
ABSTRACT

SINGANALLUR VENKATARAMAN, SRINIVASAN. Enumerating 2 × 2 × n Solid Partitions and
Counting Linear Extensions. (Under the direction of Professor Carla D. Savage).

The problem of enumerating integer partitions in three dimensions (solid partitions) is an unsolved

problem in combinatorics. Generating functions are one of the most popular analytical tools used

in enumerating partitions. Both ordinary partitions and plane partitions have a closed form for

the generating function that enumerates them. However, there is no known closed form for the

generating function of solid partitions, even for special cases. Our contribution, is the derivation of

an explicit recurrence for the generating function of a special family of solid partitions, bounded by

the 2× 2× n recursive structure.

Integer partitions can be represented as integer solutions to a set of linear inequalities. In this

thesis, we use this representation for 2 × 2 × n solid partitions, and apply a set of rules called the

“digraph methods”, to derive a recurrence for the generating function. We implement this recurrence

in Maple, do some optimizations and obtain the generating function for a few values of n. We also

count the linear extensions of the 2× 2× n poset from this generating function, using the theory of

P -partitions.

In recent years many methods have evolved for finding integer solutions to linear inequalities.

For inequalities of the form, sa ≥ sb and sa > sb, which can be modeled as directed graphs, the

“digraph methods” can be used. We are able to enumerate 2 × 2 × n solid partitions, which is a

hard problem, using the digraph method, thereby demonstrating the power of this method. We also

compare the digraph approach to a few other methods to enumerate 2× 2× n solid partitions.

Enumerating 2× 2× n Solid Partitions and Counting Linear Extensions

by
Srinivasan Singanallur Venkataraman

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fullfillment of the
requirements for the Degree of

Master of Science

Computer Science

Raleigh, North Carolina

2008

APPROVED BY:

Dr. Steffen Heber Dr. Robert D. Rodman

Dr. Carla D. Savage
Chair of Advisory Committee

DEDICATION

To my parents, sister and close friends.

ii

BIOGRAPHY

Srinivasan was born in Chennai, India on April 12th 1985. He earned his Bachelors degree in

Computer Science and Engineering in 2006 from PSG College of Technology, Coimbatore, India.

He is currently doing his masters in Computer Science at North Carolina State University, Raleigh,

USA.

iii

ACKNOWLEDGMENTS

I would like to thank my adviser, Dr. Carla Savage for her invaluable guidance in the making of

this thesis. Her constant motivation, encouragement and valuable feedback have greatly helped me

in the completion of this thesis. During the course of this work , she has imparted some priceless

lessons, which I will always carry with me for the rest of my life. Her witty criticisms on my writing

made our meetings livelier and brought out my mistakes in an interesting way. I would like to thank

Dr. Robert Rodman and Dr. Steffen Heber for agreeing to be in my committee, for their support

and the enthusiasm they showed in my work.

I would like to thank Dr. Mitch Harris for his interest in my work and his helpful correspondences

over e-mail regarding counting linear extensions of the 2 × 2 × n poset. I would like to thank Dr.

Frank Ruskey, University of Victoria, Canada, for teaching me about posets and giving some valuable

suggestions during the early stages of my thesis. I would also like to thank Prashanth Iyer for working

with me and giving many valuable ideas to improve my work. I would also like to thank my friends

for proofreading my thesis. Finally, I am very grateful to my parents for their blessings and a special

thanks to my sister who is always looking out for me, and to whom I credit many of the great things

that have happened to me.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

1 Introduction . 1
1.1 Organization . 4

2 Background definitions . 5
2.1 Partition theory . 5

2.1.1 Partitions and compositions . 5
2.2 Generating functions . 6

2.2.1 Generating functions . 6
2.2.2 The generating function of partitions and compositions 7

2.3 Sequences defined by inequalities . 8
2.3.1 Partitions and compositions as sequences defined by inequalities 8

2.4 Poset theory . 9
2.4.1 Partially ordered sets . 9
2.4.2 Hasse diagram . 10
2.4.3 Linear extensions . 11
2.4.4 Order ideal . 11
2.4.5 Chain . 11
2.4.6 Representing posets as digraphs . 11

2.5 Theory of P -partitions . 12
2.5.1 Poset labelling . 12
2.5.2 P -Partitions . 12
2.5.3 Generating function of P -partitions . 13

2.6 Informal definitions of #P and #P-complete classes 13
2.6.1 Formal definitions of #P and #P-complete 14

3 Background of 2× 2× n solid partitions . 15
3.1 The generating function for solid partitions . 15

3.1.1 Plane partitions . 15
3.1.2 Solid partitions . 16
3.1.3 Solid partitions as a special case of P -partitions 17

3.2 Counting linear extensions . 17
3.2.1 Linear extensions and P -partitions . 18
3.2.2 Counting linear extensions for posets represented by plane partitions and solid

partitions . 19
3.3 Our Problem . 20

4 The main technique . 21
4.1 Five guidelines . 21
4.2 Digraph methods . 22
4.3 Applicability of digraph rules to 2× 2× n solid partitions 26

5 Derivation of recurrence . 28
5.1 Steps for decomposing Gn using digraph rules . 28
5.2 Derivation of a recurrence for the generating function 58
5.3 Base Case . 74

6 Automation of the recurrence . 76

v

6.1 Maple implementation . 76
6.2 Optimizations . 78

6.2.1 Memoization . 78
6.2.2 Reduction of variables . 79
6.2.3 Faster computation for `(P2×2×n) . 79

6.3 Remarks . 81

7 Other approaches to enumerate 2× 2× n solid partitions 82
7.1 The Omega package . 82
7.2 LattE . 83

7.2.1 The package . 83
7.2.2 Computing the generating function of 2× 2× n solid partitions using LattE . 84

7.3 The package RotaStanley . 85
7.3.1 The method . 85
7.3.2 Computing the generating function of 2 × 2 × n solid partitions using the

package RotaStanley . 86
7.4 The Combinatorial Object Server (COS) . 86

7.4.1 The package . 86
7.4.2 Counting linear extensions of the 2× 2× n poset using the COS 87

7.5 The Posets package . 87
7.5.1 The package . 87
7.5.2 Using the Posets package on the 2× 2× n poset 88

7.6 Remarks . 89

8 Further observations and future work . 92
8.1 Further observations . 92
8.2 Conclusion . 94
8.3 Future Work . 94

Appendices . 101
Appendix A. Program without optimization . 102
Appendix B. Program with memoization . 105
Appendix C. Program with memoization and reduced variable optimization 108
Appendix D. Program with optimization for faster computation of linear extensions . . . 111

vi

LIST OF TABLES

Table 1.1 Linear extensions of the 2× 2× n poset from OEIS 3

Table 6.1 Computing the univariate generating function of 2 × 2 × n solid partitions
using the program in Appendix A . 77

Table 6.2 Computing the univariate generating function of 2 × 2 × n solid partitions
using the program in Appendix B . 78

Table 6.3 Computing the univariate generating function of 2 × 2 × n solid partitions
using the program in Appendix C . 80

Table 6.4 Computation of `(P2×2×n) using the program in Appendix D 81

Table 7.1 Computation of the generating function of 2 × 2 × n solid partitions using
LattE . 84

Table 7.2 Computation of generating function of 2 × 2 × n solid partitions using the
package RotaStanley . 86

Table 7.3 Using the Combinatorial Object Server to count the linear extensions of the
2× 2× n poset . 87

Table 7.4 Computation of W -polynomial of the 2× 2× n poset using posets 89
Table 7.5 Values of number of linear extensions of the 2× 2× n poset computed using

posets . 90

vii

LIST OF FIGURES

Figure 1.1 The 2× 2× n family . 1
Figure 1.2 The 2× n family . 2

Figure 2.1 Hasse diagram for a poset . 10
Figure 2.2 A directed acyclic graph G . 12

Figure 3.1 (a) A poset of complete order (b) A poset with no order 18

Figure 4.1 G along with the incoming edge forming G′ 23
Figure 4.2 (a) Normal edge representing s1 ≥ s2 (b) Strict edge representing s3 > s4 . 24
Figure 4.3 G′ is the graph G along with the independent vertex vn+1 24
Figure 4.4 G′ has the redundant edge removed . 25
Figure 4.5 First Inclusion-exclusion principle . 26
Figure 4.6 Second Inclusion-exclusion principle . 27
Figure 4.7 The digraph representing 2× 2× n solid partitions 27

Figure 5.1 Step 1 of Decomposition . 29
Figure 5.2 Step 2 of Decomposition . 30
Figure 5.3 Step 3 of Decomposition . 31
Figure 5.4 The Graph Dn . 32
Figure 5.5 The Graph Dn with the redundant edge . 33
Figure 5.6 Step 4 of Decomposition . 34
Figure 5.7 Step 5 of Decomposition . 36
Figure 5.8 Step 6 of Decomposition . 37
Figure 5.9 Step 7 of Decomposition . 38
Figure 5.10 Step 8 of Decomposition . 40
Figure 5.11 Step 9 of Decomposition . 41
Figure 5.12 Step 10 of Decomposition . 43
Figure 5.13 Step 11 of Decomposition . 44
Figure 5.14 Step 12 of Decomposition . 45
Figure 5.15 The Graph D′n . 46
Figure 5.16 The Graph D′n with the redundant edge . 47
Figure 5.17 Step 13 of Decomposition . 48
Figure 5.18 Step 14 of Decomposition . 50
Figure 5.19 Step 15 of Decomposition . 51
Figure 5.20 Step 16 of Decomposition . 52
Figure 5.21 Step 17 of Decomposition . 54
Figure 5.22 Step 18 of Decomposition . 55
Figure 5.23 Step 19 of Decomposition . 57
Figure 5.24 Breaking down Rn . 59
Figure 5.25 Breaking down Sn . 61
Figure 5.26 Breaking down K3

n . 63
Figure 5.27 Breaking down K5

n . 64
Figure 5.28 Breaking down K6

n . 64
Figure 5.29 Breaking down K7

n . 65
Figure 5.30 Breaking down K9

n . 65
Figure 5.31 Breaking down K10

n . 66
Figure 5.32 Derivation of R′n from D′n . 69
Figure 5.33 Derivation of S′n from D′n . 69
Figure 5.34 Breaking down K

′3
n . 70

Figure 5.35 Breaking down K
′5
n . 71

viii

Figure 5.36 Breaking down K
′6
n . 71

Figure 5.37 Breaking down K
′7
n . 72

Figure 5.38 Breaking down K
′9
n . 73

Figure 5.39 Breaking down K
′10
n . 73

Figure 5.40 The base graph - 2× 2× 1 . 75
Figure 5.41 H1 and H ′1 . 75

Figure 6.1 The first procedure from the program in Appendix A 76

Figure 8.1 Splitting Gn one way . 95
Figure 8.2 Another splitting of Gn . 96

ix

Chapter 1

Introduction

In this thesis, we study counting problems that are associated with the 2× 2× n digraph shown in

Figure 1.1. Consider the feasible labellings of this digraph, that is, labellings of the vertices with

non-negative integers such that, if there is an edge from y to z, the integer assigned to y is greater

than or equal to the integer assigned to z. It is evident that there are infinitely many such feasible

Figure 1.1: The 2× 2× n family

1

labellings. On the other hand, if these labellings are grouped according to the sum of the labels,

then the number of feasible labellings that sum to a particular value, m, is finite. Each labelling that

sums to m is called a 2×2×n solid partition of m. To represent the number of such labellings we use

a tool called generating function. The generating function, G2×2×n(q), for 2× 2×n solid partitions,

is a single variable power series in q, in which the coefficient of qm is the number of 2× 2× n solid

partitions of m.

Figure 1.2: The 2× n family

In contrast, consider the 2×n digraph shown in Figure 1.2. The feasible labellings of this digraph

that sum to m are called 2 × n plane partitions of m. The generating function, G2×n(q), of 2 × n

plane partitions is a power series where the coefficient of qm is the number of 2× n plane partitions

of m. Interestingly, G2×n(q) has a closed form representation given by:

G2×n(q) =
1

(1− q)(1− q2)2(1− q3)
.

The advantage of the closed form is that we can expand this rational function as a power series of q

and look up the number of 2 × n plane partitions of any integer m ≥ 0 from the coefficient of qm.

Even p × n plane partitions have a closed form for the generating function, which will be shown in

Section 3.1.1.

However, for the general case of h×p×n solid partitions, a closed form for the generating function

2

is not known. It is not known even for special cases like 3× 2× n solid partitions or 3× 3× n solid

partitions. In this thesis, we will derive an explicit recurrence for the generating function of one such

special case: 2× 2× n solid partitions.

Going back to the digraph in Figure 1.1, consider the vertices of the digraph as a set and the edges

as relations among the elements of the set. This set along with the relations is called the 2× 2× n

partially ordered set (poset). A linear extension of this poset is an ordering of all the elements of the

set such that y comes earlier than z, if there is an edge from y to z. The number of linear extensions,

`(P), of any poset P can be obtained from the generating function of the corresponding digraph,

through the theory of P -partitions, which will be explained in Section 3.2.1.

The number of linear extensions, `(P2×n), of the 2× n poset, thus obtained from the generating

function of 2× n plane partitions, has a nice formula given by:

`(P2×n) =
(2n)!

n!(n+ 1)!
.

A formula for the number of linear extensions, `(Pp×n), of the p × n poset can also be got in the

same way which will be shown in Section 3.2.2. But for solid partitions, neither the closed form

representation for the generating function, nor a compact formula to count the linear extensions of

the corresponding poset is known so far. The other aim in this thesis is to compute the number

of linear extensions, `(P2×2×n), of the 2 × 2 × n poset from the generating function of 2 × 2 × n

solid partitions. There have been past efforts in computing `(P2×2×n) and values up to n = 6 were

computed and recorded in the Online Encyclopedia of Integer Sequences (OEIS) [1] at the time we

began this work. These values are shown in Table 1.1.

To derive a recurrence for the generating function of 2 × 2 × n solid partitions, we will make

use of a set of rules called the “digraph methods” [2] that will be discussed in Section 4.2. These

digraph methods are used to find integer solutions to sets of linear inequalities of a particular type.

We are able to represent 2× 2× n solid partitions as the set of solutions to such a system of linear

Table 1.1: Linear extensions of the 2× 2× n poset from OEIS
n Linear extensions of the 2× 2× n poset
1 2
2 48
3 2452
4 183958
5 17454844
6 1941406508

3

inequalities.

Enumerating solid partitions is an example of an enumeration problem where the object can be

defined by diophantine equations, that is, equations which allow only integer solutions. In recent

years, there have been a number of methods that have been developed to find the generating function

of integers defined by such diophantine equations. The digraph methods focus on inequalities that

are of the form sa ≥ sb and sa > sb. There are a number of other methods to find integer solutions

to such inequalities. We study a few such approaches and use them to enumerate 2 × 2 × n solid

partitions. We compare these methods with our approach to understand their advantages and

limitations.

1.1 Organization

In Chapter 2, we define some of the basic terminologies that will be used in the rest of this thesis.

Chapter 3, defines the problem being solved and discusses the motivation behind solving it. In

Chapter 4, we discuss the main technique that will be used to solve our problem. Chapter 5,

illustrates our solution to derive a recurrence for the the generating function of 2 × 2 × n solid

partitions using the digraph methods. In Chapter 6, we discuss the Maple implementation of the

recurrence that we derived and some of the optimizations that we did. Chapter 7, discusses some

other approaches to enumerate 2× 2× n solid partitions and presents a comparative study. Finally

in Chapter 8 we record some interesting observations about 2 × 2 × n solid partitions and discuss

possible future direction to this work.

4

Chapter 2

Background definitions

In this chapter, definitions of some of the basic terms that will be used in the rest of the thesis, are

given.

2.1 Partition theory

2.1.1 Partitions and compositions

A composition of an integer m is a sequence of positive integers s1, s2, s3, ... where s1+s2+s3+... = m.

Here the order of the sequence is important. For example, the compositions of 4 are

(4), (1, 3), (3, 1), (2, 2), (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 1, 1, 1). (2.1)

On the other hand, a composition of an integer m into n non-negative parts is defined as a sequence

of non-negative integers s1, s2, s3, ..., sn where s1 + s2 + s3 + ... + sn = m. Again, the order of the

sequence is important. For example, there are 5 compositions of 4 into 2 non-negative parts:

(4, 0), (0, 4), (1, 3), (3, 1), (2, 2). (2.2)

A partition of an integerm is a sequence of positive integers s1, s2, s3, ... where s1+s2+s3+... = m,

but here the order of the sequence is not important, so we usually assume a non-increasing order i.e.

5

s1 ≥ s2 ≥ s3 ≥ For example, there are 5 partitions of the integer 4

(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1). (2.3)

A partition of an integer m into n non-negative parts is defined as a sequence of non-negative integers

s1, s2, ..., sn where s1 + s2 + ...+ sn = m and s1 ≥ s2 ≥ ... ≥ sn. For example, there are 3 partitions

of the integer 4 into 2 non-negative parts:

(4, 0), (3, 1), (2, 2). (2.4)

2.2 Generating functions

2.2.1 Generating functions

A generating function is a power series whose coefficients encode a sequence. Suppose we have a

sequence of integers s0, s1, s2, s3, ..., then the generating function of this sequence, G(q), is defined

as

G(q) = s0 + s1q + s2q
2 + s3q

3... =
∞∑
n=0

snq
n.

This representation of the sequence can be very helpful when a closed form representation of G(q)

is known. For example, for the sequence 1, 1, 1, ..., the generating function is

1 + q + q2 + q3 + ... =
1

(1− q)
.

A closed form can sometimes be derived from the recurrence that defines the sequence, if such a

recurrence is known. Some of the advantages of having the generating function are:

• It gives a compact representation, provided by the closed form (if there is one).

• It may lead to a direct formula for the elements of the sequence.

• It can be used to prove two families of sets have the same size by proving the generating

functions are equal.

• It can be combined in several ways with other generating functions to provide solutions to

various problems associated with sequences.

6

• It can provide greater insight into an enumeration problem.

• It can sometimes be used to get the asymptotic estimates via complex analysis.

2.2.2 The generating function of partitions and compositions

The generating function of compositions into n positive parts is given by

qn

(1− q)n
. (2.5)

The coefficient of qm gives the number of compositions of m into n positive parts. The generating

function of compositions into n non-negative parts is given by

1
(1− q)n

. (2.6)

The coefficient of qm gives the number of compositions of m into n non-negative parts. For example,

the number of compositions of 4 into 2 non-negative parts is given by the coefficient of q4 in the

expansion of
1

(1− q)2
= 1 + 2q + 3q2 + 4q3 + 5q4 + ...

which is 5 as shown in Example 2.2.

The generating function of partitions into at most n parts is given by

1
(1− q)(1− q2)(1− q3)...(1− qn)

. (2.7)

The coefficient of qm gives the number of partitions of m into at most n parts. This is also the

generating function of partitions into n non-negative parts. For example, the number of partitions

of 4 into 2 non-negative parts is given by the coefficient of q4 in the expansion of

1
(1− q)(1− q2)

= 1 + q + 2q2 + 2q3 + 3q4 + ...

which is 3 as shown in Example 2.4.

7

2.3 Sequences defined by inequalities

Let C be a set of constraints of the form

C : ci,0 + ci,1s1 + ci,2s2 + ci,3s3 + ...+ ci,nsn ≥ 0, 1 ≤ i ≤ r

where the cij ’s are integers. Let SC be the set of non-negative integer solutions

s = (s1, s2, ..., sn) to the given constraints C. The weight of s is defined as s1 + s2 + ...+ sn and each

of the si’s are the parts of s. We are interested in obtaining the multivariate generating function of

the set of sequences SC given by

G(x1, x2, x3, ..., xn) =
∑
s∈SC

xs11 x
s2
2 x

s3
3 ...x

sn
n . (2.8)

Instead of G(x1, x2, ..., xn), if we instead compute G(qx1, qx2, ..., qxn), then, in the resulting polyno-

mial, the coefficient of qm is a “list” of solutions of weight m and if we compute

G(q, q, q, ..., q), the coefficient of qm in this polynomial is the number of solutions of weight m [3].

2.3.1 Partitions and compositions as sequences defined by inequalities

For the set of integer sequences SC to represent compositions, the set of constraints C would be

s1 ≥ 0

s2 ≥ 0

...

sn ≥ 0.

The integer solutions of weight m are the compositions of m into n non-negative parts. The multi-

variate generating function would be given by

∑
s1≥0,...,sn≥0

xs11 ...x
sn
n = (

∞∑
s1=0

xs11)...(
∞∑

sn=0

xsn
n) =

1
1− x1

...
1

1− xn
.

On substituting all xi’s with q, we get the univariate or “counting” generating function of composi-

tions given by Equation 2.6.

8

For SC to represent partitions, C would be

s1 ≥ s2

s2 ≥ s3

...

sn−1 ≥ sn

sn ≥ 0.

All integer solutions that sum to m are the partitions of m into n non-negative parts. The multi-

variate generating function would be given by

∑
s1≥s2≥s3≥...≥sn≥0

xs11 ...x
sn
n =

∑
s1≥s2≥s3≥...≥sn≥0

xs1−s21 (x1x2)s2−s3(x1x2x3)s3−s4 ...(x1x2x3...xn−1)sn−1−sn(x1x2x3...xn)sn

=

(∞∑
s1−s2=0

xs1−s21

)(∞∑
s2−s3=0

(x1x2)s2−s3
)
...

(∞∑
sn=0

(x1x2...xn)sn

)

=
1

(1− x1)(1− x1x2)...(1− x1x2x3...xn)
.

Again on substituting all xi’s with q, we get the univariate generating function of partitions given

by Equation 2.7.

2.4 Poset theory

2.4.1 Partially ordered sets

A partially ordered set P (poset) as defined in [4] is a set X and a binary relation ≤P on X that

satisfies the following axioms:

1. For all x ∈ X, x ≤P x (reflexivity)

2. For x, y ∈ X, if x ≤P y and y ≤P x , then x = y (antisymmetry)

3. For x, y, z ∈ X, if x ≤P y and y ≤P z, then x ≤P z (transitivity).

9

Figure 2.1: Hasse diagram for a poset

Two elements x, y ∈ X are comparable in P if either x ≤P y or y ≤P x, otherwise they are

incomparable . For elements x, y ∈ X, we say that x covers y iff y <P x and there is no z ∈ X such

that y <P z <P x (where y <P x implies that y ≤P x and y 6= x).

2.4.2 Hasse diagram

A Hasse diagram is a graphical representation of a poset P , where P is represented by the cover

relationship between two elements x, y of the set X. A point for the elements and a line for the

relationship is used according to these two rules:

1. If x <P y in the poset, then the point corresponding to x is drawn at a lower level than the

point corresponding to y and

2. The line between any two points x and y is included iff x covers y or y covers x.

For example, Figure 2.1 shows a Hasse diagram of the poset P (X,≤P) where

X = (x1, x2, x3, x4, x5, x6, x7)

and the cover relations are specified by the line segments.

10

2.4.3 Linear extensions

A linear extension of a poset P is a permutation w = x1, x2, ..., xn of the elements of the set X, such

that if xi ≤P xj in P , then i ≤ j. In other words a linear extension is a total order on the set X

that is consistent with the partial order. The set of linear extensions of P is represented by L(P)

and the number of linear extensions is represented by `(P).

2.4.4 Order ideal

An order ideal I of a poset P is a subset of P such that if x ∈ I and y ≤P x, then y ∈ I. The set of

all order ideals of any poset P along with the inclusion operator (⊆) is a poset itself. It is denoted

by J(P).

2.4.5 Chain

A chain L is a poset in which all the elements are comparable. A chain C in a poset P is a subset

of P in which all the elements are comparable. C is maximal if there exists no x ∈ P such that

C ∪ {x} forms a chain. A chain C is saturated if there exists no element z ∈ P − C such that

x ≤P z ≤P y, for some x, y ∈ C and C ∪ {z} forms a chain. In Figure 2.1, (x1, x3, x5, x7) is a chain

whereas (x1, x2, x3, x5, x6, x7) is a maximal saturated chain.

2.4.6 Representing posets as digraphs

A directed graph G (digraph) is an ordered pair (V,E) of vertices V and edges E such that every

e ∈ E has an initial and terminal vertex. The terminal vertex vt of an edge e is denoted graphically

by drawing an arrow toward vt. A digraph is a directed acyclic graph (DAG) if for all vertices v ∈ V ,

there are no non-empty directed paths that start and end in v.

We can associate the Hasse diagram for a poset with a corresponding DAG by representing the

set of elements X of the poset P by the set of vertices V and the line segments S denoting the cover

relations by directed edges E. For a cover relation x <P y where x, y ∈ X, the corresponding edge

e ∈ E originates from the vertex that represents x and terminates at the vertex that represents y.

The DAG shown in Figure 2.2 represents the Hasse diagram shown in Figure 2.1. In this thesis, we

will represent a poset by its associated DAG. The number of linear extensions of the poset is equal

to the number of topological sorts of the DAG, where a topological sorting of a directed acyclic graph

11

G is a linear ordering l of the vertices V of G, such that, for all u, v ∈ V if there is an edge from u

to v in G, then u comes earlier than v in l.

Figure 2.2: A directed acyclic graph G

2.5 Theory of P -partitions

In this section we talk about P -partitions which are a generalization of compositions (parts of an

integer n where there is no order) and partitions (parts of an integer n where there is total order).

2.5.1 Poset labelling

A labelling of a poset P = (X,≤P) is a bijection σ : X → [1...k] where k is the size of the set X.

A labelling σ is natural if σ(xi) ≤ σ(xj) whenever xi ≤P xj . A poset P along with a labelling σ is

called a labelled poset. If σ is a natural labelling, then P is called a naturally labelled poset.

2.5.2 P -Partitions

If P is a labeled poset with a labelling σ, a (P, σ)-partition [5] of m, is an order-preserving1 map

f : P → [1, 2, 3...] satisfying the conditions:

1. If xi ≤P xj in P , then f(xi) ≤ f(xj).

2. If xi ≤P xj and σ(xi) > σ(xj), then f(xi) < f(xj).

3.
∑
xi∈X f(xi) = m.

If σ is a natural labelling, then f is just called P-partition. As in partitions and composition, the

values of f(xi) are called the parts of m. Thus P -partitions are a generalization of partitions and

compositions, where the former is obtained when P is a chain and the latter is obtained when P has

no relations.
1Although Stanley originally defines them as order-reversing maps in [5]

12

2.5.3 Generating function of P -partitions

Let (P, σ) be a labelled poset P = (X,≤P) with elements X = {X1, X2, ..., Xn}. We define the

multivariate generating function F (P, σ;x1, x2, ..., xn) (denoted in short by F (P, σ)) in the variables

x1, x2, ..., xn as

F (P, σ) =
∑

f∈α(P,σ)

x
f(X1)
1 x

f(X2)
2 ...xf(Xn)

n ,

where α(P, σ) is the class of all (P, σ)-partitions. As before, by substituting all xi’s with q, we get

the univariate or counting generating function U(P, σ) of the number of (P, σ)-partitions:

U(P, σ) =
∑

f∈α(P,σ)

qf(X1)+f(X2)+...+f(Xn).

The coefficient of qm in U(P, σ) is equal to the number of (P, σ)-partitions of m. If σ is a natural

labelling, we denote F (P, σ) as F (P) and U(P, σ) as U(P).

2.6 Informal definitions of #P and #P-complete classes

In the complexity class NP, a decision problem is in NP, if a candidate solution can be verified in

polynomial time. Normally a problem in the class NP is of the form:“Are there any solutions that

satisfy a given set of constraints?” (E.g. Are there any subsets of a set of integers that sum to

k?) The corresponding #P problem is of the form: “How many solutions are there that satisfy a

given set of constraints?” (E.g. How many subsets of that set of integers are there that sum to k?).

The complexity class #P contains the set of counting problems associated with the corresponding

decision problems in NP. A #P problem must be at least as hard as the corresponding NP problem,

as other wise one can simply count the number of solutions and check if it is greater than zero.

A problem is #P-complete if it is in #P and every problem in #P can be reduced to it in

polynomial time. It is believed that there are no polynomial time algorithms to solve #P-complete

problems. Usually, for an NP-complete problem, counting the number of solutions is #P-complete.

On the other hand, there are some problems in P whose corresponding counting problem is #P-

complete.

13

2.6.1 Formal definitions of #P and #P-complete

A counting Turing machine is a standard non-deterministic TM which has an auxiliary output device

that prints in binary notation, on a special tape, the number of accepting computations induced by

the input. For most non-deterministic algorithms, each accepting computation corresponds to a

solution to the problem. The (worst case) time complexity of a counting TM is f(n), if the longest

accepting computation induced by the set of all inputs of size n takes f(n) steps. #P is the class

of counting functions that can be computed by counting TMs of polynomial time complexity. An

oracle TM is a TM that has a query tape, an answer tape and some working tapes and returns the

answer to a query in unit time. The complexity class of problems solvable by an algorithm in class

A with an oracle for a problem in class B is written as AB . Let FP denote the class of functions

computed by deterministic polynomial time TM. A problem y is #P-complete iff #P ⊆ FP y and

y ∈ #P .

14

Chapter 3

Background of 2× 2× n solid

partitions

In this chapter, we discuss the background of 2 × 2 × n solid partitions and explain in detail the

problem that we will be solving.

3.1 The generating function for solid partitions

3.1.1 Plane partitions

A plane partition is a two dimensional extension of a partition. A p × n plane partition of m is a

two-dimensional array of non-negative integers

m11 m12 m13 · · · m1n

m21 m22 m23 · · · m2n

m31 m32 m33 · · · m3n

...
...

...
...

...

mp1 mp2 mp3 · · · mpn

such that

15

mij ≥ mi+1j , 1 ≤ i < p, 1 ≤ j ≤ n

mij ≥ mij+1, 1 ≤ i ≤ p, 1 ≤ j < n

and

i≤p, j≤n∑
i=1,j=1

mij = m.

For example, a 3× 3 plane partition of 10 is

3 2 0

2 1 0

2 0 0

.

The closed form of the generating function, Gp×n(q), of p×n plane partitions was given by MacMahon

in [6] as:

Gp×n(q) =
1

(q; q)n(q2; q)n...(qp; q)n
, (3.1)

where

(qi; q)n = (1− qi)(1− qi+1)...(1− qi+n−1).

The coefficient of qm is the number of p× n plane partitions of m. A p× n plane partition becomes

an ordinary partition when p = 1 and the generating function for that is given by Equation 2.7.

3.1.2 Solid partitions

A solid partition is a three dimensional extension of a plane partition. A h× p× n solid partition of

m as defined in [7], is a representation of m as a solution to an equation of the form:

m =
i≤h, j≤p, k≤n∑

i,j,k=1

mijk, (3.2)

where mijk are non negative integers satisfying

16

mijk ≥ mi+1jk, 1 ≤ i < h, 1 ≤ j ≤ p, 1 ≤ k ≤ n

mijk ≥ mij+1k, 1 ≤ i ≤ h, 1 ≤ j < p, 1 ≤ k ≤ n

mijk ≥ mijk+1, 1 ≤ i ≤ h, 1 ≤ j ≤ p, 1 ≤ k < n .

A closed form for the generating function, Gh×p×n(q), of h × p × n solid partitions is not known.

MacMahon in [6] conjectured the generating function, G(q), of unbounded solid partitions (i.e. when

h, p, n→∞) to be

G(q) =
∞∏
k=1

(1− qk)−k(k+1)/2, (3.3)

which was later proved to be incorrect [7, 8]. In particular, Equation 3.3 is incorrect for n ≥ 6.

The closed form representation of the generating function even for special cases, like 3× 2× n solid

partitions or 3× 3× n solid partitions, is not known so far. In this thesis, our main goal is to derive

a recurrence for the generating function, G2×2×n(q), of one such special case defined by 2 × 2 × n

solid partitions.

3.1.3 Solid partitions as a special case of P -partitions

Observe that solid partitions (and plane partitions) are just a special case of P -partitions defined in

Section 2.5.2. When the cover relations of the h× p× n poset, Ph×p×n, is given by the inequalities

of h×p×n solid partitions, the set of P -partitions of Ph×p×n, are same as h×p×n solid partitions.

Hence the generating function, Gh×p×n(q), of h×p×n solid partitions is the same as the generating

function, U(Ph×p×n), of the set of P -partitions of Ph×p×n.

3.2 Counting linear extensions

Recall from Section 2.4.3, that a linear extension w is a total ordering of a poset that is consistent

with the partial order. The number of linear extensions `(P) of a poset P can vary from just 1

to as high as n!. For example, the total order poset defined in Figure 3.1(a) has just one linear

extension. However, the poset in Figure 3.1(b), has no relations among the elements and thus it has

4! = 24 linear extensions. To “list” all the linear extensions of a poset P would take time O(`(P))

17

Figure 3.1: (a) A poset of complete order (b) A poset with no order

which could be exponential in the number of elements of P in the worst case. However, if we are

interested in just counting the number of linear extensions, we might expect an easier polynomial

time algorithm. But this is not the case. Brightwell and Winkler in 1991 [9] proved that the problem

of counting linear extensions belongs to the complexity class #P-complete defined in Section 2.6.

The problem of counting the linear extensions is in #P as we can check in polynomial time,

whether a given linear extension w is consistent with the poset P . The problem was proved in [9]

to be #P-complete by proving that if an oracle Turing machine could count the linear extensions of

the poset P in polynomial time, then it could also count the number of satisfactory assignments to

an instance of 3-SAT in polynomial time. The corresponding decision problem is in the complexity

class P, i.e., we can always tell if a poset has a linear extension (as every non-empty poset has at

least one linear extension).

3.2.1 Linear extensions and P -partitions

The linear extensions of a poset P are related to the set of P -partitions of P , through the fundamental

lemma of P -partitions. Let π be a permutation of the set Xn = {1, 2, 3, ..., n}. Define A(π) to be

the set of all functions f : Xn → {1, 2, 3, ...} such that

f(π(1)) ≤ f(π(2)) ≤ ... ≤ f(π(n))

and whenever π(s) > π(s+ 1), f(π(s)) < f(π(s+ 1)) [10, 11]. For example, if π = (2, 4, 1, 3), A(π)

is the infinite set of all maps f : {1, 2, 3, 4} → {1, 2, 3, ...} such that f(2) ≤ f(4) < f(1) ≤ f(3).

Now, the fundamental lemma of P -partitions [5] says that if A(P) represents the set of all P -

partitions of a poset P , then A(P) is the disjoint union of the sets A(π) over all linear extensions

π of P :

18

A(P) =
∐

π∈L(P)

A(π).

Counting linear extensions from generating function of the set of P -partitions

In terms of generating functions, the single variable generating function U(P) (defined at the end of

Section 2.5.3) of the set of P -partitions of a poset P = (X,≤P) can be written as:

U(P) =
W (q)

(1− q)(1− q2)...(1− q|X|)
, (3.4)

where W (q) is a polynomial in q with integer coefficients, called the W -polynomial of the poset P

[5, 12], satisfying

lim
q→1

W (q) = `(P). (3.5)

Also, the W -polynomial can be calculated as

W (q) =
∑

w∈L(P)

qind(w) (3.6)

where ind(w) = {
∑
j|xj > xj+1} for xj ∈ w.

Thus the linear extensions of a poset can be counted from the generating function of the set of

P -partitions of the poset. We noted in Section 3.1.3 that the generating function of solid partitions

and plane partitions is same as the generating function of the set of P -partitions of the corresponding

poset. Hence, we can compute `(P) of the corresponding poset from the generating function of solid

partitions and plane partitions.

3.2.2 Counting linear extensions for posets represented by plane parti-

tions and solid partitions

The p × n plane partition defined in Section 3.1.1 has a closed form for the generating function,

Gp×n(q), which is same as the single variable generating function, U(Pp×n), of the set of P -partitions

of the corresponding poset, Pp×n. Using Equations 3.4 and 3.5, we get the formula to count the

number of linear extensions, `(Pp×n), of Pp×n as :

19

`(Pp×n) = lim
q→1

U(Pp×n) ∗
pn∏
i=1

(1− qi)

= lim
q→1

(1− q)(1− q2)(1− q3)...(1− qpn)
(q; q)n(q2; q)n...(qp; q)n

=
(pn)!

n!
0!

(n+1)!
1!

(n+2)!
2! ... (n+p−1)!

(p−1)!

=
0!1!2!...(p− 1)!(pn)!

(n!)(n+ 1)!(n+ 2)!...(n+ p− 1)!
.

However, for h×p×n solid partitions neither a closed form for the generating function, nor a formula

to count the number of linear extensions of the poset represented by them is known. Another goal of

this thesis is to compute the number of linear extensions, `(P2×2×n), of the 2× 2×n poset, P2×2×n,

from the generating function of 2× 2× n solid partitions.

3.3 Our Problem

Our focus in this thesis, is on the 2× 2× n solid partitions. They are defined by Equation 3.2 with

h = 2 and p = 2. We will derive an explicit recurrence for the generating function, G2×2×n(q), of

2× 2× n solid partitions. We will use a set of digraph rules that will be described in Section 4.2 to

derive this recurrence.

Once we have the generating function, we will use Equations 3.4 and 3.5 to compute the number

of linear extensions, `(P2×2×n), of P2×2×n.

20

Chapter 4

The main technique

As discussed in Section 3.3, our problem is to compute a recurrence for the generating function of

2 × 2 × n solid partitions. We will make use of a set of rules called the “digraph methods” [2] to

build this recurrence. These digraph methods are derived from a set of five rules called the “five

guidelines” [3]. Both the digraph methods and the five guidelines treat partitions as a set of integer

solutions to linear inequalities C as described in Section 2.3.1.

4.1 Five guidelines

Corteel, Lee and Savage [3] proposed the “five guidelines”, which focused on getting a recurrence for

the generating function for the set of solutions to a set of linear inequalities C. These techniques

were built based on partition analysis techniques developed by MacMahon and were successful in

producing recurrences for many well known problems. The main advantage of getting a recurrence

for a generating function FC is not only to be able to write a program for FC , but also to get a

closed form of the generating function for the infinite family. It is also proved that these set of five

guidelines are sufficient for any system of homogeneous linear inequalities with integer coefficients.

A brief overview of the five guidelines is presented below.

Theorem 4.1 Let S = (s1, s2, ..., sn) be a sequence that satisfies the set of linear constraints C

where each constraint c ∈ C of the form

c : [a0 +
n∑
i=1

aisi ≥ 0],

21

where ai’s are integers (possibly negative).

1. If s1 ≥ t for some integer t ≥ 0, is the only constraint in C, then

FC =
xt1

(1− x1)
.

2. If C1 is a set of constraints on the variables s1, s2, ..., sj and C2 is the set of constraints on the

variables sj+1, sj+2, ..., sn, then

FC1∪C2(x1, x2, ..., xn) = FC1(x1, x2, ..., xj)FC2(xj+1, xj+2, ..., xn).

3. If the set of constraints C on variables s1, s2, ..., sn (containing the constraint si ≥ 0, 1 ≤ i ≤ n)

implies the constraint si − asj ≥ 0, for any integer a, then

FC(Xn) = FCsi←si+asj
(Xn;xj ← xjx

a
i).

4. If c is any constraint with the same variables as C, then

FC(Xn) = FC∪{c}(Xn) + FC∪{¬c}(Xn).

5. If c ∈ C, then

FC(Xn) = FC−{c}(Xn)− FC−{c}∪{¬c}(Xn).

Here Xn denotes x1, x2, ..., xn and ¬c is the negation of c given by −a0−
∑n
i=1 aisi ≥ 1, where c ∈ C.

4.2 Digraph methods

There are certain types of constraints C, “sa ≥ sb” and “sa > sb” for which we can simplify the

procurement of a recurrence for the generating function. These constraints can be represented as

a directed graph, where the vertices corresponding to variables (s1, s2, ...sn) are labeled 1, 2, 3, ..., n

and there is an edge (or strict edge) between i and j if C has the constraint si ≥ sj (or si > sj

respectively). The generating function of such constraints can be obtained from a set of digraph

methods proposed by Davis, D’Souza, Lee and Savage [2] which is based on the five guidelines

22

explained in Section 4.1. A number of integer partitions problems, when solved using the digraph

rules have given a simpler and neater solution.

Let G(V,E) be a directed graph with vertices V = {1, 2, ..., n} and edges E where some edges

are designated as strict. Let SC be the set of non-negative integer sequences S = (s1, s2, ..., sn) that

satisfy the constraints si ≥ sj and si > sj . We would like to compute the multivariate generating

function

FG(x1, x2, ..., xn) =
∑
s∈SC

xs11 x
s2
2 , ..., x

sn
n .

Theorem 4.2 For vi ∈ V , let G′ denote the graph obtained from G by adding a vertex vn+1 and an

edge from vn+1 to vi. Then

FG′(x1, ..., xn, xn+1) =
FG(x1, ..., xi−1, xixn+1, xi+1, ..., xn)

(1− xn+1)

If the inequality corresponding to the edge (vn+1, vi) is strict, then the generating function on the

right hand side is multiplied by xn+1. Figure 4.1 shows the an incoming edge (vn+1, vi).

Figure 4.1: G along with the incoming edge forming G′

Below we present a set of five rules that we will be using in our thesis to solve our problem. Some

of these are derived from Theorems 4.1 and 4.2 while some are just graphical representations of the

two theorems (most of them can be found in [13]). An edge is represented as usual whereas, a strict

edge is represented with a double head as shown in Figure 4.2.

Rule 1: Independent Vertex For a graph G(V,E), where V = v1, v2, ..., vn, if we know the gen-

erating function FG, then the generating function FG′ of the graph defined by G′(V ′, E) where

23

Figure 4.2: (a) Normal edge representing s1 ≥ s2 (b) Strict edge representing s3 > s4

V ′ = V ∪ {vn+1} is given by

FG′(x1, x2, ..., xn, xn+1) =
FG(x1, x2, ..., xn)

(1− xn+1)
.

Figure 4.3: G′ is the graph G along with the independent vertex vn+1

Figure 4.3 shows a graph G′ formed from G and an independent vertex vn+1. The generating

function of G′ can be computed from the generating function of G. This rule can be derived

from Theorem 4.1 (1) and Theorem 4.1 (2). A single vertex graph (G1) with the vertex vn+1

represents only the constraint sn+1 ≥ 0 and Theorem 4.1 (1) directly gives us the generating

function of this graph as
1

(1− xn+1)
.

Theorem 4.1 (2) can then be used to combine the graphs G and G1 to get the generating

function of the graph G′.

24

Rule 2: Redundant Edge A constraint si ≥ sj is redundant if it can be derived from two or more

existing constraints. An edge that represents such a constraint is called a redundant edge. The

redundant edge operator allows us to remove a redundant edge from a graph without modifying

the generating function i.e. if G is a graph with a redundant edge between (vi, vk), and G′ is

the graph with the redundant edge removed, then

FG′(x1, x2, ..., xn) = FG(x1, x2, ..., xn)

Figure 4.4: G′ has the redundant edge removed

Figure 4.4 shows a graph G with a redundant edge (v4, v2). On removing it, we get the graph

G′ whose generating function remains unaltered. This is not directly derived from any of the

theorems, but intuitively follows from the definition of a redundant constraint.

Rule 3: Incoming Edge This is exactly Theorem 4.2.

Rule 4: Inclusion-Exclusion (1) The first rule is a direct consequence of Theorem 4.1 (4). Con-

sidering the constraint c to be of the form si ≥ sj , ¬c becomes si < sj . Translating to graphs,

the generating function of a graph G can be obtained from the generating function of graphs

G1 and G2 as:

FG(x1, x2, ..., xn) = FG1(x1, x2, ..., xn) + FG2(x1, x2, ..., xn)

where G represents the set of constraints C, G1 represents C∪{c} and G2 represents C∪{¬c}.

25

Here c and ¬c are constraints on variables that exist in C. Figure 4.5 shows a graphical

representation of this rule.

Rule 5: Inclusion-exclusion (2) The second inclusion-exclusion rule is a direct consequence of

Theorem 4.1 (5). As before, if we consider constraint c to be of the form si ≥ sj , ¬c becomes

si < sj . Translating to graphs, we can get the generating function of a graph G from graphs

G′ and G′′ as:

FG(x1, x2, ..., xn) = FG′(x1, x2, ..., xn)− FG′′(x1, x2, ..., xn)

where G represents the set of constraints C, G′ represents C−{c} and G′′ represents C−{c}∪

{¬c}. Figure 4.6 shows a graphical representation of this rule. It can be seen that the second

inclusion-exclusion principle is just a rearrangement of the first inclusion-exclusion principle,

nevertheless, we shall mention it as a separate rule to reference it easily.

These set of five rules derived from the two theorems are proved to be sufficient to derive the

generating function of any set of sequences described by inequalities of the form sa ≥ sb and sa > sb

[13].

4.3 Applicability of digraph rules to 2× 2× n solid partitions

We can compute the generating function of 2 × 2 × n solid partitions using the digraph methods,

since they can be represented by inequalities of the form sa ≥ sb. We can model them as a digraph

as described in Section 4.2. The resulting digraph Gn is shown in Figure 4.7.

Figure 4.5: First Inclusion-exclusion principle

26

Figure 4.6: Second Inclusion-exclusion principle

Figure 4.7: The digraph representing 2× 2× n solid partitions

27

Chapter 5

Derivation of recurrence

In this chapter, we will apply the digraph rules of Section 4.2 on 2×2×n solid partitions (represented

by the digraph Gn in Figure 4.7), to decompose it and derive a recurrence for its generating function.

5.1 Steps for decomposing Gn using digraph rules

We modeled our 2×2×n solid partitions as the digraph Gn in Section 4.3 and now apply the digraph

methods on it to decompose it. For the rest of this thesis, generating function of a graph means the

generating function of the solid partitions represented by it.

Step 1: In the first step, we use Rule 4 from Section 4.2 on the graph (Gn) to generate two new

edges (xn, vn) and (vn, xn) (which is strict). Figure 5.1 shows this process. It results in the two

graphs Hn and H ′n.

As we can see in Figure 5.1, some edges are redundant in the resultant graphs ((un, vn), (xn, wn)

in Hn and (vn, wn), (un, xn) in H ′n) and we can remove them without modifying the generating

function according to Rule 2 from Section 4.2. We notice that Hn and H ′n are isomorphic to each

other except that H ′n has a strict edge. So, most of the operations that we do on Hn would be

repeated in the case of H ′n. Steps 2-10 will be breaking down of Hn whereas steps 11-20 would do

the same to break down H ′n.

28

Figure 5.1: Step 1 of Decomposition

29

Step 2: In the second step, we take Hn and apply Rule 5 on the edge (xn, xn−1). This results in

two graphs Kn and Pn as shown in Figure 5.2.

It can be seen that the edge (un, xn) is redundant in Pn and can be removed from the graph

without affecting the generating function as per Rule 2.

Figure 5.2: Step 2 of Decomposition

30

Step 3: In the third step, we take the graph Pn and apply rule 5 on the edge (wn, wn−1). We get

the resultant graphs Rn and Sn as shown in Figure 5.3.

It can be seen that the edge (vn, wn) becomes redundant in the graph Sn. We now describe how

both of these graphs can be reduced to Dn, shown in Figure 5.4.

Figure 5.3: Step 3 of Decomposition

31

Dn can be derived from Rn by applying Rule 3 on the edge (un, un−1). On the edge (nn, wn),

Rule 5 is applied, and to the resultant 2 graphs, Rule 3 and Rule 1 are applied. On doing all these,

we get the graph Dn in each of these cases. Similarly Dn can be derived from Sn using the Rule 3,

Rule 5 and Rule 1.

Next, to decompose Dn, we first use Rule 3, but here, not to remove a redundant edge but to

add a redundant edge to the graph. We add the edge (xn−1, vn−1) which is redundant because the

edges (xn−1, xn), (xn, vn), (vn, vn−1) imply that constraint (Figure 5.5).

Figure 5.4: The Graph Dn

32

Figure 5.5: The Graph Dn with the redundant edge

Step 4: In the next step, we take Dn with the redundant edge and apply Rule 5 on the edge

(xn−1, xn) and we get the two graphs Tn and Wn as shown in Figure 5.6.

The graph Tn can be reduced using Rule 3 twice to get Hn−1. As for the graph Wn, it can be

further reduced as in step 5.

33

Figure 5.6: Step 4 of Decomposition

34

Step 5: In this step we take the graph Wn and apply Rule 5 on the edge (xn, vn). We get the two

graphs Un and Vn as shown in Figure 5.7.

The edge (vn, vn−1) becomes redundant in the graph Vn and hence can be discarded. Both Un

and Vn can be reduced to the graph Hn−1 using Rule 3 on the two extra edges. We have reduced

the graph Pn from step 2 to Hn−1. Now we take up the graph Kn and reduce it.

35

Figure 5.7: Step 5 of Decomposition

36

Step 6: In this step, we first use Rule 5 on the edge (wn, wn−1). We get the two graphs K1
n and

K2
n as shown in Figure 5.8. It can be seen that the edge (vn, wn) is redundant in the graph K2

n and

can be removed.

Figure 5.8: Step 6 of Decomposition

37

Step 7: In the next step, we take the graph K1
n and apply Rule 5 on the edge (un, xn). We get

the two graphs K3
n and K4

n as shown in Figure 5.9.

The graph K3
n can be reduced to Gn−1 with further simplifications that will be shown later. We

next, reduce the graph K4
n.

Figure 5.9: Step 7 of Decomposition

38

Step 8: In this step, we take the graph K4
n, and use Rule 5 on the edge (xn, vn). We get the two

graphs K5
n and K6

n as shown in Figure 5.10.

The edge (vn, vn−1) becomes redundant in the graph K6
n. Both the graphs K5

n and K6
n can be

reduced to Gn−1 which will be shown later. We have reduced the graph K1
n from step 6 and now we

have to reduce the graph K2
n.

39

Figure 5.10: Step 8 of Decomposition

40

Step 9: In this step, we take the graph K2
n and use Rule 5 on the edge (un, xn) and we get the 2

graphs K7
n and K8

n (Figure 5.11). The graph K7
n can be reduced to Gn−1 which will be shown later.

The graph K8
n has to be further simplified.

Figure 5.11: Step 9 of Decomposition

41

Step 10: In this step, we take the graph K8
n and apply Rule 5 on the edge (xn, vn) and we get the

two graphs (K9
n) and (K10

n) as shown in the Figure 5.12.

Both K9
n and K10

n can be reduced to Gn−1 which will be shown later. We have now reduced Hn

from step 1 into 6 instances of Gn−1 and 6 instances of Hn−1. Now we have to reduce H ′n from step

1 in a similar manner.

42

Figure 5.12: Step 10 of Decomposition

43

Step 11: In this step we reduce H ′n from step 1. We apply Rule 5 on the edge (vn, vn−1). We get

the two resultant graphs K ′n and P ′n as in Figure 5.13. The edge (un, vn) becomes redundant in the

graph P ′n and can be discarded according to Rule 2.

Figure 5.13: Step 11 of Decomposition

44

Step 12: In this step, we take the graph P ′n and apply Rule 5 on the edge (wn, wn−1). The

resultant graphs are R′n and S′n (Figure 5.14).

The edge (xn, wn) becomes redundant in the graph S′n and can be discarded. Both these graphs

can be reduced to D′n shown in Figure 5.15.

Figure 5.14: Step 12 of Decomposition

45

D′n can be derived from R′n by applying Rule 3 on the edge (un, un−1). On the edge (xn, wn),

Rule 5 is applied, and to the resultant 2 graphs, Rule 3 and Rule 1 are applied. On applying all

these, we get the graph D′n in each of these cases. Similarly S′n can be derived from D′n using Rule

3, Rule 5 and Rule 1.

Next, to decompose D′n, we first use Rule 2 and again as before, not to remove a redundant

edge but to add a redundant edge to the graph. We add the edge (vn−1, xn−1) which is not only

redundant, but also is strict, because we want to try to reduce this graph to H ′n (Figure 5.16).

Figure 5.15: The Graph D′n

46

Figure 5.16: The Graph D′n with the redundant edge

Step 13: In the next step, we take D′n with the redundant edge and apply Rule 5 on the edge

(vn−1, vn) and we get the two graphs T ′n and W ′n as shown in Figure 5.17.

The graph T ′n can be reduced using Rule 3 on the two edges to get H ′n−1. As for the graph W ′n,

it can be further reduced as in step 14.

47

Figure 5.17: Step 13 of Decomposition

48

Step 14: In this step we take the graph W ′n and apply Rule 5 on the edge (vn, xn). We get the

two graphs U ′n and V ′n as shown in Figure 5.18.

The edge (xn, xn−1) becomes redundant in the graph V ′n and can be discarded. Both U ′n and V ′n

can be reduced to the graph H ′n−1 using Rule 3 on the two extra edges. We have reduced the graph

P ′n from step 11 to H ′n−1. Now we take up the graph K ′n and reduce it.

49

Figure 5.18: Step 14 of Decomposition

50

Step 15: In this step, we first use Rule 5 on the edge (wn, wn−1). We get the two graphs K
′1
n and

K
′2
n as shown in Figure 5.19. The edge (xn, wn) is redundant in the graph K

′2
n .

Figure 5.19: Step 15 of Decomposition

51

Step 16: In the next step, we take the graph K
′1
n and apply Rule 5 on the edge (un, vn). We get

the 2 graphs K
′3
n and K

′4
n as shown in Figure 5.20. The graph K

′3
n can be reduced to Gn−1 which

will be shown later. Next, we reduce the graph K
′4
n further.

Figure 5.20: Step 16 of Decomposition

52

Step 17: In this step, we take the graph K
′4
n , and apply Rule 5 on the edge (vn, xn). We get the

two graphs K
′5
n and K

′6
n as shown in Figure 5.21.

The edge (xn, xn−1) becomes redundant in the graph K
′6
n . Both the graphs, K

′5
n and K

′6
n can be

reduced to Gn−1 which will be shown later. We have reduced the graph K
′1
n from step 15 and now

we have to reduce the graph K
′2
n .

53

Figure 5.21: Step 17 of Decomposition

54

Step 18: In this step, we take the graph K
′2
n and apply Rule 5 on the edge (un, vn) and we get the

2 graphs K
′7
n and K

′8
n (Figure 5.22). The graph K

′7
n can be reduced to Gn−1 which will be shown

later. The graph K
′8
n has to be further simplified.

Figure 5.22: Step 18 of Decomposition

55

Step 19: In this step, the graph K
′8
n and apply Rule 5 on the edge (vn, xn) and we get the two

graphs (K
′9
n) and (K

′10
n) as shown in the Figure 5.23.

Both K
′9
n and K

′10
n can be reduced to Gn−1 which will be shown later. We have now reduced

H ′n from step 1 into 6 instances of Gn−1 and 6 instances of Hn−1. We have reduced the graph Gn

now to Gn−1 and Hn−1.

56

Figure 5.23: Step 19 of Decomposition

57

5.2 Derivation of a recurrence for the generating function

Now, we proceed to derive the recurrence for the generating function of Gn using the digraph rules.

Let the multi-variable generating function of the graph Gn be

G(n, u1, v1, w1, x1, ..., un−1, vn−1, wn−1, xn−1, un, vn, wn, xn).

Since we only manipulate the last 8 vertices of the graph, we are not concerned with the remaining

vertices. So we shall compute a 8-variable generating function of Gn given by

G(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn),

where we use the variable q to represent all the intermediate vertices

ui, vi, wi, xi, i ∈ [1..n− 2] of the Gn. Similarly, let the 8 variable generating function of Hn be

H(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

and H ′n be

H ′(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn).

Based on Figure 5.1 and Rule 4 from Section 4.2,

G(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) = H(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

+H ′(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn). (5.1)

Figure 5.2 gives us the generating function of the graph Hn with respect to the graphs Kn and Pn.

If the 8 variable generating function of the graphs Kn and Pn are

K(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

and

P (n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

58

respectively, then using Rule 5, we get

H(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) = K(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

−P (n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn). (5.2)

Again from Figure 5.3, using Rule 5, we get the generating function of Pn as

P (n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) = R(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

−S(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn), (5.3)

where

R(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

and

S(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

are the 8 variable generating functions of Rn and Sn respectively. We now derive Rn and Sn from

the graph Dn shown in Figure 5.4. First, we derive Rn from Dn. Rn can be further broken down

using Rule 5 as shown in Figure 5.24.

Both R1
n and R2

n can be derived from Dn using Rule 3 and Rule 1. We get the generating function

Figure 5.24: Breaking down Rn

59

of R1
n from Dn using Rule 3 on the edge (un, un−1) and Rule 1 on the vertex wn as

R1(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) =

D(n, q, (un ∗ un−1), vn−1, wn−1, xn−1, un, vn, wn, xn) ∗ (un)0

(1− un)
∗ 1

(1− wn)
. (5.4)

Now we get the generating function of R2
n from in terms of Dn by using Rule 3 on the edges (un, un−1)

and (wn, vn) as

R2(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) =

D(n, q, (un ∗ un−1), vn−1, wn−1, xn−1, un, (vn ∗ wn), wn, xn) ∗ (un)0

(1− un)
∗ (wn)1

(1− wn)
. (5.5)

Here R1(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) is the 8 variable generating function of R1
n and

R2(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) is the 8 variable generating function of R2
n. From

Figure 5.24, using Rule 5, we get

R(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) = R1(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

−R2(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn). (5.6)

Using the Equations 5.6, 5.4 and 5.5 we get

R(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) =
D(n, q, unun−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

(1− un)(1− wn)

−D(n, q, unun−1, vn−1, wn−1, xn−1, un, vnwn, wn, xn)wn
(1− un)(1− wn)

. (5.7)

The graph Sn from Figure 5.3 can be further broken down using Rule 5 as shown in Figure 5.25.

We can see that R1
n and S1

n are the same graphs and hence have the same generating function as

defined by Equation 5.4. The 8 variable generating function of S2
n,

S2(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn),

is given by

S2(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) =

D(n, q, (un ∗ un−1), vn−1, (wn ∗ wn−1), xn−1, un, vn, wn, xn) ∗ (un)0

(1− un)
∗ (wn)0

(1− wn)
. (5.8)

60

Figure 5.25: Breaking down Sn

Thus the generating function of Sn from Equations 5.4 ,5.8 is given by

S(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

=
D(n, q, unun−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

(1− un)(1− wn)

−D(n, q, unun−1, vn−1, wnwn−1, xn−1, un, vn, wn, xn)
(1− un)(1− wn)

. (5.9)

From Eqs. 5.3, 5.7, 5.9 we get

P (n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

=
D(n, q, unun−1, vn−1, wnwn−1, xn−1, un, vn, wn, xn)

(1− un)(1− wn)

−D(n, q, unun−1, vn−1, wn−1, xn−1, un, vnwn, wn, xn)wn
(1− un)(1− wn)

. (5.10)

Figure 5.6 shows the decomposition of Dn into Tn and Wn. Using Rule 5, we get

D(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) = T (n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

−W (n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn). (5.11)

Tn can be derived from Hn−1 using Rule 3 as follows

T (n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) =

61

H(n− 1, q, q, q, q, q, un−1, (xn ∗ vn ∗ vn−1), wn−1, xn−1) ∗ (xn ∗ vn)0

(1− (xn ∗ vn))
∗ (xn)0

(1− xn)
. (5.12)

From Figure 5.7, we get the generating function of Wn in terms of Un and Vn using Rule 5 as

W (n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) = U(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

−V (n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn). (5.13)

We can get the generating function of Un and Vn in terms of Hn−1 using Rule 3 as

U(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) =

H(n− 1, q, q, q, q, q, un−1, (vn ∗ vn−1), wn−1, (xn ∗ xn−1)) ∗ (vn)0

(1− vn)
∗ (xn)0

(1− xn)
, (5.14)

and

V (n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) =

H(n− 1, q, q, q, q, q, un−1, vn−1, wn−1, (vn ∗ xn ∗ xn−1)) ∗ (xn ∗ vn)0

(1− (xn ∗ vn))
∗ (vn)1

(1− vn)
. (5.15)

From Eqs. 5.11, 5.12, 5.13, 5.14 and 5.15, we get

D(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) =
H(n− 1, q, q, q, q, q, un−1, xnvnvn−1, wn−1, xn−1)

(1− xnvn)(1− xn)

−H(n− 1, q, q, q, q, q, un−1, vnvn−1, wn−1, xnxn−1)
(1− vn)(1− xn)

+
H(n− 1, q, q, q, q, q, un−1, vn−1, wn−1, vnxnxn−1)vn

(1− xnvn)(1− vn)
. (5.16)

We have got the generating function of Pn from Figure 5.2 in terms of Hn−1. Now we proceed to

get the generating function of Kn. From Figures 5.8, 5.9, 5.10, 5.11 and 5.12 we get the generating

function of Kn in terms of K3
n, K5

n, K6
n, K7

n, K9
n and K10

n using Rule 5 as

K(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) = K3(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

−K5(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) +K6(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

−K7(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) +K9(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

62

Figure 5.26: Breaking down K3
n

−K10(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn). (5.17)

We now get the generating functions of the graphs K3
n, K5

n, K6
n, K7

n, K9
n and K10

n from Gn−1

as follows. The graph K3
n can be further broken down as shown in Figure 5.26. We can get the

generating function of K31
n and K32

n from Figure 5.26 using Rule 3 and Rule 1 and we can derive

the generating function of K3
n from that using Rule 5. We get

K3(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

=
G(n− 1, q, q, q, q, q, unun−1, xnvnvn−1, wn−1, xn−1)

(1− un)(1− xnvn)(1− xn)(1− wn)

−G(n− 1, q, q, q, q, q, unun−1, wnxnvnvn−1, wn−1, xn−1)wn
(1− un)(1− wnxnvn)(1− xn)(1− wn)

. (5.18)

K5
n can be further reduced using the inclusion exclusion principle as shown in Figure 5.27 and the

generating function of K5
n can thus be got as

K5(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

=
G(n− 1, q, q, q, q, q, xnunun−1, vnvn−1, wn−1, xn−1)xn

(1− xnun)(1− vn)(1− xn)(1− wn)

−G(n− 1, q, q, q, q, q, xnunun−1, wnvnvn−1, wn−1, xn−1)xnwn
(1− xnun)(1− wnvn)(1− xn)(1− wn)

. (5.19)

K6
n can be further reduced using Rule 5 as shown in Figure 5.28 and the generating function of K6

n

can thus be got as

63

Figure 5.27: Breaking down K5
n

K6(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

=
G(n− 1, q, q, q, q, q, vnxnunun−1, vn−1, wn−1, xn−1)xnv2

n

(1− vnxnun)(1− vn)(1− vnxn)(1− wn)

−G(n− 1, q, q, q, q, q, wnvnxnunun−1, vn−1, wn−1, xn−1)xnv2
nw

3
n

(1− wnvnxnun)(1− wnvn)(1− wnvnxn)(1− wn)
. (5.20)

K7
n can be further reduced using Rule 5 as shown in Figure 5.29 and the generating function of K7

n

can thus be got as

Figure 5.28: Breaking down K6
n

K7(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

=
G(n− 1, q, q, q, q, q, unun−1, xnvnvn−1, wn−1, xn−1)

(1− un)(1− xnvn)(1− xn)(1− wn)

64

Figure 5.29: Breaking down K7
n

−G(n− 1, q, q, q, q, q, unun−1, xnvnvn−1, wnwn−1, xn−1)
(1− un)(1− xnvn)(1− xn)(1− wn)

. (5.21)

K9
n can be further reduced using Rule 5 as shown in Figure 5.30 and the generating function of K9

n

can thus be got as

K9(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

=
G(n− 1, q, q, q, q, q, xnunun−1, vnvn−1, wn−1, xn−1)xn

(1− xnun)(1− vn)(1− xn)(1− wn)

−G(n− 1, q, q, q, q, q, xnunun−1, vnvn−1, wnwn−1, xn−1)xn
(1− xnun)(1− vn)(1− xn)(1− wn)

. (5.22)

K10
n can be further reduced using Rule 5 as shown in Figure 5.31 and the generating function of K10

n

can thus be got as

Figure 5.30: Breaking down K9
n

65

K10(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

=
G(n− 1, q, q, q, q, q, vnxnunun−1, vn−1, wn−1, xn−1)v2

nxn
(1− vnxnun)(1− vn)(1− vnxn)(1− wn)

−G(n− 1, q, q, q, q, q, vnxnunun−1, vn−1, wnwn−1, xn−1)xnv2
n

(1− vnxnun)(1− vn)(1− vnxn)(1− wn)
. (5.23)

From Equations 5.17, 5.18, 5.19, 5.20, 5.21, 5.22 and 5.23 we get the generating function of Kn in

terms of Gn−1 as

Figure 5.31: Breaking down K10
n

K(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) =

−G(n− 1, q, q, q, q, q, unun−1, wnxnvnvn−1, wn−1, xn−1)wn
(1− un)(1− wnxnvn)(1− xn)(1− wn)

+
G(n− 1, q, q, q, q, q, xnunun−1, wnvnvn−1, wn−1, xn−1)xnwn

(1− xnun)(1− wnvn)(1− xn)(1− wn)

−G(n− 1, q, q, q, q, q, wnvnxnunun−1, vn−1, wn−1, xn−1)xnv2
nw

3
n

(1− wnvnxnun)(1− wnvn)(1− wnvnxn)(1− wn)

+
G(n− 1, q, q, q, q, q, unun−1, xnvnvn−1, wnwn−1, xn−1)

(1− un)(1− xnvn)(1− xn)(1− wn)

−G(n− 1, q, q, q, q, q, xnunun−1, vnvn−1, wnwn−1, xn−1)xn
(1− xnun)(1− vn)(1− xn)(1− wn)

+
G(n− 1, q, q, q, q, q, vnxnunun−1, vn−1, wnwn−1, xn−1)xnv2

n

(1− vnxnun)(1− vn)(1− vnxn)(1− wn)
. (5.24)

66

Now, we can consolidate Equations 5.2, 5.10, 5.16, 5.24 and get the recurrence for Hn as

H(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) =

(−G(n− 1, q, q, q, q, q, unun−1, wnxnvnvn−1, wn−1, xn−1)wn
(1− un)(1− wnxnvn)(1− xn)(1− wn)

+
G(n− 1, q, q, q, q, q, xnunun−1, wnvnvn−1, wn−1, xn−1)xnwn

(1− xnun)(1− wnvn)(1− xn)(1− wn)

−G(n− 1, q, q, q, q, q, wnvnxnunun−1, vn−1, wn−1, xn−1)xnv2
nw

3
n

(1− wnvnxnun)(1− wnvn)(1− wnvnxn)(1− wn)

+
G(n− 1, q, q, q, q, q, unun−1, xnvnvn−1, wnwn−1, xn−1)

(1− un)(1− xnvn)(1− xn)(1− wn)

−G(n− 1, q, q, q, q, q, xnunun−1, vnvn−1, wnwn−1, xn−1)xn
(1− xnun)(1− vn)(1− xn)(1− wn)

)

−(
D(n, q, unun−1, vn−1, wnwn−1, xn−1, un, vn, wn, xn)

(1− un)(1− wn)

−D(n, q, unun−1, vn−1, wn−1, xn−1, un, vnwn, wn, xn)wn
(1− un)(1− wn)

),

where

D(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) =

H(n− 1, q, q, q, q, q, un−1, xnvnvn−1, wn−1, xn−1)
(1− xnvn)(1− xn)

−H(n− 1, q, q, q, q, q, un−1, vnvn−1, wn−1, xnxn−1)
(1− vn)(1− xn)

+
H(n− 1, q, q, q, q, q, un−1, vn−1, wn−1, vnxnxn−1)vn

(1− xnvn)(1− vn)
. (5.25)

We now find the generating function of H ′n using a similar approach. We briefly describe the

method focusing on the final generating function. From Figure 5.13 using Rule 5

H ′(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) = K ′(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

−P ′(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn). (5.26)

67

Again from Figure 5.14, and Rule 5, we get the generating function of P ′n as

P ′(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) = R′(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

−S′(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn). (5.27)

Both R′n and S′n are derived from D′n shown in Figure 5.15 as per Figures 5.32 and 5.33. We get

R′(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) =
D′(n, q, unun−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

(1− un)(1− wn)

−D
′(n, q, unun−1, vn−1, wn−1, xn−1, un, vn, wn, wnxn)wn

(1− un)(1− wn)
(5.28)

and

S′(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) =
D′(n, q, unun−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

(1− un)(1− wn)

−D
′(n, q, unun−1, vn−1, wnwn−1, xn−1, un, vn, wn, xn)

(1− un)(1− wn)
. (5.29)

From Eqs. 5.27, 5.28, 5.29 we get

P ′(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) =

D′(n, q, unun−1, vn−1, wnwn−1, xn−1, un, vn, wn, xn)
(1− un)(1− wn)

−D
′(n, q, unun−1, vn−1, wn−1, xn−1, un, vn, wn, wnxn)wn

(1− un)(1− wn)
. (5.30)

Figure 5.17 shows the decomposition of D′n into T ′n and W ′n. Using Rule 5, we get

D′(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) = T ′(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

−W ′(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn). (5.31)

From Figure 5.18, we get the generating function of W ′n in terms of U ′n and V ′n using Rule 5 as

W ′(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) = U ′(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

68

Figure 5.32: Derivation of R′n from D′n

−V ′(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn). (5.32)

Using Rule 3 on T ′n, U ′n, V ′n and using Equation 5.31 and 5.32, we get

D′(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) =
H ′(n− 1, q, q, q, q, q, un−1, xnvnvn−1, wn−1, xn−1)

(1− (xn ∗ vn))(1− xn)

−H
′(n− 1, q, q, q, q, q, un−1, vnvn−1, wn−1, xnxn−1)

(1− vn)(1− xn)

+
H ′(n− 1, q, q, q, q, q, un−1, vn−1, wn−1, vnxnxn−1)vn

(1− (vn ∗ xn))(1− vn)
. (5.33)

From Figures 5.19, 5.20, 5.21, 5.22 and 5.23 we get the generating function of K ′n in terms of K
′3
n ,

Figure 5.33: Derivation of S′n from D′n

69

K
′5
n , K

′6
n , K

′7
n , K

′9
n and K

′10
n using Rule 5 as

K ′(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) = K
′3(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

−K
′5(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) +K

′6(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

−K
′7(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) +K

′9(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

−K
′10(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn). (5.34)

We now get the generating functions of the graphs K
′3
n , K

′5
n , K

′6
n , K

′7
n , K

′9
n and K

′10
n from Gn−1

as follows. The graph K
′3
n can be further broken down as shown in Figure 5.34. The generating

function of K3
n is

K
′3(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

=
G(n− 1, q, q, q, q, q, unun−1, vn−1, wn−1, vnxnxn−1)vn

(1− un)(1− vn)(1− vnxn)(1− wn)

−G(n− 1, q, q, q, q, q, unun−1, vn−1, wn−1, vnwnxnxn−1)wnvn
(1− un)(1− vn)(1− vnwnxn)(1− wn)

. (5.35)

K
′5
n can be got from Gn−1 from Figure 5.35

K
′5(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

=
G(n− 1, q, q, q, q, q, vnunun−1, vn−1, wn−1, xnxn−1)vn

(1− vnun)(1− vn)(1− xn)(1− wn)

Figure 5.34: Breaking down K
′3
n

70

Figure 5.35: Breaking down K
′5
n

−G(n− 1, q, q, q, q, q, vnunun−1, vn−1, wn−1, wnxnxn−1)vnwn
(1− vnun)(1− vn)(1− wnxn)(1− wn)

. (5.36)

K
′6
n can be got from Gn−1 from Figure 5.36

K
′6(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

=
G(n− 1, q, q, q, q, q, xnvnunun−1, vn−1, wn−1, xn−1)vnxn

(1− xnvnun)(1− xnvn)(1− xn)(1− wn)

−G(n− 1, q, q, q, q, q, wnxnvnunun−1, vn−1, wn−1, xn−1)vnxnw2
n

(1− wnxnvnun)(1− wnxnvn)(1− wnxn)(1− wn)
. (5.37)

K
′7
n can be got from Gn−1 from Figure 5.37

K
′7(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

Figure 5.36: Breaking down K
′6
n

71

Figure 5.37: Breaking down K
′7
n

=
G(n− 1, q, q, q, q, q, unun−1, vn−1, wn−1, vnxnxn−1)vn

(1− un)(1− vn)(1− vnxn)(1− wn)

−G(n− 1, q, q, q, q, q, unun−1, vn−1, wnwn−1, vnxnxn−1)vn
(1− un)(1− vn)(1− vnxn)(1− wn)

. (5.38)

K
′9
n can be got from Gn−1 from Figure 5.38

K
′9(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

=
G(n− 1, q, q, q, q, q, vnunun−1, vn−1, wn−1, xnxn−1)vn

(1− vnun)(1− vn)(1− xn)(1− wn)

−G(n− 1, q, q, q, q, q, vnunun−1, vn−1, wnwn−1, xnxn−1)vn
(1− vnun)(1− vn)(1− xn)(1− wn)

. (5.39)

K
′10
n can be got from Gn−1 from Figure 5.39

K
′10(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn)

=
G(n− 1, q, q, q, q, q, xnvnunun−1, vn−1, wn−1, xn−1)xnvn

(1− xnvnun)(1− xnvn)(1− xn)(1− wn)

−G(n− 1, q, q, q, q, q, xnvnunun−1, vn−1, wnwn−1, xn−1)xnvn
(1− xnvnun)(1− xnvn)(1− xn)(1− wn)

. (5.40)

From Equations 5.34, 5.35, 5.36, 5.37, 5.38, 5.39 and 5.40 we get the generating function of K ′n in

terms of Gn−1 as

K ′(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) =

72

Figure 5.38: Breaking down K
′9
n

Figure 5.39: Breaking down K
′10
n

−G(n− 1, q, q, q, q, q, unun−1, vn−1, wn−1, vnwnxnxn−1)wnvn
(1− un)(1− vn)(1− vnwnxn)(1− wn)

+
G(n− 1, q, q, q, q, q, vnunun−1, vn−1, wn−1, wnxnxn−1)vnwn

(1− vnun)(1− vn)(1− wnxn)(1− wn)

−G(n− 1, q, q, q, q, q, wnxnvnunun−1, vn−1, wn−1, xn−1)vnxnw2
n

(1− wnxnvnun)(1− wnxnvn)(1− wnxn)(1− wn)

+
G(n− 1, q, q, q, q, q, unun−1, vn−1, wnwn−1, vnxnxn−1)vn

(1− un)(1− vn)(1− vnxn)(1− wn)

−G(n− 1, q, q, q, q, q, vnunun−1, vn−1, wnwn−1, xnxn−1)vn
(1− vnun)(1− vn)(1− xn)(1− wn)

+
G(n− 1, q, q, q, q, q, xnvnunun−1, vn−1, wnwn−1, xn−1)xnvn

(1− xnvnun)(1− xnvn)(1− xn)(1− wn)
. (5.41)

73

Now, we can consolidate Equations 5.26, 5.30, 5.33, 5.41 and get the recurrence for H ′n as

H ′(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) =

(−G(n− 1, q, q, q, q, q, unun−1, vn−1, wn−1, vnwnxnxn−1)wnvn
(1− un)(1− vn)(1− vnwnxn)(1− wn)

+
G(n− 1, q, q, q, q, q, vnunun−1, vn−1, wn−1, wnxnxn−1)vnwn

(1− vnun)(1− vn)(1− wnxn)(1− wn)

−G(n− 1, q, q, q, q, q, wnxnvnunun−1, vn−1, wn−1, xn−1)vnxnw2
n

(1− wnxnvnun)(1− wnxnvn)(1− wnxn)(1− wn)

+
G(n− 1, q, q, q, q, q, unun−1, vn−1, wnwn−1, vnxnxn−1)vn

(1− un)(1− vn)(1− vnxn)(1− wn)

−G(n− 1, q, q, q, q, q, vnunun−1, vn−1, wnwn−1, xnxn−1)vn
(1− vnun)(1− vn)(1− xn)(1− wn)

+
G(n− 1, q, q, q, q, q, xnvnunun−1, vn−1, wnwn−1, xn−1)xnvn

(1− xnvnun)(1− xnvn)(1− xn)(1− wn)
)

D′(n, q, unun−1, vn−1, wnwn−1, xn−1, un, vn, wn, xn)
(1− un)(1− wn)

−D
′(n, q, unun−1, vn−1, wn−1, xn−1, un, vn, wn, wnxn)wn

(1− un)(1− wn)
,

where

D′(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) =

H ′(n− 1, q, q, q, q, q, un−1, xnvnvn−1, wn−1, xn−1)
(1− (xn ∗ vn))(1− xn)

−H
′(n− 1, q, q, q, q, q, un−1, vnvn−1, wn−1, xnxn−1)

(1− vn)(1− xn)

+
H ′(n− 1, q, q, q, q, q, un−1, vn−1, wn−1, vnxnxn−1)vn

(1− (vn ∗ xn))(1− vn)
. (5.42)

We can get the recurrence for Gn using Equations 5.1, 5.25 and 5.42.

5.3 Base Case

Every recurrence must have a base case on which it can be built on. For the 2 × 2 × n graph the

base case is the 2×2×1 (G1) graph as shown in Figure 5.40. We split this graph up into two graphs

74

Figure 5.40: The base graph - 2× 2× 1

using Rule 4 and get H1 and H ′1 so that we have a base case for both Hn and H ′n as shown in Figure

5.41. We can see from Figure 5.41 that after removing the redundant edges, the two base cases H1

and H ′1 are just two straight line graphs. We can get the generating function for them using Rule 3

repeatedly. The generating functions of H1 and H ′1 are

H(1, q, q, q, q, q, u1, v1, w1, x1) =
1

(1− u1)(1− u1x1)(1− u1x1v1)(1− u1x1v1w1)
(5.43)

and

H ′(1, q, q, q, q, q, u1, v1, w1, x1) =
u1v1

(1− u1)(1− u1v1)(1− u1v1x1)(1− u1v1x1w1)
. (5.44)

Figure 5.41: H1 and H ′1

75

Chapter 6

Automation of the recurrence

6.1 Maple implementation

In Chapter 5, we derived the recurrence for the generating function of 2 × 2 × n solid partitions

represented by the digraph Gn in Figure 4.7. We implemented the recurrence in Maple and the

program is shown in Appendix A. Figure 6.1 shows the procedure that implements the first equation

in the recurrence given by Equation 5.1 from Section 5.2. Using this program, we can:

1. Compute G(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn) defined in Section 5.2 by calling:

> Gn(n,q,a,b,c,d,u,v,w,x);.

2. Compute the univariate generating function, G2×2×n(q), of 2×2×n solid partitions by calling:

> Gn(n,q,q,q,q,q,q,q,q,q);.

3. Compute the number of linear extensions of the 2× 2×n poset (`(P2×2×n)) using the method

Figure 6.1: The first procedure from the program in Appendix A

76

Table 6.1: Computing the univariate generating function of 2 × 2 × n solid partitions using the
program in Appendix A

n Time (in Sec.) Memory (in MB)
1 0 0
2 0 0
3 1 5
4 5 54
5 145 795

described in Section 3.3 by calling:

> subs(q=1,simplify(Gn(n,q,q,q,q,q,q,q,q,q)*product(’q^i’,’i’=1..4*n)));,

where the Maple function product(’q^i’,’i’=1..4*n))) gives
∏4n
i=1 (1− qi). By multiplying

this with the generating function, we get the W -polynomial mentioned in Section 3.2.1. The

function simplify(Q) simplifies a given expression Q. This is required so that W -polynomial

is reduced to a polynomial and we can substitute q = 1 to get `(P2×2×n). The Maple function

subs(a=b,Q) substitutes in Q, for all values of a with b.

We ran our program on a machine running Maple 11 with the following configuration:

• Processor: 2.6 GHz AMD Athelon 64x2 dual core processor

• Local memory available: 3454MB

• Operating System: Windows XP Service Pack 2.

We set a limit on the time as at most five days (432,000 seconds) for any particular value and stopped

the program for any value that took more time that that. We recorded the time and memory required

to compute the univariate generating function on this machine in Table 6.1. Observe that the memory

utilized grows very fast. We can see for each n = 4, 5 there is more than a 10 times increase in the

memory utilized when compared to the previous value. On this machine, we were unable to compute

the generating function for n = 6 due to insufficient memory. This is not surprising, as we would

require more than 8000 MB as per the trend.

77

Table 6.2: Computing the univariate generating function of 2 × 2 × n solid partitions using the
program in Appendix B

n Time (in Sec.) Memory (in MB)
1 0 0
2 0 0
3 1 5
4 10 6
5 70 9
6 656 22
7 3301 33
8 20711 68
9 111196 161
10 301674 225

6.2 Optimizations

Due to the high memory utilization by the program in Section 6.1 as shown in Table 6.1, we

optimized it in 3 different ways as described below. The limitation in all these optimizations

is that, we can compute only the univariate generating function of Gn and `(P2×2×n), but not

G(n, q, un−1, vn−1, wn−1, xn−1, un, vn, wn, xn). All the experiments done below are on the same ma-

chine and with the same parameters as described in the end of Section 6.1.

6.2.1 Memoization

On analyzing the recursive procedure calls to our program in Appendix A, we noticed that some

procedures were called several times with the same set of arguments. This prompted us to use

memoization, which is an efficient method to solve problems where procedures with the same set

of arguments are called repeatedly. Maple has an internal memoization facility where, using the

keyword “options remember” along with the procedure, we can instruct it to store the results of all

procedures with their associated parameters in the “remember” table.

To use the storage efficiently, we made some small modifications to our program. Instead of com-

puting the univariate generating function of Gn which is large, we simplified it at each procedure and

computed the W -polynomial described in Section 3.2.1, which is smaller. The generating function

of Gn can be obtained from the W -polynomial by dividing it with
∏4n
i=1 (1− qi). This modified

program is shown in Appendix B.

We ran this program and recorded the time and memory required to compute the univariate

generating function in Table 6.2. Observe that there is a dramatic improvement in the memory

usage when compared to the corresponding values in Table 6.1. The memory grows only about twice

78

each time. However, the limiting factor now is time. We see that the time required to compute

the generating function of Gn grows by about five times each time. The time for n = 10 is 301675

seconds, which is about 3.5 days. Based on the trend, we would expect n = 11 to take about 15

days which is above the time limit set in Section 6.1 and hence, we did not compute it.

6.2.2 Reduction of variables

In the program in Appendix B, observe that only 4 of the variables are actually modified, the

remaining 4 are just passed on to the next level as such. This prompted us to reduce the number

of variables in the procedure to compute the generating function of Gn. This also follows from the

decomposition steps in the Chapter 5: only the nth layer of Gn is modified and the previous layer

is intact.

We modified the program in Appendix B accordingly and the program with reduced variables is

shown in Appendix C. This program also uses memoization, hence computes only the W -polynomial.

We can obtain the generating function from that as before, by dividing with
∏4n
i=1 (1− qi). We ran

this program and recorded the time and memory required to compute the univariate generating

function of Gn in Table 6.3. We have also shown a few values of the W -polynomial. We can see

that, the memory required remains approximately the same, but there is 10-20% improvement in

the time taken when compared to the corresponding values in Table 6.2. But the time still grows by

almost 5 times and hence for n = 11 we would expect it to take about 12 days which is more than

our time limit.

6.2.3 Faster computation for `(P2×2×n)

A further optimization can be done if we are only interested in computing the number of linear

extensions, `(P2×2×n). We noted in Section 5.1 in Step 1 from Figure 5.1, that both Hn and H ′n

are isomorphic to each other except that H ′n has a strict edge. But the number of linear extensions

of the posets represented by these digraphs will be the same, since linear extensions do not vary

with strict and non-strict relationships. Therefore, to compute the generating function of H ′n, we

just call Hn with the parameters xn and vn swapped in all the recursive calls, since these are the

two vertices that are reversed in H ′n. Although the resulting generating function is incorrect, we

are still guaranteed to get the correct value of `(P2×2×n) on substituting q = 1. Since we use using

memoization also, only Hn is computed and H ′n is obtained by just looking up previously stored

79

Table 6.3: Computing the univariate generating function of 2× 2× n solid partitions using the program in Appendix C
n W (P) Time (in Sec.) Mem. (in MB)
1 q2 + 1 0 0
2 q16 +2q14 +2q13 +3q12 +3q11 +5q10 +4q9 +8q8 +4q7 +5q6 +3q5 +3q4 +2q3 +2q2 +1 0 0
3 q42 + 2q40 + 3q39 + 5q38 + 6q37 + 12q36 + 14q35 + 25q34 + 29q33 + 41q32 + 46q31 +

60q30 +68q29 +86q28 +96q27 +117q26 +123q25 +141q24 +137q23 +144q22 +140q21 +
144q20 +137q19 +141q18 +123q17 +117q16 +96q15 +86q14 +68q13 +60q12 +46q11 +
41q10 + 29q9 + 25q8 + 14q7 + 12q6 + 6q5 + 5q4 + 3q3 + 2q2 + 1

2 4

4 q80 + 2q78 + 3q77 + 6q76 + 8q75 + 15q74 + 21q73 + 38q72 + 50q71 + 78q70 + 102q69 +
147q68 + 189q67 + 262q66 + 336q65 + 451q64 + 565q63 + 730q62 + 888q61 + 1101q60 +
1305q59 + 1571q58 + 1828q57 + 2163q56 + 2476q55 + 2878q54 + 3252q53 + 3695q52 +
4089q51 + 4541q50 + 4906q49 + 5328q48 + 5641q47 + 6008q46 + 6272q45 + 6585q44 +
6781q43 + 7003q42 + 7082q41 + 7164q40 + 7082q39 + 7003q38 + 6781q37 + 6585q36 +
6272q35 + 6008q34 + 5641q33 + 5328q32 + 4906q31 + 4541q30 + 4089q29 + 3695q28 +
3252q27 + 2878q26 + 2476q25 + 2163q24 + 1828q23 + 1571q22 + 1305q21 + 1101q20 +
888q19 + 730q18 + 565q17 + 451q16 + 336q15 + 262q14 + 189q13 + 147q12 + 102q11 +
78q10 + 50q9 + 38q8 + 21q7 + 15q6 + 8q5 + 6q4 + 3q3 + 2q2 + 1

11 6

5 (not shown) 78 10
6 (not shown) 580 22
7 (not shown) 2940 33
8 (not shown) 15848 68
9 (not shown) 84059 148
10 (not shown) 242555 222

80

ssingan
Text Box
80

Cheena
Pencil

Table 6.4: Computation of `(P2×2×n) using the program in Appendix D
n `(P) Time (in Sec.) Memory (in MB)
1 2 0 0
2 48 0 0
3 2452 1 4
4 183958 5 5
5 17454844 32 8
6 1941496508 228 14
7 242201554680 1247 25
8 32959299267334 7693 46
9 4801233680739724 38691 105
10 738810565910888784 111789 164
11 118929992674840615128 336722 280

values. So, we can expect the time required to be half of the corresponding values in Table 6.3.

The program with this optimization is shown in Appendix D. We display the time and memory

required by this program along with the values of `(P2×2×n) in Table 6.4. As expected, the time

is approximately half the corresponding values in Table 6.3. We are thus able to compute up to

n = 11 as it is within our time limits. There is also a significant improvement in memory usage when

compared to the other three programs.

6.3 Remarks

Even though we have a recurrence for the generating function of 2 × 2 × n solid partitions, we are

able to compute, by automation, the generating function for only a few values of n on a machine

with limited resources. But the significance of our work is that, if the recurrence could be solved,

we could get a closed form for the generating function. From that, we could also derive a formula to

count the linear extensions of the 2× 2× n poset. With the closed form for the generating function

of 2 × 2 × n solid partitions, we could hope to get some insight into the enumeration of h × p × n

solid partitions.

81

Chapter 7

Other approaches to enumerate

2× 2× n solid partitions

We derived a recurrence for the generating function of 2×2×n solid partitions using “digraph rules”,

that were devised to find integer solutions to systems of linear inequalities of the type sa ≥ sb and

sa > sb. There are other methods that can be used to find integer solutions to linear inequalities

and in this chapter, we study a few of them. We enumerate 2 × 2 × n solid partitions using these

methods and compare their performance, with our program.

7.1 The Omega package

In Section 4.1, we mentioned the “five guidelines” as a simplification of MacMahon’s partition analysis

techniques. MacMahon’s techniques for partitions analysis viewed partitions as sets of solutions

to linear inequalities. He introduced the Omega (Ω
≥

) operator, which takes a general form of the

generating function of the partitions and eliminates unwanted variables via applications of “Omega

rules” to give the required generating function.

Andrews, Paule and Riese [14] investigated MacMahon’s partition analysis and noted that using

the Ω
≥

operator to get the generating function of the set of sequences represented by linear inequalities

could be automated using computer software. As a result, the Omega package, [15] which is a

Mathematica package, was built and it was shown in a series of papers [16, 17, 18, 19, 19, 20, 21,

22, 23, 24, 25, 26] that it could be used to compute the generating function of a number of partition

82

analysis problems. The Omega rules of MacMahon were then used to prove that the solution was

correct. The package does not treat families of solid partitions, but rather computes the generating

function of a particular solid partition with all the inequalities given. The space complexity of the

Omega package grows with the number of dimensions of the input and the size of the coefficients of

the inequalities. In the case of 2 × 2 × n solid partitions, the coefficients are all 1, but the number

of dimensions increases by four for each each value of n. Hence, we would expect the Omega package

to perform poorly for higher values of n.

We ran the package in Mathematica 6.0 on the following machine

• Processor: 2.6 GHz AMD Athelon 64x2 dual core processor

• Local memory available: 3454MB

• Operating System: Windows XP Service Pack 2.

and input the inequalities corresponding to 2× 2× n solid partitions. We were not able to compute

the generating function for n > 2 on this machine due to insufficient memory.

7.2 LattE

7.2.1 The package

LattE (“Lattice point Enumeration”)[27] is a software package used for counting and detecting lattice

points inside convex polyhedra and to compute the generating function of these points. It is the first

ever implementation of Barvinok’s algorithm [28], which is a polynomial time algorithm to count the

lattice points in a convex rational polyhedron when the dimensions are fixed. The algorithm uses

a method of triangulation to decompose the polyhedron into simplical uni-modular cones, and then

find the generating function for each such cone and sum them together.

A polyhedron is defined by a system of linear inequalities given by

Ax ≤ b where A ∈ Zm×d, A = (aij), and b ∈ Zm. (7.1)

where Z is the set of all integers, m is the number of inequalities and d is the number of variables.

These inequalities represent the region bounded by a polyhedron P and their solutions represent the

set of vertices

83

Table 7.1: Computation of the generating function of 2× 2× n solid partitions using LattE
n Time (in Sec.)
1 0
2 0
3 1
4 6
5 99
6 > 86, 400

P = {x ∈ Rd : Ax ≤ b}.

The goal is to output a generating function

f(P ;x) =
∑

α∈P∩Zd

xα1
1 xα2

2 ...xαd

d .

7.2.2 Computing the generating function of 2×2×n solid partitions using

LattE

We notice from Equation 7.1 that the system of inequalities that is used to represent a polyhedron

is similar to those in Section 2.3.1 used to represent sequences. Thus, we can use LattE for our

problem, since 2× 2× n solid partitions can be represented as a set of inequalities of the form given

in Equation 7.1. This package is written in C for the UNIX operating system and hence could not

be run on the same machine described in Section 7.1. We however ran it on a machine with similar

configurations given by

• Processor: 2.6 GHz AMD Athelon 64x2 dual core processor

• Local memory available: 3454MB

• Operating System: Red Hat Linux.

For time bounds, we stopped the program if it took significantly more time than the corresponding

value of n in Table 6.2.

We display the time taken by LattE to compute the generating function of 2×2×n solid partitions

in Table 7.1. The time required by LattE, seen in Table 7.1, is comparable to the corresponding

values in Table 6.2 for n ≤ 5, but significantly higher for n = 6. Even though LattE, promises a

polynomial time algorithm for fixed dimensions, it faces its limitation in our case. The number of

84

dimensions here increases by four with every layer n and so very high dimensions are reached for

small values of n.

7.3 The package RotaStanley

7.3.1 The method

Zeilberger studied the use of umbral calculus to enumerate P -partitions (defined in Section 2.5) [29].

In this paper, they propose a method of grafting where two posets P and Q (labeled naturally from

(1, 2, ...n) and (1, 2, ...,m) respectively) that are isomorphic in the last k elements of P and the first

k elements of Q, are joined together to form a new poset called the k−graft of P and Q. First the

labels of Q are promoted by n−k so that the elements are named (n−k+1, n−k+2, ..., n−k+m).

The k-graft of P and Q then consists of elements that are the first n − k elements of P and the m

elements of Q identified with the new labeling. If the generating functions of the set of P -partitions

of P and Q are known, then the generating function of the set of P -partitions of the k-graft of P

and Q is found using umbral operators defined in [30].

Application to posets

This method of grafting and using the umbral calculus can be applied to the posets because every

poset P can be described (in more than one way) as a chain of elementary posets (P1, P2, ..., PM)

together with a sequence of positive integers (k1, ..., kM−1) that describe the interfaces: the last k1

vertices of P1 are identified with the first k1 vertices of P2 and so on. The resulting poset is denoted

by

G([P1, P2, ..., PM], [k1, k2, ..., kM−1]).

To compute the generating function of the set of P -partitions, the poset is viewed as an iterated

graft and for each iteration, the methods described above are applied. As long as the interface sizes

(ki’s) are not big, the umbral calculus method can be used to compute the generating function of

very large posets i.e., as long as the poset is skinny enough, very tall posets can be handled [29].

This method can be used to obtain the generating function for families of posets when the it-

erative grafting is done with the input poset P itself. The authors have written a Maple package

RotaStanley [31], which implements their algorithm and have studied several recursive poset fami-

85

Table 7.2: Computation of generating function of 2 × 2 × n solid partitions using the package
RotaStanley

n Time (in Sec.) Memory (in MB)
1 - -
2 10 8
3 14 11
4 21 21
5 33 164
6 - > 1, 800

lies.

7.3.2 Computing the generating function of 2×2×n solid partitions using

the package RotaStanley

The authors have studied the 2 × 2 × n poset and have a written a separate function to compute

the generating function of its set of P -partitions. We mentioned in Section 3.1.3 that the generating

function of h×p×n solid partitions is same as the generating function of the set of P -partitions of the

corresponding poset. We ran RotaStanley in Maple 11, on the machine described in Section 7.1 and

display the time and memory required to compute the generating function of 2×2×n solid partition

in Table 7.2. Although the time required to compute the generating function using RotaStanley in

Table 7.2 is comparable to values in Table 6.2, we can see that the memory requirements are higher.

We were not able to compute the generating function for n = 6 as the memory required was greater

than the available memory on the system. This is surprising, as the 2× 2×n poset is “skinny” (has

a width of 4), yet our machine is not able to compute higher values of the generating function using

the package.

7.4 The Combinatorial Object Server (COS)

7.4.1 The package

The Combinatorial Object Server is a mathematical tool [32] that can generate different combinato-

rial objects like permutations, combinations, different tree types, unlabeled graphs, linear extensions,

ideals and many more. Of particular interest to us, is the program that generates and counts linear

extensions. Based on the type of listing requested, two different algorithms are implemented. If

Gray code output is requested, the program implements Ruskeys’s algorithm to generate and count

86

Table 7.3: Using the Combinatorial Object Server to count the linear extensions of the 2× 2× n
poset

n Time (in Sec.)
1 0
2 0
3 0
4 0
5 0
6 11
7 1278
8 > 86, 400

linear extensions.

Pruesse and Ruskey developed a method of generating linear extensions based on the idea of

listing the successive elements through transpositions [33, 34, 35]. They developed an algorithm

that takes constant amortized time, to generate each linear extension (O(`(P))). To count the

linear extensions, the program is modified accordingly to save some computations and count them

efficiently. Their algorithm extends the practical range of posets for which this can be done, more

than other previous algorithms.

7.4.2 Counting linear extensions of the 2× 2× n poset using the COS

We input the 2 × 2 × n poset to the Combinatorial Object Server to count its linear extensions,

and recorded the time taken for each values of n in Table 7.3. It is a program in C, so we ran it

on the UNIX machine described in Section 7.2.2. When compared to our program to count linear

extensions in Table 6.4, we can see that it is faster up to n = 6, comparable for n = 7 and slows

down for n ≥ 8. It is beyond the time bounds set in Section 7.2.2 and hence we did not compute it.

Even though the program is optimized for counting, it still runs in O(`(P)) and seeing the growth

of `(P2×2×n) from Table 6.4, this slowdown is not surprising.

7.5 The Posets package

7.5.1 The package

Stembridge developed a software package in Maple that consists of about 40 programs that provide

an environment for computations involving partially ordered sets [36]. Among the various programs,

the one that is of interest to us is the one that computes the W -polynomial (defined in Section 3.2.1)

87

and the number of linear extensions of a given poset. These algorithms run in time proportional to

the number of order ideals (defined in Section 2.4.4), NJ(P), of a poset P . For any poset P , NJ(P)

is in O(2n) which is asymptotically lower than the number of linear extensions, `(P), which is in

O(n!). So we can expect these algorithms to be much faster than any of the other methods described

before. The number of order ideals NJ(P2×2×n) of the 2× 2× n poset is given by

NJ(P2×2×n) =
n2(n2 − 1)

12
.

Computing the W -polynomial

Stembridge implements two algorithms to compute the W -polynomial based on the size of the poset.

The first computes the W -polynomial if the size of the poset P is less than 6. It has minimal space

requirements and runs in time, linear in the number of linear extensions of P . It is a straightforward

algorithm that uses Equation 3.6 to compute the descent set for each of the linear extensions.

If the size of the poset is greater than 6, a different algorithm whose running time is quadratic

in NJ(P) is used. This algorithms involves formation of the order ideal poset J(P) and then com-

puting some functions on the maximal chains (defined in Section 2.4.5) in J(P), to compute the

W -polynomial [37].

Counting Linear Extensions

To count the number of linear extensions, a faster algorithm called the “voodoo” method is used.

This is an application of the result that the number of linear extensions of a poset P is equal to the

number of chains in the order ideal J(P) [5]. It is optimized further by using dynamic programming.

Once the order ideal J(P) is computed, the algorithm computes the number of chains in J(P). If

we think of J(P) as a graph, the number of chains is the same as the number of paths from the top

most element to the bottom most element. The complexity is linear in the number of order ideals

of P .

7.5.2 Using the Posets package on the 2× 2× n poset

We ran the Posets package in Maple 11, on the machine described in Section 7.1 and computed the

W -polynomial for the 2× 2× n poset. The generating function of 2× 2× n solid partitions can be

obtained from the W -polynomial by dividing it by
∏4n
i=1 (1− qi) (refer Equation 3.4). The time and

88

Table 7.4: Computation of W -polynomial of the 2× 2× n poset using posets
n Time (in Sec.) Memory (in MB)
1 0 0
2 0 0
3 0 0
4 0 0
5 0 3
6 0 4
7 1 4
8 1 5
9 1 6
10 3 9
11 6 16
12 18 25
13 44 41
14 95 63
15 179 103
16 313 172
17 515 243
18 781 380
19 1194 553
20 1707 726

memory required to compute the generating function are displayed in Table 7.4. As expected, the

time required to compute the W -polynomial is much lower than any of the methods described before

including all our programs. We are able to compute much higher values of W -polynomial using this

package in a shorter time. The time taken in Table 7.4 grows by less than three times for each value

of n. Counting linear extensions is even faster. Table 7.5 shows the number of linear extensions of

the 2× 2×n poset computed for values of n between 12 and 30 using the Posets package. The time

taken to compute these was less than 20 seconds and the memory utilized was less than 20MB.

7.6 Remarks

On using these packages to enumerate 2× 2× n solid partitions, we are able to see their advantages

and limitations. The main advantage of these packages over our program is that, they are not

designed for just one special case. That is also a disadvantage, since they do not have any special

knowledge about our particular problem, unlike our program. The Omega package and LattE, like

the “digraph methods”, treat solid partitions as integer solutions to sets of linear inequalities. The

Omega package is a powerful tool that was used to solve a number of partition analysis problems.

Since its space complexity grows with the number of dimensions of the input, it is not very useful for

89

Table 7.5: Values of number of linear extensions of the 2× 2× n poset computed using posets
n `(Gn)
12 19880920716640427983476
13 3431624482227380273056728
14 608880419873586515669564728
15 110654016191338341346670548240
16 20536574090713344110860752530646
17 3882925024331174796857101684510428
18 746410931448945012196513727291312844
19 145626362670805760264809414243057616552
20 28794547473359904233269297596817899967540
21 5762931182262926787948946259721346099337448
22 1166185395947574420229000366163857468337148200
23 238380981302510862406586051901289597632003118992
24 49180740964278427332002617903561118285268230978484
25 10233409402065855596885427205182450024540045694903496
26 2146179486209897103540691298354178242048691417482262072
27 453400144256534780139121367761657548145477875223042927920
28 96436903908611647069262069806690816719553841382241397251848
29 20641908397438606421142576358642139410375633787282792348176176
30 4444473356427012495261965342058138866936007235709258019584751568

2× 2× n solid partitions, since the number of dimensions here, increases by four for every value of

n. LattE has the same disadvantage with respect to our problem. The advantage of LattE over the

Omega package is that, the time complexity of LattE does not increase with size of the coefficients

for a fixed dimension, unlike the Omega package. Hence LattE can be used to solve linear inequalities

with high value of coefficients faster than the Omega package.

All the other packages that we used, focus on the poset aspect of the problem. The umbral

calculus method of Zeilberger, views 2 × 2 × n solid partitions as the set of P -partitions of the

2×2×n poset and computes its generating function. The umbral calculus method could be used on

large and “skinny” posets, and also on poset families, to derive an “umbral recurrence”. However,

our machine running the Maple implementation, RotaStanley, could not compute the generating

function for n = 6 due to high memory requirements. The Combinatorial Object Server for counting

linear extensions is fast for small values of n, but slows down for higher values because of the O(`(P))

algorithm.

The Posets package also does computations on posets and can compute the W -polynomial of the

poset corresponding to 2×2×n solid partitions. This is the only package that, among the others we

used, outperforms our program. It exploits some of the basic properties of the poset, and combined

with some clever methods, gives a O(NJ(P)) algorithm to compute the W -polynomial and count the

90

linear extensions. The limitation of this method is that we can never get the W -polynomial for the

general case n, unlike our recurrence. Each poset has to be explicitly input, which could be tedious

for very high values of n.

91

Chapter 8

Further observations and future

work

In this chapter, we present some interesting observations we made about 2 × 2 × n solid partitions

in this thesis and some possible scope for future work.

8.1 Further observations

There are a few interesting observations about 2 × 2 × n solid partitions and the W -polynomial of

the 2 × 2 × n poset that we made using the “digraph methods”, Posets package and the Sloan’s

encyclopedia. Let d(n) be the degree of the W -polynomial of the 2× 2× n poset, then

1. The values of d(n), follow the sequence 2, 16, 42, 80, 130, 192, 266, ... which can be generated as

(Sequence No. A139267 in [1])

d(n) = 2n(3n− 2).

2. The sequence formed by the coefficients of the W -polynomial is symmetric i.e.,

coeff(qk) = coeff(q(d(n)−k)).

92

3. In the W -polynomial of 2× 2× n poset,

For 0 ≤ i ≤ d(n), {coeff(qi) = 0} ⇔ {i = 0 or i = d(n)− 1}.

4. The number of linear extensions of the poset represented by the digraph Hn and H ′n from

Figure 5.1 are the same and equal to `(P2×2×n)
2 .

5. The following identity holds for the reduced variable version of our recurrence:

H ′(n, q, q, q, q, q) = H(n, 1/q, 1/q, 1/q, 1/q, 1/q) ∗ 1
(qd(n)+2)

.

It provides another way to compute the generating function of H ′(n) given the generating

function of H(n).

6. The number of order ideals NJ(P2×2×n) of the 2×2×n poset follows the sequence 6,20,50,105,...

called the “4-dimensional pyramidal numbers” and are generated by (Sequence No. A002415

in [1])

NJ(P2×2×n) =
n2(n2 − 1)

12

where n ≥ 3

7. The number of sub-posets of size m/2 in the order ideal poset J(P2×2×n) of the 2×2×n poset

, (where m = 4n) follows the sequence 2,4,8,13,20,30,... (Sequence No. A061866 in [1]) which

is the number of solutions to

x+ y + z = 0 mod 3, where 1 ≤ x ≤ y ≤ z ≤ m.

8. The number of sub-posets of sizes m
2 − 1 and m

2 + 1 in J(P2×2×n), are the same and follow the

sequence 1,3,6,11,18,27,39,... (Sequence No. A014125 in [1]).

9. If we split the digraph representing 2× 2× n solid partitions along the plane shown in Figure

8.1 we get two graphs that represent 3 × n plane partitions and the generating function for

that can be derived from Equation 3.1 as

1
(q; q)n(q; q2)n(q; q3)n

.

93

However, if we split as shown in Figure 8.2, we get 2 graphs that look like a 3×n spine shaped

graph. There is no known closed form of the generating function of that digraph. In 1965

Krewaras proved that the formula

4n(3n)!
(n+ 1)!(2n+ 1)!

counts the number of planar lattice walks of length 3n starting and ending at (0,0), remaining

in the first quadrant, and using only NE,W,S steps. This proof is considered to be difficult

[38]. It can be shown that the number of linear extensions of the poset represented by the

graph shown in Figure 8.2 can be given by the same formula.

8.2 Conclusion

In this thesis, we are successful in computing an explicit recurrence for the generating function of

2 × 2 × n solid partitions. We implemented the recurrence in Maple, optimized using memoization

and reduction of variables and computed the generating function for a few values of n. We also used

other packages like LattE, RotaStanley, Omega package, COS and Posets package to enumerate

2×2×n solid partitions and count the linear extensions of the 2×2×n poset. We observed that our

program performs better than all these packages except the Posets package, which is much faster.

8.3 Future Work

This work presents some scope for future work. We list some possible directions for future work

below.

1. Solve the recurrence for 2 × 2 × n solid partitions and get the closed form of the counting

generating function.

2. Use the digraph methods to derive the counting generating function of other solid partitions

like 3× 2×n, and eventually extend it to get a generalized form of the generating function for

h× p× n solid partitions.

3. In Section 8.1, we mentioned the formula to count the number of linear extensions of the 3×n

spine graph shown in Figure 8.2. Since the number of linear extensions has a nice form, the

generating function of the set of graph too could have a closed form.

94

Figure 8.1: Splitting Gn one way

95

Figure 8.2: Another splitting of Gn

96

Bibliography

[1] N.J.A Sloane. Online Encyclopedia of Integer Sequences. World Wide Web, 2007.

[2] William J Davis, Erwin D’Souza, Sunyoung Lee, and Carla D. Savage. Enumeration of integer

solutions to linear inequalities defined by digraphs. In Contemporary Mathematics, volume 452,

pages 79–91. American Mathematical Society, 2008.

[3] Sylvie Corteel, Sunyoung Lee, and Carla D. Savage. Five guidelines for partition analysis with

applications to lecture hall-type theorems. In Combinatorial number theory, pages 131–155. de

Gruyter, Berlin, 2007.

[4] Richard P. Stanley. Enumerative combinatorics. Vol. 1, volume 49 of Cambridge Studies in

Advanced Mathematics. Cambridge University Press, Cambridge, 1997. With a foreword by

Gian-Carlo Rota, Corrected reprint of the 1986 original.

[5] Richard P. Stanley. Ordered structures and partitions. American Mathematical Society, Provi-

dence, R.I., 1972. Memoirs of the American Mathematical Society, No. 119.

[6] Percy A. MacMahon. Combinatory analysis. Two volumes (bound as one). Chelsea Publishing

Co., New York, 1960.

[7] Lorne Houten. A note on solid partitions. Acta Arith., 15:71–76, 1968.

[8] Ville Mustonen and R. Rajesh. Numerical estimation of the asymptotic behaviour of solid

partitions of an integer. J. Phys. A, 36(24):6651–6659, 2003.

[9] Graham Brightwell and Peter Winkler. Counting linear extensions. Order, 8(3):225–242, 1991.

[10] T. Kyle Petersen. Enriched P -partitions and peak algebras. Adv. Math., 209(2):561–610, 2007.

[11] John R. Stembridge. Enriched P -partitions. Trans. Amer. Math. Soc., 349(2):763–788, 1997.

97

[12] Donald E. Knuth. A note on solid partitions. Math. Comp., 24:955–961, 1970.

[13] Erwin D’Souza. Automating the enumeration of integer sequences defined by directed graphs.

Master’s thesis, North Carolina State University, 2005.

[14] George E. Andrews, Peter Paule, and Axel Riese. MacMahon’s partition analysis: the Omega

package. European J. Combin., 22(7):887–904, 2001.

[15] George E. Andrews, Peter Paule, and Axel Riese. Omega package.

http://www.risc.uni-linz.ac.at/research/combinat/software/Omega/.

[16] George E. Andrews. MacMahon’s partition analysis. I. The lecture hall partition theorem. In

Mathematical essays in honor of Gian-Carlo Rota (Cambridge, MA, 1996), volume 161 of Progr.

Math., pages 1–22. Birkhäuser Boston, Boston, MA, 1998.

[17] George E. Andrews. MacMahon’s partition analysis. II. Fundamental theorems. Ann. Comb.,

4(3-4):327–338, 2000. Conference on Combinatorics and Physics (Los Alamos, NM, 1998).

[18] George E. Andrews and Peter Paule. MacMahon’s partition analysis. IV. Hypergeometric mul-

tisums. Sém. Lothar. Combin., 42:Art. B42i, 24 pp. (electronic), 1999. The Andrews Festschrift

(Maratea, 1998).

[19] George E. Andrews, Peter Paule, Axel Riese, and Volker Strehl. MacMahon’s partition analy-

sis. V. Bijections, recursions, and magic squares. In Algebraic combinatorics and applications

(Gößweinstein, 1999), pages 1–39. Springer, Berlin, 2001.

[20] George E. Andrews, Peter Paule, and Axel Riese. MacMahon’s partition analysis. VI. A new

reduction algorithm. Ann. Comb., 5(3-4):251–270, 2001. Dedicated to the memory of Gian-Carlo

Rota (Tianjin, 1999).

[21] George E. Andrews, Peter Paule, and Axel Riese. MacMahon’s partition analysis. VII. Con-

strained compositions. In q-series with applications to combinatorics, number theory, and physics

(Urbana, IL, 2000), volume 291 of Contemp. Math., pages 11–27. Amer. Math. Soc., Providence,

RI, 2001.

[22] George E. Andrews, Peter Paule, and Axel Riese. MacMahon’s partition analysis. VIII. Plane

partition diamonds. Adv. in Appl. Math., 27(2-3):231–242, 2001. Special issue in honor of

Dominique Foata’s 65th birthday (Philadelphia, PA, 2000).

98

[23] George E. Andrews, Peter Paule, and Axel Riese. MacMahon’s partition analysis. IX. k-gon

partitions. Bull. Austral. Math. Soc., 64(2):321–329, 2001.

[24] G. E. Andrews, Peter Paule, and Axel Riese. MacMahon’s partition analysis. X. Plane partitions

with diagonals. South East Asian J. Math. Math. Sci., 3(1):3–14, 2004.

[25] George E. Andrews and Peter Paule. MacMahon’s partition analysis. XI. Broken diamonds and

modular forms. Acta Arith., 126(3):281–294, 2007.

[26] George E. Andrews and Peter Paule. MacMahon’s partition analysis. XII. Plane partitions. J.

Lond. Math. Soc. (2), 76(3):647–666, 2007.

[27] Jesús A. De Loera, David Haws, Raymond Hemmecke, Peter Huggins, Jeremiah Tauzer, and

Ruriko Yoshida. LattE. http://www.math.ucdavis.edu/~latte/.

[28] Alexander I. Barvinok. A polynomial time algorithm for counting integral points in polyhedra

when the dimension is fixed. Math. Oper. Res., 19(4):769–779, 1994.

[29] Shalosh B. Ekhad and Doron Zeilberger. Using rota’s umbral calculus to enumerate stanley’s

p-partitions. In Advances in Applied Mathematics. Elsevier Inc., 2007.

[30] Steven M. Roman and Gian-Carlo Rota. The Umbral calculus. Advances in Math., 27(2):95–188,

1978.

[31] Shalosh B. Ekhad and Doron Zeilberger. RotaStanley.

http://www.math.rutgers.edu/~zeilberg/tokhniot/RotaStanley.

[32] Frank Ruskey. Combinatorial object server. http://theory.cs.uvic.ca/root.html.

[33] Gara Pruesse and Frank Ruskey. Generating the linear extensions of certain posets by transpo-

sitions. SIAM J. Discrete Math., 4(3):413–422, 1991.

[34] Frank Ruskey. Generating linear extensions of posets by transpositions. J. Combin. Theory

Ser. B, 54(1):77–101, 1992.

[35] Gara Pruesse and Frank Ruskey. Generating linear extensions fast. SIAM J. Comput.,

23(2):373–386, 1994.

[36] John R. Stembridge. Posets package.

http://www.math.lsa.umich.edu/~jrs/maple.html#posets.

99

[37] John R. Stembridge. Counterexamples to the poset conjectures of Neggers, Stanley, and Stem-

bridge. Trans. Amer. Math. Soc., 359(3):1115–1128 (electronic), 2007.

[38] Mireille Bousquet-Melou. Walks in the quarter plane: Kreweras’ algebraic model. The Annals

of Applied Probability, 15:1451, 2005.

100

Appendices

101

Appendix A

Program without optimization

Gn := proc(n,q,a,b,c,d,u,v,w,x);

return (Hn(n,q,a,b,c,d,u,v,w,x)+Hn1(n,q,a,b,c,d,u,v,w,x))

end:

Hn := proc(n,q,a,b,c,d,u,v,w,x);

if n=1 then

return (((1)/((1-u)*(1-u*x)*(1-u*v*x)*(1-u*v*w*x))))

else

return (Kn(n,q,a,b,c,d,u,v,w,x)-

Pn(n,q,a,b,c,d,u,v,w,x))

fi;

end:

Kn := proc(n,q,a,b,c,d,u,v,w,x) ;

return (-(Gn(n-1,q,q,q,q,q,a*u,v*b*x*w,c,d)*w)/

((1-u)*(1-v*x*w)*(1-x)*(1-w))

+((Gn(n-1,q,q,q,q,q,a*u,v*b*x,c*w,d)))/

((1-u)*(1-v*x)*(1-x)*(1-w))

+((Gn(n-1,q,q,q,q,q,a*u*x,v*b*w,c,d))*x*w)/

((1-u*x)*(1-v*w)*(1-w)*(1-x))

102

-((Gn(n-1,q,q,q,q,q,a*u*x,v*b,c*w,d))*x)/

((1-u*x)*(1-v)*(1-x)*(1-w))

-((Gn(n-1,q,q,q,q,q,a*u*x*v*w,b,c,d))*x*(v^2)*(w^3))/

((1-u*x*v*w)*(1-x*v*w)*(1-v*w)*(1-w))

+((Gn(n-1,q,q,q,q,q,a*u*x*v,b,c*w,d))*x*(v^2))/

((1-u*v*x)*(1-x*v)*(1-v)*(1-w)))

end:

Pn := proc(n,q,a,b,c,d,u,v,w,x);

return ((Dn(n,q,a*u,b,c*w,d,u,v,w,x)-

(Dn(n,q,a*u,b,c,d,u,v*w,w,x)*w))/((1-u)*(1-w)))

end:

Dn := proc(n,q,a,b,c,d,u,v,w,x);

return ((Hn(n-1,q,q,q,q,q,a,b,c,v*x*d)*v)/

((1-v)*(1-x*v))

+(Hn(n-1,q,q,q,q,q,a,b*v*x,c,d))/

((1-v*x)*(1-x))

-(Hn(n-1,q,q,q,q,q,a,b*v,c,d*x))/

((1-v)*(1-x)))

end:

Hn1 := proc(n,q,a,b,c,d,u,v,w,x);

if n=1 then

return ((v*u)/((1-u)*(1-u*v)*(1-u*v*x)*(1-u*v*w*x)))

else

return (Kn1(n,q,a,b,c,d,u,v,w,x)-

Pn1(n,q,a,b,c,d,u,v,w,x))

fi;

end:

Kn1 := proc(n,q,a,b,c,d,u,v,w,x);

return (-((Gn(n-1,q,q,q,q,q,a*u,b,c,d*x*v*w))*v*w)/

((1-u)*(1-x*v*w)*(1-v)*(1-w))

+((Gn(n-1,q,q,q,q,q,a*u*v,b,c,d*x*w))*w*v)/

103

((1-u*v)*(1-x*w)*(1-v)*(1-w))

-((Gn(n-1,q,q,q,q,q,a*u*v*x*w,b,c,d))*v*x*(w^2))/

((1-x*u*v*w)*(1-x*w*v)*(1-x*w)*(1-w))

+((Gn(n-1,q,q,q,q,q,a*u,b,c*w,d*x*v))*v)/

((1-u)*(1-x*v)*(1-v)*(1-w))

-((Gn(n-1,q,q,q,q,q,a*u*v,b,c*w,d*x))*v)/

((1-u*v)*(1-x)*(1-v)*(1-w))

+((Gn(n-1,q,q,q,q,q,a*u*v*x,b,c*w,d))*v*x)/

((1-u*v*x)*(1-v*x)*(1-x)*(1-w)))

end:

Pn1 := proc(n,q,a,b,c,d,u,v,w,x);

return ((Dn1(n,q,a*u,b,c*w,d,u,v,w,x)-

(Dn1(n,q,a*u,b,c,d,u,v,w,x*w)*w))/((1-u)*(1-w)))

end:

Dn1 := proc(n,q,a,b,c,d,u,v,w,x) ;

return (((Hn1(n-1,q,q,q,q,q,a,b*v*x,c,d)))/

((1-v*x)*(1-x))

+((Hn1(n-1,q,q,q,q,q,a,b,c,d*x*v))*v)/

((1-x*v)*(1-v))

-((Hn1(n-1,q,q,q,q,q,a,b*v,c,d*x)))/

((1-x)*(1-v)))

end:

104

Appendix B

Program with memoization

Gn := proc(n,q,a,b,c,d,u,v,w,x) options remember;

return (Hn(n,q,a,b,c,d,u,v,w,x)+Hn1(n,q,a,b,c,d,u,v,w,x))

end:

Hn := proc(n,q,a,b,c,d,u,v,w,x) options remember;

if n=1 then

return simplify(((1)/

((1-u)*(1-u*x)*(1-u*v*x)*(1-u*v*w*x)))

*product(’1-q^i’,’i’=1..4))

else

return simplify((

(-(Gn(n-1,q,q,q,q,q,a*u,v*b*x*w,c,d)*w)/

((1-u)*(1-v*x*w)*(1-x)*(1-w))

+((Gn(n-1,q,q,q,q,q,a*u,v*b*x,c*w,d)))/

((1-u)*(1-v*x)*(1-x)*(1-w))

+((Gn(n-1,q,q,q,q,q,a*u*x,v*b*w,c,d))*x*w)/

((1-u*x)*(1-v*w)*(1-w)*(1-x))

-((Gn(n-1,q,q,q,q,q,a*u*x,v*b,c*w,d))*x)/

((1-u*x)*(1-v)*(1-x)*(1-w))

105

-((Gn(n-1,q,q,q,q,q,a*u*x*v*w,b,c,d))*x*(v^2)*(w^3))/

((1-u*x*v*w)*(1-x*v*w)*(1-v*w)*(1-w))

+((Gn(n-1,q,q,q,q,q,a*u*x*v,b,c*w,d))*x*(v^2))/

((1-u*v*x)*(1-x*v)*(1-v)*(1-w)))

-((((Hn(n-1,q,q,q,q,q,a*u,b,c*w,v*x*d)*v)/((1-v)*(1-x*v))

+(Hn(n-1,q,q,q,q,q,a*u,b*v*x,c*w,d))/((1-v*x)*(1-x))

-(Hn(n-1,q,q,q,q,q,a*u,b*v,c*w,d*x))/((1-v)*(1-x)))

-(((Hn(n-1,q,q,q,q,q,a*u,b,c,v*w*x*d)*v*w)/((1-v*w)*(1-x*v*w))

+(Hn(n-1,q,q,q,q,q,a*u,b*v*w*x,c,d))/((1-v*w*x)*(1-x))

-(Hn(n-1,q,q,q,q,q,a*u,b*v*w,c,d*x))/

((1-v*w)*(1-x)))*w))/((1-u)*(1-w))))

product(’1-q^i’,’i’=(4(n-1)+1)..4*n))

fi;

end:

Hn1 := proc(n,q,a,b,c,d,u,v,w,x) options remember;

if n=1 then

return simplify(((v*u)/

((1-u)*(1-u*v)*(1-u*v*x)*(1-u*v*w*x)))

*product(’1-q^i’,’i’=1..4))

else

return simplify

(((-((Gn(n-1,q,q,q,q,q,a*u,b,c,d*x*v*w))*v*w)/

((1-u)*(1-x*v*w)*(1-v)*(1-w))

+((Gn(n-1,q,q,q,q,q,a*u*v,b,c,d*x*w))*w*v)/

((1-u*v)*(1-x*w)*(1-v)*(1-w))

-((Gn(n-1,q,q,q,q,q,a*u*v*x*w,b,c,d))*v*x*(w^2))/

((1-x*u*v*w)*(1-x*w*v)*(1-x*w)*(1-w))

+((Gn(n-1,q,q,q,q,q,a*u,b,c*w,d*x*v))*v)/

((1-u)*(1-x*v)*(1-v)*(1-w))

106

-((Gn(n-1,q,q,q,q,q,a*u*v,b,c*w,d*x))*v)/

((1-u*v)*(1-x)*(1-v)*(1-w))

+((Gn(n-1,q,q,q,q,q,a*u*v*x,b,c*w,d))*v*x)/

((1-u*v*x)*(1-v*x)*(1-x)*(1-w)))

-(((((Hn1(n-1,q,q,q,q,q,a*u,b*v*x,c*w,d)))/((1-v*x)*(1-x))

+((Hn1(n-1,q,q,q,q,q,a*u,b,c*w,d*x*v))*v)/((1-x*v)*(1-v))

-((Hn1(n-1,q,q,q,q,q,a*u,b*v,c*w,d*x)))/((1-x)*(1-v)))

-((((Hn1(n-1,q,q,q,q,q,a*u,b*v*x*w,c,d)))/((1-v*x*w)*(1-x*w))

+((Hn1(n-1,q,q,q,q,q,a*u,b,c,d*x*w*v))*v)/((1-x*w*v)*(1-v))

-((Hn1(n-1,q,q,q,q,q,a*u,b*v,c,d*x*w)))/((1-x*w)*(1-v)))*w))/

((1-u)*(1-w))))*product(’1-q^i’,’i’=(4*(n-1)+1)..4*n))

fi;

end:

107

Appendix C

Program with memoization and

reduced variable optimization

Gn := proc(n,q,u,v,w,x) options remember;

return Hn(n,q,u,v,w,x)+Hn1(n,q,u,v,w,x);

end:

Hn := proc(n,q,u,v,w,x) options remember;

if n=1 then

return simplify(((1)/((1-u)*(1-u*x)*(1-u*v*x)*(1-u*v*w*x)))

*product(’1-q^i’,’i’=1..4))

else

return simplify((

(-simplify((Gn(n-1,q,q*u,v*q*x*w,q,q)*w)/

((1-u)*(1-v*x*w)*(1-x)*(1-w))

product(’1-q^i’,’i’=(4(n-1)+1)..4*n))

+simplify(((Gn(n-1,q,q*u,v*q*x,q*w,q)))/

((1-u)*(1-v*x)*(1-x)*(1-w))

product(’1-q^i’,’i’=(4(n-1)+1)..4*n))

108

+simplify(((Gn(n-1,q,q*u*x,v*q*w,q,q))*x*w)/

((1-u*x)*(1-v*w)*(1-w)*(1-x))

product(’1-q^i’,’i’=(4(n-1)+1)..4*n))

-simplify(((Gn(n-1,q,q*u*x,v*q,q*w,q))*x)/

((1-u*x)*(1-v)*(1-x)*(1-w))

product(’1-q^i’,’i’=(4(n-1)+1)..4*n))

-simplify(((Gn(n-1,q,q*u*x*v*w,q,q,q))*x*(v^2)*(w^3))/

((1-u*x*v*w)*(1-x*v*w)*(1-v*w)*(1-w))

product(’1-q^i’,’i’=(4(n-1)+1)..4*n))

+simplify(((Gn(n-1,q,q*u*x*v,q,q*w,q))*x*(v^2))/

((1-u*v*x)*(1-x*v)*(1-v)*(1-w))

product(’1-q^i’,’i’=(4(n-1)+1)..4*n)))

-(((simplify((Hn(n-1,q,q*u,q,q*w,v*x*q)*v)/

((1-v)*(1-x*v))*product(’1-q^i’,’i’=(4*(n-1)+1)..4*n))

+simplify((Hn(n-1,q,q*u,q*v*x,q*w,q))/

((1-v*x)*(1-x))*product(’1-q^i’,’i’=(4*(n-1)+1)..4*n))

-simplify((Hn(n-1,q,q*u,q*v,q*w,q*x))/

((1-v)*(1-x))*product(’1-q^i’,’i’=(4*(n-1)+1)..4*n)))

-((simplify((Hn(n-1,q,q*u,q,q,v*w*x*q)*v*w)/

((1-v*w)*(1-x*v*w))*product(’1-q^i’,’i’=(4*(n-1)+1)..4*n))

+simplify((Hn(n-1,q,q*u,q*v*w*x,q,q))/

((1-v*w*x)*(1-x))*product(’1-q^i’,’i’=(4*(n-1)+1)..4*n))

-simplify((Hn(n-1,q,q*u,q*v*w,q,q*x))/

((1-v*w)*(1-x))

product(’1-q^i’,’i’=(4(n-1)+1)..4*n)))*w))/

((1-u)*(1-w)))))

fi;

end:

Hn1 := proc(n,q,u,v,w,x) options remember;

if n=1 then

109

return simplify(((v*u)/

((1-u)*(1-u*v)*(1-u*v*x)*(1-u*v*w*x)))

*product(’1-q^i’,’i’=1..4))

else

return simplify(

((-((Gn(n-1,q,q*u,q,q,q*x*v*w))*v*w)/

((1-u)*(1-x*v*w)*(1-v)*(1-w))

+((Gn(n-1,q,q*u*v,q,q,q*x*w))*w*v)/

((1-u*v)*(1-x*w)*(1-v)*(1-w))

-((Gn(n-1,q,q*u*v*x*w,q,q,q))*v*x*(w^2))/

((1-x*u*v*w)*(1-x*w*v)*(1-x*w)*(1-w))

+((Gn(n-1,q,q*u,q,q*w,q*x*v))*v)/

((1-u)*(1-x*v)*(1-v)*(1-w))

-((Gn(n-1,q,q*u*v,q,q*w,q*x))*v)/

((1-u*v)*(1-x)*(1-v)*(1-w))

+((Gn(n-1,q,q*u*v*x,q,q*w,q))*v*x)/

((1-u*v*x)*(1-v*x)*(1-x)*(1-w)))

-(((((Hn1(n-1,q,q*u,q*v*x,q*w,q)))/((1-v*x)*(1-x))

+((Hn1(n-1,q,q*u,q,q*w,q*x*v))*v)/((1-x*v)*(1-v))

-((Hn1(n-1,q,q*u,q*v,q*w,q*x)))/((1-x)*(1-v)))

-((((Hn1(n-1,q,q*u,q*v*x*w,q,q)))/((1-v*x*w)*(1-x*w))

+((Hn1(n-1,q,q*u,q,q,q*x*w*v))*v)/((1-x*w*v)*(1-v))

-((Hn1(n-1,q,q*u,q*v,q,q*x*w)))/

((1-x*w)*(1-v)))*w))/((1-u)*(1-w))))

product(’1-q^i’,’i’=(4(n-1)+1)..4*n))

fi;

end:

110

Appendix D

Program with optimization for

faster computation of linear

extensions

Gn := proc(n,q,u,v,w,x) options remember;

return simplify(Hn(n,q,u,v,w,x)+Hn(n,q,u,x,w,v))

end:

Hn := proc(n,q,u,v,w,x) options remember;

if n=1 then

return simplify(((1)/

((1-u)*(1-u*x)*(1-u*v*x)*(1-u*v*w*x)))

*product(’1-q^i’,’i’=1..4))

else

return simplify((

(-((Gn(n-1,q,q*u,v*q*x*w,q,q))*w)/

((1-u)*(1-v*x*w)*(1-x)*(1-w))

+((Gn(n-1,q,q*u,v*q*x,q*w,q)))/

((1-u)*(1-v*x)*(1-x)*(1-w))

111

+((Gn(n-1,q,q*u*x,v*q*w,q,q))*x*w)/

((1-u*x)*(1-v*w)*(1-w)*(1-x))

-((Gn(n-1,q,q*u*x,v*q,q*w,q))*x)/

((1-u*x)*(1-v)*(1-x)*(1-w))

-((Gn(n-1,q,q*u*x*v*w,q,q,q))*x*(v^2)*(w^3))/

((1-u*x*v*w)*(1-x*v*w)*(1-v*w)*(1-w))

+((Gn(n-1,q,q*u*x*v,q,q*w,q))*x*(v^2))/

((1-u*v*x)*(1-x*v)*(1-v)*(1-w)))-

((((Hn(n-1,q,q*u,q,q*w,v*x*q)*v)/((1-v)*(1-x*v))

+(Hn(n-1,q,q*u,q*v*x,q*w,q))/((1-v*x)*(1-x))

-(Hn(n-1,q,q*u,q*v,q*w,q*x))/((1-v)*(1-x)))

-(((Hn(n-1,q,q*u,q,q,v*w*x*q)*v*w)/((1-v*w)*(1-x*v*w))

+(Hn(n-1,q,q*u,q*v*w*x,q,q))/((1-v*w*x)*(1-x))

-(Hn(n-1,q,q*u,q*v*w,q,q*x))/((1-v*w)*(1-x)))*w))/

((1-u)*(1-w))))

product(’1-q^i’,’i’=(4(n-1)+1)..4*n))

fi;

end:

112

