
Abstract

SCHOENFLIESS, KORY MICHAEL. Performance Analysis of System-on-Chip

Applications of Three-dimensional Integrated Circuits (Advisor: Dr. W. Rhett Davis)

 In the research community, three-dimensional integrated circuit (3DIC) technology

has garnered attention for its potential use as a solution to the scaling gap between MOSFET

device characteristics and interconnects. The purpose of this work is to examine the

performance advantages offered by 3DICs. A 3D microprocessor-based test case has been

designed using an automated 3DIC design flow developed by the researchers of North

Carolina State University. The test case is based on an open architecture that is exemplary of

future complex System-on-Chip (SoC) designs. Specialized partitioning and floorplanning

procedures were integrated into the design flow to realize the performance gains of vertical

interconnect structures called 3D vias. For the post-design characterization of the 3DIC,

temperature dependent models that describe circuit performance over temperature variations

were developed. Together with a thermal model of the 3DIC, the performance scaling with

temperature was used to predict the degree of degradation of the delay and power dissipation

of the 3D test case. Using realistic microprocessor workloads, it was shown that the

temperatures of the 3DIC thermal model are convergent upon a final value. The increase in

delay and power dissipation from the thermal analysis was found to be negligibly small when

compared to the performance improvements of the 3DIC. Timing analysis of the 3D design

and its 2D version revealed a critical path delay reduction of 26.59% when opting for a 3D

implementation. In addition, the 3D design offered power dissipation savings of an average

of 3% while running at a proportionately higher clock frequency.

PERFORMANCE ANALYSIS OF SYSTEM-ON-CHIP APPLICATIONS OF

THREE-DIMENSIONAL INTEGRATED CIRCUITS

by

KORY MICHAEL SCHOENFLIESS

A thesis submitted to the Graduate Faculty of

North Carolina State University

in partial fulfillment of the

requirements for the degree of

Master of Science

In

COMPUTER ENGINEERING

Raleigh, NC

2005

Approved by:

______________________________ ______________________________

 Dr. Paul Franzon Dr. Douglas Barlage

 Dr. W. Rhett Davis

 Chair of Advisory Committee

 ii

To my loving grandparents, Frank and Helen King, who sadly passed away during my time

in graduate school.

 iii

Biography

 Kory Michael Schoenfliess was born on August 25, 1981 in Rosedale, a suburb of

Baltimore, Maryland. Kory has spent most of his life in Maryland, and only recently moved

away from the State to pursue graduate studies. He is the son of Lothar and Sharon

Schoenfliess, who both still reside in Rosedale. Kory’s interest in computer technology was

spurred by his attendance of Eastern Technical High School of Essex, Maryland, where he

concentrated in engineering. In 1999, Kory was accepted to the University of Maryland,

Baltimore County and given an academic scholarship for his exemplary achievement in High

School. Shortly before leaving UMBC, Kory was blessed to meet his fiancé, Valerie Beach.

Kory graduated Summa Cum Laude in December 2003. By January of the next year, Kory

was attending North Carolina State University in pursuance of his Masters in Computer

Engineering.

 Kory’s work experience includes a research internship at the University of Maryland,

College Park where he mostly functioned as a test engineer for fabricated ASICs in the ECE

department. The summers and winters of 2004 and 2005 were spent at the Columbia,

Maryland business unit of Scientific Applications International Corporation (SAIC), where

he was the hardware engineer on a project involving the design and testing of FPGA

embedded systems. Currently, Kory has plans to obtain his doctorate degree at a later date.

 iv

Acknowledgements

 First and foremost, I would like to thank my parents for giving me the opportunity

and support to succeed in higher education institutions. They are responsible for keeping me

grounded in life’s most important values. At every critical milestone in my life, my parents

have been there for direction and kind words.

 I would also like to acknowledge the loving support of my fiancé, whose strength and

hopefulness during my time in North Carolina was remarkable. Without her dedication, I

never could have ventured as far as I did.

 A great deal of credit should be given to my advisor, Dr. W. Rhett Davis. Dr. Davis

initially brought me to NC State and has seen me through my entire Masters degree. He

never was at a loss for ideas to surmount any problems I had with in my research, and his

enthusiasm in doing so is commendable. I would also like to thank Dr. Paul Franzon and Dr.

Doug Barlage for serving so graciously on my Advisory Committee.

 My “colleagues” in graduate school also deserve notice for their help in classes,

research, and maintaining my sanity during the busiest times of each semester. In no

particular order, I would like to thank the following people: Chris Mineo, Samson Melamed,

Hao Hua, Ambarish Sule, Brandon Conover, Charles Suh, and anyone else I am forgetting.

 v

Table of Contents
List of Tables .. vii

List of Figures .. viii

1 Introduction... 1

2 Temperature Dependent Models for use in 3DICs ... 5

2.1 Power Dissipation Temperature Dependence... 5

2.1.1 Model Derivation .. 6

2.1.2 Model Verification.. 9

2.2 Delay Temperature Dependence... 12

2.2.1 Model Derivation .. 12

2.2.2 Model Verification.. 14

3 Testcase Power Dissipation and Delay Estimation Flow ... 17

3.1 Initial Power Dissipation Estimation Flow... 17

3.1.1 Forward Annotation SAIF File ... 19

3.1.2 Synopsys PLI 3.0 .. 20

3.1.3 RTL Simulations with NC-Verilog... 21

3.1.4 Back Annotation of Switching Activity in Power Compiler 23

3.1.5 Back Annotation of Parasitics in Power Compiler ... 24

3.1.6 Report Power in Power Compiler ... 24

3.2 Initial Delay Estimation Flow... 25

3.3 Converging to Final Power Dissipation and Delay Values 26

3.3.1 Thermal Model of a 3DIC... 27

3.3.2 Temperature-Power Positive Feedback Loop... 29

4 The FDSOI 3D Process... 33

4.1 3D Circuit Fabrication .. 33

4.2 Changes to the 2D Design Environment... 35

5 The ORPSOC Architecture... 39

5.1 Architecture Selection and Modification .. 39

5.2 OpenRISC 1200 Microprocessor (OR1200)... 41

5.2.1 Central Processing Unit (CPU)... 42

5.2.2 Instruction and Data Caches ... 45

5.2.3 Instruction and Data Memory Management Units (MMUs) 45

5.2.4 OpenRISC Wishbone Interfaces ... 46

5.3 Wishbone Traffic Cop... 46

5.4 Instruction and Data Memory Controller.. 47

5.5 Instruction and Data SRAMs.. 47

6 Testcase Physical Design.. 50

6.1 Design Compiler Synthesis... 52

6.2 Manual User Tier Partitioning .. 53

6.3 3D Via Insertion according to User Partitioning .. 59

6.4 Initial SoC Encounter Floorplanning and Placement.. 62

6.5 3D Via Alignment... 75

6.6 Final SoC Encounter Placement and Routing... 79

6.7 Insertion of Post-route Clock Tree into the Netlist ... 81

6.8 Merging of Tier-Specific SPEF Files ... 82

 vi

7 Results... 83

7.1 2D and 3D Path Delay Comparison.. 84

7.2 2D and 3D Power Dissipation Comparison .. 85

7.3 Temperature Convergence and Performance Degradation Analysis 87

8 Conclusion .. 96

References... 98

 vii

List of Tables

Table 2-1: Leakage power model as compared to SPICE simulations................................... 11

Table 7-1: Path delay data from the 2D and 3D designs .. 85

Table 7-2: Power dissipation data for the single most active program profile 86

Table 7-3: Power dissipation data for the merged switching activity profile 87

Table 7-4: Power dissipation data for the worst case switching activity profile 87

Table 7-5: Assumptions for the 3DIC thermal model .. 88

Table 7-6: Path delays of each design after temperature dependence 95

 viii

List of Figures

Figure 1-1: ITRS Data for the Total Interconnect Length of an IC .. 1

Figure 1-2: ITRS Data for Interconnect RC Delay for three types of interconnect.................. 2

Figure 2-1: Normalized average short circuit energy for a CMOS inverter 7

Figure 2-2: Predicted versus actual leakage lower for an inverter.. 10

Figure 2-3: Predicted versus actual leakage Power for a full adder 11

Figure 2-4: Predicted versus actual leakage power for a 16-bit ripple carry adder 11

Figure 2-5: Predicted versus actual delay of an FO-4 inverter ... 15

Figure 2-6: Predicted versus actual delay of an AND gate... 15

Figure 2-7: Predicted versus actual delay of a 16-bit ripple carry adder 16

Figure 3-1: Flow for obtaining the power dissipation of the ORPSOC test case 18

Figure 3-2: Format of the forward annotation SAIF file .. 19

Figure 3-3: Synopsys PLI 3.0 functions in the test bench [15]... 21

Figure 3-4: Format of the backward annotation SAIF file ... 23

Figure 3-5: Flow for obtaining timing delay values of the ORPSOC test case 25

Figure 3-6: Simplified thermal model of a 3DIC.. 29

Figure 3-7: Temperature-power positive feedback loop... 32

Figure 4-1: Generalized breakdown of a 3D fabrication process ... 33

Figure 4-2: Example 3D circuit at the end of the FDSOI 3D process [20] 35

Figure 4-3: Tier A of the inverter chain.. 36

Figure 4-4: Tier B of the inverter chain .. 36

Figure 4-5: Tier C of the inverter chain .. 36

Figure 4-6: Inverter chain layout showing all tiers ... 37

Figure 5-1: High level block diagram of the ORPSOC test case [2] 41

Figure 5-2: High level block diagram of the CPU [2] .. 43

Figure 5-3: High level view of the SRAM layout... 49

Figure 5-4: Graphical representation of the SRAM LEF file ... 49

Figure 6-1: The logical progression through the 3DIC design flow....................................... 51

Figure 6-2: Example 2D rectilinear net length interconnecting five blocks 54

Figure 6-3: Example 3D net length interconnecting five blocks .. 55

Figure 6-4: Partitioning scheme employed for the ORPSOC test case 58

Figure 6-5: Another partitioning strategy considered for the test case................................... 59

Figure 6-6: 3D via insertion into the netlist .. 61

Figure 6-7: Example of good and bad floorplanning for 3DICs... 63

Figure 6-8: Procedure for initial placement of tier-specific netlists 65

Figure 6-9: Core size and module floorplanning for tier B of the ORPSOC test case 67

Figure 6-10: Core size and module floorplanning for tier A of the ORPSOC test case 69

Figure 6-11: Core size and module floorplanning for tier C of the ORPSOC test case 70

Figure 6-12: Initial placement result for tier B of the ORPSOC test case.............................. 73

Figure 6-13: Initial placement result for tier A of the ORPSOC test case.............................. 74

Figure 6-14: Initial placement result for tier C of the ORPSOC test case.............................. 75

Figure 6-15: Center of core area for tier A and tier B after 3D via alignment 78

Figure 6-16: Routed tiers of the ORPSOC test case ... 80

Figure 7-1: The 2D ORPSOC test case after detailed routing .. 84

Figure 7-2: Thermal model temperatures for the single most active program profile............ 89

 ix

Figure 7-3: Thermal model temperatures for the merged switching activity profile.............. 90

Figure 7-4: Thermal model temperatures for the worst case switching activity profile 90

Figure 7-5: Change in total leakage power from ambient temperature 92

Figure 7-6: Percentage of tier delay increase from ambient temperature............................... 93

Figure 7-7: Thermal model of the 2D IC .. 94

Figure 7-8: Delay increase comparison between tier C of the 3D design and the 2D design 95

1 Introduction

The International Technology Roadmap for Semiconductors (ITRS) predicts the rapid

increase in total interconnect length in the coming technology generations. In just three years,

the amount of active wiring that will be necessary for traditional integrated circuits is

expected to nearly double. Compounding the design challenges of engineers even more is the

outlook for interconnect RC delays. In the same timeframe, the delays for local, intermediate,

and global wiring are expected to increase by no less than 25% [1]. These trends can be seen

in Figure 1-1 and Figure 1-2.

0

200

400

600

800

1000

1200

1400

1600

1800

2003 2004 2005 2006 2007 2008 2009

Year

L
e
n

g
th

 (
m

/c
m

2
)

Total Interconnect Length

Figure 1-1: ITRS Data for the Total Interconnect Length of an IC

 2

0

100

200

300

400

500

600

700

2003 2004 2005 2006 2007 2008 2009

Year

R
C

 D
e
la

y
 (

p
s
)

Metal 1 Intermediate Global

Figure 1-2: ITRS Data for Interconnect RC Delay for three types of interconnect

Although the nominal gate delays will continue to decrease with each successive

generation for quite some time, the same cannot be said about the performance of the

metallization used to provide connectivity between these gates. The apparent scaling gap

between MOSFET device and interconnect performance has caused researchers to gain an

interest in three-dimensional integration as a possible solution to the foreseeable limitations

of standard two-dimensional circuit design. Three-dimensional integrated circuits (3DICs)

alleviate the delay concerns of interconnects by offering the vertical axis as a possible routing

direction. With the increasing popularity of System-on-Chip (SoC) architectural solutions,

3DICs can meet the density and functionality demands of these complex systems by

“stacking” multiple tiers vertically and realizing inter-tier connectivity by means of short,

vertical interconnects. It is the hope of the interested research community that 3DICs will

help reduce the amount of delay and power that is “wasted” in wires.

 3

 In this work, a realistic 3D design test case based on the OpenRISC microprocessor is

presented in order to qualify the relative advantages of 3DICs. Specifically, the design of an

IC based on the OpenRISC Reference Platform System-on-Chip (ORPSOC) is detailed [2].

The test case is created by means of the 3DIC design flow of the Methodologies for User-

Friendly System-on-a-chip Experimentation (MUSE) research group at North Carolina State

University. This design flow is specific to MIT Lincoln Lab’s fully-depleted silicon-on-

insulator (FDSOI) 3D process [3]. Moreover, the design flow is unique in that it takes full

advantage of the maturity of industry-standard 2D Electronic Design Automation (EDA)

tools and simply adapts them to the 3D environment. It will be shown that, through

intelligent user partitioning between the tiers and floor planning within each tier of a 3DIC, a

3D microprocessor-based design can operate at a higher clock frequency than feasible for a

two-dimensional IC. The consideration of the performance gains from porting the design to

3D will also include the complexity issues of integrating multiple fabricated tiers in one

package. These issues are largely a function of the thermal model of a 3DIC, which

introduces the well-known poor heat removal ability of a multi-tiered chip [4]. Skeptics have

always pointed to the concerns of the higher average chip temperatures of 3DICs, and this

work will do the same.

 In general, the interplay between a circuit’s delay, power dissipation, and operating

temperature has a degrading effect on its performance. A chip that is operating at a higher

temperature will tend to slow down and dissipate even more power, which, in turn, will force

a positive feedback loop between the power dissipation and temperature of an IC [5]. This

work presents two models that can be used to predict the temperature dependence of power

dissipation and combination path delay in order to capture the amount of performance

 4

degradation due to temperature in 3DICs. In doing so, this work presents an illustrative

example of the aforementioned temperature-power positive feedback loop using the

ORPSOC test case. It is shown that this iterative loop does converge upon a final average tier

temperature for the 3D ORPSOC design and that the temperature is not high enough to

counteract the speedup from using vertical interconnects.

 The organization of this work is as follows. First, the derivation and verification of

the two temperature-dependent circuit parameter models is reported. Next, the tool flows for

estimating power dissipation and path delays of a 3D design are discussed. These will later

be used to assess the performance improvement when moving from 2D to 3D and include

consideration of heat generation in the 3DIC. Following the flow development, a brief

overview of the FDSOI 3D process is described. Subsequently, an outline of the ORPSOC

architecture used for the test case is presented. In particular, the discussion includes the

merits of the ORPSOC as a 3D case study and how the ORPSOC was modified for

experimentation. Afterwards, the 3DIC design flow used for the physical design of the test

case is detailed. Once it is understood how to can characterize a 3DIC for delay and power

per tier, the results from the timing and power analyses of the 2D and 3D designs can be used

to gauge the effectiveness of 3D integration for the test case. To conclude, a summary of this

work is presented in addition to ideas for areas of future work that could help reduce 3D

design complexity.

 5

2 Temperature Dependent Models for use in 3DICs

The thermal performance of 3DICs is a hot topic in the research community and one that

still remains a mystery. A critical issue in the migration of interconnect-centric designs to the

3D environment is the non-uniform temperature profile across the tiers of a 3DIC. Since

every tier beyond the bottom-most is handicapped by having heat-sources (active transistors)

far away from the heat-removal fixtures, the average temperature of a tier increases as more

tiers are added to the 3D stack and hence, the reliability of the IC worsens. One can no longer

assume a single temperature from which to project the power and speed of an integrated

system once it is transitioned to 3D. Two temperature dependent models have been

developed and verified in this work to aid in the understanding of 3D circuit behavior. The

phenomena of temperature dependence on power dissipation and combinational path delay

are presented in this section. Acknowledging the temperature non-idealities, the former is

used in the estimation of the increase in power dissipation and the latter is utilized to

determine the degree to which a 3DIC slows down. Both of these models were verified

against the actual results given in SPICE simulations using BSIM SOI models [6]. Good

agreement is shown between these temperature dependent models and the complex transistor

model of BSIM.

2.1 Power Dissipation Temperature Dependence

Recently, power dissipation has emerged as a limiting factor on the performance of

integrated circuits. Circuit designers can no longer simply target speed as the ultimate

measure of a chip’s performance. The motivation for this is not only in the prevalence of

portable electronics that demand low-power operation but also in the continual scaling of the

 6

feature size of MOSFET devices. A great deal of interest in the power consumption of

traditional 2D ICs has brought about an onslaught of low-power design methodologies as

well as methods for the integration of power dissipation considerations into design flows.

Especially central to the design of 3DICs, any accurate consideration of power dissipation

must account for its dependence on the operating temperature of the dissipating device. With

each tier of a 3DIC operating at a different average temperature, the initial characterization of

power dissipation in the design flow could prove to be too optimistic.

2.1.1 Model Derivation

The three major sources of CMOS power dissipation are encapsulated in equation 2.1,

where Pdynamic is the contribution to total power dissipation from dynamic sources, Pdp is the

power dissipated from direct-path currents, and Pstatic is the portion of power dissipation that

is static [7].

staticdpdynamicTotal PPPP ++= (2.1)

For the purpose of this work, direct-path power is ignored as it is generally a very

small ratio of the total dynamic power. Moreover, direct-path power is a function of the peak

current and node transition time. Both of these factors have opposite reactions to temperature

change. Indeed, peak current decreases with increases in temperature, while transition times

tend to increase (see section 2.2). The relative insensitivity of direct-path power to

temperature is shown in Figure 2-1. Figure 2-1 tracks the normalized average direct-path

energy of a CMOS inverter simulated with one rising and one falling transition, with the

power being directly proportional to the energy. As indicated in the figure, the direct-path

energy of the inverter deviates by no more than 3% from the nominal amount over a one

hundred degree temperature range.

 7

9.50E-01

9.70E-01

9.90E-01

1.01E+00

1.03E+00

1.05E+00

2
5

3
2

3
9

4
6

5
3

6
0

6
7

7
4

8
1

8
8

9
5

1
0
2

1
0
9

1
1
6

1
2
3

Temperature (C)

N
o

rm
a
li

z
e
d

 E
n

e
rg

y

Average Short Circuit Energy

Figure 2-1: Normalized average short circuit energy for a CMOS inverter

When considering the final two components of power dissipation, it is well-known

that dynamic power is generally insensitive to temperature change [8], [9]. This is supported

by the accepted definition of dynamic power dissipation as shown in equation 2.2. In

equation 2.2, CL is the load capacitance of a gate, VDD is the supply voltage, f is the clock

frequency of the circuit, and α0->1 represents the probability that a clock event results in zero

to one transition at the output of a gate [7]. Since all of the variables presented in equation

2.2 are independent of temperature, this directly implies that dynamic power is also

independent of temperature. It is worth noting that the frequency of the clock is usually set

by a phase-locked loop (PLL), which is designed to be insensitive to temperature.

10

2

>−= αfVCP DDLdynamic (2.2)

 The equation for static power dissipation is shown in equation 2.3, where Ileak denotes

the sub-threshold leakage current that exists between the supply rails when a transistor is

inactive. It is this leakage current that gives static power dissipation its strong dependence on

temperature, as detailed in this section.

 8

DDleakstatic VIP = (2.3)

 As discussed in [10], leakage currents are becoming a significant problem in circuit

design as technology continues to scale. It is estimated by Berkeley predictive models in

future technologies that leakage power will become so high that it can no longer be taken

lightly [11]. Thus, when modeling temperature dependent parameters of a design, leakage

power dissipation must be considered. The BSIM 3.3 model for the MOSFET drain current

in the sub-threshold region is characterized in equation 2.4 and 2.5 [6].

t

offthgs

t

ds

nV

VVV

V

V

sds eeII

−−−

−=)1(
)(

0 (2.4)

2

00)
2

(t

s

chSi

s V
Nq

L

W
I

φ

ε
µ= (2.5)

 In these equations, Vt is the thermal voltage and is given by KBT/q, where T is the

temperature [6]. Although the BSIM model is complex, the scaling of drain current with

temperature can be approximately reduced to T
2
e

1/T
. Thus, leakage power is described as

being exponentially dependent on temperature. In order to attempt to model this scaling

behavior from a reference operating temperature, two published leakage models were tested.

The first is from the work of [8] and is formulated directly from equations 2.4 and 2.5. This

temperature dependent leakage model is shown equation 2.6, where β represents a curve-

fitting parameter that is normally determined from SPICE simulation regressions.

T
leakleak eTTITI

β
2

0 *)()(= (2.6)

 Equation 2.6 predicts the leakage current at any arbitrary temperature, Ileak(T), from a

reference leakage current value, Ileak(T0). However, it was found to be very difficult and time-

consuming to ascertain the value of β through SPICE simulations of an inverter using BSIM

 9

SOI models. For this reason, a more-agreeable temperature dependent leakage model was

chosen. Shown in equation 2.7, this model was specifically tested against BSIM SOI models

and uses a second-order polynomial to describe the dependency [12]. The values for α1 and

α2 are found using curve-fitting techniques.

)1)(()(2

210 TTTITI leakleak ∆+∆+=∆ αα (2.7)

 According to equation 2.7, leakage power at an arbitrary temperature can be predicted

using not the absolute temperature value but the departure from the reference temperature,

∆T. This model for leakage power more closely matched the actual values obtained from

SPICE simulations.

2.1.2 Model Verification

To determine the values for the curve-fitting parameters in equation 2.7, a series of

SPICE simulations were performed. Each test circuit was configured for a leakage power

measurement. The inputs to the circuits were giving a static bit pattern, and the current

through the supply was measured. The leakage power in watts is calculated by multiplying

the current through the supply with the nominal supply voltage, which was 1.5 volts for the

BSIM SOI model. The temperature parameter in SPICE was swept between 25 and 125

degrees Celsius, and the leakage power at each temperature was calculated. The test circuits

for simulation were a number of the MUSE SOI standard cells in addition to some larger

designs. Once all of the SPICE simulations were complete, the leakage power results from

SPICE were collected into files and taken as input to a small curve fitting C program. For

each test circuit, this program simply calculated the values of leakage power at every

temperature and compared the calculated value with the SPICE value from the file. At every

 10

temperature node, the percentage of error between the SPICE value and the value generated

from the model was saved. An average percentage of error was determined after all of the

temperature nodes were visited. This average represented the error between SPICE and the

model for one particular value of α1 and α2 . Iterations within a range of values for α1 and α2

were performed to arrive at the best possible error for each test circuit. The output of the

program was a file containing a set of values for α1 and α2 that gave the best possible error for

each test circuit. It was observed that the value for α1 was exactly the same for all test circuits

and that the value for α2 varied very little. This was consistent with the work of [12]. Figure

2-2, Figure 2-3, and Figure 2-4 together show the quality of the prediction capability of the

model versus the actual SPICE leakage power values. The test circuits for Figure 2-2, Figure

2-3, and Figure 2-4 are an inverter, a full adder, and a 16-bit ripple carry adder, respectively.

The figures show that inaccuracy in the model is only present near the upper limit set on

temperature. The model variables were set to 0.24 for α1 and 0.0005 for α2. Table 2-1

summarizes the leakage power error in the test circuits when using these values.

0.00E+00

2.00E-08

4.00E-08

6.00E-08

8.00E-08

1.00E-07

1.20E-07

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

Temperature (C)

L
e
a
k
a
g

e
 P

o
w

e
r

(W
)

Predicted

Actual

Figure 2-2: Predicted versus actual leakage lower for an inverter

 11

0.00E+00

5.00E-07

1.00E-06

1.50E-06

2.00E-06

2.50E-06

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

Temperature (C)

L
e
a
k
a
g

e
 P

o
w

e
r

(W
)

Predicted

Actual

Figure 2-3: Predicted versus actual leakage Power for a full adder

0.00E+00

5.00E-06

1.00E-05

1.50E-05

2.00E-05

2.50E-05

3.00E-05

3.50E-05

4.00E-05

4.50E-05

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

Temperature (C)

L
e
a
k
a
g

e
 P

o
w

e
r

(W
)

Predicted

Actual

Figure 2-4: Predicted versus actual leakage power for a 16-bit ripple carry adder

Table 2-1: Leakage power model as compared to SPICE simulations

Cell Name Average % of Error

INV 3.54

2-Input NOR 2.48

2-Input NAND 3.24

2-Input XOR 3.2

Full Adder 3.81

16-bit Ripple Carry Adder 4.70

 12

2.2 Delay Temperature Dependence

Techniques for estimating the frequency achievable for a design at a nominal operating

temperature are commonplace in the industry. Recently, interest has been invested in the

research of methods for calculating full-chip thermal profiles. Using this thermal profile, the

performance can be ascertained for specific temperatures at locations on the chip. The same

concept can be applied to the tiers of a 3DIC. Particularly, the temperature profile across the

tiers of a 3DIC can be used to estimate the slow down of the circuits on the each tier. This

slow down is measured by the increase in combinational path delay due to temperature

effects on MOSFETs. In a digital circuit, an increase in critical path delay has an inverse

effect on the maximum clock frequency attainable. Therefore, it is vital to gain an

understanding of the degree to which the speed of a 3D design derates from its synthesized

speed target. Modeling the temperature dependence of delay in a digital design from a

reference temperature is an efficient means of quickly estimating clock frequency

requirements.

2.2.1 Model Derivation

The MOSFET drain current, ID, can be expressed in terms of the alpha model shown

in equation 2.8 [13]. In this equation, µ(T) and VTH(T) denote the temperature dependence of

carrier mobility and threshold voltage, respectively.

αµα))()((TVVTI THDDD − (2.8)

Based on this equation for drain current, there is an inherent competition between the

two temperature sensitive variables when temperature is varied. Since both carrier mobility

and threshold voltage decrease as temperature increases, one works to increase drain current

 13

while the other works in the opposite manner. It was noted in [13] that, for supply voltages

above one volt, the temperature dependence of carrier mobility tends to dominate. Hence, the

drive current of a MOSFET has an inverse dependence on temperature, and because of this,

the delay of a CMOS circuit will increase with temperature.

The model used to predict the temperature dependence of delay is largely based on

[14], which showed that any combinational delay will hold constant over a wide range of

technologies, temperatures, and voltages when normalized to the delay of an FO-4 inverter

that is subject to the same changes. It is for this reason that the FO-4 inverter delay is often

used as the metric for the speed of a technology. The term “FO-4” stands for “fan-out of

four” and implies a circuit composed of an inverter loaded by four copies of itself. As

opposed to measuring the delay increase with temperature for every circuit topology, one can

predict with relatively high accuracy the degree to which an arbitrary circuit will slow down

using the known slowdown of a FO-4 inverter at the same temperature. A prerequisite to

adopting this approach is the formulation of an equation to predict the slow down of the FO-4

inverter. The delay model that incorporates temperature scaling is shown in equation 2.9 [8].

)(

ξ

µ

α
tdd

dd

VV

TV
delay

−
 (2.9)

 As in the case of the temperature dependent leakage model, µ and ξ are curve fitting

parameters. The logic in place here is that, once the behavior of an FO-4 inverter across a

temperature range is known, it is reasonable to assume that any combinational circuit will

behave similarly. Thus, consistency between equation 2.9 and SPICE simulations is required

to validate this temperature dependent delay model.

 14

2.2.2 Model Verification

The FO-4 inverter was designed using five identical copies of the smallest inverter in

the SOI standard library. To simulate this circuit in SPICE, the input was provided with a

signal having exactly one rising and one falling transition. The transition time was set to 100

picoseconds, and the delay for both transitions was calculated with measurement statements

in the netlist. The propagation delay was measured from the 50% points of the input and

output waveforms. The average of the two delays across a temperature range of 25 to 125

degrees Celcius was used to determine the values for the curve fitting parameters of equation

2.9. A similar procedure as detailed in section 2.1.2 was performed to find the best average

error between the model and the SPICE results. For the temperature range mentioned above,

the best error was found to be 0.88%, which corresponds to the values of 0.09 and 8.51 for µ

and ξ in equation 2.9, respectively. Figure 2-5 shows the predicted versus actual delay of the

FO-4 inverter. The y-axis of Figure 2-5 is the delay normalized to the reference temperature.

To verify that the FO-4 inverter is an excellent determinant for the temperature dependence

of delay, additional circuits were simulated. Figure 2-6 and Figure 2-7 show the accuracy of

the model for an AND gate and a 16-bit ripple carry adder. The average error across the

entire range of temperatures for Figure 2-6 was just 1.89% and just 1.49% for Figure 2-7.

 15

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2
5

3
2

4
0

4
8

5
6

6
4

7
2

8
0

8
8

9
6

1
0
4

1
1
2

1
2
0

Temperature (C)

N
o

rm
a
li
z
e
d

 D
e
la

y

Predicted

Actual

Figure 2-5: Predicted versus actual delay of an FO-4 inverter

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

2
5

3
2

4
0

4
8

5
6

6
4

7
2

8
0

8
8

9
6

1
0
4

1
1
2

1
2
0

Temperature

N
o

rm
a
li
z
e
d

 D
e
la

y

Actual

Predicted2

Figure 2-6: Predicted versus actual delay of an AND gate

 16

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0
5

1
1
3

1
2
1

Temperature (C)

N
o

rm
a
li
z
e
d

 D
e
la

y

Actual

Predicted

Figure 2-7: Predicted versus actual delay of a 16-bit ripple carry adder

 17

3 Testcase Power Dissipation and Delay Estimation Flow

Realistic power dissipation and timing delay values for the ORPSOC test case are

needed for evaluating the performance of a 3D design relative to a 2D one. Additionally, the

previous section’s formulation of temperature dependent models relies on accurate power

and delay numbers at a reference temperature as a starting point for any predictive

calculations. In this section, the procedure for characterizing the test case in terms of power

dissipation and combinational path delays is detailed. For an increased level of accuracy, the

parasitics of the wires in the layout of the test case (see sections 6.6 and 6.8) were

incorporated into this procedure. For the purposes of analyzing both the 3D and 2D designs

of the test case, the structure of the flows for obtaining power dissipation and delay values

are generalized.

3.1 Initial Power Dissipation Estimation Flow

The process of finding realistic power dissipation values for a complex design reduces

to realizing a switching activity profile that spans all of the nets in the design. Once the

switching activity is known, the appropriate tools can be used to analyze the design for power

dissipation. Recall from section 2.1.1 that switching activity of a gate is needed in the

calculation of dynamic power dissipation. The value for the leakage power of a gate is

constant (if using an average value) and is given in the standard cell library files once the

library is characterized for power. Creating the library files is beyond the scope of this work

and will not be covered here. It is assumed that every standard cell in the design has a

leakage power section in the library files. The complete procedural flow for obtaining power

 18

dissipation of the ORPSOC test case is shown in Figure 3-1. An explanation of each step

follows.

Create Forward
Annotation SAIF

file in Design
Compiler

Verilog RTL
description of

design

Forward
Annotation SAIF

file

Register nets for
monitoring using

Synopsys PLI 3.0

Binary Image of
program to be
loaded in test

bench

Perform RTL
Simulation of

original ORPSOC
in NC-Verilog

Backward
Annotation SAIF

file

Load design and
back-annotate

switching activity
in Power
Compiler

Verilog structural
description of

design (post clock
tree synthesis)

Back-annotate
wiring parasitics in
Power Compiler

Post-route SPEF
file from SoC

Encounter

Report power in
Power Compiler

Finish

Start

Figure 3-1: Flow for obtaining the power dissipation of the ORPSOC test case

 19

3.1.1 Forward Annotation SAIF File

A special type of file is used throughout this power flow to allow information

exchange between tools. Known as switching activity interchange format, or SAIF, this

Synopsys-developed file type streamlines the capturing and annotation of switching activity

for RTL and gate-level designs. To begin, a forward annotation SAIF file is created in

Design Compiler. Once written, this SAIF file contains a listing of all of the “synthesis-

invariant” components of the design with no appended switching activity information. The

classification of a port or net as being “synthesis-invariant” implies that it will be preserved

during the synthesis process. Objects that are “synthesis-invariant” include hierarchical ports

and sequential elements such as registers and memory arrays. The format of a forward

annotation SAIF file is shown in Figure 3-2. A similar format will be used later in the flow

for the back annotation SAIF file with the inclusion of switching activity information.

(SAIFILE
(SAIFVERSION "2.0")
(DIRECTION "forward")
(DESIGN)
(DATE "Mon Sep 12 23:15:04 2005")
(VENDOR "Synopsys, Inc")
(PROGRAM_NAME "rtl2saif")
(VERSION "1.0")
(DIVIDER /)
(INSTANCE top
 (PORT
 (clk_i clk_i)
 (rst_i rst_i)
 ……
)
)

File
Header

Command in Design Compiler
to generate file

Hierachical instance nameObject type identifier
(PORT or NET)

Object List
(abbreviated)

Figure 3-2: Format of the forward annotation SAIF file

 To write a forward annotation SAIF file in Design Compiler, the RTL description of

the design must first be loaded and linked. Then, the “rtl2saif” command can be used to

 20

interpret the design, compile a list of synthesis-invariant objects, and finally write a forward

annotation SAIF file. In an effort to exploit the existing RTL test bench that was packaged

with the ORPSOC, the SAIF file was written at the OR1200 level of hierarchy.

3.1.2 Synopsys PLI 3.0

Now that the forward annotation SAIF file has been created, it must be recognized by

a Verilog simulator before any switching activity can be captured. The mechanism to

integrate the information contained within the forward annotation SAIF file with the Verilog

simulator is the Synopsys PLI 3.0 [15]. “PLI” stands for programming language interface and

is a feature of the Verilog compiler that allows the linking and execution of standard C/C++

programs within a Verilog source file. PLI is most useful for calling programming language

functions within a test bench for statistical bookkeeping purposes. Synopsys provides Verilog

PLI libraries to support the gathering of switching activity information for power analysis.

NC-Verilog was chosen for Verilog simulation of the ORPSOC, but the Synopsys PLI

libraries are functional for a wide range of simulators. For dynamic linking of the libraries,

the “+loadpli1” command line argument is needed when invoking NC-Verilog. With the

libraries loaded into the simulator, switching activity-specific functions appear as normal

system tasks in the Verilog source files. A total of five Synopsys PLI functions are needed to

capture the switching activity of a design during RTL simulation. These commands and their

meanings are shown in Figure 3-3 as they appear in the test bench. With the link between the

forward annotation SAIF file and the Verilog simulator established, RTL simulations can be

performed to find realistic switching activities.

 21

$read_rtl_saif(“path to forward annotation SAIF file”,
“hierarchical path to design instance”)

$set_toggle_region(“hierachical path to design instance”)

$toggle_start()

$toggle_stop()

$toggle_report(“filename”, base time unit, “hierarchical path
to design instance”)

Read Forward Annotation SAIF file
in test bench, specifying to which

instance the file refers

Specify which region of design to
monitor switching activity

Run test bench (advance the time
steps until the end)

Tell the similator to stop monitoring
region for switching activity

Write backward annotation SAIF file,
specifying the base time unit for the
file and the hierarchical region for
which to write switching activity

ORPSOC Verilog Test Bench

Tell the similator to start monitoring
region for switching activity

……..

Figure 3-3: Synopsys PLI 3.0 functions in the test bench [15]

3.1.3 RTL Simulations with NC-Verilog

Bundled in the ORPSOC package is a suite of software with which to test designs.

Most of these programs offer very basic functionality tests of the microprocessor. Distinct C

programs exist for multiple-and-accumulate instructions, exceptions, MMU testing, system

calls, and even the Dhrystone benchmark. These programs were compiled to OpenRISC

microcode using the OpenRISC GNU toolchain [16]. Assuming a working installation of the

toolchain, the provided makefiles for the software automate the compilation and image

conversion from binary to hexadecimal, as needed by the Verilog simulator. Also included in

the ORPSOC package is support for running RTL regression tests on the compiled software.

The scripts for regression testing merely copy the hexadecimal image of the compiled

program to another file that is loaded into the Flash memory model in the test bench. For the

purposes of this work, these scripts were modified to include the required “+loadpli1”

command line argument for the loading of the Synopsys PLI 3.0 at invocation of NC-

 22

Verilog. Next, the bundled test bench for the ORPSOC was modified to include the functions

shown in Figure 3-3. Finally, the test bench was simulated once for every compiled program

using the OR1200 hardware configuration (i.e. disabled caches, ASIC-optimized multiplier,

etc) and clock frequency of the test case. The embedded PLI functions in the test bench save

a backward annotation SAIF file for each simulation, and consequently, the switching

activity profile for each program is obtained. The differences between the backward and

forward annotation SAIF files are noted in Figure 3-4. The instance hierarchy in the figure

indicates that the switching activity was captured at the OR1200 level of hierarchy (denoted

as “or1200_top” in the figure). The reason for this is that the test bench did not reflect the

addition of the second OR1200 as used in the test case (see section 5.1). For the power

analysis of the ORPSOC test case, it is assumed that the microprocessors have identical

switching activity profiles.

 23

(SAIFILE
(SAIFVERSION "2.0")
(DIRECTION "backward")
(DESIGN "or1200_cpu_0")
(DATE "Mon Sep 19 09:58:19 2005")
(VENDOR "Synopsys, Inc")
(PROGRAM_NAME "Power Compiler PLI")
(VERSION "W-2004.12-SP4")
(DIVIDER /)
(TIMESCALE 1 ns)
(DURATION 35000.00)
(INSTANCE xess_top
 (INSTANCE i_xess_fpga
 (INSTANCE or1200_top
 (NET
 (clk_i
 (T0 17500) (T1 17500) (TX 0)
 (TC 6999) (IG 0)
)
 (rst_i
 (T0 34884) (T1 110) (TX 6)
 (TC 1) (IG 0)
)
 …….
)
)
)
)

File
Header

Duration of the test bench (time
needed for program to end)

Switching Activity Data
T0 = Amount of time net is at logic ‘0’
T1 = Amount of time net is at logic ‘1’
TX = Amount of time net is undefined
TC = Number of total net transitions

Time scale used for all values in the file

Figure 3-4: Format of the backward annotation SAIF file

3.1.4 Back Annotation of Switching Activity in Power Compiler

The tool used for power analysis of the ORPSOC test case was Synopsys’ Power

Compiler [17]. Power compiler operates from the same command line as Design Compiler,

and in fact, just a simple license check-out is needed to enable it. Once the structural Verilog

netlist is loaded into Power Compiler, the “read_saif” command can be executed to annotate

the nets of the gate-level design with the switching activity from the backward annotation

SAIF file. For the test case, switching activity annotation was performed for both OR1200

modules, necessitating the use of “read_saif” for both OR1200 designs in the hierarchy. The

clock frequency in the design must be set to the same frequency with which RTL simulations

were performed or the power estimation will not be accurate.

 24

3.1.5 Back Annotation of Parasitics in Power Compiler

Back annotation of interconnect parasitics is necessary to consider the differences in

interconnect power dissipation between 3D and 2D designs. Moreover, the increased

capacitive loading from the interconnect wires often has a dramatic effect on the total power

dissipation, making it doubly important to remove the notion of ideal wires in the design.

Referring to section 6.6 and 6.8, the SPEF file was created for the sole purpose of parasitic

back annotation. Using the “read_parasitics” command in Power Compiler, the parasitic

routing information can be annotated onto the nets of the design. In the case of the 3D

design, the merged 2D SPEF file (see section 6.8) is used for annotation of the top level

partitioned netlist after the insertion of the clock tree (see section 6.7).

3.1.6 Report Power in Power Compiler

The final step in the power dissipation flow is the execution of the gate-level power

analysis engine via the “report_power” command. Once this command is invoked, Power

Compiler uses the annotated switching activity to compute the total power dissipation of the

design. Since only the synthesis-invariant objects were monitored during the RTL

simulations, the internal nets that changed during synthesis have no associated switching

activity. For these nets, Power Compiler uses a zero-delay simulation to propagate switching

activity [17]. As long as all of the primary inputs, hierarchical ports, and sequential nets (i.e.

clocked elements that were synthesized to flip-flops) are covered by the back annotation

SAIF file, every net in the design will be given a switching activity. The “report_saif”

command can be used in Power Compiler to ensure that no nets were assigned the default

value for switching activity. Upon completion of the power analysis, “report_power” prints a

power breakdown that consists of the dynamic and leakage power dissipation. In order to

 25

infer the contributions to power dissipation from each module in the design, the “-hier”

argument can be used with “report_power”. Due to the fact that a tier is viewed simply as a

level of hierarchy in the netlist, the “-hier” option is useful in determining the amount of

power dissipated on each tier of the 3DIC.

3.2 Initial Delay Estimation Flow

Contrary to the power dissipation estimation flow, the procedure to extract timing

delays from the ORPSOC test case is relatively straightforward. An overview of the delay

estimation flow is depicted in Figure 3-5.

Start

Load, link, and
constrain design in

Primetime

Verilog structural
description of

design (post clock
tree synthesis)

Post-route SPEF
file from SoC

Encoutner

Back-annotate
wiring parasitics in

Primetime

Report timing in
Primetime

Finish

Figure 3-5: Flow for obtaining timing delay values of the ORPSOC test case

 26

As noted in the figure, the timing analysis tool used was Synopsys’ PrimeTime [18].

PrimeTime is a full-chip gate-level static timing analysis tool. To facilitate the use of the

temperature dependent delay model developed in section 2.2, the longest register-to-register

path delay for specific points in the test case was examined in PrimeTime. Identical to the

use of Power Compiler and most other Synopsys tools, the structural Verilog netlist is first

loaded and linked. Afterwards, the clock frequency, skew, and input/output loading

constraints are specified. The same constraints used for synthesis are acceptable for use here

(refer to section 6.1 for these constraints) and can even be entered verbatim given

PrimeTime’s use of Design Compiler commands. The emphasis in the use of PrimeTime is

on the absolute delay values of combinational paths and not on timing slack, so accurate

representation of clock skew is not a requirement. Following the constraining of the design,

the “read_parasitics” command is reused to annotate the wiring information from the SPEF

file. The PrimeTime command that starts the timing analysis is “report_timing”. This

command can be used in a myriad of ways, but in the absence of any arguments, the critical

path of the design is returned. The longest delay can also be restricted on the basis of “to”,

“from”, and/or “through” lists. When a “from” list is used as an argument, for instance, the

longest delay starting from any of the nets in the list is computed. Similarly, a “to” list will

find the longest delay ending at one of the nets in the list. This level of control with

“report_timing” is exploited to determine the speedup from the use of 3D vias.

3.3 Converging to Final Power Dissipation and Delay Values

In the previous sections, temperature dependent models and tool flows for extracting

initial power dissipation and timing delay values have been developed. These can then be

used in conjunction with a thermal model of a 3DIC to ascertain the amount of performance

 27

degradation from the temperature gradient across the 3D stack. The thermal properties of

3DICs are more influential on circuit performance than that of conventional integrated

circuits. This is due to the fact that there are multiple junction-to-ambient thermal resistances

to consider in a 3DIC. As such, a large temperature gradient across the tiers of a 3DIC will

cause the transistors on the top tier to consume more power and run more slowly than the

transistors on the bottom tier. It is the aim of this section to provide a method for the

estimation of performance degradation in the face of 3DIC thermal properties.

3.3.1 Thermal Model of a 3DIC

According to the well-known thermal and electrical phenomena duality, the average

temperature drop across a tier of a 3DIC can be viewed as the difference between two node

voltages. This temperature drop, ∆T, is related to the heat flow (power dissipation) of the tier,

P, and the thermal resistance of the tier, θ, as indicated by equation 3.1.

kA

L
PPT ==∆ θ (3.1)

 In this equation, the thermal resistance is expanded as a function of the thickness of

the tier, L, the thermal conductivity of the tier, k, and the area of the tier, A. In keeping with

the equivalent electrical circuit, the power dissipation of a tier is analogous to a current

source with the current directed into the tier. The direction of the current source implies an

assumption that the heat transfer in the tier is unidirectional and towards the heat-removing

fixtures of the package. An average temperature gradient across the tier is also assumed by

the single current source representing the total power dissipation of the tier. This thermal

model does not account for the existence of localized “hot spots” that arise from non-uniform

power density (P/A in equation 3.1) within the tier.

 28

 Figure 3-6 shows the simplified thermal model of a 3DIC used in this work. Based on

the 3D FDSOI thermal model developed in [19], the left side of the figure shows the physical

composition of a packaged 3DIC, and the right side shows its transformation to the

equivalent electrical circuit. The tier thicknesses shown in the figure are calculated as the

distance between the transistors on the respective tiers, since these are the power dissipating

devices in the 3DIC. The remaining thicknesses are taken directly from the assumptions of

[19]. The physical construction of a 3DIC (see section 4.1) dictates that there is only one

current source injecting current into tier A and tier B. This allows for the treatment of these

tiers as one equivalent resistive component with a thermal resistance labeled “θtier AB” in the

figure. The temperatures in the packaged 3DIC are shown as node voltages in the figure.

Specifically, “Ttier C”, “Ttier B”, and “Ttier A” represent the average temperature seen by the

transistors on the respective tiers of the 3DIC.

 The bounds on the thermal conductivity, k, of the tiers of a 3DIC are a function of the

3D via density and the amount of metallization used on each tier. For instance, increasing the

number of 3D vias connecting tier C with tier B will reduce the effective thermal resistance

of tier C (shown as “θtier C” in Figure 3-6). Likewise, a dense tier that uses more routing

resources will exhibit a lower thermal resistance than a sparsely-placed tier having a higher

ratio of oxide (poor thermal conductor) to metallization (good thermal conductor). The

bounds on the thermal conductivity for a 3DIC fabricated in the FDSOI 3D process were

reported in [19]. Given the 3D via density and tier area (see Figure 6-9) of the test case, these

bounds combined with equation 3.1 were used to determine the associated thermal

resistances in Figure 3-6. For the purposes of this work, the heat sink was assumed to be

 29

perfect having zero thermal resistance. Also, the same assumption for the conductivity of the

epoxy in [19] was used here.

Figure 3-6: Simplified thermal model of a 3DIC

3.3.2 Temperature-Power Positive Feedback Loop

As noted in equation 3.1, the temperature across a material is directly proportional to

the heat flow (power) through it. In turn, the power dissipation of a MOSFET has a

dependence on temperature. More specifically, it was show in section 2.1.1 of this work that

 30

the leakage power of a transistor has an exponential response to temperature change. This

inter-dependence on one another creates a positive feedback loop between the temperature

and power dissipation of an integrated circuit. In fact, the phenomena known as “thermal

runaway” can occur if no dampening is present in the feedback loop. This situation arises

whenever the increased levels of heat generation caused by the feedback loop exceed the heat

removal ability of the system [8]. In order for a system to be stable, the temperature-power

positive feedback loop must converge upon a final temperature value. Using the thermal

model in Figure 3-6 together with the predicted temperature scaling behavior of power

dissipation, the extent of the feedback loop for a 3DIC can be analyzed. Once temperature

convergence is achieved, the delay slow down and power dissipation increase per tier, as

previously modeled in section 2, can be projected.

An example of the positive feedback loop as it pertains to this work is shown in Figure

3-7. To begin, the initial values for power dissipation are entered into the 3DIC thermal

model to compute the initial temperature values. This computation is governed by the

assumptions of the model in Figure 3-6 as well as equation 3.1. A flow for obtaining the

power dissipation of the ORPSOC was previously discussed in section 3.1. Once the initial

values for the temperatures of the 3DIC are known, the feedback loop is enabled. The

temperature dependent model for leakage power is used to compute the new value for the

leakage power on each tier. Next, these new leakage power numbers are added to the

constant dynamic power values to find the total power dissipation for each tier of the 3DIC.

The next iteration is initiated by re-computing the temperature values based on the updated

total power dissipation. Iterations continue until temperature convergence is observed. No

particular threshold was set for temperature convergence; instead, a visual inspection of the

 31

temperature change across iterations was performed. When enough cycles have been

completed to achieve convergence, the final temperatures are used to compute the amount of

the slow down of the combinational paths on each tier as per the temperature dependent

delay model (see section 2.2). Slow down is measured as the percentage increase in delay as

referenced from the ambient temperature. The predicted values for final power dissipation

and slow down of the 3D test case are considered in the comparison to the 2D design later in

this work.

 32

Thermal Model of
3DIC

Dynamic Power of
each tier

(constant)

Leakage Power of
each tier

+

Temperature for
each node of
thermal model

Is temperature
convergence

shown?

Temperature
dependent models
for leakage power

Start

Finish

Initial leakage
power for each tier

Begin with ambient
temperature and

initial power
numbers per tier

Compute tier
slowdown from

temperature
dependence of

delay

No

Yes

Figure 3-7: Temperature-power positive feedback loop

 33

4 The FDSOI 3D Process

4.1 3D Circuit Fabrication

MIT’s Lincoln Laboratory (MITLL) has developed a 3DIC fabrication technology

whereby circuit structures on multiple SOI substrates are combined to form a single

integrated 3D circuit [20]. Each SOI substrate, or tier as it is referred to in the 3DIC process,

is fabricated in the same manner as other FDSOI processes, but that is where the similarities

with 2D integration end. Figure 4-1 provides a step-by-step outline of the FDSOI 3D process.

Fabrication of n FDSOI
wafers, where wafer 0

corresponds to the bottom-
most tier and wafer n

corresponds to the top-most
tier of the 3D “stack”; For

ordering the wafers, set i = 0

SOI wafer i + 1 is inverted
and aligned with SOI wafer i,
which is currently at the top

of the 3D “stack”

SOI wafer i + 1 is bonded to

SOI wafer i using a low-
temperature oxide bond.

SOI wafer i + 1 is now the
top of the 3D “stack”

Handle Silicon of SOI wafer
i + 1 is removed and 3D

vias are etched. Tungsten is
deposited to make inter-tier

contact to SOI wafer i;
set i = i + 1

Is i = n ?

Etch bond pads on SOI
wafer n, completing 3D

assembly

Start

Finish

Yes

No

Figure 4-1: Generalized breakdown of a 3D fabrication process

 34

 As shown in Figure 4-1, the initial step of the 3D process is the individual fabrication

of the tiers. In this particular design environment, there are three tiers on which to place

circuits, but the process shown is viable for n number of tiers. Setting n equal to 3 would

make Figure 4-1 consistent with the MITLL FDSOI 3D process. After a SOI wafer is

fabricated for each tier in the design, the wafer that is designated as tier 2 is inverted, or

“flipped”, and aligned with the wafer that is designated as tier 1. A low-temperature oxide

bond is used to bond the two wafers together [20]. At this point, the handle silicon that is at

the top of the 3D stack is removed from tier 2. Tier 2 is electrically connected to tier 1 by

means of 3D vias that are etched through the oxides of tier 1 and tier 2. Tungsten is then

deposited to fill the 3D vias and complete the electrical path between tier 1 and tier 2 [20]. It

is important to note at this point that a single 3D via consumes all of the available routing

tracks on tier 2 (since it is literally “punched” through the bottom of the SOI wafer) but only

makes contact to the top metal layer on tier 1. Therefore, apart from some 3D-specific layers

that assign the starting and ending points of a 3D via (see section 4.2), there can be no wiring

metallization near a 3D via on tier 2. The same pattern of inversion, alignment, bonding, and

3D via creation is performed to attach tier 2 with tier 3. The routing restrictions in terms of

3D vias that apply to tier 2 also apply tier 3. However, one key difference here is that the 3D

vias that provide connectivity between tier 2 and tier 3 end on the bottom-most metal layer in

tier 2. Figure 4-2 shows an example of a three tier assembly at the conclusion of the above

process. This figure also indicates the etching of the bond pads to expose the bottom-most

metal layer on tier 3 for wiring bonding to the package. In an effort to maintain the naming

conventions of the MUSE research group’s 3DIC design flow (see section 6), the numbering

 35

of the tiers in the three tier assembly described above will be exchanged for characters to

specify their relative position within the 3D stack (i.e. tier 1 becomes tier A, tier 2 becomes

tier B, and tier 3 becomes tier C).

Figure 4-2: Example 3D circuit at the end of the FDSOI 3D process [20]

4.2 Changes to the 2D Design Environment

The MUSE research group has adapted 2D design tools to work with 3D process

technology. Essentially, each tier of the 3DIC is designed in the standard 2D manner with the

additional inclusion of extra layers to indicate the locations of 3D vias. As it relates to using

the IC design software, the inversion of the tier B and tier C is transparent to the circuit

designer. This is necessary so that 3D circuits can be visualized in the software in their

finished state with direct vertical connections between the terminals of transistors in multiple

tiers. Thus when viewing all three tier layouts simultaneously, the layers reserved for 3D vias

on tier A exactly coincide with those on tier B, and the same can be said about 3D vias

connecting tier B and tier C. To better illustrate this, Figure 4-3, Figure 4-4, and Figure 4-5

comprise the individual tier layouts of an inverter chain.

 36

Figure 4-3: Tier A of the inverter chain

Figure 4-4: Tier B of the inverter chain

Figure 4-5: Tier C of the inverter chain

 37

In the above figures, the colored circles are not actually a layer in the layout. The red

colored circles show the locations of 3D vias between tier A and tier B. Using the

nomenclature of the design kit that was developed by the MUSE research group, this type of

via is called “VIA_AB”. Similarly, the green colored circles show the locations of 3D vias

between tier B and tier C, each of which is known as “VIA_BC”. Each of the layouts in the

Figure 4-3, Figure 4-4, and Figure 4-5 can be designed and viewed independently to reduce

complexity. Alternatively, the designer can work with all three tiers concurrently. This

approach is especially important when verifying the location of the 3D via layers on each

tier. Figure 4-6 provides an example of the inverter chain layout when viewing all three tiers.

Figure 4-6: Inverter chain layout showing all tiers

 38

 As evidenced from Figure 4-6, the 3D via layers, which are once again highlighted by

the colored circles, are in the exact same position on each tier. Thus, the output of the first

inverter is electrically connected to the input of the second inverter through a VIA_AB. In

turn, the output of the second inverter is connected to the input of the third inverter through a

VIA_BC, and the inverter chain is completed on tier C. In a departure from 2D layout style,

the designer must ensure that nets crossing tier boundaries, such as the internal nets of the

inverter chain, have 3D via layers at identical coordinates on each connecting tier of the net.

Known in the 3DIC design flow as “via alignment” (see section 6.5), this stage of the layout

can be automated through scripting for standard cell-based designs.

 39

5 The ORPSOC Architecture

5.1 Architecture Selection and Modification

An OpenRISC-based design was selected as a test case for 3DICs due to its open source

status and wide range of applications. Opencores.org, a well-known supporter of open source

hardware intellectual property (IP) cores, administers a repository for all things OpenRISC.

Among the various implementations of the OpenRISC microprocessor is a design that is

specifically targeted as a starting point for system-on-chip development: the ORPSOC [2].

With the increasing popularity of system-on-chip solutions in the integrated circuit design

industry, the ORPSOC offers a useful and interesting case for 3D integration. The ORPSOC

follows a standardized definition of an OpenRISC based system, lending to it the distinction

as a “reference platform”. The purpose of the ORPSOC is to allow for the rapid creation of

OpenRISC-based system-on-chip designs with reduced verification time. Included in the

current versioning system (CVS) package of the ORPSOC is a set of testing software (the use

of which is discussed in section 3.1) and several IP cores that comprise the architecture.

The ORPSOC in its original form consisted of the OpenRISC 1200 microprocessor

(OR1200), an Ethernet media access control (MAC) module, a universal asynchronous

receiver/transmitter (UART) 16550 module, and several peripheral interfaces. Among the

interfaces is functionality for support of SRAM, Flash Memory, audio, PS/2, VGA, and

JTAG. The focus of this work was on the basic components necessary for the design of a

microprocessor-based system and not on the bevy of possible peripheral configurations.

Therefore, the OR1200 and its use of SRAMs for instruction and data memory storage were

only considered in this study. The program instructions were originally transferred to the

OR1200 through a behavioral Flash Memory model. In order to consolidate the whole of the

 40

microprocessor system onto a 3DIC, the Flash memory was replaced with an SRAM capable

of storing the largest program, and it is assumed that the SRAM is loaded with the same

program instructions as the Flash memory model. Upon further investigation into the

architecture of the ORPSOC, it was also discovered that several master microprocessors

could be easily interfaced with the slave SRAM modules by means of the extra ports on the

“Wishbone Traffic Cop”, the arbitration unit for communication between the peripherals (in

this work, the only peripherals were SRAM modules) and the microprocessor. To guarantee

an interesting case for heat (power dissipation) generation in 3DICs, a second OR1200 was

instantiated as a master in the system. As will be previously discussed, high levels of power

dissipation are detrimental to the performance of a 3DIC and to assess the merit of 3D

technology without considering the power of a design would be foolishly optimistic. It is

assumed that the second OR1200 has an identical workload as the original OR1200 (see

section 3.1 for workload creation). After the above modifications to the ORPSOC were made

to achieve a synthesizable, realistic integrated design, the test case was finalized. A high

level block diagram of the ORPSOC test case for 3DICs is shown in Figure 5-1. A definition

of each functional unit shown in Figure 5-1 follows in this section.

 41

OpenRISC 1200
Microprocessor 2

OpenRISC 1200
Microprocessor 1

Wishbone
Traffic Cop

Instruction
Memory

Controller

Data
Memory

Controller
Data

SRAM

(8Kx8)

Instruction
SRAM
(8Kx8)

OpenRISC 1200

CPU

Power
Management

Debug Unit

Tick Timer

PIC

IMMU

Instruction
Cache

Data Cache

DMMU

Wishbone
Instruction
Interface

PM
I/F

DB
I/F

INT
I/F

Wishbone
Data

Interface

Wishbone
Masters

Wishbone
Slaves

System-wide 32-bit Bus Width

Figure 5-1: High level block diagram of the ORPSOC test case [2]

5.2 OpenRISC 1200 Microprocessor (OR1200)

The OR1200 is a part of the OpenRISC 1000 family of the processor cores. It is a 32-bit

scalar load and store RISC with applications in high performance networking, embedded,

 42

automotive, and portable computer environments [2]. The processor is realized as a 5-stage

integer pipeline with virtual memory support. Instruction and data caches are present in the

microprocessor, and both default to 1-way direct-mapped 8KB caches. The memory

management units (MMUs) are implemented for data (DMMU) and instructions (IMMU) as

64-entry, 1-way direct-mapped translation look-aside buffer (TLB). Other integrated

functionality includes real-time debug capability, tick timer, programmable interrupt

controller (PIC), and power management support. The OR1200 communicates with the

external world through interfaces for power management, debug, interrupts, and the

wishbone system-on-chip interconnection standard. A block diagram of the OR1200

architecture is also included in Figure 5-1.

5.2.1 Central Processing Unit (CPU)

As denoted by its name, the CPU is the central component of the OR1200. It implements

a strict 32-bit interface for instruction fetches and data loads and stores. The organization of

the CPU is show in Figure 5-2, and the accompanying descriptions of the functional units

follow.

 43

Instruction Unit

Exception Unit

System Unit

General

Purpose
Registers

(GPRs)

Integer Execution

Pipline

Multiply and
Accumulate Unit

(MAC)

Load/Store Unit

(LSU)

From IMMU
and Instruction

Cache

System
Bus

To and From
DMMU and
Data Cache

Figure 5-2: High level block diagram of the CPU [2]

5.2.1.1 Instruction Unit

The instruction unit is responsible for realizing the instruction pipeline, fetching

instructions from memory, dispatching instructions to the executions units, and ensuring that

operation finish in-order. The bandwidth of instruction dispatch is a maximum of one per

clock cycle (scalar). This condition is only fulfilled if an execution unit is always available

for dispatch and if there are no withstanding data dependencies in the current program flow.

5.2.1.2 General-Purpose Registers (GPRs)

The OR1200 contains 32 general-purpose 32-bit registers. These registers are

implemented as two synchronous dual-port memories organized as 32 words with a bit length

 44

of 32 each. For the 3D design of the test case, the register file is implemented in generic

fashion given the lack of access to IP memory modules. The generic register file simply

models the dual-port memories as a unified two-dimensional array that, once synthesized, is

implemented by a total of 1024 flip-flops. As a result, the OR1200 consumes more power

and area than if real memories were used for the register file.

5.2.1.3 Load/Store Unit (LSU)

The load/store unit is responsible for the exchange of all data between the GPRs and the

internal bus of the CPU. It is realized in the CPU as a discrete execution unit. On issuance of

load and store instructions, the LSU first determines if any data dependencies are present

before performing memory operations.

5.2.1.4 Integer Execution Pipeline

The integer execution pipeline can implement the standard array of arithmetic,

compare, logical, rotate, and shift instructions. Most of these instructions can finish execution

in one clock cycle. This is the same unit found in all modern microprocessors.

5.2.1.5 Multiply and Accumulate (MAC) Unit

The MAC unit executes digital signal processing (DSP) multiply and accumulate

operations. These operations take two operands of 32 bits each with a 48-bit accumulator.

Since the MAC unit is fully pipelined, a new operation can begin on each clock cycle. The

OR1200 can be configured to use a generic multiplier or an ASIC-optimized multiplier in

this unit. The latter was chosen for use in the ORPSOC test case as it is a better fit for the

platform.

 45

5.2.1.6 System and Exception Units

The overriding purpose of the system unit is to implement the special-purpose registers

(SPRs) of the CPU. As shown in Figure 5-2, it is connected to the system bus of the CPU.

Also connected to the system bus is the exception unit, which is involved in the handling of

system calls, external interrupt requests, internal exceptions, and internal errors.

5.2.2 Instruction and Data Caches

The OR1200 offers a number of different configurations for direct-mapped caches. The

maximum and minimum size cache possible for the OR1200 is 8KB and 1KB, respectively.

That being said, any cache in that range of sizes would consume an unrealistic amount of

power and area if implemented solely using flip-flops. Without access to IP memory

modules, the instruction and data caches of the OR1200 were disabled for the test case. A

disabled cache acts as a rudimentary feed-through unit for the design studied in this work.

5.2.3 Instruction and Data Memory Management Units (MMUs)

The MMUs of the OR1200 perform effective-to-physical address translation. Since the

caches are physically-tagged, the MMUs are positioned between the CPU and the cache for

the data and instruction memory hierarchy. Thus, communication between the MMUs and

the CPU is essential for every load or store instruction in the program. The instruction MMU

(IMMU) and data MMU (DMMU) are separate, discrete units of the OR1200, but both

default to a direct-mapped 64-entry TLB. Each MMU features a page size of 8KB and an all-

inclusive page protection scheme. The default configuration was used for both MMU in the

test case design.

 46

5.2.4 OpenRISC Wishbone Interfaces

All data and instruction exchange with external sources and the OR1200 is

administered across the Wishbone compliant interfaces. The Wishbone interconnection

architecture specifies a common interface for use in system-on-chip designs. Consequently,

all of the core components of the ORPSOC include support for this interface to enable

seamless multi-component integration. The OR1200, with its 32-bit processing capability,

only supports a 32-bit Wishbone interface. This implies that the widths for data and

instructions buses are fixed to 32-bits. With disabled caches internally, the OR1200 makes

considerable use of the Wishbone interfaces. In fact, practically every instruction fetch and

data load or store requires access to external memory via the Wishbone interfaces.

5.3 Wishbone Traffic Cop

The wishbone traffic cop is the module of the ORPSOC test case that arbitrates data

transfer between a single wishbone-compliant master and a single wishbone-compliant slave.

In this capacity, it is the glue logic between the peripherals of a system and the OR1200.

Referring to Figure 5-1, the connections to the wishbone traffic cop are such that the two

OR1200 modules are masters and the two memory controllers are slaves. When either

OR1200 requires a memory access, a request is signaled to the wishbone traffic cop, which

makes the decision to accept or deny the request. In the case of concurrent requests, priority

for access to the instruction or data memory is given to the first OR1200. Since all data flow

to and from the memories of the ORPSOC must pass through the wishbone traffic cop, it is

important to limit the affect of the bottlenecking nature of this unit. As shown in this work,

this is achieved through intelligent partitioning and floorplanning of the 3DIC.

 47

5.4 Instruction and Data Memory Controller

The purpose of the memory controllers in this design is two-fold. First, each memory

controller establishes a 32-bit interface to memory for reading and writing. Secondly, the

instruction and data memory controllers interpret activity over the wishbone interface for

store operations and package load operations from the memory such that it conforms to the

wishbone standard. Recall that the Flash memory model was exchanged for an SRAM to

house the program instructions in the test case. Thus, the instruction and data memory

controllers are actually just two instantiations of an SRAM controller. The data memory

controller interfaces to the SRAMs needed by both OR1200 modules to execute any arbitrary

program. Throughout this work, any memory module not used for instruction storage is

referred to as a data SRAM. The instruction memory controller, on the other hand, provides

an interface to the read-only instruction SRAM.

5.5 Instruction and Data SRAMs

The only parts of the ORPSOC test case that are not mapped to standard cells are the

memories. As evidenced by Figure 5-1, there are five total SRAMs in the system, each of

which is organized as 8KB words with byte-wide words lengths (labeled as “8Kx8” in the

figure). Four of the memories are designated as data SRAMs, which the OR1200 modules

use to store any data during program execution. Each data SRAM contributes one byte to the

width of the data bus and is addressed using the entire 13-bit address bus. The remaining

memory in the system is the substitution for the Flash memory model of the original

ORPSOC architecture and is used as a read-only instruction storage space.

 48

 The SRAMs are treated as black box components for design synthesis with no timing

annotations. In order for the SRAMs to have a physical footprint in the placement and

routing of the test case, a library exchange format (LEF) file was created. LEF is a standard

specification for representation of an integrated circuit layout such that propriety is

maintained. This LEF file is an abstract of the actual proposed layout of the SRAM, as it only

contains information regarding the bounding box area, the metallization used, and the pin

locations of the SRAM. Figure 5-3 shows the proposed layout of the SRAM with colors to

indicate the locations of the actual components of the SRAM. Figure 5-4 provides an

overview of the information presented in the LEF file for the same SRAM. The area filled

with the colored pattern symbolizes the routing blockages of the first three metal layers.

These routing blockages constrain all wires crossing the bounding box of the SRAM to the

fourth and fifth metal layers in a 5-metal layer process. The dimensions of the SRAM were

estimated to be 980 µm by 1450 µm. The pin locations, routing resources used, and area of

the SRAM were approximated as the final attributes of a SRAM currently in design for the

FDSOI 3D process at North Carolina State University. The SRAM design is a modification

of the one used in [21].

 49

Legend
1Kb bit cell array with column

decoders and sense amps
Row decoder

Self-timing

control block

Global Input/

Output Bus

1 SRAM Block

(32 Total for a 5-bit
block address)

Figure 5-3: High level view of the SRAM layout

980 µm

1
4
5

0
 µ

m

Address, Control,

Power Pins

Data Pins

Figure 5-4: Graphical representation of the SRAM LEF file

 50

6 Testcase Physical Design

Even with standard cell-based designs, the 3DIC design flow is a very time consuming

and complex process. One can no longer simply rely on the synthesis, placement, and routing

tools to generate a valid layout for any arbitrary standard cell-mapped design. A mixture of

custom automatic and manual steps is necessary to couple the 3D integration technology (see

section 4.2) with the pre-existing 2D IC design tools. The flow described in this section has

previously been verified by passing all layout-versus-schematic (LVS) checks for a 3D fast

Fourier transform (FFT) design awaiting production at MITLL [22]. For the purposes of this

work, some additional measures were taken to ensure a valid result from this flow. These

measures were necessary because the design flow was originally intended to function only

with pure standard cell-based designs. As explained in section 5, the synthesized test case

contains macros in the form of memory blocks in addition to standard cells. Blindly applying

the unaltered 3DIC design flow used for the FFT chip would generate 3D layouts with design

rule violations.

 51

Start

1. Design

Compiler
Synthesis

Verilog RTL
description of

design

Verilog Standard
cell structural

description of
design

2. Manual user tier

partitioning

Tier grouping
Design Compiler

Script file

3. 3D Via Insertion
according to tier

partitioning in
Design Compiler

Tier-specific
netlists

Top level 2D
partitioned netlist

4. Initial SoC
Encounter

Floorplanning and

Placement of each
tier

Three tier-specific

DEFs with initial
placement
information

Three tier-specific

DEFs with
floorplanning
information

5. 3D Via
Alignment among

the tiers

Via alignment
Python Script file

Three tier-specific
DEFs with 3D vias

aligned

Were all 3D vias
aligned to legal

locations?

Did Synthesis at
the desired clock

frequency pass?

Was the entire

design successfully
placed?

6. Final SoC
Encounter

Placement, Clock
tree synthesis,

routing of each tier

Was the design

successfully
routed?

Three final tier-

specific DEFs with
routing information

Clock Tree

Insertion Design
Compiler Script file

7a. Insertion of
post-route clock

tree into 2D

partitioned netlist

Three tier-specific
SPEF files with

parasitic RC

information

Top Level 2D
Partitioned netlist

with clock tree

Tier-specific SPEF
file merging Perl

script file

7b. Merging of tier-
specific SPEF files

2D SPEF file of
3D Design with

inclusion of 3D via

parasitics for inter-
tier nets

Three tier-specific
post-route Clock
Tree Synthesis

browser files

Finish

Goto step 6 or

step 4

Goto step 4 or step 2

Figure 6-1: The logical progression through the 3DIC design flow

 52

Figure 6-1 provides an overview of the sequence of steps in the 3DIC design flow. For

this flow chart and the others similar to it, rounded shapes denote actions or processes. Some

of these will be automatically performed through scripting in order to guarantee a valid result

while still others will require manual user interaction with the inputs to the step. Rectangular

shapes in the flow charts are used to denote the outputs of a step, and these often take the

form of statistical reports or files used in later parts of the flow. Specifically for Figure 6-1,

shapes that are outlined in red mark a modification to the original 3DIC design flow that was

necessary for use with the ORPSOC test case. For each numbered process, of which there are

eight in Figure 6-1, an in depth definition follows below.

6.1 Design Compiler Synthesis

The 3DIC design flow begins with the synthesis of the RTL description of the design.

The synthesis tool that was used in this work was Synopsys Design Compiler [23]. Design

Compiler provides a means of specifying the loading on the external ports, the clock

frequency, and an estimation of the amount of clock uncertainty in order to produce the

appropriate structural description of the design. This structural description removes all

instances of behavioral modeling and replaces them with standard cell instances.

In order to compile a design in the synthesis tool, a valid standard cell library must first

be identified and linked to the tool. This is necessary so that the tool can determine which

standard cells to choose when transforming the RTL description. Once the standard cell

library is loaded, the entire hierarchy of the RTL description is interpreted and linked by the

tool. At this point, important synthesis variables must be set. The user must define a clock for

the design at the desired frequency and some notion of clock skew must be defined as the

uncertainty of the clock. To produce a realistic synthesis result, it is also desirable to set the

 53

delays and loading on the ports of the design, since any combinational path from an input or

to an output must be included in the slack calculations of the tool. Once these variables are

set, the tool can attempt to synthesize the design at the specified clock frequency. Timing

reports after this compilation process are used to determine if the synthesis was successful.

The critical path in the design must meet the setup time constraints of the associated register

with non-negative slack. Similarly, the shortest path in the design must meet the hold time

constraints of the associated register with non-negative slack. Once these conditions are met,

the standard cell-mapped hierarchy of the design is written to a file by the tool.

For the design of the ORPSOC test cases, the SOI standard cell library previously

designed by the MUSE research group was used. The clock frequency was set to an

aggressive 100 MHz (10 nanosecond period), and the clock uncertainty was set to 200

picoseconds. It was assume that the ports of the design were connected to flip-flops. The

inputs were assigned a delay of 300 picoseconds (simulating the delay of the input flip-flop),

and the output setup time was assigned a value of 100 picoseconds. After compilation, the

timing reports showed that the critical path met the constraints with exactly zero slack.

6.2 Manual User Tier Partitioning

In order to move the design from the 2D realm to a 3D one, decisions must be made

about the position of each hierarchical block among the tiers of the 3DIC. Normally, the

3DIC design flow dictates that this is performed automatically by min-cutsize partitioning.

Partitioning in this manner ensures that the area of the design is balanced among the

partitions and that the partitioning result contains the least number of nets that cross partition

boundaries. In terms of a 3DIC, a “partition” is a physical tier in the 3D stack. Subsequently,

any nets that cross partition boundaries require the instantiation of 3D vias in the design.

 54

Hence, the original MUSE 3DIC tier partitioning scheme sought to minimize the number of

3D vias. Concerns about the size, manufacturing yield, RC parasitics, and the required place

and route blockages of the 3D vias were the motivation for this method of 3D partitioning.

For the purposes of better harnessing the advantages of 3DICs, more control must be

given to the user when performing tier partitioning. Since 3DICs offer the possibility of short

vertical wires, the methodology behind the 3D design of the test case was to exploit the

vertical axes for large bus routing. These large busses, which could potentially become very

long in a strict 2D placement, are made very short in wire length if the interconnecting

modules are placed exactly one tier apart. During the placement and routing stage of the

design flow, this will help reduce the local tier routing congestion created by these busses. As

an example, Figure 6-2 shows a 2D layout and connectivity of five blocks. As shown in the

figure, all five blocks are connected by a single bus, and long a net length is needed to fully

connect the blocks (indicated by the dashed route).

A

B

D

C

E

Figure 6-2: Example 2D rectilinear net length interconnecting five blocks

 55

 To help reduce the net length, the blocks in Figure 6-2 could be transitioned to 3D as

shown in Figure 6-3. In this figure, the block labeled “A” is placed on tier B, with tier A and

tier C each containing two of its interconnecting blocks. The long dashed route in the 2D

example (Figure 6-2) is now shortened to the length of a 3D via (indicated by the thick green

vertical line) plus the length of the local rectilinear route on tier C. For large, complex

integrated systems, the direct path to blocks “C” and “E” in Figure 6-2 may be impossible

due to tremendous routing congestion. Thus, if one can ensure the relative 3D locations of

the blocks in Figure 6-3, the total net length can be greatly reduced. This was the general

partitioning strategy applied to the design of test case.

C
E

B

D
3D Vias

3D Vias C

A

Figure 6-3: Example 3D net length interconnecting five blocks

 The output of this stage of the design flow is a Design Compiler script file. The script

file contains exactly three “group” commands. After the structural description of the design

has been read and linked by Design Compiler, the “group” commands create a new level of

hierarchy for each tier and place all partitioned modules for each tier in the associated level

of hierarchy. Using Figure 6-3 as an example, the “group” commands would instruct Design

Compiler to place block “A” in the tier B level of hierarchy. Similarly, block “B” and “D”

would be placed in the tier A level of hierarchy and block “C” and “E” would be placed in

the tier C level of hierarchy.

 56

As detailed in section 5, the test case contains many data and instruction buses with

widths as large as 32-bits. This presents the opportunity to use 3D vias for realizing short,

vertical busses. The OpenRISC CPUs were quickly identified as being the components

having the highest bus connectivity. Therefore, the CPUs were prime candidates for

placement on tier B, giving them a central location among the 3D stack. This central location

is important so that the components sharing the same bus with the CPUs can be partitioned to

either tier A or tier C. If the CPUs were partitioned to any tier other than tier B and the goal

was still to place the signal busses on the vertical axis, one of two things would occur. First,

all of the components sharing a bus with the CPUs would be partitioned to the same tier (one

vertically above or below the CPUs), creating an module area imbalance among the tiers (the

last tier would be very sparse). Secondly, the components would be split among the two

remaining tiers, creating a situation where some of the busses traverse two tier boundaries

(since the CPUs would no longer be centralized), which would double the vertical length

component of those nets. Thus, to maintain a high degree of density in tier A and tier C and

to ensure that the vertical separation is as small as possible, the partitioning of components

must be kept fairly balanced. In terms of the test case, this meant assigning all of the

components connected to CPU 1 to tier A and all of the components connected to CPU 2 to

tier C. The choice of tiers here is arbitrary since CPU 1 and CPU 2 are identical in their

implementation.

 Other components of the ORPSOC test case that have a high degree of external

connections include the wishbone traffic cop (TC), the data memory controller, the

instruction memory controller, and the data and instruction SRAMs themselves. Partitioning

the TC to tier B was logical since it is connected to the wishbone interface modules of CPU 1

 57

and CPU 2, which reside on tier A and tier C, respectively. Using the same reasoning for

partitioning the CPUs to tier B, the data memory controller was partitioned to tier B to enable

SRAM connectivity directly above and below it. For balance issues, the data SRAMs were

divided evenly among tier A and tier C. This leaves just the instruction memory controller

and the instruction SRAM, which were both delegated to tier B in the interest of balance

once again. Figure 6-4 summarizes the complete partitioning scheme of the test case. In this

diagram, the thick blue lines crossing the horizontal red dashed line represent the

communication paths utilizing 3D vias. This 3D organization is attractive from a

performance standpoint since the CPUs are “sandwiched” between the memory hierarchies

with which they constantly communicate. Moreover, the data memory controller is

theoretically residing only the length of a 3D via away from the data SRAMs. This would not

be possible with 2D partitioning, as there would undoubtedly need to be trade-offs between

the lengths of the busses.

 Prior to settling with the organization seen in Figure 6-4, two other partitioning

schemes were first considered. These schemes sought to consolidate the data SRAMs on a

single tier and partition the CPUs on another tier, leaving their rest of the OR1200

components to be partitioned to the remaining tier. However, it was quite obvious that the

tier dimensions of a 3DIC having four SRAMs on a single tier were too large, and

consequently, a great deal of area was wasted in the other tiers. Still, the partitioning scheme

shown in Figure 6-5 was considered. In this organization, one of the data SRAMs was moved

from tier A to tier B in an attempt to meet density requirements (explained in section 6.4).

Despite this change, the density was still unsatisfactory (varying by more than 10% between

the tiers), so the more symmetrical approach shown in Figure 6-4 was selected.

 58

CPU 2

CPU 1

Data Memory Hierarchy

Data
Memory

Controller

Instruction
Memory

Controller

Wishbone
Traffic Cop

Data

SRAM

Data

SRAM

Data

SRAM

Data

SRAM

Instruction

SRAM

OpenRISC
Instruction
Wishbone
Interface

OpenRISC
Instruction
Wishbone
Interface

Instruction Memory
Hierarchy

Instruction Memory
Hierarchy

Data Memory Hierarchy

OpenRISC
Data

Wishbone
Interface

OpenRISC
Data

Wishbone
Interface

Tier B

Tier C

Tier A

Figure 6-4: Partitioning scheme employed for the ORPSOC test case

 59

CPU 2

CPU 1

Data Memory Hierarchy 1

Data
Memory

Controller

Instruction
Memory

Controller

Wishbone
Traffic Cop

Data

SRAM

Data

SRAM

Data

SRAM

Data

SRAM
Instruction

SRAM

OpenRISC
Instruction
Wishbone
Interface 1

OpenRISC
Instruction
Wishbone
Interface 2

Instruction Memory
Hierarchy 1

Instruction Memory
Hierarchy 2

Data Memory Hierarchy 2

OpenRISC
Data

Wishbone
Interface 1

OpenRISC
Data

Wishbone
Interface 2

Tier B

Tier C

Tier A
Note: Figure not drawn to scale

Figure 6-5: Another partitioning strategy considered for the test case

6.3 3D Via Insertion according to User Partitioning

 The tier partitioning that was defined in the previous step is taken as the input of the

3D via insertion step. This process is entirely automated by Design Compiler scripts.

Essentially, the 2D structural description of the design that was the result of the original

Design Compiler synthesis (see section 6.1) is once again read by Design Compiler. The

connections among the standard cells in the design are analyzed based on the tier grouping

script that was the output of the previous step. 3D vias are inserted wherever nets cross tier

 60

boundaries. Tier boundaries are determined by simply considering the additional levels of

hierarchy that were defined by the tier grouping script. For instance, if a standard cell in the

tier A level of hierarchy and a standard cell in the tier B level of hierarchy are connected by a

net, 3D via insertion for this net is required. The actual inclusion of a 3D via in the netlist is

achieved by means of special standard cells in the library. For the SOI standard cell library

used by MUSE, “VIA_AB”, “VIA_BC”, “VIA_AC”, and “VIA_ABC” are the cell names

containing 3D vias. A two letter suffix such as “AB” indicates a standard cell containing a

3D via with via layers for tier A and tier B. “VIA_ABC” is the only cell containing via layers

for all three tiers. Usually reserved for global signals such as reset and clock, this standard

cell would be used for instances where a net has connections on all three tiers.

 Figure 6-6 shows the process executed by the Design Compiler scripts to insert 3D

vias while preserving the functionality of the design. In this example, standard cell “A” is

contained within the tier A level of hierarchy and standard cell “B” is contained within the

tier B level of hierarchy. Due to “Net_AB”, 3D via instantiation is needed in the design.

First, the appropriate 3D via standard cell is created and the connections between the

standard cells and “Net_AB” are broken. According to Figure 6-6, the “VIA_AB” standard

cell is required to complete the net. Next, a new net is created for each side of the 3D via.

Finally, the standard cell ports are connected to the appropriate net, and the path from

standard cell “A” to standard cell “B” is restored. The Design Compiler scripts exhaustively

search through the design and perform these actions until all 3D vias have been inserted.

 61

A B

Tier A Tier B

A B

Break
Connections to

Net_AB

Create a
3D via

standard

cell in the
design

A B

Create two new nets

in the design

Net_AB

Net_CBNet_AC

C

C
A B

Connect the standard
cells ports to the
appropriate net

Net_CBNet_AC

C

Figure 6-6: 3D via insertion into the netlist

 Once the 3D via insertion phase is complete, the scripts include commands to write

four new netlist files. Three of these netlists are the tier-specific structural descriptions of the

design. The tier-specific netlists are created by simply writing the hierarchy of each tier to a

file. The only changes to the hierarchy of each tier in these files are the instances of 3D vias

standard cells. The other netlist file that is written is termed the top level 2D “partitioned”

netlist. This file contains the levels of hierarchy for the all of the tiers but excludes the 3D

vias from the design. It specifies the interconnections between the tiers, where as the tier-

specific netlists only show connections to 3D vias. The top level 2D “partitioned” netlist is

 62

used at a later point in the design flow for back-annotation of the RC wiring parastitics,

including that of the 3D vias.

6.4 Initial SoC Encounter Floorplanning and Placement

SoC Encounter is a full-featured automatic place and route tool of the Cadence IC

design suite [24]. During the initial floorplanning and placement stage of the design flow, the

goal was to perform a coarse placement in SoC Encounter of the standard cells and macros

on each tier. Since SoC Encounter provides no mechanism for 3D placement, each tier is

individually placed irrespective of one another. However, it is still not advisable to let the

placement tool be unrestricted with its 2D placement of each tier. Using the partitioning

strategy that was developed in section 6.2, the modules are first floorplanned such that the

components connected by vertical wires overlap in the 3D stack. For example, consider

Figure 6-7 in which block “A” is connected to block “B” in the netlist. The diagram at the

left shows a bad 3D floorplanning choice for tier A and tier B, since the blocks are not well

aligned horizontally. A placement and subsequent routing generated from this floorplan

would result in unreasonably long net lengths for those nets connected to 3D vias.

Conversely, the diagram at the right shows a better floorplanning choice in which the blocks

are well aligned. The placement and routing for this case would produce drastically reduced

net lengths. The situation grows even more complex when considering all three tiers of the

3DIC. Therefore, it is paramount to understand the implications of 2D placement in a 3D

space. Otherwise, it stands to reason that the entire benefit of 3D chips would be negated, and

the 2D IC would still offer better performance.

 63

Figure 6-7: Example of good and bad floorplanning for 3DICs

 With a good floorplanning strategy in mind, initial floorplanning and placement of

each tier can move forward. Figure 6-8 provides an overview of the procedure used in SoC

Encounter. Since the dimensions of each tier are identical in a 3D process, one must first

determine the suitable area to use for each tier. In this work, placement density was used as

the metric to arrive at the values for the tier dimensions. With five available routing layers,

95% area density was the goal for the design of the test case. It should be noted that the

dimensions of the tiers are set by the tier having the greatest total module area. Since SoC

Encounter estimates the core dimensions needed (assuming a width-to-height ratio of 1) to

place a design during the import process, a quick survey of these numbers for all three tiers

can identify the tier of greatest module area. In SoC Encounter, the core density of this tier

was set to just under 95% to account for clock tree synthesis and power planning, which both

work to decrease the number of legal placement locations. Next, the power planning phase is

performed. This consists of adding power rings around the core and each macro of the

design. It also includes adding power stripes across the core. The next step after power

planning is the manual floorplanning of the modules. It is during this step that the practices

introduced by Figure 6-7 are carried out. SoC Encounter allows the user to drag-and-drop the

 64

module blocks over the area of the core for preferred placement. The tool will then take these

floorplan “guides” as inputs to the placement engine and place the contents of each module

to the best of its ability within bounding box of the associate guide. Modules without 3D vias

are not floorplanned so that SoC Encounter can fully optimize their placement. At the

conclusion of floorplanning, a low effort placement run is executed. Given that a second,

finer placement is performed later in the design flow, a low effort placement is favored here

in the interest of runtime. The placement result is analyzed to ensure that the cells of the

design did not stray too far from their floorplan guides. If SoC Encounter had difficulty

adhering to the floorplan or if some cells were unable to be placed, iterations in the

floorplanning and placement loop may be necessary. The area of the core, and therefore the

area of every tier, may be increased to try to solve placement problems. In the worst-case

scenario, an alternate partitioning scheme may be needed.

Once a suitable placement is achieved, two forms of Design Exchange Format (DEF)

files are exported from the tool. One form contains only the floorplanning information of the

design, such as the power planning and the location of any floorplan guides or fixed macro

cells. The other type of DEF file contains the floorplanning information as well as the

placement locations. DEF is a specification used by IC design tools for representing layout

information in a human-readable format. These files are taken as inputs in the next stage of

the design flow.

 65

Density calculation
for tier area

Tier-specific netlist
file

Power Planning

Module
Floorplanning

Low Effort
Placement

Is floorplan
from placement

sufficient?

Tier-specfic
DEF file with
floorplanning
information

Write initial
placement DEF

and floorplan DEF

Tier-specific
DEF file with initial

placement
information

Start

Finish

Yes

No

Figure 6-8: Procedure for initial placement of tier-specific netlists

 Given the partitioning of the test case as discussed in section 6.2, the tier with the

highest module area was tier B. This was mostly due to the areas required by the OpenRISC

CPUs, the largest modules in the design. Nonetheless, the partitioning scheme was more than

sufficient because the areas required on each tier to obtain 95% density were very close in

magnitude. This means that there was not a significant amount of “wasted” area in tier A and

tier C. In fact, the placement results from this step showed greater than 90% density for all

 66

three tiers. When the final placement is performed at a later stage in the design flow, the

density will further increase due to clock tree insertion.

 Beginning with the floorplanning of tier B, the design of the ORPSOC test case

sought to divide the regions of the tier between the components for the first OR1200 and the

components of the second OR1200. If these divisions are held constant across the tiers, the

modules with 3D vias can be adequately aligned. Figure 6-9 shows the core size and module

floorplanning of tier B in SoC Encounter. There a few key points of interest to notice in this

figure. First, the size of a tier on the 3DIC was 2520 µm by 2524 µm, which translates to a

tier area of about 6.36 mm
2
. When considering all three tiers, the total core area of the 3DIC

was 19.08 mm
2
. The figure also shows the locations of example power rings and stripes in

the floorplan. The vertical power stripes do not cross the bounding box of the instruction

SRAM, since for this design it is assumed that the SRAM imposes a total blockage of the

first three metal routing layers The routing blockages of the SRAM are an integral factor of

the via alignment stage of the design flow (see section 6.5).

 67

2
5
2

0
 µ

m

2524 µm

Instruction
SRAM

CPU 1

CPU 2

Data Memory
Controller

Wishbone

Traffic
Cop SRAM Address Pins

Power

Stripe

Power

Rings

Figure 6-9: Core size and module floorplanning for tier B of the ORPSOC test case

Referring to Figure 6-9 again, the regional division among the two OR1200 modules

is apparent. Particularly, the components of the first OR1200 are floorplanned to the top

portion of the core, with the components of the second OR1200 occupying the bottom

portion of the core. In tier B, this condition is fulfilled by the location of CPU 1 (top) and

CPU 2 (bottom). The centered position of the wishbone traffic cop and the data memory

controller in Figure 6-9 is also interesting. The reasons for the positioning of these modules

in the floorplan are clearer after the consideration of the floorplans for tier A and tier C,

 68

which are shown in Figure 6-10 and Figure 6-11, respectively. The instruction memory

controller does not appear as a floorplan object in Figure 6-9 given that its connectivity is

isolated to tier B.

Recall from the manual partitioning step (see section 6.2) that tier A contains the

components of the first OR1200 and two data SRAMs. Likewise, tier C is partitioned the

remaining two data SRAMs and the components for the second OR1200. Since the CPUs of

the design communicate directly with the memory management units (MMUs) as revealed in

section 5, it is important to floorplan these modules such that they are aligned with the

correct CPU on tier B. Notice in Figure 6-10 and Figure 6-11 that the MMUs (i.e., the data

MMU and the instruction MMU) are assigned to either the top or bottom portions of the core.

Thus, the floorplanning guide for CPU 1 in Figure 6-9 is aligned with the floorplanning

guides for the DMMU 1 and IMMU 1 in Figure 6-10. The same condition exists for CPU 2,

DMMU 2, and IMMU 2. The modules that are connected to each MMU on the tiers

themselves do not need to be manually floorplanned since they do not contain 3D vias, so it

is more efficient to allow SoC Encounter to optimize their placement.

 69

2
5

2
0

 µ
m

2524 µm

Data SRAM Data SRAM

IMMU 1 DMMU 1

OpenRISC
Instruction

Wishbone

Interface
Module 1

OpenRISC
Data

Wishbone

Interface
Module 1

SRAM Address PinsSRAM Address Pins

Figure 6-10: Core size and module floorplanning for tier A of the ORPSOC test case

 70

2
5

2
0
 µ

m

2524 µm

Data SRAM Data SRAM

IMMU 2 DMMU 2

OpenRISC

Instruction

Wishbone

Interface

Module 2

OpenRISC

Data

Wishbone

Interface

Module 2

SRAM Address PinsSRAM Address Pins

Figure 6-11: Core size and module floorplanning for tier C of the ORPSOC test case

According to the architecture of the test case, the wishbone traffic cop (see Figure

6-9) communicates with the OpenRISC wishbone interface modules (both the instruction and

data ones in Figure 6-10 and Figure 6-11), the data memory controller, and the instruction

memory controller. The latter two reside on the same tier as the wishbone traffic cop,

allowing SoC Encounter to naturally minimize the lengths of the nets between these

 71

components. The OpenRISC wishbone interface modules, however, reside on the tiers above

and below the wishbone traffic cop, so the position of these floorplan guides is significant.

As verified by the module locations in Figure 6-9, Figure 6-10, and Figure 6-11, the

OpenRISC wishbone interface modules and the wishbone traffic cop are all focused in the

center of the core area along the edge of the right-most SRAM. A placement that adheres

well to these floorplan guides will minimize the interconnect length of the busses between

these components. Likewise, the position of the data memory controller relative to the data

SRAMs is ideal. The floorplanning of the data memory controller was performed so as to

minimize the distance between the 3D vias and the pins of the data SRAMs, which are

denoted as “SRAM address pins” in Figure 6-10 and Figure 6-11. Moreover, as discussed in

section 6.5, in order to maximize the number of legal 3D via locations, the bounding boxes of

the SRAMs on each tier were fixed to one of two positions. For instance, the origin of the

data SRAMs in Figure 6-10 and Figure 6-11 share the same set of coordinates. Similarly, the

instruction SRAM in Figure 6-9 is perfectly aligned with the right-most data SRAMs in tier

A and tier C. With the position of the SRAMs fixed, the data memory controller on tier B is

brought close in proximity to the SRAM pins due to its central location. This ensures very

short net lengths between the memory controller and the SRAMs. It is worth noting here that

the interconnect length between the wishbone traffic cop and the data memory controller is

not sacrificed in favor of this floorplanning choice. Referring to Figure 6-9, the guides for the

data memory controller and wishbone traffic cop abut on one side yet are still aligned with

the components to which they are vertically connected on tier A and tier C.

 72

The potential performance benefits of the floorplanning techniques mentioned above

are squandered if the placement result from SoC Encounter does not sufficiently adhere to

the floorplan guides. It is entirely possible for SoC Encounter to produce a placement that

does not resemble the floorplan if the modules are too dense to be fully contained within their

guides. If this occurs, iterations involving the initial floorplanning and placement are

necessary to arrive at the desired placement. During the design of the test case, it was

observed that the quality of the placement result was strongly dependent on the locations of

the SRAMs. In particular, placing the data SRAMs on tier A and tier C too close to one

another tended to displace the OpenRISC wishbone interface modules away from the middle

of the core. This occurrence was unwelcome given the increase in interconnect length to the

wishbone traffic cop on tier B, which was placed in the center of the tier without

complications. The solution to this was to separate the data SRAMs horizontally on each tier

such that the placement did not show any noticeable migration from the floorplan.

Figure 6-12, Figure 6-13, and Figure 6-14 collectively show the results of the initial

placement for all three tiers. Comparing these figures with the floorplans in Figure 6-9,

Figure 6-10, and Figure 6-11 reveals that SoC Encounter largely maintained the initial

floorplan in its placement of the tiers. The MMUs on tier A and tier C were entirely too large

to fit in a quadrant of the core as intended by the floorplans, but this was expected due to the

overlap with the SRAMs. In fact, these figures clearly show the influence that the large, fixed

SRAMs have on the quality of the placement. Figure 6-12 shows that the floorplan for tier B

was almost exactly duplicated in the placement, where as Figure 6-13 and Figure 6-14 show

slight but acceptable displacement from the floorplan for tier A and tier C.

 73

CPU 2

CPU 1

Wishbone

Traffic Cop

Data Memory

Controller

Instruction
SRAM

Figure 6-12: Initial placement result for tier B of the ORPSOC test case

 74

IMMU 1

OpenRISC
Instruction
Wishbone

Interface Module 1

Data SRAMData SRAM

DMMU 1

OpenRISC Data
Wishbone

Interface Module 1

Figure 6-13: Initial placement result for tier A of the ORPSOC test case

 75

DMMU 2

OpenRISC
Instruction
Wishbone

Interface Module 2

Data SRAMData SRAM

IMMU 2

OpenRISC Data
Wishbone

Interface Module 2

Figure 6-14: Initial placement result for tier C of the ORPSOC test case

6.5 3D Via Alignment

 Due to the fact that the 2D placement of each tier is performed without any knowledge

of the remaining tiers, the standard cells that comprise 3D vias must be aligned to ensure a

functional layout. The vehicle that enables via alignment is a Python script written by the

MUSE research group. The script takes as input the three sets of DEF files that were

exported from SoC Encounter after the initial placement of the tiers. Regardless of whether

or not the via alignment process was completely successful, the script writes a new DEF file

per tier that reflects the alignment in the coordinates of the 3D via standard cells. When this

step was performed for the 3DIC FFT design, the via alignment was very trivial since the

 76

design was composed solely of standard cells. The script simply found the nearest location

on each tier to place the 3D via standard cells while considering the incidence of power

stripes and fixed standard cells in the DEF files (i.e. geometry disallowing the placement of

3D vias). The situation was more complex with the test case given the existence of the fixed

SRAM blocks. To handle this added complexity, the Python script was generalized to respect

the bounding box of the SRAM blocks and the accompanying power rings as illegal locations

for 3D via standard cells. Furthermore, the bounding box of the SRAM from one tier

disallowed the placement of 3D via standard cells across all three tiers. This was the driving

force behind completely overlapping the SRAMs between the tiers such that the total area

that was removed from the list of legal locations was minimized to twice the area of an

SRAM block. If the SRAM blocks were not fixed to one or two position on all three tiers,

nearly the entire area of the core would have been blocked, and 3D via alignment would have

been very difficult to achieve.

 With the amount of 3D via blockage generated from the SRAMs being so large, it

was necessary to create good floorplans in the previous stage of the design flow. An initial

placement from a poor floorplan would not overlap the modules with 3D vias well, and

consequently, the concentration of 3D via standard cells in each tier would be spaced too far

apart. During the via alignment stage, this could possibly translate into 3D via alignment

locations being “snapped” to the edge of the SRAM blocks. Behavior of this nature is

inefficient because the “snapping” action could entail a relocation of the 3D via standard

cells to the opposite side of the SRAM blocks, making the associated net lengths exorbitantly

long. A manual inspection of the aligned DEF files in SoC Encounter is needed to guarantee

the limited existence of any such alignment results. Additionally, if the Python script failed to

 77

align all of the 3D via standard cells, the unfixed cells are positioned at the origin in the

aligned DEF file. If any 3D via standard cells are found at the origin after importing the DEF

file into SoC Encounter, the design flow needs to be rolled back to the floorplanning and

initial placement step (see section 6.4), or in the extreme case, a different partitioning

strategy may be necessary (see section 6.2).

The 3D via alignment of the test case was made easier by sufficiently spacing the

SRAM blocks on each tier. This allowed the modules with vertical connectivity in the center

of the core (i.e. between the SRAM blocks) to remain in relatively the same position from

floorplanning to initial placement, reducing the distance between the logically connected 3D

via standard cells on each tier. To illustrate this, Figure 6-15 captures a zoomed version of

the core centers for tier A and tier B after via alignment. The via-aligned DEF files that are

written in this stage were used in the making of Figure 6-15. 3D via standard cells on tier B

were initially placed inside of the bounding box of the left-most SRAM on tier A because

this area was not reserved for a SRAM on tier B. After alignment, the 3D vias were displaced

by the bounding box of the SRAM on tier A to the positions shown in the figure.

Nonetheless, the ratio of displaced to non-displaced 3D via standard cells is small, so the

short vertical interconnects between the tiers are not being inhibited by poor placement of the

3D vias.

 78

Fixed 3D via standard

cells showing
alignment

Fixed 3D vias

displaced by
SRAM

Tier A

Tier B

Figure 6-15: Center of core area for tier A and tier B after 3D via alignment

 79

6.6 Final SoC Encounter Placement and Routing

Once the 3D vias have been aligned and fixed to their locations, the standard placement

and routing flow may begin. The aligned DEF that was created in the previous step of the

design flow is imported into SoC Encounter. From there, a medium effort placement is

performed. SoC Encounter will inherently attempt to minimize the net lengths to the fixed

3D via standard cells, so no additional floorplanning is necessary. After placement has

completed, the clock tree for each tier is synthesized to a particular specification. For the

ORPSOC test case, the target clock skew was an aggressive 50 ps. Due to the complexity of

the required clock tree and the number of clock sinks in each tier of the design, the actual

clock skew after synthesis as reported by SoC Encounter was closer to 90 ps. After the clock

tree has been synthesized, global and detailed routing of each tier is performed. The

preference of the MUSE research group is to use “WRoute” that is packaged with SoC

Encounter. Five routing layers were needed to route such a high density design. Figure 6-16

shows the tiers of the test case after successful routing runs. This figure will be referenced

later in this work to compare the relative amount of routing congestion with that of the 2D

design.

 80

Tier A Tier B

Tier C

Figure 6-16: Routed tiers of the ORPSOC test case

 Once routing is finished, three sets of files (one set for each tier) are exported from

SoC Encounter. The final DEF file of each tier is saved for later use. Also, the post-route

clock tree browser file of each tier, which is needed to insert the clock buffers into the netlist,

 81

is saved. Finally, a standard parasitic exchange format (SPEF) file is exported for each tier.

The SPEF file specifies a format to represent the resistive and capacitive parasitic data of the

wires in the design. This last file will be used for back-annotation of the RC wiring parasitics

during the analysis of the 3D design.

6.7 Insertion of Post-route Clock Tree into the Netlist

Throughout the entire design process in SoC Encounter, standard cells were only added

during clock tree synthesis. To maintain consistency between the physical design and the

netlist that describes the design’s functionality, the clock tree must be inserted into the netlist.

This removes the ideal clock from driving the clock pins of the synchronous components in

the design and replaces the ideal clock at every sink node with a path through the synthesized

clock tree. In the 3DIC design flow, clock tree insertion into the netlist is performed

automatically using a Python script and the tier clock tree browser files exported after final

routing in SoC Encounter. The Python script itself creates a Design Compiler script that

contains the commands to instantiate the clock tree cells and assemble the tree within the

design. Essentially, the Python script analyzes the three clock tree browser files to find of the

hierarchy of the clock tree. This hierarchy is then transferred to the top level 2D “partitioned”

netlist in Design Compiler. Recall from section 6.2 that the top level 2D “partitioned” netlist

already encapsulates the hierarchy of all three tiers prior to this action. Afterwards, Design

Compiler writes the new top level 2D “partitioned” netlist that includes all of the inverters

and buffers of the clock tree on each tier. Now all that is needed is accurate RC parasitic

information from the 3D design, which is addressed in the next stage of the design flow.

 82

6.8 Merging of Tier-Specific SPEF Files

Just as the clock trees of the individual tiers were “merged” onto one netlist in the

previous stage, the wire parasitics must be merged together in order for back-annotation and

subsequent analysis in 2D design tools to be plausible. This phase of the design flow is

automated by means of script written as part of the research work of MUSE. Termed the

“spef merger”, this perl script is very simple in its concept. The “spef merger”

simulataneously analyzes the SPEF files of all three tiers and creates a new SPEF file that is

the result of the merging process. The merging process involves searching for all instances of

3D via standard cells in the tiers and adjoining the RC parasitics of each net that is connected

to a 3D via. Adjoining is accomplished by the annotation of the resistive and capacitive

contribution from the physical 3D via. As a result, the nets with vertical connectivity appear

as flat 2D nets with extra RC parasitics to account for the inclusion of 3D vias in the 3DIC

fabrication process [25]. Since the “spef merger” was designed specifically for the 3DIC

design flow outlined in Figure 6-1, the merged 2D SPEF file that is produced by the script

preserves the naming conventions of the top level 2D “partitioned” netlist. Together with the

clock tree insertion into this netlist, the merged SPEF file provides all of the design

information generated by the post-synthesis use of SoC Encounter.

 83

7 Results

The design flow for the 2D ORPSOC test case diverged from the documented 3D design

flow at the manual user partitioning step. From there, the placement and routing was fully

automated in SoC Encounter. Placement, clock tree synthesis, and routing were performed

under the same assumptions as the design of the 3DIC. Likewise, the wiring parasitics were

exported from SoC Encounter in the familiar format of a SPEF file. The post-clock tree

synthesis netlist was also saved for use in the procedures for obtaining delay and power

dissipation values (see section 3). Figure 7-1 shows the 2D design after detailed routing.

When compared to the 3D layouts in Figure 6-16, the increased usage of metal 4 and metal 5

(designated by the yellow and brown regions, respectively) in the 2D design is indicative of a

higher degree of routing congestion.

 In order to compare the 2D and 3D designs, the highest clock frequency achievable

must first be determined. For this, the flow for obtaining delay values in PrimeTime was used

to analyze the critical path as well as other key paths in both designs. The inverse of the

critical path delay was used as an approximation for the maximum clock frequency of each

design. Once the clock rate is known, power dissipation tests were performed using the

Power Compiler/NC-Verilog flow (see section 3.1). Subsequently, the power distribution

among the tiers of the 3D design, together with the delay values, was coupled with the 3DIC

thermal model for full temperature convergence and performance degradation analysis. The

temperature effects as outlined in this work were considered in the quantification of the

performance advantages of migrating the ORPSOC test case from the 2D realm. Reported in

this section are the detailed results of the 2D and 3D design comparison.

 84

4
3
8

0
 µ

m

4527.375 µm

Figure 7-1: The 2D ORPSOC test case after detailed routing

7.1 2D and 3D Path Delay Comparison

Table 7-1 reports the data collected from PrimeTime along with the percentage of

delay reduction when moving from 2D to 3D. As evidenced by the table, the 3D design

improves upon the critical path delay by 29%, which translates to a maximum clock

frequency of 56 MHz as opposed to 40 MHz for that of the 2D design. Additionally, the

efficiency of intelligent 3D partitioning and floorplanning is apparent in large gap between

the memory path delays of the 2D and 3D designs. These memory path delays represent the

summation of the largest register-to-register delays between the CPUs and the SRAMs. The

 85

delays are further categorized by SRAM type (data or instruction) and path direction (to/from

memory). Here, an important qualification to make is that the numbers shown in Table 7-1

represent the propagation delay before any consideration of performance degradation due to

temperature. How the data in Table 7-1 derates with temperature is addressed in section 7.3.

Table 7-1: Path delay data from the 2D and 3D designs

 2D 3D % Reduction

 Critical Path 25.13 ns 17.87 ns 28.89

To SRAM 33.07 ns 23.0 ns 30.45
Data Memory

From SRAM 36.6 ns 24.86 ns 32.07

To SRAM 34.01 ns 23.27 ns 31.58 Instruction

Memory From SRAM 37.82 ns 24.01 ns 36.51

7.2 2D and 3D Power Dissipation Comparison

Three distinct switching activity profiles were used in the calculation of the power

dissipation of the designs. These profiles provide a realistic range of switching activities for

the OR1200 modules. Recall from section 3.1.3 that one simulation for each piece of

software available was performed, and subsequently, a back annotation SAIF file was

generated from every simulation. The nets of each design were annotated in Power Compiler

based upon the single most active program, the merged switching activity of all of the

programs, and the estimated absolute worst case switching activity for the OR1200 modules.

The merged switching activity profile describes the weighted average of the switching

activities for all of the simulations. To facilitate this, Power Compiler provides a convenient

“merge_saif” command whereby the user can annotate the design with multiple SAIF files,

giving an appropriate weight for each file. Hence, the switching activity profiles from the

single most active program and from the merging process were annotated onto the designs by

means of back annotation SAIF files. The worst case switching activity profile, however, was

 86

not derived from any simulation. Instead, all of the nets apart from those in the clock tree

were annotated with a switching rate of 0.3. This translates to each net having a 30% chance

of switching during the clock period. All clock tree nets in the designs transition twice during

a clock period, and therefore, these nets were annotated with the expected switching rate of

2.0. It was assumed for the worst case switching profile that the reset pin was held at a

constant logic ‘0’. As previously mentioned, the clock frequency of each design was set to

the inverse of the associated critical path delay. Table 7-2, Table 7-3, and Table 7-4 show the

results for all of the power dissipation tests. In the case of the 3D design, the power

dissipation is further broken into the individual tier contributions. Interestingly, the 3D

design had a 30% higher clock frequency, yet it still dissipated less total power than the 2D

design. A closer look at the power dissipation from interconnects revealed a contribution of

about 29% for the 2D design, favoring 3D integration to reduce the role of interconnects. As

a result, the 3D design was able to consume less power while operating at a higher frequency.

Any change to the power figures in Table 7-2, Table 7-3, and Table 7-4 due to temperature is

accounted for in section 7.3 of this work.

Table 7-2: Power dissipation data for the single most active program profile

Power Dissipation Type 2D 3D % Reduction

Tier A Dynamic 1.01697 W

Tier B Dynamic 1.66585 W

Tier C Dynamic 1.00697 W

Total Dynamic 3.798 W 3.68 W 3.11

Tier A Leakage 23.1242 mW

Tier B Leakage 16.0516 mW

Tier C Leakage 23.1242 mW

Total Leakage 62.4 mW 62.3 mW 0.002

Total Combined 3.8604 W 3.7423 W 3.11

 87

Table 7-3: Power dissipation data for the merged switching activity profile

Power Dissipation Type 2D 3D % Reduction

Tier A Dynamic 0.876308 W

Tier B Dynamic 1.37415 W

Tier C Dynamic 0.86597 W

Total Dynamic 3.1981 W 3.116 W 2.6

Tier A Leakage 23.1242 mW

Tier B Leakage 16.0516 mW

Tier C Leakage 23.1242 mW

Total Leakage 62.4 mW 62.3 mW 0.002

Total Combined 3.2605 W 3.1783 W 2.6

Table 7-4: Power dissipation data for the worst case switching activity profile

Power Dissipation Type 2D 3D % Reduction

Tier A Dynamic 1.28697 W

Tier B Dynamic 2.16415 W

Tier C Dynamic 1.26697 W

Total Dynamic 4.8881 W 4.718 W 3.5

Tier A Leakage 23.1242 mW

Tier B Leakage 16.0516 mW

Tier C Leakage 23.1242 mW

Total Leakage 62.4 mW 62.3 mW 0.002

Total Combined 4.9505 W 4.7803 W 3.5

7.3 Temperature Convergence and Performance Degradation
Analysis

For the 3DIC thermal model used in this work (see section 3.3.1), the average of the

maximum and minimum thermal conductivity of a tier as reported in [19] was used to

calculate the thermal resistance of tier C and the combined thermal resistance of tier A and

tier B (labeled as “θtier C” and “θtier AB” in Figure 3-6). The thermal resistances of the tiers are

relatively high due to the lack of thermal vias in the design. Thermal vias, which are

composed of two paired 3D vias connecting all three tiers, can be inserted into the design to

 88

remove more heat and thus achieve greater thermal conductivity. However, this comes at the

expense of design routeability. At the density level of the 3D design, it would not be possible

to insert enough thermal vias to significantly affect the thermal conductivity and still

guarantee routeability.

The power dissipation breakdowns in Table 7-2, Table 7-3, and Table 7-4 were taken

as input to the temperature-power positive feedback loop (see section 3.3.2) to compute final

tier temperatures and performance degradation for each of the three switching activity

profiles. The assumptions for the 3DIC thermal model are displayed in Table 7-5.

Table 7-5: Assumptions for the 3DIC thermal model

Parameter Value Base unit

Thickness of Tier C 7.09 µm

Thickness of Tier AB 12.38 µm

Thickness of Silicon Handle 675 µm

Thickness of Epoxy 50 µm

Conductivity of Tier C 2.5 W/(m-k)

Conductivity of Tier AB 3 W/(m-k)

Conductivity of Silicon 148 W/(m-k)

Conductivity of Epoxy 3.3 W/(m-k)

Thermal Resistance of Heat Sink 0 K/W

Area per Tier 6.36 mm
2

Ambient Temperature 25 °C

Four iterations of the feedback loop calculations were performed to observe

temperature convergence, although for the test case, there was minimal temperature increase

beyond the first iteration. The small amount of temperature variation in the remaining

iterations was expected given the relatively miniscule amount of leakage power as compared

to the dynamic component. As indicated in the power dissipation tables, the leakage power is

no more than 2% of the total power for all of the switching activity profiles. Figure 7-2,

Figure 7-3, and Figure 7-4 present the temperatures of the 3DIC thermal model across the

 89

iterations. The temperature for the heat sink is not shown in these figures, as it is assumed to

be at the ambient temperature with zero temperature dropped across it.

32

33

34

35

36

37

38

39

40

1 2 3 4

Iteration Number

T
e
m

p
e
ra

tu
re

 (
C

)

Tepoxy

Ttier A

Ttier B

Ttier C

Figure 7-2: Thermal model temperatures for the single most active program profile

 90

32

33

34

35

36

37

38

1 2 3 4

Iteration Number

T
e
m

p
e
ra

tu
re

 (
C

)

Tepoxy

Ttier A

Ttier B

Ttier C

Figure 7-3: Thermal model temperatures for the merged switching activity profile

32

34

36

38

40

42

44

1 2 3 4

Iteration Number

T
e
m

p
e
ra

tu
re

 (
C

)

Tepoxy

Ttier A

Ttier B

Ttier C

Figure 7-4: Thermal model temperatures for the worst case switching activity profile

 91

Since most standard cell libraries are characterized for timing and power at one

specific temperature node, it is useful to interpret the amount of delay and power increase

from this single temperature. Extra measures such as the incorporation of the 3DIC thermal

model into the design flow would have to taken if there is a substantial percentage of error

between the initial and final values for delay and power. Shown in Figure 7-5 is the reaction

of leakage power to the departure from the characterized temperature (equivalent to the

ambient temperature in the 3DIC thermal model). As developed in this work, the leakage

power is strongly dependent on temperature variations. For the test case, this strong

dependence manifests in a 31 – 51% increase after temperature convergence. This change in

leakage power, however, did not translate into a noticeable impact on the total power

dissipation, which increased by only 0.6 – 0.66% for each switching activity profile.

Therefore, the power dissipation at the characterized temperature for the test case was an

excellent estimation of the power dissipation after consideration of a thermal model.

Nonetheless, the error in the initial value of the power dissipation increases as leakage

becomes more of a factor in the total power of a 3DIC.

 92

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Single Merged Worst

Switching Activity Profile

L
e
a
k
a
g

e
 P

o
w

e
r

(W
)

Before

After

Figure 7-5: Change in total leakage power from ambient temperature

 Whereas the temperatures of the 3DIC could be increased to very high levels before

the leakage power would become a significant portion of the total power, the speed of the

transistors would begin to suffer long before these temperature levels are reached. As

evidenced by Figure 7-6, the temperature increase from ambient introduces a maximum of

5% combinational path delay increase on tier C, which is by virtue of the thermal model the

hottest of the tiers.

 93

0

1

2

3

4

5

6

Single Merged Worst

Switching Activity Profile

%
 D

e
la

y
 I

n
c
re

a
s
e

Tier A

Tier B

Tier C

Figure 7-6: Percentage of tier delay increase from ambient temperature

Even if the critical path was fully contained within tier C (a worst-case assumption),

this delay degradation does not surmount the critical path improvement over the 2D design.

The 2D IC thermal model can be viewed as having a single tier with three times the area as

tier A with the same amount of heat flowing through it. Figure 7-7 shows this equivalent

thermal model for the 2D IC. The area of each component of the cross-section of the model

was calculated from the dimensions of the final 2D layout (see Figure 7-1). The total area for

the 2D version was slightly greater than three times that of the 3DIC, at 19.82 mm
2
.

 94

Figure 7-7: Thermal model of the 2D IC

 Using the model shown in Figure 7-7 with the power dissipation values in Table 7-2,

Table 7-3, and Table 7-4, the same process used to calculate temperature convergence and

performance degradation for the 3DIC was performed for the 2D version. As expected, the

dependence of total power on temperature was negligible, since the 2D design has the same

insignificant leakage power component as the 3D design. In terms of the delay increase with

temperature, the 2D design did not slow down from its ambient operating frequency as much

as seen in the 3D case. However, the difference between the two designs was not show-

stopping for the 3DIC. Figure 7-8 depicts the delay increase (in percent) of the hottest tier of

the 3D design versus the 2D design. As indicated in the figure, the difference in the

percentage of delay increase reached a maximum of just over 3%.

 95

0

1

2

3

4

5

6

Single Merged Worst

Switching Activity Profile

%
 D

e
la

y
 I

n
c
re

a
s
e

2D 3D

Figure 7-8: Delay increase comparison between tier C of the 3D design and the 2D design

Additionally, the delay increase at each switch activity profile from Figure 7-8 was

used to scale the original path delay values from PrimeTime (see Table 7-1) to produce a

worst-case speed comparison between the 2D and 3D design after temperature convergence.

This comparison is labeled as “worst-case” because the highest temperature seen in the 3DIC

(tier C) was used to calculate the delay increase for all combinational paths in the design

irrespective of their location within the 3D “stack”. The scaled values from Table 7-1 are

shown in Table 7-6. The central aspect of this table is that critical path improvement was

only diminished by 2.3% due to the higher temperatures of the 3DIC.

Table 7-6: Path delays of each design after temperature dependence

 2D 3D % Reduction

 Critical Path 25.54 ns 18.75 ns 26.59

To SRAM 33.61 ns 24.14 ns 28.18
Data Memory

From SRAM 37.2 ns 26.09 ns 29.87

To SRAM 34.56 ns 24.42 ns 29.34 Instruction

Memory From SRAM 37.82 ns 25.2 ns 33.37

 96

8 Conclusion

The design of a 3DIC based on the OpenRISC Reference Platform System-on-chip has

been documented in this work. It was shown that, through the use of manual tier partitioning

and floorplanning, the intrinsic advantages of 3D vias can be harnessed. When comparing the

3D test case with a functionally equivalent 2D design, steps were taken to acknowledge the

non-uniform temperature profile between the tiers of the 3DIC. Temperature dependent

predictive models for power dissipation and combinational path delay were derived and

verified in this work to enable the use of the power-temperature positive feedback loop.

Utilizing realistic switching activity profiles as generated from simulations of actual

microprocessor workloads, iterative calculations were performed about this feedback loop to

observe temperature convergence of the 3DIC thermal model. The increased tier path delays

predicted by the temperature dependent models after temperature convergence did not

appreciably diminish the improvement in critical path delay of nearly 29% over the 2D

design. After temperature convergence was observed, the improvement to the critical path

delay was still 26.59%. Moreover, power dissipation analysis revealed that the 3D design

consumed, on average, 3% less power than the 2D design while running at the higher clock

frequency dictated by the reduction in critical path delay. Both in the case of power

dissipation and timing delays, the analyses at the characterized operating temperature

provided reliable performance estimation even after consideration of the 3DIC thermal model

and the power-temperature positive feedback loop.

 For the current and future interconnect-limited integrated circuit technologies, 3D

integration presents a compelling alternative to the conventional methods of circuit

integration. In fact, it is the belief of the MUSE research group that the 3DIC design flow

 97

presented in this work has applications in the development of novel memory structures. One

can imagine 3D integration being used to meet the density demands of future memory

devices at a more matured process feature size. 3DICs, however, reach new heights with

respect to design challenges. Additional complexities will soon be introduced from the

outlook on leakage power scaling and from the ever-increasing power density of integrated

circuits. Indeed, 3D partitioning and floorplanning irrespective of thermal effects is rapidly

approaching its viability limits. In its place, true 3D thermally-aware placement will be

necessary to manage the speed difference between the tiers of the 3DIC as well as any power

dissipation and temperature requirements. How this problem will be solved currently is and

will remain to be a research topic for years to come. Nevertheless, the design time needed for

the manual partitioning strategy used in this work to find an optimal solution is

insurmountable, and the need for such a solution to maximize the benefits of 3D vias will

only be amplified in the upcoming technology generations.

 98

References

[1] International Technology Roadmap for Semiconductors, Semiconductor Industry

Association, 2003.

[2] OpenRISC Reference Platform System-on-a-Chip and OpenRISC 1200 IP Core

Specification, available from Opencores.org at

http://www.opencores.org/projects.cgi/web/or1k/orpsoc.

[3] V. Suntharalingam, et al., “Megapixel CMOS Image Sensor Fabricated in Three-

Dimensional Integrated Circuit Technology,” Intl. Solid State Circuits Conf. Dig. of Tech.

Papers, Feb. 2005, pp. 356-357.

[4] A. Rahman and R. Reif, “Thermal Analysis of Three-Dimensional (3-D) Integrated

Circuits (ICs),” Proceedings of the IEEE International Interconnect Technology Conference,

June 2001, pp. 157-159.

[5] A. Vassighi, A. Keshavarzi, S. Narendra, G. Schrom, Y. Ye, Se. Lee, G. Chrysler, M.

Sachdev, and V. De, “Design Optimizations for Microprocessors at Low Temperature,”

Proceedings of the 41
st
 Annual Conference on Design Automation, June 2004, pp 2-5.

[6] UC Berkeley Device Group, “BSIM3v3.3 MOSFET Model,” University of California,

Berkeley, CA, July 2005.

[7] J. Rabaey, A. Chandrakasan, and B. Nikolić, Digital Integrated Circuits: A Design

Perspective. New Jersey: Prentice Hall, 2003.

[8] W. Liao, L. He, K. Lepak, “Temperature and Supply Voltage Aware performance and

Power Modeling at Microarchitecture Level,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, July 2005, pp. 1043-1048.

[9] K. Kanda, K. Nose, H. Kawaguchi, T. Sakurai, “Design Impact of Positive Temperature

Dependence on Drain Current in Sub-1-V CMOS VLSIs,” IEEE Journal of Solid State

Circuits, October 2001, pp. 1559-1562.

[10] W. Jiang, V. Tiwari, E. de la Iglesia, and A. Sinha. "Topological Analysis for Leakage

Prediction of Digital Circuits," ASP-DAC/VLSI Design 2002, 2002, p. 39.

[11] C. Kim, and K. Roy. "Dynamic VTH Scaling Scheme for Active Leakage Power

Reduction," 2002 Design, Automation and Test in Europe Conference and Exhibition, 2002,

p. 163.

[12] H. Su, F. Liu, A. Devgan, E. Acar, S. Nassif, “Full Chip Leakage Estimation

Considering Power Supply and Temperature Variations,” Proceedings of IEEE International

Symposium on Low Power Electronics and Design, 2003. pp. 78-81.

 99

[13] A. Bellaouar, A. Fridi, M. I. Elmasry, and K. Itoh, “Supply Voltage Scaling for

Temperature Insensitive CMOS Circuit Operation,” IEEE Transactions on Circuits and

Systems – II: Analog and Digital Signal Processing, March 1998, pp. 415.

[14] R. Ho, K. Mai, M. Horowitz, “The Future of Wires,” Proceedings of the IEEE, April

2001, pp. 491.

[15] Synopsys, Synopsys PLI 3.0, available in Core Synthesis Tools product, Release W-

2004.12-SP4, 2004.

[16] OpenRISC GNU Toolchain, project website available at

http://www.opencores.org/projects.cgi/web/or1k/gnu_toolchain_port.

[17] Synopsys, Power Compiler User Guide, Release V-2004.06, June 2004.

[18] Synopsys, PrimeTime, information available at

http://www.synopsys.com/products/analysis/primetime_ds.html.

[19] W. Davis, H. Hua, S. Melamed, “Thermal Bounday Study for the MITLL 3D 0.18 µm

FDSOI Process,” North Carolina State University, Raleigh, NC, September 2005, pp. 1-5.

[20] 3DIC Design Notes and Examples, included in the MITLL Low-Power FDSOI CMOS

Process release, December 2004, pp. 1-4.

[21] N. Walker, “Integrated Circuit Module Generation,” Master’s Thesis, University of

California, Berkeley, CA, 1999.

[22] W. R. Davis, J. Wilson, S. Mick, J., X. Jian, H. Hao, C. Mineo, A. M. Sule, M. Steer, P.

D. Franzon, “Demystifying 3D ICs: The Pros and Cons of Going Vertical,” Design & Test of

Computers, IEEE, Volume 22, Issue 6, pp. 498 – 510.

[23] Synopsys, Design Compiler, information available at

http://www.synopsys.com/products/logic/design_compiler.html.

[24] Cadence, SoC Encounter, information available at

http://www.cadence.com/products/digital_ic/soc_encounter/index.aspx.

[25] C. Mineo, “Clock Tree Insertion and Verification for 3D Integrated Circuits,” Master’s

Thesis, North Carolina State University, Raleigh, NC, September 2005, pp. 30 – 33.

