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 In the research community, three-dimensional integrated circuit (3DIC) technology 

has garnered attention for its potential use as a solution to the scaling gap between MOSFET 

device characteristics and interconnects. The purpose of this work is to examine the 

performance advantages offered by 3DICs. A 3D microprocessor-based test case has been 

designed using an automated 3DIC design flow developed by the researchers of North 

Carolina State University. The test case is based on an open architecture that is exemplary of 

future complex System-on-Chip (SoC) designs.  Specialized partitioning and floorplanning 

procedures were integrated into the design flow to realize the performance gains of vertical 

interconnect structures called 3D vias. For the post-design characterization of the 3DIC, 

temperature dependent models that describe circuit performance over temperature variations 

were developed. Together with a thermal model of the 3DIC, the performance scaling with 

temperature was used to predict the degree of degradation of the delay and power dissipation 

of the 3D test case. Using realistic microprocessor workloads, it was shown that the 

temperatures of the 3DIC thermal model are convergent upon a final value. The increase in 

delay and power dissipation from the thermal analysis was found to be negligibly small when 

compared to the performance improvements of the 3DIC. Timing analysis of the 3D design 

and its 2D version revealed a critical path delay reduction of 26.59% when opting for a 3D 

implementation.  In addition, the 3D design offered power dissipation savings of an average 

of 3% while running at a proportionately higher clock frequency.  
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1 Introduction 
 

The International Technology Roadmap for Semiconductors (ITRS) predicts the rapid 

increase in total interconnect length in the coming technology generations. In just three years, 

the amount of active wiring that will be necessary for traditional integrated circuits is 

expected to nearly double. Compounding the design challenges of engineers even more is the 

outlook for interconnect RC delays. In the same timeframe, the delays for local, intermediate, 

and global wiring are expected to increase by no less than 25% [1]. These trends can be seen 

in Figure 1-1 and Figure 1-2.  
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Figure 1-1: ITRS Data for the Total Interconnect Length of an IC 
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Figure 1-2: ITRS Data for Interconnect RC Delay for three types of interconnect 

 

 

Although the nominal gate delays will continue to decrease with each successive 

generation for quite some time, the same cannot be said about the performance of the 

metallization used to provide connectivity between these gates. The apparent scaling gap 

between MOSFET device and interconnect performance has caused researchers to gain an 

interest in three-dimensional integration as a possible solution to the foreseeable limitations 

of standard two-dimensional circuit design. Three-dimensional integrated circuits (3DICs) 

alleviate the delay concerns of interconnects by offering the vertical axis as a possible routing 

direction. With the increasing popularity of System-on-Chip (SoC) architectural solutions, 

3DICs can meet the density and functionality demands of these complex systems by 

“stacking” multiple tiers vertically and realizing inter-tier connectivity by means of short, 

vertical interconnects. It is the hope of the interested research community that 3DICs will 

help reduce the amount of delay and power that is “wasted” in wires. 
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 In this work, a realistic 3D design test case based on the OpenRISC microprocessor is 

presented in order to qualify the relative advantages of 3DICs. Specifically, the design of an 

IC based on the OpenRISC Reference Platform System-on-Chip (ORPSOC) is detailed [2]. 

The test case is created by means of the 3DIC design flow of the Methodologies for User-

Friendly System-on-a-chip Experimentation (MUSE) research group at North Carolina State 

University. This design flow is specific to MIT Lincoln Lab’s fully-depleted silicon-on-

insulator (FDSOI) 3D process [3]. Moreover, the design flow is unique in that it takes full 

advantage of the maturity of industry-standard 2D Electronic Design Automation (EDA) 

tools and simply adapts them to the 3D environment. It will be shown that, through 

intelligent user partitioning between the tiers and floor planning within each tier of a 3DIC, a 

3D microprocessor-based design can operate at a higher clock frequency than feasible for a 

two-dimensional IC. The consideration of the performance gains from porting the design to 

3D will also include the complexity issues of integrating multiple fabricated tiers in one 

package. These issues are largely a function of the thermal model of a 3DIC, which 

introduces the well-known poor heat removal ability of a multi-tiered chip [4]. Skeptics have 

always pointed to the concerns of the higher average chip temperatures of 3DICs, and this 

work will do the same.    

 In general, the interplay between a circuit’s delay, power dissipation, and operating 

temperature has a degrading effect on its performance. A chip that is operating at a higher 

temperature will tend to slow down and dissipate even more power, which, in turn, will force 

a positive feedback loop between the power dissipation and temperature of an IC [5]. This 

work presents two models that can be used to predict the temperature dependence of power 

dissipation and combination path delay in order to capture the amount of performance 
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degradation due to temperature in 3DICs. In doing so, this work presents an illustrative 

example of the aforementioned temperature-power positive feedback loop using the 

ORPSOC test case. It is shown that this iterative loop does converge upon a final average tier 

temperature for the 3D ORPSOC design and that the temperature is not high enough to 

counteract the speedup from using vertical interconnects. 

 The organization of this work is as follows. First, the derivation and verification of 

the two temperature-dependent circuit parameter models is reported. Next, the tool flows for 

estimating power dissipation and path delays of a 3D design are discussed. These will later 

be used to assess the performance improvement when moving from 2D to 3D and include 

consideration of heat generation in the 3DIC. Following the flow development, a brief 

overview of the FDSOI 3D process is described. Subsequently, an outline of the ORPSOC 

architecture used for the test case is presented. In particular, the discussion includes the 

merits of the ORPSOC as a 3D case study and how the ORPSOC was modified for 

experimentation. Afterwards, the 3DIC design flow used for the physical design of the test 

case is detailed. Once it is understood how to can characterize a 3DIC for delay and power 

per tier, the results from the timing and power analyses of the 2D and 3D designs can be used 

to gauge the effectiveness of 3D integration for the test case. To conclude, a summary of this 

work is presented in addition to ideas for areas of future work that could help reduce 3D 

design complexity. 
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2 Temperature Dependent Models for use in 3DICs 

The thermal performance of 3DICs is a hot topic in the research community and one that 

still remains a mystery. A critical issue in the migration of interconnect-centric designs to the 

3D environment is the non-uniform temperature profile across the tiers of a 3DIC. Since 

every tier beyond the bottom-most is handicapped by having heat-sources (active transistors) 

far away from the heat-removal fixtures, the average temperature of a tier increases as more 

tiers are added to the 3D stack and hence, the reliability of the IC worsens. One can no longer 

assume a single temperature from which to project the power and speed of an integrated 

system once it is transitioned to 3D. Two temperature dependent models have been 

developed and verified in this work to aid in the understanding of 3D circuit behavior. The 

phenomena of temperature dependence on power dissipation and combinational path delay 

are presented in this section. Acknowledging the temperature non-idealities, the former is 

used in the estimation of the increase in power dissipation and the latter is utilized to 

determine the degree to which a 3DIC slows down. Both of these models were verified 

against the actual results given in SPICE simulations using BSIM SOI models [6]. Good 

agreement is shown between these temperature dependent models and the complex transistor 

model of BSIM. 

2.1 Power Dissipation Temperature Dependence 

Recently, power dissipation has emerged as a limiting factor on the performance of 

integrated circuits. Circuit designers can no longer simply target speed as the ultimate 

measure of a chip’s performance. The motivation for this is not only in the prevalence of 

portable electronics that demand low-power operation but also in the continual scaling of the 
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feature size of MOSFET devices.  A great deal of interest in the power consumption of 

traditional 2D ICs has brought about an onslaught of low-power design methodologies as 

well as methods for the integration of power dissipation considerations into design flows. 

Especially central to the design of 3DICs, any accurate consideration of power dissipation 

must account for its dependence on the operating temperature of the dissipating device. With 

each tier of a 3DIC operating at a different average temperature, the initial characterization of 

power dissipation in the design flow could prove to be too optimistic.  

2.1.1 Model Derivation 

The three major sources of CMOS power dissipation are encapsulated in equation 2.1, 

where Pdynamic is the contribution to total power dissipation from dynamic sources, Pdp is the 

power dissipated from direct-path currents,  and Pstatic is the portion of power dissipation that 

is static [7]. 

staticdpdynamicTotal PPPP ++=   (2.1) 

For the purpose of this work, direct-path power is ignored as it is generally a very 

small ratio of the total dynamic power. Moreover, direct-path power is a function of the peak 

current and node transition time. Both of these factors have opposite reactions to temperature 

change. Indeed, peak current decreases with increases in temperature, while transition times 

tend to increase (see section 2.2). The relative insensitivity of direct-path power to 

temperature is shown in Figure 2-1. Figure 2-1 tracks the normalized average direct-path 

energy of a CMOS inverter simulated with one rising and one falling transition, with the 

power being directly proportional to the energy. As indicated in the figure, the direct-path 

energy of the inverter deviates by no more than 3% from the nominal amount over a one 

hundred degree temperature range. 
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Figure 2-1: Normalized average short circuit energy for a CMOS inverter 

 

When considering the final two components of power dissipation, it is well-known 

that dynamic power is generally insensitive to temperature change [8], [9]. This is supported 

by the accepted definition of dynamic power dissipation as shown in equation 2.2. In 

equation 2.2, CL is the load capacitance of a gate, VDD is the supply voltage, f is the clock 

frequency of the circuit, and α0->1 represents the probability that a clock event results in zero 

to one transition at the output of a gate [7]. Since all of the variables presented in equation 

2.2 are independent of temperature, this directly implies that dynamic power is also 

independent of temperature. It is worth noting that the frequency of the clock is usually set 

by a phase-locked loop (PLL), which is designed to be insensitive to temperature. 

10

2

>−= αfVCP DDLdynamic   (2.2) 

  The equation for static power dissipation is shown in equation 2.3, where Ileak denotes 

the sub-threshold leakage current that exists between the supply rails when a transistor is 

inactive. It is this leakage current that gives static power dissipation its strong dependence on 

temperature, as detailed in this section. 
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DDleakstatic VIP =   (2.3) 

 As discussed in [10], leakage currents are becoming a significant problem in circuit 

design as technology continues to scale. It is estimated by Berkeley predictive models in 

future technologies that leakage power will become so high that it can no longer be taken 

lightly [11]. Thus, when modeling temperature dependent parameters of a design, leakage 

power dissipation must be considered. The BSIM 3.3 model for the MOSFET drain current 

in the sub-threshold region is characterized in equation 2.4 and 2.5 [6]. 

t

offthgs

t

ds

nV

VVV

V

V

sds eeII

−−−

−= )1(
)(

0   (2.4) 

2

00 )
2

( t

s

chSi

s V
Nq

L

W
I

φ

ε
µ=       (2.5) 

 In these equations, Vt is the thermal voltage and is given by KBT/q, where T is the 

temperature [6]. Although the BSIM model is complex, the scaling of drain current with 

temperature can be approximately reduced to T
2
e

1/T
. Thus, leakage power is described as 

being exponentially dependent on temperature. In order to attempt to model this scaling 

behavior from a reference operating temperature, two published leakage models were tested. 

The first is from the work of [8] and is formulated directly from equations 2.4 and 2.5. This 

temperature dependent leakage model is shown equation 2.6, where β represents a curve-

fitting parameter that is normally determined from SPICE simulation regressions. 

T
leakleak eTTITI

β
2

0 *)()( =   (2.6) 

 Equation 2.6 predicts the leakage current at any arbitrary temperature, Ileak(T), from a 

reference leakage current value, Ileak(T0). However, it was found to be very difficult and time-

consuming to ascertain the value of β through SPICE simulations of an inverter using BSIM 
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SOI models. For this reason, a more-agreeable temperature dependent leakage model was 

chosen. Shown in equation 2.7, this model was specifically tested against BSIM SOI models 

and uses a second-order polynomial to describe the dependency [12]. The values for α1 and 

α2 are found using curve-fitting techniques. 

 

)1)(()( 2

210 TTTITI leakleak ∆+∆+=∆ αα   (2.7) 

 According to equation 2.7, leakage power at an arbitrary temperature can be predicted 

using not the absolute temperature value but the departure from the reference temperature, 

∆T. This model for leakage power more closely matched the actual values obtained from 

SPICE simulations. 

2.1.2 Model Verification 

To determine the values for the curve-fitting parameters in equation 2.7, a series of 

SPICE simulations were performed. Each test circuit was configured for a leakage power 

measurement. The inputs to the circuits were giving a static bit pattern, and the current 

through the supply was measured. The leakage power in watts is calculated by multiplying 

the current through the supply with the nominal supply voltage, which was 1.5 volts for the 

BSIM SOI model. The temperature parameter in SPICE was swept between 25 and 125 

degrees Celsius, and the leakage power at each temperature was calculated. The test circuits 

for simulation were a number of the MUSE SOI standard cells in addition to some larger 

designs. Once all of the SPICE simulations were complete, the leakage power results from 

SPICE were collected into files and taken as input to a small curve fitting C program. For 

each test circuit, this program simply calculated the values of leakage power at every 

temperature and compared the calculated value with the SPICE value from the file. At every 
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temperature node, the percentage of error between the SPICE value and the value generated 

from the model was saved. An average percentage of error was determined after all of the 

temperature nodes were visited. This average represented the error between SPICE and the 

model for one particular value of α1 and α2 . Iterations within a range of values for α1 and α2 

were performed to arrive at the best possible error for each test circuit. The output of the 

program was a file containing a set of values for α1 and α2 that gave the best possible error for 

each test circuit. It was observed that the value for α1 was exactly the same for all test circuits 

and that the value for α2 varied very little. This was consistent with the work of [12]. Figure 

2-2, Figure 2-3, and Figure 2-4 together show the quality of the prediction capability of the 

model versus the actual SPICE leakage power values. The test circuits for Figure 2-2, Figure 

2-3, and Figure 2-4 are an inverter, a full adder, and a 16-bit ripple carry adder, respectively. 

The figures show that inaccuracy in the model is only present near the upper limit set on 

temperature. The model variables were set to 0.24 for α1 and 0.0005 for α2. Table 2-1 

summarizes the leakage power error in the test circuits when using these values.  
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Figure 2-2: Predicted versus actual leakage lower for an inverter 
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Figure 2-3: Predicted versus actual leakage Power for a full adder 
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Figure 2-4: Predicted versus actual leakage power for a 16-bit ripple carry adder 

 

Table 2-1: Leakage power model as compared to SPICE simulations 

Cell Name Average % of Error 

INV 3.54 

2-Input NOR 2.48 

2-Input NAND 3.24 

2-Input XOR 3.2 

Full Adder 3.81 

16-bit Ripple Carry Adder 4.70 
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2.2 Delay Temperature Dependence 

Techniques for estimating the frequency achievable for a design at a nominal operating 

temperature are commonplace in the industry. Recently, interest has been invested in the 

research of methods for calculating full-chip thermal profiles. Using this thermal profile, the 

performance can be ascertained for specific temperatures at locations on the chip. The same 

concept can be applied to the tiers of a 3DIC. Particularly, the temperature profile across the 

tiers of a 3DIC can be used to estimate the slow down of the circuits on the each tier. This 

slow down is measured by the increase in combinational path delay due to temperature 

effects on MOSFETs. In a digital circuit, an increase in critical path delay has an inverse 

effect on the maximum clock frequency attainable. Therefore, it is vital to gain an 

understanding of the degree to which the speed of a 3D design derates from its synthesized 

speed target. Modeling the temperature dependence of delay in a digital design from a 

reference temperature is an efficient means of quickly estimating clock frequency 

requirements.  

2.2.1 Model Derivation 

The MOSFET drain current, ID, can be expressed in terms of the alpha model shown 

in equation 2.8 [13]. In this equation, µ(T) and VTH(T) denote the temperature dependence of 

carrier mobility and threshold voltage, respectively. 

αµα ))()((  TVVTI THDDD −   (2.8) 

Based on this equation for drain current, there is an inherent competition between the 

two temperature sensitive variables when temperature is varied. Since both carrier mobility 

and threshold voltage decrease as temperature increases, one works to increase drain current 
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while the other works in the opposite manner. It was noted in [13] that, for supply voltages 

above one volt, the temperature dependence of carrier mobility tends to dominate. Hence, the 

drive current of a MOSFET has an inverse dependence on temperature, and because of this, 

the delay of a CMOS circuit will increase with temperature. 

The model used to predict the temperature dependence of delay is largely based on 

[14], which showed that any combinational delay will hold constant over a wide range of 

technologies, temperatures, and voltages when normalized to the delay of an FO-4 inverter 

that is subject to the same changes. It is for this reason that the FO-4 inverter delay is often 

used as the metric for the speed of a technology. The term “FO-4” stands for “fan-out of 

four” and implies a circuit composed of an inverter loaded by four copies of itself.  As 

opposed to measuring the delay increase with temperature for every circuit topology, one can 

predict with relatively high accuracy the degree to which an arbitrary circuit will slow down 

using the known slowdown of a FO-4 inverter at the same temperature. A prerequisite to 

adopting this approach is the formulation of an equation to predict the slow down of the FO-4 

inverter. The delay model that incorporates temperature scaling is shown in equation 2.9 [8]. 

     
)(

  
ξ

µ

α
tdd

dd

VV

TV
delay

−
  (2.9) 

 As in the case of the temperature dependent leakage model, µ and ξ are curve fitting 

parameters. The logic in place here is that, once the behavior of an FO-4 inverter across a 

temperature range is known, it is reasonable to assume that any combinational circuit will 

behave similarly. Thus, consistency between equation 2.9 and SPICE simulations is required 

to validate this temperature dependent delay model. 
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2.2.2 Model Verification 

The FO-4 inverter was designed using five identical copies of the smallest inverter in 

the SOI standard library. To simulate this circuit in SPICE, the input was provided with a 

signal having exactly one rising and one falling transition. The transition time was set to 100 

picoseconds, and the delay for both transitions was calculated with measurement statements 

in the netlist. The propagation delay was measured from the 50% points of the input and 

output waveforms. The average of the two delays across a temperature range of 25 to 125 

degrees Celcius was used to determine the values for the curve fitting parameters of equation 

2.9. A similar procedure as detailed in section 2.1.2 was performed to find the best average 

error between the model and the SPICE results. For the temperature range mentioned above, 

the best error was found to be 0.88%, which corresponds to the values of 0.09 and 8.51 for µ 

and ξ in equation 2.9, respectively. Figure 2-5 shows the predicted versus actual delay of the 

FO-4 inverter. The y-axis of Figure 2-5 is the delay normalized to the reference temperature. 

To verify that the FO-4 inverter is an excellent determinant for the temperature dependence 

of delay, additional circuits were simulated. Figure 2-6 and Figure 2-7 show the accuracy of 

the model for an AND gate and a 16-bit ripple carry adder. The average error across the 

entire range of temperatures for Figure 2-6 was just 1.89% and just 1.49% for Figure 2-7.  
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Figure 2-5: Predicted versus actual delay of an FO-4 inverter 
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Figure 2-6: Predicted versus actual delay of an AND gate 
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Figure 2-7: Predicted versus actual delay of a 16-bit ripple carry adder 
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3  Testcase Power Dissipation and Delay Estimation Flow 

Realistic power dissipation and timing delay values for the ORPSOC test case are 

needed for evaluating the performance of a 3D design relative to a 2D one. Additionally, the 

previous section’s formulation of temperature dependent models relies on accurate power 

and delay numbers at a reference temperature as a starting point for any predictive 

calculations. In this section, the procedure for characterizing the test case in terms of power 

dissipation and combinational path delays is detailed. For an increased level of accuracy, the 

parasitics of the wires in the layout of the test case (see sections 6.6 and 6.8) were 

incorporated into this procedure. For the purposes of analyzing both the 3D and 2D designs 

of the test case, the structure of the flows for obtaining power dissipation and delay values 

are generalized. 

3.1 Initial Power Dissipation Estimation Flow 

The process of finding realistic power dissipation values for a complex design reduces 

to realizing a switching activity profile that spans all of the nets in the design. Once the 

switching activity is known, the appropriate tools can be used to analyze the design for power 

dissipation. Recall from section 2.1.1 that switching activity of a gate is needed in the 

calculation of dynamic power dissipation. The value for the leakage power of a gate is 

constant (if using an average value) and is given in the standard cell library files once the 

library is characterized for power. Creating the library files is beyond the scope of this work 

and will not be covered here. It is assumed that every standard cell in the design has a 

leakage power section in the library files. The complete procedural flow for obtaining power 
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dissipation of the ORPSOC test case is shown in Figure 3-1. An explanation of each step 

follows. 

 

Create Forward 
Annotation SAIF 

file in Design 
Compiler

Verilog RTL 
description of 

design

Forward 
Annotation SAIF 

file

Register nets for 
monitoring using 

Synopsys PLI 3.0

Binary Image of 
program to be 
loaded in test 

bench

Perform RTL 
Simulation of 

original ORPSOC 
in NC-Verilog

Backward 
Annotation SAIF 

file

Load design and 
back-annotate 

switching activity 
in Power 
Compiler

Verilog structural 
description of 

design (post clock 
tree synthesis)

Back-annotate 
wiring parasitics in 
Power Compiler

Post-route SPEF 
file from SoC 

Encounter

Report power in 
Power Compiler 

Finish

Start

 

Figure 3-1: Flow for obtaining the power dissipation of the ORPSOC test case 
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3.1.1 Forward Annotation SAIF File 

A special type of file is used throughout this power flow to allow information 

exchange between tools. Known as switching activity interchange format, or SAIF, this 

Synopsys-developed file type streamlines the capturing and annotation of switching activity 

for RTL and gate-level designs. To begin, a forward annotation SAIF file is created in 

Design Compiler. Once written, this SAIF file contains a listing of all of the “synthesis-

invariant” components of the design with no appended switching activity information. The 

classification of a port or net as being “synthesis-invariant” implies that it will be preserved 

during the synthesis process. Objects that are “synthesis-invariant” include hierarchical ports 

and sequential elements such as registers and memory arrays. The format of a forward 

annotation SAIF file is shown in Figure 3-2. A similar format will be used later in the flow 

for the back annotation SAIF file with the inclusion of switching activity information. 

 

(SAIFILE
(SAIFVERSION "2.0")
(DIRECTION "forward")
(DESIGN )
(DATE "Mon Sep 12 23:15:04 2005")
(VENDOR "Synopsys, Inc")
(PROGRAM_NAME "rtl2saif")
(VERSION "1.0")
(DIVIDER / )
(INSTANCE top
   (PORT
      (clk_i clk_i)
      (rst_i rst_i)
      ……
    )
)

File 
Header

Command in Design Compiler 
to generate file

Hierachical instance nameObject type identifier 
(PORT or NET)

Object List 
(abbreviated)  

Figure 3-2: Format of the forward annotation SAIF file 

  

 To write a forward annotation SAIF file in Design Compiler, the RTL description of 

the design must first be loaded and linked. Then, the “rtl2saif” command can be used to 
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interpret the design, compile a list of synthesis-invariant objects, and finally write a forward 

annotation SAIF file. In an effort to exploit the existing RTL test bench that was packaged 

with the ORPSOC, the SAIF file was written at the OR1200 level of hierarchy. 

3.1.2 Synopsys PLI 3.0 

Now that the forward annotation SAIF file has been created, it must be recognized by 

a Verilog simulator before any switching activity can be captured. The mechanism to 

integrate the information contained within the forward annotation SAIF file with the Verilog 

simulator is the Synopsys PLI 3.0 [15]. “PLI” stands for programming language interface and 

is a feature of the Verilog compiler that allows the linking and execution of standard C/C++ 

programs within a Verilog source file. PLI is most useful for calling programming language 

functions within a test bench for statistical bookkeeping purposes. Synopsys provides Verilog 

PLI libraries to support the gathering of switching activity information for power analysis. 

NC-Verilog was chosen for Verilog simulation of the ORPSOC, but the Synopsys PLI 

libraries are functional for a wide range of simulators. For dynamic linking of the libraries, 

the “+loadpli1” command line argument is needed when invoking NC-Verilog. With the 

libraries loaded into the simulator, switching activity-specific functions appear as normal 

system tasks in the Verilog source files. A total of five Synopsys PLI functions are needed to 

capture the switching activity of a design during RTL simulation. These commands and their 

meanings are shown in Figure 3-3 as they appear in the test bench. With the link between the 

forward annotation SAIF file and the Verilog simulator established, RTL simulations can be 

performed to find realistic switching activities. 
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$read_rtl_saif(“path to forward annotation SAIF file”, 
“hierarchical path to design instance”) 

$set_toggle_region(“hierachical path to design instance”)

$toggle_start()

$toggle_stop()

$toggle_report(“filename”, base time unit, “hierarchical path 
to design instance”)

Read Forward Annotation SAIF file 
in test bench, specifying to which 

instance the file refers

Specify which region of design to 
monitor switching activity

Run test bench (advance the time 
steps until the end)

Tell the similator to stop monitoring 
region for switching activity

Write backward annotation SAIF file, 
specifying the base time unit for the 
file and the hierarchical region for 
which to write switching activity

ORPSOC Verilog Test Bench

Tell the similator to start monitoring 
region for switching activity

……..

 

Figure 3-3: Synopsys PLI 3.0 functions in the test bench [15] 

 

3.1.3 RTL Simulations with NC-Verilog 

Bundled in the ORPSOC package is a suite of software with which to test designs. 

Most of these programs offer very basic functionality tests of the microprocessor. Distinct C 

programs exist for multiple-and-accumulate instructions, exceptions, MMU testing, system 

calls, and even the Dhrystone benchmark. These programs were compiled to OpenRISC 

microcode using the OpenRISC GNU toolchain [16]. Assuming a working installation of the 

toolchain, the provided makefiles for the software automate the compilation and image 

conversion from binary to hexadecimal, as needed by the Verilog simulator. Also included in 

the ORPSOC package is support for running RTL regression tests on the compiled software. 

The scripts for regression testing merely copy the hexadecimal image of the compiled 

program to another file that is loaded into the Flash memory model in the test bench. For the 

purposes of this work, these scripts were modified to include the required “+loadpli1” 

command line argument for the loading of the Synopsys PLI 3.0 at invocation of NC-
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Verilog. Next, the bundled test bench for the ORPSOC was modified to include the functions 

shown in Figure 3-3. Finally, the test bench was simulated once for every compiled program 

using the OR1200 hardware configuration (i.e. disabled caches, ASIC-optimized multiplier, 

etc) and clock frequency of the test case. The embedded PLI functions in the test bench save 

a backward annotation SAIF file for each simulation, and consequently, the switching 

activity profile for each program is obtained. The differences between the backward and 

forward annotation SAIF files are noted in Figure 3-4. The instance hierarchy in the figure 

indicates that the switching activity was captured at the OR1200 level of hierarchy (denoted 

as “or1200_top” in the figure). The reason for this is that the test bench did not reflect the 

addition of the second OR1200 as used in the test case (see section 5.1). For the power 

analysis of the ORPSOC test case, it is assumed that the microprocessors have identical 

switching activity profiles.   
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(SAIFILE
(SAIFVERSION "2.0")
(DIRECTION "backward")
(DESIGN "or1200_cpu_0")
(DATE "Mon Sep 19 09:58:19 2005")
(VENDOR "Synopsys, Inc")
(PROGRAM_NAME "Power Compiler PLI")
(VERSION "W-2004.12-SP4")
(DIVIDER / )
(TIMESCALE 1 ns)
(DURATION 35000.00)
(INSTANCE xess_top
   (INSTANCE i_xess_fpga
      (INSTANCE or1200_top
         (NET
            (clk_i
               (T0 17500) (T1 17500) (TX 0)
               (TC 6999) (IG 0)
            )
            (rst_i
               (T0 34884) (T1 110) (TX 6)
               (TC 1) (IG 0)
            )
            …….
          )
       )
    )
)

File 
Header

Duration of the test bench (time 
needed for program to end)

Switching Activity Data
T0 = Amount of time net is at logic ‘0’
T1 = Amount of time net is at logic ‘1’
TX = Amount of time net is undefined
TC = Number of total net transitions

Time scale used for all values in the file

 

Figure 3-4: Format of the backward annotation SAIF file 

 

 

3.1.4 Back Annotation of Switching Activity in Power Compiler 

The tool used for power analysis of the ORPSOC test case was Synopsys’ Power 

Compiler [17]. Power compiler operates from the same command line as Design Compiler, 

and in fact, just a simple license check-out is needed to enable it. Once the structural Verilog 

netlist is loaded into Power Compiler, the “read_saif” command can be executed to annotate 

the nets of the gate-level design with the switching activity from the backward annotation 

SAIF file. For the test case, switching activity annotation was performed for both OR1200 

modules, necessitating the use of “read_saif” for both OR1200 designs in the hierarchy. The 

clock frequency in the design must be set to the same frequency with which RTL simulations 

were performed or the power estimation will not be accurate.  
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3.1.5 Back Annotation of Parasitics in Power Compiler 

Back annotation of interconnect parasitics is necessary to consider the differences in 

interconnect power dissipation between 3D and 2D designs.  Moreover, the increased 

capacitive loading from the interconnect wires often has a dramatic effect on the total power 

dissipation, making it doubly important to remove the notion of ideal wires in the design. 

Referring to section 6.6 and 6.8, the SPEF file was created for the sole purpose of parasitic 

back annotation. Using the “read_parasitics” command in Power Compiler, the parasitic 

routing information can be annotated onto the nets of the design. In the case of the 3D 

design, the merged 2D SPEF file (see section 6.8) is used for annotation of the top level 

partitioned netlist after the insertion of the clock tree (see section 6.7).  

3.1.6 Report Power in Power Compiler 

The final step in the power dissipation flow is the execution of the gate-level power 

analysis engine via the “report_power” command. Once this command is invoked, Power 

Compiler uses the annotated switching activity to compute the total power dissipation of the 

design. Since only the synthesis-invariant objects were monitored during the RTL 

simulations, the internal nets that changed during synthesis have no associated switching 

activity. For these nets, Power Compiler uses a zero-delay simulation to propagate switching 

activity [17]. As long as all of the primary inputs, hierarchical ports, and sequential nets (i.e. 

clocked elements that were synthesized to flip-flops) are covered by the back annotation 

SAIF file, every net in the design will be given a switching activity. The “report_saif” 

command can be used in Power Compiler to ensure that no nets were assigned the default 

value for switching activity. Upon completion of the power analysis, “report_power” prints a 

power breakdown that consists of the dynamic and leakage power dissipation. In order to 
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infer the contributions to power dissipation from each module in the design, the “-hier” 

argument can be used with “report_power”. Due to the fact that a tier is viewed simply as a 

level of hierarchy in the netlist, the “-hier” option is useful in determining the amount of 

power dissipated on each tier of the 3DIC. 

3.2 Initial Delay Estimation Flow 

Contrary to the power dissipation estimation flow, the procedure to extract timing 

delays from the ORPSOC test case is relatively straightforward. An overview of the delay 

estimation flow is depicted in Figure 3-5.  

 

Start

Load, link, and 
constrain design in 

Primetime

Verilog structural 
description of 

design (post clock 
tree synthesis)

Post-route SPEF 
file from SoC 

Encoutner
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Primetime

Report timing in 
Primetime

Finish

 

Figure 3-5: Flow for obtaining timing delay values of the ORPSOC test case 
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As noted in the figure, the timing analysis tool used was Synopsys’ PrimeTime [18]. 

PrimeTime is a full-chip gate-level static timing analysis tool. To facilitate the use of the 

temperature dependent delay model developed in section 2.2, the longest register-to-register 

path delay for specific points in the test case was examined in PrimeTime. Identical to the 

use of Power Compiler and most other Synopsys tools, the structural Verilog netlist is first 

loaded and linked. Afterwards, the clock frequency, skew, and input/output loading 

constraints are specified. The same constraints used for synthesis are acceptable for use here 

(refer to section 6.1 for these constraints) and can even be entered verbatim given 

PrimeTime’s use of Design Compiler commands. The emphasis in the use of PrimeTime is 

on the absolute delay values of combinational paths and not on timing slack, so accurate 

representation of clock skew is not a requirement. Following the constraining of the design, 

the “read_parasitics” command is reused to annotate the wiring information from the SPEF 

file. The PrimeTime command that starts the timing analysis is “report_timing”. This 

command can be used in a myriad of ways, but in the absence of any arguments, the critical 

path of the design is returned. The longest delay can also be restricted on the basis of “to”, 

“from”, and/or “through” lists. When a “from” list is used as an argument, for instance, the 

longest delay starting from any of the nets in the list is computed. Similarly, a “to” list will 

find the longest delay ending at one of the nets in the list. This level of control with 

“report_timing” is exploited to determine the speedup from the use of 3D vias.  

3.3 Converging to Final Power Dissipation and Delay Values 

In the previous sections, temperature dependent models and tool flows for extracting 

initial power dissipation and timing delay values have been developed. These can then be 

used in conjunction with a thermal model of a 3DIC to ascertain the amount of performance 
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degradation from the temperature gradient across the 3D stack. The thermal properties of 

3DICs are more influential on circuit performance than that of conventional integrated 

circuits. This is due to the fact that there are multiple junction-to-ambient thermal resistances 

to consider in a 3DIC. As such, a large temperature gradient across the tiers of a 3DIC will 

cause the transistors on the top tier to consume more power and run more slowly than the 

transistors on the bottom tier. It is the aim of this section to provide a method for the 

estimation of performance degradation in the face of 3DIC thermal properties. 

3.3.1 Thermal Model of a 3DIC 

According to the well-known thermal and electrical phenomena duality, the average 

temperature drop across a tier of a 3DIC can be viewed as the difference between two node 

voltages. This temperature drop, ∆T, is related to the heat flow (power dissipation) of the tier, 

P, and the thermal resistance of the tier, θ, as indicated by equation 3.1. 

kA

L
PPT ==∆ θ   (3.1) 

 In this equation, the thermal resistance is expanded as a function of the thickness of 

the tier, L, the thermal conductivity of the tier, k, and the area of the tier, A. In keeping with 

the equivalent electrical circuit, the power dissipation of a tier is analogous to a current 

source with the current directed into the tier. The direction of the current source implies an 

assumption that the heat transfer in the tier is unidirectional and towards the heat-removing 

fixtures of the package. An average temperature gradient across the tier is also assumed by 

the single current source representing the total power dissipation of the tier. This thermal 

model does not account for the existence of localized “hot spots” that arise from non-uniform 

power density (P/A in equation 3.1) within the tier. 
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 Figure 3-6 shows the simplified thermal model of a 3DIC used in this work. Based on 

the 3D FDSOI thermal model developed in [19], the left side of the figure shows the physical 

composition of a packaged 3DIC, and the right side shows its transformation to the 

equivalent electrical circuit. The tier thicknesses shown in the figure are calculated as the 

distance between the transistors on the respective tiers, since these are the power dissipating 

devices in the 3DIC. The remaining thicknesses are taken directly from the assumptions of 

[19]. The physical construction of a 3DIC (see section 4.1) dictates that there is only one 

current source injecting current into tier A and tier B. This allows for the treatment of these 

tiers as one equivalent resistive component with a thermal resistance labeled “θtier AB” in the 

figure. The temperatures in the packaged 3DIC are shown as node voltages in the figure. 

Specifically, “Ttier C”, “Ttier B”, and “Ttier A” represent the average temperature seen by the 

transistors on the respective tiers of the 3DIC. 

 The bounds on the thermal conductivity, k, of the tiers of a 3DIC are a function of the 

3D via density and the amount of metallization used on each tier. For instance, increasing the 

number of 3D vias connecting tier C with tier B will reduce the effective thermal resistance 

of tier C (shown as “θtier C” in Figure 3-6). Likewise, a dense tier that uses more routing 

resources will exhibit a lower thermal resistance than a sparsely-placed tier having a higher 

ratio of oxide (poor thermal conductor) to metallization (good thermal conductor). The 

bounds on the thermal conductivity for a 3DIC fabricated in the FDSOI 3D process were 

reported in [19]. Given the 3D via density and tier area (see Figure 6-9) of the test case, these 

bounds combined with equation 3.1 were used to determine the associated thermal 

resistances in Figure 3-6. For the purposes of this work, the heat sink was assumed to be 
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perfect having zero thermal resistance. Also, the same assumption for the conductivity of the 

epoxy in [19] was used here. 

 

 

Figure 3-6: Simplified thermal model of a 3DIC 

 

3.3.2 Temperature-Power Positive Feedback Loop 

As noted in equation 3.1, the temperature across a material is directly proportional to 

the heat flow (power) through it. In turn, the power dissipation of a MOSFET has a 

dependence on temperature. More specifically, it was show in section 2.1.1 of this work that 
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the leakage power of a transistor has an exponential response to temperature change. This 

inter-dependence on one another creates a positive feedback loop between the temperature 

and power dissipation of an integrated circuit. In fact, the phenomena known as “thermal 

runaway” can occur if no dampening is present in the feedback loop. This situation arises 

whenever the increased levels of heat generation caused by the feedback loop exceed the heat 

removal ability of the system [8]. In order for a system to be stable, the temperature-power 

positive feedback loop must converge upon a final temperature value. Using the thermal 

model in Figure 3-6 together with the predicted temperature scaling behavior of power 

dissipation, the extent of the feedback loop for a 3DIC can be analyzed. Once temperature 

convergence is achieved, the delay slow down and power dissipation increase per tier, as 

previously modeled in section 2, can be projected. 

An example of the positive feedback loop as it pertains to this work is shown in Figure 

3-7. To begin, the initial values for power dissipation are entered into the 3DIC thermal 

model to compute the initial temperature values. This computation is governed by the 

assumptions of the model in Figure 3-6 as well as equation 3.1. A flow for obtaining the 

power dissipation of the ORPSOC was previously discussed in section 3.1. Once the initial 

values for the temperatures of the 3DIC are known, the feedback loop is enabled. The 

temperature dependent model for leakage power is used to compute the new value for the 

leakage power on each tier. Next, these new leakage power numbers are added to the 

constant dynamic power values to find the total power dissipation for each tier of the 3DIC. 

The next iteration is initiated by re-computing the temperature values based on the updated 

total power dissipation. Iterations continue until temperature convergence is observed. No 

particular threshold was set for temperature convergence; instead, a visual inspection of the 
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temperature change across iterations was performed. When enough cycles have been 

completed to achieve convergence, the final temperatures are used to compute the amount of 

the slow down of the combinational paths on each tier as per the temperature dependent 

delay model (see section 2.2). Slow down is measured as the percentage increase in delay as 

referenced from the ambient temperature. The predicted values for final power dissipation 

and slow down of the 3D test case are considered in the comparison to the 2D design later in 

this work.   
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Figure 3-7: Temperature-power positive feedback loop 
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4 The FDSOI 3D Process 

4.1  3D Circuit Fabrication 

 

MIT’s Lincoln Laboratory (MITLL) has developed a 3DIC fabrication technology 

whereby circuit structures on multiple SOI substrates are combined to form a single 

integrated 3D circuit [20]. Each SOI substrate, or tier as it is referred to in the 3DIC process, 

is fabricated in the same manner as other FDSOI processes, but that is where the similarities 

with 2D integration end. Figure 4-1 provides a step-by-step outline of the FDSOI 3D process. 

 

Fabrication of n FDSOI 
wafers, where wafer 0 

corresponds to the bottom-
most tier and wafer n 

corresponds to the top-most 
tier of the 3D “stack”; For 

ordering the wafers, set i = 0

SOI wafer i + 1 is inverted 
and aligned with SOI wafer i, 
which is currently at the top 

of the 3D “stack”

SOI wafer i + 1 is bonded to 

SOI wafer i using a low-
temperature oxide bond. 

SOI wafer i + 1 is now the 
top of the 3D “stack”

Handle Silicon of SOI wafer 
i + 1 is removed and 3D 

vias are etched. Tungsten is 
deposited to make inter-tier 

contact to SOI wafer i; 
set i = i + 1

Is  i = n ?

Etch bond pads on SOI 
wafer n, completing 3D 

assembly

Start
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Figure 4-1: Generalized breakdown of a 3D fabrication process 
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 As shown in Figure 4-1, the initial step of the 3D process is the individual fabrication 

of the tiers. In this particular design environment, there are three tiers on which to place 

circuits, but the process shown is viable for n number of tiers. Setting n equal to 3 would 

make Figure 4-1 consistent with the MITLL FDSOI 3D process. After a SOI wafer is 

fabricated for each tier in the design, the wafer that is designated as tier 2 is inverted, or 

“flipped”, and aligned with the wafer that is designated as tier 1. A low-temperature oxide 

bond is used to bond the two wafers together [20]. At this point, the handle silicon that is at 

the top of the 3D stack is removed from tier 2. Tier 2 is electrically connected to tier 1 by 

means of 3D vias that are etched through the oxides of tier 1 and tier 2. Tungsten is then 

deposited to fill the 3D vias and complete the electrical path between tier 1 and tier 2 [20]. It 

is important to note at this point that a single 3D via consumes all of the available routing 

tracks on tier 2 (since it is literally “punched” through the bottom of the SOI wafer) but only 

makes contact to the top metal layer on tier 1. Therefore, apart from some 3D-specific layers 

that assign the starting and ending points of a 3D via (see section 4.2), there can be no wiring 

metallization near a 3D via on tier 2.  The same pattern of inversion, alignment, bonding, and 

3D via creation is performed to attach tier 2 with tier 3. The routing restrictions in terms of 

3D vias that apply to tier 2 also apply tier 3. However, one key difference here is that the 3D 

vias that provide connectivity between tier 2 and tier 3 end on the bottom-most metal layer in 

tier 2. Figure 4-2 shows an example of a three tier assembly at the conclusion of the above 

process. This figure also indicates the etching of the bond pads to expose the bottom-most 

metal layer on tier 3 for wiring bonding to the package. In an effort to maintain the naming 

conventions of the MUSE research group’s 3DIC design flow (see section 6), the numbering 
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of the tiers in the three tier assembly described above will be exchanged for characters to 

specify their relative position within the 3D stack (i.e. tier 1 becomes tier A, tier 2 becomes 

tier B, and tier 3 becomes tier C). 

 

 

Figure 4-2: Example 3D circuit at the end of the FDSOI 3D process [20] 

 

 

4.2 Changes to the 2D Design Environment 

 

The MUSE research group has adapted 2D design tools to work with 3D process 

technology. Essentially, each tier of the 3DIC is designed in the standard 2D manner with the 

additional inclusion of extra layers to indicate the locations of 3D vias. As it relates to using 

the IC design software, the inversion of the tier B and tier C is transparent to the circuit 

designer. This is necessary so that 3D circuits can be visualized in the software in their 

finished state with direct vertical connections between the terminals of transistors in multiple 

tiers. Thus when viewing all three tier layouts simultaneously, the layers reserved for 3D vias 

on tier A exactly coincide with those on tier B, and the same can be said about 3D vias 

connecting tier B and tier C. To better illustrate this, Figure 4-3, Figure 4-4, and Figure 4-5 

comprise the individual tier layouts of an inverter chain.  
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Figure 4-3: Tier A of the inverter chain 

 

 

Figure 4-4: Tier B of the inverter chain

 

 

Figure 4-5: Tier C of the inverter chain 
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In the above figures, the colored circles are not actually a layer in the layout. The red 

colored circles show the locations of 3D vias between tier A and tier B. Using the 

nomenclature of the design kit that was developed by the MUSE research group, this type of 

via is called “VIA_AB”. Similarly, the green colored circles show the locations of 3D vias 

between tier B and tier C, each of which is known as “VIA_BC”. Each of the layouts in the 

Figure 4-3, Figure 4-4, and Figure 4-5 can be designed and viewed independently to reduce 

complexity. Alternatively, the designer can work with all three tiers concurrently. This 

approach is especially important when verifying the location of the 3D via layers on each 

tier. Figure 4-6 provides an example of the inverter chain layout when viewing all three tiers. 

 

 

Figure 4-6: Inverter chain layout showing all tiers 

 



 38 

 

 As evidenced from Figure 4-6, the 3D via layers, which are once again highlighted by 

the colored circles, are in the exact same position on each tier. Thus, the output of the first 

inverter is electrically connected to the input of the second inverter through a VIA_AB. In 

turn, the output of the second inverter is connected to the input of the third inverter through a 

VIA_BC, and the inverter chain is completed on tier C. In a departure from 2D layout style, 

the designer must ensure that nets crossing tier boundaries, such as the internal nets of the 

inverter chain, have 3D via layers at identical coordinates on each connecting tier of the net. 

Known in the 3DIC design flow as “via alignment” (see section 6.5), this stage of the layout 

can be automated through scripting for standard cell-based designs. 
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5 The ORPSOC Architecture 

5.1 Architecture Selection and Modification 

An OpenRISC-based design was selected as a test case for 3DICs due to its open source 

status and wide range of applications. Opencores.org, a well-known supporter of open source 

hardware intellectual property (IP) cores, administers a repository for all things OpenRISC. 

Among the various implementations of the OpenRISC microprocessor is a design that is 

specifically targeted as a starting point for system-on-chip development: the ORPSOC [2]. 

With the increasing popularity of system-on-chip solutions in the integrated circuit design 

industry, the ORPSOC offers a useful and interesting case for 3D integration. The ORPSOC 

follows a standardized definition of an OpenRISC based system, lending to it the distinction 

as a “reference platform”. The purpose of the ORPSOC is to allow for the rapid creation of 

OpenRISC-based system-on-chip designs with reduced verification time. Included in the 

current versioning system (CVS) package of the ORPSOC is a set of testing software (the use 

of which is discussed in section 3.1) and several IP cores that comprise the architecture. 

The ORPSOC in its original form consisted of the OpenRISC 1200 microprocessor 

(OR1200), an Ethernet media access control (MAC) module, a universal asynchronous 

receiver/transmitter (UART) 16550 module, and several peripheral interfaces. Among the 

interfaces is functionality for support of SRAM, Flash Memory, audio, PS/2, VGA, and 

JTAG. The focus of this work was on the basic components necessary for the design of a 

microprocessor-based system and not on the bevy of possible peripheral configurations.  

Therefore, the OR1200 and its use of SRAMs for instruction and data memory storage were 

only considered in this study. The program instructions were originally transferred to the 

OR1200 through a behavioral Flash Memory model. In order to consolidate the whole of the 



 40 

microprocessor system onto a 3DIC, the Flash memory was replaced with an SRAM capable 

of storing the largest program, and it is assumed that the SRAM is loaded with the same 

program instructions as the Flash memory model. Upon further investigation into the 

architecture of the ORPSOC, it was also discovered that several master microprocessors 

could be easily interfaced with the slave SRAM modules by means of the extra ports on the 

“Wishbone Traffic Cop”, the arbitration unit for communication between the peripherals (in 

this work, the only peripherals were SRAM modules) and the microprocessor. To guarantee 

an interesting case for heat (power dissipation) generation in 3DICs, a second OR1200 was 

instantiated as a master in the system. As will be previously discussed, high levels of power 

dissipation are detrimental to the performance of a 3DIC and to assess the merit of 3D 

technology without considering the power of a design would be foolishly optimistic. It is 

assumed that the second OR1200 has an identical workload as the original OR1200 (see 

section 3.1 for workload creation). After the above modifications to the ORPSOC were made 

to achieve a synthesizable, realistic integrated design, the test case was finalized. A high 

level block diagram of the ORPSOC test case for 3DICs is shown in Figure 5-1. A definition 

of each functional unit shown in Figure 5-1 follows in this section. 
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Figure 5-1: High level block diagram of the ORPSOC test case [2] 

 

5.2 OpenRISC 1200 Microprocessor (OR1200)  

The OR1200 is a part of the OpenRISC 1000 family of the processor cores. It is a 32-bit 

scalar load and store RISC with applications in high performance networking, embedded, 
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automotive, and portable computer environments [2]. The processor is realized as a 5-stage 

integer pipeline with virtual memory support. Instruction and data caches are present in the 

microprocessor, and both default to 1-way direct-mapped 8KB caches. The memory 

management units (MMUs) are implemented for data (DMMU) and instructions (IMMU) as 

64-entry, 1-way direct-mapped translation look-aside buffer (TLB). Other integrated 

functionality includes real-time debug capability, tick timer, programmable interrupt 

controller (PIC), and power management support. The OR1200 communicates with the 

external world through interfaces for power management, debug, interrupts, and the 

wishbone system-on-chip interconnection standard. A block diagram of the OR1200 

architecture is also included in Figure 5-1. 

5.2.1 Central Processing Unit (CPU) 

As denoted by its name, the CPU is the central component of the OR1200. It implements 

a strict 32-bit interface for instruction fetches and data loads and stores. The organization of 

the CPU is show in Figure 5-2, and the accompanying descriptions of the functional units 

follow. 
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Figure 5-2: High level block diagram of the CPU [2] 

 

5.2.1.1 Instruction Unit 

The instruction unit is responsible for realizing the instruction pipeline, fetching 

instructions from memory, dispatching instructions to the executions units, and ensuring that 

operation finish in-order. The bandwidth of instruction dispatch is a maximum of one per 

clock cycle (scalar). This condition is only fulfilled if an execution unit is always available 

for dispatch and if there are no withstanding data dependencies in the current program flow.  

5.2.1.2 General-Purpose Registers (GPRs) 

The OR1200 contains 32 general-purpose 32-bit registers. These registers are 

implemented as two synchronous dual-port memories organized as 32 words with a bit length 
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of 32 each. For the 3D design of the test case, the register file is implemented in generic 

fashion given the lack of access to IP memory modules. The generic register file simply 

models the dual-port memories as a unified two-dimensional array that, once synthesized, is 

implemented by a total of 1024 flip-flops.   As a result, the OR1200 consumes more power 

and area than if real memories were used for the register file. 

5.2.1.3  Load/Store Unit (LSU) 

The load/store unit is responsible for the exchange of all data between the GPRs and the 

internal bus of the CPU. It is realized in the CPU as a discrete execution unit. On issuance of 

load and store instructions, the LSU first determines if any data dependencies are present 

before performing memory operations. 

5.2.1.4 Integer Execution Pipeline 

The integer execution pipeline can implement the standard array of arithmetic, 

compare, logical, rotate, and shift instructions. Most of these instructions can finish execution 

in one clock cycle. This is the same unit found in all modern microprocessors. 

5.2.1.5 Multiply and Accumulate (MAC) Unit 

The MAC unit executes digital signal processing (DSP) multiply and accumulate 

operations. These operations take two operands of 32 bits each with a 48-bit accumulator. 

Since the MAC unit is fully pipelined, a new operation can begin on each clock cycle. The 

OR1200 can be configured to use a generic multiplier or an ASIC-optimized multiplier in 

this unit. The latter was chosen for use in the ORPSOC test case as it is a better fit for the 

platform. 
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5.2.1.6 System and Exception Units 

The overriding purpose of the system unit is to implement the special-purpose registers 

(SPRs) of the CPU. As shown in Figure 5-2, it is connected to the system bus of the CPU. 

Also connected to the system bus is the exception unit, which is involved in the handling of 

system calls, external interrupt requests, internal exceptions, and internal errors. 

5.2.2 Instruction and Data Caches 

The OR1200 offers a number of different configurations for direct-mapped caches. The 

maximum and minimum size cache possible for the OR1200 is 8KB and 1KB, respectively. 

That being said, any cache in that range of sizes would consume an unrealistic amount of 

power and area if implemented solely using flip-flops. Without access to IP memory 

modules, the instruction and data caches of the OR1200 were disabled for the test case. A 

disabled cache acts as a rudimentary feed-through unit for the design studied in this work. 

5.2.3 Instruction and Data Memory Management Units (MMUs) 

The MMUs of the OR1200 perform effective-to-physical address translation. Since the 

caches are physically-tagged, the MMUs are positioned between the CPU and the cache for 

the data and instruction memory hierarchy. Thus, communication between the MMUs and 

the CPU is essential for every load or store instruction in the program. The instruction MMU 

(IMMU) and data MMU (DMMU) are separate, discrete units of the OR1200, but both 

default to a direct-mapped 64-entry TLB. Each MMU features a page size of 8KB and an all-

inclusive page protection scheme. The default configuration was used for both MMU in the 

test case design. 
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5.2.4 OpenRISC Wishbone Interfaces 

All data and instruction exchange with external sources and the OR1200 is 

administered across the Wishbone compliant interfaces. The Wishbone interconnection 

architecture specifies a common interface for use in system-on-chip designs. Consequently, 

all of the core components of the ORPSOC include support for this interface to enable 

seamless multi-component integration. The OR1200, with its 32-bit processing capability, 

only supports a 32-bit Wishbone interface. This implies that the widths for data and 

instructions buses are fixed to 32-bits. With disabled caches internally, the OR1200 makes 

considerable use of the Wishbone interfaces. In fact, practically every instruction fetch and 

data load or store requires access to external memory via the Wishbone interfaces.  

5.3 Wishbone Traffic Cop 

The wishbone traffic cop is the module of the ORPSOC test case that arbitrates data 

transfer between a single wishbone-compliant master and a single wishbone-compliant slave. 

In this capacity, it is the glue logic between the peripherals of a system and the OR1200. 

Referring to Figure 5-1, the connections to the wishbone traffic cop are such that the two 

OR1200 modules are masters and the two memory controllers are slaves. When either 

OR1200 requires a memory access, a request is signaled to the wishbone traffic cop, which 

makes the decision to accept or deny the request. In the case of concurrent requests, priority 

for access to the instruction or data memory is given to the first OR1200. Since all data flow 

to and from the memories of the ORPSOC must pass through the wishbone traffic cop, it is 

important to limit the affect of the bottlenecking nature of this unit. As shown in this work, 

this is achieved through intelligent partitioning and floorplanning of the 3DIC.  
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5.4 Instruction and Data Memory Controller 

The purpose of the memory controllers in this design is two-fold. First, each memory 

controller establishes a 32-bit interface to memory for reading and writing. Secondly, the 

instruction and data memory controllers interpret activity over the wishbone interface for 

store operations and package load operations from the memory such that it conforms to the 

wishbone standard. Recall that the Flash memory model was exchanged for an SRAM to 

house the program instructions in the test case. Thus, the instruction and data memory 

controllers are actually just two instantiations of an SRAM controller. The data memory 

controller interfaces to the SRAMs needed by both OR1200 modules to execute any arbitrary 

program. Throughout this work, any memory module not used for instruction storage is 

referred to as a data SRAM.  The instruction memory controller, on the other hand, provides 

an interface to the read-only instruction SRAM. 

5.5 Instruction and Data SRAMs 

The only parts of the ORPSOC test case that are not mapped to standard cells are the 

memories. As evidenced by Figure 5-1, there are five total SRAMs in the system, each of 

which is organized as 8KB words with byte-wide words lengths (labeled as “8Kx8” in the 

figure). Four of the memories are designated as data SRAMs, which the OR1200 modules 

use to store any data during program execution. Each data SRAM contributes one byte to the 

width of the data bus and is addressed using the entire 13-bit address bus. The remaining 

memory in the system is the substitution for the Flash memory model of the original 

ORPSOC architecture and is used as a read-only instruction storage space.  
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 The SRAMs are treated as black box components for design synthesis with no timing 

annotations. In order for the SRAMs to have a physical footprint in the placement and 

routing of the test case, a library exchange format (LEF) file was created. LEF is a standard 

specification for representation of an integrated circuit layout such that propriety is 

maintained. This LEF file is an abstract of the actual proposed layout of the SRAM, as it only 

contains information regarding the bounding box area, the metallization used, and the pin 

locations of the SRAM. Figure 5-3 shows the proposed layout of the SRAM with colors to 

indicate the locations of the actual components of the SRAM. Figure 5-4 provides an 

overview of the information presented in the LEF file for the same SRAM. The area filled 

with the colored pattern symbolizes the routing blockages of the first three metal layers. 

These routing blockages constrain all wires crossing the bounding box of the SRAM to the 

fourth and fifth metal layers in a 5-metal layer process. The dimensions of the SRAM were 

estimated to be 980 µm by 1450 µm. The pin locations, routing resources used, and area of 

the SRAM were approximated as the final attributes of a SRAM currently in design for the 

FDSOI 3D process at North Carolina State University.  The SRAM design is a modification 

of the one used in [21]. 
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Figure 5-3: High level view of the SRAM layout 
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Figure 5-4: Graphical representation of the SRAM LEF file  
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6 Testcase Physical Design 
 

Even with standard cell-based designs, the 3DIC design flow is a very time consuming 

and complex process. One can no longer simply rely on the synthesis, placement, and routing 

tools to generate a valid layout for any arbitrary standard cell-mapped design. A mixture of 

custom automatic and manual steps is necessary to couple the 3D integration technology (see 

section 4.2) with the pre-existing 2D IC design tools. The flow described in this section has 

previously been verified by passing all layout-versus-schematic (LVS) checks for a 3D fast 

Fourier transform (FFT) design awaiting production at MITLL [22]. For the purposes of this 

work, some additional measures were taken to ensure a valid result from this flow. These 

measures were necessary because the design flow was originally intended to function only 

with pure standard cell-based designs. As explained in section 5, the synthesized test case 

contains macros in the form of memory blocks in addition to standard cells. Blindly applying 

the unaltered 3DIC design flow used for the FFT chip would generate 3D layouts with design 

rule violations.   
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Figure 6-1: The logical progression through the 3DIC design flow 
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Figure 6-1 provides an overview of the sequence of steps in the 3DIC design flow. For 

this flow chart and the others similar to it, rounded shapes denote actions or processes. Some 

of these will be automatically performed through scripting in order to guarantee a valid result 

while still others will require manual user interaction with the inputs to the step. Rectangular 

shapes in the flow charts are used to denote the outputs of a step, and these often take the 

form of statistical reports or files used in later parts of the flow. Specifically for Figure 6-1, 

shapes that are outlined in red mark a modification to the original 3DIC design flow that was 

necessary for use with the ORPSOC test case. For each numbered process, of which there are 

eight in Figure 6-1, an in depth definition follows below.  

6.1 Design Compiler Synthesis 

 

The 3DIC design flow begins with the synthesis of the RTL description of the design. 

The synthesis tool that was used in this work was Synopsys Design Compiler [23].  Design 

Compiler provides a means of specifying the loading on the external ports, the clock 

frequency, and an estimation of the amount of clock uncertainty in order to produce the 

appropriate structural description of the design. This structural description removes all 

instances of behavioral modeling and replaces them with standard cell instances.  

In order to compile a design in the synthesis tool, a valid standard cell library must first 

be identified and linked to the tool. This is necessary so that the tool can determine which 

standard cells to choose when transforming the RTL description. Once the standard cell 

library is loaded, the entire hierarchy of the RTL description is interpreted and linked by the 

tool. At this point, important synthesis variables must be set. The user must define a clock for 

the design at the desired frequency and some notion of clock skew must be defined as the 

uncertainty of the clock. To produce a realistic synthesis result, it is also desirable to set the 
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delays and loading on the ports of the design, since any combinational path from an input or 

to an output must be included in the slack calculations of the tool. Once these variables are 

set, the tool can attempt to synthesize the design at the specified clock frequency. Timing 

reports after this compilation process are used to determine if the synthesis was successful. 

The critical path in the design must meet the setup time constraints of the associated register 

with non-negative slack. Similarly, the shortest path in the design must meet the hold time 

constraints of the associated register with non-negative slack. Once these conditions are met, 

the standard cell-mapped hierarchy of the design is written to a file by the tool. 

For the design of the ORPSOC test cases, the SOI standard cell library previously 

designed by the MUSE research group was used. The clock frequency was set to an 

aggressive 100 MHz (10 nanosecond period), and the clock uncertainty was set to 200 

picoseconds. It was assume that the ports of the design were connected to flip-flops. The 

inputs were assigned a delay of 300 picoseconds (simulating the delay of the input flip-flop), 

and the output setup time was assigned a value of 100 picoseconds. After compilation, the 

timing reports showed that the critical path met the constraints with exactly zero slack.  

6.2 Manual User Tier Partitioning 

 

In order to move the design from the 2D realm to a 3D one, decisions must be made 

about the position of each hierarchical block among the tiers of the 3DIC. Normally, the 

3DIC design flow dictates that this is performed automatically by min-cutsize partitioning. 

Partitioning in this manner ensures that the area of the design is balanced among the 

partitions and that the partitioning result contains the least number of nets that cross partition 

boundaries. In terms of a 3DIC, a “partition” is a physical tier in the 3D stack. Subsequently, 

any nets that cross partition boundaries require the instantiation of 3D vias in the design. 
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Hence, the original MUSE 3DIC tier partitioning scheme sought to minimize the number of 

3D vias. Concerns about the size, manufacturing yield, RC parasitics, and the required place 

and route blockages of the 3D vias were the motivation for this method of 3D partitioning. 

For the purposes of better harnessing the advantages of 3DICs, more control must be 

given to the user when performing tier partitioning. Since 3DICs offer the possibility of short 

vertical wires, the methodology behind the 3D design of the test case was to exploit the 

vertical axes for large bus routing. These large busses, which could potentially become very 

long in a strict 2D placement, are made very short in wire length if the interconnecting 

modules are placed exactly one tier apart. During the placement and routing stage of the 

design flow, this will help reduce the local tier routing congestion created by these busses. As 

an example, Figure 6-2 shows a 2D layout and connectivity of five blocks. As shown in the 

figure, all five blocks are connected by a single bus, and long a net length is needed to fully 

connect the blocks (indicated by the dashed route).  

 

A

B

D
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E
 

Figure 6-2: Example 2D rectilinear net length interconnecting five blocks 
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 To help reduce the net length, the blocks in Figure 6-2 could be transitioned to 3D as 

shown in Figure 6-3. In this figure, the block labeled “A” is placed on tier B, with tier A and 

tier C each containing two of its interconnecting blocks. The long dashed route in the 2D 

example (Figure 6-2) is now shortened to the length of a 3D via (indicated by the thick green 

vertical line) plus the length of the local rectilinear route on tier C. For large, complex 

integrated systems, the direct path to blocks “C” and “E” in Figure 6-2 may be impossible 

due to tremendous routing congestion. Thus, if one can ensure the relative 3D locations of 

the blocks in Figure 6-3, the total net length can be greatly reduced.  This was the general 

partitioning strategy applied to the design of test case.  
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Figure 6-3: Example 3D net length interconnecting five blocks 

 

  

 The output of this stage of the design flow is a Design Compiler script file. The script 

file contains exactly three “group” commands. After the structural description of the design 

has been read and linked by Design Compiler, the “group” commands create a new level of 

hierarchy for each tier and place all partitioned modules for each tier in the associated level 

of hierarchy. Using Figure 6-3 as an example, the “group” commands would instruct Design 

Compiler to place block “A” in the tier B level of hierarchy. Similarly, block “B” and “D” 

would be placed in the tier A level of hierarchy and block “C” and “E” would be placed in 

the tier C level of hierarchy. 
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As detailed in section 5, the test case contains many data and instruction buses with 

widths as large as 32-bits. This presents the opportunity to use 3D vias for realizing short, 

vertical busses. The OpenRISC CPUs were quickly identified as being the components 

having the highest bus connectivity. Therefore, the CPUs were prime candidates for 

placement on tier B, giving them a central location among the 3D stack. This central location 

is important so that the components sharing the same bus with the CPUs can be partitioned to 

either tier A or tier C. If the CPUs were partitioned to any tier other than tier B and the goal 

was still to place the signal busses on the vertical axis, one of two things would occur. First, 

all of the components sharing a bus with the CPUs would be partitioned to the same tier (one 

vertically above or below the CPUs), creating an module area imbalance among the tiers (the 

last tier would be very sparse). Secondly, the components would be split among the two 

remaining tiers, creating a situation where some of the busses traverse two tier boundaries 

(since the CPUs would no longer be centralized), which would double the vertical length 

component of those nets. Thus, to maintain a high degree of density in tier A and tier C and 

to ensure that the vertical separation is as small as possible, the partitioning of components 

must be kept fairly balanced. In terms of the test case, this meant assigning all of the 

components connected to CPU 1 to tier A and all of the components connected to CPU 2 to 

tier C. The choice of tiers here is arbitrary since CPU 1 and CPU 2 are identical in their 

implementation. 

 Other components of the ORPSOC test case that have a high degree of external 

connections include the wishbone traffic cop (TC), the data memory controller, the 

instruction memory controller, and the data and instruction SRAMs themselves.  Partitioning 

the TC to tier B was logical since it is connected to the wishbone interface modules of CPU 1 
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and CPU 2, which reside on tier A and tier C, respectively. Using the same reasoning for 

partitioning the CPUs to tier B, the data memory controller was partitioned to tier B to enable 

SRAM connectivity directly above and below it. For balance issues, the data SRAMs were 

divided evenly among tier A and tier C. This leaves just the instruction memory controller 

and the instruction SRAM, which were both delegated to tier B in the interest of balance 

once again. Figure 6-4 summarizes the complete partitioning scheme of the test case. In this 

diagram, the thick blue lines crossing the horizontal red dashed line represent the 

communication paths utilizing 3D vias. This 3D organization is attractive from a 

performance standpoint since the CPUs are “sandwiched” between the memory hierarchies 

with which they constantly communicate. Moreover, the data memory controller is 

theoretically residing only the length of a 3D via away from the data SRAMs. This would not 

be possible with 2D partitioning, as there would undoubtedly need to be trade-offs between 

the lengths of the busses. 

 Prior to settling with the organization seen in Figure 6-4, two other partitioning 

schemes were first considered. These schemes sought to consolidate the data SRAMs on a 

single tier and partition the CPUs on another tier, leaving their rest of the OR1200 

components to be partitioned to the remaining tier. However, it was quite obvious that the 

tier dimensions of a 3DIC having four SRAMs on a single tier were too large, and 

consequently, a great deal of area was wasted in the other tiers. Still, the partitioning scheme 

shown in Figure 6-5 was considered. In this organization, one of the data SRAMs was moved 

from tier A to tier B in an attempt to meet density requirements (explained in section 6.4). 

Despite this change, the density was still unsatisfactory (varying by more than 10% between 

the tiers), so the more symmetrical approach shown in Figure 6-4 was selected. 
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Figure 6-4: Partitioning scheme employed for the ORPSOC test case 
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Figure 6-5: Another partitioning strategy considered for the test case 

 

6.3 3D Via Insertion according to User Partitioning 

  

 The tier partitioning that was defined in the previous step is taken as the input of the 

3D via insertion step. This process is entirely automated by Design Compiler scripts. 

Essentially, the 2D structural description of the design that was the result of the original 

Design Compiler synthesis (see section 6.1) is once again read by Design Compiler. The 

connections among the standard cells in the design are analyzed based on the tier grouping 

script that was the output of the previous step. 3D vias are inserted wherever nets cross tier 
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boundaries. Tier boundaries are determined by simply considering the additional levels of 

hierarchy that were defined by the tier grouping script. For instance, if a standard cell in the 

tier A level of hierarchy and a standard cell in the tier B level of hierarchy are connected by a 

net, 3D via insertion for this net is required. The actual inclusion of a 3D via in the netlist is 

achieved by means of special standard cells in the library. For the SOI standard cell library 

used by MUSE, “VIA_AB”, “VIA_BC”, “VIA_AC”, and “VIA_ABC” are the cell names 

containing 3D vias. A two letter suffix such as “AB” indicates a standard cell containing a 

3D via with via layers for tier A and tier B. “VIA_ABC” is the only cell containing via layers 

for all three tiers. Usually reserved for global signals such as reset and clock, this standard 

cell would be used for instances where a net has connections on all three tiers.  

 Figure 6-6 shows the process executed by the Design Compiler scripts to insert 3D 

vias while preserving the functionality of the design. In this example, standard cell “A” is 

contained within the tier A level of hierarchy and standard cell “B” is contained within the 

tier B level of hierarchy. Due to “Net_AB”, 3D via instantiation is needed in the design. 

First, the appropriate 3D via standard cell is created and the connections between the 

standard cells and “Net_AB” are broken. According to Figure 6-6, the “VIA_AB” standard 

cell is required to complete the net. Next, a new net is created for each side of the 3D via. 

Finally, the standard cell ports are connected to the appropriate net, and the path from 

standard cell “A” to standard cell “B” is restored. The Design Compiler scripts exhaustively 

search through the design and perform these actions until all 3D vias have been inserted. 
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Figure 6-6: 3D via insertion into the netlist 

   

 Once the 3D via insertion phase is complete, the scripts include commands to write 

four new netlist files. Three of these netlists are the tier-specific structural descriptions of the 

design. The tier-specific netlists are created by simply writing the hierarchy of each tier to a 

file. The only changes to the hierarchy of each tier in these files are the instances of 3D vias 

standard cells. The other netlist file that is written is termed the top level 2D “partitioned” 

netlist. This file contains the levels of hierarchy for the all of the tiers but excludes the 3D 

vias from the design. It specifies the interconnections between the tiers, where as the tier-

specific netlists only show connections to 3D vias. The top level 2D “partitioned” netlist is 
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used at a later point in the design flow for back-annotation of the RC wiring parastitics, 

including that of the 3D vias.  

6.4 Initial SoC Encounter Floorplanning and Placement 

  

SoC Encounter is a full-featured automatic place and route tool of the Cadence IC 

design suite [24]. During the initial floorplanning and placement stage of the design flow, the 

goal was to perform a coarse placement in SoC Encounter of the standard cells and macros 

on each tier. Since SoC Encounter provides no mechanism for 3D placement, each tier is 

individually placed irrespective of one another. However, it is still not advisable to let the 

placement tool be unrestricted with its 2D placement of each tier. Using the partitioning 

strategy that was developed in section 6.2, the modules are first floorplanned such that the 

components connected by vertical wires overlap in the 3D stack. For example, consider 

Figure 6-7 in which block “A” is connected to block “B” in the netlist. The diagram at the 

left shows a bad 3D floorplanning choice for tier A and tier B, since the blocks are not well 

aligned horizontally. A placement and subsequent routing generated from this floorplan 

would result in unreasonably long net lengths for those nets connected to 3D vias.  

Conversely, the diagram at the right shows a better floorplanning choice in which the blocks 

are well aligned. The placement and routing for this case would produce drastically reduced 

net lengths. The situation grows even more complex when considering all three tiers of the 

3DIC. Therefore, it is paramount to understand the implications of 2D placement in a 3D 

space. Otherwise, it stands to reason that the entire benefit of 3D chips would be negated, and 

the 2D IC would still offer better performance. 
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Figure 6-7: Example of good and bad floorplanning for 3DICs 

   

 With a good floorplanning strategy in mind, initial floorplanning and placement of 

each tier can move forward. Figure 6-8 provides an overview of the procedure used in SoC 

Encounter. Since the dimensions of each tier are identical in a 3D process, one must first 

determine the suitable area to use for each tier. In this work, placement density was used as 

the metric to arrive at the values for the tier dimensions. With five available routing layers, 

95% area density was the goal for the design of the test case. It should be noted that the 

dimensions of the tiers are set by the tier having the greatest total module area. Since SoC 

Encounter estimates the core dimensions needed (assuming a width-to-height ratio of 1) to 

place a design during the import process, a quick survey of these numbers for all three tiers 

can identify the tier of greatest module area. In SoC Encounter, the core density of this tier 

was set to just under 95% to account for clock tree synthesis and power planning, which both 

work to decrease the number of legal placement locations. Next, the power planning phase is 

performed. This consists of adding power rings around the core and each macro of the 

design. It also includes adding power stripes across the core. The next step after power 

planning is the manual floorplanning of the modules. It is during this step that the practices 

introduced by Figure 6-7 are carried out. SoC Encounter allows the user to drag-and-drop the 
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module blocks over the area of the core for preferred placement. The tool will then take these 

floorplan “guides” as inputs to the placement engine and place the contents of each module 

to the best of its ability within bounding box of the associate guide. Modules without 3D vias 

are not floorplanned so that SoC Encounter can fully optimize their placement. At the 

conclusion of floorplanning, a low effort placement run is executed. Given that a second, 

finer placement is performed later in the design flow, a low effort placement is favored here 

in the interest of runtime. The placement result is analyzed to ensure that the cells of the 

design did not stray too far from their floorplan guides. If SoC Encounter had difficulty 

adhering to the floorplan or if some cells were unable to be placed, iterations in the 

floorplanning and placement loop may be necessary. The area of the core, and therefore the 

area of every tier, may be increased to try to solve placement problems. In the worst-case 

scenario, an alternate partitioning scheme may be needed.  

Once a suitable placement is achieved, two forms of Design Exchange Format (DEF) 

files are exported from the tool. One form contains only the floorplanning information of the 

design, such as the power planning and the location of any floorplan guides or fixed macro 

cells. The other type of DEF file contains the floorplanning information as well as the 

placement locations. DEF is a specification used by IC design tools for representing layout 

information in a human-readable format. These files are taken as inputs in the next stage of 

the design flow. 

 



 65 

Density calculation 
for tier area

Tier-specific netlist 
file

Power Planning

Module 
Floorplanning

Low Effort 
Placement

Is floorplan 
from placement 

sufficient?

Tier-specfic 
DEF file with 
floorplanning 
information

Write initial 
placement DEF 

and floorplan DEF

Tier-specific 
DEF file with initial 

placement 
information

Start

Finish

Yes

No

 

Figure 6-8: Procedure for initial placement of tier-specific netlists 

  

 Given the partitioning of the test case as discussed in section 6.2, the tier with the 

highest module area was tier B. This was mostly due to the areas required by the OpenRISC 

CPUs, the largest modules in the design. Nonetheless, the partitioning scheme was more than 

sufficient because the areas required on each tier to obtain 95% density were very close in 

magnitude. This means that there was not a significant amount of “wasted” area in tier A and 

tier C. In fact, the placement results from this step showed greater than 90% density for all 



 66 

three tiers. When the final placement is performed at a later stage in the design flow, the 

density will further increase due to clock tree insertion.  

 Beginning with the floorplanning of tier B, the design of the ORPSOC test case 

sought to divide the regions of the tier between the components for the first OR1200 and the 

components of the second OR1200. If these divisions are held constant across the tiers, the 

modules with 3D vias can be adequately aligned.  Figure 6-9 shows the core size and module 

floorplanning of tier B in SoC Encounter. There a few key points of interest to notice in this 

figure. First, the size of a tier on the 3DIC was 2520 µm by 2524 µm, which translates to a 

tier area of about 6.36 mm
2
. When considering all three tiers, the total core area of the 3DIC 

was 19.08 mm
2
. The figure also shows the locations of example power rings and stripes in 

the floorplan. The vertical power stripes do not cross the bounding box of the instruction 

SRAM, since for this design it is assumed that the SRAM imposes a total blockage of the 

first three metal routing layers The routing blockages of the SRAM are an integral factor of 

the via alignment stage of the design flow (see section 6.5).   
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Figure 6-9: Core size and module floorplanning for tier B of the ORPSOC test case 

 

 

Referring to Figure 6-9 again, the regional division among the two OR1200 modules 

is apparent. Particularly, the components of the first OR1200 are floorplanned to the top 

portion of the core, with the components of the second OR1200 occupying the bottom 

portion of the core. In tier B, this condition is fulfilled by the location of CPU 1 (top) and 

CPU 2 (bottom).  The centered position of the wishbone traffic cop and the data memory 

controller in Figure 6-9 is also interesting. The reasons for the positioning of these modules 

in the floorplan are clearer after the consideration of the floorplans for tier A and tier C, 
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which are shown in Figure 6-10 and Figure 6-11, respectively. The instruction memory 

controller does not appear as a floorplan object in Figure 6-9 given that its connectivity is 

isolated to tier B. 

Recall from the manual partitioning step (see section 6.2) that tier A contains the 

components of the first OR1200 and two data SRAMs. Likewise, tier C is partitioned the 

remaining two data SRAMs and the components for the second OR1200. Since the CPUs of 

the design communicate directly with the memory management units (MMUs) as revealed in 

section 5, it is important to floorplan these modules such that they are aligned with the 

correct CPU on tier B. Notice in Figure 6-10 and Figure 6-11 that the MMUs (i.e., the data 

MMU and the instruction MMU) are assigned to either the top or bottom portions of the core. 

Thus, the floorplanning guide for CPU 1 in Figure 6-9 is aligned with the floorplanning 

guides for the DMMU 1 and IMMU 1 in Figure 6-10. The same condition exists for CPU 2, 

DMMU 2, and IMMU 2. The modules that are connected to each MMU on the tiers 

themselves do not need to be manually floorplanned since they do not contain 3D vias, so it 

is more efficient to allow SoC Encounter to optimize their placement.  
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Figure 6-10: Core size and module floorplanning for tier A of the ORPSOC test case 
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Figure 6-11: Core size and module floorplanning for tier C of the ORPSOC test case 

 

 

According to the architecture of the test case, the wishbone traffic cop (see Figure 

6-9) communicates with the OpenRISC wishbone interface modules (both the instruction and 

data ones in Figure 6-10 and Figure 6-11), the data memory controller, and the instruction 

memory controller. The latter two reside on the same tier as the wishbone traffic cop, 

allowing SoC Encounter to naturally minimize the lengths of the nets between these 



 71 

components. The OpenRISC wishbone interface modules, however, reside on the tiers above 

and below the wishbone traffic cop, so the position of these floorplan guides is significant. 

As verified by the module locations in Figure 6-9, Figure 6-10, and Figure 6-11, the 

OpenRISC wishbone interface modules and the wishbone traffic cop are all focused in the 

center of the core area along the edge of the right-most SRAM. A placement that adheres 

well to these floorplan guides will minimize the interconnect length of the busses between 

these components. Likewise, the position of the data memory controller relative to the data 

SRAMs is ideal. The floorplanning of the data memory controller was performed so as to 

minimize the distance between the 3D vias and the pins of the data SRAMs, which are 

denoted as “SRAM address pins” in Figure 6-10 and Figure 6-11. Moreover, as discussed in 

section 6.5, in order to maximize the number of legal 3D via locations, the bounding boxes of 

the SRAMs on each tier were fixed to one of two positions. For instance, the origin of the 

data SRAMs in Figure 6-10 and Figure 6-11 share the same set of coordinates. Similarly, the 

instruction SRAM in Figure 6-9 is perfectly aligned with the right-most data SRAMs in tier 

A and tier C.  With the position of the SRAMs fixed, the data memory controller on tier B is 

brought close in proximity to the SRAM pins due to its central location. This ensures very 

short net lengths between the memory controller and the SRAMs. It is worth noting here that 

the interconnect length between the wishbone traffic cop and the data memory controller is 

not sacrificed in favor of this floorplanning choice. Referring to Figure 6-9, the guides for the 

data memory controller and wishbone traffic cop abut on one side yet are still aligned with 

the components to which they are vertically connected on tier A and tier C. 
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The potential performance benefits of the floorplanning techniques mentioned above 

are squandered if the placement result from SoC Encounter does not sufficiently adhere to 

the floorplan guides. It is entirely possible for SoC Encounter to produce a placement that 

does not resemble the floorplan if the modules are too dense to be fully contained within their 

guides. If this occurs, iterations involving the initial floorplanning and placement are 

necessary to arrive at the desired placement. During the design of the test case, it was 

observed that the quality of the placement result was strongly dependent on the locations of 

the SRAMs. In particular, placing the data SRAMs on tier A and tier C too close to one 

another tended to displace the OpenRISC wishbone interface modules away from the middle 

of the core. This occurrence was unwelcome given the increase in interconnect length to the 

wishbone traffic cop on tier B, which was placed in the center of the tier without 

complications. The solution to this was to separate the data SRAMs horizontally on each tier 

such that the placement did not show any noticeable migration from the floorplan. 

Figure 6-12, Figure 6-13, and Figure 6-14 collectively show the results of the initial 

placement for all three tiers. Comparing these figures with the floorplans in Figure 6-9, 

Figure 6-10, and Figure 6-11 reveals that SoC Encounter largely maintained the initial 

floorplan in its placement of the tiers. The MMUs on tier A and tier C were entirely too large 

to fit in a quadrant of the core as intended by the floorplans, but this was expected due to the 

overlap with the SRAMs. In fact, these figures clearly show the influence that the large, fixed 

SRAMs have on the quality of the placement. Figure 6-12 shows that the floorplan for tier B 

was almost exactly duplicated in the placement, where as Figure 6-13 and Figure 6-14 show 

slight but acceptable displacement from the floorplan for tier A and tier C.  
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Figure 6-12: Initial placement result for tier B of the ORPSOC test case 
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Figure 6-13: Initial placement result for tier A of the ORPSOC test case 
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Figure 6-14: Initial placement result for tier C of the ORPSOC test case 

 

6.5 3D Via Alignment 

 Due to the fact that the 2D placement of each tier is performed without any knowledge 

of the remaining tiers, the standard cells that comprise 3D vias must be aligned to ensure a 

functional layout. The vehicle that enables via alignment is a Python script written by the 

MUSE research group. The script takes as input the three sets of DEF files that were 

exported from SoC Encounter after the initial placement of the tiers. Regardless of whether 

or not the via alignment process was completely successful, the script writes a new DEF file 

per tier that reflects the alignment in the coordinates of the 3D via standard cells. When this 

step was performed for the 3DIC FFT design, the via alignment was very trivial since the 
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design was composed solely of standard cells. The script simply found the nearest location 

on each tier to place the 3D via standard cells while considering the incidence of power 

stripes and fixed standard cells in the DEF files (i.e. geometry disallowing the placement of 

3D vias). The situation was more complex with the test case given the existence of the fixed 

SRAM blocks. To handle this added complexity, the Python script was generalized to respect 

the bounding box of the SRAM blocks and the accompanying power rings as illegal locations 

for 3D via standard cells. Furthermore, the bounding box of the SRAM from one tier 

disallowed the placement of 3D via standard cells across all three tiers. This was the driving 

force behind completely overlapping the SRAMs between the tiers such that the total area 

that was removed from the list of legal locations was minimized to twice the area of an 

SRAM block. If the SRAM blocks were not fixed to one or two position on all three tiers, 

nearly the entire area of the core would have been blocked, and 3D via alignment would have 

been very difficult to achieve.  

 With the amount of 3D via blockage generated from the SRAMs being so large, it 

was necessary to create good floorplans in the previous stage of the design flow. An initial 

placement from a poor floorplan would not overlap the modules with 3D vias well, and 

consequently, the concentration of 3D via standard cells in each tier would be spaced too far 

apart. During the via alignment stage, this could possibly translate into 3D via alignment 

locations being “snapped” to the edge of the SRAM blocks. Behavior of this nature is 

inefficient because the “snapping” action could entail a relocation of the 3D via standard 

cells to the opposite side of the SRAM blocks, making the associated net lengths exorbitantly 

long. A manual inspection of the aligned DEF files in SoC Encounter is needed to guarantee 

the limited existence of any such alignment results. Additionally, if the Python script failed to 
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align all of the 3D via standard cells, the unfixed cells are positioned at the origin in the 

aligned DEF file. If any 3D via standard cells are found at the origin after importing the DEF 

file into SoC Encounter, the design flow needs to be rolled back to the floorplanning and 

initial placement step (see section 6.4), or in the extreme case, a different partitioning 

strategy may be necessary (see section 6.2). 

The 3D via alignment of the test case was made easier by sufficiently spacing the 

SRAM blocks on each tier. This allowed the modules with vertical connectivity in the center 

of the core (i.e. between the SRAM blocks) to remain in relatively the same position from 

floorplanning to initial placement, reducing the distance between the logically connected 3D 

via standard cells on each tier. To illustrate this, Figure 6-15 captures a zoomed version of 

the core centers for tier A and tier B after via alignment. The via-aligned DEF files that are 

written in this stage were used in the making of Figure 6-15. 3D via standard cells on tier B 

were initially placed inside of the bounding box of the left-most SRAM on tier A because 

this area was not reserved for a SRAM on tier B. After alignment, the 3D vias were displaced 

by the bounding box of the SRAM on tier A to the positions shown in the figure. 

Nonetheless, the ratio of displaced to non-displaced 3D via standard cells is small, so the 

short vertical interconnects between the tiers are not being inhibited by poor placement of the 

3D vias. 
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Figure 6-15: Center of core area for tier A and tier B after 3D via alignment 
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6.6 Final SoC Encounter Placement and Routing 

Once the 3D vias have been aligned and fixed to their locations, the standard placement 

and routing flow may begin. The aligned DEF that was created in the previous step of the 

design flow is imported into SoC Encounter. From there, a medium effort placement is 

performed. SoC Encounter will inherently attempt to minimize the net lengths to the fixed 

3D via standard cells, so no additional floorplanning is necessary. After placement has 

completed, the clock tree for each tier is synthesized to a particular specification. For the 

ORPSOC test case, the target clock skew was an aggressive 50 ps. Due to the complexity of 

the required clock tree and the number of clock sinks in each tier of the design, the actual 

clock skew after synthesis as reported by SoC Encounter was closer to 90 ps. After the clock 

tree has been synthesized, global and detailed routing of each tier is performed. The 

preference of the MUSE research group is to use “WRoute” that is packaged with SoC 

Encounter. Five routing layers were needed to route such a high density design. Figure 6-16 

shows the tiers of the test case after successful routing runs. This figure will be referenced 

later in this work to compare the relative amount of routing congestion with that of the 2D 

design.  
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Figure 6-16: Routed tiers of the ORPSOC test case 

 

 Once routing is finished, three sets of files (one set for each tier) are exported from 

SoC Encounter. The final DEF file of each tier is saved for later use.  Also, the post-route 

clock tree browser file of each tier, which is needed to insert the clock buffers into the netlist, 
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is saved. Finally, a standard parasitic exchange format (SPEF) file is exported for each tier. 

The SPEF file specifies a format to represent the resistive and capacitive parasitic data of the 

wires in the design. This last file will be used for back-annotation of the RC wiring parasitics 

during the analysis of the 3D design.  

6.7 Insertion of Post-route Clock Tree into the Netlist 

Throughout the entire design process in SoC Encounter, standard cells were only added 

during clock tree synthesis. To maintain consistency between the physical design and the 

netlist that describes the design’s functionality, the clock tree must be inserted into the netlist. 

This removes the ideal clock from driving the clock pins of the synchronous components in 

the design and replaces the ideal clock at every sink node with a path through the synthesized 

clock tree. In the 3DIC design flow, clock tree insertion into the netlist is performed 

automatically using a Python script and the tier clock tree browser files exported after final 

routing in SoC Encounter. The Python script itself creates a Design Compiler script that 

contains the commands to instantiate the clock tree cells and assemble the tree within the 

design. Essentially, the Python script analyzes the three clock tree browser files to find of the 

hierarchy of the clock tree. This hierarchy is then transferred to the top level 2D “partitioned” 

netlist in Design Compiler. Recall from section 6.2 that the top level 2D “partitioned” netlist 

already encapsulates the hierarchy of all three tiers prior to this action. Afterwards, Design 

Compiler writes the new top level 2D “partitioned” netlist that includes all of the inverters 

and buffers of the clock tree on each tier. Now all that is needed is accurate RC parasitic 

information from the 3D design, which is addressed in the next stage of the design flow. 
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6.8 Merging of Tier-Specific SPEF Files 

 

Just as the clock trees of the individual tiers were “merged” onto one netlist in the 

previous stage, the wire parasitics must be merged together in order for back-annotation and 

subsequent analysis in 2D design tools to be plausible. This phase of the design flow is 

automated by means of script written as part of the research work of MUSE. Termed the 

“spef merger”, this perl script is very simple in its concept. The “spef merger” 

simulataneously analyzes the SPEF files of all three tiers and creates a new SPEF file that is 

the result of the merging process. The merging process involves searching for all instances of 

3D via standard cells in the tiers and adjoining the RC parasitics of each net that is connected 

to a 3D via. Adjoining is accomplished by the annotation of the resistive and capacitive 

contribution from the physical 3D via. As a result, the nets with vertical connectivity appear 

as flat 2D nets with extra RC parasitics to account for the inclusion of 3D vias in the 3DIC 

fabrication process [25]. Since the “spef merger” was designed specifically for the 3DIC 

design flow outlined in Figure 6-1, the merged 2D SPEF file that is produced by the script 

preserves the naming conventions of the top level 2D “partitioned” netlist. Together with the 

clock tree insertion into this netlist, the merged SPEF file provides all of the design 

information generated by the post-synthesis use of SoC Encounter.  
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7 Results 

The design flow for the 2D ORPSOC test case diverged from the documented 3D design 

flow at the manual user partitioning step. From there, the placement and routing was fully 

automated in SoC Encounter. Placement, clock tree synthesis, and routing were performed 

under the same assumptions as the design of the 3DIC. Likewise, the wiring parasitics were 

exported from SoC Encounter in the familiar format of a SPEF file. The post-clock tree 

synthesis netlist was also saved for use in the procedures for obtaining delay and power 

dissipation values (see section 3). Figure 7-1 shows the 2D design after detailed routing. 

When compared to the 3D layouts in Figure 6-16, the increased usage of metal 4 and metal 5 

(designated by the yellow and brown regions, respectively) in the 2D design is indicative of a 

higher degree of routing congestion.  

 In order to compare the 2D and 3D designs, the highest clock frequency achievable 

must first be determined. For this, the flow for obtaining delay values in PrimeTime was used 

to analyze the critical path as well as other key paths in both designs. The inverse of the 

critical path delay was used as an approximation for the maximum clock frequency of each 

design. Once the clock rate is known, power dissipation tests were performed using the 

Power Compiler/NC-Verilog flow (see section 3.1). Subsequently, the power distribution 

among the tiers of the 3D design, together with the delay values, was coupled with the 3DIC 

thermal model for full temperature convergence and performance degradation analysis. The 

temperature effects as outlined in this work were considered in the quantification of the 

performance advantages of migrating the ORPSOC test case from the 2D realm. Reported in 

this section are the detailed results of the 2D and 3D design comparison. 
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Figure 7-1: The 2D ORPSOC test case after detailed routing 

 

 

7.1 2D and 3D Path Delay Comparison 

Table 7-1 reports the data collected from PrimeTime along with the percentage of 

delay reduction when moving from 2D to 3D. As evidenced by the table, the 3D design 

improves upon the critical path delay by 29%, which translates to a maximum clock 

frequency of 56 MHz as opposed to 40 MHz for that of the 2D design. Additionally, the 

efficiency of intelligent 3D partitioning and floorplanning is apparent in large gap between 

the memory path delays of the 2D and 3D designs. These memory path delays represent the 

summation of the largest register-to-register delays between the CPUs and the SRAMs. The 
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delays are further categorized by SRAM type (data or instruction) and path direction (to/from 

memory). Here, an important qualification to make is that the numbers shown in Table 7-1 

represent the propagation delay before any consideration of performance degradation due to 

temperature. How the data in Table 7-1 derates with temperature is addressed in section 7.3. 

Table 7-1: Path delay data from the 2D and 3D designs 

  2D 3D % Reduction 

 Critical Path 25.13 ns 17.87 ns 28.89 

To SRAM 33.07 ns 23.0 ns 30.45 
Data Memory 

From SRAM 36.6 ns 24.86 ns 32.07 

To SRAM 34.01 ns 23.27 ns 31.58 Instruction 

Memory From SRAM 37.82 ns 24.01 ns 36.51 

 

 

7.2 2D and 3D Power Dissipation Comparison 

Three distinct switching activity profiles were used in the calculation of the power 

dissipation of the designs. These profiles provide a realistic range of switching activities for 

the OR1200 modules. Recall from section 3.1.3 that one simulation for each piece of 

software available was performed, and subsequently, a back annotation SAIF file was 

generated from every simulation. The nets of each design were annotated in Power Compiler 

based upon the single most active program, the merged switching activity of all of the 

programs, and the estimated absolute worst case switching activity for the OR1200 modules. 

The merged switching activity profile describes the weighted average of the switching 

activities for all of the simulations.  To facilitate this, Power Compiler provides a convenient 

“merge_saif” command whereby the user can annotate the design with multiple SAIF files, 

giving an appropriate weight for each file. Hence, the switching activity profiles from the 

single most active program and from the merging process were annotated onto the designs by 

means of back annotation SAIF files. The worst case switching activity profile, however, was 
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not derived from any simulation. Instead, all of the nets apart from those in the clock tree 

were annotated with a switching rate of 0.3. This translates to each net having a 30% chance 

of switching during the clock period. All clock tree nets in the designs transition twice during 

a clock period, and therefore, these nets were annotated with the expected switching rate of 

2.0. It was assumed for the worst case switching profile that the reset pin was held at a 

constant logic ‘0’. As previously mentioned, the clock frequency of each design was set to 

the inverse of the associated critical path delay. Table 7-2, Table 7-3, and Table 7-4 show the 

results for all of the power dissipation tests. In the case of the 3D design, the power 

dissipation is further broken into the individual tier contributions. Interestingly, the 3D 

design had a 30% higher clock frequency, yet it still dissipated less total power than the 2D 

design. A closer look at the power dissipation from interconnects revealed a contribution of 

about 29% for the 2D design, favoring 3D integration to reduce the role of interconnects. As 

a result, the 3D design was able to consume less power while operating at a higher frequency. 

Any change to the power figures in Table 7-2, Table 7-3, and Table 7-4 due to temperature is 

accounted for in section 7.3 of this work.  

 

Table 7-2: Power dissipation data for the single most active program profile 

Power Dissipation Type 2D 3D % Reduction 

Tier A Dynamic  1.01697 W  

Tier B Dynamic  1.66585 W  

Tier C Dynamic  1.00697 W  

Total Dynamic 3.798 W 3.68 W 3.11 

    

Tier A Leakage  23.1242 mW  

Tier B Leakage  16.0516 mW  

Tier C Leakage  23.1242 mW  

Total Leakage 62.4 mW 62.3 mW 0.002 

    

Total Combined 3.8604 W 3.7423 W 3.11 
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Table 7-3: Power dissipation data for the merged switching activity profile 

Power Dissipation Type 2D 3D % Reduction 

Tier A Dynamic  0.876308 W  

Tier B Dynamic  1.37415 W  

Tier C Dynamic  0.86597 W  

Total Dynamic 3.1981 W 3.116 W 2.6 

    

Tier A Leakage  23.1242 mW  

Tier B Leakage  16.0516 mW  

Tier C Leakage  23.1242 mW  

Total Leakage 62.4 mW 62.3 mW 0.002 

    

Total Combined 3.2605 W 3.1783 W 2.6 

 

Table 7-4: Power dissipation data for the worst case switching activity profile 

Power Dissipation Type 2D 3D % Reduction 

Tier A Dynamic  1.28697 W  

Tier B Dynamic  2.16415 W  

Tier C Dynamic  1.26697 W  

Total Dynamic 4.8881 W 4.718 W 3.5 

    

Tier A Leakage  23.1242 mW  

Tier B Leakage  16.0516 mW  

Tier C Leakage  23.1242 mW  

Total Leakage 62.4 mW 62.3 mW 0.002 

    

Total Combined 4.9505 W 4.7803 W 3.5 

 

7.3 Temperature Convergence and Performance Degradation 
Analysis 

 

For the 3DIC thermal model used in this work (see section 3.3.1), the average of the 

maximum and minimum thermal conductivity of a tier as reported in [19] was used to 

calculate the thermal resistance of tier C and the combined thermal resistance of tier A and 

tier B (labeled as “θtier C” and “θtier AB” in Figure 3-6). The thermal resistances of the tiers are 

relatively high due to the lack of thermal vias in the design. Thermal vias, which are 

composed of two paired 3D vias connecting all three tiers, can be inserted into the design to 
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remove more heat and thus achieve greater thermal conductivity. However, this comes at the 

expense of design routeability. At the density level of the 3D design, it would not be possible 

to insert enough thermal vias to significantly affect the thermal conductivity and still 

guarantee routeability.  

The power dissipation breakdowns in Table 7-2, Table 7-3, and Table 7-4 were taken 

as input to the temperature-power positive feedback loop (see section 3.3.2) to compute final 

tier temperatures and performance degradation for each of the three switching activity 

profiles. The assumptions for the 3DIC thermal model are displayed in Table 7-5.  

 

Table 7-5: Assumptions for the 3DIC thermal model 

Parameter Value Base unit 

Thickness of Tier C 7.09 µm 

Thickness of Tier AB 12.38 µm 

Thickness of Silicon Handle 675 µm 

Thickness of Epoxy 50 µm 

Conductivity of Tier C 2.5 W/(m-k) 

Conductivity of Tier AB 3 W/(m-k) 

Conductivity of Silicon 148 W/(m-k) 

Conductivity of Epoxy 3.3 W/(m-k) 

Thermal Resistance of Heat Sink 0 K/W 

Area per Tier 6.36 mm
2
 

Ambient Temperature 25 °C 

 

 

Four iterations of the feedback loop calculations were performed to observe 

temperature convergence, although for the test case, there was minimal temperature increase 

beyond the first iteration. The small amount of temperature variation in the remaining 

iterations was expected given the relatively miniscule amount of leakage power as compared 

to the dynamic component. As indicated in the power dissipation tables, the leakage power is 

no more than 2% of the total power for all of the switching activity profiles. Figure 7-2, 

Figure 7-3, and Figure 7-4 present the temperatures of the 3DIC thermal model across the 
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iterations. The temperature for the heat sink is not shown in these figures, as it is assumed to 

be at the ambient temperature with zero temperature dropped across it. 
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Figure 7-2: Thermal model temperatures for the single most active program profile 

 



 90 

32

33

34

35

36

37

38

1 2 3 4

Iteration Number

T
e
m

p
e
ra

tu
re

 (
C

)

Tepoxy

Ttier A

Ttier B

Ttier C

 

Figure 7-3: Thermal model temperatures for the merged switching activity profile 
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Figure 7-4: Thermal model temperatures for the worst case switching activity profile 
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Since most standard cell libraries are characterized for timing and power at one 

specific temperature node, it is useful to interpret the amount of delay and power increase 

from this single temperature. Extra measures such as the incorporation of the 3DIC thermal 

model into the design flow would have to taken if there is a substantial percentage of error 

between the initial and final values for delay and power. Shown in Figure 7-5 is the reaction 

of leakage power to the departure from the characterized temperature (equivalent to the 

ambient temperature in the 3DIC thermal model). As developed in this work, the leakage 

power is strongly dependent on temperature variations. For the test case, this strong 

dependence manifests in a 31 – 51% increase after temperature convergence. This change in 

leakage power, however, did not translate into a noticeable impact on the total power 

dissipation, which increased by only 0.6 – 0.66% for each switching activity profile. 

Therefore, the power dissipation at the characterized temperature for the test case was an 

excellent estimation of the power dissipation after consideration of a thermal model. 

Nonetheless, the error in the initial value of the power dissipation increases as leakage 

becomes more of a factor in the total power of a 3DIC.  
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Figure 7-5: Change in total leakage power from ambient temperature 

 

 

 Whereas the temperatures of the 3DIC could be increased to very high levels before 

the leakage power would become a significant portion of the total power, the speed of the 

transistors would begin to suffer long before these temperature levels are reached. As 

evidenced by Figure 7-6, the temperature increase from ambient introduces a maximum of 

5% combinational path delay increase on tier C, which is by virtue of the thermal model the 

hottest of the tiers.  
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Figure 7-6: Percentage of tier delay increase from ambient temperature 

  

Even if the critical path was fully contained within tier C (a worst-case assumption), 

this delay degradation does not surmount the critical path improvement over the 2D design. 

The 2D IC thermal model can be viewed as having a single tier with three times the area as 

tier A with the same amount of heat flowing through it. Figure 7-7 shows this equivalent 

thermal model for the 2D IC. The area of each component of the cross-section of the model 

was calculated from the dimensions of the final 2D layout (see Figure 7-1). The total area for 

the 2D version was slightly greater than three times that of the 3DIC, at 19.82 mm
2
.  
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Figure 7-7: Thermal model of the 2D IC 

  

 Using the model shown in Figure 7-7 with the power dissipation values in Table 7-2, 

Table 7-3, and Table 7-4, the same process used to calculate temperature convergence and 

performance degradation for the 3DIC was performed for the 2D version. As expected, the 

dependence of total power on temperature was negligible, since the 2D design has the same 

insignificant leakage power component as the 3D design.  In terms of the delay increase with 

temperature, the 2D design did not slow down from its ambient operating frequency as much 

as seen in the 3D case. However, the difference between the two designs was not show-

stopping for the 3DIC. Figure 7-8 depicts the delay increase (in percent) of the hottest tier of 

the 3D design versus the 2D design. As indicated in the figure, the difference in the 

percentage of delay increase reached a maximum of just over 3%.  



 95 

0

1

2

3

4

5

6

Single Merged Worst

Switching Activity Profile

%
 D

e
la

y
 I

n
c
re

a
s
e

2D 3D

 

Figure 7-8: Delay increase comparison between tier C of the 3D design and the 2D design 

 

Additionally, the delay increase at each switch activity profile from Figure 7-8 was 

used to scale the original path delay values from PrimeTime (see Table 7-1) to produce a 

worst-case speed comparison between the 2D and 3D design after temperature convergence. 

This comparison is labeled as “worst-case” because the highest temperature seen in the 3DIC 

(tier C) was used to calculate the delay increase for all combinational paths in the design 

irrespective of their location within the 3D “stack”. The scaled values from Table 7-1 are 

shown in Table 7-6. The central aspect of this table is that critical path improvement was 

only diminished by 2.3% due to the higher temperatures of the 3DIC.  

Table 7-6: Path delays of each design after temperature dependence 

  2D 3D % Reduction 

 Critical Path 25.54 ns 18.75 ns 26.59 

To SRAM 33.61 ns 24.14 ns 28.18 
Data Memory 

From SRAM 37.2 ns 26.09 ns 29.87 

To SRAM 34.56 ns 24.42 ns 29.34 Instruction 

Memory From SRAM 37.82 ns 25.2 ns 33.37 
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8 Conclusion 
 

The design of a 3DIC based on the OpenRISC Reference Platform System-on-chip has 

been documented in this work. It was shown that, through the use of manual tier partitioning 

and floorplanning, the intrinsic advantages of 3D vias can be harnessed. When comparing the 

3D test case with a functionally equivalent 2D design, steps were taken to acknowledge the 

non-uniform temperature profile between the tiers of the 3DIC. Temperature dependent 

predictive models for power dissipation and combinational path delay were derived and 

verified in this work to enable the use of the power-temperature positive feedback loop. 

Utilizing realistic switching activity profiles as generated from simulations of actual 

microprocessor workloads, iterative calculations were performed about this feedback loop to 

observe temperature convergence of the 3DIC thermal model.  The increased tier path delays 

predicted by the temperature dependent models after temperature convergence did not 

appreciably diminish the improvement in critical path delay of nearly 29% over the 2D 

design. After temperature convergence was observed, the improvement to the critical path 

delay was still 26.59%. Moreover, power dissipation analysis revealed that the 3D design 

consumed, on average, 3% less power than the 2D design while running at the higher clock 

frequency dictated by the reduction in critical path delay. Both in the case of power 

dissipation and timing delays, the analyses at the characterized operating temperature 

provided reliable performance estimation even after consideration of the 3DIC thermal model 

and the power-temperature positive feedback loop. 

 For the current and future interconnect-limited integrated circuit technologies, 3D 

integration presents a compelling alternative to the conventional methods of circuit 

integration. In fact, it is the belief of the MUSE research group that the 3DIC design flow 
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presented in this work has applications in the development of novel memory structures. One 

can imagine 3D integration being used to meet the density demands of future memory 

devices at a more matured process feature size. 3DICs, however, reach new heights with 

respect to design challenges. Additional complexities will soon be introduced from the 

outlook on leakage power scaling and from the ever-increasing power density of integrated 

circuits. Indeed, 3D partitioning and floorplanning irrespective of thermal effects is rapidly 

approaching its viability limits. In its place, true 3D thermally-aware placement will be 

necessary to manage the speed difference between the tiers of the 3DIC as well as any power 

dissipation and temperature requirements. How this problem will be solved currently is and 

will remain to be a research topic for years to come. Nevertheless, the design time needed for 

the manual partitioning strategy used in this work to find an optimal solution is 

insurmountable, and the need for such a solution to maximize the benefits of 3D vias will 

only be amplified in the upcoming technology generations. 
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