
Abstract

AXELLE CLAUDE PERSON. Solving homogeneous linear differential equations of order

4 in terms of equations of smaller order. (Under the direction of Michael F. Singer.)

In this thesis we consider the problem of deciding if a fourth order linear differential

equation can be solved in terms of solutions of lower order equations. There is a group

theoretic criteria which can be turned into a decision procedure for solving this problem.

Once the decision has been made that a certain type of equation can be solved in terms

of lower order equations we also give methods for producing the lower order equations

used for solving it.
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Chapter 1

Résumé

Ce travail porte sur l’étude des équations différentielles linéaires homogènes à coefficients

dans un corps différentiel k de corps des constantes algébriquement clos. En particulier

nous nous intéressons aux équations L(y) = a4y
(4) + a3y

(3) + a2y
(2) + a1y

′ + a0y = 0

d’ordre 4 et cherchons à les résoudre en exprimant leurs solutions à l’aide de solutions

d’équations d’ordre inférieur à 4.

Le problème de résoudre des équations différentielles en terme d’ordre moindre remonte

à Fano qui s’intéressa en 1900 aux relations entre les solutions d’une équation dans (12).

M.F.Singer donna une preuve de ces résultats qui utilise la théorie des groupes dans

(32), et en déduit un critère portant sur la nature du groupe de Galois G(L) associé à

une équation, qui permet de décider si celle-ci se résout en terme d’équations d’ordre

moindre.

Une manière de résoudre en terme d’ordre moindre est de factoriser. On sait factoriser
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CHAPTER 1. RÉSUMÉ 2

des équations différentielles linéaires sur le corps des coefficients (voir (5) et (19)) si bien

que nous considérons ici des équations irréductibles. Ulmer et Singer ont donné des al-

gorithmes efficaces pour trouver des facteurs d’ordre 1 sur une extension algébrique du

corps des coefficients ((37) et (40)). Récemment Compoint et Weil se sont également

intéressés à trouver des factorisations dans la clôture algébrique du corps des coefficients

((9)). D’autres cas de résolutions se présentent également; par exemple les solutions

d’une équation peuvent s’écrire comme le produit de solutions de deux équations d’ordre

2.

L’idée est d’utiliser les travaux de Hessinger qui s’inspirent d’un théorème de Chevalley

permettant de calculer la composante connexe de G(L) en factorisant un certain nombre

d’équations associées à des constructions obtenues à partir de L. Une fois la nature du

groupe determinée il est alors possible de développer des algorithmes calculant les solu-

tions d’une équation qui se résout en terme d’ordre moindre.

Dans cette thèse on décrit toutes les situations possibles de résolution d’une équation

d’ordre 4 en terme d’ordre moindre. Pour chaque cas nous expliquons pourquoi la struc-

ture du groupe de Galois nous permet d’être sûr que l’on pourra résoudre en terme d’ordre

moindre, puis nous donnons une méthode pour produire les équations d’ordre inférieur

en question. Nous suivons donc le plan suivant:

• Le chapitre 3 est une introduction succincte à la théorie de Galois différentielle.

Dans un premier temps nous y introduisons les notions de corps différentiel, groupe

de Galois différentiel et extensions de Picard-Vessiot. Puis nous rappelons le lien
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entre D-modules et équations ou systèmes différentiels ainsi que l’effet d’un change-

ment de base sur une équation. Ensuite nous rappelons quelques propriétés de

factorisation d’opérateurs différentiels, ainsi que le critère de M.F. Singer pour la

résolution en terme d’ordre moindre, rappelons l’importance des contructions et

finalement donnons quelques résultats de résolution dans le cas d’équations d’ordre

2 et 3.

• Dans le chapitre 4 nous rappelons des notions de base sur les algèbres de Lie puis

donnons la liste des sous-algèbres irréductibles de sl4(C) et leurs représentations.

Nous y donnons la classification des sous-groupes de Sl4(C) par Hessinger puis

traduisons cette classification en terme d’équation différentielle dans le théorème

9. Nous y rappelons également la méthode utilisée par Hessinger pour distinguer

les sous-groupes primitifs infinis de Sl4(C) puis consacrons chaque section suivante

à l’étude des cas nous intéressant. Dans chaque cas nous expliquons pourquoi l’on

peut résoudre en terme d’ordre moindre et donnons une procédure pour calculer

les équations d’ordre 2 utilisées pour la résolution.

– Le premier cas est celui où l’algèbre de Lie est réductible. Dans ce cas

l’équation factorise sur une extension algébrique du corps des coefficients. Ce

cas contient les équations réductibles ainsi que celles qui possèdent des solu-

tions liouvilliennes (i.e. peuvent se résoudre en terme d’équations d’ordre 1).

Ces cas ont déjà fait l’objet d’études approfondies (voir (39) et (40)), et nous

nous contentons de donner un exemple de méthode de résolution.
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– Le deuxième cas est celui où l’algèbre est sl2(C) avec une représentation d’ordre

4 irréductible. Dans ce cas l’équation est équivalente à la troisième puissance

symétrique d’une équation d’ordre deux.

– Dans le troisième cas l’algèbre de Lie est so4(C) et l’équation est équivalente

au produit symétrique de deux équations d’ordre 2.

– Le dernier cas traite la situation où l’algèbre est sl2(C) mais avec une représentation

réductible cette fois, cas dans lequel nous écrivons l’équation comme un plus

petit multiple commun de deux équations d’ordre 2 sur une extension algébrique

de degré 4, 6 ou 12 du corps des coefficients.

• Le chapitre 5 est consacré à l’application des méthodes développées dans le chapitre

4 sur des exemples. La structure de ce chapitre respecte l’ordre d’étude du chapitre

précédent et pour chaque exemple nous expliquons la technique de construction,

comment calculer le groupe de Galois et les problèmes rencontrés à cette étape,

puis produisons les équations d’ordre deux nécessaires à la résolution.

• Finalement dans le chapitre 6 nous résumons ce qui précède en soulignant les

principales difficultés rencontrées pour la résolution de ce problème.



Chapter 2

Introduction

The problem of solving a differential equation in terms of equations of lower order goes

back to Fano ((12)) whose results were reproven by M.F. Singer ((32)) from a group

theoretical perspective. Thanks to the work of S.A. Hessinger ((17)) one can decide if

a linear differential equation of order four is solvable in terms of lower order equations

using group theoretical considerations. Her results can be used for developing algorithms

to calculate the solutions of a fourth order equation that is solvable in terms of second

order equations. The most popular problem so far has been to study the equations whose

solutions can be written as the products of solutions of two second order linear differential

equations (see (4), (41)), but other cases need to be considered. For example the equation

L4(y) = y(4) − 10xy(2) − 10y′ + 9x2y is the third symmetric power of the Airy equation

L(y) = y′′ − xy, hence its solutions are {y1
3, y1

2y2, y1y2
2, y2

3} where {y1, y2} is a basis of

solutions of the Airy equation.

5
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In this paper we give all the situations one can encounter while solving a fourth order

linear differential equation in terms of lower order. For each situation we explain the

criteria that allows us to decide of the solvability, and then we show that one can produce

the corresponding lower order equations.

The first part is an introduction to Differential Galois Theory and other algebraic results

that will be needed for solving our problem, as well as known results for the case of

equations of order less than four. The second part recalls how the study of Lie algebras

gives a decision criteria for solvability and enumerates a list of cases one can encounter.

Then each following part is devoted to one particular case for which we explain the

reasons for solvability and give a procedure to compute the equations of order 2.

The first case we consider is the one where the Lie Algebra is reducible, for which we

give an example where our equation factors over an quadratic extension. The second

case is when the Lie algebra is sl2(C) with irreducible representation, which is when we

write the fourth order equation equivalent to the third symmetric power of a second order

equation. The third case is when the Lie Algebra is so4(C) and the equation is equivalent

to the symmetric product of 2 second order equations, and the last case is when the Lie

Algebra is sl2(C) with reducible representation from which the equation can be written

as the least common left multiple of 2 equations of order 2 over an algebraic extension

of degree 4, 6 or 12 of the field of coefficients.



Chapter 3

Differential Galois theory and

known results

In this section we will present the basic notions of differential Galois theory needed for

solving our problem, as well as some results about the representation theory of Lie Alge-

bras. Then we give a brief summary of how to solve equations of second and third order

using lower order equations.

3.1 Differential Galois theory

Definition 1 Let k be a field.

A derivation on k is an operation δ : k 7→ k such that ∀a, b ∈ k, δ(a + b) = δ(a) + δ(b)

and δ(ab) = δ(a)b + aδ(b).

7
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A differential field (k, δ) is a field k together with a derivation δ on k. Given a differ-

ential field (k, δ), the set {c ∈ k|δ(c) = 0} is a subfield of k called the field of constants

of k, denoted Const(k), or more simply C.

A differential field extension of (k, δ) is a differential field (K, ∆) such that K is

a field extension of k and ∆ is an extension of the derivation δ to a derivation on K.

In this thesis we will always assume that k is of characteristic 0 and that C is alge-

braically closed (e.g. (Q̄(x), d
dx

)).

We will write y(n) instead of δn(y) and y′, y′′, · · · for δ(y), δ2(y), · · · .

If F ⊂ E are differential fields and S is a subset of E, we denote by F < S > the smallest

subfield of E containing F and S. It is the field generated over F by the elements of S

and their derivatives.

Whenever we refer to a differential equation L(y) = 0 we will mean an ordinary ho-

mogeneous linear differential equation L(y) = y(n) + an−1y
(n−1) + · · · + a1y

′ + a0y = 0

with coefficients in a differential field k. To this equation one associates the differential

operator L = δ(n) + an−1δ
(n−1) + · · · + a0.

Definition 2 Let K1 and K2 be two differential extensions of k. A differential k-

isomorphism between K1 and K2 is a field isomorphism that leaves k fixed and commutes

with δ.

The Differential Galois group G(K/k) of a differential field extension K of k is the



CHAPTER 3. DIFFERENTIAL GALOIS THEORY AND KNOWN RESULTS 9

set of all differential k-automorphisms of K.

A fundamental system of solutions of L(y) = 0 is a set {y1, · · · , yn} of solutions of

L(y) = 0 that are linearly independent over C, which is the case if and only if the wron-

skian Wr(y1, · · · , yn) = det(W ) is not equal to zero, where W = (yi
(j))1≤i≤n,0≤j≤n−1.

The set of solutions of L(y) = 0 is a vector space over C, of dimension at most n ((24)

p.21).

Definition 3 Let L(y) = 0 be a homogeneous linear differential equation of order n

with coefficients in a differential field k. A differential field extension K of k is called a

Picard-Vessiot extension (PVE) of k for L(y) = 0 if the following hold:

• K = k < y1, · · · , yn >, where {y1, · · · , yn} is a fundamental system of solutions of

L(y) = 0.

• Const(K) = Const(k).

If C is algebraically closed, given any such equation L(y) = 0, there exists a PVE K

for L(y) = 0 which is unique up to differential k-isomorphisms and may be viewed as

the splitting field for the equation L(y) = 0. We denote by G(L) the differential Galois

group G(K/k).

Let V = {y ∈ K|L(y) = 0} be the n-dimensional C-vector space of solutions of L(y) = 0.

If σ ∈ G(L) and y1, · · · , yn is a basis for V , then σ(yi) =
∑n

j=1 cijyj where cij ∈ C. This

gives a faithful representation of G(L) as a subgroup of Gln(C) by identifying σ with (cij).
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We will assume that the reader is familiar with the notions of linear algebraic groups and

Zariski topology on a variety. If needed see (22).

Theorem 1 ((24) Galois correspondence) Let k ⊂ K be differential fields with K a

PVE of k and C algebraically closed. Let G = G(K/k) ⊂ Gln(C). Then G is a linear

algebraic group and there is a Galois correspondence between Zariski closed subgroups of

G and differential subfields E of K with k ⊂ E ⊂ K.

As a result many properties of the equation L(y) = 0 and of its solutions can be

found in the structure of the linear algebraic group G(L), in particular the two following

results will be useful:

Definition 4 Let k be a differential field and L(y) = 0 a linear differential equation with

coefficients in k. A solution y of L(y) = 0 is said to be

• rational if y ∈ k.

• exponential if y′/y ∈ k.

Algorithms for finding rational and exponential solutions can be found in (6). But already

by looking at the Galois group one can decide whether we only have rational solutions:

Lemma 1 A linear differential equation L(y) = 0 has all its solutions rational if and

only if its Galois group is trivial.

Definition 5 A differential field extension (K, ∆) of (k, δ) is a liouvillian extension

if there is a tower of fields
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k = K0 ⊂ K1 ⊂ · · · ⊂ Km = K

where Ki+1 is a simple field extension Ki(νi) of Ki such that one of the following holds:

• νi is algebraic over Ki, or

• δ(νi) ∈ Ki (extension by an integral), or

• δ(νi)/νi ∈ Ki (extension by the exponential of an integral).

A function contained in a liouvillian extension of k is called a liouvillian function over

k.

Theorem 2 ((25)) A differential equation L(y) = 0 with coefficients in k has

• only solutions which are algebraic over k if and only if G(L) is a finite group,

• only liouvillian solutions over k if and only if the component of the identity G(L)0

of G(L) in the Zariski topology is solvable.

k

∪
k0

∪
K

Gal(K/k)

∩
solvableGal(K/k0) = G0

∩
{id}

←→

←→

←→

3.2 D-modules, equivalence and cyclic vectors

To a linear differential equation L(y) = y(n) + an−1y
(n−1) + · · · + a0y one associates the

operator L = δn+an−1δ
n−1+· · ·+a0 and talks about the differential Galois group and the
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Picard-Vessiot extension associated with the operator L as well. Given a differential field

k we will work in the ring of linear differential operators with coefficients in k,

k[δ], which is the ring of noncommutative polynomials in the variable δ with coefficients

in k where δ satisfies δa = aδ + a′ for all a ∈ k. The integer n is called the order of L,

denoted ord(L).

Definition 6 ((29) p.38) A differential module or D-module M over k is a finite di-

mensional k-vector space which is also a left module for the ring k[δ].

To an operator L = δn + an−1δ
n−1 + · · · + a0 one can associate a first order system

Y ′ = AY where

A =




0 1 0 0 · · · 0

0 0 1 0 · · · 0

...
...

...
... · · · ...

0 0 0 0 · · · 1

−a0 −a1 · · · · · · · · · −an−1




The matrix A is called the companion matrix of L.

Definition 7 ((29) p.39) Given A ∈ Hom(kn, kn) we define the differential module MA

associated with Y ′ = AY via the formula

δei = −
∑

j aj,iej
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where B = {e1, · · · , en} is the standard basis of kn and A = (ai,j).

If B′ = {e1
′, · · · , en

′} is another basis of kn and B′ = PB then one verifies that AB′ =

P−1AP + P−1P ′.

To a differential equation L one can always associate a differential module ML given

by the companion matrix. Conversely given a D-module M and a k-basis e1, · · · , en of

M one has

δei = −
∑

j aj,iej

and A = (ai,j) defines a differential system associated with M. Using a cyclic vector

((29) p.44) one can then associate to M a matrix equivalent to A that is in companion

form, hence a differential equation to M.

Example 1 Let

A =




0 −(−1−x+x2)
−1+x

1 0

−1 −1
−1+x

0 1

x 0 0 −(−1−x+x2)
−1+x

0 x −1 −1
−1+x




and consider the system Y ′ = AY . The vector v = [1, 0, 0, 0] is a cyclic vector for A since
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v, v′, v′′ are linearly independent, and the corresponding companion matrix for A is

C =




0 1

0 0

0 0

2(4x3−4x2+6x−63)
((−1+x)(4x3−4x2−4x−15))

2(20x4−24x3−14x2−165x+69)
((−1+x)(4x3−4x2−4x−15))

0 0

1 0

0 1

2(8x4−8x3−12x2−30x+9)
(4x3−4x2−4x−15)

−4(x3+x2−5x−16)
((−1+x)(4x3−4x2−4x−15))




Definition-Proposition 1 Let Y ′ = AY and V ′ = BV be 2 matrix differential equa-

tions of the same order such that there exists an invertible matrix Z with coefficients in

k and Y = ZV . Then Z verifies Z ′ = AZ − ZB.

Furthermore Z can be found by solving the linear system:

W ′ = (A ⊗ I − I ⊗ BT )W

where W is the vector formed by the rows of the matrix Z.

Two operators/systems satisfying the above conditions are said to be equivalent.

If we look at the companion matrices A1 and A2 for L1 and L2 respectively with L1 and

L2 having the same order n, we have that L1(y) = 0 and L2(v) = 0 are equivalent if and
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only if there exists a B ∈ GLn(k) such that the substitution Y = BV , which leads to

V ′ = (B−1A1B − B−1B′)V , has the property that A2 = B−1A1B − B−1B′.

In solving linear differential equations in terms of equations of lower order, the notion

of equivalence for linear differential equations will be needed. Indeed one may not be

able to express the solutions of our given equation in a more simple form but one may

find an equation equivalent to it for which this is possible, in which case one will apply a

gauge transformation to our equation corresponding to the matrix Z in the previous

definition:

Definition 8 Let L1 and L2 be 2 homogeneous linear differential operators with coeffi-

cients in a differential field k and solutions {u1, · · · , un}, {v1, · · · , vn} respectively such

that L1 is equivalent to L2. A gauge transformation from the solution space of L1(y) = 0

to the solution space of L2(y) = 0 is defined by a0, · · · , an−1 in k such that:

v1 = a0u1 + a1u1
′ + · · · + an−1u1

(n−1)

...

vn = a0un + a1un
′ + · · · + an−1un

(n−1)

Remark 1 1. Notice that the Galois group G of L1 and L2 in the previous definition

will be the same since the linear combination does not change the group action on

the solutions. In particular a gauge transformation will not affect the form of the

solutions of our equation, for instance if L1 has Liouvillian solutions, so does L2.

2. In particular L1 is equivalent to L2 if and only if M1 is isomorphic to M2, which
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is the case if and only if the solutions spaces of L1(y) = 0 and L2(y) = 0 are

isomorphic as G-modules (see lemma 2.41 of (29) p.56).

To explicitely find a gauge transform we will work with systems:

Example 2 The equation L2(y) = y′′ − xy = 0

is equivalent to L̃2(v) = v′′ − 1
x−1

v′ − x2−x−1
x−1

v = 0 by the gauge transform v = y + y′.

Indeed if

A =


 0 1

x 0




is the companion matrix for L2 and

B =


 0 1

−x2−x−1
x−1

− 1
x−1




the companion matrix for L̃2, then using the Maple package ISOLDE ((1)) one finds a

rational solution for W ′ = (A ⊗ I − I ⊗ BT )W to be W = [− 1
x−1

, 1
x−1

, x
x−1

, −1
x−1

]. The

matrix

Z =


 − 1

x−1
1

x−1

x
x−1

−1
x−1




is invertible with inverse

Z−1 =


 1 1

x 1




and from V = Z−1Y comes v = y + y′.
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3.3 Factorization

One of the main tools we will use is factorization in k[δ]:

The following is well introduced in the second chapter of (29). It is known ((29) p.38)

that for any left ideal I ⊂ k[δ] there exists an L1 ∈ k[δ] such that I = k[δ]L1. Similarly

for any right ideal J ⊂ k[δ] there exists an L2 ∈ k[δ] such that I = L2k[δ].

Consequently one can define the Least Common Left Multiple,

LCLM(L1, L2) of L1, L2 ∈ k[δ] as the unique monic generator of k[δ]L1 ∩ k[δ]L2 and

the Greatest Common Left Divisor, GCLD(L1, L2) of L1, L2 ∈ k[δ] as the monic

generator of k[δ]L1 + k[δ]L2. In the following we will denote LCLM(L1, L2) by [L1, L2]l.

Similar definitions exist for the Greatest Common Right Divisor and the Least

Common Right Multiple.

Lemma 2 ((29) p.57) Let L ∈ k[δ]. Let K be the Picard-Vessiot extension of k as-

sociated with L(y) = 0 and G be its corresponding Galois group. There is a bijective

correspondance between monic right factors of L in k[δ] and G-invariant subspaces of V ,

the solution space of L(y) = 0 in K.

Since the liouvillian solutions of a linear differential equation form a G-invariant space

we have:

Lemma 3 ((29) p.35) Let k be a differential field.

Let L(y) = 0 be a scalar differential equation with coefficients in k. If L(y) = 0 has a
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nonzero solution liouvillian over k, then the operator L has a right factor L1 of order at

least one with coefficients in k such that all solutions of L1(y) = 0 are liouvillian over k.

Definition 9 An operator L ∈ k[δ] is said to be reducible over k if it can be written

as L = L1L2 where ord(L1), ord(L2) < ord(L). The associated equation is then called

reducible as well, and if this is not the case, then both are irreducible in k.

Proposition 1 ((29) p.57) Let L(y) = 0 be a linear differential equation with coefficients

in k. Let K be the corresponding Picard-Vessiot extension and let G be its Galois group.

The following are equivalent:

1. The differential module ML ' k[δ]/k[δ]L contains a proper, non-zero submodule.

2. The operator L is reducible over k.

3. The solution space V of L(y) = 0 in Kn is a reducible G-module.

One can decompose an operator L ∈ k[δ] as the product of irreducible operators but

this decomposition need not be unique. For example, if k = C(x), x′ = 1, δ2 = δδ =

(δ + 1
x+a

)(δ − 1
x+a

) for any a ∈ C. Thanks to the Jordan-Hölder Theorem we do have a

weaker form of uniqueness though. We say that a tower of differential modules {0} =

Mr ⊂ · · · ⊂ M1 is a composition series if successive quotients Mi/Mi+1 are simple, that

is, have no proper nonzero submodules. Two composition series {0} = Mr ⊂ · · · ⊂ M1

and {0} = Ns ⊂ · · · ⊂ N1 are said to be equivalent if r = s and, after a possible

permutation of indices i 7→ i′ we have that Mi/Mi+1 ' Ni′/Ni′+1.
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Proposition 2 ((29) p.58)

1. For any differential module all composition series are equivalent.

2. For any L ∈ k[δ] of positive order, we may write L = L1 · · ·Lr where the Li are

irreducible and of positive order. If L = L̃1 · · · L̃s is another factorisation then r = s

and after a permutation of indices i 7→ i′ we have that Li and L̃i′ are equivalent.

Definition 10 Let k be a differential field and L ∈ k[δ]. We say that L is completely

reducible if L is a nonzero k-multiple of the least common left multiple of a set of

irreducible operators.

Let us now introduce some group theoretic definitions that allow to partially classify

linear algebraic groups. Notice the correspondence between the above definitions for the

differential operators and the definitions below concerning subgroups of Gln(C).

Definition 11 A subgroup G of Gl(V ) is said to act irreducibly if and only if the

only G-invariant subspaces of V are {0} and V ; we usually refer to such a group as

irreducible. Notice in particular that a linear differential equation will be irreducible (i.e.

will not have factors) if and only if its associated Galois group is.

The G-module V is completely reducible if there are minimal G-invariant subspaces

V1, · · · , Vk such that V = V1 ⊕ · · · ⊕ Vk.

Note that an irreducible representation is completely reducible. Those definitions of

complete reducibility are linked in the following lemma:
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Lemma 4 ((29) p.59) Let k be a differential field with constant field C and L,L1, · · · , Lm ∈

k[δ]. Let K be a Picard-Vessiot extension of k containing a full set of solutions of each

L(y) = 0, L1(y) = 0, · · · , Lm(y) = 0. The operator L is a k-multiple of the least common

left multiple of L1, · · · , Lm if and only if the solutions spaces Vi of Li(y) = 0 in K span

the solution space of L(y) = 0.

In particular when an operator L is completely reducible there exists a minimal rep-

resentation of L as a least common left multiple L = [L1, · · · , Lr]l.

Also if a group G has an irreducible representation, then any representation of G is com-

pletely reducible. As a result we will always be able to decompose constructions from an

irreducible operator as the least common left multiple of some irreducible operators.

3.4 Solving in terms of lower order equations

Let us finally define precisely what we understand by “solving a differential equation in

terms of lower order equations”:

Definition 12 The differential equation L(y) = 0 defined over k is said to be solvable

in terms of linear differential equations of lower order if the associated Picard-

Vessiot extension K of k lies in a tower of fields k = K0 ⊂ K1 ⊂ · · · ⊂ Kn such that for

each i = 1, · · · , r either:

• Ki is a finite algebraic extension of Ki−1, or
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• Ki is generated over Ki−1 by a solution of a (not necessarily homogeneous) linear

differential equation of order less than n with coefficients in Ki−1.

Example 3 Notice that finding the liouvillian solutions for a differential equation implies

solving it in terms of equations of order one since a liouvillian extension is one contained

in a tower of field that are generated by solutions of equations of order one.

A general result to solve this problem is given in (33):

Theorem 3 Let k be a differential field with algebraically closed field of constants C and

let L(y) = y(n)+an−1y
(n−1)+· · ·+a1y

′+a0y = 0 with ai ∈ k. The equation L(y) = 0 is not

solvable in terms of equations of lower order if and only if the associated Picard-Vessiot

extension has Galois group G whose connected component G0 of the identity is:

1. simple, and

2. there does not exist a linear algebraic group H with finite-to-one homomorphism

α : H → G0 such that H has a nontrivial representation of dimension less than n.

In fact we will use the Lie algebra version of this theorem, but for this purpose we

need some notions on representation theory of Lie algebras and algebraic groups that

will be introduced in the next section.

Let L(y) = y(4) + a3y
(3) + · · ·+ a0y = 0 be a homogeneous linear differential equation

of order 4 with coefficients in a differential field k of characteristic zero and algebraically
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closed constant field C . Let M be the Picard-Vessiot extension of k associated with L

and suppose the Galois Group of L over k is contained in Sl4(C). If this is not the case

one can always use the substitution z = y exp (−1/4
∫

a3) to form an equation whose

coefficient of z(3) is zero, hence whose Galois group is a subgroup of Sl4(C) ((24) p.41).

Since this change of variables corresponds to multiplying all the solutions of L(y) = 0

by exp (−1/4
∫

a3), one understands easily that the new equation is solvable in terms of

lower order if and only if the original one is.

Definition 13 A linear differential equation of order n with its n − 1 coefficient equal

to zero is said to be in normal form or normalized.

3.5 Constructions

1. Symmetric powers

For the following one needs to recall a few facts about symmetric products of linear

differential operators:

Let L1(y) and L2(y) be two homogeneous linear differential equations with coef-

ficients in k and let M1 and M2 be the Picard-Vessiot extensions associated with

L1(y) and L2(y).

Lemma 5 ((34) p.671-673)
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(a) There exists a Picard-Vessiot extension M3 of k containing copies of M1 and

M2.

(b) Let M be a Picard-Vessiot extension of k containing copies of M1 and M2 and

let V be the C-vector space spanned by {µ1µ2|L1(µ1) = 0 and L2(µ2) = 0}.

Then V is the solution space of a monic homogeneous linear differential equa-

tion L3(y) = 0, with coefficients in k. Furthermore, L3(y) does not depend on

M .

The operator L3 is called the symmetric product of L1 and L2, denoted

L1©s L2. Since the operator ©s is associative we can define L©s n for n ≥ 1 by

L©s 1 = L and L©s n = L©s n−1©s L.

Then L©s n is called the nth symmetric power of L.

(c) Let L(y) = 0 be a homogeneous linear differential equation with coefficients in

a differential field k, with algebraically closed field of constants C.

• If L(y) has order n then L©s m has order at most
(

m+n−1
n−1

)
.

• If L(y) has order 2 and {y1, y2} is a basis for the solution space of L(y) =

0, then {y1
m, y1

m−1y2, · · · , y2
m} is a basis for the solution space of L©s m.

In particular L©s m will have order precisely m + 1.

2. Exterior powers

Another type of construction that we will need is the exterior powers.

The mth exterior power of a differential equation L with solutions {y1, · · · , yn} is
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the equation having for its space of solutions the vector space generated by the

m × m wronskians of solutions of L. For a precise definition of the exterior power

of an operator and how to construct them we refer to (29) section 2.4.

If V is a G-module for some group G, then G acts on
∧mV as well and this action

is given by σ(yi1 ∧ · · · ∧ yim) = σ(yi1) ∧ · · · ∧ σ(yim).

Proposition 3 ((29) p.112) Let L be a linear differential operator with coefficients

in a differential field k and let K be the associated Picard-Vessiot extension with

Galois goup G. Let V be the solution space of L(y) = 0 in K and let
∧mV be the

mth alternating power of V .

(a) If {y1, · · · , yn} is a basis of V , then the map defined by

yi1 ∧ · · · ∧ yim 7→ wr(yi1 , · · · , yim), for all 1 ≤ i1 < · · · < im ≤ n

defines a G-morphism from
∧mV onto the solution space of

∧m(L)y = 0.

Therefore, if the order of
∧m(L) is

(
n
m

)
,

∧mV is isomorphic to the solution

space of
∧m(L)y = 0.

(b) V contains a G-invariant subspace of dimension m if and only if there exist

linearly independent elements v1, · · · , vm ∈ V such that v1 ∧ · · · ∧ vm spans a

G-invariant line in
∧mV .

(c) If
∧m(L) has order

(
n
m

)
, then L has a right factor of order m if and only if

∧m(L) has an exponential solution w so that w = Wr(z1, · · · , zm) for linearly
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independent solutions z1, · · · , zm of L(y) = 0. If this is the case, then L has a

right factor of the form L̃ = δm + (w′/w)δm−1 + · · · .

Remark 2 Maple V contains commands in the DEtools package to calculate exte-

rior powers of operators.

In particular if L = δ4 then
∧2(δ4) = δ5 therefore the dth exterior power of an

operator of order n can have order less than
(

n
d

)

3.6 Results for second and third order equations

As we pointed out earlier, the key idea in differential Galois theory is to study properties

of the Galois group to find results about the corresponding equation. In the following we

give examples of how this is done for equations of order 2 and 3.

1. Second order equations

In 1978 Kovacic produced an algorithm for finding Liouvillian solutions of equa-

tions of order 2 (cf (27)). Subsequently, in 1979 M.F.Singer gave an algorithm to

find Liouvillian solutions of equations of order n ≥ 2. The following theorems take

care of the case of equations of order 2.

Definition 14 Let G be a subgroup of Gln(C) acting irreducibly on the vector space

V of dimension n over C. Then G is called imprimitive if, for k > 1, there exist
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subspaces V1, · · · , Vk such that V = V1 ⊕ · · · ⊕Vk and, for each g ∈ G, the mapping

Vi → g(Vi) is a permutation of the set S = {V1, · · · , Vk}.

The set S is called a system of imprimitivity of G.

If all the subspaces Vi are one-dimensional, then G is said to be monomial.

An irreducible group G ⊂ Gln(C) which is not imprimitive is called primitive.

Here is a classification of algebraic subgroups of Sl2(C):

Theorem 4 ((29) p.135) Let G be an algebraic subgroup of Sl2(C). Then one of

the following four cases can occur:

(a) G is reducible

(b) G is imprimitive and conjugate to a subgroup of

D = {


 c 0

0 c−1


 |c ∈ C, c 6= 0} ∪ {


 0 c

−c−1 0


 |c ∈ C, c 6= 0}

(c) G is primitive and G/Z(G) is isomorphic to A4, S4 or A5 where Z(G) is the

center of G.

(d) G = Sl2(C).

Using this results one can show:
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Theorem 5 ((27) p.136) Let k be a differential field of constants K and let L(y) =

y′′ + ry with r ∈ k. Precisely 4 cases can occur.

(a) L(y) = 0 has a solution y such that y′/y ∈ k.

(b) L(y) = 0 has a solution y such that y′/y is algebraic of degree 2 over k and

(a) does not hold.

(c) L(y) = 0 has a solution y such that y′/y is algebraic of degree 4,6 or 12 over

k and (a) and (b) do not hold.

(d) L(y) = 0 has no Liouvillian solutions.

2. Third order equations

The following proposition shows how to recognize the Galois group of a third order

linear differential equation and decide whether it has a Liouvillian solution:

Proposition 4 ((27) p.140) Let L(y) = 0 be an irreducible third order linear dif-

ferential equation with coefficients in a differential field k with algebraically closed

field of constants whose differential Galois group G(L) is unimodular. L(y) = 0 has

a Liouvillian solution if and only if

(a) L©s 4 has order less that 15 or factors, and

(b) one of the following holds:

i. L©s 2 has order 6 and is irreducible, or

ii. L©s 3 has a factor of order 4.
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Also in (34) M.F.Singer shows how to solve a third order homogeneous linear dif-

ferential equation using second order linear differential equations. After giving a

list of the Galois groups for which this happens he proves the following result:

Theorem 6 ((34) p.680) Let k be a differential field with algebraically closed field

of constants. Let L(y) = y′′′ − py′ − qy with p, q ∈ k and let M be the associated

Picard-Vessiot extension of k. Then L(y) = 0 can be solved in terms of second

order linear differential equations if and only if one of the following holds:

(a) All solutions of L(y) = 0 are algebraic over k.

(b) There exist an extension K of k of degree 1, 2, 3 or 6 and L1 and L2 of order

1 and 2 respectively with coefficients in K such that

L(y) = L2(L1(y)) or

L(y) = L1(L2(y))

(c) There exist a subfield K of M with [K : k] = 1 or 3, an algebraic extension

N of K with [N : K] = 1 or 2 and elements a0, a1, a2, b, c in N such that if

{u, v} is a basis for the solution space of y′′ + by′ + cy = 0, then

y1 = a0u
2 + a1(u

2)′ + a2(u
2)′′

y2 = a0uv + a1(uv)′ + a2(uv)′′

y3 = a0v
2 + a1(v

2)′ + a2(v
2)′′

is a basis for the solution space of L(y) = 0.



Chapter 4

Study of the Lie sub-algebras of

sl4(C)

Solving a linear differential equation in terms of equations of order 1 is the same problem

as finding its liouvillian solutions. For this one already knows algorithms explained in

(38), (37) and (39). As a result we will focus on the solvability in terms of second order

equations. So our goal is to decide when the solutions of a 4th order homogeneous linear

differential equation can be written using solutions of equations of order 2 or 3, i.e. when

a linear differential equation of order 4 can be solved in terms of second or third order

linear differential equations.

The fields we work with will always have characteristic zero.

We will assume that the reader is familiar with the definitions of Lie algebras and their

29
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representations (see (22) for a good introduction to these notions).

Given a linear algebraic group G over a field k, denote A = k[G] its coordinate field.

The action of G on A is given by: (λxf)(y) = f(x−1y). The vector space L(G) = {δ ∈

DerA|δλx = λxδ ∀x ∈ G} is called the Lie algebra associated with G, denoted g.

One can see the Lie algebra g = L(G) associated with G as its tangent space at identity

Te(G) = Te(G
0).

The exponential map exp : g → G is useful for studying the relationship between G and

g ((13) p.114-119).

In particular:

• If φ : G → G′ is a morphism of algebraic groups, then dφe : g → g′ is a linear

application between 2 vector spaces.

• A linear algebraic group and its Lie algebra have the same dimension.

• If G → Gl(V ) is a group representation of G, then we have a corresponding repre-

sentation L(G) : g → gl(V ) of same dimension.

Definition 15 A Lie algebra g is simple if it is not abelian and it does not have a non

trivial ideal besides g itself.

A Lie algebra g is semi-simple if its radical (i.e. its maximal solvable ideal) Rad(g) is

trivial.

In particular for any Lie algebra g, g/Rad(g) is semi-simple, and a semi-simple Lie

algebra can always be written as the direct sum of simple ones.
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One can give a list of the simple Lie algebras up to isomorphisms (see (13) p.131):

• sln(C) = {A ∈ gln(C)|trA = 0} with n ≥ 2, of dimension n2 − 1.

• sp2n = {A ∈ gl2n(C)|AtJ + JA = 0} with n ≥ 2, where

J =


 0 In

−In 0




of dimension 2n2 + n.

• on = {A ∈ gln(C)|At + A = 0} with n ≥ 7.

To which one needs to add exceptional Lie algebras of greater dimension.

The link between the representations of a linear algebraic group and those of its Lie

algebra is not necessarily obvious. In the case where G is connected, any quotient of G

by a finite group will have g for its Lie algebra. Also:

Theorem 7 ((23) p.89) Let G be a connected linear algebraic group.

The group G is semi-simple if and only if its Lie algebra g is semi-simple.

If G is simple, then g is simple.

And if G is connected and simply connected there is a one-to-one correspondence

between the irreducible representations of G and those of its Lie algebra (cf (18)).

Here is now the Lie algebra version of theorem 3:
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Theorem 8 ((32) p.118)

Let k be a differential field of characteristic zero with algebraically closed field of con-

stants C. Let L(y) = 0 be a homogeneous linear differential equation of order n, n ≥ 3,

with coefficients in k and let K be the associated Picard-Vessiot extension. Assume that

G(K/k) ⊂ Sln(C). Then L(y) = 0 can be solved in terms of equations of lower order iff

one of the following holds:

1. g(K/k) ⊂ sln(C) leaves a nontrivial subspace of Cn invariant.

2. g(K/k) is semisimple but not simple.

3. g(K/k) is simple and there exists a nonzero Lie algebra homomorphism ρ : g(K/k) →

glm(C) for some m < n (i.e. we can find a non trivial representation of g of degree

strictly less than n).

Furthermore if 1. holds then there exist homogeneous linear differential equations Ln−i

and Li of order n− i and i (i > 0) with coefficients in the algebraic closure k∗ of k in K

such that L(y) = Ln−i(Li(y)).

If 2. or 3. hold, then there exist linear homogeneous differential equations Li(y), 1 ≤ i ≤ m

(with m = 1 if 3. holds), each having order less than n and coefficients in an algebraic

extension k0 of k such that K lies in an algebraic extension of M1 · · ·Mm, where Mi is

the Picard-Vessiot extension of k0 associated with Li(y) = 0.

This result is a very powerful tool in deciding theoretically the solvability of differ-

ential equations in terms of lower order equations, which we will do now in the case of
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an equation of order 4, but we also want to give methods to actually solve these equations.

The Lie algebra corresponding to Sl4(C) is sl4(C). According to theorem 8, to solve

our problem, we need a list of the irreducible Lie subalgebras of sl4(C) (see (23) section

1 and 19). There are 4 simple Lie algebras:

sl4(C)

sp4(C)

sl3(C)

sl2(C)

and one semi-simple Lie algebra:

o4(C) = sl2(C) ⊕ sl2(C)

From this list and from (17) p.496 we find 2 irreducible cases that are of interest for

our problem : when the Lie algebra is sl2(C), corresponding to case 3. of theorem 8, and

when it is sl2(C) ⊕ sl2(C), corresponding to case 2.

Indeed if V denotes the standard representation space for sl2(C), then the only four di-

mensional space on which sl2(C) acts irreducibly is Sym3V . The Lie Algebra sl3(C) does

not have a representation of order four while the only irreducible representations of sl4(C)

of dimension four are the standard and the dual one. The only four-dimensional vector

space on which the symplectic Lie algebra sp4(C) acts irreducibly is also the standard

representation space. And finally the only irreducible representation of o4(C) is V ⊗ V .

We will also be interested in the case where the Lie algebra is sl2(C) with a reducible
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representation in sl4(C), but irreducible Galois group. The reducible equations and those

having liouvillian solutions (see (36)) are contained in case 1.

On the group level one can classify the corresponding subgroups of Sl4(C) as follows:

Proposition 5 ((17)) Let G be an algebraic subgroup of Sl4(C), C an algebraically closed

field of characteristic zero, and let G0 be its component of the identity. One of the

following holds:

1. G is reducible.

2. G is finite.

3. G is irreducible but G0 is reducible, in which case either

(a) G is imprimitive, monomial and has a subgroup H ⊂ diag(Sl4(C)) such that

G/H is isomorphic to a transitive subgroup of S4, or

(b) G is imprimitive, non-monomial and has a normal subgroup of index 2, or

(c) G is primitive and G0 is conjugate to

{


 A 0

0 A


 : A ∈ Sl2(C)}
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in which case G = HG0 with

H = {


 aI bI

cI dI


 :


 a b

c d


 ∈ H̃, I =


 1 0

0 1


}

where H̃ is a finite primitive subgroup of G2 = {A ∈ Gl2(C) : det(A2) = 1}.

4. G0 is irreducible.

Proof.

1. The first 2 cases that can obviously hold.

2. For the last 2 cases we refer to the classification of the irreducible subgroups of

Sl4(C) given in (17):

Case 3.(b) is Theorem 2.2.2 of (17) p.505.

For case 3.(c) we refer to Theorem 2.1.1 p.494 of (17) and the case where G0 is irre-

ducible is Theorem 2.1.2 p.495 of (17) for which one of the following representation

of G holds:

(a) G ⊂ ∪ω4=1ωG0, where G0 is one of

• Sl2(C) acting on Sym3(C2)

• Sp4(C)
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(b) G ⊂ (∪ω4=1ωG0) ∪ J(∪ω4=1ωG0), where

J =


 0 I

I 0




I =


 1 0

0 1




and G0 is the usual representation of SO4(C).

(c) G = Sl4(C) acting on W , where W is one of

• the usual representation space, V ' C4

• the dual space, V ∗, of V .

2

As theorem 8 suggests, we want to translate these results in terms of fourth order

equations using the properties of the groups. Let us give the general situations we can

encounter while dealing with the problem of solving a fourth order equation with second

order equations.

When the Galois group of an equation is reducible, one knows algorithms to factor it that

are implemented in Maple (use DFactor (19)). So the equations we consider from now

on will be assumed irreducible over their field of coefficients, i.e. will have an irreducible

Galois group.
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Theorem 9 Let k be a differential field with algebraically closed field of constants C. Let

L4(y) = 0 be a fourth order differential equation, irreducible over k, unimodular, and let

K be the associated Picard-Vessiot extension of k. Let G be the Galois group of L4 over

k and G0 be its component of the identity. If L4(y) = 0 is solvable in terms of second

order linear differential equations then one of the following occurs:

1. When G is finite, all the solutions of L4(y) = 0 in K are algebraic over k.

2. When G is imprimitive monomial and G0 is irreducible, there exists a subfield M

of K with [M : k] = 1, 2, 3, 4, 6, 8, 12 or 24 such that

L4(y) = L3(L1(y))

where L1 and L3 are linear differential operators of order one and three respectively

with coefficients in M . In this case the equation has a basis of liouvillian solutions.

3. When G is imprimitive, nonmonomial and G0 is reducible, L4 = [L2, L̃2]l where L2

and L̃2 are second order linear differential operators with coefficients in a field M

quadratic over k.

4. When G is primitive and G0 reducible, there exist an extension M of k and linear

differential operators L1 and L2 with coefficients in M such that L4 = [L1, L2]l and

[M : k] = 1, 2, 3, 4, 6 or 12.

5. When G0 is irreducible and conjugate to ρ(Sl2(C)) where ρ is the third symmetric

product representation of Sl2(C). In this case there exist a subfield N of K with
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[N : k] ≤ 2 and elements a0, a1, a2, a3 of degree at most 2 over N and b, c in N

such that if {u, v} is a basis for the solution space of y′′ + by′ + cy = 0, then

y1 = a0u
3 + a1(u

3)′ + a2(u
3)′′ + a3(u

3)′′′

y2 = a0u
2v + a1(u

2v)′ + a2(u
2v)′′ + a3(u

2v)′′′

y3 = a0uv2 + a1(uv2)′ + a2(uv2)′′ + a3(uv2)′′′

y4 = a0v
3 + a1(v

3)′ + a2(v
3)′′ + a3(v

3)′′′

is a basis for the solution space of L4(y) = 0.

6. When G0 is irreducible and isomorphic to Sl2(C) × Sl2(C)/{±(I, I)}

in which case there exist a subfield k0 of K with [k0 : k] = 1, 2, a quadratic exten-

sion N of k0, and elements a0, a1, a2, a3, r1, r2, s1, s2 ∈ N such that if {u1, u2} and

{v1, v2} are bases for the solution spaces of y′′+r1y
′+s1y = 0 and y′′+r2y

′+s2y = 0

respectively, then

y1 = a0u1v1 + a1(u1v1)
′ + a2(u1v1)

′′ + a3(u1v1)
′′′

y2 = a0u2v2 + a1(u2v2)
′ + a2(u2v2)

′′ + a3(u2v2)
′′′

y3 = a0u1v2 + a1(u1v2)
′ + a2(u1v2)

′′ + a3(u1v2)
′′′

y4 = a0u2v1 + a1(u2v1)
′ + a2(u2v1)

′′ + a3(u2v1)
′′′

is a basis of solutions for L4(y) = 0.

In the following sections we will prove this theorem and show how to perform the

necessary computations. Then in the next chapter we give examples of how to use those

methods.
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4.1 A theorem of Chevalley

In (17) the author gives a way of computing the Galois group of a linear differential

equation of order four by looking at its action on modules of the form
∧2V and SymmV

where V ' (C∗)4. Thanks to her work one can decide the nature of the Galois group of a

given fourth order linear differential equation and once this is done our work is to solve

it in terms of lower order equations when this is possible.

Now let us explain the decision procedure to determine the Galois group using the

table below; it is explained p.523-527 of (17) and relies on the following result by Cheval-

ley:

Theorem 10 ((23) p.80) Let G be an algebraic group, H a closed subgroup. Then there

is a rational representation φ : G 7→ Gl(V ) and a one dimensional subspace L of V such

that

H = {x ∈ G|φ(x)L = L}

h = {x ∈ g|dφ(x)L ⊂ L}

In other words, given any subgroup H of the Galois group, one can find a construction

in which H is the stabilizer of a line. As a result studying the action of the subgroups of

Sl4(C) on constructions should enable us differentiate between those subgroups.

In the following examples we will use the following table (table 4 p.532 of (17)) to identify

the Galois groups of the equations we construct, i.e. we assume we already know that
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we have an infinite primitive group G, and all we need to do is figure out the nature of

the connected component of the identity G0.

Table 4.1: Decompositions for the Infinite Primitive Groups

Group
∧2V Sym2V Sym3V Sym4V Sym6V

G0 = Sl2(C) 1,5 3,7 4,6,10 1,5,7,9,13 3,72,9,11, 13,15,19
G0 = Sl4(C) 6 10 20 35 84
G0 = Sp4(C) 1,5 10 20 35 84
G0 = So4(C) 32 1,9 4,16 1,9,25 1,9,25,49

G = A4
Sl2 ⊗ Sl2(C) 32 1,9 4,82 1,52,9,15 1,52,7,9, 15,212

G = S4
Sl2 ⊗ Sl2(C) 32 1,9 4,16 1,9,10,15 1,7,9,10, 15,212

G = A5
Sl2 ⊗ Sl2(C) 32 1,9 4,16 1,9,25 1,9,21,25,28

For example, given a linear differential equation of order 4, L(y) = 0, with solution

space W , we will compute its second exterior power. If the latter has order 6 then its

solution space is isomorphic to
∧2W and by looking for a rational solution one can decide

whether the associated equation has a factor of order one, i.e. whether it has Galois group

Sl2(C) or Sp4(C). Then to distinguish between the two one needs to compute the second

symmetric power of L, find its degree and try to factor it in case the degree is 10 (if it

turns out to be 3 or 7 then we have Sl2(C) for Galois group); if it factors then the Galois

group is Sl2(C), if not it is Sp4(C).

However most of the time we will be working in an algebraic extension of k and the Galois

group will be bigger than its connected component, as a result Hessinger’s method to

determine the Galois group will force us to work in an algebraic extension which is not
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always possible in practice, as we notice in the applications with example 5.2.2.

For each coming section we will discuss the nature of the Galois group and say how

to find the lower order equations.
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4.2 When the Lie Algebra is reducible

Since we assumed that L4(y) is normalized, the Galois group of K over k is a subgroup

of Sl4(C) and apply proposition 5.

This situation corresponds to case 1. of theorem 8 and cases 2. and 3. of theorem 9.

They are direct consequences of the properties of factorization of an equation over an

algebraic extension. Concerning case 2. one needs to calculate the liouvillian solutions

of the equation. It can be decided thanks to an algorithm given in (21), whether a dif-

ferential equation has liouvillian solutions. In particular we know we have a liouvillian

solution when the Galois group is imprimitive, monomial or when the group is imprimi-

tive, nonmonomial and G0 = {id} (i.e. the blocks from proposition 5 3. (b) correspond

to central extensions of finite groups).

Suppose we have shown that L4(y) = 0 has no liouvillian solution.

Then G is imprimitive, nonmonomial, has a normal subgroup H of index two and its

fixed field Ȟ is a quadratic extension of k. The group G is described in (17) p.506 and

over the quadratic extension Ȟ of k we can always find a decomposition of the solution

space V of L4(y) = 0 into the direct sum of two twodimensional vector spaces V2 and Ṽ2.

This tells us from proposition 4 that the equation L4 can reduce over Ȟ as L4 = [L2, L̃2]l

where L2 and L̃2 are differential operators of order two with coefficients in Ȟ and solution

spaces V2 and Ṽ2 respectively.
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Example 4 Consider the equation

L(y) =y(4) − −4x2 + 3 + 8x3

x(−4x2 − 4x − 3 + 4x3)
y(3) +

1

4

(
3 + 44x3 + 12x + 16x4 − 12x2

x2(4x3 − 4x2 − 4x − 3)

)
y′′

− 4x2 + 9 + 8x

4x3 − 4x2 − 4x − 3
y′ − 4x4 − 4x3 − 8x2 − 11x − 9

4x3 − 4x2 − 4x − 3
y

We want to factor L over a quadratic extension E of Q̄(x) and write it as the least

common left multiple of 2 equations of order 2 with coefficients in E: L = [L2, L̃2]l.

In order to find E one can calculate the second exterior power
∧2L of L, the solutions

of which can be seen as the wronskians of solutions of L, hence will be in the field of

coefficients of L2 and L̃2. Then by factoring
∧2L one finds a factor of order 4 and

two factors of order 1, the solutions of which are 1 and
√

x, hence E being a quadratic

extension of k is necessarily Q(x,
√

x). Once we know E, replacing x by t2 in L and using

the command DFactorLCLM in Maple tells us that L is the least common left multiple of

L2(y) = 4xy′′ − 2(x −√
x)

x − 1
y′ +

2(x5/2 − 2x3/2 + x −√
x)

x − 1
y

and

L̃2(y) = 4xy′′ − 2(x +
√

x)

x − 1
y′ − 2(x5/2 − 2x3/2 − x −√

x)

x − 1
y

Recall that a finite Galois group corresponds to algebraic solutions for the equation,

which takes care of case 1. in theorem 9.

If g is irreducible, we may not be able to factor L4 but we will see other ways to
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express the solutions of our equation using equations of order two. This is what we will

focus on now.
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4.3 When G0 is Sl2(C)

The case we are dealing with here is case 5. in theorem 9 and case 3. in theorem 8, i.e.

the case where the Lie algebra is sl2(C) with G0 irreducible.

In the following we will denote by Vm the space Symm(C2), i.e. the irreducible Sl2(C)-

module of dimension m.

The only simple irreducible subalgebra of sl4(C) that has a representation of order less

than 4 is sl2(C) acting on V3. Furthermore this symmetric power is, up to isomorphism,

the only irreducible representation of degree 4 of sl2(C) ((13) p.50).

The group Sl2(C) acts as a group of linear substitutions on the polynomial ring C[X,Y ]

as follows:

Given

σ =


 a b

c d


 ∈ Sl2(C)

apply the linear substitution X → aX + bY , Y → cX + dY .

If R3 is the space of homogeneous polynomials of degree 3 in 2 variables, then R3 is an

irreducible Sl2(C)-module hence isomorphic to V3.

Consider the map i3 : P 1 → P 3 such that i3([X,Y ]) = [X3, X2Y,XY 2, Y 3].

Then for σ ∈ Sl2(C), i3(σ[X,Y ]) = σ.(i3[X,Y ]).
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It maps P 1 onto the twisted cubic C3 defined by the 3 quadrics :

Z0Z2 − Z1
2

Z0Z3 − Z1Z2

Z1Z3 − Z2
2 (4.1)

In this case G is primitive and G0 is irreducible.

Lemma 6 ((32) p.129, (13) p.154)

Let G ⊂ Sl4(C) be the group of automorphisms that preserve the variety V defined by

equations (4.1). Then G ⊂ ρ(Sl2(C)) · H where H is the center of Sl4(C), i.e. a four

elements subgroup, and ρ is the map:

ρ





 a b

c d





 =




a3 3a2b 3ab2 b3

a2c a2d + 2abc b2c + 2abd b2d

ac2 bc2 + 2adc ad2 + 2bdc bd2

c3 3c2d 3cd2 d3




i.e. the representation of Sl2(C) in Aut(R3).

Proof. Let π : C4 → P 3 be the map identifying lines in C4 with points in projective 3-

space P 3. The variety π(V ) is the twisted cubic C3, hence a non-singular conic isomorphic

to P 1.
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Let H be the group of constant matrices in G. We can consider G/H as acting on C3

and since PSl2(C) is the group of automorphisms of P 1 it can also be seen as the group

of projective motions of C3 hence there exists a map φ from G into PSl2(C). Also notice

that Sl2(C) is isomorphic to ρ(Sl2(C)) ⊂ G and that ρ(±I) = ±I ∈ H, hence the map

φ is injective on ρ(Sl2(C)). Now if g ∈ G is in the kernel of φ, then g must act on

V by scalar multiplication. Since V contains a basis of C4, g must be a scalar matrix.

Therefore G ⊂ ρ(Sl2(C)) · H

2

We will show that an equation having Galois group G ⊂ ρ(Sl2(C)) ·H where H is the

center of Sl4(C) is equivalent to the third symmetric power of a second order equation

by using the fact that its solutions can be sent on the twisted cubic.

First let us consider the special case of an equation that is equal to the symmetric

power of a second order linear differential equation:

Proposition 6 Let L4(y) = y(4) + p3y
(3) + p2y

′′ + p1y
′ + p0 be a homogeneous linear

differential equation of order 4 with p0, p1, p2, p3 ∈ k, a differential field with algebraically

closed field of constants C.

1. (a) There exists a homogeneous linear differential equation L(y) = 0 of order 2

with coefficients in some differential extension of k such that L4 = L©s 3 iff

• p1 =
p3

3

36
+

7p3p3
′

36
+ p3

p2 − 11
36

p3
2 − 2

3
p3

′

2
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+p2
′ − 11p3p3

′

18
− 2

3
p3

′′ +
p3

′′

6

• p0 = 18r2s + 6r′s + 9s2 + 15rs′ + 3s′′

where r =
p3

6
and s =

p2 − 11p3
2

36
2
3
p3

′

10

in which case L(y) = y′′ + ry′ + sy, which has coefficients in k.

(b) If p3 = 0 then this holds iff p1 = p2
′ and p0 = 9

100
p2

2; in particular r = 0

2. Let K be the Picard-Vessiot extension of k associated with L4(y) = 0 and assume

the Galois group of K over k is a subgroup of Sl4(C). There exists a homogeneous

linear differential equation L(y) = 0 of order 2 with coefficients in k such that

L4 = L©s 3 iff there exists a fundamental system of solutions of L4 lying on the

twisted cubic C3.

Proof. ((32) p.129-130) The first 2 results are due to computations, so let us focus on

the third one.

Suppose L4 = L©s 3 and {u, v} is a fundamental set of solutions of L(y) = 0. Then

{u3, u2v, uv2, v3} is a basis for the solution space of L4(y) = 0 lying on C3.

Conversely suppose a fundamental set of solutions {y1, · · · , y4} of L4(y) = 0 lies on C3

and let M be the Picard-Vessiot extension of k associated to L4. Let G be the Galois

group of M over k that can be considered as a subgroup of Sl4(C) with respect to this

basis. By lemma 6 G ⊂ ρ(Sl2(C)) · H.

Let u = 3
√

y1, v = 3
√

y4, and select these cube roots such that y3 = uv2 and y2 = u2v (note

that this determines u and v up to a multiplication by the same cube root of unity since
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the solutions lie on C3, hence satisfy equations (4.1)). Let M̃ be a universal differential

field extension of M , and let C̃ be its field of constants. Let σ be a k0-isomorphism from

M < u, v > into M̃ , where k0 is the fixed field of G0. σ will restrict to a k0-isomorphism

of M into M̃ so there exist a, b, c, d ∈ C̃ with ad−bc = 1 such that σ(u3) = (au+bv)3 and

σ(v3) = (cu + dv)3, and so σ(u) = µ(au + bv) and σ(v) = ξ(cu + dv) where ξ3 = µ3 = 1.

Therefore the coefficients of

L(y) = Wr(y,u,v)
Wr(u,v)

are left fixed by any k0-isomorphism of M < u, v > into M̃ hence L4(y) is the third sym-

metric power of a homogeneous second order linear differential equation with coefficients

in k0. Then by case 1. we know that those coefficients are in k. 2

Example 5 Let L4(y) = y(4) − 10xy(2) − 10y′ + 9x2y. Since p3 = 0 we can check that

p1 = p2
′ and p0 = 9

100
p2

2 to find that L4 is the third symmetric power of the Airy equation

L(y) = y′′ − xy as stated in the introduction.

But it can happen that the solutions of the equation L4 do not lie on C3, in which case

one may be able to transform it in order to write the transform as the second symmetric

power of an equation of order 2, i.e. have the solutions of the transform lie on C3.

For our purpose we adapted the result by Michael Singer on third order equations to

the case of an equation not necessarily normalized:
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Lemma 7 ((34) p.678 proposition 4.2) Let F be a differential field with algebraically

closed field of constants C. Let K be the Picard-Vessiot extension of F associated with

L3(y) = y′′′−my′′−py′− qy = 0 with m, p, q ∈ F, q 6= 0. Assume that there exists a basis

y1, y2, y3 of the solutions space of L3(y) = 0 such that with respect to this basis the Galois

group G of K over F is the irreducible representation of SL2(C) of degree 3. Then

1. the elements I0 = y2
2 − y3y1, I1 = (y2

′)2 − y3
′y1 and I2 = (y2

′′)2 − y3
′′y1

′′ lie in F .

2. If b0, b1, b2 are any non-zero solutions, algebraic over F of

I0b0
2 + I1b1

2 + I2b2
2 + b0b1I0

′ + b1b2I1
′ + 1

q
(I2

′ − 2mI2 − pI1
′) = 0

then

z1 = b0y1 + b1y1
′ + b2y1

′′

z2 = b0y2 + b1y2
′ + b2y2

′′

z3 = b0y3 + b1y3
′ + b2y3

′′

will be a basis for the solution space of L2
©s 2(y) = 0, where L2(y) = 0 is a homoge-

neous second order linear differential equation with coefficients in F (b0, b1, b2).

Proposition 7 Let F be a differential field with an algebraically closed field of constants

C and F the algebraic closure of F . Let K be a Picard-Vessiot extension of F associated

with a fourth order operator L4 with coefficients in F and G = SL2(C) its Galois group.

Assume that the solution space of L4 is isomorphic to V4 as a G-module. Then

1. Sym2(V4) = V7 ⊕V3. Therefore, L4
©s 2(y) has at most one monic factor of order 3.
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2. If L4
©s 2(y) has order 7 then L4(y) is the third symmetric power of a second order

differential operator defined over F .

3. If L4
©s 2(y) does not have order 7, then it has a unique monic right factor L3 of

order 3 which is equivalent over F to the second symmetric power of a second order

operator L2 having Galois group SL2(C) and defined over F . Furthermore, if F is an

algebraic extension of C(x), then L2 may be chosen to have coefficents in F and the

equivalence will be defined over F as well. Let L2 be any second order operator over

E, an algebraic extension of F , with Galois group SL2(C) whose second symmetric

power is equivalent over E to L3, then the third symmetric power of L2 is equivalent

to L4 over a field E0 with [E0 : E] ≤ 2.

The proof of this result was found by Michael Singer and goes as follows: Proof.

Conclusion 1. follows from the representation theory of SL2 . Indeed looking at the

character of Sym2(V4) at an element of SL2(C) gives us the decomposition Sym2(V4) =

V7 ⊕ V3 (cf (17) p.510). Hence the symmetric power of the solution space V of L4 has

unique invariant subspaces of dimension 3 and 7. The invariant subspace of dimension

3 is spanned by the elements z0z2 − z2
1 , z0z3 − z1z2, z1z3 − z2

2 for suitable basis elements

z0, z1, z2, z3 in V . Since these vanish, we can apply Proposition 6 and achieve conclusion

2.

If L4
©s 2(y) has order 10, then representation theory implies that there will be a unique

monic factor L3 of order 3 whose solution space is isomorphic to V3. The techniques of

Proposition 4.2 of (34) apply (see Lemma 7).
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For an appropriate basis {y1, y2, y3} of the solution space of L3 we have that the elements

Ii = (y
(i)
2 )2 − y

(i)
3 y

(i)
1 , i = 0, 1, 2 all lie in F . Therefore any bi as described in Lemma 7.

define an equivalence of L3 and a second symmetric power of a second order operator L2.

Note that if F is an algebraic extension of C(x) then it is a C1 field, i.e. any form f with

coefficients in F of degree d in n variables, with n > d, has a non-trivial zero in F ((14)

p.3-4), and so any homogeneous quadratic equation in 3 variables will have a nonzero

solution in F . Therefore in this case, the bi can be chosen to lie in F .

Let H be the Galois group of L2 and let ρ : H → GL3(C) be the representation of H on

the second symmetric power. We know that ρ(H) is the three dimensional irreducible

representation of SL2(C) so SL2 ⊂ H ⊂ GL2. Furthermore the kernel of ρ is {±I}.

Therefore H = SL2.

Now, let L2 be an operator as in 3. with coefficients in E, an algebraic extension of F . We

shall abuse notation and now let K denote the Picard-Vessiot extension of E associated

with L4. Since the Galois group of L4 over F is connected it remains the same over E.

Furthermore, K will contain the Picard-Vessiot extension of the second symmetric power

of L2. Let K1 ⊃ E be a Picard-Vessiot extension of E associated with L2 and K1 ·K the

compositum of K1 and K. We have the following diagram:
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E

6

K1 ∩ K

@
@

@I

¡
¡

¡µ

K K1

@
@

@I

¡
¡

¡µ

K1 · K

Since K1∩K contains the Picard-Vessiot extension of the second symmetric power of L2,

its Galois group contains PSL2(C). Therefore [K1 : K1 ∩K] ≤ 2 and since Galois theory

tells us that G(K1 ·K/K1) ' G(K/K ∩K1), we have [K1 ·K : K] ≤ 2. This implies that

the index of SL2(C) in the Galois group of K1 · K is at most 2 and therefore that the

algebraic closure E0 of E in K1 ∩ K is of degree at most 2 over E. The Galois group of

K1 ·K over E0 is SL2(C) and the solution space of the third symmetric power of L2 and

of L4 are isomorphic as SL2(C)-modules. Therefore, these operators are equivalent over

E0 by remark 2. 2

Corollary 1 Let k be an algebraic extension of C(x) and L4 a fourth order operator

with coefficients in k. Assume that the differential Galois group G of L4 has connected

component G0 = SL2(C) and that the solution space of L4 is isomorphic to V4 as a

G0-module. Then either

1. The second symmetric power of L4 has order 7 in which case L4 is a third symmetric
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power of a second order operator over k, or

2. The second symmetric power of L4 has a unique monic third order factor over k.

This factor is equivalent to the second symmetric power of a second order operator

L2 all defined over E with [E : k] ≤ 2 and L4 is equivalent to the third symmetric

power of L2 over an algebraic extension of E of degree at most 2.

Furthermore, if G = G0, then in conclusion 2. we have E = k.

Proof. If G is as above, then we must have that G = G0 ·H where H is the center of

SL4(C). Let F be the fixed field of G0, then [F : k] = |G : G0| = 2. We now apply the

previous result. 2

One can make the above result effective as follows:

• Form the second symmetric power of L4. If it has order 7, use Proposition 6 to

write L4 as a third symmetric power. If not, factor L4
©s 2 over k.

• Let L3 be the third order factor. Use the algorithm of (32) to find an operator L2

whose second symmetric power is equivalent to L3. This may be over a field E of

degree 2 over k.

• Form L
©s 3

2 and find an equivalence of this operator to L4. This latter task can

be performed the way described in Proposition 1. If we let A be the companion

matrix for L4(y) = 0, B be the companion matrix for the third symmetric power

of L2(v) = 0, and Z be the change of basis matrix such that Y = ZV then we
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must find a solution to the differential system Z ′ = AZ − ZB in some quadratic

extension E of k and this latter task is known to be algorithmically solvable.
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4.4 When G0 is SO4(C)

In this section we prove case 6. in theorem 9. We consider an equation L with semi-simple

Lie algebra sl2(C) ⊕ sl2(C) having a representation (the tensor product representation)

in sl4(C) induced by the following representation of Sl2(C) × Sl2(C) into Sl4(C):

ρ





 a1 b1

c1 d1


 ,


 a2 b2

c2 d2





 =




a1a2 a1b2 b1a2 b1b2

a1c2 a1d2 b1c2 b1d2

c1a2 c1b2 d1a2 d1b2

c1c2 c1d2 d1c2 d1d2




with kernel {±(I, I)}. Hence we have an isomorphism of Sl2(C)× Sl2(C)/{±(I, I)} into

Sl4(C).

This is case 2. of theorem 8, hence we know that an equation associated to such a Lie

algebra will be solvable in terms of lower order equations.

We say that a subgroup G of Sl4(C) induces automorphisms on a projective variety when

its quotient by the center of Sl4(C) is a group of projective motions of that variety. Again

let us characterize our group by its action on a quadric:

Lemma 8 The group G of elements in PSl4(C) that induce automorphisms of the pro-

jective variety Q = {(v1, v2, v3, v4)|v1v2 − v3v4 = 0} is isomorphic to

Sl2(C) × Sl2(C)/±(I, I) · Z2 where Z2 is a cyclic group of order 2.
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Proof. Consider the Segre embedding s : P 1 × P 1 −→ P 3 defined by

s([µ1, µ2], [ξ1, ξ2]) = [µ1ξ1, µ2ξ2, µ1ξ2, µ2ξ1]. Also let π1 and π2 be the first and second

projection of P 1 × P 1. Then the quadric y1y2 − y3y4 = 0 in P 3, called the Segre variety

Q, can be parametrized in the following way:

y1 = µ1ξ1

y2 = µ2ξ2

y3 = µ1ξ2

y4 = µ2ξ1

The quadric Q is a determinantal variety {Z : det


 Z0 Z1

Z2 Z3


= 0} of matrices of rank

one. By setting both µi =constant or both ξi =constant we can distinguish 2 families of

lines on Q, namely s(π1
−1(P 1)) and s(π2

−1(P 1)) called the rulings of Q. In other words

we can see [µ1, µ2] as a parameter; when it is fixed s(π1
−1([µ1, µ2])) = s([µ1, µ2], P

1) is a

linear subspace of Q and our first ruling is the set of all such linear subspaces.

In fact any line on the quadric is contained in one of those 2 families ((15) pp.113).

Indeed we claim that any vector space W ⊂ Hom(C2, C2) of matrices of rank 1 (which

corresponds to a linear subspace in P 3) has all its elements having either the same image

or the same kernel. Suppose for instance the latter holds. This tells us that all matrices

in W have the same row space spanned by some (ξ1, ξ2). If we see such a matrix as

M =


 µ1ξ1 µ1ξ2

µ2ξ1 µ2ξ2



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then we clearly have that M ∈ s(π2
−1([ξ1, ξ2]). The same argument can be applied to

matrices with same image (i.e., same column space) that will belong to the other ruling.

Let us now prove the claim. Suppose that A and B in W have different kernel and

different image. Then there exist (v, w) ∈ Ker(A) × Ker(B) such that v /∈ Ker(B)

and w /∈ Ker(A). This implies that B(v) and A(w) are independent since otherwise

B(v) ∈ Im(A) ∩ Im(B) and the rank being 1 gives a contradiction (distinct images).

But then any linear combination Lαβ = αA+βB with αβ 6= 0 is of rank 2, a contradiction

with the fact that W is a vector space. Hence either A and B have same kernel and any

line Lα,β = αA + βB has the same kernel, or they have same image and so does Lα,β.

This implies that either all elements of W have same kernel, or they all have same image

; indeed given any three elements A,B,C in W , two pairs will have the same kernel or

two pairs will have the same image, hence this holds for all three elements.

As a result any line on Q belongs to either one of our 2 families.

We now consider a projective transformation of the quadric Q and look how it operates

on a line.

The image of a family of lines will again be a family of lines, hence a transformation of

the quadric either exchanges the two families of lines, or leaves them fixed.

Suppose we are in the latter case. Then we can see such a transformation as acting on

the copies (µ1, µ2) and (ξ1, ξ2) separately in the following way:

µ̃i =
∑

aijµj

ξ̃k =
∑

bklξl
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where A = (aij) and B = (bkl) are elements of Sl2(C).

Conversely given 2 matrices of Sl2(C), they act on (µ1, µ2) and (ξ1, ξ2) to give us a linear

transformation of the points of the quadric:

µ̃iξ̃k =
∑

aijbklµjξl

that we can extend to a projective transformation by setting

y1 = z11 y2 = z22

y3 = z12 y4 = z21

and considering z̃ik =
∑

aijbklzjl.

Hence we have shown that the group of projective transformations of P 3 that leave Q

fixed but do not exchange the 2 families of lines on the quadric Q is the image of the

direct product Sl2(C)×Sl2(C) ⊂ Sl4(C), hence isomorphic to Sl2(C)×Sl2(C)/{±(I, I)}.

Now the action of exchanging the two families of lines is just a transposition, hence gen-

erates a cyclic group of order two, which gives us the conclusion of the lemma. 2

Corollary 2 The group G of elements in Sl4(C) that induce automorphisms of the vari-

ety Q̃ = {(v1, v2, v3, v4)|v1v2−v3v4 = 0} is isomorphic to Sl2(C)×Sl2(C)/{±(I, I)}·Z2 ·H

where Z2 is a cyclic group of order 2 and H is the center of Sl4(C).

For further references on Segre embeddings and determinantal varieties, we refer to

(15) p.25-27 and p.98-113.
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Remark 3 In the above proof note that the action of Sl2(C) × Sl2(C) on the variety

defined by y1y2 − y3y4 = 0 induces an action on the corresponding projective variety in

the following way: The first copy of Sl2(C) will act on the pairs [y1

y4
, 1] = [µ1

µ2
, 1] while the

second copy acts on [1, y1

y3
] = [1, ξ1

ξ2
].

We will use lemma 8 to locate the solutions of our equation. The following propositions

deal with the special case where L is equal to the symmetric product of two equations

of order two, which can happen when the solutions lie on the quadric Q. First let us

explain what happens when the two equations are normalized:

Proposition 8 Let k be a differential field with algebraically closed field of constants C

and let L(y) = y(4) + p3y
(3) + p2y

(2) + p1y
′ + p0 with p0, p1, p2, p3 in k be unimodular.

If L = L1©s L2 with L1(y) = y′′ + ry and L2(y) = y′′ + sy then

3

2
p2

′ + p2p3 = p1 (4.2)

lδ

(
−1

2
p2

′′ + p0 − p3
p2

′

2

)
= −2p3 (4.3)

where lδ stands for the logarithmic derivative and

r(x) = p2

4
+ 1

2
(−p2

′
2

+ p0 − p3
p2

′
2

)1/2

s(x) = p2

4
− 1

2
(−p2

′
2

+ p0 − p3
p2

′
2

)1/2
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(note that L1 and L2 have a symmetric role) .

If p3 = 0, the above formulas become
3

2
p2

′ = p1 and lδ

(
−1

2
p2

′′ + p0

)
= 0.

Proof. Suppose L1(y) = y′′ +ry and L2(y) = y′′ +sy. Then L1©s L2 = y(4)− r′−s′
r−s

y(3) +

2(r + s)y(2) + {3(r′ + s′) − 2(r+s)(r′−s′)
r−s

}y′ − { r′2−s′2
r−s

− (r − s)2 − (r′′ + s′′)}y = 0 and by

equating the coefficients with those of L(y) we find the given relations (corresponding to

first check and second check in (20)). 2

If one can write L = L1©s L2 with L1 or L2 not normalized we use:

Lemma 9 Let k be a differential field with algebraically closed field of constants C, and

let K = k(Sl2(C)) be the function field of Sl2(C). Let f ∈ K such that ∀σ ∈ Sl2(C),

σ(f) = af+b
cf+d

, with a, b, c, d ∈ k. Then there exist u, v ∈ K such that f = u
v

with

σ(u) = au + bv and σ(v) = cu + dv.

Proof. Suppose first that k is algebraically closed.

It follows from Corollary 4.5 of (11) that if G is a semi-simple, simply connected group,

then its coordinate ring k[G], where k is algebraically closed, is a unique factorisation

domain.

We can apply this to Sl2(C) and write f = u
v

with u and v relatively prime in k[Sl2(C)].

Then we have for any σ ∈ Sl2(C):

σ(u)

σ(v)
= σ(f) =

a(u
v
) + b

c(u
v
) + d

=
au + bv

cu + dv
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Note that since gcd(u, v) = 1 we also have ∀σ ∈ Sl2(C) as above, gcd(σ(u), σ(v)) =

1, otherwise σ(u) = λf and σ(v) = λg implies u = (σ)(−1)(λ)(σ)(−1)(f) and v =

(σ)(−1)(λ)(σ)(−1)(g) hence, k[Sl2(C)] is a unique factorisation domain, (σ)(−1)(λ) is in-

vertible and so is λ. Also gcd(au + bv, cu + dv) = 1. Indeed if λ|au + bv and λ|cu + dv,

since σ is invertible we have u = A(au + bv) + B(cu + dv), v = C(au + bv) + D(cu + dv)

and so λ divides v and u.

Hence since

σ(u)(cu + dv) = σ(v)(au + bv)

we necessarily have

σ(u) = γσ(au + bv)

σ(v) = γσ(cu + dv)

for some γσ ∈ k[Sl2(C)]. Since σ(u) and σ(v) are relatively prime, any common divisor is

a unit in k[Sl2(C)]. In other words γσ is invertible in k[Sl2(C)], and using a result found

in (31) it must be of the form γσ = c.χ with c ∈ k and χ a character on Sl2(C), hence

χ = 1. We can conclude that γσ ∈ k∗. Therefore γσ is independent of σ. Since γId = 1,

we have γσ is the element 1.

Now if k is not algebraically closed Magid pointed to us that one can still show that

k[Sl2(C)] is factorial using Picard group consideration. Indeed factorial is equivalent to

the triviality of the Picard group in this case and if E is the algebraic closure of k, then

E[Sl2(C)] = E⊗kk[Sl2(C)] is a Galois commutative ring extension of k[Sl2(C)] with Galois
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group Γ = Gal(E/k). Since E is algebraically closed, Pic(E[Sl2(C)]) = 0 and there is

an isomorphism H1(Γ, Units(E[Sl2(C)])) → Pic(k[Sl2(C)]) ((8), Cor 5.5). Following

(31) we know Units(E[G]) are constant multiples of characters, hence constants, and so

H1(Γ, Units(E[Sl2(C)])) = H1(Γ, Units(E)) and the latter is trivial by Hilbert’s theorem

90. So Pic(k[Sl2(C)]) = 0 and so the result still holds.

2

This result unables us to prove:

Proposition 9 Let k be a differential field with algebraically closed field of constants C

and let L(y) = y(4) + p3y
(3) + p2y

(2) + p1y
′ + p0y with p0, p1, p2, p3 in k be unimodular.

1. If L is equal to L1©s L2 for some second order homogeneous linear differential equa-

tions L1 and L2 with coefficients in k with L1 and L2 not equivalent to each other

over any quadratic extension of k and each having Galois group Sl2(C), then the

Galois group of L is Sl2(C) × Sl2(C)/±(I, I).

2. If k is an algebraic extension of C(x) and there exists a basis y1, · · · , y4 of the

solution space of L such that y1y2 − y3y4 = 0 and such that the corresponding

representation of the Galois group is exactly Sl2(C) × Sl2(C)/±(I, I) · Z2 where Z2

is a cyclic group of order 2, then L = L1©s L2 where L1 and L2 have coefficients in

an extension of degree at most 4 over k and both have Sl2(C) as their Galois group.

Proof.
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1. Suppose L = L1©s L2 with L1, L2 not equivalent and each having Galois group

Sl2(C).

The solution space of the equation [L1, L2] is of the form V1⊕V2 by lemma 4, hence

the Galois group of the Picard-Vessiot extension K for the equation [L1, L2]l is then

a subgroup of G = Sl2(C)×Sl2(C). We claim that this Galois group is not a proper

subgroup. If it were, then one could apply Kolchin’s theorem (see (26) p.1152 and

especially the case we are dealing with on p.1155) and conclude that L1 would be

equivalent to L2.

Let F ⊂ K be the Picard-Vessiot extension for the symmetric product L1©s L2 and

let y1z1, y1z2, y2z1, y2z2 be the basis for the solution space. Note that y1z1/y1z2 =

z1/z2 ∈ F and Wr(z1, z2)/(z
2
2) = (z1/z2)

′ ∈ F . Since Wr(z1, z2) ∈ k this implies

that z2
2 ∈ F and the degree of K over F is 2. Since ±(I, I) leave F fixed, we have

that the Galois group of F over k is as claimed.

2. Let k0 be the fixed field of Z2.

Then G(M/k0) is connected and equal to Sl2(C) × Sl2(C)/{±(I, I)}. Let G =

Sl2(C) × Sl2(C). The field k0(G) is a quadratic extension of k0(G(M/k0)), hence

the derivation on k0(G(M/k0)) extends uniquely to a derivation on k0(G).

Let us show now that the group action commutes with this derivation, i.e. for

every g ∈ G and every z ∈ k0(G), (g · z)′ = g · (z′). To see this first note that

k0(G) = k0(G(M/k0))(
√

f) for some f ∈ k0(G(M/k0)). We already know that

(g · z)′ = g · (z′) for all g ∈ G and all z ∈ k0(G(M/k0)), and since the group action
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is distributive over the multiplication (it is an homomorphism) we have:

(g · f)′ = (g ·
√

f
2
)′ = [(g ·

√
f)2]′ = 2(g ·

√
f)(g ·

√
f)′

(g · f)′ = g · f ′ = g · [(
√

f)2]′ = g · [2
√

f(
√

f)′] = 2(g ·
√

f)(g · (
√

f)′)

therefore (g ·
√

f)′ = g · (
√

f)′ and k0(G) is a Picard-Vessiot extension of k0 since

every g ∈ G acts as a differential automorphism of k0(G).

As underlined in remark 3, the group G acts on [y1

y4
, 1] as Sl2(C). Similarly the

second copy of Sl2(C) in G will act on [1, y1

y3
]. Hence we can see y1

y4
= f1 and y1

y3
= f2

as elements of k0(Sl2(C) × {1}) ' k0(Sl2(C)) and k0({1} × Sl2(C)) ' k(Sl2(C)) to

apply lemma 9 and find u1, u2 ∈ k0[Sl2(C)×{1}] and v1, v2 ∈ k0[{1}×Sl2(C)] such

that f1 = u1

u2
and f2 = v1

v2
.

The functions u1, u2, v1, v2 live in k0(G), quadratic extension of k0(G/H) and let λ

be such that:

y1

u1v1

=
y2

u2v2

=
y3

u1v2

=
y4

u2v1

=
1

λ
.

Now let

L̃1(u) =
Wr(u, u1, u2)

Wr(u1, u2)
= u′′ + a1(x)u′ + b1(x)u

L̃2(v) =
Wr(v, v1, v2)

Wr(v1, v2)
= v′′ + a2(x)v′ + b2(x)v (4.4)

Notice that the Galois group of L̃1 and L̃2 is Sl2(C), meaning those two equations

are unimodular.
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Let also L̃ = L̃1©s L̃2 = Dx4 + p̃3Dx3 + · · · , with coefficients in some extension F

of degree at most 2 over k0 (the Galois group acts on (< u1, u2 >,< v1, v2 >) the

way it acts on ([y1

y4
, 1], [1, y1

y3
]), either leaving the pairs fixed or exchanging them).

Then the solutions of L(y) = 0 multiplied by λ are equal to the solutions of

L̃(y) = 0, hence the change of variable y → λy in L should give us L̃. Con-

versely the change of variables y → y
λ

in L̃ gives us L; in particular if we equate the

coefficients we find that the logarithmic derivative of λ is in F (lδ(λ) = 1
4
(p3− p̃3)).

So suppose λ(x) = exp
∫

α(x)dx with α(x) in F .

Then we get the following system of solutions for L

u1e
− ∫ α(x)

2
dxv1e

− ∫ α(x)
2

dx

u1e
− ∫ α(x)

2
dxv2e

− ∫ α(x)
2

dx

u2e
− ∫ α(x)

2
dxv1e

− ∫ α(x)
2

dx

u2e
− ∫ α(x)

2
dxv2e

− ∫ α(x)
2

dx

and if we make the change of variables

u → e
∫ −α(x)

2
dxu and v → e

∫ −α(x)
2

dxv

in equations (4.4) (calling them L1 and L2 after this operation), then L = L1©s L2

is a symmetric product with equations L1 and L2 having coefficients in F with

[F : k] ≤ 4.
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k

∪
k0

∪
k0(G/H) = K

∪
k0(G)

Gal(K/k) ' (Sl2(C) × Sl2(C)/±(I, I)) × Z2

∩
Gal(K/k0)

∩
{id}

←→

←→

←→

2

Lemma 10 ((20) p.2) Let L be a fourth order operator with coefficients in C(x) such

that L = L1©s L2 where L1 and L2 have coefficients in C(x). Then one can assume that

L1 = δ2 + aδ + b +
√

c and L2 = δ2 + aδ + b −√
c for some a, b, c ∈ C(x).

Proof. Let L1 = (δ2 + a1δ + b1) and L2 = (δ2 + a2δ + b2).

Recall that taking (δ − d)©s (δ4 + p3δ
3 + · · · ) = δ4 + (p3 − 4d)δ3 + · · · is equivalent to

multiplying the solutions of L(y) = 0 by e
∫

d and enables us to eliminate the term in δ3

in L without changing the solvability in terms of lower order equations (take d = p3

4
).

Now suppose L = L1©s L2 and let us multiply the solutions of L1(y) = 0 by e
∫

d while

multiplying those of L2(y) = 0 by e−
∫

d; again we have L = (L1©s (δ − d))©s (L2©s (δ + d)).

Then for d = a2−a1

4
we get L = (δ2+aδ+B1)©s (δ2+aδ+B2) where a = a1+a2

2
and by taking

b = B1+B2

2
and c = (B1−B2

2
)2 we get L = (δ2 +aδ+b+

√
c)©s (δ2 +aδ+b−√

c) = L1©s L2. 2

Here is how one can make this effective:

Suppose we are given an equation L(y) = y(4) +p3y
(3) +p2y

′′ +p1y
′ +p0y = 0 with Galois
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group Sl2(C)×Sl2(C)/±(I, I)·Z2 such as in proposition 9. We know that L can be written

as the symmetric product of two equations of order 2 : L = (δ2 +aδ+B1)©s (δ2 +aδ+B2),

and we want to find those using proposition 8.

Notice that (δ − a)©s (L1©s L2) = ((δ − a/2)©s L1)©s ((δ − a/2)©s L2) and given L, let L̃ =

L©s (δ−a). If L can be written as the symmetric product L = (δ2+aδ+B1)©s (δ2+aδ+B2),

then this new equation L̃ can be written as the symmetric product of 2 equations without

second term, hence verifies proposition 8. So all we need to do is find a.

Let a = 1
4
p3 − i′(x)

2i(x)
with i undetermined. Mark Van Hoeij shows in (20) that using

equation (4.3) of proposition 9 applied to L̃ (i.e. the coefficients of L̃ obtained from L

using the above a should verify equation (4)), one finds the following third order linear

differential equation L3 of which i should be a solution with i4 ∈ C(x):

L3 = 20δ3 + (8p2 − 12p3
′ − 3p2

3)δ + 12p2
′ − 8p1 + 4p2p3 − 10p3

′′ − p3
3 − 9p3p3

′

Then for each possible i one can check whether equation (4.2) of proposition 9 holds

and use the corresponding formulas to find r(x) and s(x), hence L̃1 and L̃2. The last

step consists of replacing L̃1 and L̃2 by L1 = L̃1©s (δ + a
2
) and L2 = L̃2©s (δ + a

2
).

Notice that L̃1 and L̃2 both have no term in y′, hence their Galois group is Sl2(C). There-

fore it will also be the case for L1 and L2 since a ∈ k.

It can happen that an equation is only equivalent to a symmetric product, but not

equal to one, in which case one needs to transform it before applying proposition 9, i.e.

find a gauge transformation that sends the solutions on Q:
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Proposition 10 Let k be a differential extension of C(x) and L4(y) = y(4) − p3y
(3) −

p2y
′′ − p1y

′ − p0y = 0 with p0, p1, p2, p3 ∈ k be unimodular with Picard-Vessiot extension

K. Assume there exists a basis y1, y2, y3, y4 of the solution space of L4(y) = 0 such that

with respect to this basis the Galois group G of K over k is Sl2(C) × Sl2(C)/±(I, I) · Z2

acting irreducibly. Then

1. The elements

Ii = y1
(i)y2

(i) − y3
(i)y4

(i), where i = 0, · · · , 3

lie in k.

2. If b0, b1, b2, b3 are nonzero solutions of a certain quadratic polynomial with coeffi-

cients in k, then

z1 = b0y1 + b1y1
′ + b2y1

′′ + b3y1
(3)

z2 = b0y2 + b1y2
′ + b2y2

′′ + b3y2
(3)

z3 = b0y3 + b1y3
′ + b2y3

′′ + b3y3
(3)

z4 = b0y4 + b1y4
′ + b2y4

′′ + b3y4
(3)

will be a basis for the solution space of L2©s L̃2(y) = 0 where L2 and L̃2 are homoge-

neous second order linear differential operators with coefficients in k(b0, b1, b2, b3).

Proof.

1. Let σ ∈ G and consider its action on the solutions of L4(y) = 0: σ(yi) =
∑4

j=1 aijyj.

Clearly the group G acts on the derivatives of the yi’s the same way and since it

leaves I0 fixed it leaves the Ii’s fixed for i = 0, · · · , 3, hence those lie in k.
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2. Let

zi = b0yi + b1yi
′ + b2yi

′′ + b3yi
(3)

and expand the expression z1z2 − z3z4. We get the quadratic polynomial

b0
2I0 + b1

2I1 + b2
2I2 + b3

2I3 + b0b1I0
′ + b1b2I1

′ + b2b3I2
′ + b0b2A + b0b3B + b1b3C

where

A = 1
p0

(I2
′′ − 2I3 − p3I2

′ − 2p2I2 − p1I1
′), B = A′ − I1

′ and

C = 1
p1

(I3
′ − 2p3I3 − p2I2

′ − p0B)

with coefficients involving the Ii’s and the coefficients of L4, all lying in k.

Since k is a C1 field there exists (b0, b1, b2, b3) a nonzero solution of this polynomial,

hence the zi’s lie on the quadric defined by the equation z1z2 − z3z4 = 0. We need

to show that these are linearly independent.

Suppose there exist (c1, c2, c3, c4) ∈ C4\{(0, 0, 0, 0)} such that

0 = c1z1 + c2z2 + c3z3 + c4z4.

Then c1y1 + c2y2 + c3y3 + c4y4 is a nonzero common solution for L4(y) = 0 and

L̃4(y) = b3y
(3) + b2y

′′ + b1y
′ + b0y = 0, a contradiction since L4 is irreducible.

Now consider the equation
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L(y) =
Wr(y, z1, z2, z3, z4)

Wr(z1, z2, z3, z4)

It has coefficients in k(b0, b1, b2, b3) since G acts linearly on the span of {z1, z2, z3, z4}

and we can apply proposition 9 to conclude that L is the symmetric product of two

second order equations.

2

So in case G = Sl2(C) × Sl2(C)/±(I, I) · Z2 , we will apply proposition 10 to find a

solution b0, b1, b2, b3 in a quadratic extension N of k0 where k0 is the fixed field of G0,

this time at most quadratic over k. Using Cramer’s rule we can find a0, a1, a2, a3 ∈ N

such that yi = a0zi + a1zi
′ + a2zi

′′ + a3zi
(3) for i = 1, · · · 4.

Notice that if k is not an algebraic extension of C(x) then there is an algebraic ex-

tension F of k for which the above result holds but we do not know how to bound the

degree of F over k.

Mark Van Hoeij’s procedure:

Finally let us recall how Mark Van Hoeij decides whether an equation is the symmet-

ric product of two equations of order 2.

The procedure is the following: ((20))

Input:L(y) = y(4) + A3y
(3) + A2y

(2) + A1y
′ + A0y with A0, A1, A2, A3 ∈ C(x). Normalize

L and write L(y) = y(4) + p2y
(2) + p1y

′ + p0y.
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Output:a, b, c ∈ C(x) such that L = (δ2 + aδ + b +
√

c)©s (δ2 + aδ + b −√
c).

Step 1:Compute L3 = 5
2
δ3 + p2δ + 3

2
p2

′ − p1.

Step 2:Compute all solutions i of L3 whose fourth power is in C(x).

Step 3:For each non zero i compute i′
i

and test if (δ + 1
2

i′
i
)©s L satisfies equation 4.2 of

proposition 9.

Step 5:If so find r and s as in proposition 9 using the coefficients of (δ + 1
2

i′
i
)©s L and

replace them by (δ − 1
4

i′
i
)©s L1 and (δ − 1

4
i′
i
)©s L2 which is the output.

Remark 4 Mark Van Hoeij’s procedure decides if L = L1©s L2 for L,L1, L2 ∈ C(x)[δ]

without knowing the nature of the Galois group. In our method we consider the case

where we know the Galois group is G = Sl2(C)×Sl2(C)/(±(I, I)) ·Z2 ·H, in which L can

be written as L = L1©s L2 with L1, L2 ∈ k[δ] and [k : C(x)] ≤ 8. Also Mark Van Hoeij’s

procedure has to be adapted to ¯C(x).
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4.5 When G is of the form H ⊗ Sl2(C) with H a finite

primitive subgroup of Sl2(C)

We consider the case of a fourth order equation L4(y) = y(4) + p3y
(3) + p2y

′′ + p1y
′ + p0y

with primitive Galois group G ⊂ Sl4(C) and reducible component of the identity G0,

which corresponds to case 4. in theorem 9. The corresponding Lie algebra is still sl2(C)

but this time we are looking at a reducible representation, precisely the direct sum of

two two-dimensional spaces C2 ⊗ C2 = V1 ⊕ V2. Therefore we are dealing with case 1.

of theorem 8 and L will factor over the algebraic closure of k as the following theorem

states:

Theorem 11 Let k be a differential field and let L be a linear differential operator with

coefficients in k such that the Galois group G of L over k has the following representation:

G0 is conjugate to





 A 0

0 A


 : A ∈ Sl2(C)




and G = H · G0 where H is the finite group

H =





 aI bI

cI dI


 :


 a b

c d


 ∈ H̃, I =


 1 0

0 1






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with H̃ a finite primitive subgroup of G2 = {A ∈ Gl2(C) : detA2 = 1}.

Then there exist L1 and L2 operators of order 2 with coefficients in an extension of k of

degree at most 4, 6 or 12 such that L = [L1, L2]l.

In (9) Compoint and Weil give algorithms to characterize and compute such a factor-

ization of an operator over an algebraic closure of the field of coefficients. Here we use a

different technique than they do, following an algorithm due to Beke (see (2)).

The finite primitive subgroups of G2 are A4
Sl2 , S4

Sl2 , A5
Sl2 and degree two extensions

of these groups by
√
−1I.

Let K be the Picard-Vessiot extension of k associated with L4(y) = 0 and let k0 be the

fixed field of G0, of degree |H| over k. Then the form of G0 shows that the solution space

V of L4(y) = 0 over k0 can be decomposed into the direct sum of two vector spaces V1

and V2. Hence we can use lemma 4 to say that L4 = a[L1, L2]l where a ∈ k0 and [L1, L2]l

is the least common left multiple of two operators L1 and L2 of order 2 with coefficients

in k0 and solution space V1 and V2 respectively.

Note that since the central elements are diagonal, the orders of the groups A4, S4, A5

being respectively 12, 24 and 60 determine a bound on the coefficients of L1 and L2.

We want to sharpen this result and find a smaller field extension E between k and k0

such that L4 is the least common left multiple of 2 operators with coefficients in E, which

will give us smaller bounds on the coefficients of L1 and L2. Then we also want to find

these 2 equations.



CHAPTER 4. STUDY OF THE LIE SUB-ALGEBRAS OF SL4(C) 75

For this we need to find a subgroup N of H such that the action of the group N ·G0

preserves our solution space decomposition into V1

⊕
V2. The situation is the following:

k

∪
E

∪
k0

∪
K

G = H · G0

∩ minimize

N · G0

∩
G0

∩
{id}

←→

←→

←→

←→

We show below that it will be the case for any abelian subgroup of H since those are

diagonal (true for any finite, abelian subgroup).

Indeed let {e1, e2, e3, e4} be the standard basis of C4, in which

G0 =





 A 0

0 A


 : A ∈ Sl2(C)




We will need the following lemma:

Lemma 11 ((17) p.493) Let

G =





 A 0

0 A


 : A ∈ Sl2(C)



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The centralizer of G in Gl4(C) is





 aI bI

cI dI


 : (ad − bc) 6= 0




This result enables us to prove:

Lemma 12 Let L4 be a linear differential equation with coefficients in a differential field

k such that its Galois group is of the form H ·G0. Then L4 = [L1, L2]l and a bound on the

degree of the coefficients of L1 and L2 is found by looking at maximal diagonal subgroups

of H.

Proof. Let N be an abelian subgroup of H. In other words let Ñ be an abelian sub-

group of H̃ (see previous theorem). The group N is diagonalizable in a basis {f1, f2, f3, f4}.

Hence there exists a matrix M ∈ Sl2(C) such that MñM−1 is diagonal for every ñ ∈ Ñ .

Suppose

M =


 u1 u2

u3 u4




Let

h =


 u1I u2I

u3I u4I




be the change of basis matrix in Sl4(C). By lemma 11, for every ng ∈ N ·G0, h ·ng ·h−1 =

h·n·h−1h·g·h−1 has again the block diagonal form given by the decomposition V = V1⊕V2.
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So let us consider a maximal diagonal subgroup Hd of H. The fixed field E of

Hd · G0 =





 aA 0

0 a−1A


 : A ∈ Sl2(C)




has degree [H : Hd] = [H̃ : H̃d] over k and again the solution space V can be written

V = V1

⊕
V2 over E which tells us that we can find 2 differential operators L1 and L2 of

order 2 with coefficients in E of which L4 is the least common left multiple. 2

If H ' A4,then the maximal diagonal subgroups are of index 4, hence to factor L4 one

follows the procedure explained in (29) p.102-105 knowing that the second order factors

we are looking for have their coefficients in an extension of k of degree 4.

In the case where H̃ ' S4
Sl2 then the maximal diagonal subgroups of S4 are of index 6,

hence there is an extension of degree at most 6 over which L4 = [L1, L2].

And when H̃ ' A5
Sl2, then the maximal diagonal subgroups of A5 being of index 12, we

can find the coefficients of L1 and L2 in an extension of k of degree at most 12.

Which shows that theorem 11 holds.

Now the goal is to get information about how to find these 2 operators. For this we

follow a procedure given in (29) chapter 4.
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We want group theory to tell us more about the coefficients of L1 and L2. First

note that in the case where H̃ is a subgroup of Sl2(C), G can be seen as a subgroup of

SO4(C) ' Sl2(C) × Sl2(C) acting on C2 ⊗ C2 via:

{1} × Sl2(C) −→ SO4(C)

A 7−→


 A 0

0 A




giving the action of G0, and

Sl2(C) × {1} −→ SO4(C)
 a b

c d


 7−→


 aI bI

cI dI




for the action of H.

Algorithms for factoring linear differential operators over the field of coefficients are

known but the difficulty here will be to factor over an algebraic extension, while imple-

mentation exists only over C(x). For this we will use Beke’s algorithm (see (2)) or rather

its improved version by Tsarev ((42)).

Following (29) p.111-116, in order to factor L4 we look at its second exterior power

and in particular the space
∧2V where V is the solution space of L4(y) = 0. Indeed one
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wants to locate the wronskians of solutions of L1 and L2 so that we know where to look

for their coefficients. According to Beke’s algorithm, when the second exterior power is

of maximal order, it is enough to find the degree of the first coefficient of a factor over

k, i.e. the degree of the logarithmic derivative of its wronskian.

Lemma 13 Let L4(y) = 0 be a linear differential equation qith coefficient in a differential

k such that its Galois group is of the form H ·G0. Assume that its second exterior power

is of order 6. Then
∧2(L4) is the least common left multiple of 2 operators of order 3,

L̄H and ¯LSL that are equivalent to the second symmetric powers of 2 operators of order 2

having Galois group H and Sl2(C) respectively. Furthermore the wronskians of solutions

of a second order factor for L4 are solutions of LH .

Proof. This result is a consequence of the representations given in Table 4.1 for the

groups H · G0 ⊂ SO4(C).

To find those S.Hessinger explains she looked at the action of the whole group Sl2(C) ×

Sl2(C), then drew conclusions on the subgroups. In (13) p.274 we find the decomposition

of the representation of the Lie algebra so4(C) on
∧2V , where V = C4, to be the direct

sum of 2 irreducible three-dimensional representations that are the second symmetric

powers (also equal to the adjoint representation) of two two-dimensional representations

of Sl2(C), which corresponds to the decomposition of so4(C) as sl2(C) ⊕ sl2(C). On the

group level this corresponds to the decomposition of SO4(C) as the image of Sl2(C) ×

Sl2(C) by the above maps.

Hence in each case
∧2V decomposes over k as the direct sum of two irreducible three-
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dimensional representations W̄1 and W̄2 such that Sl2(C) acts on W̄1 trivially while having

W̄2 as a second symmetric power representation, and H acts on W̄2 trivially while having

W̄1 as a second symmetric power representation.

So let us consider the second exterior power of L4 and assume we know that it is of order

6, i.e. its solutions space is isomorphic to
∧2V . We are then able to write

∧2(L4) as the

least common left multiple of 2 operators L̄1 and L̄2 with coefficients in k and solutions

spaces W̄1 and W̄2. Then one has that L̄1 and L̄2 are equivalent to the second symmetric

powers of 2 operators of order 2.

Furthermore, since V = V1

⊕
V2 over E, we have

∧2V =
∧2V1

⊕ ∧2V2

⊕
V1 ⊗ V2,

which can be further decomposed into the direct sum of three one-dimensional wedge

spaces and one three-dimensional symmetric space W1

⊕
W2 where:

W1 =< e1 = v1 ∧ v2 >
⊕

< e3 = u1 ∧ u2 >
⊕

< e2 = v1 ∧ u2 − v2 ∧ u1 >

and W2 =< e4 = v1 ⊗ u1, e6 = v2 ⊗ u2, e5 = v1 ∧ u2 + v2 ∧ u1 >

for V1 =< v1, v2 > and V2 =< u1, u2 >.

This decomposition tells us that the operator
∧2(L4) can also be written as the least

common left multiple of 2 equations of order 3:
∧2(L4) = [L̃1, L̃2]l. With L̃1 having

solution space W1 and L̃2 having solution space W2, and both equations have coefficients

in E.

One can check that the component G0 ' Sl2(C) will act on W1 trivially, while having

W2 as a second symmetric power representation, and the group H has a central action

on W2 while having W1 as a second symmetric power representation.
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Indeed let

A =


 a b

c d


 ∈ Sl2(C)

such that 
 A 0

0 A


 ∈ G0

is an element of G0 with respect to the basis {u1, u2, v1, v2}. We want to consider its

action on {u1 ∧ u2, v1 ∧ v2, v1 ∧ u2 − v2 ∧ u1, v1 ⊗ u1, v2 ⊗ u2, v1 ∧ u2 + v2 ∧ u1}. We find

the matrix

Ã =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 a2 b2 2ab

0 0 0 c2 d2 2cd

0 0 0 ac bd (ad + bc)




giving the action of G0 on the exterior power of V .

Similarly if 
 aI bI

cI dI


 ∈ H
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represents a matrix in H with respect to the basis {u1, u2, v1, v2}, i.e. (ad − bc)2 = 1,

then its action on
∧2V is given by the matrix:




a2 b2 2ab 0 0 0

c2 d2 2cd 0 0 0

ac bd (ad + bc) 0 0 0

0 0 0 ±1 0 0

0 0 0 0 ±1 0

0 0 0 0 0 ±1




Note that if H = A4
Sl2 , S4

Sl2 , or A5
Sl2 those lie in Sl2(C) hence their action on W2 is

trivial.

Clearly the wronskians of elements of Vi, i = 1, 2 lie in W1. So we want to find L̃1, or

at least its solutions to get the wronskians of solutions of L1 and L2 and eventually find

those 2 equations. The Galois group associated with L̃1 is isomorphic to H̃/±I since the

representation we are looking at is a symmetric power (the kernel is killed).

2

We can show that the characters associated with each of the three one-dimensional

spaces in W1 are distinct from each other. Indeed recall that an element y ∈ K {0}
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is an exponential over k if and only if there is a character ξ : G → C of G such that

σ(y) = ξ(σ)y for all σ ∈ G (cf lemma 4.8 in (29)). So let


 aI 0

0 ±a−1I


 ∈ Hd

and




b 0 0 0

0 b−1 0 0

0 0 b 0

0 0 0 b−1



∈ G0

i.e.




ab 0 0 0

0 ab−1 0 0

0 0 ±a−1b 0

0 0 0 ±a−1b−1



∈ Hd · G0

.

Then we can find the characters of the representation
∧2V :
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


a2 0 0 0 0 0

0 1 0 0 0 0

0 0 a−2 0 0 0

0 0 0 b2 0 0

0 0 0 0 1 0

0 0 0 0 0 b−2




and clearly the characters of the alternate spaces are distinct. Hence the equation

L̃1(y) = 0 has three distinct exponential solutions (i.e. three distinct factors of order

one), two of which can be expressed as wronskians of solutions of order two differential

equations.
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4.6 Solving forms in many variables

In the examples that we discuss in the next chapter we will need to solve homogeneous

quadratic polynomials in three or four variables to find a gauge transformation as stated

in Proposition 7 and Proposition 10. Since the field of coefficients we work with is C(x)

the idea is to use Theorem 3.6 of (14) together with its proof p.22 that gives us a method

for solving forms with coefficients in a C1 field.

The field C being algebraically closed, it is C0. Let P (b1, · · · , bn) be a quadratic polyno-

mial in n variables with coefficients in C(x). We will consider the case where n > 2, for

which the conditions of Theorem 3.4 of (14) p.18 due to Lang and Nagata are satisfied.

Let r be the highest degree of the coefficients of P . Then for s > (r+1)−n
n−2

there must exist

a non-trivial common zero of the form

bµ = b̄µ0 + b̄µ1x + b̄µ2x
2 + · · · + b̄µsx

s

µ = 1 · · ·n to the 2s + r forms in n(s + 1) variables Pν where:

P (b) = P0(b̄) + P1(b̄)x + · · · + P2s+r(b̄)x
2s+r

for b = (b0, · · · bn) and b̄ = (b̄00, b̄10, · · · , b̄ns). This gives a non-trivial solution of P in

C[x].
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Example 6 Consider

p0 =

+
4(1024x20 − 5120x17 − 320x16 − 640x15 + 14720x14 + 1088x13 + 208x12 − 22208x11)

(7 + 40x7 + 7x − 83x4 − 12x3 + 28x5 − 20x8 − 8x2 − 192x9 + 64x12 + 232x6)

+
4(−3272x10 + 2288x9 + 10832x8 + 2768x7 + 1450x6 − 2708x5 − 1100x4 + 200x3 − 320x2 − 28x − 23)

(7 + 40x7 + 7x − 83x4 − 12x3 + 28x5 − 20x8 − 8x2 − 192x9 + 64x12 + 232x6)

p1 =

+
4(46 − 5x − 308x4 − 636x3 + 2758x7 − 854x6 − 2144x9 − 256x12)

(7 + 40x7 + 7x − 83x4 − 12x3 + 28x5 − 20x8 − 8x2 − 192x9 + 64x12 + 232x6)

p2 =

+
4(1200x5 − 1920x8 + 840x11 + 24x2 − 1176x10 + 640x15)

(7 + 40x7 + 7x − 83x4 − 12x3 + 28x5 − 20x8 − 8x2 − 192x9 + 64x12 + 232x6)

− 4(320x16 − 1088x13 − 36x12 + 72x11 + 968x10 − 12x9 − 227x8)

(7 + 40x7 + 7x − 83x4 − 12x3 + 28x5 − 20x8 − 8x2 − 192x9 + 64x12 + 232x6)

− 4(304x7 + 206x6 − 143x5 − 406x4 + 38x3 + 46x2 − 17x + 11)

(7 + 40x7 + 7x − 83x4 − 12x3 + 28x5 − 20x8 − 8x2 − 192x9 + 64x12 + 232x6)

p3 =

− (7 − 16x + 140x4 − 332x3 − 160x7 + 280x6 + 1392x5 − 1728x8 + 768x11 − 36x2)

(7 + 40x7 + 7x − 83x4 − 12x3 + 28x5 − 20x8 − 8x2 − 192x9 + 64x12 + 232x6)

and

• I0 = 1.

• I1 = x4 − 2
5
x + 3

20
.

• I2 = x8 − 4
7
x5 + 5

12
x4 − 5

21
x3 − 1

6
x + 5

84
.

• I3 = x12 − 54
85

x9 + 247
340

x8 − 42
85

x7 − 146
85

x6 − 41
85

x5 + 11
34

x4 + 1
17

x3 + 19
85

x2 − 1
17

x + 1
170

.

We want a solution for the quadratic polynomial in the bi’s:

P = b0
2I0 + b1

2I1 + b2
2I2 + b3

2I3 + b0b1I0
′ + b1b2I1

′ + b2b3I2
′ + b0b2A + b0b3B + b1b3C

where

A = 1
p0

(I2
′′ − 2I3 − p3I2

′ − 2p2I2 − p1I1
′), B = A′ − I1

′ and

C = 1
p1

(I3
′ − 2p3I3 − p2I2

′ − p0B)
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The highest degree for the coefficients of P is 67(after taking the numerator). The general

method gives s > 32, which requires us to consider a system of 131 forms in 132 variables.

An alternative to this method is to set b3 = 0 and b2 = 1 in P and solve the resulting

polynomial P̄ in b0 and b1. We then look for b0 such that the discriminant of P̄ in b1 is

a square. We get that b0 must be a root of an irreducible polynomial of degree 110. This

gives us a solution for P in C(x).



Chapter 5

Applications

In the following we apply the previous methods on examples illustrating each case of

study. We explain how each example was constructed, then how we determine the nature

of the Galois group, and finally we try to find the lower order equations used to solve it.

Most of the following calculations were done using the machines of the French UMS

Medicis.

5.1 Examples for Sl2(C) with irreducible representa-

tion

1. • Constructing the example

Here we give an equation having Galois group Sl2(C) that we found by using

the method described in (28) to solve the inverse problem.

88
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Let

A0 =




0 3 0 0

1 0 2 0

0 2 0 1

0 0 3 0




and

A1 =




3 3 0 0

1 1 2 0

0 2 −1 1

0 0 3 −3




From theorem 3.6 of (28) together with its proof we know that the differential

system Y ′ = (A0 + x2A1)Y has Galois group Sl2(C). Using the cyclic vector

[1, 0, 0, 0] one gets the following corresponding equation:

L4(y) =

y(4) +(−20x−10−10x4)y(2) +(−20−40x3)y′ +(36x5 +36x+9+18x4 +9x8)y

• Calculating the Galois group with Table 4.1

The operator L4 is irreducible and unimodular.

Using Table 4.1 we show its Galois group is Sl2(C) since its second exterior

power is of order 5 and its second symmetric power of order 7.

• Solving in terms of lower order equations

This example is a third symmetric power of an equation of order 2 and by
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Proposition 6 we show it is the third symmetric power of L2(y) = y(2) +

(−2x − 1 − x4)y.

2. • Constructing the example

Let us apply the gauge transformation z = y +y′ to the above equation L4(y).

We get:

L4(y) = y(4) − 4(30x2 + 45x4 + 8x3 + 4 + 18x7)

16x + 8x4 + 20 + 9x8 + 40x3 + 36x5
y(3)

− 2(100x2 + 340x5 + 280x + 270x9 + 450x4 + 360x6 + 85x8 + 45x12 + 164x7 + 92 + 184x3)

16x + 8x4 + 20 + 9x8 + 40x3 + 36x5
y′′

+
4(270x2 + 205x4 − 128x3 − 164 + 82x7 + 540x5 − 80x − 500x6)

16x + 8x4 + 20 + 9x8 + 40x3 + 36x5
y′

+
9(84 + 96x + 9x16 + 72x13 + 428x4 − 140x5 − 152x3 + 25x8)

16x + 8x4 + 20 + 9x8 + 40x3 + 36x5
y

+
9(26x12 + 156x9 + 288x6 + 344x10 + 488x7 − 56x2)

16x + 8x4 + 20 + 9x8 + 40x3 + 36x5
y

• Calculating the Galois group with Table 4.1

We checked that the operator L4 is irreducible and unimodular.

Its second exterior power has maximal order 6 with one rational solution. Its

second symmetric power has maximal order 10 and factors into 2 equations of

order 3 and 7 respectively. Again according to Table 4.1 the Galois group of

L4 has for its connected component Sl2(C).

• Solving in terms of lower order equations

This time the first formula of Proposition 6 isn’t true, so we need to transform

L4 with a gauge transformation to find an equation equivalent to L4 that

passes the tests of Proposition 6.

According to Proposition 7 this gauge transformation exists. This corresponds

to finding a gauge transformation such that the second symmetric power of
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our new equation is of order 7 exactly. The idea is to consider the factor of

order 3 of the second symmetric power of L4 and show it is equivalent to the

second symmetric power of a second order equation using Singer’s work on

third order equations (see (34)).

The factor of order three that we get after factoring the second symmetric

power of L4 is

L3(y) = y(3) + (−4x4 − 8x − 4)y′ − (8x3 + 4)y

and it turns out to be precisely the second symmetric power of

L2(y) = y(2) + (−2x − 1 − x4)y

So let

L̃4(v) = v(4) + (−20x − 10 − 10x4)v(2) + (−20 − 40x3)v′ + (36x5 + 36x + 9 +

18x4 + 9x8)v = L2
©s 3(v)

The equations L4 and L̃4 are equivalent by the gauge transform z = y + y′.

Indeed as in Lemma 1 let us consider the companion matrices for L4 and

L̃4, respectively A and B. In this case finding a cyclic vector is expensive

since one needs to inverse a 16 × 16 matrix, so we used the Maple package

ISOLDE ((1)), and in particular the online interactive demonstration, to find

the rational solutions of W ′ = (A ⊗ I − I ⊗ BT )W and the corresponding
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matrix Z such that Z ′ = AZ − ZB where Y = ZV . Finally we get Z−1 =




1 1 0 0

0 1 1 0

0 0 1 1

−9x8 − 36x5 − 18x4 − 36x − 9 40x3 + 20 10x4 + 20x + 10 1




and the gauge transform as announced.
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5.2 Examples for SO4(C)

The following two examples were constructed by P.Gaillard.

5.2.1 The Mitschi-Singer method

1. • Constructing the example

Also M.F. Singer and C. Mitschi give a procedure in (28) in order to solve the

inverse problem for any connected semisimple group which P. Gaillard was

able to apply to SO4(C).

Let

A0 =




0 1 1 0 0 0 0 0

1 0 0 1 0 0 0 0

1 0 0 1 0 0 0 0

0 1 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0



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and

A1 =




4 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 −2 0 0 0 0 0

0 0 0 −4 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 3 0

0 0 0 0 0 0 0 −3




From Theorem 3.6 of (28) together with its proof we know that the differential

system Y ′ = (A0 + x2A1)Y has Galois group Sl2(C). Using the cyclic vector

[0, 0, 1, 0, 0, 1, 1, 0] one gets the following corresponding equation:

L4(y) = y(4)− 1
x
(−1+4x3

−1+x3 )y(3) +(−20x4 +8x−4)y(2)− 4
x
(x−20x4−4x3+1+10x7

−1+x3 )y′+4( 16x12+1+58x6−48x9

x(−1+x3)
)y

• Calculating the Galois group using Table 4.1

We checked that L4 is irreducible and unimodular.

This equation was obtained by factoring an equation of order 8 the Galois

group of which we know is SO4(C). Hence the Galois group of L can be either

SO4(C) or a subgroup of SO4(C), i.e. PGl2(C). We now test L4 using Table

4.1.
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Its second symmetric power is of order 9. Its second exterior power is of order 6

and has two factors of order 3, which wouldn’t be the case if the Galois group

was PSl2(C). To determine whether the group is SO4(C) using Hessinger’s

method one would need to construct, then factor the sixth symmetric power

of L4 which can be an operator of order 84, hence this task is too expensive.

• Solving in terms of lower order equations

Let us use Proposition 9 to write L4 as the symmetric product of 2 equations

of order 2.

Its coefficients satisfy (4.3) and (4.2), hence it is the symmetric product of

equations without second term. One finds L4 to be the symmetric product of

the equations:

L1(y) = y′′ + (−9x4 + 6x − 1)y

L2(y) = y′′ + (−x4 − 2x − 1)y

2. • Constructing the example

It is interesting to notice in the previous example that the second exterior

power of L4 is the least common left multiple of L1
©s 2 and L2

©s 2. Now one

considers an equation that is not the symmetric product of 2 equations of

order 2, but is equivalent to it, which will not be as easy to solve. We took

the previous equation and applied a gauge transform on it to construct this

one:
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L4(y) = y
(4)

+
4(46 − 5x − 308x4 − 636x3 + 2758x7 − 854x6 − 2144x9 − 256x12)

(7 + 40x7 + 7x − 83x4 − 12x3 + 28x5 − 20x8 − 8x2 − 192x9 + 64x12 + 232x6)
y
′

+
4(1200x5 − 1920x8 + 840x11 + 24x2 − 1176x10 + 640x15)

(7 + 40x7 + 7x − 83x4 − 12x3 + 28x5 − 20x8 − 8x2 − 192x9 + 64x12 + 232x6)
y
′

− 4(320x16 − 1088x13 − 36x12 + 72x11 + 968x10 − 12x9 − 227x8)

(7 + 40x7 + 7x − 83x4 − 12x3 + 28x5 − 20x8 − 8x2 − 192x9 + 64x12 + 232x6)
y
′′

− 4(304x7 + 206x6 − 143x5 − 406x4 + 38x3 + 46x2 − 17x + 11)

(7 + 40x7 + 7x − 83x4 − 12x3 + 28x5 − 20x8 − 8x2 − 192x9 + 64x12 + 232x6)
y
′′

− (7 − 16x + 140x4 − 332x3 − 160x7 + 280x6 + 1392x5 − 1728x8 + 768x11 − 36x2)

(7 + 40x7 + 7x − 83x4 − 12x3 + 28x5 − 20x8 − 8x2 − 192x9 + 64x12 + 232x6)
y
(3)

+
4(1024x20 − 5120x17 − 320x16 − 640x15 + 14720x14 + 1088x13 + 208x12 − 22208x11)

(7 + 40x7 + 7x − 83x4 − 12x3 + 28x5 − 20x8 − 8x2 − 192x9 + 64x12 + 232x6)
y

+
4(−3272x10 + 2288x9 + 10832x8 + 2768x7 + 1450x6 − 2708x5 − 1100x4 + 200x3 − 320x2 − 28x − 23)

(7 + 40x7 + 7x − 83x4 − 12x3 + 28x5 − 20x8 − 8x2 − 192x9 + 64x12 + 232x6)
y

• Calculating the Galois group using Table 4.1

We checked that L4 is unimodular and irreducible.

The second exterior power of L4 factors as the least common left multiple of

two equations of order 3 and its second symmetric power has a rational solu-

tion. Again it would be too expensive to use Hessinger’s method to determine

the Galois group in this case.

• Solving in terms of lower order equations
The second exterior power of L4 is the least common left multiple of:

L1 =δ
3 − 8(2688x11 − 5184x8 − 368x7 + 1680x6 + 1920x5 + 100x4 − 792x3 − 18x2 + 16x + 21)

(1792x12 − 4608x9 − 368x8 + 1920x7 + 2560x6 + 160x5 − 1584x4 − 48x3 + 64x2 + 168x + 7)
δ
2

− 4(16128x16 − 52224x13 − 1520x12 + 9216x11 + 48000x10)

(1792x12 − 4608x9 − 368x8 + 1920x7 + 2560x6 + 160x5 − 1584x4 − 48x3 + 64x2 + 168x + 7)
δ

− 4(−960x9 − 16160x8 − 5152x7 + 2856x6 + 520x5 − 2425x4 + 956x3 − 38x2 + 146x + 45)

(1792x12 − 4608x9 − 368x8 + 1920x7 + 2560x6 + 160x5 − 1584x4 − 48x3 + 64x2 + 168x + 7)
δ

+
4(32256x15 − 92928x12 − 6368x11 + 12672x10 + 84480x9 + 5040x8)

(1792x12 − 4608x9 − 368x8 + 1920x7 + 2560x6 + 160x5 − 1584x4 − 48x3 + 64x2 + 168x + 7)

+
4(−16304x7 − 19000x6 − 8064x5 + 6256x4 − 94x3 + 806x2 + 220x + 101)

(1792x12 − 4608x9 − 368x8 + 1920x7 + 2560x6 + 160x5 − 1584x4 − 48x3 + 64x2 + 168x + 7)
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and

L2 =δ
3 − 8(1152x11 − 1728x8 − 48x7 + 1120x6 − 864x5 − 180x4 − 128x3 + 54x2 + 48x + 7)

(768x12 − 1536x9 − 48x8 + 1280x7 − 1152x6 − 288x5 − 256x4 + 144x3 + 192x2 + 56x − 105)
δ
2

− 4(768x16 + 720x12 + 1664x11 − 16896x10 − 1920x9 + 3792x8)

(768x12 − 1536x9 − 48x8 + 1280x7 − 1152x6 − 288x5 − 256x4 + 144x3 + 192x2 + 56x − 105)
δ

− 4(5792x7 − 2936x6 − 4296x5 + 4175x4 + 124x3 − 134x2 + 698x − 299)

(768x12 − 1536x9 − 48x8 + 1280x7 − 1152x6 − 288x5 − 256x4 + 144x3 + 192x2 + 56x − 105)
δ

+
12(512x15 + 768x12 + 736x11 + 896x10 − 12032x9 − 2352x8)

(768x12 − 1536x9 − 48x8 + 1280x7 − 1152x6 − 288x5 − 256x4 + 144x3 + 192x2 + 56x − 105)

+
12(4496x7 − 1448x6 − 832x5 + 1488x4 − 1082x3 − 174x2 + 260x + 115)

(768x12 − 1536x9 − 48x8 + 1280x7 − 1152x6 − 288x5 − 256x4 + 144x3 + 192x2 + 56x − 105)

To solve L4(y) = 0 one needs to find a degree two invariant that will be found

by computing the rational solutions of the second symmetric power of L4, L′
4,

L′′
4 and L4

(3) where L′
4, L′′

4 and L4
(3) are operators such that if L4(y) = 0, then

L′
4(y

′) = 0, L′′
4(y

′′) = 0 and L4
(3)(y(3)) = 0.

We found those rational solutions using the Maple package Bernina ((7)):

– I0 = 1 for L4(y) = 0.

– I1 = x4 − 2
5
x + 3

20
for L4

′(y) = 0.

– I2 = x8 − 4
7
x5 + 5

12
x4 − 5

21
x3 − 1

6
x + 5

84
for L4

′′(y) = 0.

– I3 = x12− 54
85

x9+ 247
340

x8− 42
85

x7− 146
85

x6− 41
85

x5+ 11
34

x4+ 1
17

x3+ 19
85

x2− 1
17

x+ 1
170

for L4
(3)(y) = 0.

We want a solution for the quadratic polynomial in the bi’s:

b0
2I0 + b1

2I1 + b2
2I2 + b3

2I3 + b0b1I0
′ + b1b2I1

′ + b2b3I2
′ + b0b2A+ b0b3B + b1b3C

where

A = 1
p0

(I2
′′ − 2I3 − p3I2

′ − 2p2I2 − p1I1
′), B = A′ − I1

′ and
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C = 1
p1

(I3
′ − 2p3I3 − p2I2

′ − p0B)

Following the method described in section 4.6 we find the bis in C(x), but the

result is too large to be included.

5.2.2 The Beukers-Heckman method

• Constructing the example

We wanted to build the example of a homogeneous linear differential equation

of order 4 with Galois group SO4(C), ie solve the inverse problem in this case.

F.Beukers and G.Heckman in (3) describe the Galois groups of the hypergeometric

equation, and P.Gaillard followed their procedure to build the following equation

with Galois group O4(C). He checked that the hypergeometric group with parame-

ters 1,−1, i,−i, e2iπ/17, e−2iπ/17, e2iπ/3, e−2iπ/3 was primitive and not a scalar shift of

a finite group to apply Theorem 6.5 of (3) and conclude it was indeed O4(C). Then

he constructed the corresponding hypergeometric equation:

L(y) = y(4) +
1
2 (8+x)

x(x−1)
y(3) − 1

41616
(244828+2601x)

x2(x−1)
y(2) − 1

83232
−313856+2601x

x3(x−1)
y′ − 256

289
1

x4(x−1)
y

So that the Galois group of L is a subgroup of Sl4(C) we want L to be unimodular,

i.e. that the second coefficient of L is a rational function. Since it is not the case

here we use a change of variables to make the equation unimodular.
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The new unimodular equation we get is:

L4(y) =y(4) +
1

83232
(49419x2 + 389282x − 508928)

x2(x − 1)2
y(2)

− 1

18496

18496x3 + 336829x2 − 547510x + 147968

x3(x − 1)3
y′

+
1

10653696

8304993x4 + 242993284x3 − 438833712x2 + 188425344x − 30736384

x4(x − 1)4
y

• Calculating the Galois group using Table 4.1

We checked that L4 is an irreducible homogeneous hypergeometric unimodular

equation. By construction its Lie algebra is so4(C).

The second symmetric power of L4 is of order 10 but does not have a rational solu-

tion, hence according to Table 4.1 the Galois group of L4 is not SO4(C). However

the connected component of the Galois group of L4 is SO4(C), so we should be able

to write L4 as the symmetric product of 2 equations of order 2 over an algebraic

extension of k.

• Solving in terms of lower order equations

In this case we will have problems factoring as we need to work in an extension.
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5.3 Examples for Sl2(C) with reducible representa-

tion

1. • Constructing the example

In (30) the authors give an equation for the finite group A4
Sl2 and take its

symmetric product with an equation having Sl2(C) for its Galois group.

Let us use the symmetric product of the Airy equation L1(y) = y′′ − xy,

that has Galois group Sl2(C) with an equation that has Galois group A4
Sl2 :

L2(y) = y′′ − ( −3
16x2 − 2

9(x−1)2
+ 3

16x(x−1)
)y.

We get:

L4(y) =y(4) − 144x6 − 432x5 + 432x4 − 208x3 + 81x2 − 135x + 54

(144x5 + 32x2 − 27x + 144x3 − 288x4 + 27)(x − 1)x
y(3)

− 1

72

144x5 − 288x4 + 144x3 − 32x2 + 27x − 27

(x − 1)2x2
y(2)

− 1

144
(

20736x11 − 103680x10 + 207360x9 − 138240x8

(144x5 + 32x2 − 27x + 144x3 − 288x4 + 27)(x − 1)3x3
y′

+
135360x7 + 386064x6 − 429232x5 + 248400x4

(144x5 + 32x2 − 27x + 144x3 − 288x4 + 27)(x − 1)3x3
y′

+
−50085x3 − 7560x2 + 5103x − 1458

144x5 + 32x2 − 27x + 144x3 − 288x4 + 27)(x − 1)3x3
y′)

+
1

20736
(
2985984x15 − 17915904x14 + 44789760x13 − 54743040x12

(144x5 + 32x2 − 27x + 144x3 − 288x4 + 27)(x − 1)4x4
y

+
17231616x11 + 47215872x10 − 77068800x9 + 4726456x8

(144x5 + 32x2 − 27x + 144x3 − 288x4 + 27)(x − 1)4x4
y

+
9777456x7 − 48894400x6 + 45476640x5 − 18085680x4

(144x5 + 32x2 − 27x + 144x3 − 288x4 + 27)(x − 1)4x4
y

+
722925x3 + 2240217x2 − 898857x + 229635

(144x5 + 32x2 − 27x + 144x3 − 288x4 + 27)(x − 1)4x4
y)

• Calculating the Galois group using Table 4.1

We checked that L4 is irreducible and unimodular.

Its second exterior power has degree 6 and factors into [L̄H , ¯LSL], where ¯LSL

is the second symmetric power of the Airy equation and L̄H is the second
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symmetric power of L2. Its second symmetric power has degree 9. To use

Table 4.1 and decide that the Galois group is A4
Sl2(C) ⊗ Sl2(C) one needs

to construct then factor the fourth symmetric power of L4 which can be an

operator of order 45, hence this method will again be too expensive.

• Solving in terms of lower order equations

To find the second order equation of which L4 is the least common left multiple

one needs to work in an extension of degree 4.

2. • Constructing the example
Now consider the following equation that we constructed by applying a gauge
transform to L4:

L(y) = y
(4)

− 1

144

(429981696x21 − 3869835264x20 + 12469469184x19 − 14571601920x18 − 6264594432x17 + 3723522048x16)

A1
y
′

− 1

144

(196856967168x15 − 640821694464x14 + 1110703684608x13 − 1206718748928x12 + 758753678592x11)

A1
y
′

− 1

144

(91138362624x10 − 281042039008x9 + 232783630704x8 − 49832845488x7 − 38364692688x6 + 37097558307x5)

A1
y
′

− 1

144

(17592716430x4 + 6392579130x3 − 1780130520x2 + 266606235x − 12400290)

A1
y
′

− 1

72

(429981696x20 − 4299816960x19 + 19349176320x18 − 50761728000x17 + 84879581184x16)

A2
y
′′

− 1

72

(93150756864x15 + 67746004992x14 − 34115696640x13 + 16328521728x12)

A2
y
′′

− 1

72

(16796431872x11 + 32433387264x10 − 57319661952x9 + 65900416352x8 − 39481962624x7)

A2
y
′′

+
1

72

(2212100064x6 + 13500094392x5 − 10123466265x4 + 4472371260x3 − 1967971950x2 + 719216820x − 105402465)

A2
y
′′

− 3(459270 − 2066715x + 4533165x2 + 37506672x6 − 4084695x4 − 4431105x3 − 276293376x11 + 202155264x10 − 147690240x9)

A3
y
(3)

− 3(135533232x8 − 103723984x7 − 24883200x15 + 92565504x14 − 202051584x13 + 284891904x12 + 3938544x5 + 2985984x16)

A3
y
(3)

+
1

20736

(−19380087226368x19 + 86638015217664x18 − 837019575x + 50183973630x2 − 12500427866112x22)

A4
y

+
1

20736

(22927054012416x21 − 18948863361024x20 + 61917364224x25 − 743008370688x24 + 4024628674560x23

A4
y

+
1

20736

(27195298169040x6 + 2955137746455x4 − 540342636750x3 + 176449800796416x11 − 33269203481344x10)

A4
y

1

20736

(−59645104839216x9 + 78283810352448x8 − 54860276808000x7 + 292838436864x15 − 161235787161600x14)

A4
y

+
1

20736

(279913147163136x13 − 284525448620544x12 − 10349321577147x5)

A4
y

+
1

20736

(114629356486656x16 − 137422311284736x17 + 167403915)

A4
y
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with

A1 = x3(x−1)2(−314731008x11+385502976x12+2985984x16−263761920x13−26873856x15+110481408x14+

46103040x10−299702736x8+918540x3−2194290x2+12588048x5+4073085x4+219529520x7+216281088x9+

918540x − 229635 − 91888784x6)

A2 = x2(−314731008x11 + 385502976x12 + 2985984x16 − 263761920x13 − 26873856x15 + 110481408x14 +

46103040x10−299702736x8+918540x3−2194290x2+12588048x5+4073085x4+219529520x7+216281088x9+

918540x − 229635 − 91888784x6)(x − 1)

A3 = x(−314731008x11 + 385502976x12 + 2985984x16 − 263761920x13 − 26873856x15 + 110481408x14 +

46103040x10−299702736x8+918540x3−2194290x2+12588048x5+4073085x4+219529520x7+216281088x9+

918540x − 229635 − 91888784x6)

A4 = x4(−314731008x11 + 385502976x12 + 2985984x16 − 263761920x13 − 26873856x15 + 110481408x14 +

46103040x10−299702736x8+918540x3−2194290x2+12588048x5+4073085x4+219529520x7+216281088x9+

918540x − 229635 − 91888784x6)(x3 − 3x2 + 3x − 1)

• Calculating the Galois group using Table 4.1
We checked that L4 is irreducible and unimodular.
For the same reasons as above Hessinger’s method will be too expensive.
The second exterior power of L is of order 6 and can be written as the Least
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Common Left Multiple of

L1 = δ
3

− 3
(995328x16 − 8957952x15 + 36827136x14 − 90574848x13 + 145956096x12 − 156093696x11)

B1
δ
2

− 3
(104448768x10 − 29619456x9 − 11247088x8 − 1177360x7 + 29595888x6 − 30828816x5)

B1
δ
2

− 3
(12656439x4 + 657153x3 − 3589677x2 + 2066715x − 459270)

B1
δ
2

+
1

36

(246841344x17 − 2248445952x16 + 9377980416x15 − 23790440448x14 + 41056395264x13 − 51286493952x12)

B2
δ

+
1

36

(48520485888x11 − 36678357504x10 + 26663021184x9 − 26490082864x8 + 30057900768x7 − 25798214448x6)

B2
δ

+
1

36

(14366156112x5 − 5370901425x4 + 1997457084x3 − 1020773502x2 + 372008700x − 55801305)

B2
δ

− 1

72

(557383680x18 − 5150822400x17 + 22482468864x16 − 60784128000x15 + 113666899968x14)

B3

− 1

72

(−154163955456x13 + 147989865984x12 − 77291278848x11 − 35689321728x10)

B3

− 1

72

(126995560976x9 − 142439373504x8 + 94068221616x7 − 38322916128x6)

B3

− 1

72

(10021106403x5 − 3289063806x4 + 2083524282x3 − 868204008x2 + 167403915x − 12400290)

B3

where

B1 = (995328x15−8957952x14+38817792x13−106721280x12+202459392x11−272007936x10+258228480x9−

171456768x8 + 75330960x7 − 11966480x6 − 12683952x5 + 9975312x4 − 2002077x3 − 797769x2 + 688905x −

229635)x(x − 1)

B2 = (995328x15−8957952x14+38817792x13−106721280x12+202459392x11−272007936x10+258228480x9−

171456768x8 + 75330960x7 − 11966480x6 − 12683952x5 + 9975312x4 − 2002077x3 − 797769x2 + 688905x −

229635)x2(x − 1)2

B3 = 995328x15−8957952x14+38817792x13−106721280x12+202459392x11−272007936x10+258228480x9−

17145676x8 + 75330960x7 − 11966480x6 − 12683952x5 + 9975312x4 − 2002077x3 − 797769x2 + 688905x −

229635)x3(x − 1)3
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and

L2 = δ
3

− 3
(8957952x16 − 76640256x15 + 295612416x14 − 675827712x13 + 1007652096x12 − 1020867840x11)

C1
δ
2

− 3
(+717656832x10 − 384238848x9 + 237325200x8 − 210980048x7 + 163801008x6 − 84609360x5)

C1
δ
2

− 3
(+29799927x4 − 6890751x3 − 1702701x2 + 2066715x − 459270)

C1
δ
2

− 2
(17915904x20 − 185131008x19 + 877879296x18 − 2489647104x17 + 4641587712x16 − 5881102848x15)

C2
δ

− 2
(5016333312x14 − 2608475904x13 + 343132704x12 + 671471840x11 − 409487584x10 − 576364192x9)

C2
δ

− 2
(1483855782x8 − 1617425982x7 + 1033689276x6 − 383492151x5 + 74082195x4 − 16594956x3 + 12890178x2 − 4822335x + 688905)

C2
δ

+ 2
(8957952x19 − 86593536x18 + 373248000x17 − 909398016x16 + 1282003200x15 − 782224128x14)

C3

+ 2
(−651723264x13 + 2063902464x12 − 2604269808x11 + 2507732176x10 − 2440692624x9)

C3

+ 2
(2415691664x8 − 1953186885x7 + 1079339283x6 − 352917162x5 + 52269543x4 − 6511509x3 + 8220933x2 − 3735396x + 688905)

C3

where

C1 = 8957952x15 − 74649600x14 + 289640448x13 − 674500608x12 + 1024047360x11 − 1028816640x10 +

654098688x9−202394880x8−61437168x7+115729552x6−70200432x5+22953456x4−4832541x3+617463x2+

688905x − 229635)/x/(x − 1)

C2 = 2 + 1024047360x11 − 1028816640x10 + 654098688x9 − 202394880x8 − 61437168x7 + 115729552x6 −

70200432x5 + 22953456x4 − 4832541x3 + 617463x2 + 688905x − 229635)/x2/(x − 1)2

C3 = 8957952x15 − 74649600x14 + 289640448x13 − 674500608x12 + 1024047360x11 − 1028816640x10 +

654098688x9−202394880x8−61437168x7+115729552x6−70200432x5+22953456x4−4832541x3+617463x2+

688905x − 229635)/x2/(x − 1)2

• Solving in terms of lower order equations

We want to find two order 2 equations L12 and L22 the second symmetric

power of which are equivalent to L1 and L2. For this one needs to compute
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the rational solutions of L1
©s 2, L′

1
©s 2 and L′′

1
©s 2 one the one hand, and those

of L2
©s 2, L′

2
©s 2 and L′′

2
©s 2 one the other hand.

We find them using Bernina. For L1 we get:

– I0 =
(x5− 5

2
x4+2x3− 13

18
x2+ 3

16
x− 3

16
)

(x4−2x3+x2)

– I1 =
(x10−6x9+17x8− 248

9
x7+ 1885

72
x6− 461

36
x5+ 959

648
x4+ 13

6
x3− 1637

768
x2+ 87

128
x+ 9

256
)

(x8−4x7+6x6−4x5+x4)

–

I2 =
(x12 − 1083

176
x11 + 3021

176
x10 − 11101

396
x9 + 23615

792
x8 − 29751

1408
x7

(x12 − 6x11 + 15x10 − 20x9 + 15x8 − 6x7 + x6)

(851821
114048

x6 + 9527
2816

x5 − 15227
2816

x4 + 94365
45056

x3 + 8793
45056

x2 − 16281
45056

x + 4131
45056

)

(x12 − 6x11 + 15x10 − 20x9 + 15x8 − 6x7 + x6)

and for L2 we get:

– I0 =
(x5− 5

2
x4+2x3− 13

18
x2+ 3

16
x− 3

16
)

(x4−2x3+x2)

– I1 =
(x10−6x9+17x8− 248

9
x7+ 1885

72
x6− 461

36
x5+ 959

648
x4+ 13

6
x3− 1637

768
x2+ 87

128
x+ 9

256
)

(x8−4x7+6x6−4x5+x4)

–

I2 =
(x15 − 8x14 + 29x13 − 545

9
x12 + 1855

24
x11 − 1019

18
x10 + 18235

1296
x9 + 20473

1296
x8

(x12 − 6x11 + 15x10 − 20x9 + 15x8 − 6x7 + x6)

+
−462503

20736
x7 + 84299

5184
x6 − 3655

384
x5 + 1393

256
x4 − 605

256
x3 + 17

64
x2 + 27

128
x − 9

256
)

(x12 − 6x11 + 15x10 − 20x9 + 15x8 − 6x7 + x6)

Then one needs to solve the quadratic polynomial in (b0, b1, b2):

P = I0b0
2 + I1b1

2 + I2b2
2 + b0b1I

′
0 + b1b2I

′
1 + 1

−p0
(I ′

2 + 2p2I2 + p1I
′
1)

in each case. We know there is a non-trivial solution as stated in section 4.6,

but again using that method will not be efficient since the degrees of the coef-
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ficients of P are sparse around 30 and we will end up having to eliminate the

variables using resultants and discriminants as in the Mitschi-Singer example

for SO4(C), then solving a polynomial in b0 of degree 143.



Chapter 6

Summary

The work done in the previous chapters shows that one can decide whether a given

linear differential equation L4(y) = 0 of order 4 can be solved in terms of equations of

lower order, and if so produce those lower order equations that one can solve to find

the solutions of L4(y) = 0. Let us give a summary of the method one should follow.

First of all let us recall that one can always assume that L4(y) = 0 is of the form

y(4) − p2y
(2) − p1y

′ − p0y = 0.

1. Test the reducibility of L4 using the results on factorisation of differential operators

(see (5), (6) and (19)).

If L4 is reducible over the coefficient field, use Maple to find the factors of lower

order. If not go to the next step.

2. Check whether L4(y) = 0 has liouvillian solutions using the work of M.F.Singer

and F.Ulmer in (37). If so find them using (21). If not check for a factorization of

107
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L4 over a quadratic extension of the field of coefficients as in Example 2.

3. If all the above failed use Table 4.1 in the following order:

Using Maple compute and factor the second exterior power and the second sym-

metric power of L4. For this finding the eigenring and then calculating the factors

might be faster.

(a) If
∧2L4 is of order 5 or has a rational solution and if L4

©s 2 is of order 7 or

has a factor of order 3, then L4 is equivalent to the third symmetric power of

an operator of order 2, say L2. Use the equations in Proposition 6 to check

whether L4 = L2
©s 3 and if so Proposition 6 gives L2 as well. In case the

equations in Proposition 6 do not hold find an equation of order 2 the second

symmetric power of which is equivalent to the factor of order 3 L3 of L4
©s 2

using Lemma 7 and take its third symmetric power. To do this one can use

the Maple package Bernina ((7)) to find the rational solutions of the second

symmetric product of L3, L′
3 and L′′

3. This third symmetric power is equivalent

to L4 by a gauge transform that one can calculate using Lemma 1 and the

Maple package ISOLDE ((1)).

(b) If
∧2L4 has 2 factors of order 3 or L©s 2 has a rational solution, factor L©s 3.

• If L©s 3 has 2 factors of order 8 L4 is the least common left multiple of 2

equations of order 2 with coefficients in a degree 4 extension of the field

of coefficients. To find those use Beke’s algorithm ((2)). Else factor L©s 4.

This task can be expensive since it might already have order 35.
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• If L©s 4 has one irreducible factor of order 10 L4 is the least common left

multiple of 2 equations of order 2 with coefficients in a degree 6 extension

of the field of coefficients. Again use Beke’s algorithm to factor. Else

factor L©s 6, which can also be too expensive as L©s 6 can be of order 84.

• If L©s 6 has one irreducible factor of order 21 L4 is the least common left

multiple of 2 equations of order 2 with coefficients in a degree 12 extension

of the field of coefficients. For this use Beke’s algorithm.

(c) If none of the above hold use Proposition 10 to write L4 equivalent to the

least common left multiple of 2 operators of order 2 with coefficients in an

extension of degree 4, by first finding the rational solutions of the second

symmetric power of L4, L′
4, L′′

4 and L4
(3) using Bernina, then solving the

corresponding quadratic polynomial that is over determined, which gives us

the gauge transform for the equivalence.

4. If none of the above hold, then L4 is not solvable in terms of lower order equations.
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