
ABSTRACT

Warrier, Ajit C. Proximity Induced Labeling Schemes for Distributed Hash Tables.

(Under the direction of Dr. Injong Rhee and Dr. Khaled Harfoush).

P2P systems have been recently introduced as an unconventional approach to

networking. Among them, structured P2P systems (or Distributed Hash Tables) have

such benefits as load balancing, scalability, and self-organizing nature. Most of the

earliest structured P2P systems had virtualized address spaces, hence disregarding

underlying physical topologies while creating the overlay. By incorporating knowledge

of the underlying topology into the P2P system, efficient overlays can be constructed.

There have been several different approaches towards this goal. The most popular

approach has been reactive in nature, where nodes having been assigned their virtual

identifiers in the overlay, search for good neighbors or routes towards their destination.

This work, on the other hand, takes a proactive approach. Our goal is to assign

identifiers to nodes so that their position in the overlay would approximately reflect

their position in the physical topology. Such identifiers or Proximity Induced Labels

would then make the consequent search for good neighbors/routes unnecessary, since

they would be implicit by the overlay geometry. We introduce two such labeling

techniques, one for the well known Content Addressable Network (CAN), and the

other for the binary Hypercube, based on delay information from a set of well-known

nodes on the Internet called Landmarks. Our performance evaluation demonstrates

that proximity induced labels can be assigned in a scalable manner to CAN without

changing the CAN algorithms, leading to better performance than the conventional

CAN. Also, such labeling when combined with the high connectivity of the Hypercube,

achieves highly efficient overlays at the cost of some increased node state.
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Chapter 1

Introduction

Peer-to-Peer (P2P) systems have been recently put forward as an unconventional

approach to computer networking. The flexibility and robustness of structured P2P

systems (also known as Distributed Hash Tables or DHTs) like CAN [17], Chord [22],

Pastry [20] and Tapestry [29] have been demonstrated in recent papers. In the pure

form, none of these overlay structures have information about the underlying physical

topology. The ability to incorporate physical topology information into P2P systems

would be crucial during the real-world deployment of these systems in various areas

such as file sharing, application layer multicast and content distribution networks.

As research in P2P systems has matured over the years, attempts have been made

to include information about the physical topology into the overlay geometry. These

attempts can be classified into three different categories, as mentioned in [9]:

1. Proximity Neighbor Selection (PNS): The neighbors in the routing table

of the P2P node are chosen based on their proximity.

2. Proximity Route Selection (PRS): Once the routing table is chosen, the

choice of the next-hop when routing to a particular destination depends on the

proximity of the neighbors.
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3. Proximity Induced Labeling (PIL): Node identifiers are chosen based on

their geographic location.

DHTs have varying degrees of flexibility in terms of neighbor selection, route

selection, or node identifier selection, which decides whether they are capable of PNS,

PRS or PIL respectively.

DHTs that have the flexibility in neighbor selection essentially select neighbors

from a subset of the identifier space. The challenge lies in finding the “closest”

such nodes from such subsets. DHTs using PRS take advantage of their flexibility

in selecting among multiple routes to the destination. Here the challenge lies in

“filtering” the set of possible next-hop neighbors using a heuristic based on proximity.

DHTs using PIL takes advantage of the fact that the network topology information

is encoded into their identifiers and hence their geometry.

1.1 Motivation

Our goal in this work is to introduce PIL properties in P2P systems. Instead of

using Internet positioning techniques like IDMaps [8], GNP [15] and Lighthouses [16]

which require extra processing, we aim to do this by simply using latency measure-

ments to a set of well-known nodes on the Internet called landmarks. These landmarks

may be dumb nodes and do not require any additional responsibility other than being

able to respond to ICMP echo messages (pings). We aim to demonstrate that such a

P2P system will closely approximate the actual network topology thereby providing

latencies close to the actual IP latency. At the same time we need to maintain the

scalability and robustness that makes P2P systems so powerful.
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1.2 Contribution

We present two techniques; the first one incorporates PIL into an already existing

DHT, CAN [17]. This scheme requires no change to existing CAN algorithms for

node join/leave. We compare the performance of this scheme with the CAN Binning

scheme [18], which is another PIL scheme for the CAN overlay. We show that the

performance of CAN Binning depends on the number of landmarks being used and

the underlying topology of the overlay. Also, the use of CAN Binning destroys the

uniform load-balancing properties of CAN. This makes it unsuitable for the dynamic

Internet. From our simulations, we find that although CAN Binning performs better,

our scheme does not suffer from this unpredictability and our performance never

degrades with the use of more landmarks.

The second technique presents a PIL scheme for the Hypercube overlay. Our

simulations show that the combination of the high connectivity of Hypercubes and

the proximity induced labeling of nodes allows the construction of highly efficient

overlays at the expense of some increased node state.

1.3 Organization

The rest of the thesis is structured as follows. Chapter 2 presents the related work

in the area of topology aware overlays. In Chapter 3, the Binning scheme for CAN

is introduced. In Chapter 4, our scheme for PIL of nodes in CAN is presented. In

Chapter 5, we introduce the simulation setup and metrics we use for our performance

results. In Chapter 6, we present the scheme for PIL of nodes in the Hypercube

overlay and the corresponding simulation results in Chapter 7. Finally, we conclude

in Chapter 8, with a summary of findings and future research in this area.
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Chapter 2

Related Work

DHT systems first came into prominence with the introduction of two systems

CAN [17] and Chord [22]. DHT systems distribute the load among peers equally

by the virtualization of the address space. The first work which puts forward the

suggestion that virtualization is not a good idea is [11]. The authors argue that

virtualization destroys locality and give an example of TerraDir [21], a non-virtualized

overlay in the form of a rooted hierarchy which explicitly codifies the application

hierarchy. Our goal in this work is to achieve locality within the limits of DHT, and

hence alleviating the drawbacks of DHT.

In CAN, the nodes are mapped onto a d-dimensional Cartesian space. Hence

the fundamental geometry resembles that of a Hypercube. Thus CAN nodes do not

have the freedom to select their neighbors, the neighbors are implicit in the labeling

of the node. On the other hand, the CAN structure enjoys the freedom of having

multiple possible routes to a destination. This allows CAN to use PRS but disallows

the use of PNS. The way PRS is implemented in CAN is that among the possible

next-hop neighbors, messages are forwarded to that neighbor which has the best ratio

of progress in the Cartesian distance to network delay cost. [18] also proposes a PIL

solution over the CAN system using the binning scheme which is explained in detail

in later sections.
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E-CAN or Expressway CAN [26] augments the basic CAN structure with routing

tables of larger span. Each node not only knows about its immediate neighbors, but

also maintains neighbour information about high-order zones, which encompass many

CAN zones. Using this information, instead of going through each intermediate node

in CAN, messages pass through in hops which stride through several zones, hence

reducing the end-to-end delay.

In Chord, the underlying geometry is a ring structure. Each node a in a system of

n nodes, maintains log n neighbors, called fingers, where the ith neighbor is the node

closest to a + 2i on the ring. Although not a feature of ring topologies in general, the

Chord architecture defines a specific set of neighbors. Thus in its pure form, Chord

is incapable of PNS. Also the optimal path in terms of hops in Chord is O(log n).

But sub-optimal paths traversing more nodes may be used (but with less latency),

and this makes it suitable for PRS.

In Kademlia [14], the underlying geometry is the XOR-network. Nodes use 160-bit

identifiers as their labels. These labels are modeled to be the leaves of a binary tree.

The distance between two nodes is the exclusive OR (XOR) of their labels. Each

node maintains log n neighbors, where the ith neighbor is any node within an XOR

distance of [2i, 2i+1] from itself. The XOR network is very flexible in that it allows a

wide selection of neighbors, and also allows multiple routes to the destination. Thus

it is well-suited for both PNS and PRS.

Pastry [20] follows a “hybrid” approach, where both tree and ring geometries are

employed. Nodes take their labels from a circular node ID space, and a label is a

sequence of digits with base 2b. The routing table of a node consists of up to log2bN

rows with 2b − 1 entries. Each of the 2b − 1 entries at the nth row of the routing table

refers to a node whose label shares with the present node’s label the first n digits,

but whose (n+1)th digit has one of the 2b −1 possible values other than the (n+1)th

digit in the present node’s label. Routing is achieved by means of prefix matching.

Pastry maintains a hybrid network of tree and ring, where each node is located at
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the leaf of the tree and also a point in the ring. For the nth row of its routing table,

a node has the freedom to select “close” neighbors among those who share the first

n digits in their label. Each hop made using tree geometry causes the distance to

the destination to reduce by one digit, thereby increasing the shared number of digits

with the destination label. On the other hand, hops made using ring geometry bring

the message numerically closer to the destination, keeping the number of shared digits

the same. Optimally, Pastry could reach its destination using just tree hops. But

sub-optimal routes using both tree and ring hops could lead to less latency. Thus

Pastry allows for both PNS and PRS.

Tapestry [29] is similar to Pastry in that it uses a prefix matching algorithm to

route queries, but it also includes replication on the nodes for added robustness and

performance.

Viceroy [13] is a novel P2P structure based on a butterfly network with a constant

amount of state information and O(log n) routing complexity. The constant state

information results in it being unsuitable for either PRS or PNS.

Mithos [24] uses a mesh network. New nodes joining the overlay network incre-

mentally find better neighbors by using delay measurements. Once it has found the

closest node to itself, it uses the coordinate of the neighbors to determine its coordi-

nate. The problem with this approach is that it may require each node to perform

an excessive number of delay measurements to find its closest peer node.

Another approach that could be taken in the case of a mesh structured overlay

is to develop some kind of a model of the Internet using Cartesian coordinate space.

Tools like IDMaps [8], GNP [15] and Lighthouses [16] are proposed for the problem of

finding the position of a host relative to other hosts on the Internet. IDMaps requires

the distribution of machines around the Internet so that every address-prefix is close

to one of them, while GNP assigns the coordinates of hosts based on their distance

to a set of passive landmark hosts. Lighthouses adds more flexibility to GNP by

allowing a host to find its coordinate based on delays to only a subset of the complete
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landmark set.

In [2], Banerjee et al. also propose a nearest neighbor algorithm for positioning

overlay nodes. They assume, however, that the P2P overlay is organized in a hierar-

chical fashion. At the lowest hierarchies, the nodes are clustered according to their

topological proximity.

One interesting implication of topology aware DHTs is the idea of applying them to

Application Layer Multicast(ALM) [5]. DHTs with their fault tolerant, self-organizing

nature coupled with topology awareness have been seen as a viable framework for

ALM. ALM has been implemented over CAN [19], Pastry [3], and Tapestry [30].

Among the various ALM techniques, one of particular interest to us is Hypercast[12].

In Hypercast nodes have binary labels and they arrange themselves into a logical Hy-

percube. The labels are assigned in gray order, and hence have no relation to their

physical topology. The PIL solution in this work is also implemented over the Hy-

percube, but the node labels reflect the position of the node in the physical topology.

Also, for the purposes of gray order label assignment, Hypercast imposes the limita-

tion that nodes have to join one by one and that when a new node enters the overlay,

it needs to inform all other nodes in the overlay about it. These two limitations make

it unscalable for use in overlays with large member sets. Our Hypercube overlay does

not face either of these limitations.
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Chapter 3

The Binning Scheme

3.1 Introduction

The fundamental goal of the the Binning scheme is to provide for congruence

between the physical topology and the P2P overlay network. This is accomplished by

partitioning nodes into “bins” such that nodes within a bin are relatively closer to one

another than to nodes in a different bin. For the purpose of binning, the availability

of a well-known set of machines that act as landmarks on the Internet is assumed.

A node that wishes to join the overlay would first measure its round-trip-time

(RTT) to each of these landmarks and orders the landmark IDs in the non-decreasing

order of RTT. This ordering represents the bin that the node belongs to. Physically

close nodes are likely to have the same ordering and hence will belong to the same

bin. With n landmarks we have n! different orderings possible, and hence n! different

bins. It is important to note that many of these bins represent orderings which may

not be actually possible in the underlying topology, and hence no nodes will ever be

hashed into such bins.

In [18], the authors propose a trivial embedding of these bins, which resulted in a

random placement of these bins. We next describe this embedding for the CAN P2P

overlay.
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3.2 The CAN Binning Scheme [BCAN]

In CAN [17], nodes are mapped to a virtual d-dimensional Cartesian coordinate

space. Every node has an average of 2d neighbors in the overlay. Since the nodes are

randomly mapped into the Cartesian space, the overlay structure has no resemblance

to the underlying physical topology. For a system with n landmarks, this Cartesian

space is divided into n! equally sized portions. Each of these n! portions corresponds

to a landmark ordering as described in the section above. This is done in the following

manner: assuming a fixed cyclical ordering of the dimensions (e.g. xyzxyz...), we first

divide the space, along the first dimension, into n portions, each portion is then sub-

divided along the second dimension into n−1 portions each of which is further divided

into n − 2 portions and so on. Now, instead of randomly mapping a node into the

Cartesian space, a CAN node must first find its bin, based on its delay measurements

to the landmarks. The new node then joins the CAN at a random point in that

portion of the coordinate space associated with its bin.

Using this binning scheme, a node newly joining the CAN overlay can peer with

the set of nodes which are physically close to themselves. But the embedding of the

bins into the CAN as presented in [18] presents some new problems of its own:

1. The binning system does not maintain any order between bins. Thus although

the latency between nodes within a bin is low, inter-bin latencies could be

arbitrarily high.

2. As the number of landmarks is increased, the number of possible bins also

increases. This improves the performance due to the reduced latency between

nodes in the bins by providing more selectivity. But on the other hand, further

increase in the number of landmarks will reduce performance. This is because

there will be less nodes per bin, and most of the queries will be between inter-bin

nodes. The optimal number of landmarks depends on the underlying physical

topology which makes it difficult to predict accurately.
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3. When we use the binning scheme in the CAN overlay, the hash space is non-

uniformly divided among the nodes. It is well known that this causes problems

with load-balancing as some nodes are responsible for more content, which goes

against the P2P paradigm where all nodes are equally responsible.

In later sections we present two new binning schemes which address the above

mentioned problems of binning. We use the simplicity of binning to provide labels

to nodes which approximate their location relative to each other in the underlying

physical topology.
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Chapter 4

The Laminar CAN Binning

Scheme [LCAN]

4.1 Introduction

In this section, we describe an overlay organization scheme designed to solve the

deficiencies in the original binning scheme mentioned in the previous section. Our

proposal is as simple and efficient to deploy as the original scheme. The central

idea is to map parts of the CAN hash space (zones) to landmarks, maintaining the

topological relationship between them. Nodes find the closest landmark by means of

measuring the RTT to the set of landmarks. A random point within the zone alloted

to that landmark is the initial id of the node. As more nodes join the system, some

zones become more populated than others. To maintain the uniformity of the CAN

space, we dynamically change the zone sizes. The boot strap server needs to maintain

the population of nodes mapped to each of the zones.
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4.2 Laminar Binning

Our proposed scheme requires extra tolerable complexity at the bootstrap server

and landmarks that measure the latency between themselves. These landmarks are

similar to tracers in IDMaps [8] that are already deployed and the bootstrap server

could be a HOPS server, which has the distance information between the tracers and

can identify the Address Prefix (AP) to which a node belongs and the closest tracer

to this AP. The method has two components:

1. Embedding the landmarks onto a 2-dimensional CAN space while maintaining

appropriate distance (latency) relations between the landmarks. One bin (the

area of the hash space occupied by the bin) corresponds to one landmark and

this bin is designed to accommodate nodes that are physically close to the

corresponding landmark.

2. Maintaining a uniform distribution of nodes in the CAN space in order to alle-

viate the problems associated with the discrepancy in the zone sizes.

We next elaborate on how to achieve the above goals through an example. Con-

sider a set of five landmarks L = {L1, ..., L5} and the distances (latencies) along the

paths connecting them as shown in Figure 4.1(A).

4.2.1 Landmark Mapping Algorithm

Our approach to organizing landmarks in the CAN overlay begins by transforming

the graph of landmarks into a tree in which nodes represent laminar subsets [6] of

landmarks.

A laminar family F ⊆ 2L is a family of subsets of L such that for any A, B ∈ F ,

it is the case that A ⊆ B or B ⊆ A or A ∩ B = φ.

We use Laminar subsets of L to cluster the landmarks according to their physical

proximity. The closer landmarks are to each other, the more they appear in the same
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Figure 4.1: Laminar example.
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subsets, and the more common ancestors they have in the resulting tree. Algorithm

1 gives the pseudo-code for the creation of such a tree of laminar subsets.

Algorithm 1, starts with a set D1, then progressively, at each level i, divides

the previously obtained sets at level i − 1 into subsets including landmarks that

are within βi latency from each other, where β is initialized to be the landmark

graph diameter and decreases exponentially at each level. The network diameter for

the graph in Figure 4.1(A), is 7, yielding δ = 3 and β = 4. The node L1 finds

nodes L2, L4, L5 within this distance to itself. The only unassigned node L3 creates

a subset for itself at this level and hence set D2 = {{L1, L2, L4, L5}, {L3}}. In the

next iteration, δ = 2 and β = 2. Node L1 finds node L2 and node L4 finds node L5

at this distance from itself, and hence set D3 = {{L1, L2}, {L4, L5}, {L3}}. At the

last iteration, delta = 1 and β = 1 and hence all sets resolve into singleton subsets,

and the algorithm terminates. The laminar subsets created in this way are: D1 =

{{L1, L2, L3, L4, L5}}, D2 = {{L1, L2, L4, L5}, {L3}}, D3 = {{L1, L2}, {L4, L5}}, and

D4 = {{L1}, {L2}, {L4}, {L5}}.

The obtained laminar subsets could be inserted in a tree as shown in Figure

4.1(B) with subsets at level i representing nodes at height i of this tree. This tree

is used to position landmarks in the 2-dimensional CAN overlay. The pseudo-code

for the mapping is given in Algorithm 2. Note that the algorithm also fixes the zone

corresponding to each landmark as the population in each zone changes with time.

This part of the algorithm is explained in the next section.

As detailed in Algorithm 2, the root node initially occupies the whole CAN space,

then nodes are inserted in breadth-first order with sibling nodes splitting the area

allocated to their parent in the tree. We split areas along the CAN overlay dimensions

interchangeably to avoid creating thin zones. Going back to the example, we illustrate

how to map our set L of landmarks to the 2-dimensional CAN space, with the steps

illustrated in Figure 4.1(C). In Step 1, set L will occupies the whole CAN space. In

step 2, we insert sets at level 2. The set {L1, L2, L4, L5} will occupy the position of
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its parent. The next sibling, {L3}, will try to split its parent, but finds it occupied

by the set {L1, L2, L4, L5}. Hence each set will occupy half of the CAN space. In

Step 3, we insert sets at level 3. It is clear that continuing in this way we achieve the

mapping seen in Step 4.

This mapping has the property that landmarks that are physically close, will be

close to each other in the CAN overlay; but, they may be close to other landmarks

too. For example, landmarks L3 and L1 are neighbors in the CAN overlay, although

they are not physically close.

Data : Graph connecting a set L = {L1, ..., Ll} of landmarks

Result: Laminar subsets Di

Diam = Diameter of the landmark graph;

D1 = {L};

δ = log2(Diam);

i = 1;

while Di has non-singleton subsets do

βi = 2δ−i ∗ β;

Di+1 = ∅;

for v = 1 to l do

for every non-singleton subset S in Di do

Create a new subset Sv consisting of all unassigned landmarks in S

within a distance of βi or less from Lv;

Di+1 = Di+1 ∪ {Sv};

end
end

i = i + 1;

end

Algorithm 1: Converting a landmark graph into Laminar subsets.
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4.2.2 Maintaining Uniform Distribution of Zone Sizes in the

CAN Space

Recall that nodes will be hashed to an arbitrary point in the zone assigned to the

landmark they are closest to. As nodes join the system, some bins may become more

crowded than others. In order to avoid this problem, we adapt the bin sizes in pro-

portion to the number of nodes assigned to the bins (bin popularity). The bootstrap

server(s) keeps count of the number of joining nodes closest to each landmark and use

this information to identify the appropriate bin sizes by running Algorithm 2. Figure

4.1(B) provides an example in which 550 nodes are in the system when 150, 50, 50,

100, and 200 nodes are closest to landmarks L1, L2, L3, L4, and L5 respectively,

and Figure 4.1(C) the resulting area assignment reflecting the difference in landmark

popularity.

There could be many bootstrap servers to balance the load of node join and

for robustness in the face of server failure. Such servers would need to share node

population information so that zone sizes are correctly maintained. Over time some

nodes may leave the system and as a result the bootstrap server’s count will not reflect

the exact number of nodes in the system. This should be fine as long as the node

lifetime in all bins is roughly the same; that is, when nodes close to certain landmarks

do not leave at a slower or faster pace than nodes close to other landmarks, which

is typically the case. Also, this scheme does not enforce strict boundaries between

nodes in each bin. This is especially true when a bin size changes as nodes on the

border of contiguous bins will not fall into the appropriate bins as perceived by the

bootstrap server. As nodes leave the system, nodes that are misplaced will eventually

leave the system. Our system is also robust to landmark failures. The loss of a

landmark results in its zone being merged with its nearest zone. This results in loss

of selectivity, but the system does not fail.
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Data : Tree T of the laminar subsets Di corresponding to the set L =

{L1, ..., Ll} of landmarks

Result: An assignment of the landmarks in a 2-dimensional CAN space with

zone sizes reflecting node population

Insert T in breadth-first order in a queue Q;

while BFS queue is not empty do

n = pop a node from Q;

if n is the root then

Allocate the whole hash space to n;

else

ratio = population(n)/population(parent(n));

if n is at an even depth in T then

splitDim = X;

else

splitDim = Y ;

end

Split dimension splitDim in parent(n) according to ratio;

end
end

Algorithm 2: An allocation of the landmarks in the CAN space while fixing zone

sizes based on landmark popularity.
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Chapter 5

Performance Comparison Between

LCAN and BCAN

5.1 Simulation Setup

The most popular means of generating the topology for P2P systems has been the

GT-ITM [27] topology generator. It generates the router level topology of the Internet

using a hierarchical approach. Although useful for generating small networks, the

topologies generated using GT-ITM do not show the power-law relationships existing

at the AS-level and the router-level [7]. Recent studies [9] comparing the behavior of

GT-ITM models with real world networks in terms of latency distributions have also

showed that the standard practice of applying latencies of 100-20-5ms for Transit-

Transit, Transit-Stub and Stub-Stub links respectively may not be correct. This

brings studies of proximity methods on DHTs to an unfortunate situation: although

we have a correct model for the connectivity of inter networks, we have no provably

correct method to label the latencies on the links.

We approach this problem in the following manner:

1. Topology Generation: We have used the Inet3 [25] topology generator to
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generate the AS-level topology. This topology generator generates the AS-level

connectivity of the network which displays some of the properties of the Internet

namely, power-law connectivity [7] and exponential AS growth rate [25]. Due

to resource constraints, we use a topology of 3500 ASs.

2. Labeling of Intra-AS Latencies: Once we generate the AS-level topol-

ogy using Inet3, we expand each AS with a mesh, which models the Intra-AS

network. ISPs do not usually present information about latency distributions

within their ASs but they do give the minimum, maximum and average latencies

within their ASs. Most of the top ASs seem to have intra-AS latencies in the

range of 10-80ms, with an average of around 40ms. Considering this data we

model the intra-AS latency distribution as a uniform distribution from 10-80ms.

3. Labeling of Inter-AS Latencies: Here again we are plagued by lack of
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experimental data. The general assumption has been that inter-AS latencies

comprise the major component of the the end-to-end latencies. A recent study

on the ASs controlled by Sprint [28], seems to disprove this long-held belief.

In 80% of the studied cases, the inter-AS component turns out to be less than

the intra-AS component of the total end-to-end delay. In the remaining cases,

propagation delay was found to be the reason for the large inter-AS component.

This leads us to believe that on the current Internet, most of the inter-AS

latencies are less than or equal to the intra-AS latencies, while a small fraction

of the links being “long hop” or inter-continental links, have a much higher

latency. This leads us to label the inter-AS latencies as follows: we use the

same latency distribution (10-80ms) for 90% of the inter-AS links, while for the

remaining 10% of the links, we assign a high latency of 250ms.

For a comparison of the effect of the underlying topology on the performance, we

also present results for a GT-ITM topology. This topology has 50 Transit Domains,

10 Stub Domains/Transit Domain, and 100 routers/Stub Domain. Transit-Transit

latencies are drawn from a uniform distribution of 20-70ms, Transit-Stub latencies

from 2-20ms and Stub-Stub as well as Stub-Router latencies from 0-2ms. Remember

that this is in contradiction to the labeling used in the Inet3 topology described above,

where the top-level (inter-AS) links have about the same latency as the lower-level

(intra-AS) links, with some high delay links corresponding to the inter-continental

links. To see the effect of the topology on the latency distribution seen by individual

nodes, we present Figure 5.1. The latencies of Inet3 have been scaled down to be

compared to that of GT-ITM. The figure shows that Inet3 latencies rise faster, and

have somewhat more tail than the GT-ITM latencies. The heavy-tailed distribution

of latencies seen by nodes on the Internet has been recently reported in [9]. This gives

us some confidence in the latency distribution used in the Inet3 topology.

We do not claim that the Inet3 labeling will present an accurate picture of the

current Internet. Indeed without any available data on link latency distributions on
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the Internet, it is difficult to prove/disprove such claims. But we do believe that

it is much better than the arbitrary labeling used in simulation results presented in

previous papers. For consistency we have maintained the same setup for later sections

too.

5.2 Performance Metrics

We now look at a comparison between the LCAN and BCAN schemes for dif-

ferent number of nodes in the overlay. As a base case, we present the performance

results for the Randomized CAN (RCAN) so that we understand the amount of im-

provement created by both the techniques. Both LCAN and BCAN are based on the

2-dimensional CAN DHT, and both use landmark delay measurements for their PILs.

BCAN uses the full information about their landmarks whereas LCAN uses only the

information about the closest landmark. BCAN has been implemented as described

in Section 3.2 and LCAN as described in Section 4.2. The three performance metrics

are considered:

1. Latency Stretch The latency stretch of the overlay is defined to be the ratio

of the average inter-node latency on the overlay network to the average inter-

node latency on the underlying IP level network. The lower the latency stretch,

the better the performance of the overlay. It is a measure of how closely the

node organization in the overlay matches the actual physical topology. The use

of latency stretch instead of an absolute quantity like the latency allows us to

compare the performance across physical topologies.

2. Variation of Latency Stretch with Number of Landmarks Since both

LCAN and BCAN depend on landmarks for the labeling of nodes, we look at

how the number of of landmarks affects their performance.
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3. Node Degree Distribution The node degree distribution tells us how the

changes in the CAN overlay have affected its degree distribution. It is a measure

of the state information that each nodes has to maintain to participate in the

topology aware CAN.

5.3 Latency Stretch

The latency stretch is obtained by finding the ratio of the end-to-end latency

between randomly selected nodes in the overlay to the end-to-end latency on the

underlying IP level network. We generate the system for 256, 512, 1K, ... 16K nodes.

In case of BCAN we use 10 landmarks, and for LCAN we use 50 landmarks.

In LCAN, the load-balancing is achieved through stretching and resizing the zones

according to the current population as explained in Section 4.2.2. While doing so,

some nodes along the boundary of one zone may find themselves in another zone

after resizing. Such nodes would not benefit from the binning, since they would be

surrounded by nodes from a different zone. Hence there is a trade-off between load-

balancing and performance here. We would like to see how much performance we are

losing in order to achieve load-balancing. Hence we also present performance results

for LCAN where the zone sizes are fixed and do not change for the duration of the

simulation. We call this setup as LCAN-NL (No Load-balancing).

The results for LCAN, RCAN and BCAN are shown in Figure 5.2. BCAN out-

performs LCAN in both topologies, which is expected due to the higher amount of

selectivity in BCAN. But at the same time, LCAN also performs better than the

RCAN, inspite of having the same load-balancing feature of RCAN (we shall see this

when we compare the node degree distribution in a later section). The difference in

performance for the two topologies can be explained by the distribution of latencies

we saw in Figure 5.1. GT-ITM has a uniform distribution of latencies between 300-

750 ms, whereas Inet3 has a high concentration around 200-350 ms and a short tail.
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Intuitively, this means that in the Inet3 topology, most nodes are equidistant from

each other with a small percentage of the remaining nodes set very far away. In such

a situation, it is difficult to get a 2 dimensional embedding of the landmarks. This is

why we see only a small improvement for Inet3 when using LCAN.

Another interesting observation is that there is very small improvement in LCAN-

NL compared to LCAN. This suggests that the we do not lose much performance by

maintaining the uniform load-balancing property of the RCAN.

5.4 Performance Variation with Number of Land-

marks

We create systems of 4K, 8K and 16K nodes using the BCAN and LCAN on both

GT-ITM and Inet3 topologies. The number of landmarks is varied from 2 to 20.

System performance is calculated in terms of the stretch observed between randomly

selected nodes in the overlay. Figure 5.3 show that that in both topologies, the initial

increase in the number of landmarks lowers stretch dramatically, but after achieving

the optimal low stretch, further increase in number of landmarks actually degrades

performance. There are two interesting things to note about from this experiment:

1. The optimal number of landmarks depends on the topology being used.

2. The degradation of performance with increase in landmarks is more pronounced

in the Inet3 topology than in the GT-ITM topology.

With the Internet topology changing dynamically, it would be difficult to accu-

rately predict the optimal number of landmarks. This is a significant disadvantage of

the binning scheme.

We now look at the corresponding performance of LCAN with respect to variation

in the number of landmarks. We again use systems with 4K, 8K and 16K nodes and
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vary the number of landmarks from 5 to 100. From Figure 5.4 and , we find that

the performance of LCAN does not degrade when we use more number of landmarks,

in fact more is always better. This is a significant advantage of LCAN over BCAN.

One important thing to note is that the improvement in performance for LCAN over

Inet3 is not significant. This reinforces our observation in the previous section about

the effect of topology on LCAN performance. The set of landmarks all being mostly

equidistant from each other, we are not able to embed them onto the 2 dimensional

CAN properly.

5.5 Node Degree Distribution

In this section we compare the state information maintained by each node in the

form of neighbor table size, for LCAN and BCAN. As mentioned in Section 3.2, by
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using BCAN, we lose the load balancing property of a DHT, and some nodes are

burdened with more responsibility than others. On the other hand, as explained in

Section 4.2.2, we make specific effort to preserve this load balancing aspect of the

DHT in LCAN without affecting the performance improvement obtained by binning.

We present below the results for the node neighbor table size (degree) distribution

for LCAN (50 landmarks) and BCAN (6 landmarks) for a system with 10K nodes.

The Figure 5.5 shows that we have been successful towards this goal. The LCAN dis-

tribution is what we would expect from an ordinary 2 dimensional RCAN. Although

the BCAN shows similar distribution, some nodes do have degrees as high as 27.
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Chapter 6

The Hypercube Binning Scheme

6.1 Introduction

In the previous chapter, we looked at a technique to make use of the delay to

the closest landmark for labeling a node with an ID. This approach enabled us to

provide better performance than RCAN. Now we explore whether we can do better

by using second and third closest landmarks to improve the overlay organization. For

using such higher dimensional information, we need an overlay with more dimensions.

Hence in this section we introduce a PIL technique for the Hypercube DHT overlay.

A k-cube or a Hypercube of k dimensions is an undirected graph H = (VH , EH)

consisting of n = 2k vertices labeled from 0 to n − 1, such that there is an edge

between any two vertices if and only if the binary representations of their labels differ

by exactly one bit.

The motivation of using the Hypercube is twofold. Firstly, it provides a data

structure with high connectivity. This makes it highly robust to failures. Secondly,

the overlay distance between two nodes in the Hypercube is encoded in the hamming

distance between their binary labels.

Let θj be the binary label of node j in the Hypercube and θj(i) be the bit at the

ith position in the binary label of node j. Then, the hamming distance between
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two labels θa and θb of length k bits is defined to be HD(θa, θb) = | {i | θa(i) 6= θb(i),

1 ≤ i ≤ k} |.

If we could “map” the bins created by the Binning Scheme onto the nodes of the

Hypercube, preserving this distance relationship, we would reap the benefits of not

only the closeness of nodes within the same bin, but also the advantage of having

the bins ordered on the overlay in close congruence with the physical topology. This

mapping is achieved in two steps:

1. We embed the landmark graph onto the Hypercube.

An embedding 〈f, g〉 of a graph G into a Hypercube H is defined by a mapping

f from the nodes of G to the nodes of H, together with a mapping g that maps

every edge e = (v, w) of G into a path g(e) connecting f(v) and f(w), the

images of nodes v and w, in H.

The binary labels assigned to the mapped landmarks on the Hypercube will

have the property that two landmarks close together in the landmark graph

will also be close together in the Hypercube.

2. Nodes joining the system will find their bin through delay measurements to the

landmarks. In the CAN Binning Scheme, one may recall that corresponding to

each bin is a particular ordering of the landmarks. In a similar manner, the

binary label of each bin in the Hypercube is constructed by concatenating the

binary labels assigned to each landmark, in the order corresponding to that bin.

The number of dimensions of the Hypercube is determined by the length of this

label and the number of such landmarks appended together. For a k-cube, there may

not be 2k occupied bins at any stage during the life-time of the overlay. This is

because of two reasons:

1. Certain bins may not be physically possible due to the constraints set by the

underlying topology.
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2. Nodes may not be present in the physical topology in locations which make

some bins possible.

Hence some of the existing bins may need to stretch out and occupy a volume

within the Hypercube enveloping their assigned label. Hence each bin in the k-cube

is identified by two labels:

1. Point label, θ = 〈a1a2...ak〉, ai ∈ {0, 1}, 1 ≤ i ≤ k

2. Volume label, φ = 〈a1a2...ak〉, ai ∈ {0, 1, X}, 1 ≤ i ≤ k

The Point label denotes the location of the bin within the Hypercube, whereas

the Volume label denotes the volume occupied by that bin. The X or “don’t care”

terms in the Volume label denote the unsplit dimensions of that bin. A single X term

implies that the bin stretches across an edge of the Hypercube, two X terms mean

that the bin stretches across a 4− cycle within the Hypercube, and so on. Hence a

bin b in the Hypercube is represented by {b, φb, θb}, where φb is its volume label and

θb is its point label. If the identity of a bin is clear from the context, we may skip it

and represent the bin merely as {φb, θb}.

The introduction of don’t care terms in the volume label necessitates the redefi-

nition of the hamming distance between two nodes as follows:

The hamming distance between two volume labels φa and φb of length k bits is

defined to be HD(φa, φb) = | {i | φa(i) 6= φb(i), φa(i), φb(i) 6= X, 1 ≤ i ≤ k} |.

Two properties of the Volume label and the Point label will be of use to us further

on in this section:

Containment Property: HD(θ, φ) = 0 : This property states that point label of

the Hypercube lies completely within volume label, and hence the hamming distance

between them must be 0.

Completeness Property: If the number of bins in the k cube is 2k, then θ = φ -

This property states that for the case when all the bins within the Hypercube have
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been completely occupied, no bin needs to stretch across any dimension, hence there

are no X terms in the Volume label, and the Point label and the Volume label are

identical.

6.2 Assignment of Binary Labels to the Land-

marks

Binary labels must be assigned to landmarks in such a manner that the hamming

distance between bins should reflect the physical distance between them. To achieve

this, we first embed the graph of landmarks into the Hypercube.

The quality of an embedding is evaluated by two properties: dilation and expan-

sion, defined as below:

The dilation δ is defined as the maximum distance in H between images (in H)

of two adjacent nodes in G when mapped under g.

The expansion ε is defined to be the ratio of the number of nodes in H to the

number of nodes in G.

Intuitively, the dilation is a measure of how much discrepancy there is between

the graph and its embedding, in terms of distance while the expansion is a measure

of how many extra nodes are required to achieve the embedding. We are specifically

interested in embeddings with dilation one. When a landmark graph is embedded

into the Hypercube with dilation one, landmarks which are adjacent in the landmark

graph, and hence close together in the physical topology, will also be adjacent in

the Hypercube. Also, as discussed before, the length of the landmark label decides

the number of dimensions of the Hypercube, which in turn decides the amount of

information each node will have to maintain. Hence our motivation in this section

would be to achieve an optimal embedding.

An optimal embedding of a graph would be one with expansion one and dilation

less than two.
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As an example, consider a graph of 16 landmarks. The optimal embedding would

embed this graph into the 4-cube. But an embedding with expansion two, would be

an embedding into a 5-cube. This requires one bit more than the optimal embedding.

Thus an increment of one in the expansion translates to one extra bit required for

the labeling.

Unfortunately, for arbitrary graph G with unbounded degree, it is NP-Complete

to decide whether it can be optimally embedded into a k-cube [23]. The unbounded

degree of the graph is essential for proving NP-Completeness. If the graph G has

bounded degree, efficient embeddings are possible. The best results for bounded

degree graphs in terms of dilation and expansion are for the binary trees. Of particular

interest to us is a conjecture by Havel [10], which states that all parity-balanced binary

trees with 2k vertices can be embedded optimally in a k-cube.

A parity-balanced tree is a tree in which the two bi partitions of the tree have

the same number of vertices.

We make use of results in [4], in which it is also proved that any binary tree may

be parity-balanced by adding extra leaves to the smaller bi-partition. Thus a binary

tree T with n vertices may be balanced by adding no more than n vertices. Together

with Havel’s conjecture this result gives us an embedding for arbitrary binary trees

with dilation 1 and expansion no more than 2.

Given such a parity-balanced binary tree, we can run any simple greedy search

algorithm to get the embedding of this tree into the Hypercube. The leaves added

to make the tree balanced are discarded later on. For all simulation results in this

thesis, we have used the algorithm given in [1].

Hence, given this information, we proceed to assign binary labels to the landmarks

in the following manner:

1. From the landmark graph, obtain the binary spanning tree. This is obtained

by following the usual Kruskal algorithm for spanning trees, but if the addition

of an edge results in the degree of any node increasing beyond 3, that edge is
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discarded and the algorithm continues with the next shortest edge.

2. This binary spanning tree is converted to a balanced binary tree, by adding the

required number of leaves to the smaller bi-partition.

3. The optimal embedding is obtained for this tree, using the greedy search.

4. The leaves added in step 2 are discarded, and the labels of the images in the

Hypercube become the required binary labels of the corresponding landmarks.

These steps are illustrated in the example in Figure 6.1. We use a system of 6

landmarks, a, b, c, d, e and f for this example. Using the modified Kruskal’s algorithm,

we generate a binary spanning tree which is shown in Step 1. Now we observe that this

tree is unbalanced. The two bi-partitions are composed of {a, d} and {b, c, e, f}. To

make it balanced, we add two dummy nodes, h and i to b and c respectively. In step 3,

we run the greedy search algorithm to get the optimal labeling for this balanced binary

spanning tree, and the resultant labels are as shown in the figure. Finally in step 4,

we discard the dummy nodes. Note that the dummy nodes are always leaves and

their adding/discarding has no effect on the dilation of the mapping. The spanning

tree as seen in the 3-cube is also shown in the figure. One important property of

this assignment is that since the dilation is 1, the adjacency property is satisfied, i.e.

if two landmarks are close to each other, and are adjacent in the binary spanning

tree, they would also be adjacent in the Hypercube. But two nodes being adjacent in

the Hypercube would not necessarily imply that they are also close in the underlying

topology. Consider the nodes f and h in the Hypercube. They are very far away

in the spanning tree, but in the Hypercube, they are adjacent to each other. This

property is used of during the routing in the Hypercube of bins.
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6.3 Assignment of Point Labels to Bins

Each newly joining node finds its bin by measuring delays to the set of landmarks.

The point label of the bin of this node is formed by concatenating together the

landmark labels in the increasing order of the delays. The number of landmark labels

appended is a configurable parameter λ. Consider the previous example - a node

which is newly joining the Hypercube finds the delays to the landmarks a, b, c, d, e

and f and finds that the delay order is: c, a, b, f, e, d. Then the corresponding point

label of the bin of this node would be formed by appending together the first λ

landmark labels. With a λ = 3, we get a point label of 010000001. Hence the

resulting Hypercube of the bins would be a 9-cube.

There is a trade-off between efficiency and state information when we change the

value of λ. With higher values of λ, we are incorporating more delay information,

and hence we should be able to create better overlays, but at the same time, the bin

Hypercube dimensions would be larger and hence would lead to each bin having to

maintain more number of neighbors.

Another problem is that due to nodes joining in a non-uniform manner some bins

may have higher population than other bins. The nodes mapped to the same bin will

all have the same volume and point labels and would require the election of a bin leader

or some other cluster management technique. We avoid this by appending a random

binary string to the point and volume labels with enough bits (µ) to accommodate all

such nodes binned to the same location in the Hypercube. The consequence of this

is that the dimensions of the Hypercube will be further increased and each node may

have to maintain a small number of extra neighbors corresponding to the random bits.

Again we encounter a trade-off between load-balancing and efficiency. By increasing

the size of the random bit string we can balance the load among the nodes, whereas

the locality of the Hypercube suffers. Hence we need to achieve a balance between

the locality (λ), and load-balancing (µ). The addition of the random bits ensures
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that every node in the Hypercube has unique point and volume labels. Henceforth,

we use the term bins and nodes interchangeably.

6.4 Routing in the Hypercube

Data : Message is to be routed from a source bin, src = {θsrc, φsrc}, to the

bin responsible for θdest

Result: Message is routed to the bin responsible for the destination point in

the Hypercube
curr = src;

while HD(θdest, φcurr) 6= 0 do

/* Get prospective next hop neighbors for curr */

nHopSet = { Neighbors of curr with minimum hamming distance to

θdest};

/* Select closest one among them */

nextHop = Bin in nHopSet closest to curr in terms of delay;

Forward message to nextHop;

curr = nextHop;

end

return curr;

Algorithm 3: Hypercube Routing Algorithm

The Hypercube as an inter-connection network for parallel computers has been

studied extensively. It has also been recently suggested as an overlay structure in

Hypercast [12]. Routing in such Hypercubes proceeds as follows:

1. On receiving a message from X to be sent to Y , the node Z will get the hamming

distance of all its neighbors in the Hypercube to the destination Y .

2. The node will get a set of neighbor nodes, all of which are at the same ham-
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ming distance to the destination node Y . It can forward the message to any

one of these prospective neighbors, because all of these paths will lead to the

destination.

This routing algorithm, though very simple to implement, does not take into

account the actual underlying topology and the position of the nodes in this topology.

Our routing algorithm takes advantage of the fact that the bins in the Hypercube

are actually ordered on the basis of their proximity to each other. Routing proceeds

in two steps, the first of which is the same as in the original Hypercube routing, i.e.

we find the set of neighbors which are at the minimum hamming distance from the

destination.

Now, remember that according to the embedding in the previous section, a node

in our Hypercube will have some neighbors which are not physically close because

of the artifacts of embedding. So the next step comprises of weeding out such non-

close neighbors and selecting the closest neighbor among the set of possible next hop

neighbors. This is done on the basis of delay measurements. Finally, the message

is forwarded to the closest neighbor. This algorithm is presented in Algorithm 3.

The algorithm terminates when the hamming distance between the current node’s

volume label and the destination’s point label is zero. This is due to the containment

property, defined earlier. When this happens, we know that the message has arrived

at the destination, since the hamming distance between a node’s point and volume

labels is always zero.

6.5 Join Procedure in the Hypercube

The join algorithm proceeds in the following manner. New nodes wishing to

join the overlay will first find its point label in the Hypercube. It gets the address

of a random node within the overly through a bootstrap server. It sends a message

starting at this random node with the destination as its point label through Hypercube
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Step 1 Step 2

Step 3 Step 4

00 01

11

00 01

10 11

00 01

10 11

00 01

10 1110

{a, XX, 01}

{b, 1X, 11}

{a, 0X, 01}

{c, 10, 10} {b, 11, 11}

{a, 0X, 01} {a, 01, 01}{d, 00, 00}

{b, 11, 11}{c, 10, 10}

Figure 6.2: Example of nodes joining the 2-cube

routing.

On reaching the destination, if it finds a bin with the same point label, it joins

that bin and the algorithm terminates. Else it will split a random unsplit dimension

(indicated by don’t care symbols in the volume label) at which their point labels differ.

The update of neighbors has to be done carefully. Consider a bin which has been

split along dimension i. Among its current neighbors, there are three possibilities:

1. Bins which are unsplit along dimension i. Such bins would have an X at position

i in their volume id. Such bins are at a distance of 1 from the old bin as well

as the newly joined bin, hence they remain neighbors of both bins.

2. Bins which differ in their volume id along dimension i. Such bins are no longer

neighbors of the old bin, but would be a neighbor of the new bin, since the bin

dimensions can only have one of two possible values, 0 or 1.
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3. Bins which do not differ in their volume id along dimension i. Such bins are

still neighbors of the old bin, but would not be a neighbor of the new bin, since

they would be at a hamming distance of 2 from the new bin.

The join procedure is illustrated with an example in Figure 6.2. The 2-cube has

2 dimensions, hence it is capable of containing four bins, {00, 01, 10, 11}. Now, newly

joining node {a, 01, XX} will occupy the whole Hypercube, since it is the first node.

This is represented by its Volume label, 〈XX〉, which tells us that both the dimensions

of the 2-cube have yet to be split. This situation is shown in Step 1 in Figure 6.2.

Now, another new node b, with a hash id 〈11〉 joins the overlay. A join request for

this hash id is inserted into the overlay, and since the node responsible for the whole

hash space is a, it is chosen to be split. According to the Algorithm 4, the split occurs

as follows. We first find the set of unsplit dimensions of a along which the hash ids

of a and b differ. In this case, they differ only along the first dimension, and hence it

is selected to be split. Then, any neighbors of a, (in this case none) are updated for

this new situation.

The join request of nodes c and d proceed in a similar way.

The significance of the “sibling” nodes in Algorithm 4 will be clear in the next

section when we discuss the leave procedure in the Hypercube.

6.6 Leave Procedure in the Hypercube

A node in the P2P system may either gracefully leave the system, after informing

its neighbors or may die unexpectedly. The case where a node leaves gracefully,

is discussed in section 6.6.1. The case where a node leaves unexpectedly, without

informing its neighbors is discussed in section 6.6.2.
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Data : Newly joining node with bin {a, θa, φa}, φa is unknown

Result: Node inserted into k-cube
s = random node address from bootstrap server;

/* Get the bin responsible for the point θa */

{b, θb, φb} = HypercubeRoute(s, θa);

if θb == θa then

Add node to this bin and return;

end

/* Get the set of dimensions which can be split */

splitSet = ∪i=k
i=1{ i | θb(i) 6= θa(i) ∩ φb(i) = X} ;

Let j = A randomly selected dimension from the set splitSet;

/* Volume id of a is same as that of b */

φa = φb;

/* Except for the the bit where the split occurs */

φa(j) = θa(j), φb(j) = θb(j);

foreach neighbor bin {n, θn, φn} of b in Hypercube do

if φn(j) == X then

/* n is the neighbor of both a and b */

Add n as a neighbor of a and vice versa;

If b is in the sibling set of n, add a into it;

else if φb(j) 6= φn(j) then

/* this bin is no longer neighbor of b */

Remove n as a neighbor of b and vice versa;

Add n as a neighbor of a and vice versa;

end

Add a and b as siblings and neighbors of each other.

Algorithm 4: Node Join Algorithm.
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Data : Node a with bin {θa, φa}, and sibling set S wants to leave the system

Result: Node deleted consistently from k-cube

/* Send message to to all nodes in S to expand and fill up

volume θa. */

foreach neighbor {n, θn, φn} of a in S do

/* Find differing bit and expand to X */

Find i | φn(i) 6= φa(i);

θn(i) = X;

end

Connect neighbors of a who, after expansion will be neighbors of each other.

Leave the system.

Algorithm 5: Graceful Leave Algorithm.

6.6.1 Graceful Leave

To understand how to achieve a correct leave, let us review the node join procedure

once again. When a node joins the overlay, it does so by splitting the space belonging

to one already existing node. The old node splits one of its X terms to either 1 or 0.

Now, these two nodes are eligible to expand into each other’s space if either of

them fails, by just “unsplitting” the same bit back to X. We will call such nodes as

“sibling” nodes. Hence each node just needs to know the last node that it split, so

that if it wants to leave, it will contact that node to occupy its space again. There

is one subtle aspect. If any node a finds that its sibling b has been split and the

new node, c, which caused the split is also its neighbor (recall bins of type 1 in the

previous section), then now a considers both b and c to be its siblings. We will call

the set of such siblings to be the “sibling set”. When a node wants to leave, it needs

to inform all the nodes in the sibling set to expand and fill up the space left by it.

The sibling set is reset every time a node gets split again, and is replaced with the

new sibling. This procedure is presented in Algorithm 5.
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We illustrate the algorithm with an example. Going back to Figure 6.2, in Step

1, node a’s sibling set is empty. In step 2, node b splits node a’s space in the 2-cube,

hence a and b are now siblings of each other. In Step 3, c splits b. This causes b to reset

the current sibling set containing a and replace it with the new sibling set containing

c. b is also put into the sibling set of c. The case of a is more interesting. Since the

node which has just been split is b, which is in a’s sibling set, and since both b and c

are still neighbors, a will add c to its sibling set. Finally, in step 4, d splits a’s space,

and hence a resets its sibling set containing b, c and replaces it with the sibling set

containing just d. Hence we are left with the situation where a, d and b, c are siblings

of each other. With this information, graceful leave of any single node is handled by

its corresponding sibling node. We note that we maintain only enough information to

handle single leaves. To consistently handle multiple consecutive leaves, one needs to

maintain extra state information. Consider what happens once node a wants to leave

the system. d will expand into a’s space. But now d does not have a sibling node.

Now if it wants to leave the system it must find its sibling node among its current

neighbors. This is done by selecting the set of neighbors which most closely match

its volume label in terms of X terms.

6.6.2 Abrupt Leave

We now look into the case of the abrupt leave. Being a distributed system, a node’s

knowledge about the system is limited to just one hop neighbors. The neighbors of the

failed node will each try to occupy some space of the failed node, and propagate this

information to their own neighbors. If two neighbors of the dead node decide to occupy

some common space belonging to the failed node simultaneously, the Hypercube will

be inconsistent. We employ a reactive approach where each node tries to fill up as

much of the failed node’s space as possible, and backs off if it detects a collision. [17]

employs a similar try/back-off approach for its node leave procedure.

One benefit of the Hypercube is that because of its high connectivity, it is highly
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robust to node failures. It would take a large number of simultaneous failures for the

Hypercube topology to get disconnected.
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Chapter 7

Hypercube Simulation Results

In this section we look at the performance of the Hypercube structure in terms of

stretch and node state information as we vary the number of landmarks. We compare

results with RCAN. Among the existing P2P systems, CAN [17] has the property that

with increase in the number of dimensions, we see an improvement of the overlay

stretch at the cost of increased state information. We run a simple experiment to find

the best possible performance available from the CAN P2P system with increasing

dimensions, and the results are in Figure 7.1. We use a range of dimensions from

5-50 in a system with 10K nodes. We see that after a significant improvement from 5

to 20 dimensions, the performance is more or less same regardless of increase in the

number of dimensions. As seen in the figure, this is true for both GT-ITM and Inet3

topologies. Hence we use 20 dimensions for all results involving RCAN.

Please note that this is an RCAN with no knowledge of the underlying topology.

We have used RCAN for comparison purposes instead of BCAN because of a practical

issue. We have demonstrated in Section 5.4 that BCAN performance degrades after

10 landmarks. The embedding scheme in [18] required distributing landmarks in a

cyclic fashion, to distribute the information evenly among all the dimensions equally.

Hence there is an implicit assumption that the number of landmarks is more than the

number of dimensions of the CAN. With the number of landmarks limited to 10, we
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Figure 7.1: Variation of latency stretch with dimensions in RCAN

cannot use BCAN with very high dimensions to match the required amount of state

information held by the Hypercube.

We also compare the performance with a random Hypercube (RCUBE), with

the same number of dimensions as the Hypercube with landmarks (which we will

henceforth call the LCUBE), to understand how much we gain by the use of landmark

embedding.

The Hypercube has three parameters which decide its performance:

1. The Number of Landmarks (n) With an increase in the number of land-

marks, we get a more comprehensive view of the network. Our embedding

technique guarantees that for a system of n landmarks, we obtain an embed-

ding of dlog(n)e. Note that the dummy nodes added for the sake of labeling,

may increase the total length of the labeling by at most one bit. This indicates
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that for complete use of all binary labels, n should be as close as possible to

a power of 2. We may have to run the labeling algorithm multiple times with

different selection of landmarks to achieve this, but being an offline calculation,

this is not an issue.

2. The Number of Landmark Labels Appended for Hash ID (λ) As dis-

cussed earlier, with increasing λ we see an increase in the locality information

available to the system, and hence a corresponding increase in the performance

of the system in terms of end-to-end latency. But with this we also see an in-

crease in the number of dimensions of the Hypercube leading to an increase in

the state information each node has to maintain, e.g. neighbor table sizes.

3. The Number of Random Bits Appended (µ) We append µ random bits

behind the landmark labels. This will randomize the nodes binned into the

same location in the Hypercube. Hence such nodes will have the same prefix,

formed by the λ landmark labels together but they will be differentiated by their

random bits. It is the random bits which allow the Hypercube to scale without

increasing state information. If a node joins the overlay with a particular label,

and finds that a node already exists with that label, it could rejoin with the

same landmark prefix but a new random suffix.

From the above parameters, we find that a system with n landmarks, λ land-

mark labels appended, followed by µ random bits would result in a Hypercube with

(dlog(n)e ∗ λ) + µ dimensions. Our goal would be to keep the dimensions as low as

possible and maintain good performance.
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7.1 Performance Variation with the Number of

Landmarks (n)

We use a system with number of nodes ranging from 256, 512, 1K, ... 16K, and

observe the results for 7, 15 and 30 landmarks, with λ = 1, µ = 10. The Figure

7.2 shows the stretch for each of the cases. We see that as expected, the increase in

number of landmarks does bring about corresponding decrease in the stretch. Recall

that the Laminar Binning technique did not provide much improvement with more

landmarks when used on the Inet3 topology, since the algorithm was dependent on

the latency distribution of the underlying topology. In Figure 7.2 (B), we see that

this is not the case with the LCUBE. The performance of LCUBE gets better with

more landmarks, while it is true that the performance improvement is slightly more

in the GT-ITM topology.

7.2 Performance Variation with the Number of

Landmarks Appended (λ)

The number of landmarks appended decides the amount of locality information

available to the system. We run the simulation with n = 30 landmarks using λ = 1, 2

and µ = 10 and create a system with 256, 512, 1K, ... 16K nodes. The corresponding

Figure 7.3 shows the large performance gap between the two cases. Note that with

just 2 appended landmarks, we are able to achieve a stretch of 4 for a 16K node

system. Of course, this comes at the cost of node state information. For the case

when two landmark labels are appended, some nodes have to maintain as high as

200 nodes in their neighbor table. This large overhead makes appending more than

one landmark only feasible for large overlays comprising of highly connected nodes.

For small overlays not overly concerned about latency, the performance from a single
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landmark label would suffice.

7.3 Latency Stretch

Here we compare the performance of the Hypercube with the RCAN with 20

dimensions, an LCUBE with n = 30, λ = 1 and µ = 10, and the RCUBE. This gives

us the idea of how the Hypercube performs compared to a RCAN with about the same

amount of state information. For RCUBE, we first run the embedding algorithm for

n = 30, λ = 1 and mu = 15, and then use the resultant number of dimensions for

its construction. This allows a fair comparison between RCUBE and LCUBE, since

each node maintains the same amount of state in either overlay. The Figure 7.4 shows

the results of the experiment. As can be seen, the RCUBE itself far outperforms the

RCAN and LCUBE also outperforms the RCUBE in turn.

Note that the performance improvement in LCUBE compared to the RCUBE is

not much in the Inet3 topology (Figure 7.4(B)), compared to that seen in the GT-ITM

topology (Figure 7.4(A)).

7.4 Node Degree Distribution

We present here the node degree distribution for a system with n = 30, λ = 1,

and µ = 15. This system can scale up to 30 ∗ 215 which is approximately 100K nodes.

The Figure 7.5 illustrates the results of this experiment. The topology used does not

make much difference in the degree distribution, and hence we provide results for

GT-ITM only. We have added the distribution of the 20 dimension RCAN and the

RCUBE for comparison. We see that the RCAN maintains less state than both of

the Hypercube structures. On the other hand, both of the Hypercubes have pretty

much the same node degree distribution, although here again the randomized version

has slightly less state.
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Chapter 8

Conclusion

We presented two techniques for assignment of Proximity Induced Labels to nodes

in P2P systems, hence making them topology aware. The first technique, Laminar

Binning, works for the 2-d CAN, requiring minimal changes to the existing CAN

algorithms and also preserving the desirable properties like load balancing. The sec-

ond technique, Hypercube Binning, provides a more complex solution for Hypercube

networks, requiring more state at each node for improved routing performance at the

cost of load balancing.

Hence the Laminar Binning is suitable for pure P2P applications where each and

every peer node is assumed to be equal in sharing responsibility and services, with

some degree of topology awareness, e.g. Content Distribution Networks, Distributed

File Servers/Mirrors on the Internet, etc. On the other hand, the Hypercube P2P

system is suitable for applications where a small fraction of nodes are willing to share

more responsibility than others, and end-to-end latency is required to be as minimal

as possible, e.g. Application Layer Multicast.

One could also think of extending the hypercube labeling to existing P2P struc-

tures which use binary labels, e.g. Kademlia. Kademlia is part of a family of XOR

networks, where the distance metric between nodes is the hamming distance between

their binary labels. This suggests a natural mapping between the node labels in
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the Hypercube and the ones in Kademlia. The idea of embedding locality informa-

tion from landmarks into labels of existing P2P structures in general seems to be a

promising area for future research.

Lastly, our Hypercube overlay can be used to achieve approximate PNS in tradi-

tional structured P2P systems. In [9], the authors experimentally showed that the

ideal PNS, where a node joining the system fills its routing table with the closest

among all the candidate nodes, gives almost the same end-to-end latency as the un-

derlying IP network. Of course, such an ideal PNS is currently not practicable since

the set of such candidate neighbors is usually very large, and so selecting the closest

among them requires too many measurements. We have shown experimentally that

the nodes on our Hypercube overlay show a close congruence between their physical

topology and the overlay topology. A node on our system can perform an expand-

ing ring search and find all the closest nodes within a few hops. These nodes could

be used as an approximation for the PNS. Hence we can combine the benefits of

the structured (but randomized) P2P system like load balancing and robustness to

correlated failures with the locality awareness provided by our Hypercube overlay.
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