Abstract

MANNINAGARAJAN, PADMANABHAN. Rolling Horizon Plant Scheduling.
(Under the direction of Kristin A. Thoney)

Scheduling is critical in all industries as it helps to reduce delays in job
completion by effectively using all available resources. The Virtual Factory is one of
the many job shop-scheduling systems for scheduling large problems. The Virtual
Factory is an iterative simulation based procedure that has been found to provide near-
optimal solutions to industrial-sized problems. As the current version of the Virtual
Factory has more than 40 classes, understanding it might be a time-consuming task
even for an experienced C++ programmer. To make it easier for the user to perform
experiments, a Visual Basic interface is developed.

The Virtual Factory has primarily been tested under transient conditions in
which the plant is run until it is empty. In industry, each day jobs are released, the
status of the plant is downloaded, and scheduling is performed. The best schedule is
implemented until the plant is scheduled again. To analyze the potential performance
of the Virtual Factory in industry, it is tested in a rolling horizon setting. Experiments
with various parameters show that the Virtual Factory also performs well in these

circumstances.
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Chapter 1

Introduction

Production scheduling is important in all industries, particularly in the textile
industry. As the textile industry has become progressively more global, competition is
more fierce. To survive, U.S. companies must adopt technology to become more
efficient. Production scheduling tools help create better schedules that have the
potential to reduce overtime by better utilizing machines, even in the cases of textile
and apparel products that have erratic demand. They can also help companies better
satisfy their customers by providing more on-time orders.

There are many tools available for scheduling large problems. The Virtual
Factory is one such tool that has been found to provide near-optimal solutions to
industrial-sized problems in seconds. The Virtual Factory is an iterative simulation-
based procedure, whose objective is to minimize the maximum lateness, L. To
determine the effectiveness of its solutions, results are compared to a simple lower
bound calculation.

The Virtual Factory is written in C++, and the current version has grown to
include over 40 classes. Even for an experienced C++ programmer, understanding the
complete program is a time-consuming undertaking. Just learning how to run it with

the desired options can also be difficult. To remedy this situation, a Visual Basic



interface will be developed. Consequently, little training will be needed to be able to
perform experimentation with the existing options.

The Virtual Factory, as the majority of the job shop scheduling algorithms
found in the literature, has been tested exclusively under transient circumstances. In
industry, though, running a plant until it is empty is rare. Instead, plants usually
contain many different orders, with new orders arriving as older ones are completed.
Scheduling is often performed on some regular basis, i.e. everyday. The best schedule
is implemented until the plant is rescheduled. Thus, scheduling occurs on a rolling
horizon basis. To test how well the Virtual Factory would perform in industry, it
therefore will be tested under these circumstances.

In Chapter 2, a literature review for this thesis is given. Chapter 3 provides the
details about the Visual Basic interface for the Virtual Factory. In Chapter 4, the
results of testing the Virtual Factory on a rolling horizon basis are analyzed.

Conclusions and future research are found in Chapter 5.



Chapter 2

Literature Review

2.1 The Virtual Factory

2.1.1 Introduction

The idea for this simulation-based job shop-scheduling algorithm was first
proposed by Lawrence and Morton [17] and Vepsalainen and Morton [30]. Hodgson et
al. [12] further developed it and named it the Virtual Factory. The Virtual Factory
consists both of a scheduling algorithm and a lower bound. In general, it produces

very good results.
2.1.2 Scheduling Procedure

Let d; be the due date of job i and p;; be the processing time of job 7 on machine
j. Then the slack of job i on machine m is calculated as

Slack,-,m = dl' - Zpl] ,
jem+

where m+ is the set of all operations subsequent to machine m on job i’s routing.
Slack represents the latest possible time that a job can finish on a machine and still
satisfy its final due date. As this does not include queuing time, slack did not perform
well as a dispatching rule in early experiments found in the scheduling literature.

To remedy this situation, a revised slack value that incorporates queuing times

is used as the sequencing rule in the Virtual Factory. Queuing times are recorded for



each job at each machine it visits in one iteration of the simulation and used in the next

iteration. The revised slack for job i on machine m is computed as

Slack ’i,m = d,-—Epl-,-— P qi ,
jem+ jem++
where m;"" is the set of all subsequent operations to machine m on the routing sheet for
job i, except the immediate subsequent operation. The simulation is run until the lower
bound is achieved or a specified number of iterations is reached, and the best solution

1s saved.
2.1.3 Lower Bound

Hodgson et al. [12] chose to evaluate the quality of the schedules produced by
the Virtual Factory through comparison to a lower bound. The lower bound is
calculated by decomposing the job shop problem into individual one machine
problems. To do this, an earliest start time and a latest finish time were calculated for
each machine on each job’s route. Let 7; be the release time of job i. Then the earliest
possible start time for a job i on machine m is,

ESin=1ri+2py,
jem
where m" is the set of all operations preceding machine m on job i’s routing sheet. The

latest finish time for each job i on machine m is

LFi,m = dl'- Zp,] ,
jemJr



where m" is the set of all operations following machine m on the routing sheet of job i.

The lower bound for the job shop problem (N/M/L,,, ) is obtained by solving
the N/1/ Ly | i problem on each machine m by considering LF;,, as the effective due
date for job i on machine m and ES;,, as the release time (7;) for job i on machine m.
Since N/1/ Ly | riis NP-hard, a relaxation suggested by Baker and Su [3] is used. The
relaxation is to allow preemption of a job in process whenever one with a more
imminent due date becomes available.

The overall lower bound, LB (L), is computed as

LB (Lmax) = max {LBM(LWMX)})
m=I.M

where LB, (Lyay) 1 the lower bound for machine m. The power of this lower bound is

that there are M chances to get a tight bound.
2.1.4 Experimental Results

The Virtual Factory has provided optimal results when tested with two data
sets from a large furniture manufacturing plant. The Virtual Factory was also tested on
data generated randomly with the procedure suggested by Demirkol et al. [11]. The
test results for a particular problem specified with the number of jobs, number of
machines, number of operations per job, and processing time range, showed that the
due date range had considerable effect on the performance of the Virtual Factory.
When the difference between L, and LB was plotted against the due date range,

Hodgson et al. [13] observed that the difference was zero for low due date ranges and



the difference increased up to a specific value and remained at that value as the due
date range was increased to larger values.

Figure 2.1 shows a graph with the difference between L,,. and LB plotted
against the due date range for a problem with 1000 jobs, 100 machines, 7 operations
and processing time uniformly distributed between 1 and 200. Each point on the graph
represents the average of solutions to 10 problems. The difference between L, and
LB represents the maximum by which the Virtual Factory solution could exceed the
optimal solution.

Hodgson et al. [13] found that the difference was roughly equal to the expected
queuing time of the L, job. The L, job should be processed immediately on the
first machine on its route. For each subsequent machine on the job’s route, usually
another job will be in process when the L,,, job arrives. On average, the job on the
machine will be half way through processing and its processing time will be equal to
the average processing time. Thus the expected queuing time of the L, job is equal to
(Ops -1)(13/2), where O, is the number of operations per job and P is the average

processing time per job. For the problem shown in Figure 2.1, the expected queuing

time is (7-1)(100.5/2) = 301.5, which is similar to the difference seen in the graph.
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Figure 2.1: Virtual Factory: Performance vs. Due Date Range

2.2 Extensions of the Virtual Factory

2.2.1 Hot Job Acceleration

Hodgson et al. [13] proposed an extension of their scheduling heuristic by
identifying critical jobs, i.e. those jobs whose lateness is equal to or close to L. They
observed that a critical job might be delayed by a non-critical job already in process
when the critical job arrives. Hodgson et al. tried to improve the schedule by inserting
idle time into a machine schedule just before the arrival of a critical job if a non-
critical job would otherwise prevent the critical job from starting immediately. By
accelerating critical jobs throughout the system, in general, L, decreased. This can
be seen in Figure 2.2, which shows a comparison of the original Virtual Factory

solution and the solution with the accelerating hot jobs procedure. For larger due date

7



ranges, it clearly shows that the difference between the L, and LB has been reduced
considerably in the accelerated version when compared with the original Virtual

Factory solution.
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Figure 2.2: Comparison of Original vs. Accelerated Versions of Virtual Factory
2.2.2 Alternative Process Plans

Weintraub et al. [31] extended the methodology used by Hodgson et al. [12] by
developing a procedure for scheduling jobs with alternative processes to minimize the
manufacturing costs and at the same time satisfy due dates. A tabu search was used to
evaluate the alternative process plans, and those plans were selected based upon their
lower bound. The process plans were modified with alternative routings, operations
and sequences. From the experiments, they found that there were substantial

differences in performance between scheduling with and scheduling without

8



alternatives. Also scheduling with alternatives could identify optimal or near optimal
schedules that minimize manufacturing costs and satisfy due dates. They found that
scheduling with alternative operations resulted in the largest schedule improvement,
and scheduling with alternative sequencing resulted in the smallest schedule

improvement.
2.2.3 Determining Job Release Times

Zozom et al. [33] developed two heuristics for deciding when to release jobs to
the shop floor. From the experimental results, both methods were effective at lowering
work in process (WIP). In addition, the solutions that the heuristic provided were close

to a lower bound computed on WIP.
2.2.4 Multi-Factory Scenarios

Thoney et al. [28] developed a detailed scheduling procedure for multi-factory
scenarios, including inter-plant transportation. This required incorporating
transportation into the Virtual Factory. Vehicles are batch processors, and their
characteristics are different from that of conventional processors. In a batch processor,
a number of jobs start and end processing together. Because of these special
characteristics, initial experiments calculating revised slack for batch processors in the
same manner as for conventional processors did not perform well. Consequently, a
new revised slack calculation had to be computed for batch processors. In addition, a
lower bound on batch processors had to be developed.

Thoney et al. considered the following four multi-factory scenarios: Two

Factories in Series, Three Factories in Series, Two Factories Feeding One, and One
9



Factory Feeding Two. Experiments showed that performance for these scenarios was,
in general, quite good. In transportation-constrained scenarios, the performance
declined slightly. This was determined to be the results of transient effects occurring at
the beginning and ending of the simulations. It was suggested that using rolling

horizon scheduling might eliminate these transient effects.
2.2.5 Simulated Annealing

Schultz et al. [23] developed a simulated annealing procedure to be used as a
post processing procedure with the Virtual Factory. Experiments were run using the
problems generated by Demirkol et al. [11] and also with some industrial-sized
problems used by Hodgson et al. [13]. Schultz et al. found that the simulated annealing
procedure coupled with the Virtual Factory was an effective approach to improving
solution quality. For the 160-benchmark problems generated by Demirkol, the best-
known solution was obtained or bettered for 141 problems in 120 minutes. For 116 of
these problems, the solution was improved. For the industrial-sized problems, this
procedure provided significant improvement to Virtual Factory for additional run
times of 1 to 5 minutes.

Figure 2.3 shows the comparison of the Virtual Factory solution with hot job
acceleration and the simulated annealing solutions with different additional run times
(1, 5 and 10 minutes). The difference between L, and LB has been reduced greatly
with the simulated annealing procedure, and it can also be seen that an increase in run

time reduces the difference further.

10
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Figure 2.3: Comparison of Virtual Factory with Hot Job Acceleration vs. Procedure

with Simulated Annealing

2.3 Rolling Horizon Scheduling

Previous work that treats rolling horizon-scheduling problems is presented in
this section. In most of the earlier studies, lot sizing problems were applied in a rolling
horizon setting and their performances were analyzed. Several conditions that were
considered for rolling horizon schedules include deterministic demand, single machine
and parallel machine problems, and probabilistic demand. Among the various factors
that were studied are the length of the planning horizon, method of freezing the

schedule, stability of the schedule, and cost performance.
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2.3.1 Lot Sizing Problems

Baker [1] conducted an experimental study to test the effectiveness of
schedules obtained from a finite-horizon planning model using limited information
about future demand and applying those schedules on a rolling horizon basis. He
considered the effects of the length of the forecast window, the cost structure, and the
demand pattern. He found that the rolling schedules produced low-cost results. He also
found that the rolling schedule’s efficiency depended on the length of the forecast
horizon.

Lundin and Morton [18] developed planning horizon procedures for the
dynamic lot size model. They observed that the length of the planning horizon must be
at least five EOQ cycles to ensure a solution within one percent of optimality.

Blackburn and Millen [4] compared the performance of the following four lot-
sizing methods for single level assembly systems by implementing rolling schedules:
part period cost balancing, Silver-Meal heuristic, Wagner-Whitin algorithm, and
modified Silver-Meal algorithm. They found that the Silver-Meal heuristic provided
better cost effectiveness than the rest.

Carlson et al. [9] extended the results obtained by Baker and came up with
solutions for different conditions in which N < T, N = mT, and N > T where, N is the
horizon length, 7 is the length of the natural cycle, and m is an integer.

Chand [10] modified the dynamic lot size algorithm of Wagner and Whitin for
rolling horizon environments and obtained better-cost performance than the Wagner-

Whitin algorithm and the Silver-Meal heuristic.
12



Wemmerlév and Whybark [32] studied the performance of fourteen different
single stage lot-sizing procedures with probabilistic demands in a rolling schedule and
ranked them by conducting experiments. They found that demand uncertainty changed
the solutions to a larger extent than the constant demand solutions.

Russell and Urban [22] studied the effects of forecast length and accuracy in
horizon extensions. They also conducted experiments to compare the Wagner-Whitin
algorithm with horizon extensions with the Silver-Meal heuristic. They found that the
Wagner-Whitin algorithm with horizon extensions performed better than Silver-Meal
heuristic for large and moderate values of the planning horizons.

Matta and Guignard [19] developed a production-scheduling model that finds
low-cost solutions to a mixed-integer programming formulation of the production lot-
sizing problem. They measured the quality of the production schedules by comparing
them to a lower bound found using lagrangian relaxation. They concluded that the
total savings in annual production cost is reduced when more periods are added to the
planning horizon.

Simpson [24] evaluated nine multiple level planning heuristics. He analyzed
the relation of rolling horizon results to fixed horizon results in a deterministic demand
environment. He used the relative cost ratio as the primary performance measure. He
computed a tight lower bound on the lowest possible cost schedule to calculate the
relative cost ratio. Of all the nine algorithms studied, he found that the Non-sequential
Incremental Part Period Algorithm provided the lowest cost schedules under all

conditions, except extremely short planning horizons.

13



Stadler [27] developed a modified model of the single level lot-sizing problem
in which lot-sizing decisions consider demand forecasts beyond a given planning
horizon. He solved the model by the Wagner and Whitin algorithm. He compared the
results with four known heuristics and found that the modified model performed well

with relatively little additional cost.
2.3.2 Single and Parallel Machine Problems

Ovacik and Uzsoy [20] developed rolling horizon heuristics to minimize
maximum lateness on a single machine with sequence dependent setup times. The
procedure solved several small sub-problems to optimality using a branch and bound
procedure. A part of those solutions were implemented. They found that these
procedures performed far better than the best dispatching rules.

Ovacik and Uzsoy [21] extended their procedure to include parallel machines

and showed that the performance was also better than dispatching rules.
2.3.3 Probabilistic Conditions

Bookbinder and H’ng [5] developed a production-planning procedure for a
rolling horizon setting with probabilistic demand. They compared their procedure with
Silver’s procedure (a procedure to determine the timing and sizes of replenishments
for probabilistic demand with normally distributed forecast errors) in terms of the cost
performance, percentage of demand shortage per period, and percentage of periods
with stock-outs. They found that their procedure provided better-cost performance
than that of Silver’s procedure, while Silver’s procedure yielded better results for the

percentage of demand shortage per period and percentage of periods with stock-outs.
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They also found that the production plan was better when there was more information,
even if that information included some uncertainty.

Baker and Peterson [2] developed a framework for assessing the cost
performance of rolling schedules. They analytically studied a quadratic-cost model for
the effects of factors such as the length of the planning horizon, the uncertainty in
demand forecasts, the amplitude of demand fluctuations in seasonal cases, and
imposition of a terminal condition.

Kleindorfer and Kenreuther [14] developed a method to relate the stochastic
planning problems to the planning procedures and information system within the
industry. They also described how their procedure could be used for specifying

stochastic horizons for aggregate planning problems in the industry.
2.3.4 Aggregate Production Schedules

Venkataraman and Smith [29] developed a master production scheduling
model that considers the disaggregation of aggregate plans to a rolling horizon master
production schedule with minimum batch-size restrictions for a fixed routing, batch
production, process industry environment. Their model included multiple products,
multiple production lines, capacity limitations, inventory requirements, and seasonal

demands.
2.3.5 Production Smoothing Problem

Kunreuther and Morton [15] [16] developed algorithms to find horizons for

production and workforce smoothing problem with deterministic demands by
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considering such factors as holding costs, overtime, lost sales, simple subcontracting,

under time, and backlogging.
2.3.6 Fixed Interval Scheduling

Fixed interval scheduling is characterized by production periods that are
evenly spaced over time. Campbell [6] studied fixed interval scheduling in a rolling
horizon framework by using the concept of time fencing. He also studied three

different methods of finding safety stock in this context.
2.3.7 Freezing the Master Production Schedule

Sridharan et al. [25] [26] discussed the measurement of instability in the
Master Production Schedule (MPS). They related the instability to three decision
variables in managing the MPS in a rolling horizon environment. The decision
variables were the method used to freeze the MPS (period-based freezing and parts-
based freezing), the proportion of the MPS frozen, and the length of the planning

horizon for the MPS.
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Chapter 3

Visual Basic Interface to the Virtual Factory

3.1 Introduction

The current academic version of the Virtual Factory is written in C++ and
contains more than 40 classes. Understanding that many classes can be a time-
consuming task, even for an experienced C++ programmer. In addition, just running
the desired experiment is not straightforward because of the large number of critical
parameters that are hidden in the massive amount of code. To overcome this situation,
a Visual Basic (VB) program was developed that serves as a front end to the VF.
With the VB program, only minimal training is required to learn how to perform
experiments. Essentially this creates two types of users: those that can only run
existing experiments and those that can also modify the C++ code to perform

experiments of which the VF is not yet capable.

3.2 Flowchart

Figure 3.1 shows a flowchart of the Visual Basic interface. Based on the
factory configuration, simulation type, and algorithm that is selected, there are specific
parameters to input. The One Factory scenario is the most developed, in that it allows
the user to select from more simulation types and algorithms than for the multi-factory
scenarios. Adding these capabilities to the multi-factory problems is the subject of

future work.
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Figure 3.1: Flowchart for Visual Basic Interface
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3.3 Factory Configurations

Figure 3.2 is the introduction form of the scheduling system. From here the
user proceeds to Figure 3.3, where he or she is given a list of different factory

configurations from which to choose.

=Y
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Virtual Factory
Multi-Factory

Scheduling System

Next

Graphical Interface
Created by,

Kristin Thoney
Padmanabhan Manninagarajan

Figure 3.2: Introduction form
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Figure 3.3: List of options
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3.3.1 One Factory

The One Factory scenario randomly generates a job shop in which each job
visits a subset of the machines in the factory, with the stipulation that each job visits
no machine more than once. All other scenarios are generated with this stipulation.
The input parameters for the One Factory scenario are shown in Figure 3.4. The
processing times in this scenario, as in all others, are set at a default of being
uniformly distributed between 1 and 200. These values were chosen since they were

used in previous VF experimentation.

i)
Number of total jobs
Number of machines in factory

Distribution of processing times
+ Discrete unifiorm

Lower Litnit 1
Upper Limit 200

Distribution of number of operations remaining
& Discrete uniform

Lower Limit 1
Upper Limit.

Back Next

Figure 3.4: One factory parameters
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3.3.2 Two Factories in Series

The Two Factories in Series scenario randomly generates a problem in which
all jobs starting in Factory 1 will be transported to Factory 2 where they will also be
processed there. Jobs starting on the truck or in Factory 2 will only be processed in
Factory 2. The input parameters for the Two Factories in Series scenario are shown in

Figure 3.5.

. 2 Factories in Series: current state of factories - o] x|

Factory 1 » Factory 2
Number of total jobs
Number of machines in each factory

Number of trucks

Between Factony | and 2

Vehicle travel time

From Factoty 1 to2
Vehicle volume 10

Distribution of processing times
¢ Discrete uniform

Lowrer Litnit 1
Upper Limit 200

Distribution of number of operations remaining
¥ Discrete uniform

Lower Limit 1
Upper Limit

Back Next

Figure 3.5: Two factories in series parameters

22



As is true for all multi-factory scenarios in this system, the maximum number
of operations in each factory is equal, and truck transportation is considered a machine
operation. The number of operations remaining, O, for each job is uniformly
distributed between 1 and an upper limit, U;, that must be odd. Let M be the
maximum number of operations in each factory. Then, M= [(U, - 1) / 2]. If O,>
M+1, the job will be processed on O,,-(M+1) machines in Factory 1, transported by
truck to Factory 2, and processed on M machines in Factory 2. If O,,=M+1, the job
will be transported by truck to Factory 2 and processed on M machines. If O,,< M, the
job will be processed on O, machines in Factory 2.

The truck volume assumes that each job has unit volume and therefore equals
the number of jobs that a single truck can carry from one factory to another at the
same time. Truck volume is initialized to 10 because, again, most of the previous VF
experiments used this value. Both of these observations hold for trucks in all multi-

factory scenarios in this program.

3.3.3 Three Factories in Series

The Three Factories in Series option randomly generates a problem where jobs
that begin in Factory 1 are processed there, transported via truck to Factory 2,
processed in Factory 2, transported to Factory 3, and processed in Factory 3. Jobs that
begin on the truck between Factory 1 and 2 or in Factory 2 are processed in Factory 2,

transported to Factory 3 and processed in Factory 3. Jobs that begin on the truck
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between Factory 2 and 3 or in Factory 3 are only processed Factory 3. The input

parameters for the Three Factories in Series scenario are shown in Figure 3.6.

. 3 Factories in Series: current state of factories o ] 4|
Factory 1 p| Factory 2 | Factory 3
Number of total jobs [
Number of machines in each factory |

Number of trucks

Between Factory 1 and 2 1
Between Factory 2 and 3 1

Vehicle travel time

From Factory 1to 2 1
From Factory 210 3 1

Vehicle volume 10

Distribution of processing times
(# Dizcrete uniform

Lowrer Litnit 1
Ugppet Litnit 200

Distribution of number of operations remaining
& Duscrete uniform

Lower Limit 1
Uppet Litnit. 1

Back Next

Figure 3.6: Three factories in series parameters

Let M=/(U;-2)/3]. Consequently, U;-2 must be a multiple of 3. If O,, > 2M+2,
the job is processed on O, -(2M+2) machines in Factory 1, transported by truck to
Factory 2, processed on M machines in Factory 2, transported by truck to Factory 3,
and processed on M machines in Factory 3. If O,; =2M+2, the job is transported by

truck to Factory 2, processed on M machines in Factory 2, transported by truck to
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Factory 3, and processed on M machines. If (M+1) < O, < (2M+2), the job is
processed on O, -(M+1) machines in Factory 2, transported by truck to Factory 3, and
processed on M machines in Factory 3. If O, = M+1, the job is transported by truck to
Factory 3 and processed on M machines. If O,, <M, the job is processed on O,
machines in Factory 3.
3.3.4 Two Factories Feeding One

The Two Factories Feeding One scenario randomly generates a problem in
which a job from Factory 1 and a job from Factory 2 (either starting in these factories
or on a truck) are assembled together in Factory 3. A specific job from Factory 1 must
be assembled with a specific job from Factory 2. This pairing is determined upon
problem generation. The input parameters for the Two Factories Feeding One scenario

can be seen in Figure 3.7.
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. 2 Factories Feeding 1: current state of factoties o =] |

Factory 1 \
Factory 3
Factory 2 /
Number of total jobs I
Number of machines in each factory [

Number of trucks

Between Factory 1 and 3
Between Factory 2 and 3

Vehicle travel time

FromFactory 1 to3
FromFactory 2to 3

Vehicle volume 10

Distribution of processing times
{* Discrete uruform

Lower Limit 1
Upper Limit 200

Distribution of number of operations remaining
% Discrete uniform

Lowrer Limit 1
Upper Litnit

Back Next

Figure 3.7: Two factories feeding one parameters

Let M = (U -1) / 2. Thus, U; must be an odd number. If O,; >M+1, 3 jobs are
generated. The first job will be processed on O, -(M+1) machines in Factory 1 and
transported by truck to Factory 3. The second job will be processed on O, -(M+1)
machines in Factory 2 and transported by Truck to Factory 3. The third job will be the
assembly of 1 and 2 and it will be processed on M machines in Factory 3. If O
=M+1, 3 jobs are also generated. The first job will be transported by truck from

Factory 1 to Factory 3. The second job will be transported by truck from Factory 2 to
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Factory 3. The third job will be the assembly of 1 and 2 and will be processed on M
machines in Factory 3. If O,; < M+1, 1 job is generated, and it will be processed on M
machines in Factory 3.
3.3.5 One Factory Feeding Two

The One Factory Feeding Two scenario randomly generates a problem where
jobs staring in Factory 1 are split into two jobs, one of which is further processed in
Factory 2 and the other in Factory 3. The input parameters for the One Factory

Feeding Two scenario are shown in Figure 3.8.

. 1 Factory Feeding 2: current state of factories =10 ﬂ
/ F ac to r}! 2’
Factory 1
\ Factory 3
Number of total jobs I
Number of machines in each factory

Number of trucks

Between Factory 1 and 2
Between Factory | and 3

Vehicle travel time

From Factory 1 to 2
From Factory 1to 3
Vehicle volume 10

Distribution of processing times
& Discrete uniform

Lower Limit 1
Tpper Limit 200

Distribution of number of operations remaining
& Discrete uniform

Lowrer Limit 1
Upper Limit

Back Next

Figure 3.8: One factory feeding two parameters
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Let M = (U, -1) / 2. Consequently, U; must be an odd number. If O,, > (M+1),
3 jobs will be generated. The first job will be processed on O, -(M+1) machines in
Factory 1. This job is split into the second and third job. The second job will be
transported by truck to Factory 2 and processed on M machines. The third job will be
transported by truck to Factory 3 and processed on M machines. If O,; =(M+1), 2 jobs
will be generated. The first job will be transported by truck to Factory 2 and processed
on M machines. The second job will be transported to Factory 3 and processed on M
machines. If O, <M, 2 jobs will be generated. The first and second will be processed

on M machines in Factory 2 and Factory 3, respectively.
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3.4 Simulation Type

The choices of simulation types can be seen in Figure 3.9.

[osmuanon i

Simulation type

Run a
* Transient Simulation
Long Run Simulation

¢ Rolling Horizen

" Schedule Once

Back Next

Figure 3.9: Simulation type
3.4.1 Transient simulation

A transient scheduling simulation is defined in this thesis to be a method in

which a factory download is randomly generated, and the factory is simulated until all
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the jobs are complete, and the factory is empty. This reflects the traditional method of

evaluating job shop scheduling algorithms.

=

Correlate number of operations remaining
and due date of jobs?

= Yes

© No

Back

Figure 3.10: Correlation
For the transient simulation, the user is given the option of correlating the
number of remaining operations and the due date, as seen in Figure 3.10. This gives
the problem more realistic characteristics. One would expect that the jobs that are
almost finished have imminent due dates, while jobs that have just started processing

have due dates farther in the future. If the user decides to choose to correlate the
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number of operations remaining with the due date, then Figure 3.11 allows him or her
to input the correlation. This correlation should be nonnegative because in a shop that
is well run, the average correlation between the number of operations remaining and
the due date should not be negative. The method used to correlate the number of
operations remaining with the due date is that of Cario et al [7, 8]. In this method, the

correlation must strictly be less than one.

i, Correlation Yalue 3} o ] 4|

Enter the non-negative correlation between
the number of operations remaining and
the due date

Back Next

Figure 3.11: Correlation value
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3.4.2 Long Run Simulation

A long run scheduling simulation is defined in this thesis as a simulation,
which not only simulates the random factory download but also releases jobs into the
system on a periodic basis and terminates after a large number of periods. This is a
much better approximation of what happens in industry as compared to the transient
simulation (particularly in the rolling horizon case), because in industry, factories are
not often emptied.

The additional parameters for a long run simulation are found in Figure 3.12.
These parameters relate to those jobs that are not currently in the factory download,
but, instead, will be released later. The number of warm-up days refers to the number
of days the simulation will be run before clearing the statistics. The purpose of this is
to allow the user to collect only steady state information. The effect of changing the
number of days in warm-up is discussed in detail in Section 4.4.3.

34.2.1 Rolling Horizon Simulation

Background on rolling horizon scheduling was discussed in Section 2.3. A
rolling horizon scheduling simulation will be defined in this thesis as a long run
simulation in which in each period jobs are released, the current status of the factory is
downloaded, scheduling is performed, and the best schedule is implemented until
more jobs are released and the factory is rescheduled. A more complete description of
this procedure applied to the VF as well as computational experiments are located in

Section 4.2.
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I %]

Time Frame
Length of day (relate to job processing time) I

Total number of days (including warm-up period) |

Number of days in warm-up I

Jobs Released

-Number of Jobs released each day

Minimum | Maximum [~

-Distribution of number of operations for
{ Discrete uniform

Lower Limit I
Upper Limit I

Back | Next

Figure 3.12: Long run parameters
3.4.2.2 Schedule Once
This option was created to test whether the VF performed better on a rolling
horizon basis or in one large simulation where all job releases in the time horizon are

known in advance. More information on this procedure is found in Section 4.4.7.
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3.5 Algorithm

The choice of algorithms is shown in Figure 3.13.

L= TE5 |

Algorithm type

& Regular Virtual Factory:

« VF with Hot Job Acceleration

 VF with Simulated Annealing

Back Next

Figure 3.13: Type of algorithm
3.5.1 Regular Virtual Factory
The regular VF is the original algorithm explained in Section 2.1.

3.5.2 Hot Job Acceleration

In this algorithm, critical or “hot” jobs, whose lateness is equal to or close to

Luay, are given priority over other jobs. This is accomplished by inserting idle time
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into a machine schedule if a non-critical job would be in process on a machine when a
critical job arrives. The critical job begins processing immediately upon arrival at the
machine, while the non-critical job is kept in the queue until the critical job is
complete. This method is explained in more detail in Section 2.2.1. Computational
results for using this procedure in a rolling horizon setting can be found in Section
4.4.8.

The parameters for this option can be seen in Figure 3.14. When the number of
consecutive worse solutions occurs or the maximum number of hot jobs is explored,

the algorithm will terminate.

. Hot Job Acceleration i 1 =101 x|

Hot job parameters

Maximum number of Hot Jobs

Number of consecutive worse solutions

Back Next

Figure 3.14: Hot job parameters
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3.5.3 Simulated Annealing

This option uses the VF to obtain an initial solution and then uses a simulated
annealing algorithm to investigate switching jobs on the critical path. This procedure
was explained in Section 2.2.5. Computation results for using this procedure in a
rolling horizon setting can be found in Section 4.4.9.

The parameters for this algorithm are found in Figure 3.15. Note that a time
limit is used to control how long the simulated annealing algorithm is run. If this
procedure is being run for a transient simulation, the hot job parameters also need to
be entered. The reason for this is that the simulated annealing procedure should be
started with the best-known solution. In the case of the transient simulation, this is the
hot job solution. As will be shown in Section 4.4.8, hot job acceleration does not work
particularly well in the rolling horizons situation. Therefore, the original VF algorithm
usually yields the best solution. Consequently, the hot job parameters are hidden when

the user reaches Figure 3.15, if he or she has selected the rolling horizon option.

36



. Simulated Annealing o ] |

Simulated annealing parameter

Maximum time per problem (in seconds) [

Hot Job parameters
Maximum number of Hot Jobs [

Number of consecutive worse solutions |

Back Next

Figure 3.15: Simulated annealing parameter
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3.6 Running Problems

As seen in Figure 3.16, there are two different options of running the
simulation. The first option is to run a single experiment with a specific due date
range. Random number stream 1 is used by default. An example of the output of this

option is shown in Figure 3.17. The random numbers are generated by LCG.

fore =lolx]
Run
Number of iterations
© 1 problem
minimum range maximum range
© Arange of due dates
largest range range increment
| |

Number of replications |

Back Next

Figure 3.16: Run screen
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. Solution for 1 problem o =] |

Lmax value is 3546

LB value is 3546

The difference is 0

Results are saved in "oneproblem.txt” file

Figure 3.17: 1 problem output screen
The second option is to run multiple simulations, varying the due date range
between 0 and some maximum value in fixed increments. The output for this option is
a graph, an example of which can be seen in Figure 3.18. The system automatically
writes the results to an excel spreadsheet as well as generates the graph from the
results. The random number streams used are the first R, where R equals the number of

replications.
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Chapter 4

Rolling Horizon Scheduling

4.1 Introduction

Until now, the Virtual Factory has been tested only under transient settings by
running a plant until all operations are complete and the plant is empty. However,
what happens in an actual industrial setting is different. In industry, jobs are released
and scheduling is performed on a regular basis, perhaps every day. Before new job
arrivals can be scheduled, they are entered into the plant’s ERP or MRP system. Then,
the current status of the plant is downloaded. Scheduling is performed, and the best
schedule is implemented until the next time the plant is scheduled. This process is
repeated over and over again. To more accurately determine the performance of the
Virtual Factory in real scenarios, it will be tested on a rolling horizon basis.

The following definitions are required for this chapter:

t - Current time in days
LB - Lower bound

7 - Release time of job j

Cj - Completion time of job j

d; - Due date of job j

N - Total number of jobs

N - Total number of jobs starting in factory
M - Total number of machines

UL - Upper limit of uniform distribution for number of operations
Jr - Number of jobs released each day

Ro - Number of operations for jobs released
Dy - Length of a day

T - Total number of days

w - Number of days in warm-up period
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WIP - Work in process (number of days)
i - Number of iterations

4.2 Rolling Horizon Procedure

4.2.1 Scheduling algorithm

The algorithm for the rolling horizon scheduling procedure is given as follows:
1. Initialize # =0
I.1.Ift=w+ 1, compute LB
1.2. Release jobs whose r; = ¢
1.3. Run the Virtual Factory i iterations
1.4. Implement the first day of the best schedule
15 t=t+1
1.6. Continue from 1.1. until ¢ = T’
2. Run the remainder of the best schedule of the last day (T) until all jobs are
finished
3. Initialize j =1
3.1. If ¢;> w, determine if job j is the L, job
32.7=5+1

3.3. Continue from 3.1. until j = N

Step 1 initializes the beginning of the first day as time 0. If in step 1.1 the time
is one day past the warm-up period, the lower bound is computed. In step 1.2, the jobs

with release time equal to the current time enter the factory. No jobs are released on
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the beginning of the first day since these jobs are assumed to be already in the factory.
Step 1.3 runs the original VF procedure, usually for 100 iterations in the
experimentation in this thesis. In step 1.4, the first day of the best schedule is
implemented. The rest of the schedule is discarded, except on the last day. At the end
of the day, there may be jobs that are still in process. Each of these jobs is put back in
the machine’s queue, and the job’s processing time is set equal to the remaining
processing time. Steps 1.5 and 1.6 ensure that steps 1.1 through 1.4 are run for each
day until the total number of days is reached. In step 2, the best schedule of the last
day is run until all jobs are finished. This ensures that the scheduling procedure does
not sacrifice the remaining jobs in the factory to yield a good schedule for the jobs that
complete processing since all jobs finish. Step 3 initializes the counter, j, equal to the
first job. In Step 3.1, only jobs that are completed after the warm-up period are
included in the L,,, calculation to eliminate transient effects dependent on initial
factory conditions. Steps 3.2 and 3.3 ensure that the lateness for each job completed

after the warm-up period is compared to the current maximum lateness.
4.2.2 Lower Bound

The lower bound for the rolling horizon schedule is computed after the warm-
up period. The LB calculation includes both jobs that are currently in the factory after
the warm-up period, with their remaining operations and processing times, and also
those jobs that will be released later, during the complete horizon of the simulation.

The LB is computed in the same manner as for the original VF. Therefore, even
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though there are multiple runs of the VF engine for the rolling horizon scheduling

procedure, there is only one LB calculation.

4.3 Problem Generation

For testing the Virtual Factory on a rolling horizon basis, two different
problems were generated, a 5 operation problem and a 7 operation problem. The
parameters for these problems are given below in Table 4.1.

Table 4.1: 5 Operation and 7 operation problem parameters

Ny | M| U | Jr | Ro Dy T |w | WIP | i

5 Operation Problem | 1258 | 50 | 5 151 5 1600 | 100 | 10| 5 100

7 Operation Problem | 2082 | 75 | 7 165 | 7 1600 | 100 | 10| 7 100

The values of Jz, N;, and w were determined based on the other parameters of
the problems. To compute Jr, the number of jobs that balances the input into the
factory with the output from the factory needed to be found. This was approximated
by dividing the average number of operations that can be processed daily by the
amount of WIP in the factory. To find the average number of operations that can be

processed each day in the factory, the number of machines, M, was multiplied by the

average number of operations that a single machine can process in a day, Mops .

Mops can be computed by dividing the day length, D;, by the average processing

time, P . Consequently,
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and

i < (M) (Mops)
wIP

Since the processing times for both problems are uniformly distributed
between 1 and 200, P ~ 100 and thus Mops ~ 1600/100=16. (Assuming an 8 hour

work day, the average processing time is 0.5 hours). Therefore, for the 5 operation
problem, Jr = (50)(16)/5=160, and for the 7 operation problem, Jz =~ (75)(16)/7=170.
These values tend to overestimate Jr since they assume that there is never any idle
time on the machines. Therefore, experimentation was performed to determine the
actual values of Jg, starting with the computed values. Jz was found to be 151 for the 5
operation problem and 165 for the 7 operation problem.

N; was computed to achieve the desired amount of WIP. Since the problems
have been designed so that factory input is approximately equal to the factory output,
the number of operations that will be completed each day is approximately (Jz)( Ro).
If WIP days of work in process is desired, then the total number of operations that

should start in the factory is (Jr)( Ro)(WIP). Each job that starts in the factory has an
average of O_ps operations, where O_ps = (U;+1)/2. Consequently,

N~ RIROIIP)

N

Ops
jobs should start in the factory. For the 5 operation problem, N, =[(151)(5)(5)]/3
~1258. For the 7 operation problem, the computed Jr was mistakenly used to

calculate N,. Therefore for the 7 operation problem, Ny =[(170)(7)(7)]/4 =2082. This
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is just slightly higher than the value that would have been obtained if the actual J; was
used and should not significantly effect results.

The length of the warm-up period was chosen to eliminate potential transient
effects caused by the initial jobs in the factory. The warm-up period in days, w, was

set equal to 10 since this is significantly larger than the WIP in either of the problems.

4.4 Experimentation

Each experiment was run with a maximum due date range of 25 days. A due
date range, DDR, means that each job, j, is randomly generated a discrete uniform due
date between r;and r; + DDR, where r;=0 for jobs initially in the factory. Note that all
jobs are released at the beginning of a day, whereas the due date for a job could occur
at any time during the day. For each due date range, 20 replications were run and the
average difference between L, and LB was calculated. Recall that this difference is
the maximum by which the simulation solution could exceed the optimal solution. A
positive difference between L,,,, and LB could be the result of a non-optimal schedule,

a weak LB, or a combination of both.
4.4.1 Base Cases

Results of the 5 operation problem can be seen in Figure 4.1. The average L
- LB is approximately in the range of 0.9 to 0.18 days. For the first 14 due date ranges,
the average difference does not exceed 0.15 days. There is a slight increase in the
differences for due date ranges beyond 13 days. These differences are quite small

considering that 90 days of factory performance were included in these statistics, with
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the lateness of over (90)(151) = 13,590 jobs taken into account. This indicates that the

scheduling procedure is performing well.
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Figure 4.1: 5 operation problem-base case
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Figure 4.2: 7 operation problem-base case

Figure 4.2 shows the results for the 7 operation problem. The average L.~ LB
has slight variations until a due date range of 22 days. Then it increases gradually. The
magnitudes of L, LB are similar to those in the 5 operation problem.
4.4.2 Varying the Number of Days

To determine the effect of the total number of days that are scheduled on the
quality of the scheduling solutions, each problem was run for 55 days and 190 days
with the same 10 day warm-up. This allows the scheduling solutions to be observed
when the total number of days after the warm-up period is half as many and twice as

many as in the base cases.
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5 Operation Problem
Comparison of 55 Days and Base Case
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Figure 4.3: 5 operation problem-55 days

The results of the 5 operation and 7 operation problems with 55 days are
shown in Figure 4.3 and Figure 4.4, respectively. For the 5 operation problem, the
average Ly, LB value is low for due date ranges up to 13 days. It increases suddenly
at 14 days and then the results are similar to that of the base case thereafter. This
indicates that for large due date ranges, the differences between L, and LB do not
change much on average, between 55 and 100 days, but they do increase significantly
for small due date ranges. For the 7 operation problem, the average L, LB value is
low for due date range up to 8 days and then it is follows a similar pattern as that of

the base case.
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7 Operation Problem
Comparison of 55 Days with Base Case
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Figure 4.4: 7 operation problem-55 days
The results of the 5 operation problem run with 190 days is compared with the

base case and is shown in Figure 4.5. The average L.~ LB is a little higher than the

base case value for all the due date ranges.
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Figure 4.5: 5 operation problem-190 days
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Figure 4.6: 7 operation problem-190 days
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Figure 4.6 shows the comparison of the base case with 190 days run length for
the 7 operation problem. The average L, LB is slightly higher than the base case
until due date range of 21 days and then decreases to that of the base case value.
Despite the fact that performance of the LB is not good as compared to the case of 100
days, the average L.~ LB is around 0.3 days, which is still quite good.

4.4.3 Increasing the Warm-up Period
The problems were run with an increased warm-up period to test if the

transient effects were, indeed, eliminated.

5 Operation Problem
Comparison of 20 Day Warm-up and Base Case
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Figure 4.7: 5 operation problem-20 day warm-up
Figure 4.7 and Figure 4.8 show the comparison of increasing the warm-up
period with the base case for the 5 operation problem and 7 operation problem,
respectively. It is difficult to determine if the differences indicate that there are some
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transient effects remaining when a warm-up period of 10 days is used or if this is a
result of the slight decrease in performance since the horizon length is longer with 10

days of warm-up, evidenced in Section 4.4.2.
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Figure 4.8: 7 operation problem-20 day warm-up
4.4.4 Varying the Number of Jobs Released

In industry, it would be uncommon for a factory to release exactly the same
amount of jobs each day. Thus, to see the impact that varying the number of jobs
released each day has on the ability of the VF to provide good schedules, experiments
were carried out for both problems in which the average number of jobs released was
approximately equal to the number released in the base cases. For the 5 operation
problem, the number of jobs released each day was uniformly distributed between 145

and 155. For the 7 operation problem, the number of jobs released each day was varied
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uniformly between 160 and 170. Figures 4.9 and 4.10 show the 5 operation and 7
operation problem, respectively. There is little difference between the base cases and

the corresponding cases where the number of jobs released was varied.

5 Operation Problem
Jobs Released Uniform [145,155]
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Figure 4.9: 5 operation problem-jobs released uniform [145,155]
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7 Operation Problem
Jobs Released Uniform [160,170]
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Figure 4.10: 7 operation problem-jobs released uniform [160,170]

4.4.5 Varying the Number of Operations

Releasing jobs with varying number of operations is also a typical occurrence
in industry that has the potential to affect the performance of a scheduling algorithm.
Therefore, this parameter has been varied, setting the average number of operations
equal to the number of operations used in the base cases. For the 5 operation problem,
the number of operations remaining for the jobs released each day was varied
uniformly between 3 and 7. Figure 4.11 shows the comparison of changing the number
of operations with the base case. When compared with the base case, varying the
number of operations sometimes yields slightly better results for low due date ranges

and slightly worse results for high due date ranges.
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5 Operation Problem
Operations Uniform [3,7] for Jobs Released
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Figure 4.11: 5 operation problem-number of operations uniform [3,7]
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Figure 4.12: 7 operation problem-number of operations uniform [5,9]
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For the 7 operation problem the number of operations remaining was varied
uniformly between 5 and 9. Figure 4.12 shows the comparison of changing the number
of operations for the 7 operation problem. A similar pattern to that found in the 5

operation problem is seen.

4.4.6 Varying the Number of Jobs Released and the Number of

Operations
Since both releasing different numbers of jobs per period and releasing jobs

with varying number of operations is common in industry, these variations should also

be tested simultaneously.

5 Operation Problem
Jobs Released Uniform [145,155] and Number of Operations [3,7]
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Figure 4.13: 5 operation problem-number of jobs released uniform [145,155] and

number of operations uniform [3,7]
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Figure 4.13 shows the comparison of changing both the number of jobs
released and the number of operations remaining with the base case for the 5 operation
problem. The results shows that changing both the number of jobs released and also
the number of operations remaining yielded better results up to a due date range of 15

days and inferior results after that. Figure 4.14 show that the 7 operation problem

results are similar to that of the 5 operation problem.

7 Operation Problem
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Figure 4.14: 7 operation problem-number of jobs released uniform [160,170] and

number of operations uniform [5,9]

4.4.7 Effect of the Scheduling Frequency
To find out if using a rolling horizon approach to scheduling is detrimental to
the quality of scheduling solutions when compared to knowing all the information

about jobs releases in advance, the rolling horizon solutions were compared to
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scheduling the total horizon once. Figures 4.15 and 4.16 show these comparisons for
the 5 operation and 7 operation problems, respectively. Initially the scheduling once
procedure was run for 100 iterations. Since it did not perform as well as the rolling
horizon algorithm, it was conjectured that perhaps the comparison was not fair
because the total number of iterations of the VF run during the rolling horizon
simulation was much larger. Therefore, the number of iterations was increased to
1000. This yields exactly the same solutions as when using only 100 iterations. This
experimentation shows that the VF actually works somewhat better when all

upcoming job releases are not known in advance.
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Figure 4.15: 5 operation problem-comparison of scheduling once with base case
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7 Operation Problem
Comparison of Scheduling Once with Base Case
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Figure 4.16: 7 operation problem-comparison of scheduling once with base case
4.4.8 Hot Job Acceleration

Hot job acceleration improved the performance of transient scheduling
scenarios by narrowing the gap between the scheduling solution and the lower bound.
Thus, its potential for improving the rolling horizon scheduling solutions was
explored. Figures 4.17 and 4.18 compare the base cases with the results of hot job
acceleration for the 5 operation and 7 operation problem, respectively. Hot job
acceleration appears to only help slightly in the very high due date ranges for the 5
operation problem. In addition, there are due date ranges for both problems in which

hot job acceleration does much worse than the original VF algorithm.
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5 Operation Problem
Comparison of Hot Job Acceleration with Base Case
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Figure 4.17: 5 operation problem-comparison of hot job acceleration with base case
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Figure 4.18: 7 operation problem-comparison of hot job acceleration with base case
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4.4.9 Simulated Annealing

Using simulated annealing as a post-processing algorithm improved the
scheduling solutions of transient situations. Therefore, this method will be applied to
the rolling horizon scenarios. For transient scheduling, the hot job acceleration
solution was used as a starting point for the simulated annealing algorithm. But since,
in general, hot job acceleration does not improve the rolling horizon scheduling
solutions, the original VF solution will be used as the starting point for the simulated
annealing procedure with rolling horizon scheduling. The simulated annealing

procedure was applied to every schedule each day.

5 Operation Problem
Comparison of Simualted Annealing with Base Case
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Figure 4.19: 5 operation problem-simulated annealing
Figure 4.19 and Figure 4.20 show the comparison of simulated annealing

results with the base case for the 5 operation and 7 operation problems, respectively.
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Simulated annealing did not provide better results. For a large number of due date

ranges, the results were worse than the base case.
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Figure 4.20: 7 operation problem-simulated annealing
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Chapter 5

Conclusions and Future Research

5.1 Conclusions

In this thesis, the Virtual Factory was used as a tool for scheduling large job
shop problems. As the Virtual Factory contains more than 40 classes, understanding
and also learning to conduct experiments with it is a very time consuming process for
the user, especially if he/she is not already familiar with C++. To enable the user to
more quickly be able to accurately run desired experiments, a Visual Basic interface
was developed. A detailed description of this interface was presented.

A method to test the Virtual Factory on a rolling horizon basis was also
developed, both in terms of a scheduling algorithm and a lower bound. The Virtual
Factory was shown to perform well in a rolling horizon setting under a variety of
different conditions. Unfortunately, the hot job acceleration and simulated annealing
procedures did not improve performance as they did in the transient experiments. The
slight increase in the difference between L., and LB as the total horizon length was
increased could be the result of deterioration in the quality of the scheduling solutions
or the lower bound. In any case, the differences in all cases are quite small with

respect to the total horizon length and the number of jobs completed.
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5.2 Future Research

Future experimentation will be concentrated primarily in three different areas.
First, data has recently been received from a medium-sized U.S. apparel manufacturer.
This manufacturer uses the progressive bundle system, and his factory is set up as a
job shop. By applying the rolling horizon version of the Virtual Factory to the data
from this plant, an assessment of how well the Virtual Factory would perform as a
scheduling tool in the apparel industry can be obtained.

Second, the rolling horizon methodology will be used to further evaluate the
multi-factory scenarios described in Thoney et al [19]. Evaluating these scenarios in a
rolling horizon setting is especially important to eliminate the many transient effects
found in the initial experimentation. This will allow us to more accurately quantify
how well the Virtual Factory schedules supply chains. Furthermore, industrial data
from fiber and textile manufacturers can also be gathered and implemented into the
Virtual Factory. The end result would be the ability to test the scheduling performance
of the Virtual Factory on the Integrated Textile Complex as a whole.

Lastly, stochastic processing times could be used in the implementation of the
best schedule in the rolling horizon version of the Virtual Factory. The Virtual Factory
schedules plants using deterministic processing times. Up to now, the actual
processing times for the jobs have been assumed to be deterministic in the rolling
horizon implementation of the Virtual Factory. But in industry, individual processing
times are likely to follow some probability distribution. By using the mean processing

time to schedule each job with the Virtual Factory and then generating a random
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variable for the actual processing time in the implementation of the best schedule,
additional insight can be gained into the potential performance of the Virtual Factory

in industry.
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