
ABSTRACT 

 

MANSI, KATE ELIZABETH.  Reasoning and Geometric Proof in Mathematics Education:  
A Review of the Literature. (Under the direction of Dr. Hollylynne Stohl.) 
 
 The purpose of this literature review is to examine the role that reasoning and 

geometric proof play in the teaching and learning of mathematics.  Specifically, I explore 

four questions:  1) What reasoning capabilities do students need to be ready for proof?  2) 

What evidence is there to show that high school students are not successful with proof and 

hold misconceptions about the nature of proof?  3) How can teachers’ beliefs and 

understandings contribute to students’ proof abilities?  4) What can be done to promote 

mathematical reasoning and improve students’ proof writing skills? 

 Through a comparison of the theories of Piaget and van Hiele, I discuss how students 

acquire mathematical and geometric reasoning skills and how this relates to their readiness to 

produce formal proofs.  I then discuss research findings, which indicate that students are not 

typically at a high enough van Hiele level to be successful with proof by the time they get to 

high school.  Further research is presented which examines common geometric and proof 

misconceptions among students, and how this relates to proof achievement.  Teacher proof-

conceptions and achievement are also discussed, citing studies with elementary, middle, and 

high school preservice and inservice teachers, and how this may affect students’ proof 

performance.  Finally, I discuss ways in which preservice and inservice teachers can help 

their students improve their mathematical and geometric reasoning skills, thus furthering 

their proof comprehension and achievement.   
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CHAPTER 1 

INTRODUCTION 

 

 Proof is a topic that is often met with resistance by even the most advanced high 

school student in mathematics.  Most students do not really comprehend why they must learn 

how to write a proof, and many have a preconceived notion of proof as some “necessary 

evil” that they must conquer in high school Geometry. The concept of proof in mathematics 

is often first introduced in high school Geometry and not seen in a broader view as the more 

formal aspect to reasoning and justification. When students are asked to comment on proof, 

some common responses are “I hated proofs,” “Why did I need to prove something that 

seemed so obvious?” and “I would rather trust the brilliant mathematician who came up with 

the theorem” (Sowder & Harel, 1998, p. 670). These words could probably be heard in any 

typical Geometry classroom. Many teachers, myself included, do not always understand why 

students should learn to write proofs, why they struggle with proof writing, or how to best 

help them achieve proof-writing skills.   

 As a classroom teacher responsible for preparing many Geometry students to succeed 

in writing proofs, I was compelled to investigate the educational issues and complexities 

involved with learning to write proofs. Several critical questions framed my curiosity for this 

literature review:   

• Why do students have negative feelings about proof?   

• Are these feelings common among students of Geometry?   



• Is the concept of proof so far out of reach for Geometry students (typically age 14-16) 

that we should postpone teaching it until later, or even leave it out of the curriculum 

altogether?  

• Should proof only be emphasized in Geometry classes?   

• Most importantly, if I am expected to teach proof in my Geometry classes, what can I 

do to help students better understand it?   

The research reviewed has helped me understand that it is not necessarily the writing of two-

column proofs that is important in helping students learn and comprehend mathematics.  

Rather, it is the reasoning and understanding required in proof writing that is important to 

student comprehension and doing of mathematics.  A complete understanding of proof is not 

possible without sufficient mathematical reasoning skills. 

 

A Broad Perspective on Critical Issues in Teaching Reasoning and Proof 

 

 Proof is viewed by mathematicians as central to the discipline and practice of 

mathematics (Knuth, 2002a).  However, its place in mathematics education is the source of 

constant debate.  Some argue that proof no longer has a place in the mathematics curriculum 

(Hanna, 2002a).  Others argue that to take proof out of mathematics would be to strip the 

discipline of its most fundamental and essential practice (Bruckheimer & Arcavi, 2001; 

Hanna, 2000a; Knuth, 2002a; Steen, 1999; Wu, 1996).  This ongoing debate stems from the 

fact that proof is rarely explored in present-day mathematics education outside of a high 

school Geometry course.  In the North Carolina Standard Course of Study (1998), the first 

mention of proof is in the high school Geometry curriculum.  However, according to the 

2 
 

 



National Council of Teachers of Mathematics (NCTM, 2000), reasoning and proof are topics 

that should be explored as early as in elementary school.  This does not imply that five-year-

olds should learn to write formal proofs. The NCTM simply recommends that students be 

required to formulate conjectures, communicate, explain, and justify their reasoning and to 

develop these thinking skills throughout their mathematical experiences in K-12 (2000).  If 

this recommendation is followed, students should be better prepared to write formal proofs 

by the time they get to high school.  However, this paper will present evidence that most 

students are not prepared to write proofs at that time.  It appears that students may not be 

getting the necessary mathematical reasoning skills before they get to high school. 

 

Local and National Curriculum Guidelines 
 
 According to the North Carolina Department of Public Instruction (NCDPI), a goal of 

mathematics education is to develop “strong mathematical problem solving and reasoning 

abilities” in students across all levels.  Proof is first mentioned in the North Carolina 

Standard Course of Study in the Geometry curriculum (NCDPI, 1998).  Competency Goal 2 

states that students should be able to use properties of geometry to solve problems and write 

proofs.  This is further broken down by Competency Goal 2.07, which states that students 

should be able to “write direct (two-column, paragraph, or flow) and indirect proofs” (p. 53). 

Proof is mentioned again in Competency Goals 2.08, 2.12, 2.13, 2.14, and 2.16, which state 

that students should be able to write proofs related to angle and segment relationships, 

properties of quadrilaterals, triangles, circles, and congruence. 

 Though proof is emphasized consistently throughout the NC Standard Course of 

Study for Geometry, it does not appear to be emphasized elsewhere in the mathematics 
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curriculum (NCDPI, 1998).  The NCDPI makes the importance of proof in Geometry clear.  

However, although proof has a definite place in the Geometry curriculum, not all students are 

necessarily mastering proof writing in their geometry courses.   

In the Principles and Standards of School Mathematics (PSSM) the NCTM (2000) 

makes recommendations for how to promote reasoning and proof in the elementary, middle, 

and high school levels.  The Reasoning and Proof Standard of the PSSM states that, in grades 

K-12, students should be able to: 

• Recognize reasoning and proof as fundamental aspects of mathematics 

• Make and investigate mathematical conjectures 

• Develop and evaluate mathematical arguments and proof 

• Select and use various types of reasoning and methods of proof (p. 56) 

 At the elementary level, students should be placed in situations in which they are able to 

make, refine, and test their own conjectures.  Students should be able to use concrete 

materials to test their conjectures.  This should continue into high school, at which point 

students need to learn how to express their ideas in terms of mathematical language and 

symbols.  Students can further learn about reasoning by discussing conjectures formed by 

their peers.  They should learn to develop examples and counterexamples, and be able to 

articulate their reasoning by presenting to groups.  In high school, students should be able to 

put their arguments into clear, written form.  Both teachers and students should be in the 

habit of asking “why?”  This critical question is essential for students to develop 

mathematical reasoning skills. 

 The NCTM (2000) does not imply that elementary students should be able to write 

formal proofs.  Proof may not be something that can be mastered in one course in high school 
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Geometry.  Therefore, a framework for proof that includes extensive instruction in 

mathematical reasoning should be developed from the very beginning of mathematics 

education.  If students have solid mathematical reasoning skills, then they should be better 

prepared for proof when we teach it in high school Geometry. 

 

The Possible Decline of Proof In Mathematics Education 
 
 Even though states like NC extensively emphasize proof in high school Geometry, 

some believe that proof is not as prevalent in today’s high school curriculum as it was 20-30 

years ago. Hanna (2000a) cites three factors that he believes have contributed to the decline 

of proof in the secondary mathematics curriculum.  One of these factors is in the 

recommendations made by the NCTM’s Curriculum and Evaluation Standards (1989).  

Hanna claims that in 1989, the NCTM implied that the only students who need to be taught 

proof are those that intend to study mathematics in college.  The second factor that Hanna 

claims led to the decline of proof is that many educators see proof as unnecessary, and that 

heuristic techniques are seen as more useful in developing reasoning and justification skills.  

This is a view popularized not only by the NCTM Standards in 1989, but also by the British 

National Curriculum (Noss, 1994).  Finally, Hanna (2000a) makes the claim that dynamic 

geometry software has replaced the need for teaching formal proof.  In other words, with an 

increase of technological tools in instruction, he feels that deductive proof has been 

abandoned “in favor of a dynamic visual approach to mathematical justification” (p. 23). 

 Hanna is not alone in his belief that there has been a decline in the teaching of proof 

in the secondary curriculum.  Hadas, Hershkowitz, and Schwartz (2000) also make a case for 

the decline of proof as a result of dynamic geometry software.  Is there evidence that shows 
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secondary students are not ready for writing and understanding formal proofs?   

 

Purpose of this Literature Review 

 

 As a high school geometry teacher, I have witnessed first hand that the alarming 

majority of my students lack the skills necessary for success in proof writing.  My frustration 

in teaching proof to students who struggle with mathematical reasoning has been the 

motivating source behind this literature review.  Students in NC are given End of Course 

exams covering the entire Geometry curriculum, which puts a great deal of pressure on 

teachers and students to accomplish every goal on the curriculum.  Proof is emphasized in the 

NC Geometry curriculum to a great extent.  However, based on research and confirmed by 

my own teaching experience, students appear to not be ready for proof when we teach it in 

high school Geometry.  This literature review seeks to answer four questions.   

• What reasoning capabilities do students need to be ready for proof?   

• What evidence is there to show that high school students are not successful with proof 

and hold misconceptions about the nature of proof? 

• How can teachers’ beliefs and understandings contribute to students’ proof abilities? 

• What can be done to promote mathematical reasoning and improve students’ proof 

writing skills? 

Each question will be addressed separately in the following four chapters. Relevant research 

findings will be reported and summarized within each question. Of course, the results 

discussed in prior chapters will be built upon and referred to in later chapters to weave the 

important findings together into an integrated discussion. The final chapter (Chapter 6) will 
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include general conclusions and implications. 
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CHAPTER 2 

WHAT REASONING CAPABILITIES DO STUDENTS NEED TO BE READY FOR 

PROOF? 

 

 The NCTM (2000) makes its view of the importance of mathematical reasoning clear, 

emphasizing that being able to reason is essential to understanding mathematics.  In fact, by 

the end of high school, students should be able to use mathematical reasoning to “produce 

mathematical proofs, and should appreciate the value of such arguments” (p. 56). 

Mathematical reasoning and proof should not be confined only to a Geometry course, but 

should be emphasized throughout school mathematics.  However, we are likely to notice a 

student’s reasoning deficiencies the most in Geometry, as it is traditionally the first subject in 

which students are asked explicitly to “prove” a mathematical statement (Mason & Moore, 

1997). 

  Research shows that mathematical reasoning has a cognitive structure in terms of 

how students acquire the ability to reason.  It may be that we are expecting students to be 

able to mathematically reason before they are ready for it.  The focus of this chapter is on 

how students acquire mathematical reasoning skills and what it implies for readiness to 

construct geometric proofs.  I will first discuss issues of mathematical reasoning in general, 

then geometric reasoning, in particular.  The final aspect of this chapter includes results from 

several studies that relate levels of geometric reasoning to proof. 

 

Development of Mathematical Reasoning 
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Webster (1982) defines reason as “the ability to think coherently and logically and 

draw inferences or conclusions from facts known or assumed” (p. 1183).  Applying this 

definition to research on mathematics education, I define mathematical reasoning as the 

ability to think coherently and logically and draw inferences or conclusions from 

mathematical facts known or assumed.  Mathematical reasoning should be developed long 

before we ask students to write proofs (Battista & Clements, 1995; Edwards, 1997; Hanna, 

2000b; Knuth, 2002a; Mistretta, 2000; Perham & Perham, 1997).  Students’ overall ability to 

reason about mathematical ideas and make justifications for why a mathematical concept 

makes sense or why a procedure should be used is a powerful and necessary part of learning 

mathematics. Students who are not forming these reasoning and justification abilities 

throughout their learning of mathematics will most likely struggle with the notion of proof. 

This section discusses the types of reasoning students should be engaged in before they are at 

a level to begin writing proofs. 

Edwards (Edwards, 1997) uses a metaphor to explain “the territory before proof” in 

students.  The “territory before proof” involves “ways of thinking, talking, and acting that 

support the goal of seeking and establishing mathematical certainty” (p. 189).  In other 

words, the territory before proof is the mathematical reasoning students engage in that leads 

to the development of formal proof-writing skills.  Students’ justifications and reasoning 

skills are linked to their everyday mathematical activities.  Within these everyday 

mathematical activities, Edwards has proposed five types of reasoning activities that are 

commonly noticed before the territory of proof.  These reasoning activities are based 

hierarchically and include: 

• Noticing and constructing patterns 
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• Describing the pattern 

• Conjecturing 

• Inductive Reasoning 

• Deductive reasoning 

The earliest noticeable reasoning skill in children is that of noticing and constructing 

patterns or rules to explore certain problems.  After children have mastered this skill, they 

begin describing patterns by putting the rule into words, informally or formally.  An informal 

description is a verbal or pictorial description, while a formal description uses mathematical 

notation and symbols.  Whether the description is formal or informal, students may represent 

their rule by demonstrating specific examples or by presenting a generalization.  After 

students are able to describe the pattern or rule, they are able to make conjectures.  This 

means that they are able to say that the pattern or rule is true for a general case, though they 

do not yet see the necessity of “proving” it.  They may try to work out several examples to 

verify that their rule applies in several cases, and then conjecture that it will always be true.  

Students may attempt a justification using reasoning skills.  This leads to the fourth reasoning 

activity noticed before proof. 

Students begin to inductively reason when they test specific cases to see if their rule 

or pattern still holds.  They base their justification of the truth of their conjecture on the use 

of empirical examples.  For example, when proving that adding two even numbers always 

results in an even number, a student may use as his justification “I tried it, and it worked”.  

Often times, inductive reasoning leads to a sense of certainty that a conjecture is valid.  

However, students must make the transition to deductive reasoning in order to prove, or 

validate, that their conjecture is always true.  This is the final reasoning activity seen before 
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proof.  When students are invoking deductive reasoning, they find a way to show that their 

conjecture is true for a general case, based on mathematical axioms and theorems.  Once 

students are able to reason deductively, they are ready for proof (Edwards, 1997). 

Educators tend to think of critical thinking and problem solving as synonymous 

(Steen, 1999), with both processes involving mathematical reasoning.  Many people can still 

perform mathematics skills without mathematical reasoning skills, but research shows that 

these people have only a very superficial knowledge of the subject.  In order to have a clear 

picture of the capabilities students need to be able to construct proofs, we must closely 

examine how students mathematically reason, as well as how they geometrically reason.  

Both types of reasoning seem to go hand in hand in that as one develops, so should the other.  

The next section further describes the development of geometric reasoning in students. 

 

Development of Geometric Reasoning 

 

 Many researchers argue that mathematical reasoning is best gauged by a student’s 

performance with geometric tasks (Mason & Moore, 1997; Wu, 1996).  Mathematical 

reasoning is necessary to geometric reasoning.  That is, as mathematical reasoning is 

successfully developed, geometric reasoning follows (Battista & Clements, 1992).  There are 

two predominate theories about the development of geometric reasoning in students, that of 

Piaget and van Hiele. 

 

The Research of Piaget and Inhelder 
 
 Piaget structured his theories about development in several domains around four 
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stages of cognitive development.  These stages are sensorimotor (infancy), preoperational 

(early childhood through preschool), concrete operational (childhood through adolescence), 

and formal operational (early adulthood) (as cited in Pusey, 2003).  Piaget claimed that these 

stages were physiological in nature, in that a child progresses through each stage at certain 

points of their biological development.  One major focus of Piaget’s work examined how 

children organize and construct ideas about geometry, as well as how they form a 

representation of space. 

 The research of Piaget and Inhelder (1967) focused on a child’s conception and 

representations of space.  Their theory was comprised of two parts, the first being how a 

child constructs their own representation of space.  Second, Piaget and Inhelder claim that a 

child’s organization of geometric ideas follows a definite, logical order.  They found that 

preschool children could discriminate objects based on topological features, but could not 

discriminate between curvilinear and rectilinear objects until later in their development.  

Preschool age children also had difficulty drawing copies of geometric shapes, lending to the 

assumption that hand-eye coordination also impacts a child’s conception of space.  

According to Piaget and Inhelder, children can only truly begin to discriminate among 

Euclidean shapes around the age of 4. 

 Piaget and Inhelder’s work suggest that geometric ideas develop over time, becoming 

more synthesized and integrated throughout the child’s development (Battista & Clements, 

1992).  Children progress through levels of cognitive development as part of a natural order.  

Their current level of development is dictated by their age, not by instructional techniques or 

activities (Pusey, 2003).  According to Piaget and Inhelder’s research, preschool children 

appear to have some competency in establishing a valid representation of space that could be 
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built upon in the classroom.  A child’s conception of space is not necessarily formed based 

on pure mathematical logic.  On the contrary, it is more likely formed through experience 

and through the child’s perception of “reality.” 

 

The Research of Van Hiele 
 
 Contrary to the findings of Piaget and Inhelder, Pierre van Hiele’s theory suggests 

that students progress through levels of geometric thought that are not based on cognitive 

development.  Van Hiele claims that there are six levels of geometric thought through which 

students progress in learning geometry.  For students to function in any given level, they 

must have mastered the reasoning needed at the preceding level.  These levels are 

hierarchically based.  Progression from one level to another is based more on instruction and 

experiences than on age or physical development.  High school students, and even adults can 

be reasoning at a very low van Hiele level (Jones & Swafford, 1997).  Each van Hiele level 

(VHL) has unique characteristics, and what one conceptualizes at one level is not necessarily 

a robust enough conceptualization to operate at a higher level.  For example, what a student 

considers to be only a rectangle in one level may be reconsidered as a parallelogram in 

general at a higher level.  The following is a brief description of the van Hiele levels of 

geometric reasoning (1986). 

 Level 0:  Pre-recognition.  Children at VHL 0 are able to perceive geometric shapes, 

but recognize only a few of the shape’s visual characteristics.  Although they may be able to 

distinguish between curvilinear and rectilinear shapes, they cannot necessarily separate 

shapes by a subset of characteristics in each group.  For example, they will not be able to 

distinguish between a square and a triangle, or a circle and an oval.  They are not yet able to 
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form visual images and therefore cannot identify certain common shapes.  Students are able 

to reason about objects that are “the same shape” by only focusing on certain visual or tactile 

properties. 

 Level 1:  Visual.  At VHL 1, students are able to identify shapes by physical 

attributes.  For example, a student may be able to tell you that something is a rectangle 

without being able to tell you any of a rectangle’s properties.  It is a rectangle because it 

looks like a rectangle.  Therefore, students may also classify a parallelogram as a rectangle.  

They are able to form a visual, mental representation of geometric figures, yet they have not 

yet mastered class inclusion.  Students may be able to distinguish one figure from another 

simply based on appearance, but not on specific properties.  By calling a figure a “rhombus,” 

a student is saying that, “This figure has the shape I have learned to call ‘rhombus’” (van 

Hiele, 1986, p. 109). 

 Level 2:  Descriptive/Analytic.  Students who have reached VHL 2 are able to 

recognize shapes by specific properties.  Now, along with the mental, visual representation 

acquired in VHL 1, students also have a mental representation based on properties.  For 

example, the rhombus that students at VHL 1 classified based only on a visual representation 

is now classified by some property of a rhombus, such as having four congruent sides.  

Students begin to recognize that certain properties hold only for certain figures.  However, 

students still don’t have class inclusion.  They may say that a square is not a rhombus 

because it is a square.  In essence, they are not able to conceptualize the relationship of 

properties between figures, and can only reason about properties within a figure. 

 Level 3:  Abstract/Relational.  Class inclusion is developed at VHL 3.  A square may 

be considered a rhombus with additional properties.  Students begin to see how some 
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properties are inter-related and can make informal deductions about classes of figures.  They 

begin to provide logical arguments in support of conjectures, and organize properties 

hierarchically.  Students may see how some properties imply others, lending to logically 

sound definitions and organization. 

 Level 4:  Formal Deduction.  At VHL 4, students can now develop original proofs.  

They are able to see how theorems in an axiomatic system are related and can produce a 

logically sound argument and conclusion.  Students reason “formally, by logically 

interpreting geometric statements such as axioms, definitions, and theorems” (Battista & 

Clements, 1992, p.427). 

 Level 5:  Rigor/Mathematical.  Students at VHL 5 are able to reason outside of 

Euclidean geometry and explore other axiomatic systems, such as hyperbolic and elliptical 

geometry.  They are able to make connections and see relationships between different 

axiomatic systems. 

 Van Hiele’s research is widely used as an indicator of students’ geometry readiness.  

Research shows that the van Hiele levels have been successful in classifying students in 

terms of their conceptual understanding of geometric concepts (Battista & Clements, 1992).  

Though the theory states that the levels are discrete, more recent research suggest that 

students can reason at more than one level, given certain situations (Pusey, 2003).  

Furthermore, it is possible for students to be in-between levels, making it difficult to classify 

them according to VHL.  Although students may be reasoning at more than one level, 

typically the acquisition of the lower level is more complete than the acquisition of the higher 

level.  Several studies have been conducted to determine an appropriate method of 

classification for students who are transitioning between levels (Pusey, 2003).  Despite these 
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findings, the van Hiele theory remains a fairly accurate indicator of students’ geometric 

thinking abilities.  It also holds many implications for proof readiness among students. 

 

Geometric Reasoning and Proof Readiness 

 

 The research of Piaget and van Hiele hold several implications for how students learn 

proof.  Mathematicians use proof to “establish truth” based on logical and deductive 

reasoning (Battista & Clements, 1992).  Proof for a mathematician is used to establish 

conceptual understanding, and not thought of as simply a series of technical steps (Hanna, 

2000b).  Several studies have considered the link between proof abilities and levels of 

geometric reasoning.   

 Piaget (1987) claims that students progress through three levels (PL) in the 

development of their justification and proof skills.  Unlike van Hiele’s levels of geometric 

understanding, Piaget’s levels for proof and justification coincide with the biological 

development of the student.  Students up to 7 or 8 years are at PL 1.  At this level, students 

treat interrelated events separately.  They do not see any necessity in making their point clear 

to others, nor do they see any sense in seeing another’s point of view.  Near the end of this 

level, thought becomes more directed as children begin to integrate thoughts and ideas.  

Children at this level are capable of elementary deduction.  Students progress through PL 2 

between the ages of 7 or 8 through 11 or 12.  At this level, children begin to make predictions 

and justify their reasoning, however their predictions can still be incorrect, as they are based 

on empirical results.  They are able to connect subsequent events based on what happened in 

the previous event.  Implications and conjectures are only based on observation, not 
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assumption.  PL 3 occurs at age 11 or 12 and beyond.  Students at this level are capable of 

formal deductive reasoning.  Students see the necessity of logical and deductive reasoning 

and understand the importance of justifying their conjectures (Battista & Clements, 1992). 

 We can now look at the van Hiele levels (VHL) from another perspective, that of 

learning proof.  According to van Hiele, children reason differently at different levels.  

Progression through these levels is dependent on the ability to consistently reason 

successfully in preceding levels, rather than on biological development, as implied by 

Piaget’s theory.  At VHL 1 (visual), students’ reasoning capabilities are limited to 

observation.  They see a picture and notice it’s properties, but fail to make connections 

between those properties, or see how they can make conjectures based on those properties.  

In VHL 2 (descriptive/analytic) students see that a shape has specific properties.  They are 

able to classify shapes based on these properties.  However, they are not yet able to see how 

these properties imply others.  Students are only beginning to see relationships between 

classes of figures.  It is in VHL 3 that students are able to see how certain properties are 

interrelated.  They are able to link pieces of information.  As students become increasingly 

able to pose and defend their conjectures in a coherent fashion, they begin to demonstrate a 

readiness for proof.  Their logical and deductive skills are developed at this level. Successful 

reasoning at VHL 3 can prepare students for the formal deductive reasoning needed in VHL 

4 to build solid mathematical arguments and write proofs.   

It is important to note that not all students are at VHL 3 at the same time.  A few may 

reach VHL 3 by high school, but most will not.  Mason and Moore (1997) used van Hiele’s 

theory to assess geometry readiness among mathematically talented middle school students.  

Their research had established that VHL 1 thinking was prevalent in grades K-8, and that 
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geometric understanding depends on a student’s van Hiele level, as well as the student’s level 

of logical reasoning ability and the quality of their basic geometry content knowledge.  In 

most schools, the only requirement to be placed in a Geometry course is the successful 

completion of Algebra 1.  Therefore, many mathematically talented students go straight from 

8th grade Algebra to 9th grade Geometry.  In examining the performance of previously 

identified, academically talented students in geometry, Mason and Moore (1997) found that 

students who were not yet at VHL 2 were not sufficiently prepared to be successful in 

Geometry.  Academically talented students did not necessarily perform at the same van Hiele 

level across the board.  Therefore, Mason and Moore suggest that students who are still at 

VHL 1 after completing Algebra 1 should progress into Algebra 2 rather than Geometry. 

Mason and Moore’s findings are consistent with Senk’s (1989) research, which 

analyzed proof-readiness in high school students.  Students in a high school geometry course 

were tested in the fall for their van Hiele level and basic geometry content knowledge.  At the 

end of the school year, students were tested again for their van Hiele level, knowledge of 

geometry, and proof-writing ability.  Senk found that students who start Geometry at VHL 0 

have very little chance of learning to write proofs.  Students at VHL1 have about a 33% 

chance of learning to write proofs, while students at VHL 2 have a 50% chance of learning to 

write proofs.  The students who have the most potential in learning to write proofs start high 

school Geometry reasoning at VHL 3 or above.  Furthermore, of the students who did learn 

to write proof, those who began the course at VHL 3 significantly outperformed those who 

had started at VHL 2.  It was determined that students at VHL 3 had a 57% mastery of proof 

by the end of the course.  Though there were not many students reasoning at VHL 4, those 

who began the year at this level had an 85% mastery of proof.  This provides support to van 
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Hiele’s theory that students have a mastery of proof at VHL 4, while VHL 3 is where 

students begin to learn to prove formally and informally.  Senk recommends that students 

who enroll in a high school Geometry course should be at VHL 2 or above.  Those students 

at VHL 2, with proper instruction, may still reach VHL 3 by the end of the course, thus 

giving them a good chance of success in proof writing.  It is important that students attain the 

necessary level of geometric thought before they enroll in a proof-intensive Geometry course 

(Mason & Moore, 1997). 

Without the necessary reasoning skills, students will not be successful in a proof-

intensive geometry course.  Through an examination of research by Piaget and van Hiele, 

students can be classified according to stages of development in mathematical and geometric 

reasoning.  This classification holds many implications for students’ proof-writing abilities.  

It is important to understand, however, that applying the research findings of Piaget and van 

Hiele does not necessarily guarantee that students will arrive at their first Geometry course at 

the stage necessary for success in both geometry and proof writing.  The focus of the next 

chapter is on evidence that most students have not mastered the skills necessary for success 

in these areas. 
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CHAPTER 3 

WHAT EVIDENCE IS THERE TO SHOW THAT HIGH SCHOOL STUDENTS ARE NOT 

SUCCESSFUL WITH PROOF AND HOLD MISCONCEPTIONS ABOUT THE NATURE 

OF PROOF? 

 

This chapter will focus on research-based evidence that students do not have the 

necessary reasoning capabilities to be successful in pre-college courses that emphasize 

formal and deductive proof.  First, I will examine proof achievement among high school 

students.  This involves a discussion of geometric misunderstandings and the van Hiele levels 

of students enrolled in a Geometry course.  Both of these factors contribute to student 

achievement in both geometry and proof.  Then I will discuss proof misconceptions among 

students enrolled in a Geometry course as well as misconceptions of students who have 

already completed a high school Geometry course.  Understanding these misconceptions will 

help us better understand why students are having difficulty in proof writing. 

 

Geometry and Proof Achievement of High School Students 

 

 International comparison studies have shown that American students do poorly in 

geometry in comparison to their international counterparts.  For example, American 

elementary and middle grades students are outperformed in Geometry achievement tests by 

students in other nations (Cai & Hwang, 2002).  In a study by Stigler, Lee, and Stevenson 

(1990), fifth grade students from Japan and Taiwan performed twice as high as American 

fifth-grade students in geometric tasks.  These tasks included tests of visualization, such as 
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paper folding, and achievement tests of basic geometry content knowledge.  As high school 

Geometry tends to be where proof is first introduced to students, it is important to understand 

student achievement in geometry in order to understand achievement in proof.  First, I will 

examine some geometric misunderstandings that high school students have.  Next, evidence 

will be presented that shows students do not have the necessary capabilities to write proofs.  

Finally, proof achievement will be examined in terms of van Hiele levels of geometric 

reasoning. 

 

Geometric Misunderstandings Among Students 
 

Several studies within the United States have shown that many students do not even 

understand basic geometric ideas.  Usiskin (1987) found that only half of all American high 

school students enroll in a geometry course.  Of those students enrolled in Geometry, only 

63% could correctly pick out triangles when shown a group of figures.  Furthermore, 

according to the National Assessment of Educational Progress in 1982, only 64% of 17-year-

old high school students who have taken Geometry knew that a rectangle was a 

parallelogram, and only 16% could find the area of a figure made up of two rectangles 

(Battista & Clements, 1992).  

 Based on prior research, Battista and Clements (1992) noted common misconceptions 

among students enrolled in high school Geometry. Students often believe that: 

• An angle must have one horizontal ray. 

• To be a side of a figure, a segment must be vertical. 

• A segment is not a diagonal if it is vertical or horizontal. 

21 
 

 



• A square is not a square if its base is not horizontal. 

• The only way a figure can be a triangle is if it is equilateral. 

• The height of a triangle or parallelogram is a side adjacent to the base. 

• If a shape has four sides, then it is a square. 

If students hold these geometric misconceptions, it seems their abilities and readiness to 

construct proofs, which involve these, and other, geometric properties would be greatly 

affected.  Furthermore, a student who holds these misconceptions is likely to be classified as 

reasoning at VHL 1.  As discussed in Chapter 2, in order to be successful in proof writing 

students should start high school Geometry at VHL 2 or above (Mason & Moore, 1997; 

Senk, 1989). 

 

Students’ Current Level of Proof Performance 
 
 Senk (1985) conducted a study in which proof-writing skills were tested among 1,520 

students enrolled in Geometry, one month before the end of the year.  Only 3% of the 

students received perfect scores on the test.  Consider the following results. 

• 70% of the students were able to complete a six-step proof if all they had to do was 

supply either the statement or the reason of each step   

• 51% were successful when there was one line in which both the statement and the 

reason had to be supplied 

• 32% could supply a complete proof of the diagonals in a rectangle being congruent 

• only 6% could supply a complete proof of a theorem that did not follow from 

triangle-congruence postulates of theorems.   
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These results led Senk to the conclusion that only about 30% of high schools students, after 

one full year in a Geometry course, could reach a 75% mastery level in proof writing.   

 Providing support to Senk’s (1985) research is a study by Brumfield (Brumfield, 

1973) in which high school students who were about to take an advanced calculus course 

were tested on their knowledge of postulates, theorems, axioms, and definitions in geometry.  

When asked to write down as many postulates, theorems, or axioms that they could recall 

from geometry, 50% listed nothing, while 31% listed statements that were not even 

postulates.  Many students mixed theorem with axioms, definitions, and false statements.  

When asked to pick any theorem and write a proof for it, 81% of the students did not even 

attempt a proof.  Brumfield concluded that students, even mathematically advanced students, 

get little meaning out of a proof-intensive Geometry course. 

 

Proof Achievement and van Hiele Level 
 

Recall Senk’s (1985) research on van Hiele levels (VHL) in regard to students’ proof 

performance.  It was found that students who start Geometry at VHL 0 have very little 

chance of learning to write proofs.  Students at VHL 1 have about a 33% chance of learning 

to write proofs, while students at VHL 2 have a 50% chance of learning to write proofs.  The 

students who have the most potential in learning to write proofs start Geometry at VHL 3.  In 

a separate study, Senk (1989) evaluated the VHL of 241 beginning Geometry students. She 

found that 27% of the students had not yet reached VHL 1, 51% had mastered VHL 1, 15% 

had mastered VHL 2, 7% had mastered VHL 3, and only 1% had mastered VHL 4.  

Therefore, we might reasonably conclude that about 78% of beginning geometry students 

have a 33% or less chance of learning to write proofs.  Also recall that Senk (1985) found 
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that 30% of students could reach a 75% mastery level of learning to write proofs.  Now that 

we take students’ VHL into consideration, we can understand where this result comes from.  

Many students are not at a high enough VHL to be successful in proof writing.  Similarly, 

Usiskin (1982) found that of 2,699 students enrolled in Geometry courses, almost 40% of the 

students were below VHL 3 at the conclusion of the course. 

 Mistretta (2000) conducted a field trial of a geometry unit intended to raise van Hiele 

levels in eighth grade students.  First, she assessed each student’s van Hiele level by giving a 

pretest consisting of level 0, 1, and 2 questions in multiple choice and short answer form.  

Answers to questions were marked correct based on the van Hiele level of reasoning 

addressed in the particular question.  Twenty-two percent of the students were classified at 

level 0 and 35% were “nonclassifiable.”  Forty-three percent were classified at VHL 1.  None 

of the students were classified at VHL 2 or above.  Mistretta also administered an opinion 

survey to evaluate students’ attitudes toward geometry.  Sixty-one percent of the students 

said that geometry was difficult, complicated, or confusing.  When asked about past 

geometry experiences, students expressed boredom, claiming that the study of geometry 

consisted mainly of memorizing formulas and theorems without really understanding them.  

In individual interviews, students showed weakness in applying reasoning typical of VHL 1 

and 2, not having clear understandings of area and perimeter, especially in regards to some 

irregular shape.  Students were not aware of relationships between properties of triangles, 

quadrilaterals etc.  Mistretta’s research was conducted with students who are typically close 

to enrolling in a Geometry course.  If we apply Senk’s (1989) theory to this data, then these 

students would have only a 33% chance or less of learning to write proofs.  Yet, these are the 

students that we would push into a proof-intensive Geometry course in high school. 
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Although mathematically talented students may start high school Geometry at a 

higher VHL, their performance with geometric concepts and proofs can generally be 

predicted by a student’s VHL.  Recall Mason and Moore’s (1997) research of the VHL of 64 

students identified as “mathematically talented.”  They found that, although the 

mathematically talented students tended to be at a higher VHL than the students in the Senk 

and Usiskin studies, the probabilities of whether or not they could learn to write proofs 

remained the same.  Of the mathematically talented students, only 5% had not mastered VHL 

1, therefore having less than a 33% chance of learning to write proofs.  Twenty-five percent 

of the students had mastered VHL 1, therefore having a 33% chance of learning to write 

proofs.  Seventy percent of the mathematically talented students were at VHL 2 or above, 

giving them a 50% or above chance of learning to write proofs.  In the mathematically 

talented students, Mason and Moore concluded that given proper instruction in mathematical 

reasoning, students at VHL 2 or above should be capable of learning to write proofs.  

However, it must be noted that 30% of the mathematically talented students in the study were 

below VHL 2, thus having less than a 33% chance of learning to write proofs.  It seems that 

even among mathematically talented students, VHL is still a predictor of proof and geometry 

achievement and that these students face the same problems with proof as do students not 

identified as mathematically talented. 

 Most students are obviously not getting the necessary skills before entering into a 

high school Geometry course.  Many high school students have geometric misunderstandings 

that are characteristic of VHL 1 thinking.  Based on research findings, students at this level 

do not have the necessary skills to be successful in a proof-intensive Geometry course.  

Research indicates that a majority of students are entering high school Geometry courses at 
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level 1 or below, setting the stage for a lack of success in proof writing.  Even after a course 

in geometry, students do not have a solid understanding of what constitutes a valid proof.  

The next section provides information regarding students’ conceptions of proof and their 

general beliefs about the nature of proof.   

 

Proof Conceptions 

 

 It is becoming increasingly apparent that there is a lack of student achievement in 

proof.  Evidence presented in earlier sections demonstrates that students’ mathematical and 

geometric reasoning seems to be contributing to their lack of achievement in proof.  We can 

gain further insight into this problem if we look at students’ conceptions of proof.  One way 

to analyze whether or not students are ready for proof when we teach it is to examine 

students’ proof conceptions before and after they have taken a proof-intensive geometry 

course.  After taking a proof-intensive course, have students really learned how to create a 

formal, deductive proof?  Examining students’ beliefs about what constitutes a proof can help 

us to understand why students do not perform well on proof tasks.  In this section, I will first 

examine common proof misconceptions among students.  Then evidence will be provided 

that indicates students’ proof performance is affected by these misconceptions. 

 

Common Proof Misconceptions Among Students 
 

In addition to having geometric misunderstandings, students also have proof 

misconceptions that can provide insight into student achievement in proof. Students tend to 

accept the visual appearance of particular drawings as proof (Schoenfeld, 1986).  In other 

26 
 

 



words, if a picture looks like a rectangle, then students think it is a rectangle without having 

to prove it.  Furthermore, students have a hard time accepting a general proof as complete 

without testing empirical examples (Fischbein & Kedem, 1982).  Finally, students often 

misunderstand the use of counterexamples.   

 Schoenfeld (1986) studied college students’ development of conjectures based on 

compass and straightedge constructions.  He found that students often make conjectures, and 

then feel that their conjecture is validated because their construction “looks” accurate.  They 

are relying on visual appearance and accepting this as proof.  Students will tend to accept 

invalid conjectures as true, and often to accept valid conjectures as false.  In this study, 

Schoenfeld first asked students to solve a construction problem after having constructed a 

proof that offered the answer to the problem.  Nearly one-third of the students provided a 

solution to the construction that completely violated the findings of the proof they had just 

constructed.  It seems that these students are relying too heavily on pictorial representations 

as a validation of their conjectures.  If the picture does not “look” right, then they say their 

conjecture is false.  Students who say, “This is a right angle because the picture looks that 

way” are relying on a similar misunderstanding. 

Fischbein and Kedem (1982) studied high school students’ perceptions of proofs as 

general arguments of the truth of a statement.  It was found that students, even after having 

constructed a valid proof, insisted that surprises were still possible, and continued to 

empirically test conjectures.  They were not satisfied with the general argument provided by 

the proof.  It’s as if they needed to see the proof “work” in a numerical or geometric setting 

in order to believe the truth of their conjecture.  It seems that students are not even sure of the 

necessity or meaning of proof.  Students are missing the point of proof being a general 
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argument to show that an arbitrary case is true. 

Galbraith (1981) found that one-third of high school students do not understand the 

concept of counterexamples.  They do not realize that the counterexample must satisfy the 

hypothesis and violate the conclusion of a conjecture.  Students feel that one counterexample 

is not enough to disprove a statement, and will continue to try to find additional 

counterexamples.  Again, this shows that students do not understand the purpose of proof, or 

rather the arbitrariness of proof.  If they knew that a proof showed that an arbitrary case was 

true, then they should realize that it takes only one counterexample to disprove a statement. 

 

Studies Examining Proof Misconceptions  
 

Healy and Hoyles (2000) studied proof conceptions of British students in Algebra.  In 

the United Kingdom, the mathematics curriculum is divided into five “targets,” Number and 

Algebra being among them.  In this curriculum, reasoning and proof are processes 

emphasized from the beginning, similar to the revised recommendations from the NCTM 

(2000).  This has been the source of much debate between educators and mathematicians, the 

latter claiming that rote memorization and rigor are necessary for the acquisition of basic 

skills (Healy & Hoyles, 2000).  Educators, on the other hand, emphasize “understanding” and 

heuristics as opposed to the acquisition of proof writing skills, which are often taught as as a 

rote process. 

 Healy and Hoyles (2000) conducted an analysis of conceptions of proof held by 

students in the UK curriculum with reference to factors of environment, teacher content 

knowledge, and school.  They investigated characteristics of arguments recognized as proofs 

by high-achieving students in arithmetic/algebra and geometry, as well as the reasoning 
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behind the students’ judgments.  Students were given a questionnaire designed to provide an 

overview of their views of proof, its role, and its generality, as well as an indication of 

students’ competence in proof writing.  The questionnaire sought to examine what methods 

students would use to construct certain proofs and to what method they thought their teacher 

would give the highest marks.  Students were also asked questions regarding the degree to 

which each statement in a proof convinced them of the truth.  Teacher questionnaires were 

also given, focusing on which methods they thought their students would use in a proof as 

opposed to which method they would give the highest marks. 

 Results indicate that students are better at choosing correct mathematical proofs than 

they are at creating them, and students constructed better arguments for familiar conjectures.  

Producing empirical examples was the most popular form of argument used by students, 

though they didn’t think this type of argument would earn the highest marks from their 

teachers.  This indicates that students knew more was expected of them, but didn’t know how 

to achieve those expectations.  Students were more likely to use empirical examples if they 

were already convinced of the truth of the statement.  This is aligned with Fischbein and 

Kedem’s (1982) study, which found that students were not satisfied with a proof’s truth until 

empirical examples were given.  In other words, if students felt that a statement or conjecture 

was false, they were reluctant to give an empirical justification.  Arguments that used algebra 

were another popular form of justification, however students admitted that it would be hard 

to explain using algebraic arguments to someone who didn’t understand algebra.  When 

using algebraic arguments, students weren’t always able to convince themselves of the 

validity of their justification.  This was also true with narrative arguments.  When students 

gave narrative arguments, they felt the need to provide an empirical example as well, as if the 
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narrative argument alone was not sufficient (Healy & Hoyles, 2000). 

 Although most of the students in this study were unable to construct proofs, they still 

valued explanatory arguments.  Students recognized that empirical arguments, though easier 

to construct, do not prove.  They were also aware that a valid proof must be general, however 

they still consistently gave empirical examples as justifications.  While the students tended to 

understand narrative proofs the best, they held the belief that the more complicated-looking 

the proof was, the higher marks they would receive from their teacher (Healy & Hoyles, 

2000).   

 It seems that students, while aware of a “proof technique,” are still unable to construct 

a proof of their own.  If they are able to construct some sort of proof, whether it’s narrative or 

algebraic, they are still not convinced of the proof’s accuracy.  Although students know that a 

proof must be general, they still lean toward empirical examples to convince themselves of 

the truth of a conjecture.  The fact that students in the Healy and Hoyles (2000) study did not 

think that a narrative proof was sufficient on its own and that more complicated-looking 

proofs are the most widely accepted, indicate that students do not know exactly what 

constitutes a mathematical proof. 

 Edwards (1999) conducted a study of 10 first year high school students in which the 

task was to decide whether a statement pertaining to odd and even numbers was true or false, 

giving a reason for their conclusion.  All students were successful in determining whether 

statements were true or false, and were also able to provide examples in support of their 

decisions.  Students could provide counterexamples to false statements.  However, when 

asked why a statement was true, the typical response was “I tried it, and it worked” (p. 494).  

None of the students offered an algebraic proof of any kind.  Three of the students attempted 
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all or part of an informal proof based on the structure of odd and even numbers.   

 Edwards’ (1999) results indicate that students don’t see any need to justify a 

statement until they are convinced that the statement is true.  However, they may think that 

providing empirical examples is a sufficient justification.  Some students go beyond 

empirical examples and try to create a justification, which may be mathematically sound.  

These findings are similar to those found in a separate study by Edwards (1997).  In the 1997 

study, two groups of students were examined, neither of which had any experience with 

transformational geometry.  Their task involved combining transformations.  Students were 

given a combination of transformations, and then asked if they could get the same effect with 

only one transformation, or “rule”.  Edwards found that students tend to over-generalize.  For 

example, many students thought that a double reflection would still result in a reflection, 

because a double translation still resulted in a translation (this was also the case for a double 

rotation).  When students were asked to explain why certain conjectures were true, they were 

able to provide “formulas” based on their activities with reflections, translations, and 

rotations.  However, students could still not provide any type of formal proof on their own.  

When the investigator offered one, the students were able to accept and understand this 

explanation.  Still, students were satisfied with inductive reasoning.  They tested their 

conjectures on one or two cases and did not feel that any general proof was necessary.  

Again, this mirrors the results of Fischbein and Kedem’s (1982) study.  A very common 

problem among high school students seems to be that students are not convinced by a proof.  

To them, it is too general.  They believe its truth only after empirical examples are given.  

Students do not understand what constitutes a proof, and seem more satisfied giving 

empirical examples. 
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According to Weber (2001), even students at the college level think that the only 

valid proof follows some traditional form, such as two-column proofs.  In addition to this 

misconception, students often misapply theorems in proofs.  Even if they do not misapply 

theorems, students often come to a point in a proof where they “simply do not know what to 

do” (p. 102).  Weber’s research focuses on why this happens.  His study focuses on 

undergraduate mathematics majors’ construction of proofs versus doctoral mathematics 

students’ construction of proofs in a given topic in abstract algebra. 

The undergraduates had a higher failure rate in proof attempts than the doctoral 

students.  In 57% of the undergrads’ failed proof attempts, they failed to apply syntactic 

knowledge and used nearly four times as many irrelevant inferences than doctoral students.  

Syntactic knowledge refers to the facts needed regarding the mathematical situation in order 

to complete the proof.  In this case, the undergraduates indicated that they had the proper 

syntactic knowledge, based on a true-false exam given earlier in the study.  However, they 

did not know that this was the knowledge needed to complete the proof.  This data indicates 

that an understanding of mathematical proof and syntactic knowledge is not enough to be a 

“competent prover” (p. 107).  Undergraduates also failed to apply factual knowledge, 

perhaps because the number of possible paths to take with one proof overwhelmed them.  

Weber’s (2001) findings indicate that the primary cause of the undergraduates’ difficulties 

with proofs was that they lacked “strategic knowledge.”  They would often write down as 

many rules they could in hopes that one would lead them in the right direction in the proof. 

 Students’ proof performance is affected by the proof misconceptions discussed above.  

Even those students who appear to be at a high level of geometric reasoning (college 

students, for example) have a hard time understanding what constitutes a proof.  A recurring 
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theme in this research seems to be students’ reliance on empirical examples as a means of 

convincing themselves of the truth of a conjecture.  Oddly, they pick out the most 

“complicated looking” proof as the one that is likely to be correct, but then admit that they 

could not produce it themselves (Healy & Hoyles, 2000).  Yet, if proof is “what convinces 

me,” then to these students, proof is empirical examples.  In a later chapter, I will discuss 

how we can capitalize on the use empirical examples to demonstrate to students the need for 

proof. 

 The evidence regarding students’ lack of ability in formal proof writing is 

overwhelming.  You can walk into the majority of high school Geometry classes and witness 

many students struggling to construct accurate proofs.  Many teachers, including myself, tend 

to attribute students’ low performance in proof as a consequence of poor study habits.  

However, as discussed in this chapter and the previous one, the ability to construct 

mathematical proofs is affected by several factors.  Rather than attributing poor proving skills 

to poor study habits, a closer examination of students’ reasoning capabilities may be more 

appropriate.  Many students reach high school with weak mathematical reasoning skills and 

low van Hiele levels.  As evidenced in research reported in Chapter 2, to be successful in 

writing proofs, a student should be reasoning at least at VHL 2 or above when they enter high 

school Geometry.  Students who are not at this level demonstrate weak reasoning capabilities 

(Senk, 1989).  The majority of students are entering high school Geometry below VHL 2, 

and are thus unsuccessful in writing proofs.  The focus of the next chapter will be to 

understand other factors that contribute to students’ struggle with proof writing. 
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CHAPTER 4 

HOW CAN TEACHERS’ BELIEFS AND UNDERSTANDING CONTRIBUTE TO 

STUDENTS’ PROOF ABILITIES? 

 

 Students’ low level reasoning abilities are not the only factors in their unsuccessful 

attempts at writing proofs.  If a surprising number of students are entering Geometry without 

the necessary reasoning capabilities, then it is necessary to consider the material that is being 

taught prior to Geometry, and how it is being taught.  Reasoning skills can be acquired in the 

elementary grades.  In fact, the NCTM (2000) emphasizes that geometry should not be taught 

as a separate discipline only in high school, but should be laced into the mathematics 

curriculum in all grades from kindergarten through high school.  The Reasoning and Proof 

Standard emphasizes the importance of student-developed conjectures and justifications.  Yet 

if students are still making it to high school without the necessary skills to be successful in 

Geometry, then the instruction and experiences in elementary and middle school is probably 

lacking.  This could be because of a weak curriculum, or could be due to improper 

implementation of the curriculum on behalf of the teacher.  In the 1990 and 1996 National 

Assessment of Educational Progress, 34% and 29% of fourth grade teachers, respectively, 

reported they would spend “a little or none” instructional time devoted to geometry.  In 

eighth grade, 22% of the teachers reported devoting “a little or none” time to geometry in 

both 1990 and 1996 (data reported from the National Center for Educational Statistics at 

http://nces.ed.gov/nationsreportcard/naepdata).   

 Even if students get adequate geometry instruction in the lower grades, they may still 

experience problems in high school.  Proof is traditionally taught very formally, as a series of 
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statements and reasons based on rote memorization and a very specific “process.”  It is hard 

for students to develop an understanding of the necessity and value of proof if their skills are 

based completely on rote memorization.  Furthermore, many high school teachers, though 

they teach proof, are unclear as to the generality and importance of proof themselves.  

(Knuth, 2002b).  Few would argue the important role a teacher has in the development of 

students’ mathematical reasoning, geometry reasoning, and proof conceptions and 

construction capabilities. Thus, in considering why students may be unprepared for proof and 

lack appropriate reasoning skills, it is important to review literature related to preservice and 

inservice teachers’ mathematical preparation and understandings, and their understandings 

and beliefs about proofs and geometry. 

 

Understanding and Beliefs About Proof Among Preservice Teachers 

 

 There are several factors that contribute to a preservice mathematics teacher’s 

perceptions and beliefs about mathematics education, and in particular, proof.  Prior 

experience in mathematics classes can affect a teacher’s pedagogical approaches to teaching 

mathematics, as can their mathematical ability.  Though many times these factors can 

enhance mathematics instruction, we must examine the instances in which these factors 

hinder mathematics instruction.  In order to gain a thorough understanding of teacher’s 

beliefs about proof, we must first examine both preservice elementary and high school 

teachers’ mathematical backgrounds and experiences. 

 

Preservice Teachers’ Mathematical Background  
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As presented in earlier chapters, mathematical reasoning skills are paramount to proof 

writing skills.  According to the NCTM (2000), a wealth of mathematical reasoning 

capabilities can be gained at the elementary level.  However, most elementary school 

teachers do not necessarily have an advanced mathematics degree.  On the contrary, most 

elementary school teachers have degrees that most closely resemble a Liberal Arts degree, in 

which a wide range of disciplines are only superficially examined (Gellert, 2000).  Therefore, 

many elementary school teachers, who are expected to teach mathematics, do not have a 

strong mathematics background.  This can hinder their confidence, knowledge, and 

instruction, thus preventing students from gaining important skills that will be necessary in 

higher levels of mathematics.  Aside from not having a strong mathematical background, 

elementary school teachers also tend to have a history of struggling with mathematical 

content (Gellert, 2000).  In addition, a large number of elementary school teachers have 

shown negative attitudes toward mathematics and mathematics education (Carroll, 1995).  

These attitudes seem to be the result of poor experiences in mathematics classes and weak 

mathematical self-concepts (Sloan, Daane, & Giesen, 2002). 

 Gellert (2000) conducted an in-depth analysis of 42 preservice elementary school 

teachers’ attitudes and beliefs toward mathematics.  He focused on the following questions: 

• What materials for mathematics instruction do prospective elementary teachers want 

to use? 

• What kind of mathematics do they want to teach? 

• What are possible implications of these emerging conceptions? 

These 42 student teachers were asked to keep journals.  Their journal entries were in 

response to researcher-proposed prompts as well as personal reflections.   
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 A thought that was echoed by nearly all of the preservice teachers was that the 

criterion for good mathematics teaching was how much fun the subject could be made for the 

students.  One teacher wrote: 

From personal experience, I already know how I do not want to teach 
mathematics.  What I am learning is only the idea of how to teach 
mathematics to students in elementary schools in a nice and amusing way (p. 
258). 

 
Games were suggested to “hide” mathematical content.  Quizzes were often structured to 

spark competition between students as a motivator to learn basic facts.  Most alarming in 

these findings is that these teachers, more than anything else, felt that mathematics was 

something so unpleasant that it needed to be disguised.  For example, one teacher suggested 

that students be offered a reward for completing more mundane tasks.  “On a worksheet, 

there could be problems for addition and subtraction grouped in blocks.  When students are 

finished with one block, they can color the figures” (p. 260).  Notice that coloring is meant to 

bare no reference to mathematical content, it is simply a reward for finishing a task.  

  Preservice teachers also had some trouble distinguishing between “important and 

unimportant” information.  Arithmetic was seen as important.  Abstract information (in their 

opinion), such as probability, was seen as unimportant.  All seemed to agree that students 

needed mathematics to survive in society.  However, these preservice teachers believed the 

only understanding that students need to have is arithmetic in order to “make sense of 

reports” that they may see on the news or in history classes, or just for use in “shopping 

situations” (p. 261). 

 No one would argue that the use of games as a tool for teaching mathematics is not 

worthwhile.  However, these preservice teachers did not know how to tie these “fun little 
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games” into the mathematical content.  Instead, they were intended to make a subject that 

was seen as “unappealing” less of a necessary evil.  By doing this, teachers are indirectly 

conveying their negative feelings toward mathematics to their students.  These preservice 

teachers demonstrated a need to disguise mathematics to the point that “students won’t even 

recognize that they are doing math” (p. 259).  If students don’t recognize that they are doing 

math, how will they make the connection that they are actually learning something?  If this is 

the mentality of some elementary school teachers, then we can begin to see why students 

may not be gaining the necessary reasoning capabilities at the elementary level.  Many 

preservice elementary teachers seem to underestimate the importance of mathematical 

content (Gellert, 2000). 

 The fact that preservice elementary teachers are having trouble determining the 

importance of mathematical content holds some implications for teacher education.  Studies 

have shown that there is a discrepancy between what is learned in a mathematics-methods 

courses and actual teaching practices.  Raymond (1997) studied relationships between 

beginning elementary school teachers’ beliefs and practices.  Participants were six first year 

teachers from the same teacher education program.  The first stage of the study involved 

interviews to assess participants’ beliefs about mathematics and mathematics pedagogy.  

Through classroom observations, Raymond examined how participants taught mathematics.  

Finally, the consistency between the participants’ beliefs and actual teaching practices were 

analyzed.  Results indicate that participants have a fairly traditional view of mathematics 

being fact and procedure-driven, with memorization an important aspect of learning.  

However, their beliefs about learning mathematics tended to be more non-traditional.  All 

advocated the use of hands-on activities, group work, problem solving, and manipulatives.  
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Yet, the classroom observations show that these teachers weren’t using any of these non-

traditional methods in their instruction. The teachers, when asked about this discrepancy, 

seemed oblivious to it.  One teacher in particular felt that her use of a “problem of the day” 

covered the problem solving aspect of mathematics instruction.  Classroom management and 

control seemed to be the teachers top concern in formatting their instruction.  None of the 

participants felt that their teacher education program had much of an influence on their 

current classroom practices (Raymond, 1997).  This implies that mathematics education 

courses need to provide preservice teachers with a solid framework for how to implement 

their “non-traditional” beliefs in their classroom.  For the time being, beginning teachers are 

more focused on management. 

 Of course, we cannot only focus on elementary school teachers and elementary 

teacher preparation.  Even though high school teachers, for the most part, are required to 

have an advanced degree in mathematics, they may still have some misconceptions as to how 

to teach mathematics.  Ensor (2001) observed a year-long secondary mathematics methods 

course at a university in South Africa.  She analyzed student work and interviewed the 

instructors as well as the students.  The following year, she observed seven of these students 

who were now in their first year of teaching.  She found that there was a discrepancy between 

what the students learned in their methods course and what they taught in their classrooms.  

The practices they learned in their methods course were intended to raise students’ level of 

conceptual understanding by engaging them in hands-on and critical-thinking activities.  

However, when these teachers began their first year of teaching, they tended to prefer a 

teacher-centered approach that was more “traditional” in nature.  Emphasis was placed on 

rules, algorithms, and memorization, rather than on conceptualization and mathematical 
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reasoning on the part of the student (Ensor, 2001).   

These research findings on teachers’ preparation and approaches to teaching 

mathematics hold many implications for the teaching and learning of proof.  Research 

indicates that good mathematical reasoning skills are imperative to proof-writing 

performance (Battista & Clements, , 1995; Edwards, 1997, 1999; Fischbein & Kedem, 1982; 

Izen, 1998; Jones & Swafford, 1997; Mistretta, 2000).  If teachers are not teaching these 

skills, students are less likely to be successful with proof.  In addition, pre-service teachers’ 

perceptions of mathematical proof can affect the way they teach proof.  

 

Preservice Teachers’ Preparedness to Teach Proof 
 

It is not only recently that students have struggled with proof.  Many preservice 

teachers are not sure what constitutes a proof, and even underestimate the value of teaching 

their future students how to construct a proof (Mingus & Grassl, 1999).  Furthermore, in a 

preservice teacher’s undergraduate coursework, there is not often a class devoted to the 

teaching of proof, let alone the teaching of geometry.  The only proof experience most 

preservice teachers have in college is in writing proofs in advanced mathematics courses. 

 Mingus and Grassl (1999) explored issues pertaining to preservice teachers’ beliefs 

about proofs.  Their work focused on the teachers’ experience and exposure to proof, their 

beliefs as to what constitutes a proof, the role of proof in mathematics, and their belief as to 

when proof should be introduced in grades K-12.  A survey was given to 51 preservice 

teachers, including both elementary and secondary mathematics education majors.  They 

found that most undergraduates, even those that were majoring in mathematics, feared 

proofs.  Of those surveyed, 69% had only one experience with mathematical proof, and that 
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was in their high school Geometry class.  Surprisingly, half of these respondents were 

secondary mathematics majors.  Though their exposure to proof was very limited, these 

respondents did admit that their comfort level with proof may have increased had they used it 

more, or seen some value in it.  Many of the respondents (33%) suggested that proof ideas 

should be introduced as early as possible, becoming more formal in high school.  Of these 

respondents, 69% wanted proof to be introduced prior to tenth grade.  Perhaps not 

surprisingly, most of these respondents were secondary preservice teachers. 

 As to what constitutes a proof, most of the elementary majors’ responses indicated 

that proof was something used only to describe geometric relationships.  Secondary majors 

felt that proof was more explanatory in nature, used as logical and convincing arguments to 

demonstrate the validity of a conjecture.  This interesting dichotomy reflects most elementary 

school teachers’ limited experiences with proof.  They have only been exposed to proofs 

once in their mathematical experience – usually a high school geometry class.  It’s no wonder 

that they don’t see proof as necessary in any other course but Geometry.  However, even 

secondary majors have usually only been exposed to proof once prior to college.  Though 

they may now understand the value of proof in their more advanced courses, they may still 

not see the value of proof in grades K-12 (Mingus & Grassl, 1999). They also are likely to 

still hold some of the same proof misconceptions as their students, as discussed in Chapter 3. 

 

College-level Preparation for Teachers 
 

If Geometry is currently the course in which proof is most emphasized, then we 

should hope that Geometry teachers are well prepared to teach students appropriate proof 

skills.  However, most secondary mathematics education majors are only required to take one 
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college-level course in Geometry (Grover & Connor, 2000).  Therefore, they have in total, 

two geometry courses from which to gain knowledge – one in high school, and one in 

college.  Is this enough preparation to teach Geometry, in general, and proof, in particular?   

In the United States, teachers do not typically receive any sort of formal mentoring 

after they are hired as full-time teachers.  Therefore, the course they take in geometry as an 

undergraduate plays a very important role in how they will teach geometry to their students.  

However, a member of the university’s mathematics department, rather than a member of the 

mathematics education department, typically teaches these college-level Geometry courses.  

Although teachers may learn more about advanced geometry, they may not be gaining an 

understanding of how to best teach geometry and proof to their students.   

 Grover and Connor (2000) sought to examine syllabi and questionnaires from 

college-level Geometry courses to determine the overall content and content preparing to 

teach high school Geometry.  Syllabi were examined on the basis of mathematical 

development, overlap with the NCTM’s PSSM (2000), and characteristics of the learning 

environment.  Only about one-third of these courses overlapped with the NCTM PSSM.  Of 

these, only about 35% had significant overlap with the NCTM PSSM.  In fact, 27% of the 

instructors were unfamiliar with the NCTM PSSM recommendations.  Over 40% were 

lecture-intensive courses, and only 22% used a small amount of group work as an 

instructional tool.  Exams and homework dominated the assessment tools used. 

 It does not seem that these courses are being structured to help preservice teachers 

develop quality teaching methods.  The content of the course is strictly geometry, not how to 

teach it.  If “increased knowledge of both geometry and students’ cognition influences what 

geometry teachers teach, how they teach it, and certain professional characteristics they 
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exhibit when teaching geometry” (Jones & Swafford, 1997, p. 470), then these undergraduate 

courses may be necessary, but are not sufficient for preparing teachers to teach a proof-

intensive high school Geometry course. 

 Just as students’ inability to construct proofs can partially be attributed to teachers’ 

inability to provide appropriate instruction, the shortcomings in teachers’ preparedness can 

certainly be affected by their experience in teacher education programs.  These experiences, 

and others, contribute to the many beliefs and perceptions that teachers hold concerning 

reasoning and proof. 

 

Inservice Teachers’ Proof Understanding, Beliefs, and Practices 

 

Current mathematics teachers were once preservice teachers.  If their education bears 

some resemblance to what was described above, then it is likely that they are not currently 

teaching geometry and proof in a very effective manner.  Several studies have specifically 

addressed inservice teachers’ understanding and beliefs about proof, including their readiness 

to do complete proofs as indicated by the van Hiele level of geometric reasoning.  In 

addition, the NCTM (1989, 2000) has made specific recommendations about the importance 

of reasoning and proof that has most likely influenced practice in the last 15 years. 

 In the Chapters 2 and 3, it was emphasized that students, in order to be successful 

with proof, must enter high school Geometry at VHL 2 or above.  Several researchers have 

also assessed teachers’ VHL.  Mayberry (1983) analyzed 19 pre-service teachers and found 

that only about 50% were at VHL 2 or above.  Jones and Swafford (1997) examined middle 

grades teachers before an intensive four-week program consisting of a course in geometry 
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and research on the van Hiele theory.  The vast majority (79%) of the teachers were below 

VHL 3.  Recall from Chapter 3 that students below VHL 3 only have a 50% chance of 

learning to write proofs in a Geometry course.  This implies that there are probably many 

teachers who have not yet mastered proof writing.  Therefore, it should come as no surprise 

that students are not making it to VHL 3 by the time they reach high school. 

 Knuth (2002b) focused his research with teachers that are already at VHL 3 and 

beyond.  He interviewed 16 inservice mathematics teachers about their conceptions of proof.  

He found that, although teachers may recognize the varying roles that proof plays in 

mathematics, they might not necessarily view proof as a necessary tool for learning 

mathematics.  Knuth examined two aspects of teachers’ conceptions:  1) their conceptions of 

proof and 2) their conceptions of teaching proof in secondary mathematics. 

 All of the teachers viewed proof as a means of verification, or as a way to establish 

the truth of a statement.  Some teachers said that truth is established by a logical or deductive 

argument, others said that truth is established by means of a convincing argument.  Many 

teachers had a hard time generalizing.  They recognized a valid proof, but were still not sure 

that it “always” worked, even though the proof was shown for a general case.  This indicates 

that teachers do not always have a complete understanding of the generality of proof.  Like 

their students, they are not convinced of a statements’ truth just by seeing a proof.  They 

want to test the conjecture with empirical examples (Knuth, 2002b).  This is similar to results 

with students of geometry (Healy & Hoyles, 2000) as presented in earlier chapters. 

 Most teachers in Knuth’s (2002b) study did not see proof as a means of explanation.  

They thought it was important to understand how the logical steps lead to a proof, but did not 

necessarily see proofs as “explaining.”  This is a critical component to proof.  Usually, one 
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constructs a proof only after they are convinced that a statement is already true.  The proof 

explains why a statement is valid.  Much like their students, teachers may not view proof as 

“what convinces me” (Battista & Clements, 1995).  Teachers did, however, view proof as a 

way of communicating mathematics and as a way of “systematizing” or showing how “math 

is a building block” and   “everything is based upon what was proven before” (Knuth, 2002b, 

p. 390).  

 Knuth then provided the 16 teachers with examples of proofs and non-proofs.  

Overall, they were successful in distinguishing between proofs and non-proofs, though they 

rated many empirically based arguments as proofs.  Thirteen of the teachers based their 

determination of an argument’s validity on whether the argument was mathematically sound, 

as opposed to a particular method used.  Twelve of the teachers required that an argument 

deemed to be a proof must have sufficient detail in order to be awarded the highest rating.  

Overall, results indicate that what teachers find convincing is more based on form than on 

substance, and that the generality of proof is doubted without empirical examples (Knuth, 

2002b). 

 Misconceptions as to what constitutes a proof may be widespread among high school 

mathematics teachers.  Teachers do not necessarily have accurate conceptions of proof and, 

thus are not prepared to teach proof.  Yet, is proof even being taught?   

Recall that Hanna (2000a) claims that proof is not being emphasized enough in 

mathematics classrooms.  We have already seen that it is not likely that it is being taught in 

the elementary schools, or that mathematical reasoning is even emphasized.  However, at the 

high school level, even among teachers who have an understanding of proof and what 

constitutes one, proof is not being taught to the capacity that it should be (Hanna, 2000b).  
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There is a debate among mathematicians and educators.  Mathematicians claim that proof, in 

and of itself, is an important skill to be learned.  This is often misconstrued as a view of proof 

as a process to be memorized and not understood.  Traditionally, proof is taught in a two-

column, statement-and-reason form.  Students are to memorize definitions, postulates, 

axioms, and theorems and use them to create a formal proof of a given conjecture (Wu, 

1996).  When you present proof in this light, it does appear to be based almost solely on rote 

memorization and tedious work.  It is understandable that educators have tried to modify this 

instructional practice.  However, as Hanna (2000a) notes, it is important that we not leave 

proof out of the curriculum all together. 

 If we follow the advice of Hanna and the recommendations of the NCTM PSSM 

(2000) to teach appropriate proof skills in high school, then we must remember that evidence 

shows that students are not ready for formal proof in high school Geometry.  Research 

presented in this chapter shows that many teachers are not prepared to teach proof.  This 

phenomenon may help explain why students are not ready for proof, since their teachers may 

not be properly designing instruction for effective and appropriate learning about proof.  

When teachers are not properly prepared to teach mathematics as early as the elementary 

grades, a trickle-down effect occurs in which students are the receivers of second-rate 

mathematics instruction.  What should teachers do for the students that don’t have sufficient 

reasoning skills?  The next chapter describes methods that can be used to teach mathematical 

reasoning to promote learning and understanding of mathematics and proof. 
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CHAPTER 5 

WHAT CAN BE DONE TO PROMOTE MATHEMATICAL REASONING AND 

IMPROVE STUDENTS’ PROOF WRITING SKILLS? 

 

 As discussed in prior chapters, students do not seem to have the necessary skills to be 

successful in proof writing.  In many cases, students do not even have the necessary skills to 

be successful in geometry.  A variety of factors contribute to this phenomenon.  Many 

students enrolled in a high school Geometry course are at too low of a van Hiele level (i.e., 

below VHL 3) to be able to handle the demands of a proof-intensive geometry course.  In the 

previous chapter, evidence was presented that indicates students may not be prepared for 

proof because their teachers likely are not fully prepared to teach them reasoning and proof 

skills in K-12.  In many cases, teachers suffer the same misconceptions about geometry and 

proof as their students, beginning with elementary teachers.  Teacher education may need to 

be changed in order to prepare teachers at all levels, and particularly at the elementary level, 

to provide instruction which promotes mathematical reasoning.  Further research should 

explore options for preservice mathematics teachers that will enable them to understand 

students’ needs in terms of mathematical and geometric reasoning. 

 In this chapter, I will explore ways in which current teachers can alter their 

instruction to increase their students’ mathematical reasoning skills, thereby promoting a 

better understanding of geometry and proof.  I will first discuss research-based suggestions 

designed to help teachers increase their understanding of mathematical reasoning and proof.  

Turning the focus more toward high school, I will then discuss ways in which teachers can 

present information to increase mathematical reasoning skills and set the stage for proof.  
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Finally, I will look at how technology can aid in teaching reasoning and proof-writing skills.  

Dynamic geometry software is increasingly being used with promising results to promote 

geometric understanding. 

 

Preparing Teachers to Teach Geometry and Proof 

 

 In the previous chapter, evidence was presented which indicated that inservice and 

preservice teachers, from the elementary to the secondary level, might not be sufficiently 

prepared to teach mathematical reasoning skills.  This section will explore ways in which 

preservice and inservice teachers can be better prepared to promote mathematical reasoning 

skills in their classrooms. 

 

Important Elements in Preparing Preservice Teachers 
 
 Implications of the previous chapter indicate that teacher education may need to be 

restructured in order to better prepare preservice teachers for teaching in general, and 

teaching mathematical reasoning skills, in particular.  This is particularly important for 

elementary teacher education, as research has indicated that many preservice elementary 

teachers have a history of negative attitudes toward mathematics and high levels of 

mathematics anxiety.  However, there is also evidence that even middle grades and 

secondary preservice teachers do not have a complete understanding of how to promote 

mathematical reasoning and proof skills among their students.  Research in this area 

describes ways in which teacher education courses can change to help prepare teachers to 

teach mathematical reasoning skills. 
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 In a study done by Bischoff, Hatch, and Watford (1999), the “state of readiness” for 

teaching of 10 middle grades mathematics preservice teachers was analyzed through 

interviews and observations.  “State of readiness” is defined as the teacher’s “ability to plan, 

implement, and reflect on an integrated mathematics lesson” (p. 394).  These preservice 

teachers were enrolled in a mathematics methods course at the time of the study.  They were 

given a specific objective and asked to create a lesson based on the objective and present this 

to a sixth-grade class. 

Although each preservice teacher showed some potential to eventually become an 

effective teacher, only one demonstrated a high state of readiness.  Most of the teachers were 

concerned with lesson formatting, rather than student understanding.  Only one teacher tried 

a hands-on activity, while the others just focused on the algorithms and drill-type exercises.  

In personal reflections, the preservice teachers did not see this as a problem.  They measured 

their success by how much control they had over the students.  Furthermore, the preservice 

teachers admitted during interviews that they did not feel comfortable with the material they 

were expected to teach.  They were worried that a student would ask a question that they 

could not answer, indicating that they did not have a very high level of confidence in 

teaching the mathematics in their lesson (Bischoff, Hatch, & Watford, 1999). 

This study indicates that preservice teachers need to feel confident in their knowledge 

of the material in order to successfully teach it and promote mathematical reasoning skills.  

Mathematics methods courses, as well as content-specific courses, need to help preservice 

teachers develop this confidence.  Bischoff, Hatch, and Watford (1999) claim that teacher 

education programs must include instruction in self-evaluation and reflection.  This is 

evidenced by the preservice teachers who felt they were successful simply because they were 
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able to stick to their plan, not because students learned any mathematics.  Previous research 

also indicated that there is a strong relationship between mathematics beliefs and 

instructional practices among elementary, middle, and secondary preservice teachers 

(Raymond, 1997).  Teacher education programs should help preservice teachers to 

understand their own beliefs as they relate to instructional practice. 

According to Ensor (2001), preservice teachers’ lesson plans should be reviewed by a 

mathematics education specialist so that feedback and suggestions can be given before the 

lesson is implemented.  Furthermore, the mathematics faculty needs to work more closely 

with the education faculty to ensure that preservice teachers understand both the topic they 

are teaching and how to successful teach the topic.  Typically, content-specific courses and 

education courses are not jointly taught (Grover & Connor, 2000).  Preservice teachers may 

be required to take a mathematics course, such as Geometry, that is taught by a member of 

the mathematics faculty and not by a member of the education faculty.  Thus, preservice 

teachers may fail to see the connection between the material and how to teach it.  This is also 

true with the use of technology in instruction.  Most teacher-education programs require a 

course in technology as an instructional tool, but it is not always taught by a member of the 

education department (Niess, 2001).  Thus, preservice teachers may also be having trouble 

implementing technology into their instruction.  In a later section, I will discuss the 

importance of technology in developing mathematical reasoning. 

In order for effective instruction in mathematical reasoning to occur, teachers must 

first be aware of their own beliefs and how they affect instructional practice.  Currently, 

teachers are entering the profession with either negative beliefs about mathematics or a 

shallow understanding of how to effectively teach outside of the traditional algorithm-based 
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instruction.  Teacher education programs must enable preservice teachers to be aware of their 

beliefs, to reflect on their practice, and to be knowledgeable about the content they are 

teaching.  Further research needs to be done to explore specific ways in which teacher 

education programs can accomplish this task.  To gain a deeper understanding of how to 

prepare teachers to teach geometry and proof, it is also necessary to discuss ways in which 

inservice teachers can increase their geometric understanding. 

 

A Program Designed to Raise Geometric Understanding Among Inservice Teachers 
 

It is believed that the more a teacher knows about a subject, the better she will teach 

it.  In order to enhance geometric achievement among students, you first must improve 

teachers’ content knowledge and their instructional practice (Jones & Swafford, 1997).  

Forty-nine fourth through eighth grade inservice teachers enrolled in a four-week summer 

program consisting of a content course in geometry and a research seminar on the van Hiele 

theory.  The geometry course consisted of an exploration of two- and three-dimensional 

shapes with emphasis on analysis and informal deduction.  The instructional approach taken 

was mainly a problem-solving approach.  Each session began with the presentation of one 

problem, which was then analyzed and discussed in groups.  A follow-up, whole-class 

discussion then followed, in which solutions were presented, connections identified, and van 

Hiele levels of thought were discussed.  Teachers then created an instructional unit and 

assessment plan for their particular grade level.  The research seminar presented the van 

Hiele theory and research findings pertaining to students.  Teachers had the option of 

interviewing a student and assessing his or her VHL, or of analyzing their textbooks by 

separating activities by VHL (Jones & Swafford, 1997). 
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 At the beginning of the program, geometry content knowledge and VHL were tested 

among the teachers.  The content knowledge test consisted of problems about points, lines, 

planes, angles, properties of polygons, congruence and similarity, and perimeter, area, and 

volume.  The van Hiele assessment used was based on Usiskin’s (1982) test used in many 

other studies presented in prior chapters. At the end of the four-week course, teachers were 

tested in these two areas again to see if there had been an improvement as a result of the 

course.  Teachers were also asked to provide lesson plans pertaining to certain geometry 

topics both before and after the intervention.  Eight teachers were then chosen for follow up 

interviews and observations. 

 Pretest and posttest scores indicate a significant improvement in geometry content 

knowledge, particularly among the elementary teachers.  Seventy-two percent of the teachers 

increased their van Hiele levels by at least one level, and 50% increased by two levels.  No 

teacher decreased in level.  There was also an improvement in lesson planning.  Before the 

intervention, teachers’ goals seemed split between promoting VHL1 and VHL 2 

understanding.  After the intervention, lesson plans provided goals that promoted more VHL 

2 and 3 reasoning.  Three percent of the lesson plans promoted reasoning beyond VHL3.  

Furthermore, in the second lesson plan, most teachers suggested some type of pre-assessment 

in order to understand what the students already knew (Jones & Swafford, 1997). 

 As a result of this intervention program, teachers are likely to spend more time on 

geometry instruction.  From the lesson plans, it is apparent that they became more likely to 

try new ideas and more confident in their geometric-thinking ability.  Most importantly, they 

increased their content-knowledge of geometry as well as their own van Hiele levels.  The 

experience provided by this program will allow these teachers to provide more effective 
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instruction to their students.  By attempting to improve instruction at the elementary and 

middle grade levels, students will be better prepared for a course in Geometry when they 

enter high school.  However, not all elementary and middle grades teachers are taking 

advantage of programs like this.  Therefore, the focus should now shift to how high school 

teachers should structure their courses to enable students to be successful in Geometry and 

proof writing. 

 

Promoting Students’ Communication and Justification Skills 

 

In the previous chapter, evidence that preservice teachers were not sufficiently 

prepared to teach mathematical reasoning, particularly at the elementary level, was presented.  

At the inservice level, teachers can strive to be better instructors of mathematics and help 

students who struggle with mathematical reasoning, and in turn, with geometry and proof.  

Research in this area describes ways in which high school Geometry teachers can help make 

proof meaningful to their students.  I have cited two major aspects involved in promoting 

proof skills among students:  1) the promotion of communication skills and 2) the promotion 

of justification skills. 

 

Promoting Communication Among High School Students 
 

Evidence has been presented in previous chapters that good proving skills result from 

good reasoning skills.  Brendefur and Frykholm (Brendefur & Frykholm, 2000) further 

suggest that good reasoning and proof skills result from good communications skills.  If 

students are able to effectively communicate, then proof writing will come more naturally, 
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especially if we approach proof as a means of explaining why something is true.  In teaching 

proof, we should first elicit students’ own explanation, in their own words, and then lead 

them to mathematical language, or in other words, formal proof (Edwards, 1999).  Teachers 

can use questioning techniques to promote good communications skills. 

 Brendefur and Frykholm (2000) studied two pre-service teachers during their student 

teaching experiences to analyze how effective questioning can help to promote mathematical 

reasoning and understanding.  In most classroom settings, teachers dominate discussions 

through lecture.  This does not allow students a chance to discuss and explore their own ideas 

and strategies.  Two types of classroom communication are discussed:  contributive and 

reflective.  Contributive communication is defined as “the interactions among students and 

between teacher and students in which the conversation is limited to assistance or sharing, 

often with little or no deep thought” (p. 127).  On the contrary, reflective communication is 

defined as “teacher and students use mathematical conversations with each other as 

springboards for deeper investigations, such that what the student and teacher do in action 

subsequently becomes an explicit object of discussion” (p. 127).  Students further reflect on 

their activities and ideas as further discussion ensues.  Reflective communication is what 

teachers of geometry should strive towards.  This type of communication enables students to 

communicate their ideas freely.  As students communicate more, they become more aware of 

how to effectively convey their thoughts and ideas, eventually leading into the development 

of a formal proof. 

 Promoting this type of communication is not an easy task.  One of the student 

teachers in the study had success only after months of frustration.  In trying to promote 

reflective communication, she often felt as though it was hard to maintain good classroom 
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management.  Though she felt that students could learn a lot from each other through openly 

communicating in the classroom, she struggled with wanting to control the direction of their 

communication.  The students also didn’t appear to be ready for this new type of 

communication.  They were used to the more lecture-intensive style of their original teacher.  

However, as the student teacher continued to struggle toward reflective communication, she 

finally reached a balance.  In her classroom, students were prepared to openly articulate their 

ideas.  While discussing solutions, new ideas were likely to arise, further advancing the 

discussion to other topics.  When asked on a test to explain a solution, students were able to 

give detailed responses (Brendefur & Frykholm, 2000). 

 Shifting instruction away from contributive communication is an idea that can be met 

with resistance by experienced teachers who are used to presenting information in this 

“traditional” manner.  However, in order to prepare students for proof, it is important that 

reflective communication is emphasized, as it promotes communication skills among 

students.  If students are better able to communicate their ideas, then they will be more 

successful with proof. 

Communication skills in the classroom can also be obtained through the use of open 

problems.  Furinghetti, Olivero, and Paola (2001) claim that the transition to proof is often 

abrupt, causing students who had previously performed at a superior level in mathematics to 

struggle with proof writing.  The problems given to students, and the way in which students 

are required to participate in the problem-solving process, affect their transition to proof.  

Rather than say “prove that…..”, teachers should involve students in tasks that foster 

explorations of a topic and axioms pertaining to it that will help develop mathematical 

learning skills.  Furinghetti, Olivero, and Paola define open and closed problems as such: 
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In a closed problem, both the starting and the goal situation are closed, i.e., 
they are exactly explained in the task.  If the starting situation and/or the goal 
situation are both opened (i.e., not closed), we have an open problem (p. 320). 

 
In solving an open problem, students are required to create and validate their conjectures.  

Students begin by first “discovering” a result and convincing themselves perhaps through a 

series of empirical examples.  Then, they use axioms to explain why the result happened, 

thereby opening the door to proof.  When students prove something they discover on their 

own, it’s more meaningful than proving something they are given.  Attention needs to be 

focused on how to produce a result, rather than just proving the correct result. 

 Proof has been defined as a way of explaining why something is true (Hanna, 2000b).  

In order for students to be able to effectively explain why a conjecture is true, they must have 

good communication skills.  Questioning techniques and the use of open problems can help 

to promote reflective communication among students. Once students are able to effectively 

communicate, they are a step closer to being competent in proof writing.  In order for 

students to be fully capable of writing proofs, they must also have strong justification skills.  

Therefore, it is necessary to study how teachers can promote justification skills in their 

students. 

 

Promoting Justification Skills In High School Students 
 
 “Proving, or justifying a result involves ascertaining – that is convincing oneself – 

and persuading – that is convincing others” (Sowder & Harel, 1998).  In line with Hanna’s 

(2000b) view that proof, for high school students, should be explanatory in nature, Sowder 

and Harel claim that student-generated conjectures lead naturally to questions of justification 

to set the stage for mathematical reasoning.  As students create and communicate their 
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conjectures, they will naturally see the need to justify their conjectures.  Classroom activities 

should set the stage for this communication.  In terms of justification, Sowder and Harel 

suggest proof schemes (justifications in general) which students use in justifying conjectures.  

There are three categories of proof schemes that Sowder and Harel suggest:  externally 

based, empirical, and analytic. 

In an externally based proof scheme, what convinces the student, and what the 

student uses to convince others, comes from some outside source.  Some students may base 

their proof schemes on an authoritarian perspective by relying too much on teachers, 

textbooks, or peers to justify “correct” results.  Students also tend to rely on ritualistic aspects 

about the way a proof should “look” (e.g., two columns) or merely follow a set of rules to 

complete a proof in a ritualistic fashion.  Students also use symbolic proof schemes when 

they treat symbols independent of the relationship to the quantities from which they arose 

(e.g. 25 + 23 = 415). 

In using empirical proof schemes, students make justifications based on given 

examples of another proof scheme.  Students may use a perceptual proof scheme if they 

arrive at conclusions based on one, or several drawings and convince others using drawings.  

In using this type of scheme, students may forget to account for the arbitrary case.  In an 

examples-based proof scheme, students follow patterns or examples to form a conjecture, but 

may still not be able to reason through an arbitrary case. 

Students use analytic proof schemes once they are competent in proof writing.  These 

are more advanced levels of justifications.  In using a transformational proof scheme, 

justifications are based on general aspects of the situation and involve reasoning toward 

settling the conjecture.  Students use an axiomatic proof scheme when they realize that 
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results are logical consequences of preceding ones.  Undefined terms are assumed in 

developing conjectures.   

As presented in Chapter 4, students often hold proof misconceptions.  Students tend 

to feel that a pictorial representation is a sufficient proof when it is not, or that empirical 

examples constitute a valid proof (Schoenfeld, 1986; Fischbein & Kedem, 1982).  These 

misconceptions are characteristic of empirical proof schemes.  When students begin their 

experience with proof in high school geometry, they may be operating at any one or more of 

these proof schemes.  While traditional instruction is usually based at an axiomatic proof 

scheme, it is unrealistic to think that students are initially at this level.  It is important that 

teachers assess which level their students are currently operating at and modify their 

instruction to accommodate for this.  The ultimate goal is to get students to use an axiomatic 

proof scheme.  Sowder and Harel (1998) offer some suggestions as to how teachers can help 

students progress from their current proof scheme to an axiomatic proof scheme.  Rather than 

jumping immediately into proof, students should gradually be introduced to it through 

mathematical reasoning activities. 

When students are operating with an authoritarian proof scheme, they tend to focus 

more on results than on reasoning.  Teachers can accommodate for this by emphasizing an 

environment in which reasoning is as important as results.  In other words, rote memorization 

should be eliminated and the focus should be more on reasoning.  Teachers can guide 

students away from authoritarian and ritual proof schemes by decreasing the emphasis on 

two-column proofs.  Paragraph and flow proofs should also be used.  Otherwise, students 

may think that the only correct proof is in two-column form.  In addition to using these 

different types of proof, teachers can also use algebraic proofs as an introduction to 
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geometric proof.  This will help students to develop good symbolic reasoning, thus 

eliminating the problems with symbolic proof schemes as previously discussed. 

When students are using an empirical, perceptual proof scheme, they may rely on just 

one type of drawing that demonstrates the validity of a conjecture only for a very specific 

case.  Students may not be able to account for the arbitrary case.  Teachers can use dynamic 

geometry software, such as The Geometer’s Sketchpad (GSP, Jackiw, 1995), to help students 

better analyze the arbitrary case.  The value of the “drag” effect in examining empirical 

examples will be discussed in the following section.  To help students progress from an 

examples-based proof scheme, teachers can present students with problems that initially 

invite this approach, but result in the pattern “breaking down” in order to show students the 

dangers of this approach (Sowder & Harel, 1998). 

An analysis of Sowder and Harel’s (1998) proof schemes can help teachers to 

effectively analyze their student’s proof-writing capabilities.  Mills (2002) studied the proof 

schemes of students in her high school Geometry class and analyzed in which context they 

tended to utilize these schemes.  Through student interviews and journal responses, as well as 

a videotaped analysis of particular lessons, Mills asserted that students could make the 

transition from an external, symbolic proof scheme to an analytical, axiomatic proof scheme 

after they learned to plan their approach toward completing a proof.  Initially, most of the 27 

students involved in the study began writing a proof as though “they were attempting to solve 

a single variable equation, where one does not have to think two or three steps ahead in order 

to complete the problem” (p. 62).  Mills’ emphasis on “formulating a plan” caused students 

to stop and consider the information presented in the problem before they wrote a proof.  As 

they became used to this strategy, they were able to move toward an axiomatic proof scheme. 
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Justification sets the stage for proof.  When students are able to effectively justify 

their conjectures, they are ready to begin the process of proof writing (Hanna, 2000b; Sowder 

& Harel, 1998).  Geometry instruction has typically begun assuming that students were 

operating under an axiomatic proof scheme and reasoning at VHL 4.  Previously reported 

research demonstrates that students are rarely at this level of reasoning.  Thus, it is important 

that teachers modify instruction to accommodate for students operating under a variety of 

different proof schemes.  With proper instruction, students can eventually be led to the world 

of axiomatic proof schemes. 

Once students are effectively able to communicate their ideas and justify their 

conjectures, they will be ready to begin writing proofs.  However, we still cannot expect 

students to be able to write a flawless proof without adequate guidance from the teacher.  

Though they may have good communication and justification skills, it is still important that 

we emphasize the use of proof as a means of explanation.  Furthermore, we have to be able to 

guide students toward seeing the need for proof.  A dynamic geometry environment can be a 

valuable tool for accomplishing this task. 

 

Using Dynamic Geometry to Promote Proof Writing 

 

 Dynamic geometry software (DGS) has the potential to open many doors for 

geometry and proof explorations in the classroom.  DGS refers to interactive software in 

which students essentially create compass and straightedge constructions, which can then be 

“dragged,” altering the size of the construction, but not affecting the axioms or theorems used 

in the construction.  With an increase in the availability of technology, DGS environments 

60 
 

 



are becoming more prevalent in the classroom.  Using DGS has many advantages for the 

teaching and learning of geometry and proof in high school.  However, it is important that 

lessons using DGS are properly implemented.  Students must be able to understand the 

connection between the DGS environment and the axioms and theorems that make up 

Euclidean geometry.  Critics claim that the increased use of DGS has not only led to a 

decline in the teaching and learning of proof, but also to a decline in mathematical reasoning 

(Bruckheimer & Arcavi, 2001; Hanna, 2000a, 2000b; Wu, 1996).  This may be due to 

students not seeing the connection between what they are doing on the computer to what they 

are learning from their teachers. 

In a case study of conceptions of proof using DGS, preservice teachers were asked to 

solve two geometric problems with the use of a DGS and attempt to create formal proofs 

(Pandiscio, 2002).  All of the preservice teachers argued that with the use of the DGS, proof 

became unnecessary.  One preservice teacher asked, “Why would my students want to bother 

proving this theorem when they can see that it is true right in front of them?” (p. 218). The 

“drag” effect of many software packages, including GSP, (Jackiw, 1995) allows students to 

see many empirical examples instantaneously.  By dragging, students can alter the size and 

orientation of constructions and notice that a certain theorem always seems to be true.  While 

this is a valuable means of convincing a student that a conjecture is true, it does not prove 

that the conjecture is true.  Students operating under an empirical, perceptual proof scheme 

(Sowder & Harel, 1998) may mistakenly take this drag effect as a means of proving.  “It 

always works, so I’ve proven it” is a common misconception among students using DGS 

(Izen, 1998, 719).   

The preservice teachers in Pandiscio’s (2002) study struggled with this as well.  They 
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felt that their students, having seen that the theorem worked for these empirical examples, 

would not see any use in proving.  If not approached carefully, the drag effect can not only 

keep students from operating in more advanced proof schemes, but can also convince 

students that there is no need for proof.  However, it is also possible to engage students in 

explorations, which, despite the drag effect in DGS environments, foster a need for proof.  If 

the technology is used as a tool for convincing, and classroom or group discussion ensues to 

“explain,” then proof can be a result of explorations in DGS environments.    

The function of proof has been the source of debate for some time.  De Villiers 

(1990) claims that there are six main functions of proof: verification/conviction, explanation, 

discovery, systematization, communication, and intellectual challenge.  Students can use 

DGS to verify a conjecture.  Therefore, when asked to write a proof for the function of 

verification, students will see no need for it.  However, when challenged to explain why their 

conjecture appears to work, students quickly see that a deductive argument is necessary.  The 

empirical examples they’ve witnessed in a DGS serve only to confirm, and students 

recognize this when they use the function of proof as explanation (De Villiers, 1999). 

DGS environments can help students to write proofs if teachers help students to make 

the proper connections.  The drag effect of software such as GSP can both help and hinder 

students proving capabilities.  It is helpful to students to be able to quickly convince 

themselves that a conjecture is true, but they must also understand the importance of the 

explanation.  The following section presents two activities that help students to make these 

connections. 

 

Using DGS to Promote Proof Writing Skills and to Prompt a Need for Proof 
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Prior to the availability of DGS, students had to create constructions with paper and 

pencil, leaving room for errors.  Furthermore, students were often confused when they saw 

that the construction they made was completely different from the construction of one of 

their peers (Perham & Perham, 1997).  When students use DGS, they can see many different 

constructions at once, so they tend to see the computer-generated picture as more arbitrary 

and representing a general case.  This perception of arbitrariness can help students consider 

generalizations for a class of figures, rather than for a specific-sized construction. 

Perham and Perham (1997) conducted a study with tenth-grade geometry students to 

promote geometric reasoning and proof writing.  They used manipulatives, DGS, and 

graphing calculators to develop and test conjectures about the centroid of a triangle.  In the 

first activity, students constructed the medians to each of the sides of a paper triangle.  They 

were able to balance the triangle at the centroid (intersection of the medians) on the tip of a 

pencil and cut the triangle into the three smaller triangles.  Upon observing that each triangle 

had equal weights, they conjectured that the three triangles had equal areas.  In the second 

activity, students constructed a triangle and its centroid using a DGS.  By setting the program 

to calculate the area of each of the three triangles, they saw that their areas remained equal to 

each other no matter how they dragged the construction.  Several students admitted that they 

trusted this dynamic construction in more than they did their manipulative activity with the 

paper triangles.  They were now convinced that their conjecture of equal areas was true.  The 

third activity that students engaged in was using a TI-83 calculator to construct a triangle and 

it’s centroid on the coordinate plane (this could also be done in a DGS).  Students examined 

the equations of the three medians and solved a linear system to arrive at the coordinates of 

the centroid.  They created an algorithm to support their initial conjecture that the areas of the 
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three triangles were the same. 

After these experimental activities, students were to create a proof of their conjecture.  

When the teacher asked them to consider the construction of the centroid and the algorithm 

they created with the TI-83, students were able to develop a formal proof of their conjecture.  

(Perham & Perham, 1997).  Though students initially formulated a conjecture without the use 

of technology, they were more convinced of their conjecture after using the DGS.  Rather 

than being handed a theorem and told to, “prove it,” students were given time to form a 

conjecture on their own and convince themselves of it’s truth before attempting to prove it.  

In the process of convincing themselves of the conjecture’s truth, they essentially discovered 

several of the steps necessary to form the proof of the conjecture.  Though this activity was 

valuable in helping the students write the proof, it may not have necessarily created a 

student-driven need for proof.  In other words, students may still have not seen the necessity 

of writing the proof once they were convinced of their conjecture. 

Hadas, Hershkowitz, and Schwarz (2000) claim that if students are not writing proofs, 

it is probably not because they don’t know how, but because they don’t see the need.  This is 

evidenced by the large number of students who, even after they have proven something, still 

feel that they need to show empirical examples to give further verification (Fischbein & 

Kedem, 1982).  In using DGS, conviction can come quickly, which has led to the question of 

whether or not proof should be taught in the first place.  The DGS itself may not help 

students to understand the need for proof, but can lead to generalizations and discoveries.  It 

is up to the teachers to prompt the need for “why?” 

Hadas, Hershkowitz, and Schwartz (2000) conducted a study in which 50 Geometry 

students were given two activities, which required creating constructions on GSP.  The first 
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activity was meant to create a “surprise by contradiction” between the students’ hypotheses 

and their findings, which would lead into the need for an explanation.  The second activity 

also created contradictions, but led to uncertainty and surprise, as students were not sure 

whether the given situation could geometrically exist.  In the first activity, students made a 

conjecture about the interior angle sum of a convex polygon as the number of sides increases.  

Only 9 students gave complete deductive explanations.  The second activity was to make a 

conjecture about the measure of the exterior angle sum of a convex polygon as the number of 

sides increases.  The contradiction occurred in that all of the students conjectured that the 

sum would increase as the number of sides did, just as it had for the interior angle sum.  

Students were surprised to find that the exterior angle sum was 360 degrees for every 

example they tried on GSP.  This sparked an interest in the students, causing them to want to 

understand “why?”  In the second activity, 23% of the students gave no explanation, 4% gave 

an inductive explanation, 11% gave a partial deductive explanation, and 56% gave a 

complete deductive explanation. 

These two activities show how a DGS can allow opportunities for students to realize 

the necessity of proof.  These activities were based on surprise, thus capturing the interest of 

the students.  When things did not work out the way they expected it too, students saw a need 

to understand why.  The design of this activity brought proofs into “the realm of student 

activity and argument; that is, they engaged naturally in true mathematical activity” (Hadas et 

al., 2000, p. 149). 

Dynamic geometry software, though criticized as bringing about the recent decline in 

the teaching of proof in high school geometry (Hanna, 2000a), can enhance reasoning and 

proof skills (De Villiers, 1999).  DGS allow students to explore empirical examples as a 
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means of convincing themselves that a theorem or conjecture is true.  It is important, 

however, that teachers have clear proof objectives.  When misused, dynamic geometry can 

merely serve the purpose of convincing, and not of explaining.  A teacher needs to structure 

activities with DGS in such a way as to prompt a need for proof.  As seen in some of the 

activities discussed earlier, the construction process in a DGS can also come into play as 

students begin writing proofs.  By paying attention to how something was constructed, 

students were able to quickly see what steps were needed in their proof.  Thus, DGS, while 

prompting a need for proof, can also aid in proof writing. 

Teacher preparation is paramount to improving mathematical and geometric 

reasoning skills, as well as proof-writing skills.  The NCTM (2000) emphasizes the need to 

promote mathematical reasoning from the beginning of a students’ educational experience.  

The NCTM also recommends the use of DGS to promote reasoning skills and geometric 

understanding.  Teachers must be able to reflect on their instructional practices in order to 

verify that their students are learning the necessary skills.  Emphasis should be placed on 

understanding and conceptualizing, rather than on algorithms and rote-memorization.  

Communication and justification skills need to be fostered across all levels of mathematics, 

but especially as students begin to explore geometry and proof.  Once students are at a level 

in which proof writing can begin, dynamic geometry can be used to prompt the need for 

proof, and to help students formulate a proof based on empirical examples.   
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CHAPTER 6 

CONCLUSION AND IMPLICATIONS 

 

 The NCTM (2000) is clear in its expectation that mathematical reasoning be taught in 

K-12.  The Reasoning and Proof Standard in the PSSM (2000) states that all students should 

be exposed to the development of conjectures and should be expected to communicate their 

thoughts and justify their reasoning.  Despite the NCTM PSSM recommendations, research 

shows that many students are not mastering these concepts at any level of mathematics 

education. 

 In order for students to be ready to write geometric proofs, there are certain skills that 

need to be mastered.  The van Hiele theory claims that students progress through six levels of 

geometric thought.  These levels are hierarchically based, and students typically do not 

progress to the next level without being able to reason successfully at lower levels, though 

some research indicates that students may reason at two different levels when they are 

transitioning between levels (Pusey, 2003).   Research shows that in order to be successful 

with geometry and proof, students should be entering geometry at VHL 2 or above (Senk, 

1989).  However, the majority of students are entering Geometry below VHL 2 (Usiskin, 

1982).  Thus, it is not that these students just “don’t get proof.”  Rather, they are just not 

ready for proof. 

 Mason and Moore (1997) suggest that students who are not yet at VHL 2 be placed in 

Algebra 2 rather than Geometry.  This suggestion deserves serious consideration.  If 

students’ level of geometric reasoning is as low as VHL 2, they may experience more success 

in an algebra-based course than in Geometry.  Students would then take Geometry once they 
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had increased their VHL.  A drawback of this, however, is the fact that students may still not 

be getting appropriate instruction in mathematical and geometric reasoning in an Algebra 2 

course.  For this reason, secondary mathematics teachers should strive to integrate the 

Algebra and Geometry curriculums.  According to Sowder and Harel (1998), algebraic 

proofs can serve as an introduction to geometric proofs, thus helping students develop good 

symbolic reasoning which in turns guides them toward an axiomatic proof scheme.  If 

algebraic proofs were used more in Algebra 1 and 2, students would be more prepared for 

proof in Geometry.  Furthermore, students would begin to see that proof is important to all 

mathematical disciplines, not just geometry. 

 This literature review reported research that indicated that many teachers are not 

prepared to teach mathematical reasoning and proof.  This could be due to many different 

factors.  In some cases, teachers simply hold some misconceptions about mathematical 

reasoning, while in others, the teachers don’t even have a conceptual understanding of many 

of the topics they are required to teach (Bischoff et al., 1999).  Furthermore, many new 

teachers tend to focus mainly on classroom order and management more than they do on 

student understanding and conceptualization (Ensor, 2001). 

 Teacher education programs need to address this problem.  Most elementary school 

teachers only take one mathematical methods course in their training.  This course is taught 

by a member of the education department with very little interaction with the mathematics 

department.  If teachers are having content-specific problems, then these courses should 

provide the preservice teachers the opportunity to better understand the mathematics content, 

as well as how to teach it.  Even at the secondary level, preservice teachers are not provided 

with a course specifically in teaching high school Geometry.  Usually, secondary 
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mathematics education majors are required to take a Geometry course, but a member of the 

mathematics department most often teaches it.  Furthermore, this course focuses on the 

material and not on how to teach it.  This type of course, though valuable, does not 

completely help prepare preservice teachers to teach geometry.  There should be a closer 

interaction between the mathematics and mathematics education departments in teaching 

courses like this.  Teacher education courses should also require preservice teachers to 

continually reflect on their instructional practice and student understanding.  If preservice 

teachers are more aware of their students’ understanding, they will be better able to create a 

lesson based on the level of understanding of their students. 

 Once students reach geometry, there are many ways in which teachers can make the 

transition to proof smooth.  If students are able to effectively communicate, then proof 

writing will come more naturally (Brendefur & Frykholm, 2000).  Thus, rather than jumping 

right into a two-column proof, teachers should take some time to work on reflective 

communication.  This can be fostered through appropriate questioning techniques and the use 

of open problems.  In solving open problems, students are required to create and validate 

their conjectures. They should be encouraged to work together to “discover” a result, 

convince themselves of its truth, and explain why it happened. These types of problems 

should be routine in the Geometry classroom.   

Sowder and Harel (1998) offer some suggestions on how to help students develop 

justification skills.  First, teachers must be able to assess what proof scheme their students are 

operating under (authoritarian, ritual, symbolic, perceptual, examples-based, 

transformational, or axiomatic).  When students are operating with an authoritarian proof 

scheme, they tend to focus more on results than on reasoning.  Teachers can accommodate 

69 
 

 



for this by emphasizing an environment in which reasoning is as important as results.  In 

other words, rote memorization should be eliminated and the focus should be more on 

reasoning.  Teachers can guide students away from authoritarian and ritual proof schemes by 

decreasing the emphasis on two-column proofs.  Paragraph and flow proofs should also be 

used.  Otherwise, students may think that the only correct proof is in two-column form.  In 

addition to using these different types of proof, teachers can also use algebraic proofs as an 

introduction to geometric proof.  This will help students to develop good symbolic reasoning, 

thus eliminating the problems with symbolic proof schemes as previously discussed. 

When students are using an empirical, perceptual proof scheme, they may rely on just 

one type of drawing that demonstrates the validity of a conjecture only for a very specific 

case.  Students may not be able to account for the arbitrary case.  Teachers can use dynamic 

geometry software, such as GSP (Jackiw, 1995), to help students to better analyze the 

arbitrary case.  To help students progress from an examples-based proof scheme, teachers 

can present students with problems that initially invite this approach, but result in the pattern 

“breaking down” in order to show students the dangers of this approach. 

Dynamic geometry environments should be used in the classroom to help students 

develop their justification skills.  Many times, constructions made in a DGS provide a 

“skeleton” of a proof.  For example, by constructing a perpendicular bisector in GSP, 

students can actually see the steps to a proof of the Perpendicular Bisector Theorem.  

However, students will not see this connection without the appropriate guidance from the 

teacher.  Consider the following example in which students are asked questions about the 

construction of a perpendicular bisector in GSP: 
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                                  Figure 6.1. GSP Activity, Question 1. 

A BC

1.  Construct the perpendicular bisector 
     of AB.  Write down the steps you took 
     in your construcion.

 

 Students are first asked to construct a perpendicular bisector of segment AB.  A class 

discussion should ensue as students describe methods they used in their construction.  

Students are likely to have constructed a midpoint, followed by a perpendicular line to AB 

through the midpoint.  The teacher should ask the students how the definition of the 

perpendicular bisector helped them to determine how to construct it. 

                                Figure 6.2. GSP Activity, Questions 2 and 3. 

A BC

D

2.  Construct point D on the
     perpendicular bisector.  

3.  Construct segements AD and
     BD.

 

 After students have constructed a perpendicular bisector, they are asked to construct a 

point on the perpendicular bisector.  They then connect that point to the two endpoints of the 

segment.  This step will eventually lead to the “discovery” of the perpendicular bisector 
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theorem. 

                                                  Figure 6.3. GSP Activity, Question 4. 

A

B

C

D

4.  Drag any points on your
     construction.  What do you notice?
     Is this always true?  You may want
     to form certain measurements to    
     support this.

m DA = 2.94 inches

m DB = 2.94 inches

 

 As students move different points on their construction, they will notice that the 

length of AD is always equal to the length of BD.  They may decide to take some 

measurements to convince themselves.  At this point, rather than allowing students to assume 

that this is always true because they have seen several empirical examples, the teacher should 

ask students to explain why this phenomenon is happening.  Guiding questions such as “What 

type of triangle is ADB?” and “What appears to be true about triangles ADC and BDC?  

How do we know this is true?  How did the perpendicular bisector make this happen?” will 

help students to see that the two congruent triangles create congruent segments AD and BD.  

After this discussion, students will have already produced most of the steps necessary for a 

proof of the perpendicular bisector theorem, as seen below: 
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Statements Reasons 

1.  DC is the perpendicular bisector of AB 1.  Given 
2.  DC is perpendicular to AB 2.  Definition of perpendicular bisector 
     C is midpoint of AB   
3.  AC is congruent to BC 3.  Definition of midpoint 
4.  <DCA and <DCB are right angles 4.  Definition of perpendicular lines 
5.  <DCA is congruent to <DCB 5.  Definition of right angles 
6.  DC is congruent to DC 6.  Reflexive Property 
7.  Triangles ADC and BDC are congruent 7.  SAS Congruence 
8.  DA is congruent to DB 8.  CPCTC 

                          Figure 6.4. Proof of the Perpendicular Bisector Theorem 

 

It is important that teachers help their students see the connections between what they 

are doing on the computer and what they are learning in Geometry.  Teachers have to be 

careful to use DGS in such a way as to create a need for proof.  DGS make it possible to 

explore many empirical examples at once, leading some students to believe that what they 

see on screen is actually a proof.  This can be done simply by asking students to “explain” 

why their conjecture is true, rather than asking them to prove it. 

Students should not be expected to immediately be at an axiomatic proof scheme.  

However, this is where Geometry instruction usually starts.  Perhaps proof instruction should 

be delayed until the second half of the school year.  If students are entering high school 

Geometry below VHL 2, then they will not be at an axiomatic proof scheme at the beginning 

of the year.  If proof instruction were delayed, students would have more of an opportunity to 

develop their conjecturing and justification skills before attempting to write formal proofs.  

During the first half of the year, instruction could focus on reasoning and informal proofs, 

allowing students to develop their skills in other proof schemes.  By understanding students’ 

justification skills, teachers will be able to alter instruction to accommodate for whichever 
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proof scheme they are currently operating under. 

In order to be ready for proof in high school Geometry, students need to have 

sufficient mathematical and geometric reasoning skills.  Researchers have seen low proof 

performance among the majority of students in high school Geometry, probably because 

students are not entering Geometry with the necessary skills and reasoning capabilities.  

Evidence shows that this could be due to a lack of teacher preparation to teach mathematical 

reasoning and the minimal attention to mathematical reasoning and justification in earlier 

grades.  Further research should examine what teacher education programs can do to better 

prepare teachers of all grade levels to foster mathematical reasoning and justification habits 

of minds.  Once students are in Geometry, teachers need to promote an environment that 

fosters communication and explanation, providing a framework for the learning of proof. 
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