
ABSTRACT

SIVASUBRAMANIAN, DHIVYA. Automated Access Control Policy Testing Through Code
Generation. (Under the direction of Ting Yu.)

Any multiuser system has to enforce access control for protecting its resources from unau-

thorized access or damage. One way for specifying access control is ina separate policy specifica-

tion language. An access control system maintains a repository of policies,receives access requests,

consults the policy and returns a response specifying whether the request was permitted or denied.

However, it is challenging to specify a correct access control policy and so, it is common for the se-

curity of a system to be compromised because of the incorrect specificationof these policies. There

are many ways in which a policy can be checked for correctness like, formal verification, analysis

and testing. In this thesis, a systematic and automatic tool forpolicy testingis provided. Testing

a policy involves formulating requests that represent test cases for the policy, evaluating the policy

with those test cases (requests) and comparing the responses obtained with actual expected results.

In our approach to policy testing, we generate access controlpolicy programscorrespond-

ing to a policy. Dynamic analysis testing techniques are those which execute a program for different

inputs to test the expected behavior. We useconcolic testingwhich generates test inputs (requests)

by dynamically analyzing the policy program and solving constraints to identifydistinct feasible

execution paths. We choose to illustrate our above technique using the most generic access control

specification language, Extensible Access Control Markup Language (XACML). However, our ap-

proach to policy testing can in general be applied for testing other rule-based systems using other

languages.

We conduct extensive experiments using ten policy sets to evaluate the effectiveness of our

technique. We use two measures, coverage measure to check the adequacy and mutation testing for

measuring the fault detection capability of the generated requests. The coverage measure shows that

the request set achieves 100% structural policy coverage. We compare the fault detection capability

of our request set with the existing request generation techniques. Theresults indicate that our

request set tests different properties of the policy. This motivates the definition of a policy coverage

criteria based on our method for request generation. A basic definition ofthe policy path coverage

criteria is given. Our work is directly applicable for the quality assurance of access control policies.

A coverage tool can be developed based on the defined coverage criteria. This can help in measuring

the effectiveness of request sets generated by other methods also.

AUTOMATED ACCESS CONTROL POLICY TESTING THROUGH CODE

GENERATION

by

DHIVYA SIVASUBRAMANIAN

A thesis submitted to the Graduate Faculty of

North Carolina State University

in partial fulfillment of the

requirements for the Degree of

Master of Science

COMPUTER SCIENCE

Raleigh, North Carolina

2007

APPROVED BY:

_________________________ _________________________

Dr. Peng Ning Dr. Tao Xie

Dr. Ting Yu

Chair of Advisory Committee

ii

DEDICATION

For my parents and sister. . .

iii

BIOGRAPHY

Dhivya Sivasubramanian was born on October 23rd,1983 in Coimbatore,India. She ob-

tained her Bachelor of Technology degree in Information Technology from Coimbatore Institute

of Technology (CIT), an autonomous institution affiliated to Anna Universityin 2005. After grad-

uation she joined North Carolina State University in August 2005 for her graduate studies in the

Computer Science Department.

iv

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my family, my parents and sister for theirlove

and support for everything.

I would like to thank my adviser, Dr.Ting Yu for his guidance and support for my research

work. His careful and critical comments greatly improved this thesis work. I would also like to

thank Dr.Tao Xie for his invaluable advice, guidance and also for agreeing to serve on my thesis

advisory committee. I also thank Dr.Peng Ning for kindly agreeing to serve onmy thesis advisory

committee.

I would like to acknowledge Evan Martin for his help in starting this project andalso for

the useful discussions.

Last, but not the least I would like to thank all my friends for their support inthe course

of this thesis work.

v

Table of Contents

List of Tables vii

List of Figures viii

List of Listings ix

1 Introduction 1
1.1 Contributions of this thesis . 3
1.2 Organization of this thesis . 4

2 Access Control Policies and Enforcement 5
2.1 BackGround . 5
2.2 Security Policy . 6

2.2.1 Policy Specification Languages . 6
2.2.2 XACML . 7

3 Policy Testing Framework 13
3.1 Policy Model . 14
3.2 Request Generation Process .. . 17

3.2.1 Generating XACML Policy Programs . 17
3.2.2 Dynamic Policy Program Analysis . 24
3.2.3 Request Reduction . 27

4 Evaluation 28
4.1 Coverage Criteria . 28
4.2 Policy Coverage Criteria . 29
4.3 Target Driven Request Generation(Targen) 30
4.4 Comparison of Request Generation Techniques 30
4.5 Mutation Testing for Fault Detection . 32

4.5.1 Fault Detection Capability Comparison 35
4.6 Policy Path Coverage . 37
4.7 Threats to Validity . 38

vi

5 Related Work 41
5.1 Policies, Models and Mechanisms . 41
5.2 Access control models . 42
5.3 Policy Specification Langauges .. 44

5.3.1 Ponder Policy Specification Language . 44
5.3.2 The Platform for Privacy Preferences(P3P) 46
5.3.3 Enterprise Privacy Authorization Language(EPAL) 46

5.4 Policy Testing Techniques . 48
5.5 Formal Policy Analysis . 48

6 Conclusions and Future Work 50

Bibliography 52

Appendix 55

A Fedora XACML Policy Example 56

vii

List of Tables

4.1 Policies used in the evaluation. 31
4.2 Policy Set mutation operators . 32
4.3 Policy mutation operators . 33
4.4 Rule mutation operators . 33
4.5 Policy coverage and fault detection when using targen and the jcute technique. . . . 34

viii

List of Figures

2.1 Functional Components of an Access Control System 6
2.2 Components of XACML Policy . 9
2.3 An example XACML policy . 11
2.4 XACML policy target for a university’s policy 12
2.5 XACML Request . 12
2.6 XACML Response . 12

3.1 Policy Testing Framework . 14
3.2 Control Flow Graph . 15
3.3 Request Generation Process .. . 17
3.4 Request Generation from Program 25

4.1 Policy Element Coverage . 29
4.2 Target Driven Request Generation 30
4.3 jCute Vs Targen . 34
4.4 Mutation Operators . 35
4.5 Example : Original Policy . 39
4.6 Combined Mutation Kill Percentage . 40
4.7 Comparison of Number of Requests .40

5.1 Ponder Authorization policy syntax .45
5.2 Ponder Authorization policy example . 45
5.3 EPAL policy example . 47

A.1 Fedora example XACML policy . 57

ix

List of Listings

3.1 Faculty Policy code . 16
3.2 Policy code for example . 18
3.3 Process each Policy Element .21
3.4 Process PolicyORPolicySetTarget Element 22
3.5 Process Policy Element . 22
3.6 Permit Overides Combining Algorithm . 22
3.7 One Rule . 23
3.8 Symbolic Execution . 25

1

Chapter 1

Introduction

Any multiuser system has to enforce access control for protecting its resources from unau-

thorized access or damage. Access control is one of the fundamental mechanisms for information

system security and it is widely used in operating systems, databases, networks, etc. All these sys-

tems support different applications with multiple users and every activity performed by a user or

a process must be checked to see if it is authorized. An access control system determines what

principals can access what resources and when.

Access control is traditionally enforced by directly hard coding into a system. However,

this is tedious and becomes difficult for a large system. Also, this makes it hardto accommodate

changes of security requirements in a system. Recently, access control systems increasingly separate

policy from mechanisms. That is, an access control policy is explicitly specified using certain policy

languages. And a system dynamically consults the policy to determine whether an access request

should be granted. The advantage of this is that by separating policy frommechanism makes it easier

to specify the protection requirements to be enforced on the system independent of the underlying

implementation details. Also, when the security requirements on the system change later on, it is

possible to easily change the policy without affecting the underlying mechanism implementing it.

The advantages of using a policy specification languages has led to the development

of many specific and generic policy languages. Ponder [3] is an object oriented policy spec-

ification language for distributed systems management. Enterprise Privacy Authorization Lan-

guage(EPAL) [18] is a formal language used to specify fine-grained enterprise privacy polices. Ex-

tensible Access Control Markup Language(XACML) [16] is a generalpurpose policy language and

an access request/response language defined using Extensible Markup Language(XML) for manag-

ing access to resources. The XACML specification in its XML format enables access policies to be

2

transportable and also inter operable across various access control systems.

The use of separate policy specification language provides a systematic way for express-

ing, managing and maintaining access control policies. However, this does not by itself ensure the

correctness of the specified policies. As explained below, there can be anomalies and inconsistencies

in a specified policy and the security of a system is only as good as the policy.

As an example, consider the case of firewall policies. Firewalls are one mechanism for

securing network resources. It is common for mis configured firewall policies to be causing prob-

lems. In examining 37 firewalls in production enterprise networks in 2004, Wool found that all the

firewalls were mis configured and vulnerable [29]. In addition, the study states, “The protection

that firewalls provide is only as good as the policy they are configured to implement. Analysis of

real configuration data shows that corporate firewalls are often enforcing rule sets that violate well

established security guidelines”. The wide and continued spread of wormssuch as Blaster and Sap-

phire, demonstrated that many firewalls were mis configured, because “well-configured firewalls

could have easily blocked them” [29]. There can be many anomalies and inconsistencies in the

policy which make the network resources vulnerable to security attacks. Also, firewall rules are

developed over a period of time. New rules are periodically added as more resources with new con-

straints are added to the network. It is difficult to check for conflicts or overlaps of new rules with

existing rules. Similar problem exists in access control policies of enterprises and other systems.

An enterprises’s security policy is also revised over time as new security requirements are added.

Therefore, it is critical to specify access control policies correctly, which however is a challenging

problem.

There are various ways in which the quality of the policy can be assured like, formal

verification, analysis and testing. Formal verification techniques can verify if a policy satisfies a

particular security property [9, 31]. However, a formal representationof the policy is not scalable

and properties about a policy do not exist in practice. Analysis of policiescan include semantic

analysis like performing a change impact analysis between two policies [6]. Testing is one practical

way for checking the correctness of a policy specification. Semantic analysis techniques can be used

complementary to testing.

In this thesis, we use the new approach ofpolicy testingfor the quality assurance of

access control policies. Policy testing is the technique where the requests that a policy can receive

are formulated and are evaluated against the policy and responses are got. This response is then

checked to see if it is as expected. In general, once a policy is written by a security expert, they

are tested by formulating a set of manually generated ad-hoc requests to check the correctness of

3

the policy. However, these requests are not exhaustive and all the features of the policy may not be

tested. Also, it is tedious to manually formulate requests for large policies. So,there is a need for a

systematic and automatic method for policy testing.

There are two existing policy testing techniques. Martin, Xie, and Yu [15] have developed

a random test generation tool for XACML policies. The tests (requests) are generated as a set of all

combination of attributes found in the policy. The tool represents this attribute as a bit vector and

an attribute appears in the request only if the corresponding bit in the vector is set to 1. The number

of requests to be generated can be user specified. To achieve adequate coverage, even in a small

request set, they modify the random bit setting algorithm to ensure each bit isset at least once. This

method, though simple to implement is not ensure that a policy is thoroughly tested.Martin and Xie

[14] have developed the target driven test generation tool for testing XACML policies. This tool

considers the policy as a hierarchical tree with the rules as the leaves. Theconditions along branch

in the tree leading to a rule is solved to generate the requests. This method, though outperforms the

random test generation technique in terms of policy coverage and fault detection, it considers only

each rule at a time and the effect of the policy as a whole is not considered.

In our approach to policy testing, we generatepolicy programscorresponding to a policy.

The large amount of existing software testing techniques can be applied to thispolicy program for

policy testing. The process of software testing is often calleddynamic analysisbecause it requires

that the software be executed for different inputs and the corresponding outputs be observed. This

is in contrast tostatic analysistechniques like model checking which do not require the execution

of the software. We use dynamic analysis techniques in our approach to policy testing. We use

XACML as the policy language, but our techniques can be easily extendedto other rule-based

systems using different languages.

1.1 Contributions of this thesis

The following are the contributions made by this thesis,

1. The thesis proposes an automated method that uses software testing techniques for testing

access control policies. The use of software testing techniques for ensuring the correctness of

access control policies is novel.

2. We have developed a tool for the automated conversion of XACML policies to programs.

Each of the XACML policy element is converted into a corresponding code element. This

4

code can be executed and software testing techniques like path coverageanalysis can be used

on it for policy testing. This idea of automatically generating policy programs is novel.

3. We have conducted extensive experiments to evaluate the effectiveness of our approach, and

found that our method achieves 100% policy structural coverage. The mutation testing results

show that our technique tests different properties of the policy than existing techniques.

4. Based on our technique, we define a stronger coverage criteria fortesting access control

polices. This can be used for assessing requests generated by other techniques also.

1.2 Organization of this thesis

The thesis is organized as follows, Chapter 2 provides background information on the

various components of an access control system and policy specificationlanguages. In Chapter 3,

we explain our framework for access control policy testing. Chapter 4 presents the results of our

evaluation and defines the new policy coverage criteria. Chapter 5 describes related work in the area

access control and policy verification. Chapter 6 concludes and givesdirection for future work.

5

Chapter 2

Access Control Policies and Enforcement

2.1 BackGround

In this chapter, we give an overview of the various components that make upan access

control system and an introduction to policy specification languages. The figure 2.1 shows the

various functional components of any system protecting its resources byenforcing access control.

The user makes a request to the entity protecting the resources in the system,the Policy Enforcement

Point(PEP). The PEP forms the appropriate access control request in aformat applicable to the

Policy based on the attributes of the requester, the action sought, the resource requested and the

environment and gives it to the Policy Decision Point(PDP). The PDP looks up the policy that

applies to the request and returns a response to the PEP. The PEP then returns the corresponding

decision to the requester. The advantage of using this abstract model is that any application can use

this system.

There can be various vulnerabilities in a system implementing access control. For exam-

ple, the user has to first be properly authenticated into the system. Then the PEP should correctly

perform the translation from the user/application specific request to that specific to the policy. This

is a vulnerability because the policy specification language may be more expressive for specifying

an application’s security requirements. For example, XACML allows a set ofsubjects to request

access to a set of resources. But an application can have a strict requirement that only one subject

can access one resource at a time. In this cases, the PEP implementation should be correctly im-

plemented to be aware of this restriction when performing the translation from the user’s request

to a policy specific request. Next, the access control policies have to correctly specify the intended

behavior of the system. Also, the PDP has to perform the evaluation correctly. Among these vulner-

6

Policy
Enforcement
Point

Policy Decision
Point

User
Resource

Access
Request

Access
Decision

Request Response

Access
Granted

Access Control
Policies

Figure 2.1: Functional Components of an Access Control System

abilities, one of the most basic requirement is to ensure that the security policyis specified correctly.

In this thesis, we focus on the problem of ensuring that the access control polices are

specified correctly. A policy is considered to be correctly specified whenit satisfies all the properties

of the system. An example of a property is that a particular subject should not access certain

resources. These properties can be explicitly and formally expressed and formal analysis techniques

like resolution theorem proving can be used to prove if a property holds in apolicy. However, such

properties of a policy do not exist in practice and it is difficult to infer suchproperties in a large

system. Also, the formal analysis techniques are not scalable. A practicalway for ensuring the

correctness of the policy is to test the policy against a set of requests andcheck if the responses

obtained are as expected. This is the policy testing approach which is followed in this work.

2.2 Security Policy

The security policy in an access control system provides a systematic way for specifying

the strategy and practices for ensuring the security, integrity and availabilityof resources in an

information system. In this section, we will give a brief overview of policy specification languages

and describe XACML which we will be using for illustrating our approach to testing.

2.2.1 Policy Specification Languages

Previously access control policies were written by hard coding directly intothe program

by the programmer. Later on, as the policies became more and more complicated,separate policy

specification languages were developed. There are many policy specification languages and they

7

can be either generic or specific to applications. Generic policy specification languages are designed

for enforcing access control in broad domains like distributed policy management [3], protecting

the privacy of enterprises [18] , etc. Jajodia et al [10] propose a logical language for a model

that allows the specification of different access control policies. They have also proposed a Flexible

Authorization Manager (FAM) [11] that can enforce multiple access control policies within a single

system. Besides generic policy languages, researchers have also designed models and languages for

specific applications like, a model for information access control in a clinicalinformation system

[1], an access control model for work flow management [2], security policies for distributed system

services [19], an access control language for web services [25],etc.

Our technique for policy testing is general and can be used for testing access control

policies specified in other rule-based systems. In this thesis we present our approach in the context

of one of the generic specification language XACML.

2.2.2 XACML

XACML provides a standardized way of expressing authorization policesand a standard

format for expressing queries over these policies.

We have chosen to illustrate our approach to policy testing using XACML because it a

general purpose specification language with various advantages for enforcing access control like,

• It is an open source standard ratified by the Organization for the Advancement of Structured

Information Standards (OASIS). Because it is a standard, the various features of XACML has

been examined by experts and so the specification is stable. Also, it is expected to be used

widely in the industry because of its ratification.

• XACML is specified in XML format which is used for e-business applicationsfor Electronic

Data Interchange (EDI) in business-to-business and business-to-consumer transactions. Be-

cause of this, these applications can be easily configured to exchange orshare XACML poli-

cies for enforcing access control.

• The specification is flexible and extensible. It is flexible since it is a generic standard and can

be applied for specifying policies in all applications. It is extensible because the data types,

functions, attribute types, and the way for combining multiple applicable rules/ polices can be

extended. Also currently there is work on developing an XACML profile for Web Services,

SAML and LDAP. This shows the language is adaptable to different environments.

8

• It is a portable standard. Since the specifications is in XML format, it can be used across

applications.

• Conceptually it follows the PDP and PEP model which makes it applicable to many applica-

tion environments.

• It supports distributed policies. The security policy of an enterprise may beenforced at dif-

ferent points and there is a need for specifying distributed policies.

XACML follows the abstract model as shown in figure 2.1 for policy enforcement defined

by the Internet Engineering Task Force(IETF) [30] [28].

The specification defines the PEP (Policy Evaluation Point) and PDP (Policy Decision

Point) as any other access control implementation. The request is given to aPEP which processes

it and converts it to an XACML request format and gives it to the PDP. ThePDP has access to the

policies and it gets the request and determines if it has to give access to the policy or not. The PDP

and PEP implementation is dependent on the application. They may be in the same application or

be as separate entities on different applications or be available as a service over a network.

XACML Constructs

All XACML polices contain either aPolicy or Policy Setas the basic element. APolicy

is composed of a set ofRules. A set of policies or policy sets are combined to form aPolicy Set.

Figure 2.2 shows these main components and the hierarchical relation between Policy Sets, Policies,

RulesandConditionsin XACML. When there are multiple rules in the policy and multiple policies

/ policy sets in a policy set, it is possible that a single access request can beapplied to multiple rules

to return conflicting access decisions. The way these conflicts must be resolved is dependent on the

specific application’s policy. However, XACML specifies some standard rule and policy combining

algorithms for this. They are,

First Applicable : Among the set of rules (policies), this returns the effect of the rule (policy) that

first evaluated to true. Here, the ordering of the rules is important.

Permit Overrides and Deny Overrides : In the set of rules (policies) in a policy (policy set), if

a rule (policy) evaluates to true and if its effect is permit then the result of therule (policy)

combination is permit. If the effect of the rule (policy) is deny or if it is not applicable then

all the rules (policies) in the set are evaluated to check if there is any permit rule (policy)

9

Policy Set
<Target>

Policy 1
<Target>

Policy 2
<Target>

Rule 1
<Target>

Policy Set 1
<Target>

Policy Set n
<Target>

Policy 3

<Target>

[Condition]

Rule 1
<Target>

[Condition]

Target

<Environment>

<Resource>
<Action>

<Subject>

Figure 2.2: Components of XACML Policy

10

evaluating to true. If such a rule exists, a permit decision is returned, if nota deny decisions

is returned if none of the permit rules are applicable. Hence, here permit rules are given

precedence. Similarly the deny overrides rule (policy) combining algorithm isdefined.

Only One Applicable : This combining algorithm is defined for combining policies in a policy set.

If no policy is applicable or more than one policy is applicable, the result is defined as not

applicable and in determinant. If only one policy in the policy set is applicable for a request

then the result of the policy is returned.

The permit overrides and deny overrides combining algorithms can be specified to be

ordered requiring that the rules be evaluated in the order in which they arespecified. In addition to

the above, user-defined combining algorithms can also be added.

A Ruleis the most elementary unit of aPolicy [16]. A rule is made of the elements,Target,

Effectand the optionalConditionelement. ATargetdefines a set ofSubject, ResourceandActions

elements for which the rule is intended to apply. TheEffectspecifies the access decision as permit

or deny that is returned on the successful evaluation of the rule. TheConditionelement can include

complex functions that further refine the applicability of the rule. The policy itself can have a target

specifying the applicability of the policy. In this case, this target can be thought of as an index

into the policy. The index can be the common criteria that has to be satisfied for the set of rules

in the policy to be applicable. When there are a number of policies each with a number of rules,

the index of each policy helps to speed up the evaluation of a decision request by first checking

the applicable policy targets and then evaluating the rules in those policies. A policy set may be

used for semantically grouping policies/ policy sets. For example, groupingthose policies defining

authorization for a particular object/subject, etc. A policy set also includes atarget element which

again be used as an index for checking the applicability before evaluation of all the constituent

elements.

The other essential constructs in an XACML policy are attributes, attribute values and

functions. Attributes are named values of known types [16]. The Subject,Resource, Action and

Environment of a given access request are described by attributes. Arequest will mostly contain a

set of attributes. These are compared with the corresponding attribute values in the policy and an

access decision is made. A request can match the attributes in the policy by using theAttributeDes-

ignator [16] type which identifies attributes by their name and type. TheAttributeSelectoris used

for matching a request with the attribute values in the policy through an XPath query. The attributes

values can be operated on by a number of function like string comparison, date and time functions,

11

1<Policy PolicyId="univ" RuleCombinationAlgId="permit-overrides">
2 <Target>
3 <Subjects> <AnySubjects/> </Subjects>
4 <Resources><Resource> <AnyResource/> </Resource></Resources>
5 <Actions> <AnyAction/> </Actions>
6 </Target>
7 <Rule RuleId="1" Effect="Permit">
8 <Target>
9 <Subjects><Subject> Faculty </Subject></Subjects>
10 <Resources> Grades </Resources>
11 <Actions><Action> Assign </Action>
12 <Action> View </Action></Actions>
13 </Target></Rule>
14 <Rule RuleId="2" Effect="Deny">
15 <Target>
16 <Subjects><Subject> Student </Subject></Subjects>
17 <Resources>Grades </Resources>
18 <Actions><Action> Assign </Action></Actions>
19 </Target>
20 </Rule>
21 <Rule RuleId="3" Effect="Permit">
22 <Target>
23 <Subjects><Subject> Student </Subject></Subjects>
24 <Resources> Grades </Resources>
25 <Actions><Action> View </Action></Actions>
26 </Target>
27 </Rule>
28 <!-- A final, "fall-through" rule that always Denies -->
29 <Rule RuleId="FinalRule" Effect="Deny"/>
30</policy>

Figure 2.3: An example XACML policy

logical functions, numeric conversions, set functions, bag functions,etc and the values returned can

be compared to arrive at an access decision.

An Example Policy

In this section, we describe an example XACML policy in a university. Figure2.3 shows

a simplified form of this policy with the major XACML componenets. This policy describes the

way in which the access to the grade resource is controlled in a university.The policy has an empty

target, which means that by default the set of rules in the policy are applicable for any request. The

target of the policy in general is used as an index for the rules. In the above example, the target

could have been used to restrict the policy to be specific to a university as shown in figure 2.4.

There are three rules in the policy and a final fall through rule. The threerules are com-

12

<Target>
<Subjects> <Subject> NC State University User </Subject> </Subjects>
<Resources> <Resource> NC State University Academic Records
</Resource> </Resources>
<Actions> <AnyAction/> </Actions>

</Target>

Figure 2.4: XACML policy target for a university’s policy

<Request>
<Subjects> Student </Subjects>
<Resources><Resource>Grades</Resource></Resources>
<Actions> View </Actions>

</Request>

Figure 2.5: XACML Request

bined based on the permit overrides rule combining algorithm. This means that set of rules are

combined giving precedence to rules with an effect of permit.

XACML Request and Response context

The XACML Request and Response context specifies the standard format with which a

request and response from the system is got. The figures 2.5 and 2.6 shows a simplified form of an

XACML Request and Response.

The request enables a set of subjects, resource and action elements to be specified. In this

example, the student requests access to view the grade resource.

The response is returned on evaluating the request against the set of rules in the policy. In

this example, a decision is returned on matching the attribute values in the request with the attribute

values in the rule 3 in the policy.

<Response>
<Result>
<Decision>Permit</Decision>
</Result>

</Response>

Figure 2.6: XACML Response

13

Chapter 3

Policy Testing Framework

In this chapter, we describe the general framework followed for policy testing. We also

describe our technique for policy testing and show how it fits into this framework.

Figure 3.1 shows the general framework for testing a policy specification.The input to

the framework is the access control policy that is to be tested. In the request generation phase,

this policy is converted to a format suitable for testing. The output is results about the quality of

the request set generated. The various phases are, request generation, testing policy against these

requests and evaluating the quality of request set. These components aredescribed in detail below,

Request Generation Process: Here, a policy is taken as input and the optimal number of requests

needed for testing the policy is generated. This phase corresponds to testinput selection in

general software testing. As in test selection, some form of heuristics mustbe used to restrict

the test cases generated.

Test Policy against Request: In this phase, we evaluate the generated request set against the policy

to collect statistics of the generated test cases, which are later used to evaluate the quality of

the test suite.

Compare and Evaluate Quality of Request Set: Here two techniques are used for evaluation. We

find the policy structural coverage and the mutant kill ratio of the requests generated by our

approach. We compare and analyze these results with existing request generation techniques.

In this chapter, we describe the first component - our model for request generation and Chapter

4 discusses the rest of the components - testing, evaluation and analysis ofthe results. We use

XACML policy specification language for describing our framework.

14

Request
Generation Process

Policy
Request Set

Test Policy
against Request
Set

Evaluate
Quality of
Request Set

Measure
Policy
Coverage

Perform
Mutation
Testing

Results

Analyze Results

Figure 3.1: Policy Testing Framework

3.1 Policy Model

In this section, we describe how we model an XACML policy for generating requests.

The overall idea of our approach is to consider the ordering and relationship between rules in the

policy when generating requests. Consider an XACML policy shown in figure 2.3 for access to a

grade book in a university. Here, the resource to be protected is Grades. The roles in the system are

Faculty and Student. The various actions that the roles can perform on theresource are View and

Assign.

The example 2.3 shows a single policy with the following rules,

1. Faculty can Assign and View Grades

2. Students cannot Assign Grades

3. Students can View Grades

4. All other requests will be denied

An XACML request to access the Grade resource will contain thesubject/sthat is the

role/s making the request, theresource/sbeing requested for and theaction/srequested on it.

The problem of policy testing is to find all possible requests that a policy can receive and

check if the response is as expected. A request is a subset of the set of attributes representing the

subject, resource, action and environment elements of the policy. So, all possible combinations of

the sum of attribute sets will give all possible requests that a policy can receive. In general the

number of possible requests that a policy can receive is2n wheren is the number of attributes.

In other words, the request to a policy is a bit vector of lengthn and2n different requests can

be generated. For the above simple example with 5 attributes, the exhaustive set of requests to be

15

If (faculty==true)

If (Grades== true)

If (Assign==true or View
==true)

Permit

If (Student==true)

If (Grades==true)

If (Assign==true)

If(Student==true)

If (View ==true)

Deny
Permit

T

T

T

F

F

T

T

T

F

F

F

Deny

F

F

T

T

F

Figure 3.2: Control Flow Graph

tested is25 = 32. This technique though exhaustive, is inefficient and the number of test cases grows

exponentially with the increase in number of attributes. Also, in XACML, the attributes correspond

to roles, resources and actions sought, and the number of attributes directly map to the size of the

application. According to a case study of the role based access control system of a bank [22] , the

number of roles in an organization is 2-3% of the user population. So, generating test cases based

on all combinations of attributes in a policy is not scalable.

Alternatively, in our approach, we consider the structure and semantics of the policy for

generating and restricting the requests. Specific details of this approach isgiven in the next section.

Here, we introduce the terms and concepts we use. Listing 3.1 shows a way inwhich the above

example policy can be represented as a sequence of conditional statements. This shows the order in

which the rules are considered when evaluating a request against the policy. This can be thought of

as a program with a sequence of instructions. Thus, this corresponds toa Policy Program. White-

box testing is a technique in which the internal structure of a program is examined for testing it.

Now, given a policy program, white-box testing techniques can be used onthe program. A common

method of white-box testing is to examine the control flow graph of a program. Acontrol-flow-

16

graphof a program is a directed graph showing all the execution paths in the program. The nodes

represent the blocks of code without any branches and the edges represent jumps in the control

flow. Figure 3.2 shows the control flow graph of the program corresponding to the example policy.

Control flow graph of a program is used in many static analysis tools and compiler optimizations.

Listing 3.1: Faculty Policy code

1 i f (r o l e == F a c u l t y)

2 i f (r e s o u r c e == Grades)

3 i f (a c t i o n == Ass ign or View)

4 re turn Perm i t

5

6 i f (r o l e == S t u d e n t)

7 i f (r e s o u r c e == Grades)

8 i f (a c t i o n == Ass ign)

9 re turn Deny

10

11 i f (r o l e == S t u d e n t)

12 i f (r e s o u r c e == Grades)

13 i f (a c t i o n == View)

14 re turn Perm i t

15

16 re turn Deny / / d e f a u l t r e t u r n va l ue

A coverage metric specifies when to stop a testing process. For testing a program, one

structural coverage metric that is commonly used ispath coverage. In path coverage, the criteria

to stop testing is when each path in the program is traversed at least once. The problem with this

approach is that the number of paths even for a simple program can be large. For example, if the

input to a program is an integer, then the number of paths that the program can take is infinite. In

our case, the program is a series of conditional statements. The output ofeach conditional statement

is a true or a false outcome. So, for the above example, there are 9 conditions in the program and the

number of paths is29 = 512. In general, for a policy, if there aren rules (with subject,resource and

action elements) in a policy program, the number of paths is2n∗3. We see that the number of paths

in the program grows exponentially with the addition of a conditional statement. Path coverage, as

such is not used as the only metric for measuring the adequacy of testing. Usually, some heuristics

are used to restrict the number of paths. Our approach to reduce the number of paths and generate

17

Preprocess policy,
renaming attribute
values if necessary

Generate code
corresponding to every
policy element

Perform program path
coverage analysis and
generate optimal test
cases

Generate XACML
requests from test
casesXACML

policy source
Requests for
testing the
policy

Convert policy to
program

Generate test
cases from policy
program

Figure 3.3: Request Generation Process

test cases is to use concolic testing (combination of concrete and symbolic executions) [23] to detect

distinct paths as explained in the subsequent sections. This is done by solving the constraints which

correspond to conditions represented by each rule.

3.2 Request Generation Process

The various components of the request generation process are code generation, test case

generation and request formulation. This is shown in figure 3.3. The inputto this step is the policy

which is to be tested, the output will be a set of test cases that can be used totest the different

paths in the policy. Also, an intermediate product is the policy program which can be used for other

purposes like semantic code analysis as explained in chapter 6.

3.2.1 Generating XACML Policy Programs

In this section, we describe the basic idea of converting an XACML policy to code. The

next sections describes the general algorithm for this. An XACML policy can be thought of as a

set of predicates combined by logical operators. The predicates are therules and the variables in

the predicate correspond to attribute values in the policy. A policy is statically analyzed by parsing

it and collecting all the attributes. Note that these details can be obtained from the policy writer

from some specification, but we assume that such a specification is not available and we only have

the policy that is to be tested. These attributes are then classified according tothe type as subject,

resource, action and environment. XACML represents a rule as a condition over these attribute

values. A rule can be represented as a conditional statement. So, an entirepolicy can be represented

as a series of conditional statements. All the attributes in the policy are declared as boolean variables

and they can be set to true to show their presence in a rule.

18

As a practical example, we consider the modified form of the policy that is used by meta

access management system and fedora for controlling access to objects and data streams. The

XACML policy is given in the appendix in figure A.1. The policy has one policyset with four

rules in the policy. The order in which the rules are to be combined is using deny overrides rule

combining algorithm. The four rules are,

The target of the policy is the condition checking if the access requested is for this mod-

fedora object.

1. Deny any access if client ip address is not 127.0.0.1. This policy essentially checks if the

environment attribute client ip address is 127.0.0.1. If yes it grants accessand proceeds to

evaluate the next rule. If no it returns a deny decision.

2. Deny any access to objects or data streams, which are either inactive ordeleted, unless subject

has administrator role This rule first checks if the requested resource is inactive or deleted.

If true then it checks if the subject accessing the resource is the administrator and it gives

access.

3. Permit access to inactive data streams if the user role is special user.

4. Deny access to POLICY data stream unless subject has administrator role. Similarly, here

also only if the subject is an administrator, it is given access to the resource.

The generated code corresponding to the above policy is,

Listing 3.2: Policy code for example

1 pub l i c c l a s s mod fedora{

2 pub l i c s t a t i c S t r i n g E v a l u a t e P o l i c y (boolean[] pReques tAr ray){

3 boolean 127 0 0 1 , a d m i n i s t r a t o r , s p e c i a lu s e r , I n a c t i v e o b j e c t ,

4 D e l e t e d o b j e c t , I n a c t i v e d a t a s t r e a m , D e l e t e dd a t a s t r e a m ,

5 u r n f e d o r a n a m e s f e d o r a ;

6

7 1 2 7 0 0 1 = pReques tAr ray [0] ;

8 a d m i n i s t r a t o r = pReques tAr ray [1] ;

9 s p e c i a l u s e r = pReques tAr ray [2] ;

10 p o l i c y = pReques tAr ray [3] ;

11 I n a c t i v e o b j e c t = pReques tAr ray [4] ;

12 D e l e t e d o b j e c t = pReques tAr ray [5] ;

19

13 I n a c t i v e d a t a s t r e a m = pReques tAr ray [6] ;

14 D e l e t e d d a t a s t r e a m = pReques tAr ray [7] ;

15 u r n f e d o r a n a m e s f e d o r a = pReques tAr ray [8] ;

16

17 i f (((u r n f e d o r a n a m e s f e d o r a ==t rue))) { / / P o l i c y Ta rge t

18 A s s e r t (f a l s e) ;

19 i f (! (1 2 7 0 0 1 ==t rue)) { / / r u l e 1

20 A s s e r t (f a l s e) ;

21

22 }

23 }

24

25 i f (((I n a c t i v e o b j e c t ==t rue)) {

26 A s s e r t (f a l s e) ;

27 i f (! (a d m i n i s t r a t o r ==t rue)) { / / r u l e 2

28 A s s e r t (f a l s e) ;

29 }

30 }

31 i f ((D e l e t e d o b j e c t ==t rue)) {

32 A s s e r t (f a l s e) ;

33 i f (! (a d m i n i s t r a t o r ==t rue)) { / / r u l e 2

34 A s s e r t (f a l s e) ;

35 }

36 }

37 i f ((I n a c t i v e d a t a s t r e a m ==t rue)) {

38 A s s e r t (f a l s e) ;

39 i f (! (a d m i n i s t r a t o r ==t rue)) { / / r u l e 2

40 A s s e r t (f a l s e) ;

41 }

42 }

43 i f ((D e l e t e d d a t a s t r e a m ==t rue)) {

44 A s s e r t (f a l s e) ;

45 i f (! (a d m i n i s t r a t o r ==t rue)) { / / r u l e 2

46 A s s e r t (f a l s e) ;

47 }

48 }

49

20

50 i f (p o l i c y ==t rue){ / / r u l e 4 − r e o r d e r e d

51 A s s e r t (f a l s e) ;

52 i f (! (a d m i n i s t r a t o r ==t rue)) {

53 A s s e r t (f a l s e) ;

54

55 }

56 }

57

58 i f (s p e c i a l u s e r ==t rue){ / / r u l e 3 − r e o r d e r e d

59 A s s e r t (f a l s e) ;

60 i f (I n a c t i v e d a t a s t r e a m ==t rue){

61 A s s e r t (f a l s e) ;

62

63 }

64 }

65 re turn "Not Applicable" ; / / d e f a u l t r u l e

66 }

The program shows that the attributes in the policy are converted to booleanvariables

in the program. The input to the program is the boolean arraypRequestArray. The presence and

absence of the attributes in the policy can be controlled by setting the index in thisinput array.

Assertions are a software engineering technique that can be used to systematically prove

the correctness of a program [7]. Java provides this feature by meansof the assert statement which

takes a boolean expression and can assert true or false. The jCute testing tool, looks for these

assertion violations in a program. So, to generate test cases for testing thepolicy program, we

add assert statements after every rule or to have more specific inputs, addassert statements after

every condition check in the rule. This can be seen in example listing 3.2. Adding these assertions

drives the program execution through these paths. As an optimization to getmore optimal requests

from jCute, the conditional statements in the program with OR’s can be split up into separate if

statements. This is shown in the example where the rule 2 is split into four conditional statements.

Converting permit overrides and deny overrides combining algorithms

In our approach, the permit overrides and deny overrides algorithms are converted to

their first applicable forms. The permit overrides algorithm can be converted to first applicable by

reordering the rules to have those with the effect of permit first and then those with the rules with

21

an effect of deny. Similarly, the deny overrides algorithm can be converted to its first applicable

format.

The reason for doing this is that, when exploring the various paths in the program, the use

of the permit overrides and deny overrides algorithms may miss certain paths,while this re-ordering

makes it simple to cover these paths in the program. In the above example in listing 3.2, the rule

with an effect of permit is re-ordered to be after all the rules with an effect of deny.

Algorithm for translating an XACML policy to a program

In this section we describe an algorithm for converting a policy to program. Given an

XACML policy, the following describes the step by step procedure for converting it to program.

Step 1: Pre-process attribute values: Do a static analysis of the policy - parse the policy, collect

attributes, remove duplicate attribute values and process the attribute values making them

suitable for use as a variable name in a program.

Step 2: Maintain mapping between code and policy - write the attribute values to a file in a format

that will preserve the meaning of the attributes like subjects, resource and action.

Step 3: Generate code corresponding to each policy element. The policy set target, policy target,

rule target and rule conditions are read in order and converted to corresponding condition

equivalents preserving the ordering between the rules.

Step 4:Add the default cases, and the test driver code needed for generating the various test cases.

The algorithm is as follows,

Listing 3.3: Process each Policy Element

1 p r o c e s s P o l i c y E l e m e n t (Node aNode){

2 i f (aNode == P o l i c y T a r g e t Element)

3 P o l i c y O R P o l i c y S e t T a r g e t (aNode)

4 i f (aNode == P o l i c y Element)

5 OnePol icy (aNode)

6 i f (aNode == P o l i c y S e t Element){

7 f o r every c h i l d node of P o l i c y S e t

8 i f (c h i l d N o d e O f P o l i c y S e t == P o l i c y S e t T a r g e t)

9 P o l i c y O R P o l i c y S e t T a r g e t (c h i l d N o d e O f P o l i c y S e t)

22

10 i f (c h i l d N o d e O f P o l i c y S e t == P o l i c y)

11 OnePol icy (c h i l d N o d e O f P o l i c y S e t)

12 i f (c h i l d N o d e O f P o l i c y S e t == P o l i c y S e t E l e m e n t)

13 p r o c e s s P o l i c y E l e m e n t (c h i l d N o d e O f P o l i c y S e t)

14 }

15 }

Listing 3.4: Process PolicyORPolicySetTarget Element

1 P o l i c y O R P o l i c y S e t T a r g e t (Node aNode){

2

3 s u b j e c t = aNode . g e t S u b j e c t E l e m e n t O f T a r g e t ()

4 p r i n t C o d e C o r r e s p o n d i n g T o S u b j e c t (s u b j e c t)

5

6 r e s o u r c e = aNode . ge tResou rceE lemen tO fTa rge t ()

7 pr i n tCodeCor respond ingToResou rce (r e s o u r c e)

8

9 a c t i o n = aNode . ge tAc t i onE lemen tO fTa rge t ()

10 p r i n tCodeCor respond ingToAc t i on (a c t i o n)

11 }

Listing 3.5: Process Policy Element

1 OnePol icy (Node aNode){

2 T a r g e t = aNode . g e t T a r g e t O f P o l i c y ()

3 P o l i c y O R P o l i c y S e t T a r g e t (T a r g e t)

4

5 i f (aNode . Po l i cyRu leCombin ingA lgor i thm == P e r m i t O v e r i d e s)

6 Permi tOver idesComb in ingA lgo r i t hm (aNode)

7

8 i f (aNode . Po l i cyRu leCombin ingA lgor i thm == DenyOver ides)

9 DenyOver idesCombin ingAlgor i thm (aNode)

10

11 i f (aNode . Po l i cyRu leCombin ingA lgor i thm == F i r s t A p p l i c a b le)

12 F i r s t A p p l i c a b l e C o m b i n i n g A l g o r i t h m (aNode)

13 }

23

Listing 3.6: Permit Overides Combining Algorithm

1 Permi tOver idesComb in ingA lgo r i t hm (Node aNode){

2 Queue RuleQueue ;

3 f o r every r u l e i n p o l i c y

4 Rule = aNode . g e t R u l e S e t ()

5 i f (Rule . E f f e c t == Deny) {

6 RuleQueue . add (Rule)

7 con t inue

8 }

9 OneRule (Rule)

10 f o r every r u l e i n Queue

11 OneRule (Rule)

12 }

Listing 3.7: One Rule

1 OneRule (Rule aRule){

2 T a r g e t = aRule . g e t T a r g e t ()

3 OneTarget (T a r g e t)

4 i f ((C o n d i t i o n =Rule . g e t C o n d i t i o n ()) ! = n u l l)

5 OneCondi t ion (C o n d i t i o n)

6

7 Cl as s a F u n c t i o n{

8 S t r i n g nameo f f unc t i on

9 L i n k e d L i s t p a r a m e t e r s L i s t

10 }

11

12 Queue Cond i t ionQueue

13 OneCondi t ion (C o n d i t i o n a C o n d i t i o n){

14 a F u n c t i o n oneFunc t i on

15 f o r each c h i l d o f c o n d i t i o n

16 oneFunc t i on . name = c o n d i t i o n C h i l d . name

17 i f (c o n d i t i o n C h i l d == a n A t t r i b u e V a l u e)

18 Func . p a r a m e t e r s L i s t . add (c o n d i t i o n C h i l d . a n A t t r i b u t e Va l u e)

19 i f (c o n d i t i o n C h i l d == a C o n d i t i o n){

20 Condi t ionQueue (a C o n d i t i o n)

21 OneCondi t ion (a C o n d i t i o n)

24

22 }

23 f o r each f u n c t i o n i n Cond i t ionQueue

24 w r i t e C o r r e s p o n d i n g F u n c t i o n T o F i l e ()

25 }

Listing 3.3 shows the overall algorithm for processing each policy element. The function

processPolicyElement takes each element of the policy as input. It starts from the top most policy

element. For each of the elements, the type of the element is determined as Policy Set or Policy Set

Target or Policy Target or Policy and the corresponding sub-procedure is called. The procedure

recurses in the case if there is a policy set inside a policy set.

Listing 3.4 shows how the target of the policy and policy set is being handled.The

target is made of the subject, resource and action elements. Each of these elements correspond to a

condition to be checked. So the code corresponding to this is generated.

Listing 3.5 shows how the various rules in the policy are combined using the three differ-

ent combining algorithms, permit overrides, deny overrides and first applicable.

Listing 3.6 shows how the permit overrides algorithm is handled. Permit Overrides algo-

rithm keeps evaluating the rules until a permit decision is returned. A policy withpermit overrides

combining algorithm can be converted to first applicable by re-ordering therules based on their

effect. The rules which have an effect of permit are put before ruleswhich have an effect of deny so

that the semantics of the ordering remain the same. In the algorithm, there is a queue to which any

rule with a deny effect is encountered is added when first traversing thepolicy. If the effect of the

rule is permit then the code corresponding to the rule is printed out. If the effect of the rule. After

the end of the policy is reached, the permit rules are printed.

Listing 3.7 shows how each rule is converted to a code. Each rule is made up atarget

which is handled by the function in Listing 3.4. The rule can have a condition and this has to be

converted into another conditional statement. A condition can have different parameters depending

on the function defined. They are specified in the list.

3.2.2 Dynamic Policy Program Analysis

The purpose of converting the XACML policy to a program is to take advantage of the

large amount of software testing techniques available. So, testing a policy reduces to the problem

of unit testing the policy program.

Testing techniques are classified asdynamicandstatic. Static techniques test a software

25�� � � �� �� � � � 	 �
� � �
� � � � � ��� � � � �� �� �� �� �� � �
� � � � �� � � �
� �� � �� � � �
� � �
�� � � � � �! ! �� � � � "�
 # $ " %� & ' (� � �
� � �))�� � *& ' (� � �
� � �)) � "�
 # $ " %�+ ,� � �
� � �)) �� � *+ ,� � �
� � � � � ��� � � �
 �- "� � � �
� � � � �� � � �
� �� � �� � � �
� � �
� � � � � � � ! !�� �. 	 * "# / � � �
� � � ��� � � �
 �- "� � � �
� � � �� � � � �
� �� � �� � � �
� � �
� � � � � � � ! !�� �0. *1 0 �� � �
� � �� �� � "�
 # $ " %� + ,� � �
� � � �� � � �
� �� � �� � � �
� � �
� � 2 �
3 �� � �! !
� � �
� 45 6 � � 7 7 � �8 � 9 �� : �
FalseFalseFalseFalseFalseTrueFalseFalseTrue

TrueFalseFalseFalseFalseFalseFalseFalseTrue

TrueFalseFalseFalseFalseFalseFalseFalseFalse

FalseFalseFalseFalseFalseFalseFalseFalseFalse

urnFedoradelDSinactiveDSdelObjpolicyinactiveObjsplUsradmin 127_0_0_1

Figure 3.4: Request Generation from Program

without executing it but performing activities like inspection, symbolic execution and verification.

Dynamic techniques test a software by generating various test inputs for executing the software and

checking the results obtained. Our approach to policy testing follows the dynamic testing approach.

There are many methods of dynamic program testing each depending on the specific application. In

this thesis, we use concolic testing [23] for policy testing.

Concolic testing is a systematic and scalable method for program testing. The goal in con-

colic testing is to generate data inputs that would exercise all feasible execution paths of a sequential

program [23]. The essential idea is to use concrete values as well as symbolic values as inputs for a

program and execute the program both concretely and symbolically. A concrete value is a specific

value for an input variable in a program. A symbolic value is a symbolic name for an input variable

in a program. The execution path followed by a program on using a concrete input value is called

concrete execution. In symbolic execution, an input variable is assigned asymbolic name and the

program’s execution path is followed. The result of this execution will be anequation in terms of

input variables, which if satisfied, will lead the execution on the symbolically executed path. In the

example program in listing 3.8, the input variable isx and it can be assigned the symbolic name

x asx = x. On reaching the second statement, y has the symbolic valuey = x ∗ x. Now, for the

if statement on line 3 to take the true branch, the inequalityx ∗ x > 12 must hold. Similarly, the

inequality to hold in line 4 is(x ∗ x) + 2 > 14.

Listing 3.8: Symbolic Execution

1 r ead (x)

26

2 y = x ˆ2

3 i f (y > 12)

4 A s s e r t (f a l s e) / / an e r r o r

The symbolic execution followed by the concolic testing algorithm is the same as theone

defined above except that the algorithm takes the path that the concrete execution takes. At each

branch point, during this execution, constraints over the symbolic values are collected. This is called

symbolic constraint[23]. So, at the end of the execution, the algorithm will have a sequence of

symbolic constraints corresponding to each branch point in the program. The conjunction of these

constraints is called thepath constraint[23]. It is to be noted that,“ all input values that satisfy a

given path constraint will explore the same execution path” [23].

The concolic testing algorithm repeatedly generates inputs to traverse distinct execution

paths using a depth first search strategy. The algorithm starts of with a randomly generated input.

This input is used to first execute the program (concrete testing), simultaneously during this exe-

cution, the path followed by the program is modeled as symbolic constraints (symbolic execution).

These constraints will be used for generating the subsequent inputs. Among the symbolic con-

straints collected, a constraint is picked and negated to generate the next path constraint. This way,

inputs for all distinct execution paths can be found and hence redundant test cases can be avoided.

We use the tool jCUTE [24], a concolic unit testing engine for testing the policyprograms.

This tool logs the inputs that led to the feasible execution paths. These inputs form the optimal, non-

redundant test cases for testing the program. We chose the path analysisbased concolic testing for

policy testing because, we believe that the test cases generated by this method could capture the

type of errors more commonly done in a policy specification for the following reasons. The rules

are a series of conditional statements and concolic testing easily solves eachof the constraints. The

addition of new rules to a policy does not change the previous rule and so new test cases can be

added to the existing test cases.

The figure 3.4 shows the mod fedora policy program and the set of inputs toit generated

by jCUTE by solving the constraints. The sequence in the inputs generated inthe above program

shows how jcute solves the constraints to generate inputs. In this program, all the input variables

are boolean. Initially, the all the input variable are assigned a false value(This can also set to

randomly assign true false values to the variables). For this input the program follows takes the

default case, the not applicable case. During the previous execution, the constraints in each of the if

statements encountered is collected. Among these, one constraint is chosenand it is negated. Here,

27

urnFedora==true is the negated constraint. This generates the next input to the program. This way,

each of the constraints are negated to drive the execution along distinct paths.

3.2.3 Request Reduction

We do not do any request reduction because the requests returned byjCute already rep-

resent the reduced set of requests. Doing a greedy reduction as mentioned in [15] does not cause

any reduction in the number of requests because each of the requests covers a single path in the

program.

28

Chapter 4

Evaluation

In this chapter, the requests generated by our approach to request generation are evalu-

ated. To perform the evaluation, the two measures, policy coverage and mutation testing are used.

The policy coverage measures the adequacy of the requests generatedand uses the existing struc-

tural policy coverage criteria. The other measure, mutation testing determinesthe fault detection

capability of the request set and for this existing policy mutation testing tools areused. We present

results of the experiments and analyse the results.

4.1 Coverage Criteria

Testing by itself can only show the presence of bugs and cannot prove that a particular

property always holds. So, it is difficult to specify when a testing process is complete. It is necessary

to define a test criterion before testing any software. A test criterion defines a stopping condition

for the testing process. It enables identification of an adequate test. The test adequacy criteria is

dependent on the nature of the application being tested. Some specific features and properties of the

application may need to be tested more and so, accordingly the criteria has to bedefined. Testing

involves generating a set of inputs for checking the different executions of a program. Definitions

of the basic components in any testing process are,

Test CaseAn input using which the program has to be tested. In policy testing, a request is the

input to the policy that is to be tested.

Test Set The set of all test cases that are tested against the program under test.In policy testing, the

request set represents the set of test cases with which the policy has to be tested to satisfy the

29

Policy hit percentage

Rule hit percentage

Condition hit
percentage

Figure 4.1: Policy Element Coverage

test criterion. The set of requests/test cases are usually redundant and could syntactically and

semantically be the same. So, usually test case reduction techniques are used for removing

these redundant cases.

There is a lot of research on the definition of test criteria and adequacy for programs

[32]. The test criterion to be satisfied for a program is usually specified inthe form of amount of

coverage of the code. There are many coverage criteria like statement coverage, branch coverage,

path coverage and mutation adequacy.

4.2 Policy Coverage Criteria

We have generated a set of requests for testing a policy. A policy test adequacy measure

is needed to evaluate the quality of the requests in testing. We use the policy coverage criteria [15]

as the adequacy measure for the requests generated by our approach. This policy coverage criteria

defines the coverage similar to statement coverage in program testing. The criteria is to maximize

the number of policy elements that a request covers. In other words, it can also be interpreted that

this method choses those requests among a set of requests that cover the maximum number of policy

elements. The policy elements granularity considered are Policy target element, Rule element and

Condition element. They define the term “applicability” of the request to a policyelement if a

request satisfies the conditions for the policy element to evaluate to true. Themeasures used for

coverage are, policy hit percentage, rule hit percentage and conditionhit percentage. The policy

hit percentage of a request is defined as the number of policies for whicha request is applicable to

the total number of policies. The rule hit percentage of a request is defined as the ratio of number

of rules applicable to the request to the total number of rules. A rule hit requires that the request

be applicable to the policy. The condition hit percentage of a request is the ratio of the sum of the

conditions that evaluate to true and those conditions that evaluate to false to twice the number of

30

Policy <Target>

Rule1 <Target>

Rule 1 <Condition>

Rule 2 <Target>

Rule 2 <Condition>

Rule 3 <Target>

Rule 3 <Condition>

Figure 4.2: Target Driven Request Generation

total conditions. A condition hit requires that the request be applicable to thepolicy and the rule.

The figure 4.1 shows the above coverage criteria and the hierarchical relation between

the various elements and its effect on the overall coverage.

We call the above coverage criteria as policy element coverage. The method that we

have used in our testing framework converts the policy to program and uses the path coverage with

concolic testing for limiting the number of paths. In our initial evaluation, we measure whether the

requests generated by policy program path coverage achieve complete policy element coverage.

4.3 Target Driven Request Generation(Targen)

This is another method for policy request generation [13]. This method considers the

policy as a hierarchical tree with each rule representing a leaf in the tree. The figure 4.2 shows this

representation. Here, a request/test case is generated by solving constraints in the path of each rule

from the root of the tree. The constraints in the path of a rule from the rootof the tree has the target

of the policy and the target of the rule to be solved. So, a request followingthis path is applicable

to the policy and rule. Combinations of the attribute values in this path representrequests. Targen

considers a modified form of combinatorial coverage that reduces the invalid requests generated

from all possible combinations of the attribute values along this path. This request generation

technique looks at each rule in the policy individually. It is possible that when all the rules in the

policy are considered, some of the requests generated can be redundant. These redundant requests

can be removed by measuring their coverage as explained in the next section.

4.4 Comparison of Request Generation Techniques

In this section, we compare the requests generated by the targen approach and that gener-

ated by our approach. We use the policy element coverage as the criteria for evaluating both the set

31

Table 4.1: Policies used in the evaluation.
policy # set # policy # rule # cond

codeA 5 2 2 0
codeB 11 5 5 0
codeC 8 4 4 0
codeD 11 5 5 0
default-2 1 13 13 12
demo-11 0 1 3 4
demo-26 0 1 2 2
demo-5 0 1 3 4
mod-fedora 1 12 12 10
simple-policy 1 2 2 0

of requests. In our experiments, we have used 10 XACML policies from [15]. These range from

simple to complex policies. The table 4.1 shows the statistics of the policy composition.The first

column gives the name of the policy, the second column gives number of policysets in the policy,

the third column gives the number of polices, the fourth column gives the number of rules in the

policy and the fifth column gives the number of conditions in the policy.

The table 4.5 shows the coverage comparing the targen method and our approach using

jCUTE. Column 1 gives the names of the policies. Columns 2, 3 and 4 give the policy, rule and

condition coverage when using the targen approach. Columns 6,7 and 8 give the policy, rule and

condition coverage when using the jcute based approach. The results show that each of the requests

generated by our approach have 100% policy, rule and condition coverage. The targen method

achieves 100% policy and rule coverage in the policy element coverage criteria. The condition

coverage achieved is not 100% because the currently available targen tool does not implement con-

ditions. Another difference to be noted is that the number of requests generated using the targen

approach consists of some redundant cases - requests which do not cause any increase in the cover-

age. When using targen requests, a greedy reduction has to be performed to consider only requests

which cause an increase in coverage. This is an extra overhead because first the request has to be

generated and then the generated request has to be reduced. In our approach, however, the request

generation process itself ensures that no request generated coversthe same policy element as the

previous request. This is because, in our approach only the constraintsalong the path to the rule are

solved. Performing a greedy reduction of the requests generated by our approach showed that there

was 0% reduction in the requests generated. This shows that our requests are optimal since they

achieve 100% policy element coverage and no reduction is needed basedon this measure.

The comparison of the two request generation techniques show that the both of the them

32

Table 4.2: Policy Set mutation operators
ID Description
PSTT Policy Set Target True
PSTF Policy Set Target False
CPC Change Policy Combining Algorithm

achieve almost 100% policy element coverage. But however, our approach to request generation

considers the different paths in the policy program and seems like a semantically efficient measure

than the targen approach. To check this, we use another test adequacymeasure, mutation testing to

compare the fault detection capability of both the request generation techniques. This technique is

explained in the next section.

4.5 Mutation Testing for Fault Detection

We also use mutation testing to determine the quality of the requests generated. Mutation

testing is used for testing programs by introducing small faults in the original program and gener-

ating programs that are close to the original program. Specifically, this technique takes advantage

of the coupling effect [4]. In programming, the coupling effect can be defined on the basis of the

empirical observation that complex errors occur due to the combination of simple errors. So, if we

can introduce simple errors into a program by means of simple changes by using operators and if

these errors can be detected by a test case, then we can be assured that this test case can also be used

to detect complex errors which occur as a combination of these simple errors.

In other words, mutation testing measures the sensitivity of the test case to simpleerrors,

which could be used as an indication of its sensitivity to complex errors. To use this technique for

access control policies, it is necessary to identify simple errors in the context of an XACML policy.

For example a simple error a user makes when writing an XACML policy is to write apolicy with

a set of rules but write a target which is not applicable to any valid request.Here the policy will

not be applicable to any request. This can be emulated by creating a mutant policy with a target

value that will always evaluate to false. Another mutant policy could be one with the target always

being applicable, this will ensure that all the requests evaluate are applicable to the policy and the

rules in the policy will be evaluated. Based on this idea, Martin and Xie [13] have developed set of

mutation operators for an XACML access control policy.

The mutation operators can be classified based on the policy element on whichthe muta-

33

Table 4.3: Policy mutation operators
ID Description
PTT Policy Target True
PTF Policy Target False
CRC Change Rule Combining Algorithm

Table 4.4: Rule mutation operators
ID Description
RTT Rule Target True
RTF Rule Target False
RCT Rule Condition True
RCF Rule Condition False
CRE Change Rule Effect

tion operation is performed. They can be classified as,

Policy Set Mutation Operators: These represent the mutation operations that can be done at the

policy set level. The various mutation operators defined for this is shown in table 4.2. They

are, policy set target true mutant in which the policy set target is removed sothat it is always

true, policy set target false mutant in which the target value is changed such that it is always

evaluated to false and change in policy combining algorithm mutant in which mutantsare

created for each policy combining algorithm like permit overrides, deny overrides and first

applicable.

Policy Mutation Operators: These represent the mutation operations that can be done at the policy

level. The various mutation operators defined for this is shown in table 4.3. They are policy

target true, policy target false and change in rule combining algorithm. These are similar to

the policy set operators except that the granularity is at the level of policyrather than policy

set.

Rule Mutation Operators: These represent the mutation operations that canbe done at the rule

level. The various mutation operators defined for this is shown in table 4.4. They are rule

target true, rule target false, rule condition true, rule condition false andchange rule effect.

The first two rule operators generate mutants by setting the rule targets to be true and false.

The condition operators set the condition in each rule to be true and false. The change rule

effect changes a rule with an effect of permit to one with an effect of deny and vice versa.

34

Table 4.5: Policy coverage and fault detection when using targen and the jcute technique.
targen jcute

policy pol % rule % con % mut kill% pol % rule % con % mut kill%

codeA 100 100 n/a 36.36 100 100 n/a 41.8
codeB 100 100 n/a 37.7 100 100 n/a 38.58
codeC 100 100 n/a 38.58 100 100 n/a 38.54
codeD 100 100 n/a 37.79 100 100 n/a 37.79
default-2 100 100 100 50 100 100 100 31.6
demo-11 100 100 75 77.78 100 100 100 88.88
demo-26 100 100 50 78.57 100 100 100 78.57
demo-5 100 100 75 78.95 100 100 100 89.47
mod-fedora 100 100 100 56.67 100 100 100 44.16
simple-policy 100 100 n/a 44.44 100 100 n/a 55.5

jCute Vs Targen Mutation Testing

0
10
20
30
40
50
60
70
80
90

100

co
de

A

co
de

B

co
de

C

co
de

D

de
fau

lt-
2

de
mo-

11

de
mo-

26

de
mo-

5

mod
-fe

do
ra

sim
ple

-p
oli

cy

Policies

M
u

ta
n

t
K

ill
 %

Jcute Requests

Targen Requests

Figure 4.3: jCute Vs Targen

The number of mutants created for each policy element is dependent on the size of the

policy. For example, the number of policy set mutants with a target of a true is equal to the number

of policy set target elements within a policy. Some of mutants may also be equivalent and this is

dependent on the specific policy.

These mutation operators represent some of the possible changes that can be introduced

in the policy. The requests generated by our approach are evaluated against these mutant policies.

If the result of the evaluation is different than the original policy, the mutantis said to have been

killed.

35

Fault Detection by Mutation Operators

0

20

40

60

80

100

120

co
de

A

co
de

B

co
de

C

co
de

D

de
fau

lt-
2

de
mo-

11

de
mo-

26

de
mo-

5

mod
-fe

do
ra

Sim
ple

-p
oli

cy

Policies

M
u

ta
ti

o
n

 K
ill

 P
er

ce
n

ta
g

e
Rule Operators

Policy Operators

Policy Set Operators

Figure 4.4: Mutation Operators

4.5.1 Fault Detection Capability Comparison

We compare the fault detection capability of our method and the target-drivenrequest

generation method. The set of requests generated by both the methods are evaluated against the

original policy and the mutant policies. If the results are different, the mutantis said to have been

killed. If the result remains the same, the mutant lives. The column 5 in table 4.5 shows the mutation

kill percentage of the requests from targen and the column 9 shows the mutation kill percentage

using our approach. The figure 4.3 shows the graph representation ofthe comparison. The fault

detection capability of jCute based optimal requests performs better or as good as targen in most of

the cases. However, in two of the cases targen performs better than jcute.The following shows an

example of a case where a mutant is killed by targen but not killed by jcute.

The original policy set has the following two policies among a set of policies,

Policy 2 :Deny access toPOLICY resource unless the subject hasadministratorrole.

Policy 8 :If subject hasadministrator role, access decision is Permit. (This broad rule may be

limited by specific rules in the beginning.)

The XACML representation of this policy is shown in figure 4.5. Consider themutation

operator, Change Rule Effect(CRE) which generates a mutant of the policy by changing the effect of

the rule in the Policy 2 to permit. So, the original policy denies access toPOLICYresource if subject

does not haveadministratorrole and the mutant policy permits access if subject hasadministrator

role.

36

Among the set of requests generated by targen, a request with just the attributePOLICY

is generated. This will give an effect of deny in the original policy, beingapplicable to Policy 2 and

an effect of permit in the mutant policy again being applicable to Policy 2.

Among the Jcute requests, the request being applicable to Policy 2 has the attributesPOL-

ICY andadministrator. For this request, the result in both original and mutant policy is permit (being

applicable to Policy 8 in both cases). So the mutant is reported as not killed. Here a request with

only POLICYattribute is not generated.

It has to be noted that jCute generates an optimal set of requests that achieve the maximum

path or branch coverage. So, even if a request with onlyPOLICY attribute is generated, it may

not be chosen as an optimal request because another request with bothPOLICYandadministrator

attributes achieves more coverage. Similarly for other cases also some requests with attribute values

covering multiple paths may be reported by jCute as an optimal request causingsome mutants to be

missed when doing mutation testing.

We analyzed the effect of each type of mutation operators on the fault detection capability

in the jcute case. The figure 4.4 shows the graph with the mutation kill percentage for each of the

operators. The higher the fault detection percentage value, the better because it means more mutants

are killed. It is observed that the rule operators have better fault detection than policy and policy set

operators for almost all the policies.

It is to be noted that some of the mutants cannot be killed because they could beequivalent

mutants [17]. An equivalent mutant is one which is semantically equivalent to the original policy.

An example of an equivalent policy mutant is a mutant create by changing the policy set combining

algorithm from first applicable to permit overrides when there is only one policy in the policy set. In

this case, both the mutant and the original policy are semantically the same. In general, it is difficult

to automatically detect equivalent mutants and is often done manually [17]. Themutation testing

tool that we use does not detect and remove equivalent mutants.

For the policies default-2 and mod-fedora for which the mutant kill percentage of jcute

is lesser than targen, we measure the combined mutant kill%. To evaluate if the same mutants are

killed in both the cases, we combine the set of requests generated from boththe approaches and

measure the mutant kill %. The combined mutation kill % is higher than the individualtotal mutant

kill %. This show that the mutants killed by jcute are different than that killed by jcute. The graph

is shown figure 4.6.

The figure 4.7 shows the comparison of the number of requests generatedby targen and

jcute. It is observed that the number of requests generated by targen is dependent on the number

37

of rules in the policy while the number of requests generated by jcute is those set of requests that

achieve optimal path coverage in the policy program.

Using only the existing policy coverage criteria, the requests generated byboth targen and

jcute methods have the good structural coverage. The targen set of requests, though they achieve

100% coverage most of the time, they look at each rule in the policy locally, whilea path coverage

based set of requests will look at all the rules in the policy when formulating the set of requests. The

difference between the two request generation techniques can be betterobserved by introducing a

new policy coverage measure called thepolicy path coverage.

4.6 Policy Path Coverage

‘A test adequacy criteria is a predicate that defines what properties of aprogram must

be exercised to constitute a through test’ [32]. To define the test adequacy criteria for the policy,

the property of the policy has to be analyzed. The property that we are considering here is the

path coverage of the various requests. We define the policy path coverage measure based on the

execution path coverage of the policy program.

For a program, the path coverage criteria requires that all the execution paths from the

program’s entry to its exit are executed during testing [32]. The corresponding policy path coverage

can be similarly defined as,

policy path coverage : The policy path coverage criteria requires that all the valid policy evaluation

paths covering the first rule to the last rule in the policy must be covered at least once.

Examples of valid policy paths are, the outermost path in a policy which evaluates the

default case in the policy. The innermost path in a policy is the one for which only the last rule in

the policy is true. This means all the previous rules evaluate to false.

The other components in an XACML policy are policy set which can contain policies and

policy sets. In our conversion from policy to program code, we order the policy set components

in the order in which they appear in the policy. Also in XACML, two combining algorithms, deny

overrides and permit overrides specify the order in which the rules haveto be combined. These

algorithms are defined to given importance to rules with an effect of Permit(Deny) when multiple

rules evaluate to true. We convert these into first applicable format and sothe path coverage is the

same as the case for first applicable.

38

The target-driven requests are not expected to achieve complete policy path coverage. An

analysis of the way these requests are generated gives an indication of this. In their method, each rule

is treated separately and they use a modified form of combinatorial coverage in which combinations

of requests with subject, resource and action attributes in every rule are formulated. Among these

large number of generated requests, those causing an increase in the policy structural criteria are

chosen as the final set of requests. These requests do not considerthe interaction between the rules

in the policy. So these requests may not achieve complete policy path coverage.

4.7 Threats to Validity

The extend to which the example policies, mutation operators, coverage metricsand re-

quests sets truly reflect actual practice has an effect on the external validity. More mutation operators

are needed at a lower level to test other aspects of a policy. The internalvalidity is threatened by

faults in our implementation of the conversion tool as well as faults in the tools thatwe use for

evaluating our method.

39

<Policy PolicyId="MyPolicySet.2" RuleCombiningAlgId="first-applicable">
<Description>deny access to POLICY datastream unless subject

has administrator role</Description>
<Target>
<Resources>
<Resource>

<ResourceMatch MatchId="function:string-equal">
<AttributeValue>POLICY</AttributeValue>
<ResourceAttributeDesignator
AttributeId="resource:datastream:id"/>
</ResourceMatch>

</Resource>
</Resources>

</Target>
<Rule RuleId="MyPolicySet.2.r.1" Effect="Deny">
<Condition FunctionId="function:not">
<Apply FunctionId="function:string-is-in">

<AttributeValue>administrator</AttributeValue>
<SubjectAttributeDesignator AttributeId="fedoraRole" />

</Apply>
</Condition>

</Rule>
</Policy>
<Policy PolicyId="MyPolicySet.8"
RuleCombiningAlgId="first-applicable">

<Target>
<Subjects>
<Subject>

<SubjectMatch MatchId="function:string-equal">
<AttributeValue>administrator</AttributeValue>
<SubjectAttributeDesignator AttributeId="fedoraRole" />

</SubjectMatch>
</Subject>

</Subjects>
</Target>
<Rule RuleId="MyPolicySet.8.r.1" Effect="Permit"/>

</Policy>

Figure 4.5: Example : Original Policy

40

Combined Mutant Kill%

0

10

20

30

40

50

60

70

default-2 mod-fedora

Policies

M
u

ta
n

t
K

ill
 %

targen kill%

jcute kill%

combined kill %

Figure 4.6: Combined Mutation Kill Percentage

Number of targen Vs jcute requests

0
5

10
15
20
25
30
35
40
45

co
de

A

co
de

B

co
de

C

co
de

D

de
fau

lt-
2

de
mo-

11

de
mo-

26

de
mo-

5

Mod
-fe

do
ra

Sim
ple

-p
oli

cy

Policies

N
u

m
b

er
 o

f
re

q
u

es
ts

Targen requests

jCute Requests

Figure 4.7: Comparison of Number of Requests

41

Chapter 5

Related Work

In this chapter, we discuss work related to access control models, policesand also other

techniques that are used for analyzing access control polices.

5.1 Policies, Models and Mechanisms

Any system implementing access control must consider the three abstractions[20]:

1. Security Policy: This defines high level rules according to which access to resources and data

within a system will be granted or denied. An example of a security policy usedat a school

could be, the TA can assign only internal grades.

2. Security Model: This gives a formal representation of how the accesscontrol security policy

is implemented in the system. This can be used to give a proof of the properties provided by

the system. It can be said that the model bridges the gap in abstraction between policy and

mechanism [27]. An example security model is the mandatory access controlmodel, where

the level of access of an entity depends on the security clearance level assigned to it like top

secret, secret,normal.

3. Security Mechanism: This defines the actual system specific functions that implement the

controls imposed by the policy and formally stated in the model. An example securitymech-

anism is access control lists.

42

5.2 Access control models

Access control models are grouped into three main classes : discretionarymodel, manda-

tory model and role based model. Our approach to policy testing can be applied to all policies build

on any of these models.

Discretionary policy model

In discretionary access control, a list of authorizations are specified for each subject in

the system. The system gives access to a subject by looking up whether a subject has access to an

object in the authorizations specified. Different subjects can have different levels of access to one

object. In this model, the users have the discretion of granting or revoking privileges to other users.

The access matrix model is used for describing discretionary access control. In access matrix, the

rows are the subjects in the system and the columns are resources to which asubject’s access has to

be controlled. The cell intersecting the row and column will specify the access level of the subject

to the resource. This matrix model can be implemented as,

authorization table : Here the authorizations are represented as a table. This is mostly used in

databases by creating a table with columns subject, resource and action. Each entry in the

table represents an authorization.

access control list : In an access control list implementation, every column in the access matrix is

a list.(i.e) There is a list for each object in the system specifying the subjects that have access

to that particular object.

capability list : In a capability list implementation, every row in the access matrix is a list. (i.e)

There is a list for each subject in the system specifying the different objects that the particular

object has access.

Each implementation has its own advantages and disadvantages and a particular imple-

mentation is chosen depending on the needs of the specific application. Discretionary policies how-

ever are not secure against attacks from the processes invoked by legitimate users that may perform

malicious functions on behalf of the user. An example of this vulnerability is a trojan horse program

that is executed by a subject like a high level user that reads from one sensitive file and writes to

another common file to which a lower level user has read access. Now the lowlevel user will be

able to read the contents of the sensitive file.

43

Mandatory policy model

Mandatory policies classify the subjects and objects within the system into different se-

curity clearance levels. The various mandatory policies based on the semantics of the classification

are,

Secrecy-based mandatory policiesThese control the ‘direct and indirect flow of information to

the purpose of preventing leakages to unauthorized subjects’ [20]. Users can connect to the

system at different levels and the two Bell La Pendula principles to be satisfied are: No-read-

up and No-write-down. Enforcing this restriction ensures that no information flow exists from

one level to another.

Integrity based mandatory policy The Biba model protects the integrity of a resource. The in-

tegrity classification reflects the trustworthiness of the user in modifying the information and

for an objects it refers to the trustworthiness placed on the data provided by the system. Ac-

cess control is enforced by the following two principles: No-read-downand no-write-up. En-

forcing this principle safeguards the integrity by ensuring that objects at alower level which

are less reliable cannot write to levels above it.

Hence, secrecy policies allow the flow of information from lower to higher secrecy classes

while integrity policies allow the flow of information from higher to lower integrity classes. So to

ensure both secrecy and integrity both the classes must be defined.

Though mandatory policies provide protection against information leakages, they cannot

guarantee complete secrecy because they do not offer protection fromcovert channel communica-

tion.

Mandatory and discretionary polices are combined and the chinese wall policy model is

defined. This policy model was proposed to enforce the mandatory control on discretionary policy

implementations found in commercial systems. It combines mandatory and discretionary policies.

The classification class restricting the information flow here reflects the flow of information between

conflicting business classes for an individual consultant. Here, access to data is not constrained by

its classification but by what data a subject has already accessed. Though this policy has some

limitations of mandatory policies like being rigid in a commercial setting, this is a good example of

applying ‘dynamic separation of duty constraints present in the real worldand has been taken as a

reference in building subsequent policies and models’ [20].

44

Other work combining discretionary and mandatory access control includeauthorization

based information flow policies. Also, discretionary policies have been modified for expanding au-

thorizations to support conditions in the policy. Also, authorizations can be extended with temporal

constraints.

Another aspect of access control is the administrative policies which specify who is autho-

rized to manage the access rules and decisions. In mandatory, there must be a centralized authority

specifying the security class of the objects. In the case of discretionary,there can be different sub-

jects like, centralized, hierarchical, cooperative, ownership and decentralized.

Role based policy model

Role based access control(RBAC) [21] specify access based on what roles the users of

the system assume. RBAC defines users, roles and permissions. Each role is associated with some

permissions and users can assume different roles. This model is non-discretionary and is best suited

in an enterprise environment where the users of the system change frequently while the roles remain

the same. RBAC removes the rigidity of MAC and also adds on to the security of DAC. So it can

be thought of as a policy model combining the advantages of the previous twoapproaches. Another

advantages of using RBAC is that RBAC itself can be used for administration ofRBAC policies.

5.3 Policy Specification Langauges

Our policy testing technique can be applied to other policy specification languages also.

Here, we describe some of the common policy specification languages.

5.3.1 Ponder Policy Specification Language

Ponder [3] was developed as part of an academic project at Imperial College in London.

Ponder is a declarative object oriented policy specification language. Itis more suitable for access

control enforcement in distributed and network systems. They separate policy from implementation

and enable dynamic management of the policies. The key terms are,

Subject : Subject refers to users or principles or any other automated entity which has a manage-

ment responsibility.

Target : Target refers to resources or services in the system.

45

Inst(auth+ | auth-)policyname
Subject domain-scope-expression;
Target domain-scope-expression;
Action domain-scope-expression;
[When constraint-expression]

Figure 5.1: Ponder Authorization policy syntax

Inst(auth+)policyname
Subject faculty;
Target grades;
Action Assign, View;

//This policy authorizes faculty to assign and view grades.

Figure 5.2: Ponder Authorization policy example

Domains : Domains provide a way for grouping subjects or targets.

Ponder specifies the following types of polices for expressing access control,

Authorization policies : These are the access control policies specifying what targets a subject

can access. The policy can express both positive and negative authorizations. The positive

authorization policies specify what actions a subject can perform while negative authorization

specifies those actions a subject is forbidden from performing. The figure 5.1 gives the syntax

of the authorization policy.

The university policy can be represented in the figure 5.2 as,

Information filtering policies : These policies place restrictions on the actions performed. They

can be used to provide an additional level of restriction in addition to an authorization policy

that grants an action.

Delegation polices: This policy enables one user to delegate access rights to another user.

Refrain policies : Refrain policies define the actions that subjects must not perform on target ob-

jects even though they may actually be permitted to perform the action. They aresimilar to

negative authorization policies but are enforced on the target rather than on the subject.

Obligation policies : These policies specify the actions that need to be performed by managers

when certain events occur within the system.

46

Ponder also supports various constraints like basic policy constrains andmeta-policy con-

straint. Basic policy constraints are expressed in terms of a predicate whichhas to evaluate to true

for the policy to apply. Meta-policies are used to specify policies about policy and the constraints

are on self management and separation of duty. With all the above features, a large enterprise can

structure its access control policy. Ponder also provides other features to enable the ease of man-

agement of large complex policies. We can specify groups for packagingrelated policies, roles for

semantic grouping of policies with common subjects. Also, they support policy hierarchies and the

policy types can be specialized and reused. Relationships can also be defined showing the definition

of roles participating in interactions.

They also enable the specification of management structures which is a composite policy

containing the definition of roles, relationships and other nested managementstructures as well.

This structure can be defined in general for a branch of company or a department of a university.

This can then be instantiated for particular departments or departments.

Testing of ponder using our approach is natural. For a given composite ponder policy can

be converted to a java class. All the different policy types can be definedas methods. The interaction

between the methods can be easily captured in the concolic testing approach.

5.3.2 The Platform for Privacy Preferences(P3P)

The Platform for Privacy Preferences (P3P) is a specification from the World Wide Web

Consortium (W3C) for specifying the privacy policies of enterprises. Though the specification is

platform independent and can be used across enterprises, it is not a general purpose specification.

The P3P policies are higher level policies usually published by an enterprise to reveal their privacy

practices to customers.

5.3.3 Enterprise Privacy Authorization Language(EPAL)

Enterprise Privacy Authorization Language(EPAL) [18] was developed at International

Business Machines(IBM). It is submitted for review to W3C. EPAL is mainly designed as a privacy

policy interoperability language suitable for exchange between enterprises in a structured format.

The language is appropriate for representing the data-handling practices and policies within and

between enterprises that want to have a systematic way of managing privacy. This is also useful for

automatic audit control of the accesses to the information and also for enforcing accountability of

privacy practices.

47

<rule id=‘‘univ-policy’’ ruling=‘‘allow’’>
<user-category refid=‘‘faculty’’ />
<data-category refid=‘‘student-information’’ />
<purpose refid=‘‘view-and-assign-grades’’ />
<action refid=‘‘view, assign’’ />
<condition refid=‘‘condition’’ />
</rule>

Figure 5.3: EPAL policy example

EPAL defines the attributes as a list of hierarchies of,

data-categories : This specifies the different ways in which the different data collected byan

enterprise is used depending on the sensitivity of the data. For example, themedical-record

data is more sensitive than the contact information.

user categories: This categorises the different users of the data. In the above example,the medical

record information is used by the doctor and the contact information is used by the sales

department.

purposes : This specifies the purpose for which the categorized data is used by the categorized

user. The doctor will use the medical record for purpose of schedulingtests and the sales

department will use the contact information for shipping purposes.

They also define actions, obligations and conditions. Actions specify how thedata is used,

obligations specify what must be satisfied in the environment and conditions must evaluate to true in

the context for the rule to be applicable. An EPAL policy is a list of rules that are ordered according

to descending precedence.

The figure 5.2 gives the example for an EPAL policy

A study comparing XACML and EPAL concludes that EPAL uses a lot of XACML and

that EPAL is a subset of XACML except for some specific features. Forinstance, EPAL and

XACML share the same framework of a policy made up of a series of rules. Arule is applicable

only if the condition in it evaluates to true and the effect of the rule is returned. Also, both languages

share the same framework for the requests: a request is made up of a collection of attribute values.

48

5.4 Policy Testing Techniques

Martin et al [15] have developed a systematic method for testing access control policies.

Theirs is the first work on defining and measuring structural coverage of access control policies for

testing. They have developed a coverage measurement tool for measuring policy coverage given a

set of XACML policies and set of requests. Their coverage criteria is based on the structure of the

policies and is similar to statement coverage in a program. The request generation process is random

and the requests are got by setting bits in a vector of policy attribute values. Even though the random

request generation technique does not repeat requests that are already generated, this method has the

disadvantage of using the random test input selection strategy. They usea tool to greedily reduce

requests from the generated set of requests based on the coverage measure. They also perform

mutation testing to analyze the fault detection capability of the reduced set of requests. [13] uses

combinatorial coverage and considers the policy as a hierarchical tree with each rule representing a

leaf in the tree. Here, a test case is generated by solving constraints in the path of the rule from the

root of the tree. Even though this method achieves better coverage than random request generation,

this request generation technique looks at each rule in the policy individually only and the entire

effect of the sequence of constraints in the policy is not considered. Inour approach, the ordering of

the rules in the entire policy path is considered and the constraints along the path are solved. Hence,

our method provides a better measure of the coverage.

Another area where access control policy testing is done is firewalls protecting network

resources. Al-Shaer et al [5] propose automated testing of firewalls withrespect to their inter-

nal implementation and security policies. They propose a novel firewall testing technique using

policy-based segmentation of the traffic address space, which can intelligently adapt the test traffic

generation to target potential erroneous regions in the firewall input space. Though this method is

efficient, it is applicable only to firewall polices because they have made the testing dependent on

the structure of the access control policy in a firewall. However, the idea of analyzing the logs of

packets/request cannot be applied as such to any general purpose access control system.

5.5 Formal Policy Analysis

A complementary approach to access control policy testing is to convert the policy to a

logical representation and use formal analysis techniques for verification and analysis. Hughes and

Bultan [9] translated XACML policies to their logical representation in the Alloy language and

49

checked their properties using the Alloy Analyzer. Using their translator and the Alloy analyzer, it

is possible to check a policy which is implemented as a combination of sub-polices correctly repro-

duces the properties of the sub policies. This approach, though produces good results does not scale

well with increase in the size of the policy. Zhang et al [31] propose a mechanism for evaluating

XACML polices through model checking. They evaluate whether the policiesgive legitimate users

enough permissions to reach their goals and also to check whether the policies prevent intruders

from reaching their malicious goals. However, the access control policeshave to be translated to

the RW language to apply their techniques. The limitations of these above approaches is that they

do not treat all the features of XACML. Also, a predefined set of properties about the policy should

be given which, does not exist in practice. Also, this analysis can becomeintractable when there

are more attributes in the policy. The advantage of using testing is that no translation to a separate

domain is needed to check the policies. Also, all features of XACML can be tested.

Margrave [6] is an efficient tool that enables checking for semantic inconsistencies in the

policy and returns counter examples representing cases which are causing violation of properties of

the policy. Change impact analysis is done between two policies to determine the properties of the

policy. They construct a multi-terminal binary decision diagram to represent the rules in the policy.

However this tool does not support all features of XACML.

We have defined a framework for testing access control policies by converting them into

programs and using a restricted form of path coverage criteria. Other software applications like

database applications and grammar-based software also have specific criteria for their testing. Hen-

nessy and Power [8] propose a strategy for the construction of test suites for grammar based soft-

ware. The reduction criterion they use is based on the rule coverage of thetest suites. They an-

alyze if the code coverage and fault detection capability are reduced because of the reduced test

suite. Suarez-Cabal and Tuya [26] have developed a tool for the automated testing of SQL queries.

They define a coverage tree for the different condition branches in theSQL SELECT statement.

Kapfhammer and Soffa [12] define a framework for testing database driven applications and the

control flow between various entities in such an application. They define thetest adequacy criteria

for the database application based on the database interaction flow graph showing the interaction

between the various entities.

50

Chapter 6

Conclusions and Future Work

Policy testing is a practical technique for the quality assurance of access control policies.

In this thesis, we propose a method that usespolicy programsfor testing access control policies. An

automated tool has been developed based on this method. Given a policy, our tool can generate an

optimal number of requests for testing the policy. The advantage of our approach is that, we use

existing software testing techniques that are being used for testing different software applications.

Also, our approach is general and can be applied for testing most rule based policy specifications

even in other languages. We have automated the entire testing process, so,any changes made to

the policy can be easily tested. This is particularly useful in an enterprise environment where the

policies are large and are also revised over a period of time.

We evaluate our method by testing with ten XACML policies. The test cases generated by

our method achieve the complete XACML policy structural coverage which is the existing adequacy

criteria for testing an XACML policy. We perform mutation testing on the policy and the generated

request set and compare our results with the other existing techniques. The mutant kill percentage is

as good as or better than existing techniques in most of the cases. Also, the results indicate that the

mutants created by the rule operator have more kill percentage than that achieved by other operators.

This shows that the use of the policy program for generating test cases isable to capture fine errors

created by mutants. Based on this, we have motivated the definition of a policy coverage criteria

based on our approach to policy testing. This criteria is expected to be stronger than the existing

policy structural coverage. The stronger the coverage criteria, the better will be the quality of the

test cases generated. In future, a coverage tool can be developed based on this criteria. This tool can

act as a stronger test adequacy measure for policy testing.

In future, program analysis on the policy program can be done to semantically analyze the

51

policies. Also, change impact analysis can be done between two policy programs. The difference

in the set of test cases returned between a policy program and a changed policy program can be

analyzed. Also, we can perform mutation testing at the program level and compare the results. For

this, a new set of operators should be defined at the program level. However, it should be ensured

that the a program mutant maps to a policy mutant. Tools available for performingmutation of a

program can be used to create other different types of mutants and they can be analyzed. It would be

interesting to analyze if the mutation operators at the program level correctlyrepresent the common

user errors done at the policy level.

52

Bibliography

[1] R. J. Anderson. A security policy model for clinical information systems. InProc. IEEE Symposium

on Security and Privacy, pages 30–43, 1996.

[2] C. Bussler and S. Jablonski. Policy resolution for workflow management systems. InProc. Hawaii

International Conference on System Science, Maui, Hawaii, January 1995.

[3] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder policy specification language. InProc.

International Workshop on Policies for Distributed Systems and Networks, pages 18–38, 2001.

[4] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help for the practicing

programmer.IEEE Computer, 11(4):34–41, April 1978.

[5] A. El-Atawy, K. brahim, H.Hamed, and E. Al-Shaer. Policysegmentation for intelligent firewall testing.

In 1st IEEE ICNP Workshop on Secure Network Protocols, 2005. (NPSec), pages 67–72, Nov 2005.

[6] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz. Verification and change-impact

analysis of access-control policies. InProc. 27th International Conference on Software Engineering,

pages 196–205, 2005.

[7] R. W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor,Mathematical Aspects of

Computer Science, volume 19 ofProceedings of Symposia in Applied Mathematics, pages 19–32, Prov-

idence, Rhode Island, 1967. American Mathematical Society.

[8] M. Hennessy and J. F. Power. An analysis of rule coverage as a criterion in generating minimal test

suites for grammar-based software. InProc. 20th IEEE/ACM International Conference on Automated

Software Engineering, pages 104–113, November 2005.

[9] G. Hughes and T. Bultan. Automated verification of accesscontrol policies. Technical Report 2004-22,

Department of Computer Science, University of California,Santa Barbara, 2004.

[10] S. Jajodia, P. Samarati, and V. S. Subrahmanian. A logical language for expressing authorizations. In

Proc. 1997 IEEE Symposium on Security and Privacy, pages 31–42, 1997.

53

[11] S. Jajodia, P. Samarati, V. S. Subrahmanian, and E. Bertino. A unified framework for enforcing multiple

access control policies. InProc. ACM SIGMOD International Conference on Management ofData,

pages 474–485, 1997.

[12] G. M. Kapfhammer and M. L. Soffa. A family of test adequacy criteria for database-driven applica-

tions. InProc. 9th European Software Engineering Conference held jointly with 11th ACM SIGSOFT

International Symposium on Foundations of Software Engineering, pages 98–107, 2003.

[13] E. Martin and T. Xie. Automated mutation testing of access control policies. Technical Report TR-

2006-12, Department of Computer Science, North Carolina State University, Raleigh, North Carolina,

2006.

[14] E. Martin and T. Xie. Automated test generation for access control policies. InSupplemental Proceed-

ings of the 17th IEEE International Conference on Software Reliability Engineering (ISSRE 2006),

November 2006.

[15] E. Martin, T. Xie, and T. Yu. Defining and measuring policy coverage in testing access control policies.

In Proc. 8th International Conference on Information and Communications Security (ICICS 2006),

pages 139–158, December 2006.

[16] OASIS. OASIS eXtensible Access Control Markup Language (XACML). http://www.

oasis-open.org/committees/xacml/, 2005.

[17] J. Offutt and R. H. Untch. Mutation 2000: Uniting the orthogonal. InMutation 2000: Mutation Testing

in the Twentieth and the Twenty First Centuries, pages 45–55, October 2000.

[18] P.Ashley, S.Hada, G.Karjoth, C.Powers, and M.Schunter. Enterprise Privacy Authorization Language

(EPAL). http://www.w3.org/Submission/EPAL/, 2003.

[19] T. Ryutov and C. Neuman. Representation and evaluationof security policies for distributed system

services. InProc. DARPA Information Survivability Conference and Exposition, January 2000.

[20] P. Samarati and S. D. C. di Vimercati. Access control: Policies, models, and mechanisms. InFOSAD

’00: Revised versions of lectures given during the IFIP WG 1.7 International School on Foundations of

Security Analysis and Design on Foundations of Security Analysis and Design, pages 137–196, London,

UK, 2001. Springer-Verlag.

[21] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control models.IEEE

Computer, 29(2):38–47, 1996.

[22] A. Schaad, J. Mo, and e Jacob. The role-based access control system of a european bank: A case study

and discussion, 2001.

54

[23] K. Sen. Scalable automated methods for dynamic programanalysis. InPhD Dissertation, 2006.

[24] K. Sen and G. Agha. Cute and jcute : Concolic unit testingand explicit path model-checking tools.

In Proc. 18th International Conference on Computer Aided Verification, pages 419–423, 2006. (Tool

Paper).

[25] E. Sirer and K. Wang. An access control language for web services. InProc. 7th ACM Symposium on

Access Control Models and Technologies, Monterey, CA, June 2002.

[26] M. J. Suarez-Cabal and J. Tuya. Using an SQL coverage measurement for testing database applications.

In Proc. ACM SIGSOFT International Symposium on Foundations of Software Engineering, pages 253–

262, 2004.

[27] V.Hu, D.Ferraiolo, and R. Kuhn. Assessment of access control systems. NISTIR, Sept. 2006.

[28] A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn, S. Herzog, A. Huynh, M. Carlson,

J. Perry, and S. Waldbusser. Terminology for policy-based management. RFC 3198 (Informational),

Nov. 2001.

[29] A. Wool. A quantitative study of firewall configuration errors. Computer, 37(6):62–67, 2004.

[30] R. Yavatkar, D. Pendarakis, and R. Guerin. A framework for policy-based admission control. RFC

2753 (Informational), Jan. 2000.

[31] N. Zhang, M. Ryan, and D. P. Guelev. Evaluating access control policies through model checking. In

Proc. 8th International Conference on Information Security, pages 446–460, September 2005.

[32] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test coverage and adequacy.ACM Comput. Surv.,

29(4):366–427, 1997.

55

Appendix

56

Appendix A

Fedora XACML Policy Example

57

<PolicySet PolicySetId="MyPolicySet"
PolicyCombiningAlgId="first-applicable">
<Target/>
<Policy PolicyId="MyPolicySet.0" RuleCombiningAlgId="deny-overrides">

<Description>deny any access if client ip address is not 127.0.0.1
</Description>
<Target>
<Actions>
<Action> urn:fedora:names:fedora:2.1:action:api-m </Action>

</Actions>
</Target>

<Rule RuleId="MyPolicySet.0.r.1" Effect="Deny">
<Condition FunctionId="function:not">
<AttributeValue>127.0.0.1</AttributeValue>
</Condition>

</Rule>
<Rule RuleId="MyPolicySet.0.r.2" Effect="Deny">
<Description>deny any access to objects or data streams,
which are either inactive or deleted,unless subject has
administrator role</Description>

<Target> <Resources>
<Resource>Inactive_object</Resource>
<Resource>Deleted_object</Resource>
<Resource>Inactive_datastream</Resource>
<Resource>Deleted_datastream</Resource>

</Resources> </Target>
<Condition FunctionId="function:not">
<AttributeValue >administrator</AttributeValue></Condition>

</Rule>
<Rule RuleId="MyPolicySet.0.r.3" Effect="Permit">
<Target><Subject>special_user</Subject>
<Resource>Deleted_datastream</Resource></Target>
</Rule>
</Policy>
</PolicySet>

Figure A.1: Fedora example XACML policy

