
Abstract

GUPTA, NIKHIL

Slipstream-Based Steering for Clustered Microarchitectures

 (Under the direction of Dr. Eric Rotenberg)

To harvest increasing levels of ILP while maintaining a fast clock, clustered

microarchitectures have been proposed. However, the fast clock enabled by clustering

comes at the cost of multiple cycles to communicate values among clusters. A chief

performance limiter of a clustered microarchitecture is inter-cluster communication

between instructions. Specifically, inter-cluster communication between critical-path

instructions is the most harmful. The slipstream paradigm identifies critical-path

instructions in the form of effectual instructions.

We propose eliminating virtually all inter-cluster communication among effectual

instructions, simply by ensuring that the entire effectual component of the program

executes within a cluster. This thesis proposes two execution models: the replication

model and the dedicated-cluster model. In the replication model, a copy of the effectual

component is executed on each of the clusters and the ineffectual instructions are shared

among the clusters. In the dedicated-cluster model, the effectual component is executed

on a single cluster (the effectual cluster), while all ineffectual instructions are steered to

the remaining clusters. Outcomes of ineffectual instructions are not needed (in hindsight),

hence their execution can be exposed to inter-cluster communication latency without

significantly impacting overall performance.

IPC of the replication model on dual clusters and quad clusters is virtually

independent of inter-cluster communication latency. IPC decreases by 1.3% and 0.8%,

on average, for a dual-cluster and quad-cluster microarchitecture, respectively, when

inter-cluster communication latency increases from 2 cycles to 16 cycles. In contrast, IPC

of the best-performing dependence-based steering decreases by 35% and 55%, on

average, for a dual-cluster and quad-cluster microarchitecture, respectively, over the

same latency range. For dual clusters and quad clusters with low latencies (fewer than 8

cycles), slipstream-based steering underperforms conventional steering because improved

latency tolerance is outweighed by higher contention for execution bandwidth within

clusters. However, the balance shifts at higher latencies. For a dual-cluster

microarchitecture, dedicated-cluster-based steering outperforms the best conventional

steering on average by 10% and 24% at 8 and 16 cycles, respectively. For a quad-cluster

microarchitecture, replication-based steering outperforms the best conventional steering

on average by 10% and 32% at 8 and 16 cycles, respectively.

 Slipstream-based steering desensitizes the IPC performance of a clustered

microarchitecture to tens of cycles of inter-cluster communication latency. As feature

sizes shrink, it will take multiple cycles to propagate signals across the processor chip.

For a clustered microarchitecture, this implies that with further scaling of feature size, the

inter-cluster communication latency will increase to the point where microarchitects must

manage a distributed system on a chip. Thus, if individual clusters are clocked faster, at

the expense of increasing inter-cluster communication latency, performance of a

clustered microarchitecture using slipstream-based steering will improve considerably as

compared to a clustered microarchitecture using the best conventional steering approach.

Slipstream-Based Steering for Clustered Microarchitectures

by

Nikhil Gupta

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Master of Science

COMPUTER ENGINEERING

Raleigh

2003

Approved by

Dr. Eric Rotenberg, Chair of Advisory Committee

Dr. Gregory T. Byrd

Dr. Thomas M. Conte

 ii

BIOGRAPHY

Nikhil Gupta was born on December 31, 1979, in Amritsar, India. He graduated

with a Bachelor of Engineering (B.E.) degree in Instrumentation and Control Engineering

from Nirma Institute of Technology (affiliated with Gujarat University), Ahmedabad,

India, in June 2001.

In fall 2001, he joined the masters program in Computer Engineering at North

Carolina State University, Raleigh, NC. He was part of the slipstream project and

completed his masters thesis under the direction of Dr. Eric Rotenberg.

 iii

ACKNOWLEDGEMENT

I would like to dedicate this thesis to my parents Yash and Ashoki. My father, for

his boundless (well almost) knowledge, which never ceases to amaze and inspire me. My

mother, under whose meticulous care, life has been such a breeze. Their love and

encouragement means a lot to me. My sister Richa, who with her effervescent smile

lights up our family. I would like to thank Shubha for her love and constant support.

I would really like to thank Dr. Eric Rotenberg for having provided me with this

opportunity to work with him. Working for him has been a pleasant and fantastic learning

experience. He is easily one of the best teachers I have ever studied under (though he has

not heard me say that). His ability to breakdown the most complex of problems and

explain them even to a layman always amazes me. I have learnt a lot from him about

computer architecture, better writing, and a good work ethic.

I would like to thank Dr. Greg Byrd and Dr. Tom Conte for agreeing to be on my

Masters thesis committee.

I would also like to thank Sandy Bronson for all that she does to make the life of

all of us students easy.

I would like to thank Aravindh Anantaraman, Karthik Sunadaramoorthy, Prakash

Ramrakhyani, and Zach Purser for making the working environment (first) in EGRC 438

 iv

and (then) in Partners-I, as friendly as it could possibly be. Their invaluable insights and

regular help that they provided on the simulator and other practical aspects was always

very helpful. I would also like to thank Huiyang Zhou, Mark Toburen, Saurabh Sharma,

and Ugur Gunal for providing a ready ear for my doubts.

I would also like to thank the technical support team of the Electrical and

Computer Engineering department, who were always prompt in solving my problems.

I would like to thank Aaditya Goswami, Viraj Mehta, and Vikas Garg for having

put up with my cooking, erratic behavior, bad jokes and an occasional mania for

cleanliness, all of these two years. A special thanks to Chintan Trivedi, Harshit Shah,

Manas Somaiya, Jinal Dalal, and Vishal Khanderia for making the transition of living in a

new country, a new environment so easy. I have always valued their friendship and

advice and will continue to do so in the future. A special thanks to Shalin Dalal, Magathi

Jayaram, Rachana Shah, and Rachana Doshi for their friendship.

 v

INDEX

List of Figures ... vii

List of Tables .. xii

1 Introduction... 1

1.1 Contributions... 5
1.2 Organization of the Thesis .. 8

2 Processors with a Clustered Microarchitecture... 9

2.1 Clustered Microarchitecture.. 11
2.1.1 Number of write ports to a cluster register file ... 15
2.1.2 Number of read ports to a cluster register file .. 16

2.2 Bottlenecks in a Clustered Microarchitecture... 17
2.3 Steering Heuristics .. 17

3 Slipstream Components used for Steering.. 21

3.1 IR-predictor... 22
3.2 IR-detector .. 23
3.3 Use of IR-detector/IR-predictor in Steering Mechanisms 24

4 Thesis Contribution: Slipstream-Based Steering .. 25

4.1 Replication of Effectual Component (Rep0) .. 25
4.1.1 Implications of redundant execution... 28
4.1.2 Regarding memory disambiguation.. 29
4.1.3 Implication of IR-mispredictions.. 30
4.1.4 Changes to the microarchitecture.. 30

4.2 Replication of Effectual Component with Store Distribution (RepS) 31
4.3 Dedicated Cluster for Effectual Component (DEC0) 34
4.4 Dedicated Cluster for Effectual Component with Store Distribution (DECS) 36

5 Simulation Methodology .. 39

5.1 Microarchitecture Configuration .. 39
5.2 Benchmarks... 41

6 Experimental Results .. 42

6.1 Conventional steering ... 43
6.1.1 Dual_2x4_b8... 44
6.1.2 Quad_4x2_b8.. 48
6.1.3 Quad_4x3_b12.. 51

6.2 Slipstream-based steering ... 54

6.2.1 Dual_2x4_b8... 57

 vi

6.2.1.1 Trends among slipstream-based steering .. 57
6.2.1.2 Comparison of slipstream-based steering with conventional steering.. 58

6.2.2 Quad_4x2_b8.. 63
6.2.2.1 Trends among slipstream-based steering .. 64
6.2.2.2 Comparison of slipstream-based steering with conventional steering.. 65

6.2.3 Quad_4x3_b12.. 69
6.2.3.1 Trends among slipstream-based steering .. 70
6.2.3.2 Comparison of slipstream-based steering with conventional steering.. 72

7 Related Work .. 77

8 Summary and Future Work... 81

8.1 Summary ... 81
8.2 Future Work .. 83

Bibliography ... 87

Appendix... 89

 vii

List of Figures

Figure 1-1: Replication model of instruction execution in a clustered microarchitecture.. 4
Figure 1-2: Dedicated-cluster model of instruction execution in a clustered

microarchitecture. ... 5
Figure 2-1: Comparison between a non-clustered microarchitecture and a quad-clustered

microarchitecture. ... 12
Figure 4-1: A breakdown of the dynamic instruction stream. .. 26
Figure 4-2: Replication of the effectual component. .. 28
Figure 4-3: A breakdown of the dynamic instruction stream. .. 32
Figure 4-4: Replication of effectual component with store distribution........................... 33
Figure 4-5: Dedicated cluster for effectual component. ... 35
Figure 4-6: Dedicated cluster for effectual component with store distribution. 38
Figure 6-1: Relative performance of conventional steering on dual_2x4_b8, with respect

to Base_8, for gap. .. 45
Figure 6-2: Relative performance of conventional steering on dual_2x4_b8, with respect

to Base_8, for gcc. .. 45
Figure 6-3: Relative performance of conventional steering on dual_2x4_b8, with respect

to Base_8, for perl... 46
Figure 6-4: Relative performance of conventional steering on dual_2x4_b8, with respect

to Base_8, for twolf. .. 46
Figure 6-5: Relative performance of conventional steering on dual_2x4_b8, with respect

to Base_8, for vortex. .. 46
Figure 6-6: Average load disambiguation stall cycles of Dep0 and DepR on dual_2x4_b8,

for perl. ... 47
Figure 6-7: Relative performance of conventional steering on dual_2x4_b8, with respect

to Base_8. Results are averaged across five benchmarks. .. 48
Figure 6-8: Relative performance of conventional steering on quad_4x2_b8, with respect

to Base_8, for gap. .. 49
Figure 6-9: Relative performance of conventional steering on quad_4x2_b8, with respect

to Base_8, for gcc. .. 49
Figure 6-10: Relative performance of conventional steering on quad_4x2_b8, with

respect to Base_8, for perl. ... 50
Figure 6-11: Relative performance of conventional steering on quad_4x2_b8, with

respect to Base_8, for twolf... 50
Figure 6-12: Relative performance of conventional steering on quad_4x2_b8, with

respect to Base_8, for vortex... 50
Figure 6-13: Relative performance of conventional steering on quad_4x2_b8, with

respect to Base_8. Results are averaged across five benchmarks............................. 51
Figure 6-14: Relative performance of conventional steering on quad_4x3_b12, with

respect to Base_12, for gap... 52
Figure 6-15: Relative performance of conventional steering on quad_4x3_b12, with

respect to Base_12, for gcc. .. 52
Figure 6-16: Relative performance of conventional steering on quad_4x3_b12, with

respect to Base_12, for perl. ... 52

 viii

Figure 6-17: Relative performance of conventional steering on quad_4x3_b12, with
respect to Base_12, for twolf... 53

Figure 6-18: Relative performance of conventional steering on quad_4x3_b12, with
respect to Base_12, for vortex... 53

Figure 6-19: Relative performance of conventional steering on quad_4x3_b12, with
respect to Base_12. Results are averaged across five benchmarks........................... 53

Figure 6-20: Percentage of predicted-ineffectual instructions.. 56
Figure 6-21: Relative performance of slipstream-based steering (confidence threshold of

15 and no WSV) and dependence-based steering on dual_2x4_b8, with respect to
Base_8, for bzip. ... 60

Figure 6-22: Relative performance of slipstream-based steering (confidence threshold of
15 and no WSV) and dependence-based steering on dual_2x4_b8, with respect to
Base_8, for gap. .. 60

Figure 6-23: Relative performance of slipstream-based steering (confidence threshold of
15 and no WSV) and dependence-based steering on dual_2x4_b8, with respect to
Base_8, for gcc.. 60

Figure 6-24: Relative performance of slipstream-based steering (confidence threshold of
15 and no WSV) and dependence-based steering on dual_2x4_b8, with respect to
Base_8, for gzip. ... 61

Figure 6-25: Relative performance of slipstream-based steering (confidence threshold of
15 and no WSV) and dependence-based steering on dual_2x4_b8, with respect to
Base_8, for parser... 61

Figure 6-26: Relative performance of slipstream-based steering (confidence threshold of
15 and no WSV) and dependence-based steering on dual_2x4_b8, with respect to
Base_8, for perl... 61

Figure 6-27: Relative performance of slipstream-based steering (confidence threshold of
15 and no WSV) and dependence-based steering on dual_2x4_b8, with respect to
Base_8, for twolf. .. 62

Figure 6-28: Relative performance of slipstream-based steering (confidence threshold of
15 and no WSV) and dependence-based steering on dual_2x4_b8, with respect to
Base_8, for vortex. .. 62

Figure 6-29: Relative performance of slipstream-based steering (confidence threshold of
15 and no WSV) and dependence-based steering on dual_2x4_b8, with respect to
Base_8, for vpr.. 62

Figure 6-30: Relative performance of slipstream-based steering (confidence threshold of
15 and no WSV) and dependence-based steering on dual_2x4_b8, with respect to
Base_8. Results are averaged across all benchmarks. .. 63

Figure 6-31: IPC improvement of slipstream-based steering (confidence threshold of 15
and no WSV) with respect to dependence-based steering on dual_2x4_b8. Results
are averaged across all benchmarks. ... 63

Figure 6-32: Relative performance of slipstream-based steering (confidence threshold of
15 and no WSV) and dependence-based steering on quad_4x2_b8, with respect to
Base_8, for bzip. ... 66

Figure 6-33: Relative performance of slipstream-based steering (confidence threshold of
15 and no WSV) and dependence-based steering on quad_4x2_b8, with respect to
Base_8, for gap. .. 66

 ix

Figure 6-34: Relative performance of slipstream-based steering (confidence threshold of
15 and no WSV) and dependence-based steering on quad_4x2_b8, with respect to
Base_8, for gcc.. 66

Figure 6-35: Relative performance of slipstream-based steering (confidence threshold of
15 and no WSV) and dependence-based steering on quad_4x2_b8, with respect to
Base_8, for gzip. ... 67

Figure 6-36: Relative performance of slipstream-based steering (confidence threshold of
15 and no WSV) and dependence-based steering on quad_4x2_b8, with respect to
Base_8, for parser... 67

Figure 6-37: Relative performance of slipstream-based steering (confidence threshold of
15 and no WSV) and dependence-based steering on quad_4x2_b8, with respect to
Base_8, for perl... 67

Figure 6-38: Relative performance of slipstream-based steering (confidence threshold of
15 and no WSV) and dependence-based steering on quad_4x2_b8, with respect to
Base_8, for twolf. .. 68

Figure 6-39: Relative performance of slipstream-based steering (confidence threshold of
15 and no WSV) and dependence-based steering on quad_4x2_b8, with respect to
Base_8, for vortex. .. 68

Figure 6-40: Relative performance of slipstream-based steering (confidence threshold of
15 and no WSV) and dependence-based steering on quad_4x2_b8, with respect to
Base_8, for vpr.. 68

Figure 6-41: Relative performance of slipstream-based steering (confidence threshold of
15 and no WSV) and dependence-based steering on quad_4x2_b8, with respect to
Base_8. Results are averaged across all benchmarks. .. 69

Figure 6-42: IPC improvement of slipstream-based steering (confidence threshold of 15
and no WSV) with respect to dependence-based steering on quad_4x2_b8. Results
are averaged across all benchmarks. ... 69

Figure 6-43: Relative performance degradation of slipstream-based algorithms for
dual_2x4_b8 and quad_4x3_b12, for vortex. ... 71

Figure 6-44: Relative performance of slipstream-based steering (confidence threshold of
15 and no WSV) and dependence-based steering on quad_4x3_b12, with respect to
Base_12, for bzip. ... 73

Figure 6-45: Relative performance of slipstream-based steering (confidence threshold of
15 and no WSV) and dependence-based steering on quad_4x3_b12, with respect to
Base_12, for gap. .. 73

Figure 6-46: Relative performance of slipstream-based steering (confidence threshold of
15 and no WSV) and dependence-based steering on quad_4x3_b12, with respect to
Base_12, for gcc.. 73

Figure 6-47: Relative performance of slipstream-based steering (confidence threshold of
15 and no WSV) and dependence-based steering on quad_4x3_b12, with respect to
Base_12, for gzip. ... 74

Figure 6-48: Relative performance of slipstream-based steering (confidence threshold of
15 and no WSV) and dependence-based steering on quad_4x3_b12, with respect to
Base_12, for parser... 74

 x

Figure 6-49: Relative performance of slipstream-based steering (confidence threshold of
15 and no WSV) and dependence-based steering on quad_4x3_b12, with respect to
Base_12, for perl... 74

Figure 6-50: Relative performance of slipstream-based steering (confidence threshold of
15 and no WSV) and dependence-based steering on quad_4x3_b12, with respect to
Base_12, for twolf. .. 75

Figure 6-51: Relative performance of slipstream-based steering (confidence threshold of
15 and no WSV) and dependence-based steering on quad_4x3_b12, with respect to
Base_12, for vortex. .. 75

Figure 6-52: Relative performance of slipstream-based steering (confidence threshold of
15 and no WSV) and dependence-based steering on quad_4x3_b12, with respect to
Base_12, for vpr.. 75

Figure 6-53: Relative performance of slipstream-based steering (confidence threshold of
15 and no WSV) and dependence-based steering on quad_4x3_b12, with respect to
Base_12. Results are averaged across all benchmarks. .. 76

Figure 6-54: IPC improvement of slipstream-based steering (confidence threshold of 15
and no WSV) with respect to dependence-based steering on quad_4x3_b12. Results
are averaged across all benchmarks. ... 76

Figure A-1: Relative performance of slipstream-based steering (confidence threshold of
3) on dual_2x4_b8, with respect to Base_8, for gap. ... 89

Figure A-2: Relative performance of slipstream-based steering (confidence threshold of
15) on dual_2x4_b8, with respect to Base_8, for gap. ... 89

Figure A-3: Relative performance of slipstream-based steering (confidence threshold of
3) on dual_2x4_b8, with respect to Base_8, for gcc... 90

Figure A-4: Relative performance of slipstream-based steering (confidence threshold of
15) on dual_2x4_b8, with respect to Base_8, for gcc... 90

Figure A-5: Relative performance of slipstream-based steering (confidence threshold of
3) on dual_2x4_b8, with respect to Base_8, for perl. ... 90

Figure A-6: Relative performance of slipstream-based steering (confidence threshold of
15) on dual_2x4_b8, with respect to Base_8, for perl. ... 91

Figure A-7: Relative performance of slipstream-based steering (confidence threshold of
3) on dual_2x4_b8, with respect to Base_8, for twolf. ... 91

Figure A-8: Relative performance of slipstream-based steering (confidence threshold of
15) on dual_2x4_b8, with respect to Base_8, for twolf. ... 91

Figure A-9: Relative performance of slipstream-based steering (confidence threshold of
3) on dual_2x4_b8, with respect to Base_8, for vortex. ... 92

Figure A-10: Relative performance of slipstream-based steering (confidence threshold of
15) on dual_2x4_b8, with respect to Base_8, for vortex. ... 92

Figure A-11: Relative performance of slipstream-based steering (confidence threshold of
15) on quad_4x2_b8, with respect to Base_8, for perl. .. 93

Figure A-12: Relative performance of slipstream-based steering (confidence threshold of
15) on quad_4x2_b8, with respect to Base_8, for vortex. .. 93

Figure A-13: Relative performance of slipstream-based steering (confidence threshold of
15) on quad_4x3_b12, with respect to Base_12, for gap. .. 94

 xi

Figure A-14: Relative performance of slipstream-based steering (confidence threshold of
15) on quad_4x3_b12, with respect to Base_12, for gcc. ... 94

Figure A-15: Relative performance of slipstream-based steering (confidence threshold of
3) on quad_4x3_b12, with respect to Base_12, for perl. .. 95

Figure A-16: Relative performance of slipstream-based steering (confidence threshold of
15) on quad_4x3_b12, with respect to Base_12, for perl. .. 95

Figure A-17: Relative performance of slipstream-based steering (confidence threshold of
3) on quad_4x3_b12, with respect to Base_12, for vortex. 95

Figure A-18: Relative performance of slipstream-based steering (confidence threshold of
15) on quad_4x3_b12, with respect to Base_12, for vortex. 96

 xii

List of Tables

Table 2-1: Comparison of hardware resources between a base superscalar processor and a
quad-clustered processor... 14

Table 5-1: Microarchitecture configuration.. 40
Table 5-2: Benchmarks and input data sets. ... 41
Table 6-1: IPC for 8-issue and 12-issue non-clustered processors. 42

 1

1 Introduction

Microarchitects attempt to exploit higher levels of instruction-level parallelism

(ILP) by developing processors with larger instruction windows and higher peak issue

rates. Studies have shown that it is not possible to increase processor complexity without

adversely affecting cycle time [2][18]. To harvest increasing levels of ILP while

maintaining a fast clock, clustered microarchitectures have been proposed. A clustered

microarchitecture breaks the monolithic execution window of a conventional superscalar

processor into multiple smaller windows, called clusters. Each cluster contains a

relatively small issue queue, a copy of the register file, a small number of dedicated

function units, and short (i.e., fast) bypasses among its function units. Effectively, each

cluster is a small-scale superscalar processor. The efficiency of individual clusters (less

complex issue logic, fast local bypasses, fewer register file read ports, etc.) allows the

clustered microarchitecture to be clocked faster than a monolithic microarchitecture.

Because of its significant advantages, clustering has already been implemented in the

Alpha 21264 [13].

However, the fast clock enabled by clustering comes at the cost of multiple cycles

to communicate values among clusters. If producer and consumer instructions are routed

to different clusters, the execution of consumer instructions will be delayed due to inter-

cluster communication. Thus, performance in terms of instructions executed per cycle

(IPC) is significantly affected by how instructions are steered, i.e., how instructions are

assigned to clusters. Various steering schemes have been proposed. Many of these are

 2

static (compiler-based) [9][17], while others are dynamic (based on run-time decisions)

[4][6][7]. More recent steering approaches are based on critical-path prediction [10][30],

the idea being that the execution of instructions on the critical path should not be delayed

by global communication.

Instructions that constrain the execution time of a program constitute its critical

path. To improve processor performance, the execution of critical-path instructions has to

be optimized. In the case of a processor with a clustered microarchitecture, this implies

that resource bottlenecks (e.g., limited function units in a cluster) and inter-cluster

communication latency must have minimum impact on the execution of critical-path

instructions.

This thesis proposes exploiting the distinction between effectual and ineffectual

instructions, originally defined in the context of slipstream processors

[14][20][21][24][28], in the context of clustered microarchitectures. The key idea put

forth in the slipstream paradigm is that only some of the instructions in the dynamic

instruction stream are needed for the correct forward progress of the program. These

instructions are called effectual instructions. Instructions that are non-essential for correct

forward progress are called ineffectual instructions. Ineffectual instructions include

unreferenced writes, non-modifying writes, and highly predictable branches (and all of

the computation chains feeding these instructions). We observe that ineffectual

instructions are by definition not critical. Their outcomes are not needed, hence their

completion does not need to be timely.

 3

 Unreferenced writes: These instructions produce values that are never consumed.

 Non-modifying writes: These instructions do not change machine state and so

effectual dependent instructions are not truly dependent on them.

 Correctly-predicted branches: Since the predictions are correct, verification can

be deferred without penalty (other than tying up rename checkpoints).

We conclude that the effectual component of the program is critical and the

ineffectual component is not, and this distinction should shape the way in which

instructions are assigned to clusters on a clustered microarchitecture.

The chief performance limiter of a clustered microarchitecture is inter-cluster

communication between instructions. Specifically, inter-cluster communication between

critical-path instructions is the most harmful. The slipstream paradigm identifies critical-

path instructions in the form of effectual instructions. We propose eliminating virtually

all inter-cluster communication among effectual instructions, simply by ensuring that the

entire effectual component of the program executes within a cluster. We propose two

alternative execution models that achieve this.

 In the first model (called the replication model), the effectual program component

(called the A-stream in slipstream processors [20]) is replicated and executed on

all clusters. Ineffectual instructions are not replicated, i.e., they are executed in a

distributed manner on all clusters. Consider the quad-cluster configuration shown

in Figure 1-1. The dynamic instruction stream can be divided into an effectual

 4

component and an ineffectual component. A full copy of the effectual component

is executed on each cluster, whereas ineffectual instructions are distributed among

the clusters.

Effectual Instructions

Ineffectual Instructions

Cluster I
Dynamic

Instruction
Stream

Cluster II Cluster III Cluster IV

Figure 1-1: Replication model of instruction execution in a clustered microarchitecture.

 In the second model (called the dedicated-cluster model), a single copy of the

effectual program component is executed on a dedicated cluster (i.e., no

replication). Ineffectual instructions are executed in a distributed manner on all

other clusters. From Figure 1-2, it can be seen that the effectual component of the

dynamic instruction stream is executed only on cluster I, while ineffectual

instructions are steered to clusters II, III, and IV.

 5

Effectual Instructions

Ineffectual Instructions

Cluster I
Dynamic

Instruction
Stream

Cluster II Cluster III Cluster IV

Figure 1-2: Dedicated-cluster model of instruction execution in a clustered microarchitecture.

1.1 Contributions

This thesis proposes methods for minimizing inter-cluster communication

between effectual instructions, virtually desensitizing the performance of a clustered

microarchitecture to inter-cluster communication latency. The contributions of this thesis

are as follows.

• A clustered microarchitecture has been developed that incorporates slipstream

components for distinguishing effectual and ineffectual instructions. The rename

stage is enhanced with conventional steering heuristics and new heuristics,

including assigning the same instruction to multiple clusters (replication)

according to various execution models. A key innovation is leveraging the

 6

existing renaming/register file mechanisms for supporting the new execution

models transparently.

• Four new algorithms (two based on the replication model and two based on the

dedicated-cluster model) for instruction execution in a clustered microarchitecture

are developed.

Replication of effectual component: A copy of the effectual program component is

executed on each of the clusters. Thus, virtually no inter-cluster communication

takes place between effectual instructions. The execution of ineffectual

instructions is distributed across all clusters as the delay experienced in their

execution can be tolerated.

Replication of effectual component with store distribution: The first algorithm

puts extra pressure on the limited issue bandwidth of a cluster. To ease this

pressure, the algorithm is slightly modified. Effectual stores are distributed

instead of replicated, like ineffectual instructions. The rationale is that effectual

stores are potentially more latency-tolerant than register-writing instructions, due

to typically longer separation between stores and loads as compared to producers

and consumers of register values. Issue bandwidth is freed within each cluster

because each cluster no longer executes all effectual stores (effectual stores, like

ineffectual instructions, are shared equally among all clusters).

 7

Dedicated-cluster for effectual component: The effectual program component is

executed on a single dedicated cluster called the effectual cluster. Ineffectual

instructions are steered to clusters other than the effectual cluster. No inter-cluster

communication exists between effectual instructions as they are executed on a

single cluster.

Dedicated-cluster for effectual component with store distribution: In the previous

algorithm, a large number of instructions are executed on the effectual cluster as

compared to the number of instructions executed on each of the other clusters.

Off-loading effectual stores to other clusters reduces demand on the effectual

cluster and does not increase inter-cluster register communication. All effectual

instructions except effectual stores are executed on a single cluster, while

effectual stores and all ineffectual instructions are steered to the remaining

clusters. The speedup gained by freeing execution resources on the effectual

cluster compensates for the increase in inter-cluster communication between

effectual stores and loads. This is especially beneficial in the case of low inter-

cluster bypass latencies, where execution bandwidth, not communication, is the

bottleneck.

• We study the effect of increasing inter-cluster communication latency on the

performance of various steering heuristics for dual-cluster and quad-cluster

configurations. To the best of our knowledge, no other research considers the

impact of more than two cycles of inter-cluster communication latency.

 8

(However, Aggarwal and Franklin [1] indirectly observed the effect of increasing

inter-cluster communication latency by increasing the number of clusters.) We are

interested in the impact of ramping up the clock rate of each cluster to the point

where inter-cluster communication is in the tens-of-cycles regime. This scenario

is effectively a distributed system on a single chip.

• We evaluate slipstream-related parameters in the design space of slipstream-based

clustered microarchitectures. We vary instruction-removal confidence threshold

and instruction-removal criteria.

1.2 Organization of the Thesis

Chapter 2 gives an overview of clustered microarchitectures and conventional

steering heuristics. Chapter 3 gives an overview of slipstream components that separate

effectual and ineffectual instructions. In Chapter 4, slipstream-based steering models are

proposed and explained. The simulation methodology and benchmarks are described in

Chapter 5. Chapter 6 presents the experimental results. Related work is discussed in

Chapter 7. Chapter 8 summarizes the thesis and proposes future work.

 9

2 Processors with a Clustered Microarchitecture

The amount of instruction-level parallelism (ILP) that can be extracted from a

program plays a major role in the performance of a superscalar processor. Larger

instruction windows combined with higher peak issue rates and more function units can

exploit large amounts of ILP. Studies have shown that large instruction windows and

high issue rates result in slower wakeup and select logic [2][18]. Also, larger register files

and more function units result in slower bypasses. Therefore, it is not possible to build

large monolithic instruction windows without adversely affecting the cycle time of a

processor.

In order to harvest increasing levels of ILP while maintaining a fast clock,

clustered microarchitectures have been proposed. A clustered microarchitecture divides

the monolithic execution window of a conventional superscalar processor into multiple

smaller windows called clusters. A cluster consists of a relatively small instruction

window, a copy of the register file, a small number of dedicated function units, and short

bypasses among its function units called intra-cluster bypasses. Intra-cluster bypasses

are fast because they span only a few function units. A global bypass bus called the inter-

cluster bypass bus interconnects all the clusters in the processor. The longer inter-cluster

bypasses are slow because they span all clusters.

The method by which instructions are assigned to a specific cluster for execution

is called steering. The pipeline stage that performs steering depends on the type of

 10

clustered microarchitecture. For the type of clustered microarchitecture described earlier,

the dispatch stage performs steering. This has been called dispatch-driven instruction

steering by Parlacharla and Smith [18]. Dispatch-driven steering results in a highly-

efficient design for individual clusters. The smaller instruction window and moderate

issue bandwidth imply less complex (i.e., fast) wakeup and select logic. Fewer function

units and a smaller register file (due to fewer read ports) enable the use of shorter (i.e.,

faster) bypasses within a cluster. Thus, a clustered microarchitecture can be clocked

faster than a monolithic microarchitecture.

A second form of clustered microarchitecture uses a monolithic instruction

window that issues instructions to multiple clusters. In this case, a cluster only has a copy

of the register file, a small number of dedicated function units, and short bypasses among

its function units. As before, inter-cluster bypasses connect the clusters and are slower

than the fast intra-cluster bypasses. In this form of clustered microarchitecture, an

instruction resides in the monolithic issue queue and is assigned to a cluster only when it

becomes ready to issue. Thus, instruction steering is performed in the issue stage. This

approach has been called execution-driven instruction steering by Parlacharla and Smith

[18]. This form of clustered microarchitecture has been implemented in the integer

pipeline of the Alpha 21264 [13]. The integer pipeline has a single issue queue with two

clusters. Each integer cluster consists of a copy of the integer register file and an equal

number of integer function units. A value produced in a cluster is communicated to

consumers in the same cluster, in the same cycle the value is produced. However, the

value takes an extra cycle to be communicated to consumers in the other cluster.

 11

Execution-driven steering tends to be more effective than dispatch-driven steering

because it defers steering until a more informed decision can be made. However, this

approach uses a large instruction window and is therefore less complexity-effective.

Also, steering logic is added to the issue stage, making it even more complex. Therefore,

the dispatch-driven approach is the better method in terms of efficiency.

2.1 Clustered Microarchitecture

In this thesis, we will consider a clustered microarchitecture that utilizes dispatch-

driven steering. Instructions are steered to clusters at the time of dispatch. Consequently,

instructions issue and execute within the cluster to which they are steered, as they would

on a small-scale superscalar processor. A value produced within a cluster is quickly

bypassed to consumers in the same cluster, via the intra-cluster bypasses. Thus, producers

and consumers execute in consecutive cycles if they are in the same cluster. All values

produced within a cluster are also communicated to the other clusters. However, values

produced in a cluster are available to consumers in another cluster only after a certain

delay called the inter-cluster communication latency. This delay depends on the number

of clusters and the size of the clusters.

As we move from a centralized microarchitecture to a clustered microarchitecture,

several changes are needed. The salient features of a clustered microarchitecture are

highlighted by comparing a quad-clustered configuration to a non-clustered

configuration, in Figure 2-1.

 12

Non-clustered Architecture

Fetch

Decode /
Rename

Issue Window /

Wakeup
Select

Execute
(RF, FUs)

Retire

Bypass

An Equivalent Quad-Clustered Architecture

Decode / Rename
STEERING

Fetch

Retire

Intra-Cluster
 Bypass

Issue
Window/
Wakeup
Select

Execute
(RF, FUs)

Cluster I

Issue
Window/
Wakeup
Select

Execute
(RF, FUs)

Cluster II

Issue
Window/
Wakeup
Select

Execute
(RF, FUs)

Cluster III

Issue
Window/
Wakeup
Select

Execute
(RF, FUs)

Cluster IV

Inter-Cluster Bypass

Figure 2-1: Comparison between a non-clustered microarchitecture and a quad-clustered
microarchitecture.

Note that the execution resources of the monolithic microarchitecture are divided

equally among all clusters. From the figure, the following observations can be made.

• Each cluster has a copy of the physical register file. A value produced within a

cluster is written into its copy of the register file, and all other copies. However, it

takes longer for the value to propagate to other copies of the register file (i.e.,

register files in other clusters), and it is dictated by the inter-cluster bypass

latency. The crucial advantage of replicating the register file is that the number of

read ports for each copy of the register file is far fewer than the number of read

ports for the register file of a monolithic configuration. The reason is that fewer

instructions issue each cycle within a cluster.

• The issue window, issue bandwidth, and function units of the monolithic

configuration are divided equally among all clusters.

 13

• An intra-cluster bypass bus is used to communicate values within a cluster and an

inter-cluster bypass bus is added to connect all clusters. The intra-cluster bypasses

are much faster than the inter-cluster bypass.

• To ensure that store-load dependences are observed, the memory disambiguation

unit is replicated, i.e., all clusters maintain a copy of the load/store queue. Stores

broadcast their addresses and values to all clusters, incurring the penalty of inter-

cluster communication latency. The store addresses and values are used by each

cluster to detect memory dependences and perform store-load forwarding as

needed.

• There is no change to the in-order front-end (fetch unit, decode, and rename unit)

and in-order back-end (retirement unit). The fetch, dispatch, and retire stages

remain centralized. Only the out-of-order execution window is distributed. The

only modification is that steering functionality is added to the dispatch stage.

Table 2-1 summarizes how the various resources of a non-clustered

microarchitecture change after distributing them among clusters in a quad-clustered

configuration. The first column in the table shows the hardware resources. The second

column characterizes the resources for the monolithic configuration. The third column

characterizes the resources for the quad-cluster configuration. From the table, the

following observations can be made regarding a clustered microarchitecture.

• The fetch and dispatch stages are common to all clusters, hence the fetch

bandwidth and dispatch bandwidth are not distributed. Likewise, the retirement

stage is common to all clusters.

 14

• The organization of the execution window is effectively transparent to renaming

and retirement, hence there is only one architectural map table, rename map table,

and free list, as usual.

• The issue bandwidth, cache ports, instruction queue, and function units of the

monolithic microarchitecture are divided equally among the four clusters.

• The register file is replicated, one copy per cluster. However, the number of read

ports to each cluster register file is reduced with respect to the monolithic register

file, since each cluster register file only needs to support reads from instructions

within the cluster. The number of write ports to each cluster register file is not

reduced with respect to the monolithic register file because all values are written

into each cluster register file.

• The load/store queue is replicated, one copy per cluster, as described earlier.

Table 2-1: Comparison of hardware resources between a base superscalar processor and a quad-

clustered processor.

Hardware Resource Base Superscalar Quad – Cluster
Fetch bandwidth 8 8 (common to all)

Dispatch bandwidth 8 8 (common to all)
Active list size 128 128 (common to all)
Free list size 128 128 (common to all)

Rename map table 1 1 (common to all)
Architectural map table 1 1 (common to all)

Issue bandwidth 8 2 per cluster
Cache ports 4 1 per cluster
Issue queue 128 32 per cluster
Registers 195 195 per cluster

Register read ports 16 4 per cluster
Register write ports 8 8 per cluster

Load / store unit 1 1 per cluster
Retire bandwidth 8 8 (common to all)

 15

Each cluster has a copy of the physical register file. This not only provides fast

local access, but it also reduces the number of read ports to the register file. The number

of read ports affects the size and hence the speed of the register file. This gives the

clustered microarchitecture an edge over the non-clustered microarchitecture. The

number of read and write ports are calculated in the following two sections.

2.1.1 Number of write ports to a cluster register file

An instruction can produce only one value. Thus, a single write port is needed per

instruction per cycle. Therefore, the maximum number of write ports (WP) needed for a

monolithic microarchitecture is as follows.

WPmonolithic = IW ………………… Equation 2-1

The number of writes that can occur simultaneously within a cluster is equal to

the aggregate issue width of the clustered microarchitecture. The reason is that all values

have to be written in each cluster register file, even those produced by other clusters.

Thus, the number of write ports is determined by the aggregate issue width of the

clustered microarchitecture.

WPcluster = n * CIW ………………… Equation 2-2

Above, n is the number of clusters and CIW is the cluster issue width.

The aggregate issue width of the clustered microarchitecture equals the total issue

width of the monolithic microarchitecture, therefore:

n * CIW = IW ………………… Equation 2-3

 16

WPcluster = IW ………………… Equation 2-4

WPcluster = WPmonolithic ………………… Equation 2-5

Thus, the number of write ports to the cluster register file is equal to the number

of write ports to the monolithic register file.

2.1.2 Number of read ports to a cluster register file

In general, the number of read ports to a register file is determined by the issue

width (IW) of the processor. An instruction can have a maximum of two source operands.

Hence, two reads are performed at the same time for one instruction, which implies that

two read ports are needed per instruction per cycle. Therefore, the maximum number of

read ports (RP) needed for a monolithic microarchitecture is as follows.

RPmonolithic = 2 * IW ………………… Equation 2-6

The number of instructions that can be issued per cycle within a cluster is the

cluster issue width (CIW). The number of read ports to the cluster register file is

determined by this cluster issue width, as follows.

RPcluster = 2 * CIW ………………… Equation 2-7

RPcluster = 2 * IW / n ………………… Equation 2-8

 RPcluster = RPmonolithic / n ………………… Equation 2-9

It can be seen that the number of read ports per cluster register file is reduced by a

factor of n with respect to the monolithic register file, thereby reducing its complexity

and improving the register access time. For the quad-cluster configuration shown,

 17

RPcluster = ¼ RPmonolithic ………………… Equation 2-10

2.2 Bottlenecks in a Clustered Microarchitecture

The efficiency of various hardware resources enables a clustered

microarchitecture to have a shorter clock period than a monolithic microarchitecture.

However, clustered microarchitectures suffer from the following bottlenecks.

• Inter-Cluster Communication Latency: It takes multiple clock cycles to

communicate values via the long inter-cluster bypasses. The execution of an

instruction whose source operands are produced in another cluster is delayed due

to the extra time it takes for values to be communicated via the inter-cluster

bypass.

• Smaller Cluster Issue Bandwidth: There may be more instructions ready for issue

on a cluster than can be issued in a cycle, while at the same time, there may be

empty issue slots available in another cluster. This imbalance leads to issue

bandwidth stalls on one cluster and under-utilization of resources on the other.

2.3 Steering Heuristics

Steering heuristics dictate the performance achieved by a clustered

microarchitecture. Effective steering can reduce inter-cluster communication and

optimize resource usage, whereas ineffective steering can cause significant performance

degradation and negate the advantage that a clustered microarchitecture provides over a

monolithic microarchitecture. Various steering heuristics have been proposed.

 18

Modulon (Mod3) [4]: A new cluster is selected every n instructions on the basis of a

round-robin policy. For example, for Mod3 steering in a quad-cluster configuration, the

first three instructions are assigned to cluster I, the next three to cluster II, and so on. This

algorithm does not try to minimize inter-cluster communication but achieves a fairly

good load balance via equal instruction distribution among clusters.

Branch-Cut (BC) [4]: Instructions are assigned to the same cluster until a branch is

reached. Instructions after the branch are then assigned to a new cluster according to a

round-robin policy. Therefore, instructions are steered on a basic block level. It has been

observed that instructions within a basic block typically belong to the same dependence

chain(s). Thus, forcing a possible dependent chain of instructions onto the same cluster

would reduce inter-cluster communication and achieve a balanced distribution of

instructions among the clusters.

Load-Cut (LC) [4]: Instructions are assigned to the same cluster until a load is reached.

The load and instructions following the load are assigned to a new cluster according to a

round-robin policy. Loads often begin a chain of dependent instructions. Thus, by

changing the cluster on encountering a load, a possible dependent chain of instructions is

steered to the same cluster and inter-cluster dependences are reduced accordingly.

 19

Least-Loaded (LL) [4]: This algorithm tries to balance the distribution of instructions

among clusters. Every new instruction is assigned to the least-loaded cluster. The least

loaded cluster is the cluster with the least number of instructions in its issue queue.

Dependence-Based (Dep0): This steering heuristic was proposed by Canal et. al. [6]. An

explicit attempt is made to minimize inter-cluster communication by steering consumer

instructions to the same cluster as their producers. The information needed for steering is

obtained during instruction decoding/renaming because register dependences have to be

taken into consideration. The algorithm works as follows.

• If an instruction has no source operands, it is assigned to the least-loaded cluster.

• If an instruction has one source operand, it is assigned to the cluster where the

source operand has been produced or will be produced.

• If an instruction has two source operands, and both are in the same cluster, then

the instruction is assigned to that cluster. If the two source operands are

produced in different clusters, then the instruction is assigned to the least-loaded

cluster among the producer clusters.

Readiness-Dependence-Based (DepR): This steering heuristic is very similar to the one

proposed by Baniasadi et. al. [4]. Like the previous dependence-based scheme, this

scheme also explicitly tries to minimize inter-cluster communication, but it takes the

readiness of the source operands into account. A source operand is said to be globally

ready if it is ready for consumption in all the clusters, and not just its producer cluster.

The algorithm works as follows.

 20

• If an instruction has no source operands, it is assigned to the least-loaded cluster.

• If an instruction has one source operand and that operand is globally ready, it is

assigned to the least-loaded cluster. Otherwise, the instruction is steered to the

cluster that produced or will produce the source operand.

• If an instruction has two source operands and both are globally ready, it is

assigned to the least-loaded cluster. Otherwise, it is assigned to the cluster that

produces the youngest source. The youngest source refers to the source operand

whose producer is the closest to this instruction (consumer), in program order.

 21

3 Slipstream Components used for Steering

The slipstream paradigm [20] proposes that only a fraction of the dynamic

instruction stream is needed for a program to make correct forward progress. This

component of the dynamic instruction stream is termed effectual. Many general-purpose

programs contain a significant number of instruction sequences that either have no effect

on the final outcome of a program or are highly predictable. Such instructions are called

ineffectual instructions. Ineffectual instructions include unreferenced writes, non-

modifying writes, highly-predictable branches, and computation chains leading up to

them.

A slipstream processor runs two redundant copies of a program, one slightly

ahead of the other, on a chip multiprocessor (CMP) or a simultaneous multithreading

(SMT) processor. Ineffectual instructions are speculatively removed from the leading

program, called the advanced stream (A-stream). The A-stream is sped up because it

fetches and executes fewer instructions than the original program. All data and control

outcomes from the A-stream are communicated to the trailing program, called the

redundant stream (R-stream). The R-stream compares the communicated outcomes

against its own outcomes. If a deviation is detected, the corrupted A-stream context is

recovered from the R-stream context. This deviation is called an IR-misprediction. The

R-stream also exploits the outcomes of the A-stream as accurate branch and value

predictions. Thus, although the R-stream retires the same number of instructions as the

 22

original program, it fetches and executes much more efficiently. As a result, both

program copies finish sooner than the original program.

Two slipstream components are needed for identifying ineffectual instructions.

1. The instruction-removal predictor, or IR-predictor, is essentially a branch predictor

augmented for instruction removal. It generates the program counter (PC) for the next

block of instructions to be fetched in the A-stream, similar to a conventional branch

predictor. The IR-predictor also specifies a bit-vector that identifies ineffectual

instructions within a fetch block.

2. The instruction-removal detector, or IR-detector, identifies past instructions which

were not essential for the R-stream’s correct forward progress. The IR-detector then

conveys to the IR-predictor that these instructions can potentially be skipped in the A-

stream, in the future. The IR-predictor removes the corresponding instructions from

the A-stream after repeated indications by the IR-detector, i.e., after a certain

confidence threshold has been reached.

3.1 IR-predictor

The IR-predictor is a conventional branch predictor augmented to keep track of

instruction removal information. It is indexed like the gshare predictor[15], by XORing

the PC with the global branch history bits. Each table entry contains the following

information for a dynamic basic block.

 23

• Tag: This is the start PC of the basic block and is used to determine whether the

entry contains information for the block being fetched. A partial tag can be used

to reduce the total storage, if predictor aliasing is negligible.

• 2-bit counter: A 2-bit counter is used to predict the outcome of a basic block that

ends with a conditional branch.

• Confidence counters: A resetting confidence counter [12] is provided for each

instruction in the basic block. The counter corresponding to a particular

instruction is incremented if the IR-detector identified that instruction to be

ineffectual. Otherwise, the counter is reset to zero. Repeated indications by the

IR-detector saturate the confidence counter, in which case the corresponding

instruction is predicted to be ineffectual by the IR-predictor and removed from the

A-stream when it is next encountered.

3.2 IR-detector

The IR-detector consumes retired R-stream instructions and data. It then identifies

instructions which were not essential for correct forward progress, in retrospect. The IR-

detector watches for any of the following three triggering conditions for instruction

removal.

• Unreferenced writes, i.e., a write followed by a write to the same location, with

no intervening read.

• Non-modifying writes, i.e., a write that does not modify the value of a location.

• Correctly-predicted branches.

 24

When any of the above conditions are observed, the corresponding instruction is

selected for removal and this information is passed on to the IR-predictor. Additional

ineffectual instructions are selected by a technique called back-propagation. Back-

propagation detects computation chains that feed the instructions selected for removal

based on the triggering conditions mentioned above. An instruction can be selected for

removal if all of its dependent instructions are selected for removal. For example, once a

branch is selected, the computation leading to that branch is no longer needed and can be

selected for removal, if no other instructions depend on the computation.

3.3 Use of IR-detector/IR-predictor in Steering Mechanisms

For our purposes, the IR-detector and IR-predictor are used only as a means for

identifying predicted-ineffectual instructions. That is, they are not actually used to

remove instructions, since there is no separate A-stream thread.

The bit vector produced by the IR-predictor identifies ineffectual instructions and

this is used by the steering mechanism directly, for distinguishing between effectual and

ineffectual instructions.

 25

4 Thesis Contribution: Slipstream-Based Steering

The goal of slipstream-based steering is to desensitize IPC performance to tens of

cycles of inter-cluster communication latency. We conjecture that executing the effectual

component entirely on a single cluster will achieve this goal while still effectively

exploiting the parallel resources available in the clustered microarchitecture.

4.1 Replication of Effectual Component (Rep0)

We attempt to eliminate inter-cluster communication among effectual instructions

by executing a copy of the effectual component on each of the clusters. On the other

hand, the ineffectual component of the program is distributed (shared) among the

clusters. Thus, the only potential inter-cluster communication is between ineffectual

instructions in different clusters. Intra-cluster communication is guaranteed between (1)

effectual producers and effectual consumers, and (2) effectual producers and ineffectual

consumers. The latter aspect distinguishes the replication models described in this section

and Section 4.2 from the non-replication models (dedicated-cluster models) described in

Sections 4.3 and 4.4.

To manage the distribution of ineffectual instructions, the dynamic instruction

stream is divided into traces. A trace consists of one or more basic blocks and is

composed of both effectual and ineffectual instructions. This can be seen in Figure 4-1

(light gray = effectual, dark gray = ineffectual). A, B, C, and D are traces that are part of

 26

the dynamic instruction stream. Ceff is the predicted-effectual component and Cineff is the

predicted-ineffectual component of trace C. We use Cbr to refer to all the branches in

trace C. Branches can also be divided into predicted-effectual branches (Cbr,eff) and

predicted-ineffectual branches (Cbr,ineff).

C = Ceff + Cineff ………………. Equation 4-1

Cbr = Cbr,eff + Cbr,ineff ………………. Equation 4-2

Dynamic Instruction Stream

Ceff Cineff

Cbr,eff Cbr,ineff

Cbr

A B C D

Figure 4-1: A breakdown of the dynamic instruction stream.

We say that each trace is owned by a particular cluster. A new trace is assigned to

a cluster in a round-robin manner. For an n-cluster configuration, each cluster owns one

out of every n traces. All instructions in a trace are executed within the cluster that owns

the trace. Therefore, predicted-effectual and predicted-ineffectual instructions of a trace

 27

are executed within the cluster which owns that trace. Only the predicted-effectual

instructions of the trace are executed on clusters that do not own the trace. In this way,

predicted-effectual instructions are replicated and predicted-ineffectual instructions are

distributed equally among the clusters.

According to this policy, effectual branches are redundantly executed on all

clusters, raising the question of how to resolve mispredicted branches. The first option is

to exploit redundancy and thereby allow the earliest resolved branch to redirect the fetch

unit. However, we found the complexity of managing multiple branches with a single

rename checkpoint to be cumbersome. So, we instead implemented the second option,

which is to steer effectual branches to only a single cluster, the one that owns the trace

containing the branch. This also reduces contention for issue bandwidth within the

clusters slightly. Note also that it does not increase inter-cluster communication.

Figure 4-2 shows how this heuristic works for a quad-cluster configuration. A

segment of the dynamic instruction stream is divided into four traces, A, B, C, and D. A’

is the reduced version of trace A. For the quad-cluster configuration shown, cluster I

owns trace A, cluster II owns trace B, cluster III owns trace C, and cluster IV owns trace

D. Thus, a cluster owns one in every four traces. All instructions in trace A are executed

on cluster I, but predicted-ineffectual instructions and branches of trace A are not

executed on clusters II, III, and IV. In other words, predicted-effectual instructions minus

predicted-effectual branches of trace A are executed on clusters II, III, and IV. The

reduced version of trace A can therefore be represented as follows.

 28

A’ = A – Aineff – Abr,eff ………………. Equation 4-3

Since A = Aeff + Aineff,

 A’ = Aeff – Abr,eff ………………. Equation 4-4

The same logic can be applied to the other traces.

Dynamic
Instruction Stream Cluster I Cluster II Cluster III Cluster IV

A’ = Aeff – Abr,eff
B’ = Beff – Bbr,eff
C’ = Ceff – Cbr,eff
D’ = Deff – Dbr,eff

A

B

C

D

Aineff

Aeff

C’

B’

D’

A
A’

C’

D’

Beff

Bineff

B

A’

D’

B’

Ceff

Cineff

C

A’

C’

B’

Deff

Dineff

D

Figure 4-2: Replication of the effectual component.

4.1.1 Implications of redundant execution

In a clustered microarchitecture, each cluster has a copy of the physical register

file. While decoding and renaming an instruction, the logical destination register is

mapped to the same physical register on all clusters. Using our steering algorithm, a

predicted-effectual instruction is dispatched to each of the clusters for redundant

execution. This does not require changes to the existing rename mechanism. All copies of

 29

an instruction will write their identical values to the same location in all the physical

register files. Note that it is wasteful for effectual copies to broadcast their values to other

clusters. We could eliminate communication for these redundant values, and thereby

reduce register file write ports, reduce power consumption on inter-cluster bypasses, etc.

This aspect is discussed in the future work section (Section 8.2).

As predicted-effectual instructions are executed redundantly on each of the

clusters, it is possible that the result of a predicted-effectual instruction executed on

cluster I is communicated to cluster II before cluster II’s copy of the instruction has

executed. In this case, dependent instructions in cluster II may issue/execute before the

parent instruction executes in cluster II. Since the values produced by redundant

instructions are identical, there is no problem with this scenario.

4.1.2 Regarding memory disambiguation

In the base clustered microarchitecture, broadcast of store addresses and values to

other clusters is delayed by the inter-cluster communication latency. This may make

memory disambiguation a major bottleneck due to loads conservatively waiting for all

prior store addresses. A solution is to use aggressive memory dependence speculation. It

has been shown that memory dependence speculation is almost as accurate as oracle

memory disambiguation [8][16]. In any case, our architecture is less sensitive to this

problem since effectual stores and loads reside in the same cluster. There is still the

problem of ineffectual stores delaying disambiguation of effectual loads in other clusters.

Memory dependence speculation could very accurately predict that there are no

 30

dependences in this situation, since presumably effectual loads should not depend on

ineffectual stores.

4.1.3 Implication of IR-mispredictions

 An instruction-removal misprediction, or IR-misprediction, occurs when an

effectual instruction is incorrectly predicted as an ineffectual instruction [20]. In our

context, this implies that an instruction that should have executed redundantly on each of

the clusters is now executed on only one of the clusters. Thus, effectual instructions that

depend on an IR-mispredicted-instruction in another cluster will have to wait for the

value to be communicated via the inter-cluster bypass. Therefore, an IR-misprediction

results in inter-cluster communication between effectual instructions.

4.1.4 Changes to the microarchitecture

Key changes that must be introduced in the microarchitecture for implementing

this scheme are as follows.

• After fetching an instruction, it is dispatched to all clusters if it is predicted-

effectual (except for predicted-effectual branches), or steered to one of the

clusters (depending on the owner of the trace) if it is predicted-ineffectual or a

predicted-effectual branch.

• Instruction dispatch is stalled if any of the cluster issue queues are full. This is

only true for predicted-effectual instructions (except branches) since they must be

replicated.

 31

• A predicted-effectual instruction is retired only after all copies have completed

execution on each of the clusters. In other words, multiple instances of an

instruction are re-integrated into a single instance before retiring.

4.2 Replication of Effectual Component with Store Distribution

(RepS)

We modify the algorithm in Section 4.1 to reduce contention for cluster issue

bandwidth. Instead of replicating effectual stores, we distribute them just like ineffectual

instructions, based on the fact that memory dependence distances are longer than register

dependence distances. Therefore, all predicted-effectual instructions except predicted-

effectual branches and predicted-effectual stores are replicated. This implies that no

branches or stores are replicated.

Distributing effectual stores increases inter-cluster communication between

effectual stores and loads. On the other hand, by not executing stores redundantly,

resources are freed for executing the residual effectual component faster. The newly-

exposed inter-cluster communication between effectual stores and loads may be offset by

the speedup gained by freeing execution resources in each cluster.

Figure 4-3 shows a segment of the dynamic instruction stream with a breakdown

of effectual and ineffectual instructions. In addition to the terms used in Figure 4-1, a few

 32

more terms are introduced. Cst indicates all the stores in trace C, Cst,eff indicates the

predicted-effectual stores, and Cst,ineff indicates the predicted-ineffectual stores.

 Dynamic Instruction Stream

C eff Cineff

A B C D

Cst

Cst,ineffCst,eff Cbr,ineffC br,eff

Cbr

Figure 4-3: A breakdown of the dynamic instruction stream.

Consider the quad-cluster configuration shown in Figure 4-4. A segment of the

dynamic instruction stream is divided into traces A, B, C, and D. A’’ indicates the

reduced version of a trace. As in the first algorithm, a cluster owns one in every four

traces. Therefore, cluster I owns trace A, cluster II owns trace B, and so on. A cluster that

owns a trace executes all instructions in that trace. On the other hand, a cluster that does

not own a trace does not execute the branches, stores, and predicted-ineffectual

instructions of that trace. In other words, it executes all predicted-effectual instructions

 33

other than predicted-effectual stores and predicted-effectual branches, shown below for

A”.

A’’ = A – Aineff – Abr,eff – Ast,eff ………………. Equation 4-5

A’’ = Aeff – Abr,eff – Ast,eff ………………. Equation 4-6

The same logic applies to other traces.

Dynamic
Instruction Stream Cluster I Cluster II Cluster III Cluster IV

A’’ = Aeff – Abr,eff – Ast,eff
B’’ = Beff – Bbr,eff – Bst,eff
C’’ = Ceff – Cbr,eff – Cst,eff
D’’ = Deff – Dbr,eff – Dst,eff

A

B

C

D

A

Aineff

Aeff

C’’

B’’

D’’

C’’

D’’

Beff

Bineff

B

A’’ A’’

D’’

B’’

Ceff

Cineff

C

A’’

C’’

B’’

Deff

Dineff

D

Figure 4-4: Replication of effectual component with store distribution.

Below are the key changes that must be introduced in the microarchitecture for

implementing this scheme (in addition to the changes described for the previous

scheme).

 34

• After fetching an instruction, it is dispatched to all clusters if it is predicted-

effectual (except for predicted-effectual branches/stores), or steered to one of the

clusters (depending on the owner of the trace) if it is predicted-ineffectual or a

predicted-effectual branch/store.

4.3 Dedicated Cluster for Effectual Component (DEC0)

We propose another model for eliminating inter-cluster communication between

effectual instructions: All predicted-effectual instructions are executed on a single

dedicated cluster and all predicted-ineffectual instructions are steered to clusters other

than the dedicated cluster to which effectual instructions are steered. In this way, inter-

cluster communication between effectual instructions is eliminated, except in the rare

case of an IR-misprediction (since an effectual instruction is misclassified as an

ineffectual instruction and steered to a different cluster). Ineffectual instructions, which

depend on both effectual and ineffectual instructions, experience delays in execution due

to inter-cluster communication latency. As these instructions are less critical, these delays

can be tolerated. Note that the advantage of this model with respect to the previous

models is that computation is compressed to just the effectual component on the

dedicated cluster. On the other hand, ineffectual instructions must now wait longer for

values from effectual instructions, since the effectual component is not replicated on all

clusters.

Figure 4-5 shows how this heuristic works for a quad-cluster configuration. The

dynamic instruction stream is broken into two components, predicted-effectual and

 35

predicted-ineffectual instructions. All predicted-effectual instructions are steered to a

single cluster, i.e., cluster I. This cluster, which is designated solely for the purpose of

executing effectual instructions, is called the effectual cluster. All ineffectual instructions

are steered to clusters other than the effectual cluster, i.e., clusters II, III, and IV, on the

basis of dependence-based steering.

Dynamic

Instruction Stream Cluster I Cluster II Cluster III Cluster IV

Ineffectual instructions are steered to
clusters II, III, and IV, ac c o r d i n g t o a
dependence-based algorithm

Effectual Instructions

Ineffectual Instructions

Effectual
instructions
steered only
to Cluster I

Figure 4-5: Dedicated cluster for effectual component.

Since there is no replication, no additional changes to the clustered

microarchitecture are needed other than basing steering on effectualness.

 36

4.4 Dedicated Cluster for Effectual Component with Store

Distribution (DECS)

Depending on the type of program that is being run, the IR-predictor generally

predicts about 10 – 65 % of the dynamic instruction stream to be ineffectual. A

significant number of instructions are therefore predicted to be effectual. In the steering

algorithm described in Section 4.3, all predicted-effectual instructions are executed on the

effectual cluster, while all predicted-ineffectual instructions are executed on clusters

other than the effectual cluster. Therefore, many instructions are executed on the effectual

cluster and a comparatively lesser number of instructions are executed on each of the

other clusters. Off-loading some of the effectual instructions to other clusters can ease

pressure on the effectual cluster, but we must be careful that the resulting effectual inter-

cluster communication is tolerable.

Predicted-effectual stores can be off-loaded to other clusters without introducing

inter-cluster register communication. The only instructions that directly depend on stores

are loads. In many cases, a dependent load consumes a store value long after it has been

committed. Also, if a store misses in the cache, a dependent load has to wait for at least

the time it takes to service the cache miss. If a store and a dependent load were steered to

different clusters, the extra time for which the load has to wait due to inter-cluster

communication latency is small in comparison to the time it takes to service a (L2) cache

miss. Therefore, store-load dependences are relatively more tolerant of inter-cluster

communication latency. There is still the issue of quickly resolving ambiguous and false

store-load dependences (non-dependent effectual loads wait for the effectual store

 37

address from other clusters), but as mentioned earlier, aggressive memory dependence

speculation can very accurately remove false dependences [8][16].

For the algorithm described in this section, all store instructions are executed on

clusters other than the effectual cluster. Thus, predicted-effectual instructions minus

predicted-effectual stores are steered to the effectual cluster, while predicted-ineffectual

instructions plus predicted-effectual stores are steered to clusters other than the effectual

cluster.

Figure 4-6 shows how this algorithm works for a quad-cluster configuration. The

dynamic instruction stream is represented as a collection of stores (predicted-effectual

and predicted-ineffectual), predicted-effectual instructions (except predicted-effectual

stores), and predicted-ineffectual instructions (except predicted-ineffectual stores). All

stores and predicted-ineffectual instructions are steered to clusters II, III, and IV

according to the DepR scheme. Predicted-effectual instructions minus predicted-effectual

stores are steered to cluster I.

Again since there is no replication, there are no additional changes to the clustered

microarchitecture other than basing steering on effectualness.

 38

Dynamic

Instruction Stream Cluster I Cluster II Cluster III Cluster IV

Ineffectual instructions and stores are
steered to clusters II, III, and IV according
to a dependence-based algorithm

Effectual
instructions
steered only
to Cluster I Effectual Instructions

Ineffectual Instructions

Stores

Figure 4-6: Dedicated cluster for effectual component with store distribution.

 39

5 Simulation Methodology

5.1 Microarchitecture Configuration

A detailed cycle-accurate simulator forms the basis of the simulation

environment. The Simplescalar ISA (PISA) [5] is used. The simulator models a

dynamically scheduled processor with a seven-stage pipeline. There are separate L1

instruction and data caches. A unified L2 cache is used. A large IR-predictor is used for

predicting the effectualness of instructions and predicting branch outcomes. An IR-

detector based on implicit back-propagation is used [14]. Experiments are conducted for

various non-clustered microarchitectures and equivalent clustered microarchitectures (i.e.

same aggregate issue bandwidth and window size). For all non-clustered configurations,

the issue queue and reorder buffer each have 256 entries and the load/store queue has 128

entries. Two different non-clustered configurations have been implemented, as follows.

• Base_8: The fetch, dispatch, issue, and retire bandwidths are 8 per cycle. There

are 8 cache ports and 8 universal function units.

• Base_12: The fetch, dispatch, issue, and retire bandwidths are 12 per cycle. There

are 12 cache ports and 12 universal function units.

The equivalent clustered microarchitectures corresponding to Base_8 are as follows.

• dual_2x4_b8: A dual-cluster configuration with an issue queue of 128 per cluster,

an issue bandwidth of 4 per cluster, 4 cache ports per cluster, and 4 universal

function units per cluster.

 40

• quad_4x2_b8: A quad-cluster configuration with an issue queue of 64 per cluster,

an issue bandwidth of 2 per cluster, 2 cache ports per cluster, and 2 universal

function units per cluster.

The equivalent clustered microarchitecture corresponding to Base_12 is as follows.

• quad_4x3_b12: A quad-cluster configuration with an issue queue of 64 per

cluster, an issue bandwidth of 3 per cluster, 3 cache ports per cluster, and 3

universal function units per cluster.

The various microarchitecture configurations of the system are summarized in

Table 5-1.

Table 5-1: Microarchitecture configuration.

Microarchitecture

 Monolithic
Configuration

Dual-Cluster
Configuration

Quad-Cluster
Configuration

Reorder Buffer 256 entries
Fetch / Dispatch / Retire

Bandwidth 8, 12 per cycle

Issue Queue 256 entries 128 entries per cluster 64 entries per cluster
Issue Bandwidth 8, 12 per cycle 4 per cluster per cycle 2, 3 per cluster per cycle
Function Units 8, 12 universal 4 universal per cluster 2, 3 universal per cluster

Cache Ports 8, 12 4 per cluster 2, 3 per cluster
Load / Store Queue 128 entries 128 entries per cluster 128 entries per cluster

Slipstream Components
220 entries, gshare-indexed

16 confidence counters per entry IR-Predictor
confidence threshold = 3, 15, 31 …(varied)

IR-Detector implicit back-propagation, number of instructions buffered = 256
Memory Hierarchy

L1 I-Cache 64 KB, 4-way set-associative, 64-byte line size
L1 D-Cache 64 KB, 4-way set-associative, 64-byte line size

L2 Cache 512 KB unified instruction/data, 4-way set-associative, 64-byte line size
L1 instruction hit = 1 cycle

L1 data hit = 1 cycle
L2 hit = 10 cycles Memory Access Times

L2 miss = 70 cycles

 41

5.2 Benchmarks

Nine of the SPEC2000 integer benchmarks are used for the simulations. (Not all

SPEC2000 benchmarks are used due to the volume of simulation runs.) The benchmarks

are compiled with –O3 optimization using the Simplescalar compiler [5]. The first billion

instructions are skipped and then 100 million instructions are simulated. The benchmarks

and their input datasets are given in Table 5-2.

Table 5-2: Benchmarks and input data sets.

Benchmark Input dataset
bzip input.program 58
gap -1./ -q –m 8M ref.in
gcc expr.i –o expr.s (-O3 is hardwired)
gzip input.program 16

parser 2.1.dict –batch
perl -I./lib splitmail.pl 850 5 19 18 1500

twolf ref
vortex bendian1.raw

vpr

net.in arch.in place.out dum.out –nodisp –place_only –init_t5 –exit_t
0.005 –alpha_t 0.9412 –inner_num 2

 42

6 Experimental Results

In this chapter, we study the sensitivity of conventional steering and slipstream-

based steering to inter-cluster communication latency for the three clustered

microarchitecture configurations described earlier. The inter-cluster communication

latency is varied from 2 cycles to 16 cycles. The performance metric used is IPC relative

to the corresponding non-clustered equivalent. That is, the performance of a clustered

microarchitecture using various inter-cluster communication latencies is compared to an

equivalent non-clustered microarchitecture that does not experience any inter-cluster

communication penalty. For reference, we also show the relative performance of three

small-scale superscalar processors, a 4-issue (4 way), 3-issue (3 way), and 2-issue (2

way) processor. The reason is that in some cases, inter-cluster communication latency

may be high enough that simply using a narrower processor (4 way, 3 way, 2 way) is

best. Table 6-1 shows the IPCs for 8-issue and 12-issue non-clustered processors.

Table 6-1: IPC for 8-issue and 12-issue non-clustered processors.

Instructions per Cycle (IPC) Benchmark
Base_8 Base_12

bzip 6.67 7.98
gap 3.32 3.45
gcc 3.52 3.92
gzip 2.66 2.8

parser 1.79 1.87
perl 4.00 4.21

twolf 1.39 1.42
vortex 5.37 6.09

vpr 1.76 1.83

Note that Modulon steering heuristic is implemented for all benchmarks with n

equal to 3. The conventional steering heuristics, Modulo3 (Mod3), Load-Cut (LC),

 43

Branch-Cut (BC), and Least-Loaded (LL), are collectively called distribution-based

steering, while Dependence-Based (Dep0) and Readiness-Dependence-Based (DepR) are

collectively called dependence-based steering. The steering algorithms proposed in this

thesis are collectively called slipstream-based steering.

 Experiments are carried out using the three clustered microarchitecture

configurations described in Section 5. The results are organized as follows. In the first

section, the performance of conventional steering is studied for all three clustered

microarchitecture configurations. This enables us to narrow down conventional steering

heuristics that are best for comparison with slipstream-based steering. We then study the

performance of slipstream-based steering and compare it with the best of conventional

steering for all the configurations.

Graphs are plotted with IPC relative to the equivalent non-clustered

microarchitecture on the y-axis and inter-cluster communication latency (in cycles) on

the x-axis.

6.1 Conventional steering

Results for conventional steering are presented for only five of the SPEC2000

benchmarks. These benchmarks are gap, gcc, perl, twolf, and vortex. These benchmarks

represent the entire spectrum of IPC performance of the SPEC2000 benchmark suite.

 44

6.1.1 Dual_2x4_b8

Figure 6-1 through Figure 6-5 show the relative performance of conventional

steering (distribution-based and dependence-based) on dual_2x4_b8 (dual-cluster,

aggregate issue width of 8), with respect to Base_8, for the five benchmarks. The first

observation is that the performance of all steering heuristics degrades with an increase in

inter-cluster communication latency. The performance of distribution-based steering does

not compare well with dependence-based steering for the entire latency range and the

relative performance degradation of distribution-based steering (BC, LC, Mod3, and LL)

is far greater than that of dependence-based steering (Dep0 and DepR). Dependence-

based algorithms do well at all latencies because they take both load balancing and

dependence information into account while steering. At lower inter-cluster latencies,

cluster issue bandwidth constrains performance more than inter-cluster communication.

Therefore, the performance of some of the distribution-based algorithms comes close to

that of the dependence-based algorithms. However, at higher latencies, the penalty for

inter-cluster communication is the larger problem, and distribution-based algorithms do

not explicitly address it.

The general trend between the two dependence-based algorithms is that DepR is

more latency-tolerant than Dep0, for all benchmarks except perl, i.e., Dep0 has a steeper

gradient of performance degradation than DepR. At lower latencies, Dep0 and DepR

have nearly the same relative performance. However, at higher latencies, DepR performs

distinctly better as it takes timing information into account while steering.

 45

For perl (see Figure 6-3), in contrast to the other benchmarks, Dep0 outperforms

DepR for all inter-cluster latencies. Also, the performance of DepR degrades more with

increasing latency than Dep0. This is because the average time spent by a load in

disambiguation is greater for the DepR scheme than the Dep0 scheme (see Figure 6-6).

Apparently, Dep0 steers store-load dependences more efficiently than DepR, even though

neither of the algorithms specifically consider memory dependences.

gap (dual_2x4_b8)

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

)

Base_8
DepR
Dep0
BC
LC
Mod3
LL
4-way
2-way

Figure 6-1: Relative performance of conventional steering on dual_2x4_b8, with respect to Base_8,
for gap.

gcc (dual_2x4_b8)

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

)

Base_8
DepR
Dep0
BC
LC
Mod3
LL
4-way
2-way

Figure 6-2: Relative performance of conventional steering on dual_2x4_b8, with respect to Base_8,
for gcc.

 46

perl (dual_2x4_b8)

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

) Base_8
DepR
Dep0
BC
LC
Mod3
LL
4-way
2-way

Figure 6-3: Relative performance of conventional steering on dual_2x4_b8, with respect to Base_8,
for perl.

twolf (dual_2x4_b8)

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

) Base_8
DepR
Dep0
BC
LC
Mod3
LL
4-way
2-way

Figure 6-4: Relative performance of conventional steering on dual_2x4_b8, with respect to Base_8,
for twolf.

vortex (dual_2x4_b8)

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

) Base_8
DepR
Dep0
BC
LC
Mod3
LL
4-way
2-way

Figure 6-5: Relative performance of conventional steering on dual_2x4_b8, with respect to Base_8,
for vortex.

 47

0

1

2

3

4

5

6

7

2 8 16

inter-cluster communication latency

Av
g.

 lo
ad

 d
is

am
bi

g.
 s

ta
ll

cy
cl

es

Dep0
DepR

Figure 6-6: Average load disambiguation stall cycles of Dep0 and DepR on dual_2x4_b8, for perl.

 Figure 6-7 shows the relative performance of conventional steering on

dual_2x4_b8, with respect to Base_8, averaged across the five benchmarks. The trend

observed in a majority of the benchmarks is confirmed. Dep0 and DepR outperform

distribution-based steering at all latencies, and DepR is more latency tolerant than Dep0.

At 2-cycle latency, the performance of Dep0 is comparable to that of DepR: both have a

relative performance of 92%. On the other hand, relative performance of Branch-Cut

(BC) is only 82% at 2-cycle latency. However, at 16-cycle latency, DepR has a relative

performance of 77% compared to 70% for Dep0, while the relative performance of BC is

only 35%. Clearly, dependence-based steering outperforms distribution-based steering.

Thus, slipstream-based steering will only be compared to dependence-based steering.

 48

average (dual_2x4_b8)

10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

) Base_8
DepR
Dep0
BC
LC
Mod3
LL
4-way
2-way

Figure 6-7: Relative performance of conventional steering on dual_2x4_b8, with respect to Base_8.
Results are averaged across five benchmarks.

6.1.2 Quad_4x2_b8

Figure 6-8 through Figure 6-12 show the relative performance of conventional

steering on quad_4x2_b8 (quad-cluster, aggregate issue width of 8), with respect to

Base_8, for the five benchmarks. Some of the trends observed for dual_2x4_b8 are

observed here. Dependence-based steering outperforms distribution-based steering, both

in terms of relative performance and latency-tolerance. This can be seen in Figure 6-13,

which shows the relative performance of conventional steering on quad_4x2_b8, with

respect to Base_8, averaged across all benchmarks. When latency increases from 2 to 16

cycles, the relative performance of DepR drops from 81% to 62%, while that of BC drops

from 71% to 29%.

Among the dependence-based algorithms, neither of the two heuristics has a

distinct advantage over the other. At 2-cycle latency, DepR performs better for gap, gcc,

perl, and twolf, while at 16-cycle latency, Dep0 performs better for gcc, perl, and vortex.

Figure 6-13 shows that the relative performance of Dep0 and DepR, averaged across all

 49

benchmarks, are nearly the same. This happens because the execution bandwidth on each

individual cluster is quite low (2 per cluster), and that is what really constrains

performance.

gap (quad_4x2_b8)

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

) Base_8
DepR
Dep0
BC
LC
Mod3
LL
4-way
2-way

Figure 6-8: Relative performance of conventional steering on quad_4x2_b8, with respect to Base_8,
for gap.

gcc (quad_4x2_b8)

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

) Base_8
DepR
Dep0
BC
LC
Mod3
LL
4-way
2-way

Figure 6-9: Relative performance of conventional steering on quad_4x2_b8, with respect to Base_8,
for gcc.

 50

perl (quad_4x2_b8)

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

) Base_8
DepR
Dep0
BC
LC
Mod3
LL
4-way
2-way

Figure 6-10: Relative performance of conventional steering on quad_4x2_b8, with respect to Base_8,
for perl.

twolf (quad_4x2_b8)

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

) Base_8
DepR
Dep0
BC
LC
Mod3
LL
4-way
2-way

Figure 6-11: Relative performance of conventional steering on quad_4x2_b8, with respect to Base_8,
for twolf.

vortex (quad_4x2_b8)

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

) Base_8
DepR
Dep0
BC
LC
Mod3
LL
4-way
2-way

Figure 6-12: Relative performance of conventional steering on quad_4x2_b8, with respect to Base_8,
for vortex.

 51

average (quad_4x2_b8)

10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

) Base_8
DepR
Dep0
BC
LC
Mod3
LL
4-way
2-way

Figure 6-13: Relative performance of conventional steering on quad_4x2_b8, with respect to Base_8.
Results are averaged across five benchmarks.

6.1.3 Quad_4x3_b12

Figure 6-14 through Figure 6-18 show the relative performance of conventional

steering on quad_4x3_b12 (quad-cluster, aggregate issue width of 12), with respect to

Base_12, for the five benchmarks. Similar trends observed for dual_2x4_b8 are observed

here. Dependence-based steering outperforms distribution-based steering. This can be

seen in Figure 6-19, which shows the relative performance of conventional steering on

quad_4x3_b12, with respect to Base_12, averaged across all benchmarks. The relative

performance of DepR drops from 86% to 63% for the latency range, while that of BC

drops from 75% to 30%. Between the two dependence-based schemes, DepR

outperforms Dep0 for all benchmarks except perl. For perl (see Figure 6-16), Dep0

outperforms DepR for reasons mentioned earlier (fewer load disambiguation stalls).

 52

gap (quad_4x3_b12)

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

12
 (%

) Base_12
DepR
Dep0
BC
LC
Mod3
LL
4-way
3-way

Figure 6-14: Relative performance of conventional steering on quad_4x3_b12, with respect to
Base_12, for gap.

gcc (quad_4x3_b12)

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

12
 (%

) Base_12
DepR
Dep0
BC
LC
Mod3
LL
4-way
3-way

Figure 6-15: Relative performance of conventional steering on quad_4x3_b12, with respect to
Base_12, for gcc.

perl (quad_4x3_b12)

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

12
 (%

) Base_12
DepR
Dep0
BC
LC
Mod3
LL
4-way
3-way

Figure 6-16: Relative performance of conventional steering on quad_4x3_b12, with respect to
Base_12, for perl.

 53

twolf (quad_4x3_b12)

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

12
 (%

) Base_12
DepR
Dep0
BC
LC
Mod3
LL
4-way
3-way

Figure 6-17: Relative performance of conventional steering on quad_4x3_b12, with respect to
Base_12, for twolf.

vortex (quad_4x3_b12)

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

12
 (%

)

Base_12
DepR
Dep0
BC
LC
Mod3
LL
4-way
3-way

Figure 6-18: Relative performance of conventional steering on quad_4x3_b12, with respect to
Base_12, for vortex.

average (quad_4x3_b12)

10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

12
 (%

) Base_12
DepR
Dep0
BC
LC
Mod3
LL
4-way
3-way

Figure 6-19: Relative performance of conventional steering on quad_4x3_b12, with respect to
Base_12. Results are averaged across five benchmarks.

 54

6.2 Slipstream-based steering

Rep0 and RepS are collectively called replication-based algorithms and DEC0

and DECS are collectively called dedicated-cluster-based algorithms. Note that for

slipstream-based steering, parameters such as instruction-removal threshold and

instruction-removal criteria are varied.

For an instruction to be predicted ineffectual by the IR-predictor, the confidence

counter associated with the instruction must get saturated. The time it takes to saturate the

counter depends on the confidence threshold. Therefore, the percentage of instructions

predicted to be ineffectual (or effectual) would differ with different thresholds.

Confidence thresholds of 3 and 15 are used in this thesis. With lower confidence

thresholds, the number of predicted-ineffectual instructions will increase, but it will be

accompanied by a corresponding increase in IR-mispredictions. Thus, a performance

trade-off has to be considered between reducing demand for cluster issue bandwidth and

increasing the IR-misprediction rate and therefore inter-cluster communication among

effectual instructions.

Instruction-removal criteria determine what kinds of instructions are predicted

effectual or ineffectual. The non-modifying-write criterion (also called Write Same Value

(WSV)) is configurable in our simulator. If the WSV criterion is not used, then non-

modifying writes will not be selected for removal. This typically leads to fewer predicted-

ineffectual instructions. This criterion has special significance in the context of

slipstream-based steering. With WSV as an instruction-removal criterion, some non-

 55

modifying writes may be predicted ineffectual. These instructions will be distributed

among the clusters in the replication-based schemes and will not be steered to the

effectual cluster in the dedicated-cluster-based schemes. Thus, effectual instructions that

depend on these instructions are exposed to inter-cluster communication latency. We

expect that algorithms that use WSV as an instruction-removal criterion will not be

highly latency-tolerant because they increase inter-cluster communication between

effectual instructions.

The crux of the problem with WSV is that a form of value speculation is needed

to exploit it in our microarchitecture. A predicted-ineffectual instruction classified as

WSV implies that the value currently available in the register file (or memory location) is

most likely equal to the value that will be produced. Thus, to exploit the WSV ineffectual

criterion, effectual dependent instructions need to issue speculatively with the old register

file value. We leave this aspect for future work.

The number of predicted-ineffectual instructions as a percentage of dynamic

instructions is shown in Figure 6-20 for five benchmarks. Results are presented for

confidence thresholds of 3 and 15, with and without the WSV criterion. In the graph,

benchmarks are shown on the x-axis and the % predicted-ineffectual instructions are

shown on the y-axis. C3 (WSV) indicates a confidence threshold of 3 and the WSV

criterion are used, while C3 indicates that the WSV criterion is not used. The percentage

of predicted-ineffectual instructions increases with a decrease in the confidence

threshold, as expected. More instructions are predicted ineffectual when the WSV policy

 56

is used. The only exception is twolf, for a confidence threshold of 15: more instructions

are removed without WSV than with WSV.

0

10

20

30

40

50

60

70

gap gcc perl twolf vortex

%
 p

re
di

ct
ed

-in
ef

ec
tu

al
 in

st
ru

ct
io

ns

C3
C3 (WSV)
C15
C15 (WSV)

Figure 6-20: Percentage of predicted-ineffectual instructions.

A general trend is that for a given slipstream-based steering heuristic, lowering

the confidence threshold from 15 to 3 reduces the latency-tolerance of the heuristic. With

a lower confidence threshold, more instructions are predicted to be ineffectual, but the

number of IR-mispredictions increase. Easing of pressure on the cluster issue bandwidth

improves performance at low latencies, but the increase in inter-cluster communication

due to IR-mispredictions degrades performance at higher latencies. Therefore, results for

a threshold of 15 are presented in this section, while results for a threshold of 3 are

deferred to the appendix. Also, algorithms that do not use the WSV criterion are more

latency tolerant than those that use WSV. The performance degradation for algorithms

using WSV is very high. Therefore, results for the WSV criterion are also deferred to the

appendix. From this point onwards, we only consider a confidence threshold of 15 and

disable the WSV criterion.

 57

6.2.1 Dual_2x4_b8

Figure 6-21 through Figure 6-29 show the relative performance of slipstream-

based steering (confidence threshold of 15 and no WSV) and the best conventional

steering (i.e., dependence-based steering) on dual_2x4_b8 (dual cluster, aggregate issue

width of 8), with respect to Base_8, for all benchmarks. Figure 6-30 shows the relative

performance of slipstream-based steering and dependence-based steering on

dual_2x4_b8, with respect to Base_8, averaged across all benchmarks.

6.2.1.1 Trends among slipstream-based steering

Replication-based steering is more latency-tolerant than dedicated-cluster-based

steering for all benchmarks. This was expected, because the replication model only has

inter-cluster communication between ineffectual instructions, whereas the dedicated-

cluster model additionally has inter-cluster communication between effectual and

ineffectual instructions. From Figure 6-30, it can be seen that Rep0, RepS, DEC0, and

DECS experience a relative performance drop of 1%, 5%, 4%, and 23%, respectively, on

average, over the entire latency range. Thus, Rep0 is the most latency-tolerant among all

slipstream-based steering heuristics.

By distributing stores, the replication-based schemes and the dedicated-cluster-

based schemes become less latency-tolerant. At low latencies, the advantage of executing

fewer instructions on a cluster results in better performance, especially in the case of

RepS. However, inter-cluster communication between effectual stores and loads

significantly degrades performance at higher latencies, especially in the case of DECS.

 58

This is the reason that DECS has the steepest gradient. Figure 6-30 shows that the relative

performance of Rep0 drops from 88% to 87% over the latency range, while that of RepS

drops from 90% to 86%, and that of DECS drops from 92% to 67%.

DEC0 outperforms all other slipstream-based steering heuristics for all

benchmarks except gap and vpr. On average, the relative performance of DEC0 drops

from 94% to 90% across the latency range (see Figure 6-30). The percentage of

predicted-ineffectual instructions is only 16% for gap and 21% for vpr. In both cases,

DECS has the best performance at low latencies. DECS frees up execution resources,

which are highly constrained due to the large number of instructions being executed on

the effectual cluster. This provides a benefit at lower latencies, but performance degrades

at higher latencies due to inter-cluster communication between effectual stores and loads.

The performance of other algorithms does not degrade because their execution is

primarily constrained by the cluster issue bandwidth and increase in inter-cluster

communication latency has little effect on performance.

6.2.1.2 Comparison of slipstream-based steering with conventional steering

DEC0 outperforms dependence-based steering for all benchmarks except gap. For

gap, which has a low number of predicted-ineffectual instructions, dependence-based

steering does a better job of load balancing than slipstream-based steering. However,

dependence-based steering is not very latency-tolerant (steep gradient), even though it

has better performance than slipstream-based steering at all latencies.

 59

On average, all slipstream-based steering heuristics except DECS are highly

latency-tolerant and have better performance compared to dependence-based steering

(see Figure 6-30). The relative performance of DepR drops from 92% to 71%, whereas

relative performance of DEC0 drops from 94% to 90%, on average. On average, at 16-

cycle latency, it is better to use only a single 4-issue cluster (relative performance of 4

way is 80%) than dual 4-issue clusters with dependence-based steering (relative

performance is 71%). However, slipstream-based steering extends the usefulness of a

clustered microarchitecture to very high latencies.

Figure 6-31 shows the IPC improvement of slipstream-based steering with respect

to the best conventional steering, averaged across all benchmarks. At 2-cycle latency,

DEC0 performs the same as dependence-based steering. However, Rep0, RepS, and

DECS do not perform as well. At higher latencies, DEC0, Rep0, and RepS record a

performance improvement over dependence-based steering. DEC0, Rep0, and RepS

improve performance by 10%, 4%, and 5%, at 8-cycle latency, respectively, and by 24%,

18%, and 16%, at 16-cycle latency, respectively.

 60

bzip (dual_2x4_b8)

20
30

40
50
60

70
80
90

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

) Base_8
Rep0
RepS
DEC0
DECS
Dep0
DepR
4-way
2-way

Figure 6-21: Relative performance of slipstream-based steering (confidence threshold of 15 and no
WSV) and dependence-based steering on dual_2x4_b8, with respect to Base_8, for bzip.

gap (dual_2x4_b8)

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

) Base_8
Rep0
RepS
DEC0
DECS
Dep0
DepR
4-way
2-way

Figure 6-22: Relative performance of slipstream-based steering (confidence threshold of 15 and no
WSV) and dependence-based steering on dual_2x4_b8, with respect to Base_8, for gap.

gcc (dual_2x4_b8)

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

) Base_8
Rep0
RepS
DEC0
DECS
Dep0
DepR
4-way
2-way

Figure 6-23: Relative performance of slipstream-based steering (confidence threshold of 15 and no
WSV) and dependence-based steering on dual_2x4_b8, with respect to Base_8, for gcc.

 61

gzip (dual_2x4_b8)

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

) Base_8
Rep0
RepS
DEC0
DECS
Dep0
DepR
4-way
2-way

Figure 6-24: Relative performance of slipstream-based steering (confidence threshold of 15 and no
WSV) and dependence-based steering on dual_2x4_b8, with respect to Base_8, for gzip.

parser (dual_2x4_b8)

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

) Base_8
Rep0
RepS
DEC0
DECS
Dep0
DepR
4-way
2-way

Figure 6-25: Relative performance of slipstream-based steering (confidence threshold of 15 and no
WSV) and dependence-based steering on dual_2x4_b8, with respect to Base_8, for parser.

perl (dual_2x4_b8)

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

) Base_8
Rep0
RepS
DEC0
DECS
Dep0
DepR
4-way
2-way

Figure 6-26: Relative performance of slipstream-based steering (confidence threshold of 15 and no
WSV) and dependence-based steering on dual_2x4_b8, with respect to Base_8, for perl.

 62

twolf (dual_2x4_b8)

70

75

80

85

90

95

100

105

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

) Base_8
Rep0
RepS
DEC0
DECS
Dep0
DepR
4-way
2-way

Figure 6-27: Relative performance of slipstream-based steering (confidence threshold of 15 and no
WSV) and dependence-based steering on dual_2x4_b8, with respect to Base_8, for twolf.

vortex (dual_2x4_b8)

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

) Base_8
Rep0
RepS
DEC0
DECS
Dep0
DepR
4-way
2-way

Figure 6-28: Relative performance of slipstream-based steering (confidence threshold of 15 and no
WSV) and dependence-based steering on dual_2x4_b8, with respect to Base_8, for vortex.

vpr (dual_2x4_b8)

70

75

80

85

90

95

100

105

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

) Base_8
Rep0
RepS
DEC0
DECS
Dep0
DepR
4-way
2-way

Figure 6-29: Relative performance of slipstream-based steering (confidence threshold of 15 and no
WSV) and dependence-based steering on dual_2x4_b8, with respect to Base_8, for vpr.

 63

average (dual_2x4_b8)

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

) Base_8
Rep0
RepS
DEC0
DECS
Dep0
DepR
4-way
2-way

Figure 6-30: Relative performance of slipstream-based steering (confidence threshold of 15 and no
WSV) and dependence-based steering on dual_2x4_b8, with respect to Base_8. Results are averaged
across all benchmarks.

comparison (dual_2x4_b8)

-20
-15
-10

-5
0
5

10
15
20
25
30

0 2 4 6 8 10 12 14 16 18

Inter-cluster communication latency (cycles)

%
 IP

C
 im

pr
ov

em
en

t w
.r.

t.
co

nv
en

tio
na

l s
te

er
in

g

Rep0

RepS

DEC0

DECS

Figure 6-31: IPC improvement of slipstream-based steering (confidence threshold of 15 and no WSV)
with respect to dependence-based steering on dual_2x4_b8. Results are averaged across all
benchmarks.

6.2.2 Quad_4x2_b8

Figure 6-32 through Figure 6-40 show the relative performance of slipstream-

based steering (confidence threshold of 15 and no WSV) and the best conventional

steering (i.e., dependence-based steering) on quad_4x2_b8 (quad-cluster, aggregate issue

width of 8), with respect to Base_8, for all benchmarks. Figure 6-41 shows the relative

 64

performance of slipstream-based steering and dependence-based steering on

quad_4x2_b8, with respect to Base_8, averaged across all benchmarks.

6.2.2.1 Trends among slipstream-based steering

DECS outperforms other slipstream-based steering schemes at a latency of 2

cycles for all benchmarks. At 2-cycle latency, on average, DECS has a relative

performance of 77% compared to 71% for DEC0 and 72% for RepS (see Figure 6-41).

DECS executes the least number of instructions per cluster, compared to the other

slipstream-based steering heuristics. As the issue bandwidth per cluster is very low (2 per

cycle), this gives DECS an edge over other slipstream-based steering heuristics at low

latencies. However, DECS is not latency tolerant, for reasons mentioned earlier.

Rep0 underperforms DEC0 and RepS for all benchmarks. Pressure on the

execution bandwidth of each cluster is highest for Rep0, because it executes the highest

number of instructions on each cluster among all slipstream-based steering heuristics. In

this configuration, performance is primarily constrained by the meager resources

available within each cluster. Thus, even though Rep0 is highly latency-tolerant, DEC0

and RepS, which execute fewer instructions on each cluster, outperform it and have

comparable latency-tolerance.

Another trend is that RepS outperforms all other steering schemes at the 16-cycle

latency. At 16-cycle latency, on average, RepS has a relative performance of 70%

compared to 66% for Rep0 and 69% for DEC0 (see Figure 6-41). Replication provides

 65

latency-tolerance, while distribution of stores eases issue bandwidth pressure, and

improves performance.

6.2.2.2 Comparison of slipstream-based steering with conventional steering

Slipstream-based steering (except for DECS) is highly latency-tolerant for this

configuration, compared to dependence-based steering. DepR outperforms slipstream-

based steering at 2-cycle latency for all benchmarks except parser. On the other hand,

Rep0, RepS, and DEC0 outperform dependence-based steering at 16-cycle latency for all

benchmarks except gap.

Figure 6-42 shows the IPC improvement of slipstream-based steering with respect

to the best of the conventional steering methods, averaged across all benchmarks. DECS

underperforms dependence-based steering at all latencies. For latencies less than 8-

cycles, DEC0, Rep0, and RepS underperform dependence-based steering. However, at

16-cycle latency, DEC0, Rep0, and RepS improve IPC by 16%, 11%, and 17%,

respectively.

 66

bzip (quad_4x2_b8)

20
30

40
50
60

70
80
90

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

) Base_8
Rep0
RepS
DEC0
DECS
Dep0
DepR
4-way
2-way

Figure 6-32: Relative performance of slipstream-based steering (confidence threshold of 15 and no
WSV) and dependence-based steering on quad_4x2_b8, with respect to Base_8, for bzip.

gap (quad_4x2_b8)

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

) Base_8
Rep0
RepS
DEC0
DECS
Dep0
DepR
4-way
2-way

Figure 6-33: Relative performance of slipstream-based steering (confidence threshold of 15 and no
WSV) and dependence-based steering on quad_4x2_b8, with respect to Base_8, for gap.

gcc (quad_4x2_b8)

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

) Base_8
Rep0
RepS
DEC0
DECS
Dep0
DepR
4-way
2-way

Figure 6-34: Relative performance of slipstream-based steering (confidence threshold of 15 and no
WSV) and dependence-based steering on quad_4x2_b8, with respect to Base_8, for gcc.

 67

gzip (quad_4x2_b8)

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

) Base_8
Rep0
RepS
DEC0
DECS
Dep0
DepR
4-way
2-way

Figure 6-35: Relative performance of slipstream-based steering (confidence threshold of 15 and no
WSV) and dependence-based steering on quad_4x2_b8, with respect to Base_8, for gzip.

parser (quad_4x2_b8)

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

) Base_8
Rep0
RepS
DEC0
DECS
Dep0
DepR
4-way
2-way

Figure 6-36: Relative performance of slipstream-based steering (confidence threshold of 15 and no
WSV) and dependence-based steering on quad_4x2_b8, with respect to Base_8, for parser.

perl (quad_4x2_b8)

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

) Base_8
Rep0
RepS
DEC0
DECS
Dep0
DepR
4-way
2-way

Figure 6-37: Relative performance of slipstream-based steering (confidence threshold of 15 and no
WSV) and dependence-based steering on quad_4x2_b8, with respect to Base_8, for perl.

 68

twolf (quad_4x2_b8)

70

75

80

85

90

95

100

105

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

) Base_8
Rep0
RepS
DEC0
DECS
Dep0
DepR
4-way
2-way

Figure 6-38: Relative performance of slipstream-based steering (confidence threshold of 15 and no
WSV) and dependence-based steering on quad_4x2_b8, with respect to Base_8, for twolf.

vortex (quad_4x2_b8)

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

) Base_8
Rep0
RepS
DEC0
DECS
Dep0
DepR
4-way
2-way

Figure 6-39: Relative performance of slipstream-based steering (confidence threshold of 15 and no
WSV) and dependence-based steering on quad_4x2_b8, with respect to Base_8, for vortex.

vpr (quad_4x2_b8)

70

75

80

85

90

95

100

105

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

) Base_8
Rep0
RepS
DEC0
DECS
Dep0
DepR
4-way
2-way

Figure 6-40: Relative performance of slipstream-based steering (confidence threshold of 15 and no
WSV) and dependence-based steering on quad_4x2_b8, with respect to Base_8, for vpr.

 69

average (quad_4x2_b8)

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

) Base_8
Rep0
RepS
DEC0
DECS
Dep0
DepR
4-way
2-way

Figure 6-41: Relative performance of slipstream-based steering (confidence threshold of 15 and no
WSV) and dependence-based steering on quad_4x2_b8, with respect to Base_8. Results are averaged
across all benchmarks.

comparison (quad_4x2_b8)

-30

-20

-10

0

10

20

30

0 2 4 6 8 10 12 14 16 18

Inter-cluster communication latency (cycles)

%
 IP

C
 im

pr
ov

em
en

t w
.r.

t.
co

nv
en

tio
na

l s
te

er
in

g

Rep0

RepS

DEC0

DECS

Figure 6-42: IPC improvement of slipstream-based steering (confidence threshold of 15 and no WSV)
with respect to dependence-based steering on quad_4x2_b8. Results are averaged across all
benchmarks.

6.2.3 Quad_4x3_b12

Figure 6-44 through Figure 6-52 show the relative performance of slipstream-

based steering (confidence threshold of 15 and no WSV) and the best conventional

steering (i.e., dependence-based steering) on quad_4x3_b12 (quad-cluster, aggregate

issue width of 12), with respect to Base_12, for all benchmarks. Figure 6-53 shows the

 70

relative performance of slipstream-based steering and dependence-based steering on

quad_4x3_b12, with respect to Base_12, averaged across all benchmarks.

6.2.3.1 Trends among slipstream-based steering

A key observation is that the percent IPC degradation of all the slipstream-based

steering algorithms remain approximately the same as we move from a dual-cluster

configuration to a quad-cluster configuration (note that percent IPC degradation is with

respect to Base_8 and Base_12, respectively). This can be seen in Figure 6-43, for the

vortex benchmark. The slipstream-based steering algorithms are on the x-axis and percent

IPC degradation is on the y-axis. In the quad-cluster configuration, ineffectual

instructions are distributed to a greater extent than in the dual-cluster configuration, for

all slipstream-based algorithms. Therefore, ineffectual instructions are delayed more by

inter-cluster communication when we move from the dual-cluster to the quad-cluster

configuration. However, the IPC degradation is similar for both configurations,

confirming the initial proposal that ineffectual instructions are latency-tolerant.

 71

0

5

10

15

20

25

30

35

40

45

Rep
0 (

C15
, W

SV)

Rep
0 (

C15
)

Rep
S (C

15
, W

SV)

Rep
S (C

15
)

DEC0 (
C15

, W
SV)

DEC0 (
C15

)

DECS (C
15

, W
SV)

DECS (C
15

)

%
 IP

C
 d

eg
ra

da
tio

n
w

.r.
t.

 B
as

e_
8

/ B
as

e_
12

dual_2x4_b8
quad_4x3_b12

Figure 6-43: Relative performance degradation of slipstream-based algorithms for dual_2x4_b8 and
quad_4x3_b12, for vortex.

Trends observed for quad_4x2_b8 are repeated for quad_4x3_b12. The

slipstream-based steering algorithms that free execution resources by distributing stores

perform well compared to the original algorithms. RepS is the best-performing algorithm

at high latencies for 6 of the 9 benchmarks (replication is latency-tolerant, while

distributing stores relieves issue bandwidth pressure), while DECS has the best

performance at low latencies (least issue bandwidth pressure). On average, at a latency of

2 cycles, DECS has a relative performance of 83%, compared to 81% for RepS, 80% for

DEC0, and 77% for Rep0 (see Figure 6-53). At 16-cycle latency, RepS has a relative

performance of 77% compared to 76% for DEC0, 76% for Rep0, and 61% for DECS. As

expected, the relative performance of Rep0 drops the least (only 1%) when latency is

increased from 2 to 16 cycles.

 72

6.2.3.2 Comparison of slipstream-based steering with conventional steering

The relative performance of both slipstream-based and dependence-based steering

heuristics improve as we move from quad_4x2_b8 to quad_4x3_b12. However,

slipstream-based steering heuristics gain more from the increased issue bandwidth per

cluster (from 2 per cycle in the previous configuration to 3 per cycle in this

configuration). At a 2-cycle latency, DepR has a relative performance of 83% on

quad_4x2_b8 (see Figure 6-41) and 86% on quad_5x3_b12 (see Figure 6-53), while

RepS has a relative performance of 72% on quad_4x2_b8 and 81% on quad_4x3_b12.

Slipstream-based steering increases the number of instructions executed on a cluster.

Therefore, the availability of extra execution bandwidth per cluster helps improve

performance significantly. Another benefit is that, compared to quad_4x2_b8, the

crossover point at which slipstream-based steering outperforms dependence-based

steering occurs much earlier.

From Figure 6-54, at 8-cycle latency, Rep0, RepS, and DEC0 improve IPC with

respect to dependence-based steering by 6%, 10%, and 10%, respectively. At 16 cycles,

Rep0 improves IPC by 31%, RepS by 32%, and DEC0 by 31%, on average.

 73

bzip (quad_4x3_b12)

20
30

40
50
60

70
80
90

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

12
 (%

) Base_12
Rep0
RepS
DEC0
DECS
Dep0
DepR
4-way
3-way

Figure 6-44: Relative performance of slipstream-based steering (confidence threshold of 15 and no
WSV) and dependence-based steering on quad_4x3_b12, with respect to Base_12, for bzip.

gap (quad_4x3_b12)

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

12
 (%

) Base_12
Rep0
RepS
DEC0
DECS
Dep0
DepR
4-way
3-way

Figure 6-45: Relative performance of slipstream-based steering (confidence threshold of 15 and no
WSV) and dependence-based steering on quad_4x3_b12, with respect to Base_12, for gap.

gcc (quad_4x3_b12)

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

12
 (%

) Base_12
Rep0
RepS
DEC0
DECS
Dep0
DepR
4-way
3-way

Figure 6-46: Relative performance of slipstream-based steering (confidence threshold of 15 and no
WSV) and dependence-based steering on quad_4x3_b12, with respect to Base_12, for gcc.

 74

gzip (quad_4x3_b12)

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

12
 (%

) Base_12
Rep0
RepS
DEC0
DECS
Dep0
DepR
4-way
3-way

Figure 6-47: Relative performance of slipstream-based steering (confidence threshold of 15 and no
WSV) and dependence-based steering on quad_4x3_b12, with respect to Base_12, for gzip.

parser (quad_4x3_b12)

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

12
 (%

) Base_12
Rep0
RepS
DEC0
DECS
Dep0
DepR
4-way
3-way

Figure 6-48: Relative performance of slipstream-based steering (confidence threshold of 15 and no
WSV) and dependence-based steering on quad_4x3_b12, with respect to Base_12, for parser.

perl (quad_4x3_b12)

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

12
 (%

) Base_12
Rep0
RepS
DEC0
DECS
Dep0
DepR
4-way
3-way

Figure 6-49: Relative performance of slipstream-based steering (confidence threshold of 15 and no
WSV) and dependence-based steering on quad_4x3_b12, with respect to Base_12, for perl.

 75

twolf (quad_4x3_b12)

70

75

80

85

90

95

100

105

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

12
 (%

) Base_12
Rep0
RepS
DEC0
DECS
Dep0
DepR
4-way
3-way

Figure 6-50: Relative performance of slipstream-based steering (confidence threshold of 15 and no
WSV) and dependence-based steering on quad_4x3_b12, with respect to Base_12, for twolf.

vortex (quad_4x3_b12)

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

12
 (%

) Base_12
Rep0
RepS
DEC0
DECS
Dep0
DepR
4-way
3-way

Figure 6-51: Relative performance of slipstream-based steering (confidence threshold of 15 and no
WSV) and dependence-based steering on quad_4x3_b12, with respect to Base_12, for vortex.

vpr (quad_4x3_b12)

70

75

80

85

90

95

100

105

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

12
 (%

) Base_12
Rep0
RepS
DEC0
DECS
Dep0
DepR
4-way
3-way

Figure 6-52: Relative performance of slipstream-based steering (confidence threshold of 15 and no
WSV) and dependence-based steering on quad_4x3_b12, with respect to Base_12, for vpr.

 76

average (quad_4x3_b12)

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

12
 (%

) Base_12
Rep0
RepS
DEC0
DECS
Dep0
DepR
4-way
3-way

Figure 6-53: Relative performance of slipstream-based steering (confidence threshold of 15 and no
WSV) and dependence-based steering on quad_4x3_b12, with respect to Base_12. Results are
averaged across all benchmarks.

comparison (quad_4x3_b12)

-20

-10

0

10

20

30

40

0 2 4 6 8 10 12 14 16 18

Inter-cluster communication latency (cycles)

%
 IP

C
 im

pr
ov

em
en

t w
.r.

t.
co

nv
en

tio
na

l s
te

er
in

g

Rep0

RepS

DEC0

DECS

Figure 6-54: IPC improvement of slipstream-based steering (confidence threshold of 15 and no WSV)
with respect to dependence-based steering on quad_4x3_b12. Results are averaged across all
benchmarks.

 77

7 Related Work

Sastry, Parlacharla, and Smith [27] proposed augmenting the floating-point

cluster of a processor for integer execution. They also proposed various compile-time

partitioning algorithms for the same.

Parlacharla, Jouppi, and Smith [18] quantified the delay of key processor

structures and identified which structures will become more critical with technology

scaling. They concluded that it will not be possible to increase processor complexity in

the future without adversely affecting cycle time. They proposed a dependence-based

architecture that features multiple in-order FIFOs for reducing complexity. They also

introduced the concept of clustered microarchitectures with dispatch-driven and

execution-driven steering. They studied the performance of several dispatch-driven and

execution-driven steering heuristics for a dual-cluster microarchitecture with single-cycle

inter-cluster bypass latency.

Farkas, Chow, Jouppi, and Vranesic [9] proposed the multicluster architecture in

which each cluster contains an issue queue, a small number of function units, and a

subset of the register file. The compiler-managed architectural registers are either local

(they map to the register file of a single cluster) or global (they map to the register file of

all clusters). In certain cases, the hardware dispatches a copy of an instruction to all

clusters (one master copy and multiple slave copies). The master copy does the actual

computation, while the slave copy enables the movement of operands and results across

the clusters. A static scheduling algorithm is used to assign instructions to the clusters.

 78

Ranganathan and Franklin [22] compare the performance of various decentralized

microarchitectures. They study performance as a function of the number of processing

elements. They also study the effect of the inter-connection network topology on

performance.

Ranganathan and Franklin [23] proposed the PEWS (Parallel Execution

Windows) microarchitecture for simplifying logic associated with a monolithic window.

PEWs simplifies window logic by splitting the monolithic instruction queue among

multiple windows, much like a clustered microarchitecture. They considered a ring

interconnection network and a crossbar network for their simulations.

Aggarwal and Franklin [1] studied the scalability of instruction steering

algorithms with an increase in the number of clusters. They found that algorithms that

work well for four or fewer clusters do not scale to more than four clusters. They model

inter-cluster communication latency as a function of the number of clusters. Therefore,

they only indirectly study the effect of increasing inter-cluster communication latency on

performance. They do not explicitly study the effect of increasing the inter-cluster

communication latency for a fixed clustered microarchitecture configuration.

Simultaneously increasing the number of clusters and the latency makes it difficult to

isolate the effect of individual factors (aggregate issue width, load balance, inter-cluster

communication latency, etc.).

 79

Canal, Parcerisa, and Gonzalez [6][7] proposed dynamic steering heuristics for

utilizing an idle floating-point cluster for use by integer operations. They proposed

adaptive and non-adaptive steering heuristics. Non-adaptive steering uses only

immediately available run-time information, whereas adaptive steering also uses history.

Parcerisa and Gonzalez [19] and Rotenberg, Jacobsen, Sazeides, and Smith [25]

studied the effect of applying value prediction in a clustered microarchitecture and trace

processor, respectively, thereby desensitizing overall performance to the latency for

broadcasting global values. By making a value prediction locally within a cluster, inter-

cluster dependences are broken, and the delay for communicating global values is

exposed only in the case of mispredictions. We propose using the slipstream paradigm for

value prediction purposes in a clustered microarchitecture (the WSV criterion).

Clustering is a common technique used in single-register-file VLIW processors.

Inter-cluster communication is typically managed via explicit copy instructions. Other

models for inter-cluster communication have also been proposed. The design space in

clustered VLIW architectures is well researched [17][26]. Many processors in the

DSP/embedded domain use a clustered microarchitecture. Good examples are Texas

Instrument’s TMS320C6000 [29] and Analog’s TigerSharc [11].

Baniasadi and Moshovos [4] conducted a detailed study of steering heuristics for

quad-cluster superscalar processors. They studied the performance of adaptive and non-

adaptive steering heuristics with one-cycle and two-cycle inter-cluster communication

 80

latencies. They also studied the effect of adding two additional stages in the front-end

pipeline. They found that a modulo scheme performs best for inter-cluster

communication latencies of one or two cycles. However, we observed that dependence-

based algorithms perform the best for the dual-cluster as well as the quad-cluster

configurations at an inter-cluster communication latency of 2 cycles.

Tune, Liang, Tullsen, and Calder [30] proposed a critical-path predictor and a

number of steering heuristics based on instruction criticality. According to one heuristic,

all critical-path instructions are steered to a single cluster. Two other dependence-based

algorithms were augmented with critical-path information for efficient steering. They

compared the performance of the usual steering heuristics with steering heuristics that

utilize critical-path information for dual-clustered and quad-clustered microarchitectures.

They used a fixed two-cycle latency. The approach in which all critical-path instructions

are sent to the same cluster does not perform well compared to the dependence-based

approaches (not augmented with critical-path information), whereas our approach in

which all effectual instructions are sent to a single cluster does well. We believe one chief

reason is that we considered significantly longer inter-cluster latency.

Fields, Rubin, and Bodik [10] also proposed a critical-path predictor that they use

to guide instruction steering. They augment a dependence-based algorithm with critical-

path information for steering purposes. They also conducted studies similar to the ones

conducted by Tune et. al. [30].

 81

8 Summary and Future Work

8.1 Summary

The performance of a clustered microarchitecture suffers primarily because of

inter-cluster communication between instructions. Specifically, inter-cluster

communication between critical-path instructions is the most harmful. The slipstream

paradigm identifies critical-path instructions in the form of effectual instructions. This

thesis proposes eliminating virtually all inter-cluster communication among effectual

instructions, simply by ensuring that the entire effectual component of the program

executes within a cluster. Two execution models are proposed: the replication model and

the dedicated-cluster model. In the replication model, a copy of the effectual component

is executed on each of the clusters and the ineffectual instructions are shared among the

clusters. In the dedicated-cluster model, the effectual component is executed on a single

cluster (the effectual cluster), while all ineffectual instructions are steered to the

remaining clusters. In the replication model, there is inter-cluster communication solely

among ineffectual instructions. In the dedicated-cluster model, there is inter-cluster

communication among ineffectual instructions, and ineffectual instructions also wait for

values from the effectual cluster.

Based on the replication model, two new steering heuristics have been proposed:

Replication of effectual component (Rep0) and Replication of effectual component with

store distribution (RepS). In Rep0, the effectual component (except effectual branches) is

executed redundantly on all clusters, while ineffectual instructions (in addition to

 82

effectual branches) are shared among the clusters. RepS is a variation on Rep0. Store-

load dependences are potentially more latency-tolerant than register dependences,

therefore effectual stores (in addition to effectual branches and ineffectual instructions)

are distributed to reduce pressure exerted on cluster issue bandwidth.

Based on the dedicated-cluster model, two new algorithms have been proposed:

Dedicated cluster for effectual component (DEC0) and Dedicated cluster for effectual

component with store distribution (DECS). In DEC0, the effectual component is executed

on a single cluster called the effectual cluster, while all ineffectual instructions are steered

to the remaining clusters. DECS is a variation on DEC0. In order to ease the pressure on

the execution resources of the effectual cluster, effectual stores (in addition to ineffectual

instructions) are steered to the remaining clusters.

IPC of the replication model on dual and quad clusters is virtually independent of

inter-cluster communication latency. IPC decreases by 1.3% and 0.8%, on average, for a

dual-cluster and quad-cluster microarchitecture, respectively, when inter-cluster

communication latency increases from 2 cycles to 16 cycles. In contrast, IPC of the best-

performing dependence-based steering decreases by 35% and 55%, on average, for a

dual-cluster and quad-cluster microarchitecture, respectively, over the same latency

range. For dual clusters and quad clusters with low latencies (fewer than 8 cycles),

slipstream-based steering underperforms conventional steering because improved latency

tolerance is outweighed by higher contention for execution bandwidth within clusters.

However, the balance shifts at higher latencies. For a dual-cluster microarchitecture,

 83

dedicated-cluster-based steering (DEC0) outperforms the best conventional steering on

average by 10% and 24% at 8 and 16 cycles, respectively. For a quad-cluster

microarchitecture, replication-based steering (RepS) outperforms the best conventional

steering on average by 10% and 32% at 8 and 16 cycles, respectively.

 Slipstream-based steering desensitizes the IPC performance of a clustered

microarchitecture to tens of cycles of inter-cluster communication latency. As feature

sizes shrink, it will take multiple cycles to propagate signals across the processor chip.

For a clustered microarchitecture, this implies that with further scaling of feature size, the

inter-cluster communication latency will also increase. Thus, if individual clusters are

clocked faster, at the expense of increasing inter-cluster communication latency,

performance of a clustered microarchitecture using slipstream-based steering will

improve considerably as compared to a clustered microarchitecture using conventional

steering.

8.2 Future Work

We have identified several performance/power optimizations for the replication

model.

In the replication model, all replicas of an effectual instruction broadcast their

identical values to other clusters. We could eliminate communication of these redundant

values, and thereby reduce power consumption on inter-cluster bypasses (contention for

bypasses also reduced).

 84

On the other hand, inter-cluster communication of redundant values in the

replication model can be used for easing pressure on the resources of a cluster. If the

value produced by one copy of an instruction becomes globally available before other

copies of the same instruction have executed, it would be advantageous to not execute the

other copies, as the result is already available in all cluster register files. This will reduce

the load on the execution resources of a cluster. We plan to implement a technique

whereby copies are squashed from the instruction queues if it is detected that another

copy of the same instruction has produced and communicated its value to all other

clusters.

The replication models can be exploited for fault tolerance. Since replicated

instructions produce identical values, the values produced by different clusters can be

compared to confirm that all clusters produce the same value. If any of the values differ,

then the program can be rolled back to its non-corrupted architectural state. The entire

execution engine of the clustered microarchitecture is provided a level of fault tolerance.

There is also coverage of the inter-cluster bypasses, because any transient/permanent

faults that occur while values are communicated can be detected (effectual component

only).

For the replication model, an IR-predictor/IR-detector pair can be associated with

a cluster for predicting the effectualness of instructions on that cluster. Therefore, there

can be multiple IR-predictor/IR-detector pairs (equaling the number of clusters), as

 85

opposed to a single IR-predictor/IR-detector pair currently used. This means that an IR-

predictor/IR-detector pair is fed instructions from its associated cluster and an instruction

can be predicted to be effectual on one cluster and ineffectual on another. A higher

percentage of instructions can be predicted ineffectual with this method. Thus fewer

instructions will be executed on each cluster. More importantly, we envision a paradigm

that eliminates inter-cluster communication altogether, except in the case of IR-

mispredictions.

We would like to compare the performance of slipstream-based steering to

critical-path-based steering. We would also like to augment the performance of

dependence-based steering heuristics with effectual/ineffectual information.

We assumed that the fetch unit is redirected in the cycle after a mispredicted

branch is resolved. We also assumed that all clusters squash their instruction queues in

the same cycle in which the branch misprediction is resolved. In other words, inter-

cluster communication latency is not modeled with respect to branch misprediction

recovery. As part of future work, we plan to evaluate recovery latency in the context of a

clustered microarchitecture, and propose new microarchitectures accordingly.

We observed that the best-performing slipstream-based steering heuristic depends

on the application, the configuration of the clustered microarchitecture, and the inter-

cluster communication latency. Currently, the steering heuristic for a clustered

microarchitecture is fixed. In order to optimize performance under variable conditions,

 86

we plan to change the steering heuristic at run-time, based on program behavior, inter-

cluster communication latency, and configuration of the clustered microarchitecture. This

would be beneficial for (1) a clustered microarchitecture that handles programs with

varied behavior, (2) a clustered microarchitecture with dynamic voltage scaling (DVS)

within clusters, where the inter-cluster communication latency (in cycles) varies with

cluster frequency/voltages, (3) a processor in which the number of clusters can be

dynamically tuned [3], or (4) a processor with a combination of the above features.

 87

Bibliography

[1] A. Aggarwal and M. Franklin. An Empirical Study of the Scalability Aspects of Instruction

Distribution Algorithms for Clustered Processors. 2nd International Symposium on Performance
Analysis of Systems and Software, November 2001.

[2] V.Agarwal, M. S. Hrishikesh, S.W. Keckler, D. Burger. Clock Rate versus IPC: The end of the

Road for Conventional Microarchitetcures. 27th International Symposium on Computer
Architecture, June 2000.

[3] R. Balasubramonian, S. Dwarladas, D. H. Albonesi. Dynamically Managing the

Communication-Parallelsim Trade-off in Future Clustered Processors. 30th International
Symposium on Computer Architecture, June 2003.

[4] A. Baniasadi and A. Moshovos. Instruction Distribution Heuristics for Quad-Cluster,

Dynamically-Scheduled, Superscalar Processors. 33rd International Symposium on
Microarchitecture, December 2000.

[5] D. C. Burger, T. M. Austin, and S. Bennett. The Simplescalar Tool Set, Version 2.0. Technical

Report 1342, Computer Science Department, University of Wisconsin-Madison, 1997.

[6] R. Canal, J. M. Parcerisa, and A. González. A Cost-Effective Clustered Architecture. 8th
International Conference on Parallel Architectures and Compilation Techniques, October 1999.

[7] R. Canal, J. M. Parcerisa, and A. González. Dynamic Cluster Assignment Mechanisms. 6th

International Symposium on High Performance Computer Architecture, January 2000.

[8] G. Z. Chrysos and J. S. Emer. Memory dependence predictions using store sets. 25th
International Symposium on Computer Architecture, June 1998.

[9] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. The Multicluster Architecture: Reducing

Cycle Time Through Partitioning. 30th International Symposium on Microarchitecture,
December 1997.

[10] B. Fields, S. Rubin, and R. Bodik. Focussing Processor Policies via Critical-Path Prediction. 28th

International Symposium on Computer Architecture, June 2001.

[11] J. Fridman and Zvi Greefield. The TigerSharC DSP Architecture. IEEE Micro, pp. 66 – 76,
January-February 2000.

[12] E. Jacobsen, E. Rotenberg, and J. Smith. Assigning Confidence to Conditional Branch

Predictions. 29th International Symposium on Microarchitecture, December 1996.

[13] R. E. Kessler, E. J. McLellan, and D. A. Webb. The Alpha 21264 Microprocessor Architecture.
16th International Conference on Computer Design, December 1998.

[14] J. J. Koppanalil. A Simple Mechanism for Detecting Ineffectual Instructions in Slipstream

Processors. M.S. Thesis, Dept. of Electrical and Computer Engineering, North Carolina State
University, May 2002.

[15] S. McFarling. Combining Branch Predictors. Technical Report TN-36, Western Research

Laboratory, June 1993.

 88

[16] A. Moshovos, S. Breach, T. Vijaykumar, and G. Sohi. Dynamic speculation and synchronization

of data dependences. 24th International Symposium on Computer Architecture, June 1997.

[17] E. Ozer, S. Banerjia, T. M. Conte. Unified assign and schedule: A new approach to scheduling
for clustered register file microarchitectures. 31st International Symposium on
Microarchitecture, November 1998.

[18] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-effective superscalar processors. 24th

International Symposium on Computer Architecture, June 1997.

[19] J. M. Parcerisa, A. González. Reducing Wire Delay Penalty through Value Prediction.
33rdInternationalSymposium on Microarchitecture, December 2000.

[20] Z. Purser, K. Sundaramoorthy, and E. Rotenberg. A Study of Slipstream Processors. 33rd

International Symposium on Microarchitecture, December 2000.

[21] Z. Purser, K. Sundaramoorthy, and E. Rotenberg. Slipstream Memory Hierarchies. Technical
Report CESR-TR-02-3, Center for Embedded Systems Research, North Carolina State
University, February 2002.

[22] N. Ranganathan and M. Franklin. An Empirical Study of Decentralized Execution Models. 8th

International Conference on Architectural Support for Programming Languages and Operating
Systems, October 1998.

[23] N. Ranganathan and M. Franklin. The PEWs microarchitecture: reducing complexity through

data-dependence based decentralization. Microprocessors and Microsystems 22 Pg 333 – 343,
1998.

[24] E. Rotenberg. Exploiting Large Ineffectual Instruction Sequences. Technical Report, North

Carolina State University, November 1999.

[25] Eric Rotenberg, Quinn Jacobson, Yiannakis Sazeides, and James E. Smith. Trace Processors.
30th International Symposium on Microarchitecture, December 1997.

[26] J. Sánchez and A. González. Modulo Scheduling for a Fully-Distributed Clustered VLIW

Architecture. 33rd International Symposium on Microarchitecture, December 2000.

[27] S. S. Sastry, S. Parlacharla, and J. E. Smith. Exploiting Idle Floating-Point Resources for Integer
Execution. 1998 ACM Conference on Programming Language Design and Implementation, June
1998.

[28] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream Processors: Improving both

Performance and Fault Tolerance. 9th International Conference on Architectural Support for
Programming Languages and Operating Systems, November 2000.

[29] Texas Instrument Inc. TMS320C62x/67x CPU and Instruction Set Reference Guide, 1998.

[30] E. Tune, D. Liang, D. M. Tullsen, and B. Calder. Dynamic Prediction of Critical Path

Instructions. 7th International Symposium on High Performance Computer Architecture, January
2001.

 89

Appendix

Figure A-1 through Figure A-10 show the performance of slipstream-based

steering (with and without the WSV criterion for confidence thresholds of 3 and 15) on

dual_2x4_b8, with respect to Base_8, for gap, gcc, perl, twolf, and vortex. C3 (WSV)

indicates a confidence threshold of 3 and WSV criterion are used, while C3 indicates that

the WSV criterion is not used.

gap (dual_2x4_b8)

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

)

Base_8
Rep0 (C3)
Rep0 (C3, WSV)
RepS (C3)
RepS (C3, WSV)
DEC0 (C3)
DEC0 (C3, WSV)
DECS (C3)
DECS (C3, WSV)
4-way
2-way

Figure A-1: Relative performance of slipstream-based steering (confidence threshold of 3) on
dual_2x4_b8, with respect to Base_8, for gap.

gap (dual_2x4_b8)

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

)

Base_8
Rep0 (C15)
Rep0 (C15, WSV)
RepS (C15)
RepS (C15, WSV)
DEC0 (C15)
DEC0 (C15, WSV)
DECS (C15)
DECS (C15, WSV)
4-way
2-way

Figure A-2: Relative performance of slipstream-based steering (confidence threshold of 15) on
dual_2x4_b8, with respect to Base_8, for gap.

 90

gcc (dual_2x4_b8)

40

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

)

Base_8
Rep0 (C3)
Rep0 (C3, WSV)
RepS (C3)
RepS (C3, WSV)
DEC0 (C3)
DEC0 (C3, WSV)
DECS (C3)
DECS (C3, WSV)
4-way
2-way

Figure A-3: Relative performance of slipstream-based steering (confidence threshold of 3) on
dual_2x4_b8, with respect to Base_8, for gcc.

gcc (dual_2x4_b8)

40

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

)

Base_8
Rep0 (C15)
Rep0 (C15, WSV)
RepS (C15)
RepS (C15, WSV)
DEC0 (C15)
DEC0 (C15, WSV)
DECS (C15)
DECS (C15, WSV)
4-way
2-way

Figure A-4: Relative performance of slipstream-based steering (confidence threshold of 15) on
dual_2x4_b8, with respect to Base_8, for gcc.

perl (dual_2x4_b8)

40

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

)

Base_8
Rep0 (C3)
Rep0 (C3, WSV)
RepS (C3)
RepS (C3, WSV)
DEC0 (C3)
DEC0 (C3, WSV)
DECS (C3)
DECS (C3, WSV)
4-way
2-way

Figure A-5: Relative performance of slipstream-based steering (confidence threshold of 3) on
dual_2x4_b8, with respect to Base_8, for perl.

 91

perl (dual_2x4_b8)

40

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

)

Base_8
Rep0 (C15)
Rep0 (C15, WSV)
RepS (C15)
RepS (C15, WSV)
DEC0 (C15)
DEC0 (C15, WSV)
DECS (C15)
DECS (C15, WSV)
4-way
2-way

Figure A-6: Relative performance of slipstream-based steering (confidence threshold of 15) on
dual_2x4_b8, with respect to Base_8, for perl.

twolf (dual_2x4_b8)

70

75

80

85

90

95

100

105

110

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

)

Base_8
Rep0 (C3)
Rep0 (C3, WSV)
RepS (C3)
RepS (C3, WSV)
DEC0 (C3)
DEC0 (C3, WSV)
DECS (C3)
DECS (C3, WSV)
4-way
2-way

Figure A-7: Relative performance of slipstream-based steering (confidence threshold of 3) on
dual_2x4_b8, with respect to Base_8, for twolf.

twolf (dual_2x4_b8)

70

75

80

85

90

95

100

105

110

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

)

Base_8
Rep0 (C15)
Rep0 (C15, WSV)
RepS (C15)
RepS (C15, WSV)
DEC0 (C15)
DEC0 (C15, WSV)
DECS (C15)
DECS (C15, WSV)
4-way
2-way

Figure A-8: Relative performance of slipstream-based steering (confidence threshold of 15) on
dual_2x4_b8, with respect to Base_8, for twolf.

 92

vortex (dual_2x4_b8)

30

40

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

)

Base_8
Rep0 (C3)
Rep0 (C3, WSV)
RepS (C3)
RepS (C3, WSV)
DEC0 (C3)
DEC0 (C3, WSV)
DECS (C3)
DECS (C3, WSV)
4-way
2-way

Figure A-9: Relative performance of slipstream-based steering (confidence threshold of 3) on
dual_2x4_b8, with respect to Base_8, for vortex.

vortex (dual_2x4_b8)

30

40

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

)

Base_8
Rep0 (C15)
Rep0 (C15, WSV)
RepS (C15)
RepS (C15, WSV)
DEC0 (C15)
DEC0 (C15, WSV)
DECS (C15)
DECS (C15, WSV)
4-way
2-way

Figure A-10: Relative performance of slipstream-based steering (confidence threshold of 15) on
dual_2x4_b8, with respect to Base_8, for vortex.

Figure A-11 and Figure A-12 show the performance of slipstream-based steering

(with and without the WSV criterion for a confidence threshold of 15) on quad_4x2_b8,

with respect to Base_8, for perl and vortex, respectively.

 93

perl (quad_4x2_b8)

30

40

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

)

Base_8
Rep0 (C15)
Rep0 (C15, WSV)
RepS (C15)
RepS (C15, WSV)
DEC0 (C15)
DEC0 (C15, WSV)
DECS (C15)
DECS (C15, WSV)
4-way
2-way

Figure A-11: Relative performance of slipstream-based steering (confidence threshold of 15) on
quad_4x2_b8, with respect to Base_8, for perl.

vortex (quad_4x2_b8)

30

40

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

8
(%

)

Base_8
Rep0 (C15)
Rep0 (C15, WSV)
RepS (C15)
RepS (C15, WSV)
DEC0 (C15)
DEC0 (C15, WSV)
DECS (C15)
DECS (C15, WSV)
4-way
2-way

Figure A-12: Relative performance of slipstream-based steering (confidence threshold of 15) on
quad_4x2_b8, with respect to Base_8, for vortex.

Figure A-13 and Figure A-14 show the performance of slipstream-based steering

(with and without WSV criterion for a confidence threshold of 15) on quad_4x3_b12,

with respect to Base_12, for gap and gcc, respectively.

 94

gap (quad_4x3_b12)

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

12
 (%

)

Base_12
Rep0 (C15)
Rep0 (C15, WSV)
RepS (C15)
RepS (C15, WSV)
DEC0 (C15)
DEC0 (C15, WSV)
DECS (C15)
DECS (C15, WSV)
4-way
3-way

Figure A-13: Relative performance of slipstream-based steering (confidence threshold of 15) on
quad_4x3_b12, with respect to Base_12, for gap.

gcc (quad_4x3_b12)

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

12
 (%

)

Base_12
Rep0 (C15)
Rep0 (C15, WSV)
RepS (C15)
RepS (C15, WSV)
DEC0 (C15)
DEC0 (C15, WSV)
DECS (C15)
DECS (C15, WSV)
4-way
3-way

Figure A-14: Relative performance of slipstream-based steering (confidence threshold of 15) on
quad_4x3_b12, with respect to Base_12, for gcc.

Figure A-15 through Figure A-18 show the performance of slipstream-based

steering (with and without the WSV criterion for confidence thresholds of 3 and 15) on

quad_4x3_b12, with respect to Base_12, for perl and vortex.

 95

perl (quad_4x3_b12)

30

40

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

12
 (%

)

Base_12
Rep0 (C3)
Rep0 (C3, WSV)
RepS (C3)
RepS (C3, WSV)
DEC0 (C3)
DEC0 (C3, WSV)
DECS (C3)
DECS (C3, WSV)
4-way
3-way

Figure A-15: Relative performance of slipstream-based steering (confidence threshold of 3) on
quad_4x3_b12, with respect to Base_12, for perl.

perl (quad_4x3_b12)

30

40

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

12
 (%

)

Base_12
Rep0 (C15)
Rep0 (C15, WSV)
RepS (C15)
RepS (C15, WSV)
DEC0 (C15)
DEC0 (C15, WSV)
DECS (C15)
DECS (C15, WSV)
4-way
3-way

Figure A-16: Relative performance of slipstream-based steering (confidence threshold of 15) on
quad_4x3_b12, with respect to Base_12, for perl.

vortex (quad_4x3_b12)

30

40

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

12
 (%

)

Base_12
Rep0 (C3)
Rep0 (C3, WSV)
RepS (C3)
RepS (C3, WSV)
DEC0 (C3)
DEC0 (C3, WSV)
DECS (C3)
DECS (C3, WSV)
4-way
3-way

Figure A-17: Relative performance of slipstream-based steering (confidence threshold of 3) on
quad_4x3_b12, with respect to Base_12, for vortex.

 96

vortex (quad_4x3_b12)

30

40

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14 16 18
Inter-cluster communication latency (cycles)

IP
C

 re
la

tiv
e

to
 B

as
e_

12
 (%

)

Base_12
Rep0 (C15)
Rep0 (C15, WSV)
RepS (C15)
RepS (C15, WSV)
DEC0 (C15)
DEC0 (C15, WSV)
DECS (C15)
DECS (C15, WSV)
4-way
3-way

Figure A-18: Relative performance of slipstream-based steering (confidence threshold of 15) on
quad_4x3_b12, with respect to Base_12, for vortex.

