
Abstract

Soto, Marco Antonio. Actuator Saturation Control of LPV Systems and Systems with

Rate and Amplitude Saturation. (Under the direction of Dr. Fen Wu)

In this thesis, we consider the design of anti-windup compensators for exponentially un-

stable systems with actuator saturation of amplitude and rate, as well as linear parameter

varying systems. A set of synthesis conditions for anti-windup compensators are developed

for each of the system types, in which the effects of actuator saturation are modelled as

sector-bounded nonlinearities, using traditional linear fractional transformations. The per-

formance criteria are the minimization of the induced L2 norm from disturbance input to

error output, as well as the minimization of controller windup due to actuator saturation.

Explicit construction formulae are provided for the direct construction of these anti-windup

compensators. An exponentially unstable linearized model of an F8 aircraft is used to val-

idate the results of the control analysis. We present the main advantage of the two-step

anti-windup controller design procedure; the ease of implementation and the maintenance

of high performance criteria in design.
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Chapter 1

Introduction

An often neglected component in the design of control systems (is) the specifics of the sensor

and actuator dynamics. In particular, the saturation limits of the actuators in the system

are usually ignored when a controller is being synthesized. However, actuator saturation is

an element in all real physical systems, as real actuators cannot supply an infinitely large

amount of output. The result of this saturation is a difference between the control input

demanded by the controller, and the realized output of the actuator. Obviously, this can

lead to degradation in the performance of the control system, and in some cases, instability

of the control system. Recent attempts to correct this situation have opened up a new focus

of research in control systems. This area of interest is referred to as anti-windup control or

anti-windup compensation, due to the fact that the saturation phenomenon causes integral

terms in the control equations to increase rapidly, or, ”wind-up” [2].

Some critical applications where this type of constraint is pertinent include the maximum

flow capacity in a fuel valve, the peak saturation voltage in a operational amplifier, and the

deflection angle of a control surface in an aircraft, among others. In the particular example

of flight control, the presence of actuator saturation constraints limits the approaches to

control. Aircraft control surfaces have limitations both in their maximum deflections and in

their rate of variation due to geometric and aerodynamic constraints. Actuator limitations

have been attributed to the crash of several aircraft. These limitations have also been

identified as a major contribution to catastrophic pilot induced oscillations [23]. Also, the

failure of several aircraft have been attributed to the saturation of actuators. In the case of

the F-22 crash in April 1992 [7], the control surface rate was limited. A similar occurrence

1



Chapter 1. Introduction 2

caused the Gripen crash in August of 1992 [30].

The goal, then, of any anti-windup control scheme, would be to stabilize the system in

the presence of the saturation, and to approach as closely as possible the performance of the

system in the absence of such saturation. Typically, this saturation is modelled as a nonlin-

earity which creates difficulties in the synthesis of a controller to handle such discrepancy.

A common method of analyzing these problems involves modelling the plant as a linear

time-invariant (LTI) plant connect to a sector-bounded nonlinearity via an upper linear

fractional transformation (LFT). With this complete, a small-gain theorem (or its variant)

is applied to the system for the stability and performance analysis. This often amounts

to an overly conservative estimation of the conditions. This is a single-step procedure, in

which the goals of stability, performance, and saturation control are united into a single

control synthesis problem, which would then be solved by traditional means. The alterna-

tive approach is the two-step procedure, in which the saturation control has been divided

into nominal control and anti-windup compensation designs. In the following subsection,

we will discuss examples of both types of design.

The single-step procedure can, at times, become a more complicated approach to anti-

windup controller synthesis. This is due to the fact that the combination of various criteria

leads to a more conservative procedure for design. That is, if the stability and performance

criteria of the original controller design are augmented by the addition of saturation control

goals, the approach taken to synthesize the controller must be amended. This usually in-

volves the enlargement of already spacious LMIs to include the new goals. Furthermore, the

new conditions sometimes suffer from a loss of convexity. So while the single-step procedure

involves fewer steps, the computations can become more complicated than effective.

The two-step design procedure has the handicap of requiring more controller synthesis

LMIs and more calculations in general. However, this procedure has several distinct ad-

vantages over the single-step procedure. The main advantage is that it can be used as an

augmentation of a nominal control scheme which suffers from actuator saturation. If it is

unclear wether or not a control system will suffer a loss of performance or stability due to

saturation, a nominal controller can be designed without regarding anti-windup problems.

If this controller is insufficient, then the proposed synthesis approach can be taken. This

implementation usually only requires a software or computer change. Thus, it is usually the
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case that no additional hardware will be necessary in order to implement the anti-windup

compensator. Simply, a new addition to the control law will be added, only requiring that

the effects of saturation can be measured by existing sensors. That is, that the realized

control output can be measured by the existing sensor, in order to be compared with the

nominal output.

The other major advantage of the two-step design procedure lies in the construction of

the original controller. When designing the nominal controller without regard to saturation,

the designer is free to choose as strict a set of performance criteria as desired. Since the

concerns of actuator saturation are not present, a well-performing optimal controller can be

sought and implemented. If this proves to be insufficient in the face of actuator saturation,

then a compensator can be designed. Therefore, this approach does not suffer from the

inherent conservatism involved in the design of a single-step anti-windup compensator.

1.1 Background

As stated earlier, recent years have seen a variety of control techniques for saturated LTI

systems. In [22], a generalized framework for many anti-windup control schemes was pro-

posed. Previous to that work, this area of research suffered from the lack of unity among

control and performance objectives. The work of Teel and Kapoor in [33] brought a defi-

nition of anti-windup compensation in terms of L2 stability and performance. Another key

idea is the formulation of the synthesis of anti-windup controllers in terms of LMI problems.

This was undertaken in [24, 31, 20]. The main advantage of this approach is the adaptation

of the well known Circle stability criteria to the anti-windup compensation problem. In [15],

the concept of a null-controllable region is used in conjunction with one-step methods as an

approach to anti-windup compensator design for LTI systems. Also, several approaches to

systems with rate and magnitude saturation have been undertaken for LTI systems. These

also involve the study of the null-controllable region in designing a single step anti-windup

compensator as in [17].

Often, it is more appropriate to model a physical system as a Linear Time-Varying

(LTV) system. This is the case when the parameters that make up the state-space model of
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the system are functions of time. A specific class of these systems are the Linear Parameter-

Varying (LPV) systems. These are systems whose state-space data are functions of some

parameter which is varying with time. (The parameter is assumed varying in a bounded

set and its current vaule is measurable). In [1, 35, 26] LMI methods for the H∞ control of

these LPV systems are established. These gain-scheduling methods are used typically to

design controllers for these systems.

In [38], a one-step approach is used in conjunction with classical LPV methods. The key

idea in this work is that the saturation effects can be modelled as an LPV block attached

to the system and not a nonlinearity block. While the system is still considered nonlinear,

the modelling of the actuator saturation is now a gain-scheduling block. This allows for the

controller to be designed in a one step process, and also allows for the use of classical LPV

methods such as the ones in [1] in solving the resulting controller synthesis problems.

Another one-step approach is taken in [16]. Here, the actuators are subject to amplitude

and rate saturation, and a discrete control scheme was developed using state feedback and

dynamic output feedback. A linear quadratic regulator design was modified to compensate

the saturated system. The saturation was modelled as a sector-bounded nonlinearity, as in

this work. Also the model for rate saturation of the actuators was developed, which will be

used in the simulations of the F8 aircraft rate saturation.

A two-step approach involving the modelling of the saturation as a sector-bounded

nonlinearity was taken in [11]. In this paper, the design of an anti-windup compensator

was undertaken. Instead of designing a controller which would single-handedly stabilize

the system in the face of actuator saturation, the author sought to design a compensator

for a nominal controller which stabilized the system and had a relatively good measure of

performance. The synthesis was based on the linear matrix inequality (LMI) forms of the

small gain theorem and bounded real lemma. The anti-windup compensator was designed

in such a way as to act as a gain upon the difference between the saturated and unsaturated

control input. This gain was then used as an output which acted to update the controller

states and the controller output. The approach was to recast the design of anti-windup

compensator as a classical H∞ problem. In this case, the analysis and synthesis conditions

would be convex and solvable LMIs. The strongest assumption made in this paper was that

the nominal plant must be stable.



Chapter 1. Introduction 5

The work of Wu and Lu [39] builds upon this concept by removing the stability re-

quirement. The work of Teel, [32] also includes the conditions for synthesizing anti-windup

compensators for exponentially unstable systems. Thus, an anti-windup compensator design

scheme for stable or unstable systems was created. This approach also involved the use of

convex and solvable LMIs in order to synthesize and analyze the stability and performance

of the closed loop system.

There are two natural extensions to the previous work. This work involves dismantling

the problem of the maximum saturation magnitude of an actuator. Another type of satu-

ration which occurs during actuation is that of the rate of response of the actuator. This is

also limited by the physical constraints on the system. The main difference in these types

of saturation is that the rate saturation is more difficult to measure. However, with a clever

design of the control system architecture, this problem becomes more simple. This rate and

magnitude saturation problem can then be addressed in a similar manner to the magnitude

saturation problem, by employing a two-step design procedure using convex and solvable

LMIs.

The second conclusion involves linear time variant (LTV) problems. More specifically,

the class of LTV plants which can be described by a parameter variation. This class includes

the class of linear parameter varying (LPV) plants. Can a similar design procedure be used

to address LPV plants undergoing actuator saturation? The typical response to designing

a controller for an LPV plant is the gain-scheduling method used in Packard [26] and

Apkarian [1] among other papers. We shall seek to design a gain-scheduled anti-windup

which depends on the same parameters as the gain-scheduled controller and LPV plant.

This way, a system can be stabilized against a sector-bounded nonlinearity (saturation)

and parameter variation.

When using LMI methods to synthesize controller solutions to H∞ problems, the typical

procedure is to first solve some LMI which corresponds to the existence of a stabilizing

controller using a procedure to eliminate the controller variables from the inequality. With

this accomplished, the scaling matrix solutions are back-substituted into the original LMI in

order to solve for the controller gains. In [13], an explicit construction scheme was developed

which is equivalent to the above procedure. This scheme allows us to explicitly solve for

the controller gains after evaluating the synthesis LMI. This approach was also used in [39]
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in order to construct an explicit anti-windup compensator.

We will apply our proposed rate and magnitude anti-windup compensator to the control

of a linearized F-8 aircraft model. This model will contain an unstable pole which was added

in to demonstrate the capability of the proposed design to compensate for windup in the

presence of instability.

1.2 Thesis Objective

The objectives of this thesis are all related to the general problem of anti-windup com-

pensation for actuator saturation problems with the specific example of an exponentially

unstable model of an F8 aircraft.

First, we hope to provide modifications to well-known stability and performance theo-

rems in order to make them compatible with the goals of anti-windup compensation. That

is to say, we would like to cast the problem of saturation control in a way that is consistent

with familiar LMI methods.

The second goal is to provide synthesis and analysis conditions for systems suffering

actuator saturation in two general areas. The first is the general class of systems which

are constrained by both rate and magnitude saturations. The second such case is input

saturated systems that are LPV gain-scheduled systems being controlled by a nominal

gain-scheduled controllers.

With synthesis and analysis conditions obtained, we would like to provide explicit for-

mulae for the construction of such controllers, in order to avoid the overuse of complicated

LMIs.

Finally, an example of the usage of a rate and magnitude controller will be provided.

We hope to control an F8 aircraft model which suffers from rate and magnitude saturation

with the proposed anti-windup controller design.

1.3 Thesis Outline

Chapter 1 has a literature review of the previous work on anti-windup compensation and

actuator saturation. This chapter also outlines the objectives and content of this thesis.
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Also, the motivation for the necessity of this type of anti-windup compensator design is

included.

Chapter 2 contains some information on the mathematical tools used to throughout

this work. Specifically, the robust control framework, including LFT’s, LMI’s and matrix

definitions, is established as a foundation for this work. Afterwards, the theorems and

lemmas used to establish the stability and performance criteria, as well as the synthesis and

analysis conditions, are given without proof.

Chapter 3 is a robust analysis of sector-bounded nonlinearities for both cases studied in

this thesis. In particular, the problem of stabilizing a system in the presence of a sector-

bounded nonlinearity is given the treatment of a standard H∞ problem using an LMI

framework.

Chapter 4 provides a thorough derivation of the synthesis conditions for the rate and

magnitude anti-windup compensator, as well as the gain-scheduled anti-windup compen-

sator. This is done through the use of the ideas contained in the previous chapters. With

synthesis conditions established, and proven to be feasible and convex, the construction

procedure for the rate and magnitude anti-windup compensator will be given. Also, the

construction procedure for the gain-scheduled compensator will be derived in a similar

fashion. These procedures are explicit construction schemes as in [13], as opposed to the

feasibility approach used in [11].

Chapter 5 contains the numerical results of applying the proposed anti-windup compen-

sator design to the F8 model. First, the effects of the magnitude saturation is shown, as

well as the effects of the rate saturation. These two nonlinearities will be applied to the F8

model with a nominal H∞ controller. The performance of the system will then be compared

to the performance of the system with the proposed anti-windup compensator design added

in.

Finally, the Chapter 6 will contain a summary of the main results, as well as provide a

commentary on the future work in this area.



Chapter 2

Mathematical Preliminary

We desire to construct the problem of anti-windup compensator simulation using traditional

hinf control procedures. In order to do this, we must introduce several mathematical

concepts which are key to this type of analysis. This chapter provides several of those

results without proof. We shall present the L2 norm used as a performance measure here,

as well as the Scaled Bounded Real Lemma and an overview of the previous results on LPV

systems and gain-scheduled H∞ control theory.

2.1 Signals, Norms, Operators, and Matrix Definitions

The main objective in any control system design is usually twofold. The first is to achieve

stability, and the second is to achieve some performance criterion. In physical systems,

these typically involve reducing some tracking error, or minimizing the settling time or

peak overshoot of a system. By examining these control objectives in the light of a com-

plex function space, we can eliminate talk of parameters with different units and different

contexts and unite the goals under the lens of a single type of function. By exploring the

norms of these signals, we can recast our performance objectives so that they all meet a

single type of criterion.

A Hilbert space is a complete inner product space with its norm induced by its inner

product [40]. A useful infinite dimensional Hilbert space is L2(jR), which consists of all

square integrable and Lebesgue measurable functions F defined on the interval [a, b] with

8
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its inner product and induced norm defined as,

〈F, G〉 :=
1
2π

∫ ∞

−∞
trace [F ∗(jω)G(jω)] dw, and ‖F‖2 :=

√
〈F, F 〉

H∞ is a closed subspace of L∞ with functions that are analytic and bounded in the

open right-half plane. The H∞ norm is defined as,

‖F‖∞ := sup
w

σ̄ (F (jω))

Here, the σ̄ represents the maximum singular value. So in other words, the H∞ norm

of a system matrix is the largest of the maximum singular values over all frequency. In

essence, it is the largest amplification from input to output that the system will experience.

This is the norm we shall use in order to specify the performance criteria. Generally, we

shall seek to minimize the H∞ norm of certain signals (i.e. the tracking error, or the norm

from disturbance to plant output).

A Matrix A is said to be positive definite (denoted as A > 0) if x∗Ax > 0 for all x 6= 0.

Similarly, a Matrix A is said to be positive semidefinite if x∗Ax ≥ 0 for all x 6= 0. This will

be a condition in many of the Linear Matrix Inequalities that we wish to solve. A negative

definite (semidefinite) matrix is defined in a similar way.

A pair of matrices (C,A) is said to be detectable if A + LC is stable for some L.

Similarly, consider a matrix pair (A,B). Then the following theorem holds.

Theorem 1 The following statements are equivalent.

(i) (A,B) is stabilizable

(ii) The matrix
[
A− λI B

]
has full row rank for all λ with nonzero real com-

ponent.

(iii) For all λ and x such that x∗A = x∗λ and Reλ ≥ 0, x∗B 6= 0.

(iv) There exists a matrix F such that A + BF is Hurwitz stable.

The last result will prove useful in the study of the Lyapunov equation.

2.2 Linear Fractional Transformations

A Linear Fractional Transformation (LFT) is a useful tool in the control analysis and control

synthesis. It is a way that we can rewrite the interconnection of multiple matrices in a block
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diagram into a more compact package. The definition of lower and upper LFT’s follow.

If M is a complex matrix partitioned in the following form,

M =


 M11 M12

M21 M22




then, the linear fractional transformations are defined as,

Fl(M, ∆l) := M11 + M12∆l(I −M22∆l)−1M21 (2.1)

Fu(M, ∆u) := M22 + M21∆u(I −M11∆u)−1M12 (2.2)

An LFT, Fl(M, ∆), is said to be well-defined (well-posed) if I−M22∆ is invertible. Also,

an LFT, Fu(M, ∆), is well-defined if (I −M11∆)−1 exists.

In order to see the physical meaning of LFTs in control science, we take M to be a

proper control transfer matrix. With this interpretation the LFT simply represents a closed

loop transfer matrix. In this case, the LFT can be considered to close the loop with the

transfer matrix and controller (usually lower LFTs) or to close the loop with a plant and

its associated uncertainty (usually upper LFTs). More detailed information on LFT may

be found in [40].

In the anti-windup synthesis, we will use an LFT to represent the connection between the

plant (with controller) and the anti-windup compensator. We will also define the relation

between the associated nonlinearity and the plant as an upper LFT. This way, we can

examine the stability of the plant against the nonlinearity.

2.3 Linear Matrix Inequalities

Linear Matrix Inequalities (LMIs) are useful tools in control analysis and control synthesis.

Indeed, our control synthesis and control analysis requirements can be (and will be) writ-

ten as LMIs. Most notably we have the so-called Algebraic Riccati Equation (ARE), the

Lyapunov equation, and the LMI form of the bounded real lemma. In this section, we will

examine the the first two equations, and the bounded real lemma will be inspected.

In the process of control analysis, the Lyapunov equation is useful for examining the

stability properties of a system matrix. Consider given real matrices A and H in the

Lyapunov equation:
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A∗Q + QA + H = 0 (2.3)

The relationship between the solution of this equation, Q and the stability of the matrix

A can be summarized in the following two theorems.

Theorem 2 Assuming that A is stable in the Lyapunov equation, the following statments

are then true:

(i) Q =
∫∞
0 eA∗t

HeAt
dt

(ii) Q > 0 if H > 0 and Q ≥ 0 if H ≥ 0.

(iii) if H ≥ 0 then (H,A) is observable if and only if Q > 0

A natural corollary of this theorem is that this equation can be arranged in order to

learn about the controllability and observability of the (A,B, C) triple.

In many cases, we are given the solution to the Lyapunov equation and desire to conclude

the stability of matrix A. In that case, the following theorem proves useful.

Theorem 3 Given solution Q to the Lypaunov equation, then the following results hold

(i) The real part of λ(A) ≤ 0 if Q > 0 and H ≥ 0

(ii) A is stable if Q > 0 and H > 0

(iii) A is stable if Q ≥ 0, H ≥ 0 and (H,A) is detectable.

The usefulness of the last consequence of this theorem will be apparent in the LMI form

of the bounded real lemma, where we will use it to prove some useful results.

2.3.1 Scaled Bounded Real Lemma

The bounded real lemma, proposed by Khargonekar and Zhou [21], is used in converting the

H∞ norm constraint of an LTI system into an equivalent linear matrix inequality condition.

This effectively converts the complicated problem of calculating a maximum over all fre-

quencies into a single system of inequalities. Its usefulness in control theory is to examine

performance in a control analysis problem, or to examine feasibility in a control synthesis

problem. The scaled bounded real lemma, presented below, is useful for converting the H∞
norm constrain of LPV systems, and ultimately providing analysis and synthesis conditions

for gain-scheduled control schemes of parameter-varying systems.
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Lemma 2.3.1 Consider an uncertain parameter structure ∆, the associated set of positive

definite similarity scalings defined by L∆ = {L > 0 : L∆ = ∆L} ⊂ Rr×r, and a square

continuous-time transfer function T (s) = D+C(sI−A)−1B. Then the following statements

are equivalent,

1. A is stable and there exist L ∈ L∆ such that

‖L1/2(D + C(sI −A)−1B)L−1/2‖∞ < γ

2. There exist positive definite solutions X and L ∈ L∆ to the matrix inequality,



AT X + XA XB CT

BT X −γL DT

C D −γL−1


 < 0.

This form of the bounded real lemma is presented in [1] and [26].

2.4 Linear Parameter-Varying Systems

Linear parameter-varying (LPV) systems are a special class of linear time-variant systems

(LTV). In an LTV plant, the state-space matrices are functions of time, as in the plant

below

ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t)

The implementation of the solution to theH∞ control problem which corresponds to this

type of plant is often impractical as it involves integration of Riccati differential equations

in real time [1]. However, small gain LTI techniques can be applied to plants whose time

dependance has the form

ẋ(t) = A(Θ(t))x(t) + B(Θ(t))u(t) (2.4)

y(t) = C(Θ(t))x(t) + D(Θ(t))u(t) (2.5)

where Θ(t) is a vector of time-varying plant parameters. The state-space matrices then

become functions of Θ. This is the class of LPV systems. Furthermore, we would like to
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restrict our attention to the class of LPV systems where the state-space matrices are linear

fractional functions of the gain-scheduling parameter Θ.

The typical approach for these LPV plants involves the small gain theorem by treating

the parameter variations as an uncertainty block, and by then designing a single robust

controller for the resulting family of systems as in [26]. However, this approach is usually

overly conservative [1].

The approach used in [1] involves designing robust controllers around each operating

point and to then switch between controller according to some gain-scheduling policy [26]. In

this work, we will use a gain-scheduling policy to switch between anti-windup compensators

for the LPV system.

The form of the controller which will be corrected by the gain-scheduled anti-windup

compensator is given below:




ẋk

u

zk


 =




Ak Bk1 Bkθ

Ck1 Dk11 Dk1θ

Ckθ Dkθ1 Dkθθ







xk

y

wk


 +




v1

v2

v3




wk = Θzk

Notice the input v. This is the correcting information from the anti-windup compen-

sator.

2.4.1 Gain-Scheduled H∞ Control Theory

In this subsection, we shall describe the nature of the gain-scheduled H∞ control problem.

The key notion for this type of problem is that of converting the parameter-dependant

structure of the plant and controller into that of the classical uncertainty structure of a

standard H∞ problem.

The linear fractional dependence on Θ in an LPV plant is essentially represented by an

upper LFT connection as follows [1]

z

y


 = Fu(P, Θ)


w

u


 (2.6)
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Where P is the LTI plant and Θ is the block diagonal time-variant operator which specifies

the relation of θ to the plant dynamics. In actuality,

Θ = diag(θ1Ir1, θ2Ir2, ..., θKIrK) (2.7)

In order to maintain a square format for this matrix, ri > 1 whenever the parameter θi is

repeated [8].

The plant with this parameter dependance can be written in LFT form as



z

e

y


 =




Pθθ Pθ1 Pθ2

P1θ P11 P12

P2θ P21 P22







w

d

u




w = Θz

The common interpretation of this set of equations is that z and w are pseudo inputs

and outputs, respectively. Therefore, the controller design problem becomes that of finding

a controller of the form

u = Fl(K, Θ)y (2.8)

The controller will also have an LFT dependance on the gain-scheduling parameter θ.

In this case, the parameter is the scheduling variable which gives the rule of updating the

controller’s information based on the measurements of Θ [1].

The LFT interconnection of plant and controller is shown in figure 2.1.

The closed-loop transfer function from disturbance d to output e is given by

T (P, K,Θ) = Fl(Fu(P, Θ), Fl(K, Θ)) (2.9)

In order to better analyze the systems with traditional control techniques, we shall

rearrange the system matrices in order to match the upper LFT structure used in classical

H∞ theory. The new system, G will be the interconnection of plant and controller excluding

the parameter dependance. This new system G will then be connected via upper LFT to

the augmented block repeated uncertainty structure


Θ 0

0 Θ


. This structure will hereafter

be denoted as Θ⊕Θ.
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Figure 2.1: LPV Control Systems Diagrams

In light of this rearrangement, the LPV problem can now be interpreted as a robust

performance problem for the new system, with a norm-bounded uncertainty Θ ⊕ Θ. By

using small gain theory [40], we can define a solution. First, it is necessary to obtain a set

of positive definite similarity scalings associated with the block uncertainty structure. As

in [1], we shall use the set

L∆ = {L > 0 : LΘ = ΘL,∀Θ ∈ ∆} ⊂ Rr×r
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where

r =
K∑

i=1

ri (2.10)

This set has the following important properties [26]

(i) Ir ∈ L∆.

(ii) L ∈ L∆ ⇒ LT ∈ L∆.

(iii) L ∈ L∆ ⇒ L−1 ∈ L∆.

(iv) L1 ∈ L∆, L2 ∈ L∆ ⇒ L1L2Θ = ΘL1L2, ∀Θ ∈ ∆.

(v) L∆ is a convex subset of Rr×r.

Given this set, it is easy to show that the set of scalings which commute with the

repeated structure, Θ⊕Θ is

L∆⊕∆ =






L1 L2

LT
2 L3


 > 0 : L1, L3 ∈ L∆ and

L2Θ = ΘL2, ∀Θ ∈ ∆}

We shall use this result in forming our synthesis condition, as our closed loop plant will

have a block repeated uncertainty structure as above. This result, in conjunction with the

so-called Elimination Lemma [5] will allow us to eliminate the uncertainty structure of the

anti-windup compensator in the closed loop plant. Note that the key difference in this set is

that the matrix L2 is commutable with gain-scheduling parameter Θ, but is not a member

of the set L∆. Therefore, it is not necessary for the matrix L2 to be positive definite.



Chapter 3

Robust Analysis of Sector-Bounded Nonlinearities

In this chapter, we shall analyze the saturation nonlinearities in both the LTI and LPV

systems. We shall extend the well-known Circle criterion results to apply to the systems

examined in this work. The LTI extension will be similar to the one found in Wu [39], with

the addition of the rate saturation block. The LPV extension will be another extension of

[39] but combined with similar results involving scaling matrices as in Apkarian [1].

3.1 LTI System with Sector-Bounded Nonlinearity

In this section, we shall provide the framework for the LTI system with sector-bounded

nonlinearity that we shall use throughout this thesis to represent the system with actuator

saturation.

Consider a LTI system interconnected with an input sector-bounded nonlinearity.




ẋ

u

e


 =




A B0 B1

C0 D00 D01

C1 D10 D11







x

q

d


 (3.1)

q = ψ(u) (3.2)

Note the addition of the nonlinearity output q which has the same dimension as input

u. The nonlinearity ψ defines a conic sector [0, k] which is a form of the constraint on the

input u.

17
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u

)(u

slope k

Figure 3.1: Sector-Bounded Nonlinearity

Another way of stating the constraint on nonlinearity ψ is to examine the input/output

relationship that nonlinearity ψ imposes on the u, q pair. That is to say

qT W (ku− q) ≥ 0

for any diagonal matrix W = diag{w1, w2, ..., wnu} > 0 [39]. This matrix must be positive

definite. This will be used to describe the input saturation for the system. Section 3.2 will

provide a modified Circle criterion for deriving the synthesis and analysis conditions for the

stability of this plant.

For the case where there are multiple types of saturation nonlinearities (such as when

both rate and magnitude saturation are present in the system), the criterion must be mod-

ified slightly. Now instead of a constant k relating the input to output, a matrix k̄ must be

used. The format of this matrix is

k̄ =


kmInu 0

0 krInu




.

Here, km describes the constraint on the magnitude of actuation, and kr describes the

constraint on the rate of actuation. The input/output relationship is now described by the

following matrix inequality:

q̃T W (k̄ũ− q̃) ≥ 0
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for any diagonal matrix W = diag{w1, w2, ..., w2nu} > 0. Here, q̃ ∈ R2nu is the vector

containing feedback information about the two types of actuator saturation, that is, the

difference between the unsaturated and saturated values of control input u and rate of

control input u̇ss. The vector ũ ∈ R2nu is the vector of inputs to the two saturation blocks.

3.2 Modified Circle Criterion for Nonlinear Stability of LTI

Plants

In this thesis, we will model the effects of actuator saturation as a nonlinearity. We would

like to be able to guarantee that our closed-loop system is stable against the effects of some

nonlinearity. This way, we can have a true synthesis condition. The following result was

proven by Wu and Lu [39], and will be used to state our stability goals in terms of another

LMI.

Theorem 4 Given γ > 0 and the nonlinear system (3.1) - (3.2) if there exist a positive

definite matrix P ∈ Sn×n
+ and a diagonal matrix W > 0, such that




AT P + PA PB0 + CT
0 k̄W PB1 CT

1

BT
0 P + Wk̄C0 Wk̄D00 + DT

00k̄W − 2W Wk̄D01 DT
10

BT
1 P DT

01k̄W −γInd
DT

11

C1 D10 D11 −γIne




< 0 (3.3)

Then the nonlinear system is quadratically stable against nonlinearity ψ ∈sect[0, k] and

‖e‖2 < γ‖d‖2.

We shall prove this result using S-Theory [5].

Proof: Consider a Lyapunov function of the form V (x) = xT Px for the nonlinear system,

then a sufficient condition for the performance and stability properties of the nonlinear LPV
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system can be established via S-Procedure [5] from the following inequality

V̇ +
1
γ

eT e− γdT d + 2q̃T W (k̄ũ− q̃) < 0

V̇ +
1
γ

eT e− γdT d + 2q̃T W (k̄ũ− q̃)

= ẋT Px + xT Pẋ +
1
γ

eT e− γdT d + 2q̃T W (k̄ũ− q̃)

=
[
xT q̃T dT

]
×








AT P + PA PB0 + CT
0 k̄W PB1

BT
0 P + Wk̄C0 Wk̄D00 + DT

00k̄W − 2W Wk̄D01

BT
1 P DT

01k̄W −γInd




+
1
γ




CT
1

DT
10

DT
11




[
C1 D10 D11

]







x

q̃

d


 < 0

The last inequality is equivalent to the LMI condition 3.3 through Schur complement.

Q.E.D.

In a later chapter, we shall recast our goals so that they match this LMI. That is,

application of this theorem to both the nonlinear system for magnitude and rate saturation,

as well as the LPV system used for gain-scheduling, will provide a synthesis and analysis

conditions for the anti-windup compensators. Afterwards, we shall seek to find a solution

which guarantees the system stability and performance margin.

3.3 Modified Circle Criterion for Nonlinear Stability of LPV

Plants

In order to derive synthesis and analysis conditions for a LPV plant under the effects

of actuator saturation, another modified version of the Circle criterion must be derived.

This version takes into account the parameter dependance of the nominal plant, nominal

controller, and anti-windup compensator.

Clearly, this theorem applies to a general LPV plant which is also constrained by a
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saturation nonlinearity which is described as a sector bounded nonlinearity. The equations

for this plant are as follows.



ẋ

u

z

e




=




A B0 Bθ B1

C0 D00 D0θ D01

Cθ Dθ0 Dθθ Dθ1

C1 D10 D1θ D11







x

q

w

d




(3.4)

q = ψ(u) (3.5)

w = Θz ‖Θ‖ < 1 (3.6)

Θ = diag(θiIi, ..., θrIr) (3.7)

Theorem 5 Given γ > 0, and the nonlinear system(3.4) - (3.7), if there exists P ∈ Sn×n
+ ,

diagonal matrix W > 0, and a matrix T ∈ L∆ such that



AT P + PA PB0 + kC0W PBθ PB1 CT
θ CT

1

BT
0 P + kWC0 k(WD00 + DT

00W )− 2W kWD0θ kWD01 DT
θ0 DT

10

BT
θ P kDT

0θW −T 0 DT
θθ DT

1θ

BT
1 P kDT

01W 0 −γI DT
θ1 DT

11

Cθ Dθ0 Dθθ Dθ1 −T−1 0

C1 D10 D1θ D11 0 −γI




< 0

(3.8)

Then the nonlinear system is quadratically stable against ψ ∈ sect[0, k] and ‖θ‖ < 1 and

‖e‖2 < γ‖d‖2.

Proof: The proof here is similar to the one for Theorem 4. Consider a Lyapunov

function of the form V (x) = xT Px for the nonlinear system, then a sufficient condition for

the performance and stability properties come from the following inequality

V̇ +
1
γ

eT e− γdT d + 2qT W (ku− q) + zT Tz − wT Tw < 0
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Expanding the terms in this inequality yields the complete inequality as follows:

V̇ +
1
γ

eT e− γdT d + 2qT W (ku− q) + zT Tz − wT Tw

= ẋT Px + xT Pẋ +
1
γ

eT e− γdT d + 2qT W (ku− q) + zT Tz − wT Tw

=
[
xT qT wT dT

]
×








AT P + PA PB0 + kC0W PBθ PB1

BT
0 P + kWC0 k(WD00 + DT

00W )− 2W kWD0θ kWD01

BT
θ P kDT

0θW −T 0

BT
1 P kDT

01W 0 −γI




+




CT
θ CT

1

DT
θ0 DT

10

DT
θθ DT

1θ

DT
θ1 DT

11





T 0

0 1
γ I





Cθ Dθ0 Dθθ Dθ1

C1 D10 D1θ D11








×




x

q

w

d




< 0

Which is equivalent to the LMI (3.8) via Schur complement. Q.E.D.
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Anti Windup Synthesis Conditions

In this chapter, we shall apply our extended Circle criterion results from chapter 3 to our

anti-windup controller problems. We will begin by constructing the closed-loop system for

the two cases. With that accomplished, we shall apply the theorems in order to derive

synthesis conditions. Finally, we shall provide explicit controller formulas for the two types

of system.

4.1 Rate and Magnitude Saturation Problem

The first problem we shall examine will be the problem containing actuators which have

both their maximum amplitude and maximum rate of response constrained. We shall start

by examining the system equations for such a system. Then we shall derive the augmented

system for synthesis. Our stability theorem will then be applied to the augmented closed-

loop system to provide synthesis conditions for the new system. Finally, we shall provide

an explicit construction scheme for the anti-windup compensator for this case.

The LTI framework to be used throughout this work is the nominal plant, P described

by 


ẋp

e

y


 =




Ap Bp1 Bp2

Cp1 Dp11 Dp12

Cp2 Dp21 Dp22







xp

d

σ(u)


 (4.1)

Here, the plant state vector xp ∈ Rnp , y ∈ Rny is the control measurement, and σ(u)

is the saturated control input. The disturbance input d ∈ Rnd and the controlled error

23



Chapter 4. Anti Windup Synthesis Conditions 24

output is e ∈ Rne . Furthermore, it is assumed that (Ap, Bp2, Cp2) triple is stabilizable and

detectable, and that the matrices
[
BT

p2 DT
p12

]
and

[
Cp2 Dp21

]
have full row rank.

The first assumption provides a guarantee that the nominal controller K is capable of

stabilizing the open-loop plant sans any saturation to the inputs. The controller, K, is

described by the following dynamic equations:


ẋk

u


 =


Ak Bk1 Bk2

Ck Dk1 Dk2







xk

d

y


 +


v1

v2


 (4.2)

Here, the vector
[
v1 v2

]T
is the correcting information provided to the controller by

the anti-windup compensator. Also, the vector xk ∈ Rnk is the vector of controller states.

One additional assumption is to restrict the matrix Dp22 = 0. This assumption is not

necessary, and only serves to simplify some of the construction calculations used later in

this work. In many physical systems, it is the case that Dp22 = 0, but if this is not the case,

an auxiliary input can be made so that the this assumption holds true.

4.1.1 Rate and Magnitude Saturated Closed-Loop System

Figure 4.1 shows the makeup of the rate and magnitude saturated system. This is the closed-

loop version of the system, including the anti-windup compensator gain. The first saturation

nonlinearity block is the magnitude saturation block. This will limit the maximum output of

the actuator. The rate saturation block is somewhat more complicated than the magnitude

block. The design of this block matches the one used in [16].

In this configuration, the term kb is a constant which specifies the bandwidth of the

actuator. The subtraction term at the beginning of the block is multiplied by this bandwidth

constant to produce a pseudo-derivative. This pseudo-derivative is then saturated by a rate

saturation block which is set to saturate whenever the magnitude of this derivative term

exceeds the saturation limit (set by the designer). After saturation, the term u̇ss is the

derivative of the actuator response which has been subject to both rate and magnitude

saturations. A final pass through an integration block returns the twice saturate output

uss, which is what will actually be experienced by the controller.
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Figure 4.1: Anti-windup Controller Structure

The saturation blocks are represented by the sector-bounded nonlinearity as explained

in subsection 3.1. In order to transform the system in figure 4.1 into the standard LFT

form as seen in figure 4.3, we must find equations for the total closed-loop system.

The uncertainty block ∆ seen in figure 4.3 is the representation of the sector-bounded

nonlinearity. In accordance with standard robust control theory procedures, the nonlin-

earities have been lumped into an uncertainty block ∆. Later, we will construct a ro-

bust controller which will robustly stable against the nonlinearities contained in the un-

certainty block using our stability (and performance analysis) theorems. At this point, it

suffices to note that the uncertainty block will be substituted with a deadband nonlinearity

∆ = I − σ(u)
u . This will allow us to meet the goals of stating the problem in the classic

robust control framework.

The uncertainty ∆ resides in the conic-sector [0, 1]. We shall reduce this sector to

sect[0, k] with 0 < k < 1. This will restrict the magnitude of any control input signal ui

to be less than ( 1
1−k )umax

i . This will then be a regional stability problem. However, it is

this restriction that will extend the control scheme to be applicable to open-loop unstable
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Figure 4.2: Rate Saturation Block

systems.

4.1.2 Augmenting the Nominal Plant

Recall the form of the LTI plant with sector-bounded nonlinearity given in equations (3.1)

- (3.2). We would like to augment this in order to include the effects of both rate and

magnitude saturation.

Wu and Lu have described the synthesis conditions for the magnitude saturation plant

[39]. We wish to find the equivalent synthesis conditions for the rate and magnitude sat-

uration problem. Finally, the closed-loop system will be in LFT form as given in figure

4.3.

Just as in [39] and [11], we must form the system matrices for the augmented plant by

breaking the loop in the diagram at q1 and q2. Then, we must define the augmented state

vector. This vector will include he states of the original system plant, but will also contain

the state uss, which is the saturated input to the plant.

Define the state vector for the augmented plant, xpa as:

xpa =


xp

uss


 (4.3)

Where uss ∈ Rnu . Using this new augmented plant vector, and the original plant and

controller state-space data, we shall rewrite the state equations for the augmented plant.
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Figure 4.3: Anti-Windup System Equivalent Transformation

From (3.1) and (4.3) we have:

ẋp =
[
Ap Bp2

]

xp

uss


 + Bp1d (4.4)

From figure 4.2, we see that u − sat(u) = q1. Also note that q2 = kbe − u̇ss and

e = sat(u) − uss. Substitution of these equations gives us q2 = kbu − kbq1 − kbuss − us.

Finally, rearranging these terms gives us an equation for u̇ss:

u̇ss = −kbuss − kbq1 − q2 + kbu (4.5)

Or, in the matrix form for the state-space model:

u̇ss =
[
0 −kbI

]

xp

uss


 +

[
−kbI −I

]

q1

q2


 + kbu (4.6)

It is important to note that in these equations, the constant term kb is the bandwidth

constant. This constant will be the factor which limits the bandwidth of the rate saturated

actuator. That is to say that this constant will determine the maximum rate at which the
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actuator can respond without being saturated. This constant is distinct from km, and does

not enter into the control synthesis conditions as part of the diagonal matrix k̄.

Finally, the augmented plant output vector can be defined. In matrix form, it can be

written as:

 u

us


 =


0 0

0 −kbI





xp

uss


 +


 0 0

−kbI 0





q1

q2


 +


0

0


 d +


 I

kbI


u (4.7)

This equation represents the last step in augmenting the plant for the new open-loop system.

We have defined all of the new state-space matrices, and will present them below:

Ãp =


Ap Bp2

0 −kbI


 , B̃p0 =


 0 0

−kbI −I


 , B̃p1 =


Bp1

0


 , B̃p2 =


 0

kbI




C̃p0 =


0 0

0 −kbI


 , C̃p1 =

[
Cp1 Dp12

]
, C̃p2 =

[
Cp2 Dp22

]

D̃p00 =


 0 0

−kbI 0


 , D̃p01 =


0

0


 , D̃p02 =


 I

kbI




D̃p10 =
[
0 0

]
, D̃p11 = Dp11, D̃p12 = 0

D̃p20 =
[
0 0

]
, D̃p21 = Dp21, D̃p22 = 0

These matrices correspond to the new nominal open-loop system given below



ẋpa

ũ

e

y




=




Ãp B̃p0 B̃p1 B̃p2

C̃p0 D̃p00 D̃p01 D̃p02

C̃p1 D̃p10 D̃p11 D̃p12

C̃p2 D̃p20 D̃p21 0







xpa

q̃

d

u




q̃ = ∆ũ

4.2 Rate and Magnitude Synthesis Condition

Figure 4.2 shows the closed-loop system of the rate and magnitude saturations, including

anti-windup compensator. The anti-windup control diagram can be transformed to its
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equivalent form by substituting the actuator magnitude and rate saturations with deadband

nonlinearities, as shown in Fig. 4.3. For this purpose, let us define

∆m = 1− sat(u)
u

, ∆r = 1− sat(us)
us

Then ∆m, ∆r will be deadband nonlinearity associated with magnitude and rate saturation,

respectively. Both nonlinearities reside in the conic sector [0, 1]. In order to extend the anti-

windup control scheme to open-loop unstable systems, we will constrain the nonlinearity

∆m for each input channel to sect[0, km] with 0 < km < 1. This essentially requires

the magnitude of each control input signal ui to be less than
(

1
1−km

)
umax

i , and leads to

regional stability problem. Then the input/output constraint for the uncertainty ∆ :=

diag {∆m, ∆r} will be

q̃T W (k̄ũ− q̃) ≥ 0

with k̄ = diag {kmInu , Inu} and W is a diagonal matrix, as described in chapter 3. Later

on, we will cast the anti-windup control design as a robust control problem against the

deadband nonlinearities.

Our objective is to design an anti-windup compensator Λ such that the adversary effect

of input magnitude and rate saturations will be minimized in terms of H∞ norm. The

anti-windup compensator is in the form of



ẋaw

v1

v2


 =


Aaw Baw

Caw Daw





xaw

q̃


 (4.8)

with the state xaw ∈ Rnaw , which will be determined later on. Note the the input sig-

nal for anti-windup compensator q̃ contains the information of saturation degree for both

magnitude and rate saturations.

First, we shall evaluate the new closed-loop plant matrices. These are the matrices that

result from breaking the loop at q1 and q2. It is these matrices which will also be included
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in the new set of synthesis instructions.

Ã =


Ãp + B̃p2Dk2C̃p2 B̃p2Ck

Bk2C̃p2 Ak




B̃0 =


B̃p0

0


 , B̃1 =


B̃p1 + B̃p2(Dk1 + Dk2D̃p21)

Bk1 + Bk2D̃p21


 , B̃2 =


0 B̃p2

I 0




C̃0 =
[
C̃p0 + D̃p02Dk2C̃p2 D̃p02Ck

]
, C̃1 =

[
C̃p1 0

]

D̃00 = D̃p00, D̃01 = D̃p01 + D̃p02(Dk1 + Dk2D̃p21), D̃02 =
[
0 D̃p02

]

D̃10 = D̃p10, D̃11 = D̃p11, D̃12 =
[
0 0

]

These matrices constitute the state-space make-up of the nominal closed-loop system

G. The input/output form for this closed loop system is as follows.




ẋ

ũ

e

q̃




=




Ã B̃0 B̃1 B̃2

C̃0 D̃00 D̃01 D̃02

C̃1 D̃10 D̃11 D̃12

0 I 0 0







x

q̃

d

v1

v2




(4.9)

q̃ = ∆ũ (4.10)

This is the state-space data for the nominal closed-loop system G. If we denote xT
cl =[

xT xT
aw

]
, then the final closed-loop system T = Fl(G, Λ) can be described by the following

input/output relationship.




ẋcl

ũ

e


 =




Ãcl B̃0,cl B̃1,cl

C̃0,cl D̃00,cl D̃01,cl

C̃1,cl D̃10,cl D̃11,cl







xcl

q̃

d


 (4.11)

q̃ = ∆ũ (4.12)

and has its state-space date related to the interconnected system G and the anti-windup
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compensator as follows



Ãcl B̃0,cl B̃1,cl

C̃0,cl D̃00,cl D̃01,cl

C̃1,cl D̃10,cl D̃11,cl


 =



A B0 B1

C0 D00 D01

C1 D10 D11


 +



PT

1

PT
2

PT
3





Aaw Baw

Caw Daw




[
Q1 Q2 Q3

]

=




Ã 0 B̃0 B̃1

0 0 0 0

C̃0 0 D̃00 D̃01

C̃1 0 D̃10 D̃11




+




0 B̃2

I 0

0 D̃02

0 D̃12





Aaw Baw

Caw Daw





 0 I 0 0

0 0 I 0


 (4.13)

As is necessary, the anti-windup compensator and nominal closed-loop system have an

affine relationship. This allows us to find a true synthesis condition, as we can apply our

stability theorem to the system both with and without the controller. If we obtain a feasible

solution to the synthesis LMIs, we can then apply the theorem to the closed-loop system

with the controller, and solve the resulting LMIs to find the controller gains. The following

subsection will provide these synthesis conditions for the closed-loop system.

4.2.1 Synthesis Theorem

Recall from Theorem 5 the synthesis conditions for the magnitude anti-windup compen-

sator. Using the augmented plant matrices, we will derive a new synthesis condition for the

augmented anti-windup problem.

Theorem 6 Given a scalar 0 < km < 1, the augmented open-loop system with a stabilizing

nominal controller Knom. If there exist a pair of positive-definite matrices R11 ∈ Sñp×ñp

+ ,
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S ∈ Sn×n
+ and a diagonal matrix V = diag {Vm, Vr} > 0 satisfying




R11Ã
T
p + ÃpR11 − 2(1−km)

k2
m

B̃p2VmB̃T
p2 ? ? ?

−
[
0 Inu

]
R11 − 2(1−km)

k2
m

VmB̃T
p2 − 1

k2
b
VrB̃

T
p2 −2(1−km)

k2
m

Vm − 1
k2

b
Vr ? ?

C̃p1R11 0 −γIne ?

B̃T
p1 0 D̃T

p11 −γInd




< 0

(4.14)



SÃ + ÃT S SB̃1 C̃T
1

B̃T
1 S −γInd

D̃T
11

C̃1 D̃11 −γIne


 < 0

(4.15)



R11

[
Iñp 0

]

Iñp

0


 S


 ≥ 0

(4.16)

then there exists an ñpth-order anti-windup compensator Λ to stabilize the closed-loop sys-

tem quadratically and have the performance ‖e‖2 < γ‖d‖2 when the condition |ui| ≤(
1

1−km

)
umax

i , i = 1, 2, · · · , nu.

Now we must prove that the solution of the LMI in Theorem 6 will always exist. The goal

is to use the result of Theorem 4 to show that the anti-windup compensator will stabilize

the system in the face of the nonlinearity produced by saturation effects.

Proof: Denote Λ =


Aaw Baw

Caw Daw


 and V = W−1. We apply Theorem 4 to the closed-

loop system T , and have the following inequality

Ψ + PT ΛQ+QT ΛTP < 0 (4.17)
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with

Ψ =




AT Xcl + XclA XclB0 + CT
0 k̄W XclB1 CT

1

BT
0 Xcl + Wk̄C0 Wk̄D̃00 + D̃T

00k̄W − 2W Wk̄D̃01 D̃T
10

BT
1 Xcl D̃T

01k̄W −γI D̃T
11

C1 D̃10 D̃11 −γI




,

P =
[
P1Xcl P2k̄W 0 P3

]
,

Q =
[
Q1 Q2 Q3 0

]

Partition the matrix Xcl compatibly to the states of interconnected system G and anti-

windup compensator Kaw as n = ñp + nk and naw, and let

Xcl =


 S N

NT ?




X−1
cl =


 R M

MT ?


 =




R11 R12

RT
12 R22

M

MT ?




where MNT = I −RS. According to the Elimination Lemma [5, 26], the inequality (4.17)

is equivalent to

N T
PΦNP < 0 and N T

QΦNQ < 0 (4.18)

where NP and NQ are the null spaces of matrices P and Q, which are

NP = diag
{
X−1

cl , W−1, I, I
}




I 0 0 0

0 0 0 0

0 0 0 0

− 1
km

B̃T
p2 − 1

km
I 0 0

0 1
kb

I 0 0

0 0 0 I

0 0 I 0




, NQ =




I 0 0 0

0 I 0 0

0 0 0 0

0 0 0 0

0 0 I 0

0 0 0 I



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Through lengthy algebraic manipulations, it can be shown that

N T
PΦNP =




I 0 − 1
km

B̃p2 0 0 0

0 0 − 1
km

I 1
kb

I 0 0

0 0 0 0 0 I

0 0 0 0 I 0







RÃT + ÃR (V B̃T
0 + k̄C̃0R)T B̃1 RC̃T

1

V B̃T
0 + k̄C̃0R k̄D̃00V + V D̃T

00k̄ − 2V k̄D̃01 V D̃T
10

B̃T
1 D̃T

01k̄ −γI D̃T
11

C̃1R D̃10V D̃11 −γI




×




I 0 0 0

0 0 0 0

− 1
km

B̃T
p2 − 1

km
I 0 0

0 1
kb

I 0 0

0 0 0 I

0 0 I 0




=




R11Ã
T
p + ÃpR11 − 2(1−km)

k2
m

B̃p2VmB̃T
p2 ? ? ?

−
[
0 I

]
R11 − 2(1−km)

k2
m

VmB̃T
p2 − 1

k2
b
VrB̃

T
p2 −2(1−km)

k2
m

Vm − 1
k2

b
Vr ? ?

C̃p1R11 0 −γI ?

B̃T
p1 0 D̃T

p11 −γI




< 0

N T
QΦNQ =




I 0 0 0 0

0 I 0 0 0

0 0 0 I 0

0 0 0 0 I







SÃ + ÃT S SB̃0 + C̃T
0 k̄W SB̃1 C̃T

1

B̃T
0 S + Wk̄C̃0 Wk̄D̃00 + D̃T

00k̄W − 2W Wk̄D̃01 D̃T
10

B̃T
1 S D̃T

01k̄W −γI D̃T
11

C̃1 D̃10 D̃11 −γI




×




I 0 0 0

0 I 0 0

0 0 0 0

0 0 I 0

0 0 0 I




=




SÃ + ÃT S SB̃1 C̃T
1

B̃T
1 S −γI D̃T

11

C̃1 D̃11 −γI


 < 0
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which are the same as the conditions (4.14) and (4.15), respectively.

Given the definition for matrices Xcl and X−1
cl , the coupling condition between R and

S would be 
R I

I S


 ≥ 0 and rank(R− S−1) ≤ naw

Since only the (1, 1) element of R matrix is constrained in the LMIs (4.14)-(4.16), it is

always possible to augment matrix R11 to R in satisfying the above coupling condition. For

example, one may choose

R =




R11

[
I 0

]
S−1


0

I




[
0 I

]
S−1


I

0




[
0 I

]
S−1


0

I







The resulting R matrix is positive-definite because of the condition (4.16). Also R−S−1 ≥ 0

is satisfied for selected R matrix. The rank condition is trivially satisfied if one chooses

naw = ñp. So we obtain the desired synthesis condition for the anti-windup compensator.

Q.E.D.

4.2.2 Rate and Magnitude Compensator Construction

With the solutions R11 and S obtained from the compensator synthesis equations, the anti-

windup compensator state-space matrices can be constructed by determining the closed-loop

solution to the original LMI which resulted from the stability theorem.

Ψ + PT ΛQ+QT ΛTP < 0

This approach is taken in [11] and is a standard procedure for H∞ synthesis via LMIs.

However, an explicit approach to anti-windup compensator construction was taken in [39].

This approach is derived from the general explicit controller construction used by Gahinet in

[13]. The advantage of using this explicit approach is the avoidance of possible numerical ill-

conditioning when solving the feasibility LMI. Furthermore, the anti-windup compensator

is connected directly to the plant and nominal controller gains [39].
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Theorem 7 (Rate and Magnitude Compensator Construction)

Given the solutions R11, S, γ and V = W−1 of the LMIs (4.14)-(4.15). Let MNT = In−RS

with M, N ∈ Sn×(np+nu) and ET =
[
I(np+nu) 0

]
, then an (np + nu)th-order anti-windup

compensator can be constructed through the following scheme:

1. Compute a feasible D̂aw ∈ Rnu×2nu such that

Π =



−Wk̄(D̃00 + D̃p02D̂aw)− (D̃00 + D̃p02D̂aw)T k̄W + 2W −Wk̄D̃01 −D̃T

10

−D̃T
01k̄W γInd

−D̃T
11

−D̃10 −D̃11 γIne


 > 0,

2. Compute the least-square solutions of the following linear equations for B̂aw ∈ Rn×2nu,

Ĉaw ∈ Rnu×(np+nu)




0 I2nu 0 0

I2nu

0

0

−Π





 B̂T

aw

?


 = −




02nu×n

B̃T
0 S + Wk̄C̃0

B̃T
1 S

C̃1







0 D̃T
p02k̄W 0 0

Wk̄D̃p02

0

0

−Π





 Ĉaw

?


 = −




B̃T
p2

(B̃T
0 + Wk̄C̃0R)E + D̂T

awB̃T
p2

B̃T
1 E

C̃1RE




,

and the matrix Âaw ∈ Rn×(np+nu) as

Âaw = −ÃT E −
[
SB̃0 + B̂aw + C̃T

0 k̄W SB̃1 C̃T
1

]
Π−1

×




(B̃T
0 + Wk̄C0R)E + D̂T

awB̃T
p2 + Wk̄D̃p02Ĉaw

B̃T
1 E

C̃1RE




3. Convert the transformed anti-windup compensator gain to its original state-space data
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by

Aaw Baw

Caw Daw


 =


N SB̃2

0
[
0 Inu

]


−1 



Âaw B̂aw

Ĉaw D̂aw


−


SÃRE 0

0 0nu×2nu








MT E 0

0 I2nu



−1

Proof: Define

Z1 =


In RE

0 MT E


 , Z2 =


 S E

NT 0




Then it can be shown that XclZ1 = Z2. Also we have the following congruent transformation

ZT
1 XclZ1 =


 S E

ET ET RE







ZT
1 XclAclZ1 ZT

1 XclB0,cl ZT
1 XclB1,cl

C0,clZ1 D00,cl D01,cl

C1,clZ1 D10,cl D11,cl


 =




SÃ 0 SB̃0 SB̃1

ET Ã ET ÃRE ET B̃0 ET B̃1

C̃0 C̃0RE D̃00 D̃01

C̃1 C̃1RE D̃10 D̃11




+




In 0

0 B̃p2

0 D̃p02

0 0





Âaw B̂aw

Ĉaw D̂aw





 0 Iñp 0 0

0 0 I2nu 0




where

Âaw B̂aw

Ĉaw D̂aw


 =


SÃRE 0

0 0


 +


N SB̃2

0
[
0 I

]




Aaw Baw

Caw Daw





MT E 0

0 I



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Multiply diag
{
ZT

1 , I, I, I
}

from left side, and its conjugate transpose from right side of eq.

(4.17), we get



SÃ + ÃT S ∗
ET Ã + ÂT

aw ET (ÃR + RÃT )E + B̃p2Ĉaw + ĈT
awB̃T

p2

B̃T
0 S + B̂T

aw + Wk̄C̃0 (B̃T
0 + Wk̄C̃0R)E + D̂T

awB̃T
p2 + Wk̄D̃p02Ĉaw

B̃T
1 S B̃T

1 E

C̃1 C̃1RE

∗ ∗ ∗
∗ ∗ ∗




Wk̄(D̃00 + D̃p02D̂aw)

(D̃00 + D̃p02D̂aw)T k̄W − 2W



 ∗ ∗

D̃T
01k̄W −γI ∗
D̃10 D̃11 −γI




< 0 (4.19)

By Schur complement, it is equivalent to

 SÃ + ÃT S ∗

ET Ã + ÂT
aw ET (ÃR + RÃT )E + B̃p2Ĉaw + ĈT

awB̃T
p2




+


 SB̃0 + B̂aw + C̃T

0 k̄W SB̃1 C̃T
1

ET (B̃T
0 + Wk̄C̃0R)T + B̃p2D̂aw + ĈT

awD̃T
p02k̄W ET B̃1 (C̃1RE)T


Π−1

×




B̃T
0 S + B̂T

aw + Wk̄C0 (B̃T
0 + Wk̄C̃0R)E + D̂T

awB̃T
p2 + Wk̄D̃p02Ĉaw

B̃T
1 S B̃T

1 E

C̃1 C̃1RE


 < 0 (4.20)

Q.E.D.

The derivation of the anti-windup controller formula basically follows the procedures

outlined in [13] and [39]. It is easy to show that the lower (3× 3) matrix of the inequality

(4.19) is negative definite, this will determine a feasible D̂aw. Let the (2, 1) element equal

to zero, and we can solve for Âaw. This also leads to decoupled LMIs from the inequality

(4.20). Then B̂aw, Ĉaw terms can be solved from the (1, 1) and (2, 2) elements of the

decoupled inequality (4.20). Note that both inequalities have regular solutions [13].
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The (1, 1) element of the above matrix inequality corresponds to LMI (4.15) after elim-

ination of the variables B̂aw and D̂aw. It can also be shown that the (2, 2) element is

equivalent to LMI (4.14) by eliminating Ĉaw, D̂aw.

This explicit form of the construction can also be applied to stable systems. The main

difference is that the open loop case would not involve matrices W and k̄ [39]. This intro-

duces the need to find a feasible D̂aw and W matrices simultaneously during the first step.

The following steps will be the same by setting k̄ = I.

4.3 LPV Anti-Windup Synthesis condition

In section 4.2, we have shown that an anti-windup compensator exists to compensate rate

and magnitude saturation for exponentially unstable systems. We have also provided an

explicit construction scheme for such a compensator. In this section, a similar synthesis

condition will be provided for the existence of a gain-scheduled anti-windup compensator.

This will be followed by the construction procedure for such a controller.
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Figure 4.4: LPV Gain-Scheduled Saturated System
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4.3.1 LFT Framework

Recall the form of the standard LPV system, in equation 2.5. We shall rewrite our plant,

P nominal controller, K and anti-windup compensator, Λ to fit this form. That is, we

shall introduce a parameter, Θ which will be the gain-scheduling parameter, which will be

related to the three systems by LFT form.

First, the nominal plant shall be rewritten as



ẋp

zp

e

y




=




Ap Bpθ Bp1 Bp2

Cpθ Dpθθ Dpθ1 Dpθ2

Cp1 Dp1θ Dp11 Dp12

Cp2 Dp2θ Dp21 Dp22







xp

wp

d

σ(u)




(4.21)

wp = Θzp (4.22)

Here, the usual dimensions are used, with one new addition, the vectors wp, zp ∈ Rnw .

These vectors are pseudo inputs and outputs of the plant, that is, they are the vectors

describing the LFT dependency of the plant on gain-scheduling parameter, Θ.

The matrix Θ is a block diagonal time-varying operator which specifies how the time

varying parameter θ effects the dynamics of the plant [1]. In particular

Θ = blockdiag(θ1Im1 , ..., θrImr) (4.23)

where ri > 1 when the parameter θi is repeated. This allows us to maintain a block

diagonal structure for the matrix Θ.

In a similar fashion, the nominal controller must also be augmented to exemplify the

dependence on the gain-scheduling parameter. Therefore, the new controller will have

dynamic equation as follows.




ẋk

u

zk


 =




Ak Bk1 Bkθ

Ck1 Dk11 Dk1θ

Ckθ Dkθ1 Dkθθ







xk

y

wk


 +




v1

v2

v3




wk = Θzk
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We have a plant with saturation input described by the nonlinear function ψ and sched-

uled by the gain-scheduling parameter Θ. We also have a controller with gain-scheduling

parameter, Θ and being corrected by anti-windup compensator input v. The next step

is to combine these two systems into a nominal closed-loop system, G which will then be

corrected by the anti-windup compensator. The form of the anti-windup compensator, Λ,

is given below.




ẋaw

v

zaw


 =


Aaw Baw

Caw Daw







xaw

q

waw




waw = Θzaw

4.3.2 Closed-Loop LPV System Construction

Our objective is to design an anti-windup compensator, Λ such that the effect of input

saturation will be minimized in terms of the H∞ norm of the closed-loop system. The

compensator given above has state xaw ∈ Rnaw .

Let the system G be the interconnection of the open-loop plant P and the nominal

controller K, but excluding the anti-windup compensator. Then its dynamic equation will

be




ẋ

u

z

e

q




=




A B0 Bθ B1 B2

C0 D00 D0θ D01 D02

Cθ Dθ0 Dθθ Dθ1 Dθ2

C1 D10 D1θ D11 D12

0 I 0 0 0







x

q

w

d

v1

v2

v3




q = ∆u

w = (Θ⊕Θ)z

where x ∈ Rn with n = np + nk and ∆ ∈ sect[0,k].
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We will also use a scaling matrix in the synthesis and analysis conditions for the gain-

scheduled anti-windup compensator. This scaling matrix T must commute with the uncer-

tainty structure Θ⊕Θ. In other words, this must be a member of the previously defined set

L∆. The special structure of this scaling matrix in order to enforce this condition is given

below.

T =




T 1
11 0 0 0 T 1

12 0 0 0

0 T 2
11 0 0 0 T 2

12 0 0

0 0
. . . 0 0 0

. . . 0

0 0 0 T r
11 0 0 0 T r

12

T 1T
12 0 0 0 T 1

22 0 0 0

0 T 2T
12 0 0 0 T 2

22 0 0

0 0
. . . 0 0 0

. . . 0

0 0 0 T rT
12 0 0 0 T r

22




Notice that the structure of T is no longer block-diagonal. This is due to the augmen-

tation of the second uncertainty set, the one which corresponds to the that of the nominal

controller. This matrix is still a member of the set L∆. It is this special structure which

will commute with the uncertainty set.

The equations for the closed-loop state space matrices are as follows:
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A =


Ap + Bp2Dk11Cp2 Bp2Ck1

Bk1Cp2 Ak




B0 =


−Bp2

0


 , Bθ =


Bpθ + Bp2Dk11Dp2θ Bp2Dk1θ

Bk1Dp2θ Bkθ




B1 =


Bp1 + Bp2Dk11Dp21

Bk1Dp21


 , B2 =


0 Bp2 0

I 0 0




C0 =
[
Dk11Cp2 Ck1

]
, Cθ =


Cpθ + Dpθ2Dk11Cp2 Dpθ2Ck1

Dkθ1Cp2 Ckθ




C1 =
[
Cp1 + Dp12Dk11Cp2 Dp12Ck1

]

D00 = 0, D0θ =
[
Dk11Dp2θ Dk1θ

]
,

D01 = Dk11Dp21, D02 =
[
0 I 0

]

Dθ0 =


−Dpθ2

0


 , Dθθ =


Dpθθ + Dpθ2Dk11Dp2θ Dpθ2Dk1θ

Dkθ1Dp2θ Dkθθ




Dθ1 =


Dpθ1 + Dpθ2Dk11Dp21

Dkθ1Dp21


 , Dθ2 =


0 Dpθ2 0

0 0 I




D10 = −Dp12, D11 = Dp11 + Dp12Dk11Dp21)

D12 =
[
0 Dp12 0

]
D1θ =

[
Dp1θ + Dp12Dk11Dp2θ Dp12Dk1θ

]

We shall then assign xT
cl =

[
xT xT

aw

]
as the matrix of states for the closed-loop system.

We shall denote the closed loop system as Tcl = Fu(Fl(G,Kaw), Θ ⊕ Θ ⊕ Θ), which is

described by the following dynamic equations



ẋcl

u

zcl

e




=




Acl B0,cl Bθ,cl B1,cl

C0,cl D00,cl D0θ,cl D01,cl

Cθ,cl Dθ0,cl Dθθ,cl Dθ1,cl

C1,cl D10,cl D1θ,cl D11,cl







xcl

q

wcl

d




(4.24)

q = ∆u (4.25)

wcl = (Θ⊕Θ⊕Θ)zcl (4.26)
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The state-space data of this system is related to the interconnected nominal system G

and the anti-windup compensator Λ in the following form.



Acl B0,cl Bθ,cl B1,cl

C0,cl D00,cl D0θ,cl D01,cl

Cθ,cl Dθ0,cl Dθθ,cl Dθ1,cl

C1,cl D10,cl D1θ,cl D11,cl




=




A B0 Bθ B1

C0 D00 D0θ D01

Cθ Dθ0 Dθθ Dθ1

C1 D10 D1θ D11




+




PT
1

PT
2

PT
3

PT
4





Aaw Baw

Caw Daw




×
[
Q1 Q2 Q3 Q4

]

=




A 0 B0 Bθ 0 B1

0 0 0 0 0 0

C0 0 D00 D0θ 0 D01

Cθ 0 Dθ0 Dθθ 0 Dθ1

0 0 0 0 0 0

C1 0 D10 D1θ 0 D11




+




0 B2 0

I 0 0

0 D02 0

0 Dθ2 0

0 0 I

0 D12 0





Aaw Baw

Caw Daw




×




0 I 0 0 0 0

0 0 I 0 0 0

0 0 0 0 I 0




Here, we have shown that the closed-loop state-space data has an affine dependance on

the anti-windup compensator gain. This allows us to use the result of theorem 5 to derive

analysis and synthesis conditions for our closed loop LPV plant.

4.3.3 Anti-Windup Compensator Synthesis Condition

The following theorem provides a synthesis condition for the anti-windup compensator.

Theorem 8 Given a scalar 0 < k < 1, the LPV open-loop system P with a stabilizing

gain-scheduling nominal LPV controller K. If there exist a pair of positive-definite matrices

R11 ∈ Snp×np

+ , S ∈ Sn×n
+ , a diagonal matrix V = diag{v1, v2, ..., vnu} > 0, and invertible
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scaling matrices J11, L ∈ L∆ satisfying



R11A
T
p + ApR11 − 2(1−k)

k2 Bp2V BT
p2 ? ?

CpθR11 − 2(1−k)
k2 Dpθ2V BT

p2 −J11 − 2(1−k)
k2 Dpθ2V DT

pθ2 ?

Cp1R11 − 2(1−k)
k2 Dp12V BT

p2 −2(1−k)
k2 Dp12V DT

pθ2 −γI − 2(1−k)
k2 Dp12V DT

p12

J11B
T
pθ J11D

T
pθθ J11D

T
p1θ

BT
p1 DT

pθ1 DT
p11

? ?

? ?

? ?

−J11 ?

0 −γI




< 0 (4.27)




SA + AT S SBθ SB1 CT
θ L CT

1

BT
θ S −L 0 DT

θθL DT
1θ

BT
1 S 0 −γI DT

θ1L DT
11

LCθ LDθθ LDθ1 −L 0

C1 D1θ D11 0 −γI




< 0 (4.28)




R11

[
I 0

]

I

0


 S


 ≥ 0 (4.29)




J11

[
I 0

]

I

0


 L


 ≥ 0 (4.30)

then there exists an np-order gain-scheduled anti-windup compensator to stabilize the

closed-loop system quadratically and have the L2 performance level ‖e‖2 < γ‖d‖2 when the

conditions |ui| ≤ 1
1−kumax

i , i = 1,2,...,nu holds.

Remark 4.3.1 This result can be considered a simultaneous generalization of the results

in [11], [39], and [1]. The form of the LMI is similar to the ones in [11] and [39] with the

addition of two rows and two columns and an extra coupling condition. These new terms

reflect the dependance of the system on the gain-scheduling parameter θ. Removal of the
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new terms will cause result in set of conditions identically matching those of [39], where

there is no parameter dependence. Similarly, removal of the terms which do not correspond

to parameter dependance will realize conditions similar to the familiar conditions of LPV

synthesis as in [1].

Proof: Denote Λ =


Aaw Baw

Caw Daw


, V = W−1, T =


L ?

? ?


 and T−1 =


J ?

? ?


 =




J11 J12

JT
12 J22

?

? ?


. Then apply Theorem 5 to the closed-loop system Tcl, and the following

inequality results

Ψ + PT ΛQ+QT ΛTP < 0 (4.31)

where

Ψ =




AT Xcl + XclA XclB0 + kCT
0 W XclBθ XclB1 CT

θ CT
1

BT
0 Xcl + kWC0 k(WD00 + DT

00W )− 2W kWD0θ kWD01 DT
00 DT

10

BT
θ Xcl kDT

0θW −T 0 DT
θθ DT

1θ

BT
1 Xcl kDT

01W 0 −γInd
DT

θ1 DT
11

Cθ D00 Dθθ Dθ1 −T−1 0

C1 D10 D1θ D11 0 −γIne




P =
[
P1Xcl kP2W 0 0 P3 P4

]

Q =
[
Q1 Q2 Q3 Q4 0 0

]

We will use the given partitions for T and T−1. For the matrix Xcl, we must partition

according to the states of the interconnected system G and the anti-windup compensator

Kaw as n = np + nk and naw, letting

Xcl =


 S N

NT ?




X−1
cl =


 R M

MT ?


 =




R11 R12

RT
12 R22

M

MT ?



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Where MNT = I − RS. The (2,2) entry of both of these matrices is left as an unknown,

as it will not be factored into any of the equations due to the structure of the LMIs.

The Elimination Lemma [26] states that we can eliminate the terms corresponding to

the closed loop system including the anti-windup compensator. In order to do this, the LMI

must be transformed. This lemma allows us to create a pair LMIs which are equivalent to

LMI 4.31. These two LMIs would then be solved simultaneously. According to the lemma,

the equivalent pair of LMIs are:

N T
PΨNP < 0 and N T

QΨNQ < 0 (4.32)

Here, NP and NQ are the respective null spaces of the matrices P and Q, which have been

calculated as

NP = diag
{
X−1

cl ,W−1, I, I, I, I
}




I 0 0 0 0

0 0 0 0 0

0 0 0 0 0

− 1
kBT

p2 − 1
kDT

pθ2 − 1
kDT

p12 0 0

0 0 0 I 0

0 0 0 0 I

0 I 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 I 0 0




NQ =




I 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 I 0 0 0

0 0 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I



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After carefully carrying out the multiplications in (4.32), it can be shown that

N T
PΨNP =




R11A
T
p + ApR11 − 2(1−k)

k2 Bp2V BT
p2 ? ?

CpθR11 − 2(1−k)
k2 Dpθ2V BT

p2 −J11 − 2(1−k)
k2 Dpθ2V DT

pθ2 ?

Cp1R11 − 2(1−k)
k2 Dp12V BT

p2 −2(1−k)
k2 Dp12V DT

pθ2 −γI − 2(1−k)
k2 Dp12V DT

p12

J11B
T
pθ J11D

T
pθθ J11D

T
p1θ

BT
p1 DT

pθ1 DT
p11

? ?

? ?

? ?

−J11 ?

0 −γI




and that

N T
QΨNQ =




SA + AT S SBθ SB1 CT
θ L CT

1

BT
θ S −L 0 DT

θθL DT
1θ

BT
1 S 0 −γI DT

θ1L DT
11

LCθ LDθθ LDθ1 −L 0

C1 D1θ D11 0 −γI




which are identically equal to the conditions outlined earlier.

Given the stated definitions for the closed-loop scaling matrices Xcl and X−1
cl , the cou-

pling condition between R and S should be



R11

[
I 0

]

I

0


 S


 ≥ 0 and rank(R− S−1) ≤ naw
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Similarly, the coupling condition between J and L should be



J11

[
I 0

]

I

0


 L


 ≥ 0

Since only R11 is constrained in the synthesis LMIs, it is always possible to augment

this block into the full R matrix satisfying the above coupling conditions. Similarly, the

coupling condition for J11 and L can always be met due to the fact that only the first block,

J11 is constrained. As shown in [1], the off-diagonal terms of the scaling matrix must only

meet a lesser constraint in order to satisfy the coupling condition. Q.E.D.

This theorem and subsequent proof provides us with a way to solve the synthesis condi-

tion for the anti-windup compensator. With the solutions for the various scaling matrices

obtained, the anti-windup compensator can be constructed through the feasibility process

of substituting the obtained scaling matrices back into the LMI from equation (4.31). This

will be the final step in solving for the anti-windup compensator gains.

4.3.4 LPV Anti-Windup Compensator Construction

As shown in subsection 4.2.2, the anti-windup compensator can be obtained by substituting

the solutions R11 and S back into the LMI

Ψ + PT ΘQ+QT ΘTP < 0

and the solving the subsequent LMI for the anti-windup compensator gains. However,

similar to the previous problem, we can explicitly construct the anti-windup compensator

gains by taking an approach similar to the ones used in [13] and [39], as well as the rate and

magnitude LTI anti-windup compensator. The process is outlined in the following theorem.

Theorem 9 (Gain-Scheduled Compensator Construction)

Given the solutions R11, S, J11, L, γ and V = W−1 of the LMIs (4.27)-(4.28). Let MNT =

In−RS with M, N ∈ Sn×np and HT =
[
Inp 0

]
, then an np-order anti-windup compensator

can be constructed through the following scheme:
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1. Compute a feasible D̂aw =


D̂aw11 D̂aw1θ

D̂awθ1 D̂awθθ


 ∈ R(nu+nw)×(nu+nw) such that

Π =







−Wk(D00 + D̂aw11)

−(D00 + D̂aw11)T kW + 2W



 ? ? ? ?

−

 DT

0θ

D̂T
aw1θ


 kW T ? ? ?

−DT
01kW 0 γInd

? ?

−

Dθ0 + Dpθ2D̂aw11

D̂awθ1


 −


Dθθ Dpθ2D̂aw1θ

0 D̂awθθ


 −


Dθ1

0


 T−1 ?

−(D10 + Dp12D̂aw11) −
[
D1θ Dp12D̂aw1θ

]
−D11 0 γIne




> 0

2. Compute the least-square solutions of the following linear equations for

B̂aw =
[
B̂aw1 B̂awθ

]
∈ Rn×(nu+nw), Ĉaw =


Ĉaw1

Ĉawθ


 ∈ R(nu+nw)×np




0


I

0


 0


0

I


 0 0 0 0

[
I 0

]

0[
0 I

]

0

0

0

0

−Π





 B̂T

aw

?


 = −




0(nu+nw)×n

BT
0 S + WkC0

BT
θ S

0

BT
1 S

Cθ

0

C1



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


0


kW

0


 0 0 0


DT

pθ2

0





0

I





DT

p12

0




[
Wk 0

]

0

0

0[
Dpθ2 0

]
[
0 I

]
[
Dp12 0

]

−Π





 Ĉaw

?


 =

−





BT

p2

0




(BT
0 + WkC0R)H + D̂T

aw11B
T
p2

BT
θ H

D̂T
aw1θB

T
p2

BT
1 H

CθRH

0

C1RH




,

and the matrix Âaw ∈ Rn×np as

Âaw = −AT H−
[
SB0 + CT

0 kW + B̂aw1 SBθ B̂awθ SB1 CT
θ 0 CT

1

]
Π−1

×




(BT
0 + WkC0R)H + D̂T

aw11B
T
p2 + WkĈaw1

BT
θ H

D̂T
aw1θB

T
p2

BT
1 H

CθRH + Dpθ2

[
I 0

]
Ĉaw

Ĉawθ

C1RH + Dp12Ĉaw1




3. Convert the transformed anti-windup compensator gain to its original state-space data



Chapter 4. Anti Windup Synthesis Conditions 52

by


Aaw Baw

Caw Daw


 =




N SB2 0

0
[
0 Inu 0

]
0

0 0 Inw




−1 



Âaw B̂aw

Ĉaw D̂aw




−

SARH 0

0 0(nu+nw)×(nu+nw)








MT H 0

0 Inu+nw



−1

Proof: Define HT =
[
In 0

]
, n = np + nk and nw = npw + nkw, then

Z1 =


In RH

0 MT H


 , Z2 =


 S H

NT 0




It can be shown that XclZ1 = Z2. We also have the following congruent transformation

ZT
1 XclZ1 =


 S H

HT HT RH







ZT
1 XclAclZ1 ZT

1 XclB0,cl ZT
1 XclBθ,cl ZT

1 XclB1,cl

C0,clZ1 D00,cl D0θ,cl D01,cl

Cθ,clZ1 Dθ0,cl Dθθ,cl Dθ1,cl

C1,clZ1 D10,cl D1θ,cl D11,cl




=




SA 0 SB0 SBθ 0 SB1

HT A HT ARH HT B0 HT Bθ 0 HT B1

C0 C0RH D00 D0θ 0 D01

Cθ CθRH Dθ0 Dθθ 0 Dθ1

0 0 0 0 0 0

C1 C1RH D10 D1θ 0 D11




+




In 0 0

0 Bp2 0

0 Inu 0

0 Dpθ2 0

0 0 Inw

0 Dp12 0





Âaw B̂aw

Ĉaw D̂aw







0 Inp 0 0 0 0

0 0 Inu 0 0 0

0 0 0 0 I 0



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where

Âaw B̂aw

Ĉaw D̂aw


 =


SARH 0

0 0(nu+nw)×(nu+nw)




+




N SB2 0

0
[
0 Inu 0

]
0

0 0 Inw





Aaw Baw

Caw Daw





MT H 0

0 Inu+nw




Multiplication by diag
{
ZT

1 , I, I, I, I, I
}

from the left, and its conjugate transpose from right

side of equation (4.31), yields




AT S + SA ?

ÂT
aw + HT A Bp2Ĉaw1 + ĈT

aw1B
T
p2 + HT (RAT + AR)H

B̂T
aw1 + BT

0 S + kWC0 (BT
0 + kWC0)H + D̂T

aw11B
T
p2 + kWĈaw1

BT
θ S BT

θ H

B̂T
awθ D̂T

aw1θB
T
p2H

BT
1 S BT

1 H

Cθ CθRH + Dpθ2Ĉaw1

0 Ĉawθ

C1 C1RH + Dp12Ĉaw1

? ? ? ? ?

? ? ? ? ?



−kW (D00 + Daw11

−k(D00 + D̂aw11)T W + 2W



 ? ? ? ?


 kDT

0θ

D̂T
aw1θ


 −T ? ? ?

kDT
01W 0 −γInd

? ?
Dθ0 + Dpθ2D̂aw11

D̂awθ1





Dθθ Dpθ2D̂aw1θ

0 D̂awθθ





D̂θ1

0


 −T−1 ?

D10 + Dp12D̂aw11

[
D1θ Dp12D̂aw1θ

]
D11 0 −γIne




< 0

(4.33)
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Which is equivalent via Schur complement to


 AT S + SA ?

ÂT
aw + HT A Bp2Ĉaw1 + ĈT

aw1B
T
p2 + HT (RAT + AR)H




+


 SB0 + kCT

0 W + B̂aw1 SBθ B̂awθ

HT (B0 + kC0W ) + Bp2D̂aw11 + ĈT
aw1kW HT Bθ HT Bp2D̂aw1θ

SB1 CT
θ 0 CT

1

HT B1 HT RCT
θ Dpθ2 ĈT

awθ ĈT
aw1D

T
p12


Π−1 ×


 ?

?


 < 0 (4.34)

As in the rate and magnitude case, the lower (5,5) element of the inequality (4.33) is inher-

ently negative definite. This is used to determine the feasible D̂aw. After taking the Schur

complement with respect to that (5,5) element, the new (2,1) element is set to be equal to

zero. This determines the feasible Âaw. This also leads to a set of decoupled LMI’s for the

remaining B̂aw and Ĉaw matrices from the LMI ( 4.34). Q.E.D.

As with the previous case, this construction scheme and derivation can be applied to

systems which are open-loop stable. The only difference is the lack of scaling matrix W .

Feasible D̂aw and W matrices will be solved together in the first step. The rest of the

procedure remains unchanged by letting k = 1.



Chapter 5

Anti-Windup Compensator Design and Simulation

Results

With the synthesis conditions derived, we can now apply our proposed anti-windup com-

pensator synthesis to the regulation problem of the F8 aircraft. First, we shall state the

model for the open loop F8 aircraft. This model is identical to the one used in [38]. We shall

then show an weighted open-loop interconnection model for the aircraft, which will be used

in controller and anti-windup compensator synthesis. Following this will be the nominal

robust controller which stabilizes the system, but whose output exceeds that of the satura-

tion limit. Finally, we shall show the results achieved by the anti-windup compensator for

a variety of nonlinear saturation conditions.

5.1 F8 Aircraft Model

The F8 aircraft model is a 4-state model with two inputs and two outputs. The two inputs

are the elevator angle δe(t), and the flaperon angle δf (t) which are both measured in degrees.

These two input will be restricted by the nonlinear saturation constraint to have magnitude

no larger than 15 ◦. The two outputs of the system are the pitch angle θ(t) and the flight

path angle γ(t), which are both measured in radians. Finally, the four states of the system

are the pitch rate q(t) (rad/sec), the forward velocity v(t) (ft/sec), the angle of attack

α(t) (radians), and the pitch angle θ(t). An unstable pole has been added to the system in

order to demonstrate the capability of the anti-windup compensator to stabilize an unstable

system.

55
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The state space dynamics of the system are given in the following equations.

ẋ(t) =




−0.8 −0.006 −12 0

0 −0.014 −16.64 −32.2

1 −0.0001 −1.5 0

1 0 0 0




x(t) +




−19 −3

−0.66 −0.5

−0.16 −0.5

0 0




us(t) (5.1)

y(t) =


0 0 0 1

0 0 −1 1


x(t) (5.2)

us(t) = σ(u(t)) (5.3)

These are the open-loop dynamics of the unstable F8 aircraft plant. For controller

(and anti-windup compensator) synthesis, we would like to add weighting functions to this

plant in order to better define our performance criteria. To this end, we shall penalize the

control effort, the reference input, and the error measurement with the following weighting

functions.

We(s) =
0.5s + 25
s + 0.05

I2

Wu(s) = diag
{

0.525s + 2.4585
s + 100

,
1.05s + 5
s + 100

}

Wr(s) =
8

s + 8
I2

When the plant is augmented with the three weighting functions, we will have the

weighted interconnection used for synthesis given in figure 5.1.

5.2 Nominal Controller

The MATLAB H∞-synthesis command was used to synthesize the nominal controller for

this system. This controller had 10 states and achieved a γ value of 0.647.
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Figure 5.1: Weighted Closed-Loop Interconnection

Ak =



−47.3 −.016 2388 −2831 −188.4 2829 −295.5 4488 7.77 −1230

.575 −.014 −.85 6.9 3.8 −2.2 4.5 −4.8 −1.02 1.7

3.2 0 −132 151 14.2 −154 21.9 −245 −12.5 61.4

1 0 .153 −.243 −.141 −.127 −.157 −.142 0 0

0 0 .004 2.7 −8.05 −.044 −.055 −.049 0 0

0 0 −2.79 2.75 −.044 −8.04 −.05 −.05 0 0

0 0 −.016 −1.54 4.47 .018 −.028 −.02 0 0

0 0 1.56 −1.54 .018 4.5 .02 −.032 0 0

2.35 .0053 −.001 1466 107.2 −1471 157.3 2335 −132.4 626.6

−55.3 −.015 3181 −3694 −332.2 3750 −513.8 5951 264.4 −1611



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Bk =




−.0126 −.0113

19.77 17.82

−.0089 −.008

−.09 −.081

1.4 −.028

−.029 1.4

.0128 .0116

.0116 .0104

0 0

0 0




Ck =

 6.56 .001 −349 409.7 29.96 −411 46.8 −652 −9.06 175

−10.9 −.003 628.7 −730 −65.7 741 −101.5 1176 52.24 −298.7




Dk =


0 0

0 0




5.3 Compensator Synthesis

Table 5.1 shows that the H∞ performance for different conic sectors is always worse than

the nominal performance. These results show the strong adverse effect of the saturation

nonlinearity on the system. Furthermore, it can be shown that the performance of the final

closed-loop sstem can be significantly improved by reducing the km value from 1. These

values for the calculated performance level are achievable as long as the assumption that

the output from the nominal controller is less than ( 1
1−km

)umax.

5.4 Simulations

Here the numerical results of the construction were simulated under several different con-

ditions. Subsection 5.4.1 demonstrates the actuator saturation of the aircraft under the

effects of the sector-bounded nonlinearity using the nominal H∞ controller.
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Sector range [0, km] H∞ performance γ

0.99999 27.5253
0.9999 4.9229
0.999 1.3639
0.994 1.0453
0.99 1.0452

Table 5.1: H∞ performance level vs. sector range [0, km]

5.4.1 Actuator Saturation Simulations

SIMULINK was used in order to simulate the closed-loop response of the system to a refer-

ence tracking input. The open-loop response of the system was (as expected) exponentially

unstable. This is due to the added pole at 0.14. The response to a reference tracking signal

of 10 degrees is given in the figure 5.2. The first response is that of an unsaturated input.

In other words, this is the response of the system to the nominal controller in the complete

absence of any type of actuator saturation.
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Figure 5.2: F8 Response to 10 Degree Tracking Input under Nominal Control without
Saturation

As can be seen, the nominal controller stabilizes the system and reduces the error slowly,
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but thoroughly.

Figure 5.3 shows that the nominal control output easily exceeds the saturation limit

of 15 ◦ we hope to impose upon the system. In the face of saturation, the control output

has a nonlinear profile, and the performance degrades as expected. The proposed anti-

windup compensator design will act as a gain on the difference between the saturated and

unsaturated inputs. That is to say that the effect of the anti-windup compensator, Λ will

only be present when the system inputs exceed the saturation limit. This is true for both the

rate and magnitude conditions. Therefore, the saturation of actuators cannot be prevented,

but the effect of this saturation will be minimized as the compensator gain will take effect

immediately upon saturation.
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Figure 5.3: Unsaturated Input from Nominal Controller to F8 Aircraft System

We can see from figure 5.5 that the performance of the system under saturation is

considerably worse, with more oscillations, and a slower settling time. This is only in the

face of magnitude saturation. In order to consider the effects of rate saturation, a second

SIMULINK model was constructed which penalizes the derivative of the control input with

a similar saturation block limited to 60 ◦
sec , with the magnitude saturation remaining at 15

degrees.

It can be seen in figure 5.6, that the addition of rate saturation worsens the performance
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Figure 5.4: Saturated Input from Nominal Controller to F8 Aircraft System

considerably.

The settling time of the error is comparable to the settling time with only magnitude

saturation, however the size of the oscillations has almost quadrupled. As shown in [23],

and verified by this example, this type of saturation can be a critical contributing factor in

the existence of large Pilot Induced Oscillations (PIOs).

This amplification in the size of the error oscillations is made more clear when the rate

saturation of the actuators is examined.

These figures demonstrate the need for anti-windup compensation. A clear loss of perfor-

mance has been noted, and this trend could lead to a loss of stability. The following section

displays the effects of the anti-windup compensator on the saturated nominal system.

5.4.2 Anti-Windup Compensator Simulations

This first case of anti-windup controlled simulations is for an actuator saturation which is

60 ◦
sec for rate saturation and 15◦ for magnitude saturation. The second case will be for

30 ◦
sec rate saturation and the 15◦ magnitude saturation. The same compensator will be

used for both cases, in order to demonstrate the robustness of the compensator design.

In designing the compensator, the saturation nonlinearity parameters were set to km =
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Figure 5.5: Error Measurement for F8 with Nominal Controller and Magnitude Saturation

0.9999 and kr = 1. The bandwidth constant was set to kb = 8.727.

Finally, the anti-windup compensator was added to the system to close the loop between

saturation output q̃ and anti-windup compensator input v. The result was improved perfor-

mance in the sense of lowering the size of the oscillations while maintaining the settling time

of the error. The performance value γ of the new closed loop system was 4.9229. As stated

by table 5.1, this performance value can be improved upon by reducing the restriction on

km. While this is clearly worse than that of the nominal system with no saturation, the

simulations showed that it was an improvement to the system with the nominal controller

and saturation.

We can clearly see from the following figures that the compensator maintains the stability

of the system, as well as improves the performance in terms of the settling time and peak

overshoots, as well as number of oscillations. The effect of the anti-windup compensator

seems to diminish for less strict rate saturation criterion. This is due to the fact that the

compensator will actuate less when the amount of saturation decreases.
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Figure 5.6: Error Measurement for F8 Aircraft with Nominal Controller and Rate and
Magnitude Saturation

0 1 2 3 4 5 6 7 8 9 10
−8

−6

−4

−2

0

2

4

6

8

10

Time (Seconds)

Tr
ac

ki
ng

 E
rr

or
 (D

eg
re

es
)

Pitch Angle
Flight Path Angle

Figure 5.7: Output Error of F8 Aircraft with Anti-Windup Correction for Actuator Sat-
uration: Case 30
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Figure 5.8: Output Error of F8 Aircraft with Anti-Windup Correction for Actuator Sat-
uration: Case 60
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Figure 5.9: Output Error of Nominal F8 Aircraft System: Case 30
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Figure 5.10: Output Error of Nominal F8 Aircraft System: Case 60
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Figure 5.11: Saturated Control Input to Nominal System: Case 30
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Figure 5.12: Saturated Control Input to Nominal System: Case 60
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Figure 5.13: Saturated Control Input to System with Anti-Windup Compensator: Case
30
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Figure 5.14: Saturated Control Input to System with Anti-Windup Compensator: Case
60
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Figure 5.15: Rate of Saturated Control Input to Nominal System: Case 30
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Figure 5.16: Rate of Saturated Control Input to Nominal System: Case 60
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Figure 5.17: Rate of Saturated Control Input to Anti-Windup Controlled System: Case
30
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Figure 5.18: Rate of Saturated Control Input to Anti-Windup Controlled System: Case
60



Chapter 6

Conclusions

In this thesis, two-step anti-windup control procedures were studied with the particular

applications of compensation for rate and amplitude saturation, and compensation for gain-

scheduled linear parameter varying systems. The main goal of this research was to develop

an anti-windup compensator to control exponentially unstable systems that are either LPV,

or LTI with two kinds of actuator saturation. This compensator has been derived using

traditional LMI methods familiar in robust control theory. The proposed anti-windup com-

pensator design has also been used in an example which shows the capability of robustness

in the control design.

Modifications were made to the well-known results of Circle criteria. The first such

modification was to expand the usage of this method to systems which have multiple sector-

bounded nonlinearities constraining the inputs to a certain saturation range. The second

modification to the Circle criterion was an expansion to include both sector-bounded non-

linearities and norm-bounded uncertainties. This extension modified the criterion in order

to ensure that an anti-windup compensator which was synthesized using this criterion would

also be effectively implemented into a gain-scheduled control scheme for an LPV system.

A set of feasibility LMIs were derived for the rate and magnitude saturated system and

the gain-scheduled LPV system. These LMIs were convex optimization problems. The

solutions to these LMIs were shown to be obtainable for systems which met the basic well-

posed constraints for robust control systems. These results were proven using S-Theory and

familiar LMI variable elimination solution methods. Synthesis conditions for the two cases

were also provided, based on the feasibility conditions outlined previously. These synthesis

70
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conditions were implicitly based on the solution of similar LMIs to the feasibility conditions.

A set of explicit controller construction formulae were given. In the presence of LMI

controller feasibility equations, it was advantageous to provide an alternate means of con-

structing the anti-windup compensators. This was shown to be the case due to the fact that

there is the possibility of numerical ill-conditioning when reevaluating the original feasibility

LMIs to find the anti-windup compensator gains.

A model for an F8 aircraft was chosen to test the proposed design. This model had an

additional unstable pole added to it in order to demonstrate the capability of the proposed

anti-windup compensator design scheme. Saturation limits were set for the amplitude of

the actuator response, as well as the rate of the actuator response. A nominal robust H∞
controller was designed to stabilize the system and provide nominal control. The proposed

anti-windup compensator design for rate and magnitude saturated systems was then imple-

mented for this system. Numerical simulations were carried out for the augmented system

with a magnitude saturation of 15◦ and a rate saturation limit of 60 ◦
sec and 30 ◦

sec . The

effects of the actuator saturation were shown by comparing the system response in both

saturated and unsaturated states. Next, the anti-windup compensator was included in the

simulations. The results showed that the anti-windup compensator improved the perfor-

mance of the saturated system. Particularly in the area of actuator saturation. While the

proposed design cannot prevent the occurrence of actuator saturation, the effects of this

nonlinearity can be reduced significantly.

The results of this research may have been improved if a numerical example of the

LPV synthesis could be obtained. This would prove the effectiveness of the proposed LPV

gain-scheduled anti-windup compensator. Another future direction of research would be to

examine how the LPV anti-windup compensator performed in the event of a destabilizing

rate saturation. While the proposed design is sound in the face of exponentially unstable

systems, the effects of a destabilizing rate saturation have not been examined. Another

interesting possibility is that of comparing the result obtained in this work with various

single step anti-windup compensator construction schemes to see how the plant was affected.
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A.1  Rate and Magnitude Synthesis Code 
 
 
 
 
Clear; 
epsilon=.0000001; 
k_r=1; 
load goodk; 
load wdata olicr; 
bk=[zeros(10,2) bk]; 
dk=[zeros(2,2) dk]; 
K_nom=pck(ak,bk,ck,dk); 
sysp=olicr; 
sysk=K_nom; 
nmeas=2; 
nctrl=2; 
k_m=0.9999; 
opt='e'; 
band=8.737; 
 
scalem = 2*(k_m-1)/k_m^2; 
scaler = 2*(k_r-1)/k_r^2; 
 
[dum,nop,nip,nxp] = minfo(sysp); 
[dum,nok,nik,nxk] = minfo(sysk); 
nep = nop-nmeas; 
ndp = nip-nctrl; 
nx = nxp+nctrl; 
[ap,bp,cp,dp] = unpck(sysp); 
bp1 = bp(:,1:ndp); 
bp2 = bp(:,ndp+1:nip); 
cp1 = cp(1:nep,:); 
cp2 = cp(nep+1:nop,:); 
dp11 = dp(1:nep,1:ndp); 
dp12 = dp(1:nep,ndp+1:nip); 
dp21 = dp(nep+1:nop,1:ndp); 
dp22 = dp(nep+1:nop,ndp+1:nip); 
[ak,bk,ck,dk] = unpck(sysk); 
bk1 = bk(:,1:ndp); 
bk2 = bk(:,ndp+1:nik); 
dk1 = dk(:,1:ndp); 
dk2 = dk(:,ndp+1:nik); 
 
ap=[ap bp2;zeros(nctrl,nxp) -band*eye(nctrl)]; 



 78

bp0=[zeros(nxp,nctrl) zeros(nxp,nctrl);-
band*eye(nctrl,nctrl) -eye(nctrl,nctrl)]; 
bp1=[bp1;zeros(nctrl,nctrl)]; 
bp2=[zeros(nxp,nctrl);band*eye(nctrl)]; 
cp0=[zeros(nctrl,nxp) zeros(nctrl,nctrl);zeros(nctrl,nxp) -
band*eye(nctrl)]; 
cp1=[cp1 dp12]; 
cp2=[cp2 dp22]; 
dp00=[zeros(nctrl,nctrl) zeros(nctrl,nctrl);-
band*eye(nctrl) zeros(nctrl,nctrl)]; 
dp01=zeros(2*nctrl,ndp); 
dp02=[eye(nctrl);band*eye(nctrl)]; 
dp10=[zeros(nctrl,nctrl) zeros(nctrl,nctrl)]; 
dp11=dp11; 
dp12=zeros(nctrl,nctrl); 
dp20=[zeros(nmeas,nctrl) zeros(nmeas,nctrl)]; 
dp22=zeros(nmeas,nctrl); 
 
a=[ap+bp2*dk2*cp2 bp2*ck; bk2*cp2 ak]; 
b0=[bp0+bp2*dk2*dp20; bk2*dp20]; 
b1=[bp1+bp2*(dk1+dk2*dp21);bk1+bk2*dp21]; 
b2=[zeros(nxp+nctrl,nxk) bp2;eye(nxk) zeros(nxk,nctrl)]; 
c0=[cp0+dp02*dk2*cp2 dp02*ck]; 
d00=[dp00+dp02*dk2*dp20]; 
d01=[dp01+dp02*(dk1+dk2*dp21)]; 
d02=[zeros(2*nctrl,nxk) dp02]; 
c1=[cp1+dp12*dk2*cp2 dp12*ck]; 
d10=dp10+dp12*dk2*dp20; 
d11=dp11+dp12*(dk1+dk2*dp21); 
d12=[zeros(nep,nxk) dp12]; 
kbar=[k_m*eye(nctrl) zeros(nctrl,nctrl);zeros(nctrl,nctrl) 
k_r*eye(nctrl)]; 
 
deltak=eye(2,2); 
deltap=eye(2,2); 
 
nxp=nxp+nctrl; 
nx=nxp+nxk; 
k=kbar; 
setlmis([]); 
% 
% Set optimization variables 
% 
idR11 = lmivar(1,[nxp 1]); % R11 
idS = lmivar(1,[nx 1]);  % S 
idGAM = lmivar(1,[1 0]); % GAM 
if (k_m ~= 1) 
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    idUm = lmivar(1,[2 0]); % U before was (1,1), but 2 
inputs.... 
    idUr = lmivar(1,[2 0]); 
end 
% 
% LMI of R 
% 
lmiterm([1 1 1 idR11],ap,1,'s'); 
lmiterm([1 2 1 idR11],[zeros(nctrl,nxp-2) -eye(nctrl)],1); 
lmiterm([1 2 2 idUm],scalem,1); 
lmiterm([1 2 2 idUr],-2*(1/(band^2*k_r^2)),1) 
lmiterm([1 3 1 0],bp1'); 
lmiterm([1 3 2 0],0); 
lmiterm([1 3 3 idGAM],-eye(nep),1); 
lmiterm([1 4 1 idR11],cp1,1); 
lmiterm([1 4 2 0],zeros(nep,nxp)); 
lmiterm([1 4 3 0],dp11'); 
lmiterm([1 4 4 idGAM],-eye(nep),1); 
if (k_m ~= 1) 
    lmiterm([1 1 1 idUm],scalem*bp2,bp2',1); 
    lmiterm([1 2 1 idUm],scalem,bp2'); 
    lmiterm([1 2 1 idUr],-1/(band^2*k_r),bp2'); 
%  lmiterm([1 3 1 idU],scale*dp12,bp2'); 
%  lmiterm([1 3 3 idU],scale/2*dp12,dp12','s'); 
end    
% 
% LMI of S 
% 
lmiterm([2 1 1 idS],1,a,'s'); 
lmiterm([2 2 1 idS],b1',1); 
lmiterm([2 2 2 idGAM],-eye(2),1); 
lmiterm([2 3 1 0],c1); 
lmiterm([2 3 2 0],d11); 
lmiterm([2 3 3 idGAM],-eye(2),1); 
% 
% Coupling condition 
% 
temp = [eye(nxp) zeros(nxp,nxk)]; 
 
lmiterm([-3 1 1 idR11],1,1); 
lmiterm([-3 2 1 0],temp'); 
lmiterm([-3 2 2 idS],1,1); 
% 
% Additional constraint 
% 
if (k_m ~= 1) 
    lmiterm([4 1 1 idUm],-1,1); 
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    lmiterm([4 2 2 idUr],-1,1); 
    lmiterm([4 3 3 idUm],1,1); 
    lmiterm([4 4 4 idUr],1,1); 
    lmiterm([4 3 3 0],-1e4); 
    lmiterm([4 4 4 0],-1e4); 
end 
 
lmis = getlmis; 
 
nvar = lminbr(lmis); 
disp([' Total variable numbers: ',num2str(nvar)]) 
nlmi = decnbr(lmis); 
disp([' Total LMI numbers: ',num2str(nlmi)]) 
% 
% Construct CVEC 
% 
nvar = decnbr(lmis); 
cvec = zeros(nvar,1); 
for i = 1:nvar 
    [vRi,vSi,vGAMi] = defcx(lmis,i,idR11,idS,idGAM); 
    cvec(i,1) = vGAMi+epsilon*(trace(vRi)+trace(vSi)); 
end 
% 
% Call LMI optimization subroutine 
% 
[copt,xopt] = mincx(lmis,cvec,[1e-3 300 -1 0 0]); 
% 
% Convert the optimization variables to matrix form 
% 
r11 = dec2mat(lmis,xopt,idR11); 
s = dec2mat(lmis,xopt,idS); 
gamma = dec2mat(lmis,xopt,idGAM); 
if (k_m ~= 1) 
    Um = dec2mat(lmis,xopt,idUm); 
    Ur = dec2mat(lmis,xopt,idUr); 
    Wm = inv(Um); 
    Wr = inv(Ur); 
    W=[Wm zeros(2,2);zeros(2,2) Wr]; 
end 
minfo(W) 
sinv = inv(s); 
r = [r11 sinv(1:nxp,nxp+1:nx); 
    sinv(nxp+1:nx,:)]; 
 
if (opt == 'e') 
    temp = eye(nx)-r*s; 
    [u,d,v] = svd(temp); 
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    minfo(u) 
    tempd = sqrtm(d); 
    M = u*tempd(:,1:nxp); 
    N = v*tempd(:,1:nxp); 
else 
 temp = r*s*r-r; 
 temp = (temp+temp')/2; 
 [u,d,v] = svd(temp); 
 N = u(:,1:nxp)*sqrtm(d(1:nxp,1:nxp)); 
 M = eye(nxp)+N'/r*N; 
 Q = [r N;N' M]; 
end 
 
 
if (opt == 'e') 
    % 
    % Explicit construction. Pick a feasible DAW 
    % 
     
    setlmis([]); 
    
    idDAW = lmivar(2,[nctrl 2*nctrl]);% DAW 
 idTAU = lmivar(1,[1 0]);        % TAU 
    
    lmiterm([1 1 1 idDAW],W*k*dp02,1,'s'); 
 lmiterm([1 1 1 0],W*k*d00+d00'*k*W); 
 lmiterm([1 1 1 0],-2*W); 
 lmiterm([1 2 1 0],d01'*k*W); 
 lmiterm([1 2 2 0],-gamma*eye(nctrl)); 
 lmiterm([1 3 1 idDAW],dp12,1); 
 lmiterm([1 3 1 0],d10); 
 lmiterm([1 3 2 0],d11); 
 lmiterm([1 3 3 0],-gamma*eye(nctrl)); 
 
 lmiterm([2 1 1 idTAU],-1,1); 
 lmiterm([2 2 1 idDAW],-1,1); 
 lmiterm([2 2 2 0],-1); 
 
 dmatrix = getlmis; 
    
    nvar = decnbr(dmatrix); 
 cvec = zeros(nvar,1); 
 for i = 1:nvar 
        [vDAWi,vTAUi] = defcx(dmatrix,i,idDAW,idTAU); 
        cvec(i,1) = vTAUi; 
 end 
    [copt,xopt] = mincx(dmatrix,cvec,[1e-3 300 -1 0 0]); 
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 dawk = dec2mat(dmatrix,xopt,idDAW); 
    tau = dec2mat(dmatrix,xopt,idTAU); 
 % 
 % Compute BAW and CAW 
 % 
    E = [eye(nxp);zeros(nxk,nxp)]; 
    
    pi11 = W*k*d00+d00*k*W+W*k*dp02*dawk+dawk'*dp02'*k*W-
2*W; 
    pi21 = d01'*k*W; 
 pi22 = -gamma*eye(ndp); 
    pi31=d10;+dp12*dawk; 
 pi32 = d11; 
 pi33 = -gamma*eye(nep); 
 Pi = [pi11 pi21' pi31'; 
     pi21 pi22 pi32'; 
     pi31 pi32 pi33]; 
     
%     b0=sel(b0,1:24,1:2); 
     
 L1 = [(b0'+W*k*c0*r)*E+dawk'*bp2';b1'*E;c1*r*E]; 
 L2 = [b0'*s+W*k*c0;b1'*s;c1]; 
nctrl=2*nctrl; 
 tempb = [eye(nctrl) zeros(nctrl,ndp) 
zeros(nctrl,nep)]; 
 leftb = [zeros(nctrl) tempb; 
      tempb' Pi]; 
 rightb = -[zeros(nctrl,nx); L2]; 
 thetab = leftb\rightb; 
 bawk = (thetab(1:nctrl,:))'; 
 
 tempc = [dp02'*k*W zeros(nctrl/2,ndp) [dp12]']; 
 leftc = [zeros(nctrl/2) tempc; 
      tempc' Pi]; 
 rightc = -[bp2'; L1]; 
 thetac = leftc\rightc; 
 cawk = thetac(1:nctrl/2,:); 
 % 
 % Calculate aaw 
    % 
   temp1 = [s*b0+bawk+c0'*k*W s*b1 c1']; 
    temp2 = [(b0'+W*k*c0*r)*E+dawk'*[bp2]'+W*k*dp02*cawk; 
        b1'*E; 
        c1*r*E+[dp12]*cawk]; 
 aawk = -a'*E + temp1/Pi*temp2; 
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    temp1 = [aawk bawk;cawk dawk]-[s*a*r*E 
zeros(nx,nctrl);zeros(nctrl/2,nxp+nctrl)]; 
    temp2 = [N s*b2;zeros(nctrl-2,nx) eye(nctrl-2)]\temp1; 
    temp3 = temp2/[M'*E zeros(nxp,nctrl);zeros(nctrl,nxp) 
eye(nctrl)]; 
    aaw = temp3(1:nxp,1:nxp); 
    baw = temp3(1:nxp,nxp+1:nxp+nctrl); 
    caw = temp3(nxp+1:nx+nctrl-2,1:nxp); 
    daw = temp3(nxp+1:nx+nctrl-2,nxp+1:nxp+nctrl);  
 
else 
     
%     Construct controller gain through feasibility solver.  
     
     nctrl=2*nctrl; 
 A0 = [a zeros(nxp+nxk,nxp); 
  zeros(nxp,nxp+nxk) zeros(nxp,nxp)]; 
 B0 = [b0;zeros(nxp,nctrl)]; 
 B1 = [b1;zeros(nxp,ndp)]; 
 C0 = [c0 zeros(nctrl,nxp)]; 
 C1 = [c1 zeros(nep,nxp)]; 
 H1 = [zeros(nxp+nxk,nxp) b2; 
  eye(nxp) zeros(nxp,nxp)]'; 
 H2 = [zeros(nctrl,nxp) d02]'; 
 H3 = [zeros(nep,nxp) d12]'; 
 G1 = [zeros(nxp,nx) eye(nxp);zeros(nctrl,nx+nxp)]; 
 G2 = [zeros(nxp,nctrl);eye(nctrl)]; 
    U=[Um zeros(2,2);zeros(2,2) Ur]; 
     
 setlmis([]); 
    
    idLAM = lmivar(2,[nx+nctrl/2,nxp+nctrl]); 
 idTAU = lmivar(1,[1,1]); 
    if (k_m == 1)  
        idU = lmivar(1,[1 1]); 
    end 
 
    lmiterm([1 1 1 0],Q*A0'+A0*Q); 
 lmiterm([1 1 1 idLAM],H1',G1*Q,'s'); 
 lmiterm([1 2 1 0],k*C0*Q); 
 lmiterm([1 2 1 idLAM],k*H2',G1*Q); 
 lmiterm([1 3 1 0],B1'); 
 lmiterm([1 3 2 0],d01'*k); 
 lmiterm([1 3 3 0],-gamma); 
 lmiterm([1 4 1 0],C1*Q); 
 lmiterm([1 4 1 idLAM],H3',G1*Q); 
 lmiterm([1 4 3 0],d11); 
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 lmiterm([1 4 4 0],-gamma); 
    if (k_m ~= 1) 
  lmiterm([1 2 1 0],U*B0'); 
        lmiterm([1 2 1 -idLAM],U*G2',H1); 
        lmiterm([1 2 2 0],k*d00*U+k*U*d00'); 
  lmiterm([1 2 2 0],-2*U); 
  lmiterm([1 2 2 idLAM],k*H2',G2*U,'s'); 
  lmiterm([1 4 2 0],d10*U); 
  lmiterm([1 4 2 idLAM],H3',G2*U); 
 else 
        lmiterm([1 2 1 idU],1,B0'); 
        lmiterm([1 2 1 -idLAM],G2',H1); 
  lmiterm([1 2 2 idU],d00,1,'s'); 
  lmiterm([1 2 2 idU],-1,1,'s'); 
  lmiterm([1 2 2 idLAM],H2',G2,'s'); 
  lmiterm([1 4 2 idU],d10,1); 
  lmiterm([1 4 2 idLAM],H3',G2); 
    end 
    
    temp1 = [zeros(nctrl,nxk) eye(nctrl)]; 
 temp2 = [zeros(nxk+nctrl,nxp-2) eye(nxk+nctrl)]; 
 temp3 = [zeros(nctrl,nxp) eye(nctrl)]; 
 lmiterm([2 1 1 idTAU],-1,1); 
 lmiterm([2 2 1 -idLAM],-temp3,temp2'*temp1'); 
 lmiterm([2 2 2 0],-1); 
 
    construct = getlmis; 
    
    nvar = decnbr(construct); 
 cvec = zeros(nvar,1); 
    for i = 1:nvar 
        [vTAUi] = defcx(construct,i,idTAU); 
        cvec(i,1) = vTAUi; 
    end 
 [gopt,xopt] = mincx(construct,cvec,[1e-3 300 -1 0 0]); 
 lambda = dec2mat(construct,xopt,idLAM); 
    
    aaw = lambda(1:nxp,1:nxp); 
    caw = lambda(nxp+1:nx+nctrl/2,1:nxp); 
    if (k_m ~= 1) 
        baw = lambda(1:nxp,nxp+1:nxp+nctrl); 
        daw = lambda(nxp+1:nx+nctrl/2,nxp+1:nxp+nctrl); 
    else 
        U = dec2mat(construct,xopt,idU); 
        baw = lambda(1:nxp,nxp+1:nxp+nctrl)/U; 
        daw = lambda(nxp+1:nx+nctrl,nxp+1:nxp+nctrl)/U; 
    end 
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end 
 
kaw = pck(aaw,baw,caw,daw); 
 
load dataw a_p b_p c_p d_p 
bk=sel(bk,1:10,3:4); 
dk=sel(dk,1:2,1:2); 
bk = [bk eye(10,10) zeros(10,2)]; 
dk = [dk zeros(2,10) eye(2,2)]; 
 
b = [b0 b1 b2]; 
c = [c0;c1;zeros(nctrl,nxp+nxk)]; 
d = [d00 d01 d02; 
    d10 d11 d12; 
    eye(nctrl) zeros(nctrl,ndp) zeros(nctrl,nxk+nctrl/2)]; 
G = pck(a,b,c,d); 
T = starp(G,kaw); 
maxre=max(real(spoles(T))); 
disp(['Optimal Gamma Value: ',num2str(gamma)]) 
disp(['Maximum Eigenvalue of Closed Loop System: 
',num2str(maxre)]) 
 
 A0 = [a zeros(nxp+nxk,nxp); 
  zeros(nxp,nxp+nxk) zeros(nxp,nxp)]; 
 B0 = [b0;zeros(nxp,nctrl)]; 
 B1 = [b1;zeros(nxp,ndp)]; 
 C0 = [c0 zeros(nctrl,nxp)]; 
 C1 = [c1 zeros(nep,nxp)]; 
 H1 = [zeros(nxp+nxk,nxp) b2; 
  eye(nxp) zeros(nxp,nxp)]'; 
 H2 = [zeros(nctrl,nxp) d02]'; 
 H3 = [zeros(nep,nxp) d12]'; 
 G1 = [zeros(nxp,nx) eye(nxp);zeros(nctrl,nx+nxp)]; 
 G2 = [zeros(nxp,nctrl);eye(nctrl)]; 
    U=[Um zeros(2,2);zeros(2,2) Ur]; 
     
Q=[s N;N' -N'*r*pinv(M')]; 
     
Psi = [A0'*Q+Q*A0 Q*B0+C0'*k*W Q*B1 C1'; 
       B0'*Q+W*k*C0 W*k*d00+d00'*k*W-2*W W*k*d01 d10'; 
       B1'*Q d01'*k*W -gamma*eye(ndp) d11'; 
       C1 d10 d11 -gamma*eye(nep)]; 
        
 H1 = [zeros(nxp+nxk,nxp) b2; 
  eye(nxp) zeros(nxp,nxp)]'; 
 H2 = [zeros(nctrl,nxp) d02]'; 
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 H3 = [zeros(nep,nxp) d12]'; 
 G1 = [zeros(nxp,nx) eye(nxp);zeros(nctrl,nx+nxp)]; 
 G2 = [zeros(nxp,nctrl);eye(nctrl)]; 
    U=[Um zeros(2,2);zeros(2,2) Ur]; 
     
    lambda=[aaw baw;caw daw]; 
P=[H1*Q H2*k*W zeros(nxp+nxk+2,nep) H3]; 
term=[G1 G2 zeros(nxp+nctrl,2) zeros(nxp+nctrl,2)]; 
 
flmi = Psi + P'*lambda*term + term'*lambda'*P; 
maxref=max(real(eig(flmi))); 
 




