
Abstract 
 
 
MANNINAGARAJAN, PADMANABHAN.  Rolling Horizon Plant Scheduling. 

(Under the direction of Kristin A. Thoney) 

 Scheduling is critical in all industries as it helps to reduce delays in job 

completion by effectively using all available resources. The Virtual Factory is one of 

the many job shop-scheduling systems for scheduling large problems. The Virtual 

Factory is an iterative simulation based procedure that has been found to provide near-

optimal solutions to industrial-sized problems. As the current version of the Virtual 

Factory has more than 40 classes, understanding it might be a time-consuming task 

even for an experienced C++ programmer. To make it easier for the user to perform 

experiments, a Visual Basic interface is developed. 

 The Virtual Factory has primarily been tested under transient conditions in 

which the plant is run until it is empty. In industry, each day jobs are released, the 

status of the plant is downloaded, and scheduling is performed. The best schedule is 

implemented until the plant is scheduled again. To analyze the potential performance 

of the Virtual Factory in industry, it is tested in a rolling horizon setting. Experiments 

with various parameters show that the Virtual Factory also performs well in these 

circumstances. 
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Chapter 1 

Introduction 

 
Production scheduling is important in all industries, particularly in the textile 

industry. As the textile industry has become progressively more global, competition is 

more fierce. To survive, U.S. companies must adopt technology to become more 

efficient. Production scheduling tools help create better schedules that have the 

potential to reduce overtime by better utilizing machines, even in the cases of textile 

and apparel products that have erratic demand. They can also help companies better 

satisfy their customers by providing more on-time orders. 

There are many tools available for scheduling large problems. The Virtual 

Factory is one such tool that has been found to provide near-optimal solutions to 

industrial-sized problems in seconds. The Virtual Factory is an iterative simulation- 

based procedure, whose objective is to minimize the maximum lateness, Lmax. To 

determine the effectiveness of its solutions, results are compared to a simple lower 

bound calculation.   

The Virtual Factory is written in C++, and the current version has grown to 

include over 40 classes. Even for an experienced C++ programmer, understanding the 

complete program is a time-consuming undertaking. Just learning how to run it with 

the desired options can also be difficult. To remedy this situation, a Visual Basic 
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interface will be developed. Consequently, little training will be needed to be able to 

perform experimentation with the existing options.  

The Virtual Factory, as the majority of the job shop scheduling algorithms 

found in the literature, has been tested exclusively under transient circumstances. In 

industry, though, running a plant until it is empty is rare. Instead, plants usually 

contain many different orders, with new orders arriving as older ones are completed.  

Scheduling is often performed on some regular basis, i.e. everyday. The best schedule 

is implemented until the plant is rescheduled. Thus, scheduling occurs on a rolling 

horizon basis. To test how well the Virtual Factory would perform in industry, it 

therefore will be tested under these circumstances. 

In Chapter 2, a literature review for this thesis is given.  Chapter 3 provides the 

details about the Visual Basic interface for the Virtual Factory. In Chapter 4, the 

results of testing the Virtual Factory on a rolling horizon basis are analyzed.  

Conclusions and future research are found in Chapter 5. 
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Chapter 2 

Literature Review 

2.1 The Virtual Factory 

2.1.1 Introduction 

The idea for this simulation-based job shop-scheduling algorithm was first 

proposed by Lawrence and Morton [17] and Vepsalainen and Morton [30]. Hodgson et 

al. [12] further developed it and named it the Virtual Factory. The Virtual Factory 

consists both of a scheduling algorithm and a lower bound. In general, it produces 

very good results. 

2.1.2 Scheduling Procedure 

Let di be the due date of job i and pij be the processing time of job i on machine 

j.  Then the slack of job i on machine m is calculated as 

Slacki,m = di - Σpij  , 
         jєm+    

 
where m+ is the set of all operations subsequent to machine m on job i’s routing.   

Slack represents the latest possible time that a job can finish on a machine and still 

satisfy its final due date. As this does not include queuing time, slack did not perform 

well as a dispatching rule in early experiments found in the scheduling literature.  

To remedy this situation, a revised slack value that incorporates queuing times 

is used as the sequencing rule in the Virtual Factory. Queuing times are recorded for 
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each job at each machine it visits in one iteration of the simulation and used in the next 

iteration.  The revised slack for job i on machine m is computed as 

 

Slack’i,m =  di – Σ pij – Σ qij  , 

                                         jєm+       jєm++ 
 

where mi
++ is the set of all subsequent operations to machine m on the routing sheet for 

job i, except the immediate subsequent operation. The simulation is run until the lower 

bound is achieved or a specified number of iterations is reached, and the best solution 

is saved. 

2.1.3 Lower Bound 

Hodgson et al. [12] chose to evaluate the quality of the schedules produced by 

the Virtual Factory through comparison to a lower bound. The lower bound is 

calculated by decomposing the job shop problem into individual one machine 

problems.  To do this, an earliest start time and a latest finish time were calculated for 

each machine on each job’s route.  Let ri  be the release time of job i. Then the earliest 

possible start time for a job i on machine m is, 

                
ESi,m = ri + Σ pij  , 

            jєm- 

where m- is the set of all operations preceding machine m on job i’s routing sheet.  The 

latest finish time for each job i on machine m is 

LFi,m = di -  Σ pij  , 
   jєm+ 
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where m+ is the set of all operations following machine m on the routing sheet of job i.  

The lower bound for the job shop problem (N/M/Lmax ) is obtained by solving 

the N/1/ Lmax | ri problem on each machine m by considering LFi,m as the effective due 

date for job i on machine m and ESi,m  as the release time (ri) for job i on machine m. 

Since N/1/ Lmax | ri is NP-hard, a relaxation suggested by Baker and Su [3] is used. The 

relaxation is to allow preemption of a job in process whenever one with a more 

imminent due date becomes available.   

The overall lower bound, LB (Lmax), is computed as 

 
LB (Lmax) = max {LBm(Lmax)}, 

              m=1,M 
 

where LBm (Lmax) is the lower bound for machine m.  The power of this lower bound is 

that there are M chances to get a tight bound.  

2.1.4 Experimental Results 

The Virtual Factory has provided optimal results when tested with two data 

sets from a large furniture manufacturing plant. The Virtual Factory was also tested on 

data generated randomly with the procedure suggested by Demirkol et al. [11]. The 

test results for a particular problem specified with the number of jobs, number of 

machines, number of operations per job, and processing time range, showed that the 

due date range had considerable effect on the performance of the Virtual Factory. 

When the difference between Lmax and LB was plotted against the due date range, 

Hodgson et al. [13] observed that the difference was zero for low due date ranges and 
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the difference increased up to a specific value and remained at that value as the due 

date range was increased to larger values.  

Figure 2.1 shows a graph with the difference between Lmax and LB plotted 

against the due date range for a problem with 1000 jobs, 100 machines, 7 operations 

and processing time uniformly distributed between 1 and 200. Each point on the graph 

represents the average of solutions to 10 problems. The difference between Lmax and 

LB represents the maximum by which the Virtual Factory solution could exceed the 

optimal solution.  

Hodgson et al. [13] found that the difference was roughly equal to the expected 

queuing time of the Lmax job. The Lmax  job should be processed immediately on the 

first machine on its route. For each subsequent machine on the job’s route, usually 

another job will be in process when the Lmax  job arrives. On average, the job on the 

machine will be half way through processing and its processing time will be equal to 

the average processing time. Thus the expected queuing time of the Lmax job is equal to 

(Ops -1)( P /2), where Ops is the number of operations per job and P  is the average 

processing time per job. For the problem shown in Figure 2.1, the expected queuing 

time is (7-1)(100.5/2) = 301.5, which is similar to the difference seen in the graph.  
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Figure 2.1: Virtual Factory: Performance vs. Due Date Range 

2.2 Extensions of the Virtual Factory 

2.2.1 Hot Job Acceleration 

Hodgson et al. [13] proposed an extension of their scheduling heuristic by 

identifying critical jobs, i.e. those jobs whose lateness is equal to or close to Lmax. They 

observed that a critical job might be delayed by a non-critical job already in process 

when the critical job arrives. Hodgson et al. tried to improve the schedule by inserting 

idle time into a machine schedule just before the arrival of a critical job if a non-

critical job would otherwise prevent the critical job from starting immediately.  By 

accelerating critical jobs throughout the system, in general, Lmax decreased. This can 

be seen in Figure 2.2, which shows a comparison of the original Virtual Factory 

solution and the solution with the accelerating hot jobs procedure. For larger due date 
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ranges, it clearly shows that the difference between the Lmax and LB has been reduced 

considerably in the accelerated version when compared with the original Virtual 

Factory solution. 

Figure 2.2: Comparison of Original vs. Accelerated Versions of Virtual Factory 

2.2.2 Alternative Process Plans 

Weintraub et al. [31] extended the methodology used by Hodgson et al. [12] by 

developing a procedure for scheduling jobs with alternative processes to minimize the 

manufacturing costs and at the same time satisfy due dates. A tabu search was used to 

evaluate the alternative process plans, and those plans were selected based upon their 

lower bound. The process plans were modified with alternative routings, operations 

and sequences. From the experiments, they found that there were substantial 

differences in performance between scheduling with and scheduling without 
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alternatives. Also scheduling with alternatives could identify optimal or near optimal 

schedules that minimize manufacturing costs and satisfy due dates. They found that 

scheduling with alternative operations resulted in the largest schedule improvement, 

and scheduling with alternative sequencing resulted in the smallest schedule 

improvement. 

2.2.3 Determining Job Release Times 

Zozom et al. [33] developed two heuristics for deciding when to release jobs to 

the shop floor. From the experimental results, both methods were effective at lowering 

work in process (WIP). In addition, the solutions that the heuristic provided were close 

to a lower bound computed on WIP.  

2.2.4 Multi-Factory Scenarios 

Thoney et al. [28] developed a detailed scheduling procedure for multi-factory 

scenarios, including inter-plant transportation. This required incorporating 

transportation into the Virtual Factory. Vehicles are batch processors, and their 

characteristics are different from that of conventional processors. In a batch processor, 

a number of jobs start and end processing together. Because of these special 

characteristics, initial experiments calculating revised slack for batch processors in the 

same manner as for conventional processors did not perform well. Consequently, a 

new revised slack calculation had to be computed for batch processors. In addition, a 

lower bound on batch processors had to be developed. 

Thoney et al. considered the following four multi-factory scenarios: Two 

Factories in Series, Three Factories in Series, Two Factories Feeding One, and One 
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Factory Feeding Two.  Experiments showed that performance for these scenarios was, 

in general, quite good. In transportation-constrained scenarios, the performance 

declined slightly. This was determined to be the results of transient effects occurring at 

the beginning and ending of the simulations. It was suggested that using rolling 

horizon scheduling might eliminate these transient effects. 

2.2.5 Simulated Annealing 

Schultz et al. [23] developed a simulated annealing procedure to be used as a 

post processing procedure with the Virtual Factory. Experiments were run using the 

problems generated by Demirkol et al. [11] and also with some industrial-sized 

problems used by Hodgson et al. [13]. Schultz et al. found that the simulated annealing 

procedure coupled with the Virtual Factory was an effective approach to improving 

solution quality. For the 160-benchmark problems generated by Demirkol, the best-

known solution was obtained or bettered for 141 problems in 120 minutes. For 116 of 

these problems, the solution was improved. For the industrial-sized problems, this 

procedure provided significant improvement to Virtual Factory for additional run 

times of 1 to 5 minutes.  

Figure 2.3 shows the comparison of the Virtual Factory solution with hot job 

acceleration and the simulated annealing solutions with different additional run times 

(1, 5 and 10 minutes). The difference between Lmax and LB has been reduced greatly 

with the simulated annealing procedure, and it can also be seen that an increase in run 

time reduces the difference further. 
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Figure 2.3: Comparison of Virtual Factory with Hot Job Acceleration vs. Procedure 

with Simulated Annealing 

 

2.3 Rolling Horizon Scheduling 
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2.3.1 Lot Sizing Problems 

Baker [1] conducted an experimental study to test the effectiveness of 

schedules obtained from a finite-horizon planning model using limited information 

about future demand and applying those schedules on a rolling horizon basis. He 

considered the effects of the length of the forecast window, the cost structure, and the 

demand pattern. He found that the rolling schedules produced low-cost results. He also 

found that the rolling schedule’s efficiency depended on the length of the forecast 

horizon. 

Lundin and Morton [18] developed planning horizon procedures for the 

dynamic lot size model. They observed that the length of the planning horizon must be 

at least five EOQ cycles to ensure a solution within one percent of optimality. 

Blackburn and Millen [4] compared the performance of the following four lot-

sizing methods for single level assembly systems by implementing rolling schedules: 

part period cost balancing, Silver-Meal heuristic, Wagner-Whitin algorithm, and 

modified Silver-Meal algorithm. They found that the Silver-Meal heuristic provided 

better cost effectiveness than the rest. 

Carlson et al. [9] extended the results obtained by Baker and came up with 

solutions for different conditions in which N < T, N = mT, and N > T where, N is the 

horizon length, T is the length of the natural cycle, and m is an integer. 

Chand [10] modified the dynamic lot size algorithm of Wagner and Whitin for 

rolling horizon environments and obtained better-cost performance than the Wagner-

Whitin algorithm and the Silver-Meal heuristic. 
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Wemmerlöv and Whybark [32] studied the performance of fourteen different 

single stage lot-sizing procedures with probabilistic demands in a rolling schedule and 

ranked them by conducting experiments. They found that demand uncertainty changed 

the solutions to a larger extent than the constant demand solutions. 

Russell and Urban [22] studied the effects of forecast length and accuracy in 

horizon extensions. They also conducted experiments to compare the Wagner-Whitin 

algorithm with horizon extensions with the Silver-Meal heuristic. They found that the 

Wagner-Whitin algorithm with horizon extensions performed better than Silver-Meal 

heuristic for large and moderate values of the planning horizons. 

 Matta and Guignard [19] developed a production-scheduling model that finds 

low-cost solutions to a mixed-integer programming formulation of the production lot-

sizing problem. They measured the quality of the production schedules by comparing 

them to a lower bound found using lagrangian relaxation. They concluded that the 

total savings in annual production cost is reduced when more periods are added to the 

planning horizon. 

 Simpson  [24] evaluated nine multiple level planning heuristics. He analyzed 

the relation of rolling horizon results to fixed horizon results in a deterministic demand 

environment. He used the relative cost ratio as the primary performance measure. He 

computed a tight lower bound on the lowest possible cost schedule to calculate the 

relative cost ratio. Of all the nine algorithms studied, he found that the Non-sequential 

Incremental Part Period Algorithm provided the lowest cost schedules under all 

conditions, except extremely short planning horizons. 
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Stadler [27] developed a modified model of the single level lot-sizing problem 

in which lot-sizing decisions consider demand forecasts beyond a given planning 

horizon. He solved the model by the Wagner and Whitin algorithm. He compared the 

results with four known heuristics and found that the modified model performed well 

with relatively little additional cost. 

2.3.2 Single and Parallel Machine Problems 

Ovacik and Uzsoy [20] developed rolling horizon heuristics to minimize 

maximum lateness on a single machine with sequence dependent setup times. The 

procedure solved several small sub-problems to optimality using a branch and bound 

procedure. A part of those solutions were implemented. They found that these 

procedures performed far better than the best dispatching rules.  

Ovacik and Uzsoy [21] extended their procedure to include parallel machines 

and showed that the performance was also better than dispatching rules. 

2.3.3 Probabilistic Conditions 

Bookbinder and H’ng [5] developed a production-planning procedure for a 

rolling horizon setting with probabilistic demand. They compared their procedure with 

Silver’s procedure (a procedure to determine the timing and sizes of replenishments 

for probabilistic demand with normally distributed forecast errors) in terms of the cost 

performance, percentage of demand shortage per period, and percentage of periods 

with stock-outs. They found that their procedure provided better-cost performance 

than that of Silver’s procedure, while Silver’s procedure yielded better results for the 

percentage of demand shortage per period and percentage of periods with stock-outs. 
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They also found that the production plan was better when there was more information, 

even if that information included some uncertainty. 

Baker and Peterson [2] developed a framework for assessing the cost 

performance of rolling schedules. They analytically studied a quadratic-cost model for 

the effects of factors such as the length of the planning horizon, the uncertainty in 

demand forecasts, the amplitude of demand fluctuations in seasonal cases, and 

imposition of a terminal condition. 

Kleindorfer and Kenreuther [14] developed a method to relate the stochastic 

planning problems to the planning procedures and information system within the 

industry. They also described how their procedure could be used for specifying 

stochastic horizons for aggregate planning problems in the industry. 

2.3.4 Aggregate Production Schedules 

Venkataraman and Smith [29] developed a master production scheduling 

model that considers the disaggregation of aggregate plans to a rolling horizon master 

production schedule with minimum batch-size restrictions for a fixed routing, batch 

production, process industry environment. Their model included multiple products, 

multiple production lines, capacity limitations, inventory requirements, and seasonal 

demands.  

2.3.5 Production Smoothing Problem 

Kunreuther and Morton [15] [16] developed algorithms to find horizons for 

production and workforce smoothing problem with deterministic demands by 
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considering such factors as holding costs, overtime, lost sales, simple subcontracting, 

under time, and backlogging. 

2.3.6 Fixed Interval Scheduling 

Fixed interval scheduling is characterized by production periods that are 

evenly spaced over time. Campbell [6] studied fixed interval scheduling in a rolling 

horizon framework by using the concept of time fencing. He also studied three 

different methods of finding safety stock in this context. 

2.3.7 Freezing the Master Production Schedule 

Sridharan et al. [25] [26] discussed the measurement of instability in the 

Master Production Schedule (MPS). They related the instability to three decision 

variables in managing the MPS in a rolling horizon environment. The decision 

variables were the method used to freeze the MPS (period-based freezing and parts-

based freezing), the proportion of the MPS frozen, and the length of the planning 

horizon for the MPS. 
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Chapter 3 

Visual Basic Interface to the Virtual Factory 

3.1 Introduction 

The current academic version of the Virtual Factory is written in C++ and 

contains more than 40 classes. Understanding that many classes can be a time-

consuming task, even for an experienced C++ programmer. In addition, just running 

the desired experiment is not straightforward because of the large number of critical 

parameters that are hidden in the massive amount of code. To overcome this situation, 

a Visual Basic (VB) program was developed that serves as a front end to the VF.  

With the VB program, only minimal training is required to learn how to perform 

experiments. Essentially this creates two types of users: those that can only run 

existing experiments and those that can also modify the C++ code to perform 

experiments of which the VF is not yet capable. 

3.2 Flowchart 

Figure 3.1 shows a flowchart of the Visual Basic interface. Based on the 

factory configuration, simulation type, and algorithm that is selected, there are specific 

parameters to input. The One Factory scenario is the most developed, in that it allows 

the user to select from more simulation types and algorithms than for the multi-factory 

scenarios. Adding these capabilities to the multi-factory problems is the subject of 

future work. 
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Figure 3.1: Flowchart for Visual Basic Interface 

 
 
 
 
 
 
 
 
 
 
 
 



 19

3.3 Factory Configurations  

Figure 3.2 is the introduction form of the scheduling system. From here the 

user proceeds to Figure 3.3, where he or she is given a list of different factory 

configurations from which to choose. 

Figure 3.2: Introduction form 
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Figure 3.3: List of options 
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3.3.1 One Factory 

 The One Factory scenario randomly generates a job shop in which each job 

visits a subset of the machines in the factory, with the stipulation that each job visits 

no machine more than once. All other scenarios are generated with this stipulation.  

The input parameters for the One Factory scenario are shown in Figure 3.4. The 

processing times in this scenario, as in all others, are set at a default of being 

uniformly distributed between 1 and 200. These values were chosen since they were 

used in previous VF experimentation. 

Figure 3.4: One factory parameters 
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3.3.2 Two Factories in Series 

The Two Factories in Series scenario randomly generates a problem in which 

all jobs starting in Factory 1 will be transported to Factory 2 where they will also be 

processed there. Jobs starting on the truck or in Factory 2 will only be processed in 

Factory 2.  The input parameters for the Two Factories in Series scenario are shown in 

Figure 3.5. 

Figure 3.5: Two factories in series parameters 
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As is true for all multi-factory scenarios in this system, the maximum number 

of operations in each factory is equal, and truck transportation is considered a machine 

operation. The number of operations remaining, Ops, for each job is uniformly 

distributed between 1 and an upper limit, UL, that must be odd.  Let M be the 

maximum number of operations in each factory. Then, M= [(UL - 1) / 2].  If Ops> 

M+1, the job will be processed on Ops-(M+1) machines in Factory 1, transported by 

truck to Factory 2, and processed on M machines in Factory 2.  If Ops=M+1, the job 

will be transported by truck to Factory 2 and processed on M machines. If Ops< M, the 

job will be processed on Ops machines in Factory 2.   

The truck volume assumes that each job has unit volume and therefore equals 

the number of jobs that a single truck can carry from one factory to another at the 

same time. Truck volume is initialized to 10 because, again, most of the previous VF 

experiments used this value. Both of these observations hold for trucks in all multi-

factory scenarios in this program. 

 
3.3.3 Three Factories in Series 

The Three Factories in Series option randomly generates a problem where jobs 

that begin in Factory 1 are processed there, transported via truck to Factory 2, 

processed in Factory 2, transported to Factory 3, and processed in Factory 3. Jobs that 

begin on the truck between Factory 1 and 2 or in Factory 2 are processed in Factory 2, 

transported to Factory 3 and processed in Factory 3. Jobs that begin on the truck 
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between Factory 2 and 3 or in Factory 3 are only processed Factory 3. The input 

parameters for the Three Factories in Series scenario are shown in Figure 3.6. 

Figure 3.6: Three factories in series parameters 

Let M=[(UL-2)/3]. Consequently, UL-2 must be a multiple of 3. If Ops > 2M+2, 

the job is processed on Ops -(2M+2) machines in Factory 1, transported by truck to 

Factory 2, processed on M machines in Factory 2, transported by truck to Factory 3, 

and processed on M machines in Factory 3. If Ops =2M+2, the job is transported by 

truck to Factory 2, processed on M machines in Factory 2, transported by truck to 
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Factory 3, and processed on M machines. If (M+1) < Ops < (2M+2), the job is 

processed on Ops -(M+1) machines in Factory 2, transported by truck to Factory 3, and 

processed on M machines in Factory 3. If Ops = M+1, the job is transported by truck to 

Factory 3 and processed on M machines. If Ops ≤M, the job is processed on Ops 

machines in Factory 3. 

3.3.4 Two Factories Feeding One 

The Two Factories Feeding One scenario randomly generates a problem in 

which a job from Factory 1 and a job from Factory 2 (either starting in these factories 

or on a truck) are assembled together in Factory 3. A specific job from Factory 1 must 

be assembled with a specific job from Factory 2. This pairing is determined upon 

problem generation. The input parameters for the Two Factories Feeding One scenario 

can be seen in Figure 3.7. 
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Figure 3.7: Two factories feeding one parameters 

Let M = (UL -1) / 2. Thus, UL must be an odd number. If Ops >M+1, 3 jobs are 

generated. The first job will be processed on Ops -(M+1) machines in Factory 1 and 

transported by truck to Factory 3. The second job will be processed on Ops -(M+1) 

machines in Factory 2 and transported by Truck to Factory 3. The third job will be the 

assembly of 1 and 2 and it will be processed on M machines in Factory 3. If Ops 

=M+1, 3 jobs are also generated. The first job will be transported by truck from 

Factory 1 to Factory 3. The second job will be transported by truck from Factory 2 to 
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Factory 3. The third job will be the assembly of 1 and 2 and will be processed on M 

machines in Factory 3. If Ops < M+1, 1 job is generated, and it will be processed on M 

machines in Factory 3. 

3.3.5 One Factory Feeding Two 

The One Factory Feeding Two scenario randomly generates a problem where 

jobs staring in Factory 1 are split into two jobs, one of which is further processed in 

Factory 2 and the other in Factory 3. The input parameters for the One Factory 

Feeding Two scenario are shown in Figure 3.8. 

Figure 3.8: One factory feeding two parameters 
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Let M = (UL -1) / 2. Consequently, UL must be an odd number. If Ops > (M+1), 

3 jobs will be generated. The first job will be processed on Ops -(M+1) machines in 

Factory 1. This job is split into the second and third job. The second job will be 

transported by truck to Factory 2 and processed on M machines. The third job will be 

transported by truck to Factory 3 and processed on M machines. If Ops =(M+1), 2 jobs 

will be generated. The first job will be transported by truck to Factory 2 and processed 

on M machines. The second job will be transported to Factory 3 and processed on M 

machines.  If Ops <M, 2 jobs will be generated. The first and second will be processed 

on M machines in Factory 2 and Factory 3, respectively. 
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3.4 Simulation Type 

 The choices of simulation types can be seen in Figure 3.9. 

Figure 3.9: Simulation type 

3.4.1 Transient simulation 

 A transient scheduling simulation is defined in this thesis to be a method in 

which a factory download is randomly generated, and the factory is simulated until all 
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the jobs are complete, and the factory is empty.  This reflects the traditional method of 

evaluating job shop scheduling algorithms.  

Figure 3.10: Correlation 

For the transient simulation, the user is given the option of correlating the 

number of remaining operations and the due date, as seen in Figure 3.10. This gives 

the problem more realistic characteristics. One would expect that the jobs that are 

almost finished have imminent due dates, while jobs that have just started processing 

have due dates farther in the future. If the user decides to choose to correlate the 
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number of operations remaining with the due date, then Figure 3.11 allows him or her 

to input the correlation. This correlation should be nonnegative because in a shop that 

is well run, the average correlation between the number of operations remaining and 

the due date should not be negative. The method used to correlate the number of 

operations remaining with the due date is that of Cario et al [7, 8]. In this method, the 

correlation must strictly be less than one. 

Figure 3.11: Correlation value 
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3.4.2 Long Run Simulation 

A long run scheduling simulation is defined in this thesis as a simulation, 

which not only simulates the random factory download but also releases jobs into the 

system on a periodic basis and terminates after a large number of periods. This is a 

much better approximation of what happens in industry as compared to the transient 

simulation (particularly in the rolling horizon case), because in industry, factories are 

not often emptied. 

The additional parameters for a long run simulation are found in Figure 3.12.  

These parameters relate to those jobs that are not currently in the factory download, 

but, instead, will be released later. The number of warm-up days refers to the number 

of days the simulation will be run before clearing the statistics. The purpose of this is 

to allow the user to collect only steady state information. The effect of changing the 

number of days in warm-up is discussed in detail in Section 4.4.3. 

3.4.2.1 Rolling Horizon Simulation 

 Background on rolling horizon scheduling was discussed in Section 2.3. A 

rolling horizon scheduling simulation will be defined in this thesis as a long run 

simulation in which in each period jobs are released, the current status of the factory is 

downloaded, scheduling is performed, and the best schedule is implemented until 

more jobs are released and the factory is rescheduled. A more complete description of 

this procedure applied to the VF as well as computational experiments are located in 

Section 4.2.  
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Figure 3.12: Long run parameters 

3.4.2.2 Schedule Once 

 This option was created to test whether the VF performed better on a rolling 

horizon basis or in one large simulation where all job releases in the time horizon are 

known in advance. More information on this procedure is found in Section 4.4.7. 
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3.5 Algorithm 

 The choice of algorithms is shown in Figure 3.13. 

Figure 3.13: Type of algorithm 

3.5.1 Regular Virtual Factory 

 The regular VF is the original algorithm explained in Section 2.1. 

3.5.2 Hot Job Acceleration 

In this algorithm, critical or “hot” jobs, whose lateness is equal to or close to 

Lmax, are given priority over other jobs. This is accomplished by inserting idle time 
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into a machine schedule if a non-critical job would be in process on a machine when a 

critical job arrives. The critical job begins processing immediately upon arrival at the 

machine, while the non-critical job is kept in the queue until the critical job is 

complete. This method is explained in more detail in Section 2.2.1. Computational 

results for using this procedure in a rolling horizon setting can be found in Section 

4.4.8. 

The parameters for this option can be seen in Figure 3.14. When the number of 

consecutive worse solutions occurs or the maximum number of hot jobs is explored, 

the algorithm will terminate.  

Figure 3.14: Hot job parameters 
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3.5.3 Simulated Annealing 

This option uses the VF to obtain an initial solution and then uses a simulated 

annealing algorithm to investigate switching jobs on the critical path. This procedure 

was explained in Section 2.2.5. Computation results for using this procedure in a 

rolling horizon setting can be found in Section 4.4.9. 

The parameters for this algorithm are found in Figure 3.15. Note that a time 

limit is used to control how long the simulated annealing algorithm is run. If this 

procedure is being run for a transient simulation, the hot job parameters also need to 

be entered. The reason for this is that the simulated annealing procedure should be 

started with the best-known solution. In the case of the transient simulation, this is the 

hot job solution. As will be shown in Section 4.4.8, hot job acceleration does not work 

particularly well in the rolling horizons situation. Therefore, the original VF algorithm 

usually yields the best solution. Consequently, the hot job parameters are hidden when 

the user reaches Figure 3.15, if he or she has selected the rolling horizon option.  
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Figure 3.15: Simulated annealing parameter 
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3.6 Running Problems 

 As seen in Figure 3.16, there are two different options of running the 

simulation. The first option is to run a single experiment with a specific due date 

range.  Random number stream 1 is used by default. An example of the output of this 

option is shown in Figure 3.17.  The random numbers are generated by LCG. 

Figure 3.16: Run screen 
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Figure 3.17: 1 problem output screen 

The second option is to run multiple simulations, varying the due date range 

between 0 and some maximum value in fixed increments. The output for this option is 

a graph, an example of which can be seen in Figure 3.18. The system automatically 

writes the results to an excel spreadsheet as well as generates the graph from the 

results. The random number streams used are the first R, where R equals the number of 

replications. 
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Figure 3.18: Graph for range of due dates-example 
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Chapter 4 

Rolling Horizon Scheduling 

4.1 Introduction 

Until now, the Virtual Factory has been tested only under transient settings by 

running a plant until all operations are complete and the plant is empty. However, 

what happens in an actual industrial setting is different. In industry, jobs are released 

and scheduling is performed on a regular basis, perhaps every day. Before new job 

arrivals can be scheduled, they are entered into the plant’s ERP or MRP system. Then, 

the current status of the plant is downloaded. Scheduling is performed, and the best 

schedule is implemented until the next time the plant is scheduled. This process is 

repeated over and over again. To more accurately determine the performance of the 

Virtual Factory in real scenarios, it will be tested on a rolling horizon basis.  

The following definitions are required for this chapter: 
 
t - Current time in days 
LB - Lower bound 
rj - Release time of job j 
cj - Completion time of job j 
dj - Due date of job j 
N - Total number of jobs 
Ns - Total number of jobs starting in factory 
M - Total number of machines 
UL - Upper limit of uniform distribution for number of operations 
JR  - Number of jobs released each day 
RO - Number of operations for jobs released 
DL - Length of a day 
T - Total number of days 
w - Number of days in warm-up period 
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WIP - Work in process (number of days) 
i - Number of iterations 

4.2 Rolling Horizon Procedure  

4.2.1 Scheduling algorithm 

The algorithm for the rolling horizon scheduling procedure is given as follows: 

1. Initialize t = 0 

1.1. If t = w + 1, compute LB 

1.2. Release jobs whose rj = t 

1.3. Run the Virtual Factory i iterations  

1.4. Implement the first day of the best schedule  

1.5. t = t + 1 

1.6. Continue from 1.1. until t = T 

2. Run the remainder of the best schedule of the last day (T) until all jobs are 

finished 

3. Initialize j =1 

3.1. If cj > w, determine if job j is the Lmax job 

3.2. j = j + 1 

3.3. Continue from 3.1. until j = N 

 

Step 1 initializes the beginning of the first day as time 0. If in step 1.1 the time 

is one day past the warm-up period, the lower bound is computed. In step 1.2, the jobs 

with release time equal to the current time enter the factory. No jobs are released on 
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the beginning of the first day since these jobs are assumed to be already in the factory. 

Step 1.3 runs the original VF procedure, usually for 100 iterations in the 

experimentation in this thesis. In step 1.4, the first day of the best schedule is 

implemented. The rest of the schedule is discarded, except on the last day. At the end 

of the day, there may be jobs that are still in process. Each of these jobs is put back in 

the machine’s queue, and the job’s processing time is set equal to the remaining 

processing time. Steps 1.5 and 1.6 ensure that steps 1.1 through 1.4 are run for each 

day until the total number of days is reached. In step 2, the best schedule of the last 

day is run until all jobs are finished. This ensures that the scheduling procedure does 

not sacrifice the remaining jobs in the factory to yield a good schedule for the jobs that 

complete processing since all jobs finish. Step 3 initializes the counter, j, equal to the 

first job. In Step 3.1, only jobs that are completed after the warm-up period are 

included in the Lmax calculation to eliminate transient effects dependent on initial 

factory conditions.  Steps 3.2 and 3.3 ensure that the lateness for each job completed 

after the warm-up period is compared to the current maximum lateness. 

4.2.2 Lower Bound 

The lower bound for the rolling horizon schedule is computed after the warm-

up period. The LB calculation includes both jobs that are currently in the factory after 

the warm-up period, with their remaining operations and processing times, and also 

those jobs that will be released later, during the complete horizon of the simulation. 

The LB is computed in the same manner as for the original VF. Therefore, even 
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though there are multiple runs of the VF engine for the rolling horizon scheduling 

procedure, there is only one LB calculation. 

4.3 Problem Generation 

For testing the Virtual Factory on a rolling horizon basis, two different 

problems were generated, a 5 operation problem and a 7 operation problem. The 

parameters for these problems are given below in Table 4.1. 

Table 4.1: 5 Operation and 7 operation problem parameters 
 

 Ns M UL JR RO DL T w WIP i 

5 Operation Problem 1258 50 5 151 5 1600 100 10 5 100

7 Operation Problem 2082 75 7 165 7 1600 100 10 7 100

 

 The values of JR, Ns, and w were determined based on the other parameters of 

the problems. To compute JR, the number of jobs that balances the input into the 

factory with the output from the factory needed to be found. This was approximated 

by dividing the average number of operations that can be processed daily by the 

amount of WIP in the factory. To find the average number of operations that can be 

processed each day in the factory, the number of machines, M, was multiplied by the 

average number of operations that a single machine can process in a day, Mops .  

Mops  can be computed by dividing the day length, DL, by the average processing 

time, P . Consequently, 

P
DLMops =
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and  

 

Since the processing times for both problems are uniformly distributed 

between 1 and 200, ≈P 100 and thus Mops ≈  1600/100=16. (Assuming an 8 hour 

work day, the average processing time is 0.5 hours). Therefore, for the 5 operation 

problem, JR ≈  (50)(16)/5=160, and for the 7 operation problem, JR ≈  (75)(16)/7=170.  

These values tend to overestimate JR since they assume that there is never any idle 

time on the machines. Therefore, experimentation was performed to determine the 

actual values of JR, starting with the computed values. JR was found to be 151 for the 5 

operation problem and 165 for the 7 operation problem. 

 Ns was computed to achieve the desired amount of WIP. Since the problems 

have been designed so that factory input is approximately equal to the factory output, 

the number of operations that will be completed each day is approximately (JR)( RO). 

If WIP days of work in process is desired, then the total number of operations that 

should start in the factory is (JR)( RO)(WIP). Each job that starts in the factory has an 

average of Ops  operations, where Ops  = (UL+1)/2. Consequently, 

Ops
WIPROJRN s

))()((
≈  

jobs should start in the factory. For the 5 operation problem, Ns ≈ [(151)(5)(5)]/3 

≈1258. For the 7 operation problem, the computed JR was mistakenly used to 

calculate Ns. Therefore for the 7 operation problem, Ns ≈ [(170)(7)(7)]/4 ≈2082. This 

.))((
WIP

MopsMJR ≈
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is just slightly higher than the value that would have been obtained if the actual JR was 

used and should not significantly effect results. 

 The length of the warm-up period was chosen to eliminate potential transient 

effects caused by the initial jobs in the factory. The warm-up period in days, w, was 

set equal to 10 since this is significantly larger than the WIP in either of the problems. 

4.4 Experimentation 

Each experiment was run with a maximum due date range of 25 days. A due 

date range, DDR, means that each job, j, is randomly generated a discrete uniform due 

date between rj and rj + DDR, where rj=0 for jobs initially in the factory. Note that all 

jobs are released at the beginning of a day, whereas the due date for a job could occur 

at any time during the day. For each due date range, 20 replications were run and the 

average difference between Lmax and LB was calculated. Recall that this difference is 

the maximum by which the simulation solution could exceed the optimal solution. A 

positive difference between Lmax and LB could be the result of a non-optimal schedule, 

a weak LB, or a combination of both. 

4.4.1 Base Cases 

 Results of the 5 operation problem can be seen in Figure 4.1. The average Lmax 

- LB is approximately in the range of 0.9 to 0.18 days. For the first 14 due date ranges, 

the average difference does not exceed 0.15 days. There is a slight increase in the 

differences for due date ranges beyond 13 days. These differences are quite small 

considering that 90 days of factory performance were included in these statistics, with 
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the lateness of over (90)(151) = 13,590 jobs taken into account. This indicates that the 

scheduling procedure is performing well. 

Figure 4.1: 5 operation problem-base case 
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Figure 4.2: 7 operation problem-base case 

Figure 4.2 shows the results for the 7 operation problem. The average Lmax- LB 

has slight variations until a due date range of 22 days. Then it increases gradually. The 

magnitudes of Lmax- LB are similar to those in the 5 operation problem. 

4.4.2 Varying the Number of Days 

 To determine the effect of the total number of days that are scheduled on the 

quality of the scheduling solutions, each problem was run for 55 days and 190 days 

with the same 10 day warm-up. This allows the scheduling solutions to be observed 

when the total number of days after the warm-up period is half as many and twice as 

many as in the base cases. 
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Figure 4.3: 5 operation problem-55 days 

 The results of the 5 operation and 7 operation problems with 55 days are 

shown in Figure 4.3 and Figure 4.4, respectively. For the 5 operation problem, the 

average Lmax- LB value is low for due date ranges up to 13 days. It increases suddenly 

at 14 days and then the results are similar to that of the base case thereafter. This 

indicates that for large due date ranges, the differences between Lmax and LB do not 

change much on average, between 55 and 100 days, but they do increase significantly 

for small due date ranges. For the 7 operation problem, the average Lmax- LB value is 

low for due date range up to 8 days and then it is follows a similar pattern as that of 

the base case. 
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Figure 4.4: 7 operation problem-55 days 

  The results of the 5 operation problem run with 190 days is compared with the 

base case and is shown in Figure 4.5. The average Lmax- LB is a little higher than the 

base case value for all the due date ranges. 
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Figure 4.5: 5 operation problem-190 days 

Figure 4.6: 7 operation problem-190 days 
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 Figure 4.6 shows the comparison of the base case with 190 days run length for 

the 7 operation problem. The average Lmax- LB is slightly higher than the base case 

until due date range of 21 days and then decreases to that of the base case value. 

Despite the fact that performance of the LB is not good as compared to the case of 100 

days, the average Lmax- LB is around 0.3 days, which is still quite good. 

4.4.3 Increasing the Warm-up Period 

 The problems were run with an increased warm-up period to test if the 

transient effects were, indeed, eliminated. 

Figure 4.7: 5 operation problem-20 day warm-up 
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transient effects remaining when a warm-up period of 10 days is used or if this is a 

result of the slight decrease in performance since the horizon length is longer with 10 

days of warm-up, evidenced in Section 4.4.2. 

Figure 4.8: 7 operation problem-20 day warm-up 

4.4.4 Varying the Number of Jobs Released 

In industry, it would be uncommon for a factory to release exactly the same 

amount of jobs each day. Thus, to see the impact that varying the number of jobs 

released each day has on the ability of the VF to provide good schedules, experiments 

were carried out for both problems in which the average number of jobs released was 

approximately equal to the number released in the base cases. For the 5 operation 

problem, the number of jobs released each day was uniformly distributed between 145 

and 155. For the 7 operation problem, the number of jobs released each day was varied 
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uniformly between 160 and 170. Figures 4.9 and 4.10 show the 5 operation and 7 

operation problem, respectively. There is little difference between the base cases and 

the corresponding cases where the number of jobs released was varied. 

Figure 4.9: 5 operation problem-jobs released uniform [145,155] 

 

 

 

 

 

 

 

 

5 Operation Problem
Jobs Released Uniform [145,155]

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Due Date Range in Days

Lm
ax

-L
B

 in
 D

ay
s

Base Case JR Uniform [145,155]



 55

Figure 4.10: 7 operation problem-jobs released uniform [160,170] 

4.4.5 Varying the Number of Operations 

Releasing jobs with varying number of operations is also a typical occurrence 

in industry that has the potential to affect the performance of a scheduling algorithm. 

Therefore, this parameter has been varied, setting the average number of operations 

equal to the number of operations used in the base cases. For the 5 operation problem, 

the number of operations remaining for the jobs released each day was varied 

uniformly between 3 and 7. Figure 4.11 shows the comparison of changing the number 

of operations with the base case. When compared with the base case, varying the 

number of operations sometimes yields slightly better results for low due date ranges 

and slightly worse results for high due date ranges. 
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Figure 4.11: 5 operation problem-number of operations uniform [3,7] 

Figure 4.12: 7 operation problem-number of operations uniform [5,9] 
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For the 7 operation problem the number of operations remaining was varied 

uniformly between 5 and 9. Figure 4.12 shows the comparison of changing the number 

of operations for the 7 operation problem. A similar pattern to that found in the 5 

operation problem is seen.  

4.4.6 Varying the Number of Jobs Released and the Number of 

Operations 

 Since both releasing different numbers of jobs per period and releasing jobs 

with varying number of operations is common in industry, these variations should also 

be tested simultaneously. 

 

Figure 4.13: 5 operation problem-number of jobs released uniform [145,155] and 

number of operations uniform [3,7] 
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 Figure 4.13 shows the comparison of changing both the number of jobs 

released and the number of operations remaining with the base case for the 5 operation 

problem. The results shows that changing both the number of jobs released and also 

the number of operations remaining yielded better results up to a due date range of 15 

days and inferior results after that. Figure 4.14 show that the 7 operation problem 

results are similar to that of the 5 operation problem. 

Figure 4.14: 7 operation problem-number of jobs released uniform [160,170] and 

number of operations uniform [5,9] 
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scheduling the total horizon once. Figures 4.15 and 4.16 show these comparisons for 

the 5 operation and 7 operation problems, respectively. Initially the scheduling once 

procedure was run for 100 iterations. Since it did not perform as well as the rolling 

horizon algorithm, it was conjectured that perhaps the comparison was not fair 

because the total number of iterations of the VF run during the rolling horizon 

simulation was much larger. Therefore, the number of iterations was increased to 

1000. This yields exactly the same solutions as when using only 100 iterations. This 

experimentation shows that the VF actually works somewhat better when all 

upcoming job releases are not known in advance. 

Figure 4.15: 5 operation problem-comparison of scheduling once with base case 
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Figure 4.16: 7 operation problem-comparison of scheduling once with base case 
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Figure 4.17: 5 operation problem-comparison of hot job acceleration with base case 

Figure 4.18: 7 operation problem-comparison of hot job acceleration with base case 
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4.4.9 Simulated Annealing 

 Using simulated annealing as a post-processing algorithm improved the 

scheduling solutions of transient situations. Therefore, this method will be applied to 

the rolling horizon scenarios. For transient scheduling, the hot job acceleration 

solution was used as a starting point for the simulated annealing algorithm. But since, 

in general, hot job acceleration does not improve the rolling horizon scheduling 

solutions, the original VF solution will be used as the starting point for the simulated 

annealing procedure with rolling horizon scheduling. The simulated annealing 

procedure was applied to every schedule each day. 

Figure 4.19: 5 operation problem-simulated annealing 
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Simulated annealing did not provide better results. For a large number of due date 

ranges, the results were worse than the base case. 

Figure 4.20: 7 operation problem-simulated annealing 
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Chapter 5 

Conclusions and Future Research 

5.1 Conclusions 

In this thesis, the Virtual Factory was used as a tool for scheduling large job 

shop problems. As the Virtual Factory contains more than 40 classes, understanding 

and also learning to conduct experiments with it is a very time consuming process for 

the user, especially if he/she is not already familiar with C++. To enable the user to 

more quickly be able to accurately run desired experiments, a Visual Basic interface 

was developed. A detailed description of this interface was presented. 

 A method to test the Virtual Factory on a rolling horizon basis was also 

developed, both in terms of a scheduling algorithm and a lower bound. The Virtual 

Factory was shown to perform well in a rolling horizon setting under a variety of 

different conditions. Unfortunately, the hot job acceleration and simulated annealing 

procedures did not improve performance as they did in the transient experiments. The 

slight increase in the difference between Lmax and LB as the total horizon length was 

increased could be the result of deterioration in the quality of the scheduling solutions 

or the lower bound. In any case, the differences in all cases are quite small with 

respect to the total horizon length and the number of jobs completed. 
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5.2 Future Research 

Future experimentation will be concentrated primarily in three different areas. 

First, data has recently been received from a medium-sized U.S. apparel manufacturer. 

This manufacturer uses the progressive bundle system, and his factory is set up as a 

job shop. By applying the rolling horizon version of the Virtual Factory to the data 

from this plant, an assessment of how well the Virtual Factory would perform as a 

scheduling tool in the apparel industry can be obtained. 

Second, the rolling horizon methodology will be used to further evaluate the 

multi-factory scenarios described in Thoney et al [19]. Evaluating these scenarios in a 

rolling horizon setting is especially important to eliminate the many transient effects 

found in the initial experimentation. This will allow us to more accurately quantify 

how well the Virtual Factory schedules supply chains. Furthermore, industrial data 

from fiber and textile manufacturers can also be gathered and implemented into the 

Virtual Factory. The end result would be the ability to test the scheduling performance 

of the Virtual Factory on the Integrated Textile Complex as a whole. 

Lastly, stochastic processing times could be used in the implementation of the 

best schedule in the rolling horizon version of the Virtual Factory. The Virtual Factory 

schedules plants using deterministic processing times. Up to now, the actual 

processing times for the jobs have been assumed to be deterministic in the rolling 

horizon implementation of the Virtual Factory. But in industry, individual processing 

times are likely to follow some probability distribution. By using the mean processing 

time to schedule each job with the Virtual Factory and then generating a random 
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variable for the actual processing time in the implementation of the best schedule, 

additional insight can be gained into the potential performance of the Virtual Factory 

in industry.   
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