
ABSTRACT 

ZHOU, QUAN. Wireless Communications with MIMO Systems: Analysis and Practice. 

(Under the direction of Dr. Huaiyu Dai).  

Multiple input multiple output (MIMO) systems using multiple transmit and receive 

antennas are widely considered as the vital breakthrough that will allow future wireless 

systems to achieve higher date rates and link reliability with limited bandwidth and power 

resources. In this dissertation, we address four interesting topics in the wireless MIMO 

systems, in both point-to-point and multiuser environments. First, in a point-to-point MIMO 

spatial diversity system, usually the probability distribution function (PDF) of the received 

SNR is rather involved, which leads to the difficulty in analyzing the average symbol error 

rate (SER). We provide a succinct result at the high SNR region. Second, in point-to-point 

wireless MIMO communications, in order to protect the transmitted data against random 

channel impairment, we consider the problem of link adaptation, including rate adaptation 

and power control to improve the system performance and guarantee certain quality of 

service. Third, in a multiuser MIMO wireless network, there is another form of diversity 

called multiuser diversity which can be exploited to increase the system throughput. By 

analyzing the scheduling gain (defined as the rate difference between the opportunistic 

scheduling and round-robin scheduling scheme), we provide a complete analysis on the 

interaction between the spatial diversity and multiuser diversity. Fourth, in a multiuser 

MIMO wireless network, we propose a crosslayer-based scheduling scheme that exploits 

Tomlinson-Harashima Precoding (THP) at the physical (PHY) layer to reduce the multiuser 

scheduling burden at the medium access control (MAC) layer. Compared with some existing 



   

scheduling schemes, the proposed scheme greatly reduces the scheduling complexity while 

simultaneously improves overall system performance.   
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Chapter 1 

 INTRODUCTION 

1.1 Overview of wireless MIMO communications 

The use of multiple antennas at both the transmitter and receiver side, so as to form a 

multiple-input multiple-output (MIMO) antenna system, is an emerging technology that 

makes building both reliable and high data rate wireless networks a reality  [17][56]. 

Compared with the conventional single-input single-output (SISO) system, MIMO system 

creates multiple spatial dimensions that can be exploited to improve the performance1 of the 

wireless link. More specifically, such performance improvement comes from the array gain, 

diversity gain, multiplexing gain and interference cancellation introduced by MIMO systems, 

which are illustrated below.    

Array gain is achieved by using multiple antennas at the transmitter and receiver so 

that the received signals can add coherently. To exploit the transmit/receive array gain, 

transmitter/receiver needs to have the channel state information (CSI). The transmit/receive 

array gain is proportional to the number of transmit/receive antennas.     

Diversity can improve the reliability of the received signal strength and is achieved 

by transmitting the signal over multiple independent fading subchannels. Before the 

introduction of MIMO techniques, multiple subchannels are usually created by time division 

and frequency division (correspondingly such diversities are usually called time diversity and 

frequency diversity). MIMO systems provide a new form of diversity without additional cost 

in time or frequency, i.e., spatial diversity by means of transmitting the signal over multiple 

                                                
1 The performance is often measured as the average bit rate or average bit error rate of the wireless link. 
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independently fading paths created by multiple antennas. A well-known example to exploit 

the spatial diversity gain without CSI at the transmitter side is space-time coding, like the 

Alamouti code for two transmit antennas [2]. For a MIMO system with M transmit antennas 

and N  receive antennas, a maximum spatial diversity order of M N×  can be achieved.                

In a rich scattering environment, MIMO channels can offer a linear ( ( )min ,M N ) 

increase in capacity with the number of antennas without increasing the transmission power 

or bandwidth. The spatial multiplexing gain can be realized by transmitting and receiving 

parallel independent streams across the multiple antennas at both ends;  a famous example is 

the pioneer Bell Labs Layered Space-Time (BLAST) architecture proposed by Foschini in 

[18].. An interesting tradeoff between the spatial diversity gain and multiplexing gain is 

revealed in [74].   

In cellular communications, cochannel interference arises due to frequency reuse. 

Multiple antennas can be used in cellular communications to mitigate the cochannel 

interference thus increasing the reuse factor and improving the system capacity. The basic 

idea is to make use of the spatial channel response (usually a vector) between the desired user 

and interference users, and design the receive weighting vector to maximize the signal power 

to interference power ratio.       

Due to the promising advantages brought by MIMO system, MIMO technology is 

being adopted by international standards organizations, such as high-speed packet data mode 

of third-generation cellular systems, high-speed wireless local area networks (WLAN, IEEE 

802.11n) and high-speed wireless  metropolitan area network (WMAN, IEEE802.16).  
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1.2 Outline of the Thesis 

Our thesis focuses on the four interesting topics on MIMO systems, which is 

organized as follows.  

In chapter 2, through the analysis of the probability distribution function (PDF) of the 

received signal to noise ratio (SNR), we study the asymptotic symbol error rate of point-to-

point MIMO spatial diversity system. The results reveal a simple connection with system 

parameters, providing good insights for the design of MIMO diversity systems.  

In chapter 3, in order to protect the transmitted data against random channel 

impairment in wireless MIMO communications, we consider link adaptation, such as rate 

adaptation and power control to improve the system performance and guarantee certain 

quality of service. We propose a joint antenna subset selection and link adaptation study for 

MIMO systems, including both uncorrelated and correlated MIMO channels. Specifically, 

we propose one simplified antenna selection and link adaptation rule based on the expected 

optimal number of active antennas for uncorrelated MIMO with Rayleigh fading, and one for 

correlated MIMO channels only based on the slowly varying channel correlation information. 

Our proposed algorithms demonstrate significant gains over traditional MIMO signaling 

while feasible for practical implementation through numerical results.   

In chapter 4, through asymptotic analysis of the average system capacity and 

scheduling gain, we investigate the cross-layer interaction between the spatial diversity and 

multiuser diversity in wireless networks. Rigorous proofs and necessarily stronger results in 

terms of convergence are provided for some intuitions in this area. Equally important, 

explicit expressions of scheduling gain and average system capacity in various circumstances 
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that reveal inter-connections and fundamental tradeoffs among key system parameters are 

given, which afford us some insights in real system design. 

In chapter 5, we propose a crosslayer approach that explores Tomlinson-Harashima 

Precoding (THP) at the physical layer to reduce the multiuser scheduling burden at the MAC 

layer, and improves the sum rate of the downlink multiuser MIMO systems. Our proposed 

scheme is further evaluated with imperfect feedback, obtained by the long range prediction 

(LRP) technique. Compared to some existing scheduling schemes, the proposed scheme 

approaches the performance upper bound in certain scenarios, while incurring much less 

computation complexity. Significant gains are still maintained with imperfect channel state 

information (CSI), fed back at a rate much lower than the data rate.  

Finally, in chapter 6, we propose some open problems and future work of our thesis.   

1.3 List of author’s publication  

Below are the publications during the author’s Ph.D. research: 

Journal publications:  

[J1] Q. Zhou and H. Dai, “Joint Antenna Selection and Link Adaptation for MIMO 
Systems,” IEEE Transactions on Vehicular Technology, vol. 55, no. 1, pp.243-255, Jan. 
2006. 

[J2] Q. Zhou and H. Dai, “Asymptotic Analysis on the Interaction between Spatial Diversity 
and Multiuser Diversity in Wireless Network,” submitted to IEEE Transactions on Signal 
Processing, Dec. 2005 (under second review).   

[J3]  Q. Zhou and H. Dai, “Asymptotic Analysis in MIMO MRT/MRC systems,” submitted 
to EURASIP Journal on Wireless Communications and Networking, Jan. 2006. 

 
Conference publications: 
 
[C1] H .Dai and Q. Zhou, “Scheduling gain in spatial diversity systems: Asymptotic 

analysis,” 2006 IEEE International Symposium on Information Theory (ISIT), Seattle, 
WA, July 2006. 
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[C2] Q. Zhou and H. Dai, “Asymptotic Analysis on Spatial Diversity versus Multiuser 
Diversity in Wireless Networks,” Proc. IEEE International Conference on 
Communications (ICC), Istanbul, Turkey, June 2006. 

[C3] Q. Zhou, H. Dai and H. Zhang, “Joint Tomlinson-Harashina Precoding and Scheduling 
for Multiuser MIMO Downlink with Imperfect Feedback,” Proc. IEEE Wireless 
Communications and Networking Conference (WCNC), Las Vegas, NE, Apr. 2006. 

[C4] H. Dai, and Q. Zhou, “Asymptotic Analysis in MIMO Diversity Systems,” Proc. 
International Symposium on Intelligent Signal Processing and Communication Systems 
(ISPACS), HK, CHINA, Dec. 2005. 

[C5] Q. Zhou and H. Dai, “Joint Antenna Selection and Link Adaptation for MIMO 
Systems,” Proc. 2004 Fall IEEE Conference on Vehicular Technology (VTC), Los 
Angels, CA, Sept. 2004. 

[C6] Q. Zhou and H. Dai, “Adaptive Spatial Multiplexing Techniques for Distributed MIMO 
Systems,” Proc. 2004 Conference on Information Sciences and Systems(CISS), Princeton 
University, NJ, March 2004. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 6 

Chapter 2 

Asymptotic Symbol Error Rate of MIMO Spatial Diversity System 

2.1 Background 

Multi-input multi-output (MIMO) systems can be exploited for spatial multiplexing 

or diversity gains. For diversity usage, joint maximum ratio transmission (MRT) and 

maximum ratio combining (MRC) provides the optimal performance reference [42]-[55]. 

With the assumption of identical transmit and receive beamforming vectors, the average 

output signal-to-noise ratio (SNR) of a MRT/MRC system is upper and lower bounded in 

[42], based on which the average symbol error rate (SER) and diversity order for a BPSK 

system are approximately derived. With the restraining assumptions in [42] removed, it is 

well known that (for white Gaussian noise) the optimal transmit and receive beamformer are 

given by the principal right and left singular vector of the channel matrix H , respectively; 

and the MIMO channel is transformed into a single-input single-output link with equivalent 

channel gain maxσ , the largest singular value of H . For Rayleigh fading channels, the 

distribution of 2
maxσ , already derived in [37], is revisited in [13] and expressed in an 

alternative form – a linear combination of Gamma functions.  Based on this expression, the 

exact system SER is derived for general modulation schemes in [13], which nonetheless still 

involves complex numerical calculations. The distribution of 2
maxσ  for Ricean fading is 

obtained in [36]. Unfortunately, results in [13] and [36] don’t easily lead one to an insightful 

understanding of the impact of the system parameters, including the number of transmit and 

receive antennas M and N , on performance. For example, in [13], the authors make two 

observations on MIMO MRT/MRC systems through simulations: one is that when M N+  
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keeps fixed, the antennas distribution with M N−  minimized will provide the lowest SER, 

while the other is that when M N×  is fixed, a distribution with maximum M N+  gives the 

best performance. But the authors do not provide a rigorous justification for both 

observations. Some similar observations are also made in [36]. 

This chapter is organized as follows. In Section 2.2, we will give our model for 

MIMO MRT/MRC systems. Then we provide our asymptotic analysis for the average SER in 

Section 2.3 and Section 2.4 respectively, together with some numerical results for illustration 

purpose. Final conclusion is made in Section 2.5. 

2.2 System Model 

We assume a narrowband MIMO diversity system with M  transmit antennas and N  

receive antennas, modeled as:                             

 ,tu= + = +y Hx n Hw n   (2.1) 
                                                

where 1M
t

×∈w £  is the unit-norm transmit weight vector and u  is the transmitted symbol 

with power TP ,  1N ×∈y £  is the received vector, N M×∈H £  is the channel matrix, and 1N ×∈n £  

is a zero-mean circularly symmetric complex Gaussian noise vector with variance 2 / 2nσ  per 

real dimension. We define 2/t T nPγ σ=  the average transmit SNR. For illustration purpose, 

independent and identically distributed Rayleigh fading is considered for H , but our analysis 

can be readily extended to other fading scenarios when appropriate distributions are available. 

When multiple MIMO users are involved, their channels are assumed independent. 

At the receiver side a weight vector 1N
r

×∈w £  is applied on y  to obtain a decision 

statistic for u . For a MIMO MRT/MRC system, tw  and rw  are chosen to be the principal 
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right and left singular vector corresponding to the largest singular value maxσ  of H  to 

maximize the output SNR.  

The cumulative distribution function (CDF) of 2
maxx σ=  is given by [37] 

 /

1

( )
( ) , (0, ),

( 1) ( 1)
MRT MRC c

s
k

x
F x x

t k s kγ
=

= ∈ +∞
Π Γ − + Γ − +

Ψ
 (2.2) 

 
where min( , )s M N= , max( , )t M N= , and ( )c xΨ  is an s s×  Hankel matrix function with the 

( , )thi j entry given by  ,{ ( )} ( 1, )c i jx t s i j xγ= − + + −Ψ , for , 1,2,...,i j s= . Here ( , )aγ β is the 

incomplete Gamma function defined as 1

0
( , ) t aa e t dt

β
γ β − −= ∫ , and ( )aΓ  is the Gamma 

function defined as ( ) ( , )a aγΓ = +∞ . The probability distribution function (PDF) of x  can be 

derived as           

 / 1( ) ( ) ( ( ) ( )), (0, ),MRT MRC
c cf x F x tr x x xγ
−= ∈ +∞Ψ Φ  (2.3) 

 
 where ( )c xΦ  is an s s×  matrix whose ( , )thi j entry is given by { } 2

,
( ) t s i j x

c i j
x x e− + + − −=Φ .  

It is seen that the distribution functions for MIMO MRT/MRC systems are quite 

involved, which makes relevant math expressions (such as SER) quite complex. In what 

follows, we will turn to asymptotic analysis to obtain some succinct and insightful results. At 

the same time, we will compare the MIMO MRT/MRC system with two other popular 

MIMO diversity schemes. One such scheme is employing space-time block coding at the 

transmitter and MRC at the receiver (STBC/MRC). In this case, the transmitter doesn’t need 

channel state information (CSI) and the transmit power is equally allocated among the 

transmit antennas. Another interesting case is to conduct selection combing at both the 

transmitter and receiver (SC/SC), i.e., one transmit antenna and one receive antenna are 
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selected so that the resultant channel gain is maximized. This scheme requires less feedback 

than the MIMO MRT/MRC. 

In the remainder part of this chapter, we write ( ) ~ ( )g x f x  if 
 0

( )lim 1
( )x

or x

g x
f x→∞

→

= .  

2.3 Asymptotic Average Symbol Error Rate  

In this section, we will derive a succinct expression for average SER at high SNR. 

The conditional SER for lattice-based modulations can be represented by the Gaussian tail Q-

function as ( ) ( )s n tP M Q xκγ=H , where nM  is the number of the nearest neighboring 

constellation points, and κ  is a positive fixed constant determined by the modulation and 

coding schemes [55]. At high transmit SNR tγ , the system performance will be dominated 

by the low-probability event that x  becomes small [63]. Therefore, only the behavior of 

/ ( )MRT MRCf xγ  at 0x +→  determines high transmit SNR performance. To find the asymptotic 

expression for { ( )}s sP E P= H  at high tγ , we need the following result for the behavior of 

/ ( )MRT MRCf xγ  at the origin. 

Lemma 1: 
1

/ 10
1

0

!
( ) ~ ,  as 0

( )!

s

MRT MRC MNk
s

k

MN k
f x x x

t kγ

−

− +=
−

=

→
+

∏
∏

. 

Proof: See Appendix A. 
 

With Lemma 1, we establish the following result for the asymptotic average SER for 

MIMO MRT/MRC systems following Proposition I in [63]. 

Proposition 1: For MIMO MRT/MRC systems, the asymptotic average SER is given by                 
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( / ) ( / )

( / ) ( / )

( 1) ( 1)
( / )

32 ( )
2 ( ) ( ).

( 1)
MRT MRC MRT MRC

q MRT MRC MRT MRC
n

q q
s t tMRT MRC

M q
P o

q

α
κγ γ

π
− + − +

Γ +
= × +

+
 (2.4) 

 
where                                                                   

 
1

( / ) ( / )0
1

0

!
, 1.

( )!

s

MRT MRC MRT MRCk
s

k

MN k
q MN

t k
α

−

=
−

=

= = −
+

∏
∏

 (2.5) 

  
The validity of (2.4) is demonstrated in Figure 2.1 for uncoded BPSK systems. Based on 

(2.4), one readily concludes that the optimal diversity order for MIMO diversity systems is 

M N× . Therefore, if we keep M N+  fixed (a measure of system cost), even distribution of  

 
Figure 2.1 Comparision between asymptotic and simulated results for BPSK under 

different antenna configurations 
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Figure 2.2 The value of α  varies with number of transmit antennas under the same 

M N×  
 

 

          Figure 2.3 Symbol error rate of the three spatial diversity schemes under BPSK 
 



 12 

the number of transmit and receive antennas (more precisely a smallest M N− ) maximizes 

M N× , thus minimizing the system SER at high SNR. On the other hand, when comparing 

two MIMO MRT/MRC systems with the same diversity order M N× , the one with smaller 

( / )MRT MRCα  yields larger coding gain and thus smaller SER (in this case, ( / )MRT MRCq  is a 

constant). We can conclude that in this scenario, the sum of transmit and receive antennas 

should be made as large as possible, with the optimum achieved at 1s =  and t M N= × . This 

conclusion is based on the following result regarding ( / )MRT MRCα  as a function of M  and N  

(or equivalently of s  and t ).  

Lemma 2:  Given four positive integers 1s , 1t , 2s , 2t , assume 1 1 2 2s t s t× = × , 1 1s t<  , 2 2s t< , 

and 1 1 2 2s t s t+ > + , then ( / ) ( / )
1 1 2 2( , ) ( , )MRT MRC MRT MRCs t s tα α< .                   

Proof:  see Appendix A.  
 

From the asymptotic SER expression in (2.4), we have verified the two observations 

made in [13] rigorously at high SNR.  In what follows, we will compute the corresponding 

parameters for the coding gain and diversity order for MIMO STBC/MRC and SC/SC 

systems (whose asymptotic average SERs assume the same forms as (2.4)). 

STBC/MRC 
 

Without loss of generality, we assume that the adopted space-time block coding 

scheme achieves the full rate and the transmit power is equally allocated among the transmit 

antennas.  In this case, the normalized effective link SNR for a generic user is given by 

2

,
1 1

1 N M

i j
i j

h
M

γ
= =

= ∑∑ , whose PDF admits:                           
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 / 1( ) , 0.
( 1)!

MN
STBC MRC MN MxMf x x e x

MNγ
− −= ≥

−
  (2.6) 

  
Therefore the corresponding parameters for the coding gain and diversity order for MIMO 

STBC/MRC systems can be obtained following a similar approach as above as              

  

 ( / ) ( / ), 1.
( 1)!

MN
STBC MRC STBC MRCM q MN

MN
α = = −

−
 (2.7) 

    
SC/SC 

In this spatial diversity scheme, both the user and the base station choose one optimal 

antenna such that the resultant channel gain is maximized. Thus the normalized effective link 

SNR at the receiver is ( )2

,1 ,1
max i ji N j M

hγ
≤ ≤ ≤ ≤

= , whose PDF can be easily obtained as  

  
 / 1( ) (1 ) , 0.SC SC x x MNf x MNe e xγ

− − −= − ≥  (2.8) 
 
We can obtain the corresponding parameters for the coding gain and diversity order for 

MIMO SC/SC systems as  

  

 ( / ) ( / ), 1.SC SC SC SCMN q MNα = = −  (2.9) 
 

Comparing (2.5), (2.7) and (2.9) we can see that all these MIMO diversity schemes 

achieve the same diversity order. Nonetheless, their error performances could still be 

dramatically different owing to different coding gains, as exhibited in Figure 2.2. For 

example, when 6M =  and 1N = , our formulas predict a SNR gap of 4.7 dB between 

MRT/MRC ( ( / ) 1/120MRT MRCα = ) and SC/SC ( ( / ) 6SC SCα = ), and 7.8 dB between MRT/MRC 

and STBC/MRC ( ( / ) 388.8STBC MRCα = ) for uncoded BPSK systems at high SNR, which agree 
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well with simulation results (see Figure 2.3 at SER 510− ). It is also observed that for the same 

diversity order, the performance of STBC worsens with the increase of transmit antennas.    

2.4 Summary  

In this chapter, through the analysis of the distribution of the squared largest singular 

value of a complex Gaussian matrix at the origin, we obtain the asymptotic error 

performance in the single-user scenario at high transmit SNR. Our results are rigorous and 

succinct, which provide a performance reference for MIMO diversity systems and facilitate 

various tradeoff studies in terms of system parameters and designs.   
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Chapter 3 

Joint Antenna Selection and Link Adaptation for MIMO Systems 

3.1 Background 

The use of multiple antennas at both the transmitter and receiver side, so as to form a 

multiple-input multiple-output (MIMO) antenna system, is an emerging technology that 

makes building high data rate wireless networks a reality [19][58]. Transmitting independent 

data streams simultaneously from different antennas through spatial multiplexing (see, e.g., 

[1]) effectively realizes the high spectral efficiency promised by MIMO systems, but leaves 

the transmitted data unprotected from random channel impairment. Therefore, it is often 

desirable to consider link adaptation, such as rate adaptation and power control to improve 

the system performance and guarantee certain quality of service [8][76][14][49].  

One of the drawbacks with an MIMO system is the increased complexity and 

hardware cost due to the expensive RF chains required by each active antenna. It is of 

increasing research interest recently to find a good antenna selection scheme that can 

significantly reduce such cost while incurring little performance loss. Generally, there are 

two goals for antenna subset selection in MIMO systems: one aims to maximize the channel 

capacity [26][46], the other aims to minimize the bit error rate for spatial multiplexing 

systems when some practical signaling schemes are used [24][25][32][47].   

It is interesting to notice that link adaptation and antenna selection problems are 

actually coupled for MIMO systems, when practical signal processing techniques such as 

zero-forcing successive interference cancellation (ZF-SIC)  (as used in V-BLAST) are 

employed at the receiver for data decoupling and detection. This is because the decoupled 
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subchannel gains (post-detection signal-to-noise ratio (SNR)) are determined by the active 

antenna subset, while some weak subchannels are naturally dropped during link adaptation 

process. Motivated by this fact, we propose a joint antenna subset selection and link 

adaptation study for MIMO systems.   

In a real propagation environment, the capacity of a MIMO system may be lower than 

what is predicted with rich scattering assumption due to fading correlation [51][10]. 

Meanwhile, link adaptation and antenna selection are expected to achieve more gains in 

correlated MIMO channels due to more prominent subchannel discrepancies. Furthermore, 

fading correlation information varies much more slowly, hence it is feasible and 

advantageous to implement antenna selection and link adaptation only based on the 

correlation information rather than on the instantaneous channel information. The author in 

[48] also proposed some simplified rules for joint antenna selection and link adaptation based 

on the channel correlation information, aiming to maximize some lower bounds of the 

minimum post SNR. Therefore the performance of these rules depends on how tight the 

lower bounds would be. Furthermore, the exhaustive search entailed there might make these 

rules still complex in implementation. 

In this chapter, we consider the problem of joint antenna selection and link adaptation 

for an uncoded spatial multiplexing system with a ZF-SIC receiver, for both uncorrelated and 

correlated MIMO channels. Our goal is to minimize the bit error rate given a throughput and 

power constraint. We allow all the available resources, including the number of active 

transmit antennas, symbol constellation size and transmit power dynamically adapted to the 

channel conditions.  
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This chapter is organized as follows. In Section 3.2, we introduce the MIMO system 

model with transmit antenna selection, and formulate the problem of joint antenna subset 

selection and link adaptation. In Section 3.3, we develop incremental and decremental 

antenna selection rules with link adaptation for uncorrelated MIMO channels. We also 

propose a simplified rule based on the expected optimal number of active antennas to further 

reduce complexity. In Section 3.4, we develop an antenna selection rule with link adaptation 

for correlated MIMO channels only based on the slowly varying channel correlation 

information. Simulation results are given and analyzed in Section 3.5. Finally, in Section 3.6, 

we make conclusions and propose some future work. 

3.2 Problem Formulation 

3.2.1 MIMO Systems with Transmit Antenna Selection 

Without loss of generality, we assume a narrowband MIMO system with total tK  

transmit and rN  receive antennas, with the channel between tK  transmit and rN  receive 

antennas denoted by H . In our study, the antenna selection is only carried out at the 

transmitter side, and it is easily shown that the best performance is achieved when all receive 

antennas are active [50]. With tN  out of tK  transmit antennas to be chosen, we denote the 

selected subset of transmit antennas by p  and the channel matrix between the selected tN  

transmit antennas and rN  receive antennas by )( pH , whose columns correspond to the 

selected antennas. The received signals are then given by 

 ( ) ,p= +y H x n  (3.1) 
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where 1 2( , ,..., )
t

T
Nx x x=x is the transmitted signal vector, 1 2( , ,..., )

r

T
Ny y y=y is the received 

signal vector, and 1 2( , ,..., )
t

T
Nn n n=n is assumed to be i.i.d Gaussian with zero mean and 

variance of 2
nσ . For ease of description, we will drop the index p in (3.1) in the following 

discussion when no ambiguity incurs. All through this paper we assume r tN N≥ . 

3.2.2 ZF-SIC with QR Decomposition Interpretation 

The zero-forcing successive interference cancellation, widely used in MIMO 

detection, can be simply interpreted by matrix QR decomposition. With =H QR , where Q  

is a unitary matrix and R is an upper triangular matrix, we can apply HQ  to the received 

vector to obtain H= = +y Q y Rx n%% , detailed as                                  

 

1,1 1,2 1,1 1 1

2 2,2 2, 2 2

,

...

0 ...
,

: : :: : : :
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t

t

t t tt t

N

N

N N NN N

r r ry x n
y r r x n

y x nr
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      
      = +      
                  

% %
% %

% %

 (3.2) 

 
from which the transmitted symbols 1 1, ,...,

t tN Nx x x−  can be detected successively. Assume no 

error propagation during interference cancellation process2, it is clear that QR decomposition 

decomposes an r tN N×  MIMO channel matrix H  into tN  subchannels with ,i ir  being the 

gain for the ith  subchannel. 

3.2.3 Joint Antenna Selection and Link Adaptation 

As mentioned in the introduction, the link adaptation problem and the antenna 

selection problem are often coupled for a MIMO system. Furthermore, it is often beneficial 

                                                
2 This assumption is reasonable at sufficiently high SNR regimes and commonly adopted in relevant study to 
simplify analysis. Our simulation results validate its effectiveness. 
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to use only a good subset of antennas in MIMO communications to reduce hardware 

complexity and energy consumption. The induced performance loss is often negligible when 

judicious antenna selection is made and link adaptation is employed. To this end, we propose 

to jointly consider the antenna selection and link adaptation for wireless MIMO 

communications. Antenna selection and link adaptation can be realized either at the 

transmitter or at the receiver, depending on the availability of channel state information. In 

the latter case, the receiver will only feed back the selected active antenna subset and 

corresponding communication modes to the transmitter. 

In this chapter we assume QAM modulation for illustration purpose. For square M-

ary QAM with average power γ , the minimum Euclidean distance d  is                             

 
6 ,

1
d

M
γ

=
−

 (3.3) 

 
which is also a good approximation for energy efficient “non-square” QAM in a large range 

of interest [1].  

Assume there are tN  active antennas in use. For the ith subchannel with gain iir , , the 

square of the minimum Euclidean distance of the output constellation is given as                                     

 
2

,2
,

6
, 1,2,..., ,

1
i i i

i out i
i

r
d i N

M
γ

= =
−

 (3.4) 

 
where iγ  and iM  are the power and constellation size allocated to the ith substream. As with 

many other multi-channel communications, the performance of a spatial multiplexing system 

is usually limited by the weakest link. Thus the optimization problem can be sensibly 

formulated as:  
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 { }
1

1

2
,{1,... }

( , , , ): ,

max min ,
NtN tt

t i i i T i Ti
i

i outi N
N p b b b

d
γ γ γ

=
=

∈
= =∑ ∑

 (3.5) 

 
where 2logi ib M=  is the number of bits allocated to the i th−  subchannel, Tb  and Tγ  are 

the total throughput and power constraints imposed on the system.  

In (3.5) we want to find an optimal antenna subset together with its optimal bit and 

power allocation, subject to the total throughput and power constraints. The number of active 

antennas tN  can also be an optimization parameter, thus further complicating the problem. 

To our best knowledge, the global optimal solution is open and often a thorough search has 

to be resorted to, which is typically infeasible for practical implementations. Therefore we 

take some effective steps to decouple the original problem into some suboptimal ones, which 

will be shown to yield excellent performance nonetheless.  

First, assuming the set of active antennas and associated bit allocation are given, as 

the system performance is limited by the worst subchannel, to maximize the aggregate 

performance we would like to allocate power so as to achieve the same output minimum 

Euclidean distances for all subchannels, i.e., 2 2 2
1, , ( )...

tout N out ed d d= = = , given as                

 2
( )

2 21
, ,

1 1

6 .
6( ) ( 1)

1

t t

T T
e N N

j j j j j
j jj

d
r r M

M

γ γ
−−

= =

= =
× × −

−∑ ∑
 (3.6) 

 
Thus our optimization goal is simplified as   

 
2

,
1

min ( 1) min ( ), ( ) ,1 ,
tN

j j j t t t t
j

r M N N N K
−

=

× − = ≤ ≤∑ g m  (3.7) 

 
                                 subject to 2 1 2 2 2log ( ) log ( ) ... log ( )

tT Nb M M M= + + + , 
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where 
22 2

1,1 2,2 ,( ) ( , ,....., )
t t

T
t N NN r r r

−− −
=g is named the antenna gain vector, while  

1 2( ) ( 1, 1,..., 1)
t

T
t NN M M M= − − −m  is named the bit allocation vector, and g  denotes the 

inner product between them. Our target is to find an optimal pair of ( )( ), ( )t tN Ng m  for a 

given tN , and further choose the best pair among 1 t tN K≤ ≤ , when the number of active 

antennas is not given beforehand. 

Given tN , the optimal pair of ( )( ), ( )t tN Ng m  can be found through a thorough 

search in principle, which is still not an easy task when tN  and tK  are large. We further 

decouple the antenna selection and bit allocation problems by exploiting the discrete and 

finite-alphabet nature of the bit allocation vector ( )tNm .When the total throughput and the 

modulation set are given, the possible choices of the bit allocation vector can be determined 

in advance by a lookup table. Furthermore, by Lemma 3 given in the appendix B, in order to 

minimize (3.7), only one permutation (decreasing order) of the elements in the bit allocation 

vector needs to be considered for each possible combination. With this decoupling, the 

optimization problem is finally approximated as an antenna selection problem to find a 

suitable ( )tNg  followed by table lookup to find a matching ( )tNm . Some simple recursive 

algorithms are proposed in the next section to avoid exhaustive search while incurring little 

performance degradation. 

Finally, note that our proposed algorithms can be readily extended to other 

modulation schemes. For example, when PSK is employed, the minimum Euclidean distance 
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of M-ary PSK with powerγ is given by 22sin ( )d
M
π

γ= . Correspondingly, (3.7) becomes 

2 2
,

1

min csc ( )
tN

j j
j j

r
M
π−

=

×∑  subject to the same constraint. 

3.3 Joint Antenna Selection and Link Adaptation for uncorrelated MIMO Channels 

We first consider the uncorrelated MIMO channels where the channel matrix H can 

be modeled with i.i.d. complex Gaussian entries. Two basic recursive algorithms are 

proposed to choose the desired antenna gain vector ( )tNg : incremental selection means the 

“desired” antennas are recursively added to an initially empty active antenna set while 

decremental selection means “undesired” antennas are recursively removed from an initially 

full antenna set3. When t tN K<< , we can use the incremental selection rule described in 

Section 3.3.1, while we can use the decremental rule in Section 3.3.2, when tN  is close to 

tK . In a general link adaptation problem where tN  is unknown in advance, we can search 

over all possible 1 t tN K≤ ≤  to find the optimal one. To reduce complexity, we propose an 

adaptive selection rule based on estimation of tN  in Section 3.3.3.  

3.3.1 Incremental Selection Rule with Link Adaptation 

Intuitively, we want 1,1r , 2,2r , …, ,t tN Nr  as large as possible. Our incremental 

recursive rule works as follows: starting from a column of H ( r tN K× ) which results in 

maximum 1,1r  (corresponding to the largest vector norm), we successively choose from the 

remaining columns of H  such that the next subchannel gain is maximized. The subchannel 

                                                
3 Same notations are used in [26] and other literature with different problem settings. 
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gain of the newly added antenna can be obtained in a closed-form solution, which is 

described by the following lemma. 

Lemma4.a Assume the QR decomposition of a matrix ( )kH  with k independent columns is 

( ) ( ) ( )k k k=H Q R . Then for the enhanced matrix ( 1) ( )k k+  =  H H h  with QR decomposition 

( 1) ( 1) ( 1)k k k+ = + +H Q R , the first k diagonal elements of )1( +kR  keep the same with those 

of ( )kR , while the ( 1)k th+  one is given by ( ) ( )H H Hk k−h h h Q Q h ; similarly, the first k 

column vectors of ( 1)k +Q  keep the same with those of ( )kQ , while the ( 1)k th+  one is 

given by 
1

(:, 1) (:, ) (:, )
k

H

l
k l l

=

+ = − ∑Q h Q hQ . 

Proof: see the appendix B. 

Based on Lemma 4.a, assume in the kth  step, ( )kH  stores the k selected columns of 

H  and the QR decomposition of ( )kH  is )()( kk RQ , then in the ( 1)k th+  step, we choose the 

column vector h  from ( )\ kH H (which represents the remaining columns of H ) in such a way 

that hQQhhh )()(1,1 kkr HHH
kk −=++  is maximized. Furthermore, it can also be shown as 

follows that the successively generated antenna gains are already ordered.  

Lemma4.b In the above incremental selection rule for uncorrelated MIMO, 

1,1 2,2 , ,| | .. ...
t tk k N Nr r r r≥ ≥ ≥ ≥ ≥ . 

Proof: see the appendix B. 

Lemma 4.b shows that the elements in the selected antenna gain vector 

22 2
1,1 2,2 ,( ) ( , ,....., )

t t

T
t N NN r r r

−− −
=g  are already in an increasing order. Thus we only need to 
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arrange the elements of candidate bit allocation vectors ( )tNm  in a deceasing order in the 

lookup table according to Lemma 1, which saves storage space and increases the matching 

speed for (3.7). We further assume )(ˆ tNm  is the optimal bit allocation vector that minimizes 

( ), ( )t tN Ng m  for a given )( tNg . 

The incremental selection rule with link adaptation for uncorrelated MIMO is 

summarized in the following table.  

Table 3.1 Incremental antenna selection rule with link adaptation for uncorrelated 
MIMO  
 

Set   },..,3,2,1{ tK=I  and Φ=p (empty set), Φ=g (empty set), Φ=Q (empty set) 
 for 1 ti to K=  

   2(:, )i iα = H ; 
end 
  

1
(1) arg max

t
ii K

α
≤ ≤

=p , 2
1,1 1

max
t

ii K
r α

≤ ≤
= , 2

1,1/1)1( r=g ,  ;)1((:,/))1((:,)1(:, pHpHQ =  

   \ (1)=I I p ; 
   2 tfor k to N=   

          update 
2

(:, ) (:, 1)H
i i i kα α= − −H Q , for all i ∈ I ; 

( ) arg max ii
k α

∈
=

I
p ; 

2
, maxk k ii

r α
∈

=
I

; 
2
,/1)( kkrk =g ; 

1

1

(:, ) (:, ( )) (:, ) (:, ( ) (:, )
k

H

l
k k l k l

−

=

= − ∑Q H p Q H p Q ; 

;)(:,/)(:,)(:, kkk QQQ =  
)(kpII −= ; 

end 
 assume 

( )
ˆ ( ) arg min ( ), ( )

t
t t tN

N N N=
m

m g m ; 

(1: )treturn Np  and ˆ ( )tNm ; 
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Two points are noteworthy for the above algorithm. First, due to Lemma 4.a and 4.b, 

the antenna selection and link adaptation process is significantly expedited. Secondly, due to 

the recursive nature of the algorithm, searching an optimal tN  for a general link adaptation 

problem does not mean tK  times of effort (as calculation for 1tN +  is just one step further 

based on calculation for tN ), but rather the worst-case effort where all tK  transmit antennas 

must be deployed. Nonetheless, in case nearly all the tK  transmit antennas would be 

deployed, we provide a decremental selection rule for link adaptation, which is described in 

the following subsection.  

3.3.2 Decremental Selection Rule with Link Adaptation 

 
  Set HH =)( tK ; 

Using [30] to find square root of ( ) 1( ) ( )( )t tK KH −
H H , assume ( ) 1/ 2( ) ( ) ( )( )t t tK K KH −

=P H H ; 

Assume ( )( )

1
ˆ arg min ,:t

t

K

l K
l l

≤ ≤
= P ( ( ),:lP  means the length of the lth  row), discard the l̂th  

column of )( tKH , assume the deflated matrix to be ( 1)tK −H ;  
for  1 ( 1)t tk to K N= − +  

        Using [30] to find square root of ( ) ( ) 1( )
H

t tK k K k− − −H H , based on ( 1)tK k− +P ; 
        assume ( ) ( ) ( ) 1/ 2( )

H
t t tK k K k K k− − − −=P H H   ; 

      Discard the l̂th  column of ( )tK k−H , where ( ):,minargˆ )(

1
ll k

kl
P

≤≤
=  ,  

      assume the  deflated matrix to be ( 1)tK k− −H ; 
end 

Compute the sorted antenna gain vector ( )tNg  for ( )tNH ; 
assume 

( )
ˆ ( ) arg min ( ), ( )

t
t t tN

N N N=
m

m g m ; 
( )tNreturn H  and ˆ ( )tNm ; 

 
 

Table 3.2 Decremental antenna selection rule with link adaptation for 
uncorrelated MIMO 
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The decremental selection rule with link adaptation for uncorrelated MIMO is 

summarized in Table 3.2. Our proposed decremental selection rule is related to the V-

BLAST ordering rule first proposed in [61], which successively chooses the antenna (among 

those not already chosen) that maximizes post-detection SNR under the assumption of 

perfect feedback. Accordingly, we can successively discard the antenna (among those not 

already chosen) that minimizes the post-detection SNR under the assumption of perfect 

feedback. Usually repeated matrix inversion will be involved during the process of 

discarding, which may introduce much computation complexity and numerical instability. 

Thanks to the work in [30], we can avoid computing the inversion of the deflated channel 

matrix by means of a recursive square-root algorithm.  

 
3.3.3 Simplified Link Adaptation for Uncorrelated Rayleigh MIMO Channels 

In a general link adaptation problem where tN  is not fixed in advance, we need to 

test all possibilities 1 t tN K≤ ≤  to find the optimal one using either the incremental or 

decremental selection rule. In this subsection, we propose a simplified selection rule based on 

the estimation of the optimal number of active transmit antennas to further reduce the 

complexity. With i.i.d. complex Gaussian channel matrix, 
2

,i ir  in (3.7) is a 2χ distributed 

random variable with 2 ( 1 )rN i× + −  degrees of freedom [8], where the probability density 

function of the 2χ distribution with v  degrees of freedom is given as: 

 
( 2) / 2 / 2

/ 2( | ) ,
2 ( / 2)

v x

v
x ef x v

v

− −

=
Γ

 (3.8) 
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where ( )xΓ is the gamma function defined as 1

0
( ) x tx t e dt

∞ − −Γ = ∫ . 

The expected value of 
2

,/1 iir  can be obtained as                      

 
0

1/( 2) 21 ( | ) .
2

v for v
f x v dx

for vx

+∞ − >
=  +∞ =

∫  (3.9) 

 
Replacing 

2
,/1 iir  in (3.7) with their expected values, we have  

 ( )
1

1min ( ), ( ) min ( 1),1
2( )

tN

t t j t t
j r

E N N M N K
N j=

= × − ≤ ≤
−∑g m  (3.10) 

 
 subject to  

2 1 2 2 2 1 2log ( ) log ( ) ... log ( ) and .
t tT N Nb M M M M M M= + + + ≥ ≥L  (3.11) 

 
Therefore, we can estimate the optimal number of active antennas in a pre-processing 

stage as follows: for all possible bit allocation vectors ( ) 'tN sm that satisfy (3.11), find the 

one that minimizes (3.10), denoted as ˆ ( )tNm ; then find 
1

ˆarg min ( ), ( )
t t

t t t
N K

N E N N
≤ ≤

= g m% , 

which is our estimate of the optimal number of active antennas in i.i.d Rayleigh fading 

MIMO channels. Thus we can decide to use either the incremental or decremental selection 

rule for joint antenna selection and link adaptation for different system settings based on the 

value of tN% . Furthermore, we can restrict ourselves to search optimal tN  only in the range 

around tN%  to further reduce the computational complexity. Simulations results show that 

searching tN  in the range of 1, 1t tN N − + 
% %  and storing only three bit allocation vectors  

ˆ ( 1)tN −m , ˆ ( )tNm  and ˆ ( 1)tN +m  in the bit allocation lookup table incur little performance 

loss (See Section 3.5). 



 28 

3.4 Joint Antenna Selection and Link Adaptation for Correlated MIMO Channels 

3.4.1 Correlated MIMO Channels 

In this section, we extend the study of joint antenna selection and link adaptation to 

correlated MIMO channels. We assume correlation only exists at the transmitter side, as 

described by the “one-ring” model in [51]. This model is feasible, e.g., for the outdoor 

macrocell situation where the transmitter at the base station is elevated high above the local 

scattering environment, while there are sufficient local scatters around the mobile receivers. 

For an tr KN ×  MIMO system, the channel can be modeled as H
TwAHH =  

with T
H
TT RAA =* , where wH  is an tr KN ×  matrix containing i.i.d. complex Gaussian 

random variables and TR  is a tt KK ×  Hermitian semi-positive definite matrix representing 

the covariance matrix for each row of H . 

Again, we assume tN  out of tK  antennas are to be selected. As before, the channel 

matrix between the tN  transmit antennas and rN  receive antennas can be described 

as )()()( ppp H
Tw AHH = , where p  contains the indices of the selected antennas, and 

)()()( ppp T
H
TT RAA =  is the corresponding submatrix of TR .   

We assume uniform linear arrays at both the transmitter and receiver, with antenna 

spacing T∆  (relative to the carrier wavelength). We also assume there are L  clusters of 

scatterers in the environment and the angle of departure for the l th−  path cluster is Gaussian 

distributed as ),(~ 2
lll N σθθ . Then the ( , )i j th− entry of the transmit covariance matrix 

contributed by the l th−  scattering cluster can be shown to be approximated as [48][47]-[4]:                 
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21(2 ( ) sin( ) )2 ( ) cos( ) 2

, ,
.T l l

T l
i jj i j

T l i j
e e

π θ σπ θ − − ∆− − ∆≈  R  (3.12) 

For a narrowband system, the net correlation matrix can be obtained by summing the 

covariance matrices contributed by the L  clusters weighted by the fraction of power in the 

corresponding cluster. As a counterpart to (3.1), the received signal in correlated MIMO can 

be written as:                

 ( ) ( ) .H
w Tp p= +y H A x n  (3.13) 

 
Clearly, joint antenna selection and link adaptation algorithms described in the 

previous section can be readily applied to correlated MIMO channels and are expected to 

achieve more substantial gains. However it is noteworthy that for correlated MIMO, the 

elements of )( pH
TA  vary much more slowly than those of )( pwH , which is mainly 

determined by the local physical parameters, such as antenna spacing and angle spread. Since 

these parameters are relatively static and can be measured more accurately than instantaneous 

channel information, antenna selection and link adaptation based on )( pH
TA  is more 

attractive than that based on )()( pp H
Tw AH .  Targeting on this goal, in the next subsection, 

we will describe a joint antenna selection and link adaptation algorithm for correlated MIMO 

only based on the channel correlation information. 

3.4.2 Antenna Selection and Link Adaptation Only Based on Channel Correlation 

Information 

By applying QR decomposition successively to the correlation matrix 1 1( )H
T p =A Q R  

and 1 2 2( )w p =H Q Q R , (3.13) becomes                          

 2 2 1 .= +y Q R R x n  (3.14) 
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Apply H

2Q  to the received vector, we have 

 2 2 1 .H= = +y Q y R R x n%%  (3.15) 
                                                             

 The optimization goal for correlated MIMO channels is given as (cf. (3.2) and (3.7)): 

                     2
1 2

1

min | ( , ) ( , ) | ( 1) min '( ), ( )
tN

j t t
j

j j j j M N N−

=

× − =∑R R g m  (3.16) 

      
subject to 2 1 2 2 2log ( ) log ( ) ... log ( )

tT Nb M M M= + + + , 

with            

 2 2
1 2 1 2'( ) (1,1) (1,1) ... ... ( , ) ( , )

T

t t t t tN N N N N− − =  g R R R R  (3.17) 

 
and  

 1 2( ) ( 1, 1,..., 1)
t

T
t NN M M M= − − −m  

 
the corresponding antenna gain vector and  bit allocation vector for correlated MIMO.  

Since the distribution of 1QH w  is the same as wH , 2
2| ( , ) |j jR  is still 2χ distributed 

with degree of freedom )1(2 jN r −+× . In order to derive an antenna selection and link 

adaptation rule only based on TR , we replace 2
2| ( , ) |j j −R  in (3.17) with their expected 

values (see (3.9)) to get 

                               
2 2

1 1(1,1) ( , )
( ) ... ... .

2( 1) 2( )

T

t t
t

r r t

N N
N

N N N

− − 
=  

− −  

R R
g  (3.18) 

 
Hence (3.16) is turned into: 

 
2

1

1

| ( , ) |min ( 1) min '( ), ( )
2( )

tN

j t t
j r

j j M N N
N j

−

=

× − =
−∑ R g m  (3.19) 

        
subject to. 2 1 2 2 2log ( ) log ( ) ... log ( )

tT Nb M M M= + + + . 



 31 

In recognition of 1 1* ( ) ( ) ( )H H
T T Tp p p= =R R A A R , for correlated MIMO, our goal is to find 

a submatrix of TR  whose Cholesky factor will provide a close-to-minimization result of 

(3.19). 

Similar to Section 3.3.1, we decouple the antenna selection and link adaptation 

problems and present an incremental selection rule as follows. Starting from an empty set, in 

each step we would like to choose from the remaining components of TR  such that the next 

subchannel gain is maximized. This process is expedited by the following lemmas.  

Lemma5.a Assume matrix )(k
TR  is Hermitian positive definite with size k , whose Cholesky 

decomposition is given by )()()( kk Hk
T RRR = , then for the enhanced matrix 









=+

1

)(
)1(

H

k
Tk

T v
vR

R  with Cholesky decomposition )1()1()1( ++=+ kk Hk
T RRR , the first k 

diagonal elements of )1( +kR  , 1{ }k
i i ir =  keep the same with those of ( )kR , while the ( 1)k th+  

one is given by ( ) vRv 1)(
1,1 1 −

++ −= k
T

H
kkr .   

Proof: see the appendix B. 

Based on Lemma 5.a, assume in step k , there are k  selected transmit antennas, and 

)(k
TR  is the kk ×  covariance matrix for those k  selected transmit antennas, which is 

guaranteed to be invertible according to our selection rule, then in step 1+k , we will choose 

the antenna whose covariance vector v  will maximize ( ) vRv 1)(
1,1 1 −

++ −= k
T

H
kkr . Note that 

the diagonal elements of the covariance matrix TR  are all 1’s, thus 1,1r  is always 1 no matter 

which antenna is selected first. However, we can determine the first and second active 
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antennas jointly by means of maximizing 2,2r , i.e., choose the first two active antennas whose 

corresponding Cholesky decomposition will result in maximization of 2,2r . Also note that the 

condition number of TR  is high, hence we can set a positive threshold value 0C  in practice 

to discard those essentially zero-gain subchannels. 

Similar to Lemma 4.b, the following lemma facilitates the optimization of  (3.19). 

Lemma5.b In the above incremental selection rule for correlated MIMO, 1,1 , 1, 1... k k k kr r r + +≥ ≥ . 

Proof: See the appendix B. 

 

___________________________________________________________________________ 
Set   },..,3,2,1{: tK=I  and Φ=:p (empty set), Φ=:T (empty set) 
   ( )11,

1maxarg)2:1( vvp H

ji
−= , 1:)1( =T , ( )11,

1max:)2( vvT H

ji
−= , where ),(1 jiRT=v  and 

ji ≤ ; 
   )2()1(: ppII −−= ; 
   3 tfor k to N=   
        ))1:1((:1 −=− kTk pRA (Submatrix of TR designated by )1:1( −kp  ); 
        ( )1

1
111max)( −

−
−−∈

−= kk
H
kIj

k vAvT ; 

         ( )1
1

111maxarg)( −
−

−−∈
−= kk

H
kIj

k vAvp ,  where ))(),1:1((1 jkTk ppRv −=− (The  column 

vector  in )( jp column and )1:1( −kp rows of TR  
);  

        )(: kpII −= ; 

        if )1(ˆ,
)1:1(

1
)1(

1)(ˆ,
):1(

11
−

−−−
>

−
k

kkN
k

kkN rr

m
T

m
T

  

     return  )1:1( −kp  and ˆ ( 1)k −m  
else if  0)( Ck ≤T   ( 0C  is a threshold value) 
    break; 
 else if tk N=  
    return (1: )tNp  and ˆ ( )tNm  

 end 
   end 

Table 3.3 Incremental antenna selection rule with link adaptation for correlated 
MIMO 
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Lemma5.b shows the elements in '( )tNg  are already in an increasing order. Thus we 

only need to arrange the elements of candidate bit allocation vectors ( )tNm  in a deceasing 

order according to Lemma3. In summary, the incremental selection rule with link adaptation 

for correlated MIMO is described in Table 3.3. For correlated MIMO, a decremental 

selection rule is usually not necessary, since the ill-conditioning of the channel matrix 

typically results in much fewer antennas being selected as opposed to the uncorrelated 

MIMO of the same size. Furthermore, antenna selection and link adaptation modes need to 

be updated only when the channel covariance matrix changes, which happens far less 

frequently compared to that based on the instantaneous channel fading. 

Similarly, in a general link adaptation problem where tN  is unknown in advance, we 

can search over all possible 1 t tN K≤ ≤  to find the optimal one. 

3.5 Numerical Results 

In this section, we evaluate the performance of our proposed joint antenna selection 

and link adaptation algorithms for both uncorrelated and correlated MIMO channels through 

several representative examples. Square QAM modulation is employed in all simulations 

with 256-QAM the largest constellation to be used. 

Example 1. In this example, we demonstrate that both antenna selection gain and link 

adaptation gain are obtained through our algorithm. Consider a 63×  MIMO ( 3, 6r tN K= = ) 

with i.i.d Rayleigh fading. The number of active transmit antennas to be chosen is 3tN =  

and the target throughput is 12 bits/s/Hz. For performance evaluation, we consider the 

following three systems: the first one is V-BLAST (i.e., equal power and rate allocation) with 
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random antenna selection; the second one is V-BLAST with a selected transmit antenna 

subset obtained through the incremental selection rule; and the last one is our proposed 

incremental antenna subset selection with link adaptation given in Table I. Link adaptation 

based on singular value decomposition (SVD) of the channel matrix [75] is also included, 

which can be viewed as a performance upper bound since the decomposed subchannels are 

truly interference free. From Figure 3.1, we can see that antenna selection gain is dominant, 

while link adaptation gain is also significant especially at high SNR (by observing the 

difference of the slope of the third curve (diversity gain) from that of the second one, and its 

similarity with that of the upper bound curve).   

 

                            Figure 3.1 Antenna selection gain and link adaptation gain  
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In the next example, we compare the performances of the incremental and 

decremental selection rules for a general link adaptation problem where the number of active 

antennas is not given beforehand, based on both full-size lookup tables and reduced-size 

lookup tables (see Section 3.3.3).      

Example 2. Here we consider a 66×  MIMO with uncorrelated Rayleigh fading, and 

the target throughput is 12 bits/s/Hz.  

The full-size lookup table is shown in (3.20) with each row representing the bit 

allocation for a certain number of active antennas. By Lemma 1 and Lemma 2.b, only the 

decreasing order of each possible combination is listed.                

 

8 4 0 0 0 0
6 6 0 0 0 0
8 2 2 0 0 0
6 4 2 0 0 0

_ _ .4 4 4 0 0 0
6 2 2 2 0 0
4 4 2 2 0 0
4 2 2 2 2 0
2 2 2 2 2 2

Bits table full

 
 
 
 
 
 
 =
 
 
 
 
 
  

 (3.20) 

                   
From (3.10), the estimated optimal number of active antennas is 4tN =% , so we only need to 

store the optimal bit allocation vectors ˆ ( )tNm  for {3,4,5}tN =  active antennas:           

 
4 4 4 0 0 0

_ _ 4 4 2 2 0 0 ,
4 2 2 2 2 0

Bits table reduced
 
 =  
  

 (3.21) 

                                    
which incurs almost no performance loss as shown in Figure 3.2. It is also shown that the 

incremental and decremental selection rules achieve almost the same performance and 
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approach the SVD upper bound quite closely. (Note that the four curves for joint antenna 

selection and link adaptation are almost indistinguishable in Figure 3.2) 

To verify the effectiveness of our approach in decoupling the antenna selection and 

link adaptation problems, exhaustive search (among all the possible combinations of the 

transmit antennas) is conducted to find the optimal pair of ( )( ), ( )t tN Ng m  for (3.7). As 

observed in Figure 3.2, our algorithms incur negligible performance degradation.   

 

    Figure 3.2 Performance comparisions of the proposed algorithms in 6x6 MIMO with 
throughput 12bits/s/hz 

 
Example 3. This example demonstrates the application of our proposed algorithms on 

a large MIMO system, emphasizing the demand of complexity reduction. The MIMO system 

considered is of size 1616× , and the target throughput is 32 bits/s/Hz.  
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Clearly with this system, any exhaustive search will lead to tremendous 

computational complexity. Our proposed algorithms exhibit their simplicity advantage while 

closely approaching the SVD performance upper bound, as shown in Figure 3.3. By using the 

reduced-size lookup table, the computation complexity is significantly reduced further. From 

(3.10) the estimated optimal number of active antennas is 12tN =% , hence in the lookup table, 

we only need to store the optimal bits pattern for {11,12,13}tN = , which is shown below: 

4 4 4 4 4 2 2 2 2 2 2 0 0 0 0 0
_ _ 4 4 4 4 2 2 2 2 2 2 2 2 0 0 0 0 .

4 4 4 2 2 2 2 2 2 2 2 2 2 0 0 0
Bits table reduced

 
 =  
  

 (3.22) 

       
We do not provide the full size lookup table here because of its large size. From 

Figure 3.3, we can see that little performance loss is incurred when using the reduced-size 

lookup table. Note that even though matrix inversion is mostly eliminated in the decremental 

antenna selection rule by means of square root algorithm, it is still inevitable in the initial 

step, which incurs substantial computational complexity. Furthermore, while the antenna 

gain vector g  is readily obtained through Lemma 4.a in the incremental antenna selection, 

explicit QR decomposition is required for the decremental selection. One can check the 

computational complexity in antenna selection for incremental method is ( )t r tO K N N , while 

for decremental method, the computation complexity is dominated by the initial matrix 

inversion step, which is ( )2 2
t r t rO K N K N+ . Therefore for MIMO systems of small to medium 

size (such as in Example 2), the incremental rule is preferred, while decremental rule is 

favored only for very large MIMO systems where the estimated optimal number tN%  is very 

close to tK  (due to reduced complexity in link adaptation).  
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Figure 3.3 Performance comparisons of the proposed algorithms in 16x16 MIMO with 
throughput 32bits/s/hz 

Example 4.  In the above examples, we assume perfect CSI is available for antenna 

selection and link adaptation. In actual vehicular based communications, the channels may 

vary too fast to allow timely feedback. In this example, we re-evaluate our algorithms in fast 

fading channels with limited feedback, and explore the long range prediction (LRP) 

technique [29] as a remedy. LRP is essentially a linear prediction method based on 

autoregressive modeling. With this technique, one can measure and feedback the time-

varying CSI to the transmitter at a much lower rate than the data rate. The transmitter will 

make compensations through prediction and interpolation, and then determine the active 

antenna set and modulation modes based on the predicted and interpolated CSI.  The reader 

is referred to [29] for a detailed description of this technique. 
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Figure 3.4 shows the performance losses of our joint antenna selection and link 

adaptation algorithms with different feedback delays. Clearly there is a tradeoff between 

feedback delays and dedicated feedback channel bandwidth. For the LRP technique, the 

longer the feedback delays, the larger the prediction steps should be taken. In our simulation, 

we assume a Rayleigh fading channel with Jakes’ model with the Doppler shift of df (thus 

the coherence time is 0 1/ dfτ ≈  seconds). The channel sampling rate is 8 df , while the date 

rate  is 640 df , so the channel is measured and fed back once every 80 symbols. The 

prediction order of LRP is set as 50. It is observed that the proposed algorithms, in 

conjunction with the LRP technique, have a fairly graceful degradation in performance with 

increase of feedback delays.   

 

            Figure 3.4-a Performance with different feedback delays for incremental 
methods 
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        Figure 3.4-b Performance with different feedback delays for decremental methods 
 

Example5. Finally, this numerical example demonstrates the performance of link 

adaptation only based on correlation information, compared with that based on the full 

channel information. Consider a 66 ×  correlated MIMO with correlation matrix generated as 

in (3.12), and the target throughput is 12 bits/s/Hz. We consider three correlated fading 

scenarios as listed in Table 3.4 with an increasing order of fading correlation, all assuming 

there is only one transmit cluster in the communication environments. 

 

Scenario 1.    
10

,
6

π
σ

π
θ ==    

 Scenario 2.   
15

,
6

π
σ

π
θ ==      

 Scenario 3.   
30

,
10

π
σ

π
θ ==     

     
     

Table 3.4 Fading correlation scenarios 



 41 

In the Figure 3.5a – Figure 3.7a, we compare the BER performance among link 

adaptation only based on the correlation information, link adaptation based on the full 

channel information and the conventional V-BLAST. From the simulation results, we can see 

the performance of the traditional V-BLAST degrades significantly in the correlated MIMO 

channels. On the other hand, antenna selection and link adaptation achieves more substantial 

gains for correlated MIMO than for uncorrelated MIMO, and the performance gap between 

link adaptation only based on channel correlated information and link adaptation based on 

the full channel information decreases as the degree of correlation increases.    

 

  Figure 3.5-a Joint antenna selection and link adaptation for fading correlation 
scenario 1 
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                Figure 3.5-b Histogram of the number of active antennas for fading scenario 1 
 

 

   Figure 3.6-a Joint antenna selection and link adaptation for fading correlation 
scenario 2 
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            Figure 3.6-b Histogram of the number of active antennas for fading scenario 2 
 

 
    Figure 3.7-a Joint antenna selection and link adaptation for fading correlation 

scenario 3 
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                Figure 3.7-b Histogram of the number of active antennas for fading scenario 3 
 

In the Figure 3.5b – Figure 3.7b (generated for the link adaptation based on the full 

channel information) we plot the histograms of the number of active antennas for the three 

fading correlation scenarios. From the histograms, we can see that the number of active 

antennas also decreases when the correlation increases. 

Table 3.5 below illustrates the active transmit antenna index and the constellation 

carried by each active antenna using our link adaptation only based on channel correlation 

information. In contrast to that based on the full channel information, this configuration only 

depends on channel physical characteristics, and is invariant to instantaneous channel 

realizations. It’s interesting to see that the first two active antennas are always antenna 1 and 

antenna 6, which accords with the practical situation: antenna 1 and antenna 6 have the 

largest distance, so their correlation is the smallest.    
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Scenario 1        Antenna 1(64QAM),     Antenna 6 (16QAM),     Antenna 3. (4QAM) 
 
Scenario 2        Antenna 1 (16QAM),    Antenna 6 (16QAM),     Antenna 3  (16QAM)  
 
Scenario 3       Antenna 1(256QAM),      Antenna 6 (4QAM) 
 
3.6 Summary  

In this chapter, we propose joint antenna selection and link adaptation algorithms for 

both uncorrelated and correlated MIMO channels. Simulation results show that in most 

situations, significant performance gains are achieved compared with traditional equal power 

and equal rate V-BLAST. We also propose a simplified link adaptation algorithm based on 

the estimation of optimal number of active transmit antennas for Rayleigh i.i.d. MIMO 

channels. For correlated MIMO, we propose a link adaptation algorithm only based on 

channel correlation information, which is more practical in realization than that based on the 

instantaneous channel information, while approaching the latter in performance as the fading 

correlation increases. Finally, our antenna selection and link adaptation algorithms can be 

readily extended to other antenna selection applications, such as capacity maximization for 

both uncorrelated and correlated MIMO systems. 

 

 

 

 

 

Table 3.5 Active antenna index and constellation carried by each active antenna 
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Chapter 4 

Asymptotic Analysis on the Interaction between Spatial Diversity and 

Multiuser Diversity in Wireless Networks 

4.1 Background 

Diversity has long been established as key technology that enables reliable and high-

data-rate wireless communications. While diversity can be achieved in many forms, two of 

them attract much research interest recently. One is spatial diversity realized through 

employing multiple antennas at either the transmitter or receiver end, or both, the idea of 

which is not new but interest on which is rekindled with the introduction of multi-input 

multi-output (MIMO) systems [22][21]. In a multiuser wireless network, there is another 

form of diversity called multiuser diversity [38][62], which reflects the fact of independent 

fluctuations of different users’ channels. Multiuser diversity can be exploited to increase the 

system throughput, through intentionally transmitting to the user(s) with good channels at 

each instant (opportunistic scheduling). Spatial diversity techniques typically reside in the 

physical (PHY) layer, while multiuser diversity is obtained through user scheduling at the 

medium-access control (MAC) layer. It is therefore interesting to understand how these two 

diversity techniques combine to determine overall network performance and how they 

interact with each other.  

There exist some work on joint spatial diversity and multiuser diversity systems. In 

particular, the capacity analysis for Rayleigh fading channels is given in [44], and in [9] for 

more general Nakagami fading channels. Some have suggested that spatial diversity can 

actually diminish the advantages of multiuser diversity [62][40][27][34]. Intuitively, this can 
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be explained by observing that multiuser diversity takes advantage of fading by “riding on 

the peak”, which is unfortunately eliminated by spatial diversity. As noted in [40][9][39], 

however, this conclusion is valid only for open-loop but not closed-loop spatial diversity 

schemes, while user scheduling inherently requires feedback.              

Our research is different from previous work in the following aspects. First, our study 

on the interaction between spatial diversity and multiuser diversity focuses on the asymptotic 

analysis, i.e., by allowing the number of antennas or users or both to go to infinity4. Besides 

mathematical tractability, asymptotic analysis also helps reveal some fundamental 

relationship of key system parameters, which may be concealed in the finite case by random 

fluctuations and other transient properties of channel matrices. Moreover in many scenarios 

(especially with respect to the number of antennas), convergence to the asymptotic limit is 

rather fast. Secondly, we put emphasis on the scheduling gain in capacity rather than the 

overall system signal-to-noise ratio (SNR) or capacity, which is the benefit we can really 

obtain through opportunistic scheduling over the traditional round robin scheduling. The 

impact of multiple antennas on multiuser wireless networks is increasingly drawing research 

interest very recently. This work will focus on spatial diversity systems; some pioneer study 

on spatial multiplexing systems can be found in [33][53]. 

This chapter is organized as follows. In Section 4.2, we give our system model with 

combined spatial diversity and multiuser diversity. Then we provide our asymptotic analysis 

corresponding to the above three scenarios in Section 4.3, 4.4 and 4.5, respectively, together 

with some numerical results for illustration purpose. Final conclusions are made in Section 

4.6.          
                                                
4 Some asymptotic analysis with respect to the number of users is also pursued in [62] [34]. 
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4.2 Joint Spatial Diversity and Multiuser Diversity System 

We consider a homogeneous downlink multiuser MIMO communication scenario, 

which is envisioned to be of crucial importance for emerging wireless networks. Appropriate 

spatial diversity techniques are employed for each link. In this paper, we concretize our 

analysis with three spatial diversity schemes. The first employs well-known space-time block 

coding at the transmitter and maximum ratio combining at the receiver, coined as 

STBC/MRC, which does not require channel state information (CSI) at the transmitter end. 

As user scheduling inherently requires feedback, we further explore two closed-loop 

diversity schemes. One of them pursues joint maximum ratio transmission and maximum 

ratio combining (MRT/MRC), which provides the optimal performance reference for MIMO 

diversity techniques. The other exploits simple antenna selection on both ends (SC/SC), 

trading performance for complexity. MRT/MRC and SC/SC can be viewed as the two 

extremes for various hybrid selection combining schemes [45][65]. After diversity 

combining, the user with the best channel quality, in this case the highest effective link SNR, 

is chosen for communication in opportunistic scheduling. In contrast, the round robin 

scheduling simply selects the users in some deterministic order. 

It is assumed that the base station has M  antennas and each of the K  users has N  

antennas. Throughout the chapter, when asymptotic analysis with respect to the size of 

antenna array is pursued, we allow both M  and N  to go to infinity, with their ratio 

/r N M=  fixed. The incorporation of the large M  and fixed N  scenario is relatively 

straightforward, and will be briefly discussed as well. We use { }k
k ijh=H  (1 k K≤ ≤ ) to 

denote the thk user’s channel matrix. For simplicity, independent and identically distributed 

(i.i.d.) Rayleigh fading is considered for { } 1

K
k k =

H , but our analysis can be readily extended to 
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other fading scenarios. As will be seen, only the tail behaviors of the relevant probability 

distributions matter. The background noise is assumed to be white and Gaussian.  

Throughout this paper we assume a block-flat fading scenario. Let ( )ks t  and ( )ky t be the 

transmit and receive signal (after diversity combining) at time t  for some selected user k  

respectively, then without loss of generality we have   ( ) ( ) ( ),k k k ky t s t n tγ= +  where the noise 

( )kn t  is assumed to have zero mean and unit variance, the average transmit SNR is 2( )t kE s tγ = , 

and kγ  is the channel gain obtained through diversity combining, which can be interpreted as 

normalized effective link SNR. Denote the probability distribution function (PDF) and cumulative 

distribution function (CDF) of kγ  by ( )f xγ  and ( )F xγ  respectively, assumed the same for all users. 

In the opportunistic scheduling scheme, the base station chooses the user ( )*
1

arg max K
k kk

k γ
=

= . Thus 

the resultant normalized system SNR seen by the base station is *kγ with PDF       

 ( )
*

1( ) ( ).
k

Kf x Kf x F xγ γ γ
−=  (4.1) 

Assuming that average transmit SNR is tγ , average system capacity obtained by 

opportunistic scheduling can be expressed as a function of K  and M  as                     

 ( ) ( )( )( ) ( ) ( )
*01

, log 1 max log 1 .
k

t k tk K
S K M E x f x dxγγ γ γ

+∞

≤ ≤
= + = +∫  (4.2) 

We also define ( )R M , the corresponding average system capacity obtained by 

round-robin scheduling as a function of M  as                     

 ( ) ( )( ) ( ) ( )
0

log 1 log 1 .t tR M E x f x dxγγ γ γ
+∞

= + = +∫  (4.3) 
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Finally, in order to measure the benefit brought by multiuser diversity, we define the 

scheduling gain ( ),G K M  as the average capacity gain boosted by opportunistic scheduling 

from ( )R M :                                                        

 ( ) ( ) ( ), , .G K M S K M R M= −  (4.4) 

In the remainder of this chapter, we adopt the following notations for the limiting 

behaviors of two functions ( )f x  and ( )g x  with 
 0

( )lim
( )x

or x

g x c
f x→∞

→

= : ( ) ( ( ))g x O f x=  for 

0 | |c< < ∞ ; ( ) ~ ( )g x f x  for 1c = ; ( ) ( ( ))g x o f x=  for 0c = ; and ( ) ( ( ))g x f xω=  for c = ∞ . 

When convergence of a sequence of random variables is involved, shorthand notation “D” 

stands for in distribution, “P” for in probability, “r” for in rth mean, and “a.s.” for almost 

surely. The user index will be omitted from relevant notations when no ambiguity is incurred. 

4.3 Asymptotic System Capacity and Scheduling Gain as K Goes to Infinity while M 

Keeps Fixed    

In this section, we will examine ( )lim ,
K

S K M
→∞

 with M  fixed. As a motivation, we 

first summarize some relevant results in literature[12][20] as the following Lemma.        

Lemma 6: Let 1,..., KX X  be i.i.d random variables with CDF ( )F x , with 

( ) ( ){ }sup : 1F x F xΩ = < . Suppose there is a real number 1x  such that for all ( )1x x F≤ < Ω ,  

'( ) ( )f x F x=  and ''( )F x  exist and ( ) 0f x ≠ . Define the growth function  

 1 ( )( ) .
( )
F xg x

f x
−

=  (4.5) 

If 
( )

lim ( ) 0
x F

g x c
→Ω

= ≥ , the following standardized extreme converges in distribution as 

                                                   

 ( ) ( )1
max

exp ,
Dk K xk K

K

X b
x e

a
−≤ ≤

−
→ Λ = −   (4.6) 
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with 

                                          1(1 1/ )Kb F K−= −  and 1( ( )) .K Ka Kf b −=  (4.7)
   
Remark: From (4.5) and (4.7), we can find a connection between the growth function and Ka , 

i.e., 1 ( ) 1( )
( ) ( )

K
K K

K K

F bg b a
f b Kf b

−
= = = , therefore if 

( )
lim ( ) 0

x F
g x c

→Ω
= ≥ , we can obtain 

lim 0KK
a c

→∞
= ≥ . Thus the result of (4.6) indicates that 

1
max kk K

X
≤ ≤

 “grows like” Kb  in a coarse 

sense [34][62] , and is widely used in the study of opportunistic communications involving 

extreme values and order statistics. This result can actually be strengthened from existing 

literature [20]: if 0c = (or lim 0KK
a

→∞
= ) , 

1
max 0

P

k Kk K
X b

≤ ≤
− → , otherwise  

1
max 1

P

k Kk K
X b

≤ ≤
→ . 

Nonetheless, our desired outcomes, which are concerned with the convergence of the 

expected values of functions of 
1
max kk K

γ
≤ ≤

, require a yet stronger result as stated below. Our 

main contributions in this section lie in providing sufficient conditions for this stronger result 

to hold, and an explicit expression for the corresponding system capacity (and scheduling 

gain) that is general enough to include many practical scenarios of interest (see (4.9)). 

Theorem 1: Let 1,..., Kγ γ  be i.i.d. positive random variables with absolutely continuous CDF 

( )F xγ  and PDF ( )f xγ , as given in Lemma 6 with ( )FγΩ = +∞ . Define 
1 ( )

( )
( )

F x
g x

f x
γ

γ
γ

−
= . If 

lim ( ) 0
x

g x cγ→∞
= ≥ , whose derivative 1( ) (1/ )g x O xδ

γ′ =  with 1 0δ > ,  and 

( )( )21(1 1/ ) logKb F K O K δ
γ
−= − =  with 20 1δ< ≤ , then                                     

 ( ) ( ){ }lim , log 1 0.t KK
S K M bγ

→∞
− + =  (4.8) 

 Proof: See Appendix C. 
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According to (4.8), the system capacity (and scheduling gain) is asymptotically 

equivalent to ( )log 1 t Kbγ+  when given conditions are fulfilled. Note that all these conditions 

involve only the tail behaviors of the distributions of individual link SNR. In the following, 

we examine a form of special interest, which is general enough to cover common fading 

models and spatial diversity schemes. 

Corollary 1:  If ( ) ~
vp qxf x x eγ α −  as x → ∞  with 0α > , 0q > , 1v ≥  and any p , i.e., ( )f x  

is tail equivalent to 
vp qxx eα − , then ( ) ( ){ }lim , log 1 0t KK

S K M bγ
→∞

− + = , where (up to the 

second-order approximation5)                     

 
1/

( 1) /2

loglog
1 1log ,

1 log

v

K v v

K
p v qb K

q qv
K

q

τ

τ

τ
−

  + −
= + 

  
 
 

 (4.9) 

with 
qv
α

τ = . 

Proof: See Appendix C. 

Remark: The parameter α  only appears in τ , which is typically not important in large K  

analysis. In general, a smaller ν  and q  indicate a better system performance, as seen from 

the first term of (4.9). A larger p  also helps, though only at the second-order sense. 

In the remaining part of this section, we demonstrate the applications of our results, 

Theorem 1 and Corollary 1, through some representative systems jointly exploiting spatial 

diversity and multiuser diversity. As mentioned before, we assume Raleigh fading for 

simplicity. The key step lies in examining the tail behavior of the PDF of the corresponding 

effective link SNR. Once it is verified to take the form given in Corollary 1, we can readily 

                                                
5  We define the first order approximation when truncated at log K , and the second order approximation when 
truncated at log log K .  
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conclude that the corresponding asymptotic system capacity (and scheduling gain) is given 

by ( )log 1 t Kbγ+ , with Kb  given by (4.9).  

STBC/MRC 
 

As seen in (2.6), the PDF of the normalized effective link SNR for a generic user of 

STBC/MRC is                                

 / 1( ) , 0.
( 1)!

MN
STBC MRC MN MxMf x x e x

MNγ
− −= ≥

−
 (4.10) 

Clearly Corollary 1 holds with  

 , 1, ,and =1
( 1)!

MNM p MN q M
MN

α ν= = − =
−

. 

So the corresponding asymptotic system capacity (and scheduling gain) is given by 

( )/log 1 STBC MRC
t Kbγ+  with     

( ) ( ) ( ) ( )
1 1

/ 1 log 1 log log log log log .
1 ! 1 !

MN MN
STBC MRC
K

M Mb K MN K O K
M MN MN

− − 
= + − + − − 

 (4.11) 

SC/SC 

From (2.8), the PDF of the normalized effective link SNR for a generic user in this 

spatial diversity mode is 

 / 1( ) (1 ) , 0.SC SC x x MNf x MNe e xγ
− − −= − ≥  (4.12)                                                               

The PDF in (4.12) is tail equivalent to xMNe− . Again Corollary 1 holds with  

 , 0, 1,and =1MN p qα ν= = = . 
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So the corresponding asymptotic system capacity (and scheduling gain) is given by 

( )/log 1 SC SC
t Kbγ+  with6  

 ( )/ log .SC SC
Kb MNK=  (4.13) 

MRT/MRC 

From (2.3), we know the PDF of the normalized effective link SNR for a generic user 

of MRT/MRC is  

                       / / 1( ) ( ) ( ( ) ( )), (0, ),MRT MRC MRT MRC
c cf x F x tr x x xγ γ
−= ∈ +∞Ψ Φ  (4.14) 

Though the PDF (4.14) is rather involved, fortunately we are only concerned with its tail 

behavior, as dictated by the following lemma.    

Lemma 8:  / ( )MRT MRCf xγ  is tail equivalent to 21
( 1)!( 1)!

x M Ne x
M N

− + −

− −
.   

Proof: See Appendix C. 

Therefore Corollary 1 holds with 

 1 , 2, 1,and =1
( 1)!( 1)!

p M N q
M N

α ν= = + − =
− −

. 

So the corresponding asymptotic system capacity (and scheduling gain) is given by 

( )/log 1 MRT MRC
t Kbγ+  with 

  
( ) ( )

/ 1log
( 1)!( 1)!

12 log log log log log .
( 1)!( 1)!

MRT MRC
Kb K

M N

M N K O K
M N

=
− −

+ + − +
− −

 (4.15) 

Some interesting observations are readily in order. For all the above three schemes we 

have 1ν = , which simplifies the expressions. From (4.11), we can observe a tradeoff 

                                                
6 This is one rare accurate expression. Note that in this case, the growth in transmit and receive antennas can be 
equivalently seen as an increase in the number of users (due to the i.i.d. assumptions). 
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between spatial diversity and multiuser diversity for an open-loop spatial diversity system 

(the factor of 1/ M  has a negative role in /STBC MRC
Kb , which directly determines the asymptotic 

system capacity ( ),S K M ). Here we give a more rigorous proof and reveal how the ultimate 

capacity is related to M  and N . For example, our result does show the positive role of the 

number of receive antennas N , though in a second-order sense, which is not clear from 

previous results in literature. It is also observed that the detrimental effect of multiple 

transmit antennas can be avoided with the closed-loop spatial diversity schemes, as seen in 

(4.13) and (4.15)7. And also from (4.13) and (4.15), we can infer that for the general hybrid 

selection combining schemes, the scaling laws should only have differences in the second 

order approximations. Numerical results in Fig. 1 verify that ( )log 1 t Kbγ+  is a good   

 

   Figure 4.1 Average system capacity of opportunistic scheduling ( 0 ,  2t dB M Nγ = = = ) 
 

                                                
7 Note that the coefficients of K  inside the log functions are not important when K  becomes large. In this 
sense, multiple antennas even help the MRT/MRC scheme. 
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approximation for the average capacity of the STBC/MRC, SC/SC and MRT/MRC systems 

using the opportunistic scheduler.  

Note that Theorem 1 and Corollary 1 can potentially address a larger class of 

problems with respect to system and channel characteristics than what are presented here. 

Clearly the Nakagami-m distribution takes the form given in Corollary 1. For the Log-normal 

distribution, the transformation logy γ=  results in a normal distributed random variable. 

Ricean fading admits the following distribution   

( ) 2
2

2 1/ 4
02 2 2 2

1 1 1( ) exp ~ ( ) exp
2 2 2 22X

x sx s xsf x I s x
σ σ σ σ σπ

−
 − −  +  = −           

, (4.16) 

where 0s >  is the amplitude of the line-of-sight component, ( )nI x  is the nth-order modified 

Bessel function of the first kind, and the tail-equivalence is due to the fact that for fixed n, 

( ) ~
2

x

n
eI x

xπ
. As an example, we can show that for i.i.d. Ricean fading, SC/SC admits 

2

2
/ 2

,
2

log log
22 log

42
2 log

2

SC SC
K Ricean

KMN
KMN sb s

s KMN
s

σ
σ σ πσ

π
σ

π

 
 

  = + −          

. (4.17) 

As seen from above, scheduling gain ( ),G K M  is an asymptotically increasing 

function of K . In the next section, we will show that ( ),G K M  asymptotically decreases 

with M , no matter for open-loop or closed-loop spatial diversity systems.   

4.4 Asymptotic Scheduling Gain as M Goes to Infinity while K Keeps Fixed 

In this section, we will examine ( ) ( )( )lim , lim , ( )
M M

G K M S K M R M
→∞ →∞

= −  with K  

fixed, which complements the study in Section 4.3. The scenario when both M  and K  go to 
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infinity will be studied in Section 4.5.   We focus on the scenario that N → ∞  as well, with 

/r N M=  fixed. However, all results apply to the case of fixed N  as well, with r  taken as 0 

when applicable. The following theorem summarizes the main result in this scenario. 

Theorem 2: Let Mµ  and Mσ  be the mean and standard deviation of the normalized effective 

SNR Mγ  for each individual link 8 . If lim 0M
M

M

σ
µ→∞

= ,  then ( )
( )

lim 1
log 1M

t M

R M
γ µ→∞

   = +  
and 

( )
( , )lim 0

M

G K M
R M→∞

=  when K  keeps fixed. If we further have (0,1)log M M

M M

γ γ
µ µ

   
  
   

I  uniformly 

integrable 9 , then ( ) ( ){ }lim log 1 0t MM
R M γ µ

→∞
− + = , and lim ( , ) 0

M
G K M

→∞
=  when K  keeps 

fixed.  

 Proof:  See Appendix C. 

Remark: As shown in the proof, lim 0M MM
σ µ

→∞
=  leads to the conclusion that M Mγ µ  

converges to 1 in 2nd mean (mean square). It is relatively straightforward to show that 

( )
2

log 1 log2M Mγ µ+ →  as M Mγ µ  is always positive and log(1 )x+  grows slower than x  in 

(0, )∞ . The difficulty with log M Mγ µ  occurs when the argument falls on (0,1) , which 

necessitates the condition of uniform integrability. Also, according to Appendix C, we can 

see that M Mσ µ  can be roughly used as a parameter to measure the scheduling gain.  

In the following, we apply Theorem 2 on three representative systems. The key steps 

lie in showing lim 0M
M

M

σ
µ→∞

=  and the uniform integrability of (0,1)log M M

M M

γ γ
µ µ

   
  
   

I . Similar to 

                                                
8 We use subscript M to explicitly denote the dependence of corresponding quantities on M. 
9 ( )AI g  is the indicator function on the set A , i.e. ( ) 1

0 .A

if A
if A

ω
ω

ω
∈

=  ∉
I  
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Section 4.3, the cases of STBC/MRC and SC/SC are relatively easy, while things become 

much more involved with MRT/MRC. 

STBC/MRC 

In this case, the PDF of /STBC MRC
Mγ  is given in (4.10), from which it’s straightforward 

to obtain  /STBC MRC
M N rMµ = =   and  / /STBC MRC

M N Mσ = . Clearly we have 

 
/

/

1lim lim 0
STBC MRC
M
STBC MRCM M
M rM

σ
µ→∞ →∞

= = .    (4.18) 

The PDF of / / /STBC MRC STBC MRC STBC MRC
M M MX γ µ= is given by  

 / 1( )
( 1)!

MN
STBC MRC MN MNx

M
MNf x x e Cx
MN

− −= ≤
−

, when 1x < ,   (4.19) 

where we can bound the coefficient due to Stiring’s formula. Clearly, { /log STBC MRC
MX  

( )}/
(0,1)

STBC MRC
MXI  is uniformly integrable. So  

         ( ) ( ){ }/lim log 1 0STBC MRC
tM

R M rMγ
→∞

− + = , and /lim ( , ) 0STBC MRC

M
G K M

→∞
= ,       (4.20) 

with K  fixed. 

SC/SC 

In this case it’s easy to obtain ( )/
0

1

1 log
MN

SC SC
M

i
MN C

i
µ

=

= → +∑  and 

2
/

2
1

1
6

MN
SC SC
M

i i
π

σ
=

= →∑  as M → ∞ , where 0C  is the Euler’s constant (see page 298 of 

[12]). Clearly we have 

 
/

/

1lim lim 0
log( )

SC SC
M
SC CM M
M MN

σ
µ→∞ →∞

= = .   (4.21) 
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When M → ∞ , the single-link SC/SC is equivalent to the corresponding multiuser 

scheduling scenario when K → ∞ . Results in Section 4.3 can be directly applied to get for 

fixed K  

 ( ) ( ){ }/lim log 1 log( ) 0SC SC
tM

R M MNγ
→∞

− + = , and /lim ( , ) 0SC SC

M
G K M

→∞
= .   (4.22) 

 MRT/MRC 

The calculation for the MRT/MRC case is more difficult. The closed-form 

expressions for the /MRT MRC
Mµ  and /MRT MRC

Mσ  are unknown. In the asymptotic scenario, it is 

known that [69] 

 
. .

2
max

1 (1 )
a s

r
M

λ → + .   (4.23) 

But surprisingly, /
max

1 1lim limMRT MRC
MM M

E
M M

µ λ
→∞ →∞

 =  
 

 remains open in literature, which is 

solved here through the following lemma. 

Lemma 9: Let  H  be an N M×  matrix with i.i.d. complex entries with ( ) 0ijE h = , 

2(| | ) 1ijE h = , and 4(| | )ijE h < ∞ . Define 
2

max
1 1H

M M
λ   = 

 
HH H 10. Then 

( )2

max
1lim 1H

M
E r

M
λ

→∞

   = +    
HH  and max

1lim 0H

M M
σ λ

→∞

   =    
HH , 

,
lim

M N

Nr
M→∞

= .  (4.24) 

Proof: See Appendix C. 

Remark: A more important conclusion from Lemma 9 is that  

 
/

/lim 0
MRT MRC
M
MRT MRCM
M

σ
µ→∞

= .   (4.25) 

                                                
10 Here || ||⋅  is the induced spectral norm on matrix, denoting the largest singular value. 
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The uniform integrability of ( ){ }/ /
(0,1)log MRT MRC MRT MRC

M MX XI  is already verified in 

Proposition 4.2 of [15]. Therefore, for fixed K , 

( ) ( ){ }/ 2lim log 1 (1 ) 0MRT MRC
tM

R M r Mγ
→∞

− + + = , and /lim ( , ) 0MRT MRC

M
G K M

→∞
= .   (4.26) 

 

              Figure 4.2 Average throughput of round robin scheduling (SNR=0dB) 
 

Theorem 2 and the above examples indicate that, given the number of users, the 

scheduling gain will diminish when the number of antennas goes to infinity, if the mean of 

the link SNR grows at a higher-order rate than its variance. Intuitively, the mean corresponds 

to what we obtain through round-robin scheduling, while the variance really contributes to 

the scheduling gain. This is reminiscent of the multiple-antenna channel hardening effect 

studied in [33]. Therefore, multiuser scheduling is not worthwhile in an antenna-dominant 

environment. It is also interesting to see the difference in ( )lim
M

R M
→∞

 for different diversity 

techniques. For STBC/MRC, it achieves a constant unless the number of receive antennas N  
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also grows with M 11. For SC/SC, it grows like log log M , but less impressive than that 

achieved by MRT/MRC, log M . Numerical results in Figure 4.2 indicate a good match 

between the simulation results ( )R M  and the approximation results log(1 )t Mγ µ+  for the 

above three cases as M  grows. Figure 4.3 verifies through simulations that the scheduling 

gain will diminish as the number of antennas grows for both the open-loop and closed-loop 

spatial diversity schemes.  Furthermore, based on the above discussion12 we roughly have 

/

/

1~
log

SC SC
M
SC C
M M

σ
µ

,  
/

/

1~
STBC MRC
M
STBC MRC
M M

σ
µ

, and 
/

/ 2 / 3

1~
MRT MRC
M
MRT MRC
M M

σ
µ

, which intuitively explains the 

different decay rates shown in Figure 4.3. The analysis on the mean and variance will also be 

useful for the discussion in the following section.                   

 
        Figure 4.3 Scheduling gain as the number of antennas grows (SNR=0dB, K=50) 
 

                                                
11 As we mentioned, the results in (4.20), (4.22) and (4.26) hold for large M and fixed N as well. In this case, 
rM in (4.20) should be replaced with N , and r  in (4.26) taken as 0.  

12 For MRT/MRC, as will be seen in (4.29)  and (4.30), we can roughly consider / 1/3~MRT MRC
M Mσ . 
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4.5 Scheduling Gain when both M and K Goes to Infinity 

In the previous two sections we have given rigorous asymptotic results when either 

M  or K  grows. An interesting question naturally arises: when both the number of users and 

antennas are allowed to grow simultaneously, how will ( , )G K M  behave? Intuitively, this 

depends on the relative growth rate of M  and K 13. Our goal is to find a critical point 

( ( ))K O f M= , only beyond which multiuser scheduling is meaningful.  

We again facilitate the study through asymptotic analysis. Since the number of 

antennas also grows to infinity, the results derived in Section 4.3 do not apply. We therefore 

take the following approach. Let ( ),k Mγ  be the effective link SNR for the kth  user. First 

we find two norming constants Mp  and Mq  to form ( ), M

M

k M q
p

γ −
, whose distribution is 

asymptotically independent of M as M → ∞ , i.e., ( , ) D
M

k
M

k M q w
p

γ −
→  for some random 

variable kw . Desirably, the PDF of kw  takes the form given in Corollary 1. Then we can 

apply the results in Section III to obtain the scaling law for { } 1max K
k kw

=
, denoted as Kb , 

which leads us to approximate the scaling law for ( ){ } 1
max ,

K

k
k Mγ

=
 by M M Kq p b+  when 

both M  and K  grow. Finally Combing this result with Theorem 2, we can approximate the 

asymptotic scheduling gain as log M M K

M

q p b
µ

 +
 
 

. As will be seen, most often M Mq µ= ; our 

approach thus nicely combine the effect of multiple antennas ( Mp  and Mq  (or Mµ )) and 

multiple users ( Kb ) for convenience of analysis. Now the problem boils down to the 

determination of the dominant factor between the two. Note that such approach was also 

                                                
13 A similar study is conducted in [53] for spatial multiplexing systems to guarantee that the system throughput 
can still scale linearly with M .    
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taken in the relevant study of [33], where MIMO capacity is shown to be asymptotically 

Gaussian when the number of antennas grows.        

In the following, we demonstrate this approach through examining the asymptotic 

scheduling gain for STBC/MRC, SC/SC and MRT/MRC when both the number of antennas 

and users go to infinity, with /r N M=  fixed. The case of fixed N  follows the same line 

and will also be briefly discussed. 

STBC/MRC 

Choose /Mp N M r= =  and M Mq N rMµ= = = . By Central Limit Theorem, we 

can get ( ), D
M

k
M

k M q
w

p
γ −

→ , whose PDF is the standard normal distribution function 

2

21
2

x

e
π

−
. From Corollary 1, we can obtain ~ 2logKb K .  According to our approach the 

asymptotic scheduling gain is given by 2 loglog 1 r K
rM

 
+ 

 
, which admits  

 

( )
( )
( )

2

/ 2

2

0, log

( , ) , log

, log .

STBC MRC

when K o M

G K M c when K O M

when K Mω

 =
→ =


+∞ =

 (4.27)                      

SC/SC 

According to the results in Section 4.3, we know if we choose ( )log ~M Mq MN µ= , 

1Mp = , then   ( ),
D

M kk M q wγ − → , whose CDF is ( )exp xe−− . We can then obtain 

~ logKb K  through Corollary 1 and the asymptotic scheduling gain is given by 

( )2

loglog 1
log

K
rM

 
+ 

 
 

. Therefore                             
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( )
( )
( )

/

0, log log
( , ) , log log

, log log .

SC SC

when K o M
G K M c when K O M

when K Mω

=
→ =
+∞ =

 (4.28) 

MRT/MRC        

In this scenario, the norming constants Mp   and Mq   have already been obtained in 

[35] as   

 ( ) ( )2 2
1 ~ ,M Mq M N M r µ= + = +  (4.29)                        

 
( )4 / 3

1/ 3 1/ 3
11 1( )( ) .M

r
p M N M

M N r

+
= + + =  (4.30) 

 
Further            

 ( ),
,

D
M

k
M

k M q
w

p
γ −

→  (4.31)                     

where kw  is a random variable whose distribution follows the Tracy-Widom law of order 2. 

This distribution is defined by                                  

 { }2
2( ) exp ( ) ( ) , ,

s
F s x s q x dx s

∞
= − ∈ℜ∫  (4.32)                             

where ( )q x  solves the nonlinear Painleve II differential equation                                   

 3''( ) ( ) 2 ( ),q x xq x q x= +  (4.33)                   

 and 
3 / 22

1 1/ 2 1/ 4 3( ) ~ 2 , .
s

q x s e as xπ
−

− − − → ∞ From (4.32), we can obtain                         

 
3/ 24

2 2 1 3
2 2 2( ) ( ) / ( ) ( ) ~ ( ) ~(8 ) .

s

s s
f s dF s ds F s q x dx q x dx s eπ

−∞ ∞ −= = ⋅ ∫ ∫  (4.34) 
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We can check that 2( )f x  given in (4.34) satisfies the necessary conditions given in Corollary 

1, which leads to 2 / 3~ (log )Kb K . The asymptotic scheduling gain is thus given by  

2 / 3loglog 1 K
M

  +     
 and                               

 
( )
( )
( )

/

0, log
( , ) , log

, log .

MRT MRC

when K o M
G K M c when K O M

when K Mω

=
→ =
+∞ =

 (4.35) 

It is also interesting to extend our current analysis to the case of fixed N  and large 

M . For STBC/MRC, the same norming constants can be used but with different 

interpretation; note that in this scenario, the shrinking of the link standard deviation with 

respect to the link mean occurs at a slower rate (1 M  rather than 1 M ). As a consequence, 

we have                                   

 
( )
( )
( )

/

0, log
( , ) , log

, log .

STBC MRC
N

when K o M
G K M c when K O M

when K Mω

=
→ =
+∞ =

 (4.36)   

But this is achieved at the price of a saturated link capacity even when M → ∞  (see Section 

4.4). The analysis (4.28) for SC/SC remains unchanged for fixed N , i.e.,  

 / /( , ) ~ ( , ).SC SC SC SC
NG K M G K M  (4.37) 

For MRT/MRC, the fixed N  analysis deviates from above in that kw  formed as in (4.31) 

does not follow the Tracy-Widom law. Alternatively, by law of large numbers, it can be 

shown that ( ){ } 1
max ,

K

k
k Mγ

=
 approaches the largest element among KN  i.i.d. random 
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variables of the form 
2

,1
1

M

i
i

h
=
∑ . Following the same approach as above, we can obtain the 

asymptotic scheduling gain as ( )2 log
log 1

KN
M

 
+  

 
, which still leads to                         

 / /( , ) ~ ( , ).MRT MRC MRT MRC
NG K M G K M  (4.38) 

To verify the above results (when both M  and N  are large), we consider two relative 

growth rate between K  and M , with / 1N M = . First, we assume K M=  in Figure 4.4, 

which shows that the scheduling gain for SC/SC has a tendency towards saturation; while for 

MRT/MRC and STBC/MRC, the scheduling gain asymptotically decreases. Then in Figure 

4.5, we assume MK e= , which shows the scheduling gain for MRT/MRC almost saturates as 

M  grows, while scheduling gain asymptotically increases for SC/SC and decreases for 

STBC/MRC. Due to the computation constraint, it’s difficult to simulate the scenario 

2MK e= , but our results already show that for STBC/MRC, much more users are required to 

make opportunistic scheduling beneficial.    

 

Figure 4.4 Scheduling gain as both the number of antennas and users grow 
(SNR=0dB,K=M) 
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Figure 4.5 Scheduling gain as the number of antennas and users grow (SNR=0dB, 
K=exp(M)) 

 
One of the interesting observations from this section is that, when the number of 

antennas grows, generally we need even greater (sometimes exponentially greater) users to 

maintain the scheduling gain. 

4.6 Summary  

In this chapter, we present asymptotic analysis on the interaction between spatial 

diversity and multiuser diversity in wireless networks. Rigorous proofs and necessarily 

stronger results in terms of convergence are provided for some intuitions in this area. Equally 

important, explicit expressions of scheduling gain and average system capacity in various 

scenarios that reveal inter-connections and fundamental tradeoffs among key system 

parameters are given, which afford us some insights in real system design. The results of this 

chapter shows that in a multiuser MIMO wireless network, to increase the instantaneous 

throughput, scheduling only one best user is not a wise scheme. In the next chapter, we will 

propose a multiuser scheduling scheme which will greatly increase the system throughput 

compared with the one that schedules only one best user.        
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Chapter 5 

 
Joint Tomlinson-Harashima Precoding and Scheduling for Multiuser 

MIMO with Imperfect  Feedback  

5.1 Background 

Crosslayer study has become one of the burgeoning research fields in these few years, 

based on the realization that the commonly adopted layered protocol architecture, while 

facilitating the development within each layer, has hindered the optimization of the overall 

system, especially those utilizing wireless links [52]. At current stage, however, no formal 

systematic approaches have been built and applications are vastly different. In this paper, we 

focus on joint physical (PHY) and medium-access control (MAC) layer considerations, 

which are most relevant to harsh and unstructured wireless medium, and whose design has 

least interactions against other layers. Our target application is the downlink multiuser 

MIMO communications, which is envisioned to be of crucial importance to future wireless 

networks, and is believed to benefit significantly from a crosslayer design. Crosslayer study 

on multiuser MIMO systems has begun to attract attention only very recently, and very few 

of them ever explicitly address the details at the PHY layer [31] [59][7][1].  

In multiuser communication scenario, multiuser diversity can be exploited through 

making judicious selections among users with independently faded channels [62]. While 

choosing the best user is optimal for single antenna systems and is simple to implement, it is 

decisively suboptimal for multiuser MIMO systems [64] [54] [70]. To the best of our 

knowledge, no rules of the thumb are yet known for multiuser MIMO scheduling, especially 

when perfect instantaneous channel information is not available. In the literature, multiuser 
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scheduling has been considered in the context of channel allocation for a SDMA/TDMA 

network (e.g., [57][73][56]), but mainly with the uplink and the assumptions that users are 

equipped with only one antenna or transmit only one data stream. In most of this work, 

“spatially compatible” users are grouped together in the same time or frequency slot, which 

is usually measured by channel correlation among users. This approach raises two potential 

concerns. First, a globally optimal allocation requires a thorough search of all possible 

choices, and suboptimal or heuristic alternatives induce complexity versus performance 

tradeoffs. Second, the physical layer details are largely neglected: either (1) the compatibility 

metric depends solely on the channel and is independent of the underlying transceiver 

structures; or (2) a conservative view is taken that treats multiuser interference as background 

noise. Such designs clearly fail to fully exploit the design opportunities at the physical layer. 

As an alternative, we propose to explore advanced yet feasible signal processing techniques 

at the physical layer in order to reduce the burden at the MAC layer and enhance overall 

network performance.  

This chapter is organized as follows. A joint PHY and MAC design for multiuser 

MIMO downlink is described in Section 5.2, where perfect feedback from the users is 

assumed. In Section 5.3, we exploit the long-range prediction (LRP) technique to effectively 

reduce feedback and quantify the system throughput loss under imperfect feedback. 

Simulation results are given and analyzed in Section 5.4. Finally conclusions are presented in 

Section 5.5. 

5.2 THP and Multiuser Scheduling for downlink MIMO 

Downlink multiuser MIMO forms a vector broadcast channel, whose capacity region 

is resolved only recently with the dirty paper coding (DPC) approach [64]. As the realization 
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of DPC is rather involved [72][16], we exploit a more feasible PHY approach, Tomlinson-

Harashima Precoding [17], which can be viewed as a suboptimal one-dimensional 

implementation of DPC. As a counterpart of the decision-feedback multiuser detection 

technique, THP has been employed in DSL systems and more recently in DS-CDMA and 

multiple-antenna systems to combat ISI and MAI [71][66][41]. In this work, we first propose 

a THP design for the multiuser MIMO downlink (especially, each user employs multiple 

antennas and receive multiple data streams), which does not seem to be completely addressed 

before. Furthermore, such a precoding structure results in interference-free parallel single-

user MIMO channels, which greatly reduces the scheduling complexity while simultaneously 

improves overall system performance.  

5.2.1 THP for multiuser MIMO 

We consider a multiuser MIMO system with M  antennas at the base station and iN  

antennas at the ith user (each receive antenna is associated with a data stream), 1 i K≤ ≤ . A 

block diagram for the proposed THP scheme is given in Figure 5.1, and briefly illustrated 

here. At the transmitter, we use ix  to denote an 1iN ×  symbol vector to be transmitted by 

user i . The backward signal vectors 'i sb  from the feedback filter bank B  with size 

1 1

K K
i ii i

N N
= =

×∑ ∑ are added to the intended transmitted vectors 'i sx  to pre-eliminate the 

interference from previous users (users from 1 to 1)i − , and the resultant signals are fed to 

modulo-operators, which serve to limit the transmit power. The output signals of modulo-

operators are then passed through a power control unit before being transformed by 

feedforward filters 'i sW  to further remove the interference from future users 
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(users from 1 to )i K+ . Finally, the signals are launched into the MIMO channels. As all 

interference is taken care of at the transmitter side, the receivers at the mobile users are left 

with some simple operations including power scaling (which is realized through automatic 

gain control (AGC) in Figure 5.1), reverse modulo-operation, and single user detection. The 

interested reader is referred to [17] for details. 

In the following, we focus on the design of feedforward matrices 1{ }K
i i=W  with size 

iM N×  and the feedback filter bank B . We assume user channels 1{ }K
i i=H are quasi-static, 

whose information is perfectly known at the base station for the moment. The received 

signals at the receivers are then given as    

 1 1 2 2( ... ) , 1 ,i i K K i i K= + + + + ≤ ≤y H W s W s W s n  (5.1) 
 
where is  with size 1iN ×  denotes the output signal vector of the modulo operator for user i, 

and in  is the circularly symmetric complex Gaussian noise vector with covariance matrix 

2σ I . Define the overall system channel transfer function as  
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H W H W H W

H
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 (5.2) 

 
The design target for feedforward matrices 1{ }K

i i=W  is to make H  a lower triangular 

one. This can be carried out in two steps. First, we enforce H to be block lower triangular and 

next we further enforce each block on the diagonal to be lower triangular. Let 1i+Γ denote the 

matrix of coefficients of orthonormal basis spanning 1 2( , ,..., )inull H H H . The matrix H  
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would be block lower triangular if we let i i i=W Γ A , where iA  is yet to be determined. The 

matrix 1i+Γ  can be determined through singular value decomposition (SVD) as follows. 

 

 
           Figure 5.1 Block diagram of the proposed THP for multi-user MIMO downlink 
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H
H

U Σ V

H
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 (5.3) 

 

then the rightmost 
1

i

k
k

M N
=

− ∑  columns of iV  compose the joint null space of  1 2, ,..., iH H H , 

denoted as 1i+Γ . Now we further enforce i i iH Γ A  to be lower triangular, which is realized 

through QR decomposition ( )H
i i i i=H Γ Q R , and let (:,1: )i i iN=A Q  (the first iN  columns 

of iQ ) 
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Once the feedforward matrices 1{ }K
i i=W  are determined as above, the design of the 

feedback filter bank B  endeavors to eliminate the residual inter-stream and inter-user 

interference. Decompose =H GL , where G  is a diagonal matrix that extracts the diagonal 

elements of H  and L  is a lower triangular matrix with unit diagonal elements, then         

 .= −B I L  (5.4) 
 
is what we desire. 

5.2.2 THP-Aided Scheduling for Multi-user MIMO Downlink 

A direct consequence of the THP design is that, each user sees an interference-free 

MIMO channel, as evidenced from the following relationship (cf. Figure 5.1)     

 [ ]1( ) ( ) ,−= + = + = + − +y Hs n G Ls G n G x s b n  (5.5) 
 
where 1 2 ...

TT T T
K =  y y y y , 1 2 ...

TT T T
K =  s s s s  and 1 2 ...

TT T T
K =  n n n n are 

given as in (5.1); 1 2 ...
TT T T

K =  x x x x represents the transmitted data symbols with 

tr( [ ])H

i i iE P≤x x  and 
1

K

i
i

P P
=

≤∑ ; and 1 2 ...
TT T T

K =  b b b b collects the input vectors to the 

modulo-operators for all users At the receiver side, a power scaling with 1
ii
−G  (1 i K≤ ≤ ) 

followed by the modulo-operator and decision device suffices to recover ix . Due to the THP 

design, i iH W  is the equivalent single-user channel matrix for user i. In this chapter, we 

follow the common practice in literature and adopt the information-theoretic spectral 

efficiency (assuming a Gaussian codebook and equal power allocation) 

 2 2log ( )( ) ,1 ,Hi
i i i i i

i

PR i K
N σ

 
= + ≤ ≤ 

 
I H W H W  (5.6) 
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as the metric14 for the user channel quality, which can be readily modified to accommodate 

actual modulation and coding schemes.  

Based on the above observations, a simple multiuser scheduling scheme is given 

below. 

Step1. Schedule the first user whose index is 2 21
arg max log .Hi

i ii K
i

P
N σ≤ ≤

 
+ 

 
I H H  

Step2. Based on the selected user(s), compute the feedforward matrix iW , then select among 

the remaining users whose equivalent channel matrix i iH W will result in the largest 

contribution (as given in (5.6)) in sum rate).15 

Step3. Repeat Step 2 until a given number of users has been selected, or no more users can be 

added due to channel rank deficiency.  

This THP-aided multiuser scheduling scheme will be compared with various sub-optimal and 

optimal approaches in Section 5.4 to demonstrate its advantages. 

5.3 Analysis of Imperfect Feedback 

In previous discussion, perfect CSI is assumed available at the transmit side for PHY 

and MAC design. In practice, especially for FDD systems, such information is typically 

measured at the receiver side and fed back to the transmitter with some dedicated channels. 

The cost of perfect feedback in multiuser MIMO, if ever possible, grows quickly with the 

number of antennas, users, and system bandwidth, while in real systems the dedicated 

feedback channels are typically of low rate and prone to errors. In this section, we exploit the 

                                                
14 Rigorously speaking, (5.6) is not the achievable rate of the THP, however, it is shown in [7] that the sum rate 
achievable using THP can converge to the actual sum rate capacity at high SNR. 
15 Note that existing designs need not be changed, as newly added users are invisible to already selected users.  
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LRP technique to effectively reduce feedback and further quantify the system throughput loss 

under imperfect feedback. 

5.3.1 Channel Prediction via LRP  

LRP is a linear prediction method based on autoregressive modeling. With this 

technique, one can measure and feedback the time-varying CSI at a much lower rate than the 

data rate. Assume the complex fading process ( )h t  is sampled at a rate 1/s sf T= , which is at 

least twice the maximum Doppler shift dmf but can be much slower than the data rate. The 

sampled data is represented by ( )n sh h nT= . Then the linear MMSE prediction of the future 

CSI sample n̂h  based on p  previously observed CSI samples16 1 2, ,...,n n n ph h h− − −  is                          

 
1

ˆ ,
p

n j n j
j

h d h −
=

= ∑  (5.7) 

 
where { }jd  are the coefficients of the linear prediction filter and p  is the prediction order. 

This approach can also be extended to predict 1τ > samples ahead. Clearly, multi-step 

prediction can tolerate more delay in the CSI feedback with some loss in performance. The 

predicted samples can be interpolated to forecast the fading samples at the same rate as data 

rate. The reader is referred to [29] for a detailed description of this technique. 

 
5.3.2 Actual Achievable Rate under Imperfect CSI 

With imperfect feedback, THP design will not be able to completely eliminate all the 

interference, which necessarily degrades the system performance. Assume the estimated CSI 

for the ith user is iH
)

 ( 1 i K≤ ≤ ), and the designed feedforward matrix based on iH
)

 

                                                
16 We assume the samples of the fading channels are perfectly obtained through trainings. 
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(1 i K≤ ≤ ) is iW
)

. In the precoding stage, the interference from the previous users for user i 

seen by the transmitter is i j jsH W
) )

 (1 1j i≤ ≤ − ), while the actual interference is i j jsH W
)

. 

Therefore the residual interference from the previous users for the ith user is ( )i i j js−H H W
) )

 

(1 1j i≤ ≤ − ). Similarly the interference from the future users is i j jsH W
)

 ( 1i j K+ ≤ ≤ ). As 

for the self-interference due to the imperfect channel estimation, we can decompose i iH W
)

 

into three non-overlapping parts representing its lower triangular, diagonal, and upper 

triangular components as ( ) ( ) ( )i i i i l i i d i i u= + +H W H W H W H W
) ) ) )

. Then the interference from 

user i itself is (( ) ) ( )i i i l i i u− +H H W H W
) ) )

. In summary for the ith user, the actual received 

signal is given by 

 

( )
desired signal self-interference

1

1

interference from previous users

1

interference from future users

( ) (( ) ) ( )

  ( )

i i i d i i i i l i i u i

i

i i j j
j

K

i j j
j i

−

=

= +

= + − + +

− +∑

∑

y H W s H H W H W s

H H W s

H W s

644444744444864748) ) ) )

) )

144424443

)

142
,1 .i i K+ ≤ ≤n

43

 (5.8) 

 
With , ( )i d i i d≡H H W

)
, , (( ) ) ( )i s i i i l i i u≡ − +H H H W H W

) ) )
, , ( )i j i i i j< ≡ −H H H W

) )
, and 

,i j i i j> =H H W
)

, the achievable rate for the kth substream of user i  (assuming Gaussian coding 

and equal power allocation) is given as      

 *
, 2 , ,2log 1 ( , ) ( , ) .i

i k i d i d
i I

PR k k k k
N σ

 
= + 

 
H H

)
 (5.9) 

with   
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where ( , )k k  denotes the kth diagonal element of a matrix and ( ,:)k  represents the kth row of 

a matrix. The achievable rate for user i  with imperfect feedback is then given by ,
1

iN

i i k
k

R R
=

= ∑
) )

. 

It is observed that the noise plus interference matrix 

1
2

, , , , , ,
1 1

i K
j jH H Hi

i s i s i j i i j i i j i i j i
j j ii j j

P PP
N N N

σ
−

< < > >
= = +

+ + +∑ ∑I H H H H H H  is typically a diagonally-dominant 

matrix (a matrix whose diagonal elements are much larger than the off-diagonal ones), 

therefore the actual achievable rate of user i can be approximated by 

                  

 

1
2 *

, ,
*

2 , , 1
* *

, , , ,
1 1

log

i
i s i s

ii
i i d i d i K

j ji
i j i i j i i j i i j i

j j ij j

P
NPR P PN

N N

σ
−

−

< < > >
= = +

  + +  
  ≈ +  
 +     

∑ ∑

I H H
I H H

H H H H
 (5.11) 

 
5.4 Numerical Results  

To illustrate the effectiveness of our proposed THP based multiuser MIMO downlink 

scheduling scheme, the total average throughput of our scheduling scheme is compared with 

that of several well-known schemes in literature, assuming that L users will be scheduled 

simultaneously and each selected user receive as many streams as its antennas. The HDR 

approach [62], i.e., serving only the best user at each time, is used as a reference. In contrast, 

a thorough search based on DPC readily serves as a performance upper bound. Very recently, 

some preliminary study on feasible multiuser MIMO scheduling schemes is presented in [1], 
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which in some sense bears the same spirit as the “spatially compatible” scheduling 

mentioned before with a conservative view on the physical layer. In this work, the transmit 

antennas are partitioned among active users. Each user feedbacks the indices of the iN  

antennas it desires together with those of the k
k i

N
≠

∑  antennas it wants the other users to be 

assigned to such that his instantaneous channel capacity is maximized. While this scheme is 

relatively easy to implement and has some throughput advantages over HDR (particularly for 

large K  and moderate SNR), it suffers from two drawbacks as indicated above. One is 

computational complexity, since optimal scheduling requires a search of 

i

ki
k i

M N
M

NN
≠

− 
  
      

 
∑

possibilities at each user. Second, as shown in Figure 5.2, it is still 

interference limited at high SNR. 

In Figure 5.2, we compare the system throughputs of different scheduling schemes as 

a function of total transmit SNR. We consider a symmetric multiuser MIMO downlink 

system with 4M =  antennas at the BS and 2iN =  antennas at each of 20K =  mobiles, and 

schedule at most 2L = users in each time instance. It can be seen that our joint THP and 

scheduling scheme performs much better than the HDR and the MMUD-L scheduling 

scheme in [1], and approaches the performance of dirty paper coding (a thorough search for 

two best users), while with much affordable computational complexity. 
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                    Figure 5.2 Performance comparison of different scheduling scheme  
 

 

                          Figure 5.3 Performance under imperfect CSI feedback 
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In Figure 5.3, we re-evaluate our scheduling scheme with imperfect CSI feedback. A flat 

Rayleigh fading channel with Jakes’ model with a Doppler frequency of 200 Hz 

(corresponding to a vehicular speed of 65 mi/h at a carrier frequency of 2 GHz) is considered. 

We use a channel sampling frequency of 1600Hzsf =  and the prediction order in (5.7) is 

taken as 50p = , while the transmit data rate of each user is 128kbR =  bps. So the channel is 

measured and fed back once every 80 symbols. We choose two different prediction steps for 

evaluation 1τ =  and 4τ =  (which corresponds to a prediction of 320 data symbols ahead). 

From Figure 5.3, we can see that even with imperfect CSI and slower feedback rate through 

LRP, our scheme still has a significant gain over the MMUD-L scheme and single best user 

scheduling scheme. Our simulation also indicates the good match between the true value and 

the approximate value of the total average rate under imperfect feedback.  

5.5 Summary 

In this chapter, we proposed a joint THP and scheduling scheme for multi-user 

MIMO downlink. Compared to some existing scheduling schemes, the proposed scheme 

greatly reduces the scheduling complexity while simultaneously improves overall system 

performance. Strictly speaking, the proposed THP-aided multiuser scheduling is not 

necessarily globally optimal, but we conjecture that the loss in optimality is negligible (when 

the number of scheduled users is given) and plan to undertake a comprehensive analysis of 

this approach.  
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Chapter 6 
 

Conclusions and Future Work   

In this dissertation, we studied several interesting topics with related to MIMO 

wireless communications, the main contributions and future work of the dissertation are 

summarized below: 

Chapter 2:  By deriving the approximation of the PDF of 2
maxσ  at the origin, we 

obtain the asymptotic average SER (in terms of SNR) for MIMO MRT/MRC systems, based 

on which we verify the two observations made in [13]. We also compare the MIMO 

MRT/MRC system with two other widely deployed MIMO diversity schemes: one is joint 

space-time block coding and maximum ratio combining (STBC/MRC), and the other is 

selection combining at both ends (SC/SC). This comparison enables better understanding of 

MIMO diversity systems.  

Our future work will include the analysis of the diversity scheme that employs hybrid 

selection scheme at both ends.   

Chapter 3:  Both incremental and decremental antenna selection rules with link 

adaptation are proposed for uncorrelated MIMO systems. Both rules are realized with 

recursive algorithms, thus greatly reducing the computational complexities and feasible for 

practical implementation. Rigorously speaking, neither rule provides the optimum solution, 

but the performance loss is negligible. For uncorrelated MIMO channels with independent 

and identically distributed (i.i.d) Rayleigh fading, we propose an antenna selection rule based 

on the expectation of the optimal number of active antennas. Based on this rule, the 

computational complexities can be further reduced while little performance degradation 
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would be incurred. Such computation reduction is especially prominent for large MIMO 

systems. For correlated MIMO channels, we propose an incremental antenna selection rule 

with link adaptation based on the slowly varying channel covariance information, which is 

also implemented in a recursive way to avoid the computational complexity of exhaustive 

search.  

Our future work includes more detailed computational complexity analysis of the 

“incremental” and “decremental” selection rules. The theoretical study on the performance 

gap between out proposed methods and the optimal one is also of our interest.   

Chapter 4: We derive explicit expressions for average (ergodic) capacity of joint 

spatial diversity and multiuser diversity systems when the number of users goes to infinity 

while the number of antennas keeps fixed. As expected, the average system capacity and 

scheduling gain grow with the number of users; and we contribute by providing a rather 

general asymptotic expression that builds an explicit connection with key system parameters 

and reveals their interactions, and by providing a strict proof of convergence that is in a 

stronger sense than what is assumed in previous study. As an application, we confirm that in 

this scenario, there is a tradeoff between spatial diversity and multiuser diversity for an open-

loop spatial diversity system, but the detrimental effect of multiple transmit antennas can be 

avoided with the closed-loop schemes. We also show that all closed-loop schemes perform 

similarly in this scenario, in the sense that their differences only occur at the second-order 

(i.e., log log K ).  We show rigorously that the scheduling gain nonetheless diminishes to zero 

as the size of antenna arrays grows while the number of users keeps fixed, no matter for 

open-loop or closed-loop spatial diversity systems, through asymptotic study on the mean 
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and variance of the effective link SNR. In this sense, multiuser scheduling is not worthwhile 

in an antenna-dominant environment. On the other hand, different spatial diversity schemes 

do make significant difference with respect to system capacity for round robin scheduling.   

Since the scheduling gain asymptotically decreases with the number of antennas and 

increases with the number of users, it’s interesting to study the asymptotic trend when both 

are allowed to grow. We reveal how the scheduling gain behaves depending on the relative 

growth rate between the two. In particular, we determine a critical point, only beyond which 

multiuser scheduling is meaningful. 

Our future work includes study of the interaction between spatial diversity and 

multiuser diversity in a correlated fading scenario, and extension to the situations when 

users’ channels are heterogeneous, together with the associated fairness issues. The 

interaction of multiuser diversity and the diversity-multiplexing tradeoff in MIMO systems 

also deserves further study. 

Chapter 5:  We provide a THP structure for multiuser MIMO, and based on this 

structure, we propose a multiuser scheduling law. The proposed scheme greatly reduces the 

scheduling complexity while simultaneously improves overall system performance.   

In our work, there is an inherent limitation on the maximum number of users that can 

be simultaneously supported for our proposed scheme, due to the geometric structure 

revealed in Section 5.2. Therefore whether there exists an optimal number for the scheduled 

users, in terms of system throughput averaged over all channel realizations, remains open and 

constitutes our future work. 
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APPENDIX A:  Some proofs of chapter 2 

 
Proof of Lemma 1: By Maclaurin Series expansion 
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we can obtain the approximation of ( )c xΨ  at 0x +=  after some manipulation as                                                 
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with , 1/( 1),i j t s i j= − + + −Φ  for , 1,2,...,i j s= . The determinant of Φ  can be obtained in a 

similar fashion as that of a Hilbert matrix. After some algebra we get           
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Proof of Lemma 2: From 1 1 2 2s t s t+ > + , we can obtain 1 2 2 1s s t t< < < . As   
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The proof of Lemma 2 is equivalent to show that    

 1 1 1 1 2 2 2 2(1 ... ) ... ( ... ( 1)) (1 ... ) ... ( ... ( 1)).t s s t t s s t× × × × × × + − > × × × × × × + −  (A.6) 

The left hand side of (A.6) can be rewritten as                    
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Similarly the right hand side of (A.6) is given by                    
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It is not difficult to get 
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the same factors in (A.7) and (A.9), we can observe (A.7) is definitely larger than (A.9). 
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APPENDIX B: Some proofs of chapter 3 

Lemma3. For two ordered real sequence ni
iia =
=1}{  and ni

iib =
=1}{  such that naaaa ≤≤≤≤ ....321  

and nbbbb ≤≤≤≤ ....321 , if nccc ,....,, 21  is any permutation of nbbb ,....,, 21 , then 

∑∑∑ +−≥≥
i

inii
i

ii
i

i bacaba 1 .  

Proof: for any ordered multiplication, if ji > , ji cc ≥ , consider  

           nnjiij cacacacacaT +++++++= ..........2211 , 

          1 1 2 2 .... ... ...j j i i n nS a c a c a c a c a c= + + + + + + + ,  

      ( )( ) 0i i j j i j j i i j i jS T a c a c a c a c a a c c− = + − − = − − ≥ .  

By induction, we can see if we sort ib  in an ascending order, the corresponding summation 

will be maximized. 

Proof of Lemma4.a: From [23], we can see that matrix QR decomposition is related to 

Gram-Schmidt orthogonalization, hence it is not difficult to see that )1( +kR  shares the same 

first k  diagonal elements with )(kR  and ( 1)k +Q  shares the same first k  columns with 

( )kQ  while the thk −+ )1(  one given by 
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 In the thk −+ )1(  step, assume the QR decomposition of ( 1)k+H  is )1()1( ++ kk RQ , then  
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Hence the amplitude of the thk −+ )1(  diagonal element of )1( +kR  is given by (B.3), 

which is  

 1, 1 ( ) ( ) .H H H
k kr k k+ + = −h h h Q Q h  (B.4) 

                                                                              
Proof of Lemma4.b: In the thk −+ )1(  step, assume column )1( +kh  is selected. 

Partition )(kQ  as [ ])()1()( kkk qQQ −= , where )(kq  is the rightmost column of )(kQ . 

From (B.4), we get         
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    According to our selection criterion, we know in the thk − step, )(kh is the selected 

column vector in the remaining of H  such that xQQxxxx )1()1()( −−−= kkf HHH  is 

maximized. Thus,  
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Proof of Lemma 5.a: The Cholesky factor of 

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where ( )kR is the Cholesky factor of ( )k

TR , η  is a 1×k  vector, 0  is a 1×k  vector comprising 

all zeros elements,  and 1,1 ++ kkr  is the scalar we are interested in. Writing out the Cholesky 

decomposition of )1( +k
TR :   
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we have       
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From (B.9), we can get                      

 ( ) 1
1, 1 1 1 ( ) .H H k

k k Tr −
+ + = − = −η η v R v  (B.10) 

 
Proof of Lemma5.b: Assume )1( −k

TR  , )(k
TR  and )1( +k

TR are the covariance matrix for the 1−k  , 

k  and 1+k selected antennas respectively.  Also we assume )1( −kR   and )(kR  are the 

Cholesky factors of )1( −k
TR , )(k

TR  respectively. According to our recursive selection rule, 



 96 

)1( +k
TR  is an “enhanced matrix” based on )(k
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TR  is an “enhanced matrix” based 
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R , where 1−kv  is the 1)1( ×−k  covariance vector between the 

thk −  selected antenna and the previous )1( −k  selected antennas. Then according to (B.10),              
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Similarly,           

 1 1
1, 1 1 ( ) ( ( ) ) .H H

k k k kr k k− −
+ + = − v R R v  (B.12) 

Note 








×
×−

=
−

−
H

k
k

0
R

R
1

1 )1(
)( , where “×” denotes irrelevant entries. Assuming the 

rightmost column of 1( )k −R  is kb , then  

 

1 1
1, 1

1
21

1
1

1 ( ) ( ( ) )

( 1)
1 ( ( 1) )

( 1)
1 ( ( 1) ) .

H H
k k k k

H H H
k k k kH

H H
k kH

r k k

k
k

k k

− −
+ +

−
−

−
−

= −

 −
 = − − −   

 

 −
 ≤ − −   

 

v R R v

R
v R 0 v v b

0

Rv R 0 v
0

 (B.13) 

                                
Assuming kv~  is a 1)1( ×−k  vector truncated from kv  by discarding the last element of kv . 

Thus (B.13) becomes ( 1) 1
1, 1 1 ( )H k

k k k T kr − −
+ + ≤ − v R v% % . According to our selection rule, in the 

thk −  step, we choose the 1)1( ×−k  vector 1−kv  such that ( 1) 1
, 1 11 ( )H k

k k k T kr − −
− −= − v R v  is 

maximized, hence ( 1) 1
1, 1 ,1 (( )H k

k k k T k k kr r− −
+ + ≤ − ≤v R v% % .    
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APPENDIX C: Some proofs of chapter 4 

Proof of Theorem 1:  

1). Preliminary: 

In order to prove Theorem 1, we first provide some preliminary results in [60] through the 

following lemma. Based on this lemma, a corollary follows, which is key to deriving a tight 

lower bound for ( ),S K M . 

Lemma 7: Let 1,..., KX X  be i.i.d. random variables as given in Lemma 1. If lim ( ) 0
x

g x c
→∞

= ≥ , 

then the asymptotic expansion of ( )log log ( )K
K KF b xg b − +   at Kb  is given by 
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 (C.1) 

where 1(1 1/ )Kb F K−= − . Furthermore if lim[ ( )]KK
K g b

→∞
′⋅ = ∞ , the terms in the last group of 

(C.1) starting with the term / 2xe K− are negligibly small compared to the terms in the first 

group.  

Corollary 2: Let 1,..., KX X  be i.i.d. random variables as given in Lemma 1. If  

lim ( ) 0
x

g x c
→∞

= ≥ , 1( ) (1/ )g x O xδ′ =  with 1 0δ > , and ( )( )2logKb O K δ=  with 20 1δ< ≤ , then 

there exists a 0κ > , such that                  

 ( ){ }1

1P log log max log log 1 .
logk Kk K

K X b K O
K

κ κ
≤ ≤

 
− ≤ − ≤ ≥ −  

 
 (C.2) 

Remark: The proof follows readily from Lemma 4 by choosing log logx K= . This result has 

been demonstrated in [53] (see (A5)) with conditions 0c >  (in this case we can let cκ = ), 

( )( ) (1/ )m mg x O x= and ( )logKb O K= .  
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2). Tight Lower Bound for ( ),S K M :  

Apply an extension of the Markov’s inequality, we have (for sufficiently large K )            

 

( ) ( )( )( )
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  (C.3) 

where the second inequality follows from Corollary 2, and the last one follows from 

( )( )2logKb O K δ=  with 20 1δ< ≤ . 

3). Tight Upper Bound for ( ),S K M : 

As a final step, we provide an upper bounded for ( ),S K M , which coincides with the lower 

bound asymptotically. Let ( ) ( )( )1
, log 1 maxt kk K

S K M γ γ
≤ ≤

= + , which is positive with probability 

1, then                    
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 (C.4) 

In the following, we show that the second term above diminishes as K → ∞ . First note                                                 

 ( ) ( ) 1( , ) 1 ( , ) 1 .
x

K

t

eP S K M x P S K M x Fγ γ
 −

> = − ≤ = −  
 

 (C.5) 

Since 
1 ( )

lim 0
( )x

F x
c

f x
γ

γ
→∞

−
= ≥ , we can find positive constants 2c  and 0x , such that 

( )21 ( )F x c f xγ γ− < ,  when 0x x> . Thus for sufficiently large x  we have 
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Therefore for sufficiently large K  and ( )( )2logKb O K δ= ,                        
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where the second to last equality uses the fact ( )( )1 1/KF b K− = . 

Based on (C.3), (C.4) and (C.7) we can conclude                    

 ( )( )( ) ( ){ }1
lim log 1 max log 1 0.t K t KK k K

E bγ γ γ
→∞ ≤ ≤

+ − + =  (C.8) 

  ■ 

 
Proof of Corollary 1: First we can check that  

 1 1 ( )
lim 1,

( )
v

x

F x
qvx

f x
γ

γ

−

→∞

 −
=  

 
 (C.9) 

when ( ) ~
vp qxf x x eγ α − .  This leads to the conclusion that lim ( ) 0

x
g x c

→∞
= ≥  ( 0c =  when 

1ν > ),  and 1( ) vg x O
x

 ′ =  
 

, therefore by Theorem 1, we are left to verify (4.9).  
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    It can also be referred from (C.9) that 
( )

1 ( )lim 1
x

F x
xϕ→∞

−
= , where ( ) 1 /

vp v qxx x e qvϕ α + − −= . 

Therefore, we only need to solve ( ) 1/Kb Kϕ = , i.e.,                                                   

 1 1log log .v
K K

K p vb b
q qv q

α + −
= +  (C.10) 

 The first order approximation for Kb  is readily given by 
1/

1 log
v

K
q

τ
 
 
 

. To obtain the second 

order approximation, we just replace Kb  on the right hand side of (C.10) with 
1/

1 log
v

K
q

τ
 
 
 

 

to get                            

 1 1log log log ,v
K

K p v Kb
q qv vq qv

α α+ −
= +  (C.11) 

which leads to 
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  ■ 

 
Proof of Lemma 8: When x → +∞ , / ( ) 1MRT MRCF xγ → , therefore                    

 / 1( ) ~ lim ( ( ) ( )).MRT MRC
c cx

f x tr x xγ
−

→∞
Ψ Φ  (C.13) 

As ,lim{ ( )} lim ( 1, ) ( 2)!c i jx x
x t s i j x t s i jγ

→∞ →∞
Ψ = − + + − = − + + − , letting t sλ = − , we have 
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Meanwhile              
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Therefore                
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where the coefficients { }ia  come from linear combinations of elements in 1( )c
−Ψ +∞ . We are 

only concerned with the dominant term, whose coefficient can be obtained as follows.                          
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  ■ 

 

Proof of Theorem 2: Let M
M

M

X γ
µ

= , lim 0M
M

M

σ
µ→∞

=  indicates that 
2

1MX →  as M → ∞ .  

First we show the weaker conclusion that the relative scheduling gain diminishes as 

M → ∞ . Fix 0δ > . By Markov’s inequality, we have 
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 ( ) ( ) ( )log(1 ) (1 ) log 1 (1 )t M M t ME P Xγ γ δ γ δ µ+ ≥ ≥ − + − , (C.18) 

which together with 
2

1MX →  leads to 

 ( )
( ) ( )log(1 )

liminf lim (1 ) 1
log 1 (1 )

t M
MM M

t M

E
P X

γ γ
δ

γ δ µ→∞ →∞

+
≥ ≥ − =

+ −
. (C.19) 

Now we let 0δ →  to get  

 ( )
( )

log(1 )
liminf 1

log 1
t M

M
t M

E γ γ
γ µ→∞

+
≥

+
. (C.20) 

On the other hand, by Jensen’s Inequality ( )
( )

log(1 )
limsup 1

log 1
t M

M t M

E γ γ
γ µ→∞

+
≤

+
, which completes the 

proof of the weaker conclusion.  

It is known [12] that *

( 1)
2 1

M
Mk

KE
K

σ
γ µ

−  ≤ +  −
.  Using Jenson’s inequality, we have  

 ( 1)( , ) log 1 .
2 1

M
t M

KS K M
K

σ
γ µ

 − ≤ + +  −  
 (C.21) 

So  

( ) ( )

( 1)log 1
( , ) 2 10 lim lim 1 0
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M
t M

M M
t M

K
G K M K

R M

σ
γ µ

γ µ→∞ →∞

 − + +  −  ≤ ≤ − =
+

.  (C.22) 

We now turn to the proof of the convergence of the absolute scheduling gain. We can 

write  

 ( ) ( ) (1) (2)
(0,1) [1, )log log logM M M M M M MX X X X X Y Y∞= + = +I I .  (C.23) 

First we have  

 ( )(2)
[1, )0 ( 1)M M MY X X∞≤ ≤ − I .  (C.24) 

Therefore ( )(2) 0ME Y →  since ( )( ) ( )[1, )( 1) 1 0M M ME X X E X∞− ≤ − →I  as M → ∞ . In 

order to show that ( ) ( )( )(1)
(0,1)log 0M M ME Y E X X= →I , we make the following claim. 
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Claim 1:   If a random variable 0
P

nX →  as n → ∞ , ( ) 0
P

n E nX I X →  for any event E . 

This claim is easy to verify as ε∀ , ( ) ( )( ) 0n E n nP X I X P Xε ε> ≤ > →  as n → ∞ . 

Now that 
2

1MX →  we have log 0
P

MX → , as MX  is positive and the logarithm function is 

continuous. By claim 1 we in turn have ( )(0,1)log 0
P

M MX X →I .  This together with the 

uniform integrability of ( ){ }(0,1)log M MX XI results in 
1

(1) 0MY →  [28], and it follows that 

( ) ( )lim log 1 t MM
R M γ µ

→∞
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 (C.25) 

  ■ 

 

Proof of Lemma 9: Define 1 H

M
=B HH , assume ( )2

1b r> +  and ( )
2

max
1
M

λ =B H . 

Thus                 

( )( ) ( ) [ ] ( )( )( ) ( ) ( ) ( )( )( )max max max max max0, , .b bE E Eλ λ λ λ λ∞= +B B I B B I B  (C.26) 

Using dominated convergence theorem together with Theorem 3.1 of [69], we can obtain                 

 ( ) [ ] ( )( )( ) ( )2

max max0,lim 1 .bM
E rλ λ

→∞
= +B I B  (C.27) 

The remaining task is to show                   

 ( ) ( ) ( )( )( )max max,lim 0.bM
E λ λ∞→∞

=B I B  (C.28) 

We define two new N M×  matrices Y  and Z  based on H , with each entry of Y  being  

( ), , ,0,i j i j i jM
y h h

δ  
= I  and each entry of Z  being ( ) ( ), , ,,i j i j i jM

z h h
δ ∞

= I , where the detailed 
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definition of 0Mδ δ= → can be found in [69] (see the proof Lemma 2.2) and [5] (see the 

discussion below  1.8). What we need in this proof is following two results from [5][69]: 

 ( ) ( )( )4
1,1 1,12 ,

1 I 0,  as 0,
M

E h h M
δδ ∞

→ →  (C.29) 

and  
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where ( )( ) ( )( )'
1,1 1,1

1 HT T
N M N ME y E y

M
= − −B Y 1 1 Y 1 1 ( where s1  is an 1s ×  column vector 

with all one entries), 'b  be a real number such that ( )2 '1 r b b+ < < , and Mk k=  satisfies 

(4.3) and (4.4) of [69]. Further assume ' ' 1 H

M
=B ZZ , With these definitions, 
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 (C.31) 

The second term above admits        
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  From (C.29), we know the above expression approaches 0 as M  goes to infinity.  
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  For the third term, we have          
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Therefore the above expression also approaches 0 as M  goes to infinity. 

 Denote 'a b b= − . We have  

( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )( )' '
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According to Markov’s inequality, we have  
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Furthermore 
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Therefore  
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Again by (C.29), the above expression also approaches 0 as M  goes to infinity. Finally we 

have                     
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By (C.30), we have                                  
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Therefore from (C.34)-(C.39), we can obtain                         

 ( ) ( ) ( )( )( )'
max max,lim 0.bM
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=B I B  (C.40) 

From (C.31), (C.32), (C.33) and (C.40), we can get ( ) ( ) ( )( )( )max max,lim 0bM
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=B I B . 

Thus   
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In a similar fashion discussed above, we can show ( )42
max

1lim 1H

M
E r

M
λ

→∞

   = +    
HH , 

therefore    

2 2 2
max max max

1 1 1lim lim 0.H H H

M M
E E

M M M
σ λ λ λ

→∞ →∞

           = − =                      
HH HH HH  (C.42) 

  ■ 

 
 

 
 
 


