
  

ABSTRACT 

CHEN, JIANJUN.  Optimization of Cost and Emissions of a KRW-Gasifier based IGCC 

System under Variability and Uncertainty (Under the supervision of Dr. H.C. Frey). 

 

Optimization of process technologies under uncertainty has been extensively studied 

in the literature. It provides a rigorous and powerful tool for the design of advanced 

technologies. Two methods are available for optimization of process models under 

uncertainty, which are stochastic optimization and stochastic programming. From the results 

of the two methods, Expected Value of Perfect Information (EVPI) can be estimated, which 

provides decision-makers the expected value of maximum benefit of reducing uncertainty. 

However, optimization of process models under uncertainty has not made distinctions 

between variability and uncertainty. Variability is a heterogeneity of values for a quantity 

over time, space or among different members of a population, while uncertainty is a lack of 

information. This study proposes two methodologies for optimization of process models 

when both variability and uncertainty in model parameters are considered. One is a coupled 

stochastic optimization and programming method, which involves stochastic optimization for 

each realization of variability and enables one to evaluate the effect of uncertainty on optimal 

designs. The other one is a two-dimensional stochastic programming technique, which 

features stochastic programming for each realization of variability and produces two-

dimensional distributions of deterministic optimal solutions. Comparing the outputs of the 

two methods, both point estimates and confidence intervals of EVPI can be estimated.  The 

two methods are demonstrated through application to optimization of the cost and emissions 



  

of a KRW-Gasifer based IGCC system when both variability and uncertainty in model 

parameters are considered.  

The methodologies proposed and demonstrated in this study are helpful to design and 

evaluation of advanced technology applications where cost minimization, risk analysis, 

environmental compliance and R&D priority remain important issue. 

 

Keywords: Variability, Uncertainty, Stochastic Optimization, Stochastic Programming, 

Expected Value of Perfect Information (EVPI), IGCC. 
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1.0 INTRODUCTION 

The emphasis of environmental design for process technologies is shifting from one 

pollutant to multiple pollutants, and multiple environmental media.  Properly integrated 

system models are needed to assess the complex interactions among many components of 

highly coupled system.  For example, Frey and Rubin (1992a) developed integrated model 

for environmental control in integrated gasification combined cycle systems (IGCC); Rubin 

et al. (1997) developed integrated environmental control model for coal-fired power systems;  

Bharvirkar and Frey (1998) developed simplified performance, emissions and cost model for 

integrated gasification combined cycle systems (IGCC).  

For all technologies in an early phase of development, there are always uncertainties 

in the performance and cost estimates (Frey and Rubin, 1991a).  Chemical engineers and 

technical managers involved in research, development and demonstration (RD&D) of 

advanced process can benefit from a systematic approach for characterizing uncertainties in 

new process technologies (Frey and Rubin, 1992b).  Uncertainty analysis has been applied to 

advanced SO2/NOX control technology (Frey and Rubin, 1991a), coal utilization and 

environmental control in integrated gasification combined cycle systems (Frey and Rubin, 

1992; Frey, et al., 1994), integrated environmental control of coal-fired power systems 

(Rubin, et al., 1997). Uncertainties in model parameters were found to significantly affect the 

cost of the system (Frey and Rubin, 1991a; Frey and Rubin, 1992; Frey et al., 1994; Rubin et 

al., 1997).  

For an integrated process system, there are always a wide variety of feed stocks, 

products and technologies, optimization is particularly critical for optimal design and for 

meeting with site-specific needs (Bjorge et al., 1996). For example, Diwekar et al. (1992) 
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optimized the SO2 control in an IGCC system. George et al. (1992) optimized the cost of 

electricity for an IGCC power plant, and found that annual savings for optimized design can 

exceed 2.2 million (mid-1990) dollars.  

Combined with uncertainty analysis, optimization methods provide a powerful and 

rigorous tool for design of process technologies. Diwekar et al. (1997) summarized and 

demonstrated two methods for optimization of process models under uncertainty. One is 

termed as stochastic optimization, which enables one to use statistics, such as expected value, 

variance and other statistics, as objective function values or as constraints. Another is termed 

as stochastic programming, which enables one to evaluate the sensitivity of optimal solutions 

to uncertainty in model parameters. Stochastic optimization and programming techniques can 

ensure that during design phases, issues such as cost minimization, risk analysis, 

environmental compliance and R&D prioritization, can be fully and rigorously considered 

(Diwekar et al., 1997). Stochastic optimization has been applied by many researchers 

(Dantus and High, 1999, Hou et al., 2000; Kim and Diwekar, 2002a, 2002b). Application of 

stochastic programming to process models has not become popular, perhaps mostly because 

of its computational intensity and lack of easy-to-use software tools, although sensitivity of 

optimal solutions to model parameters has been studied by some researchers (Cocks et al., 

1998; Jack and Tybirk, 1998; Pinto, 1998; Fournier, et al., 1999).  

Uncertainty analysis or optimization under uncertainty for process technologies has 

not made distinctions between variability and uncertainty. Variability is a heterogeneity of 

values for a quantity over time, space or among different members of a population (Zheng, 

2002), while uncertainty is a lack of information. Distinction between uncertainty and 

variability has been gaining wide acceptance in risk assessment (NRC, 1994) and 
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environmental pollutant inventory (Frey and Bammi, 2002, Frey and Zheng, 2002). 

Distinction between variability and uncertainty has rarely been done in probabilistic analysis 

or optimization of process technologies only until recently by Frey and Zhang (2003), 

Rooney and Biegler (2003). Rooney and Biegler consider two types of unknown input 

parameters, uncertainty model parameters, and variable process parameters. In the former 

case, a process is designed that is feasible over the entire domain of uncertain parameters, 

while in the later case, control variables can be adjusted during process operation to 

compensate for variable process parameters. However, their work does not address 

uncertainty in parameters that characterize variability in an input. 

The objective of this study is to develop and demonstrate optimization of process 

technologies when both variability and uncertainty in model parameters are considered. 

Based on stochastic optimization and stochastic programming methods discussed by 

Diwekar, et al.(1997), two methods are proposed for doing optimization under both 

variability and uncertainty. One is termed as a coupled stochastic optimization and 

programming technique, which involves stochastic optimization for each realization of 

uncertainty. Another is termed as a two-dimensional stochastic programming technique from 

which two dimensional distributions of optimal solutions can be produced for evaluation of 

the effect of both variability and uncertainty on optimal solutions. The two methods are then 

applied to optimization for a KRW gasifier based IGCC system when variability and 

uncertainty in model parameters are considered.  
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            This thesis is organized as follows:  

Chapter 2 discusses the basic concepts of variability, uncertainty, stochastic 

optimization and stochastic programming. Based on these, optimization techniques under 

both variability and uncertainty are proposed. 

Chapter 3 gives an overview for the Integrated Combined Cycle System (IGCC). In 

this study, a KRW gasifier based IGCC system is used as an example to demonstrate 

optimization techniques when variability and uncertainty in model parameters are 

considered. Variables with variability and/or uncertainty among IGCC model parameters are 

identified. Probabilistic distributions are developed for these variables. 

 Chapter 4 describes the random number generator and optimizer used in this study. 

AuvTool, which was developed by Zheng and Frey (2002), is used as random number 

generator. Evolver, a commercial Genetic Algorithm based optimization solver, is adopted as 

optimizer.  

Chapter 5 presents the results of optimization of the IGCC system when variability 

and uncertainty in model parameters are considered. 

Chapter 6 presents conclusions of this thesis, and recommendations for future studies. 
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2.0 CONCEPT AND METHODOLOGY 

This chapter discusses basic concepts of variability and uncertainty, stochastic 

optimization and stochastic programming.  Based on these, coupled stochastic optimization 

and programming technique, and two dimensional stochastic programming are proposed. 

2.1 Variability and Uncertainty 

Variability is a heterogeneity of a quantity over time, space or among different 

members of a population (Zheng, 2002).  For example, in a complex coal gasification system, 

many parameters are subject to variations, such as physical and chemical properties of inlet 

materials; material conversion rate in the system and so on.  Variability can be represented by 

frequency distributions showing the variation of the quantity (Frey, 1997).  

Uncertainty refers to a lack of knowledge regarding the true value of a quantity. 

Draper et al. (1987) pointed out that there are three main sources of uncertainty in any 

problem:  

(1) Uncertainty about the structure of a model; 

(2) Uncertainty about the estimates of the model parameters, assuming that the  

      structure of the model is known; 

(3) Unexplained random variation in observed variables even the structure of the  

      model and the values of the model parameters have been known. 

Specifically, uncertainty in parameters can come from lack of data, non-

representative of data, random sampling errors and measurement errors. Probability 

distributions can be employed to represent the likelihood that a quantity falls into a particular 

range (Cullen and Frey, 1999).  
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Distinction between variability and uncertainty can be important for policy and 

scientific reasons (Frey and Rhodes, 1998).  In setting policy on control of emissions into 

environment, we may wish to protect the health of at least a given portion of the population 

and to do so within an acceptable confidence level.  For example, we may wish to be 92% 

confident that we reduce the health risks of at least 96% of the population below some level. 

Knowledge regarding variability can be used to identify subgroup which should receive 

special consideration, while uncertainty can be used to prioritize additional research (Frey 

and Rhodes, 1998).  

2.2 Sampling Technique for Variability and Uncertainty 

As pointed out above, frequency distributions are used to characterize variability in a 

quantity, and probability distributions are used to represent uncertainty of a quantity. 

Numerical sampling techniques, such as Monte Carlo simulation or Latin hypercube 

sampling, can be employed to generate random numbers for the distributions.  When 

variability and uncertainty in a quantity are both considered, frequency distributions are used 

to characterize the variability of the quantity, while there remains uncertainty regarding the 

frequency distribution.  Two-dimensional sampling technique for uncertain frequency 

distributions is required to generate random numbers.  In this study, the two dimensional 

sampling technique proposed by Frey and Rhodes (1996) is used.  

The two dimensional sampling technique developed by Frey and Rhodes (1996) 

features the use of bootstrap simulation proposed by Efron (1979).  The bootstrap technique 

can quantify the sampling error that is introduced by estimating some statistic of interest 

from a limited number of sample data points.  For example, we have some random points of 

size n, x = {x1, x2, ···, xn}, which are from an unknown probability distribution F.  The 
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parameter of interest θ, is a characteristic of the distribution F, θ = f (F), such as mean, 

standard deviation, or any percentile of the distribution F.  An estimate of θ is the statistic θ
)
, 

which is determined from the dataset, θ
)

 = f(x). The bootstrap technique can quantify the 

confidence interval for θ
)

.  It involves following procedures, according to Frey and Rhodes 

(1998): 

1. Using the data set x, the distribution F
)

 is defined to be an estimate of the unknown 

population distribution F.  The distribution F
)

 can either be an empirical distribution 

or a parametric distribution.  The former is referred to as nonparametric bootstrap, 

and the latter as parametric bootstrap; 

2. Then, the bootstrap method repeatedly asks the question: what if the data set had been 

a different set of n random values from the same distribution F
)

?  This question is 

answered by repeatedly generating bootstrap samples.  A bootstrap sample, x* is 

defined as a simulated random sample of size n taken from distribution F
)

.  A large 

number, B, of independent bootstrap samples (x*1, x*2, ···, x*B) are sampled from the 

distribution F
)

.  From each of the B bootstrap samples, a new statistic, θ
)

* is 

computed. Each θ
)

* is referred to as a bootstrap replication of θ
)

; 

3. From the B replication of θ
)

s, a confidence interval for θ
)

 can be estimated. 

Frey and Rhodes (1998) developed a two-dimensional simulation for uncertain 

frequency distributions by using bootstrap simulation.  The overall approach is illustrated in a 

flow diagram in Figure 2-1.  In this approach, bootstrap simulation is first used to generate a 

total of B paired parameter estimates for the distribution F
)

.  Each pair of parameters 

represents an alternative frequency distribution for F
)

.  For each alternative frequency 

distribution, a total of p random samples are simulated to represent one possible realization  
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  Notes:  
• B = number of bootstrap replications 
• q = sample size used for uncertainty 
• p = sample size used for variability 
 

Figure 2-1. Flow Diagram for Bootstrap Simulation and Two-dimensional Simulation of 
Uncertainty and Variability (Frey and Rhodes, 1998) 
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of variability within the population.  Thus, a total of B×p random numbers are generated, 

representing p samples from each of B alternative frequency distributions.  For each 

realization of uncertainty (each alternative frequency distribution), the samples are sorted to 

represent cumulative distribution functions.  Thus there are B values for any given statistic 

(e.g., mean, variance, 95th percentile), which can be used to construct sampling distributions 

for each statistic. 

2.3 Stochastic Optimization and Stochastic Programming   

Optimization under uncertainty is generally divided into two categories: stochastic 

optimization and stochastic programming (Diwekar, et al., 1997).  Stochastic optimization 

problems involve expected value minimization or chance constrained optimization.  These 

problems require that some probabilistic representation of objective functions and constraints 

be optimized.  Stochastic programming deals with the effect of uncertainty on optimal 

design.          

2.3.1 Stochastic Optimization 

A general formulation of the stochastic optimization problem can be described as 

(Diwekar, et al., 1997): 

Objective:                        Min or Max Z=P1 (f(x, u)) 

Subject to:                       P2 (g(x, u)) = 0 

                                        P3 (h(x, u)) ≤ 0 

Where x are design variables; u are uncertain variables; P1, P2 and P3 are 

probabilistic functions, which can be expected value, standard deviation, percentile and other 

statistics; f (x, u), g(x, u) and h(x, u) are all functions of x and u. 
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Figure 2-2. Schematic of Stochastic Optimization (adapted from Diwekar, et al., 1997) 
 

Stochastic Optimization has been applied to many problems.  Watanabe and Ellis 

(1993) used a stochastic linear model to address an air quality management problem.  Shih 

and Frey (1995) built a stochastic non-linear model for a coal blending problem.  However, 

in the two works, the stochastic optimization problem was analytically transformed to an 

equivalent deterministic one using chance constrained programming.  Therefore the approach 

they used only applies to certain problems.  A general way is to approximate the probabilistic 

functions through a sampling method (Diwekar, et al., 1997).  The general way involves two 

iterative loops: (1) the inner sampling loop and (2) the outer optimization loop.  This method 

has been demonstrated by many researchers (Dantus and High, 1999; Hou et al., 2000; Kim 

and Diwekar, 2000a, 2000b).  Figure 2-2 illustrates the coupling of sampling loop and 

optimization loop in solving a stochastic optimization problem (Diwekar et al., 1997).   

Figure 2-3 shows the overall flow diagram for doing stochastic optimization.  For 

each pair of design values generated from the optimizer, the process model is run m times, 

where m is the number of random values sampled for each uncertain variable).  Based on a 

total of m values for each model output, statistics of model output, such as expected value, 
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Figure 2-3. Flow Diagram of Stochastic Optimization 
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variance, or 95th percentile, can be estimated.  These statistics, used as objective function 

values or constraints, are passed to the optimizer, which either generates new design values 

or stops to report optimal solutions.    

2.3.2  Stochastic Programming 

Stochastic programming deals with the effect of uncertainty in model parameters on 

optimal solutions.  Stochastic programming involves deterministic optimization for each 

random sample of uncertain variables.  The formulation of stochastic programming can be 

represented as (Diwekar, et al., 1997): 

Objective:                            Min or Max Z = z(x, u*) 

Constraint:                           h (x, u*) = 0 

                                            g (x, u*) ≤ 0 

Where, x = design variables, 

            u* = random sample for uncertain variables,  

            z(x, u*), h(x, u*) and g(x, u*) = functions of x and u*.  

 

Stochastic programming involves: (1) an inner optimization loop; and (2) an outer 

sampling loop.  Figure 2-4 shows the coupling of sampling loop and optimization loop 

involved in stochastic programming (Diwekar et al., 1997).  The outer sampling loop 

generates random numbers; for each realization of uncertain variables, the inner optimization 

loop is run to find the optimal solution.  The outputs from stochastic programming form  
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Figure 2-4. Schematic of Stochastic Programming (adapted from Diwekar et al., 1997) 
 

probabilistic distributions of optimal solutions.  A more detailed flow diagram showing 

procedures with regard to stochastic programming is given in Figure 2-5.  Stochastic 

programming has been applied to an IGCC system by Diwekar et al. (1997).  However, 

because of computational burden associated with the method, this method is rarely used. 

Some researchers evaluated the effect of uncertainty on optimization solutions. However 

their work is limited to one uncertain variable at a time (Fournier et al., 1999; Pinto, 1998), 

or to a very small number of simulations (Bak and Tybirk, 1998; Cocks et al., 1998).  

2.4 Optimization Considering both Variability and Uncertainty 

Stochastic optimization and stochastic programming are available for optimization 

when uncertainty in model parameters is considered.  This study extends the stochastic 

optimization and stochastic programming methods to the situation where both variability and 

uncertainty in model parameters are considered. Two methods are proposed.  The two 

methods, termed as “coupled stochastic optimization and programming” and “two 

dimensional stochastic programming” respectively, are based on stochastic optimization and 

stochastic programming techniques discussed in the previous section.   
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Figure 2-5. Flow Diagram for Stochastic Programming 
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The coupled stochastic optimization and programming technique involves stochastic 

optimization for each alternative frequency distribution which represents variability. During 

each stochastic optimization, a point estimate result for each alternative frequency 

distribution of model results is optimized. The output of this method is a probability 

distribution of optimal solutions from stochastic optimization.  This method can be used to 

assess the effect of uncertainty on stochastic optimization results.  

Two-dimensional stochastic programming involves deterministic optimization for 

each sample of variability and uncertainty.  The output of this method will be a two 

dimensional distribution for deterministic optimal solutions.  This method enables one to 

evaluate the effect of both variability and uncertainty on optimal solutions. 

The two methods are illustrated by an example in which one variable P among model 

parameters is assumed to be variable and uncertain and another variable Q among model 

parameters is assumed to be uncertain.  

Let Aij (1 ≤ i ≤ m and 1 ≤ j ≤ n) represents random numbers generated from the two- 

dimensional sampling technique for the variable P, where m is the realization number for 

variability and n is the realization number for uncertainty. Let Bj (1 ≤ j ≤ n) represents the 

random numbers generated from Monte Carlo simulation for the variable Q, where n is the 

realization number for uncertainty.  

The algorithm for coupled stochastic optimization and programming method is 

described as follows:  

1. j=0;  

2. j = j+1, conduct stochastic optimization for Aij ( i from 1 to m) and Bj. Aij ( i    

from 1 to m) means m samples of the jth alternative frequency distribution of P, and Bj      
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is the  jth random sample of Q; 

3. If j <n, then go back to step 2;  

    If j =n, then stop.  

The results are n optimal solutions from stochastic optimization, which can be used to 

construct a cumulative probability distribution.  Figure 2-6 shows a simple schematic of the 

method.  For each realization of uncertainty in variables with both variability and 

uncertainty, stochastic optimization is done.  A detailed flow diagram is given in Figure 2-7. 

 

 

Figure 2-6. Simple Schematic for Coupled Stochastic Optimization and Programming 
Method 
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Figure 2-7. Flow Diagram for Coupled Stochastic Optimization and Programming 
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The algorithm for the two-dimensional stochastic programming technique is 

described below: 

1. j=0;  

2. j = j +1 and i=0; 

3. i = i +1; for Aij and Bj, conduct deterministic optimization and find the optimal  

solution; 

4. if i<m then go back to step 3, otherwise go forward to step 5; 

5. if j<n then go back to step 2, otherwise stop.  

The results are m×n deterministic optimization solutions. Step 3 and step 4 constitute 

a stochastic programming procedure. Figure 2-8 shows the simple schematic of the method.  

Detailed flow diagram is given in Figure 2-9.  

 

Figure 2-8. Simple Schematic for the Two-dimensional Stochastic Programming Method 
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Figure 2-9. Flow Diagram for the Two-dimensional Stochastic Programming Method 
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3.0 OVERVIEW OF INTEGRATED GASIFICATION COMBINED 
CYCLE (IGCC) SYSTEM 

Environmental regulations are one of the factors that spur the development of new 

coal-based electric power generation technologies. Conventional emission control systems 

for a new pulverized coal-fired power plant typically consist of a wet limestone flue gas 

desulfurization (FGD) system for SO2 control, an electrostatic precipitator (ESP) for PM 

removal, and combustion control for NOX reduction. Selective Catalytic Reduction (SCR) is 

a post-combustion NOX control technology that has been demonstrated in Japan, German and 

a small number of U.S. coal-fired power plants and is expected to be required to comply with 

the New Source Performance Standard (NSPS) (EPA, 1997). With the stringency of the 

current NSPS, few new coal plants are currently being built in the U.S. 

Integrated Gasification Combined Cycle (IGCC) system is an alternative to the 

conventional pulverized coal (PC) combustion system. In a combined cycle plant, fuel is 

burned in a gas turbine, and the hot exhaust gas is used to generate steam for a steam cycle.  

Electric generators on both the gas turbine and steam turbine generate electricity. IGCC 

systems are capable of NOX emissions comparable to or less than those of PC plants 

equipped with SCR, as well as high levels of SO2 control (EPRI, 1988). Meanwhile, IGCC 

systems offer other advantages such as phased construction, fuel flexibility, reduced solid 

waste, a modular design and a capability to produce useful co-products. The U.S Department 

of Energy is pursuing development of a new generation of gasification systems intended to 

offer an environmentally and economically viable alternative for power generation in the 

U.S. (U.S. DOE, 2000). 

Figure 3-1 shows a schematic of an IGCC system (Bharvirkar and Frey, 1998). Coal, 

steam, and oxygen enter a high pressure, high temperature gasifier reactor vessel.  A portion  



 

 21

 

Figure 3-1. Schematic of a KRW-Gasifier based IGCC System with Hot Gas Cleanup 

of the coal is combusted to release heat, while the remainder participates in endothermic 

gasification reactions with steam to produce a syngas containing CO and H2.  The syngas that 

exits from the gasifier enters a high temperature gas cooling unit, where it is quenched by 

water. Subsequently it is cleaned of impurities such as particulate matter and sulfur 

compounds, in the gas cleanup unit.  

The clean fuel gas is sent to a gas turbine, where recovered energy is used to rotate 

generator for electricity.  The hot exhaust gas from the gas turbine passes through a Heat 

Recovery Steam Generator (HRSG). In the HRSG, the syngas is cooled and the transferred 

heat is used to generate hot boiler feed water, saturated steam, and superheated steam. 

Superheated steam is used to produce electric power via a steam turbine. Post combustion air 

pollution control technologies, such as Selective Catalytic Reduction (SCR) for NOX control, 

can be located within the HRSG (Frey et al., 1994).   

There exist a number of variations of IGCC systems, based primarily on differences 

in coal gasifier technology. The primary difference in gasifier design is the type of bed in 

which the coal is gasified. Three general types of gasifiers are moving-bed, fluidized-bed, 

and entrained-flow (Frey and Rubin, 1990).  The IGCC system used as the basis for the case 

study in this work is a Kellogg-Rust-Westinghouse (KRW) gasifier, which is an example of a 
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fluidized bed (Frey and Rubin, 1990). The KRW-based IGCC systems include a hot gas 

cleanup system featuring in-bed desulfurization in the gasifier with limestone or dolomite, 

subsequent sulfur removal from the fuel gas with a zinc ferrite sorbent, a high efficiency 

cyclone and ceramic filters for particulate removal, sulfation of spent limestone and 

conversion of carbon remaining in the ash by using a circulating bed boiler (Frey and Rubin, 

1992; Frey et al., 1994; Bharvirkar and Frey, 1998).  

3.1 Performance, Emissions and Cost Model for KRW Gasifier-based IGCC System 

A simplified performance, emissions and cost model of a KRW gasifier-based IGCC 

system developed by Bharvirkar and Frey (1998) is used in this study. The performance and 

emissions part of this model is a regression model based on probabilistic analysis of a 

detailed ASPEN-based model. The accuracy of the simplified model is typically within a 

percent compared with the ASPEN model (Bharvirkar and Frey, 1998).  It provides a 

selection of four process configurations featuring two gas turbine designs and the inclusion 

or exclusion of SCR for NOX control.  A description of the four configurations is given in 

Table 3-1. 

In the model, there are 10 independent variables that can be specified by the user, 

which are shown in Table 3-2. Based on these 10 independent variables, the performance 

model calculates values for about 60 dependent variables, which are served later as input 

values to the cost model.   

In the original model, the calcium to sulfur ratio (RCAS) for limestone additives to 

the gasifier is an independent variable. However, in this study, RCAS is no longer treated as 

an independent variable. According to Diwekar et al. (1992), RCAS in the gasifier can be 

expressed as a function of the sulfur retained in gasifier bottom ash (XSLCNV).  In this 
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Table 3-1. Description of Configurations Considered in the Model 
Case Gas Turbine 

Pressure Ratio 
Gas Turbine 

Inlet Temperature (°K) 
Selective Catalytic 

Reduction 
1 
2 
3 
4 

15.0 
15.0 
13.5 
13.5 

2350 
2350 
2300 
2300 

No 
Yes 
Yes 
No 

 
Table 3-2. Input Variables for the Simplified Performance Model of IGCC System  

Variables Description Unit Default Value Range 
 

CARCNV 
Gasifier Carbon 

Conversion 
 

Fraction 
 

0.95 
 

0.90-0.98 
 

XCRCNV 
Carbon Converted in 

Sulfation Unit 
 

Fraction 
 

0.95 
 

0.90-0.98 
 

RMOXG2C 
Gasifier Oxygen to 

Carbon Ratio 
Mole of O2 per 

Mole of C 
 

0.46 
 

0.45-0.47 
 

RSTM2OX 
Gasifier Steam to 

Carbon Ratio 
Mole of H2O 
Per mole C 

 
0.45 

 
0.445-0.455 

 
RCAS 

Calcium to Sulfur 
Ratio 

Mole Ca per 
mole S 

 
2.60 

 
2.10~3.00 

 
XXCRN 

Fraction of Coal 
bound Nitrogen 

converted to NH3 

 
Fraction 

 
0.10 

 
0.05 ~ 0.15 

 
XXNH3 

Fraction of NH3 
converted to NOX in 

Gas Turbine 

 
Fraction 

 
0.90 

 
0.50~0.90 

 
XSLCNV 

Sulfur retained in 
Gasifier Bottom Ash 

 
Fraction 

 
0.90 

 
0.80-0.95 

 
SCRAE 

SCR NOX removal 
Efficiency 

 
Fraction 

 
0.80 

 
0.50-0.90 

XNH3S SCR NH3 Slip ppm 10.00 5.00-20.00 
(Source: Bharvirkar and Frey, 1998) 

work, we adopted this relationship, which is shown in equation 3-1. 









−
−−

=
XSLCNV

bXSLCNVaRCAS
1

1)exp(                              (3-1) 

Where, RCAS = calcium to sulfur ratio (mole calcium per mole of sulfur); 

             XSLCNV = sulfur retained in gasifier bottom ash (fraction); 

             a=0.233; 

             b=0.15. 
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The cost model was developed and updated by Frey and Rubin (Frey and Rubin, 

1990; Frey et al., 1994, Frey, 1994). The cost model calculates capital cost, annual fixed 

operating cost and variable operating cost for 11 process areas, which are coal handling, 

boiler feed water systems, limestone handling, gas turbine, oxidant feed, heat recovery steam 

generation, gasification, selective catalytic reduction, zinc ferrite process, steam turbine, 

sulfation and general facilities. 

By default, the original cost model reports cost on the basis of January, 1989. In this 

work, the model is modified to report the cost on the basis of January, 2002, by using 

chemical engineering plant cost index (CI) and industrial chemicals producer price index 

(CICPPI) for January, 2002, which are 390.3 and 417.95, respectively (Chemical Week 

Publish, 2002). These values are not substantially different from those of January, 1989. CI 

for January of 2002 is only 10% higher than that of January, 1989 which is 354.7. CICPPI for 

January of 2002 is 6.6% higher than that of January, 1989 which is 391.87.  

3.2 Interface of the Model 

The original performance, emissions and cost model accepts input values through an 

interactive interface. To enable the data exchange between the model and other programs 

during simulation and optimization, the model is changed to accept input values through an 

input file, and to report output values through an output file. The input file includes values 

for all variables that might be used as design variables, or treated as variables with variability 

and/or uncertainty. A summary of input variables is given in Table 1 of Appendix A. An 

example of an input file is also given. The output file includes values that are of interest in 

optimization problem. A summary of output variables is given in Table A-2 of Appendix A. 

An example of output file is also given.  
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3.3 Variability and Uncertainty in Model Inputs  

For the IGCC model discussed above, 27 variables were identified as uncertain 

variables. For each uncertain variable, probabilistic distribution is used to characterize its 

uncertainty. The selection of these variables and development of uncertainty assumptions are 

mainly based on the work by Frey et al. (1994). They identified and estimated uncertainties 

for these parameters based on literature review, data analysis, and elicitation of expert 

judgments from engineers involved in IGCC technology development at DOE’s Morgantown 

Energy Technology Center (DOE/METC) (Frey et al., 1994). Table 3-3 summarizes the 

distribution assumptions for the uncertain variables.    

Another 26 performance and cost inputs of the model were identified to have both 

variability and uncertainty. The selection of these variables is based on the work by Frey and 

Rubin (1991), and Frey et al. (1994). They identified these parameters based on literature 

review, data analysis, and elicitation of expert judgments from engineers involved in IGCC 

technology development at DOE’s Morgantown Energy Technology Center (DOE/METC) 

(Frey and Rubin, 1991; Frey et al., 1994). Similarly, for these variables with both variability 

and uncertainty, probabilistic distributions are assigned to represent the variability. Table 3-4 

shows the assumed distributions for these variables and the references for these assumptions. 
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Table 3-3. Distribution Assumptions for Uncertain Variables in the IGCC Model 
 

Description of the variables 
Default 
value 

Distribution 
assumptions a 

 
Reference 

Factor of Engineering and home office fee 0.10 T: 0.07-0.13 (0.10) Frey  et al. (1994) 
Indirect Construction cost factor 0.20 T: 0.15-0.25 (0.20) Frey  et al. (1994) 

Project contingency factor 0.175 U: 0.10-0.25 Frey  et al. (1994) 
Unit cost of coal ($/106Btu) 1.61 N (1, 0.05)b  Expert Judgment 

Unit cost of Sulfuric acid ($/ton) 110 N (1, 0.05) b Expert Judgment 
Unit cost of NaOH ($/ton) 220 N (1, 0.05) b Expert Judgment 

Unit cost of Na2HPO4 ($/lb) 0.7 N (1, 0.05) b Expert Judgment 
Unit cost of Hydrazine ($/lb) 3.2 N (1, 0.05) b Expert Judgment 

Unit cost of Morpholine ($/lb) 1.3 N (1, 0.05) b Expert Judgment 
Unit cost of Lime ($/ton) 80 N (1, 0.05) b Expert Judgment 

Unit cost of Soda Ash ($/ton) 160 N (1, 0.05) b Expert Judgment 
Unit cost of Corrosion Inh. ($/lb) 1.9 N (1, 0.05) b Expert Judgment 

Unit cost of Surfactant ($/lb) 1.25 N (1, 0.05) b Expert Judgment 
Unit cost of Chlorine ($/ton) 250 N (1, 0.05) b Expert Judgment 
Unit cost of Biocide ($/lb) 3.6 N (1, 0.05) b Expert Judgment 

Unit cost of Plant Air Ads ($/lb) 2.8 N (1, 0.05) b Expert Judgment 
Unit cost of LPG Flare ($/bbl) 11.7 N (1, 0.05) b Expert Judgment 

Unit cost of Waste Water ($/gpm ww) 840 N (1, 0.05) b Expert Judgment 
Unit cost of Fuel Oil ($/bbl) 42 N (1, 0.05) b Expert Judgment 

Unit cost of Raw Water ($/K gal) 0.73 N (1, 0.05) b Expert Judgment 
Unit cost of Limestone ($/ton) 18 T: 18-25 (18) Frey  et al. (1994) 

Zinc Ferrite sorbent sulfur loading, 
wt-% sulfur in sorbent 17 N (17, 4.82) 

 
Frey  et al. (1994) 

 
 

Zinc Ferrite sorbent attrition rate,  
wt-% sorbent loss per cycle 

 
 

 
 

1 
 
 
 

F: 0.17-0.34 (5%); 
0.34-0.5 (20%); 

0.5-1 (25%); 
1-1.5 (25%); 
1.5-5 (20%); 

5-25 (5%) 

 
 

Frey  et al. (1994) 

Error Term of HRSG direct cost model, 
$Million 0 N(0, 5.62) 

 
Frey  et al. (1994) 

Error Term of SCR direct cost model, 
$Million 0 N(0, 0.0422) 

Frey  et al. (1994) 

Error Term of Steam Turbine,  
$ Million 0 N(0, 5.13) 

 
Frey  et al. (1994) 

 
a: T=Triangular distribution, lower bound and upper bound are given, mode is in parenthesis;  
   U=Uniform distribution, lower and upper bound are given;  
   N=Normal distribution, mean value and standard deviation are given;  
   F=Fractile distribution, lower and upper bound of each range are given, along with the possibility of   
        samples within that range; 
b: on a relative basis, which means random samples from the distribution should be multiplied with default    
    value  
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Table 3-4: Distribution Assumptions for the Variables with both Variability and Uncertainty 
in the IGCC Model  

 
Variable 

Name 

 
Description 

 
Default 
Value 

Distribution 
Assumptions for 

variability a 

 
Reference 

CARCNV Gasifier Carbon Conversion 0.95 T: 0.90-0.98 (0.95) Frey  et al. (1994) 
XCRCNV Carbon Converted in sulfation unit 0.95 T:0.90-0.98 (0.95) Frey  et al. (1994) 

 
XXCRN 

Fraction of coal bound nitrogen 
converted to NH3 

 
0.1 T: 0.05-0.15 (0.1) 

 
Frey  et al. (1994) 

 
XXNH3 

Fraction of NH3 converted to NOX 
in Gas Turbine 

 
0.9 T: 0.5-0.9 (0.9) 

 
Frey  et al. (1994) 

 
ALABOR 

Average labor rate, 
including burdens ($/hour) 

 
19.7 N(19.7,0.647) 

 
Frey  et al. (1994) 

Contingencies of Process Areas 
FPCCH Coal handling 0.05 U: 0.00-0.10 Frey and Rubin (1991) 
FPCL Limestone handling 0.05 U:0.00-0.10 Frey and Rubin (1991) 

FPCOF Oxidant feed 0.10 U: 0.00-0.20 Frey and Rubin (1991) 
FPCG Gasification 0.2 T: 0.0-0.4 (0.2) Frey and Rubin (1991) 
FPCS Sulfation 0.4 T: 0.20-0.60 (0.4) Frey and Rubin (1991) 

FPCZF Zinc ferrite 0.4 U: 0.00-0.80 Frey and Rubin (1991) 
FPCGT Gas turbine 0.25 U: 0.00-0.50 Frey and Rubin (1991) 
FPCHR Heat recovery steam generator 0.025 U: 0.000-0.050 Frey and Rubin (1991) 
FPCCR Selective catalytic reduction 0.1 U: 0.00-0.2 Frey and Rubin (1991) 
FPCST Steam turbine 0.025 U: 0.00-0.05 Frey and Rubin (1991) 
FPCGF General facilities 0.05 U: 0.00-0.10 Frey and Rubin (1991) 

Maintenance Factors of Process Areas 
FMCOF Oxidant feed 0.02 T: 0.01-0.03 (0.02) Frey and Rubin (1991) 
FMCG Gasification 0.045 T:0.03-0.06 (0.045) Frey and Rubin (1991) 
FMCS Sulfation 0.04 T: 0.03-0.06 (0.04) Frey and Rubin (1991) 

FMCZF Zinc ferrite 0.03 T: 0.03-0.06 (0.03) Frey and Rubin (1991) 
FMCGT Gas turbine 0.02 T:0.015-0.06 (0.02) Frey and Rubin (1991) 
FMCCR Selective catalytic reduction 0.02 T: 0.01-0.03 (0.02) Frey  et al. (1994) 

Unit Cost of Materials 
BCCSRC SCR catalyst ($/ft^3) 250 T:250-660 (350) Frey  et al. (1994) 
BCNH3 Ammonia ($/ton) 150 U(150, 225) Frey  et al. (1994) 

BCZFSO Zinc Ferrite sorbent ($/lb) 3.00 T: 0.75-5.00 (3.00) Frey  et al. (1994) 
BCASHD Unit cost of Ash Disposal ($/ton) 10 T: 10-25 (10) Frey  et al. (1994) 

a: T=Triangular distribution, lower bound and upper bound are given, mode is in parenthesis;  
   U=Uniform distribution, lower and upper bound are given;  
   N=Normal distribution, mean value and standard deviation are given;  

 

Initially, bootstrap simulation was used to generate samples for variables with both 

variability and uncertainty according to the assumptions in Table 3-4.  It was found that 

bootstrap samples in many cases exceed the range of the variables.  For example, gasifier 

carbon conversion (CARCNV) is assigned a triangular distribution for variability and is 

bounded by 0.90 and 0.98.  However, bootstrap samples in some cases are lower than 0.90 or 
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higher than 0.98, which causes the IGCC model not to work correctly.  To resolve this 

problem, distributions in Table 3-4 are transformed to beta distribution.  For example, 

variable X is constrained by a lower bound of a and an upper bound of b.  X is first 

transformed to X′ by Equation (3-2). Thus, X′ is bounded by 0 and 1.  Variability in X′ is 

represented by a beta distribution.  When bootstrap samples are generated for X′, X can be 

calculated from X′ by Equation (3-3).  Since bootstrap samples for beta distribution are 

strictly bounded by 0 and 1, samples for X are strictly bounded within a and b.  

)/()(' abaXX −−=                      (3-2) 

')( XabaX ×−+=                      (3-3) 

For those variables with uniform distributions, the transformed variable X′ is a 

uniform distribution within 0 and 1. Thus, a beta distribution with parameters beta(1,1) can 

be used for X′, since this beta distribution is the same as a uniform distribution between 0 and 

1. For other variables which are not uniform distributions, a procedure was developed for 

determining the corresponding parameters of a beta distribution for X′.  For each of these 

variables, 100 random samples were generated from the original distribution. These random 

numbers were transformed according to Equation (3-2).  A beta distribution was fitted to the 

transformed samples. The goodness-of-fit was assessed by the Kolmogorov-Smirnov (KS) 

test, which is a common testing method (Cullen and Frey, 1999). The fitted beta distribution 

is the assumed distribution for X′. For example, gasifier carbon conversion (CARCNV) has a 

triangular distribution bounded by 0.90 and 0.98.  First, 100 random numbers were generated 

from this triangular distribution. The random samples were transformed according to 

Equation (3-2).  The transformed samples were fitted to a beta distribution, which was found 

to be beta(2.5, 2.1).  In this case, beta(2.5, 2.1) is used as distribution for X′ of CARCNV.  
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Figure 3-2. Fitting of Beta Distribution to Random Numbers (transformed to be between 0 
and 1) from Original Triangular Distribution of CARCNV 

 

Figure 3-2 shows the fitted beta(2.5, 2.1) distribution compared to the transformed random 

samples. The beta(2.5, 2.1) distribution fits the random samples very well. The KS Test was 

used to determine whether the fit is good. In this case, the K-S statistics is 0.031, which is 

lower than the critical value of 0.088, thus indicating a good fit.  

Table 3-5 summarizes the transformed distributions for variables with variability. For 

each variable, beta distributions were found to approximate the original distribution 

assumptions very well. Table 3-6 summarizes K-S testing results for each variable. Each 

fitting passes the K-S test, indicating good fit. The transformed distributions, not the original 

distributions shown in Table 3-4, are used in this study. 

Another effort in this work is to quantify the uncertainty in the mean of the variables 

with both variability and uncertainty.  To do this, bootstrap simulation is run for each 
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Table 3-5. Distribution Assumptions for the Variables with both Variability and Uncertainty 
in the IGCC Model  

 
Variable 

Name 

 
Description 

Original 
Distribution for 

variability a 

 
Transformed Distribution  

for variability b 
CARCNV Gasifier Carbon Conversion T: 0.90-0.98 (0.95) 0.90 + 0.08* Beta (2.6, 2.2) 

 
XCRCNV 

Carbon Converted 
in sulfation unit T:0.90-0.98 (0.95) 

 
0.90 + 0.08*Beta (2.6, 2.2) 

 
XXCRN 

Fraction of coal bound nitrogen 
converted to NH3 T: 0.05-0.15 (0.1) 

 
0.05 + 0.10*Beta (2.5, 2.5) 

 
XXNH3 

Fraction of NH3 converted to NOX 
in Gas Turbine T: 0.5-0.9 (0.9) 

 
0.5 + 0.4*Beta (2.0, 1.0) 

 
ALABOR 

Average labor rate, 
including burdens ($/hour) N(19.7,0.647) 

 
Normal (19.7, 0.649) 

Contingencies of Process Areas 
FPCCH coal handling U: 0.00-0.10 0.10* Beta(1,1) 
FPCL limestone handling U:0.00-0.10 0.10* Beta(1,1) 

FPCOF oxidant feed U: 0.00-0.20 0.20* Beta(1,1) 
FPCG gasification T: 0.0-0.4 (0.2) 0.20* Beta(2.5,2.5) 
FPCS sulfation T: 0.20-0.60 (0.4) 0.20+ 0.40* Beta(2.5,2.5) 

FPCZF zinc ferrite U: 0.00-0.80 0.80* Beta(1,1) 
FPCGT gas turbine U: 0.00-0.50 0.50* Beta(1,1) 
FPCHR heat recovery steam generator U: 0.000-0.050 0.050* Beta(1,1) 
FPCCR selective catalytic reduction U: 0.00-0.2 0.20* Beta(1,1) 
FPCST steam turbine U: 0.00-0.05 0.05* Beta(1,1) 
FPCGF general facilities U: 0.00-0.10 0.10* Beta(1,1) 

Maintenance Factors of Process Areas 
FMCOF oxidant feed T: 0.01-0.03 (0.02) 0.01+0.02* Beta(2.5,2.5) 
FMCG gasification T: 0.03-0.06 (0.045) 0.03+0.03* Beta(2.5,2.5) 
FMCS sulfation T: 0.03-0.06 (0.04) 0.03+0.03* Beta(2.1, 2.6) 

FMCZF zinc ferrite T: 0.03-0.06 (0.03) 0.03+0.03* Beta(1.0,2.0) 
FMCGT gas turbine T: 0.015-0.06 (0.02) 0.015+0.045* Beta(1.3, 2.3) 
FMCCR selective catalytic reduction T: 0.01-0.03 (0.02) 0.01+0.02* Beta(2.5,2.5) 

Unit Cost of Materials 
BCCSRC SCR catalyst ($/ft^3) T:250-660 (350) 250+410* Beta(1.6, 2.1) 
BCNH3 Ammonia ($/ton) U(150, 225) 150+75* Beta(1,1) 

BCZFSO Zinc Ferrite Sorbent ($/lb) T: 0.75-5.00 (3.00) 0.75+4.25* Beta (2.5, 2.3) 
BCASHD Unit cost of Ash Disposal ($/ton) T: 10-25 (10) 10 +15* Beta (1.0, 2.0) 

a: T=Triangular distribution, lower bound and upper bound are given, mode is in parenthesis;  
   U=Uniform distribution, lower and upper bound are given. 
b: Normal = Normal distribution, mean value and standard deviation are given in parenthesis; 
   Beta = Beta distribution, shape parameters are given in parenthesis. 
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Table 3-6. K-S Test Results of Beta Distributions fitted to Transformed Random Samples 
from Original Distributions of Variability 

Variable Name 
 

 
Original 

Distribution a 

Original 
distribution 

transformed to 
within 0 and 1 a 

 
Fitted Beta 

distribution a 

 
 

K-S Test b 

 

 
K-S 
Test 

pass/failed? c 
 

CARCNV 
T: 0.90-0.98 

(0.95) 
 

T: 0-1 (0.625) 
 

Beta (2.6, 2.2) 
 

0.031 
 

Passed 
 

XCRCNV 
T:0.90-0.98 

(0.95) 
 

T: 0-1 (0.625) 
 

Beta (2.6, 2.2) 
 

0.030 
 

Passed 
XXCRN T: 0.05-0.1(0.1) T: 0-1 (0.5) Beta (2.5, 2.5) 0.023 Passed 
XXNH3 T: 0.5-0.9 (0.9) T: 0-1 (1) Beta (2.0, 1.0) 0.013 Passed 
FPCCH U: 0.00-0.10 U: 0-1 Beta(1,1) 0.012 Passed 
FPCL U:0.00-0.10 U: 0-1 Beta(1,1) 0.012 Passed 

FPCOF U: 0.00-0.20 U: 0-1 Beta(1,1) 0.013 Passed 
FPCG T: 0.0-0.4 (0.2) T: 0-1 (0.5) Beta(2.5,2.5) 0.025 Passed 

 
FPCS 

T: 0.20-0.60 
(0.4) 

 
T: 0-1 (0.5) 

 
Beta(2.5,2.5) 

 
0.026 

 
Passed 

FPCZF U: 0.00-0.80 U: 0-1 Beta(1,1) 0.012 Passed 
FPCGT U: 0.00-0.50 U: 0-1 Beta(1,1) 0.012 Passed 
FPCHR U: 0.000-0.050 U: 0-1 Beta(1,1) 0.012 Passed 
FPCCR U: 0.00-0.2 U: 0-1 Beta(1,1) 0.013 Passed 
FPCST U: 0.00-0.05 U: 0-1 Beta(1,1) 0.012 Passed 
FPCGF U: 0.00-0.10 U: 0-1 Beta(1,1) 0.013 Passed 

 
FMCOF 

T: 0.01-0.03 
(0.02) 

 
T: 0-1 (0.5) 

 
Beta(2.5,2.5) 

 
0.025 

 
Passed 

 
FMCG 

T: 0.03-0.06 
(0.045) 

 
T: 0-1 (0.5) 

 
Beta(2.5,2.5) 

 
0.025 

 
Passed 

 
FMCS 

T: 0.03-0.06 
(0.04) 

 
T: 0-1 (0.333) 

 
Beta(2.1, 2.6) 

 
0.032 

 
Passed 

 
FMCZF 

T: 0.03-0.06 
(0.03) 

 
T: 0-1 (0) 

 
Beta(1.0,2.0) 

 
0.012 

 
Passed 

 
FMCGT 

T: 0.015-0.06 
(0.02) 

 
T: 0-1 (0.11) 

 
Beta(1.3, 2.3) 

 
0.039 

 
Passed 

 
FMCCR 

T: 0.01-0.03 
(0.02) 

 
T: 0-1 (0.5) 

 
Beta(2.5,2.5) 

 
0.024 

 
Passed 

 
BCSCRC 

T:250-660 
(350) 

 
T:0-1 (0.244) 

 
Beta(1.6, 2.1) 

 
0.046 

 
Passed 

BCNH3 U(150, 225) U:0-1 Beta(1,1) 0.012 Passed 
 

BCZFSO 
T: 0.75-5.00 

(3.00) 
 

T: 0-1 (0.53) 
 

Beta (2.5, 2.3) 
 

0.027 
 

Passed 
BCASHD T: 10-25 (10) T:0-1 (0) Beta (1.0, 2.0) 0.012 Passed 

a: T=Triangular distribution, lower bound and upper bound are given, mode is in parenthesis  
   U=Uniform distribution, lower and upper bound are given;  
   Beta = Beta distribution, shape parameters are given in parenthesis. 
b: Kolmogorov-Smirnov Test of beta distribution to transformed random samples (according to Equation 3-2)    
    from original distributions.  
c: Critical value of K-S test for each fit is 0.088. 
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Figure 3-3. Fitting of Beta (14.8, 14.8) Distribution to the 100 Mean Values of Bootstrap 
Samples from Beta (1.0, 1.0) Distribution 

 

variable according to the beta distributions shown in Table 3-5 (The number of bootstrap 

replicates is 100, and the sample size for simulation of variability is 100). Although it is 

desirable to use a larger number of bootstrap replications, it was not practical to do so given 

the computational requirements. Since there are 100 bootstrap replicates, there are a total of 

100 mean values for each such input. These 100 numbers are fitted to a beta distribution, 

which through transformation by Equation (3-3), is used to represent the uncertainty in the 

mean of the variables with both variability and uncertainty. For example, Figure 3-3 shows 

the fitted beta (14.8, 14.8) distribution to the 100 mean values of the bootstrap samples from 

beta (1.0, 1.0) distribution. The K-S test statistics was 0.049, which is lower than the critical 

value of 0.088, thus indicating a good fit. Table 3-7 summarizes the uncertainty in the mean 

of the variables with both variability and uncertainty. Table 3-8 summarizes K-S testing 

results for each fit. 
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Table 3-7. Distribution Assumptions for Uncertainties in the Mean Value of the Variables 
with both Variability and Uncertainty in the IGCC Model 

Variable 
Name 

 
Description 

 
Distribution Assumptions a 

 
K-S Test b 

K-S Test 
Passed/Failed c 

 
CARCNV 

Gasifier  
Carbon Conversion 

 
0.90 + 0.08* Beta (30, 25) 

 
0.044 

 
Passed 

 
XCRCNV 

Carbon Converted 
 in sulfation unit 

 
0.90 + 0.08* Beta (27, 22) 

 
0.042 

 
Passed 

 
XXCRN 

Fraction of coal  
bound nitrogen 

converted to NH3 

 
0.05 + 0.10* Beta (30, 30) 

 
0.039 

 

 
Passed 

 
 

XXNH3 
Fraction of NH3 

converted to NOX 
in Gas Turbine 

 
0.5 + 0.4* Beta (37, 17) 

 
0.047 

 
Passed 

 
ALABOR 

Average labor rate, 
including burdens 

($/hour) 

 
Normal (19.7, 0.065) 

 
0.053 

 
Passed 

Contingencies of Process Areas 
FPCCH Coal handling 0.10* Beta (14.8,14.8) 0.049 Passed 
FPCL Limestone handling 0.10* Beta (14.8,14.8) 0.049 Passed 

FPCOF Oxidant feed 0.20* Beta (14.8,14.8) 0.049 Passed 
FPCG Gasification 0.20* Beta (29.5,29.5) 0.039 Passed 
FPCS Sulfation 0.20+ 0.40* Beta (29.5,29.5) 0.039 Passed 

FPCZF Zinc ferrite 0.80* Beta (14.8,14.8) 0.049 Passed 
FPCGT Gas turbine 0.50* Beta (14.8,14.8) 0.049 Passed 

 
FPCHR 

Heat recovery  
steam generator 

 
0.050* Beta (14.8,14.8) 

 
0.049 

 
Passed 

 
FPCCR 

Selective  
catalytic reduction 

 
0.20* Beta (14.8,14.8) 

 
0.049 

 
Passed 

FPCST Steam turbine 0.05* Beta (14.8,14.8) 0.049 Passed 
FPCGF General facilities 0.10* Beta (14.8,14.8) 0.049 Passed 

Maintenance Factors of Process Areas 
FMCOF Oxidant feed 0.01+0.02* Beta (30,30) 0.039 Passed 
FMCG Gasification 0.03+0.03* Beta (30,30) 0.039 Passed 
FMCS Sulfation 0.03+0.03* Beta (23, 30) 0.051 Passed 

FMCZF Zinc ferrite 0.03+0.03* Beta (30,43) 0.058 Passed 
FMCGT Gas turbine 0.015+0.045* Beta (13, 22) 0.047 Passed 

 
FMCCR 

Selective 
 catalytic reduction 

 
0.01+0.02* Beta (29.5,29.5) 

 
0.039 

 
Passed 

Unit Cost of Materials 
BCCSRC SCR catalyst ($/ft^3) 250+410* Beta (1.8, 2.5) 0.060 Passed 
BCNH3 Ammonia ($/ton) 150+75* Beta (14.8,14.8) 0.039 Passed 

BCZFSO Zinc Ferrite Sorbent ($/lb) 0.75+4.25* Beta (32,32) 0.048 Passed 
 

BCASHD 
Unit cost of  

Ash Disposal ($/ton) 
 

10 +15* Beta (10, 20) 
 

0.037 
 

Passed 
a: Beta = Beta distribution, shape parameters are given in parenthesis. 
b: Kolmogorov-Smirnov Test of beta distribution to mean values of bootstrap samples of each variable. 
c: Critical value of K-S test for each fit is 0.088. 
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4.0 SOFTWARE IMPLEMENTATION 

This chapter discusses the software implementation for doing optimization under 

variability and/or uncertainty. Optimization of process models under variability and/or 

uncertainty includes three parts: random number generator, optimization solver, and the 

process model. The process model used in this study is a simplified performance, emissions 

and cost model for a KRW gasifier based IGCC system, and has been introduced in Chapter 

3. In this Chapter, the random number generator, optimization solver, and how the three parts 

are integrated into a single framework are discussed.  

4.1 Random Number Generator 

In this study, random numbers for variability, uncertainty, or both variability and 

uncertainty in parameters are generated through an existing software ―AuvTool (Analysis of 

Uncertainty and Variability Tool). AuvTool was developed by Zheng and Frey (2002). It 

uses a two-dimensional sampling method featuring bootstrap simulation for simultaneously 

simulating variability and uncertainty. This technique was proposed by Frey and Rhodes 

(1996), and has been discussed in Chapter 2. AuvTool can also generate one-dimensional 

samples representing only variability or uncertainty based on Monte Carlo simulation. 

AuvTool uses combined Multiple Recursive Generators (MRGs) presented by L’Ecuyer 

(1996) as a pseudo-random number generator (Frey et al., 2002). Random numbers generated 

from AuvTool are saved as a Microsoft Excel file. Through this file, random samples are 

read and used in the optimization process. 

4.2 Overview of the Optimizer 

Evolver is chosen as the optimization solver in this study. Evolver is a genetic 

algorithm (GA) based optimizer developed by Palisade Corporation (Palisade, 1998). 
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4.2.1 Overview of Genetic Algorithms 

Genetic algorithm (GA) is a powerful stochastic search and optimization technique 

based on principles from evolution theory. Holland (1975) pioneered the development of GA.  

In recent years, GA has been widely applied to many fields, such as air quality management 

(Loughlin et al., 2000), chemical processes or equipment design (Wang et al., 1996; Tayal et 

al. 1999), and water resource management (Wardlaw and Sharif, 1999; Burn and Yulianti, 

2001). 

In GA, each potential solution to the problem is analogous to an organism or an 

individual and is encoded as a chromosome. A fitness value is associated with each 

individual to determine how “good” it is, which is based on the objective function value of 

the individual and its satisfaction with the constraints. GA considers a number of these 

individuals simultaneously, which is termed as a population or generation. GA starts with an 

initial population that is randomly generated. Then GA undergoes probabilistic operations, 

including crossover, mutation and selection.  Crossover is the main genetic operator.  It 

operates on two parent chromosomes (or individuals) and generates offspring by combining 

both chromosomes’ features. A simple way for crossover is to exchange a gene segment 

between two parents to generate offspring. Mutation is achieved by randomly replacing part 

of gene in an individual with new randomly generated gene information. Crossover and 

mutation occur randomly for an individual in the population; however these processes occur 

according to some possibilities which are defined as crossover and mutation rate 

respectively. After a specified number of realizations of crossover and mutation for the 

current population, selection is made based on the fitness of each individual, upon 

completion of which, a new population or generation with same size as the former one, is 
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formed. With each generation, the average fitness of individuals will be improved. This 

process of crossover, mutation and selection is repeated until some stopping criteria are met, 

such as computational time, number of generations and so on. Let P(t) and C(t) be parents 

and offspring (children) in the current generation t. The procedures in genetic algorithm can 

be described as follows (Gen, 1997): 

Begin:  t=0  

            Initialize P (t); 

            Evaluate P (t); 

While (not termination condition) do 

            Recombine P (t) to yield C (t); 

            (Recombination includes crossover and mutation)  

            Evaluate C (t); 

            Select P (t+1) from P (t) and C (t); 

            t = t +1; 

            End  

End   

 

Complementary to the general procedures discussed above, Figure 4-1 shows the 

general structures in genetic algorithm (Gen, 1997). Strategies regarding coding of genes, 

definition of fitness value of an individual, design of crossover and mutation operators, and 

selection criteria can vary.  For example, in Holland’s work, encoding is carried out using 

binary strings. During the past 10 years, real number coding, integer coding and others have 

appeared (Gen, 1997).  Constraints can be handled by rejecting, repairing or a penalty  



 

 37

 

Figure 4-1. The General Structures of Genetic Algorithms (Gen, 1997) 
 
 
function approach. Selection can be made based on a stochastic mechanism, deterministic 

mechanism (e.g. truncation selection, elitist selection) or combination of the two mechanisms 

(e.g. tournament selection) (Gen, 1997). Some common crossover operators are one-point 

crossover, two-point crossover, cycle crossover and uniform crossover (Pham and Karaboga, 

1998). Mutation rate can be fixed or be varying according to fitness value of chromosome 

(Pham and Karaboga, 1998). 
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4.2.2 Overview of Evolver 

Evolver is a genetic algorithm (GA) based optimization solver developed by Palisade 

Corporation (Palisade, 1998). It is built as a Microsoft Excel Add-in. The basic steps required 

to run Evolver are summarized as follows: 

(1) Set the objective value for the problems; 

(2) Select design variables and setting constraint on design variables; 

(3) Specify crossover and mutation operators and rates. Besides the default crossover and 

mutation operator, Evolver also provides several other operators, such as linear 

operator and boundary mutations, which can improve the performance and efficiency 

for certain problems. The default crossover and mutation operator are used 

throughout the study. The linear operator is also used since there are many linear 

equations in the IGCC model (Nonlinear equations also exist in the IGCC model). As 

pointed out in the user’s guide of Evolver, the linear operator is designed to solve the 

problem where optimal solutions lies on the boundary of the search space and is 

particularly suited for solving linear optimization problem (Palisade, 1998). The 

default crossover and mutation rates are 0.5 and 0.1, respectively,  in Evolver, and 

users have the option to change them. In this study, the default value for crossover 

and mutation rate is used. 

(4) Set other constraints; 

(5) If applicable, specify Excel Macros to run before or after each trial during 

optimization procedures; This property provides much flexibility in building 

optimization problems, since optimization problem can be coded in Visual Basic 

Macros rather than spreadsheet models; 
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(6) Choose stopping conditions, such as number of trials, running minutes, or change of 

objective value after a certain number of valid trials is less than some percentage. The 

last one is the most popular stopping condition (Palisade, 1998). In this study, we use 

change of objective value after 200 valid trials of less than 1% as stopping condition, 

which is more conservative than the default value of Evolver (change of objective 

value after 100 valid trials is less than 1%);    

After setting these conditions, one can set the Evolver to start optimizing. When the 

stopping criteria is met, Evolver stops the optimization process, and reports the best objective 

function value, and optimal design variables at which the best objective function value is 

achieved.  

4.2.3 Performance of GA in Optimization of Process Models   

Before doing optimization under variability and/or uncertainty, two less 

computationally intensive deterministic optimization cases were carried out to evaluate the 

performance of Evolver for optimization of process models. The first one involves optimal 

control of NOX emissions in an IGCC system, and the second one involves optimal control of 

SO2 emissions in an IGCC system. 

            Case 1: Optimal Control of NOX Emissions in an IGCC System 

In this case study, the performance of Evolver is compared with a mathematical 

nonlinear programming technique, called Successive Quadratic Programming (SQP). SQP is 

a nonlinear programming technique and is favored for large scale nonlinear programming 

problems (Diwekar, et al., 1997). The code for SQP is from a Fortran numerical library 

developed by Visual Numerics Incorporation. 
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The IGCC system in this case features a gas turbine design with an inlet temperature 

of 2350 K, pressure ratio of 13.5, and a Selective Catalytic Reduction (SCR) for post-

combustion NOX control. This system corresponds to configuration 2 in the performance and 

cost model discussed in Chapter 3.  

The objective of this problem is to minimize of cost of electricity in mills/kWh, when 

NOX emissions are constrained to be less than or equal to 0.3 lb/106Btu. It is a nonlinear 

programming problem, since there are both linear and nonlinear equations in the IGCC 

model. Design variables are gasifier carbon conversion (CARCNV), gasifier oxygen to 

carbon ratio (RMOXG2C), gasifier steam to carbon ratio (RSTM2OX), sulfur retained in 

gasifier bottom ash (XSLCNV), SCR NOX removal efficiency (SCRAE) and SCR NH3 slip 

(XNH3S). Description of the optimization problem is summarized in Table 4-1. 

The optimal solutions from Evolver and SQP are summarized in Table 4-2.  The 

optimal cost of electricity is 51.43 mills/kWh found by Evolver, and 51.42 mills/kWh by 

SQP. The optimal design variable values from the two methods are very close. The optimal 

points are also similar as shown in Table 4-2.  There is a difference regarding the optimal 

ammonia slip from the two methods. This implies that ammonia slip does not substantially 

affect the cost of electricity.  

This case study suggests that GA can find comparable optimal solutions as the 

traditional mathematical nonlinear programming method does. However, GA does not 

require calculation of a gradient, which means that GA can be more robust for certain 

problems compared with traditional mathematical programming methods, such as SQP. GA 

can also accommodate discrete design variables. With these advantages, GA is chosen as the 

optimizer in this study. 
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Table 4-1. Deterministic Optimization of NOX Emissions Control in an IGCC System 
Objective Minimization of Cost of Electricity (mills/kWh) 
Constraint NOX emissions ≤ 0.3 lb/106Btu 

Design variables Gasifier Carbon Conversion (CARCNV)  
Gasifier Oxygen to Carbon Ratio (RMOXG2C)  
Gasifier Steam to Carbon Ratio (RSTM2OX)  

Sulfur retained in Gasifier bottom ash (XSLCNV)  
SCR NOX removal efficiency (SCRAE) 

SCR NH3 slip (XNH3S) 
Constraint on design values 0.90 ≤ CARCNV ≤ 0.98 

0.45 ≤ RMOXG2C ≤ 0.47  
0.445 ≤ RSTM2OX ≤ 0.455 

0.80 ≤ XSLCNV ≤ 0.95 
0.50 ≤ SCRAE ≤ 0.90 
5.0 ≤ XNH3S ≤ 20.0 

 
Table 4-2. Summary of Optimal Solutions from Evolver and SQP for NOX Emission Control 
in an IGCC System 

 Evolver IMSL 
 

Optimization method 
Genetic Algorithm 

(GA) 
Successive Quadratic 
Programming (SQP) 

Optimal cost of electricity 
(year 1989 mills/kWh) 

 
51.43  

 
51.42  

Constraint value  
at optimal point (lb/106 Btu) 

 
0.3000 

 
0.3000  

 
 

Optimal design values 

CARCNV=0.980 
RMOXG2C=0.450 
RSTM2OX=0.455 
XSLCNV=0.945 
SCRAE=0.517 

XNH3S=5 

CARCNV=0.980, 
RMOXG2C=0.450 
RSTM2OX=0.455 
XSLCNV=0.944 
SCRAE=0.515 
XNH3S=9.935 

 

            Case 2: Optimization of SO2 Emission Control in an IGCC System 

In this case, the SO2 emissions control in the IGCC system is optimized with Evolver. 

Results from Evolver are compared with published data. The objective of this case study is to 

see whether or not optimal solutions can be comparable to those from other researchers. 

The IGCC system studied here corresponds to configuration 4 in the performance and 

cost model discussed in Chapter 3. In this IGCC system, in-bed desulfurization with 

limestone and external zinc ferrite absorption process are used for SO2 emissions’ control. 
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Three design variables are chosen, which are in-bed desulfurization efficiency, zinc ferrite 

absorption cycle time and maximum vessel height to diameter ratio (Diwekar, et al., 1992). 

Description of the problem is summarized in Table 4-3. 

The optimal cost of electricity was found to be 55.07 mills/kWh, and the optimal in-

bed desulfurization efficiency is 0.804. The optimal zinc ferrite absorption cycle time is 74 

hours, and the maximum ratio of the vessel height-to-diameter for the zinc ferrite absorbers is 

2.27. Table 4-4 summarizes the optimal cost of electricity and optimal design values. The 

optimal solution found by Diwekar et al. (1992) for the same problem is also given in Table 

4-4. The optimal design values are comparable, while the optimal cost of electricity in this 

study is much higher than that of Diwekar et al. (1992). When their design values were 

implemented into our process model, the cost of electricity was found to be 55.18 mills/kWh, 

which is higher than the optimal cost of 55.07 mills/kWh found in this study.  The difference 

in optimal cost of electricity can be possibly attributed to differences between cost model 

parameters used here versus those used by them.  For example, if we use $1.28/106Btu for 

the unit cost of coal instead of $1.61/106Btu, or on average, lower process contingencies and 

maintenance cost factors by 26%, our optimal cost can be 52.09 mills/kWh.  

Though significant difference in optimal cost of electricity exists, the optimal design 

values are very close especially for the in-bed desulfurization efficiency and the absorption 

cycle time. The difference in results for the maximum height-to-diameter ratio suggests that 

this input is not sensitive. These results suggest the feasibility of using GA for optimization 

of process models. 
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Table 4-3: Deterministic Optimization of SO2 Emissions Control in an IGCC System 
Objective Minimization of the cost of electricity; 
Constraint: SO2 Emission ≤ 0.015 lb/ 106Btu; 
Design Variables: In-bed desulfurization efficiency (ηs), 

Zinc ferrite absorption cycle time (ta),  
Maximum ratio of the vessel height to diameter for the zinc 
ferrite absorbers (Max L/D); 

Constraint on the design 
variables:  
 

0.8 ≤ ηs ≤ 0.9; 
30≤ ta ≤ 170;  
2 < Max L/D ≤ 4; 

 

Table 4-4: Summary of Optimal solutions for SO2 Emissions Control in an IGCC System 
 Optimal solutions 

found by Evolver 
Optimal solutions from 

Diwekar et al.(1992) 
In-bed desulfurization  
efficiency ηs  

 
0.804 

 
0.81 

Zinc ferrite absorption  
cycle time ta (hours) 

 
74.18 

 
84.45 

Maximum ratio of the vessel 
height to diameter for zinc ferrite 
absorbers (Max L/D) 

 
2.27 

 
4.00 

Optimal Cost of the electricity 
(year 1989 mills/kWh) 

 
55.07 

 
52.09 

 

4.3 Software Organization 

Figure 4-2 shows the schematic of the integration of random number files, optimizer, 

and process model. They are built under the Microsoft Excel environment.  Data exchange 

and running control are achieved by code written in Microsoft Visual Basic.  

When doing stochastic optimization, Evolver generates decision values. Design 

values and random samples are fed into the process model, and the process model is called to 

generate outputs. This procedure is repeated N times if there are N realizations for 

uncertainty. From the N model outputs, the probabilistic functional used in stochastic 

optimization can be approximated, which is then passed to Evolver for generation of new   
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Figure 4-2. Integration of Software for Optimization under Variability and Uncertainty 
 

design values. This process is iterated until optimal solutions are found. A flow diagram for 

doing stochastic optimization was shown in Figure 2-3 of Chapter 2.   

When doing stochastic programming, for each realization of uncertain variables, 

Evolver is called to find the optimal solutions for this set of random samples. If there are N 

realizations of uncertain variables, N optimal solutions will be found. A flow diagram for 

doing stochastic programming was shown in Figure 2-5 of Chapter 2.   

For coupled stochastic optimization and programming technique, stochastic 

optimization is done for each realization of variability. The output is a probability 

distribution for optimal solutions from stochastic optimization, which can be used to assess 

the effect of uncertainties on the stochastic optimization results. The flow diagram for this 

method was shown in Figure 2-6 of Chapter 2. 

For two-dimensional stochastic programming, deterministic programming is done for 

each combination of samples for variability and uncertainty. The output would be a two-

dimensional distribution of optimal solutions. This method enables one to evaluate the effect 
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of both variability and uncertainty in model parameters on optimal solutions. The flow 

diagram for this method was shown in Figure 2-7 of Chapter 2. 
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5.0 CASE STUDY OF OPTIMIZATION UNDER VARIABILITY AND 
UNCERTAINTY  

This chapter presents the results from three case studies based on minimizing 

levelized cost subject to a NOX emissions constraint. These three cases are: 

(1) Stochastic optimization and stochastic programming when only variability in model 

inputs is considered;  

(2) Stochastic optimization and stochastic programming when only uncertainty in model 

inputs is considered; 

(3) Coupled stochastic optimization and programming, and two-dimensional stochastic 

programming methods when both variability and uncertainty in model inputs are 

considered. 

 

The IGCC system features a gas turbine with pressure ratio of 13.5 and turbine inlet 

temperature of 2300 K, and a Selective Catalytic Reduction (SCR) process for post 

combustion NOX emissions control.  The system corresponds to Configuration 3 in the IGCC 

model discussed in Chapter 3 and given in Table 3-1. A summary of key characteristics of 

the plant, such as net electricity generated, efficiency and so on is given in Table 5-1, when 

all model inputs are at default values. Optimization under variability and uncertainty with 

regard to Configuration 2 in the IGCC model was also done.  The results are very similar to 

those of Configuration 3, and are summarized in Appendix B.  

To achieve a cost effective control of NOX emissions, seven variables in the system 

were identified and chosen as design variables.  These variables include: gasifier oxygen to 

carbon ratio (RMOXG2C), gasifier steam to carbon ratio (RSTM2OX), sulfur retained in the 

gasifier bottom ash (XSLCNV), SCR NOX removal efficiency (SCRAE), SCR ammonia slip  
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Table 5-1. A Summary of Key Characteristics of the Studied IGCC System   
Name Values 
Net Electricity (106Watt) 725.08 
Heat Rate (Btu/kW, HHV basis) 8348.58 
Efficiency (fraction, HHV basis) 0.4091 
Capital Cost ($/kW) 1693.58 
Fixed Operating Cost* ($/kW-year) 55.47 
Variable Operating Cost* (mills/kWh) 21.2 
Cost of Electricity* (mills/kWh) 61.70 
Coal Input (lb/kWh) 0.7422 
CO2 Emissions (lb/kWh) 1.7225 
SO2 Emissions (lb/106Btu) 0.0133 
NOX Emissions (lb/106Btu) 0.1223 

*: Dollar values based on January, 2002. 

(XNH3S), SCR catalyst layer replacement interval (REPHRS) and capacity factor (CF).  

RMOXG2C, RSTM2OX, XSLCNV are important design variables with regard to the gasifer, 

while SCRAE, XNH3S and REPHRS are variables directly connected with performance and 

cost of SCR process.  The adjustable range and default values of these variables are given in 

Table 5-2. 

5.1 Optimization Considering Variability in Model Inputs 

In this part, stochastic optimization and stochastic programming are conducted when 

variability in model inputs is considered.  As discussed in Section 3.3, twenty six variables 

were identified with variability, and probabilistic distributions were developed to 

characterize the variability for these variables, which are shown in Table 3-5.  For each of 

these variables, 100 random samples are generated through AuvTool.  The same random 

samples are used for both stochastic optimization and stochastic programming, and thus 

comparison between the results of two methods will not be interfered with differences in the 

sequence of random numbers.  For those variables with only uncertainty, default point 

estimates were used, which are shown in Table 3-3.  
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Table 5-2. Description of Design Variables and Adjustable Range 
Design 

variables 
 

Description 
Default 
Value 

 
Adjustable Range 

RMOXG2C Gasifier oxygen to carbon ratio 0.46 0.45 ~ 0.47 
RSTM2OX Gasifier steam to carbon ratio 0.45 0.445 ~ 0.455 
XSLCNV Sulfur retained in the gasifier bottom ash 0.90 0.80 ~ 0.95 
SCRAE SCR NOX removal efficiency 0.80 0.50 ~ 0.90 
XNH3S SCR ammonia slip (ppm) 10 5.0 ~ 20.0 

 
RSPHRS 

SCR catalyst layer 
 replacement interval (hour) 

 
11390 

 
5000 ~ 25000 

CF Capacity factor 0.65 0.5 ~ 0.9 

5.1.1 Results from Stochastic Optimization 

The objective of stochastic optimization is to minimize the expected value of cost of 

electricity when NOX emissions are constrained.  Different statistics of NOX emissions can 

be constrained, such as the expected value, 90th percentile, or 95th percentile.  In the 

following two cases, the expected value of NOX emissions is constrained in the first case, and 

the 90th percentile of NOX emissions is constrained in the second case.  

Case 1: Expected Value of NOX Emissions is Constrained 

In this case, the expected value of NOX emissions is constrained to be less than or 

equal to a particular value.  The objective is to minimize expected cost of electricity.  Design 

variables were discussed and are given in Table 5-2.  

Figure 5-1 shows the optimal expected cost of electricity when the expected value of 

NOX emissions is constrained to be less than or equal to 0.3 lb/106Btu, 0.2 lb/106Btu and 0.1 

lb/106Btu, respectively.  When the expected NOX emissions are constrained to be not greater 

than 0.3 lb/106Btu, the optimal expected cost of electricity is 50.34 mills/kWh.  As expected, 

when expected NOX emissions are constrained to be not greater than 0.2 lb/106Btu, the 

optimal expected cost of electricity goes up. The expected cost of electricity in this case is 

50.45 mills/kWh, and the required SCR removal efficiency is 60%.  When the expected NOX  
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Figure 5-1. Optimal Expected Cost of Electricity from Stochastic Optimization Considering 
Variability in Model Inputs when Expected Value of NOX Emissions is Constrained 
 

emissions constraint becomes 0.1 lb/106Btu, the optimal expected cost of electricity increases 

to 50.71 mills/kWh and the required SCR removal efficiency is 81%. To place these results 

in context, for a 730,000 kW power plant with an annual capacity factor of 0.65, a difference 

in cost of electricity of 0.37 mills/kWh, based upon comparing the results for the NOX 

constraints of 0.3 and 0.1 lb/106Btu, is $1.54 millions per year. Detailed optimal solutions for 

all the three constraint levels are summarized in Table 5-3. As shown in Table 5-3, the 

optimal values for “Gasifier oxygen to carbon ratio” and “SCR ammonia slip” are at their 

lower bounds.  However, optimal values for “Sulfur retained in the gasifier bottom ash”, 

“Gasifier steam to carbon ratio”, “SCR catalyst layer replacement interval” and “Capacity 

factor” are at upper bounds.  Optimal values for “SCR removal efficiency” vary as the 

expected values of NOX emissions are constrained by different levels.  
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Table 5-3. Optimal Solutions from Stochastic Optimization Considering Variability in Model 
Inputs when Expected Value of NOX Emissions is Constrained 

 Level 1 Level 2 Level 3 
Expected value of  

NOX Emissions (lb/106 Btu) 
 

≤ 0.3 
 

≤ 0.2 
 

≤ 0.1 
Minimum expected cost of  

electricity (mills/kWh) 
 

50.34 
 

50.45 
 

50.71 
Optimal gasifier oxygen to carbon ratio 0.45 0.45 0.45 
Optimal gasifier steam to carbon ratio 0.455 0.455 0.455 

Optimal sulfur retained 
 in the gasifier bottom ash  

 
0.95 

 
0.95 

 
0.95 

Optimal SCR NOX removal efficiency 0.5 0.60 0.81 
Optimal SCR ammonia slip 5 5 5 
Optimal SCR catalyst layer  
replacement interval (hour) 

 
25000 

 
25000 

 
25000 

Optimal capacity factor 0.9 0.9 0.9 
 

The optimal values for the design variables are reasonable. To evaluate the optimized 

results, the sensitivity of cost of electricity to each design variable is done while keeping 

other design variables at default values (see Table 5-2 for default values of design variables; 

Table 3-3 for default values of uncertain variables; and Table 3-4 for default values of 

variables with both variability and uncertainty). Figure 5-2 to Figure 5-8 shows the 

sensitivity of cost of electricity to each design variable. Figure 5-2 shows that cost of 

electricity will increase approximately linearly with the increase of gasifier oxygen to carbon 

ratio (RMOXG2C). High RMOXG2C value increases the net electricity of the system, but it 

also increases the capital and operating cost of the system. Overall, high RMOXG2C results 

in high cost of electricity. Thus, the optimal RMOXG2C is at the lower bound.   

Figure 5-3 shows that the cost of electricity is not sensitive to gasifier steam to carbon 

ratio (RSTM2OX). The increase of RSTM2OX results in a slight decrease of SCR NOX load, 

which consequently decreases a bit of the operating cost. However, the effect of RSTM2OX 

on the overall cost of electricity is very small. If RSTM2OX is 0.455, the cost of electricity is 
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61.69 mills/kWh, which is 0.01 mills/kWh lower than that when RSTM2OX is at 0.445. The 

Optimal RSTM2OX is at the high bound.   

Figure 5-4 shows that an increase of sulfur retained in the gasifier bottom ash 

(XSLCNV) can generally decrease the cost of electricity. High values of XSLCNV decrease 

both the steam turbine output and auxiliary load. The overall net electricity is increased as 

XSLCNV increases. Thus, high XSLCNV is favored for the minimization of cost of 

electricity.   

Figure 5-5 shows that cost of electricity increases linearly with an increase of the 

SCR NOX removal efficiency (SCRAE). Thus, SCRAE should be as low as possible for the 

optimal cost of electricity. However, SCRAE is also constrained by NOX emissions. When 

constraint on expected NOX emissions changes from 0.3 lb/106Btu to 0.2 lb/106Btu, the 

required SCR removal efficiency increases from 0.50 to 0.60.   

Figure 5-6 shows the sensitivity of cost of electricity to SCR ammonia slip (XNH3S). 

The cost of electricity is not sensitive to XNH3S. The cost of electricity only increases by 

0.01 mills/kWh when XNH3S is increased from 5 to 20ppm. Detailed analysis indicates that 

an increase of XNH3S causes an increase in ammonia consumptions, which increases the 

cost of electricity. The optimal XNH3S is at its lower bound.   

Figure 5-7 shows that capacity factor (CF) can have a significant nonlinear impact on 

the cost of electricity.  Cost of electricity drops from 73 mills/kWh when CF is 0.5 to about 

50 mills/kWh when CF is 0.9. The maximum CF increases the utilization of the system, and 

thus lowers the cost of electricity. The optimal capacity factor is at the high bound.   

Figure 5-8 shows the sensitivity of cost of electricity to SCR catalyst layer 

replacement interval (REPHRS). When REPHRS increases, the capital cost of SCR process  
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Figure 5-2. Sensitivity of Cost of Electricity to Gasifier Oxygen to Carbon Ratio 
(RMOXG2C) when Other Design Variables are at Default Values 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5-3. Sensitivity of Cost of Electricity to Gasifier Steam to Carbon Ratio 
(RSTM2OX) when Other Design Variables are at Default Values 
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Figure 5-4. Sensitivity of Cost of Electricity to Sulfur Retained in the Gasifier Bottom 
Ash (XSLCNV) when Other Design Variables are at Default Values 
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Figure 5-5. Sensitivity of Cost of Electricity to SCR NOX Removal Efficiency (SCRAE) 
when Other Design Variables are at Default Value 
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Figure 5-6. Sensitivity of Cost of Electricity to SCR Ammonia Slip (XNH3S) when Other 
Design Variables are at Default Values 
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Figure 5-7. Sensitivity of Cost of Electricity to Capacity Factor (CF) when Other Design 
Variables are at Default Values 
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Figure 5-8. Sensitivity of Cost of Electricity to SCR Catalyst Layer Replacement Interval 
(REPHRS) when Other Design Variables are at Default Value 
 

area will increase, but the operating cost will decrease. Overall, high values of REPHRS 

decrease the cost of electricity. Thus, the optimal REPHRS is at the high bound.        

Case 2: 90th Percentile of NOX Emissions is Constrained 

In this case, the 90th percentile of NOX emissions is constrained by a particular 

value.  The objective value and design variables remain the same as for Case 1. 

Figure 5-9 shows the optimal expected value of cost of electricity when the 90th 

percentile of NOX emissions is constrained by 0.3 lb/106Btu, 0.2 lb/106Btu and 0.1 

lb/106Btu, respectively. The general trend of the optimal expected cost of electricity is 

similar to the Case 1, where the expected value of NOX emissions is constrained.  

However, the optimal expected cost of electricity in this case is higher than that of Case 

1. For example, when expected NOX emissions are constrained by 0.2 lb/106Btu, the 

optimal expected cost of electricity is 50.45 mills/kWh; while the optimal expected cost 

of electricity is 50.55 mills/kWh, when the 90th percentile of NOX emissions is 

constrained by 0.2 lb/106Btu. Optimal design values are summarized in Table 5-4.   
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Figure 5-9. Optimal Expected Value of Cost of Electricity from Stochastic Optimization 
Considering Variability in Model Inputs when 90th Percentile of NOX Emissions is 
Constrained  
 
Table 5-4. Optimal Solutions from Stochastic Optimization Considering Variability in 
Model Inputs when 90th Percentile of NOX Emissions is Constrained 

 Level 1 Level 2 Level 3 
Constraint on 
NOX Emission  

(lb/106 Btu) 

90 percentile of 
NOX emissions 

≤0.3 

90 percentile of 
NOX emissions 

≤0.2 

90 percentile of 
NOX emissions 

≤0.1 
Minimum expected cost 

of electricity 
 

50.35 
 

50.55 
 

50.76 
Gasifier Oxygen to 

Carbon Ratio 
 

0.45 
 

0.45 
 

0.45 
Gasifier Steam to Carbon 

Ratio 
 

0.455 
 

0.455 
 

0.455 
Sulfur retained in the 
gasifier bottom ash 

 
0.95 

 
0.95 

 
0.95 

SCR NOX Removal 
Efficiency 

 
0.51 

 
0.68 

 
0.85 

SCR ammonia slip 5 5 5 
Plant Capacity Factor 0.9 0.9 0.9 

SCR Replacement Interval 25000 25000 25000 
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Except for the SCR removal efficiency, all other variables in these cases have the same 

optimal values as the cases in which expected NOX emissions are constrained.    

In addition to the two cases discussed above, the optimal expected cost of 

electricity is also evaluated when different statistics (e.g. expected value, 90th percentile, 

95th percentile, 97th percentile, and 99th percentile) of NOX are constrained to be less than 

or equal to 0.2 lb/106Btu. Table 5-5 shows the optimal solutions under these five 

constraints. As the constraint on NOX emissions becomes stricter, the SCR removal 

efficiency increases, and so does the optimal expected cost of electricity. For example, 

the optimal expected cost of electricity is 50.62 mills/kWh when the 99th percentile of 

NOX emissions is constrained, which is 0.17 mills/kWh higher than the base case, in 

which expected value of NOX emissions is constrained.  



 

 57

Table 5-5. Optimal Solutions from Stochastic Optimization Considering Variability in Model Inputs when Different Statistics of NOX 
Emissions are Constrained to be less than or equal to 0.2 lb/ 106Btu 

 Level 1 Level 2 Level 3 Level 4 Level 5 
Constraint 

(Unit of NOX 
emissions is 
lb/106Btu)  

 
Expected value 

of NOX emissions 
≤ 0.2 

 
Probability 

(NOX emissions 
≤ 0.2) ≥ 0.9 

 
Probability 

(NOX emissions 
≤ 0.2) ≥ 0.95 

 
Probability 

(NOX emissions 
≤ 0.2) ≥ 0.97 

 
Probability 

(NOX emissions 
≤ 0.2) ≥ 0.99 

Optimal expected  
cost of electricity 

(mills/kWh) 

 
50.45 

 
50.55 

 
50.59 

 
50.61 

 
50.62 

Gasifier Oxygen to 
Carbon Ratio 

 
0.45 

 
0.45 

 
0.45 

 
0.45 

 
0.45 

Gasifier Steam to 
Carbon Ratio 

 
0.455 

 
0.455 

 
0.455 

 
0.455 

 
0.455 

Sulfur retained in the 
gasifier bottom ash 

 
0.95 

 
0.95 

 
0.95 

 
0.95 

 
0.95 

SCR NOX Removal 
Efficiency 

 
0.60 

 
0.68 

 
0.71 

 
0.73 

 
0.74 

SCR ammonia slip 5 5 5 5 5 
Plant Capacity Factor 0.9 0.9 0.9 0.9 0.9 

SCR Replacement 
Interval 

 
25000 

 
25000 

 
25000 

 
25000 

 
25000 

 



 

 58

5.1.2 Results from Stochastic Programming 

In contrast to stochastic optimization, stochastic programming involves deterministic 

optimization for each random sample. Stochastic programming generates 100 optimal 

solutions if 100 random numbers are sampled for variability. This section summarizes results 

from stochastic programming for variability only. At each stage of stochastic programming, 

objective is to minimize of the cost of electricity (mills/kWh). 

Figure 5-10 shows the cumulative probability distribution of optimal cost of 

electricity when NOX emissions are constrained to less than or equal to 0.2 lb/106Btu.  The 

mean optimal cost of electricity is around 50.45 mills/kWh.  In specific situations, the 

optimal cost of electricity can go up to 53.15 mills/kWh and the overall range is 45.92 to 

53.15 mills/kWh.  This suggests that variability can significantly affect the optimal cost of 

the system. The cumulative probability distribution of optimal SCR removal efficiency is 

given in Figure 5-11.  The average optimal SCR removal efficiency is 59%. However, given 

variability in model inputs, the optimal SCR removal efficiencies vary from 50 to 74 percent.  
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Figure 5-10. Cumulative Probability of Optimal Cost of Electricity from Stochastic 
Programming Considering Variability in Model Inputs when NOX Emissions are Constrained 
to Less Than or Equal to 0.2 lb/106Btu 
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Figure 5-11. Cumulative Probability Distribution for Optimal SCR Removal Efficiency in 
Stochastic Programming Considering Variability in Model Inputs when NOX Emissions are 
Constrained to be Less than or Equal to 0.2 lb/106Btu 

 

Stochastic programming was also conducted when NOX emissions were constrained 

to be less than or equal to 0.1 lb/106Btu, and 0.3 lb/106Btu, respectively. Table 5-6 

summarizes optimal solutions from stochastic programming for three NOX emissions 

constraints. The average value and 95% variability range for the optimal cost of electricity 

and optimal design values are given in Table 5-6.  For all three levels, the 95% range of 

optimal costs of electricity vary from -4% to 5% compared with the mean value, on a relative 

basis. 

Optimal values for gasifier oxygen to carbon ratio (RMOXG2C), sulfur retained in 

the gasifier bottom ash (XSLCNV) and capacity factor (CF) do not change during the 100 

realizations of variability. However, optimal values for SCR ammonia slip (XNH3S), gasifier 

steam to carbon ratio (RSTM2OX), SCR removal efficiency (SCRAE) and SCR catalyst 

layer replacement interval (REPHRS) vary. In two of these cases, relative ranges of variation 

are small. For example, RSTM2OX and REPHRS vary only by a small percentage of their 

mean values and change little for the three emissions levels. Ammonia slip appears to vary  



 

 60

Table 5-6. Minimization of Cost of Electricity using Stochastic Programming when 
Considering only Variability in Model Inputs 

  Level 1 Level 2 Level 3 
Constraint on  

NOX Emissions 
(lb/106Btu) 

 
NOX emissions 

≤0.3 

 
NOX emissions 

≤0.2 

 
NOX emissions 

≤0.1 
Mean Value of the 

Optimal cost of 
electricity 

(mills/kWh) 

 
 

50.35 

 
 

50.45 

 
 

50.71 

95% range of optimal 
cost of electricity 

(mills/kWh) 

 
 

48.45 ~ 52.96 

 
 

48.59 ~ 53.09 

 
 

45.84 ~ 53.34 
Mean value of 

optimal RMOXG2C 
 

0.45 
 

0.45 
 

0.45 
95% range of optimal 

RMOXG2C 
 

0.45 ~ 0.45 
 

0.45 ~ 0.45 
 

0.45 ~ 0.45 
Mean value of 

optimal RSTM2OX 
 

0.454 
 

0.453 
 

0.453 
95% range of optimal 

RSTM2OX 
 

0.452 ~ 0.455 
 

0.450 ~ 0.455 
 

0.451 ~ 0.455  
Mean value of 

optimal XSLCNV 
 

0.95 
 

0.95 
 

0.95 
95% range of optimal 

XSLCNV 
 

0.95 ~ 0.95 
 

0.95 ~ 0.95 
 

0.95 ~ 0.95 
Mean value of 

optimal SCRAE 
 

0.51 
 

0.59 
 

0.80 
95% range of optimal 

SCRAE 
 

0.5 ~ 0.59 
 

0.5 ~ 0.73 
 

0.72 ~ 0.87 
Mean value of 

optimal XNH3S 
 

6.2 
 

9.4 
 

10.1 
95% range of optimal 

XNH3S 
 

5 ~ 12.1 
 

5  ~ 18.0 
 

5 ~ 16.4 
Mean value of  

optimal CF 
 

0.9 
 

0.9 
 

0.9 
95% range of optimal 

CF 
 

0.9 ~ 0.9 
 

0.9  ~ 0.9 
 

0.9 ~ 0.9 
Mean value of 

optimal REPHRS 
 

24849 
 

24894 
 

24702 
95% range of optimal 

REPHRS 
 

24070 ~ 25000 
 

24356  ~ 25000 
 

24104 ~ 25000 
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but was previously shown to be an insensitive input. SCRAE varies substantially and is a 

sensitive input. Two model inputs, the fraction of NH3 converted to NOX in the gas turbine 

(XXNH3) and the fraction of coal bound nitrogen converted NH3 (XXCRN), are assumed to 

have variability. These two inputs impact the NOX concentrations in the flue gas upstream of 

the SCR process. Thus optimal SCR NOX removal efficiency is expected to vary in response 

to the variations in XXNH3 and XXCRN to meet the constraint on NOX emissions. Figure 5-

12 and Figure 5-13 shows the variations of optimal SCR NOX removal efficiency with the 

variations of XXCRN and XXNH3 (for the case of NOX emissions ≤ 0.2 lb/106Btu). There is 

a clear correlation between the optimal SCR NOX removal efficiency and XXCRN (Sample 

correlation coefficient is 0.80). Dependence of optimal SCR NOX removal efficiency on 

XXNH3 is not as strong as on XXCRN, though the correlation is still statistically significant 

on a 95% level of confidence (Sample correlation coefficient is 0.34).  

5.1.3 Comparison between Results from Stochastic Optimization and 
Stochastic Programming 

Comparison between optimal solutions from stochastic optimization and stochastic 

programming enables evaluation of the expected value of perfect information (EVPI). EVPI 

is the difference between the expected loss (or cost) of optimal management decision based 

on the results of uncertainty analysis and the expected loss of the optimal management 

decision if all uncertainty were eliminated in one or all uncertainty quantities. In actual 

application, EVPI is an upper bound for the expected value of efforts to reduce uncertainty, 

and as such, provides the ultimate bound on what should be spent on research and data 

collection efforts (Dakins, 1999). EVPI is calculated by Equation (5-1) (Morgan and 

Henrion, 1990). 
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Figure 5-12. Dependence of Optimal SCR Removal Efficiency on the Fraction of Coal 
Bound Nitrogen Converted to NH3 
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Figure 5-13. Dependence of Optimal SCR Removal Efficiency on the Fraction of NH3 
Converted to NOX in the gas turbine 

 

[ ] [ ]),(),( xdLMinExdLEMinEVPI dd −≡                                   (5-1) 

Where, d is the decision chosen from decision space, 

            x is an uncertain empirical variables, 

           L(d,x) is the loss function of decision d and state x, 

          ∫= dxxfxdLxdLE X )(),()],([ is prior expectation over x of the loss for   

                               decision d, 
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           f(x) is probability density on x, 

          ),( xdLMind is the decision that minimize loss given perfect information of x. 

 

The first term in Equation (5-1) is the minimized expected loss. The second term in 

Equation (5-1) is calculated by determining the minimized loss for the each iteration of the 

Monte Carlo simulation, when a probabilistic analysis has been carried out using Monte 

Carlo technique (Dakins, 1999). EVPI has been widely applied in practical problems, such as 

environmental remediation (Dakins et al., 1994), global warming (Nordhaus and Popp, 1997; 

Gjerde et al., 1998) and operational planning (Ierapetritou et al., 1995).  

EVPI is applied for problems with uncertainty. However, only variability in model 

inputs is considered here. Under this condition, we apply this concept as the difference in 

cost of two decision strategies: One is a single optimal control strategy (a single set of 

decision variables) accommodating variability in model inputs; and the other one is the 

strategy in which decision values vary with the variations in variables with variability. In this 

way, EVPI provides the benefit of dynamically adjusting decision variables for optimal 

control. It can be calculated as the difference between the optimal expected cost of electricity 

from stochastic optimization and the average optimal cost of electricity from stochastic 

programming. The loss function is the cost of electricity in this case. 

Table 5-7 summarizes the comparisons of stochastic optimization and stochastic 

programming results under certain conditions. The stochastic programming result shown in 

the table comes from the case study when NOX emissions are constrained to be less than or 

equal to 0.2 lb/106Btu. Four stochastic optimization results are shown, in which expected 

value of NOX emissions, 90th percentile of NOX emissions, 95th percentile of NOX emissions,  
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Table 5-7. Comparison of Stochastic Optimization and Stochastic Programming Results 
when Considering Variability in Model Inputs 

 Level 1 Level 2 Level 3 Level 4 
Optimal value of stochastic optimization 

 
Constraint  
(lb/106Btu) 

Expected NOX 
emissions 
≤ 0.2 

Probability 
(NOX emissions 
≤ 0.2) ≥ 0.9 

Probability 
(NOX emissions 
≤ 0.2) ≥ 0.95 

Probability 
(NOX emissions 
≤ 0.2) ≥ 0.99 

Expected  
Cost of 

Electricity 
(mills/kWh) 

 
 

50.45 

 
 

50.55 

 
 

50.59 

 
 

50.62 

SCR  
Removal 

Efficiency 

 
0.60 

 
0.68 

 
0.71 

 
0.74 

Average optimal value of stochastic programming 
Constraint 
(lb/106Btu) 

NOX emissions 
≤ 0.2 

NOX emissions 
≤ 0.2 

NOX emissions 
≤ 0.2 

NOX emissions 
≤ 0.2 

Cost of 
Electricity 

(mills/kWh) 

 
50.45 

 
50.45 

 
50.45 

 
50.45 

SCR Removal 
Efficiency 

 
0.60 

 
0.60 

 
0.60 

 
0.60 

Expected Value of Perfect Information (EVPI) 
mills/kWh 0.00 0.10 0.14 0.17 
106$/year 0.00 0.60 0.84 1.02 

 

and 99th percentile of NOX emissions are constrained to be not greater than 0.2 lb/106Btu, 

respectively. Choosing to compare these four stochastic optimization results with stochastic 

programming results are subjective, and it is up to decision makers regarding the reliability 

of stochastic optimization design (e.g. which statistics of emissions are used as constraint). In 

stochastic programming, as NOX emissions are constrained by 0.2 lb/106Btu, the average 

optimal cost of electricity is 50.45 mills/kWh.  In stochastic optimization, when 90th 

percentile of NOX emissions is constrained, the optimal expected cost of electricity is 50.55 

mills/kWh, which is 0.10 mills/kWh higher than the average optimal values from stochastic 

programming. As the net electricity of the system is about 730,000 kW and the capacity is 

0.9, 0.10 mills/kWh equals to $0.6 millions per year. This will be the benefit if the exact 
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values of variables with variability at specific time are known, and decision variables are 

adjusted according to the exact values of the variables with variability. In stochastic 

optimization, the required SCR removal efficiency is 0.68, while in stochastic programming, 

the average required SCR removal efficiency is 0.60. As shown in Figure 5-8, cost of 

electricity increases as SCR removal efficiency increases. This explains the difference 

between optimal expected value from stochastic optimization and average optimal value 

from stochastic programming. When 95th percentile of NOX emissions is constrained by 0.2 

lb/106Btu in stochastic optimization, the optimal expected cost of electricity is 50.59 

mills/kWh, which is 0.14 mills/kWh higher than average optimal values from stochastic 

programming. When 99th percentile of NOX emissions is constrained by 0.2 lb/106Btu in 

stochastic optimization, the optimal expected cost of electricity is 50.62 mills/kWh, which is 

0.17 mills/kWh higher than average optimal cost of electricity from stochastic programming.  

5.2 Optimization Considering Uncertainty in Model Inputs 

In Section 5.1, optimization was conducted when only variability in model inputs is 

considered.  In this section, optimization considering uncertainty in model inputs is explored 

for the same IGCC system as in Section 5.1. As discussed in Chapter 3, 27 model inputs were 

identified as uncertain variables. Probabilistic distributions have been developed to 

characterize the uncertainty, and are given in Table 3-3. For each uncertain input, 100 

random samples were generated using AuvTool, and were used in both stochastic 

optimization and stochastic programming. For the other 26 variables with both variability 

and uncertainty, the uncertainty associated with the mean of these variables is considered. 

This uncertainty was which have been characterized with probability distributions as given in  
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Figure 5-14. Optimal Expected Cost of Electricity from Stochastic Optimization Considering 
Uncertainty in Model Inputs when the 90th Percentile of NOX Emissions is Constrained 
 
Table 3-6. Similarly, 100 random samples are generated through AuvTool for each variable 

of these 26 inputs to represent uncertainty in the mean value. 

5.2.1 Results from Stochastic Optimization 

The objective of stochastic optimization over uncertainty is to minimize the expected 

cost of electricity when the 90th percentile of NOX emissions is constrained. This can be 

viewed as a chance constrained optimization problem. Other statistics of NOX emissions, 

such as expected values, or other percentiles, can also be used as constraint. Here 90th 

percentile of NOX emissions is chosen.    

Figure 5-14 shows the optimal expected value of cost of electricity when the 90th 

percentile of NOX emissions is constrained to be less than or equal to 0.3 lb/106Btu, 0.2 

lb/106Btu and 0.1 lb/106Btu, respectively. As the constraint on NOX emissions becomes 

stricter, the SCR removal efficiency needs to be increased, which consequently increases the  
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Table 5-8. Optimal Solutions from Stochastic Optimization Considering Uncertainty in 
Model Inputs when 90th Percentile of NOX Emissions is Constrained 
 Level 1 Level 2 Level 3 
Constraint on 
NOX Emission  
(lb/106 Btu) 

90th percentile of 
NOX emissions 

≤0.3 

90th percentile of 
NOX emissions 

≤0.2 

90th percentile of 
NOX emissions 

≤0.1 
Minimum expected cost of 
electricity (mills/kWh) 

 
51.46 

 
51.65 

 
51.88 

Gasifier Oxygen to  
Carbon Ratio 

 
0.45 

 
0.45 

 
0.45 

Gasifier Steam to  
Carbon Ratio 

 
0.455 

 
0.455 

 
0.455 

Sulfur retained in the 
gasifier bottom ash 

 
0.95 

 
0.95 

 
0.95 

SCR NOX  
Removal Efficiency 

 
0.50 

 
0.65 

 
0.83 

SCR ammonia slip (ppm) 5 5 5 
Plant Capacity Factor 0.9 0.9 0.9 
SCR Replacement Interval 25000 25000 25000 

 

expected cost of electricity. The trend of expected cost of electricity with respect to change of 

the NOX emissions constraint is similar to the case when variability in model inputs is 

considered. The optimal design values are summarized in Table 5-8.  For the three levels 

shown in the table, optimal values of SCR removal efficiency are different, while all other 

design variables have same optimal values. The optimal values are consistent with the results 

when variability in model inputs is considered, which are shown in Table 5-3. 

5.2.2 Results from Stochastic Programming 

Stochastic programming involves deterministic optimization for each iteration of 

random samples. At each iteration, the objective is to minimize the cost of electricity 

(mills/kWh), given the deterministic constraint on the NOX emissions.  

Figure 5-15 shows the cumulative probability distribution of the optimal cost of 

electricity when NOX emissions are constrained to be less than or equal to 0.2 lb/106Btu. The  
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Figure 5-15. Cumulative Probability of Optimal Cost of Electricity from Stochastic 
Programming Considering Uncertainty in Model Inputs when NOX Emissions is Constrained 
to be less than or equal to 0.2 lb/106Btu 
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Figure 5-16. Cumulative Probability of Optimal SCR Removal Efficiency from Stochastic 
Programming Considering Uncertainty in Model Inputs when NOX Emissions is Constrained 
to be less than or equal to 0.2 lb/106Btu 
 

mean optimal cost of electricity is 51.61 mills/kWh. However, for some uncertainty 

realizations, the optimal cost of electricity is more than 60 mills/kWh. This suggests that the 

uncertainty in model inputs significantly impacts the optimal cost of the system. The 

cumulative probability distribution of the SCR removal efficiency is given in Figure 5-16. 

The optimal SCR removal efficiency varies from 53% to 70%. Figure 5-17 and Figure 5-18 

shows the variations of optimal SCR NOX removal efficiency with the variations of XXCRN 

and XXNH3 (for the case of NOX emissions ≤ 0.2lb/106Btu). There is a clear correlation  
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Figure 5-17. Dependence of Optimal SCR Removal Efficiency on the Fraction of Coal 
Bound Nitrogen Converted to NH3 
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Figure 5-18. Dependence of Optimal SCR Removal Efficiency on the Fraction of NH3 
Converted to NOX in Gas Turbine 
 

between the optimal SCR NOX removal efficiency and XXCRN (Sample correlation 

coefficient is 0.91). Dependence of optimal SCR NOX removal efficiency on XXNH3 is not 

as strong as on XXCRN. However, the correlation is still statistically significant on a 95% 

level of confidence (Sample correlation coefficient is 0.55).  

To identify the key variables that contribute uncertainty in cost of electricity, 

correlation coefficient between optimal cost of electricity (which means that design variables 
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Table 5-9. Four Key Contributors to the Uncertainty in the Optimal Cost of Electricity 
 
Variable Name 

Correlation Coefficient with  
the Optimal Cost of Electricity * 

Zinc ferrite absorption attrition rate  
(% loss per cycle) 

 
0.875 

Project contingency factor 0.377 
Error term of HRSG direct  
cost of model ($Millions) 

 
0.364 

Unit cost of coal ($/lb) 0.321 
*: All coefficients shown are statistically significant at a 95% level of confidence 

are at optimal values) and random samples of each uncertain variable are calculated. 

Correlation coefficient provides an estimate of the linear dependence of a model output on a 

particular model input, and is a way for identifying key contributors to uncertainty (Cullen 

and Frey, 1999). Four statistically significant key contributors were identified and are given 

in Table 5-9 along with their correlations with the optimal cost of electricity. Zinc ferrite 

absorption attrition rate was found to be the key contributor to the uncertainty in the optimal 

cost of electricity. Thus, resolving uncertainty in zinc ferrite absorption attition rate is of 

significant importance to reducing uncertainty in the optimal cost of electricity. 

Stochastic programming was conducted when NOX emissions are constrained to less 

than or equal to 0.1 lb/106Btu and 0.3 lb/106Btu, respectively. The results are qualitatively 

similar to the case when NOX emissions are constrained to less than or equal to 0.2 lb/106Btu. 

Average values and 95% range of both optimal cost of electricity and optimal design values 

are summarized in Table 5-10 for all three of these constraints. At optimal points for all the 

three constraints, RMOXG2C is at the lower bound, XSLCNV and CF are at the high 

bounds. This is consistent with sensitivity of cost of electricity to these variables as shown in 

Figure 5-2, 5-4 and 5-7. Variations in optimal values of RSTM2OX, XNH3S are due to that 

the cost of electricity is not sensitive to them as shown in Figure 5-3 and 5-6. Optimal values 

of REPHRS vary only by a very small percentage of its mean values. Variations of optimal  
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Table 5-10. Minimization of Cost of Electricity in Stochastic Programming when 
Considering Uncertainty in Model Inputs 

  Level 1 Level 2 Level 3 
Constraint on  

NOX Emissions 
(lb/106Btu) 

 
NOX emissions 

≤0.3 

 
NOX emissions 

≤0.2 

 
NOX emissions 

≤0.1 
Mean Value of the 

Optimal cost of 
electricity 

(mills/kWh) 

 
 

51.46 

 
 

51.61 

 
 

51.86 

95% range of optimal 
cost of electricity 

(mills/kWh) 

 
 

48.07 ~ 60.15 

 
 

48.25 ~ 60.30 

 
 

48.48 ~ 60.54 
Mean value of 

optimal RMOXG2C 
 

0.45 
 

0.45 
 

0.45 
95% range of optimal 

RMOXG2C 
 

0.45 ~ 0.45 
 

0.45 ~ 0.45 
 

0.45 ~ 0.45 
Mean value of 

optimal RSTM2OX 
 

0.455 
 

0.453 
 

0.453 
95% range of optimal 

RSTM2OX 
 

0.454 ~ 0.455 
 

0.450 ~ 0.455 
 

0.450 ~ 0.455 
Mean value of 

optimal XSLCNV 
 

0.95 
 

0.95 
 

0.95 
95% range of optimal 

XSLCNV 
 

0.95 ~ 0.95 
 

0.95 ~ 0.95 
 

0.95 ~ 0.95 
Mean value of 

optimal SCRAE 
 

0.50 
 

0.62 
 

0.82 
95% range of optimal 

SCRAE 
 

0.50 ~ 0.50 
 

0.56 ~ 0.67 
 

0.79 ~ 0.84 
Mean value of 

optimal XNH3S 
 

5.2 
 

8.8 
 

9.5 
95% range of optimal 

XNH3S 
 

5.0 ~ 5.6 
 

5.3 ~ 12.8 
 

5.0 ~ 18.0 
Mean value of  

optimal CF 
 

0.9 
 

0.9 
 

0.9 
95% range of optimal 

CF 
 

0.9 ~ 0.9 
 

0.9  ~ 0.9 
 

0.9 ~ 0.9 
Mean value of 

optimal REPHRS 
 

25000 
 

24678 
 

24878 
95% range of optimal 

REPHRS 
 

25000 ~ 25000 
 

23900 ~ 25000 
 

24600 ~ 25000 
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values for SCRAE are due to uncertainty associated with mean value in XXNH3 and 

XXCRN as discussed in Section 5.1.2. When NOX emissions is constrained to be not greater 

than 0.3 lb/106Btu, the optimal SCR removal efficiency stays at 0.50 without any change. 

This suggests that the lowest SCR removal efficiency of 0.50 can meet NOX emissions 

constraint no matter changes in XXNH3 and XXCRN.       

5.2.3 Comparison of Stochastic Optimization and Stochastic Programming 
Results 

Comparison between the optimal expected value from stochastic optimization and 

average optimal value from stochastic programming enables one to evaluate the EVPI. Table 

5-11 summarizes the EVPI for three levels (different NOX emissions’ constraint) that have 

been done, when uncertainty in model inputs is considered. In stochastic optimization, when 

the 90th percentile of NOX emissions is constrained to be less than or equal to 0.2 lb/106Btu, 

the optimal expected cost of electricity is 51.65 mills/kWh. This value is 0.04 mills/kWh 

higher than the average optimal cost of electricity from stochastic programming in which 

NOX emissions are constrained to be not greater than 0.2 lb/106Btu. If the loss function is the 

cost of electricity, then EVPI for this case is 0.04 mills/kWh, or 0.24 million dollars per year. 

We used 90th percentile of NOX emissions as constraint in stochastic optimization; other 

statistics, such as expected value or 95th percentile are also applicable. It is up to decision 

makers as to how much reliability in NOX emissions they need in stochastic optimization 

design. Figure 5-19 shows the NOX emissions for each realization of uncertainty under the 

optimal designs of both stochastic optimization and stochastic programming. For each 

realization of uncertainty, the stochastic programming ensures that NOX emissions are less 

than 0.2 lb/106Btu, while stochastic optimization ensures that 90% of NOX emissions are less 

than 0.2 lb/106Btu, and there is violation for the rest 10%. The reason for the positive EVPI is  
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Figure 5-19. NOX Emissions for Each Realization of Uncertainty under the Optimal Designs 
of both Stochastic Optimization and Stochastic Programming   
 

that in stochastic optimization, the required SCR removal efficiency is 65%, which is 3% 

higher than average SCR removal efficiency in stochastic programming. As shown in Figure 

5-5, higher SCR removal efficiency leads to higher cost of electricity. For the case in which 

NOX emissions are constrained by 0.3 lb/106Btu, EVPI is 0, since there is no difference 

between the optimal SCR removal efficiency in stochastic optimization and average optimal 

SCR removal efficiency in stochastic programming. In the case 3, optimal expected cost of 

electricity was 51.88 mills/kWh from stochastic optimization when 90th percentile of NOX 

emissions is constrained to be not greater than 0.1 lb/106Btu. This value is 0.02 higher than 

the average optimal cost of electricity from stochastic programming in which NOX emissions 

are constrained to be not greater than 0.1 lb/106Btu. EVPI is 0.02 mills/kWh in this case. This 

value is lower than that of Level 2, which is 0.04 mills/kWh. The reason is that in this case, 

the difference in SCR removal efficiency between stochastic optimization and stochastic 

programming is only 1%, while in the level 2, the difference in SCR removal efficiency 

between stochastic optimization and stochastic programming is 3%; meanwhile, cost of 

electricity is linearly correlated with SCR removal efficiency as shown in Figure 5-5. 
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Table 5-11. Comparison of Stochastic Optimization and Stochastic Programming Results 
when Uncertainty in Model Inputs is Considered 

 Level 1 Level 2 Level 3 
Stochastic Optimization Results 

NOX emission 
constraint 

Probability  
(NOX emissions 
≤0.3) ≥ 0.90 

Probability  
(NOX emissions 
≤0.2) ≥ 0.90 

Probability  
(NOX emissions 
≤0.1) ≥ 0.90 

Minimum expected 
cost of electricity 

 
51.46 

 
51.65 

 
51.88 

SCR Removal 
Efficiency 

 
0.50 

 
0.65 

 
0.83 

Stochastic Programming Results 
NOX emission 

constraint 
NOX emissions 

≤0.3 
NOX emissions 

≤0.2 
NOX emissions 

≤0.1 
Mean value of  

cost of electricity 
 

51.46 
 

51.61 
 

51.86 
Mean value of SCR 
removal efficiency 

 
0.50 

 
0.62 

 
0.82 

Expected Value of Perfect Information 
Mills/kWh 0.00 0.04 0.02 
106$/Year 0.00 0.24 0.12 

 

5.3 Optimization Considering both Variability and Uncertainty in Model Inputs           

In the previous two sections, optimization of the IGCC system was conducted when 

only variability or only uncertainty in model inputs is considered. In this section, 

optimization is conducted for the same problem simultaneously considering both variability 

and uncertainty in model inputs. 

As discussed in Chapter 3, 27 model inputs were identified with uncertainty. 

Probability distributions for these 27 variables are given in Table 3-3. For each variable with 

uncertainty, 100 random samples were generated from AuvTool. The other 26 model inputs 

were identified to have both variability and uncertainty. Probability distributions for these 

inputs are given in Table 3-5. For each variable with both variability and uncertainty, 100 

samples for variability and 100 realizations for uncertainty were generated using AuvTool.  
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As discussed in Chapter 2, two methods are proposed for optimization considering 

both variability and uncertainty in model inputs. The first method, termed as a coupled 

stochastic optimization and programming technique, features stochastic optimization for each 

realization of variability (alternative frequency distribution in bootstrap simulation). The 

output of this method forms probability distributions for optimal results from stochastic 

optimization. The second method, termed as a two-dimensional stochastic programming 

method, involves deterministic optimization at each iteration of random samples for 

variability and uncertainty. The outputs from this method are two-dimensional distributions 

for optimal results from deterministic optimization.  

5.3.1 Results from Coupled Stochastic Optimization and Programming 
Technique 

One case study is done to demonstrate the coupled stochastic optimization and 

programming technique, In this case, for each realization of uncertainty, stochastic 

optimization is carried out in search of the optimal expected cost of electricity when the 90th 

percentile of NOX emissions is constrained to be less than or equal to 0.2 lb/106Btu.  Because 

there are 100 realizations for uncertain inputs, stochastic optimization is processed for 100 

times. Each stochastic optimization is conducted considering variability in inputs. Figure 5-

20 presents the cumulative probability distribution for the optimal expected cost of electricity 

from the coupled stochastic optimization and programming method. The average value of 

optimal expected cost of electricity is 51.73 mills/kWh, and 90% of the estimates of the 

optimal expected cost of electricity are less than 55 mills/kWh. Correlation coefficients 

between the optimal expected cost of electricity and random numbers for each uncertain 

variable were calculated to identify the key contributors to uncertainty in the optimal 

expected cost of electricity. Table 5-12 lists the four statistically significant key contributors  
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Figure 5-20. Cumulative Probability Distribution for Optimal Expected Cost of Electricity 
from the Coupled Stochastic Optimization and Programming Method when 90th Percentile of 
NOX emissions ≤ 0.2 lb/106Btu   
 
Table 5-12.  Key Contributors to the Uncertainty in the Optimal Expected Cost of Electricity 
 
Variable Name 

Correlation Coefficient with  
the Optimal Cost of Electricity * 

Zinc ferrite absorption attrition rate  
(% loss per cycle) 

 
0.877 

Project contingency factor 0.350 
Error term of HRSG direct  
cost of model ($Millions) 

 
0.341 

Unit cost of coal ($/lb) 0.312 
*: All coefficients are all statistically significant at a 95% level of confidence 

along with the correlation coefficients. Among them, zinc ferrite absorbent attrition rate was 

found to be the key contributor. This is consistent with the conclusion in Section 5.2.2. 

Figure 5-21 shows the cumulative probability distribution for optimal SCR removal 

efficiency. The average optimal SCR removal efficiency is 0.70, with a 95% range from 0.65 

to 0.74. Table 5-13 summarizes the average value and 95% range for other design variables. 

For the 100 realizations of stochastic optimization, optimal values for all other design 

variables vary very little except SCR removal efficiency.    

The computational burden is heavy for the coupled stochastic optimization and 

programming technique. This particular case study took 4 hours and 30 minutes to complete 

on a Pentium 4, 2.4 GHz desktop computer. 
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Figure 5-21. Cumulative Probability Distribution for the Optimal SCR Removal Efficiency 
from the Coupled Stochastic Optimization and Programming Method when the 90th 
Percentile of NOX Emissions ≤ 0.2 lb/106Btu 
 
Table 5-13. Summary of the Optimal Results from the Coupled Stochastic Optimization and 
Stochastic Programming when the 90th Percentile of NOX Emissions ≤ 0.2 lb/106Btu 

 Mean Value of  
Optimal Result 

95% Range of the  
Optimal Values 

Expect Cost of Electricity (mills/kWh) 51.73 48.05 ~ 60.37 
RMOXG2C 0.45 0.45 ~ 0.45 
RSTM2OX 0.455 0.455 ~ 0.455  
XSLCNV 0.95 0.95 ~ 0.95 
SCRAE 0.70 0.65 ~ 0.74 

XNH3S (ppm) 5.0 5.0 ~ 5.2 
CF 0.9 0.9 ~ 0.9 

REPHRS 25000 24998 ~ 25000 
 

5.3.2 Results from the Two-dimensional Stochastic Programming Technique 

Two dimensional stochastic programming involves deterministic optimization for 

each combination of random numbers sampled for variability and uncertainty. One case 

study is developed. In this case, during each deterministic optimization, the objective is to  

minimize the cost of electricity, where NOX emissions are constrained to be less than or 

equal to 0.2 lb/106Btu. Since there are 100 random samples for variability and 100 

realizations for uncertainty, 100×100 deterministic optimizations were done.  
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Figure 5-22. Two-dimensional Distributions for Minimum Cost of Electricity from the Two-
dimensional Stochastic Programming Method when NOX Emissions ≤ 0.2 lb/106Btu 

 

Figure 5-22 shows the two dimensional probability distribution of the optimal cost of 

electricity for this case study. The average optimal cost of electricity is 51.62 mills/kWh with 

a 95% confidence interval on the mean from 47.67 mills/kWh to 60.35 mills/kWh. Sample 

correlation coefficients between the optimal cost of electricity and random numbers for 

variability and uncertainty were calculated to identify the key contributors to variability and 

uncertainty in the optimal cost of electricity. Table 5-14 summarizes the statistically 

significant key contributors to variability and uncertainty in the optimal cost of electricity, 

respectively. Zinc ferrite sorbent attrition rate (FATTZF) was found to be the most important 

contributor to the uncertainty in the optimal cost, while contingency in gas turbine (FPCG) 

was the most important contributor to the variability in the optimal cost.   

Figure 5-23 shows the two dimensional probability distribution of optimal SCR 

removal efficiency. The average optimal SCR removal efficiency is 0.60, with a 95% 

confidence interval on the mean from 0.56 to 0.66. As the SCR removal efficiency is  
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Table 5-14. Key Contributors to the Variability and Uncertainty in the Optimal Cost of 
Electricity 
Key Contributors to the Variability  
in the Optimal Cost of Electricity 

Key Contributors to the Uncertainty  
in the Optimal Cost of Electricity 

 
Variable  

Correlation 
Coefficient * 

 
Variable  

Correlation 
Coefficient * 

Process contingency  
in gas turbine 

 
0.487 

Zinc ferrite absorption 
attrition rate  

 
0.877 

Process contingency  
in gasifier 

 
0.398 

Project contingency factor  
0.349 

Unit cost of zinc  
ferrite absorbent ($/lb) 

 
0.365 

Error term of HRSG direct  
cost of model  

 
0.340 

Maintenance factor  
for gas turbine 

 
0.283 

Unit cost of  
coal ($/lb) 

 
0.312 

Maintenance factor  
for gasifier 

 
0.240 

  

*: All coefficients are statistically significant at a 95% level of confidence  
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Figure 5-23. Two-dimensional Distributions for Optimal SCR Removal Efficiency from the 
Two-dimensional Stochastic Programming when NOX Emissions ≤ 0.2 lb/106Btu 
 

constrained to be not less than 0.50, the optimal SCR removal efficiency should be not less 

than 0.50 as reflected in the Figure 5-23.  

The average value and the 95% confidence interval of the mean for optimal values of 

other design variables are summarized in Table 5-15. Optimal values for gasifier oxygen to  
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Table 5-15. Summary of Optimal Results from the Two-dimensional Stochastic 
Programming Method when NOX Emissions ≤ 0.2lb/106Btu 

 
Variable  

 
Average value 

95% Range  
of the Mean  

Cost of Electricity (mills/kWh) 51.62 47.67 ~ 60.35 
Gasifier Oxygen to Carbon Ratio 0.450 0.450 ~ 0.450  
Gasifier Steam to Carbon Ratio 0.453 0.452 ~ 0.454 

Sulfur retained in the  
gasifier bottom ash 

 
0.950 

 
0.950 ~ 0.950 

SCR NOX Removal Efficiency 0.604 0.556 ~ 0.657 
SCR ammonia slip (ppm) 8.1 6.8 ~ 9.4 

Plant Capacity Factor 0.90 0.90 ~ 0.90 
SCR Replacement Interval (hours) 24748 24534 ~ 24905 

 

carbon ratio (RMOXG2C), sulfur retained in the gasifier bottom ash (XSLCNV) and 

capacity factor (CF) stay the same for all 10,000 deterministic optimizations. Optimal values 

for gasifier steam to carbon ratio (RSTM2OX) and SCR ammonia slip (XNH3S) vary. 

However, the cost of electricity is not sensitive to them (See Figure 5-3 and 5-6). Variation of 

SCR replacement interval is within 24,000 to 25,000 hours, in which range, cost of electricity 

is not sensitive (See Figure 5-8). SCR NOX removal efficiency varies due to change in 

sample values during each deterministic optimization. 

The computational burden associated with two-dimensional stochastic programming 

is very heavy. This case study costs approximately 20 hours to complete on a Pentium 4, 2.4  

GHz desktop computer, which is about 4 fold more than the coupled stochastic optimization 

and programming technique. For comparison, computational time for stochastic optimization 

and stochastic programming are given in Table 5-16. Computational burden for stochastic 

optimization and stochastic programming when considering uncertainty is heavier than those 

when considering variability. This is due to the fact that both uncertainty in uncertain 

variables and uncertainty in the mean of the variables with variability and uncertainty were 

considered when doing optimization under uncertainty, while only variability in the variables  
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Table 5-16. A Summary of Computational Time for Each Technique  
 
 
Technique 

Average Computational Time 
(on a Pentium 4, 2.4 GHz 

desktop computer) 
Stochastic Optimization Considering Variability 3 minutes 
Stochastic Programming Considering Variability 10 minutes 
Stochastic Optimization Considering Uncertainty 4 minutes 
Stochastic Programming Considering Uncertainty 15 minutes 
Coupled Stochastic Optimization and  
Programming Method 

 
4 hours 

Two-dimensional Stochastic Programming 20 hours 
 

with variability and uncertainty are considered when doing optimization considering 

variability. More variables were sampled for cases considering uncertainty, which increases 

the computational time in data reading from the random data file.   

5.3.3 Comparisons of Results from Coupled Stochastic Optimization and 
Programming Technique and from the Two-dimensional Stochastic 
Programming Method 

As discussed in Section 5.1.3, comparison between stochastic optimization and 

stochastic programming enables one to explore the expected value of perfect information 

(EVPI).  

When comparing the results from coupled stochastic optimization and programming 

method and those from the two-dimensional stochastic programming, a probability 

distribution for EVPI will be obtained. The effect of uncertainty on EVPI can be evaluated 

from the distribution. Each EVPI is calculated this way: as stochastic optimization was 

conducted for each realization of variability in which 90th percentile of NOX emissions is 

constrained to be less than or equal to 0.2 lb/106Btu, and stochastic programming was 

conducted for each realization of variability in which NOX emissions are constrained to be 

less than or equal to 0.2 lb/106Btu; One EVPI was calculated for each realization of  
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Figure 5-24. Cumulative Probability Distribution of Uncertainty in Expected Value of Perfect 
Information with respect to Variability 

variability. Since 100 realizations of variability were sampled, 100 values of EVPI were 

obtained, which can be used to construct the probability distribution. Figure 5-24 is the 

probability distribution for EVPI. The average EVPI is 0.112 mills/kWh, which equals 0.7 

million dollars per year. It is very close to the EVPI with the same constraints on NOX 

emissions when considering only variability in model inputs, which is 0.10 mills/kWh. The 

95% confidence interval on the mean is from 0.108 mills/kWh to 0.116 mills/kWh. 95% 

range of the EVPI extends from 0.08 mills/kWh to 0.15 mills/kWh. Based on the correlation 

coefficients between EVPI and samples for uncertain variables, no uncertain variables were 

found to be the key contributors to the uncertainty in EVPI at a 95% level of confidence.   

Another attempt was to quantify the EVPI with regard to uncertainty in model inputs. 

Both the coupled stochastic optimization and programming method and the two-dimensional 

stochastic programming method were applied to multiple percentiles of variability.  

In applying the coupled stochastic optimization and programming method, stochastic 

optimization was conducted for nine specified percentiles of variability, which were 1st, 5th,  
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Table 5-17. Summary of Optimal Results from the Coupled Stochastic Optimization and 
Programming Method which was applied to uncertainty with the 98th Percentile of NOX 
Emissions ≤ 0.2 lb/106Btu 

 Mean Value of  
Optimal Result 

98% Probability Range of 
the Optimal Values 

Expect Cost of Electricity 
(mills/kWh) 

 
51.73 

 
46.07 ~ 58.20 

Gasifier Oxygen to Carbon Ratio 0.45 0.45 ~ 0.45 
Gasifier Steam to Carbon Ratio 0.455 0.455 ~ 0.455 

Sulfur retained in the  
Gasifier Bottom Ash 

 
0.95 

 
0.95 ~ 0.95 

SCR NOX Removal Efficiency 0.63 0.50 ~ 0.77 
SCR Ammonia Slip (ppm) 5.0 5.0 ~ 5.0 

Plant Capacity Factor 0.9 0.9 ~ 0.9 
SCR Replacement Interval (hours) 25000 25000 ~ 25000 

 

10th, 25th, 50th, 75th, 90th, 95th, and 99th percentile, respectively. During each stochastic 

optimization, the expected cost of electricity was minimized when the 90th percentile of NOX 

emissions was constrained to be less than or equal to 0.2 lb/106Btu. The average optimal 

expected cost of electricity is 51.73 mills/kWh, and the 98% range of the optimal expected 

cost of electricity extends from 46.07 to 58.20 mills/kWh. The optimal design values are 

summarized in the Table 5-17. 

In applying the two-dimensional stochastic programming method, stochastic 

programming was conducted for the same nine specified percentiles of variability, which 

were 1st, 5th, 10th, 25th, 75th, 90th, 95th, and 99th percentile, respectively. During each 

stochastic programming, the cost of electricity was minimized when the NOX emissions were 

constrained to be less than or equal to 0.2 lb/106Btu. The average optimal cost of electricity is 

51.71 mills/kWh. The optimal design values are summarized in the Table 5-18. 

Comparing the optimal expected cost of electricity from each stochastic optimization 

process of the coupled stochastic optimization and programming method, and the expected 

optimal cost of electricity from each stochastic programming process of the two-dimensional  
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Table 5-18. Summary of Optimal Results from the Two-dimensional Stochastic 
Programming Method which was Applied to when NOX Emissions ≤ 0.2lb/106Btu 

 
Variable  

 
Average value 

95 % Range  
of the Mean  

Cost of Electricity (mills/kWh) 51.71 45.54 ~ 57.92 
Gasifier Oxygen to Carbon Ratio 0.450 0.450 ~ 0.450  
Gasifier Steam to Carbon Ratio 0.454 0.452 ~ 0.454 

Sulfur retained in the  
gasifier bottom ash 

 
0.950 

 
0.950 ~ 0.950 

SCR NOX Removal Efficiency 0.62 0.50 ~ 0.75 
SCR ammonia slip (ppm) 7.4 5.0 ~ 9.4 

Plant Capacity Factor 0.90 0.90 ~ 0.90 
SCR Replacement Interval (hours) 24856 24588 ~ 2500 

 

stochastic programming method, EVPI with regard to uncertainty was evaluated. The 

average EVPI was 0.022 mills/kWh, or $133,000 per year. EVPI for each of the nine selected 

percentile of variability was given in Table 5-19. For the 1st, 5th, and 10th percentile of 

variability, there is no benefit of reducing uncertainty, while from the 25th percentile of 

variability, reducing uncertainty is of benefit. For the 1st, 5th, and 10th percentile of 

variability, the lowest SCR removal efficiency is the optimal value both for stochastic 

optimization and stochastic programming, there is no difference between the optimal SCR 

removal efficiency in stochastic optimization and the average optimal SCR removal 

efficiency in stochastic programming, which results no benefit of reducing uncertainty. 

Starting from 25th percentile, since the optimal SCR removal efficiency in stochastic 

optimization is greater than the average optimal SCR removal efficiency in stochastic 

programming, so EVPI is positive. Optimal SCR removal efficiency depends on the value of 

fraction of coal bound nitrogen converted NH3 in the gasifier and the fraction of NH3 

converted to NOX in the gas turbine. At low percentiles of variability, the values of these two 

variables are low, so lowest SCR removal efficiency can satisfy the constraint on NOX 

emissions.  
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Table 5-19.  Summary of EVPI with regard to Uncertainty for the Selected Nine Percentiles 
of Variability 

 
Percentile of the 

Variability 

Optimal Expected 
Cost of Electricity 

from Stochastic 
Optimization a 

Average Optimal 
Cost of Electricity 

from Stochastic 
Programming b 

 
 

EVPI 
(mills/kWh) 

 
 

EVPI 
(106$/year) 

1st percentile  45.18 45.18 0 0 
5th percentile  46.07 46.07 0 0 

10th percentile  46.80 46.80 0 0 
25th percentile  48.62 48.58 0.04 0.24 
50th percentile  51.56 51.51 0.05 0.30 
75th percentile  54.70 54.67 0.03 0.18 
90th percentile  56.88 56.85 0.03 0.18 
95th percentile  57.55 57.52 0.03 0.18 
99th percentile  58.20 58.18 0.02 0.12 

a:  Stochastic optimization was conducted considering uncertainty in a certain percentile of variability;   
     the expected cost of electricity was minimized when the 90th percentile of NOX emissions was less than  
     or equal to 0.2 lb/106Btu; 
b:   Stochastic programming was conducted considering uncertainty in a certain percentile of variability,   
     cost of electricity was minimized when the NOX emissions were less than or equal to 0.2 lb/106Btu. 
 
5.4 Summary of Results 

Optimization of NOX emissions control in an IGCC system was conducted when 

variability and/or uncertainty in model inputs are considered. A series of case studies were 

done. This section summarizes the main results from these case studies.  

Section 5.1 presented optimization results when only variability in model inputs is 

considered. During stochastic optimization, the expected cost of electricity was optimized 

when the 90th percentile of NOX emissions was constrained; while during stochastic 

programming, for each realization of variability, the cost of electricity was optimized when 

NOX emissions were constrained. Table 5-20 summarizes the comparisons between the 

optimal expected cost of electricity from stochastic optimization and the average optimal cost 

of electricity from stochastic programming when variability in model inputs is considered. 
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Table 5-20. Summary of Stochastic Optimization and Stochastic Programming Results when 
Variability in Model Inputs is Considered 

 Level 1 Level 2 Level 3 
Stochastic Optimization Results 

 
NOX emission 

constraint 

Probability  
(NOX emissions 
≤0.3) ≥ 0.90 

Probability  
(NOX emissions 
≤0.2) ≥ 0.90 

Probability  
(NOX emissions 
≤0.1) ≥ 0.90 

Minimum expected 
cost of electricity 

 
50.35 

 
50.55 

 
50.76 

Stochastic Programming Results 
NOX emission 

constraint 
NOX emissions 

≤0.3 
NOX emissions 

≤0.2 
NOX emissions 

≤0.1 
Mean value of  

cost of electricity 
 

50.35 
 

50.45 
 

50.71 
Expected Value of Perfect Information (EVPI)  

Mills/kWh 0.00 0.15 0.05 
106$/Year 0.00 0.60 0.30 
 

Section 5.2 presented optimization results when only uncertainty in model inputs is 

considered. During stochastic optimization, the expected cost of electricity was optimized 

when the 90th percentile of NOX emissions was constrained; while during stochastic 

programming, for each realization of uncertainty, the cost of electricity was optimized when 

NOX emissions were constrained. Table 5-21 summarizes the comparisons between the 

optimal expected cost of electricity from stochastic optimization and the average optimal cost 

of electricity from stochastic programming when uncertainty in model inputs is considered. 

Section 5.3 presented optimization results when both variability and uncertainty in 

model inputs are considered. One case study was done with regard to variability using both 

the coupled stochastic optimization and programming method and the two-dimensional 

stochastic programming method. During the coupled stochastic optimization and 

programming method, the 90th percentile of NOX emissions was constrained to be less than 

or equal to 0.2 lb/106Btu for each stochastic optimization process. During the two-

dimensional stochastic programming process, NOX emissions were constrained to be less  
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Table 5-21. Summary of Stochastic Optimization and Stochastic Programming Results when 
Uncertainty in Model Inputs is Considered 

 Level 1 Level 2 Level 3 
Stochastic Optimization Results 

 
NOX emission 

constraint 

Probability  
(NOX emissions 
≤0.3) ≥ 0.90 

Probability  
(NOX emissions 
≤0.2) ≥ 0.90 

Probability  
(NOX emissions 
≤0.1) ≥ 0.90 

Minimum expected 
cost of electricity 

 
51.46 

 
51.65 

 
51.88 

Stochastic Programming Results 
NOX emission 

constraint 
NOX emissions 

≤0.3 
NOX emissions 

≤0.2 
NOX emissions 

≤0.1 
Mean value of  

cost of electricity 
 

51.46 
 

51.61 
 

51.86 
Expected Value of Perfect Information (EVPI)  

Mills/kWh 0.00 0.04 0.02 
106$/Year 0.00 0.24 0.12 

 

than or equal to 0.2 lb/106 Btu for each deterministic optimization process. A probability 

distribution for EVPI was constructed through comparing the results from the two methods. 

Average value of EVPI was 0.112 mills/kWh with a 95% confidence interval between 0.108 

and 0.116 mills/kWh. Another case study was done with regard to uncertainty in selected 9 

percentiles of variability using both the coupled stochastic optimization and programming 

method and the two-dimensional stochastic programming method. Similarly, during the 

coupled stochastic optimization and programming method, the 90th percentile of NOX 

emissions was constrained to be less than or equal to 0.2 lb/106Btu for each stochastic 

optimization process. During the two-dimensional stochastic programming process, NOX 

emissions were constrained to be less than or equal to 0.2 lb/106 Btu for each stochastic 

programming process. Average EVPI was found to be 0.022 mills/kWh, or $133,000 per 

year.   
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6.0 CONCLUSIONS AND RECOMMENDATIONS 

This study combines optimization techniques with probabilistic analysis for robust 

design of process technologies. Stochastic optimization and stochastic programming 

techniques are available for optimization of process models when uncertainty in model inputs 

is considered. A coupled stochastic optimization and programming technique, and two-

dimensional stochastic programming methods are proposed in this study for optimization of 

process models when both variability and uncertainty in model inputs are considered. These 

techniques are then applied to a case study of NOX emissions control in an IGCC system.  

 

The main work and major findings of the study are as follows: 

1. Genetic Algorithm performs well for optimization of process models based on 

comparisons with traditional mathematical programming methods and sensitivity 

analysis with regard to the dependence of the cost of electricity on the design 

variables;  

2. To minimize the cost of electricity of the IGCC system, gasifier oxygen to carbon 

ratio should be kept at 0.45; sulfur retained in the gasifier bottom ash should be kept 

at 0.95; SCR catalyst layer replacement interval should be kept at 25,000 hours; and 

capacity factor should be at 0.90. Controls of the gasifier steam to carbon ratio and 

SCR ammonia slip do not have a substantial effect on the cost of electricity with the 

range of values considered, although high gasifier steam-to-carbon ratio and low SCR 

ammonia slip can slightly decrease the cost of electricity (but by no more than 0.01 

mills/kWh). The specification of SCR removal efficiency depends on the NOX 
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emissions constraints. High SCR removal efficiency results in an increase with the 

cost of electricity, but lowers NOX emissions; 

3. Stochastic optimization and stochastic programming are applied to the IGCC model 

when only variability in model inputs is considered. Stochastic programming results 

indicate that the variability in model inputs can have substantial effect on the optimal 

cost of electricity. Expected Value of Perfect Information (EVPI) is calculated as the 

difference between optimal expected cost of electricity from stochastic optimization 

and expected optimal cost of electricity from stochastic programming. EVPI is about 

0.6 million dollars on a yearly basis when NOX emissions are constrained to be not 

greater than 0.2 lb/106Btu in stochastic programming, and 90th percentile of NOX 

emissions is constrained to be less than or equal to 0.2 lb/106Btu in stochastic 

optimization. This is the benefit if the decision variables can be adjusted according to 

site specific or time specific realizations of variability.  

4. Stochastic optimization and stochastic programming are also applied to the IGCC 

system when only uncertainty in model inputs is considered. Stochastic programming 

results indicate that uncertainty in model inputs can significantly increase the optimal 

cost of electricity. The most influential factor is the uncertainty associated with zinc 

ferrite sorbent attrition rate. Resolving uncertainty in zinc ferrite sorbent attrition rate 

is of highest priority; 

5. The coupled stochastic optimization and programming technique, and two-

dimensional stochastic programming method were applied to the IGCC model when 

both variability and uncertainty in model inputs are considered. From the two-

dimensional stochastic programming method, key contributor to the variability in the 
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optimal cost of electricity was found to be process contingency factor in the gas 

turbine, while zinc ferrite absorbent attrition rate was the key contributor to 

uncertainty in the optimal cost of electricity. Computational burden with both these 

two methods are heavy. Coupled stochastic optimization and programming method 

took more than 4 hours to complete on a Pentium 4, 2.4 GHz desktop computer. Two-

dimensional stochastic programming cost approximately 20 hours to complete on the 

same computer. 

6. The combination of probabilistic analysis, optimization, and sensitivity analysis 

demonstrated in this study provides a powerful and rigorous tool for design of process 

technologies. Key contributors to the variability and uncertainty in the final optimal 

results were identified. These should be addressed by targeted research and 

development efforts.  

 

Recommendations for future studies are given as follows: 

1. This study is focused on optimization of cost of electricity for the IGCC system when 

NOX emissions are constrained. Future study should also include SO2 emissions as a 

constraint; 

2. The IGCC system studied here features a KRW gasifier based system with hot gas 

cleanup. There are other designs of IGCC systems, based on Texaco, Shell, Lurgi, or 

Dow gasifier technologies (Frey and Rubin, 1990). The optimization under variability 

and/or uncertainty techniques used in this study can be applied to these IGCC 

systems; 
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3. Future study can consider a real-time online optimization problem. For the variables 

with variability, whether their values can be measured at real time or not should be 

examined. Meanwhile, adaptation of the design variables to the variables with 

variability or with uncertainty is easy or not should be addressed. Real time online 

optimization problem will be more complex but more interesting. Perhaps, a more 

comprehensive process model will be required.  

4. In the current study, random numbers are generated off-line from AuvTool. A 

possible improvement to the software is to incorporate the random number generation 

capability into the existing framework under Excel, so that random numbers can be 

generated online.   
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Appendix A.  INPUT AND OUTPUT FILES FOR PROCESS MODEL  

Table A-1. Descriptions of Variables in the Input Files  
Variable Description 

Configuration Configuration of the process, which specify the choice of gas 
turbine and inclusion or exclusion of SCR 

CARCNV Gasifier Carbon Conversion 
XCRCNV Carbon Converted in Sulfation Unit 

RMOXG2C Gasifier Oxygen to Carbon Ratio 
RSTM2OX Gasifier Steam to Carbon Ratio 

XXCRN Fraction of Coal bound Nitrogen converted to NH3 
XXNH3 Fraction of NH3 converted to NOX in Gas Turbine 

XSLCNV Sulfur retained in Gasifier Bottom Ash 
SCRAE SCR NOX removal Efficiency 
XNH3S SCR NH3 Slip 

 
A2 

Parameter A2 used in equation (3-1) for 
determining RCAS from XSLCNV 

 
B2 

Parameter B2 used in equation (3-1) for 
determining RCAS from XSLCNV 

FBM Fraction of byproduct sales to marketing costs 
FEHO Factor of Engineering and home office fee 
FGF General facilities cost, fraction of other directs 
FICC Indirect Construction cost factor 
FPJ Project contingency factor 

ALABOR Average labor rate, including burdens ($/hour) 
FPCCH Process contingency of coal handling 
FPCL Process contingency of limestone handling 

FPCOF Process contingency of oxidant feed 
FPCG Process contingency of gasification 
FPCS Process contingency of sulfation 

FPCZF Process contingency of zinc ferrite 
FPCBF Process contingency of boiler feed water 
FPCGT Process contingency of gas turbine 
FPCHR Process contingency of heat recovery steam generator 
FPCCR Process contingency of selective catalytic reduction 
FPCST Process contingency steam turbine 
FPCGF Process contingency of general facilities 
FMCCH Maintenance cost factor of coal handling 
FMCL Maintenance cost factor of limestone handling 

FMCOF Maintenance cost factor of oxidant feed 
FMCG Maintenance cost factor of gasification 
FMCS Maintenance cost factor of sulfation 
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Table A-1 (Continued) 

FMCZF Maintenance cost factor of zinc ferrite 
FMCBF Maintenance cost factor of boiler feed water 
FMCGT Maintenance cost factor of gas turbine 
FMCHR Maintenance cost factor of heat recovery steam generator 
FMCCR Maintenance cost factor of selective catalytic reduction 
FMCST Maintenance cost factor of steam turbine 
FMCGF Maintenance cost factor of general facilities 

BCCOAL Unit cost of coal ($/MMBtu) 
BCSAI Unit cost of sulfuric acid ($/ton) 

BCNAOH Unit cost of NaOH ($/ton) 
BCNA2H Unit cost of Na2HPO4 ($/lb) 
BCHYDR Unit cost of Hydrazine ($/lb) 
BCMORP Unit cost of Morpholine ($/lb) 
BCLIME Unit cost of Lime ($/ton) 
BCSODA Unit cost of Soda Ash ($/ton) 
BCCORI Unit cost of Corrosion Inh. ($/lb) 
BCSURF Unit cost of Surfactant ($/lb) 
BCCHLR Unit cost of Chlorine ($/ton) 
BCBIOC Unit cost of Biocide ($/lb) 
BCSCRC Unit cost of SCR catalyst ($/ft^3) 
BCNH3 Unit cost of Ammonia ($/ton) 
BCZFSO Unit cost of Zinc Ferrite Sorb ($/lb) 
BCPLTA Unit cost of Plant Air Ads ($/lb) 
BCFLRL Unit cost of LPG Flare ($/bbl) 

BCWWCH Unit cost of Waste Water ($/gpm ww) 
BCFUEL Unit cost of Fuel Oil ($/bbl) 

BCRAWW Unit cost of Raw Water ($/Kgal) 
BCLMST Unit cost of Limestone ($/ton) 
BCASHD Unit cost of Ash Disposal ($/ton) 

SLZF Zinc Ferrite sorbent sulfur loading, wt-% sulfur in sorbent 
FATTZF Zinc Ferrite sorbent attrition rate, wt-% sorbent loss per cycle 
ERRHR Error Term of HRSG direct cost model, $Million 
ERRCR Error Term of SCR direct cost model, $Million 
ERRST Error Term of Steam Turbine, $ Million 
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Example of an input file for the IGCC model 

"Variables related to the Configuration" 
2                                    ! Configuration 
.98                                 ! CARCNV 
.95                                 ! XCRCNV 
.47                                 ! RMOXG2C 
.455                               ! RSTM2OX 
.1                                   ! XXCRN 
.9                                   ! XXNH3 
.80                                 ! XSLCNV 
.90                                 ! SCRAE 
20                                  ! XNH3S 
"Value of A2 and B2" 
.233                               ! A2 
.15                                 ! B2 
"Cost Model Parameters" 
.65                                ! CF 
.1                                  ! FBM 
.1                                  ! FEHO 
.2                                  ! FGF 
.2                                  ! FICC 
.175                              ! FPJ 
19.7                              ! ALABOR 
"Process Contingency" 
.05                                ! FPCCH 
.05                                ! FPCL 
.1                                  ! FPCOF 
.2                                  ! FPCG 
.4                                  ! FPCS 
.4                                  ! FPCZF 
0                                   ! FPCBF 
.25                                ! FPCGT 
.025                              ! FPCHR 
.1                                  ! FPCCR 
.025                              ! FPCST 
.05                                ! FPCGF 
"Maintenance Cost Factors" 
.03                                ! FMCCH 
.03                                ! FMCL 
.02                                ! FMCOF 
.045                              ! FMCG 
.04                                ! FMCS 
.03                                ! FMCZF 
.015                              ! FMCBF 
.02                                ! FMCGT 
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(Continued from Page 92) 
 
.015                              ! FMCHR 
.02                                ! FMCCR 
.015                              ! FMCST 
.015                              ! FMCGF 
"Variable Operating Costs" 
1.61                              ! BCCOAL 
110.0                            ! BCSAI 
220.0                            ! BCNAOH 
.7                                  ! BCNA2H 
3.2                                ! BCHYDY 
1.3                                ! BCMORP 
80.0                              ! BCLIME 
160.0                            ! BCSODA 
1.9                                 ! BCCORI 
1.25                               ! BCSURF 
250.0                             ! BCCHLR 
3.6                                 ! BCBIOC 
250.0                             ! BCSCRC 
150.0                             ! BCNH3 
3.0                                 ! BCZFSO 
2.8                                 ! BCPLTA 
11.7                               ! BCFLRL 
840.0                             ! BCWWCH 
42.0                               ! BCFUEL 
.73                                 ! BCRAWW 
18.0                               ! BCLMST  
10.0                               ! BCASHD  
“Other Variables” 
11390.0                         !  REPHRS 
0.0                                 !  ERRHR 
0.17                               !  SLZF 
0.8                                 !  FATTZF 
0.0                                 !  ERRCR 
0.0                                 !  ERRST 
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Table A-2. Descriptions of Variables in the Output File 
Variable Description 
WGTE Gas Turbine Output (MWe) 
WSTE Steam Turbine Output (MWe) 

WAUXE Total Auxiliary Loads (MWe) 
WNENE Net Electricity (MWe) 

DPERKW Capital Cost ($/KW) 
FOCN Fixed Operating Cost ($/(KW-yr)) 

VOCINC Incremental Variable Costs (mills/KWh) 
BYPN Byproduct Credit (mills/KWh) 

FUELN Fuel Cost (mills/KWh) 
VOCN Variable Operating Cost (mills/KWh) 
CELEC Cost of Electricity (mills/KWh) 

HEATRATE Heat Rate 
EFFICNCY Efficiency 
MCOALIN Coal Input (lb/KWh) 
MH2OIN Water Input (lb/KWh) 

MLMSTIN Limestone Input (lb/KWh 
MASHOUT Ash Outputs (lb/KWh) 
MH2OOU Water Outputs (lb/KWh) 

ECO2 CO2 Outputs (lb/KWh) 
ESO2 SO2 Outputs (lb/106Btu) 
ENOX NOX Outputs (lb/106Btu) 
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Example of an output file for the IGCC model 

Gas Turbine Output (MWe) 
561.38 
Steam Turbine Output (MWe) 
311.31 
Total Auxiliary Loads (MWe) 
61.32 
Net Electricity (MWe) 
811.38 
Capital Cost ($/KW) 
425.51 
Fixed Operating Cost ($/(KW-yr)) 
48.64 
Incremental Variable Costs (mills/KWh) 
4.25 
Byproduct Credit (mills/KWh) 
0.00 
Fuel Cost (mills/KWh) 
15.29 
Variable Operating Cost (mills/KWh) 
19.53 
Cost of Electricity (mills/KWh) 
53.96 
Heat Rate 
8364.80 
Efficiency 
0.40826 
Coal Input (lb/KWh) 
0.7436 
Water Input (lb/KWh) 
0.7984 
Limestone Input (lb/KWh 
0.2230 
Ash Outputs (lb/KWh) 
0.2120 
Water Outputs (lb/KWh) 
0.0488 
CO2 Outputs (lb/KWh) 
1.7157 
SO2 Outputs (lb/MMBtu) 
0.0131 
NOX Outputs (lb/MMBtu) 
0.0596 
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APPENDIX B.   OPTIMIZATION UNDER VARIABILITY AND      
UNCERTAINTY FOR CONFIGURATION 2 IN THE 
IGCC MODEL 

 

This appendix summarizes the results of optimization under variability and 

uncertainty for Configuration 2 in the simplified performance and cost model of IGCC 

systems. It includes results from  

1. Stochastic optimization and stochastic programming when only considering 

variability in model inputs; 

2. Stochastic optimization and stochastic programming when only considering 

uncertainty in model inputs; 

3. Coupled stochastic optimization and programming, two-way stochastic programming 

when considering both variability and uncertainty in model inputs. 
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Optimization when Considering Variability in Model Inputs  

Table B-1. Formulation of the Optimization Problem when Variability in Model Inputs is 
Considered 
 
Configuration of the 
IGCC system: 

Configuration 2: 
Gas Turbine with pressure ratio of 15.0 and turbine inlet 
temperature at 2350K, with Selective Catalytic Reduction 
(SCR) 

Objective: Minimization of Cost of electricity (mills/kWh) 
(For stochastic optimization, objective is minimization of 
expected value of cost of electricity; for stochastic 
programming, objective is minimization of cost of electricity 
at each sampling iteration) 

Design variables: 1.Gasifier Oxygen to Carbon Ratio (RMOXG2C) 
2.Gasifier Steam to Carbon Ratio (RSTM2OX) 
3.Sulfer retained in the gasifier bottom ash (XSLCNV) 
4.SCR NOX Removal Efficiency (SCRAE) 
5.SCR ammonia slip (XNH3S) 
6.Plant Capacity Factor (CF) 
7.SCR Replacement Interval (REPHRS) 

Constraint on the design 
variables: 

0.45 ≤ RMOXG2C ≤ 0.47 
0.445 ≤ RSTM2OX ≤0.455 
0.80 ≤ XSLCNV ≤ 0.95 
0.50 ≤ SCRAE ≤ 0.90 
5.0 ≤ XNH3S ≤ 20.0 
0.5 ≤ CF ≤ 0.9 
5000 ≤ REPHRS ≤ 25000  

Other constraint: NOX Emissions 
(For stochastic optimization, constraint is on upper 90th  
percentile of NOX emissions; for stochastic programming, 
constraint is on NOX emissions in each sampling iteration) 
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Table B-2. Optimal Solutions from Stochastic Optimization Considering Variability in 
Model Inputs when the 90th Percentile of NOX Emissions is Constrained 
 
 Level 1 Level 2 Level 3 
Constraint on 
NOX Emission  
(lb/106 Btu) 

90th  percentile of 
NOX emissions 

≤0.3 

90th  percentile of 
NOX emissions 

≤0.2 

90th percentile of 
NOX emissions 

≤0.1 
Minimum expected cost of 
electricity (mills/kWh) 

 
47.02 

 
47.22 

 
47.41 

Gasifier Oxygen to Carbon 
Ratio 

 
0.45 

 
0.45 

 
0.45 

Gasifier Steam to Carbon 
Ratio 

 
0.455 

 
0.455 

 
0.455 

Sulfur retained in the 
gasifier bottom ash 

 
0.95 

 
0.95 

 
0.95 

SCR NOX Removal 
Efficiency 

 
0.54 

 
0.70 

 
0.86 

SCR ammonia slip (ppm) 5 5 5 
Plant Capacity Factor 0.9 0.9 0.9 
SCR Replacement Interval 
(hours) 

 
25000 

 
25000 

 
25000 
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Table B-3. Optimal Solutions from Stochastic Programming Considering Variability in 
Model Inputs  

  Level 1 Level 2 Level 3 
Constraint on  

NOX Emissions 
(lb/106Btu) 

 
NOX emissions 

≤0.3 

 
NOX emissions 

≤0.2 

 
NOX emissions 

≤0.1 
Mean Value of the 

Optimal cost of 
electricity 

(mills/kWh) 

 
 

46.99 

 
 

47.11 

 
 

47.35 

95% range of 
optimal cost of 

electricity 
(mills/kWh) 

 
 

45.12 ~ 49.25 

 
 

45.15 ~ 49.38 

 
 

45.40 ~ 49.62 

Mean value of 
optimal RMOXG2C 

 
0.45 

 
0.45 

 
0.45 

95% range of 
optimal RMOXG2C 

 
0.45 ~ 0.45 

 
0.45 ~ 0.45 

 
0.45 ~ 0.45 

Mean value of 
optimal RSTM2OX 

 
0.453 

 
0.453 

 
0.453 

95% range of 
optimal RSTM2OX 

 
0.448 ~ 0.455 

 
0.449 ~ 0.455 

 
0.448 ~ 0.455  

Mean value of 
optimal XSLCNV 

 
0.95 

 
0.95 

 
0.95 

95% range of 
optimal XSLCNV 

 
0.94 ~ 0.95 

 
0.94 ~ 0.95 

 
0.94 ~ 0.95 

Mean value of 
optimal SCRAE 

 
0.51 

 
0.61 

 
0.81 

95% range of 
optimal SCRAE 

 
0.5 ~ 0.62 

 
0.5 ~ 0.74 

 
0.71 ~ 0.88 

Mean value of 
optimal XNH3S 

 
7.2 

 
8.4 

 
8.6 

95% range of 
optimal XNH3S 

 
5 ~ 10.6 

 
5  ~ 15.6 

 
5 ~ 17.8 

Mean value of  
optimal CF 

 
0.9 

 
0.9 

 
0.9 

95% range of 
optimal CF 

 
0.9 ~ 0.9 

 
0.9  ~ 0.9 

 
0.9 ~ 0.9 

Mean value of 
optimal REPHRS 

 
24765 

 
24730 

 
24803 

95% range of 
optimal REPHRS 

 
23963 ~ 25000 

 
23550 ~ 25000 

 
23940 ~ 25000 
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Table B-4. Comparison of Stochastic Optimization and Stochastic Programming Results 
when Variability in Model Inputs is Considered 

 Level 1 Level 2 Level 3 
Stochastic Optimization Results 

NOX emission 
constraint 

Probability  
(NOX emissions 
≤0.3) ≥ 0.90 

Probability  
(NOX emissions 
≤0.2) ≥ 0.90 

Probability  
(NOX emissions 
≤0.1) ≥ 0.90 

Minimum expected 
cost of electricity 

 
47.02 

 
47.22 

 
47.41 

SCR Removal 
Efficiency 

 
0.54 

 
0.70 

 
0.86 

Stochastic Programming Results 
NOX emission 

constraint 
NOX emissions 

≤0.3 
NOX emissions 

≤0.2 
NOX emissions 

≤0.1 
Mean value of  

cost of electricity 
 

46.99 
 

47.11 
 

47.35 
Mean value of SCR 
removal efficiency 

 
0.51 

 
0.61 

 
0.81 

Expected Value of Perfect Information (EVPI) * 
Mills/kWh 0.03 0.11 0.06 
106$/Year 0.18 0.66 0.36 

 
*: for Level 1: EVPI is calculated as the difference between the optimal expected cost of 
electricity from stochastic optimization in which 90th percentile of NOX emissions is 
constrained to be less than or equal to 0.3 lb/106Btu, and the average optimal cost of 
electricity from stochastic programming in which NOX emissions are constrained to be less 
than or equal to 0.3 lb/106Btu. EVPI for Level 2 and Level 3 are calculated in the same way.  
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Optimization when Considering Uncertainty in Model Inputs 

Table B-5. Formulation of the Optimization Problem when Uncertainty in Model Inputs is 
Considered 
 
Configuration of the 
IGCC system: 

Configuration 2: 
Gas Turbine with pressure ratio of 15.0 and turbine inlet 
temperature at 2350K, with Selective Catalytic Reduction 
(SCR) 

Objective: Minimization of Cost of electricity (mills/kWh) 
(For stochastic optimization, objective is minimization of 
expected value of cost of electricity; for stochastic 
programming, objective is minimization of cost of 
electricity at each sampling iteration) 

Design variables: 1.Gasifier Oxygen to Carbon Ratio (RMOXG2C) 
2.Gasifier Steam to Carbon Ratio (RSTM2OX) 
3.Sulfer retained in the gasifier bottom ash (XSLCNV) 
4.SCR NOX Removal Efficiency (SCRAE) 
5.SCR ammonia slip (XNH3S) 
6.Plant Capacity Factor (CF) 
7.SCR Replacement Interval (REPHRS) 

Constraint on the design 
variables: 

0.45 ≤ RMOXG2C ≤ 0.47 
0.445 ≤ RSTM2OX ≤0.455 
0.80 ≤ XSLCNV ≤ 0.95 
0.50 ≤ SCRAE ≤ 0.90 
5.0 ≤ XNH3S ≤ 20.0 
0.5 ≤ CF ≤ 0.9 
5000 ≤ REPHRS ≤ 25000  

Other constraint: NOX Emissions 
(For stochastic optimization, constraint is on upper 90th  
percentile of NOX emissions; for stochastic programming, 
constraint is on NOX emission in each sampling iteration) 
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Table B-6. Optimal Solutions from Stochastic Optimization Considering Uncertainty in 
Model Inputs when 90th Percentile of NOX Emissions is Constrained  
 

 Level 1 Level 2 Level 3 
Constraint on NOX 
Emission (lb/106 Btu) 

90th  percentile of 
NOX emissions 

≤0.3 

90th  percentile of 
NOX emissions 

≤0.2 

90th  percentile of 
NOX emissions 

≤0.1 
NO. of random samples  100 100 100 
Stopping Criteria for 
Genetic Algorithm 

Last 200 changes 
less than 1% 

Last 200 changes 
less than 1% 

Last 200 changes 
less than 1% 

Minimum expected cost of 
electricity (mills/kWh) 

 
47.95 

 
48.14 

 
48.36 

Gasifier Oxygen to Carbon 
Ratio 

 
0.45 

 
0.45 

 
0.45 

Gasifier Steam to Carbon 
Ratio 

 
0.455 

 
0.455 

 
0.455 

Sulfur retained in the 
gasifier bottom ash 

 
0.95 

 
0.95 

 
0.95 

SCR NOX Removal 
Efficiency 

 
0.51 

 
0.67 

 
0.84 

SCR ammonia slip (ppm) 5 5 5 
Plant Capacity Factor 0.9 0.9 0.9 
SCR Replacement Interval 
(hours) 

 
25000 

 
25000 

 
25000 
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Table B-7. Minimization of Cost of Electricity in Stochastic Programming Considering only 
Uncertainty in Model Inputs 
 

  Level 1 Level 2 Level 3 
Constraint on  

NOX Emissions 
(lb/106Btu) 

 
NOX emissions 

≤0.3 

 
NOX emissions 

≤0.2 

 
NOX emissions 

≤0.1 
Mean Value of the 

Optimal cost of 
electricity 

(mills/kWh) 

 
 

47.93 

 
 

48.09 

 
 

48.34 

95% range of 
optimal cost of 

electricity 
(mills/kWh) 

 
 

44.42 ~ 55.73 

 
 

44.55 ~ 55.90 

 
 

44.77 ~ 56.13 

Mean value of 
optimal RMOXG2C 

 
0.45 

 
0.45 

 
0.45 

95% range of 
optimal RMOXG2C 

 
0.45 ~ 0.45 

 
0.45 ~ 0.45 

 
0.45 ~ 0.45 

Mean value of 
optimal RSTM2OX 

 
0.452 

 
0.452 

 
0.452 

95% range of 
optimal RSTM2OX 

 
0.445 ~ 0.455 

 
0.445 ~ 0.455 

 
0.445 ~ 0.455  

Mean value of 
optimal XSLCNV 

 
0.95 

 
0.95 

 
0.95 

95% range of 
optimal XSLCNV 

 
0.94 ~ 0.95 

 
0.94 ~ 0.95 

 
0.94 ~ 0.95 

Mean value of 
optimal SCRAE 

 
0.50 

 
0.64 

 
0.83 

95% range of 
optimal SCRAE 

 
0.5 ~ 0.52 

 
0.58 ~ 0.69 

 
0.80 ~ 0.85 

Mean value of 
optimal XNH3S 

 
6.6 

 
8.3 

 
8.4 

95% range of 
optimal XNH3S 

 
5 ~ 13.4 

 
5  ~ 14.3 

 
5 ~ 14.3 

Mean value of  
optimal CF 

 
0.9 

 
0.9 

 
0.9 

95% range of 
optimal CF 

 
0.9 ~ 0.9 

 
0.9  ~ 0.9 

 
0.9 ~ 0.9 

Mean value of 
optimal REPHRS 

 
24800 

 
24800 

 
24803 

95% range of 
optimal REPHRS 

 
23379 ~ 25000 

 
23858 ~ 25000 

 
24310 ~ 25000 
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Table B-8. Comparison of Stochastic Optimization and Stochastic Programming Results 
when Uncertainty in Model Inputs is Considered 

 Level 1 Level 2 Level 3 
Stochastic Optimization Results 

NOX emission 
constraint 

Probability  
(NOX emissions 
≤0.3) ≥ 0.90 

Probability  
(NOX emissions 
≤0.2) ≥ 0.90 

Probability  
(NOX emissions 
≤0.1) ≥ 0.90 

Minimum expected 
cost of electricity 

 
47.95 

 
48.14 

 
48.36 

SCR Removal 
Efficiency 

 
0.51 

 
0.67 

 
0.84 

Stochastic Programming Results 
NOX emission 

constraint 
NOX emissions 

≤0.3 
NOX emissions 

≤0.2 
NOX emissions 

≤0.1 
Mean value of  

cost of electricity 
 

47.93 
 

48.09 
 

48.34 
Mean value of SCR 
removal efficiency 

 
0.50 

 
0.64 

 
0.83 

Expected Value of Perfect Information (EVPI) * 
Mills/kWh 0.02 0.05 0.02 
106$/Year 0.12 0.30 0.12 

 
*: for Level 1: EVPI is calculated as the difference between the optimal expected cost of 
electricity from stochastic optimization in which 90th percentile of NOX emissions is 
constrained to be less than or equal to 0.3 lb/106Btu, and the average optimal cost of 
electricity from stochastic programming in which NOX emissions are constrained to be less 
than or equal to 0.3 lb/106Btu. EVPI for Level 2 and Level 3 are calculated in the same way.  
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Optimization Considering Both Variability and Uncertainty in Model Inputs 

Table B-9. Formulation of the Optimization Problem when Both Variability and Uncertainty 
in Model Inputs are Considered 
 
Configuration of 
the IGCC system: 

Configuration 2: 
Gas Turbine with pressure ratio of 15.0 and turbine inlet temperature 
at 2350K, with Selective Catalytic Reduction (SCR) 

Objective: Minimization of Cost of electricity (mills/kWh) 
(For coupled stochastic optimization and programming, objective is 
minimization of expected value of cost of electricity; for two-way 
stochastic programming, objective is minimization of cost of 
electricity) 

Design variables: 1.Gasifier Oxygen to Carbon Ratio (RMOXG2C) 
2.Gasifier Steam to Carbon Ratio (RSTM2OX) 
3.Sulfer retained in the gasifier bottom ash (XSLCNV) 
4.SCR NOX Removal Efficiency (SCRAE) 
5.SCR ammonia slip (XNH3S) 
6.Plant Capacity Factor (CF) 
7.SCR Replacement Interval (REPHRS) 

Constraint on the 
design variables: 

0.45 ≤ RMOXG2C ≤ 0.47 
0.445 ≤ RSTM2OX ≤0.455 
0.80 ≤ XSLCNV ≤ 0.95 
0.50 ≤ SCRAE ≤ 0.90 
5.0 ≤ XNH3S ≤ 20.0 
0.5 ≤ CF ≤ 0.9 
5000 ≤ REPHRS ≤ 25000  

Other constraint: NOX Emissions 
(For coupled stochastic optimization and programming, constraint is 
on upper 90th  percentile of NOX emissions; for two-way stochastic 
programming, constraint is on NOX emissions) 
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Table B-10. Optimal Solutions from the Coupled Stochastic Optimization and Programming 
when 90th Percentile of NOX Emissions ≤ 0.2lb/106Btu 
 

  
Average Value 

95% Confidence 
Interval 

 
95% Range 

Expected Cost of 
Electricity 

(mills/kWh) 

 
48.28 

 
47.67 ~ 48.89 

 
44.82 ~ 56.00 

Gasifier Oxygen 
 to Carbon Ratio 

 
0.45 

 
0.45 ~ 0.45 

 
0.45 ~ 0.45 

Gasifier Steam 
 to Carbon Ratio 

 
0.454 

 
0.454 ~ 0.455 

 
0.445 ~ 0.455 

Sulfur retained in the 
gasifier bottom ash 

 
0.948 

 
0.947 ~ 0.978 

 
0.945 ~ 0.95 

SCR NOX  
Removal Efficiency 

 
0.719 

 
0.715 ~ 0.723 

 
0.669 ~ 0.751 

SCR ammonia 
 slip (ppm) 

 
5.1 

 
5.0 ~ 5.1 

 
5.0 ~ 5.3 

Plant  
Capacity Factor 

 
0.90 

 
0.90 ~ 0.90 

 
0.90 ~ 0.90 

SCR Replacement 
Interval (hours) 

 
24997 

 
24996 ~ 24999 

 
24978 ~ 25000 
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Figure B-1. Cumulative Probability Distribution for Optimal Expected Cost of Electricity 
from the Coupled Stochastic Optimization and Programming Method when the 90th 
Percentile of NOX Emissions ≤ 0.2 lb/106Btu 
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Figure B-2. Cumulative Probability Distribution for Optimal SCR Removal Efficiency from 
the Coupled Stochastic Optimization and Programming Method when the 90th Percentile of 
NOX Emissions ≤ 0.2 lb/106Btu 
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Table B-11. Optimal Values Summary from Two-dimensional Stochastic Programming when 
NOX Emissions ≤ 0.2lb/106Btu 
 

 Average optimal 
value 

95% Confidence Interval 

Cost of Electricity (mills/kWh) 48.16 44.60 ~ 55.99 
Gasifier Oxygen to Carbon Ratio 0.450 0.450 ~ 0.450 
Gasifier Steam to Carbon Ratio 0.452 0.447 ~ 0.454 
Sulfur retained in the gasifier  

bottom ash 
 

0.946 
 

0.944 ~ 0.950 
SCR NOX Removal Efficiency 0.622 0.571 ~ 0.676 

SCR ammonia slip (ppm) 8.37 6.84 ~ 10.49 
Plant Capacity Factor 0.90 0.90 ~ 0.90 

SCR Replacement Interval (hours) 24717 24471 ~ 24880 
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Figure B-3. Two-dimensional Distribution for the Optimal Cost of Electricity from Two-
dimensional Stochastic Programming when NOX Emissions ≤ 0.2 lb/106Btu 
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Figure B-4. Two-dimensional Distribution for the Optimal SCR Removal Efficiency from 
Two-dimensional Stochastic Programming when NOX emissions ≤ 0.2 lb/106Btu 
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Figure B-5. Cumulative Probability Distribution of Expected Value of Perfect Information * 
 
*: Each EVPI is calculated this way: as stochastic optimization was conducted for each 
realization of variability in which 90th percentile of NOX emissions is constrained by 0.2 
lb/106Btu, and stochastic programming was conducted for each realization of variability in 
which NOX emissions are constrained by 0.2 lb/106Btu; One EVPI was calculated for each 
realization of variability. Since 100 realizations of variability were sampled, 100 values of 
EVPI were obtained, which can be used to construct the probability distribution shown in the 
figure. 

 


