
ABSTRACT

HAYS, ROSS DANIEL. Boiling Water Reactor In-Core Fuel Management through
Parallel Simulated Annealing in FORMOSA-B. (Under the direction of Paul J. Turinsky.)

A commercial nuclear power plant with a boiling water reactor will utilize between

368 and 800+ individual fuel assemblies to generate steam for 18 to 24 months between

refueling outages. The composition and reactivity of each fuel assembly will vary due

to variations in initial enrichment, burnable poison loading and irradiation conditions in

the core. These variations pose a challenge to the engineers who must design subsequent

reloads because only one quarter to one half of the fuel will be replaced at a time. One

of the challenges is to determine the optimum layout of the fuel within the core in order

to get the highest value from the fuel without violating any safety or operational limits.

The FORMOSA-B program [23] was developed to automatically find a family of optimum

loading patterns by combining a robust, accurate 3-D core simulator with a simulated

annealing loading pattern search. Other features have been added to allow the program to

rapidly compute shutdown margins [12] and optimize control rod programming through the

application of heuristic rules [11]. One drawback of the FORMOSA-B program is that long run-

times, sometimes exceeding a week, are required to generate and evaluate the large numbers

of solutions required by the simulated annealing algorithm. The rising popularity and

availability of parallel computing and computational clusters provides a possible solution

to the problem of long run-times. To this end, a parallel simulated annealing capability has

been developed for the FORMOSA-B program.

The parallel simulated annealing driver utilizes standardized Message Passing In-

terface routines to divide the individual Markov search chains of the simulated annealing

algorithm among a large number of processors. By evaluating multiple loading patterns

concurrently, run times are significantly reduced. In testing with a 368-assembly BWR/4

model, parallel speedup factors exceeding 32 were observed with 48 processors. Parallel

efficiencies are calculated to be in the range of 68% to 95% when correcting for hardware

variations and CRP update frequency. Further testing was performed to investigate the

effects on the annealing performance of the Control Rod Programming update frequency,

Markov chain length versus parallelization width and solution downselect method.

Boiling Water Reactor In-Core Fuel Management through Parallel Simulated

Annealing in FORMOSA-B

by

Ross Daniel Hays

A thesis submitted to the Graduate Faculty of

North Carolina State University

in partial fullfillment of the

requirements for the Degree of

Master of Science

Nuclear Engineering

Raleigh, North Carolina

2009

APPROVED BY:

Dr. Edward Davis Dr. Robert White

Dr. Paul J. Turinsky
Chair of Advisory Committee

ii

DEDICATION

Hofstadter’s Law: It always takes longer than you expect, even when you

take Hofstadter’s Law into account.

-Douglas Hofstadter: Gödel, Escher, Bach: An Eternal Golden Braid, 20th an-

niversary ed., 1999, p. 152.

iii

BIOGRAPHY

Ross Hays was born to Carl and Billie Hays in 1980 in Iowa City, Iowa. After

graduating from Burlington Community High School in 1999, he enrolled at Northwestern

University, earning bachelors degrees in applied mathematics and chemical engineering in

2004. From there he moved to Raleigh, North Carolina to pursue Masters and PhD degrees

in nuclear engineering at North Carolina State University under the direction of Professor

Paul J. Turinsky.

iv

ACKNOWLEDGMENTS

The long-awaited completion of this project would not have been possible without

the assistance of a great many people. First, I would like to thank my advisor, Dr. Paul

Turinsky, for his patient guidance and support through several years of setbacks and delays.

Additionally I would like to thank Dr. Paul Keller for the guidance on the gory details of

the FORMOSA-B code, the advice on the proper choice of a text editor and the introduction

to flying.

The completion of this project would also not have been possible without the

technical assistance of Dr. Eric Sills and Dr. Gary Howell at the NC State High Performance

Computing Center.

I would also like to thank my friends and coworkers here in the NE department

for their helpful advice, thoughtful commentary and timely distractions. In particular, Drs

Matthew Stokely, Matthew Jessee, Loren Roberts, William Wieselquist and Mr. Robert

Newnam.

Finally, I wish to thank my family for their constant support and encouragment.

v

TABLE OF CONTENTS

LIST OF TABLES. vi

LIST OF FIGURES . vii

1 Introduction . 1
1.1 Overview of BWR In-Core Fuel Management 3

1.1.1 Problem Description . 3
1.1.2 FORMOSA-B . 5
1.1.3 Simulated Annealing, A Brief History 7

1.2 Parallel Computation . 10
1.2.1 Commercial Cluster Hardware . 12
1.2.2 Message Passing Interface Standard 13

1.3 Performance Metrics . 14
1.4 Parallel Optimization Algorithms . 15

1.4.1 Parallel Simulated Annealing . 16

2 MMCPSA. 19
2.1 Cooling Schedules . 19
2.2 Synchronous SA . 20
2.3 Asynchronous SA . 25
2.4 Interprocess Coordination and Communication 26

3 Numerical Results . 28
3.1 Testing Environment . 28
3.2 Test Cases . 29
3.3 Performance Metrics . 30
3.4 Benchmarks . 32
3.5 Tuning the Parallel Algorithm . 34

3.5.1 CRP Update Frequency . 35
3.5.2 Depth versus Width . 42

3.6 Stochastic versus Deterministic Branching 48
3.7 Parallel Performance . 53

3.7.1 Communications Overhead . 53
3.7.2 Memory Usage . 53

4 Conclusions and Recommendations . 55
4.1 Future Work . 56

BIBLIOGRAPHY . 57

vi

LIST OF TABLES

Table 3.1 368-Assembly Quarter-Core Loading Pattern . 29

Table 3.2 Optimization Test Case Settings . 30

Table 3.3 Serial Benchmark Results . 32

Table 3.4 Benchmark Comparison Results . 34

Table 3.5 CRP Speedup Results . 36

Table 3.6 CRP Optimization Results . 37

Table 3.7 Depth versus Width Settings . 42

Table 3.8 Depth versus Width Speedup Results . 43

Table 3.9 Depth versus Width Optimization Results . 43

Table 3.10 Binary Branching Settings . 48

Table 3.11 Binary Branching Speedup Results . 48

Table 3.12 Binary Branching Optimization Results . 49

vii

LIST OF FIGURES

Figure 2.1 PSA Flowsheet . 20

Figure 2.2 Global Update Logic. 21

Figure 2.3 Synchronous Parallel Simulated Annealing Program Flow 23

Figure 2.4 Set Update Flags . 24

Figure 2.5 Asynchronous Update Request Handling . 25

Figure 3.1 CRP Markov-Chain Averaged Objective Function. 38

Figure 3.2 CRP Markov-Chain Averaged MFLPD . 38

Figure 3.3 CRP Markov-Chain Averaged MAPRAT . 39

Figure 3.4 CRP Markov-Chain Averaged MFLCPR. 39

Figure 3.5 CRP Markov-Chain Averaged CSDM . 40

Figure 3.6 CRP Markov-Chain Averaged Max HX . 40

Figure 3.7 CRP Markov-Chain Averaged Flow Violation . 41

Figure 3.8 Depth versus Width Markov Chain Averaged Objective Function 44

Figure 3.9 Depth versus Width Markov Chain Averaged MLFPD . 45

Figure 3.10 Depth versus Width Markov Chain Averaged MAPRAT 45

Figure 3.11 Depth versus Width Markov Chain Averaged MFLCPR. 46

Figure 3.12 Depth versus Width Markov Chain Averaged CSDM. 46

Figure 3.13 Depth versus Width Markov Chain Averaged Max HX. 47

Figure 3.14 Depth versus Width Markov Chain Averaged Flow Violation. 47

Figure 3.15 Binary Branching Markov Chain Averaged Objective Function 49

viii

Figure 3.16 Binary Branching Markov Chain Averaged MFLPD. 50

Figure 3.17 Binary Branching Markov Chain Averaged MAPRAT. 50

Figure 3.18 Binary Branching Markov Chain Averaged MFLCPR . 51

Figure 3.19 Binary Branching Markov Chain Averaged CSDM . 51

Figure 3.20 Binary Branching Markov Chain Average Max HX. 52

Figure 3.21 Binary Branching Markov Chain Average Flow Violation 52

1

Chapter 1

Introduction

The operation of a commercial Light Water Reactor (LWR) power reactor involves

the controlled conversion of energy stored in the nucleus of a fissile isotope (usually Uranium-

235 or Plutonium-239) into electricity for sale to consumers. This conversion process occurs

though a self-propogating chain reaction in which neutrons cause the fissile nucleus to split,

emitting further neutrons and energetic fission fragments. The neutrons go on to split other

fissile nuclei, releasing further neutrons. Through this process fissile isotopes are consumed

and radioactive daughter nuclei are produced. While certain of these daughter isotopes and

their decay products are neutronically inert, a number of them are strong neutron absorbers.

The gradual accumulation of these so-called poisons in the fuel, along with fissile isotope

depletion and mechanical wear, limit the usable lifetime and energy value of the individual

fuel assemblies. Once the fuel assembly has reached its useful life span it is removed from the

reactor and replaced with a fresh assembly. For these purposes, nuclear fuel management

is the process by which engineers specify the loading of fuel and control elements within a

reactor to meet safety requirements and economic goals.

In a batch-operated1, commercial reactor setting this task can be quite complex

and is generally separated into several levels. The first level is the Out-of-Core Fuel Man-

agement problem, where one estimates the core-average fissile enrichment required to meet

the energy demands of the upcoming fuel cycle. This estimate will also specify which of

1All power reactors in the United States operate on a batch-basis, requiring partial disassembly of the
reactor vessel in order to change out the fuel. This is in contrast to continuously fueled reactors such as the
CANDU, developed by AECL of Canada.

2

the used fuel assemblies are to be carried over to the next cycle and what should be the

average enrichment of the new assemblies. Cycle length and power production estimates

are based on the operational experiences for a given unit and on grid-wide load forecasts.

Because nuclear power plants generally have the lowest marginal operating costs, they are

scheduled at the maximum available output with refueling outages occurring at periods of

minimum demand (typically the spring or fall, when air-conditioning and heating loads are

at their lowest). Given the electrical energy to be produced from a given load of fuel, it is a

simple matter to compute the cycle burnup, which is defined as the total thermal output (in

gigawatt-days) per ton of initial uranium loading (or heavy metal, if several fissile species

are present). Fissile depletion and mechanical wear in a fuel assembly are closely tied to

the amount of burnup that the assembly has undergone; thus this is a limiting factor in

determining the usable lifetime for each assembly. Once the burnup of the upcoming cycle

is known, the existing reactor fuel inventory may be examined to see which assemblies have

sufficient margin remaining for one more cycle. The fresh fuel assemblies to be added in the

upcoming cycle comprise one region, while those first loaded and retained from the previous

cycle make up another. There will be an additional region for each additional reload worth

of fuel in the core at any time. A typical large BWR core may have between two and four

fuel regions. Each region can be further separated into batches, such that all assemblies in

the batch have identical irradiation histories (i.e. cycles irradiated in the reactor) and fissile

enrichments. Once the sizes of the new batches of fuel have been determined, the engineer

must estimate the required fissile enrichment of each batch such that the core will remain

critical until the end of the cycle.

The next level of the fuel-cycle management problem is In-Core Fuel Management.

At this level the location for each fuel assembly within the core and the reactivity control

scheme are determined in order to minimize costs while satisfying all operational and ther-

mal limitations. As the typical Boiling Water Reactor core contains between 368 and 800

fuel assemblies (up to 1132 in some new designs) and over 200 control blades, the number

of unique combinations and permutations can be quite large (on the order of 10100[4]). Sev-

eral methods are available to produce optimum solutions to this problem; these are explored

further in the next section.

The lowest level of fuel cycle management is the design of the fuel assemblies

3

themselves. This process, typically performed by the fuel manufacturer, aims to maximize

the reliability, economy and safety of the fuel. Designers of fuel bundles have a wide range

of parameters with which to vary the properties of a given bundle. These range from large

changes such as the number and size of the fuel rods, to smaller changes, such as the design

of a spacer grid, or the variation of fissile enrichment and burnable poison loading within

an assembly or rod. Each batch in a reload core will have the same bundle design.

1.1 Overview of BWR In-Core Fuel Management

1.1.1 Problem Description

With the new batch of fuel having been specified by the Out-of-Core design process,

it falls to the In-Core fuel management process to determine the optimum arrangement of

the individual fuel assemblies within the reactor. The specific arrangement of the assemblies

with respect to each other is termed the Loading Pattern (LP). The new loading pattern

is chosen to address several concerns, such as the minimization of neutron leakage (for

economy) and the maximization of thermal margins (for safety). As in many situations,

these turn out to be competing goals. For example, to minimize neutron leakage, it is

desirable to depress neutron flux around the periphery of the reactor by loading the least

reactive assemblies in the outermost positions. This causes the radial flux shape to be

sharply peaked around the middle, leading to high power peaking factors. This cuts into

thermal margins, increasing the chances of fatigue related fuel failure and limiting the

maximum power-level of the core. Conversely, to flatten the radial power shape (and thereby

maximize thermal margins) it is desirable to put the least reactive fuel in the center of the

core while putting the more reactive fresh fuel towards the periphery. This increases the

neutron leakage, thus requiring higher fissile loadings, increasing fuel costs.

A further safety consideration for the BWR loading pattern is the requirement

that the core remain subcritical2 at cold shutdown conditions (68◦ F, xenon-free) with the

highest reactivity worth control rod completely removed from the reactor. This ensures that

should any one control rod fail to insert for any reason, the operators would still be able

to bring the plant down to a safe condition. As it is not known beforehand which single

2By a margin of at least 0.38% ∆k/k as per [24, 25]

4

control blade will have the highest worth at shutdown conditions, one must individually

evaluate each of the control elements to determine which one presents the limiting case.

Another consideration unique to BWRs is the sequencing of the control rods.

Unlike a Pressurized Water Reactor (PWR), a BWR cannot use soluble boron in the coolant

to provide shim reactivity control during operation. However, the BWR can vary the coolant

flow rate through the core by upwards of 15 to 20 percent utilizing variable-speed jet pumps

in the reactor vessel downcomer. This changes coolant flow rate, which alters the fraction

of steam (void) within the core. Because the core is undermoderated by design, a loss

of coolant density causes a decrease in reactivity, decreasing the power level and causing

a partial reduction in void fraction. The overall effect is that by increasing the coolant

recirculation rate, one can achieve a corresponding increase in core power without moving

any control blades. Alternatively, flow control can be used to keep the reactor operating at

a fixed power level by offsetting the reactivity drop associated with fuel burnup.

Unfortunately, flow control cannot provide sufficient negative reactivity to allow

the reactor to operate with all control blades fully withdrawn during the cycle. The BWR

must instead rely on a changing combination of control blades and recirculation flow control

throughout the cycle; this combination of control blade insertions and recirculation flow is

known as the Control Rod Program (CRP).

There are two main tasks that a Control Rod Program must accomplish. First,

it must keep the power profile somewhat flat, both axially and radially, so that thermal

limitations are satisfied at full power. Second, the control rod program must minimize

the negative effects of burnup shadowing. Burnup shadowing occurs when fuel assemblies

adjacent to a control blade operate at lower power than surrounding assemblies. Thus they

accrue less burnup and retain more of their original reactivity. When the control rod is

withdrawn the highly reactive fuel causes the power density in that location to rise sharply.

This rapid change in power density can lead to Pellet Clad Interaction (PCI) failure, whereby

the thermal expansion of the fuel pellet causes a rupture of the cladding material.

Two heuristic strategies have evolved for selecting a control rod program to mini-

mize burnup shadowing effects. The first strategy is the Control Cell Core (CCC) strategy,

whereby a subset of the control rods (typically one in four) and the four adjacent fuel

assemblies per control rod are designated as Control Cells. As the cycle progresses, the

5

control rods are axially positioned within each control cell in such a manner as to maximize

the operating thermal margins while holding the core critical. The loading pattern is then

constrained such that high-reactivity fuel assemblies cannot be placed face-adjacent within

a control cell, and fresh fuel cannot be placed in a control cell at all. Furthermore, fuel is not

allowed to stay in a control-cell for more than one cycle. This minimizes burnup shadowing

and peaking effects when the control rod movement occurs. The downside of the control cell

core is that the fuel placement constraints limit the number of positions available for fresh

fuel. This restriction is a limiting factor for reactors running with extended 24-month cycles

or going through power uprates, as they require more fresh fuel than can be accommodated

using a CCC approach. For these cores a conventional core (COC) strategy is employed.

In a COC control rod program, a subset of all control rods are grouped into four

banks, labeled A-1 ,A-2 ,B-1 and B-2. At any given timestep in the CRP, only one bank will

have deeply inserted control rods. Another bank will be partially inserted for axial power

shaping purposes and to achieve core criticality. At regular intervals (approximately five

times per annual cycle[28]), the deep rod insertions are shifted from one bank to the next.

The rod swap intervals are chosen such that minimal burnup shadowing accrues between

each swap, thus minimizing the stress to the fuel cladding. However, even with frequent

exchanges it is necessary to perform these rod swaps at a reduced power level in order to

ensure cladding integrity.

One final consideration in developing a control rod program is the effect of partially

inserted control blades on the axial power shape within the core. In current BWR designs

all control blades enter through the bottom of the reactor. Thus a partially inserted control

blade will shift the axial flux peak towards the top of the core whereas a fully inserted

blade will have very little effect on the axial power shape. For this reason a combination of

deep and shallow rod insertions are generally preferred over intermediate insertions when

feasible.

1.1.2 FORMOSA-B

FORMOSA-B, like its predecessor FORMOSA-P (for PWRs), was developed at the Elec-

tric Power Research Center of North Carolina State University as a computational tool for

engineers to aid in solving the In-Core fuel management problem[16, 22, 23, 12, 13]. It uti-

6

lizes an adaptive Optimization by Simulated Annealing (OSA, described below) algorithm

to find optimal loading patterns for fresh and reload fuel based on one of several objec-

tives and an array of constraints. Possible objective functions include the maximization

of end-of-cycle (EOC) reactivity (or equivalently, the minimization of EOC coolant flow),

the maximization of the critical power ratio (a thermal limit relating to cladding failure),

minimization of peak linear power density, the maximization of the region-averaged fuel

discharge burnup and the minimization of reload fuel cost. Additionally, FORMOSA-B has

the capability to determine a control rod program by the application of heuristic rules for

both conventional and control-cell cores[11].

A number of limits and constraints can be imposed on the optimization search as

well, such as: 1) Maximum discharge burnup in a specified batch, region or fuel assembly,

2) Constraints on fuel shuffling symmetries, such as quarter core symmetry or fixed fuel

locations, 3) Limits on thermal margins, 4) Constraints on allowable coolant flow rates,

5) Maximum and minimum allowed hot-excess reactivity and 6) Minimum cold shutdown

margin. While some of these limits also appear as possible optimization objectives, one

never activates a given constraint if it is the current objective, as that would effectively

double-count that parameter. The constraints can be categorized as either soft or hard

constraints, with the hard constraints being further subdivided into physical constraints and

true-false constraints. Physical constraints are those that are satisfied automatically by the

requirements of symmetry and logical consistency. For example, a single fuel assembly may

only be placed in each location for a given cycle, or fuel loading pattern may be constrained

to have certain symmetries. The satisfaction of these constraints is automatic and does not

require the evaluation of core neutronics or thermal-hydraulic properties. This is not the

case for true-false constraints, where one does not know a priori whether a given pattern will

be satisfactory. (Thermal margins, for example, would fall into this category.) By contrast, a

soft constraint does not result in the automatic rejection of a candidate solution. Instead, the

degree by which the calculated value exceeds the constraint is multiplied by an adaptively

computed penalty factor and is then added to the overall ’penalized’ objective function for

the solution. The result is that solutions exhibiting violations of the soft constraints may be

accepted, but with a probability that reduces in proportion to the violation severity. This

important feature enhances the search algorithm’s ability to traverse through infeasible

7

areas of the configuration space and escape from local minima that may be present.

As will be discussed later, the use of the OSA optimization algorithm requires the

repetitive evaluation of a large number of possible configurations. Each pattern evalua-

tion requires solving the full 3-D coupled neutronics and fluid equations at each timestep.

For this reason FORMOSA-B utilizes a fast core simulator based on the Nodal Expansion

Method[22] to quickly yet accurately model the key core properties related to the varied

safety, economic and operational limits imposed on the design. Even with a fast core sim-

ulator the vast number of simulations required by the stochastic search algorithm severely

limits the practical usability of the program on a single workstation. Shortening these long

computational turnaround times is the primary motivation behind the parallelization efforts

presented here. Before delving into the details of an optimization by parallel simulated an-

nealing methodology, it is prudent to examine both the theoretical underpinnings of the

simulated annealing algorithm and the available parallel computation resources.

1.1.3 Simulated Annealing, A Brief History

The simulated annealing algorithm was originally developed in the 1950’s by

Metropolis et al [21, 30] as a fast method for calculating equations-of-state for various

materials and conditions. It utilizes a modified Monte Carlo integration over configura-

tion space to solve statistical mechanics problems that are not soluble analytically. This

algorithm is ideally suited to optimization problems with large combinatorial search spaces

and no readily available differential information. In many cases, the bulk of the computa-

tional burden lies in the evaluation of the optimization objective function, and not in the

generation of new, perturbed configurations.

In the metallurgical process of annealing, a sample is heated to the point where

the atoms in the lattice have sufficient thermal energy to overcome local potential barriers

and shift positions. Each atomic shift alters the amount of potential energy stored in the

lattice; the individual atomic displacements are stochastic in nature and may increase or

decrease the amount of energy stored in the lattice structure. The overall trend is such

that the lattice preferentially moves towards a low energy configuration. The sample is

then slowly cooled; this causes the individual displacements to occur less frequently and

reduces the probability of any transition occurring that would increase the potential energy

8

of the lattice. The rate at which the sample is cooled plays a large role in determining its

final configuration. The more slowly it is cooled, the more likely it is that it will reach a

minimum energy state (e.g. perfect crystals or large grain sizes). If it is cooled too quickly

(i.e. quenched), then the lattice configuration will be fixed in a higher energy state. To

summarize, the process of annealing alters the atomic configuration of a sample in a way

that tends to minimize the amount of potential energy stored within its structure.

In simulated annealing, one seeks to find the minimum value of a given Objective

Function by manipulating the configuration of the input variables of said function. Com-

putationally the simulated annealing algorithm proceeds through the repeated evaluation

of a series of perturbed input variable configurations. At each iteration, the set of input

variables is randomly changed in some small manner from a reference configuration. If this

new configuration results in a lower objective function value than the previous configura-

tion, it is adopted as the reference solution, and the process is repeated. If, however, the

new configuration results in a higher objective function value than the reference case, it will

be accepted with a probability given by the Metropolis Criterion [30]:

p = e−∆E/T (1.1)

where ∆E is the change in objective function from the reference case and T is the Simu-

lated Annealing Temperature (described below). Given a sufficient number of repetitions,

the distribution of the objective function values will approach an equilibrium Boltzmann

distribution [30]:

P (E) =
1

Z (T)
e−E/kBT (1.2)

where T is the temperature of the system, E is the objective function value (which corre-

sponds to energy in the statistical mechanics analogy), kB is the Boltzmann constant (which

relates energy to temperature), and

Z (T) =
∑

i∈S

e−Ei/kBT (1.3)

is the partition function (where S is the so-called configuration space, spanning all possi-

ble solutions) . By examining equation 1.2, it can be seen that as T approaches zero at

equilibrium, the probability that the configuration is in any state but the minimum energy

state vanishes. Thus, by slowly lowering the temperature parameter in the algorithm, we

9

are guaranteed of asymptotic convergence to the global minimum solution. The choice of

this so-called cooling schedule is a key factor in determining the performance of the SA

algorithm.

As with physical annealing, the proper selection of the cooling rate will largely

determine the quality of the final outcome. Unfortunately, as can be expected of any

stochastic algorithm, convergence to a globally minimum solution can only be rigorously

proven in the limit of an infinite number of simulations. The Freidlin-Wentzell Framework[2]

predicts that for a certain set of general conditions

P (yn 6∈ E0) ≤

(

K

n

)B/A

(1.4)

where P (yn 6∈ E0) is the probability that the solution yn is not in the set of global minima

E0; K, B, and A are positive constants relating to the so-called energy landscape of the set

of all solutions and the integer n ≥ 1 is the total number of cooling steps, or sets of samples

at constant simulated annealing temperature. Note that for this analysis the number of

samples for each cooling step k goes as Lk = c1k
c2exp(c3k) and the SA temperature goes

as Tk = c4/k for given constants c1,c2,c3,c4.

As the simulated annealing temperature changes, so too does the equilibrium distri-

bution of objective function values; however, upon each discrete change in the temperature,

a certain number of histories must be sampled before this new distribution is reached. If

the temperature is reduced too rapidly, the likely result is quenching, whereby the solution

becomes trapped in a local minimum. One approach to maintaining a quasi-equilibrium dis-

tribution is to follow an annealing curve, which relates the average of the objective function

to the temperature. This method is used by Huang et al [9] to generate the relation

d 〈E〉

d(lnT)
=

σ2

T
(1.5)

where 〈E〉 and σ2 are the mean and variance of the objective function, respectively. Huang

maintains a quasi-equilibrium state by selecting a new temperature such that the expected

objective-function average at the new temperature level is less than one standard deviation

from the current average value. Thus

Tk+1 = Tke
−λT/σ (1.6)

10

where λ has a recommended value of 0.7, and Tk+1 should be taken as the greater of

the above calculated value or Tk/2. This temperature decrement scheme is the default

method used by the FORMOSA-B code. Huang et al further accelerate the annealing process

by monitoring the number of accepted solutions whose objective functions fall within a

tolerance, δ < σ, of the mean value, the so-called within count. If the within count exceeds

a predetermined fraction of the Markov chain limit, then the system is considered to have

reached equilibrium, and temperature is decremented.

Because the simulated annealing algorithm involves a repeating series of trials, it is

easy to imagine several different ways to parallelize the algorithm for increased performance.

Such parallelization schemes necessarily increase the complexity of both the optimization

algorithm and the theoretical analysis thereof. Before examining such issues it is prudent

to look into the capabilities, limitations and variations of the modern parallel computing

environment.

1.2 Parallel Computation

Compared to modern PCs, the first computers seem to be little more than gigan-

tic, power-hungry calculators. However, at the time of their development, they represented

a great leap forward over the previous generation of computational power (namely, rooms

full of people with adding machines). The size and expense of these early machines initially

limited their use to governmental applications such as code-breaking, nuclear weapons cal-

culations and the generation of ballistics tables[29, 26]. The invention of the transistor and

the subsequent development of the microchip led not only to vastly greater computational

speed and power, but also to greatly reduced size and cost. What used to fill a room and

cost hundreds of thousands of dollars, now fits in the pocket, and costs only a few dollars.

Performance improvements have been achieved through a variety of means. First

and foremost, advances in materials and fabrication techniques have allowed the speed

and number of transistors in a single chip to increase at a nearly exponential pace (Moore’s

Law[29]). Furthermore, innovations in chip architecture, including instruction-set microcode,

multi-level caching, and pipelining have allowed such advances as out-of-order execution,

speculative execution, and the execution of multiple instructions per clock cycle.

11

As the price of computer hardware dropped, it became feasible to build computers

with multiple processing units. This facilitated a further expansion in calculational power

than would be available through chip fabrication advances alone. The ability of a program

to effectively run on multiple processors hinges on several key features of both the hardware

and the software.

Parallel Software

At the software level, the program algorithm must be divisible into distinct, in-

dependent tasks that may be executed separately from each other with limited communi-

cation. Different algorithms are parallelizable in different ways and to different extents.

For some, such as parametric studies and sensitivity analyses, parallelism is obvious and

easily achieved; these methods are said to be embarrassingly parallel. Certain classes of

embarrassingly parallel algorithms may be further broken down into a series of serial com-

putational tasks that may be executed completely independently. Parallel programming is

likely to consist largely of automation scripts that simplify the task of managing the large

number of input and output files generated. In these algorithms, inter-process communica-

tion overhead is generally quite minimal compared to the computational effort required for

each process. Others algorithms, such as branching searches or matrix inversion, are capa-

ble of parallelization, but require careful analysis of data-flows and dependencies. Data and

procedural dependencies will tend to limit the scalability and parallel efficiency (described

below) that may be realized. The final class of algorithms are the so-called serial algorithms,

in which the data and procedure dependencies render them completely unparallelizable. If

higher performance is required, it is often necessary to move to an alternative, parallelizable

algorithm. The optimization algorithm used for this investigation is very nearly embarrass-

ingly parallel, as will be described below, and is derived from a serial algorithm.

Parallel Hardware

A defining characteristic of a parallel computer is the ability to share data be-

tween individual processing units. At the hardware level, the computer must have a means

of communicating data and instructions between processing units and a means of coordi-

nating said data and scheduling the various operations to be performed. One way such

12

processors can be classified is according to the number of data and instruction streams

they are able to process concurrently; the so-called Flynn Taxonomy [29]. At the lowest

level are Single-Instruction Single Data (SISD) machines that operate on a single set of

data with a single set of instructions. This type encompasses the majority of computers in

common use (although multi-core and multi-processor computers have become much more

prevalent in recent years.) The next level is the Single-Instruction, Multiple-Data (SIMD)

machine. These are commonly known as Vector processors, and are designed to perform

identical operations simultaneously on multiple data streams. Although some early super-

computers, such as the Cray X-MP utilized vector processors, they have been supplanted

by more powerful and versatile Multi-Instruction, Multiple-Data (MIMD) computers. No

multiple-instruction, single-data machines have been marketed commercially.

MIMD machines can be further subdivided according to whether the individual

processing elements share a single memory, or each have their own address space. The

former are known, appropriately enough, as Shared-Memory computers; these range in

size and power from simple, multi-core desktop workstations to powerful, high-availability

main-frame computers (such as the IBM Z-series [29]). Distributed-Memory machines, how-

ever, are generally comprised of groups or clusters of individual computers acting together

through a network connection. The individual nodes in a distributed-memory machine may

themselves be shared-memory machines or further networks of (real or virtual) distributed-

memory machines. Owing to their availability and relative ease-of-use, the distributed

memory cluster was the tool of choice for the work to be presented here. Therefore a closer

look at their operational features and limitations is warranted.

1.2.1 Commercial Cluster Hardware

Traditionally, entry into the world of high-performance computing was greatly

restricted by the extremely high cost of the machines and the specialized staff and infras-

tructure required to support them. This all changed with the advent of the computational

cluster. The cluster combines low-cost, widely available computing hardware with spe-

cialized management software that allows all nodes to share in the execution of a single

program. The number and type of computers to be combined into a cluster is typically

quite flexible, and depends primarily upon the intercompatibility of the management and

13

computation software and the networking hardware. One form-factor that has become quite

popular for cluster-computing is that of the compact, rack-mountable unit, as typified by

the IBM Blade-Center. In this system, peripheral components such as the power supply,

external network connections and interface ports are moved from the computer, known as

a ’blade’, to a common support chassis. The chassis itself requires seven units of space in a

standard 19” rack, and is able to hold up to fourteen blades. The scalability of these designs

and their use of widely available commodity components greatly reduce the ownership costs

over shared-memory machines of similar performance. The availability of clusters in a wide

variety of platforms and configurations is simultaneously an advantage and a disadvantage.

It can lend a great deal of power and flexibility, but it can also cause a veritable night-

mare of compatibility and interoperability issues. The issues are largely handled through

the use of high-level standard interface standards protocols, such as the OpenMP and MPI

programming libraries and the Ethernet communication protocols.

1.2.2 Message Passing Interface Standard

Computational clusters and supercomputers can be very expensive, but the highly

specialized software that runs on them can often be just as, if not more costly to develop.

With the rapid pace of hardware development and the resultant short computer lifetime, it

was necessary to develop a consistent, high-level communications interface for application

developers. One such standard that is of particular import to the work presented here

is the Message Passing Interface Standard (MPI) version 1. An implementation of this

standard, known as MPICH, and distributed by the Intel Corporation with their Intel

Fortran Compiler[10] was utilized in the development of this program.

The MPI standard provides for interface routines for a variety of programming lan-

guages, including Fortran, C and C++. These routines provide a simple subroutine-style

interface (in Fortran) with which the programmer can send messages between sets of pro-

cesses. The primary communications routines can be subdivided according to whether they

involve individuals or groups of processes (the so-called collective communication methods)

and according to whether the subroutine waits for the communication to complete before

returning control to the calling program (blocking vs. non-blocking communication). Mes-

sages cannot be unilaterally passed from one process to another; for each call to a message

14

sending routine, there must be a matching call to a message receiving routine on the tar-

get process. Furthermore, the receiving process must know ahead of time the exact size

and type of the message it will be receiving. The first of these issues is efficiently handled

through non-blocking communications, while the second can be dealt with either through

the use of a predefined message structure or through a multistep communication routine

whereby the sending process first communicates the size and type of the message to the

receiver then sends the message itself. In addition to identifying the source and destination

of each message at both the sending and receiving end, each message is given an integer ’tag’

value by the programmer. The tag values must be the same at the sending and receiving

process in order for the message to pass through.

Non-blocking receives are of great utility because they can be ’posted’ at any time

before the message is to be sent, and then checked periodically to see if the message has been

received. Thus, rather than having a process wait idly for a message, it is able to continue

with other computations until the message is received. Furthermore, this is accomplished

without introducing any of the coordination issues typically found in multi-threaded appli-

cations development. The following communications coordination pattern is used in this

project: All communications messages originate or terminate with the root process3. All

non-root processes post a single non-blocking receive for control communications, while the

root process posts a separate receive for each other process. When it reaches the top of the

processing loop, each process checks to see if any control messages are present, and if so,

it moves immediately to act on them. It then reposts the receive, and continues with the

program.

1.3 Performance Metrics

The ultimate measure of performance for any computer program is its ability

to increase user’s productivity. As there is no clear metric for productivity in the given

situation, parallel speedup and efficiency will instead be examined. Parallel speedup is

given by the ratio of the wall-clock time of the serial program to the parallel version. Thus

a program that runs in 20 seconds in parallel compared to 100 seconds in serial would have

3The root process is that process which has been assigned a rank of zero.

15

a parallel speedup of 5. Parallel efficiency is calculated by normalizing the parallel speedup

by the number of processors. Thus, if the above example required 10 processors to reach

the given speedup, then it would have a parallel efficiency of only 50%. It is often the case

that parallel algorithms will exhibit different efficiencies for different numbers of parallel

processes involved. This is largely due to the increased fraction of computational effort

spent on overhead, such as interprocess coordination and communication.

The calculation of parallel efficiency is complicated somewhat by the nature of

the stochastic search algorithm employed. Namely, the stochastic search algorithm does

not have a clear-cut endpoint. As the search progresses and the SA Temperature drops,

it becomes less and less likely that a less favorable transition will be accepted. Therefore,

the efficiency of accepting new solutions (e.g. LPs) drops as the optimization proceeds. To

resolve this issue, FORMOSA-B has a convergence criteria whereby the search is considered to

be converged if one of three criteria are met:

• No transitions are accepted during the latest Markov chain.

• Fewer than 5% of proposed transitions have been accepted during the latest Markov

chain AND more transitions than the number of available single-change cases have

been attempted since the last reduction in objective function value.

• More than a proscribed number of histories have been evaluated (to limit run-time.)

The stochastic nature of the optimization algorithm further complicates the gen-

eration and comparison of performance metrics because the results may vary from one run

to the next. To ensure that performance measurements are truly representative of the algo-

rithm, it will be necessary to run the code several times over, each time seeding the random

number generator with a different starting value.

1.4 Parallel Optimization Algorithms

There exists a vast array of applications in science and industry for optimization

methods, so it is no surprise that there also exists a correspondingly wide variety of al-

gorithms to meet the particular challenges of each. Of the different types of algorithms

16

available, stochastic methods are particularly well suited to the discontinuous, combinato-

rial nature of the in-core fuel management problem. Two popular stochastic algorithms are

Simulated Annealing and Genetic Algorithms[14]. While simulated annealing, as described

above, is a computational analogue to the metallurgical annealing process, a genetic algo-

rithm (GA) is a computational analogue to natural selection. In GA, the problem inputs

are discretized into individual units, which are then perturbed by a mutation operator to

create an initial population. This population is then evaluated based upon a numerical

’fitness’ score, and a certain fraction of the population are selected to survive. The popu-

lation is then regenerated by mutation of the existing individuals and by combining traits

of different individuals with a so-called cross-over operator. This process repeats until a

termination criteria is met. Because it involves repeatedly calculating the fitness of a popu-

lation of individuals, genetic algorithms are ideal candidates for parallelization. Simulated

Annealing, as originally implemented, involves an ever evolving Markov chain of individual

states. Although this limitation to a single search chain makes parallelization more difficult,

a number of possible methods have been put forward.

1.4.1 Parallel Simulated Annealing

Lee and Lee[19] subdivide the world of parallel simulated annealing into methods

involving a single Markov chain, and methods following multiple Markov chains (SMC

PSA and MMC PSA, respectively). In the SMC PSA schemes, either the evaluation of

a single perturbed pattern is performed in parallel, or several perturbations are analyzed

concurrently, with only a single perturbation being carried forward to the next iteration.

The interprocess communication required at each step greatly limits the ability of these

SMC PSA methods to scale efficiently to large numbers of processes. In order to cut

down on communication overhead and allow greater scalability the individual processes are

allowed to follow independent search paths. Lee and Lee describe three different MMC

PSA schemes, each with varying levels of interprocess communication. The first is the

so-called Non-interacting MMC scheme, whereby each process performs a complete SA

cooling cycle. Once all processes have finished, the best solution is chosen from amongst the

processes. This is functionally no different than performing multiple serial optimizations

consecutively with a different search path being taken each time. The next step up in

17

power is the synchronous MMC PSA method, using either periodic or dynamic exchange

schemes, whereby at fixed or computed intervals, all processes compare the current solutions,

and move forward using the best solution from amongst all processes. This is similar to

the synchronous MMC PSA method detailed in the next chapter. Finally, there is the

asynchronous MMC PSA algorithm, whereby individual processes are able to communicate

with a global state as needed. If the global state is superior to the current state on that

process, then the global state is adopted. Otherwise, the global state is updated to reflect

the new best solution. This scheme is similar to the asynchronous MMC PSA method

detailed in the following chapter. One advantage of using multiple simultaneous Markov

search chains is that even if a few individual chains become trapped in local minima, it is

less likely that the entire solution will be trapped likewise. A further way to reduce the

probability of becoming trapped in a local minimum and to increase the hill-climbing ability

of the algorithm is to choose a new starting pattern randomly from all processes at each

update step. In the Binary Branching scheme (described below), the new starting solution

is selected by applying the Metropolis Criterion to successive, random pairings, much like a

randomly seeded tournament bracket. A similar scheme, proposed by Chu [5] and applied

to the multicycle nuclear fuel management problem by Kropaczek [17] is Parallel Simulated

Annealing with Mixing of States. Unlike in the binary branching algorithm where a single

starting point is used for all processes after an update step, the Mixing of States algorithm

has each process start from a different point, chosen randomly from the set of previous

Markov chain endpoints with a probability given by

pi =
exp(−Ei/Tk)

∑n
j=1 exp(−Ej/Tk)

(1.7)

where pi is the probability of choosing the solution from process i, Ei is the objective

function value associated with solution i, and Tk is the simulated annealing temperature of

cooling step k.

Two of the PSA algorithms were chosen for implementation and testing in the

FORMOSA-B program, namely the synchronous and binary-branching MMC PSA methods.

Testing of the asynchronous algorithm is reserved for future work. In chapter 2, the

FORMOSA-B implementation of each method is discussed, while in chapter 3 the results

of a variety of numerical trials are used to compare these methods against each other and

18

against a serial benchmark solution. Finally, in chapter 4, several conclusions are drawn

from this work and recommendations made for future work.

19

Chapter 2

MMCPSA

Multiple Markov Chain Parallel Simulated Annealing [19] (MMCPSA) is a par-

allelization scheme by which each process in the parallel operating environment (POE)

follows an independent search path for a given interval. These intervals are punctuated

by interactions with the other processes. The several variations of MMCPSA algorithms

are characterized by the type of interprocess communication schemes they employ. Two

particular MMCPSA schemes are here considered: Synchronous, where all processes com-

municate simultaneously, and Asynchronous, where each process is updated individually.

The general pattern employed by all of these methods is depicted in figure 2.1.

2.1 Cooling Schedules

In parallelizing the FORMOSA-B code, the proven Huang cooling schedule [4] from

the serial version was retained along with the optional fixed-decrement schedule. The adap-

tive cooling schedule computes the new simulated annealing temperature by multiplying

the previous temperature by a factor of

α = e−0.7T/σ (2.1)

where T is the current temperature and σ is the observed standard deviation in the aug-

mented objective function during the previous cooling step. The standard deviation is

calculated by keeping a running sum on each process of the objective function, the square

of the objective function and the number of histories accepted. In synchronous simulated

20

Start

Check for Control Messages

Act on Received Messages

terminate? Stop

Sample and Evaluate New Pattern

Accept/Reject History

Set Update Flags

Yes

No

Figure 2.1: PSA Flowsheet

annealing the individual sums from each process are aggregated together to compute the

overall standard deviation. In asynchronous annealing, however, the current global average

state is not available to the process undergoing the update. For this situation, each time

an update is performed with the root process, the partial sum for the latest search segment

for the updating process is stored on the root process. An estimate of the global state is

then made by summing over the set of the partial sums stored on the root process. This is

explained further is section 2.3. Although this method does not give the exact value for the

standard deviation of augmented objective function, it can serve as a useful estimate when

the overall cooling rate is low.

2.2 Synchronous SA

Synchronous parallel simulated annealing splits the Markov search chain for each

temperature interval between each of the P processors in the parallel environment. Each

21

Start

Combine Cooling

Statistics

Update

SA Temperature

Average Penalty

Weights across

all processes

Select a new

Starting LP for each

process

Continue

Figure 2.2: Global Update Logic

processor generates and accepts new loading patterns (LPs) and control rod programs

(CRPs) at a constant annealing temperature until the root processor initiates a temperature

update. These temperature update steps are initialized when more than a given fraction

of the processes (7/8 was chosen for this study) have either a) sampled a given number,

lchain, of histories or b) accepted a given number, ltran, of histories. When the cooling cycle

initially begins, there are no statistics from which to compute an annealing temperature

or penalty function weight values. Therefore an initial search of length lsurv is performed

on all processors (see figure 2.3). During this search all non-grossly infeasible histories are

accepted (i.e. an infinite annealing temperature is used). The statistics generated during

this initial survey are then used to initialize the annealing temperature and penalty function

weights. The choice of values for lsurv, lchain and ltran will be covered in more detail in

22

chapter 3.

The three key characteristics of the synchronous mode of MMCPSA are: 1) all

processes use the same SA temperature, 2) all processes use the same penalty multipliers,

and 3) all processes adjust the temperature and penalty multipliers at the same time. Traits

1 and 2 are assured because they are based on the cooling statistics, and the statistics for

the previous segment are combined across all processes concurrently (see figure 2.2).

In addition to determining the annealing temperature and penalty function weights,

each update step must also determine the choice of the next starting configuration. There

are several different methods available for choosing this configuration, each of which seeks

to find a balance between the opposing requirements of minimization and solution diver-

sity. One simple strategy is to compare the best solution accepted by each processor during

the search and choose that with the lowest augmented objective function value. As imple-

mented in FORMOSA-B, this method is referred to as the Synchronous-Best-Solution mode of

operation (sync, for short). Increasing the complexity and solution diversity by one step is

the Stochastic Tournament method. In this method, the best solutions from each process

are first randomly paired, then downselected using the Metropolis criterion. The process is

repeated for the surviving solutions until a single configuration remains. This configuration

is then carried forward as the starting point for every process. Because this method selects

a solution by repeatedly pairing and eliminating candidates it is referred to as the Binary

Branching mode of operation. A third method, not currently implemented in FORMOSA-B, is

the Mixing-of-States algorithm. In this method each process would select its own starting

point from the set of best solutions according to equation 1.7.

One additional feature utilized by both the synchronous and asynchronous modes

is the Return-to-base strategy for recovering from an infeasible search space. If, through

the course of the optimization, a processor samples more than lchain/4 consecutive grossly

infeasible histories, it will send a message to the root process indicating that it is stuck.

The root process then transmits the best solution yet found, and the stuck node resumes

from this configuration (see figure 2.4 below).

23

Root Slave 1 Slave 2

Start

Initialize

Parallel

Environment

Evaluate

lsurv

histories

Evaluate

lsurv

histories

Evaluate

lsurv

histories

1

Initialize

SA Temp and

Penalty Weights

Broadcast Best

Solution

Evaluate lchain

histories unless

ltran histories

accepted

Evaluate lchain

histories unless

ltran histories

accepted

Evaluate lchain

histories unless

ltran histories

accepted

Update

SA Temp and

Penalty Weights

Converged or

Finished

Exit

Yes

No

Figure 2.3: Synchronous Parallel Simulated Annealing Program Flow

24

Start

Is the SA

Temperature

Initialized?

lchain sampled

or

ltran accepted

Request Update
lsurv

accepted?

lchain/4

consecutive

infeasible?

continue

Request

Return-to-Base

No

Yes

Yes Yes

No

Yes

No

No

Figure 2.4: Set Update Flags

25

2.3 Asynchronous SA

Root Process Start

For each

Update Request

Perform

Single Update

Is SA Temp

Initialized?

≥ 7 of 8 processes

request update

Initialize

Global Update

Continue

Yes

No

No

Yes
No

Figure 2.5: Asynchronous Update Request Handling

The asynchronous simulated annealing mode has two aims. First is to reduce

the burden of interprocess communication by minimizing collective communications that

require coordination amongst all of the processes. The second is to accelerate the cooling

rate in order to hasten the completion of the optimization cycle. Asynchronous SA differs

from synchronous SA in that after the initial temperature survey, each process is able to

perform a temperature update step independently of any other process. After sampling

lchain valid histories or accepting ltran transitions, the process sends a signal to the root

process requesting an annealing temperature update. It then continues sampling until

the root process sends a return signal initiating the update step (see figure 2.5). At the

start of the update step, the process transmits the cooling statistics from the previous

26

segment to the root process, where they are stored. The root process then sends back

the average cooling statistics for all processors, which are then used to calculate the new

annealing temperature and penalty function weights. The updating process then transmits

the unaugmented objective function and constraint violation values of its best solution to

the root, and vice versa. These values are then used, along with the local penalty weights, to

compute an augmented objective function value. On the root process, if the new augmented

objective value is lower than the current minimum value, then the corresponding loading

pattern is installed on the root as the global best solution. The augmented objective function

is similarly reconstructed for the global best solution on the updating process; however,

the global best solution is accepted over the local best solution by use of the Metropolis

Criterion.

2.4 Interprocess Coordination and Communication

Interprocess communication is structured around a radial topology whereby all

communication is directed to or from the so-called root process. The root process is simply

that process which is assigned a rank of zero by the parallel operating environment. The

nonblocking routine MPI_IRECV is used to create a communication channel between the root

process and each other process in the parallel environment. This communication routine

reserves a given variables as a message buffer. The MPI_TEST routine can then be used

to test for the presence of a received message. Thus, each process is always listening for

messages from the root process. The received messages are handled differently on the root

process than on the slave processes. The root process first checks for messages from all

other processes, then computes whether an update is required, and if so, which type. If

an update is to be initiated, it sends out control messages to all participating processors.

When the slave processes again reach the top of the simulated annealing loop, they first

check for received messages, and if any are found, they are immediately acted upon. The

longest period that the root process would have to wait for a response from a slave process

would be the length of time required for a Control-Rod-Programming Update step. Two

advantages of this coordination scheme are that 1) it allows the root process to execute its

own Markov search chain, rather than sitting idle, waiting for the next update step and 2)

27

it does not require implementing complex multi-threaded code or interrupts. In addition to

control messages, several MPI routines are used to communicate data between processes.

Because data communications occur in a deterministic fashion, they can be implemented

using simple blocking communications routines.

28

Chapter 3

Numerical Results

The driving purpose of this work is to demonstrably shorten the FORMOSA-B run-

times in an efficient manner. A true performance assessment encompasses two related ideas:

robustness and efficiency. Robustness is taken as the ability of the program to avoid becom-

ing trapped in a locally feasible solution. Efficiency relates the way in which the runtimes

scale with processor count for a given quality of solution.

3.1 Testing Environment

Computational testing of both the serial and parallel FORMOSA-B codes was per-

formed using the Henry2 cluster located in the High Performance Computing Center at

North Carolina State University [27]. This cluster consists of a mixture of 612 individual

IBM BladeCenter [31] compute nodes, each with dual Intel Xeon processors (in single-, dual-

and quad-core varieties). Furthermore, each node has 2 gigabytes of memory per core with

each node interconnected via two Gigabit Ethernet links. FORMOSA-B is coded in FORTRAN

and compiled with version 8.1 of the Intel Fortran Compiler [6]. Parallel job scheduling is

handled by the Platform LSF load-manager software. This software automatically controls

the allocation and assignment of the computational nodes to different users or projects

based upon a specified priority queue structure. For this work, a total of 92 processors were

available on a priority basis, with parallel runs generally starting within 30 seconds of their

being submitted to the queue.

29

3.2 Test Cases

In order to test the performance of the parallel simulated annealing algorithm a

quarter-core model of a 368-assembly GE-4 BWR reload core was utilized. An example of

an optimized loading pattern is shown in table 3.1; note that the fuel assembly numbers

reference the ID numbers assigned to each assembly type within the FORMOSA-B input deck

and do not by themselves indicate any particular properties of the fuel.

Table 3.1: 368-Assembly Quarter-Core Loading Pattern

CL 23 25 27 29 31 33 35 37 39 41 43

22 6 64 45 65 23 64 47 64 44 61 30

20 64 29 52 16 63 24 63 63 27 42 9

18 49 51 31 65 53 64 48 63 37 8 12

16 65 4 65 59 64 60 64 63 28 19

14 5 63 46 64 38 64 35 62 2

12 64 7 64 58 64 11 55 39 13

10 54 63 50 64 62 57 40 21 32

8 64 63 63 63 64 36 10 1

6 41 25 43 26 22 15 20

4 56 34 3 14

2 33 17 18

This model simulates a core running with a thermal power of 1911.6MW through a

cycle burnup of 12,336 MWD/MTU with conventional-core control rod programing (COC).

30

The cycle is discretized into 17 timestep increments with 1,250 MWD/MTU of burnup

accrued per time-step (two time-steps are used when rod swaps occur.) Many key opti-

mization settings were held fixed throughout the tests that follow. A summary of these

values is presented below in table 3.2.

Table 3.2: Optimization Test Case Settings

Thermal Limits

MFLPD 0.94

MAPRAT 0.94

MFLCPR 0.96

Reactivity Limits

Minimum Shutdown Margin 0.025∆k/k

BOC Hot Excess Reactivity Limit 1820pcm

Maximum Allowed Reactivity Shuffle 0.15∆k

Burnup Limits

Pin 65,000 MWD/MTU

Assembly 50,000 MWD/MTU

Region 45,000 MWD/MTU

Symmetry Constraint

Quarter Core Reflective Loading

Eighth Core Fuel Exchanges

Miscellaneous Settings

Optimization Objective EOC Flow Minimization

CRP Heuristic Objective Flow Minimization

Critical Flow Search Enabled

Number of F/A Mechanical Types 2

Shutdown Margin Calculation All Interior Control Rods

Assemblies available in Fuel Pool 13

Pin Power Reconstruction on the most reactive 20% of nodes.

3.3 Performance Metrics

The ultimate goal and purpose for parallelizing the FORMOSA-B program is to gen-

erate an equal or superior set of solutions with a greatly reduced turnaround time. It is a

31

simple matter to compute and compare turnaround times on a program. It is much more

difficult, however, to evaluate the performance of an asymptotically convergent stochastic

algorithm executing in a heterogeneous computational environment. The objective function

and constraint violation values computed during the optimization run vary as a function

of the randomly generated loading pattern, the adaptively computed penalty constraint

multipliers, the optimization settings and the reactor model itself; a simple comparison of

average objective function versus number of samples will not suffice to compare different

optimization trials. Instead, as a basis of comparison, two factors are considered. First, does

the parallel run produce optimized solutions of similar quality to those generated during the

serial run? This is established by comparing the distributions of the objective function and

constraint violation values for the best solution (i.e. the solution archived with the lowest

objective function value) found by a repeated sampling of individual runs.

Once it has been established that the runs are converging to similar optimized

states, parallel speedup is assessed by comparing the rate at which new solutions are sam-

pled. Speedup is calculated via the following equation:

S =
T0/N0

T/N
(3.1)

where N and N0 are the number of histories specified or generated during a given trial

and reference case, respectively; T and T0 are likewise the execution time for the compared

cases. It is desired that the parallel speedup and efficiency calculations reflect the perfor-

mance of the PSA algorithm itself while compensating for the effects of variations in the

underlying computational hardware. This is particularly necessary given the heterogeneous

nature of the Henry2 cluster, where processing nodes of various vintages and speeds may

be encountered both from one run to another and within a single parallel run. This is done

by introducing a normalization factor for each run. This factor is given by

F =
NLP TLP + NCRP TCRP

NLP + NCRP
(3.2)

where NLP is the total number of loading patterns sampled during the given run and TLP

is the mean time required per loading pattern evaluation (likewise for NCRP and TCRP).

Note that LP and CRP evaluation times are automatically calculated and recorded by the

code each time either subroutine is called. Thus, the compensated speedup value S̃ is given

32

by the equation:

S̃ =
F

F0

× S (3.3)

where the value of F is derived from the parallel optimization case under consideration and

F0 is computed from the serial benchmark data. This factor provides a rough correction for

the effects of variable processor power, but it does not compensate for imbalances that may

occur when a subset of the processors in the parallel environment are significantly faster or

slower than the others. In these situations parallel speedup and efficiency can be expected

to suffer. Further, the variation of the ratio of CRP updates to LP updates between a given

trial and reference case will degrade the quality of the correction.

3.4 Benchmarks

To establish a baseline for comparison, three serial FORMOSA-B runs were performed

using the default run settings (lchain, ltran, etc.) and different random number seeds.

These runs provide a benchmark for comparing both the speedup achieved by the parallel

algorithms as well as the convergence properties and final solution quality.

Table 3.3: Serial Benchmark Results

Settings

llngth lchain ltran lsurv ilimx

16,000 800 320 800 100

Best Solution Results

Sampled # Accepted Min. OF Run Time

Run 1 16,194 4,060 -0.1145 37.1hr

Run 2 16,694 3,430 -0.1019 52.0hr

Run 3 16,286 4,436 -0.1015 45.2hr

Best Solution Constraint Violations (x1,000,000)

MFLPD MAPRAT MFLCPR CSDM Max. HX Flow

Run 1 72.8 10.4 0.0 0.0 0.0 2,166.5

Run 2 115.1 0.0 0.0 113.2 0.0 11,777.5

Run 3 62.8 0.0 0.0 0.0 0.0 1,398.8

Several metrics reported in the above table 3.3 (and again later) merit further

explanation. First, the precise meaning of llngth, lchain, ltran, lsurv and ilimx are as

33

follows:

• llngth: This is the target number of histories to be sampled during the simulated

annealing cooling cycle. The actual number of histories sampled will be greater, as

the program only evaluates this termination criteria during update steps.

• lchain: This is the maximum number of histories that a single process will evaluate

before requesting the next temperature update step.

• ltran: This is the maximum number of histories that a single process will accept

before requesting the next temperature update step.

• lsurv: This is the number of histories that each process will evaluate during the

temperature initialization phase of the cooling cycle.

• ilimx: This parameter determines the frequency at which the Control Rod Program

is optimized via built-in heuristic rules. For example an ilimx value of 200 indicates

that for every 200 loading patterns evaluated, the CRP is optimized once.

Due to the stochastic nature of the SA algorithm, it is not expected that re-

peated optimization runs will find identical optimized loading patterns. Instead, optimized

solutions should lie along a tradeoff surface given by the objective function and penalty

constraint violations. Furthermore, due to the adaptive penalty constraint multiplier algo-

rithm, optimization runs that specify different llngth values are not expected to converge

at the same rate. Thus in order to compare the computational performance of the paral-

lel algorithm, certain assumptions and simplifications are made. Rather than computing

a rate or order of convergence, as would be typical for most deterministic computations,

speedup calculations are based on the average rate at which histories are sampled over the

cooling cycle. In order to confirm that the optimized solutions are indeed optimal, they

are compared to the base case results in terms of final objective function (i.e. EOC flow

reduction) and remaining constraint violation values. Note that no attempt is yet made to

correlate optimized solution quality to the total number of sampled solutions. Also note

that as the term “constraint violation” indicates, one goal of the optimization is the removal

of all constraint violations. However, it is not always possible for a given set of constraints

to find a solution that has no violations.

34

To initially establish the performance of the parallel algorithm, three repeated

trials were run with each of three optimization settings. Parallel runs were performed on

four processors in the synchronous best-solution mode with CRP optimization occurring

prior to each temperature update. Results are presented below in table 3.4.

Table 3.4: Benchmark Comparison Results

Processors 1 4 4

Samples Requested 16,000 16,000 24,000

% EOC Flow Change -10.6± 0.74% -10.2± 0.1% -10.6± 0.64%

Best Solution Constraint Violations (x1,000,000)

MFLPD 83.6± 27.8 76.4± 97.1 70.8± 141.5

MAPRAT 3.5± 6.0 0.0± 0.0 4.4± 5.4

MFLCPR 0.0± 0.0 24.3± 48.6 137.0± 272.4

CSDM 37.7± 65.3 0.0± 0.0 0.7± 1.3

Max. HX 0.0± 0.0 0.0± 0.0 0.0± 0.0

Crit. Flow 5114.3±5783.3 1872.1±752.9 4615.7±3225.6

Both 16,000 and 24,000 sample optimization runs exhibit similar EOC flow reduc-

tion and constraint violation values. Two conclusions can be inferred from this: first, both

parallel and serial algorithms are converging to similar solutions (the parallel algorithm

works). Second, increasing the number of samples from 16,000 to 24,000 does not result in

a markedly better best solution; this indicates that for the reactor model under consider-

ation, an increase of sample size above 16,000 does not greatly improve the optimization

results. This result is likely a factor of the smaller optimization search space of the chosen

reactor model.

3.5 Tuning the Parallel Algorithm

The chosen parallel algorithms include a number of search parameters, the choice

of which will affect the quality and robustness of the cooling cycle. Two parameters of

particular interest are the CRP Update Frequency and the minimum Markov Chain segment

length.

35

3.5.1 CRP Update Frequency

As the loading pattern (LP) evolves, so does the optimum control rod program

(CRP) [11]. By updating the CRP to reflect the changes in the reactivity and power dis-

tribution the program is able to more effectively reduce or eliminate constraint violations.

However, the heuristic CRP optimization routine requires a factor of 10 to 15 greater com-

putation time than a simple LP evaluation. This, combined with the observation that the

optimized CRPs vary only slightly for similar loading patterns indicates that CRP optimiza-

tion is not required after each an every LP shuffle. In the serial algorithm, CRP updates are

automatically performed after a user-determined number of loading pattern shuffles have

been evaluated. The parallel algorithm additionally performs a CRP optimization on the

best solution found by each segment immediately before this solution is used in the temper-

ature update step. However, if the Markov Chain is short between temperature updates,

then it may not even be necessary to reoptimize the CRP prior to the update. The deci-

sion of whether to require CRP optimization prior to temperature update is thus based on

whether the total number of LPs sampled across all processes exceeds a user-specified CRP

Update Threshold value.

A series of test runs were performed using four processors for a range of CRP

Update Threshold values between 20 and 1,000 with a nominal Markov Chain size of 800

samples or 400 acceptances (lchain = 200, and ltran = 100) with the CRP reoptimized

once for every 250 LP samples evaluated within each Markov Chain segment. Parameters

and results are presented in tables 3.5 and 3.6 and figures 3.1 through 3.7.

This series of tests confirms the expectation that using loading pattern optimiza-

tion without simultaneously optimizing the control rod program results in faster execution

times at the cost of greatly increased penalty constraint violations. The only constraint

violation not affected by the absence of CRP optimization is the cold-shutdown margin,

which is largely independent of the operating control rod pattern. The range of CRP Up-

date Threshold values tested ranged from well below the nominal Markov chain length to

slightly above it. The optimization results and speedup values do not seem to vary sig-

nificantly as a result of changing CRP Update Threshold. It is likely that the choice of

an optimum CRP update frequency is closely related to the particular reactor model un-

der consideration; further testing is required to elucidate any such trends before definitive

36

Table 3.5: CRP Speedup Results

CRP # of Avg. # of Average End-of-Cycle %

Threshold Runs Samples Runtime[hr] Flow Change Speedup Efficiency

Serial 3 16,391 44.8 -10.60±0.74% - -

-1 5 24,349 17.6 -9.21±3.12% 3.43 85.7%

1,000 5 24,518 21.2 -10.18±0.18% 3,21 80.2%

700 5 24,474 18.2 -10.35±0.40% 3.22 80.6%

400 5 24,561 21.9 -8.57±4.23% 3.21 80.3%

200 5 24,451 20.9 -10.33±0.61% 3.20 80.0%

140 4 25,155 22.5 -10.16±0.10% 3.22 80.4%

100 4 24,571 20.4 -10.16±0.10% 3.21 80.1%

80 4 24,598 21.2 -10.39±0.39% 3.23 80.7%

60 5 24,341 21.8 -10.09±0.09% 3.21 80.4%

40 3 24,444 21.8 -10.13±0.21% 3.21 80.4%

20 4 24,397 21.1 -10.57±0.64% 3.23 80.8%
1: CRP Optimization Disabled

conclusions can be drawn.

37

Table 3.6: CRP Optimization Results

CRP Constraint Violation (x1,000,000)

Threshold MFLPD MAPRAT MFLCPR

Reference 0.00± - 224.93 ± - 0.00± -

Serial 83.56± 27.75 3.45 ± 5.98 0.00± 0.00

-1 301.21± 178.04 77.41 ± 72.60 820.87± 627.07

1,000 129.65± 156.45 11.25 ± 13.61 34.15± 59.24

700 119.78± 159.46 12.91 ± 18.30 148.22± 293.40

400 174.14± 77.79 19.20 ± 42.92 83.11± 185.85

200 188.63± 116.09 22.00 ± 49.19 454.28± 762.19

140 159.41± 191.17 56.53 ±113.07 417.57± 497.16

100 122.22± 83.64 17.06 ± 23.34 161.11± 322.22

80 151.11± 127.38 31.50 ± 63.01 47.76± 59.87

60 106.27± 121.02 0.24 ± 0.55 0.00± 0.00

40 153.21± 164.60 0.00 ± 0.00 0.00± 0.00

20 70.76± 141.53 4.44 ± 5.38 137.02± 272.36

CRP Constraint Violation (x1,000,000)

Threshold CSDM MAXHX Critical Flow

Reference 0.00± - 0.00 ± - 0.34± -

Serial 37.72± 65.34 0.00 ± 0.00 5,114.26± 5,783.27

-1 146.24± 236.34 52.66 ±117.75 21,297.52± 4,326.00

1,000 426.70± 889.00 19.71 ± 44.07 2,253.01± 476.36

700 213.78± 314.65 0.00 ± 0.00 5,516.08± 4,840.76

400 118.68± 174.31 160.98 ±324.52 6,850.61± 3,359.02

200 357.71± 724.19 109.09 ±236.20 8,682.35± 7,209.18

140 621.98±1,234.86 0.00 ± 0.00 12,164.24±12,566.13

100 30.18± 60.37 265.80 ±531.61 3,738.07± 3,077.43

80 44.78± 89.57 0.00 ± 0.00 6,980.28± 7,055.19

60 122.90± 274.82 0.00 ± 0.00 3,586.27± 2,254.69

40 0.00± 0.00 0.00 ± 0.00 2,357.21± 664.53

20 0.66± 1.32 0.00 ± 0.00 4,615.66± 3,225.62
1: CRP Optimization Disabled

38

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30

 O
bj

ec
tiv

e
F

un
ct

io
n

 Markov Chain

 Objective Function vs. Markov Chain

0 run 20
0 run 21
0 run 22
0 run 23
0 run 24

1000 run 20
1000 run 21
1000 run 22
1000 run 23
1000 run 24
100 run 20
100 run 21
100 run 23

100 run 24
140 run 20
140 run 21
140 run 23
140 run 24
200 run 20
200 run 21
200 run 22
200 run 23
200 run 24
20 run 20
20 run 21
20 run 22

20 run 23
400 run 20
400 run 21
400 run 22
400 run 23
400 run 24
40 run 20
40 run 21
40 run 22
60 run 20
60 run 21
60 run 22
60 run 23

60 run 24
700 run 20
700 run 21
700 run 22
700 run 23
700 run 24
80 run 21
80 run 22
80 run 23
80 run 24

Figure 3.1: CRP Markov-Chain Averaged Objective Function

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0 5 10 15 20 25 30

 M
F

LP
D

 V
io

la
tio

n

 Markov Chain

 MFLPD Violation vs. Markov Chain

0 run 20
0 run 21
0 run 22
0 run 23
0 run 24

1000 run 20
1000 run 21
1000 run 22
1000 run 23
1000 run 24
100 run 20
100 run 21
100 run 23

100 run 24
140 run 20
140 run 21
140 run 23
140 run 24
200 run 20
200 run 21
200 run 22
200 run 23
200 run 24
20 run 20
20 run 21
20 run 22

20 run 23
400 run 20
400 run 21
400 run 22
400 run 23
400 run 24
40 run 20
40 run 21
40 run 22
60 run 20
60 run 21
60 run 22
60 run 23

60 run 24
700 run 20
700 run 21
700 run 22
700 run 23
700 run 24

80 run 21
80 run 22
80 run 23
80 run 24

Figure 3.2: CRP Markov-Chain Averaged MFLPD

39

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0 5 10 15 20 25 30

 M
A

P
R

A
T

 V
io

la
tio

n

 Markov Chain

 MAPRAT Violation vs. Markov Chain

0 run 20
0 run 21
0 run 22
0 run 23
0 run 24

1000 run 20
1000 run 21
1000 run 22
1000 run 23
1000 run 24
100 run 20
100 run 21
100 run 23

100 run 24
140 run 20
140 run 21
140 run 23
140 run 24
200 run 20
200 run 21
200 run 22
200 run 23
200 run 24
20 run 20
20 run 21
20 run 22

20 run 23
400 run 20
400 run 21
400 run 22
400 run 23
400 run 24
40 run 20
40 run 21
40 run 22
60 run 20
60 run 21
60 run 22
60 run 23

60 run 24
700 run 20
700 run 21
700 run 22
700 run 23
700 run 24

80 run 21
80 run 22
80 run 23
80 run 24

Figure 3.3: CRP Markov-Chain Averaged MAPRAT

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 0 5 10 15 20 25 30

 M
F

LC
P

R
 V

io
la

tio
n

 Markov Chain

 MFLCPR Violation vs. Markov Chain

0 run 20
0 run 21
0 run 22
0 run 23
0 run 24

1000 run 20
1000 run 21
1000 run 22
1000 run 23
1000 run 24
100 run 20
100 run 21
100 run 23

100 run 24
140 run 20
140 run 21
140 run 23
140 run 24
200 run 20
200 run 21
200 run 22
200 run 23
200 run 24
20 run 20
20 run 21
20 run 22

20 run 23
400 run 20
400 run 21
400 run 22
400 run 23
400 run 24
40 run 20
40 run 21
40 run 22
60 run 20
60 run 21
60 run 22
60 run 23

60 run 24
700 run 20
700 run 21
700 run 22
700 run 23
700 run 24

80 run 21
80 run 22
80 run 23
80 run 24

Figure 3.4: CRP Markov-Chain Averaged MFLCPR

40

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0 5 10 15 20 25 30

 C
S

D
M

 V
io

la
tio

n

 Markov Chain

 CSDM Violation vs. Markov Chain

0 run 20
0 run 21
0 run 22
0 run 23
0 run 24

1000 run 20
1000 run 21
1000 run 22
1000 run 23
1000 run 24
100 run 20
100 run 21
100 run 23

100 run 24
140 run 20
140 run 21
140 run 23
140 run 24
200 run 20
200 run 21
200 run 22
200 run 23
200 run 24
20 run 20
20 run 21
20 run 22

20 run 23
400 run 20
400 run 21
400 run 22
400 run 23
400 run 24
40 run 20
40 run 21
40 run 22
60 run 20
60 run 21
60 run 22
60 run 23

60 run 24
700 run 20
700 run 21
700 run 22
700 run 23
700 run 24

80 run 21
80 run 22
80 run 23
80 run 24

Figure 3.5: CRP Markov-Chain Averaged CSDM

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0 5 10 15 20 25 30

 M
ax

 H
ot

 E
xc

es
s

R
ea

ct
iv

ity
 V

io
la

tio
n

 Markov Chain

 Max Hot Excess Reactivity Violation vs. Markov Chain

0 run 20
0 run 21
0 run 22
0 run 23
0 run 24

1000 run 20
1000 run 21
1000 run 22
1000 run 23
1000 run 24
100 run 20
100 run 21
100 run 23

100 run 24
140 run 20
140 run 21
140 run 23
140 run 24
200 run 20
200 run 21
200 run 22
200 run 23
200 run 24
20 run 20
20 run 21
20 run 22

20 run 23
400 run 20
400 run 21
400 run 22
400 run 23
400 run 24
40 run 20
40 run 21
40 run 22
60 run 20
60 run 21
60 run 22
60 run 23

60 run 24
700 run 20
700 run 21
700 run 22
700 run 23
700 run 24

80 run 21
80 run 22
80 run 23
80 run 24

Figure 3.6: CRP Markov-Chain Averaged Max HX

41

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 0 5 10 15 20 25 30

 C
rit

ic
al

 F
lo

w
 V

io
la

tio
n

 Markov Chain

 Critical Flow Violation vs. Markov Chain

0 run 20
0 run 21
0 run 22
0 run 23
0 run 24

1000 run 20
1000 run 21
1000 run 22
1000 run 23
1000 run 24
100 run 20
100 run 21
100 run 23

100 run 24
140 run 20
140 run 21
140 run 23
140 run 24
200 run 20
200 run 21
200 run 22
200 run 23
200 run 24
20 run 20
20 run 21
20 run 22

20 run 23
400 run 20
400 run 21
400 run 22
400 run 23
400 run 24
40 run 20
40 run 21
40 run 22
60 run 20
60 run 21
60 run 22
60 run 23

60 run 24
700 run 20
700 run 21
700 run 22
700 run 23
700 run 24

80 run 21
80 run 22
80 run 23
80 run 24

Figure 3.7: CRP Markov-Chain Averaged Flow Violation

42

3.5.2 Depth versus Width

In parallelizing the Markov search chain, a tradeoff must be made. By splitting

the search into many short pieces great reductions in execution time may be obtained.

However, these gains occur at the expense of the depth and extent of the search chain. In

order to move between any two points in the configuration space, a certain minimum number

of individual moves or exchanges must be made. The probability of successfully making

this transition is a function of both the energy-landscape of the intervening configurations

and the number of moves available. The greater the number of transitions attempted, the

greater the odds that the sequence will pass through. The minimum Markov chain segment

length must be chosen so as to allow an adequate coverage of the search space. In order to

test where these limits may lie, a series of cases were generated whereby a single Markov

search chain of a given length was divided between several sets of processors.

This set of test cases utilize a long, 1,200 history Markov chain size and a 48,000

history requested search size. These higher values were chosen to ensure the Markov Chain

segments are fully equilibrated before temperature decrements and to ensure that the par-

allel sample size is large enough that trends can be separated from other stochastic effects.

Again the Markov chain is divided amongst 2, 4, 8, 16, 20 and 48 processors. Optimization

settings are detailed below in table 3.7 with results following in tables 3.8 and 3.9 and

figures 3.8 through 3.14.

Table 3.7: Depth versus Width Settings

proc. llngth lchain ltran lsurv CRP Update Threshold

2 48,000 600 300 2500 1,000

4 48,000 300 150 1250 1,000

8 48,000 150 75 625 1,000

16 48,000 75 38 313 1,000

20 48,000 60 30 250 1,000

48 48,000 60 30 150 1,000

Several observations can be drawn from these results. The first is that although the

48-processor runs had optimization parameters similar to the 20-processor runs, it exhibits

higher levels of and variability in constraint violations. This is likely caused by the fact that

the chain segment lengths and total sample size were the same, requiring the 48-processor

43

Table 3.8: Depth versus Width Speedup Results

of # of Avg. # of Average End-of-Cycle %

Processes Runs Samples Runtime[hr] Flow Change Speedup Efficiency

2 2 48,244 69.3 -10.1± 0.1% 1.92 95.8%

4 3 49,128 38.1 -10.2± 0.3% 3.52 88.1%

8 3 48,978 20.4 -10.1± 0.1% 6.59 82.4%

16 3 48,731 11.8 -10.0± 0.0% 11.30 70.6%

20 3 48,759 9.1 -10.1± 0.1% 14.63 73.1%

48 2 50,303 4.2 -10.1± 0.1% 32.72 68.2%

Table 3.9: Depth versus Width Optimization Results

of Constraint Violation (x1,000,000)

Processes MFLPD MAPRAT MFLCPR

2 273.01± 386.09 44.92 ± 63.53 0.00± 0.00

4 177.85± 155.08 12.39 ± 21.47 101.62± 139.44

8 277.12± 226.79 0.00 ± 0.00 385.51± 667.73

16 176.05± 177.26 26.26 ± 45.48 378.04± 395.53

20 194.16± 42.11 6.98 ± 9.55 33.00± 57.16

48 295.40± 380.57 131.62 ±186.14 1,241.59± 1,728.21

CRP Constraint Violation (x1,000,000)

Threshold CSDM MAXHX Critical Flow

2 144.73± 204.68 70.41 ± 99.57 6,613.26± 437.90

4 26.44± 45.79 0.00 ± 0.00 4,253.82± 2,136.01

8 551.40± 932.22 83.29 ±144.27 13,844.71±17,802.49

16 659.94± 594.81 336.94 ±304.07 18,980.40±11,137.66

20 638.55±1,105.99 307.76 ±533.05 7,843.45± 9,882.08

48 1,200.83±1,340.64 569.04 ±804.74 22,118.72±24,318.19

44

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25 30 35 40

 O
bj

ec
tiv

e
F

un
ct

io
n

 Markov Chain

 Objective Function vs. Markov Chain

16 run 20
16 run 21
16 run 22
20 run 20

20 run 21
20 run 22

2 run 21
2 run 22

48 run 20
48 run 22
4 run 20
4 run 21

4 run 22
8 run 20
8 run 21
8 run 22

Figure 3.8: Depth versus Width Markov Chain Averaged Objective Function

case to utilize fewer cooling steps. Further, it can be seen that parallel efficiency declines as

the number of processors increases. This result is expected as greater parallelization limits

the search coverage and increases communication overhead.

45

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0 5 10 15 20 25 30 35 40

 M
F

LP
D

 V
io

la
tio

n

 Markov Chain

 MFLPD Violation vs. Markov Chain

16 run 20
16 run 21
16 run 22
20 run 20

20 run 21
20 run 22
2 run 21
2 run 22

48 run 20
48 run 22
4 run 20
4 run 21

4 run 22
8 run 20
8 run 21
8 run 22

Figure 3.9: Depth versus Width Markov Chain Averaged MLFPD

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0 5 10 15 20 25 30 35 40

 M
A

P
R

A
T

 V
io

la
tio

n

 Markov Chain

 MAPRAT Violation vs. Markov Chain

16 run 20
16 run 21
16 run 22
20 run 20

20 run 21
20 run 22
2 run 21
2 run 22

48 run 20
48 run 22
4 run 20
4 run 21

4 run 22
8 run 20
8 run 21
8 run 22

Figure 3.10: Depth versus Width Markov Chain Averaged MAPRAT

46

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0 5 10 15 20 25 30 35 40

 M
F

LC
P

R
 V

io
la

tio
n

 Markov Chain

 MFLCPR Violation vs. Markov Chain

16 run 20
16 run 21
16 run 22
20 run 20

20 run 21
20 run 22
2 run 21
2 run 22

48 run 20
48 run 22
4 run 20
4 run 21

4 run 22
8 run 20
8 run 21
8 run 22

Figure 3.11: Depth versus Width Markov Chain Averaged MFLCPR

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0 5 10 15 20 25 30 35 40

 C
S

D
M

 V
io

la
tio

n

 Markov Chain

 CSDM Violation vs. Markov Chain

16 run 20
16 run 21
16 run 22
20 run 20

20 run 21
20 run 22
2 run 21
2 run 22

48 run 20
48 run 22
4 run 20
4 run 21

4 run 22
8 run 20
8 run 21
8 run 22

Figure 3.12: Depth versus Width Markov Chain Averaged CSDM

47

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0 5 10 15 20 25 30 35 40

 M
ax

 H
ot

 E
xc

es
s

R
ea

ct
iv

ity
 V

io
la

tio
n

 Markov Chain

 Max Hot Excess Reactivity Violation vs. Markov Chain

16 run 20
16 run 21
16 run 22
20 run 20

20 run 21
20 run 22
2 run 21
2 run 22

48 run 20
48 run 22
4 run 20
4 run 21

4 run 22
8 run 20
8 run 21
8 run 22

Figure 3.13: Depth versus Width Markov Chain Averaged Max HX

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 0 5 10 15 20 25 30 35 40

 C
rit

ic
al

 F
lo

w
 V

io
la

tio
n

 Markov Chain

 Critical Flow Violation vs. Markov Chain

16 run 20
16 run 21
16 run 22
20 run 20

20 run 21
20 run 22
2 run 21
2 run 22

48 run 20
48 run 22
4 run 20
4 run 21

4 run 22
8 run 20
8 run 21
8 run 22

Figure 3.14: Depth versus Width Markov Chain Averaged Flow Violation

48

3.6 Stochastic versus Deterministic Branching

The results presented to this point have utilized a deterministic, best-solution

method to determine which solution to carry forward from the annealing temperature up-

date step. One concern with this method is that it may cause the solution to become

trapped in an unfavorable local minimum solution. As described in chapter 2, the binary

branching mode selects the starting solution for the next Markov chain by pairing up the

best solution found on each processor and iteratively selecting one member of each pair via

the Metropolis criterion until a single solution remains. This algorithm was tested using

a set of trials similar to those above. The settings used are presented below in table 3.10,

with results in figures 3.15 through 3.21 and table 3.11.

Table 3.10: Binary Branching Settings

proc. llngth lchain ltran lsurv CRP Update Threshold

2 48,000 600 300 2500 1,000

4 48,000 300 150 1250 1,000

8 48,000 150 75 625 1,000

16 48,000 75 37 300 1,000

20 48,000 60 30 250 1,000

48 48,000 60 30 150 1,000

Table 3.11: Binary Branching Speedup Results

of # of Avg. # of Average End-of-Cycle %

Processes Runs Samples Runtime[hr] Flow Change Speedup Efficiency

2 2 48,690 95.7 -10.7± 0.9% 1.4 71.4%

4 2 48,099 43.0 -10.6± 0.0% 3.1 76.7%

8 4 48,431 20.4 -10.4± 0.4% 6.6 81.9%

16 2 48,188 9.5 -10.1± 0.0% 14.3 89.6%

20 2 48,727 9.4 -10.1± 0.0% 14.1 70.5%

48 3 50,541 4.2 -10.0± 0.0% 32.6 67.9%

The results from this series of tests indicate that for these settings, the optimization

performance of the binary branching algorithm is not significantly different than for the

synchronous algorithm. There is, however, a speedup and performance penalty compared

to the synchronous best-solution algorithm (particularly for few processor cases). These

conclusions may not apply for different settings or reactor models.

49

Table 3.12: Binary Branching Optimization Results

of Constraint Violation (x1,000,000)

Processes MFLPD MAPRAT MFLCPR

2 0.00± 0.00 0.00 ± 0.00 0.00± 0.00

4 166.78± 39.49 3.13 ± 4.43 35.46± 50.15

8 90.18± 180.36 0.00 ± 0.00 17.61± 35.21

16 270.95± 86.34 59.28 ± 83.84 727.71± 1,029.13

20 86.67± 122.56 13.86 ± 19.61 72.60± 102.67

48 62.82± 48.84 0.00 ± 0.00 271.80± 470.77

CRP Constraint Violation (x1,000,000)

Threshold CSDM MAXHX Critical Flow

2 0.00± 0.00 88.54 ±125.22 6,150.51± 3,077.29

4 398.37± 35.58 0.00 ± 0.00 8,419.31± 7,016.13

8 70.13± 91.35 20.20 ± 40.40 7,965.06±11,011.85

16 518.92± 733.86 0.00 ± 0.00 5,871.80± 976.91

20 0.00± 0.00 0.00 ± 0.00 8,903.24± 5,299.84

48 859.91±1,489.41 0.00 ± 0.00 4,802.87± 4,522.97

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25 30 35 40

 O
bj

ec
tiv

e
F

un
ct

io
n

 Markov Chain

 Objective Function vs. Markov Chain

16 run 30
16 run 31
20 run 32

20 run 33
2 run 32
2 run 33

48 run 30
48 run 31
48 run 33

4 run 30
4 run 32
8 run 30

8 run 31
8 run 32
8 run 33

Figure 3.15: Binary Branching Markov Chain Averaged Objective Function

50

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0 5 10 15 20 25 30 35 40

 M
F

LP
D

 V
io

la
tio

n

 Markov Chain

 MFLPD Violation vs. Markov Chain

16 run 30
16 run 31
20 run 32

20 run 33
2 run 32
2 run 33

48 run 30
48 run 31
48 run 33

4 run 30
4 run 32
8 run 30

8 run 31
8 run 32
8 run 33

Figure 3.16: Binary Branching Markov Chain Averaged MFLPD

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0 5 10 15 20 25 30 35 40

 M
A

P
R

A
T

 V
io

la
tio

n

 Markov Chain

 MAPRAT Violation vs. Markov Chain

16 run 30
16 run 31
20 run 32

20 run 33
2 run 32
2 run 33

48 run 30
48 run 31
48 run 33

4 run 30
4 run 32
8 run 30

8 run 31
8 run 32
8 run 33

Figure 3.17: Binary Branching Markov Chain Averaged MAPRAT

51

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0 5 10 15 20 25 30 35 40

 M
F

LC
P

R
 V

io
la

tio
n

 Markov Chain

 MFLCPR Violation vs. Markov Chain

16 run 30
16 run 31
20 run 32

20 run 33
2 run 32
2 run 33

48 run 30
48 run 31
48 run 33

4 run 30
4 run 32
8 run 30

8 run 31
8 run 32
8 run 33

Figure 3.18: Binary Branching Markov Chain Averaged MFLCPR

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0 5 10 15 20 25 30 35 40

 C
S

D
M

 V
io

la
tio

n

 Markov Chain

 CSDM Violation vs. Markov Chain

16 run 30
16 run 31
20 run 32

20 run 33
2 run 32
2 run 33

48 run 30
48 run 31
48 run 33

4 run 30
4 run 32
8 run 30

8 run 31
8 run 32
8 run 33

Figure 3.19: Binary Branching Markov Chain Averaged CSDM

52

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0 5 10 15 20 25 30 35 40

 M
ax

 H
ot

 E
xc

es
s

R
ea

ct
iv

ity
 V

io
la

tio
n

 Markov Chain

 Max Hot Excess Reactivity Violation vs. Markov Chain

16 run 30
16 run 31
20 run 32

20 run 33
2 run 32
2 run 33

48 run 30
48 run 31
48 run 33

4 run 30
4 run 32
8 run 30

8 run 31
8 run 32
8 run 33

Figure 3.20: Binary Branching Markov Chain Average Max HX

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25 30 35 40

 C
rit

ic
al

 F
lo

w
 V

io
la

tio
n

 Markov Chain

 Critical Flow Violation vs. Markov Chain

16 run 30
16 run 31
20 run 32

20 run 33
2 run 32
2 run 33

48 run 30
48 run 31
48 run 33

4 run 30
4 run 32
8 run 30

8 run 31
8 run 32
8 run 33

Figure 3.21: Binary Branching Markov Chain Average Flow Violation

53

3.7 Parallel Performance

Several factors are important when considering the performance of a program. The

achievable parallel speedup and efficiency are of primary concern here, but other factors

such as memory usage and communications overhead can also have significant beneficial or

detrimental effects. For example, many parallel clusters are composed of loosely coupled

workstations or desktop computers. These systems are quite limited both in the amount of

memory they are likely to possess and in the available communication bandwidth between

machines.

To the engineer designing a reload core, the most important performance factors

are likely to include robustness, ease-of-use and execution time. The first two of these

factors are not considered here, as this is currently a developmental code. Execution time

is listed, along with speedup and efficiency, next to the relevant test cases.

3.7.1 Communications Overhead

In many parallel numerical algorithms the amount of time spent on interprocess

communication imposes limitations on the scalability of the method. Between the compu-

tational intensity of the core simulator, the infrequent need for interprocess communication

and the high bandwidth of the BladeCenter network communications, overhead does not

play a significant limiting role in the performance or scalability of this program.

3.7.2 Memory Usage

The overall memory usage for the test cases was small enough that it should pose

no great memory management concerns. Typical memory usage was less than 250MB per

process, which is well below the 2GB per node limit of available memory on the Henry2

cluster. Of greater concern is the disk space required for the various output files. Certain

output edit options, such as the writing out of every loading pattern generated, can easily

generate single files nearing one gigabyte in size. Two strategies are taken to address this

issue. First, the selection of output edits is carefully chosen to avoid those that would exceed

the available storage. Second, all parallel input and output is stored on the local scratch

space of the parallel computing nodes. This has the dual benefit of minimizing network

54

communications during a run and avoiding any potential file access conflicts that might

arise from multiple processes attempting simultaneous access. These files are automatically

relocated to a central directory when the program exits.

55

Chapter 4

Conclusions and Recommendations

The task designing a reload core for a commercial power reactor is a complicated

and involved process, involving many interrelated tasks that start several years before the

fuel enters the reactor. Operational and design decisions made during previous cycles can

have long-lasting consequences to the fuel condition and usability. Additional complicating

factors such as leaking fuel cladding or unplanned outages can further disrupt previous

planning. For these and other reasons, automated analysis tools such as the FORMOSA-B code

are of great potential utility to engineers seeking to find the best reload design in the most

efficient manner. The development of a parallel optimization capability in the FORMOSA-B

code further enhances its usefulness to engineers by reducing computational turnaround

times while expanding the search coverage. The parallel communication methods used in

this program are based on the MPI standard for interprocess communication, thus ensuring

that the code can be readily adapted to the wide variety of computational clusters in

common use in industry.

In tests carried out on an IBM BladeCenter cluster using up to 48 processors, the

parallel algorithm exhibited a speedup factors exceeding 32 compared to serial computations

on the same system. Parallel efficiencies range from 95% down to 68% as the number of

processors increases. While varying the CRP Update Threshold appears to have very little

effect on solution convergence and program run-times, the use of periodically optimized

control rod programs is necessary to achieve good loading pattern optimization results.

Finally, only a coarse cross-cut of optimization parameters and reactor models were

56

tested in this study. It is likely that further tuning of the cooling schedule and operational

parameters will yield even higher performance.

4.1 Future Work

As with nearly all projects of this size, there remains a great deal of analysis

and development to be performed. These fall into three general categories: testing of the

algorithm as it is, development of the algorithm, and general program updates.

Parallel FORMOSA-B testing so far has utilized only a small, 1911MWth BWR/4

model. In order to fully exercise the capabilities of the parallel algorithm, it should be

tested with a larger, more complicated model, such as a full-core, 800-assembly BWR/6

model. Furthermore, testing so far has focused on a rather narrow set of optimization

objectives. It would be worthwhile to test the parallel performance with objectives other

than end-of-cycle flow minimization.

One peculiarity associated with stochastic optimization algorithms is their ability

to return different results for different runs. Indeed the variability of results between runs

is often larger than the result values themselves. Many of the tests presented here utilize

only a handful of trials with each parameter set. By examining a larger sample size, more

rigorous conclusions may be reached.

One difficulty often encountered when dealing with massively parallel codes is

that faults and errors that were previously seldom, nuisance occurrences can happen with

regularity. This is the case for both software glitches and hardware failures. For this reason

it would be useful to upgrade the error detection and handling methods within the code

to prevent and contain failures before any data are lost. Furthermore, a checkpointing

capability would be quite useful. In this way, if a hardware or network failure interrupts

execution of a job, it may be restarted later with minimal loss of data.

Finally, there are several other variations of the parallel simulated annealing al-

gorithm that appear promising yet have not been implemented and tested. Among these

are the asynchronous parallel simulated annealing, which is largely implemented but as yet

untested, and the Mixing-of-States algorithm, which seems to offer improved scalability to

large numbers of processors.

57

BIBLIOGRAPHY

[1] Emile Aarts and Jan Korst. Simulated Annealing and Boltzmann Machines. Wiley -

Interscience Series in Discrete Mathematics and Optimization. John Wiley and Sons,

1989.

[2] Robert Azencott, editor. Simulated Annealing Parallelization Techniques. John Wiley

& Sons, Inc., 1992.

[3] Jonathan N. Carter. Genetic algorithms for incore fuel management and other recent

developments in optimization. Advances In Nuclear Science and Technology, 25:113–

154, 1997.

[4] Electric Power Research Center. FORMOSA-B Code Methodology and Usage Manual

- Version 3.2. North Carolina State University, 2004.

[5] King-Wai Chu, Yuefan Deng, and John Reinitz. Parallel simulated annealing by mixing

of states. Journal of Computational Physics, (148):646–662, 1999.

[6] Intel Corporation. Intel Fortran Programmer’s Reference. Intel, 2003.

[7] Platform Computing Corporation. Running Jobs with Platform LSF, June 2002.

[8] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard Version

1.3. University of Tennessee, Knoxville, 2008.

[9] M.D. Huang, F. Romeo, and A. Sangiovanni-Vincentelli. An efficient general cool-

ing schedule for simulated annealing. In IEEE 1986 International Conference On

Computer-Aided Design, pages 381–384. IEEE, 1986.

58

[10] Intel Corporation. Intel Fortran Compiler for Linux Systems User’s Guide, 2003. Doc-

ument No. FL-710-01.

[11] Atul A. Karve and Paul J. Turinsky. Formosa-b: A boiling water reactor in-core fuel

management optimization package ii. Nuclear Technology, 131(1):48–68, July 1999.

[12] Atul A. Karve and Paul J. Turinsky. Formosa-b: A boiling water reactor in-core fuel

management optimization package iii. Nuclear Technology, 135(3):241–251, September

2001.

[13] Doddy Febrian Kastanya. Implementation of a Newton-Krylov Iterative Method to

Address Strong Non-Linear Feedback Effects in FORMOSA-B BWR Core Simulator.

PhD thesis, North Carolina State University, 2002.

[14] Paul M. Keller. Adaptively constrained multiobjective genetic algorithms for incore

fuel management optimization. In Transactions of the American Nuclear Society, vol-

ume 92, pages 610–611, June 2005.

[15] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by simulated anneal-

ing. Science, 220(4598):671–680, May 1983.

[16] David J. Kropaczek. In-Core Nuclear Fuel Management Optimization Utilizing Simu-

lated Annealing. PhD thesis, North Carolina State University, 1996.

[17] David J. Kropaczek. Concept for multi-cycle nulcear fuel optimization basd on parallel

simulated annealing with mixing of states. In International Conference on the Physics

of Reactors ”Nuclear Power: A Sustainable Resource”, 2008.

[18] Hyun Chul Lee, Hyung Jin Shim, and Chang Hyo Kim. Parallel computing adaptive

simulated annealing scheme for fuel assembly loading pattern optimization in pwrs.

Nuclear Technology, 135(2):39–50, July 2001.

[19] Soo-Young Lee and Kyung Geun Lee. Synchronous and asynchronous parallel simulated

annealing with multiple markov chains. IEEE Transactions on Parallel and Distributed

Systems, 7(10):993–1008, October 1996.

59

[20] Samir W. Mahfoud and David E. Goldberg. Parallel recombinative simulated anneal-

ing: A genetic algorithm. Parallel Computing, 21:1–28, 1995.

[21] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.

Teller, and Edward Teller. Equation of state calculations by fast computing machines.

The Journal of Chemical Physics, 21(6):1087–1092, June 1953.

[22] Brian R. Moore. Higher Order Generalized Perturbation Theory for BWR In-Core

Nuclear Fuel Management Optimization. PhD thesis, North Carolina State University,

1996.

[23] Brian R. Moore, Paul J. Turinsky, and Atul A. Karve. Formosa-b: A boiling water re-

actor in-core fuel management optimization package. Nuclear Technology, 126(1):153–

169, March 1998.

[24] Office of Nuclear Reactor Regulation. Standard technical specifications general electric

plants, bwr/4. Technical Report NUREG-1433, U.S. Nuclear Regulatory Commission,

April 1995.

[25] Office of Nuclear Reactor Regulation. Standard technical specifications general electric

plants, bwr/6. Technical Report NUREG-1434, U.S. Nuclear Regulatory Commission,

April 1995.

[26] Richard Rhodes. The Making of the Atomic Bomb. Sloan Science Series. Simon &

Schuster Adult Publishing Company, 1995.

[27] Eric Sills. Getting started with the ibm bladecenter linux cluster (henry2) at nc

state. http://www.ncsu.edu/itd/hpc/Documents/BladeCenter/GettingStartedbc.php,

December 2008.

[28] S.R. Specker, L.E. Fennern, R.E. Brown, R.L. Crowther, and K.L. Stark. Bwr/6 general

description of a boiling water reactor. Technical report, General Electric Company,

1980. Section 3, Appendix: Control Cell Core Improved Design.

[29] William Stallings. Computer Organization and Architecture. Pearson Prentice Hall,

Upper Saddle River, NJ, seventh edition, 2006.

60

[30] P.J.M. van Laarhoven and E.H.L. Aarts. Simulated Annealing: Theory and Applica-

tions. Mathematics and Its Applications. D. Reidel Publishing Company, Dordrecht,

Holland, 1987.

[31] David Watts, Randall Davis, Illa Kroutov, and Kevin Galloway. IBM BladeCenter

Products and Technology. IBM International Technical Support Organization, 2008.

