisons of the proposed algorithmsin 16x16 MIM O with
throughput 32bits/s’/hz

Example 4. In the above examples, we assume perfect CSl is available for antenna
selection and link adaptation. In actual vehicular based communications, the channels may
vary too fast to allow timely feedback. In this example, we re-evaluate our algorithms in fast
fading channels with limited feedback, and explore the long range prediction (LRP)
technique [29] as a remedy. LRP is essentially a linear prediction method based on
autoregressive modeling. With this technique, one can measure and feedback the time-
varying CSl to the transmitter at a much lower rate than the data rate. The transmitter will
make compensations through prediction and interpolation, and then determine the active
antenna set and modulation modes based on the predicted and interpolated CSI. The reader

isreferred to [29] for a detailed description of this technique.
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Figure 3.4 shows the performance losses of our joint antenna selection and link
adaptation algorithms with different feedback delays. Clearly there is a tradeoff between
feedback delays and dedicated feedback channel bandwidth. For the LRP technique, the
longer the feedback delays, the larger the prediction steps should be taken. In our simulation,

we assume a Rayleigh fading channel with Jakes’ model with the Doppler shift of f, (thus
the coherence time ist , » 1/ f, seconds). The channel sampling rate is 8f,, while the date
rate is 640f,, so the channel is measured and fed back once every 80 symbols. The

prediction order of LRP is set as 50. It is observed that the proposed algorithms, in

conjunction with the LRP technique, have a fairly graceful degradation in performance with

increase of feedback delays.
4 Performance at different feedback delays for incrermental method
10 . .
—+ feedback delay: 0.6257,
—— feedback delay: 0.5,
i —w— feedback delay: 0.3757,
1|:|'2 s '-.-_-.'.'.'.'__...... -t FlErfECt 5]

hit errar rate
=
T

2 4 B g
SMRE per bit Eb/MNO

]
=

Figure 3.4-a Performance with different feedback delays for incremental
methods
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Performance at different feedback delays for decremental method

b | —+ feedback delay: 0.6251,
—— feedback delay: 0.5,
I b, —— feedback delay: 0.3751,
1oL =S —t= perfect CSI

hit error rate
=
T

-2 -1 0 1 2 3 4 5 B 7 g
SR per bit Eb/MO

Figure 3.4-b Performance with different feedback delays for decremental methods
Exampleb. Finally, this numerical example demonstrates the performance of link
adaptation only based on correlation information, compared with that based on the full
channel information. Consider a 6” 6 correlated MIMO with correlation matrix generated as
in (3.12), and the target throughput is 12 bitss/Hz. We consider three correlated fading
scenarios as listed in Table 3.4 with an increasing order of fading correlation, all assuming
there is only one transmit cluster in the communication environments.

Table 3.4 Fading correlation scenarios

Scenario 1. q_=B,s =P
6 10
Scenario 2. q_=B,s =P
6 15
Scenario 3. q_=£,s =P
10 30
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In the Figure 3.5a — Figure 3.7a, we compare the BER performance among link
adaptation only based on the correlation information, link adaptation based on the full
channel information and the conventional V-BLAST. From the simulation results, we can see
the performance of the traditional V-BLAST degrades significantly in the correlated MIMO
channels. On the other hand, antenna selection and link adaptation achieves more substantial
gains for correlated MIMO than for uncorrelated MIMO, and the performance gap between
link adaptation only based on channel correlated information and link adaptation based on

the full channel information decreases as the degree of correlation increases.

Fading carrelation scenario 1 :theta=Pl&, sigma=FIA10

- BLAST
= link adaptation(Tx correlation infa.)
—— link adaptation({full channel infa.)

hit errar rate

=ME per bit Eb/MO

Figure 3.5-a Joint antenna selection and link adaptation for fading correlation
scenario 1
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1 2 3 4 5 ]

nurmber of active antennas

Figure 3.5-b Histogram of the number of active antennasfor fading scenario 1

Fading carrelation scenario 2:theta=FI/5, sigma=PI15

B~ -BLAST
“| =4 link adaptation(TX correlation info.)
—— link adaptati

T

hit error rate

0 5 10 15 20 25 30
SR per bit Eb/MO

Figure 3.6-a Joint antenna selection and link adaptation for fading correlation
scenario 2
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frequency

1 2 3 4 5 B
hurmber of active antennas

Figure 3.6-b Histogram of the number of active antennasfor fading scenario 2

Fading correlation scenario 3: theta=PI/10, sigma=PI/30

= link adaptation(Tx correlation info.)
=——link adaptation(full channel info.)

kit error rate

______________

______________

=MR per bit Eb/MO

Figure 3.7-a Joint antenna selection and link adaptation for fading correlation
scenario 3
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Figure 3.7-b Histogram of the number of active antennasfor fading scenario 3

In the Figure 3.5b — Figure 3.7b (generated for the link adaptation based on the full
channel information) we plot the histograms of the number of active antennas for the three
fading correlation scenarios. From the histograms, we can see that the number of active
antennas also decreases when the correlation increases.

Table 3.5 below illustrates the active transmit antenna index and the constellation
carried by each active antenna using our link adaptation only based on channel correlation
information. In contrast to that based on the full channel information, this configuration only
depends on channel physical characteristics, and is invariant to instantaneous channel
realizations. It’s interesting to see that the first two active antennas are always antenna 1 and
antenna 6, which accords with the practical situation: antenna 1 and antenna 6 have the

largest distance, so their correlation isthe smallest.



Table 3.5 Active antenna index and constellation carried by each active antenna

Scenario 1 Antenna 1(64QAM), Antenna6 (16QAM), Antenna 3. (4QAM)

Scenario 2 Antennal (16QAM), Antenna6 (16QAM), Antenna3 (16QAM)

Scenario3  Antenna 1(256QAM),  Antenna 6 (4QAM)

3.6 Summary

In this chapter, we propose joint antenna selection and link adaptation algorithms for
both uncorrelated and correlated MIMO channels. Simulation results show that in most
situations, significant performance gains are achieved compared with traditional equal power
and equal rate V-BLAST. We also propose a simplified link adaptation algorithm based on
the estimation of optimal number of active transmit antennas for Rayleigh i.i.d. MIMO
channels. For correlated MIMO, we propose a link adaptation algorithm only based on
channel correlation information, which is more practical in realization than that based on the
instantaneous channel information, while approaching the latter in performance as the fading
correlation increases. Finally, our antenna selection and link adaptation algorithms can be
readily extended to other antenna selection applications, such as capacity maximization for

both uncorrelated and correlated MIMO systems.
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Chapter 4
Asymptotic Analysis on the | nter action between Spatial Diversity and

Multiuser Diversity in Wireless Networ ks

4.1 Background

Diversity has long been established as key technology that enables reliable and high-
data-rate wireless communications. While diversity can be achieved in many forms, two of
them attract much research interest recently. One is spatial diversity realized through
employing multiple antennas at either the transmitter or receiver end, or both, the idea of
which is not new but interest on which is rekindled with the introduction of multi-input
multi-output (MIMO) systems [22][21]. In a multiuser wireless network, there is another
form of diversity called multiuser diversity [38][62], which reflects the fact of independent
fluctuations of different users’ channels. Multiuser diversity can be exploited to increase the
system throughput, through intentionally transmitting to the user(s) with good channels at
each instant (opportunistic scheduling). Spatial diversity techniques typically reside in the
physical (PHY) layer, while multiuser diversity is obtained through user scheduling at the
medium-access control (MAC) layer. It is therefore interesting to understand how these two
diversity techniques combine to determine overall network performance and how they
interact with each other.

There exist some work on joint spatial diversity and multiuser diversity systems. In
particular, the capacity analysis for Rayleigh fading channels is given in [44], and in [9] for
more general Nakagami fading channels. Some have suggested that spatial diversity can

actually diminish the advantages of multiuser diversity [62][40][27][34]. Intuitively, this can
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be explained by observing that multiuser diversity takes advantage of fading by “riding on
the peak”, which is unfortunately eliminated by spatial diversity. As noted in [40][9][39],
however, this conclusion is valid only for open-loop but not closed-loop spatial diversity
schemes, while user scheduling inherently requires feedback.

Our research is different from previous work in the following aspects. First, our study
on the interaction between spatial diversity and multiuser diversity focuses on the asymptotic
analysis, i.e., by allowing the number of antennas or users or both to go to infinity*. Besides
mathematical tractability, asymptotic analysis also helps reveal some fundamental
relationship of key system parameters, which may be concealed in the finite case by random
fluctuations and other transient properties of channel matrices. Moreover in many scenarios
(especially with respect to the number of antennas), convergence to the asymptotic limit is
rather fast. Secondly, we put emphasis on the scheduling gain in capacity rather than the
overall system signal-to-noise ratio (SNR) or capacity, which is the benefit we can really
obtain through opportunistic scheduling over the traditional round robin scheduling. The
impact of multiple antennas on multiuser wireless networks is increasingly drawing research
interest very recently. This work will focus on spatial diversity systems; some pioneer study
on spatial multiplexing systems can be found in [33][53].

This chapter is organized as follows. In Section 4.2, we give our system model with
combined spatial diversity and multiuser diversity. Then we provide our asymptotic analysis
corresponding to the above three scenarios in Section 4.3, 4.4 and 4.5, respectively, together
with some numerical results for illustration purpose. Final conclusions are made in Section

4.6.

* Some asymptotic analysis with respect to the number of usersisalso pursued in [62] [34].
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4.2 Joint Spatial Diversity and Multiuser Diversity System

We consider a homogeneous downlink multiuser MIMO communication scenario,
which is envisioned to be of crucial importance for emerging wireless networks. Appropriate
gpatial diversity techniques are employed for each link. In this paper, we concretize our
analysis with three spatial diversity schemes. The first employs well-known space-time block
coding at the transmitter and maximum ratio combining at the receiver, coined as
STBC/MRC, which does not require channel state information (CSl) at the transmitter end.
As user scheduling inherently requires feedback, we further explore two closed-loop
diversity schemes. One of them pursues joint maximum ratio transmission and maximum
ratio combining (MRT/MRC), which provides the optimal performance reference for MIMO
diversity techniques. The other exploits simple antenna selection on both ends (SC/SC),
trading performance for complexity. MRT/MRC and SC/SC can be viewed as the two
extremes for various hybrid selection combining schemes [45][65]. After diversity
combining, the user with the best channel quality, in this case the highest effective link SNR,
is chosen for communication in opportunistic scheduling. In contrast, the round robin
scheduling simply selects the users in some deterministic order.

It is assumed that the base station has M antennas and each of the K users has N
antennas. Throughout the chapter, when asymptotic analysis with respect to the size of
antenna array is pursued, we allow both M and N to go to infinity, with their ratio

r=N/M fixed. The incorporation of the large M and fixed N scenario is relatively

straightforward, and will be briefly discussed as well. We use H, ={h'j‘} (LEKEK) to
denote the kth user’s channel matrix. For ssmplicity, independent and identically distributed

(i.i.d.) Rayleigh fading is considered for {Hk}szl, but our analysis can be readily extended to
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other fading scenarios. As will be seen, only the tail behaviors of the relevant probability
distributions matter. The background noise is assumed to be white and Gaussian.

Throughout this paper we assume a block-flat fading scenario. Let S (t) and Yy, (t) be the
transmit and receive signal (after diversity combining) at time t for some sdected user k

respectively, then without loss of generality we have vy, (t) = \/a S (t) + n (t), where the noise

n, (t) is assumed to have zero mean and unit variance, the average transmit SNR is g, = E|§<(t)|2,

and g, is the channel gain obtained through diversity combining, which can be interpreted as
normalized effective link SNR. Denote the probability distribution function (PDF) and cumulative
distribution function (CDF) of g, by f_ (x) andF, (x) respectively, assumed the same for all users.

In the opportunistic scheduling scheme, the base station chooses the user k™ = arg max (9, )::1' Thus

the resultant normalized system SNR seen by the base station is g,. with PDF

f,. (x) = Kf,(X)F4(X). (4.1)

Assuming that average transmit SNR is g, , average system capacity obtained by

opportunistic scheduling can be expressed as a functionof K and M as
— \+¥
S(K,M)= E(Iog(1+gt (m%gk))) =Q log(1+g,x) fy. (x)ax. (4.2)

We also define R(M ), the corresponding average system capacity obtained by

round-robin scheduling as a functionof M as

+¥
N

R(M)=E(log(1+gg))=¢ log(1+gx) f, (x)dx. (4.3)
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Finally, in order to measure the benefit brought by multiuser diversity, we define the

scheduling gain G(K, M) as the average capacity gain boosted by opportunistic scheduling
from R(M):

G(K,M)=S(K,M)- R(M). (4.9

In the remainder of this chapter, we adopt the following notations for the limiting

behaviors of two functions f(x) and g(x) with I!@rg ?(—X;:c: g(x) =0O(f(x)) for
x X

o X® 0
O<|ck¥; g(x)~ f(x) for c=1; g(x) =o(f(x)) for c=0; and g(x) =w(f(x)) for c=%¥.
When convergence of a sequence of random variables is involved, shorthand notation “D”
stands for in distribution, “P” for in probability, “r” for in rth mean, and “a.s.” for almost
surely. The user index will be omitted from relevant notations when no ambiguity is incurred.
4.3 Asymptotic System Capacity and Scheduling Gain as K Goes to Infinity while M
K eeps Fixed

In this section, we will examine Ll(@m¥ S(K,M) with M fixed. As a motivation, we

first summarize some relevant resultsin literature[12][20] asthe following Lemma.

Lemma 6: Let X,,..,X, be iid random variables with CDF F(x) , with
W(F) =sup{x: F(x)<1}. Suppose there isareal number x, such that for all x £x <W(F),

f(x)=F(x) and F (x) existand f(x)? 0. Define the growth function

1- F(X)
X) = ——. 4.5
9(x) ) (4.5)
If (éi Vrva) g(x) =c? 0, the following standardized extreme converges in distribution as
max X, - b, o
%@ L (x) =exp(-€7), (4.6)
K
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with
b, =F *(1- 1/K) and a, = (Kf (b,))". 4.7
Remark: From (4.5) and (4.7), we can find a connection between the growth function and a, ,

1- F(b) _ 1
f(b)  Kf(b)

e, g(b)=

=a, , therefore if (éivrPF)g(x):c3 0, we can obtan

}I(|®rg a, =c3 0. Thus the result of (4.6) indicates that max X, “grows like” b, in a coarse

sense [34][62] , and is widely used in the study of opportunistic communications involving

extreme values and order gatistics. This result can actually be strengthened from existing

P P
literature [20]: if ¢=0 (or Li(@rQaK:O) , max X, - b, ® 0, otherwise maxxk/bK®1.

1£KEK 1£KEK
Nonetheless, our desired outcomes, which are concerned with the convergence of the

expected values of functions of max g, require a yet stronger result as stated below. Our

main contributions in this section lie in providing sufficient conditions for this stronger result
to hold, and an explicit expression for the corresponding system capacity (and scheduling
gain) that is general enough to include many practical scenarios of interest (see (4.9)).

Theorem 1: Let g,,...,0, bei.i.d. positive random variables with absolutely continuous CDF

F,(X) and PDF f_(X), asgiven in Lemma6 with W(F,) = +¥ . Define g, (x) = 1-f F(gx()x) i
g
limg,(x)=c20 , whose derivative g¥(x)=0(1/ x*) with d, >0 |, and
b, = F;'(1- 1/K) =0 ((logK)* ) with 0<d, £1, then
lim{S(K,M)- log(1+g,b )} =0. (4.8)

K® ¥

Proof: See Appendix C.
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According to (4.8), the system capacity (and scheduling gain) is asymptotically
equivalent to log (1+gtbK) when given conditions are fulfilled. Note that all these conditions
involve only the tail behaviors of the distributions of individual link SNR. In the following,

we examine a form of special interest, which is general enough to cover common fading

models and spatial diversity schemes.

Corollary 1: If f (x)~ax’e®™ as x® ¥ witha >0, g>0,v3landany p,ie, f(x)

is tail equivalent to axPe ® , then Iim{§(K,M)- Iog(1+gtbK)} =0, where (up to the

K® ¥

second-order approximation®)

. logt K
Zel o p+l-v
b, :g—logt K. + P > q__(v-l)/v’ (4.9
q [} Qv &l

—logt K =

8q [0}
witht =&,
qv

Proof: See Appendix C.
Remark: The parameter a only appears int , which is typically not important in large K

analysis. In general, a smaller n and g indicate a better system performance, as seen from
the first term of (4.9). A larger p also helps, though only at the second-order sense.

In the remaining part of this section, we demonstrate the applications of our results,
Theorem 1 and Corollary 1, through some representative systems jointly exploiting spatial
diversity and multiuser diversity. As mentioned before, we assume Raleigh fading for
simplicity. The key step lies in examining the tail behavior of the PDF of the corresponding

effective link SNR. Once it is verified to take the form given in Corollary 1, we can readily

®> We definethe first order approximation when truncated at logK , and the second order approximation when
truncated at loglogK .
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conclude that the corresponding asymptotic system capacity (and scheduling gain) is given
by log(1+gb, ), with b, given by (4.9).
STBC/MRC

As seen in (2.6), the PDF of the normalized effective link SNR for a generic user of

STBC/MRC is

MN
fSTBC/MRC(X) - M XMN—le— MX,X3 O (410)
9 (MN - 2)!

Clearly Corollary 1 holds with

MMN
a=———,p=MN-1Lg=M,andn=1.
(MN - 1)!
So the corresponding asymptotic system capacity (and scheduling gain) is given by

log (1+ gtbKSTBC/MRC ) with

MMN—l 0
e K++0O(logloglogK). (4.11)

bKSTBC/MRC:
- g

SC/SC
From (2.8), the PDF of the normalized effective link SNR for a generic user in this
gpatial diversity mode is
f. X' (x) = MNe *(1- e )", x3 0. (4.12)
The PDF in (4.12) istail equivalent to MNe *. Again Corollary 1 holds with

a =MN,p=0,g=1and n=1.
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So the corresponding asymptotic system capacity (and scheduling gain) is given by

log(1+g,65>'*) with®

b'* =log(MNK). (4.13)
MRT/MRC

From (2.3), we know the PDF of the normalized effective link SNR for a generic user

of MRT/MRC is
ngRT/MRC(X) - FgMRT/MRC(X)tr (P ()P, (X)), x1 (0, +¥), (4.19)

Though the PDF (4.14) is rather involved, fortunately we are only concerned with its tail

behavior, as dictated by the following lemma.

Lemma 8:

fMRT/MRC 1 - X\ M+N-2
g

(x) istall equivalent M- DN - D)

Proof: See Appendix C.

Therefore Corollary 1 holds with

1

A= Mo nin-pr PV N - 2a=tandn=l

So the corresponding asymptotic system capacity (and scheduling gain) is given by

log (1+gtb}ﬁ"RT’MRC) with

1
MRT / MRC :| K
¢ M- DI(N- D) 415
1 .
+(M +N - 2)Iog|og(|vI DN D! K +O(logloglogK).

Some interesting observations are readily in order. For all the above three schemes we

have n =1, which simplifies the expressions. From (4.11), we can observe a tradeoff

® Thisis onerare accurate expression. Note that in this case, the growth in transmit and receive antennas can be
equivalently seen as an increase in the number of users (dueto thei.i.d. assumptions).
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between spatial diversity and multiuser diversity for an open-loop spatial diversity system
(the factor of 1/M has a negative role in b/ which directly determines the asymptotic
system capacity S(K,M) ). Here we give a more rigorous proof and reveal how the ultimate
capacity is related to M and N . For example, our result does show the positive role of the
number of receive antennas N, though in a second-order sense, which is not clear from
previous results in literature. It is also observed that the detrimental effect of multiple
transmit antennas can be avoided with the closed-loop spatial diversity schemes, as seen in
(4.13) and (4.15)". And also from (4.13) and (4.15), we can infer that for the general hybrid

selection combining schemes, the scaling laws should only have differences in the second

order approximations. Numerical resultsin Fig. 1 verify that Iog(1+gtbK) isagood

3.2

== MRT/MRC simulation

-8~ MRT/MRC approximation
—— SC/SC simulation

=== SC/SC approximation

28| —a= STBC/MRC simulation
STBC/MRC approximation

Average system capacity (nats/s/Hz)

1 1 1
6 8 10 12 14 16 18 20
Number of users: log2(K)

Figure 4.1 Average system capacity of opportunistic scheduling (g, =0dB, M =N=2)

" Note that the coefficients of K inside the log functions are not important when K becomes large. In this
sense, multiple antennas even help the MRT/MRC scheme.
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approximation for the average capacity of the STBC/MRC, SC/SC and MRT/MRC systems
using the opportunistic scheduler.

Note that Theorem 1 and Corollary 1 can potentially address a larger class of
problems with respect to system and channel characteristics than what are presented here.
Clearly the Nakagami-m distribution takes the form given in Corollary 1. For the Log-normal

distribution, the transformation y =logg results in a normal distributed random variable.

Ricean fading admits the following distribution

% 2..

2 -S] -
% X+ OI @780 1 1 2 -1/4expg (\/; ) - (4.16)
P 7

0
f(x) = Ogs é Fp(s X) gT ;

where s> 0 is the amplitude of the line-of-sight component, | (x) is the nth-order modified

Bessel function of the first kind, and the tail-equivalence is due to the fact that for fixed n,

X

I, (X) ~ \/% . As an example, we can show that for i.i.d. Ricean fading, SC/SC admits

.2

ge IoglogKMl\IS 2
B/ =Cs+ |25 210gMNS § s* NpS _+ (4.17)
,Ricean
¢ & Jps g 4 st ogBMN 67
g 8\/ ﬂz

As seen from above, scheduling gain G(K,M) is an asymptotically increasing
function of K. In the next section, we will show that G(K, M) asymptotically decreases

with M , no matter for open-loop or closed-loop spatial diversity systems.

4.4 Asymptotic Scheduling Gain asM Goesto Infinity while K K eeps Fixed
In this section, we will examine lim G(K,M)= lim(S(K,M)- R(M)) with K

M® ¥ M® ¥

fixed, which complements the study in Section 4.3. The scenario when both M and K go to
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infinity will be studied in Section 4.5. We focus on the scenario that N ® ¥ as well, with
r=N/M fixed. However, all results apply to the case of fixed N aswell, with r takenasO
when applicable. The following theorem summarizes the main result in this scenario.

Theorem 2: Let m, and s,, be the mean and standard deviation of the normalized effective

R R(M

SNR g,, for each individual link®. If imS% =0, then fim|— ~M) o3 g
MO¥ m), M®¥T|Og(1+gtrm)%

. G(K,M) g =53]

lim —=———Z =0 when K keeps fixed. If we further have [ M| M uniforml

W R(M) P +Ogrm “”)grmq\é ’

integrable®, then lim{R(M)- log(1+gm,)}=0, and lim G(K,M)=0 when K keeps

M® ¥

fixed.
Proof: See Appendix C.

Remark: As shown in the proof, HQ;SM/”M =0 leads to the conclusion that g,,/m,
converges to 1 in 2nd mean (mean square). It is relatively straightforward to show that

2
log(1+g,/m,)® log2 as g,,/m, isaways positive and log(1+ Xx) grows slower than x in
(0,¥) . The difficulty with logg,, /m, occurs when the argument falls on (0,1), which

necessitates the condition of uniform integrability. Also, according to Appendix C, we can

seethat s,,/m, canberoughly used as a parameter to measure the scheduling gain.

In the following, we apply Theorem 2 on three representative systems. The key steps

lie in showing lim 2% =0 and the uniform integrability of |Iogg“" o g&gM Similar to
poom, “YEm, qy)

M® ¥ m/l

8 We use subscript M to explicitly denote the dependence of corresponding quantities on M.

1 if wl A
°1,(g) istheindicator function ontheset A, i.e. 1, (w) = : .
10 if wl A
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Section 4.3, the cases of STBC/MRC and SC/SC are relatively easy, while things become
much more involved with MRT/MRC.

STBC/MRC

In this case, the PDF of g °“/™* is given in (4.10), from which it’s straightforward

toobtain N> =N=rM and s*M*° =\N/M . Clearly we have

STBC/MRC
Swum

lim ———e= lim —— (4.18)

M® ¥ nﬁBC/MRC M®¥\/_M

The PDF Of X'\S/ITBC/MRC — gM BC/MRC/nﬁFBC/MRC |Sg|Ven by

MN
f STECIMRC () — MN XM M £ oy when x <1, (4.19)
(MN - D!

where we can bound the coefficient due to Stiring’s formula. Clearly, {Iog X TBCIMRC

| 0 (X“S,,T BCIMRC )} is uniformly integrable. So

lim RS/ (M) - log(1+g,rM )} =0, and lim G/ (KK, M) =0, (4.20)

M® ¥
with K fixed.

SC/SC
MN
In this case it’s easy to obtan n13,°’3‘3:é71®log;(MN)+C0 and

i=1

s /% = ,/ as M ® ¥, where C, is the Euler’s constant (see page 298 of
\/ 22

[12]). Clearly we have

S /C ] 1
'!AI(Ql I~ = '!AI(Ql log(MN) =0. (4.22)
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When M ® ¥ , the single-llink SC/SC is equivalent to the corresponding multiuser
scheduling scenario when K ® ¥ . Results in Section 4.3 can be directly applied to get for

fixed K
H DSC/SC _ H SC/SsC _
m{R (M)- log(1+g, log(MN))} =0, and lim G=/<(K,M)=0. (4.22)
MRT/MRC
The calculation for the MRT/MRC case is more difficult. The closed-form

expressions for the m/"""™* and s \*"""*° are unknown. In the asymptotic scenario, it is

known that [69]

ﬁ| L ®@A+r), (4.23)
But surprisingly, | RTIMRC = |im E —I Q remains open in literature, which is
M® ¥ 8

solved here through the following lemma.
Lemma 9: Let H be an N M matrix with i.i.d. complex entries with E(h.)=0

1 oO xl oO N
imEY & HH* Q= (1+F) and ||msa? HH?22=0, r= lim —
M®¥ 8 8|V| 29 ( ) 8 8|V| 20 ¥*M

2
0 Then

E(lh, F)=1, and E(|h, ) <¥ . Define | maxg HHH 0=
. (4.24)

Proof: See Appendix C.
Remark: A more important conclusion from Lemma 9 is that
MRT/MRC
(4.25)

l!/ll(gl rrl\//IIRT/MRC =0.

1% Here ||| isthe induced spectral norm on matrix, denoting the largest singular value
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The uniform integrability of {log X}™"""™1,, (XW¥"™)} is aready verified in

Proposition 4.2 of [15]. Therefore, for fixed K,

lim
M® ¥

Average system capacity(nats/s/Hz)

w
wn

(o5

M
wn

M

—
(8]

—

0.5

{ﬁMRT/Mm(M)_ Iog(1+gt(1+\ﬁ)2'\/|)} =0, and '!Aigl GMRT/MRC(K,M) =0. (4.26)

=8= MRT/MRC simulation
=-8= MRT/MRC approximation
—— SC/SC simulation

=== SC/SC approximation
—a— STBC/MRC simulation

-&- STBC/MRC approximation |

-
f‘a

o et e
e e
-
e

2 3 4

5 6 7 8 9
MNumber of antennas (M=N)

Figure 4.2 Average throughput of round robin scheduling (SNR=0dB)

Theorem 2 and the above examples indicate that, given the number of users, the

scheduling gain will diminish when the number of antennas goes to infinity, if the mean of

the link SNR grows at a higher-order rate than its variance. Intuitively, the mean corresponds

to what we obtain through round-robin scheduling, while the variance really contributes to

the scheduling gain. This is reminiscent of the multiple-antenna channel hardening effect

studied in [33]. Therefore, multiuser scheduling is not worthwhile in an antenna-dominant

environment. It is also interesting to see the difference in “I/.i m ﬁ(M) for different diversity

techniques. For STBC/MRC, it achieves a constant unless the number of receive antennas N
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aso grows with M **. For SC/SC, it grows like loglogM , but less impressive than that

achieved by MRT/MRC, logM . Numerical results in Figure 4.2 indicate a good match
between the simulation results R(M ) and the approximation results log(1+g,m,) for the

above three cases as M grows. Figure 4.3 verifies through simulations that the scheduling
gain will diminish as the number of antennas grows for both the open-loop and closed-loop

spatial diversity schemes. Furthermore, based on the above discussion™ we roughly have
s /% 1 s

nﬂC/C - logM g n.EFBC/MRC ~V’ and n.l'\\jfllRT/MRc - M2/

different decay rates shown in Figure 4.3. The analysis on the mean and variance will also be

STBC/MRC MRT /MRC
S 1

which intuitively explains the

useful for the discussion in the following section.

1.1

—8- MRT/MRC
— SCISC
—a— STBC/MRC

06

Scheduling gain{nats/s/Hz)

0.2

2 3 4 5 6 7 8 9 10
Number of antennas (M=N}

Figure 4.3 Scheduling gain asthe number of antennas grows (SNR=0dB, K =50)

0.1
1

1 Aswe mentioned, the resultsin (4.20), (4.22) and (4.26) hold for large M and fixed N aswell. In this case,
rM in (4.20) should be replaced with N, and r in (4.26) taken asO.

2 For MRT/MRC, as will be seen in (4.29) and (4.30), we can roughly consider s \R7/MF¢ ~ M Y3

61



4.5 Scheduling Gain when both M and K Goesto Infinity

In the previous two sections we have given rigorous asymptotic results when either
M or K grows. An interesting question naturally arises: when both the number of users and
antennas are allowed to grow simultaneously, how will G(K, M) behave? Intuitively, this
depends on the relative growth rate of M and K *3. Our goa is to find a critical point
K =0O(f(M)), only beyond which multiuser scheduling is meaningful.

We again facilitate the study through asymptotic analysis. Since the number of
antennas also grows to infinity, the results derived in Section 4.3 do not apply. We therefore
take the following approach. Let g(k,M) be the effective link SNR for the kth user. First

g(k’M)' Qv
Pu

we find two norming constants p,, and q,, to form , whose distribution is

- D
kM) 8
Pu

asymptotically independent of M as M ® ¥ , i.e for some random

variable w, . Desirably, the PDF of w, takes the form given in Corollary 1. Then we can

apply the results in Section 111 to obtain the scaling law for max{wk}kK:l, denoted as b, ,

which leads us to approximate the scaling law for max{g(k,M)}kK:l by g, + p,b, when
both M and K grow. Finally Combing this result with Theorem 2, we can approximate the

?W—F’MS, As will be seen, most often q,, = m, ; our

e My

asymptotic scheduling gain as log

approach thus nicely combine the effect of multiple antennas ( p,, and g,, (or m,)) and
multiple users (b, ) for convenience of analysis. Now the problem boils down to the

determination of the dominant factor between the two. Note that such approach was also

3 A similar study is conducted in [53] for spatial multiplexing systems to guarantee that the system throughput
can il scalelinearly with M .
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taken in the relevant study of [33], where MIMO capacity is shown to be asymptotically
Gaussian when the number of antennas grows.

In the following, we demonstrate this approach through examining the asymptotic
scheduling gain for STBC/MRC, SC/SC and MRT/MRC when both the number of antennas
and users go to infinity, with r = N/M fixed. The case of fixed N follows the same line
and will also be briefly discussed.

STBC/MRC

Choose p,, =v/N/M =+/r and q, =m, =N =rM . By Central Limit Theorem, we

k,M)- D . o :
m@ w, , whose PDF is the standard normal distribution function

M

can get

[N}

X

%me 2 . From Corollary 1, we can obtain b, ~/2logK . According to our approach the
® ./ 0

asymptotic scheduling gain is given by log¢l+ %ﬁ which admits
2 r
e 2

1.0, when IogK:o(Mz)

GV MY® | ¢ when logK =0(m?) (4.27)
!
§+¥, when IogK:w(Mz).

SC/SC

According to the results in Section 4.3, we know if we choose q,, =log(MN) ~m,,

D
py =1, then g(k,M)- q,® w,, whose CDF is exp(- e‘x) . We can then obtain

b, ~logK through Corollary 1 and the asymptotic scheduling gain is given by

& 0
log 1+LK2?. Therefore
log(rM*) 5
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i 0, when logK=o0(logM)
GE'C(K,M)® { ¢, when logK =0(logM) (4.28)
1+¥, when logK =w(logM).

MRT/MRC

In this scenario, the norming constants p,, and q,, have already been obtained in

[35] as
qM=(N+\/N)2:M(1+\/F)2‘*Tm, (4.29)
_ 1 1 1/3 _ 1/3 (1+\/F)4/3
Further
g(k,'\S)' W, (4.31)

where w, is arandom variable whose distribution follows the Tracy-Widom law of order 2.

This distribution is defined by
F,(s) = exp{@¥ (x- s)qz(x)dx},sT A, (4.32)

where q(x) solvesthe nonlinear Painleve Il differential equation

q"(x) = xq(x) +29°(x), (4.33)
o 1l.-12,1/4 ;3253/2 :
and q(x)~2p "‘s7e® ,as Xx® ¥ .From (4.32), we canobtain

432

f,(5) =dF,(8)/ds= F,(8) %) (X)dx~ ) G*(¥)ax ~(@p9) ‘e . (4.39)



We can check that f,(x) given in (4.34) satisfies the necessary conditions given in Corollary

1, which leads to b, ~(logK)¥®. The asymptotic scheduling gain is thus given by

"2/36
= and

adogK g 9
8 5

Iogéel+8

i 0, when logK=0(M)
GYR/MRC(K M)® | ¢, when logK =0(M) (4.35)
1+¥, when logK =w(M).

It is also interesting to extend our current analysis to the case of fixed N and large
M . For STBC/MRC, the same norming constants can be used but with different
interpretation; note that in this scenario, the shrinking of the link standard deviation with
respect to the link mean occurs at aslower rate (1/</M  rather than 1/M ). As a consequence,

we have

: 0, when logK =0(M)
Gy ™M (K,M)® | ¢, when logK =0(M) (4.36)
1+¥, when logK =w(M).

But this is achieved at the price of a saturated link capacity even when M ® ¥ (see Section

4.4). The analysis (4.28) for SC/SC remains unchanged for fixed N, i.e.,

GY'*(K,M) ~G¥'*(K,M). (4.37)

For MRT/MRC, the fixed N analysis deviates from above in that w, formed as in (4.31)

does not follow the Tracy-Widom law. Alternatively, by law of large numbers, it can be

shown that max{g(k,M)}kK:l approaches the largest element among KN i.i.d. random
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M
variables of the form § ‘hyl‘z . Following the same approach as above, we can obtain the
i=1

& [2log(KN) O
asymptotic scheduling gain as Iog§1+ % +, which ill leads to
2

GNT/MRC(K, M) ~ GMRT/MRC (K M), (4.38)

To verify the above results (when both M and N are large), we consider two relative
growth rate between K and M , with N/M =1. First, we assumeK =M in Figure 4.4,
which shows that the scheduling gain for SC/SC has a tendency towards saturation; while for
MRT/MRC and STBC/MRC, the scheduling gain asymptotically decreases. Then in Figure
4.5, we assume K =¢e" , which shows the scheduling gain for MRT/MRC almost saturates as
M grows, while scheduling gain asymptotically increases for SC/SC and decreases for

STBC/MRC. Due to the computation constraint, it’s difficult to simulate the scenario

K =e", but our results already show that for STBC/MRC, much more users are required to

make opportunistic scheduling beneficial.

0.35

—&— MRT/MRC
—— 5CISC
03| —e= STBC/MRC

o

]

th
:

o
]
T

015}

Scheduling gain{nats/s/HZ)

e
o

0.05¢

1 2 3 4 & 6 7 8 9 10
Number of antennas (M=N)

Figure 4.4 Scheduling gain as both the number of antennas and users grow
(SNR=0dB,K=M)
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Figure 4.5 Scheduling gain as the number of antennas and users grow (SNR=0dB,
K=exp(M))

One of the interesting observations from this section is that, when the number of
antennas grows, generally we need even greater (sometimes exponentially greater) users to
maintain the scheduling gain.

4.6 Summary

In this chapter, we present asymptotic analysis on the interaction between spatial
diversity and multiuser diversity in wireless networks. Rigorous proofs and necessarily
stronger results in terms of convergence are provided for some intuitions in this area. Equally
important, explicit expressions of scheduling gain and average system capacity in various
scenarios that reveal inter-connections and fundamental tradeoffs among key system
parameters are given, which afford us some insightsin real system design. The results of this
chapter shows that in a multiuser MIMO wireless network, to increase the instantaneous
throughput, scheduling only one best user is not a wise scheme. In the next chapter, we will
propose a multiuser scheduling scheme which will greatly increase the system throughput

compared with the one that schedules only one best user.
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Chapter 5
Joint Tomlinson-Har ashima Precoding and Scheduling for M ultiuser

MIMO with Imperfect Feedback

5.1 Background

Crosslayer study has become one of the burgeoning research fields in these few years,
based on the redlization that the commonly adopted layered protocol architecture, while
facilitating the development within each layer, has hindered the optimization of the overall
system, especially those utilizing wireless links [52]. At current stage, however, no formal
systematic approaches have been built and applications are vastly different. In this paper, we
focus on joint physical (PHY) and medium-access control (MAC) layer considerations,
which are most relevant to harsh and unstructured wireless medium, and whose design has
least interactions against other layers. Our target application is the downlink multiuser
MIMO communications, which is envisioned to be of crucial importance to future wireless
networks, and is believed to benefit significantly from a crosslayer design. Crosslayer study
on multiuser MIMO systems has begun to attract attention only very recently, and very few
of them ever explicitly address the details at the PHY layer [31] [59][7][1].

In multiuser communication scenario, multiuser diversity can be exploited through
making judicious selections among users with independently faded channels [62]. While
choosing the best user is optimal for single antenna systems and is simple to implement, it is
decisively suboptimal for multiuser MIMO systems [64] [54] [70]. To the best of our
knowledge, no rules of the thumb are yet known for multiuser MIMO scheduling, especially

when perfect instantaneous channel information is not available. In the literature, multiuser
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scheduling has been considered in the context of channel allocation for a SDMA/TDMA
network (e.g., [57][73][56]), but mainly with the uplink and the assumptions that users are
equipped with only one antenna or transmit only one data stream. In most of this work,
“gpatially compatible” users are grouped together in the same time or frequency slot, which
is usually measured by channel correlation among users. This approach raises two potential
concerns. First, a globally optimal allocation requires a thorough search of all possible
choices, and suboptimal or heuristic alternatives induce complexity versus performance
tradeoffs. Second, the physical layer details are largely neglected: either (1) the compatibility
metric depends solely on the channel and is independent of the underlying transceiver
structures; or (2) a conservative view istaken that treats multiuser interference as background
noise. Such designs clearly fail to fully exploit the design opportunities at the physical layer.
As an alternative, we propose to explore advanced yet feasible signal processing techniques
a the physical layer in order to reduce the burden at the MAC layer and enhance overall
network performance.

This chapter is organized as follows. A joint PHY and MAC design for multiuser
MIMO downlink is described in Section 5.2, where perfect feedback from the users is
assumed. In Section 5.3, we exploit the long-range prediction (LRP) technique to effectively
reduce feedback and quantify the system throughput loss under imperfect feedback.
Simulation results are given and analyzed in Section 5.4. Finally conclusions are presented in
Section 5.5.

5.2 THP and Multiuser Scheduling for downlink MIM O

Downlink multiuser MIMO forms a vector broadcast channel, whose capacity region

is resolved only recently with the dirty paper coding (DPC) approach [64]. As the realization
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of DPC is rather involved [72][16], we exploit a more feasible PHY approach, Tomlinson-
Harashima Precoding [17], which can be viewed as a suboptimal one-dimensional
implementation of DPC. As a counterpart of the decision-feedback multiuser detection
technique, THP has been employed in DSL systems and more recently in DS-CDMA and
multiple-antenna systems to combat ISl and MAI [71][66][41]. In this work, we first propose
a THP design for the multiuser MIMO downlink (especially, each user employs multiple
antennas and receive multiple data streams), which does not seem to be completely addressed
before. Furthermore, such a precoding structure results in interference-free parallel single-
user MIMO channels, which greatly reduces the scheduling complexity while simultaneously
improves overall system performance.
5.21 THP for multiuser MIMO

We consider a multiuser MIMO system with M antennas at the base station and N,
antennas at the ith user (each receive antenna is associated with a data stream), 1£i £ K. A
block diagram for the proposed THP scheme is given in Figure 5.1, and briefly illustrated
here. At the transmitter, we use x; to denote an N, " 1 symbol vector to be transmitted by

user i . The backward signal vectors b;'s from the feedback filter bank B with size

o K

a N’ é IK: N, are added to the intended transmitted vectors x;'s to pre-eliminate the
interference from previous users (usersfrom1toi- 1), and the resultant signals are fed to
modulo-operators, which serve to limit the transmit power. The output signals of modulo-

operators are then passed through a power control unit before being transformed by

feedforward filters W,'s to further remove the interference from future users
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(usersfromi +1toK). Finaly, the signals are launched into the MIMO channels. As all

interference is taken care of at the transmitter side, the receivers at the mobile users are left
with some simple operations including power scaling (which is realized through automatic
gain control (AGC) in Figure 5.1), reverse modulo-operation, and single user detection. The

interested reader isreferred to [17] for detalls.
In the following, we focus on the design of feedforward matrices { W}, with size
M " N, and the feedback filter bank B. We assume user channels {H }%, are quasi-static,
whose information is perfectly known at the base station for the moment. The received
signals at the receivers are then given as
Y, =H.(Ws +W,s, +..+W,s.)+n, 1E£i£K, (5.1)
where s with size N, ~ 1 denotes the output signal vector of the modulo operator for user i,

and n, is the circularly symmetric complex Gaussian noise vector with covariance matrix

s ?I . Define the overall system channel transfer function as

eHW, HW, . HW,u
e u

oo gHaWe HW, W g 52
: - . i

e ; ; -
gHle HW, .. HWq

The design target for feedforward matrices { W}, is to make H a lower triangular
one. This can be carried out in two steps. First, we enforceH to be block lower triangular and

next we further enforce each block on the diagonal to be lower triangular. Let T'.,, denote the

i+1

matrix of coefficients of orthonormal basis spanning null(H,,H,,...,H,) . The matrix H
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would be block lower triangular if we let W, =T'JA,, where A, is yet to be determined. The

matrix I',,, can be determined through singular value decomposition (SVD) as follows.

i M 5 lw 1 \E‘» AGC }of Mods |¥{ Decisin [
.J".J|l hl; Mlodua |, - 72 *, i
- r1,;E) L " W\ ! . }rz
' ' . LGC 4—» Moddda +—® Decisim (*
;'.él:‘ il IIV:!’EL Eﬁ. : W
1T -
EFM “*@
- Lo L Modalo ¥ Decision
1
Feedback
filter
B
I
Figure 5.1 Block diagram of the proposed THP for multi-user M1M O downlink
Assume
a&H, uo
e, U7
[U,Z,V]=svd &€ 2U" 1£j£K- 1, (5.3
Géll a+
€, U=
éHi (g

then the rightmost M - § N, columns of V, compose the joint null space of H,,H,,....H;,
k=1

denoted as I',,, . Now we further enforce H,I';/A, to be lower triangular, which is realized
through QR decomposition (H.I',)" =QR,, and let A, =Q,(;,1: N,) (the first N, columns

of Q)
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Once the feedforward matrices {W,}<, are determined as above, the design of the

feedback filter bank B endeavors to eliminate the residual inter-stream and inter-user
interference. Decompose H = GL , where G is a diagonal matrix that extracts the diagonal
elementsof H and L isalower triangular matrix with unit diagonal elements, then
B=I-L. (5.4)
iswhat we desire.
5.2.2 THP-Aided Scheduling for Multi-user MIM O Downlink
A direct consequence of the THP design is that, each user sees an interference-free
MIMO channel, as evidenced from the following relationship (cf. Figure 5.1)
y =Hs+n=G(Ls+G ') =G[x+(s- b)] +n, (5.5)

T

where y=gy; VY; .. Y«

. N} . N
, =g S, .. S ad n=gn n; .. ngf ae

given as in (5.1); X=§; X; .. X HT represents the transmitted data symbols with

K
tr(E[xx"])EP and § PEP;and b = g; by .. by HT collects the input vectors to the

i=1
modulo-operators for al users At the receiver side, a power scaling with G.* (1£i £K)
followed by the modulo-operator and decision device suffices to recover x; . Due to the THP
design, H,W, is the equivalent single-user channel matrix for user i. In this chapter, we

follow the common practice in literature and adopt the information-theoretic spectral

efficiency (assuming a Gaussian codebook and equal power allocation)

- R PPy
R —Iog2§ + T ~(H,W,)(H,W,) ;1£| £K, (5.6)
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as the metric' for the user channel quality, which can be readily modified to accommodate
actual modulation and coding schemes.
Based on the above observations, a simple multiuser scheduling scheme is given

below.

8

a
Sep2. Based on the selected user(s), compute the feedforward matrix W, , then select among

Sepl. Schedule the first user whose index is argrlgzguilogzﬁ + Npi ~H.H,"

the remaining users whose equivalent channel matrix H,W, will result in the largest
contribution (as given in (5.6)) in sum rate).”®
Sep3. Repeat Step 2 until a given number of users has been selected, or no more users can be
added due to channel rank deficiency.
This THP-aided multiuser scheduling scheme will be compared with various sub-optimal and
optimal approaches in Section 5.4 to demonstrate its advantages.
5.3 Analysis of Imperfect Feedback

In previous discussion, perfect CSl is assumed available at the transmit side for PHY
and MAC design. In practice, especially for FDD systems, such information is typically
measured at the receiver side and fed back to the transmitter with some dedicated channels.
The cost of perfect feedback in multiuser MIMO, if ever possible, grows quickly with the
number of antennas, users, and system bandwidth, while in real systems the dedicated

feedback channels are typically of low rate and prone to errors. In this section, we exploit the

14 Rigorously speaking, (5.6) isnot the achievable rate of the THP, however, it is shown in [7] that the sum rate
achievable using THP can convergeto the actual sum rate capacity at high SNR.
!5 Note that existing designs need not be changed, as newly added users areinvisible to already selected users.
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LRP technique to effectively reduce feedback and further quantify the system throughput loss
under imperfect feedback.
5.3.1 Channel Prediction via LRP

LRP is a linear prediction method based on autoregressive modeling. With this
technique, one can measure and feedback the time-varying CSI at a much lower rate than the

datarate. Assume the complex fading process h(t) issampled at arate f,=1/T_, whichisat
least twice the maximum Doppler shift f, but can be much slower than the data rate. The

sampled data is represented by h, =h(nT,) . Then the linear MMSE prediction of the future

CSl sample h, based on p previously observed CSl samples'® h_,,h ,,...h s

p
. @
h,=adh,;, (5.7)
j=1

where {d} are the coefficients of the linear prediction filter and p is the prediction order.

This approach can also be extended to predict t >1 samples ahead. Clearly, multi-step
prediction can tolerate more delay in the CSl feedback with some loss in performance. The
predicted samples can be interpolated to forecast the fading samples at the same rate as data

rate. The reader is referred to [29] for a detailed description of this technique.

5.3.2 Actual Achievable Rate under Imperfect CS|
With imperfect feedback, THP design will not be able to completely eliminate all the

interference, which necessarily degrades the system performance. Assume the estimated CS

for the ith user is A, (1£i£K ), and the designed feedforward matrix based on H.

16 We assume the samples of the fading channds are perfectly obtained through trainings.
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(LEIi£K)is Wi . In the precoding stage, the interference from the previous users for user i
seen by the transmitter is Ifli\ﬂ/jsj (£ jEi- 1), while the actual interference isHinsj :
Therefore the residual interference from the previous users for the ith user is (H, - Ifli)\ﬂ/jsj
(1£ j £i-1). Similarly the interference from the future users is Hinsj (I+1£ J£K). As

for the self-interference due to the imperfect channel estimation, we can decompose HiWi
into three non-overlapping parts representing its lower triangular, diagonal, and upper

triangular components as Hi\ﬂ/i = (Hi\ﬂ/i)I +(Hi\l(/i)d +(HiWi)u. Then the interference from
user iitself is ((H; - |£|i)\ﬂ/i)I +(HiWi)u. In summary for the ith user, the actual received

signal is given by

644 V7] A48
—(Hx)w«H ??ll) )+ (HW),)s +

a (H, - A, )\X/ s, +
1442444 (5.8)

interference from previous users

K
a Hi\K/jsj +n,1£i £K.
HN>43

interference from future users
With Hi,d © (Hiwi)d 1 Hi,so ((Hi - lz'i)wi)l +(Hiwi)u 1 Hi,j<i © (Hi - Hi)w

=H W the achievable rate for the kth substream of user i (assuming Gaussian coding

| j>i

and equal power allocation) is given as

R =109, G L (el 59

with
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s2=s +NﬂH,S(k M, (k) +a TUH, L (KH, (k)
=N (5.10)
g P *
a —-H i,j>i(k’:)Hi,j>i(ki:) .
J:|+1N

where (k,k) denotesthe kth diagonal element of a matrix and (k,:) represents the kth row of

N;
amatrix. The achievable rate for user i with imperfect feedback is then given by I?% = é I-){k

k=1

It is observed that the noise plus interference matrix
2 P H IOl P H C})< F)J . . .
I +WH.SH.S a—- N H G HE a N_H' J>,H, i~ 1S typicaly a diagonally-dominant

i j=1 TN J
matrix (a matrix whose diagonal elements are much larger than the off-diagonal ones),

therefore the actual achievable rate of user i can be approximated by

R i - l:l
R ))Iogz | +WHI,dHl,d g'él = . g = . _ l:l (511)
' 8§ Hiialia * 8 5 HH s 6
- N i,j<i' Ui j<i ¢ N [ R R T P == s
gl—l =i 17 H

5.4 Numerical Results

To illustrate the effectiveness of our proposed THP based multiuser MIMO downlink
scheduling scheme, the total average throughput of our scheduling scheme is compared with
that of several well-known schemes in literature, assuming that L users will be scheduled
simultaneously and each selected user receive as many streams as its antennas. The HDR
approach [62], i.e., serving only the best user at each time, is used as a reference. In contrast,
athorough search based on DPC readily serves as a performance upper bound. Very recently,

some preliminary study on feasible multiuser MIMO scheduling schemes is presented in [1],
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which in some sense bears the same spirit as the “spatially compatible” scheduling
mentioned before with a conservative view on the physical layer. In this work, the transmit

antennas are partitioned among active users. Each user feedbacks the indices of the N,

antennas it desires together with those of the § N, antennas it wants the other users to be
kti

assigned to such that his instantaneous channel capacity is maximized. While this scheme is
relatively easy to implement and has some throughput advantages over HDR (particularly for
large K and moderate SNR), it suffers from two drawbacks as indicated above. One is

computational complexity, since optimal scheduling requires a search of

%JINO

8“‘%. ;

interference limited at high SNR.

pOSSlbI|ItIeS a each user. Second, as shown in Figure 5.2, it is still

In Figure 5.2, we compare the system throughputs of different scheduling schemes as
a function of total transmit SNR. We consider a symmetric multiuser MIMO downlink
system with M =4 antennas at the BS and N, =2 antennas at each of K =20 mobiles, and
schedule at most L =2users in each time instance. It can be seen that our joint THP and
scheduling scheme performs much better than the HDR and the MMUD-L scheduling
scheme in [1], and approaches the performance of dirty paper coding (a thorough search for

two best users), while with much affordable computational complexity.
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Performance of different scheduling schemes
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In Figure 5.3, we re-evaluate our scheduling scheme with imperfect CSl feedback. A flat
Rayleigh fading channel with Jakes’ model with a Doppler frequency of 200 Hz
(corresponding to a vehicular speed of 65 mi/h at a carrier frequency of 2 GHz) is considered.

We use a channel sampling frequency of f,=1600Hz and the prediction order in (5.7) is
taken as p =50, while the transmit data rate of each user is R, =128k bps. So the channel is

measured and fed back once every 80 symbols. We choose two different prediction steps for
evaluationt =1 andt =4 (which corresponds to a prediction of 320 data symbols ahead).
From Figure 5.3, we can see that even with imperfect CSl and dower feedback rate through
LRP, our scheme still has a significant gain over the MMUD-L scheme and single best user
scheduling scheme. Our simulation also indicates the good match between the true value and
the approximate value of the total average rate under imperfect feedback.
5.5 Summary

In this chapter, we proposed a joint THP and scheduling scheme for multi-user
MIMO downlink. Compared to some existing scheduling schemes, the proposed scheme
greatly reduces the scheduling complexity while simultaneously improves overall system
performance. Strictly speaking, the proposed THP-aided multiuser scheduling is not
necessarily globally optimal, but we conjecture that the loss in optimality is negligible (when
the number of scheduled users is given) and plan to undertake a comprehensive analysis of

this approach.
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Chapter 6

Conclusions and Future Wor k

In this dissertation, we studied several interesting topics with related to MIMO
wireless communications, the main contributions and future work of the dissertation are

summarized below:
Chapter 2: By deriving the approximation of the PDF of s?_ at the origin, we

obtain the asymptotic average SER (in terms of SNR) for MIMO MRT/MRC systems, based
on which we verify the two observations made in [13]. We also compare the MIMO
MRT/MRC system with two other widely deployed MIMO diversity schemes: one is joint
gpace-time block coding and maximum ratio combining (STBC/MRC), and the other is
selection combining at both ends (SC/SC). This comparison enables better understanding of
MIMO diversity systems.

Our future work will include the analysis of the diversity scheme that employs hybrid
selection scheme at both ends.

Chapter 3: Both incremental and decremental antenna selection rules with link
adaptation are proposed for uncorrelated MIMO systems. Both rules are redlized with
recursive algorithms, thus greatly reducing the computational complexities and feasible for
practical implementation. Rigorously speaking, neither rule provides the optimum solution,
but the performance loss is negligible. For uncorrelated MIMO channels with independent
and identically distributed (i.i.d) Rayleigh fading, we propose an antenna selection rule based
on the expectation of the optimal number of active antennas. Based on this rule, the

computational complexities can be further reduced while little performance degradation
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would be incurred. Such computation reduction is especially prominent for large MIMO
systems. For correlated MIMO channels, we propose an incremental antenna selection rule
with link adaptation based on the slowly varying channel covariance information, which is
also implemented in a recursive way to avoid the computational complexity of exhaustive
search.

Our future work includes more detailed computational complexity analysis of the
“incremental” and “decremental” selection rules. The theoretical study on the performance
gap between out proposed methods and the optimal one is also of our interest.

Chapter 4: We derive explicit expressions for average (ergodic) capacity of joint
gpatial diversity and multiuser diversity systems when the number of users goes to infinity
while the number of antennas keeps fixed. As expected, the average system capacity and
scheduling gain grow with the number of users; and we contribute by providing a rather
general asymptotic expression that builds an explicit connection with key system parameters
and reveals their interactions, and by providing a strict proof of convergence that is in a
stronger sense than what is assumed in previous study. As an application, we confirm that in
this scenario, there is a tradeoff between spatial diversity and multiuser diversity for an open-
loop spatial diversity system, but the detrimental effect of multiple transmit antennas can be
avoided with the closed-loop schemes. We also show that all closed-loop schemes perform
similarly in this scenario, in the sense that their differences only occur at the second-order
(i.e, loglogK ). We show rigoroudly that the scheduling gain nonetheless diminishes to zero
as the size of antenna arrays grows while the number of users keeps fixed, no matter for

open-loop or closed-loop spatial diversity systems, through asymptotic study on the mean

82



and variance of the effective link SNR. In this sense, multiuser scheduling is not worthwhile
in an antenna-dominant environment. On the other hand, different spatial diversity schemes
do make significant difference with respect to system capacity for round robin scheduling.
Since the scheduling gain asymptotically decreases with the number of antennas and
increases with the number of users, it’s interesting to study the asymptotic trend when both
are allowed to grow. We reveal how the scheduling gain behaves depending on the relative
growth rate between the two. In particular, we determine a critical point, only beyond which
multiuser scheduling is meaningful.

Our future work includes study of the interaction between spatial diversity and
multiuser diversity in a correlated fading scenario, and extension to the situations when
users’ channels are heterogeneous, together with the associated fairness issues. The
interaction of multiuser diversity and the diversity-multiplexing tradeoff in MIMO systems
also deserves further study.

Chapter 5: We provide a THP structure for multiuser MIMO, and based on this
structure, we propose a multiuser scheduling law. The proposed scheme greatly reduces the
scheduling complexity while simultaneously improves overall system performance.

In our work, there is an inherent limitation on the maximum number of users that can
be simultaneously supported for our proposed scheme, due to the geometric structure
revealed in Section 5.2. Therefore whether there exists an optimal number for the scheduled
users, in terms of system throughput averaged over all channel realizations, remains open and

constitutes our future work.
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APPENDIX A: Some proofs of chapter 2

Proof of Lemma 1: By Maclaurin Series expansion

1

Xt—s+i+j—l+0 Xt—s+i+j—l , A1l
t-s+i+j-1 ( ) (A1)

{¥ ()} =g(t- s+i+]-1x)=

we can obtain the approximation of |¥ ()| a x =0" after some manipulation as
|¥.(x) F|@] X" +o(x*™), (A.2)
with @, ; =1/(t- s+i+j-1), fori,j=12,..,s. The determinant of ® can be obtained in a

similar fashion as that of a Hilbert matrix. After some algebra we get

O L KD +K)1? £ MRTMRC O ki
k= 0 (X) - k=0

|(I)| 251 Fy S =7 x"™ +o(x"V).  (A.3)
O 1 +k)! O L (t+k)!
|
Proof of Lemma 2: From s +t, > s, +t,, wecanobtain s <s, <t, <t,. As
~ 1
a(MRT/MRC)(Sl tl) = O k:ok!
Oo(t, +k)! (A.4)
_ 1 i 1 : 1
172 .42 3 . (t+) s .. (5+t-1)
Ok
a(MRT/MRC)(SZ,tZ) - SZ k=0
Ot +)! (A.5)
1 1 1

172" ..7t,°2°3 .. (t2+1)g"'sz’ (s, -1
The proof of Lemma 2 is equivalent to show that
@ .. t) .G (s -))>@Q L) (s (s - D). (AB)

The left hand side of (A.6) can be rewritten as
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1@ 2t@- - (Sl+t1- 1)f(31+t1-1)’ (A.7)
with
i I 1£i£s

fM={ s S+1Ei £t (A.8)

g+t -i, t+1£ifs+t-1

Similarly the right hand side of (A.6) is given by

19(1) ’ 29(2) T (Sz +t2- 1)9(%”2-1)’ (A.9)
with
i, 1£i£s,
gi)={ s, s, +1£i £, (A.10)
ls +t,-i, t,+1£i£s +t,- 1
31‘31'1 32‘32'1
Itisnot difficulttoget g f(i)=s t,=s, t,= a 9(i). Therefore, after canceling out
i=1 i=1

the same factorsin (A.7) and (A.9), we can observe (A.7) is definitely larger than (A.9).
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APPENDIX B: Some proofs of chapter 3

Lemma3. For two ordered real sequence {a}'-! and {b}/Z} such that & £a,£4a, £ ....

and b £b,£Eb£...£b, , if c,C,,....,c, is any permutation of b,b,,.....b
aah’aac’aab ..
Proof: for any ordered multiplication, if i > j, ¢ 3 c;, consider

T=ac +a,c, +...+ta,G +..+ac, +...+a.,,,

S=ac tac, +...tac +..+ag +..+a.c,,

S-T =agG +ajcj - aicj - ajC| :(ai - aj)(c. - Cj)3 0.

then

By induction, we can see if we sort b in an ascending order, the corresponding summation

will be maximized.

Proof of Lemmad.a: From [23], we can see that matrix QR decomposition is related to

Gram-Schmidt orthogonalization, hence it is not difficult to seethat R(k +1) sharesthe same

first k diagonal elements with R(k) and Q(k +1) shares the same first k columns with

Q(k) whilethe (k+1) - th onegivenby Q(:;,k+1) =h- ékQ(:,I)HhQ(:,I).

1=1

Assume the QR decomposition of H® isQ(k)R (k) , then

det(H")"H™) = det(R(K)" R(k)) = (5 [

Inthe(k +1) - th step, assume the QR decomposition of H*™® is Q(k +)R(k +1), then

(B.1)
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a(H )" H®  HOhO

det(H* )" HY ) = det ca -
(RE7H) S h"H®  heh g
(K)\H g (k) (k)
:det&g(H )H H H (k) l_(lk)z (Y- 1(py (K yH 32 (B2)
B5 0 h'h- h"HW(HW) H®) (HY) hi
:(hHh_ hHH(k)((H(k))H H(k))—l(H(k))H h)det((H(k))H H(k))
==det(R(k +1)" R(k +1))
hence
det(R(k +1)"' R(k +1))
det(R(k)" R(k)) (B.3)

=h"h- h"HO(H"Y"HO)Y Y HOY " h =h"h- h"Q(K)Q(K)" h.
Hence the amplitude of the (k+1)- th diagonal element of R(k +1) is given by (B.3),

which is

=Jh"h- h*QK)Q(K)"h. (B.4)

I’k+1,k+1
Proof of Lemmad.b: In the (k+1)-th step, assume column h(k+1) is selected.
Partition Q(k) asQ(k) = [Q(k- 1 q(k)], where q(k) is the rightmost column of Q(K) .
From (B.4), we get

“=h" (k+Dh(k +1) - h" (k +)QK)Q" (K)h(k +1)
=h"(k+h(k+2) - h" (k+2)Q(k- )Q" (k- Dh(k +1)- |[h" (k+Dg(k)}  (B.5)
£h" (k+Dh(k +1) - h" (k+D)Q(k - DQ" (k- Dh(k +1).

rk+1, k+1

According to our selection criterion, we know inthe k - th step, h(k) isthe selected
column vector in the remaining of H suchthat f(x) =x"x- x"Q(k- )Q" (k- 1)x is

maximized. Thus,
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hl” =" (Oh(K) - K" (K)Q(K - Q" (k- Dh(k) = max f (h(K) * f (h(k +1)) (B.6)

rk+1,k+l :

=h" (k+Dh(k+1) - h"(k +DQ(k - Q" (k- Dh(k +1) 3

R0yl
Proof of Lemma 5.a: The Cholesky factor of R = SRL \1/0 can be partitioned as [23]
év" 14
k) n 0
RKk+D=¢ . G (B.7)
e k+1,k+1U

whereR (k) is the Cholesky factor of R%", n isa k” 1 vector, 0 isa k” 1 vector comprising

all zeros elements, and r,,, ., is the scalar we are interested in. Writing out the Cholesky

decomposition of R

€R(K)"R(k)  R(k)"n U

R(Tkﬂ) " WRK Rl (B.8)
we have
i R(K)"q=v
T[fkil,ill:]]”n =1 (B.9)
From (B.9), we can get
foaen =y 10 =1 VI RE) . (B.10)

Proof of Lemmab.b: AssumeR{? | R¥ and R are the covariance matrix for the k- 1,
k and k +1selected antennas respectively. Also we assume R(k- 1) and R(k) are the

Cholesky factors of R, R respectively. According to our recursive selection rule,
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R is an “enhanced matrix” based onR%™ and R is an “enhanced matrix” based

onR{Y.
RIY v U : :

AssumeR{) =g T, ;‘10, where v, , isthe (k- 1)” 1 covariance vector between the
e Vi1 a

k - th selected antenna and the previous (k - 1) selected antennas. Then according to (B.10),

o =41- VIL(RED) v, | =1- v R(k- D'(R(k- DY)V, ,.  (B.11)

Similarly,
Feaien =17 VER(K) H(RK) v, . (8.12)
RKk-1)* U . . .
Note R(k) * =@ ( o ) _G» Where“” ” denotes irrelevant entries. Assuming the
é a

rightmost column of R(k)* is b, , then

s =y VER(K) AR D,

éR(k- 1D, . . 2
:\/1- v & (o“ ) a@R(k- D" Oy, - [vi'b,| (B.13)
e u

z 1N
E\/l- vH SR(koHl) GER(K- DY O,
e u

Assuming V, isa (k- 1)” 1 vector truncated from v, by discarding the last element of v, .

Thus (B.13) becomest, ., £ /1- ¥}'(R¥ ) 14, . According to our selection rule, in the

k- th step, we choosethe (k- 1) 1 vector v, , suchthat r,, =/1- v/',(R¥V)tv, | is

maximized, hence r,,,, ., £+/1- ¥ (R¥?) %, £1,, .
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APPENDIX C: Some proofs of chapter 4

Proof of Theorem 1:
1). Preliminary:
In order to prove Theorem 1, we first provide some preliminary results in [60] through the

following lemma. Based on this lemma, a corollary follows, which is key to deriving a tight

lower bound for S(K,M ).

Lemma 7: Let X,,..., X, bei.i.d. random variables as givenin Lemma 1. If I|®rg g(x)=c3 0,

then the asymptotic expansion of Iogg- logF X (bK + xg(bK))H a b, isgivenby

logg- logF* (b +xg(b))p=- x+ —g‘(bK) €9(b )9 (be) - 2(g%b)) Y

e +... 5e2x+ 1 s
+ + +..- e
2K 24K? 8K*®
where b, = F*(1- 1/K) . Furthermore if }I<i®rg[K xg¢b, )] = ¥, the terms in the last group of

(C.1)

+.. 7t

(C.1) garting with the term e */ 2K are negligibly small compared to the terms in the first
group.
Corollary 2: Let X,,..,X, be iid. random variables as given in Lemma 1. If

limg(x) =c? 0, g¢x) =O(L/ x*) with d, >0, and b, :o((|ogK)"2) with 0<d, £1, then

thereexistsa k >0, such that

P{-k|og|ogK£(1rpk§>K<x) bKEkloglogK}31 og 1o (C2)

Remark: The proof follows readily from Lemma 4 by choosing x =loglogK . This result has
been demonstrated in [53] (see (A5)) with conditions ¢ >0 (in this case we can let k =c¢),

g™ (x) =01/ x™)and b, =O(logK).
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2). Tight Lower Bound for S(K,M):

Apply an extension of the Markov’s inequality, we have (for sufficiently large K))

S(K,M)= (Iog(1+gt(maxgk)))

1EKEK

1EKEK

3 P(maxgk 3p -k IoglogK) |Og(1+9t (bK -k IOgIOgK)) (C3)
C.3

go; 09 log(1+g, (by - k loglogK))

3 Iog(1+9t ) - 0(1)
where the second inequality follows from Corollary 2, and the last one follows from

glO

b =O((logK)*) with 0<d, £1.
3). Tight Upper Bound for S(K,M):
As afinal step, we provide an upper bounded for S(K,M ), which coincides with the lower
bound asymptotically. Let S(K,M) = Iog(1+gt (ﬂ% gk)) , which is positive with probability
1, then

— ¥

S(K.M)=¢q P(S(K,M)>x)dx

\|09(1+91br<)

=9 P(S(K,M) > x)dx+ Q::(ngm P(S(K,M)>x)dx  (C.4)

+¥
£log(1+ghb, )+ Qg(hgtbK) P(S(K,M) > x)dx.

In the following, we show that the second term above diminishesas K ® ¥ . First note

P(S(K,M)>x)=1- P(S(K,M)£X) =1- F* oo -2 (C5)
e 9% o
. . 1- F(X) _ .
Since I|®rQ f(g) =c2 0, we can find postive constants ¢, and X, , such that
x X
9

1- F,(x) <c,f,(x), when x> x,. Thus for sufficiently large x we have
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1- R 0= F 2@—109881 R 160
€0 g & &9 opd egtﬂ e % og (C.6)
£ Kc, f, 2&3 - 10
e % o
Therefore for sufficiently large K and b, :O((IogK)dz),
R , & - 10
Qutean) P(S(K,M)3 x)dx £ ¢ Qg i) Kczfg . de
g \+¥
=0 Kc, f(x) dx£ K—=— & f(x)dx (C.7)
Q 1+gh, @
2 o)
8 ppueof 22
1+g,b, (logK)™ 5
where the second to last equality uses the fact (1- F (b)) =1/K .
Based on (C.3), (C.4) and (C.7) we can conclude
Li(@rg[E(log(1+gt (nggK))) Iog(1+gtbK)} =0. (C.8)

Proof of Corollary 1: First we can check that

e . 1-F(x)0
limequx’ t —2—+=1, (C.9)
x®¥g fg(X) g

when f (x) ~ax’e ®  This leads to the conclusion that Ii®rQ g(x)=c3 0 (c=0 when

n>1), and g¢x) :o?éex—lvé, therefore by Theorem 1, we are left to verify (4.9).
@
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It can also be referred from (C.9) that Ii®m1_ F(x) =1, wherej (x)=ax”"e* /qv.

x¥j(x)

Therefore, we only need to solve j (b,) =1/K , i.e,

bl\é :1|09Ki+ p+i-v
qa qv

logh, . (C.10

__l/v

The first order approximation for b, is readily given by 8 Iog Kt - . Toobtain the second

v

order approximation, we just replace b, on the right hand side of (C.10) with fé%log Kt 2

9
to get
by = LiogK® + PV n10 KR (C.12)
g o Vg Qv
which leads to
1
o) Ka & o) Ka 6
y loglog~2 ¢ . loglog—2
@ Kad'S pr1v 9%t @ Kad'S pri-v 99 ¥
B =g log" = Clt 1 Ka . Sq%9%q: &F 1 _Ka -
& Vag @ L@ + & Vo ¢ o L Ka -
a kad' pt1-v Vg

:_Iog T+ v-1)/v *
8q v g o VAP @(’)‘Dl

—log—+
Sq S\
|
Proof of Lemma 8: Whenx® +¥ ,F" "M (x) ® 1, therefore
£ () ~ limtr (Y 1 (0F (X)), (C.13)

As Ii®rL1{YC(x)}iyj :IE@ng(t- sti+j-1x)=(t- s+i+]j-2)!,letting | =t- s, wehave
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| ! (+nr .. (I +s- 1)!@

e
é a
~ (I +D! p
v ()= 0D i (C.14)
€ : : u
&l +s- 1! (I +2s- 2)1f
Meanwhile
é XIex XI+1e—x X| wts—le—xl"I é 1 X XSll:l
é XI +le X l;' é X . l;'
F.(x)=¢€ u-¢€ ' Ux' g *, (C.15)
€ u e u
gxl +sHlgrx X *25 2 xa gxs 1 X23-2U
Therefore
tr(Y H(+¥)F (X)) =€7X [axX*® 2 +a,x*% * + ..+, X+
( c ( ) c( )) [ai aZ a23—2 aZs—l] (C16)

=e X' " ?[a +O(1/ X)],
where the coefficients {a} come from linear combinations of elementsin Y _*(+¥). We are

only concerned with the dominant term, whose coefficient can be obtained as follows.

e ! (I +D)! .. (I +s- 23
g (I +1)! N (R 1
¢ . . . . :
aza- S +s-2 . . (1 +2s- ) (C.17)
Y (+¥)
_Ot-k-i(s- k-1 1 B 1
SOl s-kr (-0 (s- 1) (M- (N D)
|

2
Proof of Theorem 2: Let X,, :g—“", lim 2™ =0 indicates that Xy®lasM® ¥.
m, Me¥m,

First we show the weaker conclusion that the relative scheduling gain diminishes as

M ® ¥ .Fix d>0. By Markov’sinequality, we have
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E(log(1+g9y))? P(X, 3 (1- d))log(1+g,(- d)m,), (C.18)

2
which together with X, ® 1 leadsto

- E(log(1+g9y)) , | . _
liminf oo(1+ 0, @ dym,) lim P(X,, * (1- d)) =1. (C.19)

Now welet d ® O to get
iming E(1090+99,))
Me¥  log(1+g,m,)

31, (C.20)

E(log(1+
On the other hand, by Jensen’s Inequality limsup (log(+99u))

£1, which completes the
M® ¥ Iog(1+gtrq,|)

proof of the weaker conclusion.

It isknown [12] that E@k*HE m, + (\K/Zi Using Jenson’s inequality, we have
— K-Ds, 60
S(K.M)£logT+g Ty +K-Dsu 80 c.21
( ) 098 gtgfm VK1 o (C.21)
So
(K-Ds, 66
log el +g, g, + - et
0g 1im M) gy & T8 V2K-1gp g (C.22)
M® ¥ R(M) M® ¥ |Og(1+gtrm)

We now turn to the proof of the convergence of the absolute scheduling gain. We can

write

log Xy =109 X1 0z (X ) +109 Xy 111y (X ) =Y, +Y2 (C.23)
First we have

0L£Y,? £(Xy - Dy, (Xy)- (C.24)
Therefore E(Y,?)® 0 since E((X, - Dy, (X)) EE(Xy -1)® 0 s M® ¥ . In

order to show that E(Yhs,l)) = E(IogXMI(Oyl)(XM))® 0, we make the following claim.
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P P
Claim1: If arandomvariable X ® 0 asn® ¥, X 1.(X,)® O for any event E.
Thisclaimiseasy to verify as " e, P(|X,Ic(X,)|>e)£P(|X,[>e)® 0 asn® ¥ .

2 P
Now that X,, ® 1 we have log X,,® 0, as X,, is positive and the logarithm function is

P
continuous. By claim 1 we in turn have log X,,! 4, (X, )® 0. This together with the

1
uniform integrability of {logX,,! o, (X,, )} results in Y"® 0 [28], and it follows that
mion\ MM M

lim R(M) =log(1+g,m, ). Hence

M® ¥

OE“IAi&G(K,M):“IAi&S(K,M)- R(M))

: & _(K-Ds, 60 6_ (C.29)
E&'&gog?gtgw YKL Iog(1+gtrm)5—0-
|
Proof of Lemma 9: Define B:ﬁHHH , assume b>(1+\ﬁ)2 and | max(B):HﬁH
Thus
E(I max (B)) = E(I max(B)I[Ob] (I max (B)))+ E(I max (B)I(b¥) (I max (B))) (C26)

Using dominated convergence theorem together with Theorem 3.1 of [69], we can obtain

1im E(1 e, (B) 1oy (1 e (B))) = (2+7)’. (c.27)
The remaining task is to show
1M E(1 e (B) 3, (1 e (B))) = 0. (C.28)

We define two new N~ M matrices Y and Z based on H, with each entry of Y being

(1|} . where the detailed

h,j|) and each entry of Z being Z, :h,jl(

Yij = h,j'go,dmg( a M ¥)
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definition ofd =d,, ® Ocan be found in [69] (see the proof Lemma 2.2) and [5] (see the

discussion below 1.8). What we need in this proof is following two results from [5][69]:

1
FE(|*1,1|4|((,N,¥)(||“&,1|))® 0, asM ® 0, (C.29)
and
¥ @ (B
akE + (C.30)
M=1

where B :ﬁ(Y - E(ya) 135 ) (Y - E(ylyl)lNll,,)H ( where 1, is an s” 1 column vector
. 2 . -
with all one entries), b’ be a real number such that (1+\ﬁ) <b <b, and k =k, satisfies

(4.3) and (4.4) of [69]. Further assume B" = ﬁzz” , With these definitions,

m

(1 e (B) oy (1 e (B)))

Ea\/lﬁ(\( E(y,)1,1 ) + JlﬁE(yn)lNl{A +ﬁz

(1 (51 (1o (30) 2 ) i+ E( e ()

2

o0 (1 (B))g (C31)

The second term above admits

() = N[E (g () =Ny ()]
= N L VE (g ()] £ (P i (1) ©32)
£t (1 ()

From (C.29), we know the above expression approaches 0 as M goesto infinity.
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For the third term, we have

=1 (3) £ £ G A5 5= N1y (1)

j (C.33)

£ %F E(‘hl,l‘ (oviry) (‘hu‘))

Therefore the above expression also approaches0 as M goesto infinity.

Denotea = /b - v/b . We have

o) (1 ma (B)) E 1y (1 (B)) + 1 0 (1 e (B)) 1oy (\/I o (B) - 1 (B')). (C.34)

According to Markov’s inequality, we have

E(I (e (B) - e (B )): (T e (B) - T e (B) > )

Furthermore

) T @)= | ][ (- )22

(C.36)
1 1 . 1 ]
£l V)l ) =l | )|
Therefore
E(I maX(BI)I(Obl( ( )) a¥ (\/I max _\/I max )
£b'E(I ) (VT e (B) - T ( ))E%Z’e\/l—”Z'HI\/lﬁ (ie) 1015, g (C.37)

2b£\|0 11/2( )
£a8Mng ‘hl‘ldx/_¥)

Again by (C.29), the above expression also approaches 0 as M goes to infinity. Finally we

have
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E(I max(B)I(b,¥)(| max(B ))):blEe b
2 (B)4 6 @ (8)4 (C39)
N6 Vo
EbEgem =L (I (B))+ED'E S
ég b' b(v)( ())6 $ b p
By (C.30), we have
s ()0
lim Egem\= /7 =, (C.39)
MI®¥ g b’ a
Therefore from (C.34)-(C.39), we can obtain
lim E(I o (B) 1o (1 max(B))):o. (C.40)
From (C.:31), (C:32), (C.:33) and (C.40), we.can get lim E(I , (B)1 ) (1 mac (B))) 0.
Thus
(C.41)

klnlggéE?é\? ?ée; HHH;; (1+r)".

2 ?éeiHH”OO (1+r)",

In asimilar fashion discussed above, we can show I|m E(aé?
20

therefore
Ly 9°_o (ca)

lims2%F @00 &P 2l o0 o
> &M gy Mevg & " &M gy & 8'\/' 200

M® ¥ 8
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