ABSTRACT

SIVASUBRAMANIAN, DHIVYA. Automated Access Control Policy Testing Tough Code
Generation. (Under the direction of Ting Yu.)

Any multiuser system has to enforce access control for protecting itsnesofrom unau-
thorized access or damage. One way for specifying access contr@ seiparate policy specifica-
tion language. An access control system maintains a repository of poleiesyes access requests,
consults the policy and returns a response specifying whether thestega permitted or denied.
However, it is challenging to specify a correct access control polidysanit is common for the se-
curity of a system to be compromised because of the incorrect specifichtioese policies. There
are many ways in which a policy can be checked for correctness likaafarerification, analysis
and testing. In this thesis, a systematic and automatic togddbicy testingis provided. Testing
a policy involves formulating requests that represent test cases foolilog, @valuating the policy
with those test cases (requests) and comparing the responses obti#iinectwal expected results.

In our approach to policy testing, we generate access cqulialy programsorrespond-
ing to a policy. Dynamic analysis testing techniques are those which executgram for different
inputs to test the expected behavior. We asecolic testingvhich generates test inputs (requests)
by dynamically analyzing the policy program and solving constraints to idedisfynct feasible
execution paths. We choose to illustrate our above technique using the emesicgaccess control
specification language, Extensible Access Control Markup Langu&@yENIL). However, our ap-
proach to policy testing can in general be applied for testing other ruldl®stems using other
languages.

We conduct extensive experiments using ten policy sets to evaluate tbtivefiess of our
technique. We use two measures, coverage measure to check thecgdmtgienutation testing for
measuring the fault detection capability of the generated requests. Téiagewmeasure shows that
the request set achieves 100% structural policy coverage. We cetediault detection capability
of our request set with the existing request generation techniques.re$bks indicate that our
request set tests different properties of the policy. This motivates fhretiba of a policy coverage
criteria based on our method for request generation. A basic definitithe gfolicy path coverage
criteria is given. Our work is directly applicable for the quality assurarfieecess control policies.
A coverage tool can be developed based on the defined coverageactités can help in measuring

the effectiveness of request sets generated by other methods also.

AUTOMATED ACCESS CONTROL POLICY TESTING THROUGH CODE
GENERATION

by
DHIVYA SIVASUBRAMANIAN

A thesis submitted to the Graduate Faculty of
North Carolina State University
in partial fulfillment of the
requirements for the Degree of
Master of Science

COMPUTER SCIENCE

Raleigh, North Carolina

2007

APPROVED BY:

Dr. Peng Ning Dr. Tao Xie

Dr. Ting Yu
Chair of Advisory Committee

DEDICATION

For my parents and sister.

i
BIOGRAPHY

Dhivya Sivasubramanian was born on October 23rd,1983 in Coimbatdia,|She ob-
tained her Bachelor of Technology degree in Information Technology f€oimbatore Institute
of Technology (CIT), an autonomous institution affiliated to Anna Univeiisit§005. After grad-
uation she joined North Carolina State University in August 2005 for hedwate studies in the
Computer Science Department.

ACKNOWLEDGEMENTS

First and foremost, | would like to thank my family, my parents and sister for tbedr
and support for everything.

I would like to thank my adviser, Dr.Ting Yu for his guidance and supparirfg research
work. His careful and critical comments greatly improved this thesis workoudlgvalso like to
thank Dr.Tao Xie for his invaluable advice, guidance and also for agyeaeiserve on my thesis
advisory committee. | also thank Dr.Peng Ning for kindly agreeing to servayothesis advisory
committee.

| would like to acknowledge Evan Martin for his help in starting this projectalsd for
the useful discussions.

Last, but not the least | would like to thank all my friends for their suppoth@course
of this thesis work.

Table of Contents

List of Tables vii
List of Figures viii
List of Listings iX
1 Introduction 1
1.1 Contributionsofthisthesis o 3
1.2 Organizationof thisthesis 4
2 Access Control Policies and Enforcement 5
2.1 BackGround 5
2.2 SecurityPolicy e 6
2.2.1 Policy Specification Languages 6
222 XACML e 7
3 Policy Testing Framework 13
3.1 Policy Model 14
3.2 RequestGeneration Process e 17
3.2.1 Generating XACML Policy Programs 17
3.2.2 Dynamic Policy Program Analysis 24
3.2.3 RequestReduction 27
4 Evaluation 28
4.1 Coverage Criteria 8 2
4.2 Policy Coverage Criteria 0 o e e e e e e 9 2
4.3 Target Driven Request Generation(Targen)o 30
4.4 Comparison of Request Generation Techniques 30
4.5 Mutation Testing for Fault Detection 2 3
4.5.1 Fault Detection Capability Comparison 35
4.6 Policy PathCoverage 7 3
4.7 Threatsto Validity 38

Vi

5 Related Work 41
5.1 Policies, Models and Mechanisms 1
5.2 Accesscontrolmodels 2
5.3 Policy Specification Langauges e 44

5.3.1 Ponder Policy SpecificationLanguage 4

5.3.2 The Platform for Privacy Preferences(P3P) C e e e .. 46

5.3.3 Enterprise Privacy Authorization Language(EPAL) 46
5.4 Policy Testing Techniques 8
5.5 Formal Policy Analysis

6 Conclusions and Future Work 50

Bibliography 52

Appendix 55

A Fedora XACML Policy Example 56

Vii

List of Tables

4.1
4.2
4.3
4.4
4.5

Policies used inthe evaluation. 1 3
Policy Set mutationoperators 2 3
Policy mutation operators 33
Rule mutation operators. 33

Policy coverage and fault detection when using targen and the jcutégeeh. . . 34

viii

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7

51
5.2
5.3

Al

Functional Components of an Access Control System 6

Components of XACML Policy 9
Anexample XACML policy 11
XACML policy target for a university'spolicy 12
XACML Request 12
XACML RESPONSE o e s e e e e 12
Policy Testing Framework 14
ControlFlowGraph 51
Request Generation Process 17
Request Generation from Program 25
Policy Element Coverage 9 2
Target Driven Request Generation wu.. 30
JCUte VS Targen o 34
Mutation Operators e 35
Example : Original Policy e 39
Combined Mutation Kill Percentage 40
Comparison of Numberof Requests 40
Ponder Authorization policy syntax 45
Ponder Authorization policy example oL 5 4
EPAL policy example 47
Fedoraexample XACML policy 57

List of Listings

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Faculty Policycode 16
Policy code forexample 18
Processeach PolicyElement 21

Process PolicyORPolicySetTargetElement 22

Process Policy Element o 2 2
Permit Overides Combining Algorithm 22
OneRule e 23
Symbolic Execution 25

Chapter 1

Introduction

Any multiuser system has to enforce access control for protecting itsnesofrom unau-
thorized access or damage. Access control is one of the fundamentsdumisaas for information
system security and it is widely used in operating systems, databasestkst@to. All these sys-
tems support different applications with multiple users and every activitipqmeed by a user or
a process must be checked to see if it is authorized. An access corgi@msdetermines what
principals can access what resources and when.

Access control is traditionally enforced by directly hard coding into a aystéowever,
this is tedious and becomes difficult for a large system. Also, this makes ith@ctommodate
changes of security requirements in a system. Recently, access cgsteohs increasingly separate
policy from mechanisms. That is, an access control policy is explicitly spdaifing certain policy
languages. And a system dynamically consults the policy to determine whetlaecess request
should be granted. The advantage of this is that by separating policyrfemianism makes it easier
to specify the protection requirements to be enforced on the system irtisyiesi the underlying
implementation details. Also, when the security requirements on the systemecladéggon, it is
possible to easily change the policy without affecting the underlying meahaniplementing it.

The advantages of using a policy specification languages has led to thmmlaent
of many specific and generic policy languages. Ponder [3] is an objesited policy spec-
ification language for distributed systems management. Enterprise Privatyprfzation Lan-
guage(EPAL) [18] is a formal language used to specify fine-graineztgrise privacy polices. Ex-
tensible Access Control Markup Language(XACML) [16] is a genpuapose policy language and
an access request/response language defined using ExtensiblegManguage(XML) for manag-
ing access to resources. The XACML specification in its XML format ersadbeess policies to be

transportable and also inter operable across various access cyateohs.

The use of separate policy specification language provides a systemgtiorvexpress-
ing, managing and maintaining access control policies. However, this dboéy itself ensure the
correctness of the specified policies. As explained below, there carobeadies and inconsistencies
in a specified policy and the security of a system is only as good as the policy.

As an example, consider the case of firewall policies. Firewalls are onkamisem for
securing network resources. It is common for mis configured firewdittips to be causing prob-
lems. In examining 37 firewalls in production enterprise networks in 2004 Ygand that all the
firewalls were mis configured and vulnerable [29]. In addition, the sttahes, “The protection
that firewalls provide is only as good as the policy they are configured to ingole Analysis of
real configuration data shows that corporate firewalls are often@ngprule sets that violate well
established security guidelines”. The wide and continued spread of vaurhsas Blaster and Sap-
phire, demonstrated that many firewalls were mis configured, becaudlecoméigured firewalls
could have easily blocked them” [29]. There can be many anomalies andsistancies in the
policy which make the network resources vulnerable to security attack®, fdewall rules are
developed over a period of time. New rules are periodically added as esmarces with new con-
straints are added to the network. It is difficult to check for conflicts erlayps of new rules with
existing rules. Similar problem exists in access control policies of entespaiseé other systems.
An enterprises’s security policy is also revised over time as new secugityreenents are added.
Therefore, it is critical to specify access control policies correctlyctvhowever is a challenging
problem.

There are various ways in which the quality of the policy can be assuredftikmal
verification, analysis and testing. Formal verification techniques cany\iéaf policy satisfies a
particular security property [9,31]. However, a formal representaifdhe policy is not scalable
and properties about a policy do not exist in practice. Analysis of polza@sinclude semantic
analysis like performing a change impact analysis between two policies §6{ing is one practical
way for checking the correctness of a policy specification. Semanticasadchniques can be used
complementary to testing.

In this thesis, we use the new approachpoficy testingfor the quality assurance of
access control policies. Policy testing is the technique where the requetsésptblicy can receive
are formulated and are evaluated against the policy and responsest.arengs response is then
checked to see if it is as expected. In general, once a policy is written bguaity expert, they
are tested by formulating a set of manually generated ad-hoc requestsctotble correctness of

the policy. However, these requests are not exhaustive and all tedeaf the policy may not be
tested. Also, it is tedious to manually formulate requests for large policiesh&e, is a need for a
systematic and automatic method for policy testing.

There are two existing policy testing techniques. Martin, Xie, and Yu [1&& kiaveloped
a random test generation tool for XACML policies. The tests (requesggjenerated as a set of all
combination of attributes found in the policy. The tool represents this attrilsuéebét vector and
an attribute appears in the request only if the corresponding bit in thervestet to 1. The number
of requests to be generated can be user specified. To achieve deouerage, even in a small
request set, they modify the random bit setting algorithm to ensure eactséitasleast once. This
method, though simple to implement is not ensure that a policy is thoroughly té&etin and Xie
[14] have developed the target driven test generation tool for testhki@NKL policies. This tool
considers the policy as a hierarchical tree with the rules as the leavesomtigions along branch
in the tree leading to a rule is solved to generate the requests. This methagh thaperforms the
random test generation technique in terms of policy coverage and faettida, it considers only
each rule at a time and the effect of the policy as a whole is not considered.

In our approach to policy testing, we generatdicy programscorresponding to a policy.
The large amount of existing software testing techniques can be applied pwticis program for
policy testing. The process of software testing is often caljgthmic analysi®ecause it requires
that the software be executed for different inputs and the corresmpodtputs be observed. This
is in contrast testatic analysigechniques like model checking which do not require the execution
of the software. We use dynamic analysis techniques in our approacHitg festing. We use
XACML as the policy language, but our techniques can be easily extetedether rule-based

systems using different languages.

1.1 Contributions of this thesis

The following are the contributions made by this thesis,

1. The thesis proposes an automated method that uses software testinguestior testing
access control policies. The use of software testing techniques farireg$he correctness of

access control policies is novel.

2. We have developed a tool for the automated conversion of XACML pslicigprograms.

Each of the XACML policy element is converted into a corresponding céel@ent. This

code can be executed and software testing techniques like path coaeedgsis can be used

on it for policy testing. This idea of automatically generating policy programsvein

3. We have conducted extensive experiments to evaluate the effessveineur approach, and
found that our method achieves 100% policy structural coverage. Ttaiomntesting results

show that our technique tests different properties of the policy than exigiohniques.

4. Based on our technique, we define a stronger coverage critertaskimg access control

polices. This can be used for assessing requests generated by climigues also.

1.2 Organization of this thesis

The thesis is organized as follows, Chapter 2 provides backgroundrafmn on the
various components of an access control system and policy specifiatigumages. In Chapter 3,
we explain our framework for access control policy testing. Chapteedents the results of our
evaluation and defines the new policy coverage criteria. Chapter Shiesoelated work in the area
access control and policy verification. Chapter 6 concludes and djirexgion for future work.

Chapter 2

Access Control Policies and Enforcement

2.1 BackGround

In this chapter, we give an overview of the various components that make apcess
control system and an introduction to policy specification languages. @heefi2.1 shows the
various functional components of any system protecting its resourcesfbycing access control.
The user makes a request to the entity protecting the resources in the giist@wljcy Enforcement
Point(PEP). The PEP forms the appropriate access control requegbimat applicable to the
Policy based on the attributes of the requester, the action sought, theceeseguested and the
environment and gives it to the Policy Decision Point(PDP). The PDP lopkihe policy that
applies to the request and returns a response to the PEP. The PEPtues ttee corresponding
decision to the requester. The advantage of using this abstract moddlasyrepplication can use
this system.

There can be various vulnerabilities in a system implementing access comraxam-
ple, the user has to first be properly authenticated into the system. The&FhshBuld correctly
perform the translation from the user/application specific request tofkaifie to the policy. This
is a vulnerability because the policy specification language may be moressiearéor specifying
an application’s security requirements. For example, XACML allows a setibjects to request
access to a set of resources. But an application can have a stricenegat that only one subject
can access one resource at a time. In this cases, the PEP implementatidrbshoarrectly im-
plemented to be aware of this restriction when performing the translation fremstr’s request
to a policy specific request. Next, the access control policies have tectigrspecify the intended
behavior of the system. Also, the PDP has to perform the evaluation ttgr#eamong these vulner-

Access —™
‘ |M’ Request éccessd —
O Policy rante
== Enforcement
=~ "\\‘i\\\i E <:: Point
Access

Decision

(]

Resource

User

Request

Policy Decision
Point

Access Control
Policies

Figure 2.1: Functional Components of an Access Control System

abilities, one of the most basic requirement is to ensure that the security isajogcified correctly.
In this thesis, we focus on the problem of ensuring that the access kcpaotices are
specified correctly. A policy is considered to be correctly specified wtlsatisfies all the properties
of the system. An example of a property is that a particular subject shouldacess certain
resources. These properties can be explicitly and formally expresdddranal analysis techniques
like resolution theorem proving can be used to prove if a property holdpatiey. However, such
properties of a policy do not exist in practice and it is difficult to infer spobperties in a large
system. Also, the formal analysis techniques are not scalable. A prastgafor ensuring the
correctness of the policy is to test the policy against a set of requestshacH if the responses

obtained are as expected. This is the policy testing approach which is fdliovileis work.

2.2 Security Policy

The security policy in an access control system provides a systematiowsgdcifying
the strategy and practices for ensuring the security, integrity and availatilitysources in an
information system. In this section, we will give a brief overview of policyafieation languages
and describe XACML which we will be using for illustrating our approach &iike.

2.2.1 Policy Specification Languages

Previously access control policies were written by hard coding directiytivegrogram
by the programmer. Later on, as the policies became more and more complgsgiachte policy

specification languages were developed. There are many policy spgoifitanguages and they

can be either generic or specific to applications. Generic policy specifidatiguages are designed
for enforcing access control in broad domains like distributed policy nemagt [3], protecting
the privacy of enterprises [18], etc. Jajodia et al [10] propose madbtpnguage for a model
that allows the specification of different access control policies. Theg hlso proposed a Flexible
Authorization Manager (FAM) [11] that can enforce multiple access obptiicies within a single
system. Besides generic policy languages, researchers have atgeedenodels and languages for
specific applications like, a model for information access control in a climdaimation system
[1], an access control model for work flow management [2], secualigigs for distributed system
services [19], an access control language for web services {@5],e

Our technique for policy testing is general and can be used for testirggaoontrol
policies specified in other rule-based systems. In this thesis we preseaapmoach in the context

of one of the generic specification language XACML.

2.2.2 XACML

XACML provides a standardized way of expressing authorization pofinesa standard
format for expressing queries over these policies.

We have chosen to illustrate our approach to policy testing using XACMLUsec# a
general purpose specification language with various advantagesféociag access control like,

e It is an open source standard ratified by the Organization for the Advaet of Structured
Information Standards (OASIS). Because it is a standard, the vagatigés of XACML has
been examined by experts and so the specification is stable. Also, it isedpede used

widely in the industry because of its ratification.

e XACML is specified in XML format which is used for e-business applicatifur€Electronic
Data Interchange (EDI) in business-to-business and businessiooer transactions. Be-
cause of this, these applications can be easily configured to exchasigarerX ACML poli-

cies for enforcing access control.

e The specification is flexible and extensible. It is flexible since it is a genenclard and can
be applied for specifying policies in all applications. It is extensible bex#us data types,
functions, attribute types, and the way for combining multiple applicable rutdisgs can be
extended. Also currently there is work on developing an XACML profileViieb Services,
SAML and LDAP. This shows the language is adaptable to different emviemts.

e It is a portable standard. Since the specifications is in XML format, it canskd across

applications.

e Conceptually it follows the PDP and PEP model which makes it applicable to npgtiga:

tion environments.

e |t supports distributed policies. The security policy of an enterprise magnberced at dif-

ferent points and there is a need for specifying distributed policies.

XACML follows the abstract model as shown in figure 2.1 for policy erdonent defined
by the Internet Engineering Task Force(IETF) [30] [28].

The specification defines the PEP (Policy Evaluation Point) and PDP (Podicisibn
Point) as any other access control implementation. The request is givdPEB avhich processes
it and converts it to an XACML request format and gives it to the PDP.HDE has access to the
policies and it gets the request and determines if it has to give access wlittyegp not. The PDP
and PEP implementation is dependent on the application. They may be in the galioatiap or
be as separate entities on different applications or be available as &esmrgica network.

XACML Constructs

All XACML polices contain either &olicy or Policy Setas the basic element. Policy
is composed of a set ®Rules A set of policies or policy sets are combined to forrRaicy Set
Figure 2.2 shows these main components and the hierarchical relation h&wliey SetsPolicies
RulesandConditionsin XACML. When there are multiple rules in the policy and multiple policies
/ policy sets in a policy set, it is possible that a single access request epplied to multiple rules
to return conflicting access decisions. The way these conflicts mustdiea@ss dependent on the
specific application’s policy. However, XACML specifies some standaleland policy combining

algorithms for this. They are,

First Applicable : Among the set of rules (policies), this returns the effect of the rule (paiiat

first evaluated to true. Here, the ordering of the rules is important.

Permit Overrides and Deny Overrides : In the set of rules (policies) in a policy (policy set), if
a rule (policy) evaluates to true and if its effect is permit then the result ofullee(policy)
combination is permit. If the effect of the rule (policy) is deny or if it is not liggble then
all the rules (policies) in the set are evaluated to check if there is any parimi{policy)

Policy Set

<Target>
Policy 1 Policy 2
<Target> <Target>
Rule 1 Policy Set 1
<Target> <Target>
[Condition]
o o
o o
[o
Rule 1 Policy Set n
<Target> N <Target>
[Condition]
Policy 3
<Target>
Target
<Subject>
<Resource>
<Action>

<Environment>

Figure 2.2: Components of XACML Policy

10

evaluating to true. If such a rule exists, a permit decision is returned, & deny decisions
is returned if none of the permit rules are applicable. Hence, here pare# are given
precedence. Similarly the deny overrides rule (policy) combining algorittdefiaed.

Only One Applicable : This combining algorithm is defined for combining policies in a policy set.
If no policy is applicable or more than one policy is applicable, the result ise@fas not
applicable and in determinant. If only one policy in the policy set is applicabla fequest

then the result of the policy is returned.

The permit overrides and deny overrides combining algorithms can béisgeo be
ordered requiring that the rules be evaluated in the order in which theypanified. In addition to
the above, user-defined combining algorithms can also be added.

A Ruleis the most elementary unit ofRolicy[16]. A rule is made of the element&arget
Effectand the optionaConditionelement. ATargetdefines a set dbubject ResourceandActions
elements for which the rule is intended to apply. Hitectspecifies the access decision as permit
or deny that is returned on the successful evaluation of the ruleCohditionelement can include
complex functions that further refine the applicability of the rule. The poli@ffitan have a target
specifying the applicability of the policy. In this case, this target can be titoofyas an index
into the policy. The index can be the common criteria that has to be satisfiedefgethof rules
in the policy to be applicable. When there are a number of policies each witmbeamwof rules,
the index of each policy helps to speed up the evaluation of a decisionsteauéirst checking
the applicable policy targets and then evaluating the rules in those policieslicik pet may be
used for semantically grouping policies/ policy sets. For example, groulpasg policies defining
authorization for a particular object/subject, etc. A policy set also includasyat element which
again be used as an index for checking the applicability before evaludtialh the constituent
elements.

The other essential constructs in an XACML policy are attributes, attriblteesand
functions. Attributes are named values of known types [16]. The Sulifesipurce, Action and
Environment of a given access request are described by attributesjuast will mostly contain a
set of attributes. These are compared with the corresponding attribues\althe policy and an
access decision is made. A request can match the attributes in the policy yheshitributeDes-
ignator [16] type which identifies attributes by their name and type. AttebuteSelectors used
for matching a request with the attribute values in the policy through an XPatly.qthe attributes
values can be operated on by a number of function like string compariatsnadd time functions,

11

1<Policy Policyld="univ" Rul eConbi nati onAl gl d="pernit-overrides">
2 <Target >

3 <Subj ect s> <AnySubj ect s/ > </ Subj ect s>

4 <Resour ces><Resour ce> <AnyResour ce/ > </ Resour ce></ Resour ces>
5 <Actions> <AnyAction/> </ Actions>

6 </ Target>

7 <Rule Ruleld="1" Effect="Permt">

8 <Target>

9 <Subj ect s><Subj ect > Facul ty </ Subj ect ></ Subj ect s>
10 <Resour ces> G ades </ Resources>

11 <Acti ons><Acti on> Assign </ Action>

12 <Action> View </ Action></Acti ons>

13 </ Target ></ Rul e>

14 <Rul e Rul el d="2" Effect="Deny">

15 <Target>

16 <Subj ect s><Subj ect > Student </ Subj ect ></ Subj ect s>
17 <Resour ces>G ades </ Resources>

18 <Actions><Action> Assign </ Action></Actions>

19 </ Target>

20 </ Rul e>

21 <Rule Ruleld="3" Effect="Permt">

22 <Target>

23 <Subj ect s><Subj ect > St udent </ Subj ect ></ Subj ect s>
24 <Resour ces> G ades </ Resources>

25 <Actions><Acti on> Vi ew </ Action></Acti ons>

26 </ Target>

27 </ Rul e>

28 <!-- Afinal, "fall-through” rule that always Denies -->
29 <Rul e Rul el d="Fi nal Rul e" Effect="Deny"/>

30</ pol i cy>

Figure 2.3: An example XACML policy

logical functions, numeric conversions, set functions, bag functetnsnd the values returned can

be compared to arrive at an access decision.

An Example Policy

In this section, we describe an example XACML policy in a university. Fig2u&shows
a simplified form of this policy with the major XACML componenets. This policy digss the
way in which the access to the grade resource is controlled in a univars#ypolicy has an empty
target, which means that by default the set of rules in the policy are apiglitatany request. The
target of the policy in general is used as an index for the rules. In theeadd@ample, the target
could have been used to restrict the policy to be specific to a universibyoassn figure 2.4.

There are three rules in the policy and a final fall through rule. The tlules are com-

12

<Tar get >
<Subj ect s> <Subj ect> NC State University User </ Subject> </Subjects>
<Resour ces> <Resource> NC State University Acadeni c Records
</ Resour ce> </ Resour ces>
<Actions> <AnyAction/> </ Actions>
</ Tar get >

Figure 2.4: XACML policy target for a university’s policy

<Request >
<Subj ect s> Student </ Subjects>
<Resour ces><Resour ce>G ades</ Resour ce></ Resour ces>
<Actions> View </ Actions>

</ Request >

Figure 2.5: XACML Request

bined based on the permit overrides rule combining algorithm. This meansethet siles are

combined giving precedence to rules with an effect of permit.

XACML Request and Response context

The XACML Request and Response context specifies the standandtfarth which a
request and response from the system is got. The figures 2.5 ando$ @lsimplified form of an
XACML Request and Response.

The request enables a set of subjects, resource and action elemenspexified. In this
example, the student requests access to view the grade resource.

The response is returned on evaluating the request against the wletsahrthe policy. In
this example, a decision is returned on matching the attribute values in thetredfbebe attribute

values in the rule 3 in the policy.

<Response>
<Resul t >
<Deci si on>Perm t </ Deci si on>
</ Resul t >

</ Response>

Figure 2.6: XACML Response

13

Chapter 3

Policy Testing Framework

In this chapter, we describe the general framework followed for polistmig. We also
describe our technique for policy testing and show how it fits into this framewo

Figure 3.1 shows the general framework for testing a policy specificaliba.input to
the framework is the access control policy that is to be tested. In the tegeiesration phase,
this policy is converted to a format suitable for testing. The output is resutistabe quality of
the request set generated. The various phases are, requesttiiganéesting policy against these
requests and evaluating the quality of request set. These componet¢saribed in detail below,

Request Generation Process: Here, a policy is taken as input andtittmalapumber of requests
needed for testing the policy is generated. This phase corresponds ittpteésselection in
general software testing. As in test selection, some form of heuristicsbausted to restrict

the test cases generated.

Test Policy against Request: In this phase, we evaluate the genei@tedtreet against the policy
to collect statistics of the generated test cases, which are later used tatevhkiquality of

the test suite.

Compare and Evaluate Quality of Request Set: Here two techniques dréouswaluation. We
find the policy structural coverage and the mutant kill ratio of the requestsrgted by our

approach. We compare and analyze these results with existing reqoesttyen techniques.

In this chapter, we describe the first component - our model for réaqeggeration and Chapter
4 discusses the rest of the components - testing, evaluation and analyisesresults. We use

XACML policy specification language for describing our framework.

14

- Request Test Policy
< Generation Process gg’?lnSt Request
e

Policy Request Set ‘ ‘

Evaluate
Resultg Quality of
N Request Set

Analyze Results

Perform
Mutation
Testing

Measure
Policy
Coverage

Figure 3.1: Policy Testing Framework

3.1 Policy Model

In this section, we describe how we model an XACML policy for generateguests.
The overall idea of our approach is to consider the ordering and retaipibetween rules in the
policy when generating requests. Consider an XACML policy shown irrdi@u3 for access to a
grade book in a university. Here, the resource to be protected is &rade roles in the system are
Faculty and Student. The various actions that the roles can perform oesiwce are View and
Assign.

The example 2.3 shows a single policy with the following rules,

1. Faculty can Assign and View Grades
2. Students cannot Assign Grades

3. Students can View Grades

4. All other requests will be denied

An XACML request to access the Grade resource will containstitgect/sthat is the
role/s making the request, thesource/seing requested for and tlaetion/srequested on it.

The problem of policy testing is to find all possible requests that a policyexive and
check if the response is as expected. A request is a subset of theaseiboites representing the
subject, resource, action and environment elements of the policy. Sosalbfcombinations of
the sum of attribute sets will give all possible requests that a policy caiveechk general the
number of possible requests that a policy can recei2 igheren is the number of attributes.
In other words, the request to a policy is a bit vector of lengthnd 2" different requests can
be generated. For the above simple example with 5 attributes, the exhaestfaequests to be

15

Figure 3.2: Control Flow Graph

tested i2° = 32. This technique though exhaustive, is inefficient and the numbestafdses grows
exponentially with the increase in number of attributes. Also, in XACML, the aitieib correspond
to roles, resources and actions sought, and the number of attributettydinap to the size of the
application. According to a case study of the role based access codteisof a bank [22] , the
number of roles in an organization is 2-3% of the user population. Sorafargetest cases based
on all combinations of attributes in a policy is not scalable.

Alternatively, in our approach, we consider the structure and semarftice policy for
generating and restricting the requests. Specific details of this approgigbrsin the next section.
Here, we introduce the terms and concepts we use. Listing 3.1 shows a wdncim the above
example policy can be represented as a sequence of conditional statefhénshows the order in
which the rules are considered when evaluating a request againstittye phis can be thought of
as a program with a sequence of instructions. Thus, this correspoad®ticy Program White-
box testing is a technique in which the internal structure of a program is egdnfm testing it.
Now, given a policy program, white-box testing techniques can be us#te@rogram. A common
method of white-box testing is to examine the control flow graph of a prograrmorol-flow-

-

10

11

12

13

14

15

16

16

graphof a program is a directed graph showing all the execution paths in thegonod he nodes
represent the blocks of code without any branches and the edgesespjumps in the control
flow. Figure 3.2 shows the control flow graph of the program cornedipg to the example policy.
Control flow graph of a program is used in many static analysis tools andilesraptimizations.

Listing 3.1: Faculty Policy code

if (role == Faculty)
if (resource == Grades)
if (action == Assign or View)
return Permit
if (role == Student)
if (resource == Grades)
if (action == Assign)
return Deny
if (role == Student)
if (resource == Grades)
if (action == View)

return Permit

return Deny //default return value

A coverage metric specifies when to stop a testing process. For testingramproone
structural coverage metric that is commonly usegdth coverage In path coverage, the criteria
to stop testing is when each path in the program is traversed at least dmeg@rdblem with this
approach is that the number of paths even for a simple program can ke ogexample, if the
input to a program is an integer, then the number of paths that the progwratalke is infinite. In
our case, the program is a series of conditional statements. The ougadiofonditional statement
is atrue or a false outcome. So, for the above example, there are 9 cosdittbe program and the
number of paths i8° = 512. In general, for a policy, if there arerules (with subject,resource and
action elements) in a policy program, the number of patR&1$. We see that the number of paths
in the program grows exponentially with the addition of a conditional statemattt.dverage, as
such is not used as the only metric for measuring the adequacy of testinglly,Jsome heuristics
are used to restrict the number of paths. Our approach to reduce thenafgaths and generate

17

Generate test

Convert policy to cases from policy
program rogram
" Perform program path
Prepro_cess po_llcy, coverage analysis and
renaming attribute generate optimal test
@) values if necessary cases
- - -
v v
Generate code Generate XACML
corresponding to every| requests from test
XACML policy element cases Requests for
policy source testing the
policy

Figure 3.3: Request Generation Process

test cases is to use concolic testing (combination of concrete and symbolitiere[23] to detect
distinct paths as explained in the subsequent sections. This is done imggbk constraints which

correspond to conditions represented by each rule.

3.2 Request Generation Process

The various components of the request generation process areame@tipn, test case
generation and request formulation. This is shown in figure 3.3. The tophis step is the policy
which is to be tested, the output will be a set of test cases that can be utesd the different
paths in the policy. Also, an intermediate product is the policy program wlgiclpe used for other

purposes like semantic code analysis as explained in chapter 6.

3.2.1 Generating XACML Policy Programs

In this section, we describe the basic idea of converting an XACML policyptec The
next sections describes the general algorithm for this. An XACML polauy loe thought of as a
set of predicates combined by logical operators. The predicates arelélseand the variables in
the predicate correspond to attribute values in the policy. A policy is staticadlyzed by parsing
it and collecting all the attributes. Note that these details can be obtained feopolicy writer
from some specification, but we assume that such a specification is rflabé&vand we only have
the policy that is to be tested. These attributes are then classified accordirgtype as subject,
resource, action and environment. XACML represents a rule as a conditer these attribute
values. A rule can be represented as a conditional statement. So, apelitiyean be represented
as a series of conditional statements. All the attributes in the policy are ditakb®olean variables

and they can be set to true to show their presence in a rule.

1

2

3

4

10

11

12

18

As a practical example, we consider the modified form of the policy that & lngeneta
access management system and fedora for controlling access to oljéaista streams. The
XACML policy is given in the appendix in figure A.1. The policy has one polgt with four
rules in the policy. The order in which the rules are to be combined is using aemrides rule
combining algorithm. The four rules are,

The target of the policy is the condition checking if the access requestedtiss mod-

fedora object.

1. Deny any access if client ip address is not 127.0.0.1. This policy &ebechecks if the
environment attribute client ip address is 127.0.0.1. If yes it grants aeoesproceeds to

evaluate the next rule. If no it returns a deny decision.

2. Deny any access to objects or data streams, which are either inaclslet®d, unless subject
has administrator role This rule first checks if the requested resourcadsvia or deleted.
If true then it checks if the subject accessing the resource is the adntmisaral it gives

access.
3. Permit access to inactive data streams if the user role is special user.

4. Deny access to POLICY data stream unless subject has administratoSnolgarly, here

also only if the subject is an administrator, it is given access to the resource

The generated code corresponding to the above policy is,

Listing 3.2: Policy code for example
public class mod_-fedora{

public static String EvaluatePolicyloolean[] pRequestArray]
boolean _127.0.0_1 ,administrator ,specialuser ,Inactiveobject,
Deletedobject, Inactivedatastream ,Deletedlatastream ,
urn_fedoranamesfedora;

_127.0.0_1=pRequestArray [0];
administrator=pRequestArray[1];
specialuser = pRequestArray[2];
policy = pRequestArray[3];
Inactive_object=pRequestArray[4];
Deletedobject=pRequestArray [5];

13

14

15

16

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

a7

48

49

Inactive_datastream=pRequestArray[6];

Deleteddatastream=pRequestArray[7];

urn_fedoranamesfedora=pRequestArray[8];

Assert(false);

if (1(-127.0_0_1==true)){

Assert(false);

if (((urn_fedoranamesfedora==rue))){

/I Policy Target

/[lrule 1

if (((Inactive_object==true)){

Assert(false);
if (!(administrator=srue
Assert(false);

}

if ((Deletedobject==true)){
Assert(false);
if (!(administrator=#rue
Assert(false);

}

if ((Inactive_datastream=tue)){
Assert (false);
if (!(administrator=srue
Assert(false);

}

if ((Deleteddatastream=true)){
Assert(false);
if ('(administrator=#2rue
Assert(false);

A

A

A

A

/lrule 2

/lrule 2

/lrule 2

/lrule 2

19

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

20

if (policy==true){ //rule 4 — reordered
Assert (false);
if (!(administrator=2rue)){
Assert(false);

if (specialuser==true){ //rule 3 — reordered
Assert(false);
if (Inactive_datastream=true){
Assert(false);

}

return "Not _Applicable"; //default rule
}

The program shows that the attributes in the policy are converted to bocdeimbles
in the program. The input to the program is the boolean goRgquestArray The presence and
absence of the attributes in the policy can be controlled by setting the index inghtsarray.

Assertions are a software engineering technique that can be usedeimatisally prove
the correctness of a program [7]. Java provides this feature by noé#msassert statement which
takes a boolean expression and can assert true or false. The jCutg testinlooks for these
assertion violations in a program. So, to generate test cases for testipglitye program we
add assert statements after every rule or to have more specific inputasseftl sStatements after
every condition check in the rule. This can be seen in example listing 3.2. dtlise assertions
drives the program execution through these paths. As an optimization neogetoptimal requests
from jCute, the conditional statements in the program with OR’s can be splittasé@parate if
statements. This is shown in the example where the rule 2 is split into four cordigiatements.

Converting permit overrides and deny overrides combining algorithnms

In our approach, the permit overrides and deny overrides algorithensaverted to
their first applicable forms. The permit overrides algorithm can be ctevvdo first applicable by
reordering the rules to have those with the effect of permit first and trese tvith the rules with

1

2

3

4

21

an effect of deny. Similarly, the deny overrides algorithm can be cteddo its first applicable
format.

The reason for doing this is that, when exploring the various paths in tigegmo the use
of the permit overrides and deny overrides algorithms may miss certain paditesthis re-ordering
makes it simple to cover these paths in the program. In the above example in ligjrtgeSrule

with an effect of permit is re-ordered to be after all the rules with an etfedeny.

Algorithm for translating an XACML policy to a program

In this section we describe an algorithm for converting a policy to prograimenGn
XACML policy, the following describes the step by step procedure foreding it to program.

Step 1: Pre-process attribute values: Do a static analysis of the policge e policy, collect
attributes, remove duplicate attribute values and process the attribute valkigs) rieem

suitable for use as a variable name in a program.

Step 2: Maintain mapping between code and policy - write the attribute valuedédradiformat

that will preserve the meaning of the attributes like subjects, resourceciiod.a

Step 3: Generate code corresponding to each policy element. The palieyget, policy target,
rule target and rule conditions are read in order and converted tospording condition

equivalents preserving the ordering between the rules.

Step 4:Add the default cases, and the test driver code needed &ratjag the various test cases.

The algorithm is as follows,

Listing 3.3: Process each Policy Element

processPolicyElement(Node aNode)

if (aNode == PolicyTarget Element)
PolicyORPolicySetTarget (aNode)

if (aNode == Policy Element)
OnePolicy (aNode)

if (aNode == PolicySet Elemenf{)
for every child node of PolicySet

if (childNodeOfPolicySet==PolicySetTarget)
PolicyORPolicySetTarget(childNodeOfPolicySet)

22

10 if (childNodeOfPolicySet == Policy)

1 OnePolicy (childNodeOfPolicySet)

12 if (childNodeOfPolicySet==PolicySetElement)

13 processPolicyElement (childNodeOfPolicySet)
10 }

15}

Listing 3.4: Process PolicyORPolicySetTarget Element
PolicyORPolicySetTarget (Node aNodg)

[N

3 Subject= aNode.getSubjectElementOfTarget ()

4 printCodeCorrespondingToSubject(subject)

5

6 resource= aNode.getResourceElementOfTarget ()
7 printCodeCorrespondingToResource (resource)

8

9 action = aNode.getActionElementOfTarget ()

10 printCodeCorrespondingToAction (action)

)

Listing 3.5: Process Policy Element
OnePolicy (Node aNodg)

[N

2 Target = aNode.getTargetOfPolicy ()

3 PolicyORPolicySetTarget(Target)

4

5 if (aNode . PolicyRuleCombiningAlgorithm == PermitOverides

6 PermitOveridesCombiningAlgorithm (aNode)

7

8 if (aNode. PolicyRuleCombiningAlgorithm == DenyOverides)
9 DenyOveridesCombiningAlgorithm (aNode)

10

1 if (aNode. PolicyRuleCombiningAlgorithm == FirstApplica®)
12 FirstApplicableCombiningAlgorithm (aNode)

13}

10

11

12

10

11

12

13

14

15

17

18

19

20

21

Listing 3.6: Permit Overides Combining Algorithm

23

PermitOveridesCombiningAlgorithm (Node aNode)
Queue RuleQueue;
for every rule in policy
Rule = aNode.getRuleSet()
if (Rule.Effect == Deny){
RuleQueue.add(Rule)
continue

OneRule (Rule)
for every rule in Queue
OneRule (Rule)

Listing 3.7: One Rule

OneRule (Rule aRulegf)
Target = aRule.getTarget()
OneTarget(Target)
if ((Condition =Rule.getCondition()) ! = null)
OneCondition(Condition)

Class aFunctiof
String nameoffunction
LinkedList parametersList

}

Queue ConditionQueue
OneCondition (Condition aCondition)
aFunction oneFunction
for each child of condition
oneFunction.name = conditionChild.name
if (conditionChild==anAttribueValue)

Func.parametersList.add(conditionChild . anAttributalMe)

if (conditionChild==aCondition)
ConditionQueue (aCondition)
OneCondition(aCondition)

24

2)
23 for each function in ConditionQueue

24 writeCorrespondingFunctionToFile ()
5}

Listing 3.3 shows the overall algorithm for processing each policy eleméatfdnction
processPolicyElement takes each element of the policy as input. It starts from the top most policy
element. For each of the elements, the type of the element is determined as BbbcyPSlicy Set
Target or Policy Target or Policy and the corresponding sub-praeadwcalled. The procedure
recurses in the case if there is a policy set inside a policy set.

Listing 3.4 shows how the target of the policy and policy set is being handléx
target is made of the subject, resource and action elements. Each oflédmasats correspond to a
condition to be checked. So the code corresponding to this is generated.

Listing 3.5 shows how the various rules in the policy are combined using thediffer-
ent combining algorithms, permit overrides, deny overrides and firsicappe.

Listing 3.6 shows how the permit overrides algorithm is handled. Permit ©esralgo-
rithm keeps evaluating the rules until a permit decision is returned. A policypeitimit overrides
combining algorithm can be converted to first applicable by re-orderingules based on their
effect. The rules which have an effect of permit are put before miesh have an effect of deny so
that the semantics of the ordering remain the same. In the algorithm, there iseatquehich any
rule with a deny effect is encountered is added when first traversingaiiey. If the effect of the
rule is permit then the code corresponding to the rule is printed out. If tketedf the rule. After
the end of the policy is reached, the permit rules are printed.

Listing 3.7 shows how each rule is converted to a code. Each rule is madéaugea
which is handled by the function in Listing 3.4. The rule can have a conditidrtléa has to be
converted into another conditional statement. A condition can have diffeaeameters depending

on the function defined. They are specified in the list.

3.2.2 Dynamic Policy Program Analysis

The purpose of converting the XACML policy to a program is to take adggntd the
large amount of software testing techniques available. So, testing a pdligge®to the problem
of unit testing the policy program.

Testing techniques are classifieddymamicandstatic. Static techniques test a software

25

if (((urnFedora=true))) {
if(1(727.0_0 1=true)){
Assert (false):
. . return
Deny”: 1} if (((/nactiveObj==true) ||
{del0bj==true)
|| (inactiveDS==true) || (de/DS==true))}{
if (! (admin==true)){
Assert (false):
return “Deny”: }}
if (policy==true) {
if (! (admir—=true))

{ Assert (false) ;
return “Deny”; }}
if (sp/Usr=true)
{ if (inactivepS=true) {

Assert (false):
return “Permit”:}}
return “NotApplicable” :

127_0_0_ | admin | splUs | inactiveOb | policy | delOb | inactiveD$ | delDS | urnFedor

Falst False | False | False False | Falst Fals¢ False | Falst

False False | False | False False | False | False False | True

True Fals¢ | Fals¢ | Fals¢ Fals¢ | Falsc | Fals¢ Fals¢ | True

True False | False | True False | Falst Fals¢ False | Falst

Figure 3.4: Request Generation from Program

without executing it but performing activities like inspection, symbolic exeoudind verification.
Dynamic techniques test a software by generating various test inputesfruitng the software and
checking the results obtained. Our approach to policy testing follows thenagriesting approach.
There are many methods of dynamic program testing each depending @etifecaapplication. In
this thesis, we use concolic testing [23] for policy testing.

Concolic testing is a systematic and scalable method for program testing. dlie gon-
colic testing is to generate data inputs that would exercise all feasible exepatits of a sequential
program [23]. The essential idea is to use concrete values as welhd®by values as inputs for a
program and execute the program both concretely and symbolically. éetenvalue is a specific
value for an input variable in a program. A symbolic value is a symbolic namenfmpaut variable
in a program. The execution path followed by a program on using a dena@ut value is called
concrete execution. In symbolic execution, an input variable is assigagahlaolic name and the
program’s execution path is followed. The result of this execution will begmation in terms of
input variables, which if satisfied, will lead the execution on the symbolicallgueel path. In the
example program in listing 3.8, the input variablerignd it can be assigned the symbolic name
x asx = x. On reaching the second statement, y has the symbolic yatde: « . Now, for the
if statement on line 3 to take the true branch, the inequalityr > 12 must hold. Similarly, the
inequality to hold in line 4 iz * =) + 2 > 14.

Listing 3.8: Symbolic Execution

1 read (x)

26

2y = X2
3 if(y > 12)
4 Assert(false) // an error

The symbolic execution followed by the concolic testing algorithm is the same as¢he
defined above except that the algorithm takes the path that the conceetdien takes. At each
branch point, during this execution, constraints over the symbolic valaeoHdected. This is called
symbolic constraint[23]. So, at the end of the execution, the algorithm will have a sequeince o
symbolic constraints corresponding to each branch point in the prograencdnjunction of these
constraints is called thpath constrainf23]. It is to be noted that,” all input values that satisfy a
given path constraint will explore the same execution path” [23].

The concaolic testing algorithm repeatedly generates inputs to traverse téstaoution
paths using a depth first search strategy. The algorithm starts of wittdaméy generated input.
This input is used to first execute the program (concrete testing), simaolisiyeduring this exe-
cution, the path followed by the program is modeled as symbolic constraim¢ig execution).
These constraints will be used for generating the subsequent inputsngAthe symbolic con-
straints collected, a constraint is picked and negated to generate theatierbpstraint. This way,
inputs for all distinct execution paths can be found and hence redtutesticases can be avoided.

We use the tool JCUTE [24], a concolic unit testing engine for testing the pptiograms.
This tool logs the inputs that led to the feasible execution paths. These ioputthe optimal, non-
redundant test cases for testing the program. We chose the path ahabesisconcolic testing for
policy testing because, we believe that the test cases generated by thisl metitth capture the
type of errors more commonly done in a policy specification for the followirgeas. The rules
are a series of conditional statements and concolic testing easily solvesfeheltonstraints. The
addition of new rules to a policy does not change the previous rule andvedest cases can be
added to the existing test cases.

The figure 3.4 shows the mod fedora policy program and the set of inpittgeoerated
by JCUTE by solving the constraints. The sequence in the inputs generatieel &bove program
shows how jcute solves the constraints to generate inputs. In this prodtdhe mput variables
are boolean. Initially, the all the input variable are assigned a false Vdlise€an also set to
randomly assign true false values to the variables). For this input thegonofillows takes the
default case, the not applicable case. During the previous executigoepmistraints in each of the if
statements encountered is collected. Among these, one constraint is ehdseis negated. Here,

27

urnFedora==true is the negated constraint. This generates the nextaripe program. This way,

each of the constraints are negated to drive the execution along distihst pa

3.2.3 Request Reduction

We do not do any request reduction because the requests returj@dteyalready rep-
resent the reduced set of requests. Doing a greedy reduction as meeniio [15] does not cause
any reduction in the number of requests because each of the requests acingle path in the

program.

28

Chapter 4

Evaluation

In this chapter, the requests generated by our approach to requesagen are evalu-
ated. To perform the evaluation, the two measures, policy coverage aationuesting are used.
The policy coverage measures the adequacy of the requests germrateses the existing struc-
tural policy coverage criteria. The other measure, mutation testing deterthmésult detection
capability of the request set and for this existing policy mutation testing toolssaie We present

results of the experiments and analyse the results.

4.1 Coverage Criteria

Testing by itself can only show the presence of bugs and cannot prava tharticular
property always holds. So, it is difficult to specify when a testing proesomplete. Itis necessary
to define a test criterion before testing any software. A test criterionegeéirstopping condition
for the testing process. It enables identification of an adequate test. Sthedegjuacy criteria is
dependent on the nature of the application being tested. Some specifie$emtd properties of the
application may need to be tested more and so, accordingly the criteria haglefire. Testing
involves generating a set of inputs for checking the different executiba program. Definitions

of the basic components in any testing process are,

Test Case An input using which the program has to be tested. In policy testing, a setuthe

input to the policy that is to be tested.

Test Set The set of all test cases that are tested against the program undbr pesicy testing, the
request set represents the set of test cases with which the policy hatekidd to satisfy the

29

Policy hit percentage

Rule hit percentage

Condition hit
percentage

Figure 4.1: Policy Element Coverage

test criterion. The set of requests/test cases are usually redumdecd@d syntactically and
semantically be the same. So, usually test case reduction techniquesdferusenoving

these redundant cases.

There is a lot of research on the definition of test criteria and adequeiqyrégrams
[32]. The test criterion to be satisfied for a program is usually specifi¢gdleriorm of amount of
coverage of the code. There are many coverage criteria like statenvemage, branch coverage,

path coverage and mutation adequacy.

4.2 Policy Coverage Criteria

We have generated a set of requests for testing a policy. A policy tegtiackemeasure
is needed to evaluate the quality of the requests in testing. We use the polaage\criteria [15]
as the adequacy measure for the requests generated by our apfroisgholicy coverage criteria
defines the coverage similar to statement coverage in program testing. itEhia s to maximize
the number of policy elements that a request covers. In other words) @lsa be interpreted that
this method choses those requests among a set of requests that covetdithermaumber of policy
elements. The policy elements granularity considered are Policy target ¢dRuéa element and
Condition element. They define the term “applicability” of the request to a p@lieynent if a
request satisfies the conditions for the policy element to evaluate to trueméasures used for
coverage are, policy hit percentage, rule hit percentage and contitipercentage. The policy
hit percentage of a request is defined as the number of policies for whimtuest is applicable to
the total number of policies. The rule hit percentage of a request is dedmthe ratio of number
of rules applicable to the request to the total number of rules. A rule hiiresjthat the request
be applicable to the policy. The condition hit percentage of a request igtibeof the sum of the
conditions that evaluate to true and those conditions that evaluate to false ¢ottwiaumber of

30

Policy <Target>

Rulel <Target> Rule 2 <Target> Rule 3 <Target>

‘ Rule 1 <Condition% ‘ Rule 2 <Condition>

Rule 3 <Condition#

Figure 4.2: Target Driven Request Generation

total conditions. A condition hit requires that the request be applicable fooliey and the rule.
The figure 4.1 shows the above coverage criteria and the hierarckiatibn between
the various elements and its effect on the overall coverage.
We call the above coverage criteria as policy element coverage. The anistaiowe
have used in our testing framework converts the policy to program asdhs@ath coverage with
concolic testing for limiting the number of paths. In our initial evaluation, we meashether the

requests generated by policy program path coverage achieve congleyjegtement coverage.

4.3 Target Driven Request Generation(Targen)

This is another method for policy request generation [13]. This methodidens the
policy as a hierarchical tree with each rule representing a leaf in the thedfigure 4.2 shows this
representation. Here, a request/test case is generated by solvitigicis$n the path of each rule
from the root of the tree. The constraints in the path of a rule from theofdbe tree has the target
of the policy and the target of the rule to be solved. So, a request follathiagpath is applicable
to the policy and rule. Combinations of the attribute values in this path repnesprésts. Targen
considers a modified form of combinatorial coverage that reduces thédmequests generated
from all possible combinations of the attribute values along this path. Thisségeneration
technique looks at each rule in the policy individually. It is possible thatnwdikthe rules in the
policy are considered, some of the requests generated can be retdufdese redundant requests
can be removed by measuring their coverage as explained in the nexhsectio

4.4 Comparison of Request Generation Techniques

In this section, we compare the requests generated by the targen dpanokbat gener-
ated by our approach. We use the policy element coverage as the cotegiafuating both the set

31

Table 4.1: Policies used in the evaluation.

| policy | # set| # policy | #rule | # cond |
codeA 5 2 2 0
codeB 11 5 5 0
codeC 8 4 4 0
codeD 11 5 5 0
default-2 1 13 13 12
demo-11 0 1 3 4
demo-26 0 1 2 2
demo-5 0 1 3 4
mod-fedora 1 12 12 10
simple-policy 1 2 2 0

of requests. In our experiments, we have used 10 XACML policies fras]. [These range from
simple to complex policies. The table 4.1 shows the statistics of the policy compoditierfirst
column gives the name of the policy, the second column gives number of gelisyn the policy,
the third column gives the number of polices, the fourth column gives the nuoflvales in the
policy and the fifth column gives the number of conditions in the policy.

The table 4.5 shows the coverage comparing the targen method and com@ppsing
JCUTE. Column 1 gives the names of the policies. Columns 2, 3 and 4 give tloy,pole and
condition coverage when using the targen approach. Columns 6,7 and ggipolicy, rule and
condition coverage when using the jcute based approach. The reswitsrestt each of the requests
generated by our approach have 100% policy, rule and condition agerThe targen method
achieves 100% policy and rule coverage in the policy element coverétggacr The condition
coverage achieved is not 100% because the currently available tagjeloés not implement con-
ditions. Another difference to be noted is that the number of requestsajedaising the targen
approach consists of some redundant cases - requests which dusetany increase in the cover-
age. When using targen requests, a greedy reduction has to bempdftr consider only requests
which cause an increase in coverage. This is an extra overheadsbduatithe request has to be
generated and then the generated request has to be reduced. hpaach, however, the request
generation process itself ensures that no request generated tw/seme policy element as the
previous request. This is because, in our approach only the consafingsthe path to the rule are
solved. Performing a greedy reduction of the requests generated bpmoach showed that there
was 0% reduction in the requests generated. This shows that our teque®ptimal since they
achieve 100% policy element coverage and no reduction is neededdraded measure.

The comparison of the two request generation techniques show thatttheflibe them

32

Table 4.2: Policy Set mutation operators
ID Description
PSTT | Policy Set Target True
PSTF | Policy Set Target False
CPC | Change Policy Combining Algorithm

achieve almost 100% policy element coverage. But however, our agpito request generation
considers the different paths in the policy program and seems like a seatlgrafticient measure

than the targen approach. To check this, we use another test adegeasyre, mutation testing to
compare the fault detection capability of both the request generation teelsnighis technique is

explained in the next section.

4.5 Mutation Testing for Fault Detection

We also use mutation testing to determine the quality of the requests generatadoiMu
testing is used for testing programs by introducing small faults in the origiogram and gener-
ating programs that are close to the original program. Specifically, thisitpehitakes advantage
of the coupling effect [4]. In programming, the coupling effect can éngd on the basis of the
empirical observation that complex errors occur due to the combination ofesemors. So, if we
can introduce simple errors into a program by means of simple changesnigyapgerators and if
these errors can be detected by a test case, then we can be asdutesl tibst case can also be used
to detect complex errors which occur as a combination of these simple.errors

In other words, mutation testing measures the sensitivity of the test case to simguke
which could be used as an indication of its sensitivity to complex errors. dohis technique for
access control policies, it is necessary to identify simple errors in thextaritan XACML policy.
For example a simple error a user makes when writing an XACML policy is to wipaliay with
a set of rules but write a target which is not applicable to any valid reqlieste the policy will
not be applicable to any request. This can be emulated by creating a muliaptwith a target
value that will always evaluate to false. Another mutant policy could be dtetiae target always
being applicable, this will ensure that all the requests evaluate are apeltoahe policy and the
rules in the policy will be evaluated. Based on this idea, Martin and Xie [13} daveloped set of
mutation operators for an XACML access control policy.

The mutation operators can be classified based on the policy element onthédniciuta-

33

Table 4.3: Policy mutation operators
ID Description
PTT | Policy Target True
PTF | Policy Target False
CRC | Change Rule Combining Algorithn

=

Table 4.4: Rule mutation operators
ID Description

RTT | Rule Target True
RTF | Rule Target False
RCT | Rule Condition True
RCF | Rule Condition False
CRE | Change Rule Effect

tion operation is performed. They can be classified as,

Policy Set Mutation Operators: These represent the mutation operatidreathbe done at the
policy set level. The various mutation operators defined for this is showilea 4a2. They
are, policy set target true mutant in which the policy set target is removithsi is always
true, policy set target false mutant in which the target value is changédlisarcit is always
evaluated to false and change in policy combining algorithm mutant in which mwents
created for each policy combining algorithm like permit overrides, denyriokes and first
applicable.

Policy Mutation Operators: These represent the mutation operations thia¢ cbone at the policy
level. The various mutation operators defined for this is shown in table 4y dite policy
target true, policy target false and change in rule combining algorithm.eTdressimilar to
the policy set operators except that the granularity is at the level of paltbgr than policy
set.

Rule Mutation Operators: These represent the mutation operations thheadome at the rule
level. The various mutation operators defined for this is shown in table 4.dy die rule
target true, rule target false, rule condition true, rule condition falsecaadge rule effect.
The first two rule operators generate mutants by setting the rule targets toelbentt false.
The condition operators set the condition in each rule to be true and fatgechinge rule

effect changes a rule with an effect of permit to one with an effect oy @ad vice versa.

34

Table 4.5: Policy coverage and fault detection when using targen andutedgchnique.

targen jcute
| policy pol % | rule % | con % | mutkill% | pol % | rule % | con % | mut kill%
codeA 100 100 n/a 36.36| 100 100 n/a 41.8
codeB 100 100 n/a 37.7| 100 100 n/a 38.58
codeC 100 100 n/a 38.58| 100 100 n/a 38.54
codeD 100 100 n/a 37.79| 100 100 n/a 37.79
default-2 100 100 100 50| 100 100 100 31.6
demo-11 100 100 75 77.78| 100 100 100 88.88
demo-26 100 100 50 78.57| 100 100 100 78.57
demo-5 100 100 75 78.95| 100 100 100 89.47
mod-fedora 100 100 100 56.67| 100 100 100 44.16
simple-policy| 100 100 n/a 44.44| 100 100 n/a 55.5

jCute Vs Targen Mutation Testing

60 1 @ Jcute Requests
B Targen Requests

Mutant Kill %
BPNwhUl
[elelslslela]
%,
%
£
Z
%

Policies

Figure 4.3: jCute Vs Targen

The number of mutants created for each policy element is dependent oizehef the
policy. For example, the number of policy set mutants with a target of a trueiad emthe number
of policy set target elements within a policy. Some of mutants may also be edquiealé this is
dependent on the specific policy.

These mutation operators represent some of the possible changestbatiotroduced
in the policy. The requests generated by our approach are evaluatiedtadbese mutant policies.
If the result of the evaluation is different than the original policy, the muissaid to have been
killed.

35

Fault Detection by Mutation Operators

(0]
& 120
§ 100
E 80 - M M O Rule Operators
= 60 - W Policy Operators
z .
- 40 OPolicy Set Operators
2 [Nl
8
:
& P F TS
< S S S éé& S &é‘ R éﬁ@ \Q,Q
O L
< 6\6‘
Policies

Figure 4.4: Mutation Operators

4.5.1 Fault Detection Capability Comparison

We compare the fault detection capability of our method and the target-deeprest
generation method. The set of requests generated by both the methodalaateel against the
original policy and the mutant policies. If the results are different, the migas#id to have been
killed. If the result remains the same, the mutant lives. The column 5 in table@ws she mutation
kill percentage of the requests from targen and the column 9 shows the mukéltipercentage
using our approach. The figure 4.3 shows the graph representatiba cbmparison. The fault
detection capability of jCute based optimal requests performs better or dsagaargen in most of
the cases. However, in two of the cases targen performs better thanTbetéollowing shows an
example of a case where a mutant is killed by targen but not killed by jcute.

The original policy set has the following two policies among a set of policies,

Policy 2 :Deny access tBOLICY resource unless the subject fzakninistratorrole.

Policy 8 :If subject hasadministratorrole, access decision is Permit. (This broad rule may be

limited by specific rules in the beginning.)

The XACML representation of this policy is shown in figure 4.5. Considentigation
operator, Change Rule Effect(CRE) which generates a mutant of thg pglahanging the effect of
the rule in the Policy 2 to permit. So, the original policy denies acceBOIACY resource if subject
does not havadministratorrole and the mutant policy permits access if subjectdthministrator
role.

36

Among the set of requests generated by targen, a request with just thetaOLICY
is generated. This will give an effect of deny in the original policy, beipglicable to Policy 2 and
an effect of permit in the mutant policy again being applicable to Policy 2.

Among the Jcute requests, the request being applicable to Policy 2 has theesR{DL-
ICY andadministrator For this request, the resultin both original and mutant policy is permit (being
applicable to Policy 8 in both cases). So the mutant is reported as not killed. aHequest with
only POLICY attribute is not generated.

It has to be noted that jCute generates an optimal set of requests thaedbkienaximum
path or branch coverage. So, even if a request with @@LICY attribute is generated, it may
not be chosen as an optimal request because another request wiQidtbY andadministrator
attributes achieves more coverage. Similarly for other cases also somesteyith attribute values
covering multiple paths may be reported by jCute as an optimal request caosiggmutants to be
missed when doing mutation testing.

We analyzed the effect of each type of mutation operators on the fauttideteapability
in the jcute case. The figure 4.4 shows the graph with the mutation kill peresfiagach of the
operators. The higher the fault detection percentage value, the betterdedt means more mutants
are killed. It is observed that the rule operators have better fault detebtio policy and policy set
operators for almost all the policies.

Itis to be noted that some of the mutants cannot be killed because they cadditalent
mutants [17]. An equivalent mutant is one which is semantically equivalenetoriginal policy.
An example of an equivalent policy mutant is a mutant create by changinglicg pet combining
algorithm from first applicable to permit overrides when there is only otieypim the policy set. In
this case, both the mutant and the original policy are semantically the sameeiraldt is difficult
to automatically detect equivalent mutants and is often done manually [17]mUtetion testing
tool that we use does not detect and remove equivalent mutants.

For the policies default-2 and mod-fedora for which the mutant kill pergentd jcute
is lesser than targen, we measure the combined mutant kill%. To evaluate ifieensatants are
killed in both the cases, we combine the set of requests generated frorthbatbproaches and
measure the mutant kill %. The combined mutation kill % is higher than the individtadlmutant
kill %. This show that the mutants killed by jcute are different than that killed btejcThe graph
is shown figure 4.6.

The figure 4.7 shows the comparison of the number of requests genbyateden and
jeute. It is observed that the number of requests generated by targepeadkent on the number

37

of rules in the policy while the number of requests generated by jcute is thosé equests that
achieve optimal path coverage in the policy program.

Using only the existing policy coverage criteria, the requests generataathyargen and
jeute methods have the good structural coverage. The targen setuektegthough they achieve
100% coverage most of the time, they look at each rule in the policy locally, ahikth coverage
based set of requests will look at all the rules in the policy when formulategehof requests. The
difference between the two request generation techniques can bediestteved by introducing a

new policy coverage measure called gaticy path coverage

4.6 Policy Path Coverage

‘A test adequacy criteria is a predicate that defines what propertiepaoiggam must
be exercised to constitute a through test’ [32]. To define the test adeqtitaria for the policy,
the property of the policy has to be analyzed. The property that we agdawing here is the
path coverage of the various requests. We define the policy path gevereasure based on the
execution path coverage of the policy program.

For a program, the path coverage criteria requires that all the execwibs fsom the
program’s entry to its exit are executed during testing [32]. The cooretipg policy path coverage
can be similarly defined as,

policy path coverage : The policy path coverage criteria requires that all the valid policy evaluatio
paths covering the first rule to the last rule in the policy must be coveredsitdace.

Examples of valid policy paths are, the outermost path in a policy which evaltizte
default case in the policy. The innermost path in a policy is the one for whithtbe last rule in
the policy is true. This means all the previous rules evaluate to false.

The other components in an XACML policy are policy set which can contdinips and
policy sets. In our conversion from policy to program code, we orderpitiicy set components
in the order in which they appear in the policy. Also in XACML, two combining ailjpons, deny
overrides and permit overrides specify the order in which the rules tualte combined. These
algorithms are defined to given importance to rules with an effect of Pernmy)Dehen multiple
rules evaluate to true. We convert these into first applicable format atia qzath coverage is the
same as the case for first applicable.

38

The target-driven requests are not expected to achieve complete patlicgqrverage. An
analysis of the way these requests are generated gives an indicatit of their method, each rule
is treated separately and they use a modified form of combinatorial cevieradnich combinations
of requests with subject, resource and action attributes in every ruleranelated. Among these
large number of generated requests, those causing an increase ifi¢jiesfpactural criteria are
chosen as the final set of requests. These requests do not cdhsid#eraction between the rules

in the policy. So these requests may not achieve complete policy path ceverag

4.7 Threats to Validity

The extend to which the example policies, mutation operators, coverage nagttics-
guests sets truly reflect actual practice has an effect on the extatitéthiy More mutation operators
are needed at a lower level to test other aspects of a policy. The intedidity is threatened by
faults in our implementation of the conversion tool as well as faults in the toolsmbatse for
evaluating our method.

39

<Policy Policyld="M/PolicySet.2" Rul eConbiningAl gld="first-applicable">
<Descri ption>deny access to POLI CY datastream unl ess subj ect
has admi ni strator rol e</Description>
<Tar get >
<Resour ces>
<Resour ce>
<Resour ceMat ch Mat chl d="functi on: stri ng-equal ">
<Attri but eVal ue>PCLI CY</ Attri but eVal ue>
<Resour ceAttri but eDesi gnat or
Attributeld="resource: datastreamid"/>
</ Resour ceMat ch>
</ Resour ce>
</ Resour ces>
</ Tar get >
<Rul e Rul el d="My/PolicySet.2.r.1" Effect="Deny">
<Condi tion Functionld="function: not">
<Apply Functionld="function:string-is-in">
<Attri but eVal ue>adm ni strator</Attri buteVal ue>
<Subj ect Attri but eDesi gnator Attributel d="fedoraRole" />

</ Appl y>
</ Condi ti on>
</ Rul e>
</ Policy>

<Policy Policyld="M/PolicySet.8"
Rul eConbi ni ngAl gl d="first-applicable">
<Tar get >
<Subj ect s>
<Subj ect >
<Subj ect Mat ch Mat chl d="functi on: stri ng-equal ">
<Attri but evVal ue>adm ni strator</Attri buteVal ue>
<Subj ect Attri buteDesi gnator Attributeld="fedoraRole" />
</ Subj ect Mat ch>
</ Subj ect >
</ Subj ect s>
</ Tar get >
<Rul e Rul el d="MyPolicySet.8.r.1" Effect="Pernmit"/>
</ Policy>

Figure 4.5: Example : Original Policy

Combined Mutant Kill%

70

Dtargen kill%
Mjcute kill%
DOcombined kill %

Mutant Kill %

default-2 mod-fedora
Policies

Figure 4.6: Combined Mutation Kill Percentage

Number of targen Vs jcute requests

45
40 4
35+
30 4
s
751 te Requests
10 +
5]
0+

Number of requests
N
S

\el 54 < L W > © » &
S A AR LS Sy
& & & & bé’l’ &5(‘ bq‘& b?’& 6’® \Q/Q

® K
<>
Policies

Figure 4.7: Comparison of Number of Requests

41

Chapter 5

Related Work

In this chapter, we discuss work related to access control models, patidesiso other

techniques that are used for analyzing access control polices.

5.1 Policies, Models and Mechanisms

Any system implementing access control must consider the three abstraf@jns

1. Security Policy: This defines high level rules according to which admeesources and data
within a system will be granted or denied. An example of a security policy asadchool

could be, the TA can assign only internal grades.

2. Security Model: This gives a formal representation of how the aamagsol security policy
is implemented in the system. This can be used to give a proof of the propeaiedgul by
the system. It can be said that the model bridges the gap in abstraction hetoley and
mechanism [27]. An example security model is the mandatory access cawtdel, where
the level of access of an entity depends on the security clearance $sigrhed to it like top

secret, secret,normal.

3. Security Mechanism: This defines the actual system specific functiahgriplement the
controls imposed by the policy and formally stated in the model. An example secitly-

anism is access control lists.

42

5.2 Access control models

Access control models are grouped into three main classes : discretinndgf, manda-
tory model and role based model. Our approach to policy testing can bedajupéé# policies build

on any of these models.

Discretionary policy model

In discretionary access control, a list of authorizations are specifreglaith subject in
the system. The system gives access to a subject by looking up whetltgeet $1as access to an
object in the authorizations specified. Different subjects can haveehtféevels of access to one
object. In this model, the users have the discretion of granting or revokiviteges to other users.
The access matrix model is used for describing discretionary acceisslcdn access matrix, the
rows are the subjects in the system and the columns are resources to whlgjbat's access has to
be controlled. The cell intersecting the row and column will specify the adegsl of the subject

to the resource. This matrix model can be implemented as,

authorization table : Here the authorizations are represented as a table. This is mostly used in
databases by creating a table with columns subject, resource and actidneriey in the

table represents an authorization.

access control list: In an access control list implementation, every column in the access matrix is
a list.(i.e) There is a list for each object in the system specifying the subjattsatie access

to that particular object.

capability list : In a capability list implementation, every row in the access matrix is a list. (i.e)
There is a list for each subject in the system specifying the differenctsiijeat the particular

object has access.

Each implementation has its own advantages and disadvantages and a panticlda
mentation is chosen depending on the needs of the specific application.tidisang policies how-
ever are not secure against attacks from the processes invokegitbydg¢e users that may perform
malicious functions on behalf of the user. An example of this vulnerability iarttoorse program
that is executed by a subject like a high level user that reads from oséige file and writes to
another common file to which a lower level user has read access. Now tHevehuser will be

able to read the contents of the sensitive file.

43

Mandatory policy model

Mandatory policies classify the subjects and objects within the system intoedtitfse-
curity clearance levels. The various mandatory policies based on the tiesy@drihe classification
are,

Secrecy-based mandatory policiesThese control the ‘direct and indirect flow of information to
the purpose of preventing leakages to unauthorized subjects’ [2@}sldan connect to the
system at different levels and the two Bell La Pendula principles to be edtesfe: No-read-
up and No-write-down. Enforcing this restriction ensures that no infooméow exists from

one level to another.

Integrity based mandatory policy The Biba model protects the integrity of a resource. The in-
tegrity classification reflects the trustworthiness of the user in modifying tbenation and
for an objects it refers to the trustworthiness placed on the data provydine lsystem. Ac-
cess control is enforced by the following two principles: No-read-danehno-write-up. En-
forcing this principle safeguards the integrity by ensuring that objectdaatexr level which

are less reliable cannot write to levels above it.

Hence, secrecy policies allow the flow of information from lower to higheresgy classes
while integrity policies allow the flow of information from higher to lower integrityssdas. So to
ensure both secrecy and integrity both the classes must be defined.

Though mandatory policies provide protection against information leak#g®scannot

guarantee complete secrecy because they do not offer protectiorcdnart channel communica
tion.

Mandatory and discretionary polices are combined and the chinese Wwejl pwdel is
defined. This policy model was proposed to enforce the mandatory €ontdiscretionary policy
implementations found in commercial systems. It combines mandatory and disargtpmiicies.
The classification class restricting the information flow here reflects the flovoomation between
conflicting business classes for an individual consultant. Here, sitaekata is not constrained by
its classification but by what data a subject has already accessedghTtus policy has some
limitations of mandatory policies like being rigid in a commercial setting, this is a goachpbe of
applying ‘dynamic separation of duty constraints present in the real vaodchas been taken as a
reference in building subsequent policies and models’ [20].

44

Other work combining discretionary and mandatory access control inaluitherization
based information flow policies. Also, discretionary policies have been reddifir expanding au-
thorizations to support conditions in the policy. Also, authorizations canxteméed with temporal
constraints.

Another aspect of access control is the administrative policies whiclfgpéw is autho-
rized to manage the access rules and decisions. In mandatory, thereenausttitralized authority
specifying the security class of the objects. In the case of discretidhang can be different sub-

jects like, centralized, hierarchical, cooperative, ownership anchtiedized.

Role based policy model

Role based access control(RBAC) [21] specify access based anreves the users of
the system assume. RBAC defines users, roles and permissions. Edshassociated with some
permissions and users can assume different roles. This model is roetidisary and is best suited
in an enterprise environment where the users of the system changerftigouhile the roles remain
the same. RBAC removes the rigidity of MAC and also adds on to the securitAGf Bo it can
be thought of as a policy model combining the advantages of the previowsppvoaches. Another
advantages of using RBAC is that RBAC itself can be used for administratiBBALC policies.

5.3 Policy Specification Langauges

Our policy testing technique can be applied to other policy specification lgeglalso.
Here, we describe some of the common policy specification languages.

5.3.1 Ponder Policy Specification Language

Ponder [3] was developed as part of an academic project at Impeariielg€ in London.
Ponder is a declarative object oriented policy specification languagemiore suitable for access
control enforcement in distributed and network systems. They sepaiate forom implementation

and enable dynamic management of the policies. The key terms are,

Subject : Subiject refers to users or principles or any other automated entity whih manage-
ment responsibility.

Target : Target refers to resources or services in the system.

45

I nst (aut h+ | auth-)policynane
Subj ect donai n- scope- expressi on;
Tar get donmi n- scope- expressi on;
Acti on domai n- scope- expressi on;
[When constrai nt-expression]

Figure 5.1: Ponder Authorization policy syntax
I nst (aut h+) pol i cynane
Subj ect faculty;
Tar get grades;

Action Assign, View,

/1 This policy authorizes faculty to assign and vi ew grades.
Figure 5.2: Ponder Authorization policy example

Domains : Domains provide a way for grouping subjects or targets.
Ponder specifies the following types of polices for expressing acoessot

Authorization policies : These are the access control policies specifying what targets a tsubjec
can access. The policy can express both positive and negative iaatioms. The positive
authorization policies specify what actions a subject can perform whijative authorization
specifies those actions a subject is forbidden from performing. Theeflgl gives the syntax

of the authorization policy.
The university policy can be represented in the figure 5.2 as,
Information filtering policies : These policies place restrictions on the actions performed. They

can be used to provide an additional level of restriction in addition to an dedtion policy

that grants an action.
Delegation polices: This policy enables one user to delegate access rights to another user.

Refrain policies : Refrain policies define the actions that subjects must not perform oet talog
jects even though they may actually be permitted to perform the action. Thejnatar to
negative authorization policies but are enforced on the target ratheothténe subject.

Obligation policies : These policies specify the actions that need to be performed by managers

when certain events occur within the system.

46

Ponder also supports various constraints like basic policy constraimaetagpolicy con-
straint. Basic policy constraints are expressed in terms of a predicate hdsdio evaluate to true
for the policy to apply. Meta-policies are used to specify policies aboutypaha the constraints
are on self management and separation of duty. With all the above fealegge enterprise can
structure its access control policy. Ponder also provides other featuenable the ease of man-
agement of large complex policies. We can specify groups for packagliaigd policies, roles for
semantic grouping of policies with common subjects. Also, they support pdkecgrichies and the
policy types can be specialized and reused. Relationships can alsorimzldsfowing the definition
of roles participating in interactions.

They also enable the specification of management structures which is agitergicy
containing the definition of roles, relationships and other nested managstactures as well.
This structure can be defined in general for a branch of company epartinent of a university.
This can then be instantiated for particular departments or departments.

Testing of ponder using our approach is natural. For a given compasitéep policy can
be converted to a java class. All the different policy types can be dedimaetethods. The interaction

between the methods can be easily captured in the concolic testing approach.

5.3.2 The Platform for Privacy Preferences(P3P)

The Platform for Privacy Preferences (P3P) is a specification frenWbrld Wide Web
Consortium (W3C) for specifying the privacy policies of enterpriseBouigh the specification is
platform independent and can be used across enterprises, it is aneebpurpose specification.
The P3P policies are higher level policies usually published by an enttprigveal their privacy

practices to customers.

5.3.3 Enterprise Privacy Authorization Language(EPAL)

Enterprise Privacy Authorization Language(EPAL) [18] was dewedoat International
Business Machines(IBM). It is submitted for review to W3C. EPAL is mainlgigieed as a privacy
policy interoperability language suitable for exchange between entespnisestructured format.
The language is appropriate for representing the data-handling psaaticepolicies within and
between enterprises that want to have a systematic way of managingypiitégis also useful for
automatic audit control of the accesses to the information and also forcerfaccountability of

privacy practices.

47

<rule id="‘univ-policy’ ruling="*allow’>
<user-category refid=‘faculty’’ />
<dat a-category refid=""‘student-information’ />
<pur pose refid=""*view and-assi gn-grades’’ />
<action refid="*view, assign ' />
<condition refid="*condition’ />
</rul e>

Figure 5.3: EPAL policy example

EPAL defines the attributes as a list of hierarchies of,

data-categories: This specifies the different ways in which the different data collectecrby
enterprise is used depending on the sensitivity of the data. For examplegtheal-record

data is more sensitive than the contact information.

user categories: This categorises the different users of the data. In the above exah®plagdical
record information is used by the doctor and the contact information is usdidebsales
department.

purposes : This specifies the purpose for which the categorized data is used bwatégodzed
user. The doctor will use the medical record for purpose of schedtédstg and the sales

department will use the contact information for shipping purposes.

They also define actions, obligations and conditions. Actions specify hodatags used,
obligations specify what must be satisfied in the environment and conditiosteevaluate to true in
the context for the rule to be applicable. An EPAL policy is a list of rules treabadered according
to descending precedence.

The figure 5.2 gives the example for an EPAL policy

A study comparing XACML and EPAL concludes that EPAL uses a lot of XACand
that EPAL is a subset of XACML except for some specific features. ikstiance, EPAL and
XACML share the same framework of a policy made up of a series of rulesulédis applicable
only if the condition in it evaluates to true and the effect of the rule is returAksi, both languages

share the same framework for the requests: a request is made up ofcti@olté attribute values.

48

5.4 Policy Testing Techniques

Martin et al [15] have developed a systematic method for testing accesslquulicies.
Theirs is the first work on defining and measuring structural coverbgecess control policies for
testing. They have developed a coverage measurement tool for mgasolity coverage given a
set of XACML policies and set of requests. Their coverage criteriasedan the structure of the
policies and is similar to statement coverage in a program. The requesatien@rocess is random
and the requests are got by setting bits in a vector of policy attribute values.tBough the random
request generation technique does not repeat requests that ady glemerated, this method has the
disadvantage of using the random test input selection strategy. Theytaskto greedily reduce
requests from the generated set of requests based on the coveragi@eneThey also perform
mutation testing to analyze the fault detection capability of the reduced sejudsts. [13] uses
combinatorial coverage and considers the policy as a hierarchical itteeach rule representing a
leaf in the tree. Here, a test case is generated by solving constraints iatithef phe rule from the
root of the tree. Even though this method achieves better coverage tidomraequest generation,
this request generation technique looks at each rule in the policy indilidudy and the entire
effect of the sequence of constraints in the policy is not considerexirlapproach, the ordering of
the rules in the entire policy path is considered and the constraints alonghhereaolved. Hence,
our method provides a better measure of the coverage.

Another area where access control policy testing is done is firewallscgirgenetwork
resources. Al-Shaer et al [5] propose automated testing of firewallsresfect to their inter-
nal implementation and security policies. They propose a novel firewall geahnique using
policy-based segmentation of the traffic address space, which can im#iligdapt the test traffic
generation to target potential erroneous regions in the firewall inpgesphough this method is
efficient, it is applicable only to firewall polices because they have made stingalependent on
the structure of the access control policy in a firewall. However, the il@aalyzing the logs of
packets/request cannot be applied as such to any general pucgess aontrol system.

5.5 Formal Policy Analysis

A complementary approach to access control policy testing is to converbtioy o a
logical representation and use formal analysis techniques for verificatio analysis. Hughes and
Bultan [9] translated XACML policies to their logical representation in the Alloyglaage and

49

checked their properties using the Alloy Analyzer. Using their translatoitiza Alloy analyzer, it
is possible to check a policy which is implemented as a combination of sub-paticestty repro-
duces the properties of the sub policies. This approach, though m®dood results does not scale
well with increase in the size of the policy. Zhang et al [31] propose a arésin for evaluating
XACML polices through model checking. They evaluate whether the polgiieslegitimate users
enough permissions to reach their goals and also to check whether theppheient intruders
from reaching their malicious goals. However, the access control pdieesto be translated to
the RW language to apply their techniques. The limitations of these aboveaappsois that they
do not treat all the features of XACML. Also, a predefined set of prips about the policy should
be given which, does not exist in practice. Also, this analysis can beaunaetable when there
are more attributes in the policy. The advantage of using testing is that ntatran$o a separate
domain is needed to check the policies. Also, all features of XACML candiede

Margrave [6] is an efficient tool that enables checking for semantisistencies in the
policy and returns counter examples representing cases which anegcaiosation of properties of
the policy. Change impact analysis is done between two policies to determinepetjes of the
policy. They construct a multi-terminal binary decision diagram to reptgbemnules in the policy.
However this tool does not support all features of XACML.

We have defined a framework for testing access control policies byedimy them into
programs and using a restricted form of path coverage criteria. Otlfterase applications like
database applications and grammar-based software also have spieiiiz for their testing. Hen-
nessy and Power [8] propose a strategy for the construction of tiéss$ $or grammar based soft-
ware. The reduction criterion they use is based on the rule coverage tfsthsuites. They an-
alyze if the code coverage and fault detection capability are reducedideof the reduced test
suite. Suarez-Cabal and Tuya [26] have developed a tool for thenated testing of SQL queries.
They define a coverage tree for the different condition branches iS8@le SELECT statement.
Kapfhammer and Soffa [12] define a framework for testing databaserdepplications and the
control flow between various entities in such an application. They defineshadequacy criteria
for the database application based on the database interaction flow g@ping the interaction

between the various entities.

50

Chapter 6

Conclusions and Future Work

Policy testing is a practical technique for the quality assurance of accesslqmlicies.
In this thesis, we propose a method that ysa&y programdor testing access control policies. An
automated tool has been developed based on this method. Given a palitgolatan generate an
optimal number of requests for testing the policy. The advantage of owoagpis that, we use
existing software testing techniques that are being used for testing diffesétware applications.
Also, our approach is general and can be applied for testing most reéal lplicy specifications
even in other languages. We have automated the entire testing procemsy shanges made to
the policy can be easily tested. This is particularly useful in an enterprigeoement where the
policies are large and are also revised over a period of time.

We evaluate our method by testing with ten XACML policies. The test casesajeddy
our method achieve the complete XACML policy structural coverage whicleisxtsting adequacy
criteria for testing an XACML policy. We perform mutation testing on the policg tre generated
request set and compare our results with the other existing techniquesutant kill percentage is
as good as or better than existing techniques in most of the cases. Alsestitts mdicate that the
mutants created by the rule operator have more kill percentage than theateaithy other operators.
This shows that the use of the policy program for generating test caabkeito capture fine errors
created by mutants. Based on this, we have motivated the definition of a polieyage criteria
based on our approach to policy testing. This criteria is expected to bgstrtran the existing
policy structural coverage. The stronger the coverage criteria, titer vgll be the quality of the
test cases generated. In future, a coverage tool can be devekgetidn this criteria. This tool can
act as a stronger test adequacy measure for policy testing.

In future, program analysis on the policy program can be done to semi@néinalyze the

51

policies. Also, change impact analysis can be done between two policyapneg The difference
in the set of test cases returned between a policy program and a dhaolgg/ program can be
analyzed. Also, we can perform mutation testing at the program level@ngare the results. For
this, a new set of operators should be defined at the program leveleugowit should be ensured
that the a program mutant maps to a policy mutant. Tools available for performitation of a

program can be used to create other different types of mutants ancaieg @analyzed. It would be
interesting to analyze if the mutation operators at the program level correptigsent the common

user errors done at the policy level.

52

Bibliography

(1]

(2]

(3]

(4]

R. J. Anderson. A security policy model for clinical infoation systems. IiProc. IEEE Symposium
on Security and Privagypages 30—43, 1996.

C. Bussler and S. Jablonski. Policy resolution for warkflmanagement systems. Broc. Hawaii
International Conference on System Sciedaui, Hawaii, January 1995.

N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Pondsicy specification language. Iroc.
International Workshop on Policies for Distributed Sysseand Networkspages 18-38, 2001.

R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints onttéata selection: Help for the practicing
programmerlEEE Computer11(4):34—41, April 1978.

[5] A. El-Atawy, K. brahim, H.Hamed, and E. Al-Shaer. Polgggmentation for intelligent firewall testing.

(6]

(7]

(8]

In 1st IEEE ICNP Workshop on Secure Network Protocols, 2008S@¢) pages 67—72, Nov 2005.

K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. Cs@hantz. Verification and change-impact
analysis of access-control policies. Pnoc. 27th International Conference on Software Engirneggri
pages 196-205, 2005.

R. W. Floyd. Assigning meanings to programs. In J. T. Sahwy editor,Mathematical Aspects of
Computer Sciengeolume 19 ofProceedings of Symposia in Applied Mathematiemyes 19-32, Prov-
idence, Rhode Island, 1967. American Mathematical Saciety

M. Hennessy and J. F. Power. An analysis of rule coverage eriterion in generating minimal test
suites for grammar-based software.Rroc. 20th IEEE/ACM International Conference on Automated
Software Engineeringpages 104-113, November 2005.

[9] G.Hughes and T. Bultan. Automated verification of acaas¥rol policies. Technical Report 2004-22,

(10]

Department of Computer Science, University of Califoril@anta Barbara, 2004.

S. Jajodia, P. Samarati, and V. S. Subrahmanian. A#&b¢anguage for expressing authorizations. In
Proc. 1997 IEEE Symposium on Security and Privpages 31-42, 1997.

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

53

S. Jajodia, P. Samarati, V. S. Subrahmanian, and Eiride unified framework for enforcing multiple
access control policies. IRroc. ACM SIGMOD International Conference on ManagemeriDats,
pages 474-485, 1997.

G. M. Kapfhammer and M. L. Soffa. A family of test adequaxiteria for database-driven applica-
tions. InProc. 9th European Software Engineering Conference hefdlyowith 11th ACM SIGSOFT
International Symposium on Foundations of Software Ereging, pages 98-107, 2003.

E. Martin and T. Xie. Automated mutation testing of asseontrol policies. Technical Report TR-
2006-12, Department of Computer Science, North CaroliageStniversity, Raleigh, North Carolina,
2006.

E. Martin and T. Xie. Automated test generation for asceontrol policies. lI'Supplemental Proceed-
ings of the 17th IEEE International Conference on SoftwaeéiaRility Engineering (ISSRE 2006)
November 2006.

E. Martin, T. Xie, and T. Yu. Defining and measuring pglaoverage in testing access control policies.
In Proc. 8th International Conference on Information and Caminations Security (ICICS 2006)
pages 139-158, December 2006.

OASIS. OASIS eXtensible Access Control Markup Langua@ACML). http:// www.
oasi s- open. org/ conmi ttees/ xacml /, 2005.

J. Offutt and R. H. Untch. Mutation 2000: Uniting theflwogonal. InMutation 2000: Mutation Testing
in the Twentieth and the Twenty First Centuripages 45-55, October 2000.

P.Ashley, S.Hada, G.Karjoth, C.Powers, and M.SchuriEaterprise Privacy Authorization Language
(EPAL). ht t p: / / www. w3. or g/ Submi ssi on/ EPAL/ , 2003.

T. Ryutov and C. Neuman. Representation and evaluaticecurity policies for distributed system
services. IrProc. DARPA Information Survivability Conference and Esifion, January 2000.

P. Samarati and S. D. C. di Vimercati. Access controlidRes, models, and mechanisms. ROSAD
'00: Revised versions of lectures given during the IFIP W@Gltternational School on Foundations of
Security Analysis and Design on Foundations of Securityysismand Designpages 137-196, London,
UK, 2001. Springer-Verlag.

R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. YourRale-based access control modd#EE
Computer 29(2):38-47, 1996.

A. Schaad, J. Mo, and e Jacob. The role-based accesslceygtem of a european bank: A case study
and discussion, 2001.

54

[23] K. Sen. Scalable automated methods for dynamic proguaalysis. InPhD Dissertation2006.

[24] K. Sen and G. Agha. Cute and jcute : Concolic unit teséing explicit path model-checking tools.
In Proc. 18th International Conference on Computer Aidedfiéaiion pages 419-423, 2006. (Tool
Paper).

[25] E. Sirer and K. Wang. An access control language for veghises. InProc. 7th ACM Symposium on
Access Control Models and Technologig®nterey, CA, June 2002.

[26] M. J. Suarez-Cabal and J. Tuya. Using an SQL coveragsumement for testing database applications.
In Proc. ACM SIGSOFT International Symposium on FoundatidS®fiware Engineeringpages 253—
262, 2004.

[27] V.Hu, D.Ferraiolo, and R. Kuhn. Assessment of accessrobsystems. NISTIR, Sept. 2006.

[28] A. Westerinen, J. Schnizlein, J. Strassner, M. SchegyIB. Quinn, S. Herzog, A. Huynh, M. Carlson,
J. Perry, and S. Waldbusser. Terminology for policy-basadagement. RFC 3198 (Informational),
Nov. 2001.

[29] A. Wool. A quantitative study of firewall configuratiomrers. Computey 37(6):62—-67, 2004.

[30] R. Yavatkar, D. Pendarakis, and R. Guerin. A framewarkgdolicy-based admission control. RFC
2753 (Informational), Jan. 2000.

[31] N. Zhang, M. Ryan, and D. P. Guelev. Evaluating accessrobpolicies through model checking. In
Proc. 8th International Conference on Information Seguyfiiages 446—460, September 2005.

[32] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit tesverage and adequad¥CM Comput. Sury.
29(4):366-427, 1997.

Appendix

55

Appendix A

Fedora XACML Policy Example

56

57

<Pol i cySet PolicySetld="M/PolicySet"
Pol i cyConbi ni ngAl gl d="first-applicable">
<Target/>
<Policy Policyld="M/PolicySet.0" Rul eConbini ngAl gl d="deny-overrides">
<Descri pti on>deny any access if client ip address is not 127.0.0.1
</ Descri ption>
<Tar get >
<Acti ons>
<Action> urn: fedora: nanmes: fedora: 2. 1: acti on: api - m </ Acti on>
</ Acti ons>
</ Tar get >

<Rul e Rul el d="M/PolicySet.O0.r.1" Effect="Deny">
<Condi tion Functionld="function: not">
<AttributeVal ue>127.0.0. 1</ Attri but eVal ue>
</ Condi ti on>
</ Rul e>
<Rul e Rul el d="MyPolicySet.O0.r.2" Effect="Deny">
<Descri pti on>deny any access to objects or data streans,
which are either inactive or del eted, unl ess subject has
adm ni strator rol e</Description>
<Tar get > <Resour ces>
<Resour ce>l nacti ve_obj ect </ Resour ce>
<Resour ce>Del et ed_obj ect </ Resour ce>
<Resour ce>| nacti ve_dat ast r eanx/ Resour ce>
<Resour ce>Del et ed_dat ast r eanx/ Resour ce>
</ Resour ces> </ Target >
<Condi tion Functionl d="function: not">
<AttributeVal ue >admi ni strator</AttributeVal ue></ Condi ti on>
</ Rul e>
<Rul e Rul el d="M/PolicySet.0.r.3" Effect="Permt">
<Tar get ><Subj ect >speci al _user </ Subj ect >
<Resour ce>Del et ed_dat ast r eanx/ Resour ce></ Tar get >
</ Rul e>
</ Policy>
</ Pol i cySet >

Figure A.1: Fedora example XACML policy

