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Rate and Amplitude Saturation. (Under the direction of Dr. Fen Wu)

In this thesis, we consider the design of anti-windup compensators for exponentially un-
stable systems with actuator saturation of amplitude and rate, as well as linear parameter
varying systems. A set of synthesis conditions for anti-windup compensators are developed
for each of the system types, in which the effects of actuator saturation are modelled as
sector-bounded nonlinearities, using traditional linear fractional transformations. The per-
formance criteria are the minimization of the induced L5 norm from disturbance input to
error output, as well as the minimization of controller windup due to actuator saturation.
Explicit construction formulae are provided for the direct construction of these anti-windup
compensators. An exponentially unstable linearized model of an F8 aircraft is used to val-
idate the results of the control analysis. We present the main advantage of the two-step
anti-windup controller design procedure; the ease of implementation and the maintenance

of high performance criteria in design.
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Chapter 1

Introduction

An often neglected component in the design of control systems (is) the specifics of the sensor
and actuator dynamics. In particular, the saturation limits of the actuators in the system
are usually ignored when a controller is being synthesized. However, actuator saturation is
an element in all real physical systems, as real actuators cannot supply an infinitely large
amount of output. The result of this saturation is a difference between the control input
demanded by the controller, and the realized output of the actuator. Obviously, this can
lead to degradation in the performance of the control system, and in some cases, instability
of the control system. Recent attempts to correct this situation have opened up a new focus
of research in control systems. This area of interest is referred to as anti-windup control or
anti-windup compensation, due to the fact that the saturation phenomenon causes integral
terms in the control equations to increase rapidly, or, ”wind-up” [2].

Some critical applications where this type of constraint is pertinent include the maximum
flow capacity in a fuel valve, the peak saturation voltage in a operational amplifier, and the
deflection angle of a control surface in an aircraft, among others. In the particular example
of flight control, the presence of actuator saturation constraints limits the approaches to
control. Aircraft control surfaces have limitations both in their maximum deflections and in
their rate of variation due to geometric and aerodynamic constraints. Actuator limitations
have been attributed to the crash of several aircraft. These limitations have also been
identified as a major contribution to catastrophic pilot induced oscillations [23]. Also, the
failure of several aircraft have been attributed to the saturation of actuators. In the case of

the F-22 crash in April 1992 [7], the control surface rate was limited. A similar occurrence
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caused the Gripen crash in August of 1992 [30].

The goal, then, of any anti-windup control scheme, would be to stabilize the system in
the presence of the saturation, and to approach as closely as possible the performance of the
system in the absence of such saturation. Typically, this saturation is modelled as a nonlin-
earity which creates difficulties in the synthesis of a controller to handle such discrepancy.
A common method of analyzing these problems involves modelling the plant as a linear
time-invariant (LTI) plant connect to a sector-bounded nonlinearity via an upper linear
fractional transformation (LFT). With this complete, a small-gain theorem (or its variant)
is applied to the system for the stability and performance analysis. This often amounts
to an overly conservative estimation of the conditions. This is a single-step procedure, in
which the goals of stability, performance, and saturation control are united into a single
control synthesis problem, which would then be solved by traditional means. The alterna-
tive approach is the two-step procedure, in which the saturation control has been divided
into nominal control and anti-windup compensation designs. In the following subsection,
we will discuss examples of both types of design.

The single-step procedure can, at times, become a more complicated approach to anti-
windup controller synthesis. This is due to the fact that the combination of various criteria
leads to a more conservative procedure for design. That is, if the stability and performance
criteria of the original controller design are augmented by the addition of saturation control
goals, the approach taken to synthesize the controller must be amended. This usually in-
volves the enlargement of already spacious LMIs to include the new goals. Furthermore, the
new conditions sometimes suffer from a loss of convexity. So while the single-step procedure
involves fewer steps, the computations can become more complicated than effective.

The two-step design procedure has the handicap of requiring more controller synthesis
LMIs and more calculations in general. However, this procedure has several distinct ad-
vantages over the single-step procedure. The main advantage is that it can be used as an
augmentation of a nominal control scheme which suffers from actuator saturation. If it is
unclear wether or not a control system will suffer a loss of performance or stability due to
saturation, a nominal controller can be designed without regarding anti-windup problems.
If this controller is insufficient, then the proposed synthesis approach can be taken. This

implementation usually only requires a software or computer change. Thus, it is usually the



Chapter 1. Introduction 3

case that no additional hardware will be necessary in order to implement the anti-windup
compensator. Simply, a new addition to the control law will be added, only requiring that
the effects of saturation can be measured by existing sensors. That is, that the realized
control output can be measured by the existing sensor, in order to be compared with the
nominal output.

The other major advantage of the two-step design procedure lies in the construction of
the original controller. When designing the nominal controller without regard to saturation,
the designer is free to choose as strict a set of performance criteria as desired. Since the
concerns of actuator saturation are not present, a well-performing optimal controller can be
sought and implemented. If this proves to be insufficient in the face of actuator saturation,
then a compensator can be designed. Therefore, this approach does not suffer from the

inherent conservatism involved in the design of a single-step anti-windup compensator.

1.1 Background

As stated earlier, recent years have seen a variety of control techniques for saturated LTI
systems. In [22], a generalized framework for many anti-windup control schemes was pro-
posed. Previous to that work, this area of research suffered from the lack of unity among
control and performance objectives. The work of Teel and Kapoor in [33] brought a defi-
nition of anti-windup compensation in terms of Lo stability and performance. Another key
idea is the formulation of the synthesis of anti-windup controllers in terms of LMI problems.
This was undertaken in [24, 31, 20]. The main advantage of this approach is the adaptation
of the well known Circle stability criteria to the anti-windup compensation problem. In [15],
the concept of a null-controllable region is used in conjunction with one-step methods as an
approach to anti-windup compensator design for LTI systems. Also, several approaches to
systems with rate and magnitude saturation have been undertaken for LTI systems. These
also involve the study of the null-controllable region in designing a single step anti-windup
compensator as in [17].

Often, it is more appropriate to model a physical system as a Linear Time-Varying

(LTV) system. This is the case when the parameters that make up the state-space model of
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the system are functions of time. A specific class of these systems are the Linear Parameter-
Varying (LPV) systems. These are systems whose state-space data are functions of some
parameter which is varying with time. (The parameter is assumed varying in a bounded
set and its current vaule is measurable). In [1, 35, 26] LMI methods for the Ho, control of
these LPV systems are established. These gain-scheduling methods are used typically to
design controllers for these systems.

In [38], a one-step approach is used in conjunction with classical LPV methods. The key
idea in this work is that the saturation effects can be modelled as an LPV block attached
to the system and not a nonlinearity block. While the system is still considered nonlinear,
the modelling of the actuator saturation is now a gain-scheduling block. This allows for the
controller to be designed in a one step process, and also allows for the use of classical LPV
methods such as the ones in [1] in solving the resulting controller synthesis problems.

Another one-step approach is taken in [16]. Here, the actuators are subject to amplitude
and rate saturation, and a discrete control scheme was developed using state feedback and
dynamic output feedback. A linear quadratic regulator design was modified to compensate
the saturated system. The saturation was modelled as a sector-bounded nonlinearity, as in
this work. Also the model for rate saturation of the actuators was developed, which will be
used in the simulations of the F8 aircraft rate saturation.

A two-step approach involving the modelling of the saturation as a sector-bounded
nonlinearity was taken in [11]. In this paper, the design of an anti-windup compensator
was undertaken. Instead of designing a controller which would single-handedly stabilize
the system in the face of actuator saturation, the author sought to design a compensator
for a nominal controller which stabilized the system and had a relatively good measure of
performance. The synthesis was based on the linear matrix inequality (LMI) forms of the
small gain theorem and bounded real lemma. The anti-windup compensator was designed
in such a way as to act as a gain upon the difference between the saturated and unsaturated
control input. This gain was then used as an output which acted to update the controller
states and the controller output. The approach was to recast the design of anti-windup
compensator as a classical Ho, problem. In this case, the analysis and synthesis conditions
would be convex and solvable LMIs. The strongest assumption made in this paper was that

the nominal plant must be stable.
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The work of Wu and Lu [39] builds upon this concept by removing the stability re-
quirement. The work of Teel, [32] also includes the conditions for synthesizing anti-windup
compensators for exponentially unstable systems. Thus, an anti-windup compensator design
scheme for stable or unstable systems was created. This approach also involved the use of
convex and solvable LMIs in order to synthesize and analyze the stability and performance
of the closed loop system.

There are two natural extensions to the previous work. This work involves dismantling
the problem of the maximum saturation magnitude of an actuator. Another type of satu-
ration which occurs during actuation is that of the rate of response of the actuator. This is
also limited by the physical constraints on the system. The main difference in these types
of saturation is that the rate saturation is more difficult to measure. However, with a clever
design of the control system architecture, this problem becomes more simple. This rate and
magnitude saturation problem can then be addressed in a similar manner to the magnitude
saturation problem, by employing a two-step design procedure using convex and solvable
LMIs.

The second conclusion involves linear time variant (LTV) problems. More specifically,
the class of LTV plants which can be described by a parameter variation. This class includes
the class of linear parameter varying (LPV) plants. Can a similar design procedure be used
to address LPV plants undergoing actuator saturation? The typical response to designing
a controller for an LPV plant is the gain-scheduling method used in Packard [26] and
Apkarian [1] among other papers. We shall seek to design a gain-scheduled anti-windup
which depends on the same parameters as the gain-scheduled controller and LPV plant.
This way, a system can be stabilized against a sector-bounded nonlinearity (saturation)
and parameter variation.

When using LMI methods to synthesize controller solutions to H, problems, the typical
procedure is to first solve some LMI which corresponds to the existence of a stabilizing
controller using a procedure to eliminate the controller variables from the inequality. With
this accomplished, the scaling matrix solutions are back-substituted into the original LMI in
order to solve for the controller gains. In [13], an explicit construction scheme was developed
which is equivalent to the above procedure. This scheme allows us to explicitly solve for

the controller gains after evaluating the synthesis LMI. This approach was also used in [39]
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in order to construct an explicit anti-windup compensator.

We will apply our proposed rate and magnitude anti-windup compensator to the control
of a linearized F-8 aircraft model. This model will contain an unstable pole which was added
in to demonstrate the capability of the proposed design to compensate for windup in the

presence of instability.

1.2 Thesis Objective

The objectives of this thesis are all related to the general problem of anti-windup com-
pensation for actuator saturation problems with the specific example of an exponentially
unstable model of an F8 aircraft.

First, we hope to provide modifications to well-known stability and performance theo-
rems in order to make them compatible with the goals of anti-windup compensation. That
is to say, we would like to cast the problem of saturation control in a way that is consistent
with familiar LMI methods.

The second goal is to provide synthesis and analysis conditions for systems suffering
actuator saturation in two general areas. The first is the general class of systems which
are constrained by both rate and magnitude saturations. The second such case is input
saturated systems that are LPV gain-scheduled systems being controlled by a nominal
gain-scheduled controllers.

With synthesis and analysis conditions obtained, we would like to provide explicit for-
mulae for the construction of such controllers, in order to avoid the overuse of complicated
LMIs.

Finally, an example of the usage of a rate and magnitude controller will be provided.
We hope to control an F8 aircraft model which suffers from rate and magnitude saturation

with the proposed anti-windup controller design.

1.3 Thesis Outline

Chapter 1 has a literature review of the previous work on anti-windup compensation and

actuator saturation. This chapter also outlines the objectives and content of this thesis.
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Also, the motivation for the necessity of this type of anti-windup compensator design is
included.

Chapter 2 contains some information on the mathematical tools used to throughout
this work. Specifically, the robust control framework, including LFT’s, LMI’s and matrix
definitions, is established as a foundation for this work. Afterwards, the theorems and
lemmas used to establish the stability and performance criteria, as well as the synthesis and
analysis conditions, are given without proof.

Chapter 3 is a robust analysis of sector-bounded nonlinearities for both cases studied in
this thesis. In particular, the problem of stabilizing a system in the presence of a sector-
bounded nonlinearity is given the treatment of a standard H., problem using an LMI
framework.

Chapter 4 provides a thorough derivation of the synthesis conditions for the rate and
magnitude anti-windup compensator, as well as the gain-scheduled anti-windup compen-
sator. This is done through the use of the ideas contained in the previous chapters. With
synthesis conditions established, and proven to be feasible and convex, the construction
procedure for the rate and magnitude anti-windup compensator will be given. Also, the
construction procedure for the gain-scheduled compensator will be derived in a similar
fashion. These procedures are explicit construction schemes as in [13], as opposed to the
feasibility approach used in [11].

Chapter 5 contains the numerical results of applying the proposed anti-windup compen-
sator design to the F8 model. First, the effects of the magnitude saturation is shown, as
well as the effects of the rate saturation. These two nonlinearities will be applied to the F8
model with a nominal Hs, controller. The performance of the system will then be compared
to the performance of the system with the proposed anti-windup compensator design added
in.

Finally, the Chapter 6 will contain a summary of the main results, as well as provide a

commentary on the future work in this area.



Chapter 2

Mathematical Preliminary

We desire to construct the problem of anti-windup compensator simulation using traditional
hinf control procedures. In order to do this, we must introduce several mathematical
concepts which are key to this type of analysis. This chapter provides several of those
results without proof. We shall present the L2 norm used as a performance measure here,
as well as the Scaled Bounded Real Lemma and an overview of the previous results on LPV

systems and gain-scheduled H, control theory.

2.1 Signals, Norms, Operators, and Matrix Definitions

The main objective in any control system design is usually twofold. The first is to achieve
stability, and the second is to achieve some performance criterion. In physical systems,
these typically involve reducing some tracking error, or minimizing the settling time or
peak overshoot of a system. By examining these control objectives in the light of a com-
plex function space, we can eliminate talk of parameters with different units and different
contexts and unite the goals under the lens of a single type of function. By exploring the
norms of these signals, we can recast our performance objectives so that they all meet a
single type of criterion.

A Hilbert space is a complete inner product space with its norm induced by its inner
product [40]. A useful infinite dimensional Hilbert space is £2(jR), which consists of all

square integrable and Lebesgue measurable functions F' defined on the interval [a, b] with
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its inner product and induced norm defined as,

1 o0
(F,G) = 2/ trace [F*(jw)G(jw)] dw, and ||F|2:=+/(F,F)
m —0o0

H~ is a closed subspace of Lo, with functions that are analytic and bounded in the

open right-half plane. The H,, norm is defined as,
[F||loo == sup & (F(jw))

Here, the & represents the maximum singular value. So in other words, the H,, norm
of a system matrix is the largest of the maximum singular values over all frequency. In
essence, it is the largest amplification from input to output that the system will experience.
This is the norm we shall use in order to specify the performance criteria. Generally, we
shall seek to minimize the Ho, norm of certain signals (i.e. the tracking error, or the norm
from disturbance to plant output).

A Matrix A is said to be positive definite (denoted as A > 0) if * Az > 0 for all x # 0.
Similarly, a Matrix A is said to be positive semidefinite if x*Ax > 0 for all x # 0. This will
be a condition in many of the Linear Matrix Inequalities that we wish to solve. A negative
definite (semidefinite) matrix is defined in a similar way.

A pair of matrices (C, A) is said to be detectable if A+ LC' is stable for some L.

Similarly, consider a matrix pair (A, B). Then the following theorem holds.

Theorem 1 The following statements are equivalent.
(i) (A, B) is stabilizable
(ii) The matriz [A Vi B] has full row rank for all X with nonzero real com-
ponent.
(iii) For all X and z such that x*A = x*\ and ReX > 0,2*B # 0.
(iv) There exists a matriz F such that A + BF is Hurwitz stable.

The last result will prove useful in the study of the Lyapunov equation.

2.2 Linear Fractional Transformations

A Linear Fractional Transformation (LFT) is a useful tool in the control analysis and control

synthesis. It is a way that we can rewrite the interconnection of multiple matrices in a block



Chapter 2. Mathematical Preliminary 10

diagram into a more compact package. The definition of lower and upper LFT’s follow.

If M is a complex matrix partitioned in the following form,

My Mo
Moy Moo

M =

then, the linear fractional transformations are defined as,

E(M, Al) = My + Mlel(] — MggAl)flMgl (2.1)
fu(M, Au) = Moy + MglAu(I — MuAu)flMlg (2.2)

An LFT, F(M,A), is said to be well-defined (well-posed) if I — MaaA is invertible. Also,
an LFT, F, (M, A), is well-defined if (I — M1 A)~! exists.

In order to see the physical meaning of LFTs in control science, we take M to be a
proper control transfer matrix. With this interpretation the LFT simply represents a closed
loop transfer matrix. In this case, the LFT can be considered to close the loop with the
transfer matrix and controller (usually lower LE'TS) or to close the loop with a plant and
its associated uncertainty (usually upper LFTs). More detailed information on LFT may
be found in [40].

In the anti-windup synthesis, we will use an LF'T to represent the connection between the
plant (with controller) and the anti-windup compensator. We will also define the relation
between the associated nonlinearity and the plant as an upper LFT. This way, we can

examine the stability of the plant against the nonlinearity.

2.3 Linear Matrix Inequalities

Linear Matrix Inequalities (LMIs) are useful tools in control analysis and control synthesis.
Indeed, our control synthesis and control analysis requirements can be (and will be) writ-
ten as LMIs. Most notably we have the so-called Algebraic Riccati Equation (ARE), the
Lyapunov equation, and the LMI form of the bounded real lemma. In this section, we will
examine the the first two equations, and the bounded real lemma will be inspected.

In the process of control analysis, the Lyapunov equation is useful for examining the
stability properties of a system matrix. Consider given real matrices A and H in the

Lyapunov equation:
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A*Q+QA+H=0 (2.3)

The relationship between the solution of this equation, () and the stability of the matrix

A can be summarized in the following two theorems.

Theorem 2 Assuming that A is stable in the Lyapunov equation, the following statments
are then true:

(i) Q= [ eN HeMat

(ii) Q@ >04if H>0and Q>0 if H>O0.

(iii) if H > 0 then (H,A) is observable if and only if Q >0

A natural corollary of this theorem is that this equation can be arranged in order to
learn about the controllability and observability of the (A, B, C) triple.
In many cases, we are given the solution to the Lyapunov equation and desire to conclude

the stability of matrix A. In that case, the following theorem proves useful.

Theorem 3 Given solution @ to the Lypaunov equation, then the following results hold
(i) The real part of A\(A) <0ifQ >0 and H >0
(ii) A is stable if Q@ >0 and H >0
(iii) A is stable if @ >0, H > 0 and (H,A) is detectable.

The usefulness of the last consequence of this theorem will be apparent in the LMI form

of the bounded real lemma, where we will use it to prove some useful results.

2.3.1 Scaled Bounded Real Lemma

The bounded real lemma, proposed by Khargonekar and Zhou [21], is used in converting the
H~ norm constraint of an LTI system into an equivalent linear matrix inequality condition.
This effectively converts the complicated problem of calculating a maximum over all fre-
quencies into a single system of inequalities. Its usefulness in control theory is to examine
performance in a control analysis problem, or to examine feasibility in a control synthesis
problem. The scaled bounded real lemma, presented below, is useful for converting the H,
norm constrain of LPV systems, and ultimately providing analysis and synthesis conditions

for gain-scheduled control schemes of parameter-varying systems.
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Lemma 2.3.1 Consider an uncertain parameter structure A, the associated set of positive
definite similarity scalings defined by Ln = {L >0: LA =AL} C R"™", and a square
continuous-time transfer function T(s) = D+C(sI —A)~'B. Then the following statements

are equivalent,

1. A is stable and there exist L € LA such that

ILY2(D + C(sI — A)'B)YL™V?|| o <~

2. There exist positive definite solutions X and L € La to the matriz inequality,
ATX + XA XB cT
BTX —~L DT <0.
C D —yL7!

This form of the bounded real lemma is presented in [1] and [26].

2.4 Linear Parameter-Varying Systems

Linear parameter-varying (LPV) systems are a special class of linear time-variant systems
(LTV). In an LTV plant, the state-space matrices are functions of time, as in the plant

below

z(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t)
The implementation of the solution to the Hs, control problem which corresponds to this
type of plant is often impractical as it involves integration of Riccati differential equations

in real time [1]. However, small gain LTI techniques can be applied to plants whose time

dependance has the form
L(t) = A(O(t))x(t) + B(O(t))u(t) (2.4)
y(t) = C(O(1))=(t) + D(O(t))u(t) (2.5)

where O(t) is a vector of time-varying plant parameters. The state-space matrices then

become functions of ©. This is the class of LPV systems. Furthermore, we would like to
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restrict our attention to the class of LPV systems where the state-space matrices are linear
fractional functions of the gain-scheduling parameter ©.

The typical approach for these LPV plants involves the small gain theorem by treating
the parameter variations as an uncertainty block, and by then designing a single robust
controller for the resulting family of systems as in [26]. However, this approach is usually
overly conservative [1].

The approach used in [1] involves designing robust controllers around each operating
point and to then switch between controller according to some gain-scheduling policy [26]. In
this work, we will use a gain-scheduling policy to switch between anti-windup compensators
for the LPV system.

The form of the controller which will be corrected by the gain-scheduled anti-windup

compensator is given below:

Tp Ar  Br1 Bre | |7k U1

u| = |Crt Dri1 Drg| |y | T |v2

2k, Cro Dror Drog| |wi U3
Wy = @Zk

Notice the input v. This is the correcting information from the anti-windup compen-

sator.

2.4.1 Gain-Scheduled H,, Control Theory

In this subsection, we shall describe the nature of the gain-scheduled H, control problem.
The key notion for this type of problem is that of converting the parameter-dependant
structure of the plant and controller into that of the classical uncertainty structure of a
standard Ho, problem.

The linear fractional dependence on © in an LPV plant is essentially represented by an

upper LET connection as follows [1]

= F,(P,0) (2.6)
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Where P is the LTI plant and © is the block diagonal time-variant operator which specifies

the relation of 8 to the plant dynamics. In actuality,
0= diag(glfrl,ggfrg,...,HKITK) (27)

In order to maintain a square format for this matrix, r; > 1 whenever the parameter 6; is
repeated [8].

The plant with this parameter dependance can be written in LFT form as

z Ppg Po1 Pp2| |w
el =Py P Pi2| |d
Yy Py Py1 Pyl |u

w= 0Oz

The common interpretation of this set of equations is that z and w are pseudo inputs
and outputs, respectively. Therefore, the controller design problem becomes that of finding

a controller of the form
u=Fi(K,0)y (2.8)

The controller will also have an LFT dependance on the gain-scheduling parameter 6.
In this case, the parameter is the scheduling variable which gives the rule of updating the
controller’s information based on the measurements of © [1].

The LFT interconnection of plant and controller is shown in figure 2.1.

The closed-loop transfer function from disturbance d to output e is given by

In order to better analyze the systems with traditional control techniques, we shall
rearrange the system matrices in order to match the upper LFT structure used in classical
Hoo theory. The new system, G will be the interconnection of plant and controller excluding

the parameter dependance. This new system G will then be connected via upper LFT to

the augmented block repeated uncertainty structure . This structure will hereafter
0 ©

be denoted as © @ O.
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)
Zp Wy
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U Y 2k Wi
2p w,
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u
Yy
Wi “k
0 K
(a) LPV Synthesis Framework (b) Equivalent transformation

Figure 2.1: LPV Control Systems Diagrams

In light of this rearrangement, the LPV problem can now be interpreted as a robust
performance problem for the new system, with a norm-bounded uncertainty © & ©. By
using small gain theory [40], we can define a solution. First, it is necessary to obtain a set
of positive definite similarity scalings associated with the block uncertainty structure. As

in [1], we shall use the set

La={L>0:LO=0OL,VO € A} CR™"
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where
K
r= Z Ti (2.10)
i=1

This set has the following important properties [26]
(i)
(ii) LGLA:>LT€LA
(iii) L € La = L™ € La.

(iv) L1 € LA, Lgs € Lan = L1190 = ©L1 Ly, VO € A.
(v) La is a convex subset of R™*".
Given this set, it is easy to show that the set of scalings which commute with the
repeated structure, © @ © is
Ly Lo

LA@A: T >0:L1,L3 € LA and

L0 = 0Ly, VYO e A}

We shall use this result in forming our synthesis condition, as our closed loop plant will
have a block repeated uncertainty structure as above. This result, in conjunction with the
so-called Elimination Lemma [5] will allow us to eliminate the uncertainty structure of the
anti-windup compensator in the closed loop plant. Note that the key difference in this set is
that the matrix Lo is commutable with gain-scheduling parameter ©, but is not a member

of the set La. Therefore, it is not necessary for the matrix Ly to be positive definite.



Chapter 3

Robust Analysis of Sector-Bounded Nonlinearities

In this chapter, we shall analyze the saturation nonlinearities in both the LTI and LPV
systems. We shall extend the well-known Circle criterion results to apply to the systems
examined in this work. The LTT extension will be similar to the one found in Wu [39], with
the addition of the rate saturation block. The LPV extension will be another extension of

[39] but combined with similar results involving scaling matrices as in Apkarian [1].

3.1 LTI System with Sector-Bounded Nonlinearity

In this section, we shall provide the framework for the LTI system with sector-bounded
nonlinearity that we shall use throughout this thesis to represent the system with actuator
saturation.

Consider a LTI system interconnected with an input sector-bounded nonlinearity.

T A By B T
u| = |Co Doo Do1| |q (3.1)
e Cl D10 Dll d

q=1v(u) (3.2)

Note the addition of the nonlinearity output ¢ which has the same dimension as input
u. The nonlinearity 1 defines a conic sector [0, k] which is a form of the constraint on the

input wu.

17
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A
y(u)
slope k

~<J =,

u

Figure 3.1: Sector-Bounded Nonlinearity

Another way of stating the constraint on nonlinearity 1 is to examine the input/output

relationship that nonlinearity ) imposes on the u, ¢ pair. That is to say
¢ W(ku—q) >0

for any diagonal matrix W = diag{wy, ws, ..., w,, } > 0 [39]. This matrix must be positive
definite. This will be used to describe the input saturation for the system. Section 3.2 will
provide a modified Circle criterion for deriving the synthesis and analysis conditions for the
stability of this plant.

For the case where there are multiple types of saturation nonlinearities (such as when
both rate and magnitude saturation are present in the system), the criterion must be mod-
ified slightly. Now instead of a constant k relating the input to output, a matrix k& must be

used. The format of this matrix is

Here, k,,, describes the constraint on the magnitude of actuation, and k, describes the
constraint on the rate of actuation. The input/output relationship is now described by the

following matrix inequality:

§W(kii—q) >0
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for any diagonal matrix W = diag{ws,ws, ..., wa,,} > 0. Here, ¢ € R?*" is the vector
containing feedback information about the two types of actuator saturation, that is, the
difference between the unsaturated and saturated values of control input w and rate of

control input ts,. The vector & € R?™ is the vector of inputs to the two saturation blocks.

3.2 Modified Circle Criterion for Nonlinear Stability of LTI
Plants

In this thesis, we will model the effects of actuator saturation as a nonlinearity. We would
like to be able to guarantee that our closed-loop system is stable against the effects of some
nonlinearity. This way, we can have a true synthesis condition. The following result was
proven by Wu and Lu [39], and will be used to state our stability goals in terms of another

LMI.

Theorem 4 Given v > 0 and the nonlinear system (3.1) - (3.2) if there exist a positive
definite matriz P € 87" and a diagonal matrizc W > 0, such that

[ AP+ PA PBy + Cg kW PRy Cf

By P +WkCo WkDoo + DoohW —2W WkDor D | _ o (3.3)
BIP D kW I, Df;

] ) Do Dun —I, |

Then the nonlinear system is quadratically stable against nonlinearity v E€sect[0, k] and

lellz < ~lld]l2.

We shall prove this result using S-Theory [5].
Proof: Consider a Lyapunov function of the form V' (z) = 27 Pz for the nonlinear system,

then a sufficient condition for the performance and stability properties of the nonlinear LPV
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system can be established via S-Procedure [5] from the following inequality
v ieTe — ~dTd + 2" W (ki — §) < 0
V4 }yeTe —yd"d + 24" W (ki — §)
=" Po-t ol Pi+eTe —9d"d + 24" W (ki — )

_ [xT i dT} y

ATP+ PA PBy + CI kW PB,
BI'P+WkCy WkDgy + DILEW —2W  WkDgy
BI'p DE kW —I,
ct x
+'1y Di, [01 Dy Dy gl <0
DT d

The last inequality is equivalent to the LMI condition 3.3 through Schur complement.
Q.E.D.

In a later chapter, we shall recast our goals so that they match this LMI. That is,
application of this theorem to both the nonlinear system for magnitude and rate saturation,
as well as the LPV system used for gain-scheduling, will provide a synthesis and analysis
conditions for the anti-windup compensators. Afterwards, we shall seek to find a solution

which guarantees the system stability and performance margin.

3.3 Modified Circle Criterion for Nonlinear Stability of LPV
Plants

In order to derive synthesis and analysis conditions for a LPV plant under the effects
of actuator saturation, another modified version of the Circle criterion must be derived.
This version takes into account the parameter dependance of the nominal plant, nominal
controller, and anti-windup compensator.

Clearly, this theorem applies to a general LPV plant which is also constrained by a
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saturation nonlinearity which is described as a sector bounded nonlinearity. The equations

for this plant are as follows.

] a4 B, By, B | [z]
Co D D D
Uu _ 0 00 00 01 q (3'4)
z Co Dgo Dgg Dg1| |w
€] |C1 Do Dip Du| |d]
q=v(u) (3.5)
w=0: ||8] <1 (3.6)
o= dlag(GZIZ, ceny Hrlr) (37)

Theorem 5 Given v > 0, and the nonlinear system(3.4) - (3.7), if there exists P € ST*",

diagonal matric W > 0, and a matriz T € LA such that

ATP + PA PBy + kCoW PBy PB, cCcl@ cf
BIP+kWCy k(WDy + D{,W)—2W kWDy kWDyx D}, DI,
BI'P kDX,W -T 0 D}, DI, “0
BI'p kDEW 0 —I D}, DI
Co Dy Dgg Dgy —-T7' 0
I & Dro Dy Dy 0 =l |
(3.8)

Then the nonlinear system is quadratically stable against 1 € sect[0, k] and ||0]| < 1 and
lellz < vlldll2-

Proof: The proof here is similar to the one for Theorem 4. Consider a Lyapunov
function of the form V(z) = 27 Pz for the nonlinear system, then a sufficient condition for

the performance and stability properties come from the following inequality

. 1
V+=ele—~dtd+2¢" W(ku — q) + 27Tz — wl'Tw < 0
Y
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Expanding the terms in this inequality yields the complete inequality as follows:
-1
V4 —ele—~dtd+2¢" W(ku — q) + 2Tz — w' Tw
y
1
=i Pr 42" Pi+ —eTe —ydTd 4+ 2¢" W (ku — q) + 27Tz — w! Tw
Y

=27 ¢ wT d7|x

ATP 4+ PA PBy + kCoW PBy  PB; |
ng + kWCy k(W Dy + D(T;OW) —2W kW Dy kW Dy,
BI'P kDI,w -T 0
I BTP kDLW 0 —I |
Ke/leid ]

Dl DIl |T 0| |Coy Doy Dgy Dgp
D, DIl |0 %I Ci Diyp Dip Dn

T T
_D61 Dll_

<0

Q. &

Which is equivalent to the LMI (3.8) via Schur complement. Q.E.D.
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Anti Windup Synthesis Conditions

In this chapter, we shall apply our extended Circle criterion results from chapter 3 to our
anti-windup controller problems. We will begin by constructing the closed-loop system for
the two cases. With that accomplished, we shall apply the theorems in order to derive
synthesis conditions. Finally, we shall provide explicit controller formulas for the two types

of system.

4.1 Rate and Magnitude Saturation Problem

The first problem we shall examine will be the problem containing actuators which have
both their maximum amplitude and maximum rate of response constrained. We shall start
by examining the system equations for such a system. Then we shall derive the augmented
system for synthesis. Our stability theorem will then be applied to the augmented closed-
loop system to provide synthesis conditions for the new system. Finally, we shall provide
an explicit construction scheme for the anti-windup compensator for this case.

The LTI framework to be used throughout this work is the nominal plant, P described
by

Ty Ap By By Lp
(& = Cpl Dpll Dp12 d (41)
Yy Cp2 Dpo1 Dpaa| |o(u)

Here, the plant state vector z, € R"™,y € R™ is the control measurement, and o(u)

is the saturated control input. The disturbance input d € R"¢ and the controlled error

23
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output is e € R™. Furthermore, it is assumed that (A, Bpa, Cp2) triple is stabilizable and

P
The first assumption provides a guarantee that the nominal controller K is capable of

detectable, and that the matrices [BT2 DZH} and |:Cp2 Dp21] have full row rank.

stabilizing the open-loop plant sans any saturation to the inputs. The controller, K, is

described by the following dynamic equations:

,
T A B B )
| Ak B B o (4.2)
u Cr Diri Do V2
Yy

Here, the vector [Ul UQ}T is the correcting information provided to the controller by
the anti-windup compensator. Also, the vector z € R™ is the vector of controller states.
One additional assumption is to restrict the matrix Dys9 = 0. This assumption is not
necessary, and only serves to simplify some of the construction calculations used later in
this work. In many physical systems, it is the case that Dp2o = 0, but if this is not the case,

an auxiliary input can be made so that the this assumption holds true.

4.1.1 Rate and Magnitude Saturated Closed-Loop System

Figure 4.1 shows the makeup of the rate and magnitude saturated system. This is the closed-
loop version of the system, including the anti-windup compensator gain. The first saturation
nonlinearity block is the magnitude saturation block. This will limit the maximum output of
the actuator. The rate saturation block is somewhat more complicated than the magnitude
block. The design of this block matches the one used in [16].

In this configuration, the term k; is a constant which specifies the bandwidth of the
actuator. The subtraction term at the beginning of the block is multiplied by this bandwidth
constant to produce a pseudo-derivative. This pseudo-derivative is then saturated by a rate
saturation block which is set to saturate whenever the magnitude of this derivative term
exceeds the saturation limit (set by the designer). After saturation, the term g is the
derivative of the actuator response which has been subject to both rate and magnitude
saturations. A final pass through an integration block returns the twice saturate output

ugss, which is what will actually be experienced by the controller.
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Us

q1
) K,, G2

Figure 4.1: Anti-windup Controller Structure

The saturation blocks are represented by the sector-bounded nonlinearity as explained
in subsection 3.1. In order to transform the system in figure 4.1 into the standard LFT
form as seen in figure 4.3, we must find equations for the total closed-loop system.

The uncertainty block A seen in figure 4.3 is the representation of the sector-bounded
nonlinearity. In accordance with standard robust control theory procedures, the nonlin-
earities have been lumped into an uncertainty block A. Later, we will construct a ro-
bust controller which will robustly stable against the nonlinearities contained in the un-
certainty block using our stability (and performance analysis) theorems. At this point, it
suffices to note that the uncertainty block will be substituted with a deadband nonlinearity
A=1- # This will allow us to meet the goals of stating the problem in the classic
robust control framework.

The uncertainty A resides in the conic-sector [0,1]. We shall reduce this sector to
sect[0, k] with 0 < k& < 1. This will restrict the magnitude of any control input signal w;
to be less than (ﬁ)u:’mz This will then be a regional stability problem. However, it is

this restriction that will extend the control scheme to be applicable to open-loop unstable
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u ‘ e Us ‘ Uss
| 1 1
q1 q2

Figure 4.2: Rate Saturation Block

systems.

4.1.2 Augmenting the Nominal Plant

Recall the form of the LTI plant with sector-bounded nonlinearity given in equations (3.1)
- (3.2). We would like to augment this in order to include the effects of both rate and
magnitude saturation.

Wu and Lu have described the synthesis conditions for the magnitude saturation plant
[39]. We wish to find the equivalent synthesis conditions for the rate and magnitude sat-
uration problem. Finally, the closed-loop system will be in LFT form as given in figure
4.3.

Just as in [39] and [11], we must form the system matrices for the augmented plant by
breaking the loop in the diagram at ¢; and ¢2. Then, we must define the augmented state
vector. This vector will include he states of the original system plant, but will also contain
the state uss, which is the saturated input to the plant.

Define the state vector for the augmented plant, z,, as:

Zpa= | " (4.3)
Uss
Where ugs € R™. Using this new augmented plant vector, and the original plant and

controller state-space data, we shall rewrite the state equations for the augmented plant.
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\—, A(s)

Figure 4.3: Anti-Windup System Equivalent Transformation

From (3.1) and (4.3) we have:

X
ﬂ'sp:[Ap BPQ} P| + Bpd (4.4)

Uss

From figure 4.2, we see that u — sat(u) = ¢;. Also note that ¢ = kpe — 155 and
e = sat(u) — uss. Substitution of these equations gives us qo = kpu — kpqr — kpuss — Us.

Finally, rearranging these terms gives us an equation for ,:
Ugs = _kbuss - kbq1 —q2 + kbu (45)
Or, in the matrix form for the state-space model:

+[—ka —I} Rl (4.6)

q2

T
o = [0 k1| |7
Uss

It is important to note that in these equations, the constant term k; is the bandwidth
constant. This constant will be the factor which limits the bandwidth of the rate saturated

actuator. That is to say that this constant will determine the maximum rate at which the
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actuator can respond without being saturated. This constant is distinct from k,,,, and does
not enter into the control synthesis conditions as part of the diagonal matrix k.
Finally, the augmented plant output vector can be defined. In matrix form, it can be

written as:

U 0 0 x 0 0 1 0 I
= P+ Ml ar u (4.7)
Ug 0 —kpl| |uss —kpl 0] |qo 0 kyl
This equation represents the last step in augmenting the plant for the new open-loop system.

We have defined all of the new state-space matrices, and will present them below:

- A Bo ~ 0 0 > Bp1 5 0

A= |77 PP By = , Bu=|""|, Bp=
0 —kyl —kpl —I 0 kol
- 0 0 ~ ~
Cpo = 0 _ka 5 Cpl - |:Cp1 -Dp12i| I Cp2 = |:Cp2 Dp22:|
5 0 0 4 U 1
00 = ) 01 = ) 02 =
v kI 0 o ! kol

Dp1o = [0 ()] . Dpi1 =Dpi1, Dpiz=0

Do = [0 0] ., Dya1 = Dpo1, Dpoa =0

These matrices correspond to the new nominal open-loop system given below

_fpa_ [ Ap ~pO Bpl Bp? ] _wpa_
w | 50 Dpoo Dpor  Dpoa q
€ “o1 Do Dpin Dy d

LY i “v2 Dpoo Dpo1r 0 1L v

i=Ai

4.2 Rate and Magnitude Synthesis Condition

Figure 4.2 shows the closed-loop system of the rate and magnitude saturations, including

anti-windup compensator. The anti-windup control diagram can be transformed to its
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equivalent form by substituting the actuator magnitude and rate saturations with deadband

nonlinearities, as shown in Fig. 4.3. For this purpose, let us define

Amzl_sat(u)’ A =1

U Ug

sat(ug)

Then A,,, A, will be deadband nonlinearity associated with magnitude and rate saturation,
respectively. Both nonlinearities reside in the conic sector [0, 1]. In order to extend the anti-
windup control scheme to open-loop unstable systems, we will constrain the nonlinearity

A,, for each input channel to sect[0,k,,] with 0 < k,, < 1. This essentially requires

the magnitude of each control input signal u; to be less than (1711%) u"* and leads to
regional stability problem. Then the input/output constraint for the uncertainty A :=
diag {An,, A, } will be

q'W(ki—q) >0

with k = diag {kmIn,, In,} and W is a diagonal matrix, as described in chapter 3. Later
on, we will cast the anti-windup control design as a robust control problem against the
deadband nonlinearities.

Our objective is to design an anti-windup compensator A such that the adversary effect
of input magnitude and rate saturations will be minimized in terms of Hy, norm. The

anti-windup compensator is in the form of

L aw

A B T

o _ aw aw (ﬁsz ( 4 8)
C(I’UJ Daw q

V2

with the state x4, € R"™», which will be determined later on. Note the the input sig-
nal for anti-windup compensator ¢ contains the information of saturation degree for both
magnitude and rate saturations.

First, we shall evaluate the new closed-loop plant matrices. These are the matrices that

result from breaking the loop at ¢; and go. It is these matrices which will also be included
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in the new set of synthesis instructions.

Q- lep + Bpnggépg Bngk
BiaCpo Ay
_ B N By + Bpa(Dyq + DyaD . 0 B
By — |2 LB P 2 (D1 Do p21) By D2
0 B + BraDpa1 I 0

éO = [épo + EpOQDkQépQ DPOQC]C:| ) C'l = [ép1 0:|
Doo = EpOO; D01 = EpOl + Dp02(-Dk1 + Dk2Dp21), D02 = {O Epog}
DlO = bpl()a Dn = bplla 1512 = [O 0}

These matrices constitute the state-space make-up of the nominal closed-loop system

G. The input/output form for this closed loop system is as follows.

- -~ - - ~ M X

T A BO Bl B2 -

) - g
ul CN'o l?oo 1?01 1302 J (4.9)

e Ci D Dir Dio| |—

v

g o I 0 0 !

[ 4] i 1|,
j= Ad (4.10)

This is the state-space data for the nominal closed-loop system G. If we denote xg =
[xT :cgw] , then the final closed-loop system T' = F;(G, A) can be described by the following
input/output relationship.

Tl Aq  Boa Bial| |za
| = éo,cz DOO,cl D01,01 q (4.11)

e Cia Dioe Diral | d
i= At (412)

and has its state-space date related to the interconnected system G and the anti-windup
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compensator as follows

Ay Boa Bia ] A By B Pl L g
Coa Dooe Doia| = |Co Doo Doi| + |PF Caw “ [Q1 Qo Qs]
Cra Dioa bll,cl_ Ci Dy Dn PI oo
A 0| By | B | [0 By ]
_ E) 0 ~O ~0 n I ~0 Asw Baw 0O I/0]0 (4.13)
o O Doy | Do 0 Do Cow Daw 0O 0|70
i Cy 0| Dy | Dy ] L0 D1y ]

As is necessary, the anti-windup compensator and nominal closed-loop system have an
affine relationship. This allows us to find a true synthesis condition, as we can apply our
stability theorem to the system both with and without the controller. If we obtain a feasible
solution to the synthesis LMIs, we can then apply the theorem to the closed-loop system
with the controller, and solve the resulting LMIs to find the controller gains. The following

subsection will provide these synthesis conditions for the closed-loop system.

4.2.1 Synthesis Theorem

Recall from Theorem 5 the synthesis conditions for the magnitude anti-windup compen-
sator. Using the augmented plant matrices, we will derive a new synthesis condition for the

augmented anti-windup problem.

Theorem 6 Given a scalar 0 < k,,, < 1, the augmented open-loop system with a stabilizing
Tp XTp

nominal controller Knom. If there exist a pair of positive-definite matrices Ri1 € S ,
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S € SV and a diagonal matriz V = diag {V;,,, V;.} > 0 satisfying

Rllflg + flpRH — %Bpgvméﬁ * * x|
_ [o Inu} Riy — 2050V Bl = Vi By, MV, — 5V« 1,
Cp1R11 0 —YIn,  *
I Bgl 0 D;‘;Fn —YIn,]
(4.14)
SA+ ATS SB;, CT ]
Bfs  —~I,, DI | <0
C~'1 Dn —vIn,
(4.15)
Rip |:Iﬁp 0}_
I; >0
P S
0
(4.16)

then there exists an nyth-order anti-windup compensator A to stabilize the closed-loop sys-
tem quadratically and have the performance |le|la < ~||d||2 when the condition |u;| <

1 maxr ; __
<1fkm>ui s 1=1,2,000 0y

Now we must prove that the solution of the LMI in Theorem 6 will always exist. The goal
is to use the result of Theorem 4 to show that the anti-windup compensator will stabilize

the system in the face of the nonlinearity produced by saturation effects.

A B
Proof: Denote A = | 7" | and V.= W~L. We apply Theorem 4 to the closed-
CCL’U) DCL’U}

loop system T, and have the following inequality

U+ PTAQ+ QTATP <0 (4.17)
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with
_.ATXCl + X A XuBo + Cg/%W XubB1 C? ]
- BY X, +WkCy WkDy + DiEW —2W WkDo, DI,
B x, DI kW —~I D}
i C1 DlO Dll _"YI_

P:[Ple Pk W 0 Pg},

Q:[Q1 Q2 Q3 0]

Partition the matrix X, compatibly to the states of interconnected system G and anti-

windup compensator K, as n = ny, + ny, and 14, and let

o S N
cl — NT 9
r Ri1 Ria
ol Il I [ R
cd MT 9 - 12 22
§ ' MT | 2

where MNT =1 — RS. According to the Elimination Lemma [5, 26, the inequality (4.17)

is equivalent to
NEONp <0 and  NJPNo <0 (4.18)

where Np and Ng are the null spaces of matrices P and Q, which are

I 0 00 - -
I 000
0 0 00
0100
! v 00 0000
Np =diag {X ', WL, LI} | —;.LBL, —;L1 0 0|, MNo=
" o 0000
0 LI 00
. 0010
0 0 o0 I
000 I
0 0 I0 - -
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Through lengthy algebraic manipulations, it can be shown that
NEONp =
(1 0| -2 B, 0 |0]0]| [ RAT +AR (VBT + kCyR)T Bi  RCT
0 0| —g=I £I10|0 | |VBf+kCoR kDyV +VDik—2V kDy VDI
00 0 0 |0|1I BT DLk —~I DT,
|00 0 0 |I[0]] CiR D1V Dy =1
I 0 0 0]
0 0 00
R AT
0 gl 00
0 0 0 I
0 0 I 0]
Ry AT + A, Ry — 205220 B, v, B, * _—_—
|0 1] Ry Mg BE - BvBL <Ay, - by oy
Cpi Rt 0 —~I *
L 331 0 Dgn =1 ]
NEONg =
(7 olojo|o] [ sA+ATs SBo+ CLkW SB,  CT]
0 I10]|0|0 | |BIS+WkCy WkDy + DIkW —2W WkDy DI,
0 0[0|I]0 BTs DEEW —I DT,
0 0j0j0|I]| Cu D1o Dy 1]
(7 00 0]
01 00
x[0 00 0
0010
|00 0 T
SA+ ATS SB, CT
=| Bfs —I Df| <0
C Dy —I

34
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which are the same as the conditions (4.14) and (4.15), respectively.
Given the definition for matrices X and X(;l, the coupling condition between R and

S would be
R I

>0 and rank(R — 5’_1) < Ngw
I S

Since only the (1,1) element of R matrix is constrained in the LMIs (4.14)-(4.16), it is
always possible to augment matrix R11 to R in satisfying the above coupling condition. For

example, one may choose

. Rt {I 0} St 3
[0 I] 51 g [o I} 51 3_

The resulting R matrix is positive-definite because of the condition (4.16). Also R—S~* >0
is satisfied for selected R matrix. The rank condition is trivially satisfied if one chooses

Ngw = Nyp. S0 we obtain the desired synthesis condition for the anti-windup compensator.

Q.E.D.

4.2.2 Rate and Magnitude Compensator Construction

With the solutions R;; and S obtained from the compensator synthesis equations, the anti-
windup compensator state-space matrices can be constructed by determining the closed-loop

solution to the original LMI which resulted from the stability theorem.
U+ PTAQ + QTATP <0

This approach is taken in [11] and is a standard procedure for H., synthesis via LMIs.
However, an explicit approach to anti-windup compensator construction was taken in [39].
This approach is derived from the general explicit controller construction used by Gahinet in
[13]. The advantage of using this explicit approach is the avoidance of possible numerical ill-
conditioning when solving the feasibility LMI. Furthermore, the anti-windup compensator

is connected directly to the plant and nominal controller gains [39].
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Theorem 7 (Rate and Magnitude Compensator Construction)
Given the solutions Ry1, S,y and V = W~ of the LMIs (4.14)-(4.15). Let MNT = I,,— RS
with M, N € S™ () gnd FT = [I(np_,_nu) O], then an (n, + ny)th-order anti-windup

compensator can be constructed through the following scheme:

1. Compute a feasible Daw € R™*2M% gych that
—WE(DOO + Dpogﬁaw) - (DOO + bpogﬁaw)TE‘W + 2W —WEDOl _D{O
= —DTEW Vg — =Df| >0,
—Dao —Din Ay,

2. Compute the least-square solutions of the following linear equations for B € R 20
C’aw c Rnux(np“l‘nu)

0 |, 0 0] [ Ooxn |
Lon, 5, | Brs+wié,
0 I | BTS

0 | I Ch |

[0 | DLW 0 0] | By, -
WED,2 Cow | (BY + WkCoR)E + DL, B,
0 I | BTE ’

.0 l i C\RE |

and the matriz Ag,, € R™(wtnu) gg

Agw = —ATE = |SBy + By + CJRW  SBy CF| 17!
(BY + WkCoR)E + D1, BL, + WkDpo2Cauw
X BT'E
Ci1RE

3. Convert the transformed anti-windup compensator gain to its original state-space data
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by
Aaw Baw _
Caw Daw
_ 5 —1 . . B —1
N  SB Aww  Baw SARE 0 MTE 0
0 [0 Inu} Aaw f)aw 0 Onu X 2Ny 0 IQnu

Proof: Define
I, RE S FE
Z1 = , Zy =
0 MTE NT 0

Then it can be shown that X Z; = Z3. Also we have the following congruent transformation

’ S E
Zl XchIZ
ET ETRE
. . . [ SA 0 SBy | SBy ]
Zlé(czf;czzl le);clBO,cl le))(clBl,cz ETA ETARE| ETB | ETB,
0,cl41 00,cl 01,cl = ~ ~ ~ -
‘ c ‘ Co CoRE | Doy | Do
Ci.aZ1 Dio D11 = = = =
O C1RE D1o Dy,
- Lo i
L]0 B2 | |Aaw Baw| | 0 In, | 0 |0
0 [)p02 CAfaw lA)aw 0 0 I2nu 0
. O 0 -
where
Aww  Baw SARE 0 N SBy | |Aww Baw| |MTE 0

. . +
Cow Do 0 0 0 [o I} Cow Dawl| | 0 1
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Multiply diag {ZlT, I,1,1 } from left side, and its conjugate transpose from right side of eq.
(4.17), we get

SA+ ATS *
ETA+ AT, ET(AR+ RAT)E + BysCaw + CL,BY,
BOTS + ng + W];‘C'o (Bg + W]%C’()R)E + f)cj;wBZI;Q + W]%DPOQCYaw
Bfs BTE
I C C1RE
* * « |
* * *
Wk(Doo 4+ DpozDaw
_ k(Do Dy Daw) « x| <0 (4.19)
(D()() + DpogDaw)TkW —2W
DI EW —I  x
Dio Dy =1
By Schur complement, it is equivalent to
SA+ ATS *
ETA+ AL, ET(AR+ RAT)E + BysCay + C1L, B,
n SBO + Baw + ég]%W SBl é? 1

ET(BY + WkCoR)T + By Do + CL, DL, kW ETB; (CLRE)T
[BYS + BL, + WkCy  (BY + WkCoR)E + DL, BL, + WkDyo2Cow
X BTs BTE <0 (4.20)

él élRE

Q.E.D.

The derivation of the anti-windup controller formula basically follows the procedures
outlined in [13] and [39]. It is easy to show that the lower (3 x 3) matrix of the inequality
(4.19) is negative definite, this will determine a feasible Dgy,. Let the (2,1) element equal
to zero, and we can solve for Ag,. This also leads to decoupled LMIs from the inequality
(4.20). Then Baw, Caw terms can be solved from the (1,1) and (2,2) elements of the
decoupled inequality (4.20). Note that both inequalities have regular solutions [13].
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The (1,1) element of the above matrix inequality corresponds to LMI (4.15) after elim-
ination of the variables Baw and ﬁaw. It can also be shown that the (2,2) element is
equivalent to LMI (4.14) by eliminating Cows Daw.

This explicit form of the construction can also be applied to stable systems. The main
difference is that the open loop case would not involve matrices W and k [39]. This intro-
duces the need to find a feasible Dg,, and W matrices simultaneously during the first step.

The following steps will be the same by setting k = 1.

4.3 LPV Anti-Windup Synthesis condition

In section 4.2, we have shown that an anti-windup compensator exists to compensate rate
and magnitude saturation for exponentially unstable systems. We have also provided an
explicit construction scheme for such a compensator. In this section, a similar synthesis
condition will be provided for the existence of a gain-scheduled anti-windup compensator.

This will be followed by the construction procedure for such a controller.

d
©
Wp Zp
e >

K ‘ P
L (e j u — Ug
Wi 2k

v
A q Yy

ZawL j Waw
O

Figure 4.4: LPV Gain-Scheduled Saturated System




Chapter 4. Anti Windup Synthesis Conditions 40

4.3.1 LFT Framework

Recall the form of the standard LPV system, in equation 2.5. We shall rewrite our plant,
P nominal controller, K and anti-windup compensator, A to fit this form. That is, we
shall introduce a parameter, © which will be the gain-scheduling parameter, which will be
related to the three systems by LFT form.

First, the nominal plant shall be rewritten as

Tp Ap Bp9 Bpl sz Tp
| _ |Cpo Dpoo Dpor Dpoz| | wp (wa1)
€ Cp1 Dpig Dpin Dpi2 d
Ly | | Cpr2 Dp2e Dpont Dpaa| [0(u))
wp = Oz (4.22)

Here, the usual dimensions are used, with one new addition, the vectors wy, 2z, € R"v.
These vectors are pseudo inputs and outputs of the plant, that is, they are the vectors
describing the LFT dependency of the plant on gain-scheduling parameter, ©.

The matrix © is a block diagonal time-varying operator which specifies how the time

varying parameter 0 effects the dynamics of the plant [1]. In particular
© = blockdiag(01 1y, , .., 0y Iim,.) (4.23)

where r; > 1 when the parameter 6; is repeated. This allows us to maintain a block
diagonal structure for the matrix ©.

In a similar fashion, the nominal controller must also be augmented to exemplify the
dependence on the gain-scheduling parameter. Therefore, the new controller will have

dynamic equation as follows.

Tk Ar  Bri By | |7k vy
u| =1|Cri Drpi1 Drig| |y |+ |v2
2k Cro Dror Dros| [wk U3

w = Oz
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We have a plant with saturation input described by the nonlinear function v and sched-
uled by the gain-scheduling parameter ©. We also have a controller with gain-scheduling
parameter, © and being corrected by anti-windup compensator input v. The next step
is to combine these two systems into a nominal closed-loop system, G which will then be
corrected by the anti-windup compensator. The form of the anti-windup compensator, A,

is given below.

T Law
Aww  Baw
v == q
Cow Daw
Zaw Waa

Waw = @Zaw

4.3.2 Closed-Loop LPV System Construction

Our objective is to design an anti-windup compensator, A such that the effect of input
saturation will be minimized in terms of the H,, norm of the closed-loop system. The
compensator given above has state x4, € R".

Let the system G be the interconnection of the open-loop plant P and the nominal

controller K, but excluding the anti-windup compensator. Then its dynamic equation will
be

T
] [A By, By Bl By | ¢
u Co Doo Dos Do1 Doz w
z| = |Cy Doo Doo Do Dp2| | d
e Ci Dw Dig Du Di2| | n
] o 1 0o 0 0w
v3
q=Au
w=(0®d0)z

where z € R" with n = n, + nj, and A € sect[0,k].
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We will also use a scaling matrix in the synthesis and analysis conditions for the gain-
scheduled anti-windup compensator. This scaling matrix 7' must commute with the uncer-
tainty structure © & 0. In other words, this must be a member of the previously defined set
L. The special structure of this scaling matrix in order to enforce this condition is given

below.

T, 0 0 o0 [T, 0 0 o0
0O T4 0 0 |0 T3 0 O
o 0 . 010 0 0
p_| 0 0 0 Th|O0O 0 0 T
wmr o o o0 |7, 0 0 0
o T o 0|0 T3 0 0
o 0 . 0|0 0 . 0
0 0 0 T 0 0 0 Ty |

Notice that the structure of T is no longer block-diagonal. This is due to the augmen-
tation of the second uncertainty set, the one which corresponds to the that of the nominal
controller. This matrix is still a member of the set La. It is this special structure which
will commute with the uncertainty set.

The equations for the closed-loop state space matrices are as follows:
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C, =

= _Dkllch Ck1]7 Cop =

Ap + BpaDp11Cp2 BpaCia
By1Cpo Ay,

— By B By + BpaDi11Dpag  BpaDyag

0 Br1Dp2g By

Bp1 + BpaDy11Dpo1 B, — 0 By O

) 2 =
By Dyor I 0 o0

Cpo + DpoaDy11Cp2 DppaCla
Dyo1Cp2 Cro

Cp1 + Dp12Di1i Cpo DplQCkl]

Do =0, Dy = [DknDpze Dkw] ;

Dy =

Dgy =

Do =

Dy =
D1g =

D11 Dpo1, DOQZ[O I O]

—Dpg2 D Dpoo + DpgaDi11Dpoe Dpo2Di1g
; 00 —
0 Dig1Dp2g Dy.90
Dpo1 + Dypg2 Dg11Dp21 D 0 Dpga 0
) 02 —
Dyo1Dp21 0o 0 I

—Dp12, D11 = Dp11 + Dp12Dgi1Dpor)

0 Dpz 0] Dy = |:Dp19+Dp12Dk11Dp29 Dy12Dg1g

We shall then assign ZL'Z; = [xT xTw} as the matrix of states for the closed-loop system.

a

We shall denote the closed loop system as T = Fu(Fi(G, Kuw),® ® © @ ©), which is

described by the following dynamic equations

Tl Aq  Boa Boa Bia| |za
U C D D D
_ 0,cl 00,cl 06,cl 01,cl q (4‘24)
Zcl CQ,cl DGO,CZ DGG,CZ DGl,cl We
€ ] Cra Dioe Dive Direal | d ]
q=Au (4.25)
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The state-space data of this system is related to the interconnected nominal system G

and the anti-windup compensator A in the following form.

[ Ay Boea Bae Bia ] (A By, By B ] _771T ]
Coa Dot Doget Dover| _ [Co Doo Doy Do N P3| |Aw Baw
Co.ct Dooet Dooet Dot Co Doo Dyg Dor P | Cow Daw
Cia Dioa Diva Duea| (€1 Dw Dy Du| |Pf]

X 1Q1 Q2 Q3 Q4

A 0By | B olB | [0 B 0]
0 0] O 0O 0] O I 0 O
_ | % 0] Doo| Doy 0] Do N 0 Doz 0| [Aw Baw
Co 0| Dgo | Dgg 0| Dpy 0 Dy 0| [Caw Daw
0 0] O 0O 0] O o 0 I
i Ci 0| Dyp| Dy 0| Dy | i 0 D O |

0 I{0]0 0|0
x10 0[I|0 0O
0 0(0]0 I]|0

Here, we have shown that the closed-loop state-space data has an affine dependance on
the anti-windup compensator gain. This allows us to use the result of theorem 5 to derive

analysis and synthesis conditions for our closed loop LPV plant.

4.3.3 Anti-Windup Compensator Synthesis Condition
The following theorem provides a synthesis condition for the anti-windup compensator.
Theorem 8 Given a scalar 0 < k < 1, the LPV open-loop system P with a stabilizing

gain-scheduling nominal LPV controller K. If there exist a pair of positive-definite matrices

Ry € Sipxnp, S € 8", a diagonal matriz V = diag{vi, vz, ...,vn,} > 0, and invertible
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scaling matrices Ji1, L € La satisfying

[ RuAT + ARy — 250 B,y BT, X “
CpoRr1 — 2057 DoV B, —Ji — 250 DoV DY, X
Cpi Rt — 2057 D,V BE, 200D VDY, -l - 2550 DV DY,
JHBZ}? JHD;?@@ JnD;‘,Fw
I By Dipy Dy
* * |
* *
* * <0 (4.27)
—Ju1 *
0 —~I |
(SA+ATS SBy SB, CFL T
BI'S -L 0 D}L DI
BT'S 0 —I DLL DI |<0 (4.28)
LCy LDy LDy —L O
! Dy D1y —
_Rn [I 0}-
7] >0 (4.29)
S
0
| J11 [I 0} ]
1] >0 (4.30)
L
0

then there exists an ny-order gain-scheduled anti-windup compensator to stabilize the
closed-loop system quadratically and have the Lo performance level ||ell2 < ~||d||2 when the

conditions |u;| < ﬁu;mx, i = 1,2,...,ny holds.

Remark 4.3.1 This result can be considered a simultaneous generalization of the results
in [11], [39], and [1]. The form of the LMI is similar to the ones in [11] and [39] with the
addition of two rows and two columns and an extra coupling condition. These new terms

reflect the dependance of the system on the gain-scheduling parameter 6. Remowval of the
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new terms will cause result in set of conditions identically matching those of [39], where
there is no parameter dependence. Similarly, removal of the terms which do not correspond
to parameter dependance will realize conditions similar to the familiar conditions of LPV

synthesis as in [1].

A B L 7 J 7
Proof: Denote A = wemmmly = wl o= and T-! = =
Cow Daw 707 707
Ju 2|,
J1T2 Joo " |. Then apply Theorem 5 to the closed-loop system T,;, and the following
? ?
inequality results
U+ PTAQ+ QTATP <0 (4.31)
where
AT X+ X A X By + kCEW XuBy  XaB1 C} ct
Bt X+ kWCy k(WDy + D W) —2W kWDo kWDy DE,  Di,
- B X kDI, W ~T 0 D}, Dl
B X, kDLW 0 —~I,, D} D}
Co Dy Dy Dyy  —T7! 0
I C1 Dip Dyy D1y 0 =l
P = [Ple k‘PQW 0 0 'Pg P4]
Q= [Q1 Q Q3 Q4 0 0}

We will use the given partitions for 7" and T~'. For the matrix X, we must partition
according to the states of the interconnected system G and the anti-windup compensator

Kaw as n = ny + ny and ngy, letting

¥ S N
cl — NT 9
r Ri1 Ria
xpt= [ BME | g "

: M7 |
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Where MNT =T — RS. The (2,2) entry of both of these matrices is left as an unknown,
as it will not be factored into any of the equations due to the structure of the LMIs.

The Elimination Lemma [26] states that we can eliminate the terms corresponding to
the closed loop system including the anti-windup compensator. In order to do this, the LMI
must be transformed. This lemma allows us to create a pair LMIs which are equivalent to
LMI 4.31. These two LMIs would then be solved simultaneously. According to the lemma,
the equivalent pair of LMIs are:

NEUNp <0 and  NEUNG <0 (4.32)

Here, Np and Ng are the respective null spaces of the matrices P and Q, which have been

calculated as

[T 0 0 0 0]

0 0 0 00

0 0 0 00

_%Bzg _%Dgaz _%ng 00

Np =diag {X ', W', 1,1,1,1} ’ 0 o0
0 0 0 01

0 I 0 00

0 0 0 00

0 0 0 00

.0 0 I 0 0]

OO | OO OO | O N
OO | OO0 N|IO| O O
OOl NIO OO | O O
Ol Nl OO | o O
N | OO | O | O OO | o O




Chapter 4. Anti Windup Synthesis Conditions

After carefully carrying out the multiplications in (4.32), it can be shown that

CpoR11 —
CpiRi1 —

and that

i R AL + ARy —
2(1—k) DPQQVB;{Z

k?

k

k

Jntg

T

NEUNG =

2(1—k) DplQVBg;

2B B,V B,

NEUNp =
*
—Ju — 250 DoV DY,
_2(2;k)Dp12VD§92 —I —
JIIDZ;@Q
D1y,

[SA+ATS 8By SB; CIL CF]
BI'S -L 0 D}L D,
BTS 0 —I DL DY
LC& LD@@ LDgl —L 0

! Dy Dn —

which are identically equal to the conditions outlined earlier.

48
*
*
2058 D,V DT,
J11D$19
Dl
* * ]
* *
* *
—J11 *
0 —I |

Given the stated definitions for the closed-loop scaling matrices X and chl, the cou-

pling condition between R and S should be

Ry |1 0

I
0

S

>0 and

rank(R — S™1) < ngy
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Similarly, the coupling condition between J and L should be

J11 [I O}
I >0
L
0
Since only Rp; is constrained in the synthesis LMIs, it is always possible to augment

this block into the full R matrix satisfying the above coupling conditions. Similarly, the
coupling condition for Ji; and L can always be met due to the fact that only the first block,
J11 is constrained. As shown in [1], the off-diagonal terms of the scaling matrix must only

meet a lesser constraint in order to satisfy the coupling condition. Q.E.D.

This theorem and subsequent proof provides us with a way to solve the synthesis condi-
tion for the anti-windup compensator. With the solutions for the various scaling matrices
obtained, the anti-windup compensator can be constructed through the feasibility process
of substituting the obtained scaling matrices back into the LMI from equation (4.31). This

will be the final step in solving for the anti-windup compensator gains.

4.3.4 LPV Anti-Windup Compensator Construction

As shown in subsection 4.2.2, the anti-windup compensator can be obtained by substituting

the solutions Ri; and S back into the LMI
v +PTeQ+ofe’P <o

and the solving the subsequent LMI for the anti-windup compensator gains. However,
similar to the previous problem, we can explicitly construct the anti-windup compensator
gains by taking an approach similar to the ones used in [13] and [39], as well as the rate and

magnitude LTT anti-windup compensator. The process is outlined in the following theorem.

Theorem 9 (Gain-Scheduled Compensator Construction)
Given the solutions Ry, S, Ji1, L,y and V.= W~ of the LMIs (4.27)-(4.28). Let MNT =
I, — RS with M,N € S"*™ and HT = [Inp 0}, then an ny-order anti-windup compensator

can be constructed through the following scheme:
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1. Compute a feasible Dy =

>0

N

Dawll

Daw91

—Wk(Doo + Dawi1)

Do + Dpp2 Dawin

—(D19 + Dp12Dau1)

Daw19
Daw@@

—(Doo 4 Daw11)TEW + 2W

T

0

Dog  Dpo2Dawie

N

Daw@@

- [DIG DplQﬁawlﬁ]

c R(”u+nw)><(nu+nw) such that

* *
* *
Vn, *
| Do 1
0
—D11 0

2. Compute the least-square solutions of the following linear equations for

~

Baw =

|

A~

Bawl

0

Baw9:| € RnX(nqunw)’ CAfaw =

0 00O

7 o

0

o 1]

0
0
0
0

N

€ R (nutnw)xnp

O(nu+nw)xn

aw

BI'S + WkCo
BI'S
0
Bf's
Cy
0
Cy

50

VI,
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i} . 1
. kW 00 o DL, 0 DI,
0 0 I 0
[Wk 0}
0 R
Caw
(] —
5
0 ~1I
D 0
o 1]
D
By,
0
(BT +WkCOR)H+D§wHB§2
BYH
o Dgw19B;lg ’
BTH
CyRH
0
Ci1RH

and the matriz Ay, € R™™ qs
Agw = —ATH-

[SB() + Cng + Bawl SBB an@ SBI Cg 0 C?:| H_l

(BY + WkCoR)H + DT, B, + WkCaun
BI'H
DgwIGBEQ
X BTH
CoRH + Dypo [1 0] Ca
CAvaw@

ClRH + Dp12éaw1

3. Conwvert the transformed anti-windup compensator gain to its original state-space data
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by
—1
N|  sB 0 -
Aaw Baw Aaw Baw
={ oo L, o o T D
Cow Do Cow Do
0 0 I,
~1
0 O(nu+nu,)><(nu+nw) 0 Inu+nw

Proof: Define H = [In 0}, n = np + ng and 1y = Npy + Ny, then

I, RH S H
Z) = , Zy =
0 MTH NT 0

It can be shown that X Z; = Z2. We also have the following congruent transformation

; s H
21 XaZy = -
H H"RH
ZTX0AaZ1 ZTXuBoa ZTXaBoa Z8XaBia
Co,c1 21 Do, Doy Do,
Co,a121 Dgo, e Dyg,c1 Dy1,a
| Craza D1g D1g D11
[ 54 0 SBy | SBy 0| SB; |
HTA HTARH |H'B, | H'By 0| H'B;
Co CoRH | Doo | Dog 0| Dn
Ch CoRH | Dgo | Dgg 0| Dgp
0 0 0 0 0 0
| O Ci1RH Dy Dy 0] Dun |
(L] 0o o ]
0| By 0
L 0 I,,| 0 [0 oo
0 Inu 0 Aaw Baw
+ T 0 0 |L.|0 0]0
0 DpQQ 0 Caw Daw
0 0 0110 I]0
0] 0 I,
0Dy 0
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where
Aw Baw| |SARH 0
éaw Daw 0 O(nu+nw)><(nu+nw)
N|  sB 0
Aww Baw| |MTH 0
+1 0|0 L, o o0
Caw Daw 0 Inu+nw
0 0 Iy,

Multiplication by diag {Z{f A 0T T } from the left, and its conjugate transpose from right
side of equation (4.31), yields

ATS + SA *
AL, + HTA ByoCout + CL B + HT(RAT + AR)H
BT, +BIS+kWCy (BT +kWCo)H + DT, B + kW Clun
Bj S BrH
nge DZleB;Z);H
BY'S BTH
Co CoRH + DygrClui
0 éan
| Cl ClRH + Dp12éaw1
* * * * * 1
* * * * *
_kW(DOO + Daw11
R * * * *
_k(DUO + Dawll)TW +2W
kD{,
A7 09 =T * * * <0
Dawl@
kDLW 0 Ly * *
DGO + DpGQﬁawll D@g Dp@?-ﬁaww ﬁ@l _T*1 .
DIO + DplQDawll D19 Dp12f)aw191| D11 0 —’}/Ine 1

(4.33)
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Which is equivalent via Schur complement to

ATS + SA x
AL, + HTA ByCour + CL, BL + HT(RAT + AR)H

SBy + kCTW + Bau SBy Buwo
HT(By + kCoW) + BpaDawin + CL kW HTBy HTByaDawis

SBy cy 0 ct . *
R . M x |—| <0 (4.34)
H'By HT"RC{ Dy Cl, CL,.Dl, *

a awl

As in the rate and magnitude case, the lower (5,5) element of the inequality (4.33) is inher-
ently negative definite. This is used to determine the feasible Dauw. After taking the Schur
complement with respect to that (5,5) element, the new (2,1) element is set to be equal to
zero. This determines the feasible Aaw. This also leads to a set of decoupled LMI’s for the
remaining Baw and Cyy matrices from the LMI (14.34). Q.E.D.

As with the previous case, this construction scheme and derivation can be applied to
systems which are open-loop stable. The only difference is the lack of scaling matrix W.
Feasible Dy, and W matrices will be solved together in the first step. The rest of the

procedure remains unchanged by letting k = 1.



Chapter 5

Anti-Windup Compensator Design and Simulation

Results

With the synthesis conditions derived, we can now apply our proposed anti-windup com-
pensator synthesis to the regulation problem of the F8 aircraft. First, we shall state the
model for the open loop F8 aircraft. This model is identical to the one used in [38]. We shall
then show an weighted open-loop interconnection model for the aircraft, which will be used
in controller and anti-windup compensator synthesis. Following this will be the nominal
robust controller which stabilizes the system, but whose output exceeds that of the satura-
tion limit. Finally, we shall show the results achieved by the anti-windup compensator for

a variety of nonlinear saturation conditions.

5.1 F8 Aircraft Model

The F8 aircraft model is a 4-state model with two inputs and two outputs. The two inputs
are the elevator angle é.(t), and the flaperon angle ¢¢(t) which are both measured in degrees.
These two input will be restricted by the nonlinear saturation constraint to have magnitude
no larger than 15°. The two outputs of the system are the pitch angle (t) and the flight
path angle v(t), which are both measured in radians. Finally, the four states of the system
are the pitch rate ¢(t) (rad/sec), the forward velocity v(t) (ft/sec), the angle of attack
a(t) (radians), and the pitch angle 6(t). An unstable pole has been added to the system in
order to demonstrate the capability of the anti-windup compensator to stabilize an unstable

system.
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The state space dynamics of the system are given in the following equations.

(0.8 —0.006 —12 0 ~19 -3
0 —0014 —16.64 —32.2 —0.66 —0.5
(1) = (1) + us(t) (5.1)
1 —00001 =15 0 —0.16 —0.5
1 0 0 0 | 0 0 |
00 0 1
y(t) = z(t) (5.2)
00 -1 1

us(t) = o(u(t)) (5.3)

These are the open-loop dynamics of the unstable F8 aircraft plant. For controller
(and anti-windup compensator) synthesis, we would like to add weighting functions to this
plant in order to better define our performance criteria. To this end, we shall penalize the
control effort, the reference input, and the error measurement with the following weighting

functions.

0.5s + 25
Wo(s) = =22 722

(5) = 7005 2

0.5255 + 2.4585 1.05 + 5

u = di 3

Wuls) lag{ 5+ 100 s+ 100 }
8
W, I
(5) s+ 8 2

When the plant is augmented with the three weighting functions, we will have the

weighted interconnection used for synthesis given in figure 5.1.

5.2 Nominal Controller

The MATLAB Hoo-synthesis command was used to synthesize the nominal controller for

this system. This controller had 10 states and achieved a v value of 0.647.
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Cu

*Q—' K a(.) F8Model [T C W,

e o(u)

Figure 5.1: Weighted Closed-Loop Interconnection

Ay, =
[ _47.3 —.016 2388 —2831 —188.4 2829 —205.5 4488  7.77 —1230 |
575 —.014 —.85 6.9 38  -22 45 —48 -—1.02 17
3.2 0 —132 151 142 —154 219 —245 —125 614
1 0 153 —.243 —.141 —.127 —.157 —.142 0 0
0 0  .004 27 —805 —.044 —.055 —.049 0 0
0 0 —279 275 —.044 -804 —.05 —.05 0 0
0 0 —.016 —154 447 018 —.028 —.02 0 0
0 0 156 -154 018 45 02 —.032 0 0
2.35 0053 —.001 1466 107.2 —1471 157.3 2335 —132.4 626.6
| 553 —.015 3181 —3694 —332.2 3750 —513.8 5951 2644 1611 |

o7



Chapter 5. Anti-Windup Compensator Design and Simulation Results 58

~.0126 —.0113 |
1977 17.82
—.0089  —.008
~.09  —.081
B | 14 o0
029 14
0128 0116
0116 .0104
0 0
0 0 |
Cp =
6.56 .001 —349 409.7 29.96 —411 46.8 —652 —9.06 175
~10.9 —.003 628.7 —730 —65.7 74l —101.5 1176 52.24 —298.7
b |00
00

5.3 Compensator Synthesis

Table 5.1 shows that the Ho, performance for different conic sectors is always worse than
the nominal performance. These results show the strong adverse effect of the saturation
nonlinearity on the system. Furthermore, it can be shown that the performance of the final
closed-loop sstem can be significantly improved by reducing the k,, value from 1. These
values for the calculated performance level are achievable as long as the assumption that

the output from the nominal controller is less than (ﬁ)ummC

5.4 Simulations

Here the numerical results of the construction were simulated under several different con-
ditions. Subsection 5.4.1 demonstrates the actuator saturation of the aircraft under the

effects of the sector-bounded nonlinearity using the nominal H, controller.
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Sector range [0, kp] | Hoo performance -y
0.99999 27.5253
0.9999 4.9229

0.999 1.3639
0.994 1.0453
0.99 1.0452

99

Table 5.1: H., performance level vs. sector range [0, k]

5.4.1 Actuator Saturation Simulations

SIMULINK was used in order to simulate the closed-loop response of the system to a refer-
ence tracking input. The open-loop response of the system was (as expected) exponentially
unstable. This is due to the added pole at 0.14. The response to a reference tracking signal
of 10 degrees is given in the figure 5.2. The first response is that of an unsaturated input.
In other words, this is the response of the system to the nominal controller in the complete

absence of any type of actuator saturation.

10 T T
—— Pitch Angle
—— Flight Path Angle

Error (Degrees)
»
T

-2 1 1

Time (Seconds)

Figure 5.2: F8 Response to 10 Degree Tracking Input under Nominal Control without
Saturation

As can be seen, the nominal controller stabilizes the system and reduces the error slowly,
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but thoroughly.

Figure 5.3 shows that the nominal control output easily exceeds the saturation limit
of 15° we hope to impose upon the system. In the face of saturation, the control output
has a nonlinear profile, and the performance degrades as expected. The proposed anti-
windup compensator design will act as a gain on the difference between the saturated and
unsaturated inputs. That is to say that the effect of the anti-windup compensator, A will
only be present when the system inputs exceed the saturation limit. This is true for both the
rate and magnitude conditions. Therefore, the saturation of actuators cannot be prevented,
but the effect of this saturation will be minimized as the compensator gain will take effect

immediately upon saturation.
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Figure 5.3: Unsaturated Input from Nominal Controller to F8 Aircraft System

We can see from figure 5.5 that the performance of the system under saturation is
considerably worse, with more oscillations, and a slower settling time. This is only in the
face of magnitude saturation. In order to consider the effects of rate saturation, a second
SIMULINK model was constructed which penalizes the derivative of the control input with
a similar saturation block limited to 60_2-, with the magnitude saturation remaining at 15
degrees.

It can be seen in figure 5.6, that the addition of rate saturation worsens the performance
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Figure 5.4: Saturated Input from Nominal Controller to F8 Aircraft System

considerably.

The settling time of the error is comparable to the settling time with only magnitude
saturation, however the size of the oscillations has almost quadrupled. As shown in [23],
and verified by this example, this type of saturation can be a critical contributing factor in
the existence of large Pilot Induced Oscillations (PIOs).

This amplification in the size of the error oscillations is made more clear when the rate
saturation of the actuators is examined.

These figures demonstrate the need for anti-windup compensation. A clear loss of perfor-
mance has been noted, and this trend could lead to a loss of stability. The following section

displays the effects of the anti-windup compensator on the saturated nominal system.

5.4.2 Anti-Windup Compensator Simulations

This first case of anti-windup controlled simulations is for an actuator saturation which is
602 for rate saturation and 15° for magnitude saturation. The second case will be for
302 rate saturation and the 15° magnitude saturation. The same compensator will be
used for both cases, in order to demonstrate the robustness of the compensator design.

In designing the compensator, the saturation nonlinearity parameters were set to k,, =
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Figure 5.5: Error Measurement for F8 with Nominal Controller and Magnitude Saturation

0.9999 and k. = 1. The bandwidth constant was set to k, = 8.727.

Finally, the anti-windup compensator was added to the system to close the loop between
saturation output ¢ and anti-windup compensator input v. The result was improved perfor-
mance in the sense of lowering the size of the oscillations while maintaining the settling time
of the error. The performance value v of the new closed loop system was 4.9229. As stated
by table 5.1, this performance value can be improved upon by reducing the restriction on
ky,. While this is clearly worse than that of the nominal system with no saturation, the
simulations showed that it was an improvement to the system with the nominal controller
and saturation.

We can clearly see from the following figures that the compensator maintains the stability
of the system, as well as improves the performance in terms of the settling time and peak
overshoots, as well as number of oscillations. The effect of the anti-windup compensator
seems to diminish for less strict rate saturation criterion. This is due to the fact that the

compensator will actuate less when the amount of saturation decreases.
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Figure 5.6: Error Measurement for F8 Aircraft with Nominal Controller and Rate and
Magnitude Saturation
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Figure 5.7: Output Error of F8 Aircraft with Anti-Windup Correction for Actuator Sat-
uration: Case 30
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Figure 5.8: Output Error of F8 Aircraft with Anti-Windup Correction for Actuator Sat-
uration: Case 60
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Figure 5.9: Output Error of Nominal F8 Aircraft System: Case 30
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Figure 5.10: Output Error of Nominal F8 Aircraft System: Case 60
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Figure 5.11: Saturated Control Input to Nominal System: Case 30
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Figure 5.12: Saturated Control Input to Nominal System: Case 60
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Figure 5.13: Saturated Control Input to System with Anti-Windup Compensator: Case
30



Chapter 5. Anti-Windup Compensator Design and Simulation Results 67

15
—— Elevator Angle
—— Flaperon Angle

10

&

Actuator Response (Degrees)
o

I
a1

-10

-15 I I I I I I | | |
0 1 2 3 4 5 6 7 8 9 10

Time (Seconds)

Figure 5.14: Saturated Control Input to System with Anti-Windup Compensator: Case
60
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Figure 5.15: Rate of Saturated Control Input to Nominal System: Case 30
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Figure 5.16: Rate of Saturated Control Input to Nominal System: Case 60
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Figure 5.17: Rate of Saturated Control Input to Anti-Windup Controlled System: Case
30
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Figure 5.18: Rate of Saturated Control Input to Anti-Windup Controlled System: Case
60



Chapter 6

Conclusions

In this thesis, two-step anti-windup control procedures were studied with the particular
applications of compensation for rate and amplitude saturation, and compensation for gain-
scheduled linear parameter varying systems. The main goal of this research was to develop
an anti-windup compensator to control exponentially unstable systems that are either LPV,
or LTI with two kinds of actuator saturation. This compensator has been derived using
traditional LMI methods familiar in robust control theory. The proposed anti-windup com-
pensator design has also been used in an example which shows the capability of robustness
in the control design.

Modifications were made to the well-known results of Circle criteria. The first such
modification was to expand the usage of this method to systems which have multiple sector-
bounded nonlinearities constraining the inputs to a certain saturation range. The second
modification to the Circle criterion was an expansion to include both sector-bounded non-
linearities and norm-bounded uncertainties. This extension modified the criterion in order
to ensure that an anti-windup compensator which was synthesized using this criterion would
also be effectively implemented into a gain-scheduled control scheme for an LPV system.

A set of feasibility LMIs were derived for the rate and magnitude saturated system and
the gain-scheduled LPV system. These LMIs were convex optimization problems. The
solutions to these LMIs were shown to be obtainable for systems which met the basic well-
posed constraints for robust control systems. These results were proven using S-Theory and
familiar LMI variable elimination solution methods. Synthesis conditions for the two cases

were also provided, based on the feasibility conditions outlined previously. These synthesis
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conditions were implicitly based on the solution of similar LMIs to the feasibility conditions.

A set of explicit controller construction formulae were given. In the presence of LMI
controller feasibility equations, it was advantageous to provide an alternate means of con-
structing the anti-windup compensators. This was shown to be the case due to the fact that
there is the possibility of numerical ill-conditioning when reevaluating the original feasibility
LMIs to find the anti-windup compensator gains.

A model for an F8 aircraft was chosen to test the proposed design. This model had an
additional unstable pole added to it in order to demonstrate the capability of the proposed
anti-windup compensator design scheme. Saturation limits were set for the amplitude of
the actuator response, as well as the rate of the actuator response. A nominal robust H.
controller was designed to stabilize the system and provide nominal control. The proposed
anti-windup compensator design for rate and magnitude saturated systems was then imple-
mented for this system. Numerical simulations were carried out for the augmented system
with a magnitude saturation of 15° and a rate saturation limit of 60~ and 30;>. The
effects of the actuator saturation were shown by comparing the system response in both
saturated and unsaturated states. Next, the anti-windup compensator was included in the
simulations. The results showed that the anti-windup compensator improved the perfor-
mance of the saturated system. Particularly in the area of actuator saturation. While the
proposed design cannot prevent the occurrence of actuator saturation, the effects of this
nonlinearity can be reduced significantly.

The results of this research may have been improved if a numerical example of the
LPYV synthesis could be obtained. This would prove the effectiveness of the proposed LPV
gain-scheduled anti-windup compensator. Another future direction of research would be to
examine how the LPV anti-windup compensator performed in the event of a destabilizing
rate saturation. While the proposed design is sound in the face of exponentially unstable
systems, the effects of a destabilizing rate saturation have not been examined. Another
interesting possibility is that of comparing the result obtained in this work with various

single step anti-windup compensator construction schemes to see how the plant was affected.
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MATLAB code
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A.1 Rate and Magnitude Synthesis Code

Clear;
epsilon=.0000001;

k r=1;

load goodk;

load wdata olicr;
bk=[zeros (10,2) bk];
dk=[zeros (2,2) dkl;
K nom=pck (ak, bk, ck, dk) ;
sysp=olicr;

sysk=K nom;

nmeas=2;

nctrl=2;

k m=0.9999;

opt='e';

band=8.737;

scalem = 2*(k m-1)/k m"2;
scaler = 2*(k r-1)/k r"2;

[dum, nop, nip,nxp] = minfo(sysp);
[dum, nok,nik,nxk] = minfo(sysk);
nep = nop-nmeas;

ndp = nip-nctrl;

nx = nxptnctrl;

[ap,bp, cp,dp] = unpck(sysp) ;
bpl = bp(:,1:ndp);

bp2 = bp(:,ndptl:nip):;

cpl cp(l:nep,:);

cp2 = cp(nept+l:nop,:);

dpll = dp(l:nep,1l:ndp);

dpl2 = dp(l:nep,ndp+l:nip);
dp21 = dp(nep+l:nop,l:ndp);
dp22 = dp(nep+l:nop,ndpt+l:nip);

[ak,bk,ck,dk] = unpck(sysk):;
bkl = bk(:,1:ndp);

bk2 = bk(:,ndp+l:nik);

dkl = dk(:,1:ndp):

dk2 = dk(:,ndp+1l:nik);

ap=[lap bp2;zeros (nctrl,nxp) -band*eye(nctrl)];
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bpO0=[zeros (nxp,nctrl) zeros (nxp,nctrl);-
band*eye (nctrl,nctrl) -eye(nctrl,nctrl)];
bpl=[bpl;zeros (nctrl,nctrl)];

bp2=[zeros (nxp,nctrl) ;band*eye (nctrl)];
cpO=[zeros (nctrl,nxp) zeros(nctrl,nctrl);zeros(nctrl,nxp) -
band*eye (nctrl) ];

cpl=[cpl dpl2];

cp2=[cp2 dp22];

dp00=[zeros (nctrl,nctrl) zeros(nctrl,nctrl);-
band*eye (nctrl) zeros(nctrl,nctrl)];
dpOl=zeros (2*nctrl,ndp)
dp02=[eye (nctrl) ;band*eye (nctrl)];
dplO=[zeros(nctrl,nctrl) zeros(nctrl,nctrl)];
dpll=dpll;

dpl2=zeros (nctrl,nctrl);

dp20=[zeros (nmeas,nctrl) zeros (nmeas,nctrl)];
dp22=zeros (nmeas,nctrl);

a=[aptbp2*dk2*cp2 bp2*ck; bk2*cp2 ak];
b0=[bp0+bp2*dk2*dp20; bk2*dp20];

bl=[lbpl+bp2* (dkl+dk2*dp21) ;bkl+bk2*dp21];

b2=[zeros (nxpt+nctrl,nxk) bp2;eye (nxk) zeros (nxk,nctrl)];
cO0=[cp0+dp02*dk2*cp2 dp02*ck];

d00=[dp00+dp02*dk2*dp20];

dO01=[dp01+dp02* (dkl+dk2*dp21)1];

d02=[zeros (2*nctrl,nxk) dp02];

cl=[cpl+dpl2*dk2*cp2 dpl2*ck];

d10=dpl0+dpl2*dk2*dp20;

dll=dpll+dpl2* (dkl+dk2*dp21) ;

dl2=[zeros (nep,nxk) dpl2];

kbar=[k m*eye (nctrl) zeros(nctrl,nctrl);zeros(nctrl,nctrl)
k r*eye(nctrl)];

deltak=eye (2, 2);
deltap=eye (2,2);

nxp=nxp+nctrl;
nx=nxp+nxk;
k=kbar;
setlmis ([]);

% Set optimization variables

idR11 = 1lmivar(l, [nxp 1]);

idS = Ilmivar (1, [nx 1]);

idGAM = lmivar(l,[1 0]); % GAM
if (km ~=1)

o o°
n X
'_\
'_\



idUm = lmivar(l,[2 0]); % U before was (1,1), but 2
inputs....
idUr = 1lmivar(l,[2 0]);
end
% LMI of R
Imiterm([1 1 1 idR11l],ap,1,'s");
Imiterm([1 2 1 idR11], [zeros (nctrl,nxp-2) -eye(nctrl)],1l);
Imiterm ([l 2 2 idUm],scalem,1);
Imiterm([1 2 2 idUr],-2*(1/(band”2*k r"2)),1)
Imiterm([1 3 1 0],bpl’");
Imiterm([1 3 2 0],0);
Imiterm([1 3 3 idGAM], -eye(nep),1);
Imiterm([1 4 1 idR11],cpl,1);
Imiterm([1 4 2 0], zeros(nep,nxp));
Imiterm([1 4 3 0],dpll"'");
Imiterm([1 4 4 1idGAM],-eye(nep),1);
if (km ~= 1)
Imiterm([1 1 1 idUm], scalem*bp2,bp2',1);
Imiterm([1 2 1 idUm],scalem,bp2');
Imiterm([1 2 1 idUr]l,-1/(band"2*k r),bp2');
% Imiterm([1 3 1 idU],scale*dpl2,bp2');
% Imiterm([1 3 3 idU],scale/2*dpl2,dpl2','s");
end
% LMI of S
Imiterm([2 1 1 idS],1,a,'s");
Imiterm([2 2 1 idS],bl',1);
Imiterm([2 2 2 1dGAM],-eye(2),1);
Imiterm([2 3 1 0],cl);
Imiterm([2 3 2 0],d11);
Imiterm([2 3 3 1dGAM],-eye(2),1);

% Coupling condition

temp = [eye(nxp) zeros (nxp,nxk)];
Imiterm([-3 1 1 idR11],1,1);
Imiterm([-3 2 1 0],temp"');
Imiterm([-3 2 2 idS],1,1);

% Additional constraint

if (km ~= 1)
Imiterm([4 1 1 idUm],-1,1);
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Imiterm([4 2 2 idUr],-1,1);
Imiterm([4 3 3 idUm],1,1);
Ilmiterm([4 4 4 idUr],1,1);
Imiterm([4 3 3 0],-1e4);
Imiterm([4 4 4 0],-1e4d);
end
Imis = getlmis;
nvar = lminbr (lmis);
disp ([ Total variable numbers: ', num2str (nvar) ])
nlmi = decnbr (lmis);
disp ([ Total LMI numbers: ', num2str (nlmi) ])

nvar = decnbr (lmis);
cvec = zeros (nvar,1l);
for i = l:nvar
[VRi,vSi,vGAMi] = defcx(lmis,i,idR11,1dS, 1idGAM) ;
cvec(i,l) = vGAMi+epsilon* (trace(vRi)+trace(vSi)):;
nd

o° (D

o\

Call LMI optimization subroutine

copt,xopt] = mincx(lmis,cvec, [1le-3 300 -1 0 0]);

o° — o

o\°

Convert the optimization variables to matrix form

o\°

rll = decZ2mat (lmis,xopt,idR11);
S dec2mat (1lmis, xopt, idS) ;
gamma = decZmat (lmis, xopt, idGAM) ;
if (km ~= 1)
Um = decZmat
Ur = decZmat

Ilmis, xopt, idUm) ;
Imis, xopt, idUr) ;

(
(

Wm = inv (Um) ;
Wr = inv (Ur);
W=[Wm zeros(2,2);zeros(2,2) Wr];
end
minfo (W)
sinv = inv(s);
r = [rll sinv (l:nxp,nxp+l:nx);

sinv (nxp+l:nx, :)];

if (opt == 'e')
temp = eye(nx)-r*s;
[u,d,v] = svd(temp)



else

end
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[VDAWi, vTAUi]
cvec (i, 1)

end
[copt, xopt]

minfo (u)
tempd = sqgrtm(d) ;
M = u*tempd(:,1:nxp)
N = v*tempd(:,1:nxp) ;
temp = r*s*r-r;
temp = (temp+temp')/2;
[u,d,v] = svd(temp)
N = u(:,l:nxp)*sqgrtm(d(1l:nxp,1l:nxp)):
M = eye (nxp)+N'/r*N;
Q = [r N;N' M];
opt == 'e')
% Explicit construction. Pick a feasible DAW
setlmis([]);
idDAW = 1Imivar (2, [nctrl 2*nctrl]) ;% DAW
idTAU = lmivar(1l,[1 0]); % TAU
Imiterm([1 1 idDAW],W*k*dp02,1,'s");
Imiterm([1 1 1 O],W*k*d00+d00"'*k*W) ;
Imiterm([1 1 1 0],-2*W);
Imiterm([1 2 1 0],d01l'*k*W);
Imiterm([1 2 2 0],-gamma*eye (nctrl));
Imiterm([1 3 1 idDAW],dpl2,1);
Imiterm([1 3 1 0],d10);
Imiterm([1 3 2 0],d11);
Imiterm([1 3 3 0],-gamma*eye (nctrl));
Imiterm([2 1 1 idTAU],-1,1);
Imiterm([2 2 1 idDAW],-1,1);
Imiterm([2 2 2 0]1,-1);
dmatrix = getlmis;
nvar = decnbr (dmatrix);
cvec = zeros (nvar,1l);
for i = l:nvar

defcx (dmatrix, i, idDAW, idTAU) ;
vTAUi;

mincx (dmatrix, cvec, [1le-3 300 -1 0 01]);



t

E

dawk = dec2Zmat (dmatrix, xopt, 1dDAW) ;
au = decZmat (dmatrix, xopt, idTAU) ;

o\

o\°

Compute BAW and CAW

o\

= [eye (nxp);zeros (nxk,nxp) ];

pill = W*k*d00+d00*k*W+Wrk*dp02*dawk+dawk' *dp02 ' *k*W-

2*W;
pi21 = dO1'*k*W;
pi22 = —-gamma*eye (ndp) ;
pi31=d10; +dpl2*dawk;
pi32 = dl1;
pi33 = —-gamma*eye (nep);
Pi = [pill pi2l1' pi3l"';

o\

nctrl

zeros

o)
°

t

pi2l pi22 pi32"';
pi3l pi32 pi33];

bO=sel (b0,1:24,1:2);

Ll = [(bO'"+W*k*cO*r) *E+dawk'*bp2';bl"*E;cl*r*E];
L2 = [bO"*s+W*k*cO;bl'*s;cl];
=2*nctrl;
tempb = [eye(nctrl) zeros(nctrl,ndp)
(nctrl,nep)];
leftb = [zeros(nctrl) tempb;
tempb' Pi];
rightb = -[zeros (nctrl,nx); L2];
thetab = leftb\rightb;
bawk = (thetab(l:nctrl,:))"';

tempc = [dp02'*k*W zeros(nctrl/2,ndp) I[dpl2]']l;
leftc = [zeros(nctrl/2) tempc;
tempc' Pi];
rightc = -[bp2'; L1];
thetac = leftc\rightc;
cawk = thetac(l:nctrl/2, :);

o\°

% Calculate aaw

templ = [s*b0+bawk+cO'*k*W s*bl cl'];
emp?2 = [(bO0'"+W*k*cO*r) *E+dawk'* [bp2] '+W*k*dp02*cawk;
bl'*E;

cl*r*E+ [dpl2] *cawk];
aawk = -a'*E + templ/Pi*temp2;
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templ = [aawk bawk;cawk dawk]-[s*a*r*E

zeros (nx,nctrl) ;zeros (nctrl/2,nxp+nctrl) ];
temp2 = [N s*b2;zeros(nctrl-2,nx) eye(nctrl-2)]\templ;
temp3 = temp2/[M'*E zeros (nxp,nctrl);zeros(nctrl,nxp)

eye (nctrl) ];
aaw = temp3(l:nxp,l:nxp);
baw = temp3 (l:nxp,nxp+l:nxp+nctrl);
(
(

caw temp3 (nxp+l:nx+nctrl-2,1:nxp);
daw temp3 (nxp+l:nx+nctrl-2,nxp+l:nxp+nctrl) ;

else

o\

Construct controller gain through feasibility solver.

nctrl=2*nctrl;

A0 = [a zeros (nxptnxk,nxp);
zeros (nxp, nxp+nxk) zeros (nxp,nxp)];
BO = [b0O;zeros (nxp,nctrl)];
Bl = [bl;zeros (nxp,ndp)];
CO = [cO0 zeros(nctrl,nxp)];
Cl = [cl zeros(nep,nxp)];
[

H1 = [zeros (nxptnxk,nxp) b2;

eye (nxp) zeros (nxp,nxp) "'

H2 = [zeros(nctrl,nxp) d02]'

H3 [zeros (nep,nxp) dl2]'

Gl [zeros (nxp,nx) eye (nxp);zeros (nctrl,nx+nxp)];
G2 = [zeros (nxp,nctrl);eye(nctrl)];

U=[Um zeros(2,2);zeros(2,2) Ur];

setlmis([]);

idLAM = Imivar (2, [nx+nctrl/2,nxp+nctrl]);
idTAU = Imivar(l, [1,11);

if (k. m == 1)
idU = Imivar (1, [1 11);

end

Imiterm([1 1 1 0],Q0*A0'+A0*Q) ;
Imiterm([1 1 1 idLAM],H1',G1*Q, "'s"');
Imiterm([1 2 1 0],k*C0*Q);
Imiterm([1 2 1 idLAM],k*H2',G1*Q);
Imiterm([1 3 1 0],B1");

Imiterm([1 3 2 0],d01"*k);
Imiterm([1 3 3 0],-gamma) ;
Imiterm([1 4 1 0],C1*Q);
Imiterm([1 4 1 idLAM],H3',G1l*Q);
Imiterm([1 4 3 0],d11);
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Imiterm([1 4 4 0],-gamma) ;
if (km ~= 1)
Imiterm([1 2 1 0],U*B0");

Imiterm([1 2 1 -idLAM],U*G2',H1);

Imiterm([1 2 2 0],k*d00*U+k*U*d00"') ;
Imiterm([1 2 2 0],-2*0);

Imiterm ([l 2 2 idLAM],k*H2',G2*U,'s");
Imiterm([1 4 2 0],d10*U);
Imiterm ([l 4 2 idLAM],H3',G2*U);

else

Imiterm([1 2 1 idUl],1,B0");

Imiterm([1l 2 1 -idLAM],G2',6H1);
Imiterm([1 2 2 idU],d00,1,'s"');
Imiterm([1 2 2 idUu],-1,1,'s");

Imiterm ([l 2 2 idLAM],H2',G2,'s');
Imiterm([1 4 2 idU],d10,1);
Imiterm([1 4 2 idLAM],H3',G2);
end
templ = [zeros(nctrl,nxk) eye(nctrl)];
temp2 = [zeros (nxk+nctrl,nxp-2) eye(nxk+tnctrl)];
temp3 = [zeros(nctrl,nxp) eye(nctrl)];

Imiterm([2 2 1 -idLAM],-temp3, temp2'*templ')

[
[
Imiterm([2 1 1 idTAU],-1,1);
[
(2 2 2 01,-1);

Imiterm(
construct = getlmis;

nvar = decnbr (construct) ;
cvec = zeros (nvar,1l);
for 1 = l:nvar
[VTAUi1] = defcx (construct, i, 1dTAU) ;
cvec(i,l) = vTAUi;
end
[gopt, xopt] = mincx(construct,cvec, [1e-3 300 -1 0 0]);
lambda = decZ2mat (construct, xopt, 1dLAM) ;

aaw = lambda (l:nxp,1l:nxp):;
caw = lambda (nxp+1:nx+nctrl/2,1l:nxp):;
if (km ~= 1)

baw = lambda (1:nxp,nxp+l:nxp+nctrl) ;

daw = lambda (nxp+1l:nx+nctrl/2,nxp+1:nxp+nctrl);
else

U dec2mat (construct, xopt, idU) ;

baw = lambda (1:nxp,nxp+1l:nxp+nctrl) /U;

daw = lambda (nxp+1:nx+nctrl,nxp+l:nxp+nctrl) /U;
end



end
kaw = pck(aaw,baw, caw,daw) ;

load dataw a p b p ¢c p d p
bk=sel (bk,1:10,3:4);

dk=sel (dk,1:2,1:2);

bk = [bk eye(10,10) =zeros(10,2)];
dk = [dk zeros(2,10) eye(2,2)];

b = [b0 bl b2];

[cO;cl;zeros (nctrl, nxpt+nxk)];

[dOO d01 d02;

dl0 di11 di2z;

eye (nctrl) =zeros(nctrl,ndp) zeros(nctrl,nxk+nctrl/2)];
G = pck(a,b,c,d);

T = starp (G, kaw) ;

maxre=max (real (spoles (T)))

disp(['Optimal Gamma Value: ',num2str (gamma)])
disp (['Maximum Eigenvalue of Closed Loop System:
', num2str (maxre) ])

c
d

A0 = [a zeros (nxp+nxk,nxp);
zeros (nxp, nxp+nxk) zeros (nxp,nxp)];
BO = [b0O;zeros (nxp,nctrl)];
Bl = [bl;zeros (nxp,ndp)];
CO = [cO0 zeros(nctrl,nxp)];
Cl = [cl zeros(nep,nxp)];
H1 = [zeros (nxptnxk,nxp) b2;
eye (nxp) zeros (nxp,nxp)]"':;
H2 = [zeros(nctrl,nxp) d02]';
H3 = [zeros(nep,nxp) dl2]';
Gl = [zeros (nxp,nx) eye(nxp);zeros (nctrl,nx+nxp)];
G2 = [zeros (nxp,nctrl) ;eye(nctrl)];

U=[Um zeros(2,2);zeros(2,2) Ur];
Q=[s N;N' -N'"*r*pinv(M"')];

Psi = [AQ'*Q+Q*A0 Q*BO+CO'*k*W Q*B1 C1';
BO'"*Q+W*k*CO W*k*d00+d00 "' *k*W-2*W Wr*k*d01l d10';
B1'*Q d01'*k*W -gamma*eye (ndp) dll1';
Cl d10 dl11 -gamma*eye (nep)];

H1 [zeros (nxp+nxk, nxp) b2;
eye (nxp) zeros (nxp,nxp)]"';

H2 = [zeros(nctrl,nxp) d02]';



H3 = [zeros (nep,nxp) dl2]';
Gl = [zeros (nxp,nx) eye (nxp);zeros (nctrl,nx+nxp)];
G2 = [zeros (nxp,nctrl) ;eye(nctrl)];

U=[Um zeros(2,2);zeros(2,2) Ur];

lambda=[aaw baw;caw daw];
P=[H1*Q H2*k*W zeros (nxpt+tnxk+2,nep) H3];
term=[Gl G2 zeros (nxptnctrl,2) zeros (nxp+nctrl,2)];

flmi = Psi + P'*lambda*term + term'*lambda'*P;
maxref=max (real (eig(flmi)));
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